

PROCESS-ORIENTED KNOWLEDGE DISCOVERY TO

SUPPORT PRODUCT DESIGN USING TEXT MINING

LAN LIJUN

(B.Sc., M.Sc., CQU)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:

Associate Professor Lu Wen Feng

Examiners:
Associate Professor Tay Eng Hock

Associate Professor Hong Geok Soon
 Professor Ashutosh Tiwari, Canfield University

� ��

DECLARATION

I hereby declare that this thesis is my original work and it has

been written by me in its entirety.

I have duly acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

LAN LIJUN

13 January 2017

� ���

ACKNOWLEDGEMENTS

I would first like to express my great appreciation and gratitude to my supervisor Prof.

Lu Wen Feng for his continuous support of my PhD study and related research, for his

patient, motivation, and encouragement. I would also like to thank my former supervisor

Prof. Liu Ying. The research would not have been at this level of quality and completeness

without his valuable guidance in the first year of my PhD study.

Besides my advisors, I also appreciate the valuable feedback from all the committee

members, for their insightful comments, critical suggestions, and constructive discussions,

which inspired me to widen my research from various perspectives.

Many thanks to my seniors, particularly, Dr. Wang Sibao, Dr. Liu Ning, Dr. Wang

Pengfei, and Dr. Hu Huicong, for the stimulating informal discussions, for the continuous

help and support, and for all the fun we have had in the four years.

My sincere thanks also goes to my friends who always took the time to listen to my

intimate feelings even complaints. Special thanks to Ms. Zhao Xiaohong, Ms. Chen Huling

and Mr. Du Dongyang because they have been like a second family to me in Singapore.

Last but not the least, I would like to thank my family. You are always there for me.

� ����

TABLE OF CONTENTS

DECLARATION .. I

ACKNOWLEDGEMENTS .. II

TABLE OF CONTENTS .. III

SUMMARY� .. IX

LIST OF TABLES ... XI

LIST OF FIGURES .. XII

LIST OF ABERRATIONS .. XV

CHAPTER 1 INTRODUCTION� ... 1

1.1 BACKGROUND .. 1

1.1.1 Knowledge Discovery ... 3

1.1.2 Process Mining ... 4

1.2 MOTIVATIONS .. 5

1.3 RESEARCH OBJECTIVES AND SCOPE ... 7

1.4 ORGANIZATION .. 10

CHAPTER 2 LITERATURE REVIEW ... 11

2.1 TEXT MINING IN PRODUCT DESIGN .. 11

2.2 TOPIC MODELING ... 13

� ��

2.3 NAMED ENTITY RECOGNITION ... 15

2.4 ENTITY RELATION EXTRACTION .. 17

2.5 PROCESS MINING .. 20

2.6 SUMMARY .. 22

CHAPTER 3 FRAMEWORK OVERVIEW ... 25

3.1 FRAMEWORK OVERVIEW .. 25

3.2 METHODS ... 28

3.2.1 Methods for Process Information Extraction ... 28

3.2.2 Methods for Process Mining ... 29

3.2.3 Methods for Process Knowledge Interpretation ... 31

3.3 CASE STUDY DESCRIPTION ... 32

3.4 SUMMARY .. 33

CHAPTER 4 COARSE-GRAINED PROCESS INFORMATION EXTRACTION BY

TOPIC MODELLING ... 34

4.1 INTRODUCTION ... 34

4.2 FRAMEWORK OVERVIEW .. 35

4.3 TRAINING A DBN TOPIC MODEL .. 37

4.3.1 DBN Topic Model ... 37

4.3.2 Training Process .. 38

4.4 APPLYING DBN MODEL IN UNDERSTANDING DESIGN TASK STRUCTURE 41

� �

4.4.1 Discovering Design Tasks .. 41

4.4.2 Visualizing Dynamic Changes of Design Tasks ... 43

4.4.3 Measuring The Interaction Strength of Design Tasks .. 43

4.5 EXPERIMENTAL RESULTS AND DISCUSSIONS .. 44

4.5.1 Dataset and Data Preprocessing .. 44

4.5.2 Performance Measures ... 45

4.5.3 Results and Discussions ... 46

4.6 SUMMARY .. 54

CHAPTER 5 FINE-GRAINED PROCESS INFORMATION EXTRACTION BY

NAMED ENTITY RECOGNITION� ... 56

5.1 INTRODUCTION ... 56

5.2 PROBLEM STATEMENT .. 58

5.3 A HYBRID NAMED ENTITY RECOGNITION APPROACH .. 59

5.3.1 Sentence Classification ... 60

5.3.2 Seed Entity Generation by Speech Act Rules .. 61

5.3.3 Entity Expansion by SVM ... 63

5.3.4 Entity Clustering ... 67

5.4 EXPERIMENTAL RESULTS AND DISCUSSIONS .. 68

5.4.1 Dataset and Data Preprocessing .. 68

5.4.2 Performance Measures ... 69

� ��

5.4.3 Results and Discussions ... 70

5.5 SUMMARY .. 78

CHAPTER 6 EVENT DETECTION BY ENTITY RELATION EXTRACTION 79

6.1 INTRODUCTION ... 79

6.2 PROBLEM STATEMENT .. 80

6.3 A GRAPH PARTITION BASED ERE APPROACH .. 81

6.3.1 Direct Binary Relation Detection ... 82

6.3.2 Indirect Higher-Order Relation Detection ... 85

6.3.3 Post-processing .. 87

6.4 EXPERIMENTAL RESULTS AND DISCUSSIONS .. 88

6.4.1 Dataset and Performance Measures .. 88

6.4.2 An Example of Event Detection .. 89

6.4.3 Results ... 90

6.5 SUMMARY .. 92

CHAPTER 7 HIERARCHICAL PROCESS MODEL DISCOVERY 93

7.1 INTRODUCTION ... 93

7.2 PROBLEM STATEMENT .. 94

7.3 APPROACH 1: HIERARCHICAL PROCESS MINING FROM BOTTOM TO TOP 96

7.3.1 Workflow Discovery at The Bottom .. 97

7.3.2 Task Abstraction ... 98

� ���

7.3.3 Workflow Reconstruction ... 100

7.3.4 Loop Elimination .. 101

7.4 APPROACH 2: HIERARCHICAL PROCESS MINING FROM TOP TO BOTTOM 103

7.4.1 System Architecture of Top-Down Process Mining .. 103

7.4.2 Algorithm of Top-Down Process Mining .. 104

7.5 CASE STUDY ... 107

7.5.1 Dataset and Performance Measures .. 107

7.5.2 Results of Bottom-Up Process Mining .. 108

7.5.3 Results of Top-Down Process Mining .. 113

7.5.4 Discussions: Bottom-Up Vs. Top-Down ... 116

7.6 SUMMARY .. 119

CHAPTER 8 MULTI-FACETED PROCESS KNOWLEDGE INTERPRETATION

BY LINKING PROCESS INFORMATION TO PROCESS MODEL: A CASE

STUDY ... 120

8.1 INTRODUCTION ... 120

8.2 AN INTEGRATED DESIGN KNOWLEDGE REUTILIZATION FRAMEWORK 121

8.3 ORGANIZATION MINING ... 123

8.3.1 Social Network Analysis ... 124

8.3.2 Role Mining .. 126

8.3.3 Human Resource Allocation ... 129

� ����

8.4 TEMPORAL PROCESS BEHAVIOR ANALYSIS .. 131

8.4.1 Temporal Behavior of Design Tasks .. 132

8.4.2 Temporal Behavior of Human Resources ... 134

8.5 DISCUSSIONS .. 136

8.6 SUMMARY .. 137

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS� 138

9.1 CONCLUSIONS .. 138

9.2 CONTRIBUTIONS ... 139

9.3 LIMITATIONS .. 142

9.4 RECOMMENDATIONS FOR FUTURE WORK ... 144

REFERENCES .. 147

APPENDIX ... A1

APPENDIX A. EXAMPLE EVENT LOGS FOR PROCESS MINING .. A1

APPENDIX B. EXAMPLE DOT FILE FOR VISUALIZING PROCESS MODELS DISCOVERED BY

BOTTOM-UP PROCESS MINING .. B1

APPENDIX C. EXAMPLE DOT FILE FOR VISUALIZING PROCESS MODEL DISCOVERED BY

TOP-DOWN PROCESS MINING ... C1

�

� ���

SUMMARY�

Design documents and design project footprints accumulated by corporation IT systems

have increasingly become valuable sources of evidence for design information and

knowledge management. Identification and extraction of the embedded information and

knowledge into a clear and usable format will greatly accelerate continuous learning from

past design efforts for competitive product innovation and efficient design process

management in future design projects. To efficiently reuse the embedded design

information, most of the existing design information extraction systems focus on either

organizing design documents for efficient document retrieval or extracting relevant product

information for product optimization. This study seeks to further extract design information

deep into the document content, with a focus on process-oriented design knowledge. For

this purpose, a process-oriented knowledge discovery system for extracting process relevant

knowledge from archival design documents is developed, and three subjects are investigated.

Firstly, considering the design documents generated during design processes are mostly

unstructured, unlabeled, and textual data, two information extraction approaches have been

investigated to extract process-oriented information from the design documents with

minimal prior knowledge. Unlike most existing methods which heavily rely on a large

quantity of training data, the two presented approaches extract coarse-grained information

at the document level in an unsupervised manner and fine-grained information at the

sentence level in a semi-supervised manner respectively. Experimental results indicate that

� ��

the extracted information could help decision makers to get a fast and brief understanding

of the underlying design process.

Secondly, as design processes are usually flexible and iterative, two process mining

approaches, i.e., bottom-up process mining and top-down process mining, are proposed to

discover the underlying design process model in a hierarchical and modular representation.

Different from conventional process mining techniques that aim to capture all the process

behaviors in a flat model, the outcome of the two proposed process mining approaches is a

hierarchical process model that provides different degrees of details at different abstraction

levels. To discover such a hierarchical process model, the two process mining approaches

work in two opposite directions, with one from specification to generation and the other

from generation to specification. Experimental results indicate that the hierarchical process

models have a good reflection of the reality, and outperform the flat models in capturing the

flexibility of the underlying design process.

Thirdly, as the process model discovered only reflects the workflow aspect of the

underlying design process, the process model is further refined to distill multi-faceted

knowledge patterns by applying a number of statistical analysis methods. The outcomes

range from cooperation patterns from social net analysis, functional and organizational roles

from role mining, and irregular task executions from temporal behavior analysis. Results

show that the extracted knowledge patterns include not only knowledge the interviewed

expert had already known but also hidden knowledge he was unaware.

� ���

LIST OF TABLES

TABLE 4.1 ILLUSTRATION OF SELECTED DESIGN TASKS LEARNED BY DBN TOPIC MODEL49

TABLE 5.1 LIST OF FEATURES USED FOR ENTITY RECOGNITION 66

TABLE 5.2 EXAMPLES OF SPEECH ACT WORDS ... 72

TABLE 5.3 NUMBER OF INDIVIDUAL TASK ENTITIES .. 77

TABLE 6.1 TYPES OF BINARY RELATIONS .. 83

� �

� ����

LIST OF FIGURES

FIGURE 1.1 KNOWLEDGE DISCOVERY IN DATABASES [4] .. 3

FIGURE 1.2 PROCESS MINING .. 4

FIGURE 1.3 THESIS ORGANIZATION ... 10

FIGURE 3.1 PROCESS-ORIENTED KNOWLEDGE DISCOVERY IN DESIGN TEXTS/DOCUMENTS

(PKDT) .. 26

FIGURE 4.1 THE FRAMEWORK OF COARSE-GRAINED PROCESS INFORMATION EXTRACTION

USING DBN-BASED TOPIC MODELING ... 36

FIGURE 4.2 THE ARCHITECTURE OF DEEP BELIEF NETWORK (DBN): (A) AN EXAMPLE OF

DBN, (B) THE RESTRICTED BOLTZMANN MACHINE (RBM) 37

FIGURE 4.3 TRAINING PROCESS OF DBN TOPIC MODEL: (A) PRE-TRAINING PROCESS, IN

WHICH A STACK OF RBMS ARE LEARNED LAYER BY LAYER, (B) FINE-TUNING PROCESS,
WHERE AN EXTRA LAYER OF “LABEL” DATA IS ADDED TO FINE TUNE THE ENTIRE

NETWORK ... 39

FIGURE 4.4 ILLUSTRATION OF MAPPING DESIGN TASKS FROM HIDDEN TOPIC FEATURES. THE

THICK LINES INDICATE WORDS WITH STRONGEST CONNECTIONS TO THE JTH TOPIC. . 42

FIGURE 4.5 DOCUMENT RETRIEVAL EFFECTIVENESS OF DBNS: (A) COMPARISON OF DBNS

OF ONE HIDDEN LAYER BUT DIFFERENT HIDDEN UNITS, (B) COMPARISON OF DBNS OF

THE SAME HIDDEN UNITS IN THE TOP LAYER BUT DIFFERENT NUMBERS OF HIDDEN

LAYERS ... 47

FIGURE 4.6 DOCUMENT RETRIEVAL EFFECTIVENESS OF ONE-HIDDEN-LAYER DBNS AND

LDAS ... 48

FIGURE 4.7 CONFORMANCE CHECKING ... 51

FIGURE 4.8 TEMPORAL FREQUENCY OF TASK-RELEVANT TOPICS IN TABLE 4.1 WITH A

WINDOW SIZE OF 15 DAYS ... 52

FIGURE 4.9 ILLUSTRATION OF INTERACTION STRENGTHS BETWEEN SELECTED DESIGN TASKS

 ... 53

FIGURE 5.1 A HYBRID NER APPROACH FOR FINE-GRAINED PROCESS INFORMATION

EXTRACTION ... 59

� �����

FIGURE 5.2 ILLUSTRATION OF LOCAL DEPENDENCY TREE CONSTRUCTION: (A) EXAMPLE OF

LOCAL CONTEXT, (B) LOCAL DEPENDENCY TREE OF THE FIRST NP IN (A), (C) LOCAL

DEPENDENCY TREE OF THE SECOND NP IN (A) .. 64

FIGURE 5.3 PERFORMANCE OF SENTENCE CLASSIFICATION ... 70

FIGURE 5.4 PERFORMANCE OF SEED ENTITY GENERATION .. 73

FIGURE 5.5 PERFORMANCE OF ENTITY LEARNING: (A) PERFORMANCE OF SVM CLASSIFIER,
(B) PERFORMANCE OF KNN CLASSIFIER ... 75

FIGURE 5.6 EXAMPLES OF ENTITY CLUSTERS .. 78

FIGURE 6.1 WORKFLOW OF EVENT DETECTION ... 82

FIGURE 6.2 EXAMPLE OF BINARY RELATION DETECTION ... 84

FIGURE 6.3 A GRAPH DECOMPOSITION ALGORITHM FOR EVENT DETECTION 87

FIGURE 6.4 THE POST-PROCESSING OPERATION FOR EVENT GRAPH SELECTION 88

FIGURE 6.5 EXAMPLE OF EVENT DETECTION ... 90

FIGURE 6.6 EVENT DETECTION RESULTS ... 91

FIGURE 7.1 EXAMPLE OF HIERARCHICAL PROCESS MODEL .. 95

FIGURE 7.2 SYSTEM ARCHITECTURE OF BOTTOM-UP PROCESS MINING 96

FIGURE 7.3 EXAMPLE OF TASK ABSTRACTION: A) W(LI-1), B) INTERMEDIATE RESULT, C) W(LI) ... 100

FIGURE 7.4 EXAMPLE OF LOOPS .. 102

FIGURE 7.5 SYSTEM ARCHITECTURE OF TOP-DOWN PROCESS MINING 103

FIGURE 7.6 ALGORITHM OF TOP-DOWN PROCESS MINING .. 105

FIGURE 7.7 HIERARCHICAL MODEL OF TOP-DOWN PROCESS MINING 107

FIGURE 7.8 A SEGMENT OF THE PROCESS MODEL IN THE BOTTOM LAYER 108

FIGURE 7.9 PROCESS MODEL IN THE TOP LAYER: A) THE OVERALL PROCESS MODEL, B) A

MAGNIFIED SEGMENT, C) THE EVENT DISTRIBUTION OVER THE COMPOSITE TASKS 110

FIGURE 7.10 EXAMPLE OF DECOMPOSING THE TASK OF "WRITING CONCEPT PAPER" ... 111

� ���

FIGURE 7.11 EXAMPLE OF DECOMPOSING THE TASK OF "LEARNING SIMULATION SOFTWARE"
 ... 112

FIGURE 7.12 FIRST EXAMPLE OF HIERARCHICAL PROCESS MODEL BY TOP-DOWN MINING114

FIGURE 7.13 SECOND EXAMPLE OF HIERARCHICAL PROCESS MODEL BY TOP-DOWN MINING

 ... 115

FIGURE 8.1 AN INTEGRATED DESIGN KNOWLEDGE REUTILIZATION FRAMEWORK 122

FIGURE 8.2 SOCIAL NETWORK CLIQUES BASED ON COOPERATION 125

FIGURE 8.3 RESULTS OF ROLE MINING .. 129

FIGURE 8.4 EXAMPLES OF HUMAN RESOURCE UTILIZATION .. 130

FIGURE 8.5 TEMPORAL BEHAVIOR OF DESIGN TASKS .. 133

FIGURE 8.6 TEMPORAL BEHAVIOR OF PARTICIPANTS .. 135

�

� ��

LIST OF ABERRATIONS

BIO Beginning, Inside, and Outside

BMDTK Best Match Based Dependency Tree Kernel

DBN Deep Belief Network

DP Dependency Tree

ERE Entity Relation Detection

HCA Hierarchical Clustering Analysis

HMM Hidden Markov Model

IE Information Extraction

KD Knowledge Discovery

KDD Knowledge Discovery in Database

KNN k-Nearest Neighbors

LDA Latent Dirichlet Allocation

ML Machine Learning

NE Named Entity

NLP Nature Language Processing

� ���

NN Neural Networks

NER Named Entity Recognition

PDP Product Design/Development Process

PKDD Process Knowledge Discovery in Texts/Documents

PM Process Mining

POS Part-Of-Speech

RBM Restricted Boltzmann Machines

SVM Support Vector Machine

TP Topic Modeling

XML Extensible Markup Language

CHAPTER 1 INTRODUCTION�

� ��

CHAPTER 1 INTRODUCTION�

1.1 Background

In today's modern manufacturing environment, globalization, unpredictable markets,

increasing customer requirements, and the pursuit for competitive advantages are some of

the main challenges that are pushing enterprises to move products quickly from concept to

market [1]. These challenges can trigger more intractable problems such as causing frequent

changes in product design, increasing the complexity of both products and product

development processes, and raising the product development cost. The ability of efficiently

solving the above problems has become a pre-requisite for designing a successful product.

One crucial key to solve the above problems is a good product design process that is

well supported with immense amounts of valuable and available design information. In

general, a product design process is a sequence of activities, involving from concept through

realization, to turn ideas into products [2]. Its nature is often viewed as an information and

knowledge intensive process. This nature is presented from two aspects. On one hand,

product design processes heavily rely on the personal knowledge of the designers. It is

estimated that throughout a design process, designers spend 20-30% of their time searching

for information and another 20-30% for handling information [3]. On the other hand, with

the wide spread of computer-supported systems, a large volume of digital design data has

been accumulated at various stages of design processes. Examples of such design data

include CAD models, regular progress reports, claims, configuration files, email, and chat

CHAPTER 1 INTRODUCTION�

� ��

transcripts. Invaluable design information, patterns, and knowledge are embedded in such

documents.

To efficiently reuse the embedded design information for supporting product design,

most of the existing design information extraction systems mainly focus on either

organizing design documents for efficient document retrieval or extracting relevant product

information for product optimization. Although these systems indeed can reduce the time

spent in seeking for useful design information, human efforts are still required to locate and

understand the retrieved design information. In this context, identifying and extracting the

embedded information and knowledge into a clear and usable format would greatly

accelerate continuous learning from past design efforts for competitive product innovation

and efficient design process management in future design projects.

This study seeks to further extract design information deep into the document content,

with a focus on process-oriented design knowledge. For this purpose, a process-oriented

knowledge discovery system is developed. The developed system aims to automatically

discover multi-faceted design process knowledge such as design process model, social

network of the involved people, and resource utilization, from design documents archived

in existing or old product design processes. The discovered design process knowledge is

well organized in an understandable and interpretable manner, so as to help decision makers

to quickly get right information at the right time.

CHAPTER 1 INTRODUCTION�

� ��

Before describing the motivations of this research in detail, it is worth explaining two

significant concepts involved in this thesis: knowledge discovery and process mining.

1.1.1 Knowledge Discovery

Knowledge discovery is methodically similar to information extraction and data mining,

but goes beyond information extraction and data mining. It requires not only extracting

useful patterns from structured or unstructured source data but also understanding and

reusing the extracted patterns.

Figure 1.1 Knowledge discovery in databases [4]

Figure 1.1 illustrates the most classical framework of knowledge discovery in databases

(KDD) [4]. There are five main steps: selecting the target data from the given dataset,

preprocessing the target data, transforming data into operable formats, extracting hidden

patterns, and interpreting the extracted patterns. Referring to Fig. 1.1, the starting point of

KDD is the raw data, which are usually unrefined and unfiltered information. After some

forms of processing, the raw data evolve into information, e.g., relations and patterns

CHAPTER 1 INTRODUCTION�

� ��

detected from the source data. At last, knowledge is a high-value form of information that

is understandable and ready for use in decision making [5, 6]. For example, if the traffic

light is the considered data, the information should be “the light is red”, while the knowledge

should be “to stop”.

1.1.2 Process Mining

Process mining is the task of using specialized data mining algorithms to automatically

extract business workflows from event logs recorded by information systems [7]. Figure 1.2

gives an example of process mining. In Fig. 1.2, event logs are execution records generated

by information systems. The resulting model can be seen as a special type of knowledge

that identifies workflow sequences among the activities recorded in the event logs.

Extraction of such a model can provide decision makers with great help in obtaining deep

insight into control flows, organizational structures, and resource utilization, especially

when no formal description of the process can be obtained by other approaches or when the

quality of an existing model is questionable.

Figure 1.2 Process mining

abc3

Instances

4

ID

abcde1

5

2 afde

afde

abcde start a

b c

d ef

end

Event Logs

Process Model

Data
Mining

CHAPTER 1 INTRODUCTION�

� ��

1.2 Motivations

It has been widely realized that extracting useful information and knowledge from the

archival design documents could continuously support decision making in a new design

project. For this purpose, most of the existing applications of information extraction in

product design mainly focused on discovering technology trend from patents [8-10],

retrieving and reutilizing product design on the basis of CAD files [11-13], and mining

customer opinions from online customer reviews [14, 15]. One common point of the three

applications is that they are trying to improve product quality by putting focus on product

itself. For example, by finding and reusing the best matching old product from the existing

CAD files, a new product can be modified to better fit the customer requirements. Although

such design knowledge reuse systems can be greatly helpful in supporting detailed design,

they are not compatible to the entire product design process.

To the best of the author’s knowledge, this is no previous study on extracting design

process information and knowledge from design documents accumulated during design

processes. Different from product-relevant design information like CAD models, design

process information such as design process models, social network of the designers, and

organizational structures, are of great value to decision makers in improving design process

management throughout the entire lifecycle of the product design process. Typical benefits

of process information include tracking root causes of delayed design activities, optimizing

resource utilization and resource allocation based on the the historical performance of the

CHAPTER 1 INTRODUCTION�

� ��

designers, and optimizing process planning based on the historical task dependencies.

However, such types of design information have been much ignored in the existing studies.

In the domain of intelligent business management, process mining has become a

popular tool for business process analysis and improvement, such as conformance checking

[16-19], bottleneck detection [20], and decision support [21, 22]. However, existing process

mining techniques can not be directly transplanted to mine design process models from

design documents. There are two significant reasons caused by the nature of both design

data and product design process.

The first reason is the textual nature of product design data. In contrary to the numeric

datasets of business processes, 80% of design process data is semi-structured or

unstructured texts [23], e.g., regular progress reports, claims, configuration files, emails and

chat transcripts. However, the input data for most process mining approaches is restricted

to event logs and relation database data, which are totally structured. That is to say, there is

an irreconcilable conflict between product design data and the data required by traditional

process mining approaches. To overcome this conflict calls for intelligent techniques that

can not only extract design process information such as people, time, and tools, from design

documents, but also encode the extracted information into a well-defined structure like

event logs.

The second reason is the difference between business processes and product design

processes: the former is formal and repetitive, while the latter is unpredictable and iterative

CHAPTER 1 INTRODUCTION�

� 	�

[24]. In practice, designers usually produce in advance some sequences of basic design

activities that are supposed to reach some goals. However, as the product design process

progresses, changes caused by new information and new ideas require designers to take new

actions to solve some new problems. This nature of product design processes causes the

design tasks have nonlinear and complex correlations. This makes traditional process

mining approaches not suitable to model the behavior of product design processes because

most of them try to model the process behavior in a flat and linear model. To solve this

problem calls for specialized process mining approaches that is able to capture the flexible

and iterative nature of product design processes, for example, modeling product design

processes in a hierarchical manner by providing appropriate abstractions.

Motivated by the growing need of and the lack of techniques for reutilizing the stored

design data for product design process improvement, this thesis aims to develop a design

process knowledge discovery system. The proposed system could automatically discover

multi-faceted design process knowledge such as design process model, social network of

the designers, and resource utilization, from design documents archived in existing or old

product design processes.

1.3 Research Objectives and Scope

As mentioned above, the aim of this research is to develop a knowledge discovery

system to extract much-ignored process knowledge from design documents. Due to the

CHAPTER 1 INTRODUCTION�

�
�

characteristics of design documents and the nature of product design processes, the

proposed system must achieve the following three sub-goals.

I. Process information extraction – to extract process relevant information from the

design documents. The extracted information include topics discussed in the

documents and physical objects such as people, organizations, locations, and tools,

which have been mentioned in the design documents. To address this problem, two

information extraction approaches, topic modeling and Named Entity Recognition

(NER), would be investigated. The former aims to extract topics at the document

level in an unsupervised manner, and the latter aims to identify fine-grained

information at the sentence level in a semi-supervised manner.

II. Process mining – to discover product design process models that are able to capture

the flexibility of the product design process. To solve this problem, Entity Relation

Extraction (ERE) approaches would be studied to extract design events recorded in

design documents by finding the higher-order relations among process-relevant

entities. In addition, in order to capture the flexible structure of product design

processes, hierarchical process mining approaches would be investigated to model

design processes with different levels of abstraction.

III. Process knowledge interpretation – to enhance and interpret multi-faceted design

knowledge on the basis of the discovered process model and to reuse the discovered

knowledge in decision making. Two significant aspects of product design process

CHAPTER 1 INTRODUCTION�

� ��

will be analyzed to illustrate what valuable design knowledge could be distilled from

the design process model discovered. They are organizational mining and temporal

behavior analysis. The former focuses on the people involved in the underlying

design process by discovering their social network, functional roles, and

organizational structures. The latter focuses on the temporal behaviors of both the

detected design tasks and the involved people. In addition, process knowledge

visualization is also stressed at this stage, with the goal of organizing the discovered

information in an accessible, understandable, and interpretable manner.

The discovered process knowledge is expected to help designers, even novices, to 1)

recognize unknown problems of existing product design processes (know-what), 2)

understand the cause of problems (know-why), and 3) get the capacity to act quickly and

correctly in the design process of a new product (know-how). Such abilities would support

and facilitate product design in many situations. For example, before a manager making

decision to assign a person to a new design task, he may want to know 1) what tasks this

person have been in charge of in the existing projects, and 2) how this person have

performed in his previous tasks. In another situation, if a person is assigned a new task, he

may want to know what experience he can learn from previous tasks so as to improve the

new task. With the help of the discovered process knowledge, such concerns could be easily

resolved, thus reducing the time-to-market.

CHAPTER 1 INTRODUCTION�

� ���

1.4 Organization

The dissertation is presented in nine Chapters. Chapter 2 reviews the state of the art

related to each research topic. Chapter 3 gives an overview of the methods integrated in the

developed system of discovering process knowledge from design texts (PKDT). Figure 1.3

shows the organization structure of the core steps of the proposed PKDT system. At the

upstream stage of the PKDT system, Chapters 4 and 5 address the design information

extraction problems. Chapters 6 and 7 address the process mining problems, which is the

second major stage in the PKDT system. Chapter 8 addresses the knowledge interpretation

and visualization problems via multi-faceted process analysis, which forms the downstream

stage. Finally, Chapter 9 gives the conclusions as well as the future works.

Figure 1.3 Thesis organization

Chapter 4 Chapter 5 Chapter 6 Chapter 8

Coarse-
grained

Information
Extraction

Fine-grained
Information
Extraction

Process
Modeling

Multi-faceted
Process

Knowledge
Discovery

Transformation Data Mining Interpretation

DBN-based
Topic

Modeling

A Hybrid
NER

Bottom-Up
Mining, Top-
Down Mining

Organization
al Mining,
Temporal
Behaviour
Analysis

Topic
Modeling NER

ERE,
Process
Modeling

Social
Network,
Statistic

Chapter:

KDD
Procedure:

PKDT
Procedure:

Approach:

Keyword:

Chapter 7

Event
Detection

Graph
Partition
Based

Higher-order
ERE

ERE, Graph
Partition

CHAPTER 2 LITERATURE�REVIEW

� ���

CHAPTER 2 LITERATURE REVIEW

2.1 Text Mining in Product Design

Text mining has its roots in linguistics and data mining, but extends the data mining

workbenches by extracting high-quality information in form of patterns and terms from

texts [25, 26]. The typical techniques include Naïve Bayes [27], support vector machine

(SVM) [28], Conditional Random Fields [29], and decision tree [30]. In product design,

although extracting and utilizing design information from design documents via text mining

techniques has long been recognized, high-quality design information extraction is still a

big challenge. One major reason is that design processes are often ill-structured and ad hoc,

and vary greatly due to uncertainty [3].

Based on the type of design information that produced, typical applications of text

mining techniques in design document analysis can be classified into three categories:

document retrieval, document classification, and information extraction.

Document/information retrieval approaches [8, 11, 31, 32] allow end-users to retrieve their

interesting design documents/information from large indexed document collections, using

keyword matching techniques. Document classification approaches [33-38] focus on

providing more efficient design document organization by clustering documents into

predefined categories, using unsupervised (e.g., K-means and hierarchical clustering

algorithm) or supervised (e.g., SVM, neural networks and decision trees) approaches based

on document content or labeled training samples. Unlike previous two approaches that

CHAPTER 2 LITERATURE�REVIEW

� ���

processing design documents at the document level, information extraction aims to extract

domain-specific information, e.g., design rationales [39], task topics [40] and structural

models [41, 42], from text fragments at the semantic level. In most cases, this task requires

processing natural language texts by a combination of techniques, such as natural language

processing, data mining, machine learning, and probability statistics.

Because of the ability of locating highly relevant information, information extraction is

gaining increasing popularity in design document processing. Among present works, the

largest proportion focus on patent processing for technology trend analysis and design

innovation inspiration. For example, in order to collect design rationales from patent

documents for a engineering design purpose, a 3-layers ontology model, ISAL (issue,

solution and artifact), is automatically built using a series of text mining algorithms [39].

With a similar purpose of market-driven technology innovation, potential product concepts

of solar-lighting devices are identified from a collection of domain-specific patents [43].

Focusing on the patent claim parsing, a data-driven parser is proposed to identify the scope

of intellectual property protection [10]. Besides patent processing, discovering customer

opinions from website data, e.g., online customer requirements and reviews, is another

leading stream for design information extraction. For instance, based on the concurrent

information between keywords, customer reviews are automatically translated into

engineering characteristics for Quality Function Deployment [15].

CHAPTER 2 LITERATURE�REVIEW

� ���

The literature review indicates that compared to patent documents and website data,

other types of design text, e.g., repair verbatim [44], production configuration data [45] and

social media data [40], have obtained much fewer attention for design information

extraction. Furthermore, most of the design documents accumulated during design

processes are less-structured or even unstructured textual data. This characteristic of design

documents also narrowly restricts the application of information extraction in engineering

design, especially for the process-oriented information discovery.

2.2 Topic Modeling

In machine learning and natural language processing (NLP), topic modeling is a task

of automatically developing statistical models that learn low-dimensional latent

representation of a collection of documents [46]. Usually, the topics produced by topic

modeling techniques are clusters of similar words. The statistics of the words in each

document offer insight for us to quickly organize and understand a large collection of textual

bodies.

In a typical topic model, per-document word assignments are observed variables, while

topics and per-document’s topic distributions are hidden variables. In this context, the

central problem of topic modeling is using observed variables to infer hidden variables. In

the literature, Latent Dirichlet Allocation (LDA) [47] and its extensions [48-50] have been

fund as the most popular topic models, in which documents are regarded as mixtures of

topics and joint distribution is utilized to compute the posterior distribution of hidden

CHAPTER 2 LITERATURE�REVIEW

� ���

variables. However, exact inference in these models is difficult, so that the posterior

distributions are only computed approximately.

More recently, neural network based undirected graphical models are witnessed to

outperform LDA models in fast inferring a document’s semantic structure. One typical

approach is using a two-layer Restricted Boltzmann Machine (RBM) to model word-count

vectors as a Poisson distribution [51]. In order to deal with documents with different length,

[52] proposed the Replicated Softmax model on the basis of RBM. Even though the

inference is efficient, the representation ability of these undirected graph models is usually

constrained by their simple network structure. To fix this problem, a good alternative is to

use Deep Belief Nets (DBN) [53, 54]. A typical DBN model consists of one input layer of

observation, one output layer of reconstruction, and several hidden layers. The deep

architecture of DBN allows it to learn more complex topic features. Due to the great learning

capability brought by the deep architecture, DBN is attracting more concerns from different

application domains, such as document topic modeling [54], image processing [55] and

speech recognition [56]. However, none is found in design document processing.

In addition, all the above topic models are constructed on word-frequency or word-

count representations, ignoring the inherent appearance sequence of words. One direct result

is the difficulty of understanding the learned topics straightforwardly in practical and

realistic scenarios. Furthermore, most existing topic models assume that the whole

document collection shares the same set of flat topics. However, in the particular application

CHAPTER 2 LITERATURE�REVIEW

� ���

domain of product design, one mostly common case is that documents relevant to a specific

task are highly overlapped and shares a limited set of local topics. The lack of mechanism

to identify local topics within groups of highly relevant documents further limits the

applications of topic modeling in extracting easily understandable information.

2.3 Named Entity Recognition

As a subtask of information extraction, Named Entity Recognition (NER) seeks to

identify and classify information elements, called as Named Entities (NE), in texts into pre-

defined categories, such as Person, Organization, Location, etc. [57]. These annotated NEs

serve as a crucial basis for many other areas of information extraction and management. For

example, in the domain of automatic construction of ontologies [58-61], NEs recognized

from texts are automatically filled into predefined ontologies without human intervention.

By this means, NER could add structure to unstructured texts, which plays a significant role

in information management and knowledge reutilization.

Early NER systems were essentially rule-based approaches, which use grammar-based

rules created by human experts to match satisfied writing expressions over texts [62].

Although rule-based NER systems typically obtain high precision, the constrains for

specific domains or languages limit the type of entities and texts to which they could apply,

thus result in low recall in practice. To tackle this problem, modern NER systems resort to

statistical machine learning (ML) algorithms. The main motivation behind is to explore

more expressive features that can be utilized to learn sets of dis-ambiguous rules, which

CHAPTER 2 LITERATURE�REVIEW

� ���

capture the discriminative characteristics of positive and negative examples in the training

corpus that are manually annotated prior. Most widely and successfully used ML models

include conditional random field (CRF) [63] and support vector machine (SVM) [64].

However, one critical weakness of these statistic NER systems is their heavy dependence

on large amounts of manually annotated NEs, which is extremely time-consuming for

construction.

In order to reduce the annotation labor, recent research studies are directed to explore

hybrid approaches, which use a mix of previous two by taking advantage of a small degree

of rule-based supervision. The main technique of such semi-supervised NER systems is

called “mutual bootstrapping”, which grows NEs and learns their contexts in turn on the

basis of several seed NEs [65]. Precisely, they start with a small number of example NEs

that are manually selected, then extract context clues from seed NEs, such as textual [65],

syntactic and semantic context patterns [66, 67], followed by using context clues to learn

new NE examples. This learning process is repeated. Recent experiments report that such

semi-supervised NER approaches have obtained a high-quality aggregation of the

supervised and unsupervised ones.

The success of information extraction has motivated the broadening of its application

in different domains, where the adaption for recognizing new categories of NEs is required

according to the specific applications. For example, the most concerned entities in

bioinformatics are names of genes and genetic products [68]. In the clinical domain, various

CHAPTER 2 LITERATURE�REVIEW

� �	�

types of medication related entities, such as medical problem, treatments and lab tests, are

extracted from clinical notes [69, 70]. In addition, drug NER systems have added more

chemical and drug related entities for complex biomedical NLP tasks [71, 72]. There also

has an increasing interest in the recognition of NEs in web social media like tweet [57], e.g.,

Product, Band, Movie, TV-shown, etc. However, little attempt has been made to discover

deep process-oriented design information for design document processing.

2.4 Entity Relation Extraction

Entity relation extraction (ERE) aims to identify relationships between pairs of named

entities (NEs) in text. In information extraction, ERE is treated as a further step beyond

NER, towards a more structured semantic analysis of texts [73]. For example, persons might

be related to organizations, an organization may locate at some physical place, and persons

can also be related to others via marriage, friendship or colleague relationships. Detection

of such semantic relations, e.g., person-affiliation, organization-location and social-with,

can add structure to unstructured texts and allows more powerful nature language

understanding. However, high-quality relation detection especially from a large quantity of

texts is not a trivial task and involves diversity machine learning techniques.

Existing approaches for ERE can be generally divided into three categories, namely,

supervised, semi-supervised and unsupervised methods. The supervised methods solve the

ERE task as a classification task, mostly binary classification between two named entities.

A lot of machine learning algorithms have been applied in ERE, such as Conditional

CHAPTER 2 LITERATURE�REVIEW

� �
�

Random Fields (CRF) [74], Neural Networks (NN) [75], Maximum Entropy models (MEM)

[76], Hidden Markov Models (HMM) [77], and Supported Vector Machines (SVM) [78].

According to the type of the training data, these supervised ERE approaches can further be

divided into feature-based and kernel-based methods. Feature-based methods require that

the classifier must be trained on feature vectors. Usually, it is difficult to select a suitable

feature set. In order to tackle this problem, kernel-based methods are developed to explore

entity relations in a higher dimensional space. Lodhi [79] uses string-kernels to classify

entity relations by computing the number of common subsequences in two strings. Bunescu

and Mooney [80] extend this string-kernel from character level to word level. Zelenko [81]

further replaces the strings in the string-kernels by shallow parse trees of sentences, and

obtains higher reliability. Furthermore, in the form of trees, rich and diverse features (i.e.,

lexical, syntactic and semantic features) could be introduced to increase the learning

performance [82-86]. These features cover words, entity types, POS, dependency trees,

shortest paths and third-party semantic resources.

Recently, semi-supervised/bootstrapping methods have become hot for entity relation

extraction. They construct weak learners on a small set of relation examples then use the

output of weak learners as training data for next iteration. Typical bootstrapping algorithms

and tools include DIPRE [87], Snowball [88], KnowItAll [89], and TextRunner [90]. One

biggest disadvantage of these approaches is that the extracted patterns degrade iteratively

because of the semantic drift [91]. In contrast, another weakly-supported approach, called

CHAPTER 2 LITERATURE�REVIEW

� ���

as distant supervision [92-94], has been proposed to train classifiers on a large quantity of

facts. The rationale is gathering rich features by finding sentences that contain the same pair

of entities. For example, a linear-regression classifier is trained by learning from only

positive and unlabeled relation examples derived from Freebase, a large Wikipedia corpus

[93].

Parallel to the above approaches, Open Relation Extraction (ORE) has emerged to

extract open relations without previously tagged corpora using completely unsupervised

methods. For example, in [95], NE pairs with similar context are grouped, and NE pairs in

the same group may have the same relation. The state-of-the-art ORE systems include

REVERB [96] and WOE [97]. Both systems target large corpora, e.g., World Wide Web

and Wikipedia, by extracting relations that are mediated by verbs.

Besides binary relation extraction mentioned above, higher-order relation extraction

has recently gained increasing popularity due to its wide applicability for various purpose.

A typical application of higher-order relation is event detection [98-100], which detect

complex relations among multiple entities such as people, locations, and time. A detailed

review of data-driven, knowledge-driven, and hybrid event detection approaches is reported

in [101]. It is stated that data-driven approaches require a lot of training data, knowledge-

driven approaches work on small datasets on the basis of more expert knowledge, while

hybrid approaches take advantage of both previous two approaches.

CHAPTER 2 LITERATURE�REVIEW

� ���

2.5 Process Mining

Process mining, also known as event mining or workflow mining, is a general

methodology used to diagnose business processes by discovering models (e.g., Petri net,

BPMN or event graph models) that describe reality from historical event data [102]. The

resulting business process models can be used for conformance checking by comparing

them to priori models [18, 103], decision support by treating them as simulation models

[104-106], process monitoring by predicting how ongoing traces will unfold up to their

completion [107], and process optimization by setting up optimization parameters of

business process optimization models [108].

Traditionally, process mining has been focusing on control-flow discovery-that is,

automatically discovering the causal dependencies or execution patterns between activities

from enactment logs. Agrawal et al. [109] proposed the first concrete algorithm for event

mining based on workflow graph. After that, variety process mining algorithms [110-117]

have been proposed to address problems such as parallelism, noise, concurrence, loop,

invisible tasks and duplicate tasks. Each algorithm has its own advantages and

disadvantages. For example, as the most classic process mining algorithm, alpha algorithm

[110, 111] is simple and the computation time is short, but it is not suitable for complex

process with loop, duplicate tasks or noises. In contrast, genetic miner based algorithms

[113, 114] are good at handling noises and tackling complex structures, but are sometimes

very time consuming.

CHAPTER 2 LITERATURE�REVIEW

� ���

Unfortunately, above process mining algorithms have problems dealing with processes

that constitute a kind of very flexible workflows [118], e.g. industrial systems and product

design processes. The weakness is that they look at the discovered model from the viewpoint

of paths in a flat graph model, usually WorkflowNets (WFN). As a consequence, the

discovered models are often intricate networks and are typically not understandable. For

this reason, Gunther [119] proposed a fuzzy mining to simplify the discovered model with

the concept of roadmap abstraction. Maggi ect. [120-122] used a semi-structured process

scheme called as declarative workflow to present unstructured processes with a set of

constrains that state the rules among activities. Diamantini [123] applied hierarchical graph

clustering to the set of instance graphs generated by a process so as to identify meaningful

collaboration work practices.

Recently, an increasing amount of process mining techniques [124-126] are focusing

on other perspectives, e.g. organizational perspective, performance perspective and data

perspective. For example, resource perspective was addressed by grouping performers into

roles based on the metrics of joint activities[124], while the temporal perspective is

emphasized by using normal distribution to approximate the waiting time and execution

time for activities [127].

Now, process mining is applicable to a wide range of systems and has been applied

successfully in real cases, e.g., business managements [128-130], transaction fraud

detection [102], shipbuilding industry [131], risk management [132], financial service [130,

CHAPTER 2 LITERATURE�REVIEW

� ���

133], manufacturing [131], and healthcare process [134-136]. However, there is a crucial

prerequisite that the actual behavior must be recorded in well-defined structure, usually

event logs in which HTML tags are used to identify the type of data elements. This presents

no difficulty to formal business companies which have well-developed information systems

that records sequential events. However, process mining is disappointing for highly flexible

processes like product design processes, where the footprint of a process is hid in a huge

amount of textual data. In this context, special text mining techniques should be carefully

designed and adequately introduced to mine process model from textual data.

2.6 Summary

This chapter reviews all the aspects involved in the related research topics, starting with

the applications of text mining in product design, discussing information extraction

algorithms including topic modeling, NER and ERE, and finally culminating with process

mining techniques.

Based on the literature review, it is found that although the existing information

extraction techniques have made significant advances in product design, they have not been

widely used to extract design process information. The most significant reason is that design

data accumulated in product design processes are mostly unstructured texts in free natural

language format. This is quite different from the two most popularly studied product design

data, CAD models and patents, which are structured and semi-structured respectively. This

difference means that process-relevant design documents have no prior knowledge to

CHAPTER 2 LITERATURE�REVIEW

� ���

supervise and support the information extraction procedure as CAD and patent files do.

Consequently, traditional information extraction approaches are not suitable for extracting

process relevant information from unstructured design documents, as most of them are

supervised on a large amount of manually labeled training data. To solve this problem, an

alternative is to use open information extraction approaches which require no prior

knowledge or training data. However, open information approaches heavily rely on public

knowledge bases like Wikipedia. There are no such knowledge bases related to product

design processes. In this context, a semi-supervised information extraction approach with

minimum human intervention is desired for product design process information extraction.

The literature review also indicates that the flat models resulting from most of the

existing process mining approaches are not suitable in representing product design

processes. One fundamental reason is that product design processes are highly unpredictable

and iterative [24]. This characteristic of product design processes results in nonlinear and

complex correlations among design tasks. However, most of the traditional process mining

approaches try to capture all the process behavior in one flat model. Directly applying flat

models in modeling product design processes may generate incomprehensive and

unmanageable models. To solve this problem, hierarchical process models are more suitable

in capturing the flexibility of product design processes. However, the existing hierarchical

process mining approaches [137, 138] often construct process hierarchy by computing the

CHAPTER 2 LITERATURE�REVIEW

� ���

similarity of execution traces. This strategy is suitable for formal and repetitive business

processes, but not for product design processes as there are no repetitive execution traces.

In addition, existing design knowledge reutilization systems are generally based on

product. Such systems are suitable in the early stages of product design, e.g., conceptual

design and specification design, but might not be compatible with the entire product design

process. As product design is an integrated process of product, logical workflows, and

resources, a good alternative approach is to integrate product design rationale and

organization structure with the design process. The challenges of developing such an

integrated knowledge reutilization system include making design knowledge from multiple

aspects reusable, structuring heterogeneous design knowledge in a compatible knowledge

base, and presenting design knowledge lucidly.

To solve the aforementioned issues and challenges, a knowledge discovery system has

been developed for discovering product design process models and process relevant

knowledge from design documents. An overview of the proposed framework is presented

in Chapter 3.

CHAPTER 3 FRAMEWORK�OVERVIEW

� ���

CHAPTER 3 FRAMEWORK OVERVIEW

This chapter gives an overview of the proposed knowledge discovery system as well as

the methods developed in this system. Firstly, the framework overview gives the key

components of the developed system and the data flow for each component. Next, the

methods developed to achieve the goal of each component are introduced correspondingly.

3.1 Framework Overview

According to the inherent characteristic of product design processes, together with the

traditional KDD process [4], a framework for process-oriented knowledge discovery in

product design Texts/Documents (PKDT) is proposed. Figure 3.1 shows the overview of

the proposed framework. Referring to Fig. 3.1, the PKDT framework consists of five steps:

data selection, data preprocessing, process information extraction, process mining, and

process knowledge interpretation. The last three steps compose the core components of the

PKDT framework.

The starting point of the PKDT framework is the design documents collected from

various stages of a product design process. There are many types of design documents,

which may be related to products, e.g., CAD models, or related to product design processes,

e.g., emails and progress reports. As this research mainly focuses on process-oriented

knowledge extraction, only documents relevant to process executions are selected as the

target data.

CHAPTER 3 FRAMEWORK�OVERVIEW

� ���

Next, the target data is preprocessed by a series of natural language processing (NLP)

techniques, including tokenization, lemmatization, Part of Speech (POS) tagging, and stop-

words removing. The aim of data preprocessing is to enrich the target data with more

linguistic features.

Figure 3.1 Process-oriented knowledge discovery in design texts/documents (PKDT)

The core of the PKDT process starts from the third step, process information extraction.

As the target data are texts, the information related to task executions are scattered in the

target data in natural language format. To identify process relevant information from the

target texts, text mining and information extraction techniques are applied to recognize

Timeline

Process
Model

Preprocessed
Data

Process
 Information

Target Data

Selection

Preprocessing

Process
Information
Extraction

Process
Mining

Process
Knowledge

Interpretation

— Reports
— Emails
— Patents
— …

— Topics
— People
— Time
— Organizations
— Locations
— …

— Events
— Sub-tasks
— Tasks
— Workflows
— …

— Workflows
— Organization Structure
— Cooperation Cliques
— Task Duration
— Resource Utilization
— …

— Training Data
— Test Data
— Tokenisation
— Lemmatisation
— POS
— Time
— …

User
Interface

Project Managers /
 Designers

Process
Knowledge

Task Layer

Sub_task Layer

Event Layer

Hierarchical Process Model

Design
Documents

Document Level:

Sentence Level:
Coarse-grained Information

Fine-grained Information

CHAPTER 3 FRAMEWORK�OVERVIEW

� �	�

special writing expressions that may point to physical objects, e.g., product components,

people, organizations, and time. Such writing expressions can be seen as low-level process

information as they are insufficient to directly describe the underlying design process

recorded in the target data. In addition, this information extraction step also leads to a data

purification and reduction as only the extracted process information would be used as the

input data of the next step. This part of research will be presented in Chapters 4 and 5.

The second core component of the PKDT framework is the forth step, process mining.

Given the process information extracted in the third step, process mining advances to

construct a workflow model that describes the underlying product design process. The

discovered model itself could be seen as a type of process knowledge, which describes the

relations among the low-level process information from the workflow point of view. To

achieve this goal requires selecting the appropriate model to capture the characteristics of

product design processes and developing the efficient data mining algorithms to mine the

relationship among the model elements. This part of research will be presented in Chapters

6 and 7.

In the last step, the extracted workflow model serves as the backbone, based on which

multi-faceted process knowledge such as organizational structure and social network

patterns could be enhanced and integrated. Using statistical analysis methods, more specific

aspects of a product design process could be further interpreted, for example, the most active

designers and the longest design tasks. Such upgraded information composes the ready-to-

CHAPTER 3 FRAMEWORK�OVERVIEW

� �
�

use knowledge, which could help designers to make more efficient decisions. To achieve

the above goals requires understanding the application domain where the analyzed results

will be applied, selecting the accurate data from the discovered process model, and using

appropriate visualization techniques to interpret the analyzed results in a user-readable

manner. This part of research will be presented in Chapter 8.

3.2 Methods

New methods have been developed to achieve the goal of the three core components.

As shown in Fig. 3.1, all the developed methods are systematically integrated in the PKDT

system.

3.2.1 Methods for Process Information Extraction

Two information extraction methods which identify process information in texts with

different granularity are proposed. They are a DBN based topic modeling approach for

coarse-grained information extraction and a hybrid NER approach for fine-grained

information extraction.

For the purpose of extracting process information without any training data or prior

knowledge, a DBN based topic modeling approach is proposed to automatically find a finite

set of topics from the input documents. The extracted topics are groups of meaningful words

that condense the document contents and may reflect some issues of the target product

design process. Based on the extracted topics, one could get a fast understanding of some

process behaviors, for example, design tasks by connecting topics to design activities, and

CHAPTER 3 FRAMEWORK�OVERVIEW

� ���

temporal dynamics of a design process by identifying changes in topics over time. However,

such topics cannot precisely reflect how a design task was executed. This is why the

extracted topics are called as coarse-grained process information in the PKDT framework.

The proposed topic modeling method will be presented in Chapter 4.

For the purpose of extracting fine-grained process information as well as controlling

the human intervention to the minimum, a hybrid NER approach is proposed to recognize

special writing expressions that point to physical objects that were involved in the target

product design process, e.g., designers, tools, and organizations. The main idea of the

proposed NER approach is to combine the advantages of both the rule based and the

machine learning based NER approaches. In addition, to increase the recognition accuracy,

a local dependency tree is proposed to utilize more linguistic features of NEs. The

experiment data for evaluating the proposed approach are a set of emails collected from a

real-life product design project. The comparison to two baseline approaches shows an

increase in the detection accuracy by using the proposed approach. The proposed NER

approach will be presented in Chapter 5.

3.2.2 Methods for Process Mining

To capture the flexibility of product design processes, a high-order ERE approach is

proposed to detect small design events at the most concrete level, and two process mining

approaches are developed to obtain a hierarchical process model with different degrees of

abstraction.

CHAPTER 3 FRAMEWORK�OVERVIEW

� ���

An event, which is the smallest component of a process, describes the most detailed

task executions. An event usually can be presented as a higher-order relation among several

objects, e.g., someone did something at some time. To capture this higher-order relation of

design events in an unsupervised manner, a graph partition based ERE approach is proposed.

The main idea is to decompose the higher-order relation of an event into several binary

relations, then reconstruct the higher-order relation by finding the maximum NE cliques

centered at each task NE. The proposed event detection approach will be given in Chapter

6.

To capture the flexibility of product design processes and to reduce the complexity of

the discovered process model, two process mining approaches are proposed, i.e., top-down

and bottom-up process mining. Both approaches aim to decompose a product design process

into modules in a hierarchical manner, then refine the detailed transitions within each

module. Their biggest difference is the strategy used to construct the hierarchy structure.

The top-down approach mines the process model from generation to specification by

iteratively decomposing the underlying process based on the similarity of document

contents. In contrast, the bottom-up approach proceeds from specification to generation by

iteratively merging design events into bigger ones based on the context similarity of design

events. Both process mining approaches will be presented and compared in Chapter 7.

CHAPTER 3 FRAMEWORK�OVERVIEW

� ���

3.2.3 Methods for Process Knowledge Interpretation

To overcome the problem that most of the existing design knowledge reutilization

systems are not compatible with the whole design process, an integrated design knowledge

reutilization framework is proposed. The proposed framework treats the discovered design

process model as the central element of design knowledge, and links other types of design

knowledge such organizational structure, cooperation patterns, and temporal process

behaviors to the process model.

To enrich the discovered process model with multi-faceted knowledge, statistic analysis

methods are applied to distill more understandable design knowledge from the process

model. Based on the proposed knowledge reutilization framework, two significant aspects

of product design processes are studied: organization mining and temporal behavior analysis.

Firstly, to investigate the performance of the project participants, their cooperation patterns,

and their functional roles, the developed organization mining methods analyze the

performance of the project participants via the design events/tasks they have participated in.

Secondly, to study the dynamic changes of the target design process, the temporal behavior

of both the design tasks and the project participants are analyzed, including the duration,

waiting time, and idle time of the design tasks, as well as the temporal and overall

contribution of the project participants.

CHAPTER 3 FRAMEWORK�OVERVIEW

� ���

All the analyzed results are well presented in a user-readable manner using Gantt chars,

social network graphs, dot charts, and bar charts. A real case study is conducted in Chapter

8 to illustrate the discovered design process knowledge.

3.3 Case Study Description

The developed process-oriented knowledge discovery system is tested and illustrated

on an email dataset collected from a university-hosted design project, named as traffic wave

project (TWP). It aimed to design a traffic control system to ease the traffic congestion on

expressway and published the study results in a conference paper. It was a sub-project of a

university-hosted project, which had several sub-projects focusing on solving different

related problems. The main participants include students and professors from three different

disciplines. In addition, participants from other sub-projects were also involved in this

traffic wave project more or less. Throughout the design process, the participants used

emails as their major communication tool to exchange opinions. The design process was

originally planed with seven phases: concept design, thesis proposal, specific design phase

I, specific design phase II, experimental simulation, hardware level validation, and thesis

submission. However, this plan had been interrupted by several unpredicted problems

during the actual design process. The whole design process lasted about two years, from

March 2011 to February 2013.

The experimental dataset is a set of emails collected from this traffic wave project.

Throughout the design process, all the participants always sent a copy to a specific common

CHAPTER 3 FRAMEWORK�OVERVIEW

� ���

account when they used emails to exchange and discuss their opinions. This culminated in

a total of 569 emails saved in a MS Outlook file. Each email contains information about the

design tasks discussed in the email body, the involved people are mentioned as either the

email sender/receiver or in the email body, and the time is indicated by the creation time of

the email.

3.4 Summary

This chapter gives an overview of the proposed knowledge discovery system, which

consists of five steps: data selection, data preprocessing, process information extraction,

process mining, and process knowledge interpretation. The rationale behind each step and

the methods integrated are briefly introduced correspondingly. This chapter culminates in a

detailed description of the used case study.

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

CHAPTER 4 COARSE-GRAINED PROCESS

INFORMATION EXTRACTION BY TOPIC MODELLING

4.1 Introduction

The first problem addressed by the PKDT system is extracting coarse-grained process

information at the document level. The coarse-grained process information is presented as

topics that condense the content of the input documents and relate to process executions. In

this chapter, a Deep Belief Network (DBN) based topic modeling approach is proposed to

discover such topics from design documents in an unsupervised manner. From a technical

perspective, the topics produced by topic modeling are clusters of similar or highly

correlated words, and the order of these words is not taken into account [139] [140, 141].

This is why the word "coarse-grained" is used to describe the process information extracted

in this chapter.

As discussed in Chapter 1 and Chapter 2, there are two significant motivations for using

DBN-based topic modeling to extract process information. Firstly, the DBN-based topic

modeling approaches are unsupervised. That is to say, there is no requirement of training

data or prior knowledge. Secondly, the extracted topics could serve as the base for

developing new ways to search, browse, summarize, and understand the original design

documents. More specifically, some of the topics might correspond to the design tasks, e.g.,

concept design, specific design, and validation. Automatically uncovering such topics can

benefit decision makers to develop a fast understanding of the underlying process recorded

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

by the design documents. For example, decision makers can find a topic that they are

interested in, and then zoom in on the documents related to this topic for getting more

detailed information. At a broader level, designers can track the complete history of the

product design process via investigating the topic changes over time.

The framework of the proposed approach is presented in Section 4.2. Section 4.3

introduces the details of the DBN-based topic modeling approach. In addition, to deal with

documents with different length, real-valued units that represent documents in word-

frequency vectors are used at the input layer of the proposed DBN topic model. Furthermore,

to make the learned topics relate to process executions, "label" information, e.g, document

title, keywords, and abstract, which summarize the central theme of a document, is used as

the output layer to fine-tune the topic model. In Section 4.4, the extracted topics are used to

develop a fast understanding of the recorded design process from three aspects: design tasks

discussed, their dynamic changes and interactions. In Section 4.5, the performance of the

coarse-grained process information extraction is tested on the email dataset from the TWP

project introduced in Section 3.3.

4.2 Framework Overview

Figure 4.1 illustrates the framework of the proposed topic modeling approach for

extracting coarse-grained process information. The proposed framework consists of two

steps, training a DBN topic model and applying the DBN model in understanding design

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

task structure. In Fig. 4.1, the thin arrows indicate the workflows within each step, and the

blank arrows indicate the input and output flows running through each step.

Figure 4.1 The framework of coarse-grained process information extraction using DBN-
based topic modeling

In Fig. 4.1, the starting point of the first step is a set of time-stamped design documents

from a product design project. The result is a DBN topic model which learns a set of topics

recorded in the whole document archive and the topic distribution of each document. The

training process of the topic modeling consists of two stages, pre-training and fine-tuning.

At the pre-training stage, the body of the input documents are used to train a primary topic

model. Next, the title or keywords of the input documents are used to fine tune the primary

model at the fine-tuning stage.

In the second step shown in Fig. 4.1, the discovered topic model is used to understand

the underlying design process from three aspects. They are 1) what design tasks can be told

Step 1: Training a DBN topic model

Design documents
Pre-training process Fine-tuning process

Step 2: Applying a DBN topic model in understanding design task structure

DBN topic model

Discovering design
tasks

Measuring interaction
strengthInteraction strength

Visualising dynamic
changes

Dynamic changes

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� �	�

by the topics, 2) how did the tasks change over time, and 3) How did the tasks interact with

each other.

4.3 Training a DBN Topic Model

4.3.1 DBN Topic Model

Figure 4.2 shows the structure of a typical DBN model which consists of one input layer

of observations, one output layer of reconstructions of the input data, and several hidden

layers [53]. The units in each hidden layer aim to learn the topic representation of the input

data (observation) at different abstraction levels. Generally, topics in an upper hidden layer

tend to become more complex.

Figure 4.2 The architecture of deep belief network (DBN): (a) an example of DBN, (b)

The restricted Boltzmann machine (RBM)

As shown in Fig. 4.2 (a), the layers of a DBN model can be split pairwise. Each pair

forms a separated Restricted Boltzmann Machine (RBM), which is shown in Fig. 4.2 (b).

Each RBM aims to learn the statistical relationship between the visible units and the hidden

units. In this context, the DBN can be greedily trained in a layer-by-layer manner, where

the output of the lower-layer RBM is the input data for training a higher-layer RBM.

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� �
�

In order to deal with documents with difference length and to distinguish words with

different degrees of contribution, each RBM is configured with a real-valued visible layer

and a binary hidden layer. In detail, given the hidden topic features H, a normal distribution

!(#$|&) is used to model the possibility of a word !" appearing in a document. In contrast,

given the observed per-document word distribution V, a sigmoid function !(ℎ) = 1|,) is

used to model the hidden topic features H. Equations (4.1) and (4.2) formulate the two

functions.

 # !" $ = %&'()*(exp (+,"ℎ, +)",=.,=1)
exp (+,*ℎ, +)*,=/,=1)*=0*=1

, 1) (4.1)

 # ℎ, = 1 2 = 3"4((5, + +,"!""=0"=1) (4.2)

where -)$ is the symmetric interaction weight between a visible unit (word) #$ and a

hidden topic ℎ), σ is the standard deviation, .$ is the bias of a visible unit #$, and /) is

the bias of a hidden unit #$. The value of the visible units stands for the relative frequency

of the corresponding words in a document, valued in a range of 0 to 1. Given a set of topic

features, the occurrence frequency over all the words sum up to be one, which is import to

deal with documents with different lengths.

4.3.2 Training Process

Before training the DBN model, the metadata in the input document are divided into

two parts, i.e., "body" data {12, … , 1$, … , 15} and “label” data {72, … , 7$, … , 75} . The

"body" data of each document is represented by a word-frequency vector 1$ =

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

(#2, … , #), … , #8), where #) is the occurrence frequency of the jth word in the body text of

document 1$, and M is the vocabulary size of all the documents. The "label" data is the

words in document title, keywords, and abstract, which summarize a document's central

theme. The information contained in such data provide significant supplements to text

analysis. Taking advantage of such "label" data to supervise and fine-tune the training

process is quite helpful in guaranteeing that the learned latent topics are related to the central

theme of a document. Therefore, the "label" data of a document is defined as a word-

occurrence vector 7$ = (92, … , 9), … , 98) , where 9) ∈ {0,1} and “1” indicates the

occurrence of the jth word in the “label” parts of 1$. Due to the low frequency of words in

the “label” parts, all the words in 7 are treated with the same significance. In other words,

9) indicates the occurrence of a word in the “label” data rather than the occurrence

frequency in	#).

Figure 4.3 Training process of DBN topic model: (a) Pre-training process, in which a
stack of RBMs are learned layer by layer, (b) Fine-tuning process, where an extra

layer of “label” data is added to fine tune the entire network

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

Figure 4.3 illustrates the training process of the DBN topic modeling, which consists of

two steps: pre-training and fine-tuning. In Fig. 4.3 (a), the the visible units

(#2, … , #), … , #8) in the bottom layer stand for the word-frequency vectors obtained form

the “body” data. The output units (92, … , 9), … , 98) in top layer of Fig. 4.3 (b) correspond

to the word-occurrence vectors obtained from the “label” data. The aim of the pre-training

process is to learn a topic model that can reconstruct the input data to the largest extent.

Given the “label” data, the fine-tuning process aims to enhance the topic model by making

the learned topics reflect the central theme of a document.

4.3.2.1 Pre-training Process

The pre-training step aims to greedily approximate parameters in Eq. (4.1) and Eq. (4.2).

Each RBM in Fig. 4.3 (a) is trained separately. Given the word-frequency vectors, the

bottom RBM is expected to learn a set of low-level topic features from the documents. The

renormalized topic features over the learned posterior distribution !(&|,) is then used as

the input data for training a higher-level RBM. The topics learned at a higher level try to

capture the complex combination of the low-level topics. This layer-by-layer training

process is repeated several times to learn a deep belief network in Fig. 4.3 (a).

In each iteration of the training process, the 1-step Contrastive Divergence [142] is

adopted to updating the parameters by

 +", = 6(789):) !"ℎ, − 78'<=&>[!"ℎ,]) (4.3)

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

)" = 6(789):) !" − 78'<=&>[!"]) (4.4)

 5" = 6(789):) ℎ" − 78'<=&>[ℎ"]) (4.5)

where = is the learning rate, and >?@ABA[#$ℎ)] equations E(ℎ)|#$)E(#$), indicating the

expectation of the co-occurrence frequency of word #$ and hidden feature ℎ) given the

observed input data. Similarly, >?FGHIJ[#$ℎ)] corresponds to the expectation of the co-

occurrence frequency given the reconstructed data after one-step Gibbs sampling.

4.3.2.2 Fine-tuning Process

After pre-training, an extra layer of binary units is added to the top of the DBN, as

shown in Fig. 4.3 (b). The “label” data 7$ = (92, … , 9), … , 98) is used to back-propagate

the whole network to enhance the weights of topics that are mostly related to document

“labels”. For those documents without "label" data, the words with high frequency in a

document are used for substitution because words with low frequency are usually less

significant to reflect the main idea of a document.

4.4 Applying DBN Model in Understanding Design Task Structure

4.4.1 Discovering Design Tasks

This step advances to use the learned topics to interpret design tasks that are recorded

in the input documents. After training, each hidden unit in the topic model is connected to

a set of words in the visible layer by the weights in K. In turn, the words that are strongly

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

connected reveal the semantic meaning of the corresponding topics, which might refer to a

design task in the real word.

In detail, each topic learned by the lowest hidden layer (e.g., &2	in Fig. 4.3) is directly

represented by words with strongest positive weights to the corresponding hidden unit. Take

Fig. 4.4 as an example, where the thick lines indicate strong connections between words

and topics. According to Fig. 4.4, three words L ∈ {1, 2, 3} with largest -)$ in -),:are

selected to compose PQELR)2. Similarly, using the low-level topics in place of words in the

visible layer, the topics learned in a higher layer can be represented by groups of strongly

connected topics learned in a lower layer.

Figure 4.4 Illustration of mapping design tasks from hidden topic features. The thick lines
indicate words with strongest connections to the jth topic.

After presenting the topics using strongly connected words, a small amount of human

intervention is required to select the topics that are relevant to task executions. The selected

topics can then be analyzed to obtain deep insight into process behaviors.

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

4.4.2 Visualizing Dynamic Changes of Design Tasks

Based on the task-relevant topics and their distribution throughout the input documents,

the temporal feature of the design tasks is characterized by the change of their temporal

frequency over time. In other words, the time regions, within which a task-relevant topic is

frequently discussed, can reflect the lifecycle of the corresponding task. Furthermore, the

dynamic changes of all the design tasks reflect the temporal behavior of the entire product

design process.

Let ℎ: be a topic relevant to a design task, its temporal frequency within a short time

window is computed as:

 :? ℎ:, @"> = #(ℎ:|29)A(B9 , @">)29CB |@">| (4.6)

where, #(ℎ:|29) is the possible frequency of ℎ: appearing in a document, the value of

#(ℎ:|29) is determined by the learned topic model, @"> stands for the time window,

|@">| indicates the size of the time window, and the function A(B9 , @">) returns a binary

value to judge whether the creation time of a document is within the time window or not.

4.4.3 Measuring The Interaction Strength of Design Tasks

Since design tasks that have strong correlation are usually mentioned together, the

interaction strength between pairs of design tasks are estimated by the co-occurrence

frequency of the corresponding topics in the input documents.

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

Let ℎ) and ℎ5 be two task-relevant topics. The learned topic model estimates the

possible frequency that ℎ) and ℎ5 are mentioned in a document 29 as #(ℎ)|29) and

#(ℎ5|29) respectively. Next, the interaction strength of ℎ) and ℎ5 can be estimated by

computing their overall co-occurrence frequency in the whole document set:

 DE(ℎ) , ℎ5) = 8 (ℎ)|29)8 (ℎ5|29)9=%9=1 /% (4.7)

where N is the size of the document set, and ! ℎ$,@ ! ℎ) ,@ computes the co-

occurrence frequency of ℎ) and ℎ5 in a single document 29 .

4.5 Experimental Results and Discussions

4.5.1 Dataset and Data Preprocessing

The performance of the coarse-grained process information extraction approach was

tested and illustrated using the email dataset from the TWP project described in Section 3.3.

The original dataset was preprocessed by removing meaningless stop-words, stemming,

and eliminating words that occurred less than two times throughout the entire email

collection. All these preprocessing operations were performed with the help of NLTK1,

which is a open-source toolkit for natural language processing with python. The vocabulary

size of the preprocessed dataset is 1630. The words in both the email subjects and the email

bodies composed the input data {12, … , 1$, … , 15} for pre-training the topic model. In

���
1 http://www.nltk.org

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

contrast, only the words in email subjects composed the “label” data {72, … , 7$, … , 75} for

fine-tuning the topic model.

4.5.2 Performance Measures

The performance of the proposed approach was evaluated from two aspects: the

effectiveness of full-text document retrieval and the ability for discovering some valuable

characteristics of the actual design process.

The full-text document retrieval experiment aims to evaluate the influence of the topic

model structure on the document retrieval effectiveness. Each email in the training set was

used as a query to search those ones with biggest similarity to it. The content similarity of

any two emails was calculated by using the Euclidean distance between their latent topic

distributions	!(&|,). Using email subject as the evaluation criterion, the document retrieval

precision was computed as follows:

 8'<="3"&> " = %=&''<=::&:)* (")/%:&:)*(") (4.8)

where SBIBAT is the number of emails that have the same subject with the ith email, and

SHIFFGHB
BIBAT is the number of correctly retrieved emails, which are among the top SBIBAT rank

in the retrieved emails and have the same subject with the target email.

To test the ability of the proposed approach for discovering the reality of the underlying

design process, the original process model planned at the beginning of this project was used

as the baseline model for comparison. If the discovered design tasks contain the planned

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

tasks, the proposed method was able to discover actual process executions from design

documents. In addition, one participant, who played a admin role in this project, was

interviewed to check the correctness of the design tasks that were not originally planned.

Furthermore, to test the understandability of the discovered results, the results, including

task-relevant topics, their timeline, and interactions, were also checked by two novices who

had no idea of this project.

4.5.3 Results and Discussions

4.5.3.1 Document Retrieval Evaluation

Figure 4.5 compares the performances of different DBN topic models in full-text

document retrieval. Each DBN topic model in Fig. 4.5 is different from the others by having

a different number of hidden units or a different number of hidden layers. Referring to Fig.

4.5, the structure of the DBN topic models are indicated in the format of XX-XX, where

XX means the number of neurons in a layer of the DBN model. For example, 1630-50 means

a DBN model having two layers, one visible layer of size 1630 and one hidden layer of size

50. All topic models were trained under the same parameter settings: 2000 iterations for

pre-training process, 1000 iterations for fine-tuning process, 0.2 for weight learning rate,

and 0.05 for biases learning rate.

Figure 4.5 (a) shows the average retrieval precision of six DBN topic models, which

have one hidden layer but different numbers of hidden topic units. As seen from the symbol

curve in Fig. 4.5 (a), the average retrieval precision increases dramatically when the

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� �	�

numbers of hidden units are relatively small, but it becomes stable after the number is

greater than 50. Based on the well-known experience that more hidden units tend to need

more training data and more training time, a moderate number of hidden units is suggested

to remain effective in training topic models. Therefore, the number of hidden units was set

to be 50 in the next experiments.

Figure 4.5 Document retrieval effectiveness of DBNs: (a) Comparison of DBNs of one
hidden layer but different hidden units, (b) Comparison of DBNs of the same

hidden units in the top layer but different numbers of hidden layers

In Fig. 4.5 (b), five DBN models with different numbers of hidden layers are compared.

As observed from Fig.4.5 (b), compared to the one-hidden-layer model (1630-50), DBNs

with two hidden layers (1630-150-50 and 1630-200-50) improve the precision score from

0.6187 to 0.6438 and 0.6712 respectively. However, when a larger number of hidden layers

is specified in the two three-hidden-layers DBN models, the accuracies drop to 0.6084 and

0.6147. This conflicting result indicates that the effectiveness of full-text document retrieval

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� �
�

is not proportional to the number of hidden topic layers. One possible reason might be

insufficient training. As DBN models of more hidden layers contain more parameters, to

correctly learn parameters in a large DBN model requires sufficient training data. Therefore,

the number of hidden layers in a DBN model should be selected according to the size of the

training data. Based on the findings from Fig. 4.5, a moderate number of hidden layers is

suggested.

Figure 4.6 compares the DBN topic models with the Latent Direchilet Allocation (LDA)

[20], which is one of the most popular topic models. For fairness, the LDA models in Fig.

4.6 were trained with the similar parameters as the DBN models did, i.e., 2000 iterations for

training and the same numbers of hidden topics. The comparison result in Fig. 4.6 confirms

the previous conclusion that DBN outperforms LDA in learning the latent topic

representation of documents.

Figure 4.6 Document retrieval effectiveness of one-hidden-layer DBNs and LDAs

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

4.5.3.2 Learned Design Tasks

The second experiment aims to inspect that, given a set of design documents, whether

the DBN topic model is able to identify meaningful latent topics that uncover design tasks

recorded in these documents. Based on the findings from Fig. 4.5, the DBN model of

structure 1630-200-50 was selected to learn topics from the email dataset. For each learned

latent topic, the top five words with the strongest connections to it are used to name the

corresponding design tasks.

Table 4.1 Illustration of design tasks learned by DBN topic model

Words Probability Words Probability Words Probability
Task 1 (XXX project

proposal)
Task 2 (Concept paper

submission)
Task 3 (ASME conference

paper)
XXX 0.591 Concept 0.598 Revise 0.706

Meeting 0.291 Submission 0.556 ASME 0.315
Proposal 0.245 Revise 0.276 Dates 0.268
Project 0.230 Paper 0.267 Congress 0.259

Importance 0.022 Conference 0.223 Ants 0.190
The Words Probability Words Probability Words Probability

Task 4 (IRB application) Task 5 (Traffic data
collection)

Task 6 (Simulation
software)

Application 2.496 Traffic 0.514 Paramics 0.527
IRB 2.696 AYE 0.499 Simulation 0.293

Review 2.235 Data 0.492 Key 0.256
XXX 0.597 Project 0.482 Software 0.193
Form 0.566 Program 0.433 Wei 0.137

50 latent topics were learned from the email dataset. The feedback from the interviewed

project participant revealed that some of the 50 latent topics truly related to the actual design

tasks while some not. Due to the space limitation, Table 4.1 only lists 6 topics that are most

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

relevant to design tasks that had been carried out during this TWP project. In the following

parts, these topics will be referred to as design tasks. For each design task, only words of

top-5 strongest connections are listed in Table 4.1, and the probability column displays the

weights connecting words and topics. For privacy reasons, XXX is used in place of the

names of organizations and persons.

According to Table 4.1, most words associated with each design task are quite intuitive

in the sense of conveying a semantic meaning that reflect what were actually done during

the design process. Take the six design tasks as an example, namely XXX project proposal,

concept paper submission, ASME conference paper, IRB application, traffic data collection,

and simulation software. According to the feedback from the core participant, the TWP

project is only a sub-project of the "XXX project", which consists of several sub-projects.

At the beginning, each sub-project was required to submit a "project proposal", as reflected

by Task 1 in Table 4.1. Next, a detailed "concept paper" about their ideas and plans were

completed after several "modification" iterations. This part is reflected by Task 2 in Table

4.1. In the middle stage, an unexpected task was conduced to obtain some supporting

"documents" from a significantly relevant department. The words of Task 4 imply the

information of the "IRB application". After developing the core techniques, which are not

shown in Table 4.1, real life "traffic data" was fetched from the traffic department. Next,

the project members utilized the data to evaluate the developed traffic control system on

several simulation platforms. One of the simulation tools was "Paramics", which is correctly

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

listed in Task 6. Finally, as shown in Task 3, this project was ended with writing and

publishing an "ASME paper".

Figure 4.7 illustrates the conformance of the tasks shown in Table 4.1 with the tasks

scheduled at the beginning of the TWP project. The arrows in Fig. 4.7 connect the automated

tasks to the planned tasks if they are related. It can be observed that four tasks in Table 4.1

are related to the planned tasks, while two tasks were not scheduled at the beginning of this

project. According to the expert feedback, the two unplanned tasks also reflect the reality

of this TWP project.

Figure 4.7 Conformance checking

Concept Design

Thesis Proposal

Specific Design
Phase I

Specific Design
Phase II

Experimental
Simulation

Hardware Level
Validation

Thesis Submission

Planned Tasks
Task 1: XXX Project

Proposal

Task 2: Concept
Paper Submission

Task 3: ASME
Conference Paper

Task 4: IRB
Application

Task 5: Traffic Data
Collection

Task 6: Simulation
Software

Tasks in Table 4.1

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

4.5.3.3 Timeline of Design Tasks

In order to track the regions of the timeline when the project participants were truly

working on the different tasks, Figure 4.8 plots the temporal frequency of the six task-

relevant topics in Table 4.1with a window size of 15 days.

Figure 4.8 Temporal frequency of task-relevant topics in Table 4.1 with a window size of
15 days

According to Fig. 4.8, the timeline of each task in Table 4.1 aligns well with the

feedback discussed in Section 4.5.3.2. It can be seen that the participants conducted on the

project proposal issue (Task 1) at the beginning. Next, they achieved a concept paper (Task

2) during the first month after the project started out. By the second month, the participants

proceeded to obtain the IRB support (Task 4) before they could advance to the technical

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

part, which took them about 4 months. According to the timelines of Task 5 and Task 6,

traffic data collection (Task 5) and simulation software purchase (Task 6) were started out

almost simultaneously after about 10 months. However, Figure 4.8 shows that the

participants spent much longer time in getting and processing the traffic data.

4.5.3.4 Learned Design Task Interactions

The last experiment tries to investigate how design tasks had interacted with each other

in practice. Figure 4.9 illustrates the interaction strength between the six tasks in Table 4.1.

In Fig. 4.9, nodes indicate tasks, the size of nodes reflect the overall interaction between

one task and all others, and the thickness of edges present the strength connecting tasks.

Figure 4.9 Illustration of interaction strengths between selected design tasks

From Fig. 4.9, one notable observation is that Task 1 (XXX project proposal in Table

4.1) might have strongly interacted with all others. This finding is not difficult to explain.

Because all the initial design ideas were generated in this task, it is nature that all the

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

remaining tasks had connections with it more or less. The edges connecting Task 4 (IRB

application) show an exactly inverse interaction pattern. Figure 4.9 shows that Task 4 only

has strong connections to two tasks, Task 1 and Task 2, with a strength of 0.188 and 0.120

respectively. This observation is consistent with the feedback that Task 4 is not a part of the

design project itself, but required to get support from a relevant department based on the

results of Task 1 and Task 2. According to Fig. 4.9, the strongest interaction, valued at 0.237,

is found between Task 5 and Task 6. This is validated by the relevant emails that the two

tasks were carried out concurrently, and both were about validating the developed traffic

control system.

4.6 Summary

To extract design information for product design process understanding, a DBN-based

topic modeling approach was proposed to automatically learn process-relevant topics in the

design documents. Using the data collected from a real-life design project, three significant

aspects have been considered: design tasks, their timelines, and their interaction strengths.

The findings were evaluated by the project participant. The feedback revealed strong

positive comments to the results.

Some limitations were also observed. Firstly, the feedback from the interviewed project

participant indicated that the learned topics could reveal some design tasks in practice, but

the feedback from the two interviewed novices revealed that the words composing a topic

were difficult for interpretation, especially for novices. Take Task 1 in Table 4.1 as an

CHAPTER 4 COARSE-GRAINED�PROCESS INFORMATION EXTRACTION BY TOPIC MODELLING

� ���

example. Based on words, i.e., “Meeting”, “Proposal”, “Project”, and “Importance”,

participants of this project can easily recollect the corresponding tasks, but these words

might be difficult for novices to connect them to a real-world task. This is caused by the

learning mechanism of topic models, which discover abstract “topics” only based on the

statistics of words, overlooking their occurrence order. Secondly, although the co-

occurrence frequency of topics can uncover the task interaction to some extent, it is not

sufficient to explain how design tasks interacted. One most significant reason is that the

complex interaction among design tasks are jointly determined by multiple process

variables, e.g., resources, tools, and deadline. Consequently, identifying the process-related

variables from design documents is critical for estimating the interaction strength among

the design tasks more comprehensively and correctly. Both limitations require extracting

and analyzing design information with a more fine-grained granularity.

� �

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

CHAPTER 5 FINE-GRAINED PROCESS INFORMATION

EXTRACTION BY NAMED ENTITY RECOGNITION�

5.1 Introduction

In previous chapter, the experiment results show that the proposed topic modeling

approach is successful in providing a rough and quick overview on "what happened", but

fails to convey detailed information about task executions. This means that individual

documents still have to be fetched and skimmed through manually to locate concrete

information such as who did what, when, where, and how. Such a reworking operation

charges extra time on knowledge reutilization. To overcome this problem, a good alternative

is exploring computational approaches for pinpointing highly concrete design information.

Based on the above analysis, this chapter continues to extract process information from

design documents, but down to a fine-trained granularity. Specifically, the goal of this

chapter is to extract special writing expressions or terms which may point to some physical

objects such as design tasks, people, organizations, tools, and locations, from the design

documents.

Named entity recognition (NER) is a popular information extraction technique that

seeks to classify named entities (NEs) in text into pre-defined categories. However, as

discussed in Chapter 2, traditional NER approaches are not suitable for extracting process

information in design documents. Traditionally, the supervised NER approaches are based

on a large amount of training data that are manually labeled or automatically labeled with

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� �	�

the help of public knowledge bases like Wikipedia. However, considering the high

flexibility of product design processes, creating a training dataset for design process

information extraction is neither economical (the time cost is high) nor effective (there are

significant differences between documents from different product design processes). In this

context, a semi-supervised NER approach can be helpful, as human intervention could be

controlled in an acceptable range. However, most of the semi-supervised NER approaches

are narrowly restricted to some specific domains. Therefore, one information extraction

system developed for one domain usually does not perform well in other domains.

To close the above gaps, a hybrid NER approach is proposed in this chapter to identify

process relevant entities from design documents in a stepwise manner. The main steps of

the proposed NER approach include sentence classification via a prior-trained Bayes

classifier, seed entity generation via speech act rules, entity expansion via kernelized

machine learning approaches, and co-reference resolution via clustering. The speech act

rules are used to reduce the human intervention in creating training data to a minimum. In

addition, a kernel function of local dependency tree is proposed to capture the complex

linguistic features of NEs for the training purpose.

The symbolic representation of the problem of this chapter is refined in Section 5.2.

The proposed NER approach and the relevant data structure of the kernel function are

detailed in Section 5.3. The experiment results and discussions are given in Section 5.4.

Lastly, the conclusion is drawn in Section 5.5.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� �
�

5.2 Problem Statement

As defined in [2], the product design process is a set of interrelated activities that

engineers/designers use basic sciences, mathematics and engineering sciences to create

functional products. The fundamental elements of the design process include

designers/engineers (who), design activities/tasks (what), time (when), techniques/tools

(how), and locations (where). From this viewpoint, this chapter describes the fundamental

ingredient of the product design process (PDP) as a seven-tuple, !1! =

(P>, !>, U>, V>, W>, X>,Y>), where,

• F7 → Design tasks/activities that were carried out to achieve some objectives

• 87 → Persons who were involved in at least one design activities

• E7 → Time, including the starting/ending time or duration of the activities

• G7 → Organizations

• H7 → Locations

• D7 → Inputs or outputs of the design activities

• 07 → Methods, techniques or tools used in the design activities

Based on the above representation, the problem statement of this research is to identify

special writing expressions called as named entities (NEs) from a collection of design

documents 1 = {12, … , 15} and to classify the extracted NEs into pre-defined

information categories, namely, P> , !> , U> , V> , W> , X> and Y> . Furthermore,

considering that the same object might be mentioned by different groups of people using

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

different vocabularies on particular occasions, each task entity Z[$ ∈ P> is further

decomposed into a list of mentions Z[$ = [Z\2,… , Z\5]
] that appear in different

morphological forms but refer to the same entity object.

5.3 A Hybrid Named Entity Recognition Approach

Figure 5.1 shows an overview of the proposed NER approach. As shown in Fig. 5.1,

the proposed NER approach consists of four steps: sentence classification, seed entity

generation, entity expansion, and entity clustering. To reduce the human intervention

without influencing the accuracy of the recognized NEs, several supervised or unsupervised

machine learning techniques are integrated in the four steps.

Figure 5.1 A hybrid NER approach for fine-grained process information extraction

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

Referring to Fig. 5.1, given the input documents, a sentence classifier is trained on a

small set of sample sentences. The major function of the sentence classifier is to purify the

input data by eliminating sentences that are not relevant to the underlying design process.

In the second step, a small set of seed NEs are generated by a set of speech act rules with a

little amount of expert knowledge. Next, these seed entities are utilized to grow more

general instances of NEs from the input texts. To do so, a kernelised SVM classifier is

trained on the seed NEs to automatically learn their discriminative linguistic features. Lastly,

all the detected NEs are fed into an unsupervised classifier to automatically find different

mentions that refer to the same object.

It is noteworthy that to make sure the whole system in Fig. 5.1 work well, the NEs

identified in the step of seed entity generation must be with high precision (might low recall).

Because the SVM classifier in next step is trained on the seed entities, the accuracy of the

seed entities directly determines the quality of the SVM classifier. The rationale and

algorithm design for each step will be detailed in the following subsections.

5.3.1 Sentence Classification

In consideration of the high precision required by the step of seed entity generation, the

first step aims to identify sentences that carry semantic meanings relating to the very

recorded design process. Only sentences that are predicted as relevant are allowed for

further processing.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

Because nouns and verbs often bear more semantic meaning for understanding a

sentence than other types of words, all the sentences in the documents are simplified by

removing words that are not nouns or verbs. After this operation, all the sentences are

represented as binary vectors, within which “1” denotes the occurrence of a noun or verb

word in a sentence.

Based on the binary representation of the sentences, a Bayes prediction model is trained

on a small set of sample sentences. The sample sentences are selected and labeled with a

little amount of human intervention. In detail, let B be the whole document set reordered

by time, B is automatically sampled with a time interval g. This sampling operation results

in a smaller set of documents 1^. Similarly, for each document 1$^ ∈ 1^, > sentences are

randomly picked out for manual annotation. Let U^$ be the sentences selected from 1$^, the

final size of annotated training dataset is |U^$|_]
`∈_` ≤ b ∗ |1^|. Compared to completely

artificial processing, the human intervention is largely reduced from |U$|_]∈_
 to

|U^$|_]
`∈_` , where	 1^ < |1| and U^$ < |U$|.

Next, the Bayes classifier is used to predict the relevance of the remaining sentences.

Only sentences that are predicted as relevant can be used to generate seed entities in the

next step.

5.3.2 Seed Entity Generation by Speech Act Rules

Inspired by the "speech acts" concept, a rule-based NER approach is developed to

generate a set of seed entities E77 for each entity class > ∈ [P>, !>, U>, V>, W>, X>,Y>].

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

Originally, “Speech acts” is defined as “illocutionary” verbal utterances that have a

performative function to present a speaker’s intentions, such as promising, ordering,

requesting and inviting [143]. In the context of process information extraction, “speech acts”

are considered as writing statements bearing semantic meanings, such as execution of

design tasks, personnel assignment, requesting for special tools or data, and so on.

On the basis of “speech acts” theory, this work considers verb phrases associated with

special verbs (e.g., “submit”, “complete”, and “use”) and noun phrases containing special

words (e.g., “input”, “output”, and “technique”) as significant clues to trace the statements

about task executions. The selected verbs and nouns of hint function are called as speech

act words. Each entity type 7 in 8B8 reserves a speech act dictionary @7 . To collect

@7 , the same set of sentence samples U^$_]
`∈_` used in the previous step are provided to

domain experts or users for annotating a preliminary set of speech act verbs and nouns from

their domain. Furthermore, in order to get a more general speech act dictionary, the

preliminary @7 is expanded by including their hyponyms using WordNet2, which is a

large lexical database of English.

Given Ke of each entity type, the seed entities are directly matched from the design

documents via pattern search. With the help of Stanford CoreNLP3, a open source tool for

natural language analysis, all the verb phrases and noun phrases are identified as candidate

���
2 https://wordnet.princeton.edu
3 http://stanfordnlp.github.io/CoreNLP/

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

seeds. Next, only noun phrases that contain speech act nouns or follow speech act verbs in

Ke are selected to form the seed entities U>e. If in the following example sentence, “Group

1” implies some involved people, “modify concept paper” is found as a task entity,

“technical requirements” refers to some kinds of input data, and “Jan. 01, 2012” is a time

entity, if “group”, “modify”, “requirements”, and “Jan” are labeled as speech act words.

Example 1—Group 1 need to modify your concept paper according to the attached
technical requirements by Jan. 01, 2012.

5.3.3 Entity Expansion by SVM

The most likely case associated with handcrafted rules is that the recognized NEs are

often of high precision but low recall. To improve recall, this step aims to explore more

general entities via machine learning approaches. In detail, the seed entities obtained in

previous step are used as the training data. In contrast, all the noun phrases (NP) that can

not match the speech act rules are candidate entities. The kernerlized SVM is adopted to

learn the linguistic context of the seed entities and to apply the learned discriminative

features to retrieve more general instances from the candidate entities.

Firstly, the linguistic context of a seed or candidate entity is characterized by a

dependency tree, which is constructed by words in a local context. The local context of a

noun phrase (NP) is defined as the sequence of words from the end of its preceding NP to

its own last word. For example, the sentence in Fig. 5.2 (a) contains two NPs, and their local

contexts are highlighted by underlines.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

Figure 5.2 Illustration of local dependency tree construction: (a) example of local context,
(b) local dependency tree of the first NP in (a), (c) local dependency tree of the

second NP in (a)

Based on the local context, the local dependency tree is constructed for each NP to

capture its lexical, syntactical and semantic features in a tree structure. Figure 5.2 (b) and

(c) illustrate the local dependency tree of the two candidate NPs in Fig 5.2 (a). Each NP

including its local context is represented as a tree P = (S, >) with nodes S = {b2, … , bF}

and edges > ⊂ S×S.

As shown in Fig. 5.2 (a) and (b), each node b$ in F corresponds to a word in the local

context. The linguistic feature of each node is further characterized by a set of expressive

features, b$ = (h2, … , hi), which are compiled in Table 5.1. Each edge [$ in F indicates

the dependency relation between the two connected words. The dependency relation is

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

obtained with the help of CoreNLP4. However, different from the traditional dependency

tree rooted at a verb, the local dependency tree assumes that the headword (usually, the last

word) of a NP is of the most essential significance to reveal its semantic meanings.

Therefore, the headword is treated as the root node in the local dependency tree. Other

words such as remaining component nouns (if, multi-word NPs), verbs, and adjectives,

dependent on the root headword directly or connect to the root headword through a path of

dependencies. Besides, an extra blank node bj is created to degrade the significance level

of adjectives from remaining component nouns. By this means, the significance of the words

in the local context can be scaled in a hierarchical manner based on their distance to the root.

Given two candidate NPs and their local dependency trees P2(kQQZ2) and Pl(kQQZl),

a best match based dependency tree kernel mn8_op(P2, Pl) is proposed to compute their

semantic similarity, on the basis of the structure similarity between P2 and Pl. Equation

(5.1) formulates this tree kernel as:

 .J0BF/ F1, F2 = ∆('&&:1, '&&:2) (5.1)

where, '&&:1 and '&&:2 are the root nodes of P2 and Pl, and the node kernel function

∆(b2, bl) computes the structure similarity between two sub-trees which are rooted at b2

and bl respectively. Therefore, the tree kernel mn8_op can be expressed as the node

kernel ∆(kQQZ2, kQQZl) of the two corresponding root nodes.

���
4 http://stanfordnlp.github.io/CoreNLP/

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

Table 5.1 List of features used for entity recognition

Feature
category

Feature Description Example

Lexical
features

Token The token in original text “tokens”

Lemma
The base form of tokens after
lemmatization

“token” for “tokens”

Prefix
The prefixes of length from 2
to 3

“to” for PRE_2_“tokens”

Suffix
The suffixes of length from 2
to 3

“ens” for SUF_3_
“tokens”

Orthography
The binary indicators of tokens
containing special symbols
besides of letters

ALL_LETTER_UPPER,
FIRST_LETTER_UPPER,
HAVE_DIGIT,
HAVE_DOT

Word shape
The orthographic pattern of
tokens

“AA00a” for “HB25c”

Syntactical
features

POS
The part-of-speech tag of
tokens

“NNS” for “tokens”

Distance
The distance from a token to
the headword

0, 1, 2, etc.

Semantic
features

Clusters
The cluster id of tokens based
on WordNet

1, 2, 3, etc.

The computation of the node kernel is given in Eq. (5.2) to Eq. (5.4).

If b2 and bl are leaf nodes:

 ∆ >1, >2 = 1(>1, >2) (5.2)

If b2 and bl are parent nodes:

 ∆ >1, >2 = 1 >1, >2 + L ∆ >1= , >2=>1= ,>2= ∈J0 (M>1,M>2) (5.3)

 1 >1, >2 = ∩ >1, >2 /|>1| (5.4)

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� �	�

where, r(b2, bl) is the feature similarity function, which calculates the proportion of

common features two nodes shares in Table 5.1, sJt and sJu are the child nodes of b2

and bl accordingly, vY(sJt, sJu) retrieves the set of best matches between sJt and

sJu on the basis of nodes’ feature similarity, and w ∈ [0,1] is the significance subtracter.

Based on mn8_op, the kernel based SVM is adopted to predict the entity type of the

candidate NPs. Given all the seed entities in U> = 	 U>ee , > ∈

[P>, U>, !>, V>, W>, X>,Y>], a kernelized SVM classifier is trained on U> firstly. The

classifier is then used to predict the entity type 9 of a candidate entity =># by computing

a weighted sum of similarities over the seed entities:

 O = 34> P3<O3<.J0B8/ F3<, F=># + 53<∈E7 (5.5)

where, xyG ∈ z are the weight of the seed entities, as determined by the SVM learning

algorithm.

5.3.4 Entity Clustering

The last step aims to find the different expressions that refer to the same entity. It is a

common case that different mentions of the same entity tend to have different but synonymic

vocabularies because of the varying linguistic environment. For example, John Smith, John,

Dr. Smith, and Mr. Smith might be used to refer to the same person, namely to John Smith.

To recognize such expressions, the hierarchical clustering algorithm (HCA) is adopted to

cluster the mentions of the same entity into groups. Each group can be treated as a single

entity in a whole.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� �
�

The clustering operation is carried out based on the lexical similarity between pairs of

entity mentions. It is assumed that the meaning of an entity mention is not only determined

by its component words but also influenced by the words around it. Under this assumption,

Equations (4.6-4.7) compute the lexical similarity between two mentions, (1 and (2.

 3"((1, (2 = +DQ 3"(=&3 DQ (1, DQ (2 + +7Q 3"(=&3(7Q (1, 7Q (2) (5.6)

 3"(=&3 Q (1, Q (2 = !"(1"=2"=1 !"(2

!"(1 2"=2"=1 !"(2 2"=2"=1
, Q ∈ {DQ , 7Q } (5.7)

where, DQ denotes the internal feature of an entity mention, the representation of DQ is a

binary vector of words that compose a mention; on the contrary, the external feature 7Q

is a binary vector of words appearing before and after a mention; accordingly, -{i and

-ei denote the weights of DQ and 7Q ; V is the vocabulary size. To reduce the

ambiguousness brought by the different morphological forms of the same word for

grammatical reasons, all the words in DQ and 7Q are transformed back into their base

forms using the lemmatization package provided by NLTK5. Within each feature space (DQ

and 7Q), the lexical similarity is calculated by the cosine metric in Eq. (5.7).

5.4 Experimental Results and Discussions

5.4.1 Dataset and Data Preprocessing

The proposed algorithms were tested on the same email dataset from the TWP project

introduced in Section 3.3. Before the experiment investigation, the original dataset was

���
5 http://www.nltk.org

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� ���

cleaned by deleting cite text from earlier messages within the email thread. The cleaned

dataset was then manually tagged by annotating process-relevant entities using the BIO

(Beginning, Inside and Outside) labeling scheme. All the tagged emails served as the

baseline in assessing the performance of the proposed hybrid NER approach.

5.4.2 Performance Measures

The experiments were carried out in four steps to assess the performance of each

algorithm in the proposed NER approach shown in Fig. 5.1. There are three importance

assumptions needing for verification:

• The Bayes classifier can eliminate the process-irrelevant sentences with high

accuracy,

• The speech act rules can generate the seed entities with high precision,

• The tree kernel based SVM can improve the recall while keeping the precision.

Precision, recall and their harmonic combination (F1-value) were calculated by

comparing the recognized entities with the artificial annotations. The MUC evaluation

metrics [144], which scores a NER system by assessing its ability to find both the correct

type (TYPE) and the exact text (TEXT), were adopted as the guideline for performance

measurement. However, as the proposed NER approach treats all the noun phrases as

candidate entities, the TEXT aspect of MUC was ignored in this experiment. Therefore, a

correct TYPE was credited if an entity was assigned the correct type, regardless of

boundaries as long as there was an overlap.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	��

5.4.3 Results and Discussions

5.4.3.1 Performance of Sentence Classification

The first experiment aims to evaluate the performance of the Bayes Classifier in

eliminating the process-irrelevant sentences. It is noteworthy that, as the performance of the

sentence filter has a direct impact on the performance of seed entity generation, the sentence

classification needs to produce results of high accuracy.

Three Bayes classifiers, namely, Bayes_BOW, Bayes_NN and Bayes_VB_NN, are

compared in Fig. 5.3. The three classifiers are distinguished from each other by the category

of words used to vectorize a sentence, with Bayes_BOW using the bag of words, Bayes_NN

using nouns only, and Bayes_VB_NN using both verbs and nouns. The influence of the

training sample size on the prediction result is also investigated by varying the time gap 4

used to generate sentence samples for human annotation.

Figure 5.3 Performance of sentence classification

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	��

Figure 5.3 reports the precision results of the three classifiers by varying the training

sample size. It can be observed that Bayes_VB_NN greatly outperforms the other two

classifiers when the training sample size is larger than 400. Meanwhile, Bayes_BOW and

Bayes_NN show a relatively matched performance, regardless of the training sample size.

This comparison result reveals that both verbs and nouns play a much more significant role

in bearing a sentence’s semantic meanings than other types of words. Therefore, only using

verbs and nouns can reduce the ambiguousness brought by other types of words, e.g., stop-

words that usually refer to some extremely common but meaningless words in a language.

The impact of the training sample size on the prediction accuracy is reflected by the

growing tendency of the precision lines. According to Fig. 5.3, the line resulting from

Bayes_VB_NN shows that the precision keeps a fast increasing trend with a smaller number

of annotated sentences, but steadily, this growing rate slows down after the training sample

size is increased to about 600. Although the precision tendency reveals that a larger training

sample size is more helpful to improve the performance, much more workload is required

simultaneously. In order to balance the precision required by seed entity generation and the

workload for labeling the training samples, the training sample size for the following

experiments was selected as 600, with a precision about 84% and a workload about 3 hours

of one person.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	��

5.4.3.2 Performance of Seed Entity Generation

The second experiment aims to verify the hypothesis that the seed entities obtained by

the speech act rules are of high precision. As defined in Section 5.2, seven classes of process

relevant entities are considered, namely, design task P> , timestamp U> , person !> ,

organization V>, location W>, input/output information X>, and technique/tool Y>. For

each category, the performance is measured using precision, recall and F1-value.

Table 5.2 Examples of speech act words

Entity
Category

(# of VB,
of NN)

Examples of speech act
verbs

Examples of speech act nouns

TE (75, 20)

finish, set, check, revise,
work, settle, develop, build,
validate, modify, simulate,

complete, design,
improve, ...

application, simulation,
optimization, collection, design,

issue, task, problem, …

SE (0, 48) --
pm, am, Monday, …, January,

February, …, week, tomorrow, …

PE (0, 143) --
Prof., professor, Dr., student,

organizer, staff, Mr., …, names
from email headers, …

OE (0, 6) --
department, organization, team,

panel, LTA, ECE

LE (1, 5) locate
office, workshop, road, Clementi,

Chang, crossroad

IE (22, 15)
provide, forward, supply,
output, submit, deliver,

result, generate, …

input, data, information,
requirement, output, result, report,

form, file, …

ME (7, 11)
use, apply, employ, propose,

adopt, utilize, …

solution, method, technique,
approach, algorithm, platform,

tool, S3G, means, …

For better illustrating the “performative” function of the speech act words on each entity

category, Table 5.2 lists some examples of the speech act nouns and verbs selected from the

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	��

600 manually annotated sentences. According to Table 5.2, all the selected words are of

strong intentions. In addition, the numbers of the speech act words show that special verbs

might be the preferred choice than nouns when engineers express their intentions of

something done or to be done. On the contrary, some nouns of particular functional

meanings are more likely to be used for expressing entities of time, person, organizations,

and locations.

Figure 5.4 Performance of seed entity generation

Figure 5.4 reports the performance of the speech act rules in terms of precision, recall,

and F1-value. From Fig. 5.4, the first observation is that except for PE and SE, which have

relatively close results on precision and recall, remaining entity types show a much higher

precision score than recall. This phenomenon is well aligned with the conclusion drawn by

existing studies on rule-based NER approaches. In addition, the performance difference

between entity types reveals that the speech act rules performed much better on identifying

four entity types, i.e., TE, PE, SE, and IE, with their precision scores above 0.7. In contrast,

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	��

relatively lower accuracy was obtained for ME (0.562) and LE (0.573). This imbalance

situation might be caused by the less definitude of speech act words selected for the two

categories of NEs.

The overall precision over the seven entity types, as shown in the last column in Fig.

5.4, is 0.794. This finding suggests that the seed entities are satisfied for being used as

training data for expanding more general entities because the most concern in the step of

seed entity generation is the overall performance.

5.4.3.4 Performance of Entity Expansion

Two significant aspects are investigated in this experiment: the ability of the SVM

classifier for retrieving more entity instances and the ability of the proposed local

dependency tree for capturing the discriminative features of the seed entities. Based on the

proposed dependency tree kernel BMDTK, two kernelised machine learning approaches,

K-nearest neighbors (KNN_BMDTK) and Support Vector Machine (SVM_BMDTK), were

tested. For comparison purpose, this experiment also tested two baseline approaches that

characterize a candidate NP by using the bag of words in its local context, named as

KNN_BOW and SVM_BOW respectively. The parameters were set as / = 7 for

KNN_BMDTK and KNN_BOW, and w = 0.75 for the kernel function mn8_op(P2, Pl).

The entities expanded by all the above algorithms were compared to the seed entities

generated by the speech act rules (SAR). Figure 5.5 plots the results in terms of precision,

recall, and F1-value.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	��

Figure 5.5 Performance of entity learning: (a) performance of SVM classifier, (b)
performance of KNN classifier

From Fig. 5.5, it can be observed that no matter which feature is used, BOW or BMDTK,

both KNN and SVM improve the overall F1-value by increasing the recall, though the

precision is slightly decreased. For example, compared to the SAR, SVM-BMDTK

improves the overall recall from near 0.4 to slightly above 0.65, thus upgrades the overall

F1-value from about 0.52 to near 0.7. This observation demonstrates that by learning the

local context feature of the seed entities, more general entity instances are successfully

retrieved from those ones that can not be identified by speech act rules. However, as more

general instances are founded, noises also are included, which influents the final accuracy

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	��

negatively. For example, compared to SAR, the overall precision score is decreased from

about 0.8 to below 0.75 and around 0.67 by SVM-BMDTK and SVM-BOW respectively.

A close comparison between the performance of BMDTK and BOW reveals that the

local dependency tree kernel performs better than BOW in capturing the discriminative

features of the entities. This conclusion is evidenced by the increased overall performance

of both machine learning algorithms, KNN and SVM. In the case of SVM, shown in Fig.

5.5 (a), DMDTK outperforms BOW in all the three performance measurements, with much

higher F1-value (near 0.7 vs. about 0.57), much higher Recall (slightly above 0.65 vs. around

0.5), and slightly higher precision (about 0.72 vs. about 0.67). The same case also happens

to KNN, shown in Fig. 5.5 (b). However, when comparing the performance in each entity

category, it is interesting to observe that BOW excels BMDTK on two entity types, i.e., ME

(about 0.3 higher F1-value than SVM) and LE (about 0.6 higher F1-value than SVM). The

cause for this phenomenon might be the lower precision of the seed entities of the two

categories, which influence the quality of the SVM classifier when handling with the two

type of entities.

5.4.3.5 Performance of Entity Clustering

Table 5.3 reports the number of the individual task entities before and after clustering.

Two datasets are compared: one is the original dataset with the manually annotated entities,

and one is the dataset automatically annotated by the proposed SVM-BMDTK classifier.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 		�

Table 5.3 Number of individual task entities

 # of Ms # of IMs # of IMCs
Annotated data 2289 1340 61
SVM-BMDTK 1948 1211 53

In Table 5.3, the second column (# of Ms) reports the total number of the entity

mentions that are identified as task entity in both datasets. It is observed that the proposed

approach generated a relatively equivalent volume of task entities, with 341 less than the

manually-labeled ones. The number of individual entity mentions, as shown in the third

column (# of IMs), is counted by ignoring repetitive entities. Here, the gap between the

artificial and automated entities is further reduced to 129. The last column presents the

number of the entity clusters. The further decreased gap in the IMCs column indicates that

the proposed approach is able to find instances (or mentions) for most task entities (entity

clusters), although it might be not competent enough to identify all the mentions for per task

entity.

Figure 5.6 gives some examples of the mentions that are clustered in the same entity

group. It can be easily observed that most mentions in the same group have a very close

meaning. This observation indicates that the proposed approach is able to find the different

linguistic expressions of the same named entity. Therefore, each cluster could be treated as

a single entity for more complicated process analysis.

CHAPTER 5 FINE-GRAINED�PROCESS INFORMATION EXTRACTION BY NAMED ENTITY RECOGNITION�

� 	
�

Figure 5.6 Examples of entity clusters

5.5 Summary

In this chapter, a hybrid NER approach was proposed to annotate design information in

textual data at a fine-grained level. The annotated entities can be viewed as the fundamental

elements that compose the underlying design process. By taking advantage of several timely

techniques in machine learning, text mining, and natural language processing, the human

intervention in creating training data has been controlled to an acceptable range. In addition,

the comparison between the automated and artificial NEs shows an impressive performance

with the proposed NER approach. Based on the detected NEs, more advanced, complex

information extraction techniques can be applied to support decision makers in learning

from the experience archived in the design documents.

�

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

� 	��

CHAPTER 6 EVENT DETECTION BY ENTITY RELATION

EXTRACTION

6.1 Introduction

In previous two chapters, the information extraction module of the PKDT system is

discussed. So far, the extracted topics and named entities have been treated as independent

metadata scattered in design documents. To go beyond the information that can be provided

by such metadata, this chapter aims to detect design events from the extracted process

information by finding their semantic relations. The detected design events could step

toward a more structured representation of the target design process embedded in the design

documents.

Design events in the product design process refer to observable occurrences of

designers/engineers, tasks, locations, and times. From the viewpoint of relation extraction,

a design event can be regarded as a higher-order relation referred from a set of binary

relations among the involved entities. As discussed in Section 2.4, most of the existing

higher-order entity relation extraction (ERE) approaches mainly consist of two steps:

identifying confident binary relations using machine learning algorithms and assembling

the binary relations based on prior knowledge. Therefore, these approaches have a heavy

dependence on the training data used to learn the binary relation classifier, and the types of

higher-order relations that can be detected are significantly constrained by the rules used to

assemble binary relations. In this context, they are not suitable for design event detection as

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

the size of design events as well as the dependency strength within design events are ever

changing due to the high flexibility of product design process.

To tackle the above issues, this chapter presents a graph partition based higher-order

ERE approach to detect design events from design documents in an unsupervised manner.

Unlike traditional higher-order ERE approaches, the proposed approach recognizes

confident binary relations to the utmost according to the distance of the NE pairs, and then

detects design events by finding the maximal NE cliques based on their binary relations.

Therefore, noisy NEs that have weak relations to its neighbors could be eliminated by the

graph density used to find the maximal NE cliques.

The symbolic representation of the relevant concepts is stated in Section 6.2. The

proposed event detection approach is presented in Section 6.3. The experimental results as

well as some examples of the detected design events are given in Section 6.4. Lastly, a

simple conclusion is drawn in Section 6.5.

6.2 Problem Statement

On the basis of the entity types in Chapter 5, a design event is defined as a graph 7R =
 (2 , !0, :3, :< 7), where

• V → Each vertex ! ∈ 2 denotes a named entity and the entity type of ! belongs

to {P>, !>, U>, V>, W>, X>,Y>};

• !0 → The graph is centered at !0, !0 ∈ 2 , and the entity type of !0 must be TE

(task entity);

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

• :3, :< → :3, :< ∈ 2 are the starting and ending time of an event, and their entity

types must be SE (time entity);

• 7 → Each edge < ∈ 7 denotes a relation between a normal vertex and the center

vertex !0, therefore, 7 ∈ {!0×2 }.

Based on the above definition, the problem of design event detection is transformed

into a higher-order ERE problem. The relations in a design event are jointly determined by

at least two types of entities. Therefore, the design event detection differs from most relation

extraction problems that focus on binary relations. More precisely, for each design

document, the proposed ERE approach aims to extract a set of design events recorded, and

all the entities in a design event have a direct or indirect relation to the central task entity.

Moreover, it is nature that two design events can share the same entities. For example, a

person can be in charge of two design activities at the same time. Therefore, it is also

assumed that two design events extracted from the same document can overlap on some

vertices except the central one.

6.3 A Graph Partition based ERE Approach

Figure 6.1 illustrates the workflow of the proposed higher-order ERE approach for

design event detection. As shown in Fig. 6.1, the proposed ERE approach consists of three

steps: direct binary relation detection, indirect higher-order relation detection, and post-

processing. The first step aims to identify the binary relations between any two types of

entities via matching patterns in the sentences. This would result in an intermediate graph

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

within which binary relations exist between any two connected entities. Next, the graph of

binary relations is factorized into several event graphs by finding the maximal cliques

centered at each task entity. The primary advantage of using graph partition is that it allows

events to share the same entities in an unsupervised manner. Finally, the post-processing

step selects the valid cliques and formats them in the form of the design event graph defined

in Section 6.2.

Figure 6.1 Workflow of event detection

6.3.1 Direct Binary Relation Detection

The proposed three-stage event detection approach starts by identifying pairs of entities

that appear to have a binary relation of interest and high confidence. These entity pairs can

then serve as edges in a graph, based on which more complex relations can be inferred.

A binary relation is defined as a tuple 5' = (<1, ', <2), where <1 and <2 are entity

mentions, :O#<_&? (<1&' <2) ∈ 7F)>9 7F = {P>, !>, U>, V>, W>, X>,Y>}, and ' is the

relation. Based on the definition of binary relation, the higher-order relation in the

NE
annotated
document

Direct binary
relation detection

Indirect high-order
relation detection

TE

PE

OE
IE

PE

LE
SE

SE
ME

TE
PE

OE SE

SE
ME

TE

PEOE IE

PE

LE SE

SE

ME

TE

PE
OE

SE
ME

Binary Relation Graph Event Graphs

Events

W
or
kf
lo
w

R
es
ul
ts

Post-
processing

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

previously defined event graph is factorized into a set of binary relations, and all the possible

binary relations are listed in Table 6.1. The biggest advantage of this factorization operation

is that the number of possible binary relations is dramatically reduced. More specifically,

let |<:"| be the number of entities under an entity type, the number of possible binary

relations is |<:"| ∗ |<:,|<:",<:,∈7F &<:"≠<:, , which is much smaller than the number of

possible higher-order relations, |<:|<:∈7F .

Table 6.1 Types of binary relations

Relation
Type

Example Relation
Type

Example

TE_TE (collect data, analyze data) TE_PE (collect data, John)

TE_SE (collect data, 06/01/2011) TE_OE (collect data, Corp.)

TE_LE (collect data, Queen Road) TE_IE (analyze data, vehicle data)

TE_ME (analyze data, software) PE_PE (John, David)

PE_OE (David, Corp.) PE_ME (David, software)

SE_SE (06/01/2011, 08/01/2011) OE_LE (Corp., Queen Road)

OE_ME (Corp., software) LE_LE (Queen Road, King Road)

A simple pattern search approach is used to match binary relations sentence by sentence.

More generally, high-confident binary relations are likely to exist between entity pairs that

satisfy all the following rules:

• Rule 1: Two entities must be mentioned in the same clause;

• Rule 2: Two entities are directly connected in the sentence dependency tree;

• Rule 3: The type of two entities must be consistent with one relation in Table 6.1;

• Rule 4: The sentence or clause is in present tense;

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

• Rule 5: No negative words (e.g., don’t, not) exist between two entities.

It's worth to mention that Rule 4 is introduced to find events that are being done or will

be done, and Rule 5 is for eliminating negative relations. An example of binary relation

extraction is shown in Fig. 6.2. Referring to Fig. 6.2, four entities are detected in the example

sentence. If binding any two of the four entities together, there might be six candidate binary

relations. After matching the above rules on these candidate relations, two of the six

relations violate Rule 2 because both are interrupted by a third entity in the dependency tree,

and one candidate relation is filtered out by Rule 3. At last, only three of the six candidate

relations satisfy all the five rules.

Figure 6.2 Example of binary relation detection

There are several advantages by using pattern matching other than training a classifier

to classify all possible relations. Firstly, the pattern matching approach has no requirement

for training data. Secondly, the computational cost of the pattern matching approach is linear

John will collect the traffic data from the TCD company on 06/01/2011. Example sentence:

Named entities: PE TE OE SE

Candidate relations:

(John, collect the traffic data)
(John, TCD company)

(John, 06/01/2011)
(collect the traffic, data, TCD company)

(collect the traffic data, 06/01/2011)
(TCD company, 06/01/2011)

Binary relations:

(John, collect the traffic data)

(collect the traffic, data, TCD company)
(collect the traffic data, 06/01/2011)

Dependency tree:

X Rule 2

X Rule 3

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

to the number of the sentences in a document. Last and most significantly, the goal of the

binary relation detection in the proposed ERE approach is to find all possible binary

relations other than to correctly classify all the extracted relations because the less-confident

relations can be filtered out according to the clique density in the next step.

6.3.2 Indirect Higher-Order Relation Detection

The second step advances to recognize design events by growing higher-order relations

from the binary relations obtained in the first step. To do so, all the entity pairs that have a

binary relation are connected in an undirected graph R = (2 , 7), where the vertices in 2

are the entities mentioned in each document, and the edges in 7 are the binary relations of

the entities. In addition, the weight of each edge, +(< |< ∈ 7), is presented by the frequency

that the corresponding binary relation is mentioned in a document. Based on this binary

relation graph, design events are automatically detected by finding the maximal clique

centered at each task entity.

Given a binary relation graph R = (2 , 7), a clique R′ that is centered at a task entity

!0 is a sub-graph of R in the form of R′ = (2 ′, !0, 7′), where 2 ′ ⊆ 2 , 7′ ⊆ 7, !0 ⊆
2 ′, :O#<(!0) = F7, and for each ! ∈ 2 ′ − !0, there is at least one path from ! to !0. A

clique 0R = (2 0R, !0, 70R) is the maximal clique centered at !0 if there is no other

clique R′ = (2 ′, !0, 7′) that 9<>3":O(R′) > 9<>3":O(0R) . The function 9<>3":O(R′)
shown in Eq. (6.1) computes the density of a clique using the mean of the edge weights.

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

 9<>3":O(R′) = (+(<)<∈7′)/|2 ′| (6.1)

To find the maximal clique for each task entity, the simplest approach is enumerating

all the possible cliques, computing their density, and then selecting the maximum clique.

Unfortunately, the real problem is that the number of cliques grows exponentially with the

number of entities that are directly or indirectly connected to a task entity. Enumerating all

the possible cliques will result in a high time consumption.

To overcome the above problem, this step adopts a greedy strategy to find the maximal

cliques approximatively. The main idea is to greedily expand an initial clique in the

direction that the clique density increases. Figure 6.3 gives the proposed algorithm in detail.

As shown is the 4th line of Algorithm 6.1, the algorithm starts by creating a small clique

0R& in which all the entities have a direct relation to the central task entity. Next, for each

iteration shown in the 5th-7th lines, a new node is added to the target clique if it is connected

to at least one node in 0R&, and the density of the new clique 0R′ is larger than the

density of 0R&. By this means, nodes with strong connections to its neighbors would be

added to the maximal clique, and nodes with weak connections to its neighbors would be

eliminated. The whole algorithm stops when no more node can be included. Each maximal

clique is an event as a whole.

The computational complexity of algorithm 6.1 is almost linear to the number of entities

in the binary relation graph. However, one problem with this algorithm is that the final

cliques might not be the maximal ones but approximations.

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
	�

Figure 6.3 A graph decomposition algorithm for event detection

6.3.3 Post-processing

Another problem with the above algorithm is that it might output maximal cliques that

have very small size in nodes because it only considers the local density of the cliques

around each task entity. Generally, there are three situations that cause a maximal clique is

very small: 1) there is no actual design event that can match with the maximal clique, 2)

there is an actual design event matching with the maximal clique, but the maximal clique

fails to capture insufficient information of the design event, 3) an actual design event itself

is small, and the maximal clique correctly reflect the design event. The maximal cliques

created in the first two situations would result in noisy or invalid design events.

To make sure each maximal clique represents a valid event of sufficient information,

the post-processing operation shown in Fig. 6.4 is applied to filter the noisy and invalid

cliques off. Firstly, each candidate event in the list of the maximal cliques is weighted by

Algorithm 6.1 A event detection algorithm (Part I)
Inputs: !(" , #) is the binary relation graph, $ is the stop criteria for eliminating a
node
1: Procedure EVENT_CLIQUE_DETECTION(!, %)
2: Initialization: &!_'()* ← ,
3: For each task entity -0 ∈ " and */01(-0) = 2# do
4: Create a initial clique &!0 = (" 0, -0, #0) , where " 0 ∈ " , -0 ∈ " , and #0 = {(-′, -0)|-′ ∈ " 0 − -0 567 (-′, -0) ∈ #}
5: For each -618 ∈ {-|(-, -′) ∈ # 567 - ∈ " − " 0 567 -′ ∈ " 0} do
6: Create a new clique &!′ = (" ′, -0, #′) , where " ′ = " 0 + -618 and #′ = #0 + {(-618, -′)|-′ ∈ " 0567 (-618, -′) ∈ #}
7: &!0 ← &!′ if 716)(*/(&!′) − 716)(*/(&!0) >= $
8: End for
9: Save a maximal clique by appending &!0 to &!_'()*
10: End for

�

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�

�

the sum over the weight of the edges. Next, the 3rd line rearranges all the candidate events

in a descending order. In the last line, the cutoff Y is used to select cliques whose weights

fall into the Y% top rank. By this means, the algorithm in Fig. 6.4 only returns maximal

cliques that have a large size in nodes or very strong edges as the valid events.

Figure 6.4 The post-processing operation for event graph selection

Lastly, according to the definition of design event in Section 6.2, all the valid event

graphs selected by Algorithm 6.2 are further normalized by replacing the path from the

central task node to each indirectly-connected node by a single edge. The weight of the new

edges is the smallest edge weight in the corresponding path. In addition, the starting and

beginning times of each design event is simply set as the minimal and maximal time

indicated by the time entity nodes. If no time entity node is included in a maximal clique,

the creation time of the corresponding document is used in place.

6.4 Experimental Results and Discussions

6.4.1 Dataset and Performance Measures

The email dataset of the TWP project introduced in Section 3.3 was again used to test

the proposed event detection method. 656 events were extracted from the 569 emails.

Algorithm 6.2 A event detection algorithm (Part II)
Inputs: !"_#$%& is the list of the maximal cliques, ' is the cutoff for eliminating noisy
cliques in !"_#$%&
1: Procedure EVENT_GRAPH_SELECTION(!"_#$%&, ')
2: Weight each candidate event !"$ ∈ !"_#$%& using following equation:)*(!"$) = *(+)+∈!"$
3 Rearrange !"_#$%& descendingly in according to)*(!"$)
4: Save top ranked events into ,"_#$%&, making)*(+))+)∈,"_#$%& /)*(-))-)∈!"_#$%& ≈ '

�

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

�
��

Considering the number of the extracted events and the flexibility of entities involved in

each event, it is difficult to evaluate all the events manually. Therefore, 30 documents were

randomly selected and manually annotated. The selected evaluation dataset contained 129

sentences, 406 entities, and 59 events.

It is important to note that a detected design event could consist of several entities of

different types. In this context, a detected event was considered correct if and only if at least

50% of the entities in it were consistent with the entities in the manually-annotated events.

Based on this, the performance results of the proposed design event detection method were

reported in terms of precision, recall, and F-value.

6.4.2 An Example of Event Detection

To give an intuitive feeling of the events detected, an example is given in Fig. 6.5. The

example document segment contains 12 sentences. Referring to the entities highlighted in

bold, at least one entity is detected in each sentence. From the binary relation graph shown

in Fig. 6.5, seven entities are recognized as task entities, namely, make group, report

progress, redefine problem, be issue, adopt transportation system, target aspect, and shape

project. After graph partition and graph selection, three of the seven task entities are top

ranked and survived as valid events with sufficient information. From the three extracted

events in Fig. 6.5, it can also be observed that entities within an event are usually mentioned

in different sentences, rather than all in single sentence. This also indicates that using binary

relation extraction alone can not successfully handle such complex relations.

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

� ���

Figure 6.5 Example of event detection

6.4.3 Results

Three event detection approaches were compared:

 This is Person-0 from DCC FTS group. Person-1 and Person-0 are currently the leaders
of this group. Person-0 am writing to P-2-to-17on Person-141 request to report the
progress of our group.
 Our group currently has 8 members, making it the largest group in DCC. Among the 8
members, there are 5 ME and 3 EE undergraduates. The following is the complete contact
list of all the current group members:
 Person-0 first try to shape the project and target on aeronautical aspect, specifically,
flapping-wing aircrafts and wing-in-ground aircrafts.
 Person-0 have also attached a summary of our meeting on 07/03/2011, this Monday. This
detailed summary will be able to give Person-2-to-17 a clear picture about our latest
progress after deciding to redefine our problem. The issue now is that among group
members there are different ideas. For our next meeting on 10/03/2011, we would like to
discuss, persuade and must reach a common problem to work with. Once we agree with a
common problem and the idea of individual transportation system is adopted, the concept
paper should be a… …

Example document:

Binary Relation Graph Event Graph 1

Event Graph 2 Event Graph 3

Dec
om

po
si

tio
n

Binary relation
detection

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

� ���

• TRMEC: the proposed method in this chapter, which only uses the top ranked

maximal cliques to construct event graphs.

• MEC: uses all the maximal cliques to construct event graphs.

• DREC: uses cliques in which all the entities have direct relation to the central task

entity to construct event graphs.

The performance of the above three methods are reported in Fig. 6.6 in terms of

precision, recall and F-value.

Figure 6.6 Event detection results

According to Fig. 6.6, it can be observed that the method based on top-ranked maximal

cliques shows the highest precision and F-value, valued at 0.901 and 0.844 respectively.

This result is very positive to indicate that the proposed event detection method can not only

correctly eliminate noisy events, but also keep valid events efficiently. In contrast, the

TRMEC method was defeated by the MEC method in term of recall. The reason is that the

CHAPTER 6 EVENT�DETECTION BY ENTITY RELATION EXTRACTION

� ���

MEC method recognized all the maximal cliques as events, which can result in relatively

higher recall but poor precision. In addition, Fig. 6.6 shows that the method based on binary

relations performed worst. This finding is consistent with the observation previously

obtained from Fig.6.5 that the complex relations in an event are mostly mentioned in several

sentences. Therefore, methods only based on binary relations can not handle such non-

sentential relations.

6.5 Summary

In conclusion, this chapter presents a graph partition based higher-order ERE approach

for detecting design events from design documents. The main idea of the proposed approach

is to decompose the complex relations in an event into several binary relations and

reconstruct the event by finding the maximal cliques centered at each task entity. There are

several advantages by using graph decomposition. Firstly, it is unsupervised, without any

requirement for training data. Secondly, the graph partition algorithm is simple, almost

linear to the number of the entities in a document. Lastly, it well utilizes the local relations,

which are more confident, to construct complex relations that are hidden in different

sentences. The proposed method was tested on a real-life dataset, which showed very

positive results.

� �

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ���

CHAPTER 7 HIERARCHICAL PROCESS MODEL

DISCOVERY

7.1 Introduction

Based on all the information that have been extracted in previous chapters, this chapter

aims to automatically model the underlying design process recorded in the design

documents from the viewpoint of workflow logic. The discovered workflows specify in

which order the design activities have been executed on the basis of reality. Such a

capability of discovering the realistic workflows can be a valid help in analyzing process

performance, managing and reusing process knowledge.

It is noticeable that due to the inherent flexibility of the product design process, design

activities are often carried out in a somewhat loose manner. Because there are no specific

execution paths that are strictly defined in advance, designers often change or create new

design activities at runtime. As a consequence, the flat models produced by most traditional

process mining techniques tend to be large, complex, and difficult for understanding when

they are used to model the less-structured product design processes. In order to reduce the

complexity as well as to improve the understandability of the design process model, a

hierarchical description that can provide different degrees of abstractions is typically desired.

To tackle the above problem, two hierarchical process mining approaches are presented

in this chapter, i.e., bottom-up and top-down process mining. Both process mining

approaches aim to automatically discover the product design process from the design

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ���

documents and to present the discovered process model in a hierarchy structure. The

discovered hierarchy structure decomposes the entire design process into functional

modules hierarchically. Moreover, in order to describe the design process with different

degrees of details, modules can be refined into detailed transitions in a more specific layer,

and small modules also can be merged into larger modules in a more abstract layer. To

construct the hierarchy structure, the two proposed process mining approaches adopt two

opposite strategies, with one from specification to generation and the other from generation

to specification.

Section 7.2 defines the hierarchy structure of product design process. Section 7.3 and

Section 7.4 present the bottom-up process mining and the top-down process mining

respectively. Section 7.5 illustrates and compares the results of the two process mining

approaches using a real-life case study. Section 7.6 concludes.

7.2 Problem Statement

This section introduces the formal representation of the hierarchical process model. Let

8 be a design process, the flat workflow graph of 8 is denoted as Z (8). Z (8) is a

tuple ([, 7, [3, [<, \), where [is a finite set of design tasks, [3 and [< are the set of

starting and ending tasks, and 7 ⊆ ([− [<)×([− [3) denotes the precedence relations

among the tasks in [. The edges in 7 define the potential sequence in which design tasks

have been executed. In addition, it is the normal case that design tasks are enriched with

some kind of restrictions or attributes, for example, the execution duration of a task, the

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ���

person in charge of a task, and the resources utilized in a task. Therefore, the function

\()|) ∈ [) is introduced to add such attributes to design tasks.

Extending the above definition, a hierarchical process model is denoted by ℋ (8),
which is a tuple (H, *:&#, *5&::&(, ^), where Z (H") = ([", 7", [",3, [",<, \") is an abstracted

workflow graph of 8 in the ith layer of the hierarchical process model, and ^ ([") ⊆
(["×["−1) is a function that decomposes a task in the ":ℎ layer into a set of sub-tasks in

the (" − 1):ℎ layer. In other words, each)" ∈ [" can be seen as an abstraction of a set of

smaller sub-tasks M"−1 ⊆ ["−1 that are highly correlated in the (" − 1):ℎ layer. In turn, the

sub-tasks in M"−1 add details to)". By this means, each abstraction layer describes the

product design process with different degrees of details. In addition, *:&# presents the most

abstract view at the top of ℋ (8), and *5&::&(provides the most concrete details at the

bottom of ℋ (8).
Figure 7.1 shows an example of the hierarchical process model. Details on mining the

hierarchical process model from design documents are presented in the rest of this chapter.

Figure 7.1 Example of hierarchical process model

1th (bottom) layer

2nd (mid) layer

3rd (top) layer

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ���

7.3 Approach 1: Hierarchical Process Mining from Bottom to Top

The bottom-up process mining approach is sketched in Fig. 7.2. The whole system starts

by detecting the design events from the design documents using the NER approach

presented in Chapter 4 and the event detection approach presented in Chapter 5. Next, the

detected design events are saved in a XML file chronologically, called as event log. Each

design event corresponds to a record in the event log file and is associated with a set of

attributes, e.g., event name, starting and ending time, and originators.

Figure 7.2 System architecture of bottom-up process mining

Given the event logs, the process mining module firstly constructs a flat workflow

model that tries to capture all the execution sequences in the event logs at the bottom. Based

on this flat model, the process mining module then iteratively creates a hierarchical process

Documents

Event logs

Workflows

Named Entity
Recognition

Event
Detection

Event Log
Generation

Prepcessing

Hierarchical
Process Mining
in M iterations

Data

Workflow Discovery at The
Bottom Layer

i > M or Abstract
Enough ?

Stop

i=0

Workflow at bottom layer

Task Abstraction

Workflow Reconstruction

Loop Elimination

Workflow at (i-1)th layer
i = i + 1

Abstracted workflow at ith layer Next iteration

Y

N

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� �	�

model in three steps: task abstraction, workflow reconstruction, and loop elimination. As

shown in Fig. 7.2, each iteration of the three steps could output an abstracted workflow

model by merging highly-correlated sub-tasks in the lower layer. Finally, the whole system

stops when the desired degree of abstraction has been achieved.

7.3.1 Workflow Discovery at The Bottom

The first step of the bottom-up process mining is to build a flat workflow model that

covers all the possible behaviors in the event logs, without any abstraction. To do so, all the

design events detected in the input documents are translated to the task nodes in the

workflow graph, and the edges between pairs of events are determined by their time interval.

More specifically, let 7H = (<1 → <2, →. . . , → <%) be the detected design events that

are rearranged chronologically, and % be the event number. Based on the definition in

Section 7.2, the workflow discovery attempts to produce a process model Z (H5&::&() =
([5&::&(, 75&::&(, [5&::&(,3, [5&::&(,<, \5&::&() , where each) ∈ [5&::&(corresponds to a

unique event in 7H, [5&::&(,3 is a set of events that were carried out simultaneously with

<1, [5&::&(,< is a set of events that were carried out at the same time with <% , and 75&::&(⊂
([5&::&(×[5&::&() measures the possible precedence relations among all the events.

Given the execution time of two events (e.g., <" and <,), the possibility that a

precedence relation exists is measured as:

 #'(<" →4 <,) = 1 − 9/4 (7.1)

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� �
�

where g is the size of the time window, and 9 is the time interval between <" and <, .

Based on #'(<" →4 <,), the relation between <" and <, is classified as:

• <" ≠≠ <, : there is no precedence relation if #'(<" →4 <,) ∈ (∝ ,0] ∪ (1, ∝);
• <" == <, : <" is parallel with <, if #'(<" →4 <,) equals 0, which means two

events were executed at the same time;

• <" → <, : <, is executed following <" if #'(<" →4 <,) ∈ (0,1).
Only when the precedence relation <" → <, is detected, a corresponding edge is added

into 75&::&(. It is noteworthy that by using the time criteria, not only the direct relations

<" → <, and <, → <' but also the long-distant relation <" → <' are taken into account as

long as <" and <' are executed close enough. This is an important step to make sure that

two events that are highly correlated but disturbed by a third event can be reconnected.

7.3.2 Task Abstraction

In each iteration shown in Fig. 7.2, the step of task abstraction merges small tasks that

are highly correlated into bigger tasks in a higher abstraction layer based on the concept of

aggregation and abstraction. Therefore, the composite task in a higher abstraction layer is

the abstracted representation of the set of aggregated tasks. In turn, the set of small tasks in

the lower layer can be seen as the same set of executions as the corresponding composite

task, but in a more detailed way.

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ���

Before merging tasks, it is important to develop appropriate criterial that measure how

closely two tasks are related. Let Z (H"−1) = (["−1, 7"−1, ["−1,3, ["−1,<, \"−1) be the

workflow graph in a lower layer, the correlation among tasks in ["−1 is measured by two

fundamental metrics: neighborhoodship and context similarity.

The first metric, Neighborhoodship, measures how closely two tasks are executed in

time. As the edges in the workflow graph has already included the time information, the

neighborhoodship is determined by the path connecting two tasks in the workflow graph. In

detail, given the workflow graph Z (H"−1), for each task node) ∈ ["−1, its neighborhood

is defined as:

 ><"4ℎ5&'()) = {)"|∀)"∈(["−1−)) #):ℎ(),)") ⊆ 7"−1 ∧ |#):ℎ(),)")| < e} (7.2)

which is a set of nodes that are connected to) by paths shorter that e. All the task nodes

in the neighborhood are treated as candidate tasks that might be merged with).

The second metric, context similarity, measures the overlap of the attributes associated

with two events. Examples of attribute overlap include two tasks were executed by the same

person using the same tools or described by similar expressions, e.g., "buy simulation

software" and "test simulation software". These attributes describe the execution context of

a design task. More attributes are shared by two design tasks, higher possibility that they

are correlated.

Based on the above two metrics, design tasks that are located in the same neighborhood

as well as have similar execution contexts are merged into bigger composite tasks in a higher

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

layer. Figure 7.3 shows an example of task abstraction. For this example, the parameter of

neighborhoodship is set as two. Fig. 7.3 (a) highlights the correlated nodes in the same color.

Figure 7.3 (b) shows the abstracted workflow graph, in which the folder nodes indicate the

composite tasks obtained by aggregation.

Figure 7.3 Example of task abstraction: a) Z (H"−1), b) intermediate result, c) Z (H")
7.3.3 Workflow Reconstruction

After getting the composite tasks via aggregation, this step advances to reconstruct the

workflows for the composite tasks. A straightforward method is to let the abstracted

workflow model include all the workflow patterns found in the lower layer.

Let Z (H"−1) and Z (H") be the two adjacent layers, and H" be the abstracted layer.

Based on H"−1, the workflows of H" are constructed as:

• 7" = {()0 ,)%)| ∀)0 ,)% ∈["7)(′ ,)>′∈["−1)0 ≠)% ∧ ()(′ ,)>′) ∈ 7"−1 ∧ ()0 ,)(′) ∈
^ ([") ∧ ()% ,)>′) ∈ ^ ([")}

• [",3 =) [)∄5) ∈ [" ∧ 5 ∈ [" ∧ (5,)) ∈ 7"}

• [",< = {)| [)∄5) ∈ [" ∧ 5 ∈ [" ∧ (), 5) ∈ 7"}

2

buy_software

3
get_key

4

test_software

1

start_validation

4
collect_data

5

clean_data

6
analyze_data

7

simulation

(a)

2,4

31

4,5,6

7

(b)

2,3,4

1

4,5,6

7

(c)

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

where all the edges connecting two child nodes in ["−1 are directly transferred to the

corresponding composite nodes in ["; starting nodes [",3 are the nodes without preceding

nodes in ["; and [",< are the nodes without subsequent nodes. Take the workflow graph

in Fig. 7.3 as an example, because Node 3 is connected to both Node 2 and Node 4 in

opposite directions in Fig. 7.3 (a), two new edges are correspondingly created for connecting

Node 3 to the composite node in Fig. 7.3 (b).

7.3.4 Loop Elimination

As shown in Fig 7.3 (b), the above workflow reconstruction operation tends to create

loops in the abstracted workflow graph. Although loops resulting from unpredicted

iterations is a key feature of real-life design processes, loops at a very detailed level would

increase the complexity of the discovered design process model. Moreover, design tasks in

a loop tend to be highly correlated. Therefore, for the sake of brevity, three operations are

successively carried out to eliminate the loops created in three different scenarios. This

would produce a further simplified workflow model. The main idea behind loop elimination

is emerging the minor tasks into the strongest node in their neighborhood, or cutting off the

weaker relation if two tasks are equally significant.

Examples of the three types of loops are shown in Fig. 7.4. They are:

• Case 1: as shown in Fig. 7.4 (a), one minor node and one composite node constitute

a loop. Meanwhile, the minor node does not connect to any other composite nodes

in its neighborhood;

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

• Case 2: as shown in Fig. 7.4 (b), one minor node and one composite node constitute

a loop. Meanwhile, there are other composite nodes connected to the minor node;

• Case 3: as shown in Fig. 7.4 (c), two composite nodes constitute a loop.

Figure 7.4 Example of loops

In the first case, it is assumed that the minor task node is less significant than the

connected composite node. Therefore, the minor node is directly merged into the unique

composite node. For example, the loop in Fig. 7.3 (b) just falls into this situation, thus, a

new composite node consisting of nodes 2-4 is created in Fig. 7.3 (c).

Under the circumstance of Case 2, the minor node is merged into the composite node

of the highest temporal significance. The temporal significance is calculated via dividing

the number of the minor nodes in a composite node by its time duration. Therefore,

composite nodes that are active frequently in a short period are of higher competitive power.

With respect to the last case, both composite nodes in the loop are significant. Under

this circumstance, the loops are broken by cutting off the edges of weaker relations. This

could result in a simplified model that remains the most normal behaviors to the greatest

extent. The relation strength is estimated by how closely the minor tasks in one composite

task are executed following the minor tasks in another.

Case 1 Case 2 Case 3(a) (b) (c)

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

7.4 Approach 2: Hierarchical Process Mining from Top to Bottom

7.4.1 System Architecture of Top-Down Process Mining

Compared to the above bottom-up approach, the top-down process mining introduced

in this section works in the opposite direction, from generation to specification. Figure 7.5

depicts the system architecture of the top-down process mining approach. As shown in Fig.

7.5, the top-down process mining approach consists of two major steps: hierarchy

construction and top-down sub-process modeling.

Figure 7.5 System architecture of top-down process Mining

The first major step aims to construct a tree structure that hierarchically tailors the

whole design process into several functional modules. It starts at the the most abstract layer

and views the underlying design process as a big black box. Next, the whole black box is

Documents

Sub-
Process
Models

Topic Modeling Hierarchy
Construction

Top-Down
Sub-Process

Mining

Data

Hierarchy Construction
via Document Clustering

i > M or Detailed
Enough ?

Sub-Process model
at ith layer

Event Detection

Sub-Process Modeling

Y

For each document
cluster do:

N

i=i+1

Event log
segments

Information Extraction

Procedure

Hierarchical
 Structure

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

decomposed into smaller modules via document clustering based on per-document topic

distributions. Hence, each module in the hierarchy tree corresponds to a document cluster,

in which more homogeneous execution behaviors under the same function could be

observed. Such a decomposition process can be repeated recursively until the desired degree

of homogeneousness is achieved within each functional module.

The second major step in Fig. 7.5 aims to construct the sub-process model for each

module from the corresponding document cluster. Within each module, process information

is extracted using the NER approach presented in Chapter 5, design events are detected

using the event detection approach presented in Chapter 6, and a sub-process model is

constructed using the workflow discovery approach presented in Section 7.3.1. All the sub-

processes together describe the whole process with different degrees of granularity.

7.4.2 Algorithm of Top-Down Process Mining

Figure 7.6 describes the algorithm of top-down process mining in detail. The meanings

of some fundamental notions are defined as following:

• B" = (ℎ1, . . . , ℎ$) is the topic representation of a document, where $ is the

number of topics detected, and ℎ, ∈ [0,1] is the possibility that the jth topic appears

in a document;

• M is a set of document clusters;

• 0 is a set of functional modules, each module (=, 3+) corresponds to a workflow

3+ mined from a document cluster =;

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

• F ⊂ {Y×Y} is a tree that organizes 0 in a hierarchical structure.

• ℎ&(&4<><":O(=) is a function that measures how closely the contents of the

documents in = are correlated. Let B= be the center of = , the within-cluster

homogeneity of = is determined by the average distance from all the documents to

the center, ℎ&(&4<><":O(=) = 1 − 9"3:(B9 , B=)9∈= |=|.

Figure 7.6 Algorithm of top-down process mining

Referring to Fig. 7.6, the second to the twelfth lines describe the procedure for hierarchy

construction. As shown in lines 2 to 3, the algorithm firstly transforms each document into

its topic distribution by using the DBN-based topic modelling approach presented in

Chapter 4. Based on the per-document topic representation, the algorithm starts constructing

Algorithm 7.1 Top-down Process Mining
Inputs: ! is the document collection, " is the maximum homogeneousness and #
indicates the maximum depth.
1: Procedure TOPDOWN_MINING(!, ", $)

 // Step 1: hierarchy construction
2: For each !% in ! do:
3: Topic modeling: !% = (ℎ%, . . . , ℎ')
4 Initialization: (: = {!},) : = {(!, ∅)}, + : = {∅}
5: While |(| > 0 do:
6: ,- ∶= -/-(() //Select and delete a document cluster from C
7: If ℎ/0/1232%45 ,- < " and 62-4ℎ ,- < # do:
8: (327 = '(8_,9:;42<%31(,-, !,-) //Cluster a module

9: For each ,; in (327 do:
10: 0327: = (,;, ∅),) : = 0327 ∪)
11: + : = (0327, 0,-) ∪ +
12: (: = (327 ∪ (

 // Step 2: sub-process mining
13: For each 0 = (,, ∅) in) do:
14: If ∄0- (0, 0-) ∈ + do:
15: 9,: = 2@234_6242,4%/3(,)
16: ;7: = 7/<AB9/7_6%;,/@2<5(9,)
17: 0: = (,, ;7)

�

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

the process hierarchy by initializing s:= 1 and Y:= (1,∅) , which is the whole

document set. Next, in each iteration shown in lines 5 to 8, one document cluster with the

least homogeneous content is selected from M and clustered into smaller ones, within

which more refined sub-process models can be discovered. For this purpose, the content

relevance between any two documents is estimated by the cosine similarity over their topic

distributions, as shown in Eq. (7.4). After each decomposition, a set of new clusters is

appended to M (shown in line 12), and a set of new hierarchical relations is

correspondingly created in F (shown in lines 10 to 11). The whole decomposition process

can be iterated until all the leaf modules in F are homogeneous enough. At this point, each

document cluster in the leaf node can be viewed as a functional module that contains desired

details about the same task or activity.

 3"(=&3(B", B,) = ℎ>B"ℎ>B,>=$>=1
(ℎ>B")2>=$>=1 (ℎ>B,)2>=$>=1

 (7.4)

Lines from 13 to17 describe the procedure for sub-process mining. For each leaf

module in F , a group of highly related design events are detected from the corresponding

document clusters using the event detection approach in Chapter 6. Based on these design

events, a sub-process model is then constructed to capture the underlying process behaviors

using the workflow discovery approach in Section 7.3.1.

To give a more straightforward impression, Figure 7.7 depicts a hierarchical model that

might be generated by Algorithm 7.1. The tree in Fig. 7.7 represents the hierarchy structure

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ��	�

organizing all the functional modules. Each leaf node corresponds to a sub-process mined

from a set of correlated documents, and each parent node represents a bigger document

cluster that projects the leaf nodes onto a higher abstraction level. The hierarchical model

in Fig. 7.7 can also be easily transformed to the formation defined in Section 7.2.

Figure 7.7 Hierarchical model of top-down process mining

7.5 Case Study

7.5.1 Dataset and Performance Measures

The process models discovered by both process mining approaches are illustrated and

compared using the email dataset from the TWP project. As the project participants used

emails as their major communication tool in this TWP project, the emails record the

footprints of the entire design process. Before process mining, all the events were detected

from the original email dataset. The detected events were then reordered and stored in a

XML file, which used tags and markups to organize arbitrary data structures, such as the

high-order relation among the attributes of an design event.

For validating the correctness of the discovered process models, one participant who

played a admin role in this TWP project was interviewed to check the alignment between

— A bigger document cluster

— A small document cluster
— A event log segment
— A workflow segment

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ��
�

the automated process models and his personal knowledge base. If the discovered process

models are consistent with the expert knowledge, they have a good reflection of the reality.

7.5.2 Results of Bottom-Up Process Mining

7.5.2.1 Examples of Process Model in Bottom Layer

Figure 7.8 depicts a segment of the flat model discovered in the bottom layer, which

attempts to give the most detailed description of the underlying process. 661 events were

detected in the bottom layer.

Figure 7.8 A segment of the process model in the bottom layer

Number of the events in the bottom layer: 661

Step 1: Making group

Steps 2-3: Writing a first version and submitting

Steps 4-5: Revising and submitting

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

According to Fig. 7.8, it is obvious that the flat model tries to capture every detail about

the 661 events. For example, the magnified segment in Fig. 7.8 shows the design activities

which aimed to write a concept paper when the project started out. As highlighted in Fig.

7.8, it can be clearly observed that the final concept paper was created after five main steps,

namely making group, writing the first version in groups, submitting, revising, and

submitting again. However, due to the enormous size of the events, such details do not allow

decision makers to quickly get a clear insight into the underlying process. In this case, the

discovered flat model becomes inefficient for use, even if it can be generated. Therefore, it

is important to abstract and simplify the whole process by hiding undesired details, so as to

improve the understandability of the discovered design process model.

7.5.2.2 Examples of Process Model in Abstraction Layer

Figure 7.9 (a) presents the process model of the TWP project in an abstraction layer,

which is obtained after 15 iterations of aggregation and abstraction. In Fig. 7.9 (a), there are

totally 48 composite tasks, which are integrated from several smaller sub-tasks or events.

Each composite task is highlighted by a filled folder. In other words, each folder in Fig. 7.9

can also be seen as a module that corresponds to a subnet in a lower layer. The name of the

composite tasks is automatically generated according to the frequency of words used to

describe the subordinate events.

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

Figure 7.9 Process model in the top layer: a) the overall process model, b) a magnified
segment, c) the event distribution over the composite tasks

To get a closer look at the abstracted process model, Fig. 7.9 (b) magnifies the upper

part of Fig. 7.9 (a). Referring to the highlighted part of Fig. 7.9 (b), it is noteworthy that all

the events shown in the segment of Fig. 7.8 are integrated to the same composite task, "email

concept paper". In other words, the single node highlighted by a rectangle in Fig. 7.9 (b)

represents a module including all the activities that were carried out to finish the concept

paper. In a "zoom out" model, Fig. 7.9 (b) also shows a very clear workflow of what had

been done at the beginning of this project. In detail, students firstly hypostatized their ideas

into a concept paper. Under the guidance of the concept paper, they carried out some

concrete activities, e.g., "set measurement space" and "do IA". Next, the project was

(a)

(b)

(c)

The events in the segment of Fig. 7.8
are integrated into one composite task.

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

interrupted by an extemporaneous but urgent task, named as "make project description".

Lastly, based on the works having been done, students wrote and submitted their thesis

proposal report in groups. These findings indicate that the abstracted process model in the

top layer is able to give a quite compact and brief reflection of the whole design process.

Figure 7.9 (c) plots the number of the events subordinated to the 48 composite tasks,

which compose the workflow in Fig. 7.9 (a). From the event distribution in Fig. 7.9 (a), it

is obvious that there are eight tasks which have relatively more event members than the

others, above 20 events. To obtain a more correct understanding of the underlying process,

it is necessary to look deeper into these composite tasks as these bigger tasks own the major

proportion of the minor events.

Figure 7.10 Example of decomposing the task of "writing concept paper"

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

Figure 7.11 Example of decomposing the task of "learning simulation software"

Regarding the above problem, Fig. 7.10 and Fig. 7.11 illustrate two examples of

decomposing the same composite task at different abstraction levels. The first example

shown in Fig. 7.10 is a composite task about writing concept paper. The second example

shown in Fig. 7.11 is about learning simulation software. Each composite task is represented

by a subnet of smaller tasks that are highly correlated in a lower layer. Each subnet itself

can be composed of both minor and composite tasks, and the composite tasks can be further

decomposed at another much lower level. This decomposition process can be executed

iteratively until arriving at the bottom layer. Each decomposition tries to describe the target

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

task in a more detailed manner. In this way, a hierarchical description of the interesting

composite tasks can be obtained, as shown in Fig. 7.10 and Fig. 7.11.

7.5.3 Results of Top-Down Process Mining

Figures 7.12 (a) and 7.13 (a) illustrate two segments of the hierarchical process model

that were discovered by the top-down process mining approach from the same dataset of

the TWP project after 40 decomposition iterations. For each iteration, one big document

cluster was selected and decomposed into two smaller ones. Therefore, the hierarchy tree in

Fig. 7.12 (a) and Fig. 7.13 (a) can be seen as a binary tree, in which the filled nodes

correspond to document clusters that are decomposed into several smaller ones, and the leaf

nodes denote sub-process models.

To give a more straightforward impression, Figures 7.12 (b) and 7.13 (b) illustrate two

examples of the sub-process models represented by the leaf nodes. From Fig. 7.12 (b), it

can be clearly observed that the three sub-processes are hierarchically connected, and all of

them are related to the same task of “FYP presentation”. Among the three sub-processes,

the first one shows a very clear workflow of scheduling and rescheduling presentation date,

the second one is about doing the presentation, and the third one relates to the procedure of

making assessment after the presentation. As shown in Fig. 13 (b), the second example is a

sub-process of writing a conference paper. Most of the events in this sub-process are highly

related to the task of “writing paper”, e.g., submit abstract, discuss and prepare the table of

content, draft and combine sections, as well as refine and submit the full paper.

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

Figure 7.12 First example of hierarchical process model by top-down mining

1. Schedule presentation date

2. Do presentation 3. Make assessment

(a) Hierarchical structure by Top-down mining

(b) Example of sub process models relating to “FYP presentation”

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

Figure 7.13 Second example of hierarchical process model by top-down mining

(a) Hierarchical structure by Top-down mining

(b) Example of sub process models relating to “Writing paper”

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

The above findings indicate that the top-down process mining approach can not only

discover the design process from the design documents, but also present the discovered

process model in a user-friendly manner

However, Fig. 7.13 (b) also shows that some events are irrelevant to the task of writing

paper but are included in this sub-process model. Figure 7.13 (b) highlights such irrelevant

events using colored rectangles. Among these highlighted events, some (e.g., look speed

advisory and request highway capacity manual) are related to data collection, while some

(e.g., borrow paramics tokens and work simulation results) are about traffic simulation. The

most essential reason for this confusing finding is that the top-down mining approach

assumes that the events from the same document were carried out with the same goal. As a

matter of fact, the most normal case is that people like to simultaneously discuss several

heterogeneous issues in a single email. That is to say, the top-down mining approach may

work poor when most documents mention events of different design tasks.

7.5.4 Discussions: Bottom-Up Vs. Top-Down

Two process mining approaches, bottom-up and top-down process mining, are

proposed in this chapter to discover a hierarchical process model from the design documents.

The two approaches work in two opposite directions with the former going from

specification to generation and the latter going from generation to specification. The

feedback from the interviewed participant indicated that: 1) As the hierarchical process

model described a complex process with multiple levels of abstraction and refinement, it

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ��	�

was significantly helpful in reducing model complexity and improving the understandability

of the discovered process model; 2) both approaches performed well in automatically

mining such a hierarchical process model from the design documents.

In addition, as discussed in Section 2.6, one major difficulty of mining design process

model is caused by the flexibility of product design processes. In the event logs of formal

business processes, process behaviors are recorded by individual instances and each

instance has a sequence of events. This characteristic of event logs enables the process

mining algorithms to quantitatively calculate the causal dependence of business tasks.

However, different from the events which are well organized in business event logs, design

events detected from design documents have no deterministic boundary to split them into

instance traces. In other words, all the design events are included in a single trace. Within

this single trace, there might be iterative design events, but they never repeat in the same

way. To overcome this problem, the two proposed process mining approaches adopt a

heuristic strategy, which takes advantage of local information such as per-document topic

distribution, time interval, and attribute overlap to create a hierarchical process model. The

experiment results show that the discovered process models have a good reflection of the

reality.

Besides the above positive findings, the discussion with the interviewed participant also

reflects some disadvantages of both process mining approaches. From the time cost

perspective, the top-down process mining approach is more agile than the bottom-up

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ��
�

approach. This difference is caused by the different ways in which the two approaches

identify process modules. In detail, the bottom-up approach identifies modules by merging

events with similar execution environment. Therefore, the time complexity is proportional

to the number of events. However, the top-down approach treats documents with

homogeneous contents as modules. Therefore, its time complexity is reduced to be

proportional to the number of the input documents. From the accuracy perspective, the

bottom-up approach outperforms the top-down approach. The reason is that the top-down

approach considers that events which are recorded in the same document must be located in

the same module. However, in most cases, people like to discuss and record issues relating

to multiple tasks in the same documents. In this situation, some modules discovered by the

top-down approach are mixed with irrelevant events, which may influence the further

analysis based on these modules, e.g., the time line and resource allocation of an impure

module.

For realistic applications, the strategy (bottom-up or top-down) should be selected

according to the specific application goals. For example, if an application is more about

document management and retrieval, the hierarchy structure constructed by the top-down

approach can help to organize all the relevant documents in a more systematic manner. If

an application is to identify the root causes of some problems, the hierarchical process

model discovered by the bottom-up approach allows designers to obtain more accurate

performance analysis.

CHAPTER 7 HIERARCHICAL�PROCESS MODEL DISCOVERY

� ����

7.6 Summary

To sum up, this chapter lays the attention on discovering process model based on the

discrete information extracted in Chapters 4 to 6. Two process mining approaches are

proposed. They are bottom-up mining and top-down mining. Both approaches aim to

discover a hierarchical process model that represents a process with different levels of

granularity and abstraction but use two opposite strategies. The bottom-up approach starts

at the most concrete level then iteratively abstracts the target process by merging highly

correlated events or sub-tasks. On the contrary, the top-down starts at the most abstract level

then iteratively decomposes the target process into modules via document clustering.

Results of the two approaches were discussed and compared using a real-life case study.

� �

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

CHAPTER 8 MULTI-FACETED PROCESS KNOWLEDGE

INTERPRETATION BY LINKING PROCESS

INFORMATION TO PROCESS MODEL: A CASE STUDY

8.1 Introduction

The last component of the PKDT system is to distill multi-faceted knowledge patterns

from the discovered process model. The discovered process knowledge reflects the

experience learned from the past design projects and could be used to support decision

making in current or future design projects.

As discussed in Chapter 2, most existing tools of reutilizing design knowledge have

been focusing on reusing the geometric knowledge embedded in CAD models or the

technology trend included in patents. The reutilization of such product knowledge is able to

reduce the time required to reproduce some well-known components. However, it can not

support the knowledge reutilization throughout the whole product design process. To

overcome this problem requires to explore an integrated knowledge reutilization approach

that include not only product knowledge, but also process knowledge such as task

dependencies, organizational structure, and resource allocation. For this purpose, there are

three important factors in the success of an integrated knowledge reutilization approach:

making multi-faceted design knowledge reusable, storing the reusable design knowledge in

a compactible manner, and providing the most relevant design knowledge in a user-friendly

way. Considering the three factors, this chapter proposes an integrated design knowledge

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

reutilization framework in Section 8.2. In the proposed framework, the discovered

hierarchical design process model serves as the central element of the design process

knowledge. By applying different computational approaches on the process model, other

types of design knowledge such product, organization, and temporal behaviors, can be

integrated to present a product design process from multiple perspectives.

As the process model has already reflected the workflow perspective of the underlying

design process, this chapter aims to enrich the discovered process model from other two

perspectives: personnel perspective that focuses on the people involved and temporal

perspective that focuses on the temporal behaviors of both the executed design tasks and

the involved people. Section 8.3 introduces the organization mining from the personnel

perspective, and Section 8.4 presents the statistical approaches for the temporal behavior

analysis. The dataset of the TWP project described in Section 3.3 and the process model

obtained by the bottom-up process mining are used to illustrate the discovered knowledge

patterns. Furthermore, one participant, who played a admin role in this project, was

interviewed to assess the accuracy of the discovered knowledge patterns.

8.2 An Integrated Design Knowledge Reutilization Framework

Figure 8.1 shows the proposed design knowledge reutilization framework. The design

process model in the bottom layer of Fig. 8.1 severs as the center element to connect design

knowledge from different perspectives. In detail, the design process model itself can be seen

as a combination ontology, which provides links to design tasks, product components,

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

people, and resources. Therefore, by applying computational analysis approaches on the

interaction within the design process model, three categories of design knowledge can be

refined: product knowledge, process knowledge, and organization knowledge.

Figure 8.1 An integrated design knowledge reutilization framework

The first type of design knowledge, product knowledge (e.g., product structure and

functional requirements), interacts with the process model via task objectives, e.g., creating

some components. Product knowledge can be enriched by extracting product information

from other files like CAD models and technical reports. The second type of knowledge,

process knowledge such as task dependencies, task durations, and task waiting times, allows

tracing task executions from the viewpoint of logical workflow. In addition, the design

process model itself can be seen as a type of process knowledge. Lastly, organization

knowledge, including organizational structure, cooperation patterns, and functional roles,

Hierarchical Design Process Model

Product
Knowledge

e.g.,
Components

Organization
Knowledge

e.g., Role, Social
Network

Process
Knowledge
e.g., Logic,

Timeline

Model-based Performance Analysis

User Interface

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

allows investigating the behavior of the designers through the design tasks they have been

involved in.

Based on the three types of design knowledge, the user interface for knowledge

reutilization enables decision makers to retrieve desired information for decision making.

For example, a manager can check the performance of a specific person in the existing

projects before he decides to assign this person to a new design task. In another situation,

designers can predict the duration of a new design task, according to the durations of similar

tasks in the existing projects. In addition, for the purpose of facilitating the knowledge

reutilization procedure, it requires the user interface to visualize the desired design

information in a user-readable, understandable manner.

Based on the data available in the TWP project, Section 8.3 and Section 8.4 illustrate

two perspectives of the knowledge reutilization framework: organization mining and

temporal process behavior analysis.

8.3 Organization Mining

This section puts emphasis on organization mining, which focuses on the involved

people and their interactions embedded in the design process model. In general, organization

mining can be divided into three categories: social network analysis, role mining, and

human resource allocation. They either analyze the interaction patterns among activity

performers or classify the performers in terms of roles and cooperation cliques. In the

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

remaining parts of this section, the three perspectives of the organization mining will be

studied and illustrated on the basis of the TWP project respectively.

8.3.1 Social Network Analysis

Social network analysis aims to find the relationship between activity performers and

to infer the organizational structure based on their interactions within design tasks. In most

cases, the interaction between two performers are measured using metrics such as joint

activities, handover, and special event types [145]. Based on the interaction among

performers, clustering analysis and graph partition in data mining are mostly used to

discover organizational structure models [146, 147], in which people with similar skills and

roles are clustered together.

On the basis of the hierarchical process model discovered by the bottom-up process

mining, Figure 8.2 depicts the social network cliques of the TWP project by grouping all

the participants according to their joint events. As shown in Fig. 8.2, more than 200 people

were involved in this project, including the core members of this project and the external

people from some third companies. Figure 8.2 (a) presents the interactions among all the

participants. Figure 8.2 (b) is simplified from Fig. 8.2 (a) by hiding participants of a

frequency less than 3.44. Furthermore, in Fig. 8.2, participants clustered into the same

cliques are marked in the same color except the red nodes, which indicate participants who

fail to join in any clique. The solid lines in Fig. 8.2 connect participants within the same

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

cliques, while the dash lines indicate the interactions across cliques. In addition, the

thickness of the lines reflects the interaction strength of the connected participants.

Figure 8.2 Social network cliques based on cooperation

(a)

(b)

C1

C2
C3

C1C2

C3

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

Referring to Fig. 8.2, three major cooperation cliques, labeled as C1, C2, and C3, are

detected. Among the three cliques, C1 is the biggest, while C3 is the smallest. However,

after removing less-frequent participants as shown in Fig. 8.2 (b), the size of both C1 and

C2 are dramatically reduced, and only C3 remains unchanged in size. The interviewed

participant explained this phenomenon that C3 reflected the true organization of the TWP

project, while C1 and C2 were participants from two related sub-projects, which were under

a same bigger project with the TWP project. Therefore, the core participants in C3 have

higher frequency than the participants in C1 and C2. The feedback also revealed that the

findings on cooperation patterns had a good alignment with the true situations.

8.3.2 Role Mining

Role mining aims to identify roles, rights, responsibilities, or skills of process

participants via analyzing their interaction patterns [148]. Good insights into the roles and

responsibilities of the project participants have a great help in supporting decision making

about human resources, thus enable the whole workforce to work together to produce a

qualified product.

In role engineering, there are two categories of roles: functional roles and organizational

roles [149]. Process participants who execute similar activities tend to have similar skills,

thus might be classified into similar functional roles. Social network analysis is often used

to identify the functional roles for process performers. From this point of view, the three

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ��	�

cooperation cliques detected in Fig. 8.2 can also be seen as three types of functional roles,

and people within each clique have the same functional role.

Organizational role is to identify participants of different permissions, responsibilities,

and rights. Each participant has exactly one organizational role with a certain degree of

permissions and rights. In this case study of the TWP project, we consider three levels of

organizational roles:

• Managers - organize and direct the entire organization. They work closely with both

the internal participants who might have different functional roles and the external

customers.

• Leaders - work with managers to ensure that operators apply decisions and

operations correctly. This requires them to have strong interactions to both managers

and operators.

• Operators - have individual responsibility for low-level operations when creating

products.

According to the above definitions, managers tend to have more frequent interactions

with external customers and leaders from different groups or departments when compared

to leaders and operators. Let !"#($) be the participants who are directly connected to a

people in the social network graph, %&&$($) be the set of participants who have the same

functional role with $, '($, $′) be the interaction strength of any two participants,

function)*_!+,() calculate the number of unique functional roles in a set of participants,

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ��
�

and - include all the involved participants in the social network graph. The possibility that

a participant is a manager is estimated as:

 ._,/!/0"*($) =)*_!+,(!"#($) − %&&$($)))*_!+,(-) ∗ '($, $′)$′∈!"#($)−%&&$($) (8.1)

where, the sum over the external interactions is scaled by the diversity of the interacted

functional roles. In other words, participants who frequently interact with more types of

functional roles tend to be managers.

In contrast, leaders usually present the strongest internal interaction and the strongest

external interaction among a small group of participants, e.g., departments and teams. Let

the detected cooperation cliques in Fig. 8.2 be such functional groups, a leader $5 is

selected for each group 6 by finding the participant who has the highest degree

._5"/7"*($) in the social network graph:

 ._5"/7"*($) = '($, $′)$′∈!"#($)∩%&&$($) (8.2)

 $5(6) = max$∈6 ._5"/7"*($) (8.3)

The results of role mining are shown in Fig. 8.3, where the identified managers and

leaders are highlighted by bigger nodes. According to Fig. 8.3, four participants, i.e., P1,

P18, P19 and P34, are identified as managers, and three participants, i.e., P23, P21, and P0

are identified as the leaders of C1, C2, and C3 respectively. In Fig. 8.3, it can be clearly

observed that the four participants play a critical role in connecting all the three cooperation

cliques together. This finding is consistent with the feedback from the interviewed

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

participant. The participant explained that 1) P1, P18, P19, and P34 were four professors

who had supervised different sub-projects in reality, 2) P1 was the supervisor of the TWP

project, and 3) P0 was the student leader of this TWP project.

Figure 8.3 Results of role mining

8.3.3 Human Resource Allocation

Human resource allocation aims to allocate the most appropriate people to execute

different design activities. An effective human resource allocation can significantly improve

productivity, maximize resource utilization, and reduce execution costs. A simple human

resource allocation strategy is assigning a people to an activity whose requirements are

consistent with the capability of the people [150]. However, this strategy does not consider

the behavior and performance of the people in the past. To overcome this problem, one

alternative strategy is finding design tasks which are similar to the new task from the past

Managers

Leaders

Operators

C1

C2

C3

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

design projects, and allocating human resources to the new task according to the resource

behaviors in these historical design tasks.

Figure 8.4 Examples of human resource utilization

(b) Example 2: Human resource utilization of
“Learning Simulation Software”

(a) Example 1: Human resource utilization of
“Writing Concept Paper”

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

On the basis of the hierarchical process model obtained by the bottom-up process

mining, Figure 8.4 depicts the human resource allocation and utilization of two composite

tasks in the top abstraction layer. The contribution of a people to a composite task is

estimated by the frequency that this people was involved in the events under this task. The

pie charts in Fig. 8.4 show that participants P146 and P0 played the most crucial role in

"writing concept paper" and "learning simulation software" respectively. Therefore, based

on the concept of history-based human resource allocation, P146 could be the most probable

candidate for executing a new task that is similar to "writing concept paper". Similarly, P0

might be the most suitable people to execute a new task that is similar to "learning

simulation software".

8.4 Temporal Process Behavior Analysis

The temporal process behavior analysis aims to discover the temporal behaviors of both

the executed design tasks and the involved people. The temporal behaviors include the

duration, waiting time and severing time of the design tasks, as well as the temporal and

overall frequencies of the task performers. Such information is helpful to answer questions

like: “are there any irregular task executions or bottlenecks in the actual process?”, “who

were always active throughout the entire design process?”, and “who only participated in

some specific design events?”. The Gantt chart is used as the major tool to analyze the

temporal behaviors based on the hierarchical process model discovered from the TWP

project.

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

8.4.1 Temporal Behavior of Design Tasks

Figure 8.5 compares the 48 composite tasks in the top abstraction layer of the TWP

process model using Gantt chart. The vertical axis of Fig. 8.5 (a) lists the 48 composite tasks

in the hierarchical process model shown in Fig. 7.9, and each line corresponds to a

composite task. The horizontal axis of the Gantt chart corresponds to the time dimension

and rearranges the events under the same composite task in a chronological sequence.

Therefore, each rectangle in a line refers to a continuous serving time of the corresponding

task, spaces between pairs of rectangles represent waiting times, and a task starts at the first

rectangle and ends at the last rectangle in the corresponding line.

The Gantt chart in Fig. 8.5 (a) visualizes the temporal status of the task executions in a

very straightforward way. For example, it can be easily observed that the first task lasted

about four months from Mar. 2011 to Jun. 2011, while the second task which was executed

parallelly with Task 1 only lasted a few days.

Figure 8.5 (c) compares the relative durations of the 48 tasks by projecting the absolute

task durations in Fig. 8.5 (a) onto the vertical axis. According to Fig. 8.5, design tasks that

spent a long time or were interrupted frequently could be potential bottlenecks or irregular

executions, which should be highlighted for deeper investigation. For example, the bar chart

in Fig. 8.5 (c) shows that Task 11 had the longest duration and had been interrupted

frequently during its execution. Therefore, the documents related to Task 11 should be

further analyzed to find the root causes.

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

Figure 8.5 Temporal behavior of design tasks

(b) Temporal Event Density

(a) Task Gantt Chart By Month (c) Task Duration\Project Duration

Duration

Waiting Time Serving Time

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

By projecting the number of events that were executed in a short period onto the

horizontal axis, Fig. 8.5 (b) plots the variation of the temporal event throughput. Time

periods with a low event throughput might include potential bottlenecks that hinder the

entire process. Under this assumption, the data in Fig. 8.5 (b) also reveals that Task 11

might be the cause that delayed the entire project as the numbers of executed events

from Sep. 2011 to Dec. 2011 are relatively small, less than five.

8.4.2 Temporal Behavior of Human Resources

In the same way, the Gantt chart can also be used to analyze the human resource

behavior, if replacing the tasks along the vertical axis of Fig. 8.5 (a) with the involved

people. Figure 8.6 (a) depicts such a Gantt chart for temporal human resource behavior

analysis. In Fig. 8.6 (a), each line corresponds to a people. The dots in each line indicate

that the corresponding people was involved in an event at a certain time point. Similar

to Fig. 8.5 (c), Fig. 8.6 (b) compares the relative contributions of all the involved

participants to the entire project by projecting their overall frequency onto the vertical

axis.

From the dot distribution on each line of Fig. 8.6, it can be observed that P0, P1, P7,

P8, P9, P10, and P12 participated in almost all the events throughout the lifetime of this

TWP project. Therefore, they could be recognized as the core participants of this project.

This finding is consistent with the results obtained from the social network graph in Fig.

8.2. The dot distribution also shows that some participants only appeared at the

beginning of this project, for example, P4 and P5, while some participants jointed in this

project very late, for example, P235-P280.

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

Figure 8.6 Temporal behavior of participants

(a) Resource Gantt Chart (b) People-Event # / Event #

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ����

8.5 Discussions

All the results obtained from the email dataset of the TWP project were assessed by one

core member of this project. The feedback confirmed that the discovered process model and

the knowledge patterns refined from it indeed represented the innate character of their

processes. For the organization mining, the interviewed participant was somehow surprised

that more than 200 people were involved throughout the project as there were only eight

core members at the beginning. When given the social network graphs constructed from the

discovered process model, the interviewed participant could name the different cliques, and

recognize the clique consisted of the core members. The four people who were recognized

as managers in the social network graph were also verified that they indeed had supervised

this project. It is also interesting to point out that three of the four managers, i.e., P1, P18

and P34, failed to join any cliques in Fig. 8.3. This is because admins can have strong

interactions with clique leaders, but less interactions with regular participants, whom have

formed the major part of a project team. For the temporal behavior analysis, the interviewed

participant stated that Task 11 shown in Fig. 8.5 indeed slowed down the whole project for

several months. It was stated that Task 11 was about validating the developed traffic control

system, and they spent several months to find the appropriate simulation software. Taken

together, the expert feedback gave very positive comments to both the discovered process

model and the information distilled from it.

CHAPTER 8 MULTI-FACETED�PROCESS KNOWLEDGE INTERPRETATION BY LINKING PROCESS
INFORMATION TO PROCESS MODEL: A CASE STUDY

� ��	�

8.6 Summary

Based on the hierarchical process model discovered in Chapter 7, this chapter shifts the

attention to analyzing process performance from other perspectives for design knowledge

interpretation and reutilization. An integrated design knowledge reutilization framework

was proposed. Two significant perspectives of the proposed knowledge reutilization

framework were illustrated through the case study of the TWP project. They are

organization mining and temporal process behavior analysis. In the organization mining,

the interaction patterns of the project participants were analyzed for cooperation clique

discovery, role discovery, and human resource allocation. From the temporal perspective,

both the task behaviors and the human resource behaviors were analyzed using Gantt charts.

The results aligned well with the expert feedback.

� �

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ��
�

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS��

9.1 Conclusions

The objective of this thesis is to develop a knowledge discovery system for extracting

design process knowledge from design documents. The developed knowledge discovery

system could be used as a tool to provide decision makers with right information in time,

support decision makers in efficiently learning valuable experience from historical design

projects, and help decision makers to reuse the learned experience in current or future design

projects. Considering the characteristics of both the product design process and the design

documents, approaches of extracting process information from textual data, detecting

design events from the extracted process information, mining design process models from

the detected events, as well as discovering multi-faceted design knowledge from the

discovered process model have been developed and presented. The experimental results

based on the TWP project indicate that:

1) The design documents collected from past design projects contain enough

information to extract the design process model.

2) It is feasible to extract the design process model from the archival design documents

using proper text mining and process mining techniques, although the current

approaches have some limitations.

3) The knowledge distilled from the discovered process model include not only known

knowledge but also unknown knowledge. Therefore, the discovered knowledge

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

could be used to assist decision makers by enhancing and extending their personal

knowledge bases.

4) Based on the process model and the process knowledge discovered, it becomes

possible to manage and compare design knowledge from several design projects in

a structured, quantitative manner.

9.2 Contributions

As presented in Chapter 3, the developed process knowledge discovery system has

three core components: process information extraction, process mining, and process

knowledge interpretation. Based on the three core components, the major contributions of

this work are summarized as follows.

In Chapter 4 and Chapter 5, two information extraction approaches have been proposed

to extract unstructured process information from design documents.

• A DBN based topic modeling approach has been presented to extract topics that are

relevant to design task executions from the design documents. With the task-relevant

topics, the interaction patterns of the design tasks can be estimated from the co-

occurrence frequency of the corresponding topics, and the dynamic changes of the

process status can be reflected by the changes of the corresponding topics. In

addition, the presented topic modeling approach is totally unsupervised. Therefore,

there is no requirement for manual annotation.

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

• A hybrid NER approach has been proposed to identify special writing terms or

phrases that refer to physical objects, which have been involved in the underlying

design process. The proposed NER approach takes advantage of both the ruled-

based and the machine learning-based NER techniques. Therefore, it reduces the

human intervention required by most of the traditional approaches to a minimum. In

addition, to improve the accuracy of recognizing the process-relevant entities, a

local dependency tree has been designed to capture the linguistic features of the

entities in terms of tree structure.

Based on the extracted process information, Chapter 6 and Chapter 7 focus on

constructing process model via design event detection and process mining.

• A higher-order ERE approach has been proposed to detect design events from design

documents by extracting the higher-order relations among the process-relevant

entities. The main idea is decomposing the higher-order relations in an event into

several binary relations, and then reconstructing the event by finding the maximum

cliques centered at each task entity. While most the traditional higher-order ERE

approaches heavily rely on the binary classifier, the graph partition based ERE

approach proposed in this work is much simpler by using graph density to eliminate

both noisy entities and noisy events.

• A bottom-up process mining approach has been developed to discover a hierarchical

process model on the basis of the detected design events. To deal with the flexibility

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

of product design processes, design events with similar execution context are

iteratively merged into bigger design tasks. This aggregation operation would result

in several abstracted process models, which is much simpler and easier for

understanding when compared to the flat models produced by most of the existing

process mining approaches. In addition, the experimental results indicate that this

bottom-up process mining approach outperforms the top-down approach in terms of

accuracy.

• A top-down process mining approach has been developed to discover a hierarchical

process model from generation to specification on the basis of the extracted topics

and the detected design events. This approach treats the entire process as a big black

box, which can be recursively decomposed into several modules based on the

document content determined by the per-document topic distribution. This approach

outperforms the bottom-up process mining in terms of time cost.

Based on the discovered process model, Chapter 8 aims to discover design knowledge

from other perspectives and to reuse the discovered design knowledge for decision making.

• An integrated design knowledge reutilization framework has been proposed. To

overcome the problem that most of the existing design knowledge reutilization

systems are not compatible with the whole design process, the proposed framework

treats the discovered process model as the central element of the design knowledge

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

and links other types of design knowledge such as product and organization to the

process model.

• The personnel perspective of the proposed knowledge reutilization framework has

been illustrated using a real-life case study. A series of organization mining

approaches were introduced to analyze the cooperation patterns of the project

participants, the participant roles, and the human resource allocation.

• The temporal perspective of the proposed knowledge reutilization framework has

also been illustrated using the same real-life case study. The Gantt chart was used to

analyze the temporal behaviors of both the design tasks and the project participants.

In addition, it is noteworthy that the above approaches are not restricted to the discovery

of product design processes. Other types of processes that involve discovering tasks and

workflows from textual data can also be suited to use the above approaches.

9.3 Limitations

The experiment results also revealed several limitations of the developed process-

oriented knowledge discovery system.

From the data perspective, this research used an email dataset collected from a real-life

design project to discover the underlying design process. Although the experiment results

indicated that the proposed approaches were able to discover the underlying design process

and the discovered process model indeed had a good reflection of the reality, the expert

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

feedback also revealed that the details of some tasks were missed in the discovered process

model. This is because the emails are just one type of the design documents that have been

accumulated during design processes, and there are many other types of documents such as

progress reports, minutes, technique reports, and CAD files. These documents might record

information that are not included in the emails. Therefore, to improve the quality of the

discovered process model, more types of design documents should be taken into account.

From the process model perspective, one weakness is that the focus of the current

process-oriented knowledge discovery system is more on discovering design process,

without connecting the designed product to the discovered process model. As a result, the

discovered process model lacks an ability of providing detailed information about the

created product. It is noteworthy that among the archival design documents, there is a large

proportion of documents which embed detailed information of product itself, such as

geometrical structures and component graphics. Extracting and integrating such product

information into the procedure of design process mining would be helpful to generate more

powerful process models that connect product and design processes together.

From the technical perspective, the NER approach proposed in Chapter 5 only

considered seven types of named entities. In reality, design processes are usually more

complex than the TWP project used in the case study, and much more types of named

entities are involved. Although the proposed NER approach can be easily expanded for

recognizing more types of named entities, it needs to be tested on more complex product

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

design projects. In addition, the two process mining approaches proposed in Chapter 7 have

eliminated the loops in the outputted hierarchical process model for the sake of brevity.

However, in most cases, loops caused by uncertainties are a key feature of product design

processes. Therefore, the discovered process model would not reflect the actual design

processes well if they have many loops.

Lastly, from the validation perspective, all the approaches integrated in the developed

knowledge discovery system were tested on a single case study. As mentioned in Section

3.3, the selected case study is a university-hosted design project, which has the common

characteristics of a typical design process. Therefore, it can be used to test the feasibility of

the developed knowledge discovery systems. However, the generality needs to be further

tested on design documents collected form different design projects.

9.4 Recommendations for Future Work

This research work has proved the feasibility of discovering process model and process-

oriented knowledge from design documents using the proposed approaches. This feasibility

and the limitations discussed in Section 9.3 also open multiple possibilities for future

extensions, which may lead to develop more efficient, comprehensive, and reliable design

knowledge discovery systems. Some of these possibilities are listed below:

• Use a variety of data – The experiment dataset used in this research work are emails

collected from a real-life design project. It would be interesting to explore how the

proposed approaches perform on other types of textual data, or how the information

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

recorded in other types of design documents can be extracted and utilized to enrich

the process model.

• Test the generality on more design projects – Based on the TWP project described

in Section 3.4, this research work has proved the feasibility of discovering process

model and process-oriented knowledge from archival design documents. However,

the generality of the proposed approaches need to be further validated on more

design projects in the future.

• Identify loops – In product design, loops caused by all kinds of uncertainties are a

key feature of product design processes. To capture this characteristic of the product

design process, the knowledge discovery system presented in thesis will be

improved with the ability of identifying loops in the underlying design process.

• Connect product to process – The discovered process model can also be improved

by connecting the created product to the design process creating it. In practice, there

is a large proportion of design documents which embed detailed information of

product itself; such as geometrical structures and component graphics. Extracting

and integrating such product information into the procedure of design process

mining would be helpful to generate more powerful process models that connect

product and design processes together.

• Integrate prior knowledge with the proposed approaches for process optimization –

Based on the process-oriented knowledge discovered, the current system can also be

CHAPTER 9 CONCLUSIONS�AND RECOMMENDATIONS�

� ����

extended to support decision making about design process optimization. For

example, the process model can be used to quantitatively setup the optimization

parameters (e.g., task dependencies, execution durations, and personnel skills) of

optimization functions, which are built by prior knowledge and aim to reduce the

time-to-market, or to optimize resource allocation.

• Develop ontology-based knowledge management and retrieval systems – The

proposed process mining approaches also introduce the possibility of managing and

retrieving past design documents in a structured, graphic manner. For example, by

representing a design project as the process model uncovered from its archival

documents, past design projects can be compared according to the structure

similarity of their process models. This is a critical step to search for and reutilize

interesting information from large quantities of past design projects.

REFERENCES

� ��	�

REFERENCES

[1] ElMaraghy, H., et al., 2009, "Managing Variations in Products, Processes and Manufacturing

Systems," CIRP Annals-manufacturing technology, 58(1), pp. 441-446.

[2] Karl T. Ulrich, S. D. E., 2012, Product Design and Development. 5th ed ed. New York, NY:

McGraw-Hill/Irwin.

[3] Braha, D., 2013, Data Mining for Design and Manufacturing: Methods and Applications.

Vol. 3: Springer Science & Business Media.

[4] Fayyad, U. M., et al., 1996, Advances in Knowledge Discovery and Data Mining. Vol. 21:

AAAI press Menlo Park.

[5] Liew, A., 2007, "Understanding Data, Information, Knowledge and Their Inter-

Relationships," Journal of Knowledge Management Practice, 8(2), pp. 1-16.

[6] ElMaraghy, W., 2009, "Knowledge Management in Collaborative Engineering,"

International Journal of Collaborative Engineering, 1(1-2), pp. 114-124.

[7] Van der Aalst, W., et al., 2004, "Workflow Mining: Discovering Process Models from Event

Logs," IEEE Transactions on Knowledge and Data Engineering, 16(9), pp. 1128-1142.

[8] Noh, H., et al., 2015, "Keyword Selection and Processing Strategy for Applying Text Mining

to Patent Analysis," Expert Systems with Applications, 42(9), pp. 4348-4360.

[9] Yoon, B., and Y. Park, 2004, "A Text-Mining-Based Patent Network: Analytical Tool for

High-Technology Trend," The Journal of High Technology Management Research, 15(1),

pp. 37 - 50.

REFERENCES

� ��
�

[10] Wang, J., et al., 2015, "A Two-Level Parser for Patent Claim Parsing," Advanced

Engineering Informatics, 29(3), pp. 431-439.

[11] Yu, W. D., and J. Y. Hsu, 2013, "Content-Based Text Mining Technique for Retrieval of

Cad Documents," Automation in Construction, 31, pp. 65-74.

[12] Bai, J., et al., 2010, "Design Reuse Oriented Partial Retrieval of Cad Models," Computer-

Aided Design, 42(12), pp. 1069-1084 %@ 0010-4485.

[13] Bosche, F., and C. Haas, 2008, "Automated Retrieval of 3d Cad Model Objects in

Construction Range Images," Automation in Construction, 17(4), pp. 499-512.

[14] Park, Y., and S. Lee, 2011, "How to Design and Utilize Online Customer Center to Support

New Product Concept Generation," Expert Systems with Applications, 38, pp. 10638-10647.

[15] Jin, J., et al., 2015, "Translating Online Customer Opinions into Engineering Characteristics

in Qfd: A Probabilistic Language Analysis Approach," Engineering Applications of

Artificial Intelligence, 41, pp. 115-127.

[16] Rozinat, a., and W. M. P. van der Aalst, 2008, "Conformance Checking of Processes Based

on Monitoring Real Behavior," Information Systems, 33, pp. 64-95.

[17] van der Aalst, W., et al., 2012, "Replaying History on Process Models for Conformance

Checking and Performance Analysis," Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2(2), pp. 182-192.

[18] da Cruz, J. I. B., and D. D. Ruiz, 2011, "Conformance Analysis on Software Development:

An Experience with Process Mining," International Journal of Business Process Integration

and Management, 5(2), pp. 109-120.

REFERENCES

� ����

[19] Rozinat, A., and Wil MP van der Aalst, 2005, "Conformance Testing: Measuring the Fit

and Appropriateness of Event Logs and Process Models," In International Conference on

Business Process Management, Nancy, France, pp. 163-176.

[20] Mans, R. S., et al., 2008, "Application of Process Mining in Healthcare–a Case Study in a

Dutch Hospital," Biomedical Engineering Systems and Technologies, 25, pp. 425-438.

[21] Rozinat, A., et al., 2009, "Workflow Simulation for Operational Decision Support," Data

& Knowledge Engineering, 68(9), pp. 834 - 850.

[22] Liu, Y., et al., 2012, "Workflow Simulation for Operational Decision Support Using Event

Graph through Process Mining," Decision Support Systems, 52(3), pp. 685-697.

[23] Ur-Rahman, N., and J. a. Harding, 2012, "Textual Data Mining for Industrial Knowledge

Management and Text Classification: A Business Oriented Approach," Expert Systems with

Applications, 39(5), pp. 4729-4739.

[24] Browning, T. R., et al., 2006, "Key Concepts in Modeling Product Development Processes,"

Systems Engineering, 9(2), pp. 104-128.

[25] Sullivan, D., 2001, Document Warehousing and Text Mining: Techniques for Improving

Business Operations, Marketing, and Sales: John Wiley & Sons, Inc.

[26] Tan, A.-H., 1999, "Text Mining: The State of the Art and the Challenges," In Proceedings

of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases, pp.

65-70.

[27] Bouckaert, R. R., 2002, "Low Level Information Extraction: A Bayesian Network Based

Approach," In Proc of the 12 th Int. Conference on Machine Learning, pp. 194-202.

REFERENCES

� ����

[28] Li, Y., et al. 2005. "Svm Based Learning System for Information Extraction." In

Deterministic and Statistical Methods in Machine Learning, 185-1192. Springer.

[29] Sarawagi, S., and W. W. Cohen, 2004, "Semi-Markov Conditional Random Fields for

Information Extraction," Advances in neural information processing systems, pp. 1185-

1192.

[30] Petrović, J., et al., 2012, "Optimization of Matrix Tablets Controlled Drug Release Using

Elman Dynamic Neural Networks and Decision Trees," International Journal of

Pharmaceutics, 428(1), pp. 57-67.

[31] Choy, K. L., et al., 2005, "A Knowledge-Based Supplier Intelligence Retrieval System for

Outsource Manufacturing," Knowledge-based systems, 18(1), pp. 1-17 %@ 0950-7051.

[32] Venugopal, V., and T. T. Narendran, 1992, "Neural Network Model for Design Retrieval

in Manufacturing Systems," Computers in industry, 20(1), pp. 11-23 %@ 0166-3615.

[33] Trappey, A. J. C., et al., 2009, "A Fuzzy Ontological Knowledge Document Clustering

Methodology," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

39(3), pp. 806-814.

[34] Murphy, J., et al., 2014, "Function Based Design-by-Analogy: A Functional Vector

Approach to Analogical Search," Journal of Mechanical Design, Transactions of the ASME,

136(10), pp. 101-102.

[35] Xue, D., and Z. Dong, 1997, "Coding and Clustering of Design and Manufacturing Features

for Concurrent Design," Computers in Industry, 34(1), pp. 139-153 %@ 0166-3615.

REFERENCES

� ����

[36] Kim, Y. G., et al., 2008, "Visualization of Patent Analysis for Emerging Technology,"

Expert Systems with Applications, 34(3), pp. 1804-1812 %@ 0957-4174.

[37] Trappey, C. V., et al., 2011, "Using Patent Data for Technology Forecasting: China Rfid

Patent Analysis," Advanced Engineering Informatics, 25(1), pp. 53-64 %@ 1474-0346.

[38] Trappey, C. V., et al., 2010, "Clustering Patents Using Non-Exhaustive Overlaps," Journal

of Systems Science and Systems Engineering, 19(2), pp. 162-181 %@ 1004-3756.

[39] Liang, Y., et al., 2012, "Learning the “Whys”: Discovering Design Rationale Using Text

Mining—an Algorithm Perspective," Computer-Aided Design, 44(10), pp. 916-930.

[40] Lan, L., et al., 2015, "Automatic Discovery of Design Task Structure Using Deep Belief

Nets," In ASME 2015 International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, Boston, Massachusetts, USA.

[41] Lam, P., and M. Rinard, 2003, "A Type System and Analysis for the Automatic Extraction

and Enforcement of Design Information," In European Conference on Object-Oriented

Programming, pp. 275-302.

[42] Li, Z., and K. Ramani, 2007, "Ontology-Based Design Information Extraction and

Retrieval," AI EDAM: Artificial Intelligence for Engineering Design, Analysis, and

Manufacturing, 21(02), pp. 137-154 %@ 1469-1760.

[43] Jin, G., et al., 2015, "Technology-Driven Roadmaps for Identifying New Product/Market

Opportunities: Use of Text Mining and Quality Function Deployment," Advanced

Engineering Informatics, 29(1), pp. 126-138.

REFERENCES

� ����

[44] Rajpathak, D. G., 2013, "An Ontology Based Text Mining System for Knowledge

Discovery from the Diagnosis Data in the Automotive Domain," Computers in Industry,

64(5), pp. 565-580.

[45] Efthymiou, K., et al., 2015, "On Knowledge Reuse for Manufacturing Systems Design and

Planning: A Semantic Technology Approach," CIRP Journal of Manufacturing Science and

Technology, 8, pp. 1-11.

[46] Blei, D. C., Lawrence; Dunson, David, "Probabilistic Topic Models," IEEE Signal

Processing Magazine, 27(6), pp. 55-65.

[47] Griffiths, T. 2002. "Gibbs Sampling in the Generative Model of Latent Dirichlet

Allocation." http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.3760.

[48] Blei, D. M., and J. D. Lafferty, 2006, "Dynamic Topic Models," In Proceedings of the 23rd

international conference on Machine learning, pp. 113-120.

[49] Weinshall, D., et al., 2013, "Lda Topic Model with Soft Assignment of Descriptors to

Words," In 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA,

United states, pp. 1748-1756.

[50] Yanning, Z., and W. Wei, 2014, "A Jointly Distributed Semi-Supervised Topic Model,"

Neurocomputing, 134, pp. 38-45.

[51] Gehler, P. V., et al., 2006, "The Rate Adapting Poisson Model for Information Retrieval

and Object Recognition," In ICML 2006: 23rd International Conference on Machine

Learning, Pittsburgh, PA, United states, pp. 337-344.

REFERENCES

� ����

[52] Hinton, G. E., and R. Salakhutdinov, 2009, "Replicated Softmax: An Undirected Topic

Model," In 23rd Annual Conference on Neural Information Processing Systems, NIPS 2009,

Vancouver, BC, Canada, pp. 1607-1614.

[53] Bengio, Y., 2009, "Learning Deep Architectures for Ai," Foundations and trends in

Machine Learning, 2(1), pp. 1-27.

[54] Abdelbary, H. A., et al., 2014, "Utilizing Deep Learning for Content-Based Community

Detection," In 2014 Science and Information Conference, SAI 2014, London, United

kingdom, pp. 777-784.

[55] Ko, K. E., and K. B. Sim, 2010, "Development of a Facial Emotion Recognition Method

Based on Combining Aam with Dbn," In Proceedings - 2010 International Conference on

Cyberworlds, CW 2010, pp. 87-91.

[56] Ravyse, I., et al., 2006, "Dbn Based Models for Audio-Visual Speech Analysis and

Recognition," In Advances in Multimedia Information Processing - Pcm 2006, Proceedings,

pp. 19-30.

[57] Marrero, M., et al., 2013, "Named Entity Recognition: Fallacies, Challenges and

Opportunities," Computer Standards & Interfaces, 35(5), pp. 482-489.

[58] Saggion, H., et al. 2007. "Ontology-Based Information Extraction for Business

Intelligence." In The Semantic Web, 843-856. Springer Berlin Heidelberg.

[59] Alani, H., et al., 2003, "Automatic Ontology-Based Knowledge Extraction from Web

Documents," IEEE Intelligent Systems, 18(1), pp. 14-21 %@ 1541-1672.

REFERENCES

� ����

[60] Cimiano, P., and J. Völker, 2005, "Towards Large-Scale, Open-Domain and Ontology-

Based Named Entity Classification," In Proceedings of the International Conference on

Recent Advances in Natural Language Processing (RANLP), pp. 66-166.

[61] Rizzo, G., and R. Troncy, 2012, "Nerd: A Framework for Unifying Named Entity

Recognition and Disambiguation Extraction Tools," In Proceedings of the Demonstrations

at the 13th Conference of the European Chapter of the Association for Computational

Linguistics, pp. 73-76.

[62] Rau, L., 1991, "Extracting Company Names from Text," The Seventh IEEE Conference on

Artificial Intelligence Application, 1, pp. 29-32.

[63] Settles, B., 2004, "Biomedical Named Entity Recognition Using Conditional Random

Fields and Rich Feature Sets," In Proceedings of the International Joint Workshop on

Natural Language Processing in Biomedicine and its Applications, pp. 104-107.

[64] Isozaki, H., and H. Kazawa, 2002, "Efficient Support Vector Classifiers for Named Entity

Recognition," In Proceedings of the 19th international conference on Computational

linguistics, pp. 1-7.

[65] Riloff, E., and R. Jones, 1999, "Learning Dictionaries for Information Extraction by Multi-

Level Bootstrapping," AAAI/IAAI, pp. 474-479.

[66] Nothman, J., et al., 2013, "Learning Multilingual Named Entity Recognition from

Wikipedia," Artificial Intelligence, 194, pp. 151 - 175.

REFERENCES

� ����

[67] Cucchiarelli, A., and P. Velardi, 2001, "Unsupervised Named Entity Recognition Using

Syntactic and Semantic Contextual Evidence," Computational Linguistics, 27(1), pp. 123-

131.

[68] Yang, T. Y., 2009, "Simple Bayesian Binary Framework for Discovering Significant Genes

and Classifying Cancer Diagnosis," Computational Statistics & Data Analysis, 53(3), pp.

1743-1754.

[69] Chen, Y., et al., 2015, "A Study of Active Learning Methods for Named Entity Recognition

in Clinical Text.," Journal of biomedical informatics, 58, pp. 11-8.

[70] Dong, X., et al., 2016, "A Multiclass Classification Method Based on Deep Learning for

Named Entity Recognition in Electronic Medical Records," In 2016 New York Scientific

Data Summit (NYSDS), pp. 1-10.

[71] Korkontzelos, I., and D. Piliouras, 2015, "Boosting Drug Named Entity Recognition Using

an Aggregate Classifier," Artificial intelligence in medicine, 65(2), pp. 145.

[72] Rocktäschel, T., et al., 2012, "Chemspot: A Hybrid System for Chemical Named Entity

Recognition.," Bioinformatics (Oxford, England), 28(12), pp. 1633-40.

[73] Freitas, C., et al., 2009, "Relation Detection between Named Entities: Report of a Shared

Task," In Proceedings of the Workshop on Semantic Evaluations: Recent Achievements

and Future Directions, pp. 129-137.

[74] Lafferty, J., et al., 2001, "Conditional Random Fields: Probabilistic Models for Segmenting

and Labeling Sequence Data," In Proceedings of the eighteenth international conference on

machine learning, ICML, pp. 282-289.

REFERENCES

� ����

[75] Zheng, S., et al., 2016, "Joint Learning of Entity Semantics and Relation Pattern for

Relation Extraction," In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pp. 443-458.

[76] Kambhatla, N., 2004, "Combining Lexical, Syntactic, and Semantic Features with

Maximum Entropy Models for Extracting Relations," In Proceedings of the ACL 2004 on

Interactive poster and demonstration sessions, pp. 22.

[77] Freitag, D., and A. McCallum, 2000, "Information Extraction with Hmm Structures

Learned by Stochastic Optimization," AAAI/IAAI, 2000, pp. 584-589.

[78] Wang, T., et al. 2006. "Automatic Extraction of Hierarchical Relations from Text." In The

Semantic Web: Research and Applications, 215-229. Springer Berlin Heidelberg.

[79] Lodhi, H., et al., 2002, "Text Classification Using String Kernels," Journal of Machine

Learning Research, 2(Feb), pp. 419-444.

[80] Mooney, R. J., and R. C. Bunescu, 2006, "Subsequence Kernels for Relation Extraction,"

In Advances in neural information processing systems, pp. 171-178.

[81] Zelenko, D., et al., 2003, "Kernel Methods for Relation Extraction," Journal of machine

learning research, 3(Feb), pp. 1083-1106.

[82] GuoDong, Z., et al., 2005, "Exploring Various Knowledge in Relation Extraction," In

Proceedings of the 43rd annual meeting on association for computational linguistics, pp.

427-434.

REFERENCES

� ��	�

[83] Bunescu, R. C., and R. J. Mooney, 2005, "A Shortest Path Dependency Kernel for Relation

Extraction," In Proceedings of the conference on human language technology and empirical

methods in natural language processing, pp. 724-731.

[84] Nguyen, T. H., et al., 2015, "Semantic Representations for Domain Adaptation: A Case

Study on the Tree Kernel-Based Method for Relation Extraction," In ACL, pp. 635-644.

[85] Sun, L., and X. Han. 2014. "A Feature-Enriched Tree Kernel for Relation Extraction."

https://www.aclweb.org/anthology/P/P14/P14-2011.pdf.

[86] Fundel, K., et al., 2007, "Relex—Relation Extraction Using Dependency Parse Trees,"

Bioinformatics, 23(3), pp. 365-371.

[87] Brin, S., 1998, "Extracting Patterns and Relations from the World Wide Web," In

International Workshop on The World Wide Web and Databases, pp. 172-183.

[88] Agichtein, E., and L. Gravano, 2000, "Snowball: Extracting Relations from Large Plain-

Text Collections," In Proceedings of the fifth ACM conference on Digital libraries, pp. 85-

94.

[89] Etzioni, O., et al., 2005, "Unsupervised Named-Entity Extraction from the Web: An

Experimental Study," Artificial intelligence, 165(1), pp. 91-134.

[90] Yates, A., et al., 2007, "Textrunner: Open Information Extraction on the Web," In

Proceedings of Human Language Technologies: The Annual Conference of the North

American Chapter of the Association for Computational Linguistics: Demonstrations, pp.

25-26.

REFERENCES

� ��
�

[91] de Abreu, S. C., et al., 2013, "A Review on Relation Extraction with an Eye on Portuguese,"

Journal of the Brazilian Computer Society, 19(4), pp. 553-571.

[92] Angeli, G., et al., 2014, "Combining Distant and Partial Supervision for Relation

Extraction," In EMNLP, pp. 1556-1567.

[93] Min, B., et al., 2013, "Distant Supervision for Relation Extraction with an Incomplete

Knowledge Base," In HLT-NAACL, pp. 777-782.

[94] Krause, S., et al., 2012, "Large-Scale Learning of Relation-Extraction Rules with Distant

Supervision from the Web," In The Semantic Web–ISWC 2012, pp. 263-278.

[95] Hasegawa, T., et al., 2004, "Discovering Relations among Named Entities from Large

Corpora," In Proceedings of the 42nd Annual Meeting on Association for Computational

Linguistics, pp. 415.

[96] Etzioni, O., et al., 2011, "Open Information Extraction: The Second Generation," In

Twenty-Second International Joint Conference on Artificial Intelligence, pp. 3-10.

[97] Wu, F., and D. S. Weld, 2010, "Open Information Extraction Using Wikipedia," In

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,

pp. 118-127.

[98] Nguyen, T. H., et al., 2016, "Joint Event Extraction Via Recurrent Neural Networks," In

Proceedings of NAACL-HLT, pp. 300-309.

[99] Ritter, A., et al., 2012, "Open Domain Event Extraction from Twitter," In Proceedings of

the 18th ACM SIGKDD international conference on Knowledge discovery and data mining,

pp. 1104-1112.

REFERENCES

� ����

[100] Li, J., et al., 2014, "Major Life Event Extraction from Twitter Based on

Congratulations/Condolences Speech Acts," In EMNLP, pp. 1997-2007.

[101] Hogenboom, F., et al., 2016, "A Survey of Event Extraction Methods from Text for

Decision Support Systems," Decision Support Systems, 85, pp. 12-22.

[102] Jans, M., et al., 2011, "A Business Process Mining Application for Internal Transaction

Fraud Mitigation," Expert Systems with Applications, 38(10), pp. 13351-9.

[103] Aalst, W. V. D., et al., 2012, "Replaying History on Process Models for Conformance

Checking and Performance Analysis," Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2(2), pp. 182-192.

[104] van der Zee, D. J., 2011, "Building Insightful Simulation Models Using Petri Nets — a

Structured Approach," Journal of Decision Support Systems, 51(1), pp. 53-64.

[105] Luengo, D., and M. Sepúlveda, 2012, "Applying Clustering in Process Mining to Find

Different Versions of a Business Process That Changes over Time Extending Trace

Clustering Techniques to Include The," In International Conference on Business Process

Management, pp. 153-158.

[106] Rozinat, A., et al., 2009, "Workflow Simulation for Operational Decision Support," Data

& Knowledge Engineering, 68(9), pp. 834-850.

[107] Di Francescomarino, C., et al., 2016, "Predictive Business Process Monitoring Framework

with Hyperparameter Optimization," In International Conference on Advanced Information

Systems Engineering, Cham, pp. 361-376.

REFERENCES

� ����

[108] Vergidis, K., et al., 2015, "An Automated Optimisation Framework for the Development

of Re-Configurable Business Processes: A Web Services Approach," International Journal

of Computer Integrated Manufacturing, 28(1), pp. 41-58.

[109] Agrawal, R., et al., 1998, "Mining Process Models from Workflow Logs," In Proceedings

of the 6th International Conference on Extending Database Technology: Advances in

database Technology, Valencia, Spain, pp. 469-483.

[110] van der Aalst, W. M. P., et al., 2004, "Workflow Mining: Discovering Process Models

from Event Logs," IEEE Transactions on Knowledge and Data Engineering, 16, pp. 1128-

1142.

[111] Wen, L., et al., 2009, "A Novel Approach for Process Mining Based on Event Types,"

Journal of Intelligent Information Systems 32(2), pp. 163-190.

[112] Huang, H.-m., and Y. Zhang, 2008, "Process Mining Algorithm to Discover Non-Certain

Choice and Parallel Relation," Journal of Computer Applications, 28(11), pp. 2922-5.

[113] Tiwari, A., et al., 2008, "A Review of Business Process Mining: State-of-the-Art and

Future Trends," Business Process Management Journal, 14(1), pp. 5-22.

[114] Li, J., et al., 2011, "A Heuristic Genetic Process Mining Algorithm," CIS, 2011, pp. 15-

19.

[115] Schimm, G., 2004, "Mining Exact Models of Concurrent Workflows," Computers in

Industry, 53(3), pp. 265-81.

REFERENCES

� ����

[116] Schonig, S., et al., 2012, "Adapting Association Rule Mining to Discover Patterns of

Collaboration in Process Logs," In Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), 2012 8th International Conference on, pp. 531-534.

[117] De Leoni, M., and d. A. W. M. P. Van, 2016, "Data-Aware Process Mining: Discovering

Decisions in Processes Using Alignments," In Proceedings of the 28th annual ACM

symposium on applied computing, pp. 1454-1461.

[118] Repta, D., et al., 2017, "Towards the Development of Semantically Enabled Flexible

Process Monitoring Systems," International Journal of Computer Integrated Manufacturing,

30(1), pp. 96-108.

[119] Gunther, C. W., and W. M. P. van der Aalst, 2007, "Fuzzy Mining - Adaptive Process

Simplification Based on Multi-Perspective Metrics," In Business Process Management. 5th

International Conference, BPM 2007, 24-28 Sept. 2007, Berlin, Germany, pp. 328-43.

[120] Maggi, F. M., et al., 2011, "User-Guided Discovery of Declarative Process Models," In

Symposium Series on Computational Intelligence, IEEE SSCI2011 - 2011 IEEE

Symposium on Computational Intelligence and Data Mining, CIDM 2011, April 11, 2011 -

April 15, 2011, Paris, France, pp. 192-199.

[121] Di Ciccio, C., and M. Mecella, 2013, "A Two-Step Fast Algorithm for the Automated

Discovery of Declarative Workflows," In 2013 IEEE Symposium on Computational

Intelligence and Data Mining (CIDM), 16-19 April 2013, Piscataway, NJ, USA, pp. 135-

42.

REFERENCES

� ����

[122] Maggi, F. M., et al., 2013, "Online Process Discovery to Detect Concept Drifts in Ltl-

Based Declarative Process Models," In OTM Confederated International Conferences" On

the Move to Meaningful Internet Systems", Berlin, Germany, pp. 94-111.

[123] Diamantini, C., et al., 2016, "Behavioral Process Mining for Unstructured Processes,"

Journal of Intelligent Information Systems, 47(1), pp. 5-32.

[124] Rozinat, A., et al., 2009, "Discovering Simulation Models," Information Systems, 34(3),

pp. 305-27.

[125] Liu, T., et al., 2012, "Mining Event Logs to Support Workflow Resource Allocation,"

Knowledge-Based Systems, 35, pp. 320-331.

[126] Fern, C., et al., 2014, "Temporal Abstractions to Enrich Activity-Based Process Mining

Corpus with Clinical Time Series ." In Biomedical and Health Informatics (BHI), 2014

IEEE-EMBS International Conference, pp. 785-788.

[127] Zhang, H., et al. 2010. "A Novel Approach of Process Mining with Event Graph." In

Knowledge-Based and Intelligent Information and Engineering Systems, 131 - 140.

Springer Berlin Heidelberg.

[128] Aalst, W. V. D., et al., 2012, "Process Mining Manifesto," Information Systems, 37(3),

pp. 288-290.

[129] Weijters, A. J. M. M., and Wil MP van der Aalst, 2001, "Process Mining Discovering

Workflow Models from Event-Based Data " In Belgium-Netherlands Conference on

Artificial Intelligence.

REFERENCES

� ����

[130] De Weerdt, J., et al., 2013, "Process Mining for the Multi-Faceted Analysis of Business

Processes—a Case Study in a Financial Services Organization," Computers in Industry,

64(1), pp. 57-67.

[131] Seung-kyung, L., et al., 2013, "Mining Transportation Logs for Understanding the after-

Assembly Block Manufacturing Process in the Shipbuilding Industry," Expert Systems with

Applications, 40(1), pp. 83-95.

[132] Caron, F., et al., 2013, "A Comprehensive Investigation of the Applicability of Process

Mining Techniques for Enterprise Risk Management," Computers in Industry, 64(4), pp.

464-475.

[133] Dotoli, M. F., M.P; Mangini, A.M, 2008, "Fault Detection of Discrete Event Systems

Using Petri Nets and Integer Linear Programming," IFAC Proceedings Volumes, 41(2), pp.

6554-6559.

[134] Rebuge, A., and D. R. Ferreira, 2012, "Business Process Analysis in Healthcare

Environments: A Methodology Based on Process Mining," Information Systems, 37(2), pp.

99-116.

[135] Rebuge, Á. F., Diogo R, 2012, "Business Process Analysis in Healthcare Environments:

A Methodology Based on Process Mining," Information Systems, 37(2), pp. 99 - 116.

[136] Kumar, A., and S. Rahman, 2014, "Rfid-Enabled Process Reengineering of Closed-Loop

Supply Chains in the Healthcare Industry of Singapore," Journal of Cleaner Production, 85,

pp. 382 - 394.

REFERENCES

� ����

[137] Rolland, C., 1998, "A Comprehensive View of Process Engineering," In International

Conference on Advanced information Systems Engineering, pp. 1 - 24.

[138] Bose, R. P. J. C., et al., 2012, "Discovering Hierarchical Process Models Using Prom," In

CAiSE Forum 2011 on IS Olympics: Information Systems in a Diverse World, June 20,

2011 - June 24, 2011, London, United kingdom, pp. 33-48.

[139] Wei Wang; Barnaghi, P. M. B., Andrzej, 2010, "Probabilistic Topic Models for Learning

Terminological Ontologies," IEEE Transactions on Knowledge and Data Engineering,

22(7), pp. 1041-4347.

[140] Steyvers, M., and T. Griffiths. 2007. "Probabilistic Topic Models." In Handbook of Latent

Semantic Analysis, edited by K Thomas and Danielle Landauer, 427-448. Lawrence

Erlbaum Associates.

[141] Barbieri, N., et al., 2013, "Probabilistic Topic Models for Sequence Data," Machine

learning, 93(1), pp. 5-29.

[142] Hinton, G. E., et al., 2006, "A Fast Learning Algorithm for Deep Belief Nets.," Neural

computation, 18(7), pp. 1527-1554.

[143] Marina, A. J. L. U. J. O. S., 1975, How to Do Things with Words. Edited by Cambridge.

2d ed. ed. Vol. 1955: Harvard University Press.

[144] Chinchor, N., and P. Robinson, 1997, "Muc-7 Named Entity Task Definition," In

Proceedings of the 7th Conference on Message Understanding, pp. 29.

REFERENCES

� ����

[145] Van der Aalst, W. M. P., and M. Song, 2004, "Mining Social Networks: Uncovering

Interaction Patterns in Business Processes," In International Conference on Business

Process Management, pp. 244-260.

[146] Song, M., and W. M. P. Van der Aalst, 2008, "Towards Comprehensive Support for

Organizational Mining," Decision Support Systems, 46(1), pp. 300-317

[147] Abdelkafi, M., and L. Bouzguenda, 2010, "Discovering Organizational Perspective in

Workflow Using Agent Approach: An Illustrative Case Study," In Proceedings of the 6th

International Workshop on Enterprise & Organizational Modeling and Simulation, pp. 84-

98.

[148] Zhao, W., and X. Zhao. 2014. "Process Mining from the Organizational Perspective." In

Foundations of Intelligent Systems, 701-708. Springer.

[149] Kuhlmann, M., et al., 2003, "Role Mining-Revealing Business Roles for Security

Administration Using Data Mining Technology," In Proceedings of the eighth ACM

symposium on Access control models and technologies (pp. 179-186.

[150] Arias, M., et al., 2015, "A Framework for Recommending Resource Allocation Based on

Process Mining," In International Conference on Business Process Management, pp. 458-

470.

APPENDIX

� ���

APPENDIX

Appendix A. Example Event Logs for Process Mining

The example file below shows the event logs in XML format. Each record tagged by

“Event” corresponds to a design event detected from the given design documents.

APPENDIX

� ��

Appendix B. Example Dot File for Visualizing Process Models

Discovered by Bottom-Up Process Mining

The example dot files below show the data structure for visualizing the process model

discovered by the bottom-up process mining approach. Each doc file corresponds to a

workflow model in an abstraction or bottom layer of the hierarchical process model.

digraph workflow_at_0th_layer{
 ranksep = 0.2;
{

node [shape=plaintext, fontsize=16];
start ->"2011-03-10" ->"2011-04-09" ->"2011-05-09"… }

node [shape = box];
-1 [label = "start", weight = 0.1];
0 [label = "0_make group" weight = 1];
1 [label = "1_report progress" weight = 1];
2 [label = "2_finalise layout" weight = 1];
3 [label = "3_submit copy" weight = 1];
4 [label = "4_email concept paper" weight = 1];
5 [label = "5_mean traffic" weight = 1];
6 [label = "6_set experience test" weight = 1];
7 [label = "7_consult proposal" weight = 1];
8 [label = "8_discuss concept paper" weight = 1];
9 [label = "9_concept paper" weight = 1];

 ……

 -1 -> 0 [weight = 1.0000];
-1 -> 1 [weight = 1.0000];
0 -> 2 [weight = 0.0500];
1 -> 2 [weight = 0.0500];
2 -> 3 [weight = 0.3833];
2 -> 4 [weight = 0.3833];
2 -> 5 [weight = 0.3833];
2 -> 6 [weight = 0.3833];
2 -> 7 [weight = 0.3833];
3 -> 8 [weight = 0.0500];
4 -> 8 [weight = 0.0500];
5 -> 8 [weight = 0.0500];
6 -> 8 [weight = 0.0500];
7 -> 8 [weight = 0.0500];
8 -> 9 [weight = 0.7167];

 ……
}

Bottom layer

Each node corresponds to a design event

Each edge corresponds to a workflow

APPENDIX

� ��

digraph workflow_at_15th_layer{
 ranksep = 0.2;
{

node [shape=plaintext, fontsize=12];
start -> "2011-03-10" -> "2012-02-03" -> "2012-12-29" -> "2013-01-21" -> end;

}

node [shape = box];
-1 [label = "start", weight = 0.1];
0 [label = "0_20_email concept paper", shape = folder, style = filled, fillcolor = lightgrey,

 weight = 20];
1 [label = "1_20_please concept paper", shape = folder, style = filled, fillcolor = lightgrey,

 weight = 20];
2 [label = "2_2_attach group", shape = folder, style = filled, fillcolor = lightgrey, weight = 2];
3 [label = "3_2_map design module", shape = folder, style = filled, fillcolor = lightgrey,

 weight = 2];
4 [label = "4_3_work coordination issue", shape = folder, style = filled, fillcolor = lightgrey,

 weight = 3];
5 [label = "5_16_submit application form", shape = folder, style = filled, fillcolor = lightgrey,

 weight = 16];
6 [label = "6_2_do ia", shape = folder, style = filled, fillcolor = lightgrey, weight = 2];
7 [label = "7_18_find irb exemption application", shape = folder, style = filled, fillcolor =

 lightgrey, weight = 18];
8 [label = "8_2_optimize design", shape = folder, style = filled, fillcolor = lightgrey, weight = 2];
9 [label = "9_24_make project description", shape = folder, style = filled, fillcolor = lightgrey,

 weight = 24];
 ……

-1 -> 0 [weight = 1.0000];
-1 -> 0 [weight = 1.0000];
0 -> 1 [weight = 0.8833];
1 -> 2 [weight = 0.1000];
1 -> 3 [weight = 3.6333];
2 -> 4 [weight = 0.0500];
3 -> 4 [weight = 0.2000];
4 -> 5 [weight = 0.9667];
5 -> 6 [weight = 0.0500];
6 -> 7 [weight = 1.4333];
7 -> 8 [weight = 0.3000];
7 -> 9 [weight = 0.1000];
8 -> 9 [weight = 0.1000];
9 -> 10 [weight = 0.0500];
9 -> 13 [weight = 1.5333];
10 -> 11 [weight = 0.0500];
10 -> 12 [weight = 0.0500];

 ……
}

Abstraction layer

Each node corresponds to a composite design task

Each edge corresponds to a workflow

APPENDIX

� ���

Appendix C. Example Dot File for Visualizing Process Model Discovered

by Top-Down Process Mining

digraph TopDownModel{
 ranksep = 0.2;
node [shape = box, fontsize=20];

subgraph cluster712{
color=blue;
712.Start [label = "start"];
712.0 [label = "report progress"];
712.1 [label = "make group"];
712.2 [label = "finalise layout"];
712.3 [label = "email concept paper"];
712.4 [label = "submit copy"];
712.5 [label = "mean traffic"];
712.6 [label = "set experience test"];
712.7 [label = "consult proposal"];
712.22 [label = "discuss concept paper"];
712.9 [label = "concept paper"];
712.10 [label = "provide summary"];

 ……
 }

 subgraph cluster707{
color=blue;
707.Start [label = "start"];
707.322 [label = "model pattern"];
707.323 [label = "explore traffic wave problem"];
707.324 [label = "observe behavior"];
707.325 [label = "explore applicability"];
707.326 [label = "validate approach"];
707.327 [label = "understand mechanism"];
707.332 [label = "model pattern"];

 …….
 707.322 -> 707.379 [weight = 0.0500];

707.323 -> 707.379 [weight = 0.0500];
707.324 -> 707.379 [weight = 0.0500];
707.325 -> 707.379 [weight = 0.0500];

 ……
 }
 ……

 cluster712 -> cluster707;
 cluster712 -> cluster711;
 cluster711 -> cluster650;
 cluster711 -> cluster710;
 ……
}

Each subgraph node corresponds to a module and a sub-process model

Each node corresponds to a design event within a module

Each edge corresponds to a workflow within
a module

Each relation corresponds to a decomposition relation
between two modules

