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SUMMARY

Data structures play a central role in software development. While developing proper

data structures is not easy, reasoning about them is even harder. The difficulty comes

from their typical characteristic: the unboundedness of the data structures and/or the

loops manipulating them. This makes two following fundamental issues more severe: inter-

dependence between structures and data values, and complicated interactions between dif-

ferent data structures.

In this thesis, we consider the problem of reasoning about unbounded data structures

such as strings, linked lists, trees. Specifically, we propose systematic techniques for the

satisfiability problem of string constraints, and the entailment proving problem for heap-

allocated data structures. These two problems are of great interest: for example, while the

former is important for security analysis of web applications, the latter is important for

automated verification of imperative programs.

The first technique is to implement lazy reasoning methodology. Its introduction is to

mitigate the problem of combinatorial explosion in searching for a solution of the input

constraints. Specifically, we incrementally reduce recursive predicates, which are used to

represent string operations, via splitting (and/or unfolding) process, until their subparts are

bounded with constant strings/characters to be consumed. We have applied this technique

in building an efficient string solver. While modern string solvers exist, they suffer in one

way or another: (1) the constraint language may not be expressive enough (even though

the solver is fast); or (2) the solver may not be fast enough to accommodate realistically

large programs. Thanks to lazy reasoning, we now have a fast symbolic string solver to

support an expressive language, thus opening doors for future development of comprehensive

frameworks for vulnerability detection in web applications.

Since lazy reasoning does not address non-termination in solving string constraints,

we next propose a novel method, namely, progressive reasoning. The key feature of the

new algorithm is a pruning method on the subproblems, in a way that is directed. More

specifically, our algorithm detects non-progressive scenarios with respect to a criterion of

minimizing the “lexicographical length” of the returned solution, if a solution in fact exists.

Informally, in the search process based on reduction rules, we can soundly prune a subprob-

lem when the answer we seek can be found more efficiently elsewhere. If a subproblem is

deemed non-progressive, it means if the original input formula is satisfiable, then another

v



satisfiable solution of shorter “length” will be found. If, on the other hand, the input for-

mula is unsatisfiable, then any pruning is obviously sound. A technical challenge we will

overcome is that at the point of pruning, the satisfiability of the input formula is unknown.

Experimental evaluations show the promising results of our new string solver in dealing with

non-termination in string solving.

Finally, we propose a general method that includes inductive reasoning for entailment

proving. It aims to address non-termination in proving heap-allocated data structure prop-

erties. The challenge is how to use induction correctly and avoid erroneous proof arising

from a form of circular reasoning. Our method is able to use dynamically generated formulas

as induction hypotheses, and to enforce an anti-circular condition so that any application

of an induction step is guaranteed to be correct. The state-of-the-art methods are often

unable to prove relationship between different data structures (e.g. to prove that a sorted

list is a list). As a result, they would not be able to automatically verify a large class of

programs. Inductive reasoning helps us to close such remaining gap in existing systems.

More importantly, it also gets us back the power of compositional reasoning in dealing with

user-defined recursive predicates that are used to represent data structures properties.

vi



List of Tables

2.1 Dynamic Analysis versus DSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 DSE as a More Effective Paradigm . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 How Z3-str Interacts with Z3 and Its Backtracking . . . . . . . . . . . . . . . 36

3.3 Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Selected reduction rules for star function . . . . . . . . . . . . . . . . . . . . 42

3.5 A Solving Procedure for the Motivating Example in Fig. 3.3 . . . . . . . . . . 43

3.6 Reduction Rules for search and replaceAll . . . . . . . . . . . . . . . . . . 44

3.7 Reduction Rules for replaceAll Functions . . . . . . . . . . . . . . . . . . . . 44

3.8 S3 versus Kaluza on Kaluza benchmarks . . . . . . . . . . . . . . . . . . . . . 46

3.9 S3 versus Z3-str . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Constraints generated by Kudzu . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Usefulness of unsatisfiable cores for Kudzu framework . . . . . . . . . . . . . 77

4.3 Constraints generated by Jalangi . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Proving Lemmas (existing systems cannot prove). . . . . . . . . . . . . . . . . 106

5.2 Verification of Academic Algorithms (existing systems require lemmas). . . . 107

5.3 Verification of Open-Source Libraries (existing systems require lemmas). . . . 108

I



List of Figures

1.1 A login form along with its simplified HTML code . . . . . . . . . . . . . . . 2

2.1 Proving with Unfold-and-Match . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Another Example with Unfold-and-Match . . . . . . . . . . . . . . . . . . . . 22

3.1 An Example of Email Address Validation . . . . . . . . . . . . . . . . . . . . 25

3.2 The Grammar of Our Constraint Language . . . . . . . . . . . . . . . . . . . 30

3.3 From a JavaScript Program to the Generated Constraints . . . . . . . . . . . 31

3.4 A Frequent Constraint Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 The Design of S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 A JavaScript example using replace operation . . . . . . . . . . . . . . . . . 55

4.2 The Syntax of Our Core Constraint Language . . . . . . . . . . . . . . . . . . 58

4.3 Length Constraint Propagation Rules . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Simplification Rules for String Constraints . . . . . . . . . . . . . . . . . . . . 62

4.5 Split rules and Unfold rules for star functions . . . . . . . . . . . . . . . . . . 63

4.6 Derivation Tree for Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Partial Proof Tree for zero list(x) |= vlist(x) . . . . . . . . . . . . . . . . . . . 82

5.2 Partial Proof Tree for vlist(x) |= zero list(x) . . . . . . . . . . . . . . . . . . . 83

5.3 Implementation of a Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Modular Program Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 U+M with List Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 General Proof Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Proving with just U+M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II



5.8 Our Proof for (5.4.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 An Unsuccessful Attempt for (5.4.2) . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Proving l̂s(x, y, L) |= ls(x, y, L). . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.11 Proving ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2. . . . . . . . . . 98

5.12 The Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.13 Supporting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

III



Chapter 1

Introduction

Data structure is an organization of information, usually in memory, for better algorithm

efficiency [Pieterse and Black, 2004]. They are usually associated with operations that can

be performed on them and the computational complexity of each operation. Different kinds

of data structures are suitable for different kinds of operations/functions. For example,

relational databases commonly use B-tree indexes for data retrieval [Powell, 2006], while

compiler implementations use hash tables for looking up identifiers [Aho et al., 1986].

Developing proper data structures is not easy; reasoning about them is even harder,

especially when the size of the data structures and/or the loops manipulating them is un-

bounded. We refer to them as unbounded data structures. For example, linked list is an

unbounded data structure since a linked list contains an unspecified number of nodes [Cor-

men et al., 2001]. Another example is the string data type in JavaScript language: the

replace operation can replace an unspecified number of matches of a pattern in a string by

a replacement [Mozilla, 2016]. In both cases, it is necessary to assume the sizes of the data

structures (e.g., the linked list and the string) to be unknown in order to precisely capture

their properties.

1.1 Reasoning over Unbounded Data Structures

In modern software, unbounded data structures are not only ubiquitous, they also play

a critical part: their improper use may affect the software security and safety. However,

reasoning about them is not trivial. In this section, we first present motivations for reason-
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Chapter 1. Introduction

ing over strings and other unbounded data structures, then we discuss challenges for such

reasoning.

1.1.1 Motivating Examples

To show the importance of reasoning about unbounded data structures, let us use two

illustrative examples: web applications and heap-manipulating programs.

1.1.1.1 Web Applications

According to the Open Web Application Security Project [OWASP, 2013], the most serious

web application vulnerabilities include: (#1) Injection flaws (such as SQL injection) and

(#3) Cross Site Scripting (XSS) flaws. Both vulnerabilities involve string-manipulating

operations and occur due to inadequate sanitisation and inappropriate use of input strings

provided by users.

To illustrate more clearly the importance of reasoning about strings in ensuring the

security of web applications, we use a simple example of a log-in form in Figure 1.1. The

user needs to fill in the client-side form, by providing a username to the HTML input element

username and a password to the HTML input element password. When the Login button

is clicked, the browser will submit the string values of these two fields to the server.

Username ...

Password ...

Login

...

<html>

<form name="loginForm" action="/Login">

Username: <input type="text" name="username" size="64" />

Password: <input type="text" name="password" size="64" />

<input type="submit" value="Login" />

</form>

...

</html>

Figure 1.1: A login form along with its simplified HTML code

2



Chapter 1. Introduction

Let us call the vulnerable website www.vulnerable.site and look at two following

security questions.

Security Question 1: One interesting security question is whether this web page is

vulnerable to an SQL injection. More specifically, can the following PHP code, with an

appropriate instantiation for string variable $usr, be executed on the server side, leading to

an attack?

$usr = $_POST['username '];

$pwd = $_POST['password '];

$stm = "SELECT tbl1 where username= '$usr' and password= '$pwd'";

$result = mysql_query($stm);

The answer is yes. For example, attackers can create an SQL injection by using the username

’ OR 1=1-- (and an arbitrary password) in order to construct an SQL query $stm

SELECT tbl1 where username='' OR 1=1--' and password='...'

Because of the comment notation (--), the actual SQL query is

SELECT tbl1 where username='' OR 1=1

which will select all the rows of the table tbl1. This eventually allows the attackers to steal

the information of all the usernames and passwords from the table tbl1.

Security Question 2: Now suppose there is also a script welcome.cgi, which takes one

parameter name, in the current site www.vulnerable.site. This script reads part of the

HTTP request:

GET /welcome.cgi?name=Minh%20Thai HTTP/1.0

Host: www.vulnerable.site

and echoes the current username back to the response page:

<HTML>

<Title>Welcome!</Title>

Hi Minh Thai <BR>

Welcome to our system

...

</HTML>

3



Chapter 1. Introduction

Similarly to the previous example, we can ask if the site is vulnerable to XSS attacks.

The answer is yes. In fact, the attacker is able to prepare a link such as

http://www.vulnerable.site/welcome.cgi?name=<script>window.open

("http://www.attacker.site/collect.cgi?cookie="%2Bdocument.cookie)</script>

and lures the victim client into clicking that link (e.g. by phishing them). This link causes

the Web browser of the victim to access the site www.vulnerable.site and to invoke the

vulnerable script welcome.cgi. The victim, upon clicking the link, will generate a request

to www.vulnerable.site, as follows:

GET /welcome.cgi?name=<script>window.open("http://www.attacker.site/

collect.cgi?cookie="%2Bdocument.cookie)</script> HTTP/1.0

Host: www.vulnerable.site

and the site’s response would be:

<HTML>

<Title>Welcome!</Title>

Hi <script>window.open("http://www.attacker.site/collect.cgi?cookie=

"+document.cookie)</script> <BR>

Welcome to our system

...

</HTML>

The victim’s Web browser, immediately upon loading this page, would execute the em-

bedded JavaScript and send a request to the collect.cgi script in www.attacker.site,

with the value of the cookies of www.vulnerable.site that the browser already has. This

compromises the cookies of www.vulnerable.site that the victim client has and allows the

attacker to impersonate the victim.

In summary, it can be seen that strings are ubiquitous in web applications. A web

application usually takes string values as input, manipulates them, and then uses them

to construct database queries. As such, if the string inputs are not appropriately used or

not fully sanitized, web applications will be vulnerable to serious attacks. Therefore, it is

necessary to reason about strings in order to detect security vulnerabilities and ensure the

security of web applications.

4



Chapter 1. Introduction

1.1.1.2 Heap-manipulating Programs

In imperative programs, data structures such as linked lists are used frequently. The purpose

of using these kinds of data structures is to carry out memory (de)allocation while the

program is still running. Because the allocated memory is in the heap, we call a program

that use these kinds of data structures a heap-manipulating program.

The improper use of heap-allocated data structures can be a source of bugs related

to memory (de)allocation [Wikipedia, 2016]. These can include security bugs or program

crashes, often due to segmentation faults. The most common errors are as follows:

• Memory leaks: Failure to deallocate memory using free command leads to buildup of

non-reusable memory, which is no longer used by the program. This wastes memory

resources and can lead to allocation failures when these resources are exhausted.

• Logical errors: All allocations must follow the same pattern: allocation using malloc,

usage to store data, deallocation using free. Failures to adhere to this pattern, such

as memory usage after a call to free (a.k.a. use-after-free) or before a call to malloc

(a.k.a. wild pointer), calling free twice (a.k.a. double free), etc., usually cause a

segmentation fault and result in a program crash.

These errors can be transient and hard to debug. For example, freed memory is usually not

immediately reclaimed by the OS, and thus dangling pointers may persist for a while and

appear to work.

Importantly, these improper uses of heap-allocated data structures can lead to critical

security vulnerabilities. For example, calling free twice on the same memory address po-

tentially modifies unexpected memory locations. When a program calls free twice with

the same argument, the program’s memory management data structures become corrupted.

This corruption can cause the program to crash or, in some circumstances, cause two later

calls to malloc to return the same pointer. If malloc returns the same value twice and

the program later gives the attacker control over the data that is written into this doubly-

allocated memory, the program becomes vulnerable to a buffer overflow attack [Microsoft,

2013].

As another example, dangling/wild pointer bugs frequently become security holes. For

example, if the pointer is used to make a virtual function call, a different address (possi-

bly pointing at exploit code) may be called due to the vtable pointer being overwritten.

5



Chapter 1. Introduction

Alternatively, if the pointer is used for writing to memory, some other data structure may

be corrupted. Even if the memory is only read once the pointer becomes dangling, it can

lead to information leaks (if interesting data is put in the next structure allocated there)

or to privilege escalation (if the now-invalid memory is used in security checks). When a

dangling pointer is used after it has been freed without allocating a new chunk of memory to

it, this becomes known as a “use after free” vulnerability [Dalci, 2012]. For example, CVE-

2014-1776 is a use after free vulnerability being used by zero-day attacks by an advanced

persistent threat [Xiaobo et al., 2014].

1.1.2 Main Challenges

Though there are clear motivations for reasoning over unbounded data structures, such

reasoning is difficult. The difficulty comes from the unboundedness of the data structures

and/or the loops manipulating them. The unboundedness requires us to assume the size of

the data structures to be unknown in order to precisely capture their properties. Therefore,

we are not able to do concrete reasoning about unbounded data structures. This makes two

following fundamental issues more severe.

The first fundamental issue is inter-dependence between structures and data values.

For instance, to define a binary search tree (BST), we have to compare the data value of a

parent node with the values of its child nodes in the left and right subtrees. As a result, to

analyze the shape (or structure) of a BST, it is inevitable to handle the relationship between

its data values. In other words, it will be imprecise to reason about the structures and the

data values separately from each other.

The second fundamental issue is complicated interactions between different data struc-

tures. These interactions happen when we split a string into sub-strings, concatenate a list

of sub-strings into one, or copy data values from a tree to a new one, etc. This gives rise to

the need for reasoning about the relationship between different unbounded data structures.

1.2 The Satisfiability-Based Approach

The last decades have witnessed a lot of research work on program reasoning over unbounded

data structures [Wies et al., 2007; Bouajjani et al., 2009b; Srivastava, 2010; Itzhaky et al.,

2013]. One of successful approaches is the satisfiability-based where the center of program

6



Chapter 1. Introduction

reasoning tools is SAT/SMT solvers [De Moura and Bjørner, 2011; Barrett et al., 2009]. An

advantage of this paradigm is the re-usability. Specifically, one can develop an off-the-shelf

SMT solver which can be used by different program reasoning tools.

To illustrate, in program reasoning for web applications, the state-of-the-art technique

is dynamic symbolic execution (DSE). Its main purpose is to avoid false positives, but still

preserve high code coverage. Some examples of recent works based on DSE are [Godefroid

et al., 2008; Halfond et al., 2009; Kiezun et al., 2009b; Chaudhuri and Foster, 2010; Saxena

et al., 2010; Bisht et al., 2010; Bisht et al., 2011; Ghosh et al., 2013; Sen et al., 2013;

Maras et al., 2013; Wang et al., 2013; Jensen et al., 2013; Bucur et al., 2014]. These

works employ both concrete and symbolic execution to automatically and systematically

generate tests in order to expose vulnerabilities in web applications. DSE for automated test

generation involves instrumenting and concolically running a program while collecting path

constraints on the inputs. Then it attempts to derive new inputs using an SMT solver with

the hope to steer next executions toward new program paths. For vulnerability detection,

DSE combines the derived path constraints with the specifications for attacks, often given

by the security experts, to create queries for the SMT solver. In short, the problem of

vulnerability detection will be reduced into the problem of deciding if a constraint formula

is satisfiable. Furthermore, if the formula is satisfiable, we should be able to generate a

solution/model (in order to derive new inputs for exploring new paths or to generate attack

inputs that exploit the vulnerabilities).

Another example is automated verification techniques for imperative programs [Chin et

al., 2012; Madhusudan et al., 2012; Qiu et al., 2013; Piskac et al., 2013; Pek et al., 2014].

Typically, pre/post conditions are specified for each method/function (and an invariant

given for each loop) before the reasoning system automatically checks if each given program

code is correct w.r.t. the given annotations. This problem basically will result in proving

entailments1 of the form A |= B, where A, B involve recursive predicates that represent

data structures such as linked lists. In fact, we can rephrase it as a problem of proving that

A∧¬B is unsatisfiable, which is merely a satisfiability problem. The difference here is that

we do not need to generate a solution/counter-example in the case A ∧ ¬B is satisfiable.

1We will explain this reduction step in Chapter 2.
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1.3 Thesis Contributions

In this thesis, we address the problem of deciding the satisfiability of constraints over re-

cursive predicates that are used to represent unbounded data structures. We first propose

three systematic techniques to reason about recursive predicates. They are lazy reason-

ing, progressive reasoning for strings (e.g. in web applications), and inductive reasoning

for heap-allocated data structures (e.g. in imperative programs). Finally, we demonstrate

their applications in the satisfiability-based program reasoning tools in order to ensure the

program safety and security.

1.3.1 Lazy Reasoning

When searching for a solution of the input formula containing constraints over recursive

predicates, one way to discharge recursive predicates is to generate all of their reduction

possibilities. This is also called generate-and-test technique (e.g. [Saxena et al., 2010]). For

example, suppose we have the string formula

p1 ∈ /(ab)?/ ∧ p2 ∈ /(bc)?/ ∧ p1 · p2 = “ababababababcc”

which requires p1 and p2 belong to the regular expression /(ab)?/ and /(bc)?/ respectively,

and their concatenation is equal to “ababababababcc”. Because the length of the string

“ababababababcc” is 14, we can infer that the sum of the length of p1 and the length of

p2 is equal to 14. So a satisfying solution for the length of p1 and p2 must be a pair

in {〈0; 14〉, 〈2; 12〉, 〈4; 10〉, 〈6; 8〉, 〈8; 6〉, 〈10; 4〉, 〈12; 2〉, 〈14; 0〉}. As a result, we need to test

8 cases to find out that the input formula is unsatisfiable. However, let us not have the

impression that, in general, the number of satisfying solutions for the string lengths should

be of this linear complexity. In fact, practical applications involve many string variables,

generate-and-test approach would easily suffer from a combinatorial explosion.

Lazy reasoning is introduced to mitigate that combinatorial explosion problem by re-

ducing recursive predicates on demand. For heap-allocated data structures, lazy reasoning

is implemented via Unfold-and-Match technique. Basically, the proof search proceeds by

repeatedly applying (un)folding strategies, until all the reduced predicates in the RHS of the

obligation can be cancelled out by corresponding predicates in the LHS via a simple, non-

recursive, matching method [Chin et al., 2012; Madhusudan et al., 2012; Qiu et al., 2013;

Piskac et al., 2013; Pek et al., 2014].
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Though Unfold-and-Match technique has been introduced before for the purpose of

proving entailments of the form A |= B (i.e., it aims at proving the unsatisfiability of

A∧¬B), it does not work in tandem with the process of searching for a solution. Therefore,

in this thesis, we propose the Unfold-and-Consume technique for string solving. Essentially,

we incrementally reduce recursive predicates that are used to represent string operations

via splitting (and/or unfolding) process, until their subparts are bounded with constant

strings/characters to be consumed.

We have implemented the Unfold-and-Consume technique into the string solver, namely

S3. This new solver is composed of a string theory plugged into the state-of-the-art Z3 SMT

solver [De Moura and Bjørner, 2008b]. The result is published in the paper [Trinh et al.,

2014]. There are three key contributions. First, S3 is expressive. Specifically, it is the

first to handle unbounded regular expressions in the presence of length constraints, and

express precisely high-level string operations, which ultimately enables a more accurate

string analysis.

Second, S3 is robust. This means that S3 is able to provide definitive answers to a new

level, far beyond the state-of-the-art. This in turn means we can detect more vulnerabilities

and more bugs. We demonstrate it with two case studies:

• The first is to compare with Kaluza – the core of Kudzu [Saxena et al., 2010] – a

JavaScript symbolic execution framework. We show that S3 is several times faster,

and helps detect many more paths that reach the critical sink, that is, paths that are

vulnerable.

• The second is to compare with Z3-str [Zheng et al., 2013]. We show S3 reasons about

length constraints much more effectively than Z3-str. This leads to a large increase in

applicability to web programs, because length constraints are widely used.

Third, S3 is efficient, and one key reason is that it is incremental. Our algorithm for

string theory is designed in an incremental fashion driven by the try-and-backtrack procedure

of the Z3 core, so that given a set of input constraints, we perform incremental reduction for

string variables until the variables are bounded with constant strings/characters. Another

technical challenge is how to reason, effectively and efficiently, about the Kleene star and

high-level operations such as replace (in its most general usage), of which the semantics are

by nature recursively defined. The gist of our proposal is the encodings using recursively-
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defined functions, on which we can incrementally reason: by lazily unfolding them.

Though lazy reasoning has solved the problem of combinatorial explosion in entailment

proving and string solving, it does not address non-termination issues. As such, we next

propose two novel techniques in order to address them: progressive reasoning for string

solving and inductive reasoning for entailment proving.

1.3.2 Progressive Reasoning

Unfold-and-Consume technique has shown very promising results (e.g. as in [Trinh et al.,

2014]). However, because its main purpose is vulnerability detection, i.e., generating attack

inputs for each satisfiable query, and that every query is invoked with a timeout limit, there

was less emphasis on the detection of unsatisfiable queries. By contrast, in the setting of

program verification, or in using verification technologies to speed up concolic testing [Jaffar

et al., 2013; Avgerinos et al., 2014], the problem of determining unsatisfiability becomes

paramount. In short, we can no longer depend on a timeout, and must seek a terminating

algorithm as far as possible.

This motivates our proposal of a progressive search algorithm whose goal is to determine

if a string formula is unsatisfiable, and if not, to be able to generate a solution for it. The

result is published in the paper [Trinh et al., 2016]. The key feature of our algorithm is

a pruning method on the subproblems, in a way that is directed. More specifically, our

algorithm aims to detect non-progressive scenarios with respect to a criterion of minimizing

the “lexicographical length” of the returned solution, if a solution in fact exists. Informally,

in the search process based on reduction rules, we can soundly prune a subproblem when

the answer we seek can be found more efficiently elsewhere. If a subproblem is deemed

non-progressive, it means if the original input formula is satisfiable, then another satisfiable

solution of shorter “length” will be found. If, on the other hand, the input formula is

unsatisfiable, then any pruning is obviously sound. A technical challenge we will overcome

is that at the point of pruning, the satisfiability of the input formula is unknown.

An additional important feature of our algorithm is applicable only when the input

formula is unsatisfiable. Here, we want to produce a set of conflict clauses, a generalization

of the input formula, that is now known to be unsatisfiable. The benefits of such learning is

of course well-known. It is, for example, at the heart of the attractiveness of SMT solvers.

However, the key technical challenge is, how conflict clause learning can work in tandem
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with the pruning of non-progressive formulas, because at the time of pruning, again, the

unsatisfiability of the input formula is unknown.

Finally, we present an experimental evaluation with two case studies. First is on the

well-known Kudzu benchmark [Saxena et al., 2010] where we show that (a) our new algo-

rithm surpasses four state-of-the-art solvers in its ability to detect unsatisfiable formulas or

generate a model in satisfiable formulas (and in good running time), and (b) the number

of unsatisfiable cores is very small, thus paving the way to accelerate the consideration of

large collections of formulas. The second case study considers web applications used in the

Jalangi framework [Sen et al., 2013], and shows how we can deal with the replace operation

in string formulas. No other system has been demonstrated on this class of problems, and

thus the purpose of our evaluation is simply to show that we are applicable.

1.3.3 Inductive Reasoning

Given an input obligation, a proof system will apply reduction rules to transform that

obligation into new obligations, which are also in the form of entailment. An entailment

proof, using Unfold-and-Match, succeeds when we find a sequence of successive applications

of these transformation steps that produce a final formula which is obviously provable.

This usually means that either (1) there is no recursive predicate in the RHS of the proof

obligation and a direct proof can be achieved by consulting some generic SMT solver; or (2)

no special consideration is needed on any occurrence of a predicate appearing in the final

formula. For example, if p(ũ) ∧· · · |= p(ṽ) is the formula, then this is obviously provable if ũ

and ṽ were unifiable (under an appropriate theory governing the meaning of the expressions

ũ and ṽ). In other words, we have performed “formula abstraction” [Madhusudan et al.,

2012] by treating the recursively defined term p() as uninterpreted.

A key feature that is missing from the Unfold-and-Match methodology is the ability to

prove by induction, which is often required in verification of practical examples [Berdine

et al., 2005]. Without inductive reasoning, Unfold-and-Match (folding/unfolding together

with formula abstraction) cannot handle proof obligations involving unmatchable predicates.

Specifically, in such obligations, there exists a recursively defined predicate in the RHS which

cannot be transformed, via folding/unfolding, to one that is unifiable with some predicate

in the LHS.

In this thesis, we propose a general proof method for recursive predicates that includes
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reasoning by induction. The challenge is how to use induction correctly and avoid erroneous

proof arising from a form of circular reasoning. Our method is able to use dynamically

generated formulas as induction hypotheses, and to enforce an anti-circular condition so

that any application of an induction step is guaranteed to be correct. We shall see that

our method is very different from that in traditional entailment proving systems where,

after having chosen an induction tactic, the system will then search for appropriate induc-

tion variable(s) with a well-founded measure and appropriate induction hypotheses. In our

framework, the predicates are defined by general recursive rules, without any explicit re-

striction to any well-founded orderings, and includes a domain of discourse that captures

the mutable heap and properties of separation.

The result is published in the paper [Chu et al., 2015]. Specifically, our contributions

are as follows. First, we automatically and efficiently discharge all commonly-used lemmas,

extracted from a number of benchmarks used by other systems. These systems cannot

automatically discharge such lemmas, but simply accept them as true facts.

Second, we demonstrate that with our proof method, the common usage of lemmas

can be avoided. This is because the properties of interest are covered by our method. In

contrast, these properties cannot be discharged by the other systems without using lemmas.

The impact of this is twofold. First, it means that for proving practical (but small) pro-

grams, the users are now free from the burden of providing custom user-defined lemmas.

Second, it significantly boosts up the performance, since lemma applications, coupled with

folding/unfolding, often induce a large search space.

Lastly, the proposed proof method gets us back the power of compositional reasoning

in dealing with user-defined recursive predicates. While we have not been able to identify

precisely the class where our proof method would be effective, we do believe that its potential

impact is huge. One important subclass that we can handle effectively is when both the

antecedent and the consequent refer to the same structural shape but the antecedent simply

makes a stronger statement about the values in the structure (e.g., to prove that a sorted

list is also a list, an AVL tree is also a binary search tree, a list consists of all data values

999 is one that has all positive data, etc.).
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1.4 Thesis Organization

In Chapter 2, we provide the preliminary background on satisfiability solving and entailment

proving. We also discuss the existing Unfold-and-Match technique, and its application in

verifying heap-allocated data structure properties. Chapter 3 presents our lazy reasoning

technique for string solving, that is the so-called Unfold-and-Consume. We present our

progressive reasoning for string solving in Chapter 4 and inductive reasoning for entailment

proving in Chapter 5. Chapter 6 concludes the thesis and discusses future work.
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Preliminaries

In this chapter, we present the preliminary background of the satisfiability problem for string

theory, which is important for security analysis of web applications, and the entailment

proving problem for user-defined recursive predicates, which is important for automated

verification of imperative programs. We extend the previous discussion in Chapter 1 on the

reduction from web security analysis to string solving and the reduction from automated

program verification into entailment proving. For the former, we also present the constraint

language to suffice to analyze web applications, and discuss theoretical results on various

theories over strings. For the latter, we also introduce the logic for dealing with the heap, and

discuss the state-of-the-art proof techniques, namely Unfold-and-Match, for heap-allocated

data structures.

2.1 String Solving for Web Security Analysis

Symbolic string solving plays an important role in security analysis of web applications.

To explain why, let us look at dynamic analysis which involves testing an application as

a closed entity with a set of concrete inputs. Its main disadvantage is of course that it is

not a complete method. For example, some program paths may only be executed if certain

inputs are passed as parameters to the application, but it is very unlikely that a dynamic

analyzer can exhaustively test an application with all possible inputs. For web applications,

the problem is even more severe since dynamic analysis needs to take into account not only

the value space (i.e., how the execution of control flow paths depends on input values),
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but also an application’s event space (i.e., the possible sequences of user-interface actions).

As a result, there is in general an impractical number of execution paths to systematically

explore, leading to the “low code coverage” issue of dynamic analysis.

A standard approach to have good or complete coverage is static analysis. However, the

problem here is the existence of false positives, arising from an over-approximation of the pro-

gram’s behavior. Recent works to avoid false positives, but still preserve high code coverage,

are based on dynamic symbolic execution (DSE). Some examples are [Saxena et al., 2010;

Bisht et al., 2010; Bisht et al., 2011; Kiezun et al., 2009b; Emmi et al., 2007; Sen et al., 2005;

Godefroid et al., 2005; Godefroid et al., 2008; Halfond et al., 2009; Ghosh et al., 2013;

Sen et al., 2013; Chaudhuri and Foster, 2010; Bucur et al., 2014; Maras et al., 2013;

Wang et al., 2013; Jensen et al., 2013]. These approaches employ both concrete and symbolic

execution to automatically and systematically generate tests in order to expose vulnerabil-

ities in web applications. DSE for automated test generation involves instrumenting and

concolically running a program while collecting path constraints on the inputs. Then it at-

tempts to derive new inputs – using an SMT (Satisfiability Modulo Theories) solver – with

the hope to steer next executions toward new program paths. For vulnerability detection,

DSE combines the derived path constraints with the specifications for attacks, often given

by the security experts, to create queries for the SMT solver.

Dynamic Analysis DSE
Code Coverage Potentially Low High
False Positives Low Low

Executable Paths (EPs) Unlikely to cover all EPs Likely to cover all EPs

Table 2.1: Dynamic Analysis versus DSE

In fact, there is a strong connection between an effective vulnerability detection frame-

work and symbolic string solving. As shown in Table 2.1, DSE achieves higher code coverage.

However, because not all path executed by DSE are guaranteed to be executable, to avoid

false positives we must be able to decide if a (symbolic) path constraint is satisfiable or not.

Thus a powerful SMT solver, capable of handling symbolic string variables, is the key to

achieve efficient analyses with high code coverage and low false positives.

To explain more the way DSE detects possible vulnerabilities, in comparison with typical

dynamic analyses, let us use a modified version of the example in Figure 1.1. Instead, we

now have the following PHP code at the server side:
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function endsWith($str , $sub) {...}

$usr = $_POST['username '];

$pwd = $_POST['password '];

if (endsWith($usr , "@nus.edu.sg")) {

$stm = "SELECT tbl1 where username= '$usr' and password= '$pwd'";

$result = mysql_query($stm);

}

Since a dynamic analysis is essentially black-box testing, it has no knowledge about the

code. Thus, it is possible that the dynamic analyzer does not test with usernames that end

with @nus.edu.sg, and subsequently, cannot detect SQL injection. In contrast, DSE, which

can be seen as white-box testing, enables us to attempt all execution paths by generating

two path constraints, corresponding to the two program paths of the PHP code fragment.

After symbolically executing the program, DSE frameworks such as [Saxena et al., 2010]

will combine its results with the specifications for attacks, given by the security experts, to

create queries for the constraint solver. The specifications, often come in form of assertions,

are some (regular) grammars encoding a set of strings that would constitute an attack

against a particular sink. If the constraint solver finds a solution to a query, then this

represents an attack that can reach the critical sink and exploit a code injection vulnerability.

For example, with the specification to assert if the username contains ' OR 1=1--, we can

in fact generate the input

' OR 1=1--@nus.edu.sg

that leads to an SQL injection.

In summary for this subsection, DSE, presently the state-of-the-art in vulnerability

detection, is intimately tied to being able to provide definitive answers for the derived

constraint queries. In the case of web applications, since the constraints often concern

string variables, symbolic string solving is thus the key to detect vulnerabilities in this class

of applications.

2.1.1 What Constraint Language Do We Need?

We first argue that a pure string language does not suffice to analyze web applications.

This is due to the fact that non-string operations (e.g., boolean, arithmetic constraints) are
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also widely used in web applications. Moreover, their use is often intertwined with string

operations, such as in the case of string length — a string-to-integer constraint. Reasoning

about strings and non-strings simultaneously is thus necessary. In other words, we need to

deal with a multi-sorted theory which includes, at least, strings and integers.

To amplify this point, let us now state some statistics from a comprehensive study

of practical JavaScript applications [Saxena et al., 2010]. Constraints arising from the

applications have an average (per benchmark query) of 63 JavaScript string operations,

while the remaining are boolean, logical and arithmetic constraints. The largest fraction

are for operations like indexOf, length (78%). A significant fraction of the operations,

including substring (5%), replace (8%), and split, match (1%). Of the match, split

and replace operations, 31% are based on regular expressions. Operations such as replace

and split give rise to new strings from the original ones, thereby giving rise to constraints

involving multiple string variables.

To summarize, constraints of interest are either non-strings (e.g., bool-sort, int-sort and

particularly length constraints) or strings such as: string equations, membership predicates

and high-level string operations, which are over multiple string variables.

2.1.2 The Satisfiability Problem for Theories over Strings

To give the readers a sense of the hardness of solving constraints of the above language, let

us give a brief review on theoretical works on the satisfiability problem for different theory

fragments over strings.

In his original paper, Quine [Quine, 1946] showed that the first-order theory of string

equations (i.e., quantified sentences over Boolean combination of word equations) is unde-

cidable. Due to the expressibility of many key reliability and verification questions within

this theory, this work has been extended in many ways.

One line of research studies fragments and modifications of this base theory which

are decidable. Notably, in 1977, Makanin proved that the satisfiability problem for the

quantifier-free theory of word equations is decidable [Makanin, 1977]. In a sequence of

papers, Plandowski and co-authors showed that the complexity of this problem is in PSPACE

[Plandowski, 2006]. Stronger results have been found where equations are restricted to

those where each variable occurs at most twice [Diekert and Robson, 1999] or in which

there are at most two variables [Charatonik and Pacholski, 1991; Ilie and Plandowski, 2000;
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Dabrowski and Plandowski, 2004]. In the first case, satisfiability is shown to be NP-hard;

in the second, polynomial (which was improved further in the case of single variable word

equations [Dabrowski and Plandowski, 2002]).

Schulz [Schulz, 1992] extended Makanin’s satisfiability algorithm to the class of formulas

where each variable in the equations is specified to lie in a given regular set (i.e. a set defined

by a regular language). This is a strict generalization of the solution sets of word equations.

Further work in [Karhumäki et al., 2000] shows that the class of sets expressible through word

equations is incomparable to that of regular sets. Matiyasevich extends Schulz’s result to

decision problems involving trace monoids and free partially commutative monoids [Diekert

et al., 1997; Diekert et al., 1999; Matiyasevich, 1997].

Concurrently, many researchers have looked for the exact boundary between decid-

ability and undecidability. Durnev [Durnev, 1995] and Marchenkov [Marchenkov, 1982]

both showed that sentences over word equations is undecidable. Despite decades of ef-

fort, however, the satisfiability problem for the quantifier-free theory of word equations

and numeric length remains open [Ganesh et al., 2013; Makanin, 1977; Matiyasevich, 2006;

Plandowski, 2006].

More recently, Artur Jez presents a technique called re-compression that gives more

efficient algorithms for many fragments of theory of word equations [Jeż, 2016]. A related

result was shown by Furia [Furia, 2010], wherein he proved that the quantifier-free theory

of integer sequences is decidable. The framework he establishes in that paper is closely

related to the theory of concatenation and word equations, but weaker than either strings

plus numeric length or the theory of arrays due to the inability of the theory of sequences

to express facts relating indices directly to elements.

Word equations augmented with additional predicates yield richer structures which

are relevant to many applications. In the 1970s, Matiyasevich formulated a connection

between string equations augmented with integer coefficients whose integers are taken from

the Fibonacci sequence and Diophantine equations [Matiyasevich, 1968; Matiyasevich, 2006].

In particular, he showed that proving undecidability for the satisfiability problem of this

theory would suffice to solve Hilbert’s Tenth Problem in a novel way.

Though the satisfiability problem of quantifier-free theory of word equations and nu-

meric length remains open, the satisfiability problem for replace function is undecidable.

Specifically, recursive string functions such as replace that are applied to any number of
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occurrences of a string (even limited to single-character strings) would make the satisfiabil-

ity problem undecidable [Buchi and Senger, 1988; Bjørner et al., 2009; Barcelo et al., 2012;

Lin and Barceló, 2016].

2.2 Entailment Proving for Automated Verification

We consider the problem of automated verification of imperative programs with emphasis

on reasoning about the functional correctness of dynamically manipulated data structures.

In this problem domain, pre/post conditions are specified for each function and an invariant

is given for each loop before the reasoning system automatically checks if the program code

is correct w.r.t. the given annotations.

To explain the relationship between the automated verification and entailment proving,

let us start with Hoare Logic [Floyd, 1967; Hoare, 1969], a formal system for reasoning

about program correctness. In Hoare Logic, we specify partial correctness of programs using

specifications of the form {φ} C {ϕ}, where C is some code fragment, φ is the pre-condition,

and ϕ is the post-condition. Both φ and ϕ are formulas over the program variables in C.

The meaning of the triple is as follows: for all program states σ1, σ2 such that σ1 |= φ and

executing σ1 through C derives σ2, then σ2 |= ϕ. For example, the triple {x < y} x :=

x+1 {x ≤ y} is valid. Note that under this definition, a triple is automatically valid if C is

non-terminating or otherwise has undefined behavior.

Automating Hoare Logic is based on generating verification conditions. A verification

condition (VC) is a formula Ψ generated automatically from source code and annotated loop

invariants. Furthermore, the program obeys specifications if Ψ is valid. In this paradigm,

program verification systems first generate VC formulas from source code, and then use

theorem prover to check the validity of these formulas [Chin et al., 2012; Madhusudan et

al., 2012; Qiu et al., 2013; Duck et al., 2013; Piskac et al., 2013; Pek et al., 2014; Brotherston

et al., 2016]. To illustrate, let us look at the following imperative program:

pre-condition: even(x) ∧ x ≥ 0

int add 2(int x) { return x + 2; }
post-condition: even(ret) ∧ ret ≥ 2

where even predicate is defined as:
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even(x)
def
= (x = 0) ∨ (∃y : y = x− 2 ∧ even(y))

Suppose the function add 2 requires the input x be even. And we want to assert that the

return value of that function application is still an even number. To do this, we need to

prove that the following entailment holds:

even(x) ∧ x ≥ 0 ∧ ret=x+2 |= even(ret) ∧ ret ≥ 2

In short, the (safety) properties of programs will be represented using entailments and the

correctness of programs will correspond to the validity of such entailments.

For heap manipulating programs, typical correctness properties often require complex

combinations of structure, data, and separation. To address those properties, Separation

Logic [Reynolds, 2002b; Ishtiaq and O’Hearn, 2001; O’Hearn et al., 2001; Reynolds, 2000;

O’Hearn and Pym, 1999], an extension of Hoare Logic, is introduced. Separation Logic ex-

tends predicate calculus with new logical connectives (namely empty heap (emp), singleton

heap (p 7→ v), and separating conjunction (H1∗H2)) such that the structure of assertions

reflects the structure of the underlying heap. For example, the pre-condition in the valid

Separation Logic triple {(x 7→ )∗(y 7→ 2)} [x] := [y] + 1 {(x 7→ 3)∗(y 7→ 2)} represents a

heap comprised of two disjoint singleton heaps, indicating that both x and y are allocated

and that location y points to the value 2. Here the notation [p] represents pointer deref-

erence. In the post-condition, we have that x points to value 3 as expected. Separation

Logic also allows recursively-defined heaps for reasoning over data-structures, such as lists,

trees. Compared to Hoare triples, Separation Logic triples have a slightly different meaning

regarding memory-safety. A Separation Logic triple {φ} C {ϕ} additionally guarantees that

any state satisfying φ will not cause a memory access violation in C. For example, the triple

{emp} [x] := 1 {(x 7→ 1)} is invalid since x is a dangling pointer in any state satisfying the

pre-condition.

2.2.1 Unfold-and-Match Techniques

After reducing the problem of automated verification into the problem of entailment proving,

we next focus on handling proof obligations of the form A |= B. Given an input obligation,

a proof system will apply reduction rules to transform that obligation into new obligations
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which are also in the form of entailment.

The state-of-the-art proof techniques for user-defined predicates, which are used to

represent data structures properties, are Unfold-and-Match techniques [Navarro and Ry-

balchenko, 2011; Chin et al., 2012; Madhusudan et al., 2012; Qiu et al., 2013; Piskac et al.,

2013; Trinh et al., 2013; Pek et al., 2014]. An entailment proof, using Unfold-and-Match,

succeeds when we find a sequence of successive applications of these transformation steps

that produce a final formula which is obviously provable. This usually means that either (1)

there is no recursive predicate in the RHS of the proof obligation and a direct proof can be

achieved by consulting a generic SMT solver; or (2) no special consideration is needed on any

occurrence of a predicate appearing in the final formula. For example, if p(ũ) ∧· · · |= p(ṽ) is

the formula, then this is obviously provable if ũ and ṽ were unifiable (under an appropriate

theory governing the meaning of the expressions ũ and ṽ). In other words, we have per-

formed “formula abstraction” [Madhusudan et al., 2012] by treating the recursively defined

term p() as uninterpreted.

Next, we illustrate how Unfold-and-Match techniques work via examples. Below is the

proof tree for the simple proof obligation mentioned above. (The proof steps are written in

bottom-up order.)

(right-unfold)

(substitute)

(obvious)
True

even(x) ∧ x ≥ 0 ∧ ret=x+2 |= even(x) ∧ x = ret− 2 ∧ ret ≥ 2

even(x) ∧ x ≥ 0 ∧ ret=x+2 |= even(y) ∧ y = ret− 2 ∧ ret ≥ 2

even(x) ∧ x ≥ 0 ∧ ret=x+2 |= even(ret) ∧ ret ≥ 2

Figure 2.1: Proving with Unfold-and-Match

The first step is to unfold the predicate even(ret) on the right hand side to obtain even(y)∧

y = ret− 2. (For simplicity, we ignore the existential variable y.) By matching/substituting

y with x, we can prove that the entailment holds.

Now let us use another example where we need to reason about heaps. First, let a list

segment l̂s(x,y) denote a portion of the heap (possibly empty if x=y) containing an acyclic

path from x to y following the ‘points to’ relation. Specifically, we have

l̂s(x,y)
def
= (x=y ∧ emp) ∨ (x 6=y ∧ (x 7→ t) * l̂s(t,y))

In the above definition, ∗ (from Separation Logic) is the union of disjoint portions of the
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heap. Informally, a list segment l̂s(x,y) is an empty heap or an union of two disjoint

portions of the heap: a singleton heap x 7→ t and another list segment l̂s(t,y) from t to y.

Pre-condition: l̂s(x,y)

assume(x 6= y)

z = x.next

Post-condition: l̂s(z,y)

Starting with a list segment from x to y, we now assume x 6= y, and x points to z. We

want to assert that we now have a list segment from z to y. In short, we have to prove the

following entailment:

l̂s(x,y) ∧ x6=y ∧ (x 7→ z) |= l̂s(z,y)

Below is the proof tree for the above obligation:

(ru)

(sub)

True

(x 7→ z)∗l̂s(z, y) ∧ x 6= y ∧ (x 7→ z) |= l̂s(z, y)

(x 7→ t)∗l̂s(t, y) ∧ x 6= y ∧ (x 7→ z) |= l̂s(z, y)

True

x = y ∧ emp ∧ x 6= y ∧ (x 7→ z) |= l̂s(z, y)

l̂s(x, y) ∧ x 6= y ∧ (x 7→ z) |= l̂s(z, y)

Figure 2.2: Another Example with Unfold-and-Match

Similarly to the proof in Figure 2.1, the first step is to unfold the predicate l̂s(x,y) on the

left hand side to obtain two cases. In the first case, by matching/substituting t with z, we

can prove that the entailment holds. In the second case, since we have a conflict between

x = y and x 6= y, the entailment also holds.
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Lazy Reasoning

In this chapter, we introduce our lazy reasoning technique, namely Unfold-and-Consume,

for string solving. Before motivating the introduction of this technique, we discuss again

the importance of symbolic string solving and the language we need in order to ensure the

security of web applications. Next, we present its implementation in a string theory solver

of the state-of-the-art SMT solver Z3. Finally, we demonstrate the applicability of this new

solver in detecting vulnerabilities in web applications.

3.1 Introduction

Web applications nowadays provide critical services over the Internet and frequently handle

sensitive data. Unfortunately, the development is error prone, resulting in applications

that are vulnerable to attacks by malicious users. The global accessibility of critical web

applications make this an extremely serious problem.

According to the Open Web Application Security Project, or OWASP for short [OWASP,

2013], the most serious web application vulnerabilities include: (#1) Injection flaws (such as

SQL injection) and (#3) Cross Site Scripting (XSS) flaws. These two vulnerabilities occur

mainly due to inadequate sanitization and inappropriate use of input strings provided by

users.
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How Important is Symbolic String Solving?

To explain why we need string solving, let us look at dynamic analysis which involves testing

an application as a closed entity with a set of concrete inputs. Its main disadvantage is of

course that it is not a complete method. For example, some program paths may only be

executed if certain inputs are passed as parameters to the application, but it is very unlikely

that a dynamic analyzer can exhaustively test an application with all possible inputs. For

web applications, the problem is even more severe since dynamic analysis needs to take into

account not only the value space (i.e., how the execution of control flow paths depends on

input values), but also an application’s event space (i.e., the possible sequences of user-

interface actions). As a result, there is in general an impractical number of execution paths

to systematically explore, leading to the “low code coverage” issue of dynamic analysis.

A standard approach to have good or complete coverage is static analysis. However, the

problem here is the existence of false positives, arising from an over-approximation of the pro-

gram’s behavior. Recent works to avoid false positives, but still preserve high code coverage,

are based on dynamic symbolic execution (DSE). Some examples are [Saxena et al., 2010;

Bisht et al., 2010; Bisht et al., 2011; Kiezun et al., 2009b; Emmi et al., 2007; Sen et al., 2005;

Godefroid et al., 2005; Godefroid et al., 2008; Halfond et al., 2009; Ghosh et al., 2013;

Sen et al., 2013; Chaudhuri and Foster, 2010; Bucur et al., 2014; Maras et al., 2013;

Wang et al., 2013; Jensen et al., 2013]. These approaches employ both concrete and symbolic

execution to automatically and systematically generate tests in order to expose vulnerabil-

ities in web applications. DSE for automated test generation involves instrumenting and

concolically running a program while collecting path constraints on the inputs. Then it at-

tempts to derive new inputs – using an SMT (Satisfiability Modulo Theories) solver – with

the hope to steer next executions toward new program paths. For vulnerability detection,

DSE combines the derived path constraints with the specifications for attacks, often given

by the security experts, to create queries for the SMT solver.

Dynamic Analysis DSE
Code Coverage Potentially Low High
False Positives Low Low

Executable Paths (EPs) Unlikely to cover all EPs Likely to cover all EPs

Table 3.1: DSE as a More Effective Paradigm

In fact, there is a strong connection between an effective vulnerability detection frame-
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1 ...

2 <html>

3 ...

4 <script>

5 function validateEmail(form) {

6 var email = form["email"]. value;

7 var index = email.indexOf("@");

8 var local = email.substr (0, index);

9 var domain = email.substr(index +1);

10
11 if (domain.equals("nus.edu.sg")){

12 var re = new RegExp("^[ a-zA-Z ][0-9]*$");
13 var test1 = re.test(local);

14 var test2 = local.length == 8;

15 return test1 && test2;

16 }

17 else if (domain.equals("comp.nus.edu.sg"))

18 return local.length >= 4;

19 else

20 return false;

21 }

22 </script>

23 ...

24 <form name="loginForm" action="/Login" onsubmit="return

validateEmail(this);">

25 Email: <input type="text" name="email" size="64" />

26 <input type="submit" value="Login" />

27 </form>

28 ...

29 </html>

Figure 3.1: An Example of Email Address Validation

work and symbolic string solving. As shown in Table 3.1, DSE achieves higher code coverage.

However, because not all path executed by DSE are guaranteed to be executable, to avoid

false positives we must be able to decide if a (symbolic) path constraint is satisfiable or not.

Thus a powerful SMT solver, capable of handling symbolic string variables, is the key to

achieve efficient analyses with high code coverage and low false positives.

To illustrate more clearly how constraint solvers can be helpful in securing web appli-

cations, in Fig. 3.1, we present a JavaScript function which is used to validate input email

addresses. The user fills the client-side form, by providing an email address to the HTML in-

put element with name "email" (and a password, removed for simplicity). When the Login

button is clicked, the browser invokes the JavaScript validating function validateEmail,

which is assigned to the submit event of the form. This function first fetches the email

address supplied by the user from the corresponding form field and then checks if the email
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address is valid. Each student of our department has two email accounts, one from NUS

(nus.edu.sg), the other from SoC (comp.nus.edu.sg). The web page hence accepts both

of these two domains. However, these two types of accounts have different formats. While

the local part of the former is constructed by one alphabetic characters, followed by seven

numeric ones, the latter’s simply requires at least four characters.

The question is whether this web page is vulnerable to an XSS attack, or to an SQL

injection. More specifically, can the following PHP code, with an appropriate instantiation

for string variable $eml, be executed on the server side, leading to an attack:

$eml = $_POST['email '];

$pwd = $_POST['password '];

$stm="SELECT ... where email= '$eml' and password= '$pwd'";

$result = mysql_query($stm);

The answer is yes for both of the questions. Now, let us explain the way DSE detects possible

vulnerabilities, in comparison with typical dynamic analyses. Since a dynamic analysis is

essentially black-box testing, it has no knowledge about the JavaScript code. Thus, it is

possible that the dynamic analyzer does not test with email addresses whose domain is

comp.nus.edu.sg, and subsequently, cannot detect SQL injection and XSS vulnerabilities.

In contrast, DSE, which can be seen as white-box testing, enables us to attempt all execution

paths by generating three path constraints, corresponding to the three program paths of

the validateEmail function.

After symbolically executing the program, DSE frameworks such as [Saxena et al., 2010]

will combine its results with the specifications for attacks, given by the security experts, to

create queries for the constraint solver. The specifications, often come in form of assertions,

are some (regular) grammars encoding a set of strings that would constitute an attack

against a particular sink. If the constraint solver finds a solution to a query, then this

represents an attack that can reach the critical sink and exploit a code injection vulnerability.

For example, with the specification to assert if the input email address contains ' OR 1=1--,

we can in fact generate the input

' OR 1=1--@comp.nus.edu.sg

that leads to an SQL injection. Similarly, a specification for an XSS attack

<script>alert('Test')</script>
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would help us to generate the input email address

<script>alert('Test')</script>@comp.nus.edu.sg

that can be exploited by attackers.

In summary for this subsection, DSE, presently the state-of-the-art in vulnerability

detection, is intimately tied to being able to provide definitive answers for the derived

constraint queries. In the case of JavaScript and web applications, since the constraints often

concern string variables, symbolic string solving is thus the key to detect vulnerabilities in

this class of applications. As the encountered string constraints may be in an undecidable

class, it is important to have a solver which returns a definitive answer often and in a timely

manner.

We next describe the main contribution of this work, a new constraint solver S3, which

stands for Symbolic String Solver. Our solver makes use of Z3 [De Moura and Bjørner,

2008b], in order to leverage the recent advances in modern SMT solvers.

What Language Do We Need?

We first argue that a pure string language does not suffice to analyze web applications.

This is due to the fact that non-string operations (e.g., boolean, arithmetic constraints) are

also widely used in web applications. Moreover, their use is often intertwined with string

operations, such as in the case of string length — a string-to-integer constraint. Reasoning

about strings and non-strings simultaneously is thus necessary. In other words, we need to

deal with a multi-sorted theory which includes, at least, strings and integers.

To amplify this point, let us now state some statistics from a comprehensive study

of practical JavaScript applications [Saxena et al., 2010]. Constraints arising from the

applications have an average (per benchmark query) of 63 JavaScript string operations,

while the remaining are boolean, logical and arithmetic constraints. The largest fraction

are for operations like indexOf, length (78%). A significant fraction of the operations,

including substring (5%), replace (8%), and split, match (1%). Of the match, split

and replace operations, 31% are based on regular expressions. Operations such as replace

and split give rise to new strings from the original ones, thereby giving rise to constraints

involving multiple string variables.

To summarize, constraints of interest are either non-strings (e.g., bool-sort, int-sort and

27



Chapter 3. Lazy Reasoning

particularly length constraints) or strings such as: string equations, membership predicates

and high-level string operations, which are over multiple string variables. It is folklore that

query with just basic string equations along with length constraints on the string variables is

extremely hard to solve (its decidability is open). Therefore, the validation of any approach

can only realistically be done empirically.

S3: A Robust and Incremental String Solver

Although there exist solvers that can reason about both string and non-string constraints

(e.g., [Saxena et al., 2010; Bjørner et al., 2009; Redelinghuys et al., 2012; Zheng et al., 2013]),

they depend on strings being bounded in length. Unbounded regular expressions, which can

be constructed using Kleene star operation, are not supported. Moreover, the supported

high-level operations are only in bounded forms. For example, instead of fully supporting

replace function, which could mean replacement of all occurrences, existing tools support

an operation to replace a fixed number of occurrences in a string.

It may be argued that certain bounds suffice for a class of applications. There is a

more important reason why the bound dependency is bad: the algorithms that rely on

the bounded reasoning are highly combinatorial in approach. In other words, the problem

at hand is broken down into cases, the number of which is often a large combinatorial

combination arising from some given bounds.

Finally, we mention [Alkhalaf et al., 2012a], where there is a real requirement for reason-

ing about unbounded strings. In verifying client-side input validation functions, a bounded

string solver can only find policy violations but it cannot prove the conformance to a given

policy. There are certainly some solvers [Hooimeijer and Weimer, 2009; Emmi et al., 2007;

Wassermann and Su, 2007; Wassermann and Su, 2008] that can reason about unbounded

strings. However, their key weakness is that they cannot handle non-string constraints,

particularly length constraints. As shown in the statistics above, missing length constraints

(whose appearance is frequent) will lead to many false positives. This clearly is not accept-

able.

With regard to all the arguments above, we now conclude this Section with three impor-

tant features of S3. First, S3 is expressive (Section 3.2). Specifically, it is the first to handle

unbounded regular expressions in the presence of length constraints, and express precisely

high-level string operations, which ultimately enables a more accurate string analysis.
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Second, S3 is robust. This means that S3 is able to provide definitive answers to a new

level, far beyond the state-of-the-art. This in turn means we can detect more vulnerabilities

and more bugs. We demonstrate in Section 3.6 with two case studies:

• The first is to compare with Kaluza – the core of Kudzu [Saxena et al., 2010] – a

JavaScript symbolic execution framework. We show that S3 is several times faster,

and helps detect many more paths that reach the critical sink, that is, paths that are

vulnerable.

• The second is to compare with Z3-str [Zheng et al., 2013]. We show that S3 reasons

about length constraints much more effectively than Z3-str. This leads to a large

increase in applicability to web programs, because this kind of constraints is widely

used.

Third, S3 is efficient, and one key reason is that it is incremental. Our algorithm for

string theory is designed in an incremental fashion driven by the try-and-backtrack pro-

cedure of the Z3 core (Section 3.4), so that given a set of input constraints, we perform

incremental reduction for string variables until the variables are bounded with constant

strings/characters. Another technical challenge is how to reason, effectively and efficiently,

about the Kleene star and high-level operations such as replace (in its most general us-

age), of which the semantics are by nature recursively defined. Section 3.5 introduces the

gist of our proposal, the encodings using recursively-defined functions, on which we can

incrementally reason: by lazily unfolding them.

3.2 The Constraint Language

We introduce the constraint language of our solver in Fig. 3.2. For simplicity, we only list

three primitive types: int, bool and string1. The input formula can be of the following

forms:

• a boolean expression;

• a comparison operation between two integer or boolean expressions;

• an equation between two string expressions. S3 also supports other common string oper-

ations. We list here only important ones;

1Z3 supports more primitive types [De Moura and Bjørner, 2008b].

29



Chapter 3. Lazy Reasoning

Assertion ::= assert ((Fml:bool))
Fml:bool ::= (Term:bool) | (Term:bool) = (Term:bool)

| (Term:int) {<,≤,=,≥, >} (Term:int)
| (Term:str) = (Term:str) | (Term:str) ∈ (Term:regexpr)
| ¬ (Fml:bool) | (Fml:bool) {∧,∨,⇒} (Fml:bool)

Term:bool ::= (Var:bool)
| true
| false
| contains((Term:str), (Term:str))

Term:int ::= (Var:int)
| Number
| (Term:int) {+,−,×,÷} (Term:int)
| length((Term:str))
| indexOf((Term:str), (Term:str))
| search((Term:str), (Term:regexpr))
| test((Term:regexpr), (Term:str))

Term:str ::= ConstString
| (Var:str)
| (Term:str) · (Term:str)
| concat((Term:str), (Term:str))
| substring((Term:str), (Term:int), (Term:int))
| replaceN((Term:str),(Term:regexpr),(Term:str),(Term:int))
| replaceAll((Term:str), (Term:regexpr), (Term:str))

L:str list ::= match((Term:str), (Term:regexpr))
| split((Term:str), (Term:regexpr))
| exec((Term:regexpr), (Term:str))

Term:regexpr ::= ConstString
| (Term:regexpr)

?

| (Term:regexpr) · (Term:regexpr)
| (Term:regexpr) + (Term:regexpr)

Figure 3.2: The Grammar of Our Constraint Language

• a membership predicate between a string expression and a regular expression, where an

expression can either be a string constant, a variable or their concatenation2, and regular

expressions are constructed from string constants using concatenation (·), union (+) and

Kleene star (?);

• a composite formula constructed using negation and binary connectives, including ∧, ∨,

⇒.

Z3-str [Zheng et al., 2013] and Kaluza [Saxena et al., 2010] are important existing

solvers that can support both string and non-string operations, especially the length con-

2We use x · y as a shorter form for concat(x, y).
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straint. Compared to the constraint syntax of Z3-str, ours can be viewed as an extension

with regular expressions, membership predicates, and high-level string operations that often

work on regular expressions such as search, replaceAll3, match, split, test, exec. Our

constraint language is also slightly more expressive than Kaluza’s since we handle above

string operations in its original semantics — unbounded.

In addition, we note that our constraint language, which is necessary to reason about

high-level string operations in scripting languages, is beyond the class of context free lan-

guages. To illustrate, let us look at the following constraints, in which x can be of any string

in the context-sensitive language { an·bn·cn | n≥0 }:

x = y · z · t ∧ y ∈ a? ∧ z ∈ b? ∧ t ∈ c?∧

length(y)=length(z) ∧ length(z)=length(t)

Therefore, existing solvers, which only approximate strings using context free grammars,

are not able to reason about the constraints addressed by this work.

Finally, though it is not shown in Fig. 3.2, S3 is able to accommodate most regular

expression features in JavaScript via a preprocessing step as done in Kudzu [Saxena et

al., 2010]. Examples are (possibly negated) character classes, escaped sequences, repetition

operators ({n}/?/?/+/) and sub-match extraction using capturing parentheses.

3.3 Motivating Examples

In this Section, we present two simplified examples to position our work against the state-

of-the-art.

A JavaScript Program Generated Constraints Our Internal Representation

function validateFields(p1 ,p2)
{

var re1 = /^(ab)*$/;
var re2 = /^(bc)*$/;
var t1 = re1.test(p1);
var t2 = re2.test(p2);
var t3 = p2.length > 0;
return (t1 && t2 && t3)

}

p1 ∈ (“ab”)? ∧
p2 ∈ (“bc”)? ∧
length(p2) > 0 ∧

res = p1 · p2 ∧
nM = “ababababababcc” ∧
res = nM

p1 = star(“ab”,n1) ∧
p2 = star(“bc”,n2) ∧
length(p2) > 0 ∧

res = p1 · p2 ∧
nM = “ababababababcc” ∧
res = nM

Figure 3.3: From a JavaScript Program to the Generated Constraints

In Fig. 3.3 we start with an example of a regular-expression-based input validation

3This operation is used to replace all occurrences.
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function. The first column is the JavaScript function used to validate the two input fields,

namely p1 and p2. This function ensures that p2 is not an empty string and p1 (and p2)

must belong to the regular expressions re1 (and re2) respectively. Given the inputs which

have passed the validation function, we want to prove that the output res, constructed by

concatenating p1 with p2, is different from a specified bad string nM = “ababababababcc”.

Ultimately, the above question is reduced to the problem of deciding the satisfiability of the

generated constraint formula, presented in the second column of Fig. 3.3. The proof succeeds

if the formula is unsatisfiable4. This requires reasoning about string equation res = p1·p2,

membership predicates p1 ∈ (“ab”)? and p2 ∈ (“bc”)?, and length constraint length(p2)

> 0. In short, it becomes a complicated problem involving strings, non-strings and their

combinations (e.g., length constraints).

Now, let us discuss how existing solvers would deal with this particular problem. HAMPI

[Kiezun et al., 2009a], and other solvers [Christensen et al., 2003; Shannon et al., 2009;

Hooimeijer and Weimer, 2010; Veanes et al., 2010; Alkhalaf et al., 2012b; Yu et al., 2010;

Hooimeijer and Weimer, 2009; Tateishi et al., 2011; Gange et al., 2013], which work in the

string domain only, cannot handle this example. Since they only support string operations,

they are not able to handle non-string constraints, and particularly length constraints that

are related to both string and non-string domain and cannot be captured in each individual

one.

On the other hand, the solvers Kaluza [Saxena et al., 2010], [Bjørner et al., 2009] and

Z3-str [Zheng et al., 2013] are in the same category as ours, and can reason about strings and

non-strings simultaneously. Since [Bjørner et al., 2009] is similar to Kaluza in many ways,

we will just focus on Kaluza here. Kaluza is the string solver used in a JavaScript dynamic

test generation framework [Saxena et al., 2010]. To support a wider range of constraint

types including integer, boolean and string, it extends both STP [Kiezun et al., 2009a] and

HAMPI.

One major drawback of Kaluza is that it requires the lengths of string variables to

be known prior to being able to encode them and query the underlying SMT solvers. In

particular, before solving string constraints, Kaluza finds a set of satisfying solutions for

each string length. For each possible length, it encodes each string variable as an array of

bits and then queries a bit-vector solver. Kaluza is unable to reuse the encodings and the

4Otherwise, the solver should return satisfying assignments, representing a potential bug/vulnerability
of the system.
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result of bit-vector solver in previous calls, which induces the overall high cost of repetitive

encoding and querying external solvers.

For the example at hand in Fig. 3.3, Kaluza first needs to come up with a set of

satisfying solutions for the lengths of p1 and p2, each denoted by a pair 〈l1; l2〉, where l1 is

the length of p1 and l2 is the length of p2. In this case, the set of satisfying solutions for

the lengths is {〈0; 14〉, 〈2; 12〉, 〈4; 10〉, 〈6; 8〉, 〈8; 6〉, 〈10; 4〉, 〈12; 2〉}. For each possible length

solution, Kaluza encodes the string variables, and then queries the external bit-vector solver,

before finding out that the original set of constraints is unsatisfiable. Overall, Kaluza needs

to encode and query bit-vector solver 7 times. Let us not have the impression that, in

general, the number of satisfying solutions for the string lengths should be of this linear

complexity. In fact, practical applications involve many string variables, Kaluza approach,

i.e., generate-and-test, would easily suffer from a combinatorial explosion.

Z3-str [Zheng et al., 2013] cannot handle regular expressions, thus also cannot handle

this example. However, it can be considered the first SMT-based string solver. Instead of

relying on other theories, it builds a string theory for itself and allows this string theory to

be plugged into a modern and powerful solver – Z3 [De Moura and Bjørner, 2008b]. Thus

an important contribution of Z3-str is that string and non-string constraints are now solved

simultaneously, in an incremental manner.

Inspired by Z3-str’s design, our target is to build a string theory that can interact with

other theories via Z3. Nevertheless, we want to support a powerful input language, which

is especially demanded for testing and analysis of practical web applications. There are

two key technical challenges: (1) how to incrementally handle the Kleene star, which is the

heart of the issue in reasoning about regular expressions; (2) how to incrementally handle

high-level string operation such as replace, whose semantics is most naturally defined by

recursive rules. Our solution therefore is to employ, in our string theory, recursively defined

functions whose semantics will be lazily unfolded during the process of incremental solving.

Such approach resembles the constrain-and-generate technique (to contrast with generate-

and-test) in the literature of constraint solving.

We elaborate later with a technical description in Section 3.5. But now let us give some

intuitions on how we approach this example. Internally, we represent membership of regular

expression as equation involving a symbolic representation of the Kleene star. In particular,

p1∈(“ab”)? is represented as p1=star(“ab”,n1) and similarly p2∈(“bc”)? is represented as
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p2=star(“bc”,n2). By rewriting, we would derive the following equation:

star(“ab”,n1) · star(“bc”,n2) = “ababababababcc”

Since the length of p2 is positive and the RHS is a constant string, this would force the

unfolding of expression star(“bc”,n2) to star(“bc”,n2-1) · “bc”. A conflict is then derived

since the LHS string ends with “bc” while the RHS string ends with “cc”. Our system then

can conclude that the input formula is UNSAT.

x = x1 · x2 ∧ z = y · z3 ∧ y = z1 · z2 ∧ z2 = “ ” ∧ l1 = length(x1) ∧ l2 = length(z1) ∧
l1 = l2 + 1 ∧ x = z ∧ indexOf(y, “a”) = 3 ∧ indexOf(x1, “a”) = 4

Figure 3.4: A Frequent Constraint Pattern

Now let us dissect Z3-str more carefully. Fig. 3.4 presents an input example for Z3-str,

a pattern which is commonly found in many benchmarks extracted from the comprehensive

set of JavaScript applications of [Saxena et al., 2010] (e.g. big2). Starting with the fact that

z2 is a constant string of one character, Z3-str is able to deduce that z2 is of length 1. This

constraint will be fed into the arithmetic theory. Similarly, the arithmetic theory would

receive the information that y’s length is the sum of z1’s length and z2’s length. Since,

from the input, the length of x1 equals to the length of z1 plus 1, the arithmetic theory

can deduce that x1 and y are of the same length. However, this information will never be

passed back to the string theory.

As discussed in [Zheng et al., 2013], the current design of Z3 enforces that the plug-in

theory, namely Z3-str, to be disjoint from Z3’s arithmetic theory. Being a plug-in, however,

means there is supervisory control over Z3-str which can feed length information to the

arithmetic theory so that early conflicts can be detected and exploited. But, importantly,

partial information derived by the arithmetic theory will not be fed back to Z3-str. This is

the source of Z3-str’s inefficiency in many cases.

Returning to the example, if the information that x1 and y are of the same length is

propagated back to the string theory, together with the fact that x1 and y are prefixes of

the two equal strings x and z, our string theory can derive that x1 and y are equal, therefore

proceed the search much more efficiently. In Section 3.4.2, we discuss our new design in

order to overcome this drawback, therefore even when restricted to the same input language

as of Z3-str, our tool, S3, does advance the concept of incremental solving to the next level.
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3.4 Design of S3

Input Constraints

S3

Z3
SAT and 

a possible model

UNSAT

Congruence closure core

SAT solver

String theory plug-in  
Z3-str-star

(based on lazy reasoning)

Built-in theory solvers:
- arithmetic, …

Regex
Reduction

Figure 3.5: The Design of S3

Here we present the design of S3. This design is inspired by Z3-str [Zheng et al., 2013],

and thus inherits its two main advantages. First, we support the primitive type of string

so that there is no need to convert strings to other representations, e.g., bit-vectors. As

a result, we can support string variables whose lengths can be unknown, especially in the

context of static analysis. Second, we leverage the power of Z3 in dealing with multiple

theories, and this ultimately leads to the capability of reasoning on string and non-string

constraints simultaneously and efficiently. We first give an overview of Z3-str, focusing on

how it interacts with the core of Z3. Later we describe our design of S3, along with the

improvement of the corresponding component Z3-str-star over Z3-str.
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3.4.1 Overview of Z3-str

Z3-str acts as a plug-in string theory for a SMT solver Z3 [De Moura and Bjørner, 2008b].

The architecture of Z3 is shown in the shaded box of Fig. 3.5. Its core component consists

of the following modules: the congruence closure engine, a SAT solver-based DPLL layer,

and several built-in theory solvers, such as integer linear arithmetic, bit-vectors, etc. The

congruence closure engine can detect equivalent terms and then classify them into different

equivalence classes, which are shared among all built-in theory solvers. The SAT-based

DPLL layer is responsible for handling the boolean structure of the input formula.

assert ((e1 ∨ e2) ∧ e3 ∧ e4)
e1 : x = “abc” ·m e2 : x = “efgh”
e3 : y = “efg” · n e4 : x = y

Consider the assertion above. The core component cannot interpret the string opera-

tions; instead it treats them as four independent boolean variables (e1, e2, e3 and e4) and

tries to assign boolean values to them. We now walk through the process of how Z3’s core

component and the string theory solver interact.

Fact added Eq-class Reduction/Action
1 y=“efg”·n {y,“efg”·n}

2 x=y
{x,y}

{y,“efg”·n}
• conflict detected

3 x=“abc”·m {x,“abc”·m, y,“efg”·n} • backtrack and remove facts
• try another option for e1

4 x=“efgh” {x,“efgh”, y,“efg”·n} “efgh”=“efg”·n ⇒ n=“h”
SAT solution: x = “efgh”, y = “efgh”, n = “h”

Table 3.2: How Z3-str Interacts with Z3 and Its Backtracking

In Table 3.2, initially there is no fact. The core starts by setting e3 and e4 to true and

reaches step 3. Without loss of generality, assume the core component first tries true for

e1. Beware that the core can detect functionally equivalent terms, based on the theory of

uninterpreted functions. Hence, it puts {x, y, “abc” · m, “efg” · n} into one equivalence

class and notifies the string theory plug-in. We note that the plug-in string theory Z3-str

can only know about the equivalent terms that belong to its theory. As a side remark, if

we have an equation length(x) = 4, then Z3-str is not aware of the fact that length(x)

is equal to 4. However, if e2 were set to true, Z3-str would know that x is equivalent to
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a constant string of length 4. Therefore, it can deduce that length(x) is equal to 4, thus

subsequently passing this information to the arithmetic theory.

Back to the example, with the above equivalence class at step 3, Z3-str detects a conflict

and then informs the core component about the new finding through an axiom e3∧e4 → ¬e1.

With this new axiom, the core component backtracks and tries false for e1. When the core

component backtracks, it discards the relevant fact and any insertions into equivalence

classes as the consequence of the fact. The core then derives that e2 must be true and

this assignment is performed in step 4. Based on the concatenation semantics, Z3-str can

infer that n must be “h”. This new finding is formulated by introducing a new boolean

variable e5 representing n = “h” and an axiom “efgh” = “efg” ·n⇒ e5, which is sent back

to the core. From the existing facts and the new axiom, the core component derives e5 is

true. After all boolean expressions have been assigned consistently and Z3-str can find the

satisfying values for string variables x, y, and n, the search procedure terminates.

3.4.2 Improvement of Z3-str-? over Z3-str

Z3-str-star (or Z3-str-? for short), a component of our tool, is responsible for solving equa-

tions between string expression and recursively-defined functions. It can be viewed as a

significant extension of Z3-str with the support of recursively-defined functions, introduced

to facilitate representing and reasoning about the Kleene star and commonly used high-level

string operations.

As mentioned before, in its current implementation, Z3-str does not know about equiva-

lent terms that belong to other theories, especially the arithmetic theory. Another important

improvement of Z3-str-? (over Z3-str) is its direct interactions with the Z3 core, to query

about the equivalence classes among multiple theories. More specifically, it asks Z3 core two

following questions:

• Is a string length “ground” with a non-negative constant?

• What is the relationship (=, <,>,≤,≥) between different length variables?

To answer these questions, we extend Z3 API so that Z3-str-? can interact with the congru-

ence closure core, similarly to other built-in theory solvers. Moreover, the newly introduced

API methods also help us to query about other inequality relationship, if necessary. An-

swers to these questions ultimately allow us to propagate the information of string lengths
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to string theory solver so that string and non-string constraints can be simultaneously rea-

soned about. In short, this gives us a truly incremental solver for strings and non-strings.

We will revisit this side contribution in our experimental evaluation – Section 3.6.

3.5 Algorithm

3.5.1 Top-level Algorithm

S3 finds a list of string assignments that satisfies the input formula or decides that no

satisfying assignment exists. Algorithm 1 summarizes its top level algorithm.

Input: F : Formula
Output: (IsSat : bool, Solutions : (variable, string) list)
reduced F ← reduce(F);∨n
i disjuncti ← normalize to DNF(reduced F);

for i = 1 to n do
(Res, Sols) ← Z3-str-?(disjuncti);
if Res = SAT then

return (true, Sols);
end

end
return (false, []);

Algorithm 1: Top-level Algorithm

Given an input formula F, S3 recursively reduces F into new formula reduced F, which

may contain equations (among string expressions and recursive functions such as star) and

length constraints. Here we only take into consideration the string and length constraints,

non-string constraints will be unchanged unless otherwise stated. Reduction rules may result

in a disjunctive formula. Thus, the next step is to normalize reduced F into disjunctive

normal form (DNF). To decide the satisfiability of each disjunct, we extend Z3-str [Zheng

et al., 2013] to support recursive functions. In particular, we use the recursive function star

to represent the Kleene star. For presentation purpose, we first only discuss how to handle

the star function, calling our extended component Z3-str-?. Similar treatment for high-

level operations such as replaceAll will be elaborated later. If Z3-str-? finds a satisfiable

disjunct, it stops and returns the corresponding satisfying assignments. Otherwise, it decides

that no such assignment exists.
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3.5.2 Reduction of Regular Expressions

Rule Reduction
[CONST] e ∈ s → e=s
[UNION] e ∈ r1+r2 → e ∈ r1 ∨ e ∈ r2

[CONCAT] e ∈ r1·r2 → e=e1·e2 ∧
∧2
i=1 ei ∈ ri

[STAR] e ∈ r? → e
∨
= star(r, n)

Table 3.3: Reduction Rules

Given an input constraint formula, we first reduce membership predicates into equa-

tions among string expressions and star function. The reduction rules are summarized in

Table 3.3. Our aim is to obtain a list of new constraints of the form that can be solved

incrementally by Z3-str-? — equations among string expressions and recursively-defined

functions, along with length constraints.

These rules deal with constraints checking if a string expression e (LHS) is in a regular

expression (RHS). If the RHS is merely a string constant, rule [CONST] will convert such

membership constraint into an equality. The next two rules handle the case when the RHS

is constructed by union and concatenation operations. While rule [UNION] ensures that

the LHS expression e is a member of one of the RHS sub-expressions (of the union), rule

[CONCAT] splits e into two fresh string variables, namely e1 and e2, and checks that they

satisfy the condition e1 ∈ r1 ∧ e2 ∈ r2 conjunctively.

The RHS regular expression can also be formed by repeating r zero or more times

(Kleene star). Rule [STAR] encodes such constraint as an equation, where the LHS is a

string expression and the RHS is a symbolic representation for a family of strings generated

by the Kleene star. The fresh (symbolic) integer variable n indicates the frequency where r

is repeated. This symbolic variable is used to:

• Distinguish different star functions, which have the same base regular expression (e.g.

r).

• Guide the on-demand unfolding in the recursively-defined functions such as star or

replaceAll (which will be discussed later).

• Interact with the Arithmetic Solver module in Z3.

When r is a constant string and n is a concrete value, the
∨
= operator is interpreted as

equality operator =. For convenience, we overload
∨
= with the = notation.
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In short, after the reduction of regular expressions, we have equations among string

expressions and recursively-defined star functions, along with length constraints. Z3-str-?

is then responsible for solving them.

3.5.3 star Functions

Z3-str-? extends Z3-str [Zheng et al., 2013] with the support for handling star functions.

The internal language is extended with the following:

Term:str ::= ConstString

| ...

| star(Term:regexpr,Term:int)

Like Z3-str, Z3-str-? also works as a plug-in of Z3. It is notified by the Z3 core component

when a string equation is asserted as part of the try-and-backtrack process. In particular,

the core component invokes a callback function in the plug-in, providing the abstract syntax

tree (AST ) of the equation as an input parameter. The callback function inspects the AST ,

and if it involves string operations, the function tries to reduce AST to a simpler abstract

syntax tree, say AST ′. The reduction is conveyed to the core component by adding an axiom

with the form of AST ⇒ AST ′. Recall that since the core component does not understand

the string domain, it treats both AST and AST ′ as independent boolean variables. Because

AST has been assigned a true value, with the new axiom, the core will assign true to AST ′

as well, which is a new fact, and in turn triggers further plug-in processing. Thus, to act as

a plug-in, we need to provide reduction rules for each callback from Z3.

We list selected reduction rules in Table 3.4. There are 3 cases of interest related to

star functions:

• when star appears in one side of an equation,

• when star appears in both side of an equation and

• when star can be used to concretize other concatenations based on its concrete string

value.

The gist of our reduction rules is to make use of the semantics of star functions (or their

previous forms – regular expressions with Kleene star). In fact, with a membership con-
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straint such as x ∈ (“ab”)?, we can directly make use Z3-str to generate the possible string

assignments for x, then checking membership is straight-forward since x is already ground.

However, this naive approach is likely to be inefficient. Sometimes, it may be worse than

Kaluza’s approach, where the lengths can be used to refine the string constraints. To deal

with star functions effectively and efficiently, we propose to reduce it lazily and only on

demand. We call that technique “unfold and consume”. The basic principle is to lazily

unfold its semantics, until we find a matching between constant string segments in the two

sides of an equation. At that time, we can easily to choose either consume these constants

(of course with the capability of backtracking), or to find a conflict between unmatchable

constants in the two sides.

Incremental Solving for star Functions

In Table 3.4 we introduce four auxiliary functions: csm hd(s, r), csm tl(s, r),
r

csm hd(r2, r1),

and csm all(s, r). The first one takes a constant string and a regular expression, and returns

a list of strings si such that: s ∈ r·si. Intuitively, this function aims to consume the prefix

of s matching r. Similarly, while the second, csm tl(s, r), consumes the suffix of s matching

r, the third one applies to two regular expressions instead. Lastly, csm all(s, r) checks if s

can be consumed completely by matching it with r.

Now, let us have a look at reductions rules in Table 3.4. The rule [CON−?] says about

the case when star(r, n) equals to some constant string s. As we explained above, method

csm all(s, r) is used to decide whether s can be a member of r?. If yes (the second case),

we can update other string expressions that contain star(r, n). Otherwise (the first case),

it is a conflict and Z3 core component will need to backtrack. Note that, in Table 3.4, all

E1, E2 and E3 are concatenations among string expressions and star functions.

The rules [HD−?] and [HT−?] are to handle the case when there is a matching between

star and a constant string. In the former, the matching is at the beginning of the LHS;

while the latter is a special case of it, where the matchings occur at both ends. These two

rules will be elaborated more in the next example. Similarly, we have the rule [TL−?] for

the matching at the end of the LHS. We have [si]=csm hd(s1, r1) and [sj ]=csm tl(s2, r2)

in rule [HT−?], [si]=csm hd(s, r) in rule [HD−?], and [si]=csm tl(s, r) in rule [TL−?].

The rule [HD−?−?] ([TL−?−?], [HT−?−?]) is applied when there are two star function at

the beginning (end or both) of each side of the equation. In the rule [HD−?−?], we assume
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Rule Reduction

[CON−?]
star(r, n)=s ⇒ ¬star(r, n)=s

star(r, n)=s∧
(E1·star(r, n)·E2=E3)

⇒ E1·s·E2=E3

[HT−?] star(r1, n1)·E1·star(r2, n2)
=s1·E2·s2

⇒ (E1=s1·E2·s2∧n1=0∧n2=0)∨

(
k∨

i=1
star(r1, n1−1)·E1=si·E2·s2∧n2=0)∨

(
l∨

j=1
E1·star(r2, n2−1)=s1·E2·sj∧n1=0)∨

k,l∨
i,j

star(r1, n1−1)·E1·star(r2, n2−1)=si·E2·sj

[HD−?] star(r, n)·E1=s·E2 ⇒ (E1=s·E2∧n=0) ∨
k∨

i=1
star(r, n−1)·E1=si·E2

[TL−?] E1·star(r, n)=E2·s ⇒ (E1=E2·s∧n=0) ∨
k∨

i=1
E1·star(r, n−1)=E2·si

[HT−?−?] star(r1, n1)·E1·star(r3, n3)=
star(r2, n2)·E2·star(r4, n4)

⇒ (n2=0∧n4=0∧star(r1, n1)·E1·star(r3, n3)=E2)∨
(n2=0∧star(r1, n1)·E1·star(r3, n3)=E2·star(r4, n4))∨
(n4=0∧star(r1, n1)·E1·star(r3, n3)=star(r2, n2)·E2)∨
k,l∨
i,j

star(r1, n1−1)·E1·star(r3, n3−1)=

si·star(r2, n2−1)·E2·star(r4, n4−1)·sj

[HD−?−?] star(r1, n1)·E1=
star(r2, n2)·E2

⇒ (E1=E2∧n1=0∧n2=0) ∨ (star(r1, n1)·E1=E2∧n2=0)∨
(E1=star(r2, n2)·E2∧n1=0)∨
k∨

i=1
star(r1, n1−1)·E1=si·star(r2, n2−1)·E2

[TL−?−?] E1·star(r1, n1)=
E2·star(r2, n2)

⇒ (E1=E2∧n1=0∧n2=0) ∨ (E1·star(r1, n1)=E2∧n2=0)∨
(E1=E2·star(r2, n2)∧n1=0)∨
k∨

i=1
E1·star(r1, n1−1)=E2·star(r2, n2−1)·si

[REP−?] x=E ∧ (E1·x·E2) ⇒ E1·E·E2

Table 3.4: Selected reduction rules for star function

that r1 cannot be consumed by r2 so that we only need the auxiliary function
r

csm hd(r2, r1).

We have [si]=
r

csm hd(r3, r1) and [sj ]=
r

csm tl(r4, r2) in rule [HT−?−?], [si]=
r

csm hd(r2, r1)

in rule [HD−?−?], and [si]=
r

csm tl(r2, r1) in rule [TL−?−?].

The last rule [REP−?] aims to replace all string variables by their aliases, which are a

concatenation among constant strings and star functions.

To illustrate how these rules are applied, in Table 3.5, we present running steps for

solving the example in Fig. 3.3. Z3 core continually sends the assignments to Z3-str-?

(via its call back function) from step 1 to step 5. At the same time, Z3 also maintains

functionally equivalent terms in their equivalence classes. From step 1 to step 4, we apply

the rule [REP−?] repetitively to replace a string variable by a constant string, a star function

or their concatenation (shown in column 4, step 1-4). In step 5, we apply a specialized

version of rule [HT−?], where we also make use of constraints on variable n1 and n2. More
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Step Fact added Eq-class Reduction/Action

1 nM = “ababababababcc” {“ababababababcc”,
res, nM, p1 · p2}

[REP−?]: res = “ababababababcc”

2 p1 = star(“ab”,n1) {p1, star(“ab”,n1)} [REP−?]: res = star(“ab”,n1) · p2

3 p2 = star(“bc”,n2) {p2, star(“bc”,n2)} [REP−?]: res = star(“ab”,n1) · star(“bc”,n2)

4 res=
star(“ab”,n1)·star(“bc”,n2)

{“ababababababcc”,
res, nM, star(“ab”,n1)·
star(“bc”,n2), p1 · p2}

[REP−?]:star(“ab”,n1)·star(“bc”,n2)=
“ababababababcc”

5 star(“ab”,n1) · star(“bc”,n2)
= “ababababababcc”

{“ababababababcc”,
res, nM, star(“ab”,n1)·
star(“bc”,n2), p1 · p2}

star(“ab”,n1)·star(“bc”,n2)
=“ababababababcc”⇒
¬star(“ab”,n1)·star(“bc”,n2)
=“ababababababcc”

UNSAT

Table 3.5: A Solving Procedure for the Motivating Example in Fig. 3.3

specifically, for this running example, we are able to force the unfolding of star(“bc”,n2) so

that we can find a conflict between “bc” and “cc”. Finally, we give back the new axiom (in

column 4, step 5) to Z3 so that Z3 can conclude the input formula is UNSAT.

3.5.4 String Operations

Typically, the semantics of string operations such as replaceAll, match, split, test, exec,

are recursively defined. As such, it is natural for us to interpret them as recursively-defined

functions, similarly to our handling of star functions. In this Subsection, we only give the

details of reduction for replaceAll. Other operations can be treated in a similar manner.

As stated earlier, we aim to support the most general usage of replace function –

replacing all occurrences. In practice, there is also another version (e.g. in PHP) which

allows users to specify the maximum number of occurrences to be replaced. We call it

replaceN, to distinguish the two versions. In fact, replaceN is already supported by

existing solvers, e.g., Kaluza. The typical treatment is to model the input parameter as

a concatenation of N parts, and then apply one replacement to each part. However, this

technique cannot be generalized to address replaceAll, since we do not know such an

N beforehand. Here we propose to model both replaceAll and replaceN, again, using

recursively-defined functions. In fact, restricting to replaceN alone, our approach will

be more efficient than Kaluza’s. This efficiency comes from the superiority of incremental

solving (via constrain-and-generate approach) over generate-and-test approach.

Since replaceN is a special case of replaceAll, we focus on discussing only the latter.

Table 3.6 shows that R=replaceAll(S, r, T) belongs to one of two possible cases:
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Operations Reduction Rules
I=search(S, r) (I<0∧¬(S ∈ (.?)·r·(.?))) ∨ (I≥0∧ S=U·M1·M2·R∧M1·M2 ∈ r∧length(U)=I∧

length(M2)=1∧¬(U·M1 ∈ (.?)·r·(.?)))

R=replaceAll(S, r, T) I=search(S, r)∧((I<0∧R=S) ∨ (I≥0∧S=U·M·S1∧R=U·T·R1∧ M ∈ r ∧
length(U)=I∧R1=replaceAll(S1, r, T)))

Table 3.6: Reduction Rules for search and replaceAll

• the recursive case, when we find a substring M, that matches regular expression r, at

an index I. We then can replace M by T and continue to apply replaceAll function on

the remaining part S1 until we reach the base case.

• the base case, when we cannot find any substring that satisfies such condition. The

resulting string R is then the same as the input string S.

The replaceAll function will use search function to find the index of substring M=M1·M2 in

S. Specifically, this auxiliary function takes as input a symbolic string input S, a regular

expression r, and returns the starting index I of a substring in S that matches r. If there

exists no such substring, it returns a negative number. Otherwise, it returns the index of

the substring M that satisfies the condition.

Rule Reduction Condition

[RED−1] replaceAll(s·R, r, T )=U ⇒ V ·replaceAll(t·R, r, T )=U (V, t)=rep(s, r, T )

[RED−2] replaceAll(star(s, n)·R, r, T )=U ⇒ V ·replaceAll(t·R, r, T )=U (V, t)=rep(star(s, n), r, T )

Table 3.7: Reduction Rules for replaceAll Functions

We remark that the second parameter of replaceAll function cannot be a variable

since in such case, the behavior of this function is undefined. Naively, we can keep unfolding

recursively-defined function replaceAll, until we can decide if the current formula is satis-

fiable or not. However, we provide reduction rules (unfolding on demand) for them instead.

For presentation purpose, Table 3.7 lists only two reduction rules for the case when the pre-

fix of the first parameter S is known5. In rule [RED−1], the prefix of S is a constant string

s, while it is star(s, n) in rule [RED−2]. In both cases, since the prefix is already known, we

are able to apply the replacement on the part s (star(s, n) in the other case) via auxiliary

5Other rules related to the second, the third parameter, the result and their combinations are constructed
similarly.
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function rep. In rule [RED−1], suppose that S is composed by s and R, function rep(s, r, T )

replaces all occurrences in s, matching the regular expression r, by T . It then returns the

pair (V, t) such that replaceAll(s, r, T )=V ·t, where t is guaranteed to be the longest suffix

of s that must be examined together with R in the next step replaceAll(t·R, r, T ). The

application of rep for the case star(s, n) is similar to s except that V is parameterized by

n. Now, we illustrate how this auxiliary function can be applied via two examples. In the

first example:

replaceAll(“abcd”·R, “ab”, T ) = U

the rep(“abcd”, “ab”, T ) method will return (T ·“cd”, “”). In the second one:

replaceAll(“abcd”·R, (“ab” + “de”), T ) = U

it will return (T ·“c”, “d”) since it is possible that R starts with character ‘e’.

Length constraints. We have inherited rules from Z3-str, to infer length constraints such

asX=Y → length(X)=length(Y ). Importantly, the unfolding of recursive functions (star,

replaceAll, etc.) would incrementally expose more concrete (sub)strings and therefore the

interactions from Z3-str-? to the Arithmetic Solver module in Z3 also happen incrementally.

In addition, as stated in Sec. 3.4.2, the length constraints, in the feedback from the

Arithmetic Solver module, can also be used to prune the search space in string theory

component, Z3-str-?. For example, when the Arithmetic Solver module can deduce concrete

values for length variables, Z3-str-? will be able to make use of such information.

3.6 Evaluation

In our experimental evaluation, we conduct case studies to compare S3 with state-of-the-art

string solvers. All experiments are run on an 3.2GHz machine with 8GB memory.

In Section 3.3, we stated that constraint solvers, which work only on string domain

or only on non-string domain, are not effective for analyzing web applications. Thus, it is

sufficient for us to compare S3 with only Kaluza and Z3-str.
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3.6.1 Comparison with Kaluza

In this case study, we use the set of benchmarks that is shipped with Kaluza, which can be

downloaded at:

http://webblaze.cs.berkeley.edu/2010/kaluza

They were generated using Kudzu [Saxena et al., 2010], a symbolic execution framework for

JavaScript, when testing 18 subject applications consisting of popular AJAX applications.

The generated constraints are of boolean, integer and string types. Integer constraints also

include ones on length of string variables, while string constraints include string equations,

membership predicates.

Table 3.8 compares the performance and robustness of our solver S3 with Kaluza on

the Kaluza benchmarks. Roughly speaking, this measures how fast and how often a solver

is able to provide a definitive answer. This, in turn, means that if the solver returns SAT,

then it should produce a particular model which demonstrates the executability of the path

in question. If the solver returns UNSAT, then it should mean that the path in question

is in fact not executable. There is of course a third possible case when the solver does not

return any answer because of errors or non-termination, or returns UNKNOWN (when it

neither find a model nor prove the unsatisfiability). A robust system therefore is one which

returns definitive answers often.

S3 Kaluza
Sat 34961 21651

Unsat 11799 23088
Error 0 2285

Timeout (20s) 524 340
Time (s) 16547 68768

Table 3.8: S3 versus Kaluza on Kaluza benchmarks

According to Table 3.8, S3 returns more SAT answers than Kaluza. Specifically, the

difference is 13310 answers. For these benchmarks, Kaluza either returns UNSAT or gets

errors. In addition, for the 524 benchmarks that S3 does not terminate, Kaluza also does

not terminate or gets errors.

For each of the 34961 benchmarks, which S3 declares to be satisfiable, we conjoin the

model generated by S3 with the original input formula and pass it to Kaluza. As a result,
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Kaluza can now decide, with an answer confirming the satisfiability, even on those bench-

marks that they could not decide before. In other words, all models produced by S3 are

cross-checked by Kaluza.

We also use S3 to cross-check the models produced by Kaluza. Since in Kaluza, each

query must specify a variable, for which they will generate the model, in our setting, we

tested with the variable that starts with var6. As a result, Kaluza has errors with 11 bench-

marks that do not have any variable starting with var. For the remaining 21640 benchmarks

that Kaluza reports a SAT answer, the return model for 523 of them is incomplete. This is

because given that Kaluza only returns the model for one variable, it is possible that the

return model for the chosen variable may not be extensible to become a complete model

which includes other variables. These 523 models are in fact not really models that are

useful to reproduce attacks. (We note that [Zheng et al., 2013] has previously remarked this

“semi-soundness” issue of Kaluza.) This means that S3 has much more potential not only

for vulnerability detection but also for attack reproduction than Kaluza does.

Lastly, Table 3.8 shows that S3 is more than 4 times faster than Kaluza. If we only

take into account those benchmarks that Kaluza returns definitive answers, S3 is even more

than 19 times faster than Kaluza. In short, S3 is far more efficient and robust than Kaluza.

3.6.2 Comparison with Z3-str

Recall that Z3-str deals with a smaller class of constraints than S3 (since Z3-str cannot

handle regular expressions). The purpose of this study is to answer the question: w.r.t con-

straints that can be handled by both of the two solvers, are the performances the same? We

now demonstrate that the answer is no, via defining the classes that show S3’s improvement

(esp. our enhanced design).

To demonstrate that S3 is better, we first use six test cases from the SAT benchmarks

of Kaluza. We follow the setting of Z3-str as in [Zheng et al., 2013] and remove all the

constraints related to regular expressions. This way we can run Z3-str on the resulting

constraints. These six benchmarks are presented in the first part of Table 3.9. For each of

them, while S3 returns YES with a solution model, Z3-str instead returns NO. We note that

the models S3 provides are validated as correct by using Z3-str itself.

We now briefly discuss why we have this difference. One reason is that Z3-str cannot

6There is usually one such variable in each benchmark.

47



Chapter 3. Lazy Reasoning

Benchmark Model produced? Time(ms)
Z3-str S3 Z3-str S3 Z3-str/S3

ID 3482 NO YES 58
ID 3468 NO YES 23
ID 1543(*) NO YES 36
ID 3464 NO YES 35
ID 3487 NO YES 31
ID new.23484(*) NO YES 21

sat bnd YES YES 3225 120 27x
sat unbnd YES YES 451s 129 3496x
unsat bnd NO TO 30
unsat unbnd NO TO 46
Timeout (TO) is at 2h. ‘*’: regular expressions are removed.

Table 3.9: S3 versus Z3-str

acquire the concrete values assigned to length variables. In contrast, our design, presented in

Section 3.4.2, enables the direct interactions between the string solver plug-in Z3-str-? and

Z3 core, to query if the lengths of some string variables have been deduced or constrained

in the arithmetic theory. This helps Z3-str-? avoid repetitive case analysis.

More specifically, the six we use in Table 3.9, have the following (frequent) pattern:

there exists at least one variable that is only constrained by its length. Basically, with the

constraint length(x)=i, the solution for x can be any string of length i, i.e. “@..@”, where

each @ is an arbitrary character. However, Z3-str cannot make use of this length constraint

and keeps trying to assign string value for x, starting from the empty string. Given that

x is constrained by its length, Z3-str must try-and-test many times until there is no more

conflict with that length constraint. Thus, the total number of values to be tested by Z3-str

will be blown up, preventing it from finding a solution.

We next consider another set of benchmarks, representing another pattern (which is also

frequent in Kaluza’s benchmarks): there exists a relationship between the lengths of different

string variables. Indeed the example presented in Fig. 3.4 resembles such pattern. See the

second part of Table 3.9, where statistics for 4 benchmarks are shown. We purposely make

two benchmarks satisfiable – names start with ‘sat’, whereas the other two are unsatisfiable

– names start with ‘unsat’. In the two whose names end with ‘bnd’, the lengths of the string

variables are bounded by 10, while in the other two (the names end with ‘unbnd’), there

is no such bound. For each satisfiable benchmarks, both Z3-str and S3 can find a correct

solution model. However, S3 outperforms Z3-str significantly by an order of magnitude. For

the unsatisfiable cases, while S3 returns NO within a second, Z3-str runs for more than 2
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hours without producing an answer.

In summary, our design allows the full interaction between string theory and arithmetic

theory, enabling S3 to handle length constraints more effectively. Thus, even discounting the

fact that S3 solves a more general class of constraints than Z3-str, its performance is much

better in the common class of constraints. This ensures its applicability in web programs,

where length constraints are ubiquitous.

3.7 Related Work

Symbolic execution has recently been exploited to address a wide range of security prob-

lems. Some notable examples are: automated fingerprint generation [Brumley et al., 2007],

protocol replay [Newsome et al., 2006], automated code transformation to eliminate SQL

injection attacks in legacy web applications [Bisht et al., 2010].

Motivated by the problem of analyzing JavaScript code for the purpose of detecting

security flaws, [Saxena et al., 2010] proposed a framework, Kudzu, which leverages the

benefits of both concrete and symbolic evaluation. This work effectively reduced the analysis

problem of web applications to the problem of solving string constraints. In order to be

widely applicable, it is important to have a string solver which is able to reason about both

string and non-string constraints. Importantly, the solver must also support constraints

involving regular expressions and with multiple variables.

There is a vast literature on the problem of string solving. In previous Sections, we

have carefully positioned our work against Kaluza and Z3-str. We now focus on other

closely related work.

Practical methods for solving string equations can loosely be divided into bounded

and unbounded methods. Bounded methods (e.g., HAMPI [Kiezun et al., 2009a], CFGAna-

lyzer [Axelsson et al., 2008], and [He et al., 2013]) often assume fixed length string variables,

then treat the problem as a normal constraint satisfaction problem (CSP). These methods

can be quite efficient in finding satisfying assignments and often can express a wider range

of constraints than the unbounded methods. However, as also identified in [Saxena et al.,

2010], there is still a big gap in order to apply them to constraints arising from the analysis

of web applications.

In the spirit of Kaluza, [Bjørner et al., 2009] proposed to reason about feasibility of
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a symbolic execution path from high-level programs, of which string constraints are in-

volved. In principle, the approach is similar to Kaluza: it proceeds by first enumerating

concrete length values, before encoding strings into bit-vectors. It supports common integer

related string operations, taken from the basic .NET string library, except for replace.

Unlike Kaluza, however, regular expressions are not supported here. In a similar manner,

[Redelinghuys et al., 2012] addresses multiple types of constraints for Java PathFinder.

Though this approach can handle many operators, it provides limited support for replace,

requiring the result and arguments to be concrete. Furthermore, it does not handle regular

expressions. In summary, the above methods are less powerful than S3 in terms of the

expressiveness of the input language. Importantly, they have similar limitations as Kaluza,

which we have carefully discussed.

PISA [Tateishi et al., 2013] is the first path- and index-sensitive string solver that targets

static analysis of web applications. The verification is conducted by encoding the program

in Monadic Second-Order Logic (M2L). It supports regular expressions as well as Java’s

replace method. However, it does not support binary operations between two variables,

i.e., PISA requires at least one of them to be constant. Also importantly, its expressiveness

for arithmetic operations is restricted due to the limitations of M2L. For example, it does

not support numeric multiplications and divisions.

Other unbounded methods are often built upon the theory of automata or regular

languages. We will be brief and mention a few notable works. Java String Analyzer (JSA)

[Christensen et al., 2003] applies static analysis to model flow graphs of Java programs in

order to capture dependencies among string variables. A finite automata is then derived to

constrain possible string values. The work [Shannon et al., 2009] used finite state machines

(FSMs) for abstracting strings during symbolic execution of Java programs. They handle

a few core methods in the java.lang.String class, and some other related classes. They

partially integrate a numeric constraint solver. For instance, string operations which return

integers, such as indexOf, trigger case-splits over all possible return values.

In short, using automata and/or regular language representations potentially enables

the reasoning of infinite strings and regular expressions. However, most of existing ap-

proaches have difficulties in handling string operations related to integers such as length

and indexOf, let alone other high-level operations addressed in this work. More impor-

tantly, to assist web application analysis, it is necessary to reason about both string and
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non-string behavior together. It is not clear how to adapt such techniques for the purpose,

given that they do not provide native support for constraints of the type integer.

Since our method does not rely on the length bounds in enumerating solutions, and

our particular treatment of (possibly unbounded) recursive operations is lazy, it is possible

that S3 can handle query of unbounded length variables as well as unbounded regular

expression. However, to guarantee termination, we do rely on the fact that the lengths

are bounded. In fact, our work targets the input constraints arising from realistic web

applications. Therefore, even when the lengths are not precisely known – in the case of

static analysis – it is reasonable to assume that the lengths of input string variables are

indeed bounded, as many modern practical string solvers do.

3.8 Concluding Remarks

This work presents a new algorithm for solving string constraints. The class of constraints

is practically expressive, for its intended purpose of analyzing web programs which manip-

ulate string inputs. Experimental evaluations show that our solver S3, despite being more

expressive than other solvers, is much more robust and efficient.

We remark that in lieu of presenting an end-to-end system, we show that our proposed

solver is indeed a modular contribution to any hypothetical dynamic symbolic execution

end-to-end system. That is, the superior performance of our solver can be used, without sig-

nificant engineering of integrating it, to obtain an improvement in the hypothetical system.

We believe, based on its symbolic representation of string constraints, S3 can also be

extended to be more efficient in the context of static analysis, where even regular expressions

can also be symbolically constructed.

Astute readers might already notice that our underlying symbolic representation goes

well beyond regular languages. As an example, {an · bn | n ≥ 0} can be easily modeled

as star(a, n) · star(b, n) ∧ n ≥ 0. While this work focuses on the practical impact of S3,

investigating the theoretical impact of such symbolic representation is left as our future

work.
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Progressive Reasoning

In this chapter, we continue the focus on solving string constraints, which is motivated by

the security analysis of web applications. In the previous chapter, we have already intro-

duced the lazy reasoning technique for string solving. However, since this technique does not

address the non-termination issues, we now propose a novel progressive reasoning technique.

Similarly to lazy reasoning, progressive reasoning is able to mitigate the problem of combi-

natorial search explosion. More importantly, it aims at a more complete search algorithm.

In addition to presenting our algorithm, we also discuss the challenges of its implementation

in the state-of-the-art SMT solver Z3. Finally, we demonstrate its applicability by testing

the new string solver with a larger class of real-world benchmark programs.

4.1 Introduction

Web applications provide critical services over the Internet and handle sensitive data. Un-

fortunately, many of them are vulnerable to attacks by malicious users. According to the

Open Web Application Security Project [OWASP, 2013], the most serious web application

vulnerabilities include: (#1) Injection flaws (such as SQL injection) and (#3) Cross Site

Scripting (XSS) flaws. Both vulnerabilities involve string-manipulating operations and oc-

cur due to inadequate sanitisation and inappropriate use of input strings provided by users.

Therefore, reasoning about strings is necessary to ensure the security of web applications

[Saxena et al., 2010; Trinh et al., 2014].
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In web applications, recursively defined string functions also play an important role.

For example, the string function replaceAll which is used frequently in sanitizers in order

to prevent insecure user inputs, can be recursively defined as follows:

Y=replaceAll(X,r,Z)
def
= (X 6∈ /.? r .?/ ∧ Y=X) ∨

(X=X1·X2·X3·X4 ∧ X2·X3 ∈ /r/ ∧ length(X3)=1 ∧

X1·X2 6∈ /.? r .?/ ∧ Y=X1·Z·Y1 ∧ Y1=replaceAll(X4,r,Z))

The first disjunct corresponds to the base case where the input X does not contain any

substring that matches the regular expression r. The resulting string Y will be the same

as X. In the other disjunct, the first substring of X that matches r is X2·X3. So we replace

this substring by Z and then make a recursive call for the remaining part X4. (The greedy

version, using as many characters as possible in the match against r, can be defined and

treated in a similar manner.)

Unfortunately, reasoning about unbounded strings defined recursively is in general an

undecidable problem. As a concrete example, string functions such as replaceAll that are

applied to any number of occurrences of a string (even limited to single-character strings)

would make the satisfiability problem undecidable [Buchi and Senger, 1988; Bjørner et al.,

2009]. We must therefore be content with an incomplete solution.

Even so, we do not yet have an algorithm that is plausibly effective in practice. To gen-

erally handle recursive functions, a state-of-the-art technique [Trinh et al., 2014] is “unfold-

and-consume” which is to incrementally reduce recursive functions via splitting (and/or

unfolding) process, until their subparts are bounded with constant strings/characters to be

consumed. This technique has shown very promising results. However, because the main

purpose of [Trinh et al., 2014] is vulnerability detection, i.e., generating attack inputs for

each satisfiable query, and that every query is invoked with a timeout limit, there was less

emphasis on the detection of unsatisfiable queries. By contrast, in the setting of program ver-

ification, or in using verification technologies to speed up concolic testing [Jaffar et al., 2013;

Avgerinos et al., 2014], the problem of determining unsatisfiability becomes paramount. In

short, we can no longer depend on a timeout, and must seek a terminating algorithm as far

as possible.

The main contribution of this work is an algorithm whose goal is to determine if a

string formula is unsatisfiable, and if not, to be able to generate a solution for it. The key

feature of our algorithm is a pruning method on the subproblems, in a way that is directed.
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More specifically, our algorithm aims to detect non-progressive scenarios (Section 4.4.2) with

respect to a criterion of minimizing the “lexicographical length” of the returned solution,

if a solution in fact exists. Informally, in the search process based on reduction rules, we

can soundly prune a subproblem when the answer we seek can be found more efficiently

elsewhere. If a subproblem is deemed non-progressive, it means if the original input formula

is satisfiable, then another satisfiable solution of shorter “length” will be found. If, on the

other hand, the input formula is unsatisfiable, then any pruning is obviously sound. A

technical challenge we will overcome is that at the point of pruning, the satisfiability of the

input formula is unknown.

An additional important feature of our algorithm is applicable only when the input

formula is unsatisfiable. Here, we want to produce a set of conflict clauses, a generalization

of the input formula, that is now known to be unsatisfiable (Section 4.5.2). The benefits of

such learning is of course well-known. It is, for example, at the heart of the attractiveness of

SMT solvers. However, the key technical challenge is, how conflict clause learning can work

in tandem with the pruning of non-progressive formulas, because at the time of pruning,

again, the unsatisfiability of the input formula is unknown.

Finally, we present an experimental evaluation with two case studies. First is on the

well-known Kudzu benchmark [Saxena et al., 2010] where we show that (a) our new algo-

rithm surpasses four state-of-the-art solvers in its ability to detect unsatisfiable formulas or

generate a model in satisfiable formulas (and in good running time), and (b) the number

of unsatisfiable cores is very small, thus paving the way to accelerate the consideration of

large collections of formulas. The second case study considers web applications used in the

Jalangi framework [Sen et al., 2013], and shows how we can deal with the replaceAll oper-

ation in string formulas. No other system has been demonstrated on this class of problems,

and thus the purpose of our evaluation is simply to show that we are applicable.

4.2 Motivation

The common reason for non-termination in string solving is non-progression. For example,

after applying some reduction steps, if the reduced problem is not easier to solve than the

original one, then it may lead to non-terminating computations. To illustrate, let us first

look at the JavaScript example in Figure 4.1.
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1 function json_decode(str) {

2 str = str.replace (/ip/g, "ip address");

3 str = str.replace (/dom/g, "domain");

4 return str;}

5 function json_show(str) {

6 var arr = JSON.parse(str);

7 var c = arr [0]. content.split("&");

8 var s = c[0]+" "+c[1];

9 document.getElementById("info").innerHTML = s;}

10 res = json_decode(input);

11 json_show(res);

Figure 4.1: A JavaScript example using replace operation

The program takes as its input a JSON [ECMA-404, ] string. Here is an example of a string

input:

[{“content” : “ip=1.1.1.1&dom=nus.edu.sg” },

{“content” : “ip=0.0.0.0&dom=google.com” }]

Specifically, we store the JSON data in an array. Each element of the array is an object.

Inside an object, we declare a property with its name and its value (i.e., a {name : value}

pair). To access the value, we simply refer to the name of the property we need (e.g., we use

a[0].content to access the value of the first element of the array a). In Figure 4.1, the program

first decodes the input string by replacing all occurrences of "ip" with "ip address" and

"dom" with "domain". Then it parses the decoded string into an array arr, and splits the

value of the first element of this array into two parts using “&” delimiter. Finally, it shows

the resulting string s in a web browser by updating the innerHTML attribute of the info

element.

Now, suppose we want to detect XSS vulnerabilities in the program. We then need to

determine the security sink and source of XSS attacks. Here, the security sink is innerHTML,

while the corresponding source is an input JSON string (i.e. input). Next, against the sink,

we define the specification for XSS attacks which is some (regular) grammar encoding a set

of strings that would constitute an XSS attack. For simplicity, we choose: all the strings

that contain "<script". Lastly, in order to generate a test input that leads to an XSS

attack, we will need to solve the formula:

contains(s,"<script") ∧ tmp=replaceAll(input,"ip","ip address")

∧ res=replaceAll(tmp,"dom","domain") ∧ arr=parse(res) ∧

c=split(arr[0].content,"&") ∧ s=c[0]·" "·c[1]
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To make it easier for presentation, we simplify the formula into:

res=replaceAll(input,"ip","ip address") ∧ contains(res,"<script")

If we now perform some intuitive steps of “unfolding” the definition of replaceAll, we will

reduce the simplified formula into two disjuncts. Since the first one is unsatisfiable due to

the conflict between res 6∈ /.? "ip" .?/ and contains(res,"<script"), we proceed to

find a solution in the second disjunct, that is

input=X1·"ip"·input1 ∧ X1·"i"6∈ /.? "ip" .?/ ∧

res=X1·"ip address"·res1 ∧

res1=replaceAll(input1,"ip","ip address") ∧

contains(res,"<script")

After applying the unfolding step some n−1 times, we still have to find a solution in the

following formula:

input=X1·"ip"·input1 ∧ X1·"i"6∈ /.? "ip" .?/ ∧

res=X1·"ip address"·res1 ∧ input1=X2·"ip"·input2 ∧

X2·"i"6∈ /.? "ip" .?/ ∧ res1=X2·"ip address"·res2 ∧ ... ∧

resn=replaceAll(inputn,"ip","ip address") ∧ contains(res,"<script")

Obviously, this will lead us to a non-terminating computation.

As a matter of fact, non-termination is common in string solving. In addition to the

case of solving constraints on (JavaScript) recursive string operations (e.g. replaceAll,

split, match), we also have non-termination when handling membership predicates with

unbounded Kleene-star regular expressions.

Example 1. Unbounded regular expressions:

X=Y·Z·T ∧ Y ∈ /a?/ ∧ Z ∈ /b?/ ∧ T ∈ /c?/ ∧

length(Y)=length(Z) ∧ length(Z)=length(T) ∧ X=X1·"d"·X2

Since the first 6 constraints state that X can be any string in the context-sensitive language

{ an·bn·cn | n≥0 }, automata techniques and the alike which approximate strings using

context free grammars, are not able to handle this example. Instead, to generally deal with

unboundedness of regular expressions which are constructed by using Kleene-star operators,
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state-of-the-art techniques [Trinh et al., 2014; Zheng et al., 2015] represent the membership

predicate X∈/a?/ as an equation between string variable X and star(a,N) function which

can be defined recursively as below:

X=star(a,N)
def
= (X = "") ∨ (X=a·star(a,M) ∧ N=M+1)

To facilitate the solving process, [Trinh et al., 2014; Zheng et al., 2015] will need to apply

the definition of star functions to incrementally reduce them (according to the unfold-and-

consume technique). However, they cannot handle Example 1 as they will go into an infinite

loop of searching for a solution. We will discuss this example more in Section 4.4.

Finally, we note that the problem of non-terminating reasoning is not solely due to the

recursive definitions we employ in this work. For example, the non-termination problem

also happens when we do splitting on unbounded string variables. Below is a well-known

example.

Example 2. Overlapping variables:

X · "a" = "b" · X

The classic work [Makanin, 1977] is able to solve the satisfiability problem of word equations

(and not including recursively defined string operations). In this work, the big advance was

to discover a termination criteria within the reasoning steps, and prominent amongst these

was the “splitting” step. For the above example, such a step would split X in the left

hand side to obtain a new formula X·"a"="b"·X ∧ X="b"·Y . This can then be simplified

into Y·"a"="b"·Y ∧ X="b"·Y . Notice that the last formula is, in some sense, equally

difficult to solve as the original one. The huge contribution of [Makanin, 1977] was thus

to provide a bound for the number of times such “non-progressive” steps that needs to be

made. However, the elaboration of this bound is extremely complex and is not considered

feasible for a direct implementation.

4.3 The Core Language

We introduce the core constraint language in Figure 4.2. In our implementation, the string

theory solver is a component of Z3 solver [De Moura and Bjørner, 2008b]. Though Z3

supports more primitive types, we only mention string type and integer type in Fig. 4.2.
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Fml ::= Literal | ¬ Literal | Fml ∧ Fml
Literal ::= As | Al
As ::= Tstr = Tstr
Al ::= Tlen ≤ m (m ∈ Cint)
Tstr ::= a (a ∈ Cstr)

| X (X ∈ Vstr)
| concat(Tstr, Tstr)
| replaceAll(Tstr, Tregexpr, Tstr)
| star(Tregexpr,M) (M ∈ Vint,M≥0)

Tregexpr ::= a (a ∈ Cstr)
| (Tregexpr)

? | Tregexpr · Tregexpr
| Tregexpr + Tregexpr

Tlen ::= m (m ∈ Cint)
| M (M ∈ Vint)
| length(Tstr) | Σni=1(mi ∗ Tlen)

Figure 4.2: The Syntax of Our Core Constraint Language

Variables: We deal with two types of variables: Vstr consists of string variables (X, Y ,

Z, T , and possibly with subscripts); and Vint consists of integer variables (M , N , P , and

possibly with subscripts).

Constants: Correspondingly, we have two types of constants: string and integer constants.

Let Cstr be a subset of Σ? for some finite alphabet Σ. Elements of Cstr are referred to as

string constants or constant strings. They are denoted by a, b, and possibly with subscripts.

Elements of Cint are integers and denoted by m, n, and possibly with subscripts.

Terms: Terms may be string terms or length terms. A string Tstr term (denoted D, E,

and possibly with subscripts) is either an element of Vstr, an element of Cstr, or a function

on terms. More specifically, we classify those functions into two groups: recursive and non-

recursive functions. An example of recursive function is replaceAll, while an example of

non-recursive function is concat. The concatenation of string terms is denoted by concat

or interchangeably by · operator. For simplicity, we do not discuss string operations such as

match, split, exec which return an array of strings. We note, however, these operations

are fully supported in our implementation.

A length term (Tlen) is an element of Vint, an element of Cint, length function applied

to a string term, a constant integer multiple of a length term, or their sum.

In addition, Tregexpr represents regular expression terms. They are constructed from

string constants by using operators such as concatenation (·), union (+), and Kleene star

(?). However, regular expression terms are only used as parameters of functions such as
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replaceAll and star.

Following [Trinh et al., 2014], we use the star function in order to reduce a membership

predicate involving Kleene star to a word equation. The star function takes two parameters

as its input. The first parameter is a regular expression term while the second is a non-

negative integer variable. For example, X ∈ (r)? is modelled as X = star(r,N), where N

is a fresh variable denoting the number of times that r is repeated.

Literals: They are either string equations (As) or length constraints (Al).

Formulas: Formulas (denoted F , G, H, I, and possibly with subscripts) are defined

inductively over literals by using operators such as conjunction (∧), and negation (¬). Note

that, each theory solver of Z3 considers only a conjunction of literals at a time. The

disjunction will be handled by the Z3 core. We use Var(F ) to denote the set of all variables

of F , including bound variables.

Define L to be the quantifier-free first-order two-sorted language over which the formulas

described above are constructed. This logic can be considered as equality logic facilitated

with recursive and non-recursive functions, along with length constraints.

As shown in [Trinh et al., 2014], to sufficiently reason about web applications, string

solvers need to support formulas of quantifier-free first-order logic over string equations,

membership predicates, string operations and length constraints. Given a formula of that

logic, similarly to other approaches such as [Trinh et al., 2014; Zheng et al., 2015], our

top level algorithm will reduce membership predicates into string equations where Kleene

star operations are represented as recursive star functions. After such reduction, the new

formula can be represented in our core constraint language L in Figure 4.2.

4.4 Algorithm

In Section 4.4.1, we first present the background and limitation of existing methods. In

Section 4.4.2, we then present the foundations of our progressive algorithm, along with the

formal statements about its soundness and semi-completeness. Implementation details are

discussed later in Section 4.5.
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4.4.1 Preliminaries

This work builds on top of the string solver S3 [Trinh et al., 2014]. Essentially, the S3

solver is a string theory plug-in built into the Z3 SMT solver [De Moura and Bjørner,

2008b], whose architecture is summarised as follows. Z3 core component consists of three

modules: the congruence closure engine, a SAT solver-based DPLL layer, and several built-

in theory solvers such as integer linear arithmetic, bit-vectors. The congruence closure

engine can detect equivalent terms and then classify them into different equivalence classes

which are shared among all theory solvers. Each theory solver can consult the Z3 core to

detect equivalent terms if needed. In particular, the string theory solver has a bi-directional

interaction with a built-in integer theory solver [Trinh et al., 2014; Zheng et al., 2015].

In the string theory solver, the search for a solution is driven by a set of rules.

Definition 4.4.1 (Derivation Rule). Each rule is of the general form

(RULE-NAME)
F∨m
i=1Gi

where F , Gi are conjunctions of literals1, F ≡
∨m
i=1Gi, and Var(F ) ⊆ Var(Gi).

An application of this rule transforms a formula at the top, F , into the formula at the

bottom, which comprises a number (m) of reducts Gi.

Definition 4.4.2 (Derivation Tree). A derivation tree for a formula F is obtained by ap-

plying a derivation rule R to F . If the rule produces the single reduct false, then the tree

comprises the single node labelled with F . Otherwise, let the reducts of R be Gi, 1 ≤ i ≤ m.

Then the tree comprises a root node labelled with F and there are m child nodes, labelled

with Gi, 1 ≤ i ≤ m.

The concepts of descendant and ancestor nodes are defined in the usual way.

A derivation tree rooted at formula F is built using some search strategy. The search

strategy used by Z3 is a form of Depth First Search. This importantly means that the

process can be nonterminating even though there is a finite path leading to a satisfying

assignment to the variables in F . In navigating the construction of the derivation tree, we

backtrack when we encounter a false formula. If all the leaf nodes of a subtree rooted at

F are false , we can decide that the formula F is unsatisfiable.

1As per Figure 4.2.
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On the other hand, when we encounter a formula for which no derivation rules can be

applied, we can in fact terminate and decide that F is satisfiable. To ensure the soundness

of this step, we employ a standard procedure of instantiating steps which enumerates and

thus performs a brute-force method. This method looks for satisfying assignments for all

the string variables in the root nodes of a dependency graph for string variables — a string

variable in a root node does not depend on the values of any string variables. Consequently,

when we terminate and declare satisfiability, it also means that every string variable has

been successfully grounded. This brute-force method is part of Z3-str, S3, Z3-str2, and is

also adopted by this work. We will henceforth assume this method tacitly, and not discuss

it further.

Note that we control the branching order in navigating the derivation tree by dictating

the order of the rules to be applied, as well as the order in which the reducts to be consid-

ered. In general, this order can affect significantly the overall performance of the algorithm.

However, because of the way our progressive algorithm works, and in particular because of

its pruning step (introduced later), the choice of order becomes much less important. For

this reason, when we present our algorithm in detail below, we shall not impose any order

on the application of derivation rules.

We next discuss the set of rules used by our solver. Then we will illustrate the application

of rules and show an example of the derivation tree later in Example 3. The set of rules is

described in two parts:

• one-reduct rules: in Fig 4.3 and Fig 4.4;

• multi-reduct rules: in Fig 4.5.

We first describe the one-reduct rules in Figure 4.3. These rules are to propagate

length constraints, so that these constraints can be sent to integer theory solver. They are

triggered by the encounter with a string constant, a string variable, a concatenation, and

a string equation. In the figure, we use Var(F ), Constant(F ), Concat(F ), and Equality(F )

to denote the set of variables, constants, concatenations, and equations of F respectively.

Note that we need to mark them in those corresponding sets so that these rules are applied

once for each constant, variable, concatenation, and equation.

We comment here that in a practical implementation, it is useful to have some more

rules, for example, to deal with membership predicates and string operations. But for a

more focused presentation, we shall not discuss them further.
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(L-CST)
F

F ∧ length(a) = |a|
a ∈ Constant(F ) and |a| is the length of a string a

(L-VAR)
F

F ∧ length(X) ≥ 0
X ∈ Var(F )

(L-CAT)
F

F ∧ length(D · E) = length(D) + length(E)
D · E ∈ Concat(F )

(L-EQL)
F

F ∧ length(D) = length(E)
D = E ∈ Equality(F )

Figure 4.3: Length Constraint Propagation Rules

Next, consider Figure 4.4 which shows three basic simplification rules. First, the (CON)

rule is to detect a contradiction in the string theory. Second, the (SUB) rule is to substitute

all variables X in F with C, where C is either grounded or semi-grounded. A string is

grounded if it is a constant string. It is called semi-grounded if it is either a star function,

or a concatenation of which at least a component is either grounded or semi-grounded. For

example, “a” is grounded, while “a” · Y2 is semi-grounded. Finally, the (SIM) rule is to

eliminate matching constant strings on both sides of an equation. For each formula in the

derivation tree, only one rule is applied at a time. For each application, only one literal is

considered at a time. For example, in (SUB) rule, only X = C is involved. The choice of

which literal to be involved is decided by Z3.

(CON)
F ∧D = E

false
D,E are string terms and D 6= E

(SUB)
F ∧X = C

F [X/C] ∧X = C
X ∈ Var(F ) and C is (semi-)grounded

(SIM)
F ∧ a ·D · b = a · E · b

F ∧D = E
D,E are string terms

Figure 4.4: Simplification Rules for String Constraints

We comment here that in our implementation, we do employ other specialized rules. For

example, because the string theory solver also receives the information of length constraints

from the integer theory solver, we can craft a more specialized instance of the (CON) rule

of Figure 4.4 where a variant side condition is that the lengths of D and E are different.
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Further, our implementation accommodates string operations such as substring, indexOf,

with new simplification rules. Again, for presentation purposes, we shall not discuss these

detailed rules further.

Finally, we present the remainder of our rules: multi-reduct rules, which we call splitting

rules. Before proceeding, note that in the rules in Fig 4.3 and Fig 4.4, no disjunction is

introduced. The disjunctions are only introduced in the splitting rules, which we will present

in two parts: the unfolding (UNF) rules, and the variable-splitting (SPL) rules.

(SPL-1)
F ∧D · a = b · E∨min(|a|,|b|)

i=1 (F ∧D = b
|b|−i
0 ∧ E = a

|a|
i ) ∨ (F ∧ ∃X1 : D = b ·X1 ∧X1 · a = E)

(SPL-2)
F ∧D1 · E1 = a ·D2∨|a|−1

i=0 (F ∧D1 = ai0 ∧ E1 = a
|a|
i ·D2) ∨ (F ∧ ∃X1 : D1 = a ·X1 ∧X1·E1 = D2)

(SPL-3)
F ∧D1 · E1 = D2 · b∨1

i=|b|(F ∧ E1 = b
|b|
i ∧D1 = D2 · bi0) ∨ (F ∧ ∃X1 : E1 = X1 · b ∧D1 ·X1 = D2)

(UNF-?1)
F ∧D1 ·D2 = star(a,N) · E2

(F∧D1·D2=E2∧N=0) ∨ (F ∧ ∃M : D1 ·D2 = a · star(a,M) · E2 ∧N=M+1)

(UNF-?2)
F ∧D1 ·D2 = E1 · star(a,N)

(F∧D1·D2=E1∧N=0) ∨ (F ∧ ∃M : D1 ·D2 = E1 · star(a,M) · a ∧N=M+1)

Figure 4.5: Split rules and Unfold rules for star functions

An unfolding rule applies the definition of a recursive function, replacing the head with the

body that typically contains a number of disjuncts (cf. the replaceAll function presented in

Section 4.2). We describe such a rule using an unfolding rule schema (UNF) for a recursive

function E as follows:

(UNF)
F ∧D1 ·D2 = E ·D3∨
(F ∧D1 ·D2 = Ei ·D3)

E is defined as
∨
Ei

A variable-splitting rule is used to split a string variable into sub-variables. We shall describe

such a rule using a variable-splitting rule schema (SPL) as follows:

(SPL)
F ∧D1 ·D2 = E1 · E2

(F ∧D1=E1 ∧D2=E2) ∨ (F ∧ ∃Z : D1=E1·Z ∧ Z·D2=E2 ∧ length(Z)>0)

∨ (F ∧ ∃T : E1 = D1·T ∧D2 = T ·E2 ∧ length(T ) > 0)
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The specific instances of (SPL) and (UNF) rules used in this work are listed in Figure 4.5.

There are 3 split rules to deal with string equations and 2 unfold rules for star functions.

The notation aji denotes the substring of a from bound i to j.

We now discuss the relationship between the splitting rules and the issue of non-

termination. Intuitively, the aim of the splitting rules is to reduce/break the current formula

into “sub-formulas”, where the complexity is reduced. A problem arises when the rule re-

duces the current formula into sub-formulas, where the complexity is actually not reduced.

In other words, even though we have reduced the formula, we are in fact not any closer

in finding a satisfying solution nor in finding a proof for unsatisfiability. This is the main

reason for non-termination.

Let us now illustrate, in more detail, the issue of non-termination. We use Example 3,

a simplified version of Example 1. Here, non-termination comes from dealing with recursive

function star which is used to represent Kleene star regular expressions. We note that

both Example 3 and Example 1 address the same non-progression problem in dealing with

unbounded strings. Our purpose in choosing Example 3 to present is for simplicity.

Example 3. Recursive function star:

X = star(“a”, N) ∧X = Y1 · “b” · Z

Figure 4.6 summarizes the main steps of solving Example 3. (For simplicity, we ignore

existential variables.) Similarly to solving Example 1, here we also need to unfold the

definition of star(“a”, N) function and normalize the formula to DNF. An application of

the unfold rule (UNF-?1) would result in a disjunction of two reducts:

X=“” ∧X=Y1·“b”·Z and

X=“a”·star(“a”,M) ∧N=M+1 ∧X=Y1·“b”·Z

The first reduct leads to a contradiction:

(SUB)

X=“” ∧X=Y1·“b”·Z

(CON)

X=“” ∧ “”=Y1·“b”·Z

false

This contradiction appears in the tree depicted in Figure 4.6, but is hidden in the part of

the tree that was abbreviated away for brevity.
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(UNF-?1)

X = star(“a”, N) ∧X = Y1 · “b” · Z
...

(SUB)

X=“a”·star(“a”,M) ∧N=M+1 ∧X=Y1·“b”·Z

Y1·“b”·Z=“a”·star(“a”,M)∧N=M+1∧X=Y1·“b”·Z
(SPL-2)

Y1·“b”·Z=“a”·star(“a”,M)∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z
(SUB)

“a”·Y2·“b”·Z=“a”·star(“a”,M)∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z
(SIM)

Y2·“b”·Z=star(“a”,M) ∧ Y1=“a”·Y2 ∧N=M+1 ∧X=Y1·“b”·Z
(UNF-?1)

... Y2·“b”·Z=“a”·star(“a”, P )∧

(SPL-2)

M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z

Y2·“b”·Z=“a”·star(“a”, P )∧Y2=“a”·Y3∧

(SUB)

M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z

“a”·Y3·“b”·Z=“a”·star(“a”, P )∧Y2=“a”·Y3∧

(SIM)

M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z

Y3·“b”·Z=star(“a”, P )∧Y2=“a”·Y3∧

(UNF-?1)

M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z
...

Figure 4.6: Derivation Tree for Example 3

In the second reduct, by substituting X with Y1·“b”·Z, we introduce a new constraint

Y1·“b”·Z=“a”·star(“a”,M). Now the only way to proceed is to split Y1 into two parts: “a”

and Y2 (for brevity, we omitted the base case where Y1 = “”). After substituting Y1 with

“a”·Y2 and simplifying the formula, we obtain a new constraint: Y2·“b”·Z=star(“a”,M).

If we repeat this process of unfolding the definition of star function, clearly we will go into

an infinite loop.

4.4.2 Progressive Search Strategy

As mentioned earlier, the key idea to achieve progression is to prune away a subtree when we

are sure that a shorter solution can be found elsewhere. We first need to define a measure to

decide which solution is shorter. This measure is parameterized by a sequence of variables.

We use σ, τ to denote sequences.

Definition 4.4.3 (Lexical length of a solution). Given a formula F , let σ=(x1, x2, . . . , xn)

be a sequence of variables constructed from a non-empty subset of Var(F ). For each solution

α of F , i.e. α is an assignment [x1=a1, x2=a2, . . . , xn=an, . . . ], the lexical length of α is

defined as a n-tuple (length(a1), length(a2), . . . , length(an)). We use Lenσ(α) to denote

the lexical length of α w.r.t. the sequence σ.
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We now use a lexical order to sort the solution set of a formula F based on the lexical

length of each solution. If F has a solution then its minimum lexical length w.r.t. a

sequence σ, denoted by l(σ, F ), is defined as the lexical length of a minimal solution of F .

If F has no solution then its minimum lexical length is denoted by >. We assume that

∀σ, F : l(σ, F )≤>. We now can compare two arbitrary formulas based on their minimum

lexical length of solutions.

Definition 4.4.4 (Total order for formulas). Given two formulas F and G and let σ be

a sequence of variables constructed from a non-empty subset of the common variables of F

and G, a total order �σ is defined as follows:

F �σ G
def
= l(σ, F ) ≤ l(σ,G)

We define equality =σ and strict inequality≺σ in the obvious way. We now outline important

properties of ≺σ:

• [Prop-0]:

If F ⇒ G then for all sequence σ such that ∅ ⊂ Var(σ) ⊆ Var(F ) ∩ Var(G), we have

G �σ F

Proof. Since F ⇒ G, any solution of F will be a solution of G. Therefore, for any

sequence σ such that ∅ ⊂ Var(σ) ⊆ Var(F )∩ Var(G), the minimal solution of F w.r.t.

σ will be a solution of G. So for all such σ, l(σ,G) ≤ l(σ, F ). By Definition 4.4.4, for

all such σ, we have G �σ F .

• [Prop-1]:

If F ≡ (G ∨H) where Var(F ) ⊆ Var(H) and ∃σ : F ≺σ G then F =σ H

Proof. Since ∃σ : F ≺σ G, then F must be satisfiable. Now let α be a minimal solution

of F w.r.t. σ.

With such α, and since F ≺σ G, it follows that α is not a solution of G. Now, given

F≡(G ∨H), α must be a solution of H. This implies F ⊀σ H.

Further, since H ⇒ F , by [Prop-0], for all τ such that ∅ ⊂ Var(τ) ⊆ Var(F )∩Var(H),

we have F �τ H. Since ∅ ⊂ Var(σ) ⊆ Var(F )∩Var(G) ⊆ Var(F ) = Var(F )∩Var(H),

we have F �σ H.

Finally, all the above culminates into F =σ H.
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• [Prop-2]:

If (G ∨H)⇒ F and ∃σ : F =σ G then F =σ (G ∨H)

Proof. Let σ be such that F =σ G. Given (G ∨H) ⇒ F , by [Prop-0], for all τ such

that ∅ ⊂ Var(τ) ⊆ Var(F ) ∩ Var(G ∨H), we have F �τ (G ∨H). Since ∅ ⊂ Var(σ) ⊆

Var(F ) ∩ Var(G) ⊆ Var(F ) ∩ Var(G ∨H), this in turn implies F �σ (G ∨H).

Also, F =σ G implies F ⊀σ (G ∨H).

Thus, F =σ (G ∨H).

• [Prop-3]:

If ∃σ : F =σ G and τ is a prefix of σ then F =τ G

Proof. Let σ be such that F =σ G. Suppose l(τ, F ) is (i1, . . . , i|τ |). Then, because τ

is a prefix of σ, we have l(σ, F ) = (i1, . . . , i|τ |, j1, . . . , j|σ|−|τ |) for some j1, . . . , j|σ|−|τ |.

Since F =σ G, then l(σ,G) is (i1, . . . , i|τ |, j1, . . . , j|σ|−|τ |). It follows that l(τ,G) is

(i1, . . . , i|τ |). Therefore, F =τ G.

Among them, we want to direct the attention towards the third property. It is used to

ensure the soundness of the proposed method later. It states that if two formulas F and G

have the same minimum lexical length of solutions w.r.t. a sequence σ, then they also have

the same minimum lexical length of solutions w.r.t. a sequence τ , where τ is a prefix of σ.

Now we show how to prune a derivation subtree when we are sure that a solution with

shorter lexical length can be found elsewhere. We do this by augmenting the strategy already

described in Section 4.4.1 with a new step which enables us to prune the proof tree.

Definition 4.4.5 (Progressive Pruning). Let there be a derivation tree rooted at an input

formula I, and let τ be a sequence of all the variables of I. Let F be a formula labelling a

node in the tree. A set of prunable subtrees of F is a set of its descendants Gi such that

there exists a sequence σ constructed from all variables of F satisfying the two conditions:

• τ is a prefix of σ and

• F ≺σ Gi.

We then prune derivation subtrees rooted at formulas Gi.
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The first condition ensures that a minimal solution of a formula F w.r.t. a sequence of all

variables of F is also a minimal solution of F w.r.t. a sequence of all variables of the input

formula I (according to [Prop-3]). Meanwhile, the second condition ensures that whenever

we prune Gi, we still preserve a minimal solution of formula F w.r.t. a sequence of all of

the variables of F .

Input: I : Fml , τ : a sequence on Var(I)
Output: SAT/UNSAT

〈1〉 if solve(I, τ , ∅) return SAT else return UNSAT

function solve(H : Fml, σI: a sequence, γ: a list of pairs of a formula and a
sequence)
〈2〉 if (H ≡ false ) return false

〈3〉 if (there is no rule to apply) return true

〈4〉
∨
Gi ← applyRule(H) /* Apply a derivation rule */

〈5〉 Let Υ be the set of all the reducts Gi
〈6〉 foreach reduct G ∈ Υ do /* Choose G by following Z3 heuristics */
〈7〉 if (G contains a recursive term or a non-grounded concatenation)
〈8〉 if (∃(F, σ) ∈ γ s.t. F ≺σ G) return false /* PRUNE !!! */
〈9〉 Let σH be a sequence on Var(H) s.t. σI is a prefix of σH /* COND 1 */
〈10〉 γ ← γ ∪ 〈H,σH〉
〈11〉 endif
〈12〉 if solve(G, σI, γ) return true

〈13〉 if (G contains a recursive term or a non-grounded concatenation)
〈14〉 γ ← γ \ {H,σH}
〈15〉 endfor
〈16〉 return false

end function
Algorithm S3P: Progressive Search

We now present our algorithm as Algorithm S3P. Line 2 corresponds to the case when we

find a contradiction. In Line 6, we iterate over the set of sub-formulas; the ordering between

them is not important. (In fact, in our implementation, we simply follow the heuristics of

Z3.) Line 8 represents the key feature of our algorithm; it implements our pruning step (by

returning false). Line 9 prepares for the pruning of a descendant of the current formula H

(by ensuring that the first condition of Definition 4.4.5 is met).

Theorem 4.4.1 (Soundness). Given an input formula I, if Algorithm S3P

• returns SAT: then I is satisfiable;

• returns UNSAT: then I is unsatisfiable.
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Proof. We assume that:

• the standard search strategy represented by not employing the pruning step is sound,

and

• we employ a sound and complete integer theory solver.

In other words, we only need to prove the soundness of the pruning step. More specifically,

we need to prove the soundness of the return in line 8 of Algorithm S3P. In case I is

unsatisfiable, the pruning is trivially sound; otherwise, we proceed by proving that a minimal

solution of I, w.r.t. a sequence τ of all of its variables, is always preserved in the (remaining)

tree after a subtree is pruned.

Let F0 be a formula in the derivation tree, and σ be a sequence of all the variables of

F0. Let Fi(1≤i≤n) be other descendants of I, ie. not including F0, such that I≡
∨n
i=0 Fi.

Let Gj(0≤j≤m) be descendants of F0 such that F0≡
∨m
j=0Gj . Finally, let H1 ≡

∨n
i=1 Fi,

and H2 ≡
∨m
j=1Gj .

By the design our algorithm, specifically line 9, we have that τ is a prefix of σ. Now we

prove that

if F0 ≺σ G0, then I =τ (H1∨H2) (1)

Since F0 is a formula in the derivation tree, then F0 ⇒ I. Since Var(I) ⊆ Var(F ), by

[Prop-0], we have I �τ F0, which can be separated into two cases:

• Case I ≺τ F0. By [Prop-1], we have I =τ

∨n
i=1 Fi, ie. I =τ H1.

• Case I =τ F0. As F0 ≺σ G0, by [Prop-1], we have F0 =σ

∨m
i=1Gi, ie. F0 =σ H2. By

[Prop-3], we have F0 =τ H2. By transitivity, I =τ F0 ∧ F0 =τ H2 implies I =τ H2.

Since (H1∨H2)⇒ I, and by [Prop-2], we have that property (1) holds in these two cases.

It can be seen that the first condition of the pruning step is very important. It is used

in the second case of the above proof, in order to have the deduction from F0 =σ H2 to

F0 =τ H2. Suppose Var(τ) = {x1, .., xn}. The condition guarantees that if a minimal

solution of F0 w.r.t. σ is [x1 = a1, .., xn = an, y1 = b1, .., ym = bm], then a minimal solution

of F0 w.r.t. τ is [x1 = a1, .., xn = an]. Similarly, a minimal solution of H2 w.r.t. τ is also

[x1 = a1, .., xn = an]. As such, the deduction is correct.
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We now consider the completeness of Algorithm S3P. Before we can formalize this

property, we need to discuss the condition check in line 8. This check determines the lexical

order between two formulas, and is by no means a primitive operation. In fact, we do

not know if the check is, in general, decidable. Our completeness result below nevertheless

assumes that we have a decision procedure for this check. Later, in Section 4.5.1, we present

an implementation which, though not a decision procedure, is sound and practical. We follow

this up in Section 4.6 with an experimental evaluation.

Theorem 4.4.2 (Semi-Completeness). Suppose the given input formula I is satisfiable.

Then Algorithm S3P will return SAT, and produce a minimal solution w.r.t. some sequence

τ of all the variables of I.

Proof. We first prove that for every formula F in the derivation tree, Algorithm S3P will

terminate and apply a finite number of splitting rules for F . We assume it is clear that an

inifinite number of applications of rules (CON), (SUB) and (SIM) can only occur with an

infinite number of splitting rules.

If F is unsatisfiable then the progressive algorithm will definitely detect that I≺τF . As

such, it will return false in line 8 of Algorithm S3P. So there is no application of splitting

rules for F .

If F is satisfiable, we prove the following: for every instance of splitting rules, in each re-

cursive case, the lower bound of at least one string variable of the input formula is increased.

We refer to this as property (2).

We call variables of the input formula original variables. We will consider only the case

of the (SPL) rule; others have a similar proof.

The following (SPL) rule is triggered when a string variable is involved, as opposed to

a general string term.

G ∧X1 ·X2 = Y1 · Y2

(G ∧X1=Y1 ∧X2=Y2) ∨ (G ∧ ∃Z : X1 = Y1·Z ∧ Z·X2 = Y2 ∧ length(Z)>0)

∨(G ∧ ∃T : Y1 = X1·T ∧X2 = T ·Y2 ∧ length(T ) > 0)

Suppose X1, X2, Y1, Y2 are original variables in I. Because the first reduct formula above

does not introduce any new concatenation operation, we can consider this formula the “base
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case” while the other two are “recursive cases” where the recursive terms are concatena-

tions. In the second and third reduct formulas, the lower bounds of X1 and Y1 (resp.) are

increased. Each of these two cases introduces two new concatenations, that is Y1·Z,Z·X2,

and X1·T, T ·Y2. These 4 concatenations involve two new variables Z and T .

If the following applications of (SPL) rule are involved with either Y1, X2, X1, or Y2,

then property (2) continues to hold. Otherwise, if the following applications of (SPL) rule

are involved with either Z or T , then the increase of the lower bounds of those new variables

will lead to the increase of the lower bounds of the corresponding original variables. As such

property (2) holds for the (SPL) rule.

After a finite number of applications of splitting rules, suppose we have F ≡
∨
Hi. Be-

cause of property (2), for every reduct Hi that contains recursive term(s) (or non-grounded

concatenations), there exists an original variable X whose lower bound is greater than n,

where n is the length of X in l(τ, I). This means all of those reduct formulas have to be

discharged in line 8 of Algorithm S3P. In other words, there is no application of splitting

rules for Hi. So Algorithm S3P terminates.

We prove the second part of this theorem by contradiction. W.l.o.g. suppose Algo-

rithm S3P finds a solution in a formula F in the derivation tree rooted at I. Suppose it

is not a minimal solution of I w.r.t. a sequence τ of all of its variables. Because the pro-

gressive algorithm definitely detect that I ≺τ F , F has already been pruned in line 8 of

Algorithm S3P. This is clearly a contradiction.

4.5 Implementation

We first show how to implement the pruning step of our search algorithm. Then we present

the conflict clause learning for string theory, especially in the setting of Z3.

4.5.1 The Pruning Step

To implement the pruning step of the Algorithm S3P, we have to keep track of the set γ which

contains pairs of the current formula H and some sequence σH of all of the variables of H.

When backtracking, such pair will be removed from γ correspondingly. Let τ be the sequence

of all of the variables of the input formula I. The sequence σH is constructed by concatenating

the sequence τ with additional variables from Var(H). Specifically, σH = τ � δ where
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Var(δ) = Var(H) \ Var(τ). For Example 3, after the first unfolding:

τ is (N,X, Y1, Z) and γ is {(X = star(“a”, N) ∧X = Y1 · “b” · Z, τ)}.

We now show how to implement the condition check in line 8 of Algorithm S3P. Suppose

the current formula is G, if

• we find a pair (F , σ) in γ and a substitution θ such that Gθ ⇒ F , and

• the substitution θ is a progressive substitution (as defined in Definition 4.5.1 below)

w.r.t. a sequence σ.

then the condition check is satisfied. Obviously, θ must not introduce new conflicts in Gθ,

which prevents Gθ from being false trivially.

Definition 4.5.1 (A progressive substitution). Let G be a formula, and σ be a sequence

of subset variables of G. A substitution θ is progressive w.r.t. a sequence σ if for every

solution α of G, there exists a solution β of Gθ such that Lenσ(β) < Lenσ(α).

For Example 3, in the second unfolding, the current formula is

G ≡ Y2·“b”·Z=star(“a”,M) ∧ Y1=“a”·Y2 ∧N=M+1 ∧X=Y1·“b”·Z

Obviously, there exists F ≡ X = star(“a”, N) ∧ X = Y1 · “b” · Z and a substitution θ =

[M/N,N/N+1, X/“a”·X,Y1/“a”·Y1, Y2/Y1, Z/Z], such that the implication check Gθ ⇒ F

succeeds. Furthermore, the substitution θ is progressive w.r.t. the sequence τ , that is

(N,X, Y1, Z). This is because if length(N) = k in a solution α (if any) of G, we have

length(M) = k − 1. Then, we have length(N) = k − 1 in the corresponding solution

α′ of Gθ. Because Lenτ function returns a 4-tuple whose first element is length(N), θ is

progressive. As a result, we can stop the second unfolding.

Lemma 4.5.1. The implementation of the pruning step is sound

Proof. Let G be the current formula and F , σ, θ be such that the condition check is satisfied.

According to the construction of σ, the sequence of additional variables of a formula F follows

the variables of the input formula. Thus, the first condition of the pruning step is satisfied.

For the second condition, we already know that G is a descendant of F . We now prove that

F ≺σ G.
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By Definition 4.5.1, because θ is progressive, there exists a solution β of Gθ such that

Lenσ(β) < l(σ,G). Next, because the implication check Gθ ⇒ F succeeds, β is also a

solution of F , which means l(σ, F ) ≤ Lenσ(β). By transitivity, we have l(σ, F ) < l(σ,G).

In short, we have F ≺σ G.

4.5.2 Conflict Clause Learning

We present our conflict clause learning technique for string theory, with the focus on the

case when non-progression is detected. Specifically, in the implementation of the pruning

step, suppose there exists (F, σ) in γ and a substitution θ such that Gθ ⇒ F and θ is

progressive w.r.t. σ. A corollary of Lemma 4.5.1 is that we have F ≺σ G (see the proof

of Lemma 4.5.1). Now, in addition to returning false as in line 8 of Algorithm S3P, we

also mark Ĝ as a possible conflict clause. We derive Ĝ from G by removing all equations in

solved form which is defined for both string and integer theories as below. If later we can

not find any solution in solving F , then we can conclude F is unsatisfiable and produce a

conflict clause Ĝ. The soundness of this learning is stated in Lemma 4.5.2 and Lemma 4.5.3.

Definition 4.5.2 (String Solved Form). A string equation is in solved form if it is in the

form of X=f(Y1, ..., Yn, a1, ..., am), where X ∈ Vstr, Y1, ..., Yn ∈ Vstr, a1, ..., an ∈ Cstr, X

6∈ {Y1, ..., Yn}, and f is a non-recursive function.

For example, X=concat(Y,Z) is in solved form. X=concat(Y, concat(Y1, Y2)) can be

rewritten into two formulas X=concat(Y,Z) and Z=concat(Y1, Y2), which are both in

solved form. Similarly, we can define a solved form in integer theory:

Definition 4.5.3 (Integer Solved Form). An equation is in solved form if it is in the form

of M=g(N1, .., Nn, p1, ..., pm), where M∈Vint, V1, .., Vn∈Vint ∪ Vstr, p1, ..., pm∈Cint ∪ Cstr,

M 6∈ {N1, ..., Nn}, and g is a function.

Now, suppose some formula G contains an equation X=f(· · · ) in solved form, we are able to

eliminate variable X by substituting X with f(· · · ) in G. To obtain Ĝ, we need to remove

all equations in solved form from G. The purpose of deriving Ĝ is to obtain the core reason

for pruning G, which helps us to extract a smaller unsatisfiable core for the input formula.

For Example 3, G is Y2·“b”·Z = star(“a”,M) ∧ Y1=“a”·Y2 ∧ N=M+1 ∧ X=Y1·“b”·Z.

So we have 3 equations Y1=“a”·Y2, N=M+1, and X=Y1·“b”·Z which are in solved form.

Therefore, we mark Ĝ ≡ Y2 · “b” · Z = star(“a”,M) as a possible conflict clause. Later,
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when we can decide the unsatisfiability of the input formula, based on the implication

graph, we can trace back to extract an unsat core for the input formula. Specifically, it is

X = star(“a”, N) ∧X = Y1 · “b” · Z.

Lemma 4.5.2. Suppose the pruning condition check is applied for specific formulas F and

G. Then F can be written into the form G∨Gr and the following holds: if Gr is unsatisfiable,

F is unsatisfiable.

Proof. Similarly to the proof of Lemma 4.5.1, we can prove that F ≺σ G. Also, by [Prop-1],

we have F =σ Gr. Therefore, if Gr is unsatisfiable, F is unsatisfiable.

Lemma 4.5.3. Ĝ is satisfiable iff G is satisfiable.

Proof. This lemma holds by construction (of Ĝ).

Now we present the detailed implementation of obtaining Ĝ in Z3, given that Z3 manages

theory terms via its congruence closure engine. First, we give an overview on how Z3 builds

its equivalence classes. Given an equation, its two sides will be represented as two nodes

in an equivalence class. For Example 3, since G is Y2·“b”·Z = star(“a”,M) ∧ Y1=“a”·Y2 ∧

N=M+1 ∧X=Y1·“b”·Z, we have 4 equivalence classes as follows:

• X , Y1·“b”·Z

• Y2·“b”·Z , star(“a”,M)

• Y1 , “a”·Y2

• N , M + 1

Note that given a node e representing a term Q, we are able to access all nodes representing

terms that take term Q as their parameters (e.g., for string term D and E, we can access

the nodes representing length(D), concat(D,E)). We call the later parent nodes of e.

There are three steps to remove an equation V=f(· · · ) in solved form. First, we mark

the node representing variable V . A node e is marked when:

• it represents a single variable V (V can be either a string variable or an integer

variable),

• the size of its equivalence class is greater than 1,
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• its parent nodes are not in the same equivalence class as e, and

• not all of remaining nodes in the equivalence class of e contain recursive functions.

Second, we substitute the value of all marked nodes in their parent nodes with the value of

another node in the equivalence classes of the marked nodes. Finally, we need to traverse

all unmarked nodes in the equivalence classes to create a conjunction of all equations. For

Example 3, according to above conditions, nodes representing X, Y1, and N will be marked

in their corresponding equivalence classes. Then, we can traverse all unmarked nodes to

obtain the formula Ĝ ≡ Y2·“b”·Z=star(“a”,M).

4.6 Evaluation

We implemented our algorithm into S3 [Trinh et al., 2014] which itself was built on top of

the Z3 framework [De Moura and Bjørner, 2008b]. Our solver is called S3P which stands for

Progressive S3. To evaluate our solver, we conduct two case studies which involve practical

benchmark constraints generated from testing JavaScript web applications. All experiments

are run on a 3.2GHz machine with 8GB memory.

In the first case study, we used a large and popular set of benchmark constraints gener-

ated using the Kudzu symbolic execution framework [Saxena et al., 2010]. State-of-the-art

string solvers are also evaluated using this benchmark suite, making it convenient for us to

provide detailed comparisons on the applicability and efficiency of our new solver.

Note that the constraints in Kudzu’s benchmarks have already been preprocessed and/or

over-simplified. In particular, the string lengths have been bounded and recursive string

function such as replaceAll have been transformed to primitive operators so that the

underlying solver of Kudzu [Saxena et al., 2010] can handle. Because strong support for

the replaceAll function is critical for enhancing security analysis of web applications, we

conduct a second case study, of a smaller scale, but with special focus on the replaceAll

function. The main purpose is to show that S3P is more applicable than existing solvers in

such domain applications.

Kudzu Benchmarks: In this case study, we use the set of constraints which can be

downloaded at: http://webblaze.cs.berkeley.edu/2010/kaluza. They were generated using

Kudzu [Saxena et al., 2010], a symbolic execution framework for JavaScript, when testing
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18 subject applications consisting of popular AJAX applications. The generated constraints

are of boolean, integer and string types. Integer constraints also include ones on length of

string variables, while string constraints include string equations, membership predicates. To

compare with other solvers, we choose to use the SMT-format version of Kaluza benchmark

as provided in [Liang et al., 2014].

This case study consists of two parts. The first part is to evaluate our non-progression

detection technique. Table 4.1 shows the result of solving Kudzu constraints by S3P, com-

pared with 4 state-of-the-art solvers: Norn (v1.0), CVC4 (v1.4), S3 (v17092015), Z3-str2

(v1.0.0). While Norn is automata-based string solver, the others, including S3P, are word-

based string solvers, in which string is treated as a basic type.

Table 4.1: Constraints generated by Kudzu

Norn CVC4 S3 Z3-str2 S3P
Sat 27068 33227 34961 34931 35270

Unsat 11561 11625 11799 11799 12014
Unk 0 0 0 524 0
Error 6187 0 0 0 0

TO (20s) 2468 2432 524 30 0

Time (s) 178960 50346 16547 6309 6972

It can be seen that automata-based solvers such as Norn are not good at handling constraints

generated from concolic testing of web applications. This is because such constraints are

usually of multi-sorted theory, including both string constraints and integer constraints,

such as those coming from the string lengths.

In fact, for the case of Kudzu constraints, all word-based string solvers dominate Norn.

Not counting S3P, Z3-str2 is the solver that produces the best result. Z3-str2 also terminates

on 524 benchmarks where Norn, CVC4 and S3 all time out. Specifically, Z3-str2 terminates

with an Unknown answer if the input formula contains the so-called “overlapping variables”

[Zheng et al., 2015].

Compared with Z3-str2, S3P can in fact decide the satisfiability of these 524 bench-

marks. S3P achieves this by employing the proposed technique for non-progression detec-

tion. Specifically,

• if an input formula is unsatisfiable, S3P is able to decide the unsatisfiability of that

formula. For example, it can decide the unsatisfiability of 215 input formulas in those

524 benchmarks.
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• otherwise, being able to effectively prune away non-progressive paths, S3P has a chance

of finding solutions in other search branches. As such, the remaining of those 524

benchmarks are decided as satisfiable with the correct models.

In fact, for each of the 35270 benchmarks which S3P declares to be satisfiable, we conjoin the

model generated by S3P with the original input formula and pass it to the other 4 solvers.

As a result, all 4 solvers can now decide, with an answer confirming the satisfiability, even

on those benchmarks they could not decide before. In other words, all models produced by

S3P are cross-checked and all the solvers reach a consensus for every single case.

Table 4.2: Usefulness of unsatisfiable cores for Kudzu framework

# unsat files 12014
S3P Time 1129s
S3P # unsat cores 59
with % skipped 99.5

unsat core Time 11s

In the second part of this case study, we focus on benchmarks which are unsatisfiable,

in order to demonstrate our conflict clause learning technique. More specifically, we will

extract the unsatisfiable cores from those input constraints, and show the potential useful-

ness of the cores in a dynamic symbolic execution (DSE) framework (e.g. Kudzu). To do

this, we compare the result of solving 12014 unsatisfiable formulas in Kudzu benchmarks by

two versions of S3P. The first version (S3P) will solve each formula independently. In con-

trast, when deciding a formula as unsatisfiable, the second version will cache its unsat core.

Subsequently, it will attempt to skip a formula if the formula is discharged by some cached

unsat core. The result is summarized in Table 4.2. There are two important observations:

• By extracting and caching the unsatisfiable cores of 59 formulas, we can skip checking

the satisfiability of the remaining formulas (99.5%) (which in fact represent infeasible

paths to the attack against the sink). Overall, we achieve the speedup of about 102x

faster.

• Unsatisfiable cores are also useful for validating/debugging the result. By inspecting

a much smaller number of constraints compared to the original ones, we are able to

validate the final result. For example, we are able to confirm that all unsatisfiable

answers are correct by inspecting them manually.
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Jalangi Benchmarks: This second case study is to focus on the replaceAll string func-

tion. As such, we collect constraints generated by testing web applications using the concolic

tester in Jalangi framework [Sen et al., 2013], and do not make any preprocessing with those

constraints. These applications are annex, tenframe, calculator, go, and shopping. Note

that all of them are not vulnerable to XSS attacks.

Let us first present the set-up to collect this set of constraint benchmarks. For each web

application, we choose a sink point, that is innerHTML. Then we symbolically execute paths

from a source to the sink. These path constraints will be combined with attack specifications

at the sink. The resulting formulas are sent to a constraint solver.

Table 4.3: Constraints generated by Jalangi

# benchmarks # constraints # replaceAll operation Time of S3P
48 624 96 143.7 s

Table 4.3 summarizes the statistics of those formulas, along with the running time of S3P.

In 48 benchmarks, there are 624 constraints and 96 constraints are involved in replaceAll

operation. So the percentage of replaceAll operation is about 15%.

More importantly, replaceAll operation appears in all benchmarks. The reason is

that after a source point, a web application usually provides some sanitizing mechanism,

for example, by replacing all “<” with “&lt; ” and “>” with “&gt; ”. As such, the path

constraints usually involve the replaceAll function. For a concrete example, after sym-

bolically executing the program, a DSE framework will combine the path constraints with

the specifications for attacks, to create queries for the constraint solver. A specification for

innerHTML sink can be all the strings that contain “ < script”. Then a simplified example

of a common pattern is:

input1=replaceAll(input, “<”, “&lt; ”)∧ input2=replaceAll(input1, “>”, “&gt; ”) ∧

output=input2 · “</br>” ∧ contains(output, “<script”)

Given that Z3-str2, CVC4, and Norn cannot deal with replaceAll operation, the only

work which is comparable in term of the expressiveness as our solver, is S3. However, S3

timeouts for all of those formulas because it goes into infinite loops (similarly to what we have

shown in Section 4.2). In contrast, S3P can decide the unsatisfiability of all benchmarks.

Since S3P is the only solver that is applicable in those constraints (which are generated from

testing web applications), we believe it will make a remarkable contribution to ensuring the

security of web applications.
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4.7 Related Work

There is a vast literature on the problem of string solving. Practical methods for solving

string equations can loosely be divided into bounded and unbounded methods. Bounded

methods (e.g., HAMPI [Kiezun et al., 2009a], CFGAnalyzer [Axelsson et al., 2008], and

[He et al., 2013]) often assume fixed length string variables, then treat the problem as

a normal constraint satisfaction problem (CSP). These methods can be quite efficient in

finding satisfying assignments and often can express a wider range of constraints than the

unbounded methods. However, as also identified in [Saxena et al., 2010], there is still a big

gap in order to apply them to constraints arising from the analysis of web applications.

To reason about feasibility of a symbolic execution path from high-level programs, of

which string constraints are involved, one approach [Saxena et al., 2010; Bjørner et al.,

2009] is to proceed by first enumerating concrete length values, before encoding strings

into bit-vectors. In a similar manner, [Redelinghuys et al., 2012] addresses multiple types

of constraints for Java PathFinder. Though this approach can handle many operators, it

provides limited support for replace, requiring the result and arguments to be concrete.

Furthermore, it does not handle regular expressions. In summary, all of them have similar

limitations such as performance [Trinh et al., 2014].

Unbounded methods are often built upon the theory of automata or regular languages.

We will be brief and mention a few notable works. Java String Analyzer (JSA) [Christensen

et al., 2003] applies static analysis to model flow graphs of Java programs in order to

capture dependencies among string variables. A finite automata is then derived to constrain

possible string values. The work [Shannon et al., 2009] used finite state machines (FSMs)

for abstracting strings during symbolic execution of Java programs. They handle a few core

methods in the java.lang.String class, and some other related classes. They partially

integrate a numeric constraint solver. For instance, string operations which return integers,

such as indexOf, trigger case-splits over all possible return values. A recent work [Aydin

et al., 2015] provides an automata-based technique for solving string constraints and a

method for counting the number of solutions to such constraints. In addition, string solver

Norn [Abdulla et al., 2014; Abdulla et al., 2015] is also based on automata techniques. They

have limited or no support for replace operations.

Using automata and/or regular language representations potentially enables the reason-

ing of infinite strings and regular expressions. However, most of existing approaches have
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difficulties in handling string operations related to integers such as length, let alone other

high-level operations addressed in this work. More importantly, to assist web application

analysis, it is necessary to reason about both string and non-string behavior together. It

is not clear how to adapt such techniques for the purpose, given that they do not provide

native support for constraints of the type integer.

Most of recent works on string solving are based on unbounded methods with string as

a primitive data type. Examples are Z3-str [Zheng et al., 2013], CVC4 [Liang et al., 2014;

Liang et al., 2015; Liang et al., 2016; Barrett et al., 2016], S3 [Trinh et al., 2014], Z3-

str2 [Zheng et al., 2015]. However, none of them addresses the non-termination issues

in string solving as in this work. Though in [Zheng et al., 2015], the authors address

non-termination in splitting overlapping string variables, they currently can not decide the

satisfiability of such formulas. In contrast, we generalize common non-termination issues

that appear in solving string constraints generated from reasoning about web applications.

Along with that is a progressive algorithm which we believe is applicable to not just S3, but

also other solvers in this family of word-based string solvers.

4.8 Conclusion

This work presents a progressive algorithm for solving string constraints for the intended

purpose of analyzing practical web applications. Its main feature is its ability to handle

the termination problem when unfolding recursive definitions which define the constraints.

This, together with another feature of conflict clause learning, were demonstrated to show

usefulness in pruning the search space and new levels of results in Javascript benchmarks

arising from web applications. Finally, because our algorithm deals with recursive definitions

in a somewhat general manner, we believe it can be extended to support reasoning about

unbounded data structures, for example heap-allocated data structures.
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Inductive Reasoning

In Chapter 2 and Chapter 3, we have discussed lazy reasoning techniques for entailment

proving and string solving respectively. The limitation of these techniques is that they do

not address the non-termination issues. This motivates the introduction of progressive rea-

soning for string solving in Chapter 4, and inductive reasoning for entailment proving in this

chapter. Specifically, we now propose a general proof method for recursive predicates that

includes reasoning by induction. Our method helps us to automate the verification of a large

class of heap-manipulating programs. We have evaluated our prototype implementation on

a comprehensive set of benchmarks, including both academic algorithms and real programs.

5.1 Introduction

We consider the automated verification of imperative programs with emphasis on reasoning

about the functional correctness of dynamically manipulated data structures. The dynam-

ically modified heap poses a big challenge for logical methods. This is because typical

correctness properties often require combinations of structure, data, and separation.

Automated proofs of data structure properties — usually formalized using Separation

Logic (or the alike) and extended with user-defined recursive predicates — “rely on decidable

sub-classes together with the corresponding proof systems based on (un)folding strategies

for recursive definitions” [Navarro and Rybalchenko, 2011]. Informally, in the regard of

handling recursive predicates, the state-of-the-art [Chin et al., 2012; Madhusudan et al.,

2012; Qiu et al., 2013; Piskac et al., 2013; Pek et al., 2014], to name a few, collectively called

unfold-and-match (U+M) paradigm, employ the basic but systematic transformation steps

of folding and unfolding the rules.
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A proof, using U+M, succeeds when we find successive applications of these transfor-

mation steps that produce a final formula which is obviously provable. This usually means

that either (1) there is no recursive predicate in the RHS of the proof obligation and a direct

proof can be achieved by consulting a generic smt solver; or (2) no special consideration

is needed on any occurrence of a predicate appearing in the final formula. For example, if

p(ũ) ∧ · · · |= p(ṽ) is the formula, then this is obviously provable if ũ and ṽ were unifiable

(under an appropriate theory governing the meaning of the expressions ũ and ṽ). In other

words, we have performed “formula abstraction” [Madhusudan et al., 2012] by treating the

recursively defined term p() as uninterpreted.

A key feature that is missing from the U+M methodology is the ability to prove by

induction, which is often required in verification of practical examples [Berdine et al., 2005].

Without inductive reasoning, U+M (folding/unfolding together with formula abstraction)

cannot handle proof obligations involving unmatchable predicates. Specifically, in such obli-

gations, there exists a recursively defined predicate in the RHS which cannot be transformed,

via folding/unfolding, to one that is unifiable with some predicate in the LHS.

As a concrete example, consider the following definitions of list and list of zero numbers:

vlist(x)
def
= x=null ∧ emp
| (x7→ , t) * vlist(t)

zero list(x)
def
= x=null ∧ emp
| (x7→0, t) * zero list(t)

In Fig. 5.1, we present a partial proof that a list of zero elements is a list. First, by unfolding

the LHS, the original proof obligation is resolved into (i) and (ii). The first sub-obligation

can be easily discharged by unfolding the RHS. (It is clear that U+M is inadequate for

this proof. This is because no matter how we apply folding/unfolding, there still exists a

predicate vlist in the RHS, which cannot be matched with the predicate zero list in the LHS.)

(left-unfold)

(right-unfold)

(obvious)
True

x=null ∧ emp |= x=null ∧ emp

x=null ∧ emp |= vlist(x) (i) (x7→0, t)∗ zero list(t) |= vlist(x) (ii)

zero list(x) |= vlist(x)

Figure 5.1: Partial Proof Tree for zero list(x) |= vlist(x)

Now let us consider the original proof obligation zero list(x) |= vlist(x) as an induction

hypothesis. This justifies an induction step comprising a transformation of (ii) into a simpler
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(left-unfold)

(right-unfold)

(obvious)
True

x=null ∧ emp |= x=null ∧ emp

x=null ∧ emp |=zero list(x) (1) (x7→ , t)∗ vlist(t) |=zero list(x) (2)

vlist(x) |=zero list(x)

Figure 5.2: Partial Proof Tree for vlist(x) |= zero list(x)

obligation, as follows: weaken the LHS by replacing zero list(t) with vlist(t), and obtain the

new proof obligation (iii). It is now easy to prove (iii) by unfolding the RHS, followed by

substituting z by t. All the above steps are summarized below, where LEFT-WEAKEN

denotes the transformation above.

(left-weaken)

(right-unfold)

(substitution)

(obvious)
True

(x 7→0, t)∗ vlist(t) |= (x7→0, t)∗ vlist(t)

(x 7→0, t)∗ vlist(t) |= (x7→0, z)∗ vlist(z)

(x 7→0, t)∗ vlist(t) |= vlist(x) (iii)

(x7→0, t)∗ zero list(t) |= vlist(x) (ii)

While the usefulness of having such a step is very clear, the conditions for its correct ap-

plication is not obvious. To see this, let us use the same approach now but to prove that a

list is also a list of zero elements, something that is clearly false. See Fig. 5.2. We proceed

similarly as in the previous proof:

(right-strengthen)

(right-unfold)

(substitution)

(obvious)
True

(x7→ , t)∗ vlist(t) |= (x7→ , t)∗ vlist(t)

(x7→ , t)∗ vlist(t) |= (x7→ , z)∗ vlist(z)

(x 7→ , t)∗ vlist(t) |= vlist(x) (3)

(x7→ , t)∗ vlist(t) |=zero list(x) (2)

Once again, we use the original proof obligation vlist(t) |= zero list(t) as an induction hy-

pothesis, and this time, we transform the proof obligation (2) into (3): strengthen the RHS

by replacing zero list(x) with vlist(x). Call this transformation RIGHT-STRENGTHEN.

Clearly (3) is easily proven true, as shown.

This erroneous proof arises from a form of circular reasoning. Our challenge therefore

is how to use induction correctly, as in Fig. 5.1, but avoid pitfalls such as in Fig. 5.2.
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In this work, we propose a general proof method for recursive predicates that includes

reasoning by induction. Our method is able to use dynamically generated formulas as

induction hypotheses, and to enforce an anti-circular condition so that any application of

an induction step is guaranteed to be correct. We shall see that our method is very different

from that in traditional theorem proving systems where, after having chosen an induction

tactic, the system will then search for appropriate induction variable(s) with a well-founded

measure and appropriate induction hypotheses. In our framework, the predicates are defined

by general recursive rules, without any explicit restriction to any well-founded orderings, and

includes a domain of discourse that captures the mutable heap and properties of separation.

More specifically:

• We automatically and efficiently discharge all commonly-used lemmas, extracted from

a number of benchmarks used by other systems. These systems cannot automatically

discharge such lemmas, but simply accept them as true facts.

• We demonstrate, in a different set of benchmarks in Section 5.7, that with our proof

method, the common usage of lemmas can be avoided. This is because the properties of

interest are covered by our method. In contrast, these properties cannot be discharged

by the other systems without using lemmas.

The impact of this is twofold. First, it means that for proving practical (but small)

programs, the users are now free from the burden of providing custom user-defined

lemmas. Second, it significantly boosts up the performance, since lemma applications,

coupled with folding/unfolding, often induce a large search space.

• The proposed proof method gets us back the power of compositional reasoning in

dealing with user-defined recursive predicates. While we have not been able to identify

precisely the class where our proof method would be effective1; we do believe that its

potential impact is huge. One important subclass that we can handle effectively is

when both the antecedent and the consequent refer to the same structural shape but

the antecedent simply makes a stronger statement about the values in the structure

(e.g., to prove that a sorted list is also a list, an AVL tree is also a binary search tree,

a list consists of all data values 999 is one that has all positive data, etc.).

1This is as hard as identifying the class where an invariant discovery technique guarantees to work.
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In summary, we extend significantly the state-of-the-art proof methods, namely U+M based

methods. We are able to prove relationships between general predicates of arbitrary arity,

even when recursive definitions and the code are structurally dissimilar. In Section 5.2, we

will motivate the need for our extension in more detail. Sections 5.3 and 5.4 contain the

technical core. In Section 5.7, we evaluated our prototype implementation on a compre-

hensive set of benchmarks, including both academic algorithms and real programs. The

benchmarks are collected from existing systems [Nguyen and Chin, 2008; Chin et al., 2012;

Madhusudan et al., 2012; Qiu et al., 2013; Brotherston et al., 2012], those considered as the

state-of-the-art for the purpose of proving user-defined recursive data-structure properties in

imperative languages. Section 5.8 discusses related work in detail and Section 5.9 concludes.

5.2 Motivation

In this Section, we motivate the need for inductive reasoning in proving user-defined recursive

data-structure properties.

We first highlight scenarios, which are ubiquitous in realistic programs, and often lead

to proof obligations involving unmatchable predicates. Later, we discuss the restriction of

U+M paradigm in dealing with such proof obligations.

5.2.1 Scenario 1: Recursion Divergence

when the “recursion” in the recursive rules is structurally dissimilar to the program code.

This happens often with iterative programs and when the predicates are not unary, i.e., they

relate two or more pointer variables, from which the program code traverse/manipulate the

data structure in directions different from the definition.

elm = malloc()

assume(tail!=null)

elm.next = null

tail.next = elm

tail = elm

(a) Insert Tail

assume(head!=null)

assume(head!=tail)

elm = head

head = head.next

free(elm)

(b) Remove Head

l̂s(x,y)
def
= x=y ∧ emp

| x6=y ∧ (x7→t) * l̂s(t,y)
(c) List Segment Definition

Figure 5.3: Implementation of a Queue
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To illustrate, Fig. 5.3 shows the implementation of a queue using list segment, extracted

from OpenBSD/queue.h, an open source program. Two operations of interest: (1) adding

a new element into the end of a non-empty queue (enqueue, Fig. 5.3(a)); (2) deleting an

element at the beginning of a non-empty queue (dequeue, Fig. 5.3(b)). A simple property we

want to prove is that given a list segment representing a non-empty queue at the beginning,

after each operation, we still get back a list segment.

In the two use cases, the “moving pointers” are necessary to recurse differently: the

tail is moved in enqueue while the head is moved in dequeue. Consequently, no matter

how we define list segments2, where head and tail are the two pointers, at least one use

case would recurse differently from the definition, thus exhibit the “recursion divergence”

scenario and lead to a proof obligation involving unmatchable predicates. More concretely,

if list segment is defined as in Fig. 5.3(c), the enqueue operation would lead to an obligation

that is impossible for U+M to prove.

5.2.2 Scenario 2: Generalization of Predicate

when the predicate describing a loop invariant or a function needs to be used later to

prove a weaker property.

This happens in almost all realistic programs. The reason is because verification of functional

correctness is performed modularly. More specifically, given the specifications for functions

and invariants for loops, we can first perform local reasoning before composing the whole

proof for the program using, in the context of Separation Logic, the frame rule [Reynolds,

2003]. It can be seen that, given such divide-and-conquer strategy, at the boundaries between

local code fragments, we would need “generalization of predicate”. A particularly important

relationship between predicates, at the boundary point, is simply that one (the consequent)

is more general than the other (the antecedent), representing a valid abstraction step.

pre-condition: Φ
func a()

func b()

post-condition: Ψ
(a) Multiple Function Calls

pre-condition: Φ
loop: invariant I

post-condition: Ψ
(b) Iterative Loops

Figure 5.4: Modular Program Reasoning

2Typically, list segment can be defined in two ways: the moving pointer is either the left one or the right
one.
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Consider the boundaries between function calls, illustrated by the pattern in Fig. 5.4(a).

We start with the pre-condition Φ, calling function func a and then func b. We then need

to establish the post-condition Ψ. In traditional forward reasoning, we will write local

(and consistent) specifications for func a and func b such that: (1) Φ is stronger than

the pre-condition of func a; (2) the post-condition of func a is stronger than the pre-

condition of func b; (3) the post-condition of func b is stronger than Ψ. It is hard, if

not impossible, to ensure that for each pair (out of three) identified above, the antecedent

and the consequent are constructed from matchable predicates. As a concrete example, in

bubblesort program [Chin et al., 2012], a boundary between two function calls requires us

to prove that a sorted linked-list is also a linked-list.

We further argue that in software development, code reuse is often desired. The speci-

fication of a function, especially when it is a library function, should (or must) be relatively

independent of the context where the function is plugged in. In each context, we might

want to establish arbitrarily different properties, as long as they are weaker than what the

function can guarantee. In such cases, it is almost certain that we will have proof obligations

involving unmatchable predicates.

Now consider the boundaries caused by loops. In iterative algorithms, the loop invari-

ants must be consistent with the code, and yet these invariants are only used later to prove

a property often not specified using the identical predicates of the invariants. In the pattern

shown by Fig. 5.4(b), this means that the proof obligations relating the pre-condition Φ

to the invariant I and I to post-condition Ψ often involve unmatchable predicates. For

example, programs manipulate lists usually have loops of which the invariants need to talk

about list segments. Assume that (acyclic) linked-list is defined as below:

list(x)
def
= x=null ∧ emp
| (x7→t) * list(t)

Though l̂s and list are closely related, U+M can prove neither of the following obligations:

l̂s(x, null) |= list(x) (5.2.1)

l̂s(x, y) ∗ list(y) |= list(x) (5.2.2)

In summary, the above discussion connects to a serious issue in software development and

verification: without the ability to relate predicates — when they are unmatchable —

compositional reasoning is seriously hampered.
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5.2.3 On Unfold-and-Match (U+M) Paradigm

As stated in Section 5.1, the dominating technique to manipulate user-defined recursive

predicates is to employ the basic transformation steps of folding and unfolding the rules,

together with formula abstraction, i.e., the U+M paradigm.

The main challenge of the U+M paradigm is clearly how to systematically search for such

sequences of fold/unfold transformations. We believe recent works [Madhusudan et al., 2012;

Qiu et al., 2013], we shall call the dryad works, have brought the U+M to a new level of

automation. The key technical step is to use the program statements in order to guide the

sequence of fold/unfold steps of the recursive rules which define the predicates of interest.

For example, assume the definition for list segment l̂s in Fig. 5.3(c) and the code fragment

in Fig. 5.5(a).

l̂s(x,y)
assume(x != null)

z = x.next

l̂s(z,y)
(a) Code Fragment 1

l̂s(x,y) ∗ (y7→ )

z = y.next

l̂s(x,z)
(b) Code Fragment 2

Figure 5.5: U+M with List Segments

Here we want to prove that given l̂s(x,y) at the beginning, we should have l̂s(z,y)

at the end. Since the code touches the “footprint” of x (second statement), it directs the

unfolding of the predicate l̂s(x,y) containing x, to expose x 6= y ∧ (x 7→t) ∗ l̂s(t,y). The

consequent can then be established via a simple matching from variable z to t.

Now we consider the code fragment in Fig. 5.5(b): instead of moving one position away

from x, we move one away from y. To be convinced that U+M, however, cannot work,

it suffices to see that unfolding/folding of l̂s does not change the second argument of the

predicate l̂s. Therefore, regardless of the unfolding/folding sequence, the arguments y on

the LHS and z on the RHS would maintain and can never be matched satisfactorily.

The example in Fig. 5.5(b) exhibits the “recursion divergence” scenario mentioned above

and ultimately is about relating two possible definitions of list segment (recursing either on

the left or on the right pointer), which U+M fundamentally cannot handle. We will revisit

this example in later Sections.

On Using Axioms and Lemmas: For systems that support general user-defined predi-

cates [Chin et al., 2012; Qiu et al., 2013], they get around the limitation of U+M via the use,
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without proof, of additional user-provided “lemmas” (the corresponding term used in [Qiu

et al., 2013] is “axioms”). As a matter of fact, in the viewpoint of proof method, it is unac-

ceptable that in order to prove more programs, we continually add in more custom lemmas

to facilitate the proof system.

5.3 The Assertion Language CLP (H)

The explicit naming of heaps has emerged naturally in several extensions of Separation

Logic (SL) as an aid to practical program verification. Reynolds conjectured that referring

explicitly to the current heap in specifications would allow better handles on data structures

with sharing [Reynolds, 2003]. In this vein, [Duck et al., 2013] extends Hoare Logic with

explicit heaps. This extension allows for strongest post conditions, and is therefore suitable

for “practical program verification” [Brotherston and Villard, 2014] via constraint-based

symbolic execution.

In this work, we start with the existing specification language in [Duck et al., 2013],

which has two notable features: (a) the use of explicit heap variables, and (b) user-defined

recursive properties in a wrapper logic language based on recursive rules. The language

provides a new level of expressiveness for specifying properties of heap-manipulating pro-

grams. We remark that, common specifications written in traditional Separation Logic, can

be automatically compiled into this language.

We will be brief here and refer interested readers to [Duck et al., 2013] for more details.

A heap is a finite partial map from positive integers to integers, i.e., Heaps = Z+ ⇀fin Z.

Given a heap h ∈ Heaps with domain D = dom(h), we sometimes treat h as the set of pairs

{(p, v) | p ∈ D ∧ v = h(p)}. We note that when a pair (p, v) belongs to some heap h, it is

necessary that p is not null (p 6= 0). The H-language is the first-order language over heaps.

We use (∗) and (l) operators to respectively denote heap disjointness and equation.

Intuitively, a constraint like H l H1∗H2 restricts H1 and H2 to be disjoint while giving a

name H to the conjoined heaps H1∗H2.

As in [Duck et al., 2013], H is then extended with user-defined recursive predicates.

We use the framework of Constraint Logic Programming (CLP) [Jaffar and Maher, 1994]

to inherit its syntax, semantics, and most importantly, its built-in notions of unfolding

rules. For brevity, we just informally explain the language. The following rules constitutes
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a recursive definition of predicate list(x, L), which specifies a skeleton list.

list(x, L) :- x = 0, L l Ω.
list(x, L) :- L l (x 7→t)∗L1, list(t, L1).

The semantics of a set of rules is traditionally known as the “least model” semantics

(LMS). Essentially, this is the set of groundings of the predicates which are true when the

rules are read as traditional implications. The rules above dictates that all true groundings

of list(x, L) are such that x is an integer, L is a heap which contains a skeleton list starting

from x. More specifically, when the list is empty, the root node is equal to null (x = 0),

and the heap is empty (L l Ω). Otherwise, we can split the heap L into two disjoint parts:

a singleton heap (x 7→t) and the remaining heap L1, where L1 corresponds to the heap that

contains a skeleton list starting from t.

We now provide the definitions for list segments, which will be used in our later ex-

amples. Do note the extra explicit heap variable L, in comparison with corresponding

definitions in SL.

l̂s(x, y, L) :- x=y, L l Ω.

l̂s(x, y, L) :- x 6=y, L l (x 7→t)∗L1, l̂s(t, y, L1).

ls(x, y, L) :- x=y, L l Ω.
ls(x, y, L) :- x 6=y, L l (t 7→y)∗L1, ls(x, t, L1).

We also emphasize that the main advantage of this language is the possibility of deriving

the strongest postcondition along each program path. It is indeed the main contribution

of [Duck et al., 2013]. Specifically, in order to prove the Hoare triple {φ}S{ψ} for a loop-

free program S, we simply generate strongest postcondition ψ′ along each of its straight-line

paths and obtain the verification condition ψ′ |= ψ. Note that the handling of loops can be

reduced to this loop-free setting because of user-specified invariants. For procedure calls, we

still make use of the (standard) frame rule to generate proof obligations. We put forward

that, in all our experiments (Section 5.7), the verification conditions are generated using the

frame rule (manually though) and the symbolic execution rules of [Duck et al., 2013].

5.4 The Proof Method

Background on CLP: This is provided for the convenience of the readers. An atom is of

the form p(t̃) where p is a user-defined predicate symbol and t̃ is a tuple of H terms. A rule
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is of the form A:-Ψ, B̃ where the atom A is the head of the rule, and the sequence of atoms

B̃ and the constraint Ψ constitute the body of the rule. A finite set of rules is then used to

define a predicate. A goal has exactly the same format as the body of a rule. A goal that

contains only constraints and no atoms is called final.

A substitution θ simultaneously replaces each variable in a term or constraint e into

some expression, and we write eθ to denote the result. A renaming is a substitution which

maps each variable in the expression into a distinct variable. A grounding is a substitution

which maps each variable into its intended universe of discourse: an integer or a heap, in

the case of our CLP(H). Where Ψ is a constraint, a grounding of Ψ results in true or false

in the usual way.

A grounding θ of an atom p(t̃) is an object of the form p(t̃θ) having no variables. A

grounding of a goal G ≡ (p(t̃),Ψ) is a grounding θ of p(t̃) where Ψθ is true. We write [[G]] to

denote the set of groundings of G.

Let G ≡ (B1, · · · , Bn,Ψ) and P denote a non-final goal and a set of rules respectively.

Let R ≡ A:- Ψ1, C1, · · · , Cm denote a rule in P , written so that none of its variables appear

in G. Let the equation A = B be shorthand for the pairwise equation of the corresponding

arguments of A and B. A reduct of G using a clause R, denoted reduct(G, R), is of the form

(B1, · · · , Bi−1, C1, · · · , Cm, Bi+1, · · · , Bn, Bi = A,Ψ,Ψ1)

provided the constraint Bi = A ∧Ψ ∧Ψ1 is satisfiable.

A derivation sequence for a goal G0 is a possibly infinite sequence of goals G0,G1, · · · ,

where Gi, i > 0 is a reduct of Gi−1. A derivation tree for a goal is defined in the obvious

way.

Definition 1 (Unfold). Given a program P and a goal G: unfold(G) is {G′|∃R ∈ P : G′ =
reduct(G, R)}.

Given a goal L and an atom p ∈ L, unfoldp(L) denotes the set of formulas transformed

from L by unfolding p.

Definition 2 (Entailment). An entailment is of the form L |= R, where L and R are
goals.

This work considers proving the validity of the entailment L |= R under a given program

P . This entailment means that lm(P ) |= (L → R), where lm(P ) denotes the “least model”

of the program P which defines the recursive predicates — called assertion predicates —

occurring in L and R. This is simply the set of all groundings of atoms of the assertion
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predicates which are true in P . The expression (L → R) means that, for each grounding θ

of L and R, Lθ is in lm(P ) implies that so is Rθ.

5.4.1 Unfold and Match (U+M)

Assume that we start off with L |= R. If this entailment can be proved directly, by unifica-

tion and/or consulting an off-the-shelf smt solver, we say that the entailment is trivial: a

direct proof is obtained even without considering the “meaning” of the recursively defined

predicates (they are treated as uninterpreted). When it is not the case — the entailment

is non-trivial — a standard approach is to apply unfolding/folding until all the “frontier”

become trivial. We note that, in our framework, we perform only unfolding, but now to

both the LHS (the antecedent) and the RHS (the consequent) of the entailment. The effect

of unfolding the RHS is similar to a folding operation on the LHS. In more detail, when

direct proof fails, U+M paradigm proceeds in two possible ways:

• First, select a recursive atom p ∈ L, unfold L wrt. p and obtain the goals L1, . . . ,Ln.

The validity of the original entailment can now be obtained by ensuring the validity

of all the entailments Li |= R (1 ≤ i ≤ n).

• Second, select a recursive atom q∈R, unfoldR wrt. q and obtain the goalsR1, . . . ,Rm.

The validity of the original entailment can now be obtained by ensuring the validity

of any one of the entailments L |= Rj (1≤j≤m).

So the proof process can proceed recursively either by proving all Li |= R or by proving

one L |= Rj for some j. Since the original LHS and RHS usually contain more than one

recursive atoms, this proof process naturally triggers a search tree. Termination can be

guaranteed by simply bounding the maximum number of left and right unfolds allowed. In

practice, the number of recursive atoms used in an entailment is usually small, thus resulting

tree size is often manageable.

5.4.2 Formula Re-writing with Dynamic Induction Hypotheses

We now present a formal calculus for the proof of L |= R that goes beyond unfold-and-

match. The power of our proof framework comes from the key concept: induction.

Definition 3 (Proof Obligation). A proof obligation is of the form Ã ` L |= R where L
and R are goals and Ã is a set of pairs 〈A; p〉, where A is an assumed entailment and p is
a recursive atom.
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(cp)
True

Ã ` L |= R
L |=SMT R, where recursive atoms are treated as uninterpreted

(sub)
Ã ` L ∧ p(x̃) |= Rθ

Ã ` L ∧ p(x̃) |= R∧ p(ỹ)

there exists a substitution θ for
existential variables in ỹ s.t. L ∧ p(x̃) |=SMT x̃ = ỹθ

(lu+i)

⋃n
i=1{Ã ∪ {〈L |= R; p〉} ` Li |= R}

Ã ` L |= R
Select an atom p ∈ L and
unfoldp(L) = {L1, . . . ,Ln}

(ru)
Ã ` L |= R′

Ã ` L |= R
Select an atom q ∈ R and
R′ ∈ unfoldq(R)

(ia-1)
Ã ` R′θ ∧ L2 |= R

Ã ` p(x̃) ∧ L1 ∧ L2 |= R
〈p(ỹ)∧L′ |= R′; p(ỹ)〉 ∈ Ã and gen(p(x̃))≥kill(p(ỹ)),
there exists a renaming θ s.t. x̃ = ỹθ and L1 |=DP L′θ

(ia-2)
Ã ` L1 |= L′θ

Ã ` p(x̃) ∧ L1 |= R
〈p(ỹ) ∧ L′ |= R′; p(ỹ)〉 ∈ Ã and gen(p(x̃)) ≥ kill(p(ỹ))
and there exists a renaming θ s.t. x̃ = ỹθ and R′θ |=DP R

Figure 5.6: General Proof Rules

The role of proof obligations is to capture the state of the proof process. Each element in

Ã is a pair, of which the first is an entailment A whose truth can be assumed inductively.

A acts as an (dynamically generated) induction hypothesis and can be used to transform

subsequently encountered obligations in the proof path. The second is a recursive atom p,

to which the application of a left unfold gives rise to the addition of the induction hypothesis

A.

Our proof rules – the obligation at the bottom, and its reduced form on top – are

presented in Fig. 5.6. Given L |= R, our proof shall start with ∅ ` L |= R, and proceed by

repeatedly applying these rules. Each rule operates on a proof obligation. In this process,

the proof obligation may be discharged (indicated by True); or new proof obligation(s) may

be produced. L |=SMT R denotes the validity of L |= R is obtained by consulting a generic

smt solver.

• The substitution (sub) rule removes one occurrence of an assertion predicate, say atom

p(ỹ), appearing in the RHS of a proof obligation. Applying the (sub) rule repeatedly

will ultimately reduce a proof obligation to the form which contains no recursive atoms

in the RHS, while at the same time (hopefully) most existential variables on the RHS are

eliminated. Then, the constraint proof (cp) rule may be attempted by simply treating all

remaining recursive atoms (in the LHS) as uninterpreted and by applying the underlying
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theory solver assumed in the language we use.

The combination of (sub) and (cp) rules attempts, what we call, a direct proof. In

principle, it is similar to the process of “matching” in the U+M paradigm. For brevity we

then use L |=DP R to denote the fact that the validity of L |= R can be proved directly using

only (sub) and (cp) rules.

• The left unfold with induction hypothesis (lu+i) is a key rule. It selects a recursive atom

p on the LHS and performs a complete unfold of the LHS wrt. the atom p, producing a

new set of proof obligations. The original obligation, while being removed, is added as an

assumption to every newly produced proof obligation, opening the door for the later being

used as an induction hypothesis. For technical reason needed below, we do not just add the

obligation L |= R as an assumption, but also need to keep track of the atom p. This is why

in the rule we see a pair 〈L |= R; p〉 added into the current set of assumptions Ã.

On the other hand, the right unfold (ru) rule selects some recursive atom q and performs

an unfold on the RHS of a proof obligation wrt. q. In the proof process, the two unfold

rules will be systematically interleaved.

Example 4. Consider the following proof obligation:

Ã ` list(x, L) |= ls(x, y, L1), list(y, L2), L l L1∗L2.

(sub)

(ru)

(cp)
True

Ã ` list(x, L) |= x = x, L1 l Ω, L l L1∗L
Ã ` list(x, L) |= ls(x, x, L1), L l L1∗L

Ã ` list(x, L) |= ls(x, y, L1), list(y, L2), L l L1∗L2

Figure 5.7: Proving with just U+M

In Fig. 5.7, we show how this proof obligation can be successfully dispensed by applying

(sub), (ru), and (cp) rules in sequence. Note how the (sub) rule binds the existential

variable y to x, simplifying the RHS of the proof obligation.

• The induction applications, namely (ia-1) and (ia-2) rules, transform the current obli-

gation by making use of an assumption which has been added by the (lu+i) rule. The two

rules, also called the “induction rules” for short, allow us to treat previously encountered

obligations as possible induction hypotheses.

Instead of directly proving the current obligation L |= R, we now proceed by finding

L and R such that L |= L |= R |= R. The key here is to find those candidate goals where
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the validity of L |= R directly follows from a “similar” assumption A, together with θ to

rename all the variables in A to the variables in the current obligation, namely L |= R.

Assumption A is an obligation which has been previously encountered in the proof process,

and Aθ assumed to be true, as an induction hypothesis. Particularly, we choose L and R

so we can (easily) find a renaming θ such that Aθ =⇒ L |= R ( =⇒ denotes logical

implication).

To be more deterministic and to prevent us from transforming to obligations harder

than the original one, we require that at least one of the remaining two entailments, namely

L |= L and R |= R, is discharged quickly by a direct proof.

In (ia-1) rule, given the current obligation p(x̃) ∧ L1 ∧ L2 |= R and an assumption

A ≡ p(ỹ) ∧ L′ |= R′, we choose p(x̃) ∧ L′θ ∧ L2 to be our L and R′θ ∧ L2 to be our R.

We can see that the validity of L |= R directly follows from the assumption Aθ. One

restriction onto the renaming θ, to avoid circular reasoning, is that θ must rename ỹ to x̃

where p(x̃) is an atom which has been generated after p(ỹ) had been unfolded. Such fact is

indicated by gen(p(x̃)) ≥ kill(p(ỹ)) in our rule. While gen(p) denotes the timestamp when

the recursive atom p is generated during the proof process, kill(p) denotes the timestamp

when p is unfolded and removed. Another side condition for this rule is that the validity of

L |= L, or equivalently, L1 |= L′θ is discharged immediately by a direct proof.

In (ia-2) rule, given the current obligation p(x̃) ∧ L1 |= R and an assumption A ≡

p(ỹ) ∧ L′ |= R′, on the other hand, p(ỹ)θ ∧ L′θ serves as our L while R′θ serves as our R.

The validity of L |= R trivially follows from the assumption Aθ, namely p(x̃) ∧ L′θ |= R′θ.

As in (ia-1), we also put similar restriction upon the renaming θ. Another side condition

we require is that the validity of R |= R can be discharged immediately by a direct proof.

At this point we could see the duality nature of (ia-1) and (ia-2).

Now let us briefly and intuitively explain the restriction upon the renaming θ. Here we

make sure that θ renames atom p(ỹ) to atom p(x̃), where p(x̃) has been generated after p(ỹ)

had been unfolded (and removed). This helps to rule out certain potential θ which does

not correspond to a number of left unfolds. Such restriction helps ensure progressiveness in

the proof process before the induction rules can take place. Otherwise, assuming the truth

of Aθ in constructing the proof for A might not be valid. This is the reason why for each

element of Ã, we not only keep track of the assumption, but also the recursive atom p to

which the application of (lu+i) gives rise to the addition of such assumption.
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It is important to note that, our framework as it stands, does not require any consid-

eration of a base case, nor any well-founded measure. Instead, we depend on the Least

Model Semantics (LMS) of our assertion language and the above-mentioned restrictions on

the renaming θ. In other words, by constraining the use of the rules, which is transparent

to the user, we guarantee to achieve a well-founded conclusion.

Least Model Semantics: Let us now give an example to illustrate why our proof is

working under the LMS. Consider the recursive predicate p, defined as

p(x) :- p(x).

and the following two proof obligations:

p(x) |= list(x, L) (5.4.1)

list(x, L) |= p(x) (5.4.2)

We will now demonstrate that our method can prove (5.4.1), but not (5.4.2). We remark

that (5.4.1) holds because under the LMS, the LHS has no model; therefore no refutation

can be found regardless of what the RHS is. In other words, false implies anything. On the

other hand, (5.4.2) does not hold because x = 0 (and L l Ω) is a model of the LHS, but

not a model of the RHS.

(lu+i)

(ia-1)

(cp)
True

{A} ` list(x, L) |= list(x, L)

{A} ` p(x) |= list(x, L)

∅ ` p(x) |= list(x, L)

Figure 5.8: Our Proof for (5.4.1)

(ru)

(lu+i)
{A′} ` x = 0, L l Ω |= p(x)

...

∅ ` list(x, L) |= p(x)

∅ ` list(x, L) |= p(x)

Figure 5.9: An Unsuccessful Attempt for (5.4.2)

Fig. 5.8 shows how our method would handle (5.4.1). We first perform a left unfolding,

adding A ≡ 〈p(x) |= list(x, L); p(x)〉 into the set of assumptions. Note that this unfolding

step kills the predicate p(x) and generates a new predicate p(x). Thus the rule (ia-1) is
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applicable now. We then re-write the LHS from p(x) to list(x, L). Finally the proof succeeds

by consulting constraint solver, treating list(x, L) as uninterpreted.

In contrast, now consider obligation (5.4.2) in Fig. 5.9. Obviously, a direct proof for

this is not successful. However, if we proceed by a right unfold first, we get back the

same obligation. Different from before, and importantly, now no new assumption is added.

We can see that the step does not help us progress and therefore performing right unfold

repetitively would get us nowhere. Now consider performing a left unfold on the obligation.

The proof succeeds if we can discharge both

{A′} ` x = 0, L l Ω |= p(x) and

{A′} ` L l (x 7→t)∗L1, list(t, L1) |= p(x),

where A′ ≡ 〈list(x, L) |= p(x); list(x, L)〉.

Focus on the obligation {A′} ` x = 0, L l Ω |= p(x). Clearly consulting a constraint

solver or performing substitution does not help. Rule (lu+i) is not applicable since no

recursive predicate on the LHS. As before, we cannot progress using (ru) rule. Importantly,

the side conditions prevent (ia-1) and (ia-2) from taking place. In summary, with our proof

rules, this (wrong fact) cannot be established.

5.4.3 Proving the Two Motivating Examples

Let us now revisit the two motivating examples introduced earlier, on which both U+M and

“Cyclic Proof” are not effective. The main reason is that both examples involve unmatchable

predicates while at the same time exhibiting “recursion divergence”.

Example 5. Consider the entailment relating two definitions of list segments: l̂s(x, y, L) |=
ls(x, y, L).

(LU+I)

(IA-1)

(LU+I)

(RU)

(IA-1)

(SUB)

(CP)
True

{A1, A2} ` x 6=y, L l (x7→t)∗L1, t6=y, L1 l (z 7→y)∗L2 |= x 6=y, L l (z 7→y)∗(x 7→t)∗L2

{A1, A2} ` x 6=y, L l (x 7→t)∗L1, t 6=y, L1 l (z 7→y)∗L2, ls(x, z, (x 7→t)∗L2) |= x 6=y, L l (z1 7→y)∗L3, ls(x, z1, L3)

{A1, A2} ` x6=y, L l (x 7→t)∗L1, t 6=y, L1 l (z 7→y)∗L2, ls(t, z, L2) |= x 6=y, L l (z1 7→y)∗L3, ls(x, z1, L3)

{A1, A2} ` x6=y, L l (x 7→t)∗L1, t 6=y, L1 l (z 7→y)∗L2, ls(t, z, L2) |= ls(x, y, L)

.

.

.

{A1} ` x 6=y, L l (x7→t)∗L1, ls(t, y, L1) |= ls(x, y, L)

{A1} ` x 6=y, L l (x7→t)∗L1, l̂s(t, y, L1) |= ls(x, y, L)

.

.

.

∅ ` l̂s(x, y, L) |= ls(x, y, L)

where A1 ≡ 〈l̂s(x, y, L) |= ls(x, y, L); l̂s(x, y, L)〉 and A2 ≡ 〈x 6=y, L l (x7→t)∗L1, ls(t, y, L1) |= ls(x, y, L); ls(t, y, L1)〉

Figure 5.10: Proving l̂s(x, y, L) |= ls(x, y, L).

Our method can discharge this obligation by applying (ia-1) rule twice. For space reason,

in Fig. 5.10, we only show the interesting path of the proof tree (leftmost position). First,
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we unfold the predicate l̂s(x, y, L) in the LHS of the given obligation via (lu+i) rule. The

original obligation, while being removed, is added as an assumption A1. We next make use of

A1 as an induction hypothesis to perform a re-writing step, i.e., an application of (ia-1) rule.

Similarly, in the third step, we unfold the predicate ls(t, y, L1) in the LHS via (lu+i) rule

and add the assumption A2. After unfolding in the RHS via (ru) rule and re-writing with

the induction hypothesis A2 using (ia-1) rule, we are able to bind the existential variable

z1 to z and simplify both sides of the proof obligation using (sub) rule. Finally, the proof

path is terminated by consulting a constraint solver, i.e., using (cp) rule.

Example 6. Consider the entailment:

ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2.

(LU+I)

(IA-2)

(RU)

(SUB)

(CP)
True

{A} ` x 6= y, L1 l (t7→y)∗L3, list(y, L2), L1∗L2 |= L4 l (t 7→y)∗L2, L1∗L2 l L3∗L4

{A} ` x 6= y, L1 l (t 7→y)∗L3, list(y, L2), L1∗L2 |= L4 l (t 7→y1)∗L5, list(y1, L5), L1∗L2 l L3∗L4

{A} ` x 6= y, L1 l (t7→y)∗L3, list(y, L2), L1∗L2 |= list(t, L4), L1∗L2 l L3∗L4

{A} ` x 6= y, L1 l (t7→y)∗L3, ls(x, t, L3), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2

.

.

.

∅ ` ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2

where A ≡ 〈ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2; ls(x, y, L1)〉

Figure 5.11: Proving ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2.

Fig. 5.11 shows, only the interesting proof path, how we can successfully prove this en-

tailment using the (ia-2) rule. We first unfold ls(x, y, L1) in the LHS, adding A into the

set of assumptions. Then using A as an induction hypothesis, we can rewrite the current

obligation via (ia-2) rule. Note that, here we use (ia-2) rule instead of (ia-1) rule as in

previous example. After applying (ru) rule, we are able to bind the existential variable y1

to y and simplify both sides of the proof obligation with (sub) rule. Finally, the proof path

is terminated by consulting a constraint solver, i.e., using (cp) rule.

Let us pay a closer attention at the step where we attempt re-writing, making using the

available induction hypothesis. For the sake of discussion, assume that instead of (ia-2) we

now attempt to apply rule (ia-1). The requirement for θ forces it to rename x to x and y

to t. However, the side condition L1 |=DP L′θ cannot be fulfilled, since

x 6= y, L1 l (t7→y)∗L3, list(y, L2), L1∗L2 6|=DP list(t, ).

Now return to the attempt of (ia-2) rule. The RHS of the current obligation matches with

the RHS of the only induction hypothesis perfectly. This matching requires θ to rename x
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back to x. On the LHS, we further require θ to rename y to t so that ls(x, t) ≡ ls(x, y)θ.

Note that ls(x, t) was indeed generated after ls(x, y) had been unfolded and removed (i.e.,

killed). The remaining transformation is more straightforward.

5.5 Implementation

Let us briefly highlight our implementation, which intuitively follows from the proof rules

in Sec. 5.4. The main algorithm is in Figure 5.13. In the figure, we use X ∪= Y to denote

X := X ∪ Y .

We start off by calling the function Prove with the original obligation L |= R, the set of

assumptions Ã to be ∅, and all the counters lb, rb, ib to be 0. The counters lb, rb, ib are to

keep track of, respectively, how many left unfolds, right unfolds, and inductions have been

applied in this current path. These counters are to ensure that our algorithm terminates. In

our experiments, the typical values for INDUCTIONBOUND, MAXLEFTBOUND, MAXRIGHTBOUND

are respectively 3, 5, 5.

Typically an unoptimized proof obligation usually can be partitioned into a number of

smaller and simpler proof obligations (e.g., by eliminating redundant terms and variables).

This step can be implemented using any standard proof slicing technique and is not the

focus of our discussion.

Base Case: The function DirectProof acts as the base case of our recursive algorithm. For

each proof obligation, we first attempt a direct proof, i.e., to discharge by applying rule (sub)

repetitively and then querying Z3 solver [De Moura and Bjørner, 2008a], after treating all

recursive predicates in the LHS as uninterpreted, as in (cp)-rule.

Intuitively, this step succeeds if the proof obligation is simple “enough” such that a proof

by matching can be achieved. We note here that, our proof rules in Section 5.4 allow other

rules, e.g., (ru) rule in Example 4, to interleave with the (sub) and (cp) rules. However, in

our deterministic implementation, applications of (sub) and (cp) rules are coupled together.

Let us examine the function DirectProof. If there is a recursive predicate q on the RHS,

but not in the LHS, the function returns immediately, indicating failure with ⊥. Otherwise,

the function then proceeds by finding some (not exhaustive) substitutions Θ such that with

each θ ∈ Θ, we can simultaneously remove all the recursive predicates on the RHS. This

process will remove most existential variables on the RHS, since existential variables usually

appear in some recursive predicates.
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In case there remain some existential variables on the RHS, we attempt to bind them

with the obvious candidates on the LHS (therefore extend θ to θ′). After this attempt, if

the RHS contains no existential variables, we then call an smt solver for entailment check.

If the answer is yes, θ′ is returned, indicating that a direct proof has been achieved.

function Prove(L |= R, Ã, lb, rb, ib)
/* Natural proof, i.e. by unification and smt */

〈1〉 if (DirectProof(L |= R)) return true

let L = Φ, p1, . . . , pn and R = Ψ, q1, . . . , qm
〈2〉 OrSet := ∅
〈3〉 if (ib < INDUCTIONBOUND) /* Induction Application */

〈4〉 foreach(〈p(ỹ) ∧ L′ |= R′); p(ỹ)〉 ∈ Ã)
〈5〉 Find p(x̃) ∈ L s.t. gen(p(x̃)) ≥ kill(p(ỹ))
〈6〉 Find L1 ⊆ L s.t. θ := DirectProof(L1 |= L′) 6= ⊥
〈7〉 if(x̃ = ỹθ and θ is a valid renaming)
〈8〉 Lnew:=L \ {p(x̃)} \ L1 ∪R′θ

〈9〉 OrSet ∪={〈Lnew |= R, Ã, lb, rb, ib+ 1〉}
〈10〉 foreach(〈p(ỹ) ∧ L′ |= R′); p(ỹ)〉 ∈ Ã)
〈11〉 if (θ1 := DirectProof(R′ |= R) = ⊥) continue
〈12〉 Find p(x̃) ∈ L s.t. gen(p(x̃)) ≥ kill(p(ỹ))
〈13〉 Find a valid renaming θ ⊇ θ1 s.t. x̃ = ỹθ

〈14〉 OrSet ∪={〈L \ {p(x̃)} |= L′θ, Ã, lb, rb, ib+ 1〉}

〈15〉 if (lb < MAXLEFTBOUND) /* Left Unfold */
〈16〉 foreach (pi ∈ L)
〈17〉 Obs := ∅
〈18〉 Ã′ := Ã ∪ {〈L |= R; pi〉}
〈19〉 foreach (Lj ∈ ({L1,L2, . . .Ll} := UNFOLD(pi)))

〈20〉 ob := 〈(Lj ∪ L \ {pi}) |= R, Ã′, lb+ 1, rb, ib〉
〈21〉 if (trivially true(ob)) continue
〈22〉 Obs := Obs ∪ {ob}
〈23〉 if (Obs = ∅) return true else OrSet ∪= {Obs}

〈24〉 if (rb < MAXRIGHTBOUND and ¬contradict(L |= R))
/* Right Unfold */

〈25〉 foreach (qi ∈ R)
〈26〉 foreach( Rj ∈ {R1,R2, . . .Rk} := UNFOLD(qi))

〈27〉 ob = 〈L |= (Rj ∪R \ {qi}), Ã, lb, rb+ 1, ib〉
〈28〉 OrSet ∪={{ob}}

〈29〉 if (OrSet = ∅) return false
〈30〉 OrSet := OrderByHeuristics(OrSet)
〈31〉 foreach (Obs ∈ OrSet)
〈32〉 if (ProveAll(Obs)) return true
〈33〉 return false
endfunction

Figure 5.12: The Main Algorithm
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function ProveAll(Obs)

〈34〉 foreach (〈L |= R, Ã, lb, rb, ib〉 ∈ Obs)
〈35〉 if (¬ Prove(L |= R, Ã, lb, rb, ib)) return false;
endfunction

function DirectProof(L |= R)
〈36〉 if (∃ q(x̃) ∈ R such that 6 ∃ q(ỹ) ∈ L) return ⊥
〈37〉 L′ := get all recursive(L)
〈38〉 R′ := get all recursive(R)
〈39〉 Θ := {substitution θ | R′θ ⊆ L′}
〈40〉 if (Θ = ∅) return ⊥
〈41〉 foreach (θ ∈ Θ)
〈42〉 Φ := get all nonrecursive(L)
〈43〉 Ψ := get all nonrecursive(R)
〈44〉 θ′ := bind remaining existential variables(Ψ,Φ, θ)

/* Extend θ to θ′ by trying obvious bindings
for remaining existential variables */

〈45〉 if (has existential variables(Ψ,Φ, θ′)) continue
〈46〉 if (entailment(Φ,Ψθ′)) return θ′

〈47〉 return ⊥
endfunction

Figure 5.13: Supporting Functions

Recursive Call: When the attempt of direct proof is not successful, we collect all possible

transformations of the current proof obligation, using (ia-1), (ia-2), (lu+i), (ru) rules,

into a set of set of obligations OrSet. The current proof obligation can be successfully

discharged if there is any set of proof obligations Obs ∈ OrSet, where we can discharge

every proof obligation ob ∈ Obs. The realization of the proof rules in our algorithm is

straightforward, except for a few noteworthy points:

1. Our induction applications will not exhaustively search for all possible candidates.

Instead, we only search for some trivial renaming which meets the side conditions of

the rules.

2. When we perform left unfold, an obligation which is trivially true (trivially true), i.e.

the non-recursive part of the LHS is unsatisfiable, is immediately removed.

3. If the current obligation contains the LHS and RHS which contradict each other

(contradict), right unfold will be avoided. The proof for this obligation can succeed

only if there are no models for the LHS (so only left unfolds are required).

We note that our proof search proceeds recursively in a depth first search manner. The

order in which the sets of obligations Obs ∈ OrSet are considered might heavily affect the
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efficiency, i.e. the running time, but not the effectiveness, i.e. the ability to prove, of our

framework. Such order is dictated by our heuristics, as the call to function OrderByHeuristics

(line 30) indicates. We remark that our heuristics, described below, are very intuitive and

directly follow from the fact that our base case is reached by a successful direct proof.

We proceed by a number of passes. In each pass, we first order the obligations within

each Obs ∈ OrderSet. We then consider the order of OrderSet by comparing the last

obligation in each set Obs ∈ OrderSet. Subsequent passes will not undo the work of the

previous passes, but instead work on the obligations and/or sets of obligations which are

tied in previous passes.

1. An obligation which has contradicting LHS and RHS, given by the function contradict

will be ordered after those do not (since the chance to successfully discharge such

obligation is small).

2. An obligation contains no recursive predicates on the RHS will be order before those

contain some recursive predicate(s) on the RHS.

3. An obligation having a recursive predicate q such that q appears in the RHS but not

in the LHS will be ordered after those not.

4. An obligation contains more existential variables which cannot be deterministically

bound to some non-existential variables (variables on the LHS) will be ordered after

those contains less.

5. An obligation resulted from a left unfold will be ordered before those resulted from a

right unfold (since it allows an induction hypothesis to be added).

Example 7. Revisit the obligation in Example 4, but now with the starting set of assump-
tions to be empty:

∅ ` list(x, L) |= ls(x, y, L1), list(y, L2), L l L1∗L2.

For simplicity we ignore the information about the counters lb, rb, and ib. First, the call

to DirectProof fails since there is the predicate ls which appears in the RHS but not in the

LHS. Induction rules cannot take place either, as the set of assumptions is currently empty.

We proceed by performing a left unfold first. Note that there is only one recursive predicate

on the LHS. Let Ã be:

{〈list(x, L) |= ls(x, y, L1), list(y, L2), L l L1∗L2; list(x, L)〉}.
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The result for our left unfold is a set of two obligations:

O0 ≡ {Ã′ ` x = 0, L l Ω |= ls(x, y, L1), list(y, L2), L l L1∗L2;

Ã ` Ll(x 7→ t)∗L′, list(t, L′) |= ls(x, y, L1), list(y, L2), LlL1∗L2}

We proceed with right unfold, producing four sets, each consists of one (simplified) obligation

as follows:

O1 ≡ {∅ ` list(x, L) |= ls(x, y, L1), y = 0, L2 l Ω, LlL1∗L2}
O2 ≡ {∅ ` list(x, L) |= ls(x, y, L1), list(t, L3), LlL1∗(y 7→ t)∗L3}
O3 ≡ {∅ ` list(x, L) |= x = y, list(y, L2), L l Ω∗L2}
O4 ≡ {∅ ` list(x, L) |= x6=y, ls(x, t, L3), list(y, L2), Ll(t 7→ y)∗L3∗L2}

Assume that the initial order of those sets of obligations are as shown above. After the first

two passes, the order between those sets is the same. The third pass, however, moves the

singleton set O3 to the first position. The fourth pass, on the other hand, moves O1 to the

second position. The fifth pass keep O0 at the third position. The remaining two singleton

sets, namely O2 and O4 are tied and placed at the end.

We proceed with the first obligation set, namely O3, and a direct proof of it is successful.

Therefore the original obligation can be discharged. The corresponding sequence of the proof

rules is shown below, which is slightly different from what shown in Fig. 5.7.

(ru)

(sub)

(cp)
True

∅ ` list(x, L) |= x = x, L l Ω∗L

∅ ` list(x, L) |= x = y, list(y, L2), L l Ω∗L2

∅ ` list(x, L) |= ls(x, y, L1), list(y, L2), L l L1∗L2

5.6 Soundness

Theorem 1 (Soundness). An entailment L |= R holds if, starting with ∅ ` L |= R,
there exists a sequence of applications of proof rules that results in an empty set of proof
obligations.

Proof Sketch. The soundness of rule (cp) is obvious. The rule (ru) is sound because when

R′ ∈ unfoldq(R) then R′ |= R. Therefore, the proof of Ã ` L |= R can be replaced by the

proof of Ã ` L |= R′ since L |= R′ is stronger than L |= R. Similarly, the rule (sub) is sound

because L ∧ p(x̃) |= Rθ and L ∧ p(x̃) |=CP x̃ = ỹθ is stronger than the L ∧ p(x̃) |= R∧ p(ỹ).

The rule (lu+i) is partially sound in the sense that when unfoldp(L) = {L1, . . . ,Ln},

then proving L |= R can be substituted by proving L1 |= R, . . . ,Ln |= R. This is because

in the least-model semantics of the definitions, L is equivalent to L1 ∨ . . . ∨ Ln. However,
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whether the addition of 〈L |= R; p〉 to the set of assumed obligations Ã is sound depends on

the use of them in the application of (ia-1) and (ia-2).

We now proceed to prove the soundness of (ia-1) and (ia-2). First, define a refutation

to an obligation L |= R as a successful derivation of one or more atoms in L whose answer

Ψ has an instance (ground substitution) β such that Ψβ ∧ Rβ is false. A finite refutation

corresponds to a such derivation of finite length. A nonexistence of finite refutation means

that lm(P ) |= (L → R), or in other words, L |= R. A derivation of a refutation is obtainable

by left unfold (lu+i)) rule only. Hence a finite refutation of length k implies a corresponding

k left unfold (lu+i) applications that results in a contradiction.

In the rules (ia-1) and (ia-2), we assume the hypothesis Aθ, where A ≡ L′ |= R′ is

some entailment encountered previously. By having the side conditions proved separately,

we then can soundly transform the current entailment B into a new entailment C. In case

of (ia-1), B ≡ p(x̃) ∧ L1 ∧ L2 |= R and C ≡ R′θ ∧ L2 |= R. In case of (ia-2), we have

B ≡ p(x̃) ∧ L1 |= R and C ≡ L1 |= L′θ.

Notice that the side conditions ensure that Aθ =⇒ (C =⇒ B), where =⇒ denotes

implication. The side conditions also enforce the renaming θ to “progress” at least the left

unfold of recursive atom p(ỹ) to match with a newly generated atom p(x̃). This indeed

enforces a well-founded measure on A.

To be more concrete, note that our transformation from B to C is unsound only if there

exists a refutation β to B, and therefore A, but β is not a refutation to C. We then proceed

to prove by contradiction. W.l.o.g., assume β is such a refutation and is the refutation to

A which has the smallest length k. Trivially k > 0 as A has no finite refutation of length

0. Since there is at least one left unfold from A to B, β must be a refutation to B but of

length less than equal to k. However, since Aθ =⇒ (C =⇒ B), and β is a refutation of

B but not C, therefore β is also a refutation of Aθ. Since θ must “progress” A by at least

one left unfold, we end up with the fact that A has a refutation of length less than k. This

is a contradiction.

5.7 Experiments

In our modular verification framework (with the frame rule), the problem of verifying big

programs reduces to proving the kinds of verification conditions addressed in this thesis.

Our experiments are thus focused on the complexity of the program properties to be proven
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instead of the size of programs.

Our evaluations are performed on a 3.2GHz Intel processor with 2GB RAM, running

Linux. We evaluated our prototype on a comprehensive set of benchmarks, including both

academic algorithms and real programs. The benchmarks are collected from existing sys-

tems [Nguyen and Chin, 2008; Chin et al., 2012; Madhusudan et al., 2012; Qiu et al., 2013;

Brotherston et al., 2012], those considered as the state-of-the-art for the purpose of prov-

ing user-defined recursive data-structure properties in imperative languages. Some of them

are also used in the competition SMT-COMP 2014 (Separation Logic)3. Note that, in this

competition (where lemmas are discouraged), the benchmarks are of the same scale as ours,

though ours contain more benchmarks having shape and data properties intertwined, mak-

ing previous techniques fail to prove. We first demonstrate our evaluation with benchmarks

that the state-of-the-art can handle, then with ones that are beyond their current supports.

5.7.1 Within the State-of-the-art

In this subsection, we consider the set of proof obligations where the state-of-the-art, e.g.,

U+M and “Cyclic Proof”, are effective. The purpose of this study is to evaluate the ef-

ficiency of our implementation against existing systems. This exercise serves as a sanity

check for our implementation.

We first start with proof obligations where U+M can automatically discharge with-

out the help of user-defined lemmas. They are collected from the benchmarks of U+M

frameworks [Chin et al., 2012; Madhusudan et al., 2012; Qiu et al., 2013]. As expected,

our prototype proves all of those obligations; the running time for each is negligible (∼ 0.2

second). This is because the proof obligations usually require just either one left unfold or

one right unfold before matching (a direct proof) can successfully take place.

The second set of benchmarks are from “Cyclic Proof” [Brotherston et al., 2012], which

are also used in SMT-COMP 2014 (Separation Logic). They are proof obligations which

involve unmatchable predicates, thus U+M will not be effective. We also succeed in proving

all of those obligations, less than a second for each.

In summary, the results demonstrate that (1) our prototype is able to handle what the

state-of-the-art can; (2) our implementation is competitive enough.

3See https://github.com/mihasighi/smtcomp14-sl
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5.7.2 Beyond the State-of-the-art

We now demonstrate the key result of this work: proving what are beyond the state-of-the-

art.

Proving User-Defined Lemmas: Our prototype can prove all commonly used lemmas,

collected from [Nguyen and Chin, 2008; Chin et al., 2012; Madhusudan et al., 2012; Qiu

et al., 2013], which U+M and “Cyclic Proof” cannot handle. The running time is always

less than a second for each lemma. Table 5.1 shows a non-exhaustive list of common user-

defined lemmas. We purposely abstract them from the original usage in order to make

them general and representative enough. The lemmas are written in traditional Separation

Logic syntax for succinctness. The aim is to give the readers the intuitive meaning of those

lemmas though the actual definitions of the predicates must be written in our assertion

language, where each predicate will be accompanied by an explicit heap as in our presented

examples. Note that due to the duality of the definitions for list segments, e.g., ls vs. l̂s,

each lemma containing them would usually has a dual version, which for space reason we

do not list down in Table 5.1. Similarly, some extensions, e.g., to capture the relationship

of collective data values (using sets or sequences) between the LHS and the RHS, while can

be automatically discharged by our prototype, are not listed in the table.

Table 5.1: Proving Lemmas (existing systems cannot prove).

Lemma

sorted list(x,min) |= list(x)

sorted list1(x, len,min) |= list1(x, len)

sorted list1(x, len,min) |= sorted list(x,min)

sorted ls(x, y,min,max) ∗ sorted list(y,min2)
∧ max ≤ min2 |= sorted list(x,min)

ls(x, y) ∗ list(y) |= list(x)

ls(x, y) |= l̂s(x, y) and l̂s(x, y) |= ls(x, y)

l̂s1(x, y, len1) ∗ l̂s1(y, z, len2) |= l̂s1(x, z, len1+len2)

ls1(x, y, len1) ∗ list1(y, len2) |= list1(x, len1+len2)

l̂s1(x, last, len) ∗ (last 7→ new) |= l̂s1(x, new, len+ 1)

dls(x, y) ∗ dlist(y) |= dlist(x)

d̂ls1(x, y, len1) ∗ d̂ls1(y, z, len2) |= d̂ls1(x, z, len1+len2)

dls1(x, y, len1) ∗ dlist1(y, len2) |= dlist1(x, len1+len2)

avl(x, hgt,min,max, balance) |= bstree(x, hgt,min,max)

bstree(x, height,min,max) |= bintree(x, height)

Let us briefly comment on Table 5.1. The first group talks about sorted linked lists. As an
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example, the second lemma is to state that a sorted list with length len and the minimum

element min is also a list with the same length. The second, third and fourth groups are

related to singly-linked lists, doubly-linked lists, and trees respectively.

Verifying Programs without Using Lemmas: Lemmas can serve many purposes. One

of its important usage in U+M systems is to equip a proof system with the power of user-

provided re-writing rules, to overcome the main limitation of unfold-and-match. However, in

the context of program verification, eliminating the usage of lemmas is crucial for improving

the performance, because lemma applications, coupled with unfolding, often induce large

search space.

We now use a subset of academic algorithms and open-source library programs4, col-

lected and published by [Chin et al., 2012; Qiu et al., 2013], to demonstrate that our proto-

type can verify these programs without even stating the appropriate lemmas. The library

programs include Glib open source library, the OpenBSD library, the Linux kernel, the

memory regions and the page cache implementations from two different operating systems.

While Table 5.2 summarizes the verification of data structures from academic algorithms,

Table 5.3 reports on open-source library programs.

Table 5.2: Verification of Academic Algorithms (existing systems require lemmas).

DS Function T/F

Sorted

List

find last iter, insert iter,

quick sort iter, bubble sort
<1s

Circular

List
count <1s

BST
insert iter,find leftmost iter

remove root iter, delete iter
<1s

Remark #1: Using automatic induction, we have successfully eliminated the requirement

for lemmas in existing systems (e.g., [Chin et al., 2012; Qiu et al., 2013]) for proving the

functional correctness of the programs in Table 5.2 and 5.3. As already stated in Section 5.1,

existing systems require lemmas in two common scenarios. First, it is when the traversal

order of the data structures is different from what suggested by the recursive definitions, e.g.,

OpenBSD/queue.h. Second, it is due to the boundaries caused by iterative loops or multiple

function calls. One example is append function in glib/gslist.c, where (in addition to the

list definition) the list segment, ls(head,last), is necessary to say about the function invariant

4See http://www.cs.uiuc.edu/∼madhu/dryad/sl
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— the last node of a non-empty input list is always reachable from the list’s head. Other

examples are to make a connection between a sorted list and a singly-linked list (e.g., in

sorting algorithms), between two sorted partitions (e.g. in quick sort iter), between a

circular list and a list segment (e.g., count), etc.

Table 5.3: Verification of Open-Source Libraries (existing systems require lemmas).

Program Function T/F

glib/gslist.c
Singly

Linked-List

find, position, index,

nth,last,length,append,

insert at pos,merge sort,

remove,insert sorted list

<1s

glib/glist.c
Doubly

Linked-List

nth, position, find,

index, last, length
<1s

OpenBSD/
queue.h
Queue

simpleq remove after,

simpleq insert tail,

simpleq insert after

<1s

ExpressOS/
cachePage.c

lookup prev,

add cachepage
<1s

linux/mmap.c insert vm struct <1s

Remark #2: The verification time for each function is always less than 1 second. This is

within our expectation because whenever our proof method succeeds, the size of the proof

tree is relatively small. For example, in order to prove the functional correctness of append

function in glib/gslist.c, we only need to prove 3 obligations, each of which requires no

more than two left unfolds, two right unfolds and two inductions5. In fact, the maximum

number of left unfolds, right unfolds and inductions used in our system are 5, 5 and 3

respectively, even for the functions that take U+M frameworks much longer time to prove.

For example, consider simpleq insert after, a function to insert an element into a queue.

This example requires reasoning about unmatchable predicates: to prove it dryad needs

18 seconds and the help from a lemma. Such inefficiency is due to the use of a complicated

lemma6, which consists of a large disjunction. Though efficient in practice, smt solvers still

face a combinatorial explosion challenge as they dissect the disjunction. In other words, in

addition to having a higher level of automation, our framework has a potential advantage

5Since the number of rules (disjuncts) in a predicate definition is fixed and usually small, the size of proof
tree mainly depends on the number of unfolds and inductions.

6We believe that the lemmas in [Qiu et al., 2013] are unnecessarily complicated, because the authors
want to reduce the number of them, by grouping a few into one.
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of being more efficient than existing U+M systems.

5.8 Related Work

There is a vast literature on program verification considering data structures. The well

known formalism of Separation Logic (SL) [Reynolds, 2002a] is often combined with a re-

cursive formulation of data structure properties. Implementations, however, are incomplete,

e.g., [Berdine et al., 2005; Iosif and abd J. Simachek, 2013], or deal only with fragments

[Berdine et al., 2004; Magill et al., 2008]. There is also literature on decision procedures for

restricted heap logics; we mention just a few examples: [Rakamaric et al., 2007a; Rakamaric

et al., 2007b; Lahiri and Qadeer, 2008; Ranise and Zarba, 2006; Bouajjani et al., 2009a;

Bjørner and Hendrix, 2009]. These have, however, severe restrictions on expressivity. None

of them can handle the VC’s of the kind considered in this thesis.

There is also a variety of verification tools based on classical logics and smt solvers.

Some examples are Dafny [Leino, 2010], VCC [Cohen et al., 2009] and Verifast [Jacobs

et al., 2011] which require significant ghost annotations, and annotations that explicitly

express and manipulate frames. They do not automatically verify the general and complex

obligations addressed in this thesis; but such obligations are often resorted to interactive

theorem provers, e.g., Mona, Isabelle or Coq, enabling manual guidance from the users.

Navarro and Rybalchenko showed that significant performance improvements can be

obtained by incorporating first-order theorem proving techniques into SL provers [Navarro

and Rybalchenko, 2011]. However, the focus of that work is about list segments, not general

user-defined recursive predicates. On a similar thread, [Piskac et al., 2013] advances the

automation of SL, using smt, in verifying procedures manipulating list-like data structures.

The works [Zee et al., 2008; Zee et al., 2009; Chin et al., 2012; Madhusudan et al., 2012;

Qiu et al., 2013] are also closely related: they form the U+M paradigm which we have

carefully discussed in Section 5.1 and 5.2.

In the literature, there have been works on automatic induction [Boyer and Moore, 1990;

Dillinger et al., 2007; Leino, 2012; Sonnex et al., 2012]. They are concerned with proving

a fixed hypothesis, say h(x̃), that is, to show that h() holds over all values of the variables

x̃. The challenge is to discover and prove h(x̃) =⇒ h(x̃′), where expression x̃ is less than

the expression x̃′ in some well-founded measure. Furthermore, a base case h(x̃0) needs to

be proven. Automating this form of induction usually relies on the fact that some subset
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of x̃ are variables of inductive types. In contrast, our notion of induction hypothesis is

completely different. First, we do not require that some variables are of inductive (and

well-founded) types. Second, the induction hypotheses are not supplied explicitly. Instead,

they are constructed implicitly via the discovery of a valid proof path. This allows much

more potential for automating the proof search. Third (and this also applied to the “Cyclic

Proof” method mentioned below), multiple induction hypotheses can be exploited within

a single proof path. Without this, as a concrete example, we would not be able to prove

l̂s(x,y) |= ls(x,y).

We further highlight the work of Lahiri and Qadeer [Lahiri and Qadeer, 2006], which

adapts the induction principle for proving properties of well-founded linked list. The tech-

nique relies on the well-foundedness of the heap, while employing the induction principle to

derive from two basic axioms a small set of additional first-order axioms that are useful for

proving the correctness of several simple programs.

We now mention works on “Cyclic Proof”, e.g., [Brotherston et al., 2011; Brother-

ston et al., 2012]; and also a somewhat related concept called “Matching Logic” [Rosu

and Stefanescu, 2012]. “Cyclic Proof” replaces explicit induction reasoning by detecting

well-founded infinite descent over the cyclic proof graphs. (We note that the current imple-

mentations of “Cyclic Proof” [Brotherston et al., 2011; Brotherston et al., 2012], however,

are very limited.) The crucial departure from our work in this thesis is that the above-

mentioned methods do not deal with the notion of applying an induction step in order to

generate a new and different proof obligation. The power of our methodology comes from

the fact that the induction step can be applied repetitively along a proof path, as in the

proof of l̂s(x,y) |= ls(x,y).

We finally mention the work [Jaffar et al., 2008], from which the concept of our auto-

matic induction originates. The current work extends [Jaffar et al., 2008] first by refining

the original single coinduction rule into two more powerful rules, to deal with the antecedent

and consequent of a VC respectively. Secondly, the application of the rules has been sys-

tematized so as to produce a rigorous proof search strategy. Another technical advance is

our introduction of timestamps (a progressive measure) in the two induction rules as an

efficient technique to avoid circular reasoning. Finally, the present work focuses on program

verification and uses a specific domain of discourse involving the use of explicit symbolic

heaps and separation.
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5.9 Concluding Remarks

We presented a framework for proving recursive properties of data structures providing

a new level of automation across a wider class of programs. Its key technical feature is

the automatic use of induction. More specifically, the framework allows for selecting a

dynamically generated proof obligation as an induction hypothesis, and then using this

formula in an induction step in order to generate a new proof obligation. The main technical

challenge of avoiding circular reasoning was overcome by an intricate restriction on variable

renamings. Finally, experimental evidence was presented to show that many real-life proofs,

including those of lemmas whose unproved use has been necessary in previous systems, can

now be fully automated.
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Conclusion and Future Work

In this chapter, we first summarize the thesis contributions and then discuss their foreseeable

impacts and future works.

6.1 Summary

In this thesis, we have proposed three systematic techniques to reason about unbounded

data structures. In here, we briefly summarize these main contributions.

The first technique is to implement lazy reasoning methodology. Its introduction is to

mitigate the problem of combinatorial explosion in searching for a solution of the input con-

straints. We have applied this technique in building an efficient string solver. Specifically,

we incrementally reduce recursive predicates, which are used to represent string operations,

via splitting (and/or unfolding) process, until their subparts are bounded with constant

strings/characters to be consumed. While modern string solvers exist, they suffer in one

way or another: (1) the constraint language may not be expressive enough (even though

the solver is fast); or (2) the solver may not be fast enough to accommodate realistically

large programs. Thanks to lazy reasoning, we now have a fast symbolic string solver to

support an expressive language. Experimental evaluations show that our string solver S3,

despite being more expressive than other solvers, is much more robust and efficient. In

practice, S3 is recently used as a back-end in program analyzers such as [Xie et al., 2015;

Xiaofei, 2016].

Since lazy reasoning does not address non-termination issues, we have next proposed two

novel methods: progressive reasoning and inductive reasoning. Progressive reasoning aims

to address non-termination in solving string constraints. The key feature of our algorithm
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is a pruning method on the subproblems, in a way that is directed. More specifically, our

algorithm detects non-progressive scenarios with respect to a criterion of minimizing the

“lexicographical length” of the returned solution, if a solution in fact exists. Informally,

in the search process based on reduction rules, we can soundly prune a subproblem when

the answer we seek can be found more efficiently elsewhere. Experimental evaluations show

the promising results of our new string solver S3P in dealing with non-termination in string

solving. Furthermore, because our algorithm deals with recursive definitions in a somewhat

general manner, we believe it can be extended to support reasoning about other unbounded

data structures, for example heap-allocated data structures.

To facilitate the need from security analyses of web applications, we have also made

two other technical contributions in order to improve the solver’s performance. The first

improvement is the bi-directional interaction between the string solver and the integer solver

of Z3. This allows the string solver not only to propagate its length information to integer

solver, but also to query about the relationship between the lengths of string variables

from the integer solver. The information ultimately gives us a truly incremental solver

for both string and non-string constraints. The second improvement is to support conflict

clause learning for the string solver. Here, we want to produce a set of conflict clauses,

a generalization of the input formula, that is now known to be unsatisfiable. The key

technical challenge is, how conflict clause learning can work in tandem with the pruning of

non-progressive formulas, because at the time of pruning, the unsatisfiability of the input

formula is unknown. These two improvements have been demonstrated to show usefulness

in pruning the search space and new levels of results in JavaScript benchmarks arising from

web applications.

Finally, we have proposed a general method that includes inductive reasoning for en-

tailment proving. It aims to address non-termination in proving dynamically-allocated data

structure properties. The challenge is how to use induction correctly and avoid erroneous

proof arising from a form of circular reasoning. Our method is able to use dynamically

generated formulas as induction hypotheses, and to enforce an anti-circular condition so

that any application of an induction step is guaranteed to be correct. The state-of-the-art

methods are often unable to prove relationship between different data structures (e.g. to

prove that a sorted list is a list). As a result, they would not be able to automatically verify

a large class of programs. Inductive reasoning helps us to close such remaining gap in ex-
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isting systems. More importantly, it also gets us back the power of compositional reasoning

in dealing with user-defined recursive predicates that are used to represent data structures

properties.

6.2 Future Work

We first mention a few important applications of string solving for web security. The

most important one is to apply string solving in web security analysis. Although we have

seen significant advances in the general area of software reasoning (e.g. [McMillan, 2010;

Beyer, 2013]), some fundamental breakthroughs, especially in constraint solving and pro-

gram analysis, are still needed to enhance the security of web applications.

It is generally accepted that the holy grail of a static analyzer which can accurately

pinpoint vulnerabilities is not achievable. Instead, the general methodologies of concolic

testing [Godefroid et al., 2005] and dynamic symbolic execution (DSE), e.g. [Schwartz et

al., 2010], have been shown to be successful in the sense that they can detect significant

cases of vulnerabilities, and yet have a good coverage of the space of all possible program

execution paths. The successful applications, however, have so far been largely limited to

program testing (e.g., Kudzu [Saxena et al., 2010], Jalangi [Sen et al., 2013], SymJS [Li et

al., 2014]). That is, once given a program path, the vulnerability issue is settled by deciding

if the associated logical formula to the path is consistent or not. In such case, solving and

finding a model for a path constraint formula play an important role in determining real

security attacks.

However, there is little work on program analysis. That is, to scan a significant (but not

a total) portion of the space of program paths, and to discover, not just test, some important

properties of these paths. As a concrete example, taint analysis [Newsome, 2005; Tripp et al.,

2009; Arzt et al., 2014; Cai et al., 2016] often helps highlight specific security risks primarily

associated with web sites which are attacked using techniques such as SQL injection or buffer

overflow attacks. Therefore, the desired is a broad framework of dynamic symbolic execution

to support not just testing but also other typical analyses, closely related to security research

such as taint analysis, information flow (leakage) analysis. Extending from testing to these

forms of analysis is a significant contribution. Current optimization techniques in program

testing/verification are not very applicable in this context. In addition, it is foreseeable that

a more powerful, robust, and efficient string solver would be a major component for this
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new framework.

Another application of string solving is model counting. In fact, the model count-

ing problem, which is to compute the number of satisfying assignments of a set of input

constraints, already arises in many fields of computer science including artificial intelli-

gence, program optimizations. For example, it is used in probabilistic inference problems

in Bayesian networks [Bacchus et al., 2009; Bayardo and Pehoushek, 2000; Roth, 1996], in

memory size minimization [Turjan et al., 2002], worst case execution time estimation [Kirner

et al., 2002], increasing parallelism [Turjan et al., 2002], and improving cache effectiveness

[Beyls and D’Hollander, 2005].

In particular, model counting also has security applications. Specifically, model counters

can be used directly by quantitative analyses of information flow (in order to determine how

much secret information is leaked), program execution time, combinatorial circuit designs,

and probabilistic reasoning. For example, the constraints can be used to represent the rela-

tion between the inputs and outputs implied by the program in quantitative theories of infor-

mation flow. This in turn has numerous applications such as quantitative information flow

analysis [Smith, 2009; Backes et al., 2009; Eldib et al., 2014; Bang et al., 2016], differential

privacy [Alvim et al., 2011], secure information flow [Sabelfeld and Myers, 2006], anonymity

protocols [Chatzikokolakis et al., 2008], and side-channel analysis [Köpf and Basin, 2007].

Recently, model counting is also used by probabilistic symbolic execution where the goal

is to compute probability of the success and failure program paths [Filieri et al., 2013;

Borges et al., 2014].

Given that strings are ubiquitous in web applications, the model counting problem for

the string domain is, therefore, even of more interest. However, though there are a lot

of works on model counting for different kinds of domains such as boolean [Biondi et al.,

2013], and integer domains [Morgado et al., 2006], there is little work for the string domain.

The reason is that most of existing techniques are only applicable to “bounded” domains

(e.g., bit vector is a fixed-length array of bits). By contrast, string is an unbounded data

structure. For example, though we can still represent a bounded string as a bit vector

and then employ the existing model counting for bit vector constraints to calculate the

number of models, this approach may not scale to complex string constraints. Specifically,

according to [Kiezun et al., 2009a; Saxena et al., 2010], the constraints representing the

regular expression S.match/(a | b)∗/ as bit vectors can grow exponentially in the size of
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the input.

On the other hand, existing model counting technique for the string domain (e.g. [Luu

et al., 2014], [Aydin et al., 2015]) are not precise enough, especially when the input con-

straints also include string lengths. For example, the technique in [Aydin et al., 2015], which

represents all solutions of the input constraints as an automata before counting the accept-

ing paths of the constraint DFA up to a given length bound, can only count precisely when

the solution set is captured by using an automaton. This technique thus no more counts

precisely if the solution set is beyond a regular language. We believe the recent improvement

in string solving can help us to achieve a more systematic model counting method for the

string domain.

Finally, we mention applications of our inductive reasoning in automated verification of

very large heap-manipulating programs. The advantage of program verification is obviously

well-known. That is to guarantee absence of certain classes of errors such as memory safety

errors. This is especially useful for applications where correctness is particularly impor-

tant such as car braking systems, medical equipment, voting machines [Sastry et al., 2006;

Sturton et al., 2009; Srivastava and Schumann, 2013]. In practice, automated verification

has been already applied in large code bases such as seL4 kernel implementation [Klein et

al., 2009]. However, a lot of lemmas are still used to prove the program correctness. We

believe by using our proof technique many of them can be eliminated, which in turn helps

to improve the performance of the whole verification process.
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