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ABSTRACT 

Cancers are known to develop through distinct DNA mutation events that occur 

during their initiation and progression. Recent studies have revealed that the analysis 

of point mutation patterns across cancer types can provide information on the 

carcinogenic origins and mutation susceptibilities of different cancers. In this study, it 

was postulated that additional insight can be obtained through the integrated analysis 

of multiple dimensions of DNA mutation events and that a tool for predicting cancer 

type from mutation patterns could be developed from this knowledge. The dimensions 

considered included the frequency, types and co-occurrence of point mutations, 

insertions and deletions, genes mutated and the genomic distribution of mutations. As 

a first step, a program was designed to provide efficient conversion of MAF files from 

next-generation sequencing (NGS) data into multi-dimensional mutation profiles. The 

programme was then applied to characterise mutation patterns from all data in The 

Cancer Genome Atlas (TCGA) database, comprising more than 8,000 tumours from 31 

cancer types. Analysis of the results provided some interesting insights into the 

heterogeneity, subtypes, interrelation and biology of different cancer types. As a second 

step, multiple statistical and machine learning approaches were tested to determine 

optimal methods for building a tool to predict cancer type based on the mutation pattern 

of an unknown sample. Using the optimised method, close to 100% prediction accuracy 

was obtained in the analysis of random bootstrapped sample series from the TCGA. 

When applied to 5 non-TCGA NGS datasets, the prediction accuracy was 30-60%. 

While encouraging, the results also highlighted many issues, such as the need for 

standardisation of NGS protocols. In conclusion, these results have shown that multi-

dimensional interrogation of DNA mutation patterns can provide novel insights into 
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cancer biology, and may be useful for predicting cancer types of samples of unknown 

origin through future development.



viii 

 

LIST OF TABLES 

Table 1: Cancer types for which data was obtained from the TCGA database with 

associated descriptors................................................................................................... 39 

Table 2: All possible trinucleotide mutations arranged by SNV ................................. 43 

Table 3: TCGA cancers with the organ system annotations ........................................ 47 

Table 4: Insertion and deletion rates for all cancers .................................................... 52 

Table 5: Representation of the matrix array created for the analysis of mutation 

signatures ..................................................................................................................... 65 

Table 6: Case counts by tissue of origin ...................................................................... 66 

Table 7: Case counts by cell type of origin.................................................................. 66 

Table 8: The five most variable trinucleotides observed in the UC, US and SCS 

cancers by CN clustering ........................................................................................... 101 

Table 9: The five most statistically different indel sizes observed in the uniquely 

clustered cancers by PR and CN analysis .................................................................. 108 

Table 10: Unique mutational features revealed by genomic distribution analysis (1)

.................................................................................................................................... 117 

Table 11: Unique mutational features revealed by genomic distribution analysis (2)

.................................................................................................................................... 118 

Table 12: Cell lines from the ROADMAP project that correspond to cancers with 

unique mutational distribution profiles ...................................................................... 119 

Table 13: Most statically different genes as determined by the clustering of mutated 

genes frequencies (1) ................................................................................................. 124 

Table 14: Most statically different genes as determined by the clustering of mutated 

genes frequencies (2) ................................................................................................. 125 

Table 15: Five most statically different variants as determined by the clustering of 

mutated variant frequencies (1) ................................................................................. 126 

Table 16: Five most statically different variants as determined by the clustering of 

mutated variant frequencies (2) ................................................................................. 127 

Table 17: Incidences of distinct cancer mutational profiles in all 10 dimensions of 

analysis ....................................................................................................................... 131 

Table 18: ICGC datasets used in Phase III of prediction optimisation ...................... 146 

Table 19: Phase I - The ten most accurate prediction ML and dataset pairings ........ 151 

Table 20: Phase II - Effect of dimensionality reduction of prediction accuracy ....... 154 

Table 21: Phase III - Prediction accuracy improved by combinatorial approach ...... 157 

Table 22: Phase IV - Prediction accuracies seen in the WES datasets ...................... 160 

Table 23: Phase IV - Prediction accuracies seen in the WGS datasets ...................... 161 

Table 24: Accuracy of cancer prediction from CTC ................................................. 164 

Table 25: Summary of cancer type prediction methodologies .................................. 177 

  



ix 

 

LIST OF FIGURES 

Figure 1: Incidences of the different cancers worldwide and in Singapore according to 

GLOBOCAN 2012. ....................................................................................................... 3 

Figure 2: Mortalities of the different cancers worldwide and in Singapore according to 

GLOBOCAN 2012. ....................................................................................................... 4 

Figure 3: Workflow of DNA-based Next-Generation Sequencing .............................. 25 

Figure 4: Comparing Somatic and Germline SNV and indel Variant Callers ............. 30 

Figure 5: Analysis of the many dimensions of DNA mutations may elucidate cancer 

specific characteristics ................................................................................................. 41 

Figure 6: Distribution of SNV mutations rates for the 34 cancers used in this study . 50 

Figure 7: The proportions of the trinucleotide mutations across all cases in this study

...................................................................................................................................... 51 

Figure 8: Distribution of indels rates for the 34 cancers used in this study ................. 53 

Figure 9: Distribution of the deletion and insertion sizes ............................................ 54 

Figure 10: Distribution of the mutations across all samples ........................................ 58 

Figure 11: Distribution of the mutated gene frequencies ............................................. 59 

Figure 12: Percentage of cases with mutations in the 10 most mutated genes ............ 61 

Figure 13: The size distribution of the variants across all samples ............................. 62 

Figure 14: The 10 most frequent variants across all samples with annotations and 

associated cancers ........................................................................................................ 63 

Figure 15: Clustering of the consensus trinucleotide mutation proportions by using 

average metric and city block linkage. ........................................................................ 72 

Figure 16: Clustering of the consensus trinucleotide mutation counts by using average 

metric and city block linkage. ...................................................................................... 73 

Figure 17: Clustering of the consensus indel proportions by using average metric and 

city block linkage. ........................................................................................................ 76 

Figure 18: Clustering of the consensus indel counts by using average metric and city 

block linkage. ............................................................................................................... 77 

Figure 19: Clustering of the consensus mutational distribution proportions by using 

complete metric and city block linkage ....................................................................... 80 

Figure 20: Clustering of the consensus mutational distribution counts using complete 

metric, city block linkage ............................................................................................. 81 

Figure 21: Clustering of the consensus mutated genes by using complete metric and 

city block linkage ......................................................................................................... 85 

Figure 22: Clustering of the consensus variants by using complete metric and city 

block linkage ................................................................................................................ 86 

Figure 23: Clustering of the consensus multidimensional mutations with proportions 

by using average metric and city block linkage ........................................................... 88 

Figure 24: Clustering of the consensus multidimensional mutations with counts by 

using average metric and city block linkage ................................................................ 89 

Figure 25: Clustering of trinucleotide mutation proportions in all cases by using 

average metric and correlation linkage. ....................................................................... 95 



x 

 

Figure 26: Clustering of trinucleotide mutation counts in all cases by using average 

metric and city block linkage. ...................................................................................... 96 

Figure 27: Legend for clustering of all cases. .............................................................. 97 

Figure 28: Alexandrov signatures compared to the derived unique cancer signatures 

(BLCA and LIHC) ....................................................................................................... 98 

Figure 29: Alexandrov signatures compared to the derived unique cancer signatures 

(LUAD and SKCM) ..................................................................................................... 99 

Figure 30: Alexandrov signatures compared to the derived unique cancer signatures 

(TCGT, THYM and MSI-high) ................................................................................. 100 

Figure 31: The unique cancer profiles identified by trinucleotide CN analysis in 

TCGT, THYM and EMB ORI ................................................................................... 102 

Figure 32: The unique cancer profiles identified by trinucleotide CN analysis in 

LAML, SKCM 1 and SKCM 2 .................................................................................. 103 

Figure 33: Clustering of indel size proportions in all cases by using average metric 

and city block linkage ................................................................................................ 106 

Figure 34: Clustering of indel size counts in all cases by using average metric and city 

block linkage. ............................................................................................................. 107 

Figure 35: The unique cancer profiles identified by indel PR analysis in STAD MSI-

high, PAAD and THCA ............................................................................................. 109 

Figure 36: The unique cancer profiles identified by indel CN analysis in PAAD and 

THCA ......................................................................................................................... 110 

Figure 37: Clustering of genomic distribution proportions in all cases by using 

average metric and city block linkage. ...................................................................... 115 

Figure 38: Clustering of genomic density counts in all cases by using average metric 

and city block linkage. ............................................................................................... 116 

Figure 39: Clustering of mutated genes in all cases by using complete metric and 

Jaccard linkage. .......................................................................................................... 122 

Figure 40: Clustering of mutated variants in all cases by using complete metric and 

Jaccard linkage. .......................................................................................................... 123 

Figure 41: Clustering of all dimensions with proportions in all cases by using average 

metric and city block linkage. .................................................................................... 129 

Figure 42: Clustering of all dimensions with counts in all cases by using average 

metric and city block linkage. .................................................................................... 130 

Figure 43: Machine learning algorithms used for mutational signature learning and 

cancer subtype prediction .......................................................................................... 144 

Figure 44: ROC and ROAUC results from the three best performing combinatorial 

predictors.................................................................................................................... 162 

Figure 45: Interface and Usage .................................................................................. 165 

Figure 46: Applications of MutProfiler: Mutation summaries and cancer subtype 

prediction ................................................................................................................... 180 

Figure 47: Bar graphs of trinucleotide mutations proportions in SKCM, UCEC-MSIH, 

COAD-MSIH, STAD-MSIH and LUAD .................................................................. 209 

Figure 48: Bar graphs of trinucleotide mutations proportions in LUSC, TGCT, 

THYM, CHOL and ESCA ......................................................................................... 210 



xi 

 

Figure 49: Bar graphs of trinucleotide mutations proportions in SARC, HNSC, 

BLCA, CESC and ACC ............................................................................................. 211 

Figure 50: Bar graphs of trinucleotide mutations proportions in KICH, LIHC, KIRC, 

KIRP and PAAD ........................................................................................................ 212 

Figure 51: Bar graphs of trinucleotide mutations proportions in GBM, COAD-

NonMSIH, READ, UCS and STAD-NonMSIH........................................................ 213 

Figure 52: Bar graphs of trinucleotide mutations proportions in UCEC-NonMSIH, 

PCPG, UVM, BRCA and OV .................................................................................... 214 

Figure 53: Bar graphs of trinucleotide mutations proportions in LGG, PRAD, LAML 

and THCA .................................................................................................................. 215 

Figure 54: Bar graphs of indel size distribution in THCA, LAML, OV, UVM, GBM, 

LUSC, COAD-nonMSIH, READ, ACC and SARC ................................................. 216 

Figure 55: Bar graphs of indel size distribution in PAAD, KICH, UCEC-MSIH, 

COAD-MSIH, STAD-MSIH, BRCA, PCPG, CHOL, LIHC and LUAD ................. 217 

Figure 56: Bar graphs of indel size distribution in THYM, TGCT, UCEC-NonMSIH, 

CESC, SKCM, LGG, PRAD, KIRC, STAD-NonMSIH and KIRP .......................... 218 

Figure 57: Bar graphs of indel size distribution in UCS, BLCA, ESCA and HNSC 219 



xii 

 

LIST OF ABBREVIATIONS 

ACC Adrenocortical carcinoma 

BLCA Bladder urothelial carcinoma 

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

CHOL Cholangiocarcinoma 

CN Count (analysis of the DNA mutations by counts in each category) 

COAD Colon adenocarcinoma 

CTC Circulating tumour cells 

CUP Cancer of unknown primary origin 

ESCA Esophageal carcinoma 

fdr_bh Benjamini & Hochberg false discovery rate analysis 

GBM Glioblastoma multiforme 

HNSC Head and neck squamous cell carcinoma 

ICGC International cancer genome consortium 

IHC Immunohistochemistry 

INDEL Insertions and deletions 

KICH Kidney chromophobe 

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma 

LAML Acute myeloid leukaemia 

LGG Brain lower grade glioma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

ML Machine learning 

NDT Non-definable type: Cancers are heterogeneous across cases 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PCA Principal components analysis 

PCPG Pheochromocytoma and paraganglioma 

PR Proportions (analysis of the DNA mutations by proportions in each category) 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

RBM restricted Boltzmann machine 

SARC Sarcoma 

SCS 
Shared Cancer signature: Cancers are homogeneous across cases, however 

profiles are not unique across cancers 

SKCM Skin cutaneous melanoma 

SNP Single nucleotide polymorphism 

SNV Single nucleotide variants 



xiii 

 

STAD Stomach adenocarcinoma 

SV Structural variant 

TCGA The cancer genome atlas 

TGCT Testicular germ cell tumours 

THCA Thyroid carcinoma 

THYM Thymoma 

TNM Trinucleotide mutation proportions  

UCEC Uterine corpus endometrial carcinoma 

UCS Uterine carcinosarcoma 

UC Unique cancer signature: Cancers are homogeneous across cases 

US 
Unique subtype signature: Cancers that are overall heterogeneous, however 

there is at least one homogeneous subgroup 

UVM Uveal melanoma 

VT Variance threshold 

WES Whole exome sequencing 



1 

 

 

 

 

Chapter I                        

Literature Review 

 

 



2  

 

1.1. Cancer: Global impact and biology 

The term cancer describes a large group of diseases that are associated with 

uncontrolled growth and proliferation of cells within a specific region of the body that 

may invade into other parts of the body, either through direct expansion of a tumour 

mass or by metastasis to distant organs. It should be noted that not all tumours or 

neoplasm are cancerous as they may remain benign, however, cancers have been shown 

to develop from such cell masses upon specific trigger events (Qiu and Simon 2015). 

There are over 100 individual diseases that are considered cancer, distinguished by 

tissue/cell of origin and underlying mechanism of cause and disease evolution, resulting 

in widely varying risk factors, and respective epidemiology and impacts on health 

systems (Siegel, Naishadham, and Jemal 2012).  

According to the GLOBACAN 2012 website (IARC 2015)., yearly, there were 

approximately 14.1 million new cases (Figure 1) and 8.2 million deaths worldwide due 

to cancer (Figure 2), estimated to represent about one in eight deaths that year (Ferlay 

et al. 2014). The most commonly diagnosed cancers worldwide were lung cancer, with 

1.8 million cases in 2012, followed by breast (1.6 million), with colorectal in third (1.3 

million) and prostate at fourth (1.1 million) (Figure 1). Lung cancer is also associated 

with the highest mortality rate worldwide (Figure 2) at 8.3 million cases per year. In 

contrast to their incidence rankings, mortality in liver (hepatic) cancer and stomach 

(gastric) cancers have the second and third-highest rates, with colorectal at fourth 

(693,000), breast at fifth (521,000) and pancreas ranked seventh (330,000). It is 

considered that the more aggressive nature of liver (Banerjee and Saluja 2015) 

(incidence of 782,000 vs mortality of 745,000) and stomach (Seo et al. 2015; 

Schlesinger-Raab et al. 2015) (951,000 vs 723,000) cancers underlie the higher relative 

mortalities compared to incidence rates. 
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Figure 1: Incidences of the different cancers worldwide and in Singapore according to GLOBOCAN 2012. 

Overall incidences of cancers in females are represented left of centre, and males are on the right. Cancers are listed from top to bottom according to the 

combined incidence rates in females and males.  
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Figure 2: Mortalities of the different cancers worldwide and in Singapore according to GLOBOCAN 2012. 

Overall mortalities from cancers in females are represented left of centre, and males are on the right. Cancers are listed according to combined mortality rates 

from the most to least frequent.
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It should be noted however that the characterisation of cancers in GLOBOCAN, 

are based on the primary cancer site (the organ from which a cancer originates), a 

somewhat limiting characterisation. Cancer characterisations tend to go beyond just the 

primary sites and delve into cancer subtypes, which can have radically different 

characteristics at both the molecular level and biological level, despite having similar 

sites of origin. Liver cancer, for example, comprises many types of cancer, including 

cholangiocarcinoma (CHOL) and hepatocellular carcinoma (LIHC) both of which have 

very different symptoms, prognosis and treatment options (Khan et al. 2012; Kerkhofs 

et al. 2015). Lung cancer can be divided into small-cell carcinoma and non-small cell 

carcinomas (Long et al. 2015), of which the latter can be divided into adenocarcinoma 

(LUAD) and squamous-cell carcinoma subtypes (LUSC), all of which are 

histologically distinct. Subtypes can be characterised by the effects on patient survival 

and prognosis, or histological features (Schnitt 2010; W. D. Travis, Brambilla, and 

Riely 2013; Hu et al. 2012) or even by the emerging approach of molecular subtyping, 

which allows cancers to be interrogated and subtyped based on several molecular 

factors independent of histology. Examples of cancers that have been subtyped by 

molecular approaches include colorectal cancer (Muzny et al. 2012), urothelial cell 

carcinoma (Adam and DeGraff 2015) and plasma cell leukaemia (Simeon et al. 2015) 

for which improved diagnosis and prognosis are expected via improved patient 

stratification to better-suited treatment regimes. Another example of molecular 

characterisation is that of gastric adenocarcinomas (STAD) (Bass et al. 2014) where it 

has been shown that this cancer can be divided into four subgroups based on mutations, 

copy number aberrations, RNA expression, DNA methylation and the expression of 

specific proteins, allowing this cancer to be characterised with greater precision than in 

previous year. 



 

6  

 

There are also differences in cancer incidences and mortalities between men and 

women, a well-known but not well-studied phenomenon (McCann 2000) (Figure 1 and 

Figure 2). There are obvious biological reasons in some cancers, such as the sex-specific 

organs, e.g. prostate cancer in men, and the exceedingly lower relative rates of breast 

cancer in men due to lower oestrogen and progesterone levels (Korde et al. 2010). 

However, in other cancers, this observation is not well understood (Tevfik Dorak and 

Karpuzoglu 2012). For example, hematologic malignancies, such as non-Hodgkin’s 

lymphoma, are generally more common in males (McCann 2000). The two leading 

theories for these differences are hormonal differences and behavioural choices, e.g. 

differences in exposures to putative causative agents that both cause genetic and 

epigenetic changes. Autoimmune disorders, however, are more common in females, 

thus introducing the possibility that known differences in immunity may be responsible 

for this dichotomy. Lastly, the sex differences in genomic surveillance mechanisms 

may be responsible (Kirsch-Volders et al. 2010), where gender-related differences in 

responses to mutagens and carcinogens affect responses to chromosome damage. 

There are also differences in incidences and mortalities rates between different 

geographical regions. For example, in Singaporean males, colorectal cancer is the most 

prevalent cancer type with 2662 cases and is associated with the second highest 

mortality (944 cases). In females, general trends in cancer incidence and mortality were 

more similar to the global cancer distribution. Racial and ethnic differences have been 

observed in a multitude of other cancers, and have been attributed to both cultural and 

hereditary causes. Examples include lung cancer (Haiman et al. 2006), prostate cancer 

(Peters and Armstrong 2005), and gastric cancer (Kuipers and Sipponen 2006). In 

general, colorectal cancer is found to be prevalent in East Asian populations with 

unique molecular characteristics (Jia et al. 2012; B. Zhang et al. 2014). In Singapore 
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specifically, the relatively high rate of gastric cancer in the Chinese population is 

attributed to specific genetic polymorphisms in addition to Helicobacter pylori (HP) 

infection status. These finding highlight the need to establish cancer statistics that are 

specific to different racial and ethnic groups, especially given their implications to 

biomarkers and patient stratification. 

1.2. Cancers of unknown primary and Circulating cancer cells 

Cancers of unknown primary site/origin (CUP) is an umbrella term for widely 

heterogeneous cancers that are distinguished by metastasis at the time of diagnosis, and 

for which the anatomical site of the primary tumour (origin) remains unknown, even 

after a detailed investigation (Briasoulis et al. 2005). This occurs in approximately 3 – 

5 % of all malignancies, thus CUPSs are among the ten most frequently diagnosed 

cancers worldwide (Massard, Loriot, and Fizazi 2011).  

CUPs were once viewed as a separate type of cancer from the other established 

cancer types, with the assumption that, regardless of the site of origin, these tumours 

shared biologic properties, which included rapid progression and dissemination. In 

recent years, however, this view has shifted to the notion that CUPs retain the signatures 

of the primary tumours, implying that treatment of CUPs could be similar to the primary 

cancer subtype (Varadhachary and Raber 2014). For example, global microRNA 

profiling has shown no significant expression differences when comparing known 

primary tumours with metastatic counterpart, suggesting molecular differences do not 

exist (Pentheroudakis et al. 2013). Despite advances in imaging, histological, and 

molecular profiling techniques used in identifying unknown primary cancer, there are 

still large challenges in identifying these primary sites. In the era of tailored therapeutic 

strategies, this situation presents both an opportunity and a challenge. Current methods 

to identify the primary sites of CUP include serological analysis of tumour antigens 
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(Greco, Vaughn, and Hainsworth 1986), pathological analyses (Oien and Dennis 2012) 

and molecular profiling (Löffler et al. 2016) with varying rates of success. 

Circulating tumour cells (CTC) are cells which have migrated from primary 

tumour sites and entered the bloodstream, and these may have the potential to cause 

metastasis by invasion into other tissue. The belief that CTCs are a prerequisite to 

metastasis was first proposed by an Australian pathologist in 1869 when he observed 

that a patient with metastatic cancer had multiple identical tumours and that certain 

cells in the circulatory system shared a similar morphology (Ashworth 1869). The early 

presentation of these migratory cells in early stages of cancer progression further 

demonstrated the association of these cells with cancer progression, and it is currently 

considered that CTCs are indeed necessary for metastasis (Cristofanilli 2006). There 

are two main categories of methods for the detection of CTCs, namely nucleic-acid-

based and cytometric approaches (Alunni-Fabbroni and Sandri 2010). Cytometric 

techniques are generally preferred, as they retain cellular integrity, allowing 

visualisation of morphology, enumeration and further molecular analysis such as 

protein quantification, fluorescent in situ hybridization or single cell DNA sequencing. 

CTC numbers have been proven to be an effective prognostic biomarker in breast 

(Hayes et al. 2006), colorectal (Cohen et al. 2009), lung (Hou et al. 2009) and prostate 

(De Bono et al. 2008) cancers. Due to the similarities between CTCs and the primary 

tumour, the molecular characterization of CTCs offers a unique ability to assess 

genotypic and phenotypic features of cancers without the need for an invasive biopsy 

(Krebs et al. 2010). 
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1.3. Cancers are caused by subtype-specific gene aberrations 

The idea that cancers are molecularly driven diseases has been suggested since the 

early 1900s when chromosomal aberrations were microscopically observed in cancer 

cells. Soon after the discovery that deoxyribonucleic acid (DNA) could be responsible 

for heredity (Avery, Macleod, and McCarty 1944) and that it is a biopolymer of 

deoxyribonucleic acids arranged in a double helix  (Watson and Crick 1953), there was 

speculation that cancers could arise directly for damage to DNA. This was evidenced 

by the fact that chemicals that damaged DNA tended to cause cancer and other 

abnormal growth characteristics (Loeb and Harris 2008). The Philadelphia 

translocation, which involved a translocation between chromosome 9 and 22 in chronic 

myeloid leukaemia, was perhaps the first specific genetic change that was associated 

with cancer (Rowley 1973). This translocation creates a fusion gene between ABL1, a 

proto-oncogene that encodes a tyrosine kinase, and BCR, a GTPase-activating protein, 

resulting in the formation of an oncogene. The discovery that the G > T single 

nucleotide variant in codon 12 of the HRAS genes (amino acid G12V) has transforming 

activity in bladder carcinoma cells was a significant point in establishing the idea that 

point mutations could have dramatic effects on cell activity and underlie cancer 

formation (Reddy et al. 1982). This discovery has been followed by the identification 

of a whole host of different cancer-associated mutations. A significant finding was 

published in 1990 where it was found that a significantly high proportion of tumours 

have TP53 protein expression and mutation aberrations (Iggo et al. 1990). Somatic 

mutations in TP53 have since been found in 38 – 50% of all cancers (Olivier, Hollstein, 

and Hainaut 2010), and have been shown to be both prognostic and predictive to disease 

outcome. Another significant observation is that many variants tend to be specific to 

certain cancers or even cancer subtypes. For example, EGFR, encoding a receptor 
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tyrosine kinase involved in activation of multiple cell survival pathways is mutated in 

approximately 10% of non-small cell lung cancers in the US and nearly 35 % of those 

in East Asians (Pao et al. 2004; Paez et al. 2004; Lynch et al. 2004), however, mutations 

are not found in other subtypes of lung cancer. These mutations occur almost 

exclusively within exons 18–21 of the gene, a region which encodes a portion of the 

EGFR kinase domain and are predictive of response to treatments with EGFR inhibitors 

such as gefitinib and erlotinib. As another example, KRAS is mutated in 15-25% of lung 

adenocarcinomas, however, such mutations are rare in lung squamous cell carcinomas 

(Brose et al. 2002). Interestingly, these KRAS mutations are mutually exclusive to the 

presence of EGFR mutations (Schmid et al. 2009; Omar et al. 2012) and are negative 

predictors of response to erlotinib and gefitinib treatment. 

A number of recent breakthrough studies have identified cancer-specific recurrent 

mutations through the use of next-generation sequencing. For example, ARID1A, FAT4, 

CDH1 and RHOA have been found to be recurrently mutated in gastric 

adenocarcinomas (Zang et al. 2012; Bass et al. 2014), twenty-four genes including 

ARID1A, SOX9 and FAM123B have been found to be frequently mutated in colorectal 

cancer (Muzny et al. 2012), 11 genes disrupting NFE2L2 and KEAP1 of the PI3K 

pathway, along with CDKN2A and RB1 are frequently mutated in lung squamous cell 

carcinomas (Hammerman et al. 2012), while PPP6C, RAC1, SNX31, TACC1, STK19, 

and ARID2 have been found to be recurrently mutated in melanomas (Hodis et al. 

2012). A recent study, which performed a statistical summary of mutations from the 

TCGA initiative, identified 77 significantly mutated genes including protein kinases, 

G-protein-coupled receptors such as GRM8, BAI3, AGTRL1, LPHN3, GNAO1 

MAP2K4 and other druggable targets in 12 cancer types (Kandoth et al. 2013). Several 

of the significant genes appeared to be associated with certain cancers types. Databases 
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such as ClinVar (Landrum et al. 2016; Landrum et al. 2014) and “My Cancer Genome”, 

http://www.mycancergenome.org/ (Vanderbilt-Ingram Cancer Center 2010) are 

prominent databases of clinically relevant and phenotypically associated variants and 

list many cancer subtype-specific variants. 

1.4. Cancers develop due to several mutational processes 

Various genetic mutations types have been associated with cancer formation 

include single nucleotide variants (SNVs), small insertions and deletions (indels), 

structural variations (SV), copy number variants (CNV), aberrant DNA methylation 

and other epigenetic abnormalities, with the first two being the most frequently related 

to cancer (Kandoth et al. 2013). SNVs, also known as point mutations, are the most 

common and involve the substitution of a single nucleotide (A, T, C or G) with another, 

e.g. T to A, reciprocated in the complementary DNA strand as an A to T. For purposes 

of clarity, SNVs are distinct from single nucleotide polymorphism (SNP) in that SNPs 

denote single base differences that occur within a normal population (germline) at 

specific frequencies (e.g. 1%), while the term SNVs does not generally take into 

account population frequencies. Transitions (Ts) describe specific SNVs involving the 

replacement of a purine base (A or G nucleotide) with another purine or the replacement 

of a pyrimidine (C, T or U nucleotide) with another pyrimidine. On the other hand, 

transversions (Tv) are the replacement of a purine with a pyrimidine or vice versa. 

There are twice as many possible transversions as transitions, although transition 

mutations appear to be generated at a ratio (Ts:Tv) of about 2.1:1 in humans (Keller, 

Bensasson, and Nichols 2007), however, this ratio is not observed in all organisms. 

In contrast to SNVs, which have been studied extensively, other forms of natural 

genetic variation in humans such as insertions and deletions (indels) have received 

relatively little attention (Yang et al. 2010). Indels are the second most common type 

http://www.mycancergenome.org/
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of genomic variant and the most common type of structural variant. This aberration 

involves changes to DNA, in which nucleotides are either added or removed without 

replacement (Mills et al. 2006). The aberrations can range from 1 to 10,000 base pairs 

(bps) in length, although the vast majority are 1–10 bps long. An estimated 0.13-0.4 

million short indels are found per individual in normal cells (Mills et al. 2006). In an 

open reading frame, unless an indel length is a multiple of three, a frameshift mutation 

is resultant which would affect all amino acids in the protein after the indel position, a 

highly deleterious effect.  

SNVs and indels can be characterised according to their location relative to coding 

genes, e.g., 5’ untranslated region, exonic, intronic or intergenic etc., and by the 

genomic implication. The implications include missense mutations that can lead to 

changes in encoded amino acids, non-stop mutations that convert a stop codon into 

another codon and thereby extending the protein beyond its proper length, or an inframe 

insertion in which the insertion does not disrupt the codon sequence of the transcript. 

1.5. Human DNA variation databases 

The accumulating evidence that specific mutation processes may underlie cancers 

and other diseases and the growing catalogue of identified DNA variants has led to the 

establishment of numerous databases and DNA sequencing initiatives. The Single 

Nucleotide Polymorphism Database (dbSNP) (Sherry, Ward, and Sirotkin 1999) 

compiles a range of small molecular variation including SNPs and indels. The current 

version of this database is Build 144 (Jun 08, 2015), with over 85 million human 

variants and a host of variants from other organisms. dbVar (NCBI 2015) is a database 

of genomic structural variation as a counterpart to the previous database, as it includes 

insertions, deletions, duplications, inversions, translocations, and complex 

chromosomal rearrangements. The 1000 genomes project (Abecasis et al. 2012) is an 



 

13  

 

international research effort to establish the most detailed catalogue of normal human 

genetic variation. The Catalogue Of Somatic Mutations In Cancer (COSMIC) (S. a 

Forbes et al. 2011) is an online database of somatically acquired mutations found in 

human cancer using curated data from papers in the scientific literature and large-scale 

experimental screens. This database has specific sections for cell line data and 

mutations derived from whole genomes. The mutation databases described are essential 

to helping researchers put their experimental results into the context of all other studies 

and thus understand the significance of their findings. 

Enabled by the increasing cost-effectiveness of next-generation sequencing 

(NGS), numerous large-scale genome studies were recently undertaken by The Cancer 

Genome Atlas (TCGA) (Cancer Genome Atlas Research Network, Weinstein, et al. 

2013), International Cancer Genome Consortium (ICGC) (International Cancer 

Genome Consortium et al. 2010) and various independent laboratories. These ambitious 

projects have generated comprehensive catalogues of somatic mutations that are present 

in human cancers and revealed unprecedented insights into how various genomic 

contexts drive tumorigenesis. The TCGA project is a joint effort of the National Cancer 

Institute (NCI) and the National Human Genome Research Institute (NHGRI) and is 

the most comprehensive resource for NGS analyses of human cancers, including 

genomic sequencing, miRNA sequencing and expression, methylation data and copy 

number analysis, for the first time providing resources for massive interrogation of 

cancer signatures from 33 cancer types from over 11,000 patients. This resource is 

especially attractive as the different cancers are analysed using standardised pipelines, 

despite coming from multiple sources within the US. The International Cancer Genome 

Consortium (ICGC) is a similar database with the stated goal of cataloguing large-scale 

cancer genome studies in tumours from 50 cancer types. Unlike the TCGA, this project 
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is an international collaboration, with data from 16 countries making up 78 individual 

cancer projects with 46 cancer types so far, from approximately 9500 patients, and as 

such, is also a rich source of data (J. Zhang et al. 2011) that can help study the various 

mutation seen in cancers. Both the TCGA and ICGC contain continually expanding 

datasets which are available to the scientific community.  

1.6. Cancer Specific DNA Signatures 

The molecular interrogation of somatic DNA profiles is considered to be crucial 

to the actualisation of personalised oncological medicine, which is premised on utilising 

knowledge of the cancer mutation repertoire to classify tumours and guide the 

administration of anticancer agents targeting aberrant genes and pathways (Syn et al. 

2016). Common frameworks for understanding these mutational profiles include (1) 

Gene-level analysis, which is based on the identification of recurrently and significantly 

mutated genes that are likely to be important in cancer pathogenesis, and was the focus 

of section 1.3; and (2) Analysis of mutational signatures, whereby cryptic (“gene-

independent”) patterns in nucleotide sequences are deciphered, and in turn may reveal 

potentially-actionable underlying defects in intrinsic cell-biological processes as well 

as environmental carcinogenic exposures.  

Any individual base substitution may be represented by one of six possible 

transitions or transversions (i.e. C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G 

and T:A>G:C) (Helleday, Eshtad, and Nik-Zainal 2014; Nik-Zainal, Alexandrov, et al. 

2012; Alexandrov, Nik-Zainal, Wedge, Aparicio, et al. 2013; Alexandrov, Nik-Zainal, 

Wedge, Campbell, et al. 2013). However, because the flanking sequence context (i.e. 

neighbouring bases 5’ and 3’ to the substituted base) may influence mutation rates 

(Ellegren, Smith, and Webster 2003), and each immediately neighbouring base could 
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be A, C, T or G, a given base substitution could occur within any of 4 × 6 × 4 = 96 

trinucleotide contexts. 

Another pattern in DNA sequences is the size of insertions and deletions 

(collectively, indels), which varies across cancers in terms of absolute counts, relative 

proportions and distributions (Greenman et al. 2007; Yang et al. 2010). Indels are a 

prominent feature in cancer genomes which may be associated with defective DNA 

replication and recombination repair phenotypes, such as post-replicative mismatch 

repair (MMR) deficiency (Bhattacharyya et al. 1994; Karran 1996; Kuraguchi et al. 

2000).  

The significance of studying patterns of mutations in cancers was revealed by 

Greenman et al (Greenman et al. 2007) in which specific mutation profiles from 8 

different cancer types were identified by analysing kinome sequencing data, indicating 

unique carcinogenic initiators of these diseases, comprising one of the first large-scale 

uses of next-generation sequencing. The study revealed that overall cancer types appear 

to exhibit unique mutational profiles and by segregating C:G>T:A mutations into those 

that do or do not coincide with CpG sites, this study also highlighted the possible 

relationship between DNA methylation and mutations as factors in cancer 

development.  

The importance of studying these hidden patterns and combinations of DNA 

sequence alterations in human cancers was again highlighted by Alexandrov and 

colleagues, who in 2013 published an initial set of 21 mutational signatures which has 

provided much guidance to the understanding of cancer development (Alexandrov, 

Nik-Zainal, Wedge, Aparicio, et al. 2013). The list has since expanded to a total of 30 

signatures extracted from 10,952 exomes and 1,048 whole-genomes across 40 cancer 

types (Wellcome Trust Sanger Institute 2016b). As alluded to earlier, the decryption of 
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somatic DNA signatures – however elusive – may provide major leads into mutational 

processes such as carcinogenic exposures and infidelities in the DNA maintenance 

machinery which become imprinted in the genome over the biological history of a 

cancer. Hence, the analysis of somatic mutational signatures may be useful to the 

understanding of cancer aetiology, and may lead to new possibilities for preventative, 

predictive and therapeutic strategies. This section presents a comprehensive summary 

of several well-established mutational signatures, their associated aetiologies and 

cancer types. 

Environmental carcinogens are frequently invoked as culprits in mutagenesis and 

cancer development. One of the best known source of DNA damage is attributed to 

tobacco smoke (Hainaut and Pfeifer 2001; Pfeifer et al. 2002; Hainaut, Olivier, and 

Pfeifer 2001; Pleasance, Stephens, et al. 2010), which is epidemiologically associated 

with lung, esophageal, liver, and head and neck cancers.  Compared to never-smokers, 

the mutational spectrum of lung cancer among smokers is characterised by significantly 

elevated mutational burden (~10-fold); as well as enrichment for C:G>A:T 

substitutions exhibiting transcriptional strand bias (Govindan et al. 2012; Imielinski et 

al. 2012), which corroborates experimental findings that polycyclic hydrocarbons such 

as benzo[a]pyrene in tobacco smoke induce bulky adduct formation on guanine (Rodin 

and Rodin 2005). As evidence of the potential clinical utility of DNA mutational 

signatures, the molecular smoking signature was recently proposed as a predictive 

biomarker of checkpoint blockade immunotherapy in non-small cell lung cancer 

(Naiyer A Rizvi et al. 2015). 

Prolonged exposure to sunlight, or particularly to ultraviolet B radiation (UVB, 

290 – 320 nm wavelength), is a well-established risk factor for malignant melanoma. 

Non-ionising ultraviolet (UV) radiation is known to generate helix-distorting 
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cyclobutane pyrimidine dimers which may quickly overwhelm transcription-coupled 

nucleotide excision repair (NER) (Pleasance, Cheetham, et al. 2010; Durbeej and 

Eriksson 2003; Pfeifer, You, and Besaratinia 2005; Brash et al. 1991). Consistent with 

the photochemistry of pyrimidine dimers, the UV-associated mutational signature is 

uniquely characterised by C>T transitions at dipyrimidine sequences and CC>TT 

dinucleotide substitutions (Hodis et al. 2012; Drobetsky, Grosovsky, and Glickman 

1987; Alexandrov, Nik-Zainal, Wedge, Aparicio, et al. 2013). Perhaps reflecting the 

long-term manifestation of sunlight-induced DNA damage, the age of diagnosis of 

melanoma is correlated with accumulation of the UV-associated signature (Alexandrov, 

Nik-Zainal, Wedge, Aparicio, et al. 2013). 

Some common antineoplastic agents, including cisplatin, cyclophosphamide and 

temozolomide, occasionally spawn secondary primary malignancies whose molecular 

portraits are clearly unrelated to the initially treated cancer, but instead bear distinctive 

signatures of chemotherapy-induced genotoxicity (Szikriszt et al. 2016; Huang et al. 

2016; Alexandrov, Nik-Zainal, Wedge, Aparicio, et al. 2013; Greenman et al. 2007; 

Hunter et al. 2006; Tomita-Mitchell et al. 2000). Analysis of the National Cancer 

Institute’s Surveillance, Epidemiology, and End Results Programme (SEER) database 

show that approximately 1/6 of incident cancers are second- or higher-order primary 

neoplasms; and the risk of developing secondary cancers associated with cytotoxic 

chemotherapy increases with dose intensity and treatment duration (L. B. Travis 2006; 

A. K. Ng and Travis, n.d.). Szikriszt et al recently reported the mutagenic impact of 

eight widely used antineoplastic agents, including cisplatin, cyclophosphamide, 

hydroxyurea, gemcitabine, 5-fluorouracil, etoposide, doxorubicin and paclitaxel 

(Szikriszt et al. 2016). They found that cisplatin, cyclophosphamide and etoposide-

induced significant quantities of base substitutions each characterised by their unique 
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mutational spectra. For instance, in chicken DT40 lymphoblast cell line, which has a 

spontaneous mutagenesis rate of ~2.3 × 10-10 per base per cell division, four cycles of 

cisplatin exposure was sufficient to generate mutational burden equivalent to that of 

common leukaemias (~0.8 mutations per megabase) (Szikriszt et al. 2016). Moreover, 

the mutational signature associated with each drug is likely related to their unique 

mechanisms of action. For instance, cisplatin-induced base substitutions (of which 57% 

are C:G>A:T) and short indels are primarily localised to its putative sites of purine 

intrastrand crosslink formation; while cyclophosphamide treatment strongly elevated 

T>A (possibly caused by phosphotriester adducts) and C>T (possibly related to the 

formation of N7-guanine monoadducts and G-G interstrand crosslinks) substitution 

rates (Szikriszt et al. 2016). 

Aristolochic acid (AA) is a natural compound found in many Aristolochia plants 

that are widely used in traditional herbal remedies from China to Romania and Croatia. 

However, this compound is mutagenic and has been associated with increased 

incidences of bladder, hepatocellular, and urothelial cell carcinomas among users. The 

AA-associated mutational signature is characterised by strikingly high mutation burden 

relative to their cancer type, with approximately ~70% of mutations being A:T to T:A 

transversions (Poon et al. 2015; Poon et al. 2013; Hoang et al. 2013). Furthermore, these 

transversions display a preference for the trinucleotide motif T/CAG and significant 

bias for the non-transcribed strand (Poon et al. 2015; Poon et al. 2013; Hoang et al. 

2013). Because this trinucleotide motif coincides with the canonical splice acceptor 

sequence, AA-associated tumours display upregulation in the nonsense-mediated decay 

machinery as a result of aberrant splicing events and implicate splice site mutations in 

the pathogenesis of AA-associated tumours (Hoang et al. 2013; Poon et al. 2013). 
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Somatic mutations accumulate over the lifetime of an individual. The pair of age-

associated mutational signatures (1A/B), as defined by Alexandrov et al, are 

characterised by the prominence of C>T substitutions at CpG sites, ubiquitous across 

at least 15 cancer types, and probably reflect endogenous mechanisms present in normal 

and neoplastic cells alike such as the spontaneous deamination of 5-methylcytosine to 

give thymine (Alexandrov, Nik-Zainal, Wedge, Aparicio, et al. 2013; Walser, Ponger, 

and Furano 2008).  

Under normal physiological contexts, the APOBEC/AID family of cytidine 

deaminases have important roles in RNA editing, as well as innate and adaptive 

immunity (including retrovirus restriction, hypermutation and recombination of 

immunoglobulin genes). However, cytidine deaminases, which convert cytosine to 

uracil, are capable of sculpting the landscape of chromosomal and even mitochondrial 

DNA (Suspène et al. 2011; Shinohara et al. 2012; Burns et al. 2013; S. a Roberts et al. 

2013; Nik-Zainal, Alexandrov, et al. 2012; S. A. Roberts et al. 2012). The APOBEC 

editing pattern is pervasive and has been described in several cancers including 

pancreatic, prostate, breast, head and neck cancers, and haematological malignancies 

including multiple myeloma, chronic lymphocytic leukaemia and B-cell lymphoma. 

This editing pattern is characterised by C>T, C>G and C>A mutations within TpC 

contexts, with kataegis showing an even higher preference for TCA or TCT 

trinucleotide motifs, and positively correlates with APOBEC mRNA levels (S. a 

Roberts et al. 2013). Interestingly, both APOBEC-induced kataegis and non-clustered 

substitutions tend to localise near rearrangement breakpoints, possibly because of the 

affinity of APOBEC enzymes for single-stranded DNA (Walker et al. 2015; Drier et al. 

2013; Smith et al. 2012). As evidence of their prognostic value, APOBEC/AID 

signatures in multiple myelomas is associated with multiple features which predict 
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poorer overall survival, including MYC, t(14;16) and t(14;20) translocations, and 

CCND1 mutations (Walker et al. 2015).  

Defective DNA mismatch repair (MMR) is operative in approximately 1/5  of 

colorectal cancers and 1/7 of uterine cancers, and detectable in at least 1% of cancer 

samples in esophageal, liver, lung, stomach, cervical, breast and kidney cancers 

(Alexandrov and Stratton 2014). Tumours which exhibit MMR-deficiency may possess 

one or more of four distinct mutational signatures, which are distinguished by the 

frequency of trinucleotide alterations. For instance, one of these four signatures displays 

prominence of C>T at NpCpG sites whereas another shows enrichment for C>T at 

GpCpN contexts. The former signature is correlated with the inactivation of DNA 

mismatch repair genes in colorectal cancer (P = 3.3 × 10-5) (Alexandrov, Nik-Zainal, 

Wedge, Aparicio, et al. 2013). However, one common feature among these signatures 

is their association with large numbers of small indels (<3bp) at mono/polynucleotide 

repeats, also termed as ‘microsatellite instability’. Failure of post-replicative MMR 

could be a consequence of biallelic somatic mutations or epigenetic inactivation of 

MMR genes such as MLH1 (Helleday, Eshtad, and Nik-Zainal 2014; Alexandrov, Nik-

Zainal, Wedge, Aparicio, et al. 2013; Boland and Goel 2010).  

The aberrant activity of the B family DNA polymerase ε, which typically has an 

error rate of 1 in 10-7 nucleotides synthesised (Shevelev and Hübscher 2002) and is 

encoded by the POLE gene, result in “ultra-hypermutability” characterised by a striking 

pattern of C>A at TpCpT and C>T at TpCpG contexts in colorectal and endometrial 

cancers. This may occur a result of somatic and germline hotspot mutations in the 

exonuclease domain in POLE such as Pro286Arg and Val411Leu, which is suggested 

to lead to loss of proofreading capacity and replication fidelity (Cancer Genome Atlas 

Network 2012; Cancer Genome Atlas Research Network, Kandoth, et al. 2013).  
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The final signature which this section covers is one attributed to defective 

homologous-recombination-based DNA double-strand break repair, which is proposed 

to be a result of germline and/or somatic BRCA1/2 inactivation or abnormalities 

(Alexandrov, Nik-Zainal, Wedge, Aparicio, et al. 2013), and is present in breast, 

ovarian and pancreatic cancers. The BRCA1 protein is responsible for the resection of 

DNA ends while BRCA2 mediates the loading of RAD51 onto single-stranded DNA 

(Helleday, Eshtad, and Nik-Zainal 2014; Moynahan et al. 1999; Moynahan, Pierce, and 

Jasin 2001; Bunting et al. 2010; Davies et al. 2001). Hence, their inactivation results in 

non-homologous end-joining repair of DNA double-strand breaks which leads to large 

indels (longer than 3bp and up to 50bp) with overlapping microhomology at breakpoint 

junctions. This signature exhibits an overall equal representation of all 96 trinucleotide 

alterations. Interestingly, pancreatic cancer patients who respond to platinum therapy 

usually exhibit the BRCA1/2–associated mutational signature (Alexandrov, Nik-

Zainal, Wedge, Aparicio, et al. 2013). 

Overall these studies reveal the significance of specific variants and mutated genes 

in the different cancer subtypes. It is thus conceivable that mutational signatures, along 

with SNV and indel profiles, may be used as unique identifiers of cancer subtypes, 

however, there has been little investigation into whether this is possible. 

1.7. Next-generation Sequencing (NGS) 

NGS (also known as High-throughput sequencing (HTS) or second generation 

sequencing or massively parallel sequencing) technologies, have allowed the rapid and 

accurate sequencing of expressed genes (transcriptomes), known exons (exomes) and 

even complete genomes of cancer samples, a task that would take significantly greater 

resources by older sequencing technologies (Meyerson, Gabriel, and Getz 2010; Mertes 

et al. 2011; Xi, Kim, and Park 2010). NGS, as used in this study, encapsulated a set of 
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technologies that involve 1) the enrichment of short segments of DNA from an 

organism that varies from 35 to 400 bases, depending on the technology, 2) the 

determination of the nucleotide sequence of the enriched DNA (reads), 3) The 

alignment of these reads to a known genome assembly by using optimised algorithms 

and finally 4) the determination of characteristics of the organism’s genome via 

comparison to the reference genome and/or to other organism’s DNA. These 

technological advances are important for advancing our understanding of malignant 

neoplasms because cancer is fundamentally a disease of the genome. A wide range of 

genomic alterations, including point mutations, copy number changes and 

rearrangements can lead to the development of cancer. Most of these alterations are 

somatic, that is, they are present in cancer cells but not in a patient’s germ line 

(Meyerson, Gabriel, and Getz 2010). Thus a genetic analysis comparing cancer vs. 

germline DNA may reveal intricate patterns of cancer development (Goh et al. 2011). 

NGS experiments are either replacing or complementing other high-throughput 

technologies such as beadChips or microarrays (Hurd and Nelson 2009) or low-

throughput approaches such as real-time PCR (Tuononen et al. 2013). The advantage 

over microarrays/bead chips are the larger dynamic range that NGS technologies can 

achieve and the fact that variant detection is not limited to specific probe locations, 

significantly, novel mutations can be discovered. The high-through nature of NGS 

allows for the analysis of larger regions of the genome than real-time PCR, at much 

more cost-effective rates. NGS approaches are also very versatile having applications 

in DNA sequencing, RNA sequencing and expression determination (Wang, Gerstein, 

and Snyder 2009), DNA methylation analysis (Adusumalli et al. 2015) and elucidation 

of chromatin biology (Wang, Gerstein, and Snyder 2009). 
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When carrying out sequencing using NGS, the actual approach depends on the 

scope of the genome to be studied. Specific regions of the genome can be analysed via 

targeted panel sequencing (TPS), an approach taken when a study requires the 

sequencing results from candidate genes or regions, usually cancer-specific or pan-

cancer genes and when a great level of data clarity is required (Tomlinson 2012) and is 

typically performed on low to mid-range sequencers such as the MiSeq (Illumina), 

SOLiDv4 (Life Technologies) or Ion PGM (Thermo Fisher Scientific Inc). When the 

full complement of protein-coding segments of the genome is to be analysed (180,000 

exons from about 30 megabases), whole exome sequencing (WES) is used (S. B. Ng et 

al. 2009; Asan et al. 2011; Parla et al. 2011) generally performed on mid to high-range 

sequencers such as the NextSeq 500 or HiSeq from Illumina or the Ion Proton (Thermo 

Fisher Scientific Inc). When the entire sequence of the genome is to be studied, whole 

genome sequencing (WGS) can be used, allowing for the analysis of functionally 

relevant non-coding regions (Kellis et al. 2014) including noncoding RNA which plays 

a role in disease regulation (M. Li et al. 2009), cis- and trans- regulatory elements which 

control transcription of distant genes (Visel, Rubin, and Pennacchio 2009), functional 

intronic sequences, pseudogenes which potentially regulate the expression of protein-

coding genes (Sisu et al. 2014), and many more regions involved in genomic regulation. 

WGS requires high-range sequencers such as the HiSeq or if exceedingly high-

throughput is required, the HiSeq X Ten system (Check Hayden 2014). Of specific 

relevance to the work in this thesis is WES and to a lesser extent WGS, as data generated 

from these sequencing approaches, available via that TCGA and ICGC databases, are 

utilised. 
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1.7.1. Bioinformatics in NGS 

Current knowledge of the mutational panels present in cancers has been revealed 

through NGS interrogation of cancer as never before. In recent years a large number of 

techniques have been developed to tackle the different procedures involved in NGS 

analysis with the ultimate goal to reveal the variants present in disease states. Figure 3 

shows the workflow of a comprehensive NGS DNA analysis from sample preparation 

to final analysis, highlighting several of the tools used currently. 

Before DNA-based NGS can be carried out, DNA must be extracted and quality 

control tested to ensure high-quality DNA for the NGS analysis. For samples of an 

appropriate quality, library preparation can then be carried out. Briefly, this is a process 

that shears DNA and then anneals tagged sequences (adapter sequences) to the ends of 

the sheared sequences to facilitate the polymerase chain reaction (PCR) amplification 

procedure, which is required prior to sequencing. Sequences for identification of 

samples (bar codes) may also be added to allow multiplexing. The process of 

amplification is called cluster generation on Illumina machines. These amplified 

sequences are then sequenced using different mechanisms call chemistries and is 

dependant of the sequencing machine used. Illumina uses a system called sequencing 

by synthesis, while Ion based machine use the Ion semiconductor sequencing approach. 

As summarised in Figure 3, following sequencing, several bioinformatics (in silico) 

techniques are carried out, including the conversion of raw base calling files (BCL) 

(Illumina) or DAT files (Ion torrent) into the FASTQ format (Cock et al. 2010), which 

is a text-based format that stores both sequence information and quality score for the 

predicted bases and is the standardized format used by all modern short aligners. 
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Figure 3: Workflow of DNA-based Next-Generation Sequencing  
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Before using the sequence reads, QC is performed to detect the proportion of low-

quality bases, i.e. to evaluate suitable of the dataset. The quality of called bases is 

evaluated via a Phred score (B Ewing et al. 1998; Brent Ewing and Green 1998), which 

is a measure of the quality of the identification of the bases. This valuation will then 

direct whether reads should be filtered out entirely or trimmed, so as to avoid the use 

of low-quality segments. There are several tools available for this task 

(Babraham/Bioinformatics 2010; T. Zhang et al. 2011; Martínez-Alcántara et al. 2009). 

Sequence alignment is the method of arranging the sequences of DNA, produced 

by the sequencing procedure, to the corresponding region in the genome, based on 

nucleic acid arrangement similarity. The actual alignment process involves software 

packages that use algorithms that are optimized for short reads alignments such as the 

Burrows–Wheeler transform (BWT) as used in BWA (H. Li and Durbin 2009) and 

Bowtie (Langmead et al. 2009), i.e. methods that align millions to billions of short 

segments of DNA to a longer reference in a way that allows for mismatches and gaps 

that would naturally occur due to SNV and indels. The practical output of these 

processes is an aligned reads file in the either the bam or sam formats (H. Li et al. 2009). 

1.7.2. Variant calling 

As described in section 1.3, DNA mutations can be broadly divided into four 

categories, namely, single nucleotide variants (SNV), insertion and deletions (indel), 

structural variants (SV) and finally copy number variants (CNV). The different 

characteristics of these mutations may require different tools for their discovery. The 

two variant types used as part of this thesis work are SNVs and indels. Although SNV 

and indels are different biological events, in practical terms both these events are often 

derived by the same software packages that specialise in small variants detection. These 

packages can be divided into two groups, germline variant callers and somatic variant 
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callers. The prior group details variant callers that compare the aligned sam/bam file to 

a reference genome and thus reveals both germline variants (differences to the reference 

genome, most often SNPs) and somatic variants that may be associated with a diseased 

state, if existent. Somatic callers on the hand specifically derive somatic mutations from 

a sample with a diseased state (e.g. cancer) by comparison against both a matched 

nondiseased sample and the reference genome. In this way, mutations present in both 

the sample and matched nondiseased will be ignored, thus leaving only true somatic 

mutations.  

GATK UnifiedGenotyper (McKenna et al. 2010; DePristo et al. 2011) is one of 

the most popular germline callers that identifies both SNVs and indels by the use of a 

bayesian genotype likelihood model to simultaneously estimate the most likely 

genotypes and allele frequencies. Another popular caller is SAMtools mpileup (H. Li 

et al. 2009), which uses hidden Markov models (HMM) to estimate the mutations. 

Somatic callers use joint probability-based statistical approaches to determine the true 

somatic variants. Three of the most commonly used somatic caller are Strelka (Saunders 

et al. 2012), MuTect (Cibulskis et al. 2013) and VarScan 2 somatic (Koboldt et al. 

2012). It should be noted that the TCGA studies use both MuTect and Strelka to derive 

mutational data and prior to that, BWA for alignment, while the ICGC project uses a 

variety of tools, depending on the different centres involved. Both databases use 

somatic variant caller to derive cancer-specific somatic mutations. 

Figure 4 explains several variants calling processes in detail, as well as comparing 

the possible outcome from somatic and germline variant callers. The top panel 

represents the alignment seen in a normal (matched) sample within a specific region of 

DNA. The bottom represents alignment in a cancer sample within the same genomic 

coordinate region of DNA. The reference sequence is shown between these two 
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alignments. This figure diagrammatically represents the concepts behind variant calling 

from aligned reads. Some examples highlight how comparing cancer to a match normal 

by the use of a somatic variant caller can have superior outcomes to just using the 

tumour sample with a germline caller. The numbers below corresponds to the 

numbering in Figure 4. 

1) Both the normal and tumour have more than one nucleotide (A and T) aligned 

to this position. This would suggest that this nucleotide position is heterozygous, 

therefore a somatic variant caller would not report a variant from this position, a 

germline caller, however, would report this as a potential A > T variant. 

2) The heterozygosity seen in the normal sample (C and G) is not observed in the 

tumour samples. A somatic caller such as VarScan would report this as a loss of 

heterozygosity, but a germline caller would report this as just a variant. 

3) A deletion (GGT) is identified where a sequence gap is detected in the aligned 

reads. The observance of these gaps is dependent on the gap tolerance of the alignment 

algorithm. 

4) Insertions (AG) are detected when nucleotides on the aligned read do not have 

counterparts on the reference genome. 

5) The variant allele C is a minor constituent of the bases in both the normal and 

tumour, a matched caller is unlikely to call this a variant, however, a germline may call 

it, depending on the variant calling thresholds. 

6) This is a high-confidence variant as all the aligned nucleotides in the tumour 

represent a change (A > G) while all the normal nucleotides are the same as the 

reference. 

7) At this position, a somatic caller would rank this (C > A) as a low confidence 

variant as the A > C mutation is seen in both the normal and tumour, but at a slightly 
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higher frequency in the tumour. A germline variant caller would simply rank this a 

high-confidence variant. 

8) This variant (G > T) may not be called or may be called as a low confidence 

variant whether using a Somatic or germline caller, depending on the variant calling 

threshold, as there are very few bases supporting the variant. 

1.7.3. Annotation of Variants 

The implications of mutation data is largely uninformative without greater analysis 

and therefore have to be annotated to be meaningful. The annotation process includes 

assigning details such as the affected gene, the region of the gene that has been affected 

(exon, intron, intergenic etc.), whether or not the variant has been found previously, 

done found by referencing databases such as COSMIC (S. A. Forbes et al. 2015) and 

1000 genomes project database (Abecasis et al. 2012) and many more potentially 

beneficial details. Variant Effect Predictor (McLaren et al. 2010) is an annotation 

approach that references the latest Ensembl database and is provided as both an online 

tool, as well as a downloadable Perl script. SnpEff (Cingolani et al. 2012) and Oncotator 

(Ramos et al. 2015) reference a list of databases to annotated variants in a similar 

manner to VEP. Homer Peakfinder (Heinz et al. 2010) is an annotation tool that was 

actually intended for DNA motif finding, and although less comprehensive than VEP 

and SnpEff it is significantly faster and as such, desirable for basic annotation. The 

TCGA MAF file is a standardised format for listing annotated variants used by the 

TCGA database and be generated by Oncotator and is used as part of this thesis. 
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Figure 4: Comparing Somatic and Germline SNV and indel Variant Callers 
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1.8. Machine Learning: Application in biology 

The term machine learning (ML) refers to a set of topics dealing with the creation 

and evaluation of algorithms that facilitate pattern recognition, classification, and 

prediction, based on models derived from existing data (Tarca et al. 2007). In a practical 

sense, it can be thought of as the process of utilising algorithms in a computing 

environment to solve a problem. The choice of algorithm is based on several 

considerations, most importantly the question/problem at hand, the type of data being 

used, the time frame available to derive the results and the computational processing 

infrastructure available. The underlying principal of ML is to use a technique that is 

able to carry out pattern matching and/or predict results on a given dataset and thus 

reveal underlying truths that are not initially observable. The advantage of using 

machine learning techniques is that once properly implemented, models can be 

evaluated and iterated over several modified parameters until an optimised solution is 

found (Heffernan et al. 2015; Demirci et al. 2016; Cheng et al. 2015). ML has in 

previous years been utilized in a myriad of application (Angermueller et al. 2016) such 

as natural language interpretation (Burger et al. 2016; Napolitano et al. 2016), weather 

and pollution prediction (Pandey, Zhang, and Jian 2013; Liu et al. 2016), host-pathogen 

interactions (Sen, Nayak, and De 2016) among many other applications. 

Machine learning can be divided and subdivided into several categories, but 

perhaps the most practical considering when approaching machine learning is to 

understand whether the analysis process requires a supervised or unsupervised learning 

approach. Broadly, supervised learning involves classification of data based on labelled 

categories and there is a pre-existing assumption that the data can, in some way be 

grouped based on the labelled categories. Unsupervised learning is an unbiased 

approach to classification, where inferences are made from unlabeled datasets where 
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no pre-existing assumptions are made about how the data should be sorted. A simple 

example related to biology would be as follows. Assuming there are several normal and 

tumour samples that have undergone sequencing and variant calling. A supervised 

approach would be to separate the samples into normal and tumour samples and then 

determine which variants are associated with tumour status. An unsupervised approach 

would be to analyse all variants, and then determine if the variants are associated with 

tumour status, or any other classifier such as age, sex or ethnicity etc. Another 

consideration is the data type, i.e. if data variables are continuous, categorical, binary 

or even a mixture of multiple data types because different ML algorithms are optimised 

for different data types and dynamic ranges.  

Recent publications have highlighted how machine learning methodologies have 

been utilised to help solve biological problems (Tarca et al. 2007; Kourou et al. 2015). 

For example, a few ML techniques, including feature extraction, which is a subset of 

dimensionality reduction, supervised learning, adaptive boosting, and random forest 

classifiers have been used for microscopic image analysis (Sommer and Gerlich 2013). 

The microscopy images are converted into a data representations suitable for machine 

learning, and then various state-of-the-art machine-learning algorithms are introduced. 

Applications include the detection of cell bounders, areas of tumour tissue as opposed 

to non-tumour tissue, cell type detection and fluorescence intensity levels. 

Hidden Markov models (HMM) have been used extensively for the detection of 

copy number variations (Seiser and Innocenti 2015) by programs such as PennCNV. 

HMMs are full probabilistic models that function to determine an unknown sequence 

of states based upon a sequence of observations. Markov models model stochastic 

processes in which known sequences are produced from a finite number of discrete 
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states, where each new state of a sequence is only dependent upon the previous state, 

with the copy number state being of interest for these software packages. 

ML  approaches have even been used for cancer prognosis and prediction  (Kourou 

et al. 2015). Examples of susceptibility prediction are in breast cancer by the analysis 

of mammograms using artificial neural networks (ANN) (Ayer et al. 2010) and in colon 

cancer by the analysis of clinical and pathological data by Bayesian Networks (BN) 

(Stojadinovic et al. 2011). Some examples of cancer recurrence prediction after 

remission, include in breast cancer by the analysis of clinical, pathologic, epidemiologic 

data by Support Vector Machine (SVM) (W. Kim et al. 2012) and oral cancer by clinical 

and imaging data using BN (Exarchos, Goletsis, and Fotiadis 2012). Lastly, examples 

of survival prediction include using ANN in lung cancers to analyse clinical data and 

gene expression (Chen, Ke, and Chiu 2014) and decision tree classifiers for the analysis 

of breast cancer surveillance, epidemiology and end results data (J. Kim and Shin 

2013).  The work in chapter 3 attempts to use several machine learning algorithms 

including several considered to be the most influential in data mining (Wu et al. 2008) 

to attempt to make a site of origin prediction of cancers based on NGS results.

1.9. Hypotheses and Aims 

Recently, there has been interest in the study of DNA mutational change profiles 

of cancers, as these potentially allow classification of the diseases according to 

carcinogen and treatment categories. In 2007, Greenman et al. reported that the eight 

cancers types included in the study were associated with distinct SNV patterns 

(Greenman et al. 2007). In 2013, a more comprehensive study established that 21 

trinucleotide (context) mutational signatures are associated with clinical features and 

potential carcinogen exposure (Alexandrov, Nik-Zainal, Wedge, Aparicio, et al. 2013). 

The inclusion of a greater number of samples and cancer types has recently increased 
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the signature count to 30 (Wellcome Trust). Distinctive signatures of indel mutations 

have also been observed in different cancers and may vary in both length and frequency 

(Yang et al. 2010). A recent analysis of six cancers showed that mutations may not be 

distributed uniformly throughout the genome, but instead the genomic density of 

variants according to chromosomal location can vary by up to fivefold depending on 

cancer subtype (Polak et al. 2015).  

These studies in themselves have revealed unique features of different cancer 

types, however, each study only investigates one of the aspects of mutational changes. 

The study of indels and genomic densities have also used very small sample sizes with 

few cancer types. An integrated and comprehensive analysis of all the different 

mutational features or dimensions is lacking. Furthermore, an assessment of the 

exclusivity of these mutational signatures to specific cancer types and whether these 

signatures are capable of definitely distinguishing any cancer subtypes is also unknown. 

The aim of the work presented is to develop a methodology that can distinguish 

the subtype/site of origin of cancers through an integrated and comprehensive analysis 

of the hitherto identified mutational dimensions (trinucleotide mutations, indel, 

variants, genes and mutational genomic densities) and to then use identified mutational 

signatures to develop a prediction approach capable of reliably determining the subtype 

of a given cancer. 

This study works on the hypothesis that cancer subtypes, in part, have 

distinguishing mutational signatures that can be revealed at one or more of the 

mutational dimensions and that these signatures are sufficiently distinct from each other 

to establish a framework that is necessary to determine the specific cancer subtype of a 

patient based exclusively on mutational signatures. 
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In chapter 2, subtype distinct mutational signatures are revealed via a 

multidimensional analysis of trinucleotide mutations, indels, mutated genes, individual 

variants and genomic densities of mutations found in the 31 cancer subtypes available 

from the TCGA database. Firstly, the interrelatedness of the cancer subtypes are 

determined via a comparison of the consensus mutational signatures of these different 

cancer subtypes, secondly, the full spectrum of mutational signatures are determined 

by the analysis mutational signatures of all individual patients. 

In chapter 3, a methodology was developed to summarise the nucleotide change 

signatures of cancer samples of unknown cancer types and then compare these 

signatures to the mutational signatures of known cancers from the TCGA database, and 

subsequently make a reliable cancer subtype/site of origin prediction, by the 

implementation of an optimised machine learning algorithm. As part of this 

methodology, MutProfiler was created, a tool that allows users to carry out the 

prediction by the analysis of NGS results in the form of a MAF file. The hope is that 

this tool will supplement existing techniques for site/tissue of origin prediction 

especially as NGS analyses continue to transition from a pure research tool to 

standardised clinical applications (Shen et al. 2015).
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Chapter II        

Multidimensional Mutation profiles of different 

cancers
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2.1. Introduction 

In this chapter, the mutation data from all available cases in the TCGA are analysed 

as 10 different mutational aspects, called dimensions. Firstly a consensus version of 

each cancer is created, then, all the cancer consensus versions are compared to each 

other, separately according to 10 dimensions. This analysis reveals the relatedness of 

the different cancers, thus identifying overall if similar mutation mechanisms exist 

among the different cancer types.  

Secondly, the mutation profiles of individual cases are compared to each other, 

also according to the 10 dimensions. This analysis focuses of trying to determine if 

cases within certain cancers have defining mutation characteristics. This part of the 

chapter sets the ground work to investigate if it is possible to identify cancer specific 

mutational profiles and may have practical applications in the study of CTCs or CUPs. 

2.2. Methods 

2.2.1. Mutation reference (TCGA database) 

Annotated somatic variants from WES of 31 cancers available in the TCGA Data 

Portal were downloaded as mutation alignment format (MAF) files (TCGA 2013) (The 

Cancer Genome Atlas 2013) (Table 1) from all available studies from the data portal. 

The most recent download was performed on 10 June 2015. The cancer types’ 

abbreviations, as used in Table 1, are used throughout this thesis e.g. BLCA for Bladder 

urothelial carcinoma. Prior to variant calling, bioinformatics was carried out using 

Broad Institute’s Cancer Genome Analysis (CGA) bioinformatics tools managed by the 

Firehose pipeline (CGA 2013). Library preparation kits include the Agilent SureSelect 

Human All Exon 5Mb kit, NimbleGen CCDS Solution Probes and NimbleGen SeqCap 

EZ Exome 2.0 Solution. Alignment tools include BFAST (Homer, Merriman, and 
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Nelson 2009), MAQ (H. Li, Ruan, and Durbin 2008) and BWA. Variant calling was 

performed using a combination of  MuTect, Strelka and indel locator (Chapman et al. 

2011) depending on the study. Annotation and MAF file generation was performed 

using Oncotator in several of the studies. Different versions of the variant analyses were 

available from the different studies and these were united into a combined MAF file 

using python scripts preventing variant and case duplications. Before mutational 

analysis was performed, cases from colon adenocarcinomas (COAD), stomach 

adenocarcinomas (STAD) and uterine corpus endometrial carcinomas (UCEC) were 

segregated into, either non-MSI-high (NonMSIH), comprising microsatellite stable 

(MSS) and MSI-low cases, or MSI-high (MSIH) as determined by the MSI Analysis 

System (Promega).  
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Table 1: Cancer types for which data was obtained from the TCGA database with associated descriptors 

Cancer full name Abbreviation Cases MSI-high Cancer cell type Primary site Primary Germ layer Updated Downloaded  

Adrenocortical carcinoma  ACC 91   Carcinoma Adrenal gland Ectoderm 07/02/15 10/06/2015 

Bladder urothelial carcinoma  BLCA 412   Carcinoma Bladder Endoderm 07/02/15 10/06/2015 

Breast invasive carcinoma  BRCA 988   Carcinoma Breast Mesoderm 07/02/15 10/06/2015 

Cervical squamous cell carcinoma and 

endocervical adenocarcinoma  

CESC 198   Carcinoma Cervix Mesoderm 06/29/15 10/06/2015 

Cholangiocarcinoma  CHOL 36   Carcinoma Bile duct Endoderm 06/26/15 10/06/2015 

Colon adenocarcinoma  COAD 269 52 Carcinoma Colon Endoderm 07/02/15 10/06/2015 

Esophageal carcinoma  ESCA 183 2 Carcinoma Oesophagus Endoderm 07/02/15 10/06/2015 

Glioblastoma multiforme  GBM 291   Blastoma Brain Ectoderm 07/02/15 10/06/2015 

Head and neck squamous cell carcinoma  HNSC 526   Carcinoma Head and neck Endoderm 06/26/15 10/06/2015 

Kidney chromophobe  KICH 66   Carcinoma Kidney Mesoderm 07/02/15 10/06/2015 

Kidney renal clear cell carcinoma  KIRC 451   Carcinoma Kidney Mesoderm 06/26/15 10/06/2015 

Kidney renal papillary cell carcinoma  KIRP 169   Carcinoma Kidney Mesoderm 06/26/15 10/06/2015 

Acute myeloid leukemia  LAML 192   leukaemia White blood cells Mesoderm 04/29/15 10/06/2015 

Brain lower grade glioma  LGG 515   Glioma Brain Ectoderm 07/02/15 10/06/2015 

Liver hepatocellular carcinoma  LIHC 202   Carcinoma Liver Endoderm 06/30/15 10/06/2015 

Lung adenocarcinoma  LUAD 546   Carcinoma Lung Endoderm 07/02/15 10/06/2015 

Lung squamous cell carcinoma  LUSC 177   Carcinoma Lung Endoderm 06/26/15 10/06/2015 

Ovarian serous cystadenocarcinoma  OV 463   Carcinoma Ovary Mesoderm 06/26/15 10/06/2015 

Pancreatic adenocarcinoma  PAAD 178   Carcinoma Pancreas Endoderm 07/02/15 10/06/2015 

Pheochromocytoma and paraganglioma  PCPG 179   Glioma Adrenal gland Ectoderm 06/26/15 10/06/2015 

Prostate adenocarcinoma  PRAD 425   Carcinoma Prostate Endoderm 07/02/15 10/06/2015 

Rectum adenocarcinoma  READ 115 3 Carcinoma Rectum Endoderm 06/26/15 10/06/2015 

Sarcoma  SARC 258   Sarcoma  Unknown Mesoderm 07/02/15 10/06/2015 

Skin cutaneous melanoma  SKCM 370   Melanoma Skin Ectoderm 07/02/15 10/06/2015 

Stomach adenocarcinoma  STAD 421 77 Carcinoma Stomach Endoderm 07/03/15 10/06/2015 

Testicular germ cell tumours  TGCT 150   Germ cell tumour Testes Mesoderm 07/02/15 10/06/2015 

Thyroid carcinoma  THCA 441   Carcinoma Thyroid Endoderm 07/02/15 10/06/2015 

Thymoma  THYM 123   Carcinoma Thymus Endoderm 06/26/15 10/06/2015 

Uterine corpus endometrial carcinoma  UCEC 248 71 Carcinoma Uterus Mesoderm 06/26/15 10/06/2015 

Uterine carcinosarcoma  UCS 57 2 Sarcoma  Uterus Mesoderm 06/26/15 10/06/2015 

Uveal melanoma  UVM 80   Melanoma Eye Ectoderm 06/29/15 10/06/2015 
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2.2.2. Construction of mutation type datasets 

Mutations downloaded from the TCGA database were annotated according to 8 

single dimension and 2 multidimensional mutation types as follows:  

1. Trinucleotide mutations (counts): Counts of the trinucleotide mutations, i.e. 

SNVs studied in the context of flanking bases. 

2. Trinucleotide mutations (proportions): Proportions of the respective types of 

trinucleotide mutations i.e. normalised to a sum of 1 for all categories 

3. Indel mutations (counts): Counts of the different indels lengths ranging from 

1 to greater than 5 

4. Indel mutations (proportions): Proportions of the respective indels lengths 

ranging from 1 to greater than 5, then normalised to a sum of 1 for all categories 

5.  Mutated genes: Genes with coding mutations i.e. binary classifier with 1 

corresponding a mutation in a given gene and 0 indicating indication no 

mutation 

6. Recurrent variants: Coding variants with a frequency of 4 or more in the entire 

dataset, designated by 1 indicating a mutation and 0 indicating the wildtype 

allele 

7. Genomic distribution (counts): The counts of mutations per megabase (Mb) 

in the genome 

8. Genomic distribution (proportions): The proportions of mutations per each 

megabase (Mb) in the genome, normalised to a sum of 1 for all categories 

9. Multidimensional (counts): A combination of all mutational dimensions using 

counts for trinucleotide mutations, indel sizes and genomic distributions. 

10. Multidimensional (proportions): A combination of all mutational dimensions 

using proportions for trinucleotide mutations, indel sizes and genomic 

distributions. 

Methods concerning the various dimensions are described in the following 

sections. The mutational signature analyses and summary statistics described in this 

chapter were performed using an integrated pipeline created in the Python programming 

language v3.4.1 using py-postgresql v1.1.0 for interfacing with PostgreSQL, Pandas 

v0.16.2 and Numpy v1.9.2 for data manipulation, Scipy v0.14.0 for hierarchical 
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clustering and statistical analysis, Matplotlib v1.4.3 for visualization and Statsmodels 

v0.6.1 for false discovery rate (FDR) and familywise error rate (FWER) multiple 

testing. 

 

Figure 5: Analysis of the many dimensions of DNA mutations may elucidate cancer specific 

characteristics 

 

 

The studied mutations involve a broad range of mutational phenomena, called 

dimensions, representing regions of the genome ranging in several orders of magnitude. 

As seen in Figure 5, the dimensions are, specific single base SNVs, studied as 

trinucleotides (1&2), indels, which involve 1 or more nucleotides (3&4), the entirety of 

coding mutation within genes, which may include regions of up to a hundred thousand 

nucleotides (5), the recurrence of variants (6) and the distribution of these mutations 

throughout entire chromosomes within 1 Mb (1 million base) bins. 
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2.2.2.1. Annotations of trinucleotide mutations 

There are 12 possible SNVs (A>C, A>G, A>T, C>A, C>G, C>T, G>A, G>C, G>T, 

T>A, T>C, T>G). When studied in the context of flanking sequences, there are 192 

possible trinucleotide changes, namely four possible 5’ bases × 12 possible SNVs × 

four possible 3’ bases. The number of trinucleotide changes can be reduced to 96 (192 

÷ 2) by assimilating reverse complement pairs (Table 2). To derive the counts of the 96 

possible trinucleotide changes, the flanking bases (nucleotides 5’ and 3’ of the mutation 

site) of each SNV were determined by comparison to a PostgreSQL database composed 

of the entire genome sequences from UCSC genome builds hg18 (Assembly date: Mar. 

2006), hg19 (Assembly date: Dec. 2013, GenBank accession ID: GCA_000001405.1) 

and hg38 (Assembly date: Dec. 2013, GenBank accession ID: GCA_000001305.2) 

(Kent et al. 2002). The proportion of each trinucleotide change was then determined by 

dividing the counts for each change by the total counts of all trinucleotide changes. 
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Table 2: All possible trinucleotide mutations arranged by SNV 
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C>A 

ACA>AAA TGT>TTT  

C>T 

ACA>ATA TGT>TAT  

T>C 

ATA>ACA TAT>TGT 

ACC>AAC GGT>GTT  ACC>ATC GGT>GAT  ATC>ACC GAT>GGT 

ACG>AAG CGT>CTT  ACG>ATG CGT>CAT  ATG>ACG CAT>CGT 

ACT>AAT AGT>ATT  ACT>ATT AGT>AAT  ATT>ACT AAT>AGT 

CCA>CAA TGG>TTG  CCA>CTA TGG>TAG  CTA>CCA TAG>TGG 

CCC>CAC GGG>GTG  CCC>CTC GGG>GAG  CTC>CCC GAG>GGG 

CCG>CAG CGG>CTG  CCG>CTG CGG>CAG  CTG>CCG CAG>CGG 

CCT>CAT AGG>ATG  CCT>CTT AGG>AAG  CTT>CCT AAG>AGG 

GCA>GAA TGC>TTC  GCA>GTA TGC>TAC  GTA>GCA TAC>TGC 

GCC>GAC GGC>GTC  GCC>GTC GGC>GAC  GTC>GCC GAC>GGC 

GCG>GAG CGC>CTC  GCG>GTG CGC>CAC  GTG>GCG CAC>CGC 

GCT>GAT AGC>ATC  GCT>GTT AGC>AAC  GTT>GCT AAC>AGC 

TCA>TAA TGA>TTA  TCA>TTA TGA>TAA  TTA>TCA TAA>TGA 

TCC>TAC GGA>GTA  TCC>TTC GGA>GAA  TTC>TCC GAA>GGA 

TCG>TAG CGA>CTA  TCG>TTG CGA>CAA  TTG>TCG CAA>CGA 

TCT>TAT AGA>ATA  TCT>TTT AGA>AAA  TTT>TCT AAA>AGA 

C>G 

ACA>AGA TGT>TCT  

T>A 

ATA>AAA TAT>TTT  

T>G 

ATA>AGA TAT>TCT 

ACC>AGC GGT>GCT  ATC>AAC GAT>GTT  ATC>AGC GAT>GCT 

ACG>AGG CGT>CCT  ATG>AAG CAT>CTT  ATG>AGG CAT>CCT 

ACT>AGT AGT>ACT  ATT>AAT AAT>ATT  ATT>AGT AAT>ACT 

CCA>CGA TGG>TCG  CTA>CAA TAG>TTG  CTA>CGA TAG>TCG 

CCC>CGC GGG>GCG  CTC>CAC GAG>GTG  CTC>CGC GAG>GCG 

CCG>CGG CGG>CCG  CTG>CAG CAG>CTG  CTG>CGG CAG>CCG 

CCT>CGT AGG>ACG  CTT>CAT AAG>ATG  CTT>CGT AAG>ACG 

GCA>GGA TGC>TCC  GTA>GAA TAC>TTC  GTA>GGA TAC>TCC 

GCC>GGC GGC>GCC  GTC>GAC GAC>GTC  GTC>GGC GAC>GCC 

GCG>GGG CGC>CCC  GTG>GAG CAC>CTC  GTG>GGG CAC>CCC 

GCT>GGT AGC>ACC  GTT>GAT AAC>ATC  GTT>GGT AAC>ACC 

TCA>TGA TGA>TCA  TTA>TAA TAA>TTA  TTA>TGA TAA>TCA 

TCC>TGC GGA>GCA  TTC>TAC GAA>GTA  TTC>TGC GAA>GCA 

TCG>TGG CGA>CCA  TTG>TAG CAA>CTA  TTG>TGG CAA>CCA 

TCT>TGT AGA>ACA  TTT>TAT AAA>ATA  TTT>TGT AAA>ACA 
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2.2.2.2. Annotation of indels  

The lengths of insertions were derived from the alternate (variant) sequence in 

accordance with standard MAF file classification, while the lengths of deletions were 

determined based on the reference sequence. Insertions and deletions were separately 

characterised into lengths of 1 to 5, and greater than 5. The proportion of each indel 

mutation was then determined by dividing the counts for each change by the sum of all 

indel mutations. 

2.2.2.3. Annotation of genes and variants 

Functional coding variants were defined with the appropriate MAF classifications 

of “Frame_Shift_Del”, “Frame_Shift_Ins”, “In_Frame_Del”, “In_Frame_Ins”, 

“Missense_Mutation”, “Nonsense_Mutation”, “Nonstop_Mutation”, “Splice_Site”, 

and “Translation_Start_Site”. For annotation of mutated genes, a binary (boolean) 

matrix was generated to denote cases associated with genes that had a functional 

variant. For annotation of variants, a similar procedure was carried out for individual 

variants, denoted by both nucleotide position and the specific mutation, e.g. 

chr10:100017453-100017453:T>G is different from chr10:100017453-

100017453:T>A. In order to standardise the variants results between genome builds, 

coordinates in hg18 were converted to hg19 using the UCSC LiftOver tool 

(Rosenbloom et al. 2015), which utilises chain liftOver conversion files to convert 

between the different genome builds. Due to computational limitations, the variants 

matrix was limited to variants with at least 4 occurrences within the dataset. 
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2.2.2.4. Annotation of the genomic distribution of mutations 

The genomic mutation frequencies per megabase (Mb) was determined by 

separately dividing the twenty-two autosomes and X and Y chromosomes into 

sequential 1 Mb segments (e.g. chromosome 1 nucleotide 1 to 1,000,000), and then 

annotating the amount of both SNVs and indels in each segment. This approach resulted 

in the creation of 3089 1Mb segments based on hg19. Mitochondrial mutations were 

not included in this analysis. As with the other dimensions, proportions within each 

category were determined by dividing the mutation frequencies in each segment by the 

total number of mutations in all segments.  

2.2.2.5. Characterisation of cancers according to mutational signatures 

To examine the relatedness of different cancers, a consensus version of each cancer 

subtype was created for each dimension. Trinucleotide changes, indels and genomic 

distributions were represented by medians. Genes mutated and variants were 

represented by mean values, as the median values for these dimensions were often zero. 

Unsupervised agglomerative hierarchical clustering was firstly performed on the 

consensus datasets to give an overall understanding of the inter-relatedness of the 

various cancers present in the TCGA database. This was followed by clustering of 

individual cases to provide an understanding of the inter-relatedness of the different 

cancers, the heterogeneity of each cancer type, and whether any nucleotide changes 

signatures were associated with the cancer site of origin. 

To elucidate whether possible biological mechanisms or carcinogenic exposures 

were associated with the mutational signatures, several descriptive features were 

aligned with the hierarchical clustering. Age at diagnosis, gender, MSI status and 

overall survival information were obtained from the TCGA data portal (The Cancer 

Genome Atlas 2013). Embryological origins (Kimelman and Bjornson 2004; Pansky 
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1982), body/organ systems and cancer cell type were based on a literature review (Table 

1 and Table 3). 

The association of trinucleotide change distributions to Alexandrov signatures 

(Alexandrov and Stratton 2014) was performed by cosine similarity using the 

Alexandrov signatures available via the “Signatures of Mutational Processes in Human 

Cancer” website (Wellcome Trust Sanger Institute 2016b). Trinucleotide changes or 

indel sizes that were significantly different from others were determined using an 

independent samples t-test, adjusted for false discovery using the method of Benjamini 

& Hochberg (fdr_bh) (Benjamini and Hochberg 1995). Determination of statistically 

significant genomic regions performed similarly to the trinucleotide changes analysis, 

except that a Holm-Šídák multiple correction test was performed. Determination of 

differential DNase-seq expression was performed by the use of Student's one-sample 

T-test and fdr_bh for multiple correction.
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Table 3: TCGA cancers with the organ system annotations 

Abbreviation Primary organ system* blood digestive endocrine female integumentary lymphatic male nervous reproductive respiratory urinary 

ACC Endocrine   1         

BLCA Urinary           1 

BRCA Female    1        

CESC Female    1        

CHOL Digestive  1          

COAD Digestive  1          

ESCA Digestive  1          

GBM Brain        1    

HNSC Respiratory          1  

KICH Urinary           1 

KIRC Urinary           1 

KIRP Urinary           1 

LAML Blood 1           

LGG Brain        1    

LIHC Digestive  1          

LUAD Respiratory          1  

LUSC Respiratory          1  

OV Female   1 1     1   

PAAD Endocrine  1 1         

PCPG Endocrine   1         

PRAD Male       1  1   

READ Digestive  1          

SARC undetermined            

SKCM Skin     1       

STAD Digestive  1 1         

TGCT Male   1    1     

THCA Endocrine   1         

THYM Immune 1  1   1      

UCEC Female    1     1   

UCS Female    1     1   

UVM Eye        1    

1 – Organ is a component of this body system 
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2.3. Results 

2.3.1. TCGA dataset summary description 

Table 1summarises details of the cancer types and data obtained from the TCGA 

after combining several versions of the MAF files. The number of cases (patients) per 

cancer ranged from 36 in cholangiocarcinoma (CHOL) to 988 in breast invasive 

carcinoma (BRCA). Table 6 shows the number of cases seen in the 25 different tissues 

of origin. The most common sites of cancer origin, as revealed by GLOBOCAN (Figure 

1), including lung (LUAD and LUSC), breast (BRCA), colorectum (divided into colon 

(COAD) and rectum (READ)), prostate (PRAD), amongst others, are included in this 

dataset. Table 7 shows the data divided into the cell type of origin. The vast majority 

of cancer cases were of epithelial origin, as expected. 52 of 269 (19%) COAD, 77 of 

421 (18%) STAD and 71 of 248 (29%) UCEC were MSI. 

The SNV mutation rates from the 34 cancers are represented in Figure 6, revealing 

a large range of values among the SNVs. This observation was previously reported 

(Lawrence et al. 2013), indicating that several cancers such as melanoma (SKCM), lung 

adenocarcinoma (LUSC), lung squamous carcinoma (LUAD), bladder (BLCA), 

stomach (STAD) and colorectal (COAD) have comparatively much higher mutation 

rates than other cancers, while acute myeloid leukemia’s have very low rates. For each 

cancer, the amount of spread of mutation rate was associated with sample size, i.e. 

within this dataset, there does not seem to be any association between the spread of 

mutation data and cancer type. 

The TCGA dataset has grown since the 2013 publication reference above, in terms 

of the samples size and the specifics of the analysis pipeline. The mutation data has 

gone through curation and modification of the variant calling. Despite these changes, 

the general trends seen are similar. It should be noted that compared to the previous 



 

49  

 

study, here, segregation of the MSI and non-MSI cases has been performed, thus 

revealing MSI cases from uterine corpus endometrial carcinoma (UCEC), colon 

adenocarcinoma (COAD) and stomach adenocarcinoma (STAD) are in fact the cancers 

with the highest mutation rates when MSI is taken into account. This study is the first 

report of mutation rates in testicular germ cell tumours (TGCT), which are found to 

have comparatively normative mutation rates, with a median of 100. 

In terms of the trinucleotide mutations, overall C > T mutations represent the vast 

majority of mutations within the entire dataset (Figure 7), especially occurring at CpG 

sites, a trend observed previously (Greenman et al. 2007). Mutations originating from 

C or G (C > T, C > G or C >T) appear to be significantly more likely than mutations 

for A or T (C > T, C > G or C >T). 

Of 8820 cases in this study, 505 cases did not have any indels, this absence 

observed primarily in ovarian serous cystadenocarcinoma (OV), thyroid carcinoma 

(THCA) and acute myeloid leukaemia (LAML) where 38%, 35% and 24% of cases did 

not have indels (Table 4). As may be expected, the highest median number of indels 

was seen in the MSI cases (Figure 8), interestingly a high median number of deletions 

(82.5) was also seen in the pancreatic adenocarcinomas (PAAD) with only one case 

devoid of indels. The lung squamous cell carcinoma (LUSC) unlike the lung 

adenocarcinoma (LUAD) had very few indels, while both these cancer types had very 

high rates of SNV, suggesting that perhaps these tumour types may be distinguished by 

indel mechanisms.  Deletions ranged in size from 1 to 197 bases, while insertions varied 

from 1 to 108 bases in length (Figure 9). The relative frequencies of larger indels are 

low compared to the smaller indels, therefore the frequency of deletions and insertions 

larger than 5 were aggregated into a single category for further analysis so as increase 

inference from these categories and to reduce computational overhead. 
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Figure 6: Distribution of SNV mutations rates for the 34 cancers used in this study 

The cancers are listed along the x-axis, while the log10 transformed mutation rates are shown on the y-axis. The cancers are sorted by median 

mutation rate.



 

 

5
1
 

 

Figure 7: The proportions of the trinucleotide mutations across all cases in this study 

The 96 possible nucleotide changes are represented across the x-axis, with the median proportions of each change across all cases represented in 

the y-axis. The coloured headings show the primary SNV type corresponding to the trinucleotide mutations. C>T mutations at a CpG are the most 

common type of mutation observed (indicated with ). C>G, T>A and T>G are rare events throughout the dataset. 
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Table 4: Insertion and deletion rates for all cancers 

 

Cancer 

 

Cases 

Cases  

without 

deletions 

 

Median 

insertions 

 

Median 

deletions 

ACC 91 0 (0%) 5 12 

BLCA 412 2 (0%) 3 8 

BRCA 988 21 (2%) 2 3.5 

CESC 198 1 (1%) 3 5 

CHOL 36 0 (0%) 5 10 

COAD-MSIH 52 0 (0%) 53 145 

COAD-

NonMSIH 218 17 (8%) 3 4 

ESCA 183 0 (0%) 6 11 

GBM 291 13 (4%) 1 3 

HNSC 526 1 (0%) 4 9 

KICH 66 0 (0%) 3 5 

KIRC 451 24 (5%) 3 7 

KIRP 169 0 (0%) 3 10 

LAML 197 47 (24%) 1 0 

LGG 515 1 (0%) 2 5 

LIHC 202 0 (0%) 6 15 

LUAD 546 0 (0%) 4 11 

LUSC 178 15 (8%) 1 4 

OV 463 178 (38%) 0 1 

PAAD 178 1 (1%) 22 82.5 

PCPG 179 0 (0%) 1 4 

PRAD 425 3 (1%) 2 4 

READ 116 21 (18%) 3 3 

SARC 258 0 (0%) 9 17 

SKCM 370 1 (0%) 2 6 

STAD-MSIH 77 0 (0%) 99 281 

STAD-

NonMSIH 344 2 (1%) 3 6 

TGCT 150 0 (0%) 3 7 

THCA 441 153 (35%) 0 1 

THYM 123 0 (0%) 4 11 

UCEC-MSIH 71 0 (0%) 25 80 

UCEC-

NonMSIH 177 1 (1%) 4 6 

UCS 57 0 (0%) 5 11 

UVM 80 3 (4%) 1 3 

Ovarian serous cystadenocarcinoma (OV), thyroid carcinoma (THCA) and 

acute myeloid leukaemia (LAML) have high proportions of cases without 

indels. The MSI cases and pancreatic adenocarcinomas showed the greatest 

number of indels based on the overall median for all cases.  
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Figure 8: Distribution of indels rates for the 34 cancers used in this study 
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Figure 9: Distribution of the deletion and insertion sizes 

The top panel shows the frequencies of deletions sizes present in all cases, while the bottom panel shows the frequencies of the insertion sizes. The x-axis 

corresponds to the varying indel sizes, e.g. INS_001, corresponds to an insertion of 1 base, while the y-axis represents the frequencies of the indels (log10 

scale). Indels above the size of 5 occur at relatively low frequencies compared to smaller indels and therefore were aggregated into a separate category, i.e. 

deletions > 5 bases and insertions > 5 bases.  
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Of the 3089 1Mb bins studies as part of the genomic distributions, 209 were found 

to have no mutations across all cases. Chromosome Y particularly was shown to have 

low/no mutation from approximately base 29,000,000 to the end of the chromosome 

(Figure 10), as this region is a gene desert. Throughout the genome, the mean number 

of mutations (across cases) per region was highly variable, ranging from 0 to 2.9, as 

was the number of cases with mutations in each region. 

The five most consistently mutated regions are shown in Figure 10. The region 

spanning chr17:7,000,001-8,000,000 was mutated in 4,817 cases within 60 different 

genes, inclusive of 25 phosphoproteins and 22 membrane proteins and also contains 

TP53. The region spanning chr5:140,000,001-141,000,000 is a region very rich in 

membrane proteins (50 genes mutated), specifically cadherin (45 mutated genes) a class 

of transmembrane proteins that serve as the major adhesion molecules located within 

cellular junctions and is mutated in 4714 cases. Overall, the two most highly mutated 

regions were chr1:152,000,001-153,000,000, with 25,298 mutations across all cases, a 

region with 25 mutated genes associated with keratinization and chr5:140,000,001-

141,000,000, with 24,659 mutations, as described above. The most mutated region in a 

single case was also chr1:152,000,001-153,000,000 with 4738 variants altogether in a 

single case of liver hepatocellular carcinoma (LIHC). 

Protein-coding mutations were found in 24,118 genes, as annotated by the TCGA 

database. Only 2214 (~9%) of the gene were found to be mutated only once, i.e. the 

remaining genes were recurrently mutated. Figure 11 shows the number of genes that 

fall into different frequency ranges (number of cases with that gene mutated). There are 

many genes which are recurrently mutated, however, genes which are mutated in 

greater than 500 cases are relatively rare (only 81 genes, 0.3% of all genes). By far the 

most mutated gene was TP53 (3270 cases), followed by TTN (2836 case) and two mucin 
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genes, MUC16 and MUC4, mutated in 1839 and 1261 cases respectively. The most 

frequently mutated genes, along with the percentages of cases with mutations in the 

various cancers is shown in Figure 12. As has been discussed in the introduction, the 

rates of mutation in different genes vary greatly among the different cancers, 

specifically, in highly mutated cancer-related genes. For example, TP53 is mutated in 

only 1% of pheochromocytoma and paraganglioma (PCPG) and thyroid carcinoma 

(THCA) cases, but in as high as 91% of uterine corpus endometrial carcinoma (UCEC) 

cases, and is overall the most frequently mutated gene. PIK3CA is another gene highly 

mutated in UCECs at approximately 55% in both the MSI-high and MSS cases, but this 

gene has either no mutations or a very low mutation rate in most other cancers (Figure 

12). As a whole it can be seen that even the most frequently mutated genes are not 

ubiquitously mutated in all cancers, and may in fact be a means to distinguish cancer 

types. 

For the variant level analysis, it was computationally prohibitive to include all 

existing variants in the TCGA dataset as separate categories for comparison, 

additionally, the low frequencies are unlikely to substantively contribute to data when 

attempting to understand the interrelation of the different cancers, thus only variants 

with a frequency of four or more were analysed, resulting in the inclusion of 42030 

unique variants. Figure 13 shows the number of variants that fall into different 

frequency ranges (number of cases with that variant) in a similar manner to Figure 11 

for the mutated genes. Unlike the genes, most variants occur in the lowest frequency 

category (4 cases), the distinction being that the mutated genes actually represent the 

aggregation of several distinct variants into a single gene. Variants occurring at very 

high frequencies, i.e. in greater than 50 cases are rare, with only 107 variants (0.25% of 

variants) with such frequencies. Figure 14 shows the 10 most frequent variants found 



 

57  

 

across all cases. The BRAF V600E is the single most common cancer variant (5.3 % of 

cancers) and is known to be associated almost exclusively with melanoma (Ascierto et 

al. 2012), i.e. skin cutaneous melanoma (SKCM) in this dataset, and also colon (COAD) 

and thyroid carcinoma (THCA). The IDH1 R132H was the second most frequent 

variant (4.4% of cases) and occurred in 70% of brain lower grade glioma (LGG) and is 

associated with a decrease in proliferation, decreased Akt phosphorylation, altered 

morphology, and a more contact-dependent cell migration (Bralten et al. 2011). Despite 

its exceedingly high frequencies in LGG, it is not seen in other cancer types. Although 

KRAS codon 12 mutations occur in many cancers at a very low frequency, the G12D 

and G12V are especially high in pancreatic cancers.  
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Figure 10: Distribution of the mutations across all samples 

The top panel shows the number of cases with mutations in each of the 1 Mb regions of the genome, while the bottom panel shows the mean number of mutations 

per region across all samples. There is a great amount of variation in both the number of cases with mutations and also the mutation rates among the regions. 

Chromosome Y particularly is shown to have low/no mutation in many regions, a consequence of being gene deserts and therefore not covered by WES. The 

five most frequently mutated region as are indicated with text boxes. The leftmost number below the coordinates indicated the number of cases in the TCGA 

dataset that have a mutation in that region. Also indicated are the number of genes in that region with at least one mutation.
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Figure 11: Distribution of the mutated gene frequencies 

This histogram represents the number of genes that occur in mutation frequency ranges of 100. The numbers over the bar indicate the number of 

genes that fall into each range. As can be seen, there are approximately 19,000 genes that are mutated in anywhere from 1 to 100 cases, this falls 

to 3624 genes in 101 to 200 case. Mutation rates for genes above a frequency of 900 are very rare with the gene names indicated in red font. 



 

 

6
0
 

.  

Figure 12: Percentage of cases with mutations in the 10 most mutated genes 
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Figure 12: Percentage of cases with mutations in the 10 most mutated genes 

This heatmap shows the 10 most consistently mutated genes (mutated in the highest number of cases) along with the percentages of cases in each cancer with 

a mutation in that genes (as indicated with the cancer abbreviation). The total number of cases with a mutation (across all cancers) is shown to the right of the 

heatmap (“Cases with a mutation”), as is the percentage of all cases (“Percentage of cases”). 
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Figure 13: The size distribution of the variants across all samples 

This histogram shows the number of variants at several intervals of frequencies. The first 30 size ranges are of 1 base, while variants at a frequency of greater 

than 30 are shown in ranges of 20 bases. Only variants of a frequency of four or more from the TCGA dataset were included in this analysis. The vast 

majority of variants (31333) occur in four different cases and the number of cases associated with variants diminishes with the increasing recurrence. Variants 

occurring in greater than 50 cases are rare.  
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Figure 14: The 10 most frequent variants across all samples with annotations and associated cancers 

This heatmap shows the 10 most frequent variants across the entire dataset. The gene (Hugo) symbol and protein changes are shown. The percentage of cases 

from each cancer with the corresponding mutation are indicated in the heatmap.  
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2.3.2. Creation of the data matrix for mutational signature analysis 

Table 5 shows a representation of the data used in the mutation signature analyses. 

The data matrix is contained in a python pandas array comprising 8820 cases and 72542 

categories (639,820,440 data points) made up of 192 trinucleotide change categories 

(96 as counts and 96 as proportions), 24 indel categories (6 insertion and 6 deletions 

categories as counts and proportions), 6178 categories of the genomic distribution 

(3089 each as counts and proportions), 24118 genes and 42030 variants of frequency 4 

or more. The proportional data was stored as NumPy double-precision (64-bit) floating 

point values, the counts data was stored as unsigned integers (32-bit) while the gene 

and variants were stored as boolean entities. 
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Table 5: Representation of the matrix array created for the analysis of mutation signatures 

 

 

The data matrix showing examples of the data types used in this study. Every case is annotated with the TCGA case ID and the 

corresponding cancer type. The trinucleotide mutations are represented as counts (3rd column) and proportions (4th column). The deletions 

and insertions, collectively known as indel, are also represented as counts (5th and 7th columns) and proportions (6th and 8th columns). The 

genes (columns 9 and 10) and variants (columns 11 and 12) are represented as binary values (1 indicating present and 0 indicating absent). 

Lastly, the genomic distribution of the mutations is also represented as counts in each category (column 13), as well as proportions 

(column 14). In total, the matrix contains 8820 cases with 72542 mutation categories creating 639,820,440 data points. 
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TCGA-OR-A5J7 ACC 6 0.05 10 0.56 4 0.57 0 1 0 0 0 0 

TCGA-VD-AA8T UVM 0 0 2 0.67 1 1.00 0 0 0 0 0 0 

TCGA-DK-AA74 BLCA 19 0.06 2 0.50 1 1.00 1 0 0 0 2 0.007 

TCGA-BH-A1ET BRCA 1 0.04 0 0 0 0 0 0 0 0 0 0 

TCGA-D8-A1JF BRCA 3 0.05 2 1.00 2 0.33 1 0 0 1 1 0.016 

TCGA-DR-A0ZM CESC 138 0.07 12 0.63 6 0.50 0 1 0 0 7 0.003 

TCGA-AA-3712 COAD-NonMSIH 13 0.02 3 0.27 3 0.18 1 0 0 1 2 0.003 

TCGA-06-2569 GBM 2 0.05 0 0 1 1.00 1 0 0 0 1 0.02 

TCGA-GN-A267 SKCM 51 0.09 6 0.46 0 0 0 1 0 0 0 0 

TCGA-BR-4280 STAD-MSIH 19 0.02 197 0.89 67 0.92 0 0 0 0 1 0.001 

TCGA-AP-A0LT UCEC-MSIH 38 0.05 120 0.80 26 0.87 0 0 0 0 3 0.003 

TCGA-B5-A11S UCEC-NonMSIH 7 0.07 1 0.20 2 0.67 0 1 0 0 0 0 

TCGA-NG-A4VU UCS 5 0.07 3 0.60 0 0 1 1 0 0 2 0.027 
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Table 6: Case counts by tissue of origin 

Site of Cancer  Cases 

Breast 988 

Brain 806 

Lung 723 

Kidney 686 

Head and neck 526 

Ovary 463 

Thyroid 441 

Prostate 425 

Stomach 421 

Bladder 412 

Skin 370 

Uterus 305 

Adrenal gland 270 

Colon 269 

Soft tissue or bone 258 

Liver 202 

Cervix 198 

Blood 192 

Oesophagus 183 

Pancreas 178 

Testicle 150 

Thymus 123 

Rectum 115 

Eye 80 

Bile ducts 36 
 

Table 7: Case counts by cell type of origin 

Cell Type Cases 

Epithelial cells 6728 

Glial cells 694 

Melanocytes 450 

Non-epithelial cells 315 

Blasts cells 291 

Myeloid cells 192 

Germ cells 150 
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2.3.3. Multidimensional consensus cancer analysis: Overall cancer relatedness 

differs according to the different data type 

Figure 15 to Figure 24 show the clustering results from the consensus representation 

of each cancer according to the different dimensions of data analysis, where clustering 

of the cases is performed along the x-axis (columns) as shown by the dendrogram at 

the top of the figures. The trinucleotide figures (Figure 15 and Figure 16) and indel 

figures (Figure 17 and Figure 18) also have the data categories clustered along the y-

axis (rows) with a dendrogram showing the clustering results and a heatmap with the 

colour scheme relating to the data values. The heatmap representation has been inverse 

hyperbolic sine transformed so as to allow the values to be discerned over large 

dynamic ranges. It should be noted that this transform was only performed for 

visualisation but not for the actual clustering analysis. 

Along with the clustering results, several annotations corresponding to the cancers 

have also been added, so as to observe for possible associations of these factors to the 

clustering groups. Of these, the MSI status annotation indicates the consensus 

representation of cases that were determined to exhibit microsatellite instability (MSI-

high) according to the TCGA database and therefore segregated from microsatellite 

stable cases (non-MSI-high). The primary embryological origin, also know are germ 

layer, corresponding the primary tissue site of each cancer is also indicated, to study 

the supposition that processes related to early development may play a role in 

mutational processes. Organ (biological) systems (indicated in Table 3) comprise an 

interacting network of biologically interrelated anatomical structures that perform a 

specific function or task, an effort was also made to link the clustering patterns to these 

systems as seen in the figures. Fourteen organ systems are associated with the primary 

tissues of the cancers used in this study, including ‘female’ and ‘male’ to indicate 
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cancers that are associated with either gender. For clarity, breast cancers are listed as 

female due to high incidence rates in female and low rates observed in males (Ferlay et 

al. 2014). Several of the cancers correspond to more than one organ system due to the 

fact that organs may have multiple bodily functions. There is also a large comparative 

difference in the frequencies of occurrences within the different body, e.g. the digestive 

system is represented by 9 organs, while the integumentary system is represented by a 

single tissue (skin cutaneous melanoma (SKCM)). The sarcoma cases (SARC) are 

annotated as “unknown”, as these cancers encompasses a broad family of rare cancers 

that can affect soft tissue or bone throughout the body and within the TCGA dataset, is 

represented by liposarcoma (fat cells in deep soft tissue), desmoid sarcoma (tendons 

and ligaments), nerve sheath tumour, synovial sarcoma (joints) among others. The 

organ of origin of each cancer (“organ”) and the cancer cell type (“cell type”), as shown 

in Table 6, were also indicated to study possible associations. Table 7 summarises the 

seven cancer cell types found in the TCGA cancers. By far the most common cancer 

cell type is epithelial (6728 cases, 76 % of cancers), comparatively fewer germ cell 

cancers were present with only 150 cases, and all derived from the testicular germ cell 

tumours (TGCT). The mean overall survival (log10 transformed) was derived as a 

median of the overall survival (OS) available via the TCGA case annotations. 

. 
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2.3.3.1. Consensus trinucleotide analysis 

Figure 15 and Figure 16, show the clustering from the consensus versions of the 

trinucleotide data by two analysis approaches, namely as proportions (PR) and counts 

(CN) respectively. Clustering by the counts takes into account the total mutational load, 

specifically by using the city block (Manhattan) linkage metric, while the clustering by 

proportions arranges the results based on the interrelations of cancers by the mutation 

pattern alone, emphasised the use of Pearson’s correlation as the metric.  

Figure 47 to Figure 53 in the appendix are bar graphs showing the proportional 

distributions of the trinucleotide mutations from each cancer arranged with five plots 

per figure (for suitable visualisation) arranged according to the clustering of the 

proportions (Figure 15). Through these figures, the trends in trinucleotide changes from 

cancer to cancer can be seen quite easily. Overall C>T mutations are the most common 

variants, as seen in the SNV panel (top right), and Figure 47 to Figure 53, and therefore 

are the main determinants of the clustering. The skin cutaneous melanomas (SKCM) 

are highly distinct from all other cancers characterised by the over-representation of the 

four possible TC > TT mutations (TCA>TTA, TCC>TTC, TCG>TTG, TCT>TTT) that 

represent 46 % of all mutations. This distinction, however, is more apparent when 

clustered by PR versus CN. The MSI cases were found to have similar mutation profiles 

in both CN and PR having an enrichment of specifically CG > TG mutations 

(TCG>TTG, ACG>ATG, CCG>CTG, GCG>GTG) representing 42% of all observed 

mutations. Among the MSI cases, the cancers of both ectodermal and digestive origin, 

COAD and STAD were particularly similar (as opposed to the mesodermal and 

reproductive uterine corpus endometrial carcinoma (UCEC)) with a linkage distance 

(LD) of only 0.16 (Figure 15) when studied by proportions and 350 (Figure 16) by 

counts with the maximum linkage distance of 1.05 for PR and 1000 for CN. Both lung 
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cancer types, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma 

(LUSC), also showed great similarity by both analysis methods with distances of 0.14 

(PR) and 44 (CN), however unlike the previous cancers, the lungs did not display 

enrichment of specific trinucleotide mutations, instead have an enrichment of a broad 

category if mutations, i.e. C>A/T mutations (57 % of mutations). By proportion, the 

most similar cancers were non-MSI colon adenocarcinoma (COAD) and rectum 

adenocarcinoma (READ), two types of non-MSI colorectal cancer (LD 0.08). Similar 

to the MSI cases they are characterised by CG > TG mutations also representing 42 % 

of all mutations. Nervous system and non-MSI reproductive cancers were 

heterogeneous within themselves, however, all cancers clustered within a single node 

of maximum LD of 0.43 (PR) and 44 (CN). Two of the three squamous carcinomas, 

cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and head 

and neck squamous cell carcinoma (HNSC) clustered closely (0.38 (PR) and 64 (CN)) 

but not the third (lung squamous cell carcinoma (LUSC)). The kidney cancers (kidney 

chromophobe (KICH), kidney renal clear cell carcinoma (KIRC) and kidney renal 

papillary cell carcinoma (KIRP)) clustered closely (0.4 (PR) and 50 (CN)), however, 

the remaining urinary cancer, bladder urothelial carcinoma (BLCA) exhibit a very 

different profile. Based on trinucleotide proportions, endocrine and digestive cancers 

greatly differ in the overall profiles, perhaps eluding to different molecular mechanisms 

involved in these diseases. Prostate adenocarcinoma (PRAD), breast invasive 

carcinoma (BRCA), uveal melanoma (UVM), pheochromocytoma and paraganglioma 

(PCPG), thyroid carcinoma (THCA), acute myeloid leukaemia (LAML) and brain 

lower grade glioma (LGG) formed a cluster of very similar trinucleotide mutations (LD 

20). The proportions seemed to discern specific cancers with greater detail than counts, 

however, clustering by both techniques provided comparable results. With the 
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exception of MSI, no association was seen between the clustering results and the 

additional annotations (cell type, organ etc.).
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Figure 15: Clustering of the consensus trinucleotide mutation proportions by using average 

metric and city block linkage. 

The cancers that cluster together are indicated.  
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Figure 16: Clustering of the consensus trinucleotide mutation counts by using average metric 

and city block linkage. 

The cancers that cluster together are indicated.  
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2.3.3.2. Consensus indels analysis 

Figure 17 and Figure 18 show the consensus cancers clustering results for the indel 

PR and CN analysis respectively (a similar clustering approach was taken to the 

trinucleotide analysis). MSI cases show very similar profiles by both PR and CN and 

are distinguished by having mainly 1 base insertions and deletions. Figure 54 to Figure 

57 in the appendix are bar graphs showing the proportional distributions of the indel 

mutation sizes from each cancer arranged with 10 plots per figure arranged according 

to the clustering of the indel proportions (Figure 17). Through these figures, the trends 

in indel changes from cancer to cancer can be seen quite easily. 

The PR clustering seemed to segregate the MSI cases into a distinct cluster, 

however in the CN clustering, the ectodermal and digestive origin MSI cancers, colon 

adenocarcinoma (COAD) and stomach adenocarcinoma (STAD) were distinctly 

similar, while the COAD was more similar to the pancreatic adenocarcinoma (PAAD) 

due to the much higher mutational loads of the former cancers. Acute myeloid 

leukaemia (LAML), thyroid carcinoma (THCA) and ovarian serous 

cystadenocarcinoma (OV) consensus profiles showed no indels, i.e. these cancers have 

very low indel rates. 

Cancers found to have similar profiles by the trinucleotide clustering e.g. lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), were not 

aggregated via indels clustering. Overall there were no discernible clustering 

associations within the organ systems or any association with the annotations other than 

MSI status. Although the urinary cancers appear adjacent to each other in the organ 

system heatmap, the cases do in fact occur in differing clusters, noticeable when the 

dendrogram is expanded. Apparent when analyzing Figure 54 to Figure 57, the cancers 

can be divided into four groups, 1) those with no mutations as mentioned above, 2) 
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cancers with only 1 base deletions (uveal melanoma (UVM), glioblastoma multiforme 

(GBM), lung squamous cell carcinoma (LUSC)), 3) cancers with 1 base and greater 

than 5 base deletions and insertion (non-MSI colon adenocarcinoma (COAD), rectum 

adenocarcinoma (READ), adrenocortical carcinoma (ACC), sarcoma (SARC), 

pancreatic adenocarcinoma (PAAD)) 4) and all other cancers with 1 to >5 base 

insertions and 1 base insertions. By the PR analysis, brain lower grade glioma (LGG) 

and prostate adenocarcinoma (PRAD) had almost identical profiles, as did the 

esophageal carcinoma (ESCA) and head and neck squamous cell carcinoma (HNSC) 

both from group 4. By CN, lung adenocarcinoma (LUAD) and thymoma (THYM) were 

almost identical, as were bladder urothelial carcinoma (BLCA) and kidney renal clear 

cell carcinoma (KIRC) and prostate adenocarcinoma (PRAD), brain lower grade glioma 

(LGG) and pheochromocytoma and paraganglioma (PCPG). 
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Figure 17: Clustering of the consensus indel proportions by using average metric and city 

block linkage. 

The cancers that cluster together are indicated. del: deletion, ins: insertion  
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Figure 18: Clustering of the consensus indel counts by using average metric and city block 

linkage. 

The cancers that cluster together are indicated. del: deletion, ins: insertion   
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2.3.3.3. Consensus genomic distribution of mutations 

Figure 19 and Figure 20 show results from the PR and CN clustering on the 

consensus versions of the per Mb genomic distribution of the mutations, in a similar 

clustering approach to the previous two dimensions. 

Unlike the indels and trinucleotide clustering, where the clustering patterns seemed 

to differ somewhat between the PR and CN data, as evidenced by the different ordering 

of cases along the x-axis, in this genomic distribution analysis, both the PR and CN 

clustering resulted in almost identical clustering order, only differing in the relative 

linkage distances, where the PR analysis generated a smaller relative range of linkage 

distance values and therefore more discernible branches in the dendrogram. 

Interestingly, clustering appeared to be associated with embryological origin, i.e. 

cancers with primary tissues arising in the endoderm clustered to the left of the 

dendrogram, while mesodermal derived cancers to the right, as seen with the 

“embryological origin” annotations in Figure 19 and Figure 20, however, this tendency 

was more obvious in the PR analysis. This may suggest that the embryological origin, 

i.e. characteristics related to early developmental processes may play a role in the 

mutation patterns seen. There also appeared to be a tendency for the non-carcinoma 

cancers to cluster to the right, with only the skin cutaneous melanoma (SKCM) bucking 

the trend. The respiratory cancers clustered closely next to each other, indicating the 

lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) do in fact 

have similar genomic distribution profiles, in addition, these cancer were previously 

seen to be similar in the trinucleotide clustering, but not the indels. Based on linkage 

distance in both the PR and CN clustering, prostate adenocarcinoma (PRAD), 

pheochromocytoma and paraganglioma (PCPG), acute myeloid leukemia (LAML), 

breast invasive carcinoma (BRCA), and kidney renal papillary cell carcinoma (KIRP) 
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were found to have almost identical genomic distribution profiles. Much like the indel 

analyses, there did not seem to be an association with organ systems overall. 
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Figure 19: Clustering of the consensus mutational distribution proportions by using complete 

metric and city block linkage 
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Figure 20: Clustering of the consensus mutational distribution counts using complete metric, 

city block linkage  
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2.3.3.4. Consensus genes and consensus variants analysis 

Figure 21 and Figure 22 show results from the clustering of the consensus versions 

of the gene and variant data respectively, using the complete metric and city block 

linkage, as this data represents the mean values of each gene or variant category, unlike 

the non-consensus data (individual cases) which is binary. 

2.3.3.4.1. Analysis of consensus gene profile 

The most closely related cancers, based on linkage distance, clustered to the right 

side of the dendrogram in the genes based analysis (Figure 21) i.e. adrenocortical 

carcinoma (ACC) to thyroid carcinoma (THCA). These cancers tend to be cancers with 

low mutational loads as indicated in Figure 6. This would indicate that overall, there 

are fewer specific genes that are consistently mutated in these cancers. Acute myeloid 

leukemia (LAML) and THCA seemed to be particularly similar in their mutated genes 

profiles, as well as being the two cancers with the lowest mutational loads and share 

mutations in 781 genes. As with the trinucleotide and genomic distribution analyses, 

the two lung cancer associated via clustering, indicating not only similar mutational 

loads but also mutations in similar genes. The most distinct cancer appears to be the 

MSI stomach adenocarcinoma (STAD), with the other MSI cases also being distinct 

from all other cases, again, most likely due the large number of mutated genes, as 

related to the overall mutational load. In a similar way to the genomic distribution 

analysis, the cancers with an endodermic origin tended to cluster to the left, and these 

cancers tended to have much higher mutational loads Figure 6.  

2.3.3.4.2. Analysis of consensus variants profile 

Unlike the clustering pattern of the consensus genes profiles, the equivalent 

analysis using the consensus variants profiles did not mirror the mutational load. The 
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rationale behind clustering using this dataset is to identify similarities based on the 

recurrences of specific variants. Liver hepatocellular carcinoma (LIHC) seemed to have 

a vastly different mutation profiles compared to all other cases, although this does not 

seem to be linked specifically to a mutation load abnormality, as liver hepatocellular 

carcinoma (LIHC) is centrally located among all cancers according to mutation load 

(Figure 6). To a lesser extent pancreatic adenocarcinoma (PAAD) also exhibited a very 

different profile from all other cancers, another cancer with a moderate mutation load. 

As seen in Figure 14, PAAD is associated with many recurrent mutations, and is in fact 

the cancer type that seems to have the largest number of recurrent mutations e.g. 

chr22:29091840-29091840 (CHEK2 K416E) in 14 % of cases, chr3:178952085-

178952085 A>G (PIK3CA H1047R) in 35 % of cases, and chr12:25398284-25398284 

C>T and chr12:25398284-25398284 C>A (KRAS G12D and G12V) in 35% and 23 % 

of cases, all of which are cancer related variants, but with especially high rates in PAAD 

(variants shown with protein change annotation) (Wellcome Trust Sanger Institute 

2016a). Both the non-MSI large intestinal cancers, colon adenocarcinoma (COAD) and 

rectum adenocarcinoma (READ) were closely related, as were two kidney cancers 

(kidney chromophobe (KICH) and kidney renal papillary cell carcinoma (KIRP)), but 

not the kidney renal clear cell carcinoma (KIRC). The two brain related cancers (brain 

lower grade glioma (LGG) and glioblastoma multiforme (GBM)) also showed great 

similarity in their variant profiles. 

As described in this section, the cancers ordering after clustering of mutated genes 

closely resembles the overall mutational load of the individual cancers, as seen in 

section 2.3.1, but this is not seen with the clustering of variants. This observation is 

likely due to the fact that the gene level analysis involves the aggregation of all variants 

into genes and therefore normalizes for the variations seen when looking at just 
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individual variants, as such it is likely that most variants are in fact non-specific 

passenger events as opposed to driver events in cancers, as have been speculated 

previously (Stephens et al. 2012), however there is a tendency towards mutation in 

specific genes. 
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Figure 21: Clustering of the consensus mutated genes by using complete metric and city block 

linkage  
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Figure 22: Clustering of the consensus variants by using complete metric and city block 

linkage   
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2.3.3.5. Consensus multidimensional analysis 

Figure 23 and Figure 24 show results from the PR and CN clustering on the 

consensus versions of the multidimensional data respectively. By combing data from 

the many dimensions into a single analysis, fewer associations were seen between the 

different cancers, suggesting that rather than helping to discern the different cancers, 

the combination many actually mask the effect of the individual dimensions, or at least 

masks it from the relatively simple analysis method that was used, unsupervised 

hierarchical clustering. Potentially, complex relationships may be determined by 

utilizing more advanced clustering methodologies e.g. neural networks or support 

vector machines, however this was not attempted in this chapter. 

Despite this, two sets of cancers systems did seem to cluster with each other, 

namely the two lung cancers (lung adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC)) and the two kidney cancers (kidney chromophobe (KICH) and 

kidney renal clear cell carcinoma (KIRC)). The lung cancers specifically have been 

shown to associate with each other in all dimensions of analysis except with indel 

clustering.   
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Figure 23: Clustering of the consensus multidimensional mutations with proportions by using 

average metric and city block linkage  
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Figure 24: Clustering of the consensus multidimensional mutations with counts by using 

average metric and city block linkage  
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2.3.4. Analysis at multiple dimensions of all cases reveals several profiles specific 

to cancer type or subsets of cases 

In the previous section 2.3.3, the relatedness of cancers was studied by the 

clustering of consensus versions of each cancer to understand the overall relatedness of 

the different cancers. In this section, a similar clustering analysis is performed on the 

8820 individual cases used in this study, and as before, a comparison to several 

annotations was made. In addition, age at diagnosis and gender were also added to the 

set of annotations that were used in section 2.3.3.  

The results can be seen in Figure 25 to Figure 42, and due to space constraints, the 

legend for these is shown in Figure 27. A difference when compared to the consensus 

diagrams is the inclusion of a second heatmap below the dendrogram in all figures, to 

indicate the clustering position for cases from each cancer. Four different clustering 

types were observed which distinguish how the cases within each cancer were ordered 

after the hierarchical clustering. Unique cancer signature (UC) cancers are 

homogeneous across cases, i.e. most cases from these cancers cluster into a single 

group, and share a mutation profile unique to the cancer, i.e. little overlap in clustering 

with other cancers, these are indicated with a red bounding box in the figures. Unique 

subtype signature (US) cancers that are overall heterogeneous however there is at least 

one homogeneous subgroup with a profile unique to that subgroup, these are indicated 

with an orange bounding box in the figures. Shared Cancer signature (SCS) cancers are 

homogeneous across cases, however profiles are not unique across cancers i.e. the 

clustering of cases from this cancer overlap with cases of other cancers and are indicated 

with a green coloured bounding box. Non-definable type (NDT) cancers are 

heterogeneous across cases, i.e. no unique cancer profile can be discerned from this 

cancer. This classification system is standardized across all dimensions of the mutation 
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analysis. Congregations (clustering together) of annotations are indicated with a purple 

bounding box and these include the congregation of microsatellite instability and 

embryological origin. Cases that fall within the UC, US or SCS cluster are further 

studied to elucidate specific characteristics of these cases that set them apart from other 

cases, i.e. their unique mutational profiles. 

2.3.4.1. Trinucleotide mutations by cases 

Figure 25 and Figure 26 show the agglomerative unsupervised hierarchical 

clustering of the trinucleotide mutation according to all cases by PR and CN 

respectively. Clustering of cases is done along the x-axis and trinucleotide mutations 

clustered along the y-axis. A heat map showing the proportions of the various 

trinucleotide mutations with intensities corresponding to the colour bar to the right of 

the heatmap. As can be seen, the distribution of most cancers are highly heterogeneous, 

that is, they do not tend to cluster according to the cancer type, except for a few cancers. 

When clustered by PR of the trinucleotide mutations, four cancers, lung 

adenocarcinoma (LUAD), skin cutaneous melanoma (SKCM) and testicular germ cell 

tumours (TGCT) and thymoma (THYM) formed UC clusters, i.e. unique mutational 

profiles across all cases. Three cancer types, bladder urothelial carcinoma (BLCA), 

liver hepatocellular carcinoma (LIHC) and stomach adenocarcinoma (STAD) MSI-

high formed SCS clusters, i.e. a subset of cases from these cancers seemed to have 

unique profiles. When clustered by CN, only two cancers had UC clusters, i.e. TGCT 

and thymoma (THYM), both clustered as in PR as well. By CN, SKCM had two US 

clusters and acute myeloid leukaemia (LAML) was an SCS cluster. Unlike PR, the CN 

analysis revealed a tendency for the endodermal origin cancers to cluster to the left and 

the mesodermal cancers to the right of the dendrogram, a  phenomenon which was also 

seen in the genomic distributions consensus clustering (section 2.3.3.3, Figure 19 and 
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Figure 20). By both analysis approaches (PR and CN), distinct subgroupings of cancers 

were observed, however generally there appeared to be a greater number of cancers 

discernible by using proportions. 

The most comprehensive work on mutation profiles thus far was done by 

Alexandrov et al. (Alexandrov and Stratton 2014), where the authors established 21 

mutational signatures of mutations in the TCGA dataset. Additional mutational data 

and further analysis have revealed 7 additional signatures (Wellcome Trust Sanger 

Institute 2016b). The Alexandrov study used the proportions of nucleotide changes, i.e. 

PR analysis, to elucidate trinucleotide mutation profiles in an unsupervised manner, in 

an approach which was agnostic to cancer type. The work presented in this thesis has 

specifically attempted to elucidated signatures that are unique to cancers or cancer 

subsets, where the signature may not be shared by more than one cancer. As described 

in the previous paragraph, several of these unique signatures have been identified. 

Figure 28 to Figure 30 shows comparisons of the unique cancers signatures found via 

the PR analysis, to those established by the Alexandrov approach. This approach 

assumes that the unique cluster is a component of the overall Alexandrov mutational 

signature analysis. The figures are arranged with the closest matching Alexandrov 

signature shown above the cancer with the unique profile with the cosine similarity 

score (css) shown. The bladder urothelial carcinoma (BLCA) closely resembles 

signature 2 (css = 0.81) (Figure 28), a signature that is linked to activity of the 

AID/APOBEC family of cytidine deaminases, and most likely APOBEC1, 

APOBEC3A and/or APOBEC3B (S. a Roberts et al. 2013), and it has been suggested 

that activation these proteins may be caused by tissue inflammation, viral infection, or 

even retrotransposon jumping. The liver hepatocellular carcinoma (LIHC) PR signature 

is most similar to signature 12 (css = 0.76), a signature with unknown aetiology, but 
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known to be associated with these cancers. The low r value, however, does suggest that 

the signatures are in fact different. In Figure 29 it can be seen that the lung 

adenocarcinoma (LUAD) is closely associated with Alexandrov signature 4 (css = 

0.93), associated with tobacco carcinogens (e.g., benzo[a]pyrene)  showing strand bias 

for C>A mutations(Pfeifer et al. 2002). Skin cutaneous melanoma (SKCM) identical to 

signature 7 (css = 0.99), a signature linked to large numbers of CC>TT dinucleotide 

mutations at dipyrimidines as specifically associated with melanomas. Testicular germ 

cell tumours (TGCT), thymoma (THYM) and the MSI cases were most closely related 

to signature 6 (css = 0.75, 0.79 and 0.97), as mutational signature found in 17 cancer 

types and linked to defective DNA mismatch repair, i.e., as would explain the high 

cosine similarity score in the MSI cases. As noted the liver hepatocellular carcinoma 

(LIHC), TGCT and THYM had poor cosine similarity scores, i.e. weak associations 

with the closest Alexandrov signature. Most interestingly the TGCT has not been 

analysed within the original Alexandrov dataset nor in the expanded dataset with 30 

signature, and this may indicate that the unique profiles seen in the TGCT is in effect a 

newly revealed mutational signature that is not currently included in the 30 established 

signatures. 

Unlike the study of PR mutational signatures, CN signatures have not been studied, 

i.e. all previous studies (Greenman et al. 2007; Lawrence et al. 2013; Alexandrov and 

Stratton 2014) have only look at the problem using proportions of the trinucleotides. 

To understand the unique features of the cancer-specific count signatures, these 

signatures were compared to all other cancers. Table 8 shows the five most statistically 

altered trinucleotide changes from the UC, US and SCS cancers, while the entire profile 

(all 96 trinucleotide changes) compared to a consensus representation of all cancers are 

shown in Figure 31 and Figure 32. TCGT does not show any specific trinucleotide 
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mutation rates from the general rates seen in all cancers, however, does seem to have 

fewer mutations in certain trinucleotide categories without a consistent pattern. THYM 

has a statistically much higher number of mutations overall when compared to the other 

cancers, but specifically increased AC>AA mutations. The two SKCM clusters show 

much higher mutation rates in CC>CT despite having much lower mutation loads 

overall when compared to all other cancers. Acute myeloid leukaemia (LAML) showed 

much lower mutation rates in most of the mutations categories, specifically CG>TG 

mutations. The endodermal cancers had higher mutation rates in most categories, except 

lower numbers of C>G mutations. The most statistically differing mutation rates across 

all cancers in Table 8 were AC>AA mutations. 
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Figure 25: Clustering of trinucleotide mutation proportions in all cases by using average 

metric and correlation linkage. 

The legend for this figure is inserted as Figure 27. Clustering has been performed on all cases 

in the TCGA according to the proportions of trinucleotide changes. The x-axis dendrogram 

shows clustering of the data by case, while the y-axis dendrogram shows clustering by the 

mutation. The top heat map shows the proportion of mutation by case (each column totals to 

1). UC clusters are shown with a red boundary, SCS clusters are shown with a green 

boundary and the MSI cases cluster is shown with a purple boundary.  
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Figure 26: Clustering of trinucleotide mutation counts in all cases by using average metric 

and city block linkage. 

The legend for this figure is inserted as Figure 27. Clustering has been performed on all cases 

in the TCGA according to the counts of trinucleotide changes. The x-axis dendrogram shows 

clustering of the data by case, while the y-axis dendrogram shows clustering by the mutation. 

The top heat map shows the counts of mutation by case. UC clusters are shown with a red 

boundary, US clusters with an orange boundary, SCS cancers are shown with a green 

boundary and the MSI cases cluster and endodermal case clustering are shown with a purple 

boundary.
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Figure 27: Legend for clustering of all cases. 

This legend is used for Figure 25 and Figure 26,  
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Figure 28: Alexandrov signatures compared to the derived unique cancer signatures (BLCA 

and LIHC) 
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Figure 29: Alexandrov signatures compared to the derived unique cancer signatures (LUAD 

and SKCM) 
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Figure 30: Alexandrov signatures compared to the derived unique cancer signatures (TCGT, 

THYM and MSI-high) 
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Table 8: The five most variable trinucleotides observed in the UC, US and SCS cancers by 

CN clustering 
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CCT>CGT 0.32 1.01 0.0017 0.07 

CTT>CAT 0.19 0.91 0.0017 0.07 

CTG>CGG 0.13 0.90 0.0049 0.07 

TTG>TAG 0.10 0.47 0.0052 0.07 

GTG>GAG 0.22 0.73 0.0055 0.07 

T
H

Y
M

 

ACA>AAA 6.88 1.90 3E-40 3E-38 

ACC>AAC 7.04 1.87 3E-39 2E-37 

TCC>TAC 10.97 3.30 1E-18 4E-17 

GCA>GTA 14.18 3.49 5E-11 1E-09 

CCC>CAC 9.93 3.35 9E-11 2E-09 

S
K

C
M

(1
) TCC>TTC 322.00 12.37 9E-50 8E-48 

CCA>CTA 85.35 5.10 2E-35 1E-33 

TTT>TAT 5.76 0.58 7E-29 2E-27 

CCC>CTC 128.65 6.14 3E-27 8E-26 

CCT>CTT 92.71 5.72 3E-21 6E-20 

S
K

C
M

(2
) TCC>TTC 132.33 10.48 1E-79 1E-77 

CCA>CTA 39.17 4.54 3E-67 1E-65 

CCC>CTC 57.43 5.31 6E-50 2E-48 

CCT>CTT 43.08 5.11 1E-40 3E-39 

ACC>ATC 16.12 2.86 1E-38 2E-37 

L
A

M
L

 

ACC>AGC 0.04 0.68 3E-09 1E-07 

CCT>CGT 0.03 1.02 4E-09 1E-07 

ACA>AAA 0.09 2.00 4E-09 1E-07 

ACT>AGT 0.04 0.74 3E-08 7E-07 

ATG>AAG 0.03 0.73 3E-08 7E-07 
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 ACA>AAA 3.91 0.72 0 0 

ACC>AAC 3.88 0.70 6E-286 3E-284 

TCC>TAC 7.50 0.79 1E-263 4E-262 

CTT>CAT 1.85 0.30 3E-260 8E-259 

ATG>AAG 1.41 0.29 7E-258 1E-256 

 

Shown are the five most statistically differentially mutated trinucleotide for each of the 

unique cancer profiles derived from the counts clustering of all cases. The mean value for the 

unique cancer profiles and all other cases is shown, along with the t-test p-value and the 

benjamini hochberg false discovery rate value. There are two categories of SKCM 

corresponding to the two US clusters. 
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Figure 31: The unique cancer profiles identified by trinucleotide CN analysis in TCGT, 

THYM and EMB ORI 

The top panel shows the consensus trinucleotide count patterns of all 8820 cases in 

the dataset by deriving the median value of each trinucleotide category. TCGT and 

THYM represent the signature seen in the UC clusters from these cancers, while EMB 

ORI represents the signature seen in the endodermal cancers.  
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Figure 32: The unique cancer profiles identified by trinucleotide CN analysis in LAML, 

SKCM 1 and SKCM 2 

The top panel shows the consensus trinucleotide count patterns of all 8820 cases in 

the dataset by deriving the median value of each trinucleotide category. LAML 

represents the signature seen in the SCS cluster, while SKCM 1 and 2 represent the 

signature seen in the two separate US clusters from that cancer. 
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2.3.4.2. Indels sizes by cases 

Figure 33 and Figure 34 show the clustering results from the PR and CN indel 

analysis of all cases, in a similar matter to the trinucleotides in the previous section 

2.3.4.1. Both analyses reveal that the vast majority of mutations are 1 base deletions 

and insertions, with subsets of cancers distinguished by larger mutations. As shown by 

the green bounding box, several cases lack indels entirely, specifically a large number 

of thyroid carcinoma (THCA), ovarian serous cystadenocarcinoma (OV) and acute 

myeloid leukaemia (LAML) cases. The PR analysis revealed three UC cancers, namely 

pancreatic adenocarcinoma (PAAD), stomach adenocarcinoma MSI (STAD-MSIH) 

and THCA. While the CN revealed only two UC clusters, from PAAD, also observed 

by PR analysis and testicular germ cell tumours (TGCT).  

As with the proportions CN analysis, there is are comprehensive comparisons that 

can be made concerning indel size signatures in existing literature, as such these 

signatures were separately compared to all other cancers in order to understand the 

unique features these unique signatures. Table 9 shows the five most statistically altered 

indels from the unique cancers by both PR and CN analysis, while the entire profiles 

(all 12 possible indel changes) compared to a consensus representation of all cancers 

are shown in Figure 35 and Figure 36. As seen in Table 9, STAD-MSI cases have much 

higher proportions of 1 base insertions (mean: 0.85 vs 0.44) and deletions (mean: 0.90 

vs 0.53) and much lower rates of 5 base indels and 3 base deletions. PAAD has higher 

proportions of 3 base deletions and 1 base insertions. This cancer type also has much 

higher counts of 3 base deletions (mean: 84.8 vs 1.84) and greater than 5 based 

insertions (mean: 15.22 vs 0.36). THCA is characterized by an high proportion of 1 

base deletions (mean:0.98 vs 0.44) but few 1 base deletions (mean:0.00 vs 0.55), and 



 

105  

 

low relative counts of greater than 5 base insertions and 3 base insertions (mean:0.00 

vs 0.42). Within the indel analysis, there were fewer discernible groups when analysing 

by CN vs PR, a similar observation to the trinucleotide analysis. When compared to the 

trinucleotide analysis, indels were not as capable of identifying unique cancer groups, 

but still capable provide an interesting dimension of unique cancer differences. 
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Figure 33: Clustering of indel size proportions in all cases by using average metric and city 

block linkage 

The legend for this figure is inserted as Figure 27. Clustering has been performed on all cases 

in the TCGA according to the proportions of indel sizes changes. The x-axis dendrogram 

shows clustering of the data by case, while the y-axis dendrogram shows clustering by the 

mutation. The top heat map shows the proportion of mutations by case (each column is a total 

of 1). UC clusters are shown with a red boundary and the MSI cases cluster are shown with a 

purple boundary. The subset of cases without indels is shown with a green boundary.  
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Figure 34: Clustering of indel size counts in all cases by using average metric and city block 

linkage. 

The legend for this figure is inserted as Figure 27. Clustering has been performed on all cases 

in the TCGA according to the counts of indel sizes changes. The x-axis dendrogram shows 

clustering of the data by case, while the y-axis dendrogram shows clustering by the mutation. 

The top heat map shows the counts of mutations by case. UC clusters are shown with a red 

boundary. The subset of cases without indels is shown with a green boundary.  
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Table 9: The five most statistically different indel sizes observed in the uniquely clustered 

cancers by PR and CN analysis 
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S
T

A
D

-M
S

IH
 Del1 0.85 0.44 4.9E-52 5.94E-51 

Ins1 0.90 0.53 2.8E-25 1.67E-24 

Del>5 0.01 0.15 2.3E-13 9.28E-13 

Del3 0.07 0.16 1.2E-06 3.58E-06 

Ins>5 0.01 0.07 0.00023 0.000563 

P
A

A
D

 

Del3 0.46 0.15 1.6E-51 1.91E-50 

Ins1 0.82 0.54 5E-12 3E-11 

Del>5 0.04 0.15 1.3E-06 5.13E-06 

Del4 0.01 0.04 0.00594 0.017806 

Del5 0.00 0.01 0.08006 0.192148 

T
H

C
A

 

Del1 0.98 0.44 2.1E-69 2.53E-68 

Ins1 0.00 0.55 7.4E-42 4.45E-41 

Del>5 0.00 0.15 2E-12 6.33E-12 

Del3 0.01 0.16 2.1E-12 6.33E-12 

Del2 0.00 0.11 2.4E-10 5.85E-10 

C
o

u
n

ts
 

P
A

A
D

 

Del3 84.82 1.84 0 0 

Ins>5 15.22 0.36 3E-237 1.7E-236 

Ins5 1.32 0.07 3E-133 1.3E-132 

Del>5 7.07 1.32 1E-105 4.4E-105 

Del2 14.10 1.57 6.6E-88 1.58E-87 

T
H

C
A

 

Del>5 0.00 1.39 6.5E-09 7.83E-08 

Ins3 0.00 0.42 9.8E-05 0.000587 

Del4 0.00 0.46 0.00022 0.000896 

Ins2 0.00 0.49 0.00159 0.004625 

Del5 0.00 0.15 0.00193 0.004625 

 

Shown are the five most statistically differentially mutated indels for each of 

the unique cancer profiles derived from the indel PR and CN clustering of all 

cases. The mean value for the unique cancer profiles and all other cases is 

shown, along with the t-test p-value and the benjamini hochberg false 

discovery rate value. 
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Figure 35: The unique cancer profiles identified by indel PR analysis in STAD MSI-high, 

PAAD and THCA 

The top panel shows the consensus indel proportions pattern of all 8820 cases in the 

dataset by deriving the median value of each indel category. MSI-high, PAAD and 

THCA represent the signatures seen in the UC clusters from these cancers. 

  

STAD 
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Figure 36: The unique cancer profiles identified by indel CN analysis in PAAD and THCA 

The top panel shows the consensus indel count pattern of all 8820 cases in the dataset 

by deriving the median value of each indel category. PAAD and THCA represent the 

signatures seen in the UC clusters from these cancers. 
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2.3.4.3. Genomic distribution of mutations by cases 

Figure 37 and Figure 38 show the clustering results from the PR and CN genomic 

distribution analysis of all cases. The PR analysis revealed that acute myeloid 

leukaemia (LAML) formed a UC cluster, pancreatic adenocarcinoma (PAAD) formed 

a US cluster and colon adenocarcinoma (COAD-MSIH), skin cutaneous melanoma 

(SKMC) and stomach adenocarcinoma (STAD-MSIH) formed SCS clusters as did the 

MSI cases as a whole. As with the consensus genomic distribution analysis (2.3.3.3) 

and indel counts analysis (2.3.4.2), a segregation of the endodermal and mesodermal 

cancers (EMB_ORI) was also observed. By the CR analysis, LAML, STAD-MSI, 

thymoma (THYM) and uterine corpus endometrial carcinoma (UCES-MSIH) formed 

SCS clusters and also segregated the endodermal and mesodermal cancers. A consistent 

observation seen here and in the other dimensions, is that PRs tend to discern more 

cancer specific mutational signatures, however, CNs do provide a slight degree of 

additional detail, e.g. THYM and UCES-MSIH SCS clusters are only seen with counts. 

The identified cancer-specific signatures were separately compared to all other 

cancers so as to elucidate the unique mutational features of these cases, i.e. identify the 

specific region with differential mutation rates. This was done by performing an 

independent samples t-test for all the chromosomal bins between the cases of the 

cancers of interest versus all other cases and then performing multiple testing 

correction. Table 10 and Table 11 show the five most differentially mutated bins for 

each of the unique cancer clusters based on the PR and CN analyses, ranked by Holm-

Šídák (HS) multiple correction. The mean bin value from the clustered genes (column 

heading ‘mean 1 Mb mutation rate of cancer of interest’) and all other cases (column 

heading ‘mean 1 Mb mutation rate of all other cancers’) are shown, as are the p-values 

of the t-test (column heading ‘1Mb mutation T-test p-value’) and the HS values (column 
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heading ‘1Mb mutation holm sidak multiple correction’). The column with the heading 

“Cancer genes” shows the occurrence of mutated cancer-related genes, derived from 

cross-referencing mutated genes from the mutated genes analysis (section 2.3.1) within 

each 1 Mb bin against the COSMIC curated cancer genes (Wellcome Trust Sanger 

Institute 2016a).  

Mutational distributions have been speculated to be related to chromatin 

organization (Polak et al. 2015) likely due to the accessibility of the DNA or “openness” 

of the chromatin, as such, an effort was made to see if DNase-seq called peaks, which 

correspond to “open” chromatin states (accessible DNA) (Meyer and Liu 2014) could 

be linked the genomic mutation distributions rates. To do this DNase-seq peaks were 

obtained from the Roadmap Epigenomics Project (Kundaje et al. 2015) and a 

representative cell line from the ROADMAP project was chosen as a surrogate for each 

of the cancers of interest. The selected cell line was of the same tissue type or a similar 

developmental process as the cancers from the clustered mutational profiles (COAD-

MSIH, LAML, SKCM, STAD-MSI, PAAD, THYM and UCES-MSIH), done because 

chromatin modifications are believed to be tissue specific (Bonn et al. 2012; Cotney et 

al. 2012; Yen and Kellis 2015) and therefore cell lines of similarity biological origin 

may provide similar chromatin organization patterns. As can be seen in Table 12 

column 1, DNase-seq was available for 39 cell lines in the ROADMAP project 

database. The cancers of interest are shown in the second column to the right if the cell 

lines that most closely matched its tissue type. The rationale for the choice is shown in 

the third column. The density of accessible bases per Mb region was determined for 

each cell line in the ROADMAP project by aggregating all bases within DNase peaks 

which occur within the same bin coordinates as the mutational distributions. To 

elucidate the potential for differences in chromatin state, the number of accessible DNA 
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bases in each 1 Mb bin from the surrogate cell line was compared to all other 

ROADMAP DNase-seq cell lines via a one-samples T-test and then corrected for by 

fdr_bh, following which a rank order was then assigned corresponding to the fdr_bh 

values, in ascending order. The fdr_bh and rank orders for the five most differentially 

mutated bins for each cancer are shown in Table 10 and Table 11 with the column 

headings ‘Accessible bases t-test fdr_bh’ and ‘Accessible bases t-test fdr_bh rank’ 

respectively. 

Statistically enriched regions were seen in all the clustered cancers as evidenced 

by differing means and associated low HS score. When specifically looking at the 

association with cancer-related genes, only two of the cancers showed any association 

in the most significantly different regions. RUNX1 was found to be associated with 

LAML in the PR and CN analysis, while DNMT3A, NPM1, FLT3 and TET2 associated 

in only the PR and as would be expected, these five genes are associated with oncogenic 

events in leukemias (Osato 2004; Gaidzik et al. 2011; Ley et al. 2010; He 2013; Levis 

2011; Weissmann et al. 2012). The PR analysis of the EMB_ORI revealed regions with 

mutations in IDH1 and PIK3CA, where these genes were found to be more mutated in 

the endodermal set of cancers than the mesodermal. Interestingly, both IDH1 

(Borodovsky, Seltzer, and Riggins 2012) and PIK3CA (Bhattacharya, Mohd Omar, and 

Soong 2016; Hao et al. 2016) are cancer-related genes that have been linked to the 

dysregulation of metabolic pathways in cancer and IDH1 is specifically known to be 

dysregulated by epigenetic modifiers (Roy, Walsh, and Chan 2014). 

The rank column (‘Accessible bases t-test fdr_bh rank’), indicates the ranking 

order of the statistical differences in chromatin state (DNas-seq) between the surrogate 

cells line versus all other DNAase-seq cell lines. As can be seen, there does not seem 

to be an association between the genomic distributions of mutations (per Mb mutations 
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rate) (column heading “1Mb mutation holm sidak multiple correction”) and this 

ranking. Although the presented tables merely display the five most statistically 

significant regions, this lack of concordance is seen throughout the distribution of both 

corrected p-values. On its surface, this lack of association suggests that mutation rate 

and chromatin state may not be related, in contrast to previous work of Polak et al 

(Polak et al. 2015). However, there may be other explanations for this. For example, 

this observation could be indicative of the inappropriateness of the use of the surrogate 

cell lines to represent the patient-derived data used in the mutation analysis. However, 

if the assumption is made that the surrogate model is correct, then the lack of 

concordance could be due to the fact that the accessibility of DNA alone, as determined 

by DNase-seq, is not an adequate determinant of DNA exposure to mutational effects. 

Histone marks or other epigenetic markers may instead play a role in mutational 

processes and may be further areas of investigation. RNA expression of the various 

genes may also be used as an indirect measure of DNA accessibility (Blatti et al. 2015). 

Taking this approach with the TCGA data would have the advantage of being able not 

only to use patient clinical data but to also match, case for case, the expression data 

with the mutation data used in this study and can be other avenues of investigation in 

future work.  
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Figure 37: Clustering of genomic distribution proportions in all cases by using average metric 

and city block linkage. 

Clustering has been performed on all cases in the TCGA according to the proportions of the 

distribution of mutations per Mb bin. Cases are clustered along the x-axis. UC clusters are 

shown with a red boundary, US clusters with an orange boundary, SCS clusters are shown 

with a green boundary and the MSI cases cluster and endodermal case clustering is shown 

with a purple boundary.  
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Figure 38: Clustering of genomic density counts in all cases by using average metric and city 

block linkage. 

Clustering has been performed on all cases in the TCGA according to the counts of the 

distribution of mutations per Mb bin. Cases are clustered along the x-axis. SCS clusters are 

shown with a green boundary and the MSI cases cluster and endodermal case clustering are 

shown with a purple boundary.  
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Table 10: Unique mutational features revealed by genomic distribution analysis (1) 
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LAML 

CN chr14:84000001-85000000 0.01 0.00 0 0.76 
 

0 727 

chr21:36000001-37000000 0.11 0.03 0 0.99 RUNX1 0.24 2615 

chrX:73000001-74000000 0.01 0.21 0.00 1.00 
 

0 1186 

chr9:68000001-69000000 0 0.11 0.01 1.00 
 

0 1024 

chr20:29000001-30000000 0 0.35 0.01 1.00 
 

0 2152 

PR chr2:25000001-26000000 0.05 0 0 0 DNMT3A 0.03 2347 

chr5:170000001-171000000 0.06 0 0 0 NPM1 0 354 

chr13:28000001-29000000 0.07 0 0 0 FLT3 0 1638 

chr4:106000001-107000000 0.02 0 0 0 TET2 0.01 2228 

chr21:36000001-37000000 0.01 0 0 0 RUNX1 0.24 2615 

STAD 

_MSIH 

CN chr8:22000001-23000000 1.72 0.18 0 0 
 

0 695 

chr4:134000001-135000000 0.53 0.06 0 0 
 

0 699 

chr8:21000001-22000000 0.86 0.10 0 0 
 

0 1045 

chr8:23000001-24000000 0.65 0.09 0 0 
 

0 600 

chr8:1-1000000 0.46 0.05 0 0 
 

0 981 

PR chrY:27000001-28000000 0 0 0 0 
 

1.00 2845 

chr20:29000001-30000000 0 0 0 0.98 
 

0 12 

chr3:195000001-196000000 0 0 0 1.00 
 

0 717 

chr21:11000001-12000000 0 0 0.01 1.00 
 

0 415 

chr8:22000001-23000000 0 0 0.02 1.00 
 

0 695 

EMB_

ORI 

CN chrX:73000001-74000000 0.45 0.04 0 0 
   

chr8:10000001-11000000 0.38 0.04 0 0 
   

chr8:2000001-3000000 0.28 0.02 0 0 
   

chr15:25000001-26000000 0.58 0.05 0 0 
   

chr8:24000001-25000000 0.29 0.03 0 0 
   

PR chr5:140000001-141000000 0.01 0.01 0 0 
   

chr2:209000001-210000000 0 0 0 0 IDH1 
  

chr3:178000001-179000000 8E-04 0.002 3E-26 0 PIK3CA 
  

chr2:179000001-180000000 0.005 0.003 2E-23 0 
   

1_152000001_153000000 0.005 0.003 4E-21 0 
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Table 11: Unique mutational features revealed by genomic distribution analysis (2) 
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UCEU  

_MSIH 
CN 

chr4:134000001-135000000 0.35 0.06 0 0  0.90 2827 

chr8:22000001-23000000 0.99 0.19 0 0  0 1385 

chrX:39000001-40000000 0.27 0.05 0 0 BCOR 0 397 

chr5:67000001-68000000 0.41 0.05 0 0 PIK3R1 0 1589 

chr8:23000001-24000000 0.40 0.09 0 0  0 1719 

THYM CN 

chr4:45000001-46000000 0.01 0 0 0  0 1305 

chr12:84000001-85000000 0.01 0 0 0  0 881 

chrY:26000001-27000000 0.01 0 0 0  1.00 2858 

chr14:83000001-84000000 0.02 0 0 0  0 1187 

chr1:142000001-143000000 0.35 0.11 0 0.05  0 1542 

PAAD PR 

chr1:121000001-122000000 0 0 0 0  0 714 

chr9:20000001-21000000 0 0 0 0  0.03 1692 

chr7:142000001-143000000 0.01 0 0 0  0.11 2012 

chr20:29000001-30000000 0.01 0 0 0  0 12 

chr7:114000001-115000000 0 0 0 0  0.23 2204 

SKCM PR 

chr2:179000001-180000000 0.01 0 0 0  0.44 2484 

chr19:9000001-10000000 0.01 0 0 0  0.67 2650 

chr14:22000001-23000000 0 0 0 0  0.13 2183 

chr17:10000001-11000000 0 0 0 0  0 1249 

chr18:28000001-29000000 0 0 0 0  0.27 2356 

COAD 

_MSIH 
PR 

chrY:27000001-28000000 0 0 0 0  1.00 2842 

chr20:29000001-30000000 0 0 0 1.00  0.01 1645 

chr3:195000001-196000000 0 0 0.01 1.00  0.01 1562 

chr21:11000001-12000000 0 0 0.01 1.00  0.01 1652 

chr8:22000001-23000000 0 0 0.02 1.00  0 853 
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Table 12: Cell lines from the ROADMAP project that correspond to cancers with unique 

mutational distribution profiles 

ROADMAP_Cell_name Cancer_type Rationale of choice of this cell line 

H1 Cells (human embryonic stem cells)     

H1 BMP4 Derived Mesendoderm Cultured Cells Meso Mesendoderm cell 

H1 BMP4 Derived Trophoblast Cultured Cells     

H1 Derived Mesenchymal Stem Cells Ecto mesenchyme derived from ectoderm 

H1 Derived Neuronal Progenitor Cultured Cells     

H9 Cells (human embryonic stem cells)     

IMR90 fetal lung fibroblasts Cell Line     

iPS DF 6.9 Cells     

iPS DF 19.11 Cells     

Breast variant Human Mammary Epithelial Cells 

(vHMEC) 

    

Primary monocytes from peripheral blood LAML Myeloid cell 

Primary B cells from peripheral blood     

Primary T cells from cord blood     

Primary T cells from peripheral blood     

Primary Natural Killer cells from peripheral blood     

Primary hematopoietic stem cells G-CSF-mobilized 

Female 

    

Primary hematopoietic stem cells G-CSF-mobilized 

Male 

    

Foreskin Fibroblast Primary Cells skin01     

Foreskin Fibroblast Primary Cells skin02     

Foreskin Keratinocyte Primary Cells skin02     

Foreskin Melanocyte Primary Cells skin01 SKCM Melanocyte 

Fetal Adrenal Gland     

Fetal Brain Male     

Fetal Brain Female     

Fetal Heart     

Fetal Intestine Large COAD_MSIH Intestine 

Fetal Intestine Small     

Fetal Kidney     

Fetal Lung     

Fetal Muscle Trunk     

Fetal Muscle Leg     

Placenta     

Fetal Stomach     

Fetal Thymus THYM Thymus 

Gastric STAD_MSIH Adult stomach (not fetal) 

Ovary UCEC-MSIH Closest matching tissue type in terms 

of developments progression and body 

system 

Pancreas PAAD   

Psoas Muscle     

Small Intestine     

 
Cell line available via the ROADMAP database. The leftmost column shows all available cell lines 

the second column show the cancer type with the unique clustering profile next to the ROADMAP 

cell line selected to represent it. The rationale for the choice may not be immediately obvious and is 

therefore stated is the third column.    
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2.3.4.4. Genes and variants by cases 

As with the other analyses, the clustering of the mutated genes, shown in Figure 

39, exhibited heterogeneity in the mutation patterns among the cases within each cancer 

type, however, this approach did seem to reveal the greatest number of unique sub-

cancer clusters. Pancreatic adenocarcinoma (PAAD) cases formed into a UC cluster, 

while kidney renal clear cell carcinoma (KIRC), acute myeloid leukaemia (LAML), 

skin cutaneous melanoma (SKCM) and thyroid carcinoma (THCA) formed US clusters, 

as did all MSI cases. Breast invasive carcinoma (BRCA) and brain lower grade glioma 

(LGG) formed two US clusters each. Table 13 and Table 14 lists the 5 most variable 

mutated genes between each unique cancer cluster and all other cancers. The mean 

number of cases with mutation(s) for each gene is shown for the clustered cancers in 

the column ‘mean mutation rate - clustered’ and all other cases in the column ‘mean 

mutation rate – others’. A fisher’s exact test was used to compare the mutation rates in 

the clustered cancers vs all other cases, with the p-values and odds ratio shown in the 

appropriately named columns. Fdr_bh correction was performed and was then used to 

rank the genes according to statistical significance. The novelty of the approach taken 

in this study is that other cancers mutation studies typically compare mutation rates in 

just a cancer alone, i.e. tumour vs normal. The findings here identify genes that are 

specific to cancers types, i.e. not seen in other cancers or seen at much lower rates. 

BRCA had twelve genes that had significantly different rates of mutation in each 

cluster, based on an fdr_bh threshold of less than 0.05 (Table 13). Specifically, 

differences in the mutation rates in GATA3 in both clusters, along with PIK3CA and 

MAP3K1 among other genes in either one of the clusters. Seven genes were 

significantly different in KIRC, but specifically higher rates of VHL and PBRM1 

mutations were seen. 10 significantly mutated genes were identified in the LAML, 
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including RUNX1, FLT3, NPM1 and IDH2 of which the former two were identified by 

the genomic distribution analysis in the section 2.3.4.3. One cluster of LGG had sixty-

eight significantly different genes while the other just four (Table 14). In both clusters, 

IDH1 was the most significant gene. Over 16 thousand genes were significantly 

different in the MSI cases compared to all other cases, obviously due to the exceedingly 

high mutation rates of these cancers (Figure 6) of which most are random passenger 

mutations, however, RNF43, MLL2 and ARID1A have particularly high rates of 

mutations in the MSI cases. PAAD, the only UC clustered cancer, has 1085 

significantly different genes, most notably, KRAS, RIOK1 and JMY. 6994 genes were 

differentially mutated in SKCM, while that figure was 213 was in THCA. The most 

significant genes in SKCM are the glycoprotein genes THSD7B and MUC16 and 

structural genes PCLO, DNAH5 and TTN. THCA is especially distinct in the number 

of BRAF mutations.  

The clustering of the variants with a frequency of four or more in the TCGA dataset 

is as shown in Figure 40. ACC, LAML and PAAD grouped as a UC clusters, while 

BRCA, LGG, PCPG THCA and all the MSI cases formed US clusters. Table 15 and 

Table 16 show the 5 most statically different variants that distinguish each cluster, 

ranked according to the fdr_bh. Interesting the most statistically different variants in 

each cancer cluster were unique to that cluster. Annotation of the 5 most statistically 

different variants showed that the mutated genes were also unique to each cluster. 

Overall, the clustering and subsequent identification of unique features of these 

clusters show that, at least in part, certain cancers or subsets of cancers can be identified 

based on the mutated genes or variants alone. 
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Figure 39: Clustering of mutated genes in all cases by using complete metric and Jaccard 

linkage. 

Clustering has been performed on all cases in the TCGA according to the 24118 genes with 

mutations. The x-axis dendrogram shows clustering of the data by case. UC clusters are 

shown with a red boundary, SCS clusters are shown with a green boundary and the MSI cases 

cluster and endodermal case clustering are shown with a purple boundary. 
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Figure 40: Clustering of mutated variants in all cases by using complete metric and Jaccard 

linkage. 

Clustering has been performed on all cases in the TCGA according to 42,030 recurrent 

variants. The x-axis dendrogram shows clustering of the data by case. UC clusters are shown 

with a red boundary, SCS clusters are shown with a green boundary and the MSI cases cluster 

and endodermal case clustering are shown with a purple boundary.  
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Table 13: Most statically different genes as determined by the clustering of mutated genes 

frequencies (1) 
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BRCA_1 

PIK3CA 

phosphatidylino

sitol-4,5-

bisphosphate 3-

kinase catalytic 

subunit alpha 

117.41 8E-101 2E-96 0.94 0.01 122 8 999 7691 

MAP3K1 

mitogen-

activated protein 

kinase kinase 

kinase 1 

11.959 8E-19 1E-14 0.22 0.34 28 102 195 8495 

TTN titin 0.251 1E-08 0.0001 0.11 0.04 14 116 2822 5868 

TP53 
tumor protein 

p53 
0.3043 6E-08 0.0004 0.15 0.03 20 110 3250 5440 

GATA3 
GATA binding 

protein 3 
6.0823 8E-08 0.0004 0.12 0.37 16 114 196 8494 

BRCA_2 

GATA3 
GATA binding 

protein 3 
37.88 8E-49 2E-44 0.42 0.29 48 66 164 8542 

TP53 
tumor protein 

p53 
0.0926 1E-15 2E-11 0.05 0.03 6 108 3264 5442 

TTN titin 0.0952 3E-13 2E-09 0.04 0.04 5 109 2831 5875 

CBFB 
core-binding 

factor beta 

subunit 
18.115 1E-08 6E-05 0.08 0.72 9 105 41 8665 

MUC16 mucin 16, cell 

surface 

associated 

0.1361

60515 

1.5229

3E-07 

0.0005

24716 

0.04 0.06 4 110 1835 6871 

KIRC 

VHL 
von Hippel-

Lindau tumor 

suppressor 
400.35 3E-146 7E-142 0.89 0.06 102 12 181 8525 

PBRM1 polybromo 1 23.587 6E-45 7E-41 0.48 0.15 55 59 331 8375 

TP53 
tumor protein 

p53 
0.0297 2E-20 2E-16 0.02 0.03 2 112 3268 5438 

MUC16 
mucin 16, cell 

surface 

associated 
0.0668 2E-09 1E-05 0.02 0.06 2 112 1837 6869 

BAP1 
BRCA1 

associated 

protein 1 
6.6692 2E-07 0.0008 0.12 0.36 14 100 179 8527 

LAML 

FLT3 
fms related 

tyrosine kinase 3 
31.503 2E-31 5E-27 0.42 0.19 32 45 193 8550 

NPM1 nucleophosmin 42.856 2E-23 2E-19 0.26 0.45 20 57 71 8672 

IDH2 

isocitrate 

dehydrogenase 

(NADP(+)) 2, 

mitochondrial 

25.342 2E-14 2E-10 0.18 0.45 14 63 76 8667 

RUNX1 
runt related 

transcription 

factor 1 
18.826 9E-13 5E-09 0.18 0.38 14 63 102 8641 

CEBPA 
CCAAT/enhanc

er binding 

protein alpha 
60.771 1E-12 5E-09 0.12 0.78 9 68 19 8724 

LGG_1 

IDH1 

isocitrate 

dehydrogenase 

(NADP(+)) 1, 

cytosolic 

1745.1 8E-265 2E-260 0.99 0.01 206 3 326 8285 

ATRX 
ATRX, 

chromatin 

remodeler 
45.785 3E-132 3E-128 0.72 0.12 150 59 453 8158 

TP53 
tumor protein 

p53 
6.8491 1E-36 9E-33 0.79 0.01 166 43 3104 5507 

TTN titin 0.1937 5E-16 3E-12 0.09 0.06 18 191 2818 5793 

CSMD1 
CUB and Sushi 

multiple 

domains 1 
0 1E-08 5E-05 0.00 0.22 0 209 755 7856 
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Table 14: Most statically different genes as determined by the clustering of mutated genes 

frequencies (2) 
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LGG_2 

IDH1 

isocitrate 

dehydrogenase 

(NADP(+)) 1, 

cytosolic 

135.85 4E-82 9E-78 0.88 0.02 75 10 457 8278 

CIC 
capicua 

transcriptional 

repressor 
113.23 8E-80 9E-76 0.78 0.07 66 19 260 8475 

FUBP1 
far upstream 

element binding 

protein 1 
29.416 4E-25 3E-21 0.29 0.33 25 60 122 8613 

TP53 tumor protein p53 0.1047 3E-11 2E-07 0.06 0.02 5 80 3265 5470 

MSIH 

RNF43 
ring finger protein 

43 
85.899 2E-118 4E-114 0.60 0.31 100 66 150 8504 

MLL2 

myeloid/lymphoi

d or mixed-

lineage leukemia 

protein 2 

55.308 5E-113 6E-109 0.69 0.13 115 51 339 8315 

ARID1A 
AT-rich 

interaction 

domain 1A 
38.886 2E-100 2E-96 0.73 0.07 122 44 576 8078 

RPL22 
ribosomal protein 

L22 
77.572 3E-76 2E-72 0.37 0.61 62 104 66 8588 

ZFHX3 
zinc finger 

homeobox 3 
24.035 1E-68 5E-65 0.53 0.17 88 78 388 8266 

PAAD 

KRAS 
KRAS proto-

oncogene, 

GTPase 
43.093 3E-73 8E-69 0.75 0.05 85 28 573 8134 

RBM14-

RBM4 

 

222.24 4E-68 4E-64 0.38 0.74 43 70 24 8683 

RIOK1 RIO kinase 1 70.546 7E-55 5E-51 0.39 0.47 44 69 78 8629 

FRG1B 
 

23.247 1E-53 6E-50 0.78 0.02 88 25 1145 7562 

JMY 

junction 

mediating and 

regulatory 

protein, p53 

cofactor 

51.823 3E-49 1E-45 0.38 0.41 43 70 102 8605 

SKCM 

MUC16 
mucin 16, cell 

surface associated 
40.426 7E-99 2E-94 0.91 0.01 174 18 1665 6963 

DNAH5 
dynein axonemal 

heavy chain 5 
21.794 3E-85 3E-81 0.67 0.08 129 63 741 7887 

TTN titin 37.018 5E-76 4E-72 0.94 0.00 181 11 2655 5973 

PCLO 

piccolo 

presynaptic 

cytomatrix 

protein 

17.677 2E-75 1E-71 0.66 0.07 126 66 841 7787 

MGAM 
maltase-

glucoamylase 
21.981 6E-73 3E-69 0.51 0.20 97 95 383 8245 

THCA 

BRAF 

B-Raf proto-

oncogene, 

serine/threonine 

kinase 

87.137 3E-196 8E-192 0.83 0.08 202 41 459 8118 

TP53 tumor protein p53 0.0067 4E-48 4E-44 0.00 0.07 1 242 3269 5308 

TTN titin 0.1835 3E-19 2E-15 0.08 0.07 20 223 2816 5761 

MUC16 
mucin 16, cell 

surface associated 
0.1418 1E-14 6E-11 0.04 0.11 9 234 1830 6747 

MUC4 
mucin 4, cell 

surface associated 
0.0482 5E-14 2E-10 0.01 0.16 2 241 1259 7318 
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Table 15: Five most statically different variants as determined by the clustering of mutated variant frequencies (1) 
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ACC chr16:88599697-88599705 AGCCTCTGG>- ZFPM1 0.49 0.00 381.198864 3E-43 1E-38 zinc finger protein, FOG family member 1 

chr15:63414083-63414083 A>C LACTB 0.40 0.00 849.765306 6.1E-40 1E-35 lactamase, beta 

chr8:146033347-146033347 T>C ZNF517 0.38 0.00 246.893417 3E-32 4E-28 zinc finger protein 517 

chr16:57562804-57562804 G>A CCDC102A 0.34 0.00 411.120235 3E-31 3E-27 coiled-coil domain containing 102A 

chr7:30634661-30634661 C>G GARS 0.36 0.00 275.62037 3.6E-31 3E-27 glycyl-tRNA synthetase 

BRCA chr10:8111433-8111434 CA>- GATA3 0.05 0.00 139.717201 1.7E-21 7E-17 GATA binding protein 3 

chr20:46279837-46279839 CAG>- NCOA3 0.04 0.00 158.435159 6.9E-17 1E-12 nuclear receptor coactivator 3 

chr7:36552787-36552788 ->G AOAH 0.04 0.00 39.5806916 1.1E-13 1E-09 acyloxyacyl hydrolase (neutrophil) 

chr12:124887058-124887059 ->GCT NCOR2 0.03 0.00 48.3142857 2.8E-11 3E-07 nuclear receptor corepressor 2 

chr16:68772218-68772218 C>T CDH1 0.02 0.00 inf 1.8E-10 1E-06 cadherin 1, type 1, E-cadherin (epithelial) 

LAML chr2:25457242-25457242 C>T DNMT3A 0.14 0.00 688.253968 1.4E-34 6E-30 DNA (cytosine-5-)-methyltransferase 3 alpha 

chr5:170837543-170837544 ->TCTG NPM1 0.13 0.00 1297.53543 8.5E-34 2E-29 nucleophosmin (nucleolar phosphoprotein B23, numatrin) 

chr15:90631934-90631934 C>T IDH2 0.11 0.00 533.661538 2E-27 3E-23 isocitrate dehydrogenase 2 (NADP+), mitochondrial 

chr5:170837547-170837548 ->TCTG NPM1 0.10 0.00 248.187023 3.4E-24 4E-20 nucleophosmin (nucleolar phosphoprotein B23, numatrin) 

chr13:28592642-28592642 C>A FLT3 0.07 0.00 637.720588 1.2E-17 1E-13 fms-related tyrosine kinase 3 

LGG chr2:209113112-209113112 C>T IDH1 1.00 0.02 inf 0 0 isocitrate dehydrogenase 1 (NADP+), soluble 

chr17:7577121-7577121 G>A TP53 0.15 0.01 19.2685662 5.3E-30 1E-25 tumor protein p53 

chr9:139413070-139413072 AGA>- NOTCH1 0.03 0.00 147.244635 1.2E-11 2E-07 notch 1 

chrX:76909629-76909629 G>A ATRX 0.02 0.00 109.493617 1E-08 0.0001 alpha thalassemia/mental retardation syndrome X-linked 

chr19:42791715-42791715 C>T CIC 0.02 0.00 181.737288 8.6E-08 0.0007 capicua transcriptional repressor 
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Table 16: Five most statically different variants as determined by the clustering of mutated variant frequencies (2) 
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MSI chr1:6257785-6257785 T>- RPL22 0.41 0.00 153.923077 6.3E-67 3E-62 ribosomal protein L22 

chr17:56435161-56435161 C>- RNF43 0.39 0.01 126.403664 1E-61 2E-57 ring finger protein 43 

chr2:148683686-148683686 A>- ACVR2A 0.25 0.00 92.6006098 9.1E-39 1E-34 activin A receptor, type IIA 

chr10:890939-890939 T>- LARP4B 0.20 0.00 197.704545 2.4E-35 3E-31 La ribonucleoprotein domain family, member 4B 

chr8:103289349-103289349 T>- UBR5 0.21 0.00 127.660281 2.4E-34 2E-30 ubiquitin protein ligase E3 component n-recognin 5 

PAAD chr11:66411364-66411384 (21)>- RBM14-

RBM4 

0.39 0.00 310.543379 2.7E-77 1E-72 RBM14-RBM4 readthrough 

chr6:7393450-7393452 GAC>- RIOK1 0.35 0.00 311.769231 2.5E-69 5E-65 RIO kinase 1 

chr5:78610444-78610479 (36)>-  JMY 0.34 0.00 346.803311 1.4E-68 2E-64 junction mediating and regulatory protein, p53 cofactor 

chr1:152671515-152671556 (42)>- LCE2A 0.29 0.00 325.256684 2.5E-58 3E-54 late cornified envelope 2A 

chr12:55615114-55615116 CTT>- OR10A7 0.26 0.00 504.707865 4.6E-54 4E-50 olfactory receptor, family 10, subfamily A, member 7 

PCPG chr1:248020556-248020556 G>C TRIM58 0.18 0.00 218.441315 3.6E-27 2E-22 tripartite motif containing 58 

chr17:59489893-59489893 T>C C17orf82 0.13 0.00 114.763158 2.9E-17 6E-13 chromosome 17 open reading frame 82 

chr19:50881820-50881821 ->AAC NR1H2 0.11 0.00 161.892393 9.4E-17 1E-12 nuclear receptor subfamily 1, group H, member 2 

chr17:16097825-16097825 T>G NCOR1 0.14 0.00 49.7428571 1.7E-15 2E-11 nuclear receptor corepressor 1 

chr3:195512186-195512186 T>C MUC4 0.08 0.00 inf 7.1E-15 6E-11 mucin 4, cell surface associated 

THCA chr7:140453136-140453136 A>T BRAF 0.98 0.03 1244.67797 1E-232 4E-228 B-Raf proto-oncogene, serine/threonine kinase 

chr1:152280782-152280782 A>G FLG 0.08 0.00 29 1.5E-15 3E-11 filaggrin 

chr1:152281479-152281479 G>T FLG 0.04 0.00 18.2198732 1E-07 0.0014 filaggrin 

chr1:186363119-186363119 C>G C1orf27 0.03 0.00 17.4908722 5E-06 0.0471 chromosome 1 open reading frame 27 

chr1:152281039-152281039 G>A FLG 0.02 0.00 65.4318182 5.6E-06 0.0471 filaggrin 
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2.3.4.5. Multidimensional clustering analysis by cases 

Several unique mutational profiles have been identified via the interrogation of the 

different dimensions of DNA mutations. For example, through the use of mutated 

genes, one UC cluster was identified and six US clusters, suggesting that the cancer 

type of the cases within these clusters can be determined, with a degree of certainty, 

based just on the mutational profiles. To improve on this, the 10 dimensions were 

combined into two separate datasets, one using the proportions values for trinucleotide 

counts, indel sizes and genomic distribution (multidimensional proportions) and the 

other using the counts (multidimensional counts), both of these datasets also contain 

the genes and variants dimensions. Figure 41 and Figure 42 represent the results from 

the multidimensional proportions clustering and multidimensional counts clustering 

respectively. The idea behind the combined analysis was to maximise the subtype 

differentiation using all available data perhaps overcoming the limitations of the 

individual dimensions of analysis. Figure 41 and Figure 42 show however that a greater 

discernment was not observed, but rather that cancer or sub-cancer specific clustering 

suffered by combining the various data dimensions, and that unique cancer subtyping 

with all dimensions does not appear possible via hierarchical clustering. As speculated 

in section 2.3.3.5, this is may be due to the fact that the unique profiles of the individual 

dimensions are masked when analysed by hierarchical clustering. In both the 

multidimensional PR and CN analyses, acute myeloid leukaemia (LAML) and stomach 

adenocarcinoma (STAD) from SCS clusters, while the endodermal and mesodermal 

cancers tend to cluster separately. No UC or US clusters were observed. 

A summary of the cluster types and corresponding cancers from each dimension 

of analysis is shown in Table 17. 
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Figure 41: Clustering of all dimensions with proportions in all cases by using average metric 

and city block linkage. 

Clustering has been performed on all cases in the TCGA according to a combination of all 

dimensions of data using proportions rather than counts. The x-axis dendrogram shows 

clustering of the data by case.   
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Figure 42: Clustering of all dimensions with counts in all cases by using average metric and 

city block linkage. 

Clustering has been performed on all cases in the TCGA according to a combination of all 

dimensions of data using counts rather than proportions. The x-axis dendrogram shows 

clustering of the data by case.
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Table 17: Incidences of distinct cancer mutational profiles in all 10 dimensions of analysis 
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ACC Adrenocortical carcinoma - - - - UC - - - - - 

BLCA Bladder urothelial carcinoma SCS - - - - - - - - - 

BRCA Breast invasive carcinoma - - - - US US - - - - 

CESC 
Cervical squamous cell carcinoma and 

endocervical adenocarcinoma 
- - - - - - - - - - 

CHOL Cholangiocarcinoma - - - - - - - - - - 

COAD-MSIH Colon adenocarcinoma  (MSI) - - - - - - SCS - - - 

COAD-

NonMSIH 
Colon adenocarcinoma - - - - - - - - - - 

ESCA Esophageal carcinoma - - - - - - - - - - 

GBM Glioblastoma multiforme - - - - - - - - - - 

HNSC Head and neck squamous cell carcinoma - - - - - - - - - - 

KICH Kidney chromophobe - - - - - - - - - - 

KIRC Kidney renal clear cell carcinoma - - - - - US - - - - 

KIRP Kidney renal papillary cell carcinoma - - - - - - - - - - 

LAML Acute myeloid leukemia - SCS - - UC US UC SCS SCS SCS 

LGG Brain lower grade glioma - - - - US US - - - - 

LIHC Liver hepatocellular carcinoma SCS - - - - - - - - - 

LUAD Lung adenocarcinoma UC - - - - - - - - - 

LUSC Lung squamous cell carcinoma - - - - - - - - - - 

OV Ovarian serous cystadenocarcinoma - - - - - - - - - - 

PAAD Pancreatic adenocarcinoma - - US US UC UC US - - - 

PCPG Pheochromocytoma and paraganglioma - - - - US - - - - - 

PRAD Prostate adenocarcinoma - - - - - - - - - - 

READ Rectum adenocarcinoma - - - - - - - - - - 

SARC Sarcoma - - - - - - - - - - 

SKCM Skin cutaneous melanoma UC US - - - US SCS - - - 

STAD-MSIH Stomach adenocarcinoma  (MSI) - - - - - - - US SCS SCS 

STAD-NonMSIH Stomach adenocarcinoma  - - - - - - - - - - 

TGCT Testicular germ cell tumours  UC UC - - - - - - - - 

THCA Thyroid carcinoma - - US US US US - - - - 

THYM Thymoma UC UC - - - - - SCS - - 

UCEC-MSIH 
Uterine corpus endometrial carcinoma  

(MSI) 
- - - - - SCS - SCS - - 

UCEC-NonMSIH Uterine corpus endometrial carcinoma - - - - - - - - - - 

UCS Uterine carcinosarcoma - - - - - - - - - - 

UVM Uveal melanoma - - - - - - - - - - 

UC Unique cancer signature SCS Shared Cancer signature 

US Unique subtype signature - Non-definable type 
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2.4. Discussion 

2.4.1. Choice of reference data 

The Cancer Genome Atlas (TCGA) is a US multicentre effort to catalogue pan-

cancer aberrations that was started in 2005 (The Cancer Genome Atlas 2013). This 

database catalogues Clinical, WES, WGS, whole transcription sequencing, miRNA-

seq, methylation and CNV cancer aberrations with varying representation of this data 

types in the different cancers, however, the most consistent data type is WES data. 

Several studies have been created from this huge research effort, several of which are 

considered be benchmark papers in various aspects of cancer studies 

(http://www.nature.com/tcga/). The stated aim of the project is to provide data and 

genome analysis to the cancer research community with the intent that this data will 

support new discoveries and accelerate the pace of cancer research. The cancers types 

that are decided for inclusion are based on either having poor prognosis or a significant 

overall public health impact and also when there is the availability of human tumour 

and matched normal tissue of high quality. From the perspective of a researcher, the 

three main attractive features of the TCGA dataset are 1) it is a huge source of results 

from many cancers, 2) it is multidimensional in its data analysis including DNA, RNA 

and methylation results and 3) the data is well curated and highly standardized across 

all datasets. Considering all these features, this dataset was the perfect choice to study 

cancer subtypes as part of the work presented in this thesis as it represents all the major 

subtypes that a researcher would generally encounter in cancer studies. 

The initial challenge of dealing with the TCGA data is that it that for any given 

cancer, the WES results are supplied as several MAF files of different versions of the 

analysis with overlapping cases. As there was no definitive version that could be 
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considered superior, all data was combined taking consideration to avoid multiple 

copies of any one case. Where any case was in more than one version, the variants were 

combined without duplication, the downside of this being the bias towards a higher 

overall mutation load. 

 

2.4.2. Microsatellite instability consideration 

Microsatellite instability (MSI) is a hypermutable phenotype caused by the loss of 

DNA mismatch repair activity primarily due to mutations in mismatch repair genes 

(Boland and Goel 2010). Cells with abnormally functioning MMR are unable to correct 

errors that occur during DNA replication and consequently accumulate errors. New 

alleles in the abnormal sample not found in the corresponding normal sample indicate 

the presence of MSI. Several PCR-based methods exist for the determination of MSI 

status including the Promega MSI kit (Promega Corporation,) and the Type-it 

Microsatellite PCR Kit (Qiagen). As the underlying mechanisms of MSI, unlike other 

cancers, may be mismatch repair gene, we postulated that MSI-high cases for a given 

cancer subtype should be considered a different subset of cancer and as such was 

separated prior to further analysis. Specifically, colon adenocarcinoma (COAD), 

stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC) 

were segregated according to MSI status (MSI high and not-MSI high) based on the 

TCGA annotation. MSI annotation was also available for rectum adenocarcinoma 

(READ), esophageal carcinoma (ESCA) and uterine carcinosarcoma (UCS) however 

there were too few MSI-high cases to be statistically meaningful. As observed, the MSI 

cases consistently segregated from the non-MSI cases of the same cancers and in fact, 

the MSI cases from all three cancers tended to cluster together, a phenomenon observed 

in all dimensions of the consensus analysis (section 2.3.3) and half of the individual 
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cases analyses (section 2.3.4). As revealed by the indel analysis, these cancers were 

identifiable by having higher rates of 1 base insertion and deletions, huge mutational 

loads that result in many more variants and consequently mutated genes, and a much 

higher genomic mutational distribution rate. It is, therefore, necessary to segregate MSI 

cases from all other cases when attempting to understanding the underlying mutational 

phenomenon, even though this has not been done in previous studies utilising the 

TCGA dataset. 

2.4.3. Mutational signatures are distinct in certain cancer subsets 

Perhaps the first publication to highlight that, overall, cancers have specific 

patterns of SNVs was by Michael Stratton’s group in 2007 (Greenman et al. 2007). In 

this work, the authors studied the sequencing results from the putative 518 genes that 

form the kinome, in eight different cancer types. The kinome is made of proteins 

kinases, meaning that they catalyse phosphorylation reactions and are major control 

points in cellular behaviour (Manning et al. 2002) and are major drug targets. The 

specific reason for selecting these gene are twofold. Firstly, this research, although 

recent, pooled data from research projects performed before the mass expansion of NGS 

and therefore tended to be of a much smaller scale than current WES or WGS datasets 

and thus necessitated a more concentrated approach to DNA sequencing. Secondly, 

these genes were specifically chosen for study since they are the most likely set of genes 

to be biologically significant and therefore under selection pressure. The main 

weakness of these datasets is that it uses pooled data from several experiments, and no 

one sample was sufficient to create a mutation signature due to the relatively low 

number of mutations from a kinome sequencing experiment. That notwithstanding, this 

was the first time such an observation had been made at such a large level and was the 

first piece of evidence that site of origin prediction was theoretically possible. The most 
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recent example of a large-scale study of mutation profiles was published 6 years later 

and leveraged on the rich source of WES results from the TCGA database. This study 

introduced the notion of trinucleotide mutations and the heterogeneity of the cancers by 

plotting the non-negative matrix factorization (NMF) of the mutation as a radial plot, 

the authors, however, did not go into any detail concerning this phenomenon as the 

publication’s main focus was the development of MutSig, the mutation ranking 

software package mentioned previously in this text. 

In section 2.3.3 of this thesis, consensus representations of each cancer type were 

used to determine if there are patterns of relatedness between the 34 cancer types in this 

study, done by clustering the mutation results in any of 8 different methods of analysing 

the mutations, referred to as the ‘dimensions’. In addition, the aggregation of the 

dimensions was also done, i.e. the all dimensions proportions approach that utilised 

proportional data and the all dimensions counts preferring counts when applicable to 

the different dimension, i.e. 10 dimensions altogether. The clustering was compared to 

specific cancer characteristics to study possible associations of these characteristics to 

the clustering patterns. Several of cancers were revealed to have similar mutation 

profiles, dependent on the mutation dimension being studied. It should be noted that 

the different cancer are represented by datasets that were derived at different times, in 

many situations, from different sequencing centres and analysed with different 

bioinformatics pipelines. Despite this differences, several related cancer were 

consistently similar to each other. The two lung cancers, lung adenocarcinoma (LUAD) 

and lung squamous cell carcinoma (LUSC), were paired together in the clustering in 

the trinucleotide, mutated genes and genomic distribution dimensions. The three kidney 

cancers (kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC) and 

kidney renal papillary cell carcinoma (KIRP)) and the two non-MSI colorectal cancers 
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(colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ)) clustered by 

the trinucleotide and recurrent variants dimensions. The non-lung squamous cell 

cancers (cervical squamous cell carcinoma (CESC) and head and neck squamous cell 

carcinoma (HNSC)) also clustered by the trinucleotide profiles. The seemingly 

unrelated cancers acute myeloid leukaemia (LAML), thyroid carcinoma (THCA), 

ovarian serous cystadenocarcinoma (OV) were consistently cluster by the indel and 

mutated genes dimensions. The three MSI cancers clustered in all of the ten dimensions, 

suggesting how the MSI phenomenon really is a phenotype in itself. These consistent 

associations between different cancers suggest that there are truly underlying patterns 

that can identify at least some cancer types. 

In section 2.3.4, analysis was performed on the 8820 individual cases to identify if 

there are cancer specific or cancer sub-group specific mutational signatures according 

to the 10 dimensions. The clustering pattern of each cancer was divided into four types 

as described in section 2.3.4, with the intention of identifying cancers with varying 

degrees of exclusivity in mutational signature patterns. UC clustering suggests that all 

cases of a cancer type have a unique mutational signature as compared to the cases in 

all other cancers. Theoretically, these cancers types could be identified, within limits, 

based on the appropriate mutational signature alone. Clustering is termed US when only 

a subset of the cases within a cancers type exhibit a unique mutational signature. As 

such, a given case from a cancer with US clustering may be definitively identified if its 

signature falls within the unique subset, but not if its signature deviates from this. SCS 

clustering indicates that all the cases from a given cancers fall within a specific 

mutational signature, indicated by a narrow range of clustering, however, the signature 

is not unique to that cancer, i.e. cases from at least one cancer shares this profile. Despite 

having a specific signature, these cancers cannot be definitively identified due to the 
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overlapping signature patterns with other cancer(s). Lastly, NDT clustering indicates 

cancers where there is great heterogeneity in the clustering, and thus mutational 

signatures and based on simple hierarchical clustering alone, it would be impossible to 

identify the cancer of any case in these cancers. Table 17 summarises clustering profiles 

seen in the 34 cancer subtypes used in this study. Each dimension of analysis is 

presented as a column and cancer types along the rows. The annotations in the cells 

indicate the cluster type that was observed in each cancer with each annotation 

dimension. Seventeen of the cancers studied showed NDT clustering in all analysis, 

suggesting that predicting the cancers type/site of origin from these cancers would be 

exceedingly challenging. Seven cancers showed UC clustering in at least one dimension 

of analysis, seven cancers without UC clustering showed US clustering in at least one 

dimension. Four cancers without UC or SCS clustering showed SCS clustering 

clustering in at least one dimension. The UC and US cancers put together suggest that 

at least 14 of the 34 cancers have cases that may be identified by the mutational 

signatures alone. Acute myeloid leukaemia was the most identifiable cancer, with UC 

clustering in genomic density proportions and the recurrent variants dimensions, also 

with US clustering with the analysis of mutated genes. Pancreatic adenocarcinoma 

(PAAD), thymoma and testicular germ cell tumours were also highly identifiable, have 

UC clusters in two dimensions each. Overall, the trinucleotide proportions seem to be 

the best classifier for specific cancer signatures, with four cancers having UC clusters. 

The variants analysis (three cancers with UC, and four with US clusters) and the 

mutated genes analysis (one cancer with a UC cluster (PAAD) and six cancers with US 

clusters) were also particularly informative. 
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2.4.4. Computational considerations 

The python programming language was chosen for this analysis due to its power 

and flexibility, specifically its strength with its array data structure via the use of numpy 

and pandas. Much thought was put into the computational framework for this project, 

due to the very large dataset being used. A comparison was performed against R 3.1.0, 

which has a very similar array interface to pandas, for loading of the large dataset which 

had over 584 x 106 elements, and data manipulation and python appeared to be 

significantly quicker and more reliable (data not shown). Added to this, python added 

the functionality of several powerful libraries, such as the scikit-learn used in chapter 

3. The analysis presented here must be performed on a high-performance machine due 

to the large computational and memory requirements, specifically a server with four 

64-bit 15-core Intel Xeon processors (3.2 GHz each) and 512 GB of RAM. 

 

2.4.5. Limitations of studying small mutations with hierarchical clustering 

Perhaps the most obvious shortcoming of the analysis done so far is that only the 

small mutations have been studied, albeit in great detail, specifically data generated 

from SNV and indels using a somatic variant caller. Potentially a more detail analysis 

of cancer subtypes may have been possible with the inclusion of the other aspect of the 

TCGA data, inclusive of copy number variation data, RNA expression, miRNA, 

methylation and others. Avoiding these analyses was, however, a conscious decision, 

as the intention was to carry out a summary that would be part of a framework to predict 

cancer site of origin from only WES or WGS results alone, as this type of analysis 

represents the most common analysis approach used in NGS and high throughput 

analyses. 
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The results in this chapter show there are certainly specific homogenous sets of 

cases with cancers types that share mutational patterns and are easily distinguished from 

other cancers (Table 17). This homogeneity is not universal, with 20 of the 34 cancer 

subtypes in this study not having unique clustering patterns. Based on these 

observations, is unlikely that all cancer subtypes have unique signatures that are 

homogenous throughout all cases and at the same time easily distinguished from all 

other cancer subtypes. There may, however, be some distinct patterns that distinguish 

subsets of the different cancers subtypes consistent with the work presented in this 

thesis. However, if possible, it will take a sophisticated methodology than presented in 

this chapter to be able to identify more complex or hidden relationships that are specific 

to the cancer types and as such may allow identification of specific cancers. The deep 

analysis of the mutations data is investigated in chapter 3 via the interrogation of 

multiple statistical and machine learning methodologies. This is performed with the 

intention of establishing a framework to use all dimensions of the data to help identify 

features which are unique to cancer subtypes and also allow the prediction of a cancer 

subtype or site of origin based on the revealed features. 
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3.  

3.1. Introduction 

The work shown in chapter 2 has indicated that 17 of the 34 cancers in this study have 

mutation profiles which are both unique and consistent in at least one mutational dimension, 

throughout either all cases, termed the US cancers, or a subset of cases, termed the UC cancers. 

This is encouraging, as it suggests that SNVs and indels alone can provide sufficient 

information to determine cancer type from whole exome sequencing of these cancers. There 

are however 17 cancers for which no identifiable profile has been determined. Realising that 

cancer-specific signatures exist in certain cancers, the work in this chapter investigates whether 

more complex machine learning algorithms can identify mutational pattern specific to a greater 

number of cancer types or a subset of cancer types using the dimensions of mutations. These 

identified signatures may then be used to identify the origin of unknown cancers, with 

applications in CTCs and CUPs diagnosis. 

3.2. Methods 

3.2.1. Machine learning approaches 

An integrated framework was developed that accepts the data matrix developed in chapter 

2 (section 2.3.2, Table 5) and then applies statistical and machine learning (ML) algorithms to 

elucidate cancer subtype-specific features from the multidimensional data matrix. In this 

chapter, only 6 dimensions of the mutations (2.2.2) were used to investigate cancer specific 

signatures, as follows: 

1. Trinucleotide mutations (proportions) 

2. Indel mutations (proportions) 

3. Mutated genes 

4. Recurrent variants 

5. Genomic distribution (proportions) 

6. Multidimensional (proportions) 
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Specifically, where relevant, proportional representations of the data were used rather than 

the counts. The decision to not include counts was done as work in in chapter 2 showed that, 

overall, proportions were superior to counts in deciphering cancer specific profiles. This dataset 

that represents all 8820 cases derived from the TCGA project is termed the “learning” dataset. 

Machine learning was performed using scikit-learn, a Python module that integrates a wide 

range of state-of-the-art machine learning algorithms for large-scale supervised and 

unsupervised problems (Pedregosa 2011). This package was selected for its robustness, 

excellent documentation and wide usage in the ML community. Its close integration with 

Numpy and Pandas also allowed rapid handling of the huge dataset. Figure 43 represents all 

the algorithms used in this section, it should be noted however that several of these individual 

algorithms were used in combination. The basis for the selections of these different algorithms 

was to cater to several possible data distribution patterns that could explain the underlying 

differences between the cancer subtypes. As seen in Figure 43, there are two broad classes of 

algorithms, supervised prediction techniques which are the algorithms that are actually used 

for the prediction of the subtype of a cancer, and dimensionality reduction algorithms, used in 

the process of reducing the number of random variables under consideration, which in this 

study, is used to identify only important factors of the datasets prior to prediction, a step that 

could potentially result in much more efficiently derived and meaningful predictions. The 

algorithms are also divided into decision tree methods, and those optimised for categorical data, 

respectively optimised for the trinucleotide, indel and genomic distribution data which are 

continuous and the mutated genes and recurrent variants data which are categorical (binary). 

In terms of classifiers, the decision tree methods use branching model of decisions and 

possible consequences to predict the chance of outcomes. These methods are optimised for 

dependent variables and are computationally intensive. The methods used in this study are 

specifically ensemble decision tree approaches i.e. Random Forest, Bagging, Gradient 
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Boosting and Adaptive Boosting (AdaBoost). Ensemble methods average the results from of 

several decision trees, with the goal of improving prediction accuracy by reducing variance and 

avoidance of overfitting, and differ in the approach to averaging. Three naive Bayes classifiers 

were used, a class of classifiers based on Bayes’ theorem using frequency tables to determine 

likelihood, specifically with the assumption of independence among features. Although 

considered less comprehensive than decision tree methods, these techniques have been shown 

to outperform more sophisticated methods, despite being computational efficient. The 

canonical naive Bayes algorithm is considered the most comprehensive approach, while the 

Gaussian model is suited for continuous data and the Bernoulli model optimised for binary 

variables. Support Vector Machines (SVM) were implemented as a linear classification, as well 

polynomial kernels with two separate degrees specified (3 and 10). As highlighted in Figure 

43, SVM approaches do not provide probability estimates, however, probabilities can be 

calculated indirectly by using computationally expensive cross-validation. It should be noted 

that although the decision trees and SVM are often considered optimised for continuous and 

categorical data respectively both algorithms are actually applicable to both data types. 

Dimensionality reduction was performed by principal components analysis (PCA), 

variance threshold (VT) and a Restricted Boltzmann machine (RBM). The PCA works by 

orthogonal transformation to convert a set of observations of possibly correlated variables into 

a set of values of linearly uncorrelated variables called principal components, the variance 

threshold selects only features with a specified variance threshold, set at 0.2 in this study and 

the RBM is a generative stochastic artificial neural network that can learn a probability 

distribution over its set of inputs. 
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Figure 43: Machine learning algorithms used for mutational signature learning and cancer subtype prediction 
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3.2.2. Datasets used for determining prediction accuracy 

Three datasets were used to test prediction accuracy. Firstly, a random sampling 

of 13 cases from each TCGA subtype, making up 442 cases (5% of the TCGA dataset), 

was used as the initial “TCGA test dataset” and for algorithm optimisation. This was 

done in three phases. Phase I involved the initial determination of the most accurate 

algorithm and dataset for cancer type prediction. This was followed by phase II, where 

optimisation using dimensionality reduction was investigated. Phase III involved a 

combinatorial approach, where the most accurate algorithms in phase I were combined 

with two mutation data dimension to achieve even greater accuracy. 

The second dataset used was DNA mutations available via the ICGC database 

(International Cancer Genome Consortium et al. 2010). Only cancers with a similar 

cancer type in the TCGA dataset were chosen, resulting in 57 different cancer types 

from 54 studies derived from 14 countries including a total of 9155 individual cases 

(Table 18). The three most accurate predictors from phase III were analysed by an Area 

under the Receiver Operating Characteristic curve (AUROC), as this allows the 

selection of the best predictor while maintaining the potential for sensitivity and 

specificity modulation by threshold selection. 

Lastly, the most optimised algorithm was applied to a CTC WES dataset (Ni et al. 

2013). These data were derived from a study that sequenced CTCs, primary tumours 

and metastases in patients with lung adenocarcinomas and was used to truly determine 

if prediction can be made from CTCs. 
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Table 18: ICGC datasets used in Phase III of prediction optimisation 

Cancer Country of origin TCGA equivalent 

cancer 

Total cases 

Acute lymphoblastic leukemia US LAML 27 

Acute myeloid leukemia KR,US LAML 268 

Benign liver tumour FR LIHC 30 

Biliary tract cancer JP CHOL 239 

Bladder cancer CN BLCA 103 

Bladder urothelial cancer US BLCA 130 

Bone cancer UK LAML 66 

Brain glioblastoma multiforme US GBM 268 

Brain lower grade glioma US LGG 283 

Breast cancer US BRCA 955 

Breast triple negative/lobular cancer UK BRCA 117 

Cervical squamous cell carcinoma US CESC 194 

Chronic lymphocytic leukemia ES LAML 218 

Chronic myeloid disorders UK LAML 129 

Colon adenocarcinoma US COAD 216 

Colorectal cancer CN COAD 147 

Early onset prostate cancer DE PRAD 11 

Esophageal adenocarcinoma UK ESCA 119 

Esophageal cancer CN ESCA 228 

Gastric adenocarcinoma US STAD 289 

Gastric cancer CN STAD 9 

Head and neck thyroid carcinoma US HNSC 400 

Kidney renal clear cell carcinoma US KIRC 404 

Kidney renal papillary cell carcinoma US KIRP 159 

Liver cancer FR,JP LIHC 748 

Liver hepatocellular carcinoma US LIHC 188 

Lung cancer CN,KR LUAD, LUSC 46 

Lung squamous cell carcinoma US LUSC 178 

Malignant lymphoma DE LAML 44 

Neuroblastoma US GBM 108 

Oral cancer IN HNSC 106 

Ovarian cancer AU OV 93 

Ovarian serous cystadenocarcinoma US OV 88 

Pancreatic cancer AU,CA,IT PAAD 633 

Pancreatic cancer endocrine neoplasms AU PAAD 52 

Pediatric brain cancer DE LGG 246 

Prostate adenocarcinoma CA,US,UK PRAD 488 

Rectum adenocarcinoma US READ 80 

Renal cancer CN READ 10 

Renal cell cancer FR KIRC,KIRP 95 

Skin adenocarcinoma BR SKCM 66 

Skin cancer AU SKCM 183 

Skin cutaneous melanoma US SKCM 335 

Soft tissue cancer FR SARC 98 

Thyroid cancer SA THCA 15 

Uterine corpus endometrial carcinoma US UCEC 246 

ICGC cancers with corresponding TCGA cancer types were included in this study. There are 

a total of 9155 cases as part of this dataset from 14 countries. AU: Australia, BR: Brazil, CA: 

Canada, CN: China, DE: Germany, ES: Spain, FR: France, IN: India, IT: Italy, JP: Japan, KR: 

Korea, SA: Saudi Arabia, UK: United Kingdom, US: United States 
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3.2.3. MutProfiler: Site of origin prediction web tool 

The algorithm that most accurately predicted the tumour site of origin was included 

in MutProfiler, a web-based tool to aid researchers with summarising mutational 

signature data from their NGS results and predicting cancer type and/or subtype. 

MutProfiler is implemented in the Django web framework v1.8.0 on an Nginx web 

server via the Web Server Gateway Interface (WSGI) and currently hosted at 

http://172.16.203.178/mutprofiler/. The website is a pure python implementation using 

the Python programming language v3.4.1 with py-postgresql v1.1.0, Pandas v0.16.2, 

Numpy v1.9.2, Scikit-learn 0.16.1 and Matplotlib v1.4.3. It is currently hosted on a 

server running Ubuntu 14.04 with four 64-bit 15-core Intel Xeon processors (3.2 GHz 

each) and 512 GB of RAM. The current IP is non-static and therefore the IP address 

may change, but the website will be hosted at a permanent address within a 2-month 

period.
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3.3. Results 

Selection of the most accurate cancer type prediction algorithm was performed in 

four phases as follows: 

In the phase I, the TCGA test dataset (442 randomly sampled cases) was used. The 

9 supervised machine learning algorithms shown in Figure 43 were applied to the 

learning dataset (6 dimensions of data) to train the algorithm for cancer type prediction, 

resulting in 54 ML algorithm-dataset pairings. Each pairing was applied 442 times, i.e. 

once for each of the cases in the TCGA test dataset, with that specific case excluded 

from the learning dataset to be used only for prediction. This approach tests for the 

robustness of the ML algorithm-dataset pairing by avoiding correct prediction due to 

fitting to specific cases.  

In phase II, an attempt was made to improve predictive outcomes and 

computational efficiency by applying dimensionality reduction procedures to the four 

most accurate pairings representing the multidimensional analysis, recurrent variants, 

trinucleotides mutations and mutated genes. Specifically, the RBM, PCA and VT 

dimensionality reduction methods were applied to the following pairings: 

1. Bagging classifier + multidimensional data 

2. Bagging classifier + mutated genes 

3. Gaussian Naïve Bayes + recurrent variants 

4. Gaussian Naïve Bayes + trinucleotide mutations 

5. Random forest classifier + trinucleotide mutations 

 

In phase III a combinatorial approach was made to improve prediction accuracy 

by combining the most accurate ML prediction algorithms with the two mutation 

datasets that generated the most accurate predictions from Phase I with said algorithm. 

This procedure revealed vastly improved prediction accuracies. 
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In phase IV, the three most accurate algorithms were tested against non-TCGA 

datasets. Firstly, the three most accurate algorithms were compared against all studies 

available via the ICGC database, from which the most accurate ML learning and dataset 

combination was determined. This was followed by utilization of this algorithm for the 

prediction of the cancer type from whole exome sequenced CTC results. 

3.3.1. Phase I: Prediction of cancer type 

Table 19 shows 11 of the most accurate prediction pairings overall out of the 54 

combinations. There prediction accuracies within each cancer are also indicated. 

Overall, the indel proportions proved to be the worst prediction dataset of the six 

dimensions. The most accurate predictor with this dimension was the random forest 

classifier with 20% prediction accuracy, and the poorest predictor with this dimension 

was the linear SVM (9%). Overall, more accurate predictions were observed with the 

other dimension. Along with performance in indels, the linear SVM was also the worst 

predictor in 2 other dimensions, genomic distribution and trinucleotide distributions. 

This indicates that these datasets are highly complex and cannot be divided based on 

linear hyperplanes which work best with data which is linearly separable. 

Ada Boosting was the worst predictor for two of the dimensions, which is 

unexpected as the other decision tree ensemble methods performed well. It is possible 

that the Ada Boosting could be refined to improve prediction accuracies, however this 

was not investigated further as prediction accuracies with the other ML algorithms were 

concentrated on instead. 

Gaussian naive Bayes (GNB) was the most accurate algorithm when applied to the 

trinucleotide distributions and recurrent variants. These two datasets differ significantly 

in both size, where there are 96 trinucleotide categories and 42,030 variant categories, 
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and in data type, where the trinucleotide mutation is proportional data, ranging from 0 

to 1, while the variant data is binary. The success with GNB suggest that the features 

in these datasets are either independent, or that dependant values largely co-occur, such 

that probabilities from frequency tables are adequate for prediction. The bagging 

classifier generated the most accurate predictions with the mutated genes and the 

multidimensional data, with 41% and 52% accuracies respectively. 

The 11 most accurate pairings as shown in Table 19 are represented by all 

dimensions except indels, and by the bagging classifier, GNB, random forest classifier, 

gradient boosting classifier and the Bernoulli naive Bayes classifier. Although the 

prediction accuracies are highly encouraging, with the most accurate prediction at 52% 

accuracy, more accurate prediction would be desirable, especially for diagnostic 

applications, where the results could influence treatment strategy and affect patient 

survival and quality of life. The following sections are therefore attempts to refine 

prediction accuracy. 
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Table 19: Phase I - The ten most accurate prediction ML and dataset pairings 
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Mean 52 50 49 41 41 41 39 36 36 32 34 

Adrenocortical carcinoma (ACC) 54 92 85 38 46 77 100 38 54 54 54 

Bladder Urothelial Carcinoma (BLCA) 69 38 62 31 62 23 0 69 23 31 23 

Breast invasive carcinoma (BRCA) 62 46 31 69 77 69 77 85 85 38 54 

Cervical squamous cell carcinoma (CESC) 46 31 38 15 15 8 8 23 0 8 8 

Cholangiocarcinoma (CHOL) 0 0 54 0 0 0 0 8 0 0 0 

Colon adenocarcinoma (COAD) 69 38 77 65 54 46 38 35 46 0 54 

Esophageal carcinoma (ESCA) 38 46 54 15 54 23 23 15 0 54 31 

Glioblastoma multiforme (GBM) 77 69 62 31 62 23 54 38 8 69 38 

Head and Neck squamous cell carcinoma (HNSC) 54 54 23 46 38 46 15 38 46 62 38 

Kidney Chromophobe (KICH) 23 0 69 8 0 15 0 46 0 8 0 

Kidney renal clear cell carcinoma (KIRC) 62 31 54 69 62 46 31 15 69 54 38 

Kidney renal papillary cell carcinoma (KIRP) 38 46 38 23 15 15 31 15 0 15 0 

Acute Myeloid Leukemia (LAML) 50 83 42 58 67 42 42 17 75 100 75 

Brain Lower Grade Glioma (LGG) 62 85 31 62 54 69 62 46 77 77 69 

Liver hepatocellular carcinoma (LIHC) 38 23 54 8 46 23 23 38 0 8 0 

Lung adenocarcinoma (LUAD) 54 31 23 54 69 54 38 46 69 8 69 

Lung squamous cell carcinoma (LUSC) 38 15 92 8 31 38 8 15 0 31 31 

Ovarian serous cystadenocarcinoma (OV) 69 38 23 77 15 62 92 31 69 31 46 

Pancreatic adenocarcinoma (PAAD) 69 100 54 46 23 46 85 31 85 69 38 

Pheochromocytoma and Paraganglioma (PCPG) 46 92 54 62 0 23 38 15 69 62 46 

Prostate adenocarcinoma (PRAD) 38 15 46 46 8 15 23 15 15 77 31 

Rectum adenocarcinoma (READ) 0 17 25 0 0 17 8 33 0 8 0 

Sarcoma (SARC) 54 77 46 23 46 23 23 54 0 46 8 

Skin Cutaneous Melanoma (SKCM) 85 69 85 77 85 62 15 77 69 46 62 

Stomach adenocarcinoma (STAD) 58 54 27 12 65 38 58 38 19 0 38 

Testicular Germ Cell Tumors (TGCT) 46 69 85 8 85 31 8 62 0 15 0 

Thyroid carcinoma (THCA) 77 69 23 85 23 62 92 23 62 38 54 

Thymoma (THYM) 62 69 69 54 92 38 54 46 23 38 15 

Uterine Corpus Endometrial Carcinoma (UCEC) 54 58 19 54 42 73 42 35 46 15 38 

Uterine Carcinosarcoma (UCS) 23 31 23 8 0 38 0 15 0 0 8 

Uveal Melanoma (UVM) 54 69 69 100 0 85 85 38 92 8 62 

The numbers and coloured intensities represent the percentage of cases in each cancer type that were correctly 

predicted. The columns are arranged in descending order of mean prediction accuracy. ML algorithms - Bagging: 

Bagging decision tree classifier, Gnb: Gaussian Naive Bayes, RFC: Random forest classifier, GBEst: Gradient 

Boosting. 

Mutational dimension - recur vars: Recurrent variants, genes: Mutated genes, distribution: Genomic distribution, 

trinucleotide: Trinucleotide mutations, multidimensional: Multidimensional mutational data.  
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3.3.2. Phase II: Dimensionality reduction reduced prediction accuracy 

Table 20 shows the prediction accuracies after application of the three 

dimensionality reduction techniques to the most accurate predictors of phase I. The 

table is arranged in the same order as Table 19, i.e. according to the mean accuracy of 

the ML and mutation dimension pairing. Within each pairing, the original prediction 

accuracy (NDR) is shown along with the restricted Boltzmann machine (RBM), 

principal components analysis (PCA) and variance threshold (VT) transformed data. 

As seen, the dimensionality reduction (DR) procedures overall caused a reduction in 

prediction accuracy. However, in very few instances the DR procedure did improve 

accuracy as seen in the coloured cells of Table 20. Overall the least detrimental 

reduction was PCA, followed by RBM and the most detrimental was VT. PCA was the 

only DR that significantly improved prediction accuracy in several cancers.  

PCA with the bagging classifier and multidimensional data pairing, generated an 

improvement in four cancer types, with improvements over the NDR ranging from 0.1 

to 8.9 percentage points (pp), in testicular germ cell tumours (TGCT) and thyroid 

carcinoma (THCA) respectively. With the Gaussian Naive Bayes and recurrent variants 

pairing, prediction in 3 cancers were improved, with improvements ranging from 0.18 

pp in sarcoma (SARC) to 10 pp in brain lower grade glioma (LGG). 6 of the cancers 

types had better predictions in the Gaussian Naive Bayes and trinucleotide mutation 

pairing, with the greatest improvement in testicular germ cell tumours at 6 pp 

improvement. Prediction in 7 of the cancers was improved in the bagging classifier and 

mutated genes pairing, significantly in kidney renal clear cell carcinoma (KIRC), colon 

adenocarcinoma (COAD) and pancreatic adenocarcinoma (PAAD), which improved 

by 13.4, 8.9 and 6.6 pp respectively. 
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The overall ineffectiveness of the DR procedures suggests that, generally, it is 

subtle differences between the cancers types that are the distinguishing features rather 

than large differences, and that these subtle differences are lost when dimensionality 

reduction is performed except in a few cancers types. Therefore, to create a single 

prediction algorithm for cancer type prediction it is necessary to not to lose 

dimensionality so as to cater to all possible cancers type that may present as a CTC 

sample or a CUP, where overall accuracy would be preferential. 
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Table 20: Phase II - Effect of dimensionality reduction of prediction accuracy 

 Bagging Gnb Bagging 

 multidimensional recur vars trinucleotides genes 

 NDR RBM PCA VT NDR RBM PCA VT NDR RBM PCA VT NDR RBM PCA VT 

Mean 51 26 37 11 50 25 34 14 50 21 39 16 40 22 28 7 

ACC 54 20 45 18 92 41 37 43 85 33 0 51 38 20 39 12 

BLCA 69 24 33 19 38 5 23 30 62 22 53 0 31 14 0 4 

BRCA 62 22 66 0 46 16 0 0 31 7 16 0 69 32 40 26 

CESC 46 34 37 0 31 29 17 0 38 13 36 11 15 7 13 7 

CHOL 0 0 0 0 0 0 0 0 54 20 43 16 0 0 0 0 

COAD 69 39 34 0 38 18 12 3 77 43 64 20 65 27 72 5 

ESCA 38 21 27 2 46 30 52 8 54 18 35 0 15 12 16 0 

GBM 77 5 54 0 69 64 61 0 62 4 66 25 31 16 22 0 

HNSC 54 57 55 42 54 18 46 0 23 4 7 4 46 8 24 7 

KICH 23 8 17 1 0 0 0 0 69 30 68 8 8 6 5 1 

KIRC 62 21 39 16 31 19 16 30 54 6 28 3 69 46 83 12 

KIRP 38 18 28 10 46 35 25 0 38 21 22 2 23 9 18 0 

LAML 50 11 24 8 83 58 51 53 42 29 44 6 58 44 38 0 

LGG 62 33 38 11 85 76 95 46 31 14 25 30 62 36 39 49 

LIHC 38 29 27 8 23 14 16 10 54 24 55 5 8 7 5 1 

LUAD 54 32 39 22 31 17 16 0 23 13 17 12 54 20 56 9 

LUSC 38 14 19 13 15 18 9 2 92 97 81 13 8 2 6 0 

OV 69 5 65 33 38 15 22 25 23 13 9 0 77 49 80 10 

PAAD 69 50 54 19 100 53 51 26 54 23 44 35 46 27 55 30 

PCPG 46 24 32 0 92 25 65 42 54 2 56 50 62 35 0 1 

PRAD 38 31 24 0 15 7 8 0 46 12 27 36 46 41 17 0 

READ 0 0 0 0 17 7 7 1 25 11 22 13 0 0 0 0 

SARC 54 45 34 42 77 33 77 13 46 16 39 24 23 13 9 5 

SKCM 85 64 59 23 69 42 40 26 85 58 67 55 77 25 70 7 

STAD 58 23 28 4 54 23 35 18 27 14 22 17 12 8 8 1 

TGCT 46 24 46 0 69 8 60 0 85 14 91 23 8 1 4 3 

THCA 77 69 86 27 69 24 57 9 23 8 19 7 85 97 22 0 

THYM 62 48 52 3 69 47 61 14 69 56 65 18 54 0 41 12 

UCEC 54 12 45 1 58 0 21 13 19 1 15 3 54 27 44 15 

UCS 23 17 14 0 31 19 27 24 23 1 7 0 8 2 2 0 

UVM 54 6 15 15 69 25 50 0 69 22 74 12 100 55 37 0 

 

Dimensionality reduction (DM) was performed on the four most accurate ML algorithm and mutation 

dimension pairings. The numbers represent the percentage of cases in each cancer type that were 

correctly predicted. DM was detrimental to prediction accuracy overall, but beneficial in very few 

cancer types, which are shown in white font with red background. 

Prediction algorithms - Bagging: Bagging decision tree classifier, Gnb: Gaussian Naive Bayes 

Mutational dimensions - recur vars: Recurrent variants, genes: Mutated genes, trinucleotide: 

Trinucleotide mutations, multidimensional: Multidimensional mutational data. 

Dimensionality reduction algorithms - NDR: No dimensionality reduction, RBM: restricted 

Boltzmann machine, PCA: principal components analysis, VT: variance threshold (0.2) 
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3.3.3. Phase III: Prediction accuracy greatly improved by combinatorial 

approach 

To improve the prediction accuracy a second approach was undertaken. Rather 

than lowering the number of features via dimensionality reduction, a combinatorial 

approach was taken, with the four most accurate algorithms separately combined with 

two of the most accurately predicted datasets for each algorithm. Using the same 

approach as in 3.3.1, cancer type prediction was made for cases from the TCGA test 

dataset. The ML training process was preformed independently for each case with this 

individual case excluded from the learning dataset. Table 21 shows the prediction 

accuracies as percent correct predictions from each ML + mutational dimension 

combination for each cancer with the mean of all cases also shown. The combinations 

are arranged in order of prediction accuracy. 

The random forest classifier with the trinucleotide and recurrent variants 

dimensions (RFC+ trinucleotides+recur vars) generated the most accurate predictions 

with an overall accuracy of 88% across all cases. This was followed by 84%, 79% and 

60% for the bagging classifier with mutated genes and mutational distribution 

(Bagging+genes+distribution), the Gaussian Naive Bayes with trinucleotides and 

recurrent variants (Gnb+trinucleotides+recur vars) and the gradient boosting with 

trinucleotides and mutational distribution (GBEst+trinucleotides+distribution) 

respectively. By taking this combinatorial approach, the best predictor provided a 36% 

improved prediction accuracy over the best predictor in the non-combinatorial approach 

(Table 19). Despite the overall improvement, prediction was very poor for both the 

cholangiocarcinoma (CHOL) cases where there were no correct predictions were made 

and cervical squamous cell carcinomas (CESC) where prediction accuracies ranged 

from 8 -23 %. Some pairings from non-combinatorial approach (section 3.3.1) did 
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generate better predictions for both these cancers, specifically Gaussian Naive Bayes 

with trinucleotides alone generated 54% accuracy for the CHOL, while the bagging 

classifier with the multidimensional data generated an accuracy of 46% with CESC. 

Although these ML-data dimension pairings generated superior accuracies for these 

cancers in particular, a diagnostic application requires a single algorithms to be able to 

make correct predictions the majority of the time whatever the cancer that is presented 

in the clinical setting. Therefore, despite the prediction limitations, the three most 

accurate algorithms shown in Table 21 were selected for accuracy testing in non-TCGA 

datasets, as these are the most accurate across all cancer types. 



 

157 

  

Table 21: Phase III - Prediction accuracy improved by combinatorial approach 

ML algorithm RFC Bagging Gnb GBEst 

Mutational dimension 1 trinucleotides genes trinucleotides trinucleotides 

Mutational dimension 2 recur vars distribution recur vars distribution 

Means 88 84 79 60 

Adrenocortical carcinoma (ACC) 77 38 92 69 

Bladder Urothelial Carcinoma (BLCA) 62 38 38 69 

Breast invasive carcinoma (BRCA) 92 69 46 85 

Cervical squamous cell carcinoma (CESC) 8 15 31 23 

Cholangiocarcinoma (CHOL) 0 0 0 0 

Colon adenocarcinoma (COAD) 50 62 38 50 

Esophageal carcinoma (ESCA) 100 100 100 62 

Glioblastoma multiforme (GBM) 100 100 100 62 

Head and Neck squamous cell carcinoma (HNSC) 100 100 85 69 

Kidney Chromophobe (KICH) 100 100 100 77 

Kidney renal clear cell carcinoma (KIRC) 100 100 54 85 

Kidney renal papillary cell carcinoma (KIRP) 100 100 92 46 

Acute Myeloid Leukemia (LAML) 100 100 100 58 

Brain Lower Grade Glioma (LGG) 100 92 85 62 

Liver hepatocellular carcinoma (LIHC) 100 92 92 62 

Lung adenocarcinoma (LUAD) 100 100 100 69 

Lung squamous cell carcinoma (LUSC) 92 92 77 38 

Ovarian serous cystadenocarcinoma (OV) 100 92 69 69 

Pancreatic adenocarcinoma (PAAD) 100 100 100 92 

Pheochromocytoma and Paraganglioma (PCPG) 92 85 92 62 

Prostate adenocarcinoma (PRAD) 100 100 77 62 

Rectum adenocarcinoma (READ) 83 83 58 25 

Sarcoma (SARC) 100 100 100 15 

Skin Cutaneous Melanoma (SKCM) 100 100 100 85 

Stomach adenocarcinoma (STAD) 100 88 88 62 

Testicular Germ Cell Tumors (TGCT) 85 85 85 62 

Thyroid carcinoma (THCA) 100 100 62 69 

Thymoma (THYM) 92 92 92 69 

Uterine Corpus Endometrial Carcinoma (UCEC) 100 100 96 65 

Uterine Carcinosarcoma (UCS) 92 92 92 62 

Uveal Melanoma (UVM) 100 100 100 73 

The numbers and coloured intensities represent the percentage of cases in each cancer type that were 

correctly predicted. Prediction accuracies was greatly improved with the combination of two dimensions 

of data with the various algorithms when compared with the same algorithms using just one dimension. 

Only cholangiocarcinoma proved impossible to predict, while adrenocortical carcinoma, cervical 

squamous cell carcinoma and colon adenocarcinoma had relative poor prediction accuracies. 

ML algorithms - RFC: Random forest classifier, Bagging: Bagging decision tree classifier, Gnb: 

Gaussian Naive Bayes, GBEst: Gradient Boosting. 

Mutational dimensions - recur vars: Recurrent variants, genes: Mutated genes, distribution: Genomic 

distribution, trinucleotide: Trinucleotide mutations, multidimensional: Multidimensional mutational 

data.
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3.3.4. Phase IV: Prediction in WES dataset accurate, inaccurate in WGS datasets 

30 whole exome sequencing (WES) and 25 whole genome sequencing (WGS) 

studies from the ICGC database were used to validate cancer type prediction with a 

non-TCGA dataset, shown in Table 22 and Table 23 respectively. These represent all 

cancers which have a corresponding cancer type in the TCGA. Overall, the most 

accurate prediction in both WES and WGS was the random forest classifier with 

trinucleotides and recurrent variants (RFC+ trinucleotides+recur vars) having overall 

69% and 41% correct predicted samples in the WES and WGS studies respectively. As 

can be seen, the accuracies in the WES are largely superior to WGS studies, although 

the distinction is not absolute, for example, seven WES studies have no correct 

prediction, while the liver WGS study had a relative high accuracy of 88% with the 

random forest classifier with trinucleotides and recurrent variants. A WGS chronic 

lymphocytic leukaemia study also had the same accuracy when predicted using the 

Gaussian Naive Bayes with trinucleotides and recurrent variants 

(Gnb+trinucleotides+recur vars). It is likely that mutational patterns differ between 

WGS and WES samples, due to the difference in sequencing coverage, where only 1.5 

of the genome is analysed in WES, while the entire genome is analysed in WGS. The 

coverage in WES studies tend to be much higher than WGS, which also equates to more 

reliable variant calling, and thus higher fidelities of mutational patterns. The large 

variations in accuracies may also be attributed to the fact that the different ICGC studies 

utilise a large number of different bioinformatics pipelines that may, in some studies, 

generate results inconsistent with the algorithms trained on the TCGA data. 

In order to select the most optimised algorithm, an area under the receiver 

operating characteristic curve (AUROC) analysis was performed on the three ML-

mutational dimension combination (Figure 44). This approach allows the choice of the 
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best estimator should there need for threshold modulation to increase specificity by the 

exclusion of non-reliable predictions. As can be seen the best predictor based purely on 

percent of correct predictions was RFC+trinucleotides+recur vars having an AUROC 

value of 0.85, which would qualify it as a robust estimator. Bagging+genes+distribution 

generated an AUROC of 0.76, a fair estimator. Gnb+trinucleotides+recur vars created 

a score of 0.5, which is a poor estimator, specifically an incorrect prediction is just as 

likely as a correct prediction. Due to the fact that the RFC+trinucleotides+recur vars 

combination is the most superior predictor, it has been implemented into the 

MutProfiler web tool, which is a user friendly cancer type prediction web tool which 

can be used in both research and clinical application where either the mutational 

dimensions are required or a cancer type prediction is needed (Figure 46). 
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Table 22: Phase IV - Prediction accuracies seen in the WES datasets 

ML algorithm RFC Bagging Gnb 

Mutational dimension 1 trinucleotides genes trinucleotides 

Mutational dimension 2 recur vars distribution recur vars 

Samples mean accuracy 69 59 50 

 Ovarian Serous Cystadenocarcinoma  100 97 65 

 Lung Squamous Cell Carcinoma  99 57 81 

 Breast Cancer  99 87 36 

 Rectum Adenocarcinoma  99 78 99 

 Chronic Myeloid Disorders  98 100 95 

 Colon Adenocarcinoma  98 86 89 

 Acute Myeloid Leukemia  97 95 93 

 Brain Glioblastoma Multiforme  97 80 87 

 Prostate Adenocarcinoma  96 92 70 

 Skin Cutaneous melanoma  95 77 91 

 Brain Lower Grade Glioma  87 81 71 

 Gastric Adenocarcinoma  87 43 52 

 Kidney Renal Clear Cell Carcinoma  80 77 30 

 Bladder Urothelial Cancer  75 34 74 

 Breast Triple Negative/Lobular Cancer  69 49 7 

 Uterine Corpus Endometrial Carcinoma 49 57 74 

 Kidney Renal Papillary Cell Carcinoma  49 42 71 

 Bone Cancer  42 52 80 

 Liver Hepatocellular carcinoma  36 13 12 

 Gastric Cancer  33 0 11 

 Cervical Squamous Cell Carcinoma  30 38 45 

 Bladder Cancer  26 26 15 

 Oral Cancer  2 13 11 

 Acute Myeloid Leukemia  0 1 12 

 Benign Liver Tumour  0 0 5 

 Biliary Tract Cancer  0 1 3 

 Head and Neck Thyroid Carcinoma  0 0 0 

 Liver Cancer  0 0 0 

 Lung Cancer  0 6 0 

 Renal Cancer  0 0 0 

The three most accurate combinatorial approaches were applied to the ICGC cancer datasets. 

Presented in this table are the results from the whole exome sequencing (WES) datasets. The 

numbers and coloured intensities represent the percentage of cases in each cancer type that 

were correctly predicted. The most accurate predictor was RFC with trinucleotide mutations 

and recurrent variants, with a samples mean accuracy of 69% in the WES datasets. 

ML algorithms - RFC: Random forest classifier, Bagging: Bagging decision tree classifier, 

Gnb: Gaussian Naive Bayes. 

Mutational dimensions - recur vars: Recurrent variants, genes: Mutated genes, distribution: 

Genomic distribution, trinucleotide: Trinucleotide mutations, multidimensional: 

Multidimensional mutational data.
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Table 23: Phase IV - Prediction accuracies seen in the WGS datasets 

ML algorithm RFC Bagging Gnb 

Mutational dimension 1 trinucleotides genes trinucleotides 

Mutational dimension 2 recur vars distribution recur vars 

Samples mean accuracy 41 37 30 

 Liver Cancer  88 28 0 

 Skin Cancer  76 30 63 

 Liver Cancer  56 16 1 

 Acute Lymphoblastic Leukemia  56 62 88 

 Skin Adenocarcinoma  48 11 26 

 Chronic Lymphocytic Leukemia  18 61 87 

 Esophageal Adenocarcinoma  10 1 7 

 Lung Cancer  10 10 30 

 Liver Cancer  7 6 2 

 Colorectal Cancer  4 22 6 

 Ovarian Cancer  0 0 36 

 Pancreatic Cancer Endocrine neoplasms  0 0 0 

 Pancreatic Cancer  0 0 0 

 Thyroid Cancer  0 13 0 

 Prostate Adenocarcinoma  0 2 2 

 Pancreatic Cancer  0 26 6 

 Pancreatic Cancer  0 38 2 

 Esophageal Cancer  0 3 1 

 Prostate Adenocarcinoma  0 6 4 

 Soft Tissue cancer  0 4 0 

 Early Onset Prostate Cancer  0 0 0 

 Renal Cell Cancer  0 18 0 

 Pediatric Brain Cancer  0 0 0 

 Malignant Lymphoma  0 36 66 

 Neuroblastoma  0 1 0 

The three most accurate combinatorial approaches were applied to the ICGC cancer datasets. 

Presented in this table are the results from the whole genome sequencing (WGS) datasets. The 

numbers and coloured intensities represent the percentage of cases in each cancer type that 

were correctly predicted. The most accurate predictor was RFC with trinucleotide mutations 

and recurrent variants, with a samples mean accuracy of 41%. 

ML algorithms - RFC: Random forest classifier, Bagging: Bagging decision tree classifier, 

Gnb: Gaussian Naive Bayes. 

Mutational dimensions - recur vars: Recurrent variants, genes: Mutated genes, distribution: 

Genomic distribution, trinucleotide: Trinucleotide mutations, multidimensional: 

Multidimensional mutational data. 
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Figure 44: ROC and ROAUC results from the three best performing combinatorial predictors 

The graph represents the ROC curves and corresponding ROAUC (AUC) for the three best 

classifiers. A diagonal line would represents the theoretical performance of a random 

classifier, and this corresponds precisely to the ROC of the Gaussian naive Bayes classifier. 

The predictor with the greatest ROAUC is the random forest classifier with trinucleotide 

mutations and recurrent variants with value of 0.85, suggesting that it is a robust classifier of 

cancer types when used across all utilised cancers from the ICGC dataset. 
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3.3.5. MutProfiler with optimised algorithm applied to a CTC WES study 

In order to test whether MutProfiler and the optimised prediction methodology is 

truly applicable to a clinical setting, specifically with CTCs, a CTC WES dataset (Ni et 

al. 2013) was run through MutProfiler. Correct predictions are shown in red font in 

Table 24. Of the metastases, 3 of 4 samples (75%) were predicted correctly. 2 of the 5 

CTC samples were correctly predicted (40%). Overall 50% of all samples were 

predicted correctly. The probabilities associated with the predictions, indicating the 

reliability are listed. These results are highly encouraging due to the correct predictions, 

however, the majority of CTCs (60%) were incorrectly predicted. This is likely due to 

the great challenge with CTC sequencing. Firstly, CTC sequencing can be contaminated 

by lymphocytes and thus the sequenced cell may in fact be non-cancerous. Furthermore, 

this study specifically employs single cell sequencing which is more prone to technical 

artefacts and noise introduced during single-cell isolation and genome interrogation 

than sequencing from multiple cells, and thus more likely to have biases in the 

mutational patterns (Gawad, Koh, and Quake 2016). Despite the limitations, these 

results do show the potential for cancer type prediction from CTCs, but also reveals the 

challenges. At this stage it would appear that for a clinical diagnostic application 

MutProfiler should be accompanied with other methods of cancer type detection, with 

both approaches being complementary. 
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Table 24: Accuracy of cancer prediction from CTC 

Patient Sample type MutProfiler prediction Probability 

Patient1 

CTC Breast carcinoma 0.195 

Metastasis Breast carcinoma 0.249 

Primary tumour Breast carcinoma 0.311 

Patient2 
CTC Kidney renal clear cell carcinoma 0.119 

Metastasis Lung adenocarcinoma 0.119 

Patient3 
CTC Lung adenocarcinoma 0.197 

Metastasis Lung adenocarcinoma 0.212 

Patient4 CTC Breast carcinoma 0.224 

Patient8 
CTC Lung adenocarcinoma 0.161 

Metastasis Lung adenocarcinoma 0.199 

Prediction accuracy using MutProfiler and the most optimised ML was applied to the Ni et al. 

2013 dataset. Correct prediction was made in 50% of the cases. This includes correct 

predictions in 75% of the metastasis and 40% of the CTCs. 
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Figure 45: Interface and Usage 

(A) MutProfiler implements a Random Forest classifier that utilised the TCGA trinucleotide 

mutations and recurrent variants as its learning dataset. (B) Several trial datasets are available 

to test out MutProfiler’s functionality (C) The interface allows users to upload mutation data 

as a MAF file. (D i) A summary of the SNVs and indels will be displayed (D ii) The predicted 

cancers and the associated probability is included in the output. (D iii) A sensitivity and 

specificity plot is displayed to allow the user to accept or reject the prediction based on a 

personal risk assessment. (D iv) The data matrix for each of the analysis dimensions for all 

uploaded samples can be downloaded.  
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3.4. Discussion 

3.4.1. A comprehensive list of ML algorithms was applied 

The approaches listed in Figure 43 are a comprehensive list of ML prediction and 

dimensionality reduction approaches that had the potential to predict a tumour of origin. 

The prediction (supervised learning) techniques can be divided into either decision tree 

techniques (Random forest, Gradient Boosting, AdaBoost, Bagging), linear classifiers 

(Support Vector Machines) or Bayesian approaches (Naive Bayes, Gaussian Naive 

Bayes and Bernoulli Naive Bayes). These classifiers differ at a fundamental level, 

where, as the name would suggest, decision trees seek to create learning and prediction 

processes through a process of decision where options fork into the various supervised 

categories. Linear models, however, assume that the supervised categories can be 

delineated via linear algebraic relation equations and in the case of polynomial 

classifiers that is done through Kernel methods where the data is mapped into high-

dimensional feature spaces. The Bayesian techniques used frequency tables to establish 

the probabilities of features being associated with specific cancer types. 

3.4.2. Strategy of Testing of Several Machine Learning Algorithms 

ML has in many ways significantly impacted science (Wu et al. 2008) and 

medicine (Foster, Koprowski, and Skufca 2014) through the use of various 

methodologies. This study goes through the exercise of testing the prediction 

performance of several ML classifiers. Among the algorithms chosen are supervised 

methods that are considered to be the most influential in data mining (Wu et al. 2008). 

This approach, that is, the use of several algorithms to solve biological problems have 

been utilised by several studies and is considered a typical approach when specific 
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models are not required and/or when the nature of the dataset is not well understood 

(Tarca et al. 2007) and is also favourable when computational resources are not a 

limiting factor for the size of the dataset being analysed. For example, a 2014 study 

developed a method to predict the solubility of overexpressed recombinant proteins in 

Escherichia coli by analysing a number of protein features by the use of a large number 

of machine algorithms (Habibi et al. 2014). The algorithms included Support vector 

machines (SVM), Sequence pattern-based method, random forest, scoring card method 

(SCM), conditional inference trees and decision trees. The study concluded that several 

algorithms provided accurate predictions, with usability independent of the algorithm 

being the defining factor. Recently, a study (Singh and Singh 2016) tested six machine 

learning algorithms for their efficiency at classifing Riboswitches, which are small 

structured RNA elements which modulate the transcription or translation of genes. The 

study used J48, BayesNet, Naive Bayes, Multilayer Perceptron (MP), sequential 

minimal optimisation and hidden Markov model (HMM) ML algorithms with the MP 

algorithm being identified as superior to the rest via the use of several statistical 

measures including specificity, sensitivity and receiver operating characteristic. 

Antifungal peptides, part of a larger group of peptides known as host defensive 

peptides, have been shown to be safer and more effective weapon against fungal threats 

than chemical based treatments. Another recent study (Mousavizadegan and 

Mohabatkar 2016) compared five different machine learning algorithms frequently 

used for classification of biological data to classifying and predicting antifungal 

peptides, with the SVM algorithm having the highest performance values. 

Some other examples include the evaluation of ML algorithms for virtual screening 

of lead molecules (Vyas et al. 2015; Hizukuri, Sawada, and Yamanishi 2015), quality 

assessment in three-dimensional breast ultrasound images (Schwaab et al. 2016), lung 
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cancer classification based on gene expression levels (Podolsky et al. 2016), predicting 

radiation therapy outcomes (Kang et al. 2015), histopathological and cell image 

classifier optimization (Abbas, Dijkstra, and Heskes 2014; Zachariah et al. 2014), 

among many others. 

3.4.3. Evaluation of ML by ROC and AUROC 

A receiver operating characteristic (ROC) curve is a plot that represents the 

capabilities of a binary system of classification, e.g. rates of success or failure. It is 

especially well suited to studying the performance of probabilistic detection and 

forecast systems. This methodology was developed in the field of radar signal detection 

(RSD) theory as the “receiver operating characteristics” (Peterson, Birdsall, and Fox 

1954), which follows on from work in statistical quality control theory from Bell 

laboratories (Mason and Graham 2002). Since its implementation in RSD, this approach 

has been adopted in several fields of science such as psychology (D. and J. 1966; Tsoi 

et al. 2015; Wichchukit and O’Mahony 2010) and medicine (Zweig and Campbell 

1993; Abruzzo et al. 2015; Lotta et al. 2015; Usher-Smith et al. 2016)  amongst others. 

Creation of the ROC curves starts with generating a confusion matrix at each possible 

threshold (p-value) from the predictions of a probabilistic classifier. The actual ROC 

curve is generated by plotting a line chart with the number of true positive predictions 

(typically on the y-axis) against the number of false predictions (typically x-axis) from 

all the generated confusion (matching) matrices. In addition to the ROC line, a line in 

the diagonal of the plot is drawn to represent the ROC curve of a random predictor, i.e. 

it would have a 0.5 chance of a correct prediction at any given threshold. Assuming that 

the predictor is better than by chance, the ROC would be to the left of the diagonal line. 

The Area under the Receiver Operating Characteristic curve (AUROC), also known 

just as AUC, represents the area between the ROC curve and diagonal line, i.e. the 
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improvement of the predictor over random chance (Hanley and McNeil 1982). In 

practical terms, when using normalised units, the AUROC is a qualifier of any given 

predictor and can be used to test the performance of several predictors against each 

other. This approach is commonly used in determining and comparing the performance 

of supervised machine learning algorithms and typically used alongside overall 

prediction accuracy. The advantage of AUROC over just prediction accuracy is that 

prediction accuracy pertains to just one threshold, typically the inclusion of all data. As 

described, the AUROC, however, uses all possible thresholds and plots the sensitivity 

and specificity as such, the classifier is graded in a more robust manner. Following the 

AUROC selection, the specificity of the classifier can then be improved by selection of 

prediction thresholds, albeit at the expense of sensitivity. Due to this, the AUROC was 

utilised to determine the performance of the different classifiers in this study. 

3.4.4. Dimensionality reduction was not beneficial 

Three dimensionality reduction approaches were used in this study, namely PCA, 

RBM (which is a stochastic artificial neural network) and lastly feature selection was 

performed, by applying a VT of 0.2 to all data categories. The dimensionality reduction 

did not in any way improve the prediction outcomes, in fact, predictions seemed to 

suffer. This would indicate that the predictive successes seen are probably not 

dependent on the most variable components of the dataset, i.e. components that have 

the greatest variance, but rather that the determinant features are of low variance in the 

dataset and as such would be masked by dimensionality reduction procedures. This is 

especially telling considering that the VT of only 0.2 caused the largest reduction in 

prediction accuracy (Table 20). The fact that even the complex dimensionality 

reduction approach of RBM did not help would suggest that the defining mutational 

signatures of the cancers require a complex set of rules that requires that all, or most of 
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the categories of data remain distinct for accurate prediction. Other than the potential 

for improved prediction, dimensionality reduction may have been more computational 

efficient due to the comparison of fewer categories of data during cancer type 

prediction. It is unlikely that other approaches to dimensionality reduction or feature 

selection would benefit accuracy, therefore this approach was abandoned in favour of 

the combinatorial approach used in section 3.3.3. 

3.4.5. Choice of prediction algorithms and CTC prediction 

The most optimised algorithm, as used in MutProfiler, was selected from a 

multistep process of prediction optimisation. The first step (Phase I) revealed that 

correct predictions can be made from the individual mutational dimensions when this 

mutational data is paired with an appropriate ML algorithm. This verifies the hypothesis 

that there are indeed distinct cancer type or subtype mutational patterns beyond those 

seen in chapter 2, and that these distinct patterns have enabled cancer type prediction. 

Following this (Phase II), it was shown that dimensionality reduction was detrimental 

to prediction accuracy likely due to the loss of fidelity that is necessary to decipher the 

subtle characteristics that are required to identify cancer types. A combinatorial 

approach (Phase III) was then performed where the four best performing algorithms 

were combined with the two datasets that the provided the best predictions with those 

algorithms, specifically done to improve prediction for diagnostic usage. In Phase III, 

a AUROC analysis revealed that one combination in particular, the random forest 

classifier with the trinucleotide and recurrent variants dimensions (RFC+ 

trinucleotides+recur vars), stood out as the most robust predictor with a AUROC of 

0.85. It was also revealed that predictions in WES samples were much better than in 

WGS samples, suggesting that WGS may require a separately trained algorithm. The 

RFC+ trinucleotides+recur vars combination was integrated into a web interface, thus 
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creating MutProfiler, a tool to generate mutational dimension data and perform cancer 

type prediction. MutProfiler was then applied to a CTC WGS study, where it was 

revealed the 2/5 CTC samples were correctly predicted (40% accuracy) suggesting that 

this method may eventually be used to non-invasively determine the site of 

origin/tumour types based solely on the mutational profile within CTC samples. Again 

it should be noted the test datasets including the CTC samples underwent different wet-

lab and bioinformatics processes and therefore reduced prediction accuracy may be 

attributed to this. An ideal scenario would be to have a CTC or CUPs samples 

sequenced in conditions identical to their TCGA counterparts, and maybe even done as 

a standard clinical practice. 

3.4.6. MutProfiler: Potential diagnostic tool 

Figure 46 explains the rationale behind the development of MutProfiler, i.e. a tool 

that can accept mutational data and summarise this data in terms of mutations profiles, 

and to also perform a prediction of the cancer subtype.  

The intent is that MutProfiler will be used in a clinical setting where a patient's 

cancer type prediction is required, specifically where the prediction of the correct 

cancer will help determine a correct diagnosis and direct a patient towards beneficial 

treatment strategies. Future versions of MutProfiler may also include prognosis or 

therapeutics outcome prediction by finding associations between mutational patterns of 

the different dimensions and these factors, increasing the diagnostic application. 

The accuracy at predicting using WES studies suggests that the prediction 

methodology is robust with this type of sequencing analysis, however the predictions 

are not definitive, and therefore should be used alongside other techniques of cancer 

type prediction. This is further illustrated by the 40% correct prediction in the CTC 
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WES study. The output from this web tool including the mutations results from the 

various mutational dimensions is shown in Figure 45. 

3.4.7. Currently available methodologies in cancer type prediction 

Currently, pathology analysis and IHC remain the ‘gold standard’ for CUP 

diagnostic workup (Oien and Dennis 2012) and work by identifying IHC biomarkers 

have been identified on a candidate basis, as single genes involved in a particular 

process. This approach may take up to three rounds of analysis, where the first is to 

diagnose the CUP into the broad class of cancer types, e.g. whether it is a carcinoma 

(Cytokeratin AE1 / AE3), melanoma (S100), leukaemia (common leukocyte antigen) 

or sarcoma (Vimentin) by the staining of approximately 5 or 6 antibodies, with the 

identifying antibody shown in brackets. If diagnosed as a carcinoma, this is often 

followed by a second IHC staining panel to determine carcinoma subtype, e.g. 

adenocarcinoma (cytokeratin 7), squamous cell carcinoma (cytokeratin 5) etc. 

Adenocarcinomas are then treated to the third panel of antibodies to determine primary 

site, for example, prostate-specific antigen to identify prostate adenocarcinomas, or 

mesothelin to identify stomach adenocarcinomas. Although commonly implemented in 

clinical settings, the accuracy of these techniques are not well validated. The multistep 

process also requires a large amount of sectioned tissue and a long processing time. 

Table 25 shows a summary of the attributes of the IHC method, along with a summary 

of the other existing site of origin prediction methods. 

Molecular techniques are being introduced with the promise of increased accuracy, 

speed, and reduced turnover time. These techniques also remove the subjectivity 

involved with pathological interpretation (Oien and Dennis 2012). MutProfiler is 

primed to play a role in addressing the needs of molecular profiling techniques by the 

use of DNA sequencing. Currently, the Cancer type ID from Biotheranostics (San 
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Diego, California, USA) is gaining acceptance as a standard for the identification of 

CUPS by molecular testing (Table 25, column 3). It is able to distinguish 28 main 

tumour types and 50 tumour subtypes, which represent approximately 95% of cancers 

by incidence. This is achieved by the use of a 92-gene real-time RT-PCR analysis 

TaqMan probe panel (Brachtel et al. 2016) requiring approximately 300 non-necrotic 

cells as starting material for RNA extraction. Accuracies of 100%, 92%, and 86% in 

FNA/cytology cell blocks, core biopsies, and small excisions. Although this approach 

has seemingly higher accuracies than MutProfiler, this approach is very much a 

complementary methodology. The use of RNA as required by this approach is not often 

feasible and certainly not a common part of clinical practice. 

Recently TumourTracer (Marquard et al. 2015) a software package with similar 

functionality to MutProfiler has been published and it claims to be able to predict the 

tissue of origin of a tumour based on the mutational profile (Table 25, column 4). This 

software seems to have been developed in parallel to MutProfiler and employs the 

similar methodology of using machine learning approaches and mutational data as 

prediction features. In addition to mutational data, TumorTracer also uses copy number 

changes in the 232 cancer-related genes represented as trinary data (copy number loss, 

gain or normal copy number). TumorTracer produced accuracies of 46 %, 53 % and 89 

% for three independent datasets. Whereas using the algorithm used with MutProfiler, 

accuracies of 88% were seen in the TCGA datasets as a whole, 69% in the ICGC WES 

studies, 41 % in the ICGC WGS studies and 40 % in the CTC study. This range is very 

similar to those seen in TumorTracer. It should be noted however the individual studies 

within the TCGA and ICGC may be considered separate data points, for which 

accuracies ranged from 0 to 100% using 87 different studies (31 from the TCGA, 55 

from the ICGC and the CTC study). It is therefore very clear that MutProfiler has been 
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rigorously tested on a vastly greater number of studies and cases than TumorTracer, 

and it is therefore more likely that prediction accuracies shown for MutProfiler in this 

thesis are representative of real-world prediction accuracy compared to the prediction 

ranges determined for TumorTracer. 

MutProfiler is also superior for several reasons. Firstly, TumourTracer utilises 

COSMIC version 68 as its mutational database to identify cancer type specific 

mutations. The cosmic database (S. a Forbes et al. 2011) is a publically available 

database of disease mutational data provide by the Sanger institute. While the COSMIC 

database itself is well curated, the mutation data is sourced from a wide range of studies 

of indeterminate quality and reliability. The work presented in this thesis has used the 

TCGA database which is a very highly curated database with representations from 31 

cancer types at the time of this study. This work also utilises over 8000 cases for 

establishing the ML classifiers, as opposed to the 4975 used by TumorTracer. 

Also, the TumorTracer’s web interface is limited by the necessity of using MuTect 

for variant calling, making it technically challenging to use with other variant calling 

approaches, which would negate its use with the majority of sequencing data being 

generated. Support for Illumina-based methods e.g. Strelka variant calling would make 

it much more accessible. The web interface of MutProfiler, however, relies on MAF 

files, which are agnostic to variant calling platforms. Although the standardised out 

format of most variant callers e.g. GATK Unifiedgenotyper and Halotypecaller, Stelka, 

MuTect and VarScan are VCF files, conversion to the MAF format can be done by a 

variety of tools, notable Oncotator (Ramos et al. 2015), a tool that is available from the 

Broad institute. The use of MAF files specifically is necessitated by the need for gene-

specific annotation. A direct comparison between MutProfiler and TumorTracer is 

challenging because of the need specifically for MuTect called variants.  
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MutProfiler is compatible with mutation annotation from three versions of the 

human genome, i.e. hg18 for purposes of being compatible with legacy datasets, hg19 

which is not the newest version of the human genome, but currently the most commonly 

implemented in NGS pipeline (e.g. Illumina’s basespace) and hg38, the newest version 

of the human genome and will become more vital to NGS platforms as this version of 

the genome matures and NGS systems are updated. MutProfiler does this by the 

inclusion of UCSC Liftover as discussed in section 2.2.2.3 which is a tool developed 

by University of California, Santa Cruz for coordinate conversion between genome 

builds. TumorTracer, however, is only implemented with the hg19 version of the 

genome. 

This study has also gone further than TumorTracer, by not only looking at the 232 

cancer specific genes which are based on an older dataset (Araya et al. 2015) and the 

trinucleotide changes, but this thesis has as looked in-depth into other features for data 

description and classification. We have investigated indels which were not considered 

by TumorTracer and studied all mutated genes in all 31 of the available cancers, thereby 

not biasing the feature selection to the cancers within the previous studies.  

Admittedly this study has not looked at copy number changes as utilised by 

TumorTracer, however, this may not be a major limitation in practical implementation. 

Unlike copy number changes, variant analysis by WES is gradually being implemented 

in the clinical and diagnostic settings (Eliezer M Van Allen et al. 2014; Retterer et al. 

2016). More and more NGS is allowing clinicians to make diagnoses and recommend 

treatment strategies based on mutations found in clinically relevant genes. Furthermore, 

WES is being implemented to allow for the discovery of potentially relevant mutations 

that do not yet have associated therapeutics. This clinical implementation will allow the 

DNA mutation aspect of MutProfiler to be its true strength. In addition, MutProfiler can 
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play a role in the complement of independent molecular profiling techniques and thus 

allow clinicians and patients to be better informed. 

3.4.8. MutProfiler in combination with the other cancer type prediction methods 

The costs associated with NGS procedures have been dramatically falling, 

outpacing even Moore’s law (Muir et al. 2016). This along with its advantages 

compared to traditional diagnostic techniques have increased its usage in both cancer 

(Luthra et al. 2015) and non-cancer (Matthijs et al. 2016) diagnoses. In addition there 

is the potential for revealing additional diagnostic insight in the future through the 

identification of variants of unknown significance (Petersen et al. 2017). The 

inevitability of NGS, specifically WES, as a diagnostic tool places MutProfiler firmly 

in a position to aid in diagnosis of CTCs and CUPs. As the price point of sequencing 

reduces, the advantages of WES compared to IHC will only increase. The huge number 

of antibodies required to account for all possible tissue origins, and the lack statistics 

on prediction accuracy are large weaknesses compared to the other methodologies. The 

limitation of prediction accuracy does however indicate that the current version of 

MutProfiler is not sufficient. This is in fact true for all the site of origin prediction 

methods (Table 24), as none are infallible. With the push towards precision medicine, 

the pressure will only increase for more targeted and effective therapies with greater 

patient survival with fewer side-effects and lower costs (Pinato et al. 2017; Soong et al. 

2016). Due to this, currently, the only viable approach would be to combine as many 

methods as possible for CUPs or CTC prediction with the potential of improved 

prediction via a consensus of the predictions, although this approach has to be tested. 

The combination is also a challenge in itself due to prohibitive costs and burdens on 

healthcare systems, the requirement for RNA for the Biotheranostics test and for the 

potential for confusion or distress due to conflicting results. 



 

 

 

Table 25: Summary of cancer type prediction methodologies 

 IHC Biotheranostics  TumourTracer MutProfiler 

Status Gold standard Gaining clinical acceptance Research 

Accuracy 
Not well 
validated 

86 - 100 %  46 - 89 % 40 - 88 % (0 -100%) 

Priniciple 
Protein 

expression 
92-gene expression 

Trinucleotide and copy 
number 

Trinucleotide and 
Variant frequencies 

CUPS y y y y 

CTC n n y y 

Cancers types All 50 10 33 

Turnaround time 1 - 3 weeks Delivery (1 week) 3 days 

Sample type Sectioned tissue RNA DNA DNA 

Limitation     MuTect mandatory   

Requirements Histology lab RNA extraction facility Sequencing machines 

Reference database   COSMIC v68 
4975 cases 

TCGA database 

Compatible genome 
builds  

  

GRCh37 
GRCh36 (hg18) 
GRCh37 (hg19) 
GRCh38 (hg38) 

Compatible variant callers   MuTect All variant callers 

Validated datasets   3 86 (TCGA/ICGC) 

Shown are the four established methods for cancer type prediction. The main strengths of each method are shown in blue font. The greatest strengths of 

MutProfiler are that it leverages on DNA sequencing (which is cheap to analyse and entering into the standard clinical analysis), highly accurate, has a low 

turnaround time, can be used with CTCs and is well validated, inclusive of the TCGA and ICGC studies. MutProfiler accuracies are based on databases 

(outside bracket) and on individual studies (within brackets). 
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3.4.9. Future work 

Non-DNA based datasets have been shown to be capable of characterization of 

cancer site of origin prediction. A study used RNA expression by real-time reverse 

transcriptase-polymerase chain reaction (RT-PCR) (Greco et al. 2010), to predict the 

site of origin on CUPs, but this was tested on a very small dataset of only 28 patients 

with CUPs. The study achieved a 75% correct prediction however the prediction was 

poorly explained. Another study has however shown that cell of origin chromatin 

organisation seems to drive mutation patterns in cancer genomes, linking there two 

separate genomic events (Polak et al. 2015). The authors studied the mutations from 

173 cancer genomes from eight different cancer types that represent a wide range of 

tissues of origin, carcinogenic mechanisms, and mutational signatures, namely, 

melanoma, multiple myeloma, lung adenocarcinoma, liver cancer, colorectal cancer, 

glioblastoma, oesophageal adenocarcinoma and lung squamous cell carcinoma and 

compared this to 424 epigenetic features derived from 106 different cell types from 45 

different tissue types. The study developed a predictor based on enrichment of 

epigenomic variables from a single cell type among the top 20 variables selected by the 

random forest analysis.  

Future work concerning MutProfiler and subtype prediction will involve the 

inclusion of other datasets to improve site of origin prediction and thus allow user 

catered prediction according to the datasets that are available. These will include the 

integration of RNA expression and methylation, among other features. The ML 

algorithms used in this study are robust enough to be used with other datasets and as 

such, including this additional information will be an extension of what has been done 

already. Again the TCGA database will be used as the source of the additional, owing 

to it rich source of samples that have several types of genomic information. 
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MutProfiler’s prediction will also be continually updated by including newer versions 

of the TCGA project mutations to refine the predictor learning process and perhaps 

even include mutations from other databases such as COSMIC.  

There is also the potential that mutation patterns of the different dimensions may 

have associations with clinical outcome i.e. prognosis or treatment outcome, similar to 

how increase mutation burden is associated with improved immunotherapy response in 

lung cancer (N. A. Rizvi et al. 2015), melanomas (E. M. Van Allen et al. 2015) and 

other cancers (Le et al. 2015). Survival data is available for many studies in both the 

TCGA and the ICGC databases, and thus this will be investigated further. This will 

ensure that MutProfiler is not only relevant to CTC and CUPs applications, but also to 

the clinical analysis of tumour biopsies and resections as well. In this way, future 

versions of MutProfiler will not only be much more accurate in prediction cancer type, 

but will also be a much more comprehensive tools for clinical diagnosis. 
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Figure 46: Applications of MutProfiler: Mutation summaries and cancer subtype prediction 

MutProfiler can be used for diagnosis to determine the site of origin of a CUP or for a non-invasive tumour diagnosis from CTCs. Data 

concerning the individual dimensions can be used in further research work. 
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4. Conclusion 

The novel work presented in this thesis is the most comprehensive and up-to-date 

summary of SNV changes in cancers as it looks at the trinucleotide mutations in 31 

cancer subtypes (34 with MSI segregation), with the greatest number of cases. A 

potentially new mutational signatures was revealed existing in a clusters of testicular 

germ cell tumours (TGCT). The indel sizes were studied in much greater detail than 

ever before with only one other study with comparable analysis, albeit a specific focus 

in this issue (Yang et al. 2010). The genomic distributions features that are unique to 

specific cancer of subsets of cases have been revealed for the first time, and these 

observations have to be followed up with studies on DNA accessibility based on 

epigenetic factors. Genes and variants have been established to be cancer specific, but 

this work reveals how there are genes and variants that have especially enriched 

mutation rates compared to other cancers rather than a comparison against non-cancer 

tissues. 

The choice to use proportions to study trinucleotides, indels and genomic 

distributions, in addition to counts, was to normalize for the variant calling sensitivity 

of different variant callers and sequencing centres and therefore allow the results to be 

relevant to all studies not just studies that specifically use the same software packages 

utilized by the TCGA datasets. Furthermore, this approach has been used by landmark 

studies looking at mutational signatures (Nik-Zainal, Van Loo, et al. 2012; Alexandrov 

et al. 2015). The impact of mutational load on the cancers mutation profiles, however, 

is undeniable as shown in this thesis work (Figure 6) and previous studies (Lawrence 

et al. 2013) and therefore was included alongside the proportions. Moreover, the effect 

mutational load has on immunotherapy, for example, makes it an especially pertinent 

aspect of research (Naiyer A Rizvi et al. 2015). 
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 Work on the various dimensions has proven that there may be several consistent 

mechanisms that drive the development of certain cancers, seen in all the dimensions 

studied. Certain cancers can be distinguished by hierarchical clustering alone, while it 

is unlikely to be possible for other cancers (Table 17). 

The work in chapter 3, then establishes that even in cancers where relationships 

may not be obvious by methods such as hierarchical clustering, deep learning machine 

learning algorithms can help establish consistent mutational signature events that 

distinguish different cancer types from each other, even in cancers from non-TCGA 

datasets which have undergone different bioinformatics procedures. The lung CTC 

dataset was a prime example of the potential of this tool to predicting cancer site of 

origin in a clinical setting, but also exposes the limitations of the prediction 

methodology. More work will be done to refine the prediction accuracy and improve 

its clinical relevance. 
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Figure 47: Bar graphs of trinucleotide mutations proportions in SKCM, UCEC-MSIH, COAD-MSIH, STAD-MSIH and LUAD 

(Cancers in Figure 47 to Figure 53 are ordered according to consensus trinucleotide mutations proportions clustering as shown in section 2.3.3.1)  
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Figure 48: Bar graphs of trinucleotide mutations proportions in LUSC, TGCT, THYM, CHOL and ESCA 

(Cancers in Figure 47 to Figure 53 are ordered according to consensus trinucleotide mutations proportions clustering as shown in section 2.3.3.1)  
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Figure 49: Bar graphs of trinucleotide mutations proportions in SARC, HNSC, BLCA, CESC and ACC 

(Cancers in Figure 47 to Figure 53 are ordered according to consensus trinucleotide mutations proportions clustering as shown in section 2.3.3.1)  
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Figure 50: Bar graphs of trinucleotide mutations proportions in KICH, LIHC, KIRC, KIRP and PAAD  

(Cancers in Figure 47 to Figure 53 are ordered according to consensus trinucleotide mutations proportions clustering as shown in section 2.3.3.1)  
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Figure 51: Bar graphs of trinucleotide mutations proportions in GBM, COAD-NonMSIH, READ, UCS and STAD-NonMSIH 

(Cancers in Figure 47 to Figure 53 are ordered according to consensus trinucleotide mutations proportions clustering as shown in section 2.3.3.1)  
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Figure 52: Bar graphs of trinucleotide mutations proportions in UCEC-NonMSIH, PCPG, UVM, BRCA and OV 

(Cancers in Figure 47 to Figure 53 are ordered according to consensus trinucleotide mutations proportions clustering as shown in section 2.3.3.1)  
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Figure 53: Bar graphs of trinucleotide mutations proportions in LGG, PRAD, LAML and THCA 

(Cancers in Figure 47 to Figure 53 are ordered according to consensus trinucleotide mutation proportions clustering as shown in section 2.3.3.1) 
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Figure 54: Bar graphs of indel size distribution in THCA, LAML, OV, UVM, GBM, LUSC, 

COAD-nonMSIH, READ, ACC and SARC  

(Cancers in Figure 54 to Figure 57 are ordered according to consensus indel proportions 

clustering as shown in section 2.3.3.2)  
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Figure 55: Bar graphs of indel size distribution in PAAD, KICH, UCEC-MSIH, COAD-

MSIH, STAD-MSIH, BRCA, PCPG, CHOL, LIHC and LUAD 

(Cancers in Figure 54 to Figure 57 are ordered according to consensus indel proportions 

clustering as shown in section 2.3.3.2)  
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Figure 56: Bar graphs of indel size distribution in THYM, TGCT, UCEC-NonMSIH, CESC, 

SKCM, LGG, PRAD, KIRC, STAD-NonMSIH and KIRP  

(Cancers in Figure 54 to Figure 57 are ordered according to consensus indel proportions 

clustering as shown in section 2.3.3.2)  
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Figure 57: Bar graphs of indel size distribution in UCS, BLCA, ESCA and HNSC 

(Cancers in Figure 54 to Figure 57 are ordered according to consensus indel proportions 

clustering as shown in section 2.3.3.2) 

 

 


