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Summary

With the increasing variety and volume of the data produced by today’s

applications, the adoption of effective analytics becomes remarkably de-

manding. Window functions, being an important part of SQL family,

have proven numerous successes in relational analytics. A window func-

tion assigns each tuple a set of related tuples, on which analytics can be

applied. However, the window function defines the related tuples based

on sorting which limits its usage in the domains where sorting may not be

meaningful. In this thesis, we generalize the concept the window function

to neighborhood analytics which eliminates the stringent sorting require-

ment. We propose three domain-specific queries tailored for advanced

applications on the basis of two simple neighborhood functions. Then, we

study how to process these queries efficiently given today’s data scale.

In particular, we first propose the Graph Window Query (GWQ) in the

graph domain. GWQ computes aggregation for each vertex on its graph

window. We formally define two instances of such graph windows: k-hop

window and topological window. Then, we develop the Dense Block Index

(DBIndex) and Inheritance Index (I-Index) to facilitate efficient processing

of both queries. These indexes effectively compress the windows of each

vertex and reuse the shared components during query processing, which

achieve both space and query efficiency.

Second, we propose the k-Sketch query in the sequence data to summarize

a subject’s history. k-Sketch query utilizes the novel ranked-streak which



is formed by a nested neighborhood function. Specifically, a streak is first

constructed by grouping temporally nearby events. Subsequently, streaks

with the same length are compared to generate their ranks. A k-Sketch

query then selects k ranked-streaks which best summarize a subject’s his-

tory. We study the k-Sketch query processing in both offline and online

scenarios. In particular, we design two nontrivial streak-level pruning

techniques and a (1−1/e)-approximate algorithm to achieve efficient pro-

cessing in offline. Then we design a 1/8-approximate algorithm for the

online sketch maintenance.

Third, we propose the General Co-Movement Pattern (GCMP) query for

trajectory databases. A GCMP is defined as the temporal invariant por-

tion of an object’s spatial neighborhood. Our GCMP is versatile to express

other moving patterns defined in the literature. Meanwhile, GCMP is also

able to eliminate the so-called loose-connection anomaly which has not

been addressed before. We design two parallel frameworks for supporting

scalable GCMP detection. First, we propose a baseline method named

Temporal Replication and Parallel Mining (TRPM) which partitions tra-

jectories via replication of object locations and mines GCMPs from each

partition in parallel. Then, we design an advanced method named Star

Partition and ApRiori Enumerator (SPARE) to resolve the limitations of

TRPM. We adopt three novel techniques in SPARE to achieve load bal-

ance while minimizing data replications. To the best of our knowledge,

this is the first work which detects co-moving patterns from trajectories

with hundreds of millions of data points.
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Chapter 1

Introduction

With the maturity of database technologies, many applications today collect and

store data from all domains at unprecedented scale. For example, billions of social

network users and their activities are collected in the form of graphs ; thousands of

sensor ticks are collected every second in the form of time series ; hundreds of millions

of spatiotemporal points are collected as trajectories. Flooded by the tremendous

amount of data, it is becoming increasingly critical to efficiently conduct analytics to

discover useful insights. However, traditional SQL analytics, which comprises primary

operations (e.g., partition, sorting and aggregation), is unable to cope with advanced

analytics such as graph traversal and pattern detection. In practice, expressing these

domain-specific analytics using SQL queries often involves complex joins which are

hard to optimize. In this thesis, we introduce the concept of neighborhood analytics

which originates from the recognized SQL window functions. We study the usage

of neighborhood analytics in advanced applications from different data domains and

design efficient algorithms to harness today’s big data.

1



1.1 Neighborhood Analytics

Neighborhood analytics aims to provide summaries of each object over its vicinity. In

contrast to aggregating the entire collection of data as a whole, neighborhood analytic

provides a personalized view for each object from its own perspective. Neighborhood

data analytics originates from the window function defined in SQL which is illustrated

in Figure 1.1.

SELECT Season, Region, Sales, 
SUM(), AVG(), OVER(PARTITION
BY Region ORDER BY Season 
DESC)
FROM employee;

ID Season Region Sales SUM() AVG()

1 1 West 5100 5100 5100

2 2 West 5200 10300 5150

3 3 West 5200 15500 5166

4 4 West 4500 20000 5000

5 1 East 5000 5000 5000

6 2 East 4400 9400 4700

7 3 East 4800 14200 4733

8 4 East 5100 19300 4825

Window of Tuple 3

Figure 1.1: A SQL window function computing running sum and avg of sales. The
window of tuple 3 is highlighted.

As shown in the figure, the sales report contains six columns: “ID”, “Season”,

“Region” and “Sales” are the facts, “sum()” and “avg()” are the analytics representing

the running sum and average. A window function is represented by the over keyword.

In this context, the window of a tuple oi contains another tuple oj if oi and oj are in

the same “region” and the “season” of oj is prior to the season of oi. The window of

tuple-3 is highlighted. Apart from this example, there are also many other usages of

the window functions in the relational context [15]. Being aware of the success of the

window functions, SQL 11 [73] standard incorporates “LEAD” and “LAG” keywords to

offer fine-grained specifications on a tuple’s window.

Despite the usefulness, there are few works reporting the usage of window functions

in data domains such as graphs, sequence data and trajectories. This may be due

to the requirement of sorting in the window functions. For example, in Figure 1.1,

2



objects need to be sorted according to “Season”, and then the window of each object

is implicitly formed based on the sorted order. However, in domains like graphs and

time series data, sorting may be ambiguous and even undefined.

To broaden the usages of the window functions, we propose the neighborhood

analytics in a more general context. Given a set of objects (such as tuples in rela-

tional tables, vertexes in graphs, moving objects in trajectories), the neighborhood

analytics is a composite function (F ◦ N ) applied on every object. Here, N is the

neighborhood function, which contains the related objects (i.e., vicinity) of an ob-

ject; F is the analytic function, which could be aggregation, ranking, pattern match-

ing etc. Apparently, the SQL window function is a special case of the neighborhood

analytics. For example, the window function in Figure 1.1 can be represented as

N (oi) = {oj|oi.season > oj.season ∧ oi.region = oj.region} and F = avg, sum. By

relaxing the sorting constraint, neighborhood analytics gains an enriched semantic

and can be applied on many other data domains.

1.2 Thesis Scope

In this thesis, we explore the neighborhood analytics in advanced applications from

three prevalent data domains, namely attributed graph, sequence data and tra-

jectory. To provide useful analytics, we define the following two intuitive instances

of the neighborhood function:

Distance Neighborhood: the neighborhood is defined based on numeric dis-

tance, that is N (oi, K) = {oj|dist(oi, oj) ≤ K}, where dist is a distance function

and K is a distance threshold.

Comparison Neighborhood: the neighborhood is defined based on the com-

parison of objects, that is N (o) = {oi|o.am cmp oi.am}, where am is an attribute of

object and cmp is a binary comparator (i.e., =, <,>,≤, 6=,≥).
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In spite of the simplicity of these two neighborhood functions, they can weave

many useful analytics as we shall see in the remaining part of the thesis.

1.3 Thesis Contributions

In brief, the contribution of this thesis is twofold. First, by sewing different N and F ,

several novel neighborhood based queries are proposed for graph, sequence data and

trajectory respectively. Second, this thesis deals with the efficiency issues in deploying

the corresponding analytic queries to handle data of large scale. The roadmap of this

thesis is shown in Figure 1.2.

Distance

Comparison

Graph: Graph Window Queries

Sequence data: k‐Sketch Query

Trajectory:  General Co‐Movement 
Pattern Query

Aggregate

Rank

Pattern 
Matching

Neighborhood Analytics

Figure 1.2: The roadmap of this thesis. There are three major contributions as
highlighted in the center. Each contribution is an application based on neighborhood
analytics with N and F as indicated by arrows.

In a nutshell, we propose three neighborhood based queries in respective data do-

mains. In graph, we define the Graph Window Query which summarizes the vicinity

of each vertex. The query utilizes both distance neighborhood and comparison neigh-

borhood to facilitate both general graphs and direct acyclic graphs. In sequence data,

we propose a k-Sketch Query to summarize a subject’s history. The k-Sketch query

builds on a nested distance and comparison neighborhood based pattern called rank-

aware streak. In trajectory, we propose a General Co-movement Pattern (GCMP)
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query to discover co-moving behaviors among moving objects. The GCMP query

leverages the neighborhood notion to unify existing co-moving patterns in the litera-

ture. In the following parts of this section, we present our contributions in detail.

1.3.1 Graph Window Queries

The first piece of the thesis deals with neighborhood analytics on graph data. Nowa-

days information network are typically modeled as attributed graphs where the ver-

texes correspond to objects and the edges capture the relationships among these

objects. As vertexes embed a wealth of information (e.g., user profiles in social net-

works), there are emerging demands on analyzing these data to extract useful insights.

We propose the concept of window analytics for attributed graph and identify two

types of such analytics as shown in the following examples:

k-hop Window: The k-hop neighbors of a vertex form its k-hop window. Since

the k-hop neighbors are the most structurally relevant vertexes to the vertex, analytics

on the information from the k-hop window would be beneficial. Typical analytic

queries include summarizing the related connections’ distribution among different

companies, and computing age distribution of the related friends can be useful.

Topological Window: The topological neighbors are defined in the context

of Directed Acyclic Graph (DAG). In DAGs, topological neighbors are composed

of all the ascendant vertexes of a vertex. The topological neighbors represent the

most influential vertexes of a given vertex. Since DAGs are often found in biological

networks, topological window would be helpful to analyze the statistics of molecules

of each biological protein’s pathway.

The two windows shown in the above examples are essentially neighborhood func-

tions defined for each vertex. Specifically, let G = (V,E,A) be an attributed graph,

where V is the set of vertexes, E is the set of edges, and each vertex v is associated

as a multidimensional point av ∈ A called attributes. The k-hop window is a distance
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neighborhood function, i.e., N1(v, k) = {u|dist(v, u) ≤ k}, which captures the ver-

texes that are k-hop nearby. The topological window, N2(v) = {u|u ∈ v.ancestor},

is a comparison neighborhood function that captures the ancestors of a vertex in a

directly acyclic graph. The analytic function F is an aggregate function (sum, avg,

etc.) on A.

Apart from demonstrating the useful use cases on these two windows, we also

investigate how Graph Window Query processing can be efficiently supported. We

propose two different types of indexes: Dense Block Index (DBIndex) and Inheritance

Index (I-Index). The DBIndex and I-Index are specially optimized to support k-hop

window and topological window processing. These indexes integrate the aggregation

process with partial work sharing techniques to achieve efficient computation. In addi-

tion, we develop space and performance efficient techniques for the index construction.

Notably, DBIndex saves upto 80% of the index construction time as compared to the

state-of-the-art competitor and up to 10 times speedup in query processing.

1.3.2 k-Sketch Query on Sequence Data

The second piece of this thesis explores the neighborhood analytics on sequence data.

As part of the sequence data analysis, summarizing a subject’s history with sensa-

tional patterns is an important and revenue-generating task in a plethora of applica-

tions such as computational journalism [21,74], automatic fact checking [33,61], and

perturbation analysis [62]. An outstanding example of such patterns is the streak [74],

which is commonly found in stock and sports reports. For instance:

1. [STOCK]:“Apple Inc. has an average price of USD 115.5 in the last week”

2. [SPORTS]: “Kobe has scored at least 60 points in three straight games”

In general, a streak is constructed from two concepts: an aggregate function (e.g.,

avg, min) applied on consecutive events (e.g., seven days, three games). However, the
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streak itself does not embed the strikingness information, which is limited to represent

a sensational pattern. For example, Streak 2 would not be striking if all NBA players

were able to score over 60 points. On the contrary, knowing that most NBA players

only score 20 points in a game, Streak 2 is indeed quite striking. Therefore, the

strikingness of a streak should be measured by comparing with other streaks. Based

on this observation, we propose a rank-aware pattern named ranked-streak which

measures the strikingness of a streak by comparing among all streaks under the same

condition (i.e., streak length).

Technically, the ranked-streak can be viewed as a joint neighborhood function.

Let ts(e) be the sequence number of the event e in the history of subject s. Then the

ranked-streaks of length L are generated using neighborhood functions in a two-step

manner:

1. a distance neighborhood N1(s, e, L) = {ej|ts(e)− ts(ej) ≤ L} groups a consecu-

tive L events for each event in the history of subject s. Let v be the aggregate

value associated with N1, then the output of this step is a set of streaks of the

form sk = 〈s, L, t, v〉.

2. a comparison neighborhood N2(sk) = {ski|sk.L = ski.L ∧ ski.v ≥ sk.v} ranks

a subject’s streak among all other streaks with the same length. Note that the

rank information can be simply calculated from a count function. The result

of this step is a tuple 〈s, L, t, v, r〉, where r is the rank.

As the ranked-streak contains the relative position of the streak among its cohort,

it provides a quantitative measure of the strikingness. For example, the rank-aware

version of Streak 2 would be “Kobe has scored at least 60 points in three straight

games, which is best in the league”. This clearly suggests that Streak 2 is striking.

On the basis of the ranked-streaks, we study the problem of effectively summa-

rizing a subject history. We notice that, for a subject with n events, there are O
(
n
2

)
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streaks. In real life, “Kobe” has played 1, 000 games which may produce near half

million streaks. Such a large number of streaks is too overwhelming to represent a

subject’s history. Hence, we are motivated to propose a k-Sketch query that selects k

ranked-streaks which best represent a subject’s history. To find the qualified streaks,

we design a novel scoring which considers both the events covered of the streaks and

the ranks of the streaks.

In this thesis, we extensively study the technical issues in processing k-Sketch

queries in both online and offline scenarios. In the offline scenario, we design two

pruning techniques which largely reduce the streaks enumerated in generating ranked-

streaks. Then, we adopt a (1 − 1/e)-approximate sketch selection algorithm by uti-

lizing the submodularity of the k-Sketch query. In the online scenario, we design

an online-streak bound to avoid evaluating many unnecessary streaks. Furthermore,

we propose a 1/8-approximate algorithm to facilitate efficient sketch maintenance.

In the experimental study, we compare our solutions with baselines using four real

datasets, and the results demonstrate the efficiency and effectiveness of our proposed

algorithms: the running time achieves up to 500 times speedup as compared to the

baseline and the quality of the detected sketch is endorsed by the anonymous users

from Amazon Mechanical Turk1.

1.3.3 Co-Movement Pattern Query on Trajectory Data

The third piece of the thesis studies the neighborhood analytics in the trajectory

domain. In trajectory analysis, an important mining task is to discover traveling

patterns among moving objects. A traveling pattern is often determined by the spatial

neighborhoods of moving objects. One of the prominent examples is the co-movement

pattern [42,77]. A co-movement pattern refers to a group of moving objects traveling

together for a certain period of time. We observe that the co-movement pattern can

1https://requester.mturk.com
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be concisely represented using two neighborhood functions in spatial and temporal

domains as follows:

(1) In spatial domain, let o(t) be the spatial location of object o at time t. The

co-moving objects of an object o can be determined by a distance neighborhood N1.

For example, flock [29] and group [64] patterns use the disk-based clustering, which

is equivalent to N1(o, t) = {oj|dist(o(t), oj(t)) < r}. Convoy [35], swarm [45] and

platoon [44] patterns use the density-based clustering, which is equivalent toN1(o, t) =

{oj|dist(oj(t), ok(t)) ≤ ε ∧ ok ∈ N1(o, t)}.

(2) In temporal domain, objects that co-move with o for a duration T can be

determined by a comparison neighborhood N2: N2(o, T ) = {oj|∀t ∈ T, oj ∈ N1(o, t)}.

A pattern is deemed significant if the group size exceeds M (i.e., |N2(·)| ≥M and

the length of duration exceeds K (i.e., T ≥ K). Rooted from the basic movement

definition and driven by different mining applications, there are several instances of

co-movement patterns that have been developed with more advanced constraints,

namely flock [29], convoy [35], swarm [45], group [64] and platoon [44]. However,

these solutions are tailored for each individual pattern and it is cumbersome to deploy

and optimize each of the algorithms in real applications. Therefore, there calls for

a general framework which provides versatile and efficient support on these pattern

discoveries.

Towards this goal, we propose a General Co-Movement Pattern (GCMP) query

to capture all existing co-movement patterns in one shot. In GCMP, we treat the

proximity detection (i.e., N1) as a black box and only focus on the pattern detection

(i.e., N2). We relax the parameter settings on the co-moving duration (i.e., T ) and

by tuning different parameters (as explained in later sections), GCMP query is able

to detect any of the existing patterns.

In the technical aspect, we study how to efficiently process GCMP query on the

modern parallel processing platform (i.e., Apache Spark) to gain scalability over large-
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scale trajectories. In particular, we propose two parallel frameworks: (1) TRPM,

which partitions trajectories by replicating snapshots in the temporal domain. Within

each partition, a line-sweep method is developed to find all patterns. (2) SPARE,

which partitions trajectories based on object’s neighborhood. Within each partitions,

a variant of Apriori enumerator is applied to generate all patterns. We deploy the

two solutions in our in-house cluster with 11 machines. The experiments on three real

trajectory datasets up to 170 million data points confirm the scalability and efficiency

of our methods.

1.4 Thesis Organization

The rest of the thesis is organized as follows: in Chapter 2, we review the literature

related to our proposed queries in different data domains. In Chapter 3, we describe

the Graph Window query on graph data. In Chapter 4, k-Sketch query on sequence

data is presented. In Chapter 5, we report the General Co-Movement Pattern query

on trajectory data. Chapter 6 summarizes this thesis and highlights future directions.

1.5 Published Material

The research in this thesis has led to numerous publications, which are listed as

follows:

• The overview of the thesis has been published in SIGMOD Ph.D. Symposium.

Qi Fan, Kian-Lee Tan. Towards Neighborhood Analytics. Proceedings of the

ACM SIGMOD on PhD Symposium, 2015

• The work in Chapter 3 appears in DASFAA 2016.

Qi Fan, Zhengkui Wang, Chee-Yong Chan, Kian-Lee Tan. Towards Window
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Analytics over Large-Scale Graphs. International Conference on Database Sys-

tems for Advanced Applications, 2016

• The work in Chapter 4 have been accepted in TKDE 2017.

Qi Fan, Yuchen Li, Dongxiang Zhang, Kian-Lee Tan. Discovering Newswor-

thy Themes From Sequence Data: A Step Towards Computational Journalism.

IEEE Transactions on Knowledge and Data Engineering, 2017.

• The work in Chapter 5 has been accepted in VLDB 2017.

Qi Fan, Dongxiang Zhang, Huayu Wu, Kian-Lee Tan. A General and Paral-

lel Platform for Mining Co-Movement Patterns over Large-scale Trajectories.

Proceedings of the VLDB Endowment, 2017
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Chapter 2

Literature Review

Our proposed neighborhood based queries are inspired by the usefulness of window

functions in SQL analytics [73]. A window function in SQL specifies a set of partition-

ing attributes A and an aggregate function f . Its evaluation first sorts input records

based on A to form overlapped partitions for each record. And then, f is evaluated for

every partition and the aggregate result is associated with the corresponding records.

Several optimization techniques [9,15] have been developed to evaluate complex SQL

queries involving multiple window functions.

However, the semantic and evaluation of the window function are restricted. In

SQL window functions, tuples need to be sorted in order to form individual parti-

tions (i.e., windows). In fact, such a need is hard to meet in other data domains.

Therefore, optimization techniques that are developed for the relational model be-

come inapplicable in other data domains. Nevertheless, there are quite a few works

that are related to our proposed neighborhood based queries and we review them in

this section.
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2.1 Graph Window Queries

2.1.1 Graph Aggregation

Works on graph data analytics have focused on graph aggregation [16, 58, 65, 75],

which are different from Graph Window Queries (GWQ). In a general model, graph

aggregation comprises three steps: (1) partition graph based on attributes of vertex

(and/or edges), (2) aggregate each partition to form Aggregated Nodes, and (3) link

each aggregated node to form one Aggregated Graph. An illustration of the Graph

Aggregation is shown in Figure 2.1 (b). In the first step, the input graph is partitioned

on the “Gender” attribute of vertex which results in two partitions. In the second

step, two aggregated nodes are formed, i.e., M (stands for Male) containing nodes

A,D,E and F (stands for Female) containing nodes B,C, F . In the third step, the

links betweenM and F are added, with the “count” attached on each link. Differently,

Graph Window Queries perform graph analytics from the vertex-centric perspective.

In GWQ, the neighborhood structure of each vertex form overlapping partitions.

Then, analytics are computed over each neighborhood structure. In Figure 2.1 (c),

the neighborhood structures ofB and E are highlighted. Clearly, the GWQ is different

from graph aggregation and they could not model each other.

2.1.2 Reachability Queries and Indexes

Classic reachability queries, which answer whether two vertexes are connected, have

been studied extensively in literature. To facilitate fast query processing, many in-

dexes are proposed [18, 19, 66, 71]. Although our graph window queries can be built

on top of the reachability queries, directly using these techniques is inefficient. For

example, the most related reachability query to our k-hop window query is the k-

reach query [19] which tests if an input pair of vertexes is within a k-hop distance.

In order to compute the k-hop window query for n vertexes, there would be θ(n2)
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User Age Gender  

A 21 M 

B 26 F 

C 30 F 

D 22 M 

E 28 M 

F 23 F 

M F 

A D E B C F 

Count: 2 Count: 2 
Count: 6 

(b) Graph Aggregation 

(c) Graph Window (a) Mini social network 

Count: 3 Count: 3 

Figure 2.1: Illustration of Graph Aggregation and Graph Window Queries. (a) is an
example social network, (b) is graph aggregation, (c) are the windows of vertexes B
and E.

reachability tests. This would be inefficient on graphs with over millions of vertexes.

2.1.3 Top-k Neighborhoods

In [68], the authors investigated the problem of finding the vertexes that have top-k

highest aggregate values over their h-hop neighbors. This is similar to our k-hop query,

while the difference is that they focus on providing pruning techniques to select the

k best vertexes and our graph window query aims to compute the analytics for each

vertex. Therefore, in our setting, the pruning techniques in [68] does not take effect

and would be equivalent to the non-indexed approach as described in Section 3.3.

2.1.4 Egocentric Networks

Egocentric networks [48, 51] have been playing an important role in network study.

The egocentric networks refer to the neighborhood structure of each vertex in a graph.

Although many works have studied structural analysis on egocentric networks, they

do not consider efficient processing of data analytics (e.g., aggregation) within each
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egocentric network. Recently, Jayanta et.al. [52] proposed an EAGR system to sum-

marize attribute information among each vertex’s neighborhoods. Their technique

builds an overlay graph to leverage the shared components among vertexes’ neigh-

borhood structures to boost query processing. Technically, EAGR runs in iterations

and starts with the vertex-neighborhood mapping as the initial overlay graph. During

each iteration, it sorts vertexes in an overlay graph according to their neighborhood

information. Then an FP-Tree [31] is built to mining the largest shared components

based on the sorted vertexes. As the algorithm iterates, the overlay graph evolves to

be sparser.

The main drawback of EAGR is its high demands of resources on the overlay

construction. In terms of memory cost, EAGR assumes the initial vertex-neighbor

mapping can be stored in memory. However, the assumption does not scale well for

computing higher hop windows (such as k ≥ 2). For instance, a LiveJournal social

network graph 1 (4.8M nodes, 69M edges) generates over 100GB mapping information

for k=2 in adjacency list representation. If the neighborhood information is resided in

disk, the performance of EAGR will be largely slow down. In terms of computational

cost, EAGR requires to sort all vertexes in a graph and build an FP-Tree in each

iteration. When the graph has millions of vertexes, the construction of the index is

largely slow down.

We tackle these drawbacks by adopting a hashing based approach that clusters

each vertex according to its neighborhood similarity. During the hashing, a vertex’s

neighborhood information is computed on-the-fly. As compared to the sorting based

approach, we do not require vertex’s neighborhood to be resided in memory. In order

to reduce the repetitive computation, we adopt a Dense Block heuristic to leverage the

shared components among vertexes’ neighborhoods. We then propose an estimation

scheme that further reduces the number of neighborhood accesses. Experiments show

1Available at http://snap.stanford.edu/data/index.html, which is used [52]
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that our schemes outperform EARG in both query processing and memory usage. Our

methods are able to perform well even when EAGR algorithm fails when neighborhood

information overwhelms system’s memory and our methods takes much shorter index

construction time.

2.2 k-Sketch Query

Our proposed k-Sketch query is closely related to the following four areas: news

discovery in computational journalism, frequent episode mining on sequence data,

top-k diversity query and event detection in information retrieval.

2.2.1 Computational Journalism

An important aspect of computational journalism is to leverage computational tech-

nology to discover striking news themes. Previous works on automatic news theme

generation belong to two categories: dimension-oriented approach and subject-oriented

approach. Dimension-oriented approaches aim to select appropriate dimensions to

make an event interesting. Representative works include the situational facts [56]

and the one-of-the-few facts [67]. On the other hand, subject-oriented approaches

aim to summarize subjects’ histories from their historical events, such as the promi-

nent streaks [74]. Our proposed solution falls into the subject-oriented category.

2.2.1.1 Situational facts and one-of-the-few facts

Situational Facts [56]: it finds for a given event, the best constraint-measure pair

that makes the event unique (i.e., not dominated by others). An example of the

situational fact is listed in Table 2.1 and is extracted from the NBA game events

where the measure dimensions are “points, assists, and rebounds” and the constraint

dimensions are “team, result, and date”. The situational fact of the event in Table 2.1
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is the constraint-measure pair 〈team=Blazer, points〉, since under this situation, this

event is a skyline among all events (i.e., no other events matching the constraint

“team=Blazer” contain an even higher “point”).

One-of-the-few Facts [67]: it finds the dimensions under which no more than

τ events are in the k-skyband (i.e., not dominated by k events and k is as small as

possible). An example of the one-of-the-few fact is listed in Table 2.1. In the example,

when τ = 5, two dimensions are selected (i.e., points and rebounds). Under these

two dimensions, five players are the skylines (i.e., 1-skyband), thus each of them is a

one-of-the-5 player.

As demonstrated, “situational facts” and “one-of-the-few facts” are dimension-

oriented since they attempt to generate news themes by selecting dimensions.

Table 2.1: Examples of different news themes.

Method Example news theme
Situational facts [56] Damon Stoudamire scored 54 points on January 14,

2005. It is the highest score in history made by any
Trail Blazer.

One-of-the-τ facts [67] Jordan, Chamberlain, James, Baylor and Pettit are the
five players with highest points and rebounds in NBA
history.

Prominent streaks [74]

1.Kobe scored 40+ in 9 straight games,
first in his career!
2.Kobe scored 50+ in 4 straight games,
first in his career!
3...

k-Sketch

1.Kobe scored 40+ in 9 straight games,
ranked 4th in NBA history!
2.Kobe scored 50+ in 4 straight games,
ranked 1st in NBA history.
3....

2.2.1.2 Prominent streaks

Zhang et al. [74] proposed a subject-oriented approach to generate news themes by

discovering prominent streaks. In [74], a streak is modeled as a pair of the streak
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duration and the minimum value of all events in the streak. For example, as shown

in Table 2.1, a streak of “Kobe” may be 〈9 consecutive games, minimum points of

40〉. The objective of [74] is to discover all the non-dominated streaks (i.e., prominent

streaks) where the dominance is defined among streaks of the same subject. Despite

being the same subject-oriented approach, our k-Sketch query differs from [74] in two

aspects. First, we look at the global prominence among all subjects (i.e., rank in

the entire NBA history) rather than local prominence within one subject (i.e., non-

dominance in one’s career). Second, our model provides the best k ranked-streaks for

each subject, whereas [74] returns a set of skylines which potentially could be large.

2.2.2 Frequent Episode Mining

In sequence data mining, an episode [41, 50, 57, 79] is defined as a collection of time

sequenced events which occur together within a time window. The uniqueness of an

episode is determined by the containing events. The objective of frequent episode

mining is to discover episodes whose occurrences exceed a threshold. Our k-Sketch

query differs from the episode mining in two major aspects. First, episodes are as-

sociated with categorical values thus they can be grouped to count the occurrences.

On the other hand, our ranked-streaks are defined with numerical values, making

it inappropriate to be grouped. Second, the episodes are selected based on the oc-

currences which do not contain the rank information, whereas our k-Sketch query

explicitly provides the rank of selected streaks. As such, episode mining techniques

cannot support the k-Sketch query.

2.2.3 Top-k Diversity Query

Top-k diversity queries [1, 10, 17, 25] aim to find a subset of objects to maximize

a scoring function. The scoring function normally penalizes subsets with similar

elements. Our k-Sketch query has two important distinctions. First, the inputs to
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top-k diversity queries are known in advance, whereas in k-Sketch query, the ranks of

streaks need to be derived. Second, existing methods for online diversity queries [10,

17,25] only study the update on a single result set when a new event arrives. However,

our online sketch maintenance incurs the problem of multiple sketch updates for each

new event. Such a complex update pattern has not been studied yet.

2.2.4 Event Detection and Tracking

In information retrieval, event detection and tracking aim to extract and organize

new events from various media sources such as text streams [4, 11], social media

streams [43] and web articles [60]. Despite the usefulness of these works, they differ

from our k-Sketch query as they focus on the detection of a single event, whereas

k-Sketch aims to summarize a subject’s history. Therefore, the abovementioned tech-

niques cannot be directly applied.

2.3 General Co-Movement Pattern Query

Existing works on movement patterns can be grouped into three categories: co-

movement patterns, dynamic movement patterns and trajectory mining frameworks.

2.3.1 Co-Movement Patterns

2.3.1.1 Flock and convoy

The difference between flock and convoy lies in the object clustering methods. In

flock, objects are clustered based on their distances. Specifically, the objects in the

same cluster need to have a pairwise distance less than min dist. This essentially

requires the objects to be within a disk-region of delimiter less than min dist. In

contrast, convoy clusters objects using density-based spatial clustering [27]. Tech-

nically, flock utilizes a mth-order Voronoi diagram [40] to detect whether a subset
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of n (n ≥ m) objects stay in a disk region. Convoy employs a trajectory simplifi-

cation [24] technique to boost pairwise distance computations in the density-based

clustering. After clustering, both flock and convoy use a sequential scanning method

to examine each snapshot. During the scan, the object groups that do not appear

in consecutive snapshots are pruned. However, such a method faces high complexity

when supporting other patterns. For instance, in swarm, the candidate set during

the sequential scanning grows exponentially, and many candidates can only be pruned

after the entire dataset are scanned.

2.3.1.2 Group, swarm and platoon

Different from flock and convoy, all the group, swarm and platoon patterns have more

relaxed constraints on the pattern duration. Therefore, their techniques of mining

are of the same skeleton. The main idea of mining is to grow an object set from an

empty set in a depth-first manner. During the growth, various pruning techniques are

provided to prune unnecessary branches. Group pattern uses a VG-graph to guide

the pruning of false candidates [64]. Swarm designs two more pruning rules called

backward pruning and forward pruning [45]. Platoon [44] leverages a prefix table

structure to steer the depth-first search, which shows efficiency as compared to the

other two methods. However, the pruning rules adopted by the three patterns heavily

rely on depth-first search which loses efficiency in a parallel scenario.

2.3.2 Other Related Trajectory Patterns

A closely related literature to co-movement patterns is the dynamic movement pat-

terns. Instead of requiring the same set of object traveling together, dynamic move-

ment patterns allow objects to temporally join or leave a group. Typical works in-

clude moving clusters [37], evolving convoy [6], gathering [76] etc. These works cannot

model GCMP since they enforce global consecutiveness on the temporal domain.
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2.3.3 Trajectory Mining Frameworks

Jinno et al. in [36] designed a MapReduce based algorithm to efficiently support

T -pattern discovery, where a T -pattern is a set of objects visiting the same place

at similar time. Li et al. proposed a framework of processing online evolving group

pattern [42], which focuses on supporting efficient updates of arriving objects. As

these works essentially differ from co-movement pattern, their techniques cannot be

directly applied to discover GCMPs.
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Chapter 3

Graph Window Query:

Neighborhood Analytics in

Attributed Graphs

3.1 Introduction

In this chapter, we study the neighborhood analytics in the domain of attributed

graphs. Attributed graphs are prevalently adopted to model real life information

networks such social networks, biological networks and phone-call networks. In the

attributed graph model, the vertexes correspond to objects and the edges capture

the relationships between these objects. For instance, in social networks, every user

is represented by a vertex and the friendship between two users is reflected by an

edge connecting the vertexes. Besides, a user’s profile is maintained as the vertex’s

attributes. Such graphs contain a wealth of valuable information which can be an-

alyzed to discover interesting patterns [16, 58, 65, 75]. With the increasingly larger

network sizes, it is becoming challenging to query, analyze and process these graph

data. Therefore, there is an urgent call for effective and efficient mechanisms to draw
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out information over graph data resources.

Recent advances in graph analytics such as graph aggregation [65, 75] and sum-

marization [16,58] focus on analyzing the entire graph as a whole. In fact, it is often

useful to perform neighborhood analytics on graph data to analyze the vicinity of

vertexes. That is for each vertex, the analytics is conducted over its neighborhoods.

For instance, in a social network, it is important to detect a person’s social influence

among his/her social community. The “social community” of the person is essentially

his/her neighborhood vertexes representing his/her friends.

Similar neighborhood concept has been supported by window functions [9, 15] in

relational data analytics. Instead of performing analysis (e.g., ranking and aggregate)

over the entire data set, a window function returns for each tuple a value derived from

its neighboring tuples. For instance, when finding each employee’s salary ranking

within every department, each tuple’s neighbors are basically the tuples from the

same department. However, the window definition in the relational context ignores

graph structures which makes it unsuitable in the graph context. Therefore, we seek

to utilize the general neighborhood analytics to formulate the notion of graph windows.

We have derived two graph windows from the perspective of neighborhood func-

tions, which are referred to as k-hop window and topological window. The semantic

of these windows are first demonstrated in the following two examples.

Example 3.1.1. (k-hop window) In a social network (such as LinkedIn and Face-

book), users are normally modeled as vertexes and connectivity relationships are

modeled as edges. In this scenario, a distance neighborhood function, such as

2-hop neighbors, represents the most relevant connections to each user. Some ana-

lytic queries such as summarizing related connections’ distribution among different

companies, and computing age distribution of the related friends can be useful. In

order to answer these queries, computing the distance neighborhood is necessary.
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Example 3.1.2. (Topological window) In biological networks (such as Argocyc, Eco-

cyc etc. [38]), genes, enzymes and proteins are vertexes and their dependencies in

a pathway are edges. Because these networks are directed and acyclic, compari-

son neighborhood based on the ancestry relationship helps to reveal the influences

among molecules. For instance, to find out the statistics of molecule in a protein

production pathway, we can traverse the graph to find every molecule that is in

its upstream. Then we summarize the number of genes and enzymes among those

molecules. To answer such queries, computing the ancestry based comparison neigh-

borhood is necessary.

To support these analytics in the above examples, we propose the Graph Window

Query (GWQ in short) on attributed graphs. GWQ is a neighborhood analytics which

aims to facilitate vertex-centric analysis. It supports two graph windows namely k-

hop window and topological window. The k-hop window of a vertex is defined by

its k-hop distance (e.g., friends-of-friends in Example 3.1.1). Thus it is essentially a

distance neighborhood. On the other hand, the topological window of a vertex

contains its ancestors (e.g., upstream molecules in Example 3.1.2). Hence, it is a

comparison neighborhood based on the ancestry relationship.

To the best of our knowledge, existing graph databases or graph query languages

do not directly support our proposed GWQ. There are two major challenges in pro-

cessing GWQ. First, we need an efficient scheme to calculate the window of each

vertex. Second, we need efficient solutions to process the aggregation over a large

number of windows that may overlap. This offers opportunities to share the compu-

tation. However, it is non-trivial to address these two challenges.

For k-hop window query, the latest processing algorithm can be adopted from

literature is EAGR [52]. EAGR leverages an overlay graph to represent the shared

components among different windows. It incrementally constructs the overlay graph

through multiple iterations. In each iteration, it builds a Frequent-Pattern Tree [32]
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to discover the largest shared component among vertex windows. However, to achieve

efficient shared component detection, EAGR requires all vertex’s k-hop neighbors to

be pre-computed and resided in memory; otherwise EAGR incurs high performance

overheads due to secondary storage accesses (e.g., disk I/Os). This limits the usage of

EAGR in large-scale graphs. For instance, a LiveJournal social network graph1 (4.8M

vertexes, 69M edges) generates over 100GB neighborhood information for k = 2 in

adjacency list representation. In addition, the overlay graph construction is not a one-

time task, but periodically performed after a certain number of structural updates

in order to maintain the quality. The high memory consumption renders the scheme

impractical when k and the graph size increases.

In this chapter, we propose the Dense Block Index (DBIndex) to process the two

graph window queries efficiently. Like EAGR, DBIndex seeks to exploit common com-

ponents among different windows to salvage partial work done. However, different

from EAGR, we identify the window similarity by utilizing a hash-based clustering

technique. This ensures efficient memory usage, as the window information of each

vertex can be computed on-the-fly. On the basis of the clusters, we develop different

optimization techniques to extract the shared components which result in an effi-

cient index construction. Moreover, we provide another Inheritance Index (I-Index)

tailored to topological window query. I-Index differentiates itself from DBIndex by

integrating additional ancestry relationships to reduce repetitive computations. This

results in more efficient index construction and query processing. Our contributions

of this chapter are summarized as follows:

• We study the neighborhood analytics in the graph domain and propose the

Graph Window Query which instantiates two neighborhood functions. We for-

mally define two graph windows: k-hop window and topological window, and

illustrate how these window queries would help users better query and under-

1Available at http://snap.stanford.edu/data/index.html, which is used in [52]

25



stand the graphs under these different semantics.

• To support efficient query processing, we further propose two different types of

indexes: Dense Block Index (DBIndex) and Inheritance Index (I-Index). The

DBIndex and I-Index are specially optimized to support k-hop window and

topological window query processing. We develop the indexes by integrating

the window aggregation sharing techniques to salvage partial work done for

efficient computation. In addition, we develop space and performance efficient

techniques for index construction.

• We perform extensive experiments over both real and synthetic datasets with

hundreds of millions of vertexes and edges on a single machine. Our experi-

ments indicate that our proposed index-based algorithms outperform the naive

non-index algorithm by up to four orders of magnitude. In addition, our experi-

ments also show that DBIndex is superior over the state-of-the-art baseline (i.e.,

EAGR) in terms of both scalability and efficiency. In particular, DBIndx saves

up to 80% of index constructing time as compared to EAGR, and performs well

even when EAGR fails due to memory limitations.

The rest of the chapter is organized as follows. In Section 3.2, the graph window

query is formulated. In Section 3.3, Dense Block Index is presented to process general

window queries. A specialized index to handle topological query is presented in

Section 3.4. Section 3.5 demonstrates our experimental findings and Section 3.6

concludes this chapter.

3.2 Problem Formulation

In this section, we provide the formal definition of graph window query. We use

G = (V,E) to denote a directed/undirected data graph, where V is its vertex set
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and E is its edge set. Each node/edge is associated with a (possibly empty) set of

attribute-value pairs.

Figure 3.1 (a) shows an undirected graph representing a social network that will

be used as our running example in this chapter. For convenience, each vertex is

labeled by its “user” attribute; and there is one edge between vertex X and vertex

Y if user X and user Y are connected in the social network. The table in Figure 3.1

(b) shows the values of five attributes (User, Age, Gender, Industry, and Number of

posts) associated with each user.

A

B

C

D

E

F

User Age Gender Industry Posts
A 21 M IT 12
B 26 F IT 15
C 30 F Finance 28
D 22 M Finance 23
E 28 M Power 26
F 23 F Power 14

(a) (b)

Figure 3.1: A miniature social graph. (a) the graph structure. (b) the attributes
associated with the vertexes in (a).

Given a data graph G = (V,E), a Graph Window Function (GWF) over G can be

expressed as a pair (W,Σ), where W (v) denotes a window specification for a vertex

v ∈ V that determines the set of v’s neighborhood nodes2, Σ denotes an aggregate

function3. The evaluation of a GWF (W,Σ) on G computes for each vertex v in G,

the aggregation Σ over all the nodes in W (v), which is denoted by Σv′∈W (v)v
′. In

this chapter, we focus on the distributive or algebraic aggregate functions (e.g., sum,

count, average), as these aggregate functions are widely used in practice.

2We use “vertex” to refer the vertex in the original graph and “node” to refer to the vertex in
the windows.

3An aggregate function is associated with one attribute. I.e., average(age) and average(salary)
are considered to be two different aggregate functions. Functions that associated with more at-
tributes can be easily computed via stored views.
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In the following, we introduce two useful types of window specification (i.e., W ),

namely, k-hop window and topological window.

Definition 3.2.1 (k-hop Window). Given a vertex v in a data graph G, the k-hop

window of v, denoted by Wkh(v) (or W (v) when there is no ambiguity), is the set of

nodes in G which can be reached by v within k hops. For an undirected graph G, a

node u is in Wkh(v) if there is a α-hop path between u and v where α 6 k. For a

directed graph G, a node u is in Wkh(v) if there is a α-hop directed path from v to

u4 where α 6 k.

Intuitively, a k-hop window selects the neighboring nodes within a k-hop distance.

These neighboring nodes typically represent the most important entities to a vertex

with regard to their structural relationship in a graph. Thus, the k-hop window

provides a meaningful specification for many applications, such as customer behavior

analysis [12, 22] , digital marketing [48] etc.

As an example, in Figure 3.1, the 1-hop window of vertex E is {A,C,E} and the

2-hop window of vertex E is {A,B,C,D,E, F}.

Definition 3.2.2 (Topological Window). Given a vertex v in a DAG G, the topo-

logical window of v, denoted by Wt(v), refers to the set of ancestor nodes of v in G,

i.e., a vertex u is in Wt(v) if there is directed path from u to v in G.

There are many directed acyclic graphs (DAGs) in real world applications (such as

biological networks, citation networks and dependency networks) where topological

windows represent meaningful relationships that are of interest. For example, in a

citation network where (X,Y) is an edge if paper X cites paper Y , the topological

window of a paper represents the citation impact of that paper [14,34,49].

To illustrate, Figure 3.2 shows a small example of a Pathway Graph from a bi-

ological network. The topological window of E (i.e., Wt(E)) is {A,B,C,D,E} and

4Other variants of k-hop window for directed graphs are possible; e.g., a node u is in Wkh(v) if
there is a α-hop directed path from u to v where α 6 k.
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Wt(H) is {A,B,D,H}.

A 

B 

C 

D 

E 

F 

G 

H ID Type ID Type 

A Enzyme E Enzyme 

B Cytokine F Cytokine 

C Transporter G Enzyme 

D Enzyme H Transporter 

Figure 3.2: A miniature pathway DAG. (a) the DAG structure. (b) the attributes
associated with the vertexes of (a).

Definition 3.2.3 (Graph Window Query). A graph window query on a data graph

G is of the form GWQ(G,W1,Σ1, · · · ,Wm,Σm), where m ≥ 1 and each pair (Wi,Σi)

is a graph window function on G.

In this chapter, we focus on graph window queries with a single window function

that is either a k-hop or topological window. The evaluation of complex graph window

queries with multiple window functions can be simply processed as a sequence of

window functions one after another. We leave the optimization of processing multiple

window functions for future studies.

3.3 Dense Block Index

A straightforward approach to process a graph window query Q = (G,W,Σ), is to

dynamically compute the window W (v) for each vertex v ∈ V and its aggregation

Σv′∈W (v)v
′ independently from other vertexes. We refer to this approach as Non-

Indexed method.

Given that many of the windows would share a large number of common nodes

(e.g., the k-hop windows of two adjacent vertexes), such a simple approach would be

very inefficient due to the lack of sharing of the computation.

To efficiently evaluate graph window queries, we propose an index technique

named Dense Block Index (DBIndex ), which achieves both space and query efficiency.
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The main idea of DBIndex is to try to reduce the aggregation cost by identifying sub-

sets of nodes that are shared by more than one window so that the aggregation for

the shared nodes could be computed only once instead of multiple times.

For example, consider a graph window query on the social graph in Figure 3.1

using the 1-hop window function. We have W (B) = {A,B,D, F} and W (C) =

{A,C,D,E, F} sharing three common nodes A, D, and F . By identifying the set of

common nodes S = {A,D, F}, its aggregation Σv∈Sv can be computed only once and

then reused to compute the aggregation for Σv∈W (B)v and Σv∈W (C)v.

Given a window function W and a graph G = (V,E), we refer to a non-empty

subset B ⊆ V as a block. Moreover, if B contains at least two nodes and B is contained

by at least two different windows (i.e., there exists v1 6= v2 ∈ V , s.t. B ⊆ W (v1),

and B ⊆ W (v2)), then B is referred to as a dense block. Thus, in the last example,

{A,D, F} is a dense block.

We say that a windowW (X) is covered by a collection of disjoint blocks {B1, · · · , Bn}

if the set of nodes in the window W (X) is equal to the union of all nodes in the col-

lection of disjoint blocks; i.e., W (X) =
⋃n
i=1Bi and Bi ∩Bj = ∅ if i 6= j.

To maximize the sharing of aggregation for a graph window query, the objective

of DBIndex is to identify a small set of blocks B such that for each v ∈ V , W (v)

is covered by a small subset of disjoint blocks in B. Clearly, the cardinality of B is

minimized if B contains a few large dense blocks.

Thus, given a window function W and a graph G = (V,E), a DBIndex to evaluate

W on G consists of three components in the form of a bipartite graph. The first

component is a collection of nodes (i.e., V ); the second component is a collection of

blocks; i.e., B = {B1, · · · , Bn} where each Bi ⊆ V ; and the third component is a

collection of links from blocks to nodes such that if a set of blocks B(v) ⊆ B is linked

to a node v ∈ V , then W (v) is covered by B(v). Note that a DBIndex is independent

of the aggregate functions (i.e., Σ).
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A B C D E F

15 1426 5423 4049

A 118
B 64 

103 C 103
D 78
E 66
F 55

A B C D E F

A,F,D B FE C,ED A,C

(a)

(b) (c)

Figure 3.3: Window query processing using DBIndex. (a) provides the DBIndex for
1-hop window query in Figure 3.1; (b) shows the partial aggregate results based on
the dense block; (c) provides the final aggregate value of each window.

Figure 3.3(a) shows an example of a DBIndex with respect to the social graph in

Figure 3.1 and the 1-hop window function. Note that the index consists of a total of

seven blocks of which three of them are dense blocks.

3.3.1 Query Processing with DBIndex

Given a DBIndex with respect to a graph G and a window function W , a graph

window query Q = (G,W,Σ) is processed by the following two steps. First, for each

block Bi in the index, we compute the aggregation (denoted by Ti) over all the nodes

in Bi, i.e., Ti = Σv∈Bi
v. Thus, each Ti is a partial aggregate value. Next, for each

window W (v), v ∈ V , the aggregation for the window is computed by aggregating

over all the partial aggregates associated with the blocks linked to W (v). In other

words, if B(v) is the collection of blocks linked to W (v), then the aggregation for
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W (v) is computed by ΣBi∈B(v)Ti.

Consider again the DBIndex shown in Figure 3.3(a) defined with respect to the

social graph in Figure 3.1 and the 1-hop window function. Figure 3.3(b) shows how

the index is used to evaluate the graph window query (G,W, sum(Posts)) where each

block is labeled with its partial aggregate value, and Figure 3.3(c) shows the final

query results.

3.3.2 DBIndex Construction

In this section, we discuss the construction of the DBIndex (with respect to a graph

G = (V,E) and a window function W ) which faces two key challenges.

The first challenge is the time complexity of the index construction. From the

discussion of query processing using DBIndex, we note that the number of aggre-

gations is determined by both the number of blocks as well as the number of links

in the index; the former determines the number of partial aggregates to compute

while the latter determines the number of aggregations of the partial aggregate val-

ues. Thus, to maximize the shared aggregations using DBIndex , both the number

of blocks in the index as well as the number of blocks covering each window should

be minimized. However, finding the optimal DBIndex to minimize this objective is

NP-hard5. Therefore, effective heuristics are needed to construct the DBIndex.

The second challenge is the space complexity of the index construction. In order

to identify large dense blocks to optimize the query processing, a straightforward

approach is to first derive the window W (v) for each vertex v ∈ V and then use

this derived information to identify large dense blocks. However, this direct approach

incurs a high space complexity of O(|V |2). Therefore, a more space-efficient approach

is needed in order to scale to large graphs.

In this section, we present two heuristic approaches, namely Min-hash Clustering

5Note that a simpler variation of our problem has been proven to be NP-hard [59].
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(MC) and Estimated Min-hash Clustering (EMC), to construct DBIndex. The first

approach MC is to construct a DBIndex for general window functions; While the

second approach EMC is to construct a DBIndex specifically for k-hop window func-

tion. Compared to MC, EMC adopts a heuristic to speed up the index construction

at the expense of sacrificing the “quality” of the dense blocks (in terms of their sizes).

3.3.2.1 Min-hash clustering (MC)

To reduce both the time and space complexities for the index construction, instead

of trying to identify large dense blocks among a large collection of windows, we first

partition all the windows into a number of smaller clusters of similar window contents

and then identify large dense blocks from each of the smaller clusters. Intuitively,

two windows are considered to be similar if they share a large subset of nodes. We

apply the well-known Min-hash based Clustering (MC) algorithm [13] to partition the

windows into clusters of similar windows. The Min-hash clustering algorithm is based

on the Jaccard Coefficient which measures the similarity of two sets. Given the two

window W (v) and W (u), u, v ∈ V , their Jaccard Coefficient is given by

J(u, v) =
|W (u) ∩W (v)|
|W (u) ∪W (v)|

(3.1)

The Jaccard Coefficient ranges from 0 to 1, where a larger value indicates a higher

similarity.

Our heuristic approach to construct DBIndex I operates as follows. Let nodes(I),

blocks(I), and links(I) denote, respectively, the collection of nodes, blocks, and links

that form I. Initially, we have nodes(I) = V , blocks(I) = ∅, and links(I) = ∅. The

first step is to partition the vertexes in V into clusters using Min-hash algorithm such

that vertexes with similar windows belong to the same cluster. For each vertex v ∈ V ,

we first derive its window W (v) by an appropriate traversal of the graph G. Next,
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E 

F 

Node Window 
A A,B,C 
B A,B 
C A,C 
D A,B,C 
E A,C 
F A,B,C 

Equivalent Node Merging 

A B C D E F 

A,F,D B F C,E D A,C E 

(a) Vertex Clusters 

(b) Inverted Window List 

(c) Equivalent Nodes (d) DBIndex 

Node Window 
A D,E,F 
B D,F 
C D,E,F 
D D 
E E 
F F 

A,D,F A,B,C 
B A,B 
C,E A,C 

A,C D,E,F 
B D,F 
D D 
E E 
F F 

Cluster 𝐶1 Cluster 𝐶2 

Index Construction 

Window  Generation 

Figure 3.4: DBIndex construction over social graph in Figure 3.1. (a) shows two
clusters after MinHash clustering. (b) shows inverted window list for each node. (c)
shows the dense blocks via equivalent node merging. (d) provides the final DBIndex.

we compute a hash signature (denoted by H(v)) for W (v) based on applying m hash

functions on the set W (v). Vertexes with identical hash signatures are considered to

have highly similar windows and are grouped into the same cluster. To ensure that our

approach is scalable, we do not retain W (v) in memory after its hash signature H(v)

has been computed, i.e., our approach does not materialize all the windows in the

memory to avoid high space complexity. Let C = {C1, C2, · · · } denote the collection

of clusters obtained from the first step, where each Ci is a subset of vertexes.

The second step is to identify dense blocks from each of the clusters computed in

the first step. The identification of dense blocks in each cluster Ci is based on the

notion of node equivalence defined as follows. Two distinct nodes u, v are defined to
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be equivalent (denoted by u ≡ v) if u and v are both contained in the same set of

windows, i.e., for every window W (x), x ∈ Ci, u ∈ W (x) if and only if v ∈ W (x).

Based on this notion of node equivalence, Ci is partitioned into blocks of equivalent

nodes. To perform this partitioning, we need to again traverse the graph for each

vertex v ∈ Ci to determine its window W (v)6.

However, since Ci is now a smaller cluster of nodes, we can now materialize all

the windows for the vertexes in Ci in memory. In the event that a cluster Ci is still

too large for all its vertex windows to be materialized in main memory, we can re-

partition Ci into equal size sub-clusters. This re-partition process can be recursively

performed until the sub clusters created are small enough such that the windows for

all nodes in the sub clusters fit in memory.

Recall that a block B is a dense block if B contains at least two nodes and B

is contained in at least two windows. Thus, we can classify the nodes in each Ci as

either dense or non-dense nodes: a node v ∈ Ci is classified as a dense node if v is

contained in a dense block; otherwise, v is a non-dense node.

For each dense block B in Ci, we update the blocks and links in the DBIndex

I as follows: we insert B into blocks(I) if B 6∈ blocks(I), and we insert (B, v) into

links(I) for each v ∈ Ci where B ⊆ W (v). If all the blocks in Ci are dense blocks,

then we are done with identifying dense blocks in Ci; otherwise, there are two cases

to consider. For the first case, if all the nodes in Ci are non-dense nodes, then we also

terminate the process of identifying dense blocks in Ci and update the blocks and

links in the DBIndex I as before: we insert each non-dense block B into blocks(I),

and we insert (B, v) into links(I) for each v ∈ Ci where B ⊆ W (v). For the second

case, if Ci has a mixture of dense and non-dense nodes, we remove the dense nodes

from Ci and recursively identify dense blocks in the remaining part of Ci following

6Note that although we could have avoided deriving W (v) a second time if we had materialized all
the derived windows the first time, our approach is designed to avoid such a high space complexity
at the cost of computing each W (v) twice. We present an optimization in Section 3.3.2.2 to avoid
the recomputation cost.
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the above two-step procedure.

Note that since the blocks are identified independently from each cluster, it might

be possible for the same block to be identified from different clusters. We avoid

duplicating the same block in blocks(I) by checking that a block B is not already in

blocks(I) before inserting it into blocks(I). The details of the construction algorithm

are shown as Algorithms 1, 2, and 3.

Algorithm 1 CreateDBIndex

Input: Graph G = (V,E), window function W
1: Initialize DBIndex I: nodes(I) = V , blocks(I) = ∅, links(I) = ∅
2: for all v ∈ V do
3: Traverse G to determine W (v)
4: Compute the hash signature H(v) for W (v)
5: end for
6: Partition V into clusters C = {C1, C2, · · · } based on hash signatures H(v)
7: for all Ci ∈ C do
8: for all v ∈ Ci do
9: Traverse G to determine W (v)

10: end for
11: IdentifyDenseBlocks (I,G,W,Ci)
12: end for
13: return I

Figure 3.4 illustrates the construction of the DBIndex with respect to the social

graph in Figure 3.1(a) and 1-hop window using the MC algorithm. First, the set of

graph vertexes are partitioned into clusters using Min-hash clustering; Figure 3.4(a)

shows that the set of vertexes V = {A,B,C,D,E, F} are partitioned into two clusters

C1 = {A,B,C} and C2 = {D,E, F}.

For example, cluster C1 in Figure 3.4(b) shows the inverted list representing the

node n and the vertexes v ∈ C1 whose windows contains n, i.e., {v|n ∈ W (v)}.

Consider the identification of dense blocks in cluster C1. As shown in Figure 3.4

(c), based on the notion of equivalence nodes, cluster C1 is partitioned into three

blocks of equivalent nodes: B1 = {A,D, F}, B2 = {B}, and B3 = {C,E}. Among

these three blocks, only B1 and B3 are dense blocks. The MC algorithm then tries

to repartition the window A,B,C using non-dense nodes in C1, (i.e., B2). Since B2
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Algorithm 2 IdentifyDenseBlocks

Input: DBIndex I, Graph G = (V,E), window function W , a cluster Ci ⊆ V
1: Partition Ci into blocks based on node equivalence
2: Initialize DenseNodes = ∅
3: for all dense block B do
4: Insert B into blocks(I) if B 6∈ blocks(I)
5: Insert (B, v) into links(I) for each v ∈ Ci where B ⊆W (v)
6: DenseNodes = DenseNodes ∪B
7: end for
8: if (DenseNodes = ∅) then
9: for all block B do

10: Insert B into blocks(I) if B 6∈ blocks(I)
11: Insert (B, v) into links(I) for each v ∈ Ci where B ⊆W (v)
12: end for
13: else if (Ci −DenseNodes 6= ∅) then
14: if (Ci 6= DenseNodes) then
15: RefineCluster (I,G,W,Ci −DenseNodes)
16: end if
17: end if

is the only non-dense node, it directly outputs. At the end of processing cluster

C1, the DBIndex I is updated as follows: blocks(I) = {B1, B2, B3} and links(I) =

{(B1, {A,B,C}), (B2, {A,B},, (B3, {A,C})}. The identification of dense blocks in

cluster C2 is of similar process.

Now, we analyze the complexity of Algorithm 2 as follows. Suppose the Min-

hash cost is H and the total cost for collecting window function for all vertexes is

B, Lines 1-5 has the complexity of O(H + B). Lines 7-10 has the complexity of

O(B). A single execution of Algorithm 2 has the complexity of O(|V |), since we

can simply partition nodes using hashing. Suppose the iteration runs for K times,

the total cost for Algorithm 2 and Algorithm 3 is O(K|V |). Therefore the overall

complexity of Algorithm 1 is O(H + 2 ∗B +O(K|V |)). H depends on the number of

vertex-window mappings for a given query and B depends on the window functions.

As we demonstrate in Section 3.5, for k-hop window, the H and B are the major

factors in the index construction. To reduce the construction time, we design further

optimization techniques for the k-hop window.

37



Algorithm 3 RefineCluster

Input: DBIndex I, Graph G = (V,E), window function W , a cluster C ⊆ V
1: for all v ∈ C do
2: Compute the hash signature H(v) for W (v) ∩ C
3: end for
4: Partition C into clusters C = {C1, C2, · · · } based on hash signatures H(v)
5: for all Ci ∈ C do
6: IdentifyDenseBlocks (I,G,W,Ci)
7: end for

3.3.2.2 Estimated min-hash clustering (EMC)

The MC approach described in the previous section requires the window of each node

(i.e., W (v), v ∈ V ) to be computed twice in order to avoid the high space complexity

of materializing all the windows in main memory. For k-hop window function with

a large value of k, the cost of graph traversal to compute all k-hop windows could

incur a high computation overhead. Moreover, the cost of initial Min-hash in MC

approach equals to the initial number of vertex-window mappings, which is of the

same order as graph traversal. For the larger hops, Min-hash clustering would incur

high computation cost.

To address these issues, we present a more efficient approach, referred to as Esti-

mated Min-hash Clustering (EMC), to optimize the construction of the DBIndex for

k-hop window function with larger k.

The key idea behind EMC is based on the observation that for any two nodes

u, v ∈ V , if their m-hop windows, Wm(u) and Wm(v), are highly similar and they are

grouped into the same cluster, then it is likely that the n-hop windows of these two

nodes, where n > m, would also be highly similar and grouped into the same cluster.

Using the above observation, we could reduce the overhead for constructing a

DBIndex with respect to a k-hop window function by clustering the vertexes based

on their k′-hop windows, where k′ < k, instead of their k-hop windows.

To reduce the overhead of window computations, our EMC approach is similar
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to the MC approach except for the first round of window computations (Line 3 in

Algorithm 1): EMC uses lower hop windows to approximate k-hop windows to clus-

ter the vertexes in V . Thus, the hash signatures used for partitioning V are based

on lower hop windows. This approximation clearly has the advantage of improved

time-efficiency as traversing and hashing on lower hop window is of order of magni-

tude faster. For the extreme case, adopting 1-hop window of a node v requires only

accessing the adjacent nodes of v. The tradeoff for the improved efficiency is the

reduced “quality” of the dense blocks (in terms of their sizes). However, our experi-

mental results show that this reduction in quality is only marginal which makes this

approximation worthy.

3.3.2.3 Justification of heuristic

In the following, we justify of our heuristic by make an assumption on the indepen-

dence7 of the vertexes in a graph. First, we provide the following theorem which links

a set of connected vertexes to the newly discovered vertex by one-hop expansion.

Theorem 3.3.1. Let S be a collection of connected vertexes. Let T be the collection

of newly discovered vertexes from one-hop expansion of S. Then the ratio of |T |/|S|

decreases with respect to |S|.

Proof. Consider a random variable Yi which indicates the newly discovered vertexes

from one-hop expansion from vertex i. Then the probability of |Yi| = y is can be

analyzed as follows: there are di edges for vertex i. Since |Yi| is connected with S,

one edge is fixed to link with a vertex in S. There are remaining di − 1 edges with

y edges linked to the new vertexes. In total, there are
(|V |−1
di−1

)
combinations with di

7Although the assumption may not always hold in reality, it makes the analysis feasible. We also
conduct an empirical evaluation on real datasets in Section 3.5.1 to indicate the effectiveness of our
heuristic.
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edges. Therefore, the probability can be written as:

P (Yi = y|vi ∈ S) =

( |S|−1
di−y−1

)(|V |−|S|
y

)(|V |−1
di−1

) (3.2)

Thus, the expectation of Yi is:

E(Yi|vi ∈ S) = Σ(yP (Yi = y|vi ∈ S))

= Σy=di−1
y=1 (

( |S|−1
di−y−1

)(|V |−|S|
y

)(|V |−1
di−1

) y)

= Σy=di−1
y=1 (

( |S|−1
di−y−1

)(|V |−|S|−1
y−1

)(|V |−1
di−1

) (|V | − |S|))

= (|V | − |S|)Σy=di−1
y=1

( |S|−1
di−y−1

)(|V |−|S|−1
y−1

)(|V |−1
di−1

)
= (|V | − |S|)

(|V |−2
di−2

)(|V |−1
di−1

) =
(|V | − |S|)(di − 1)

|V | − 1

(3.3)

Taking the expectation over all vertexes in S, we can find the expectation of E(Yi|S) =

(|V |−|S|)(d−1)
|V |−1 , where d is the average degree of the graph. Let T be the number of

newly discovered vertexes for one-hop expansion of the entire set S. Since each Yi is

independent, it follows that E(T ) = E(Σ
i=|S|
i=1 Yi|S) = Σ

i=|S|
i=1 E(Yi|S) = |S|(|V |−|S|)(d−1)

|V |−1 .

Let α be the ration of E(T )
|S| . It follows α = d−1

|V |−1(|V | − |S|). As d, V are constants, α

decreases linearly with respect to |S|.

Next, we consider the Jaccard coefficient of two vertexes u, v’s windows. Let

Jk(u, v) be the Jaccard coefficient of u, v at hop k. We use Ik to denote Wk(u)∩Wk(v),

and Uk to denote Wk(u) ∪Wk(v). Therefore, Jk(u, v) can be represented as |Ik||Uk|
. Let

Jk+1(u, v) = |Ik|+αI |Ik|
|Uk|+αU |IU |

, where αI and αU be the ratio of newly discovered vertexes

versus original set of vertexes. Since |Uk| > |Ik|, by the above theorem, 1+αU < 1+αI .

Therefore, Jk+1(u, v) = |Ik|+αI |Ik|
|Uk|+αU |IU |

= 1+αI

1+αU
· |Ik||IU | > Jk(u, v). This indicates that the

expected Jaccard coefficient of the two vertexes increases with respect to k, which
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justifies our heuristic. It is notable that, although our analysis of the heuristic relies

on the independence of vertexes, our experiments show that the heuristic is effective

in many real datasets.

3.4 Inheritance Index

DBIndex is a general index that can support both k-hop as well as topological window

queries. However, the evaluation of a topological window function (i.e., Wt) can be

further optimized due to its containment feature. In other words, the window of a

descendant vertex completely covers that of one of its ancestors. This feature can be

formally formulated in the following theorem.

Theorem 3.4.1. In a DAG, if vertex u is the ancestor of vertex v, the topological

window of v, Wt(v) completely contains the window of u, Wt(u), i.e., Wt(u) ⊂ Wt(v).

Proof. In a DAG, if u is the ancestor of v, then u v. ∀w ∈ Wt(u), then w  u. As

u v, then w  v. Thus, w ∈ Wt(v) and the theorem is proved.

Let us consider the BioPathway graph in Figure 3.2 as an example. Figure 3.5 (a)

shows its abstract DAG. In (a), D is the ancestor of E. In addition, we can see that

the window of D, Wt(D) is {A,B,D} and the window of E, Wt(E) is {A,B,D,C,E}.

It is easy to see that Wt(D) ⊂ Wt(E).

Now, Theorem 3.4.1 provides us with opportunities for reducing the space and

computation cost in processing topological window queries. First, since the window

of a vertex u contains the window of its parent v, there is no need to maintain the full

set of nodes of window u. Instead, we only need to maintain the difference between

Wt(u) and Wt(v). We note that in a DAG, it is possible for u to have multiple parents,

v1, · · · , vk. In this case, the parent which has the smallest difference with u can be

used; where there is a tie, it is arbitrarily broken. We refer to this parent as the
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Figure 3.5: I-Index construction over the pathway DAG in Figure 3.2. (a) shows the
DAG structure. (b) provides the inheritance relationship discovered during the index
construction. (c) shows the final I-Index.

closest parent. For instance, in Figure 3.5 (a), instead of maintaining {A,B,D,C}

for Wt(E), it can simply maintain the difference to Wt(D) which is {C}. This is

clearly more space efficient.

Second, using a similar logic, the aggregation at a node u can reuse the aggregated

result of its closest parent, v. Referring to our example, the aggregation result of

Wt(D) can be simply passed or inherited to Wt(E) and further aggregated with the

difference set ({C}) in Wt(E) to generate the aggregate value for Wt(E). Figure 3.5

(b) indicates the inheritance relationship that the values of the father can be inherited

to the child in the tree.

Based on our observation, we propose a new structure, called the Inheritance

Index, I-Index, to support efficient processing of topological window queries. In

I-Index, each vertex v maintains two information.

• The first information is the ID of the closest parent (say u) of v. We denote

this as PID(v).

• The second information is the difference between Wt(v) and Wt(u). We denote

this as WD(v).

With PID(v), we can retrieve Wt(u), and combine with WD(v) to derive Wt(v).
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Likewise, we can retrieve the aggregated result of u which can be reused to aggregate

v’s window. Figure 3.5(c) shows the I-index of our example in Figure 3.5(a). In the

figure, I-Index is represented in a table format; the second column is the PID and the

third indicates the WD.

3.4.1 Index Construction

Building an I-Index for a DAG can be done efficiently. This is because the containment

relationship can be easily discovered in a topological scan. Algorithm 4 lists the

pseudocode for index creation. The scheme iterates through all the vertexes in a

topological order. For vertex v, the processing involves two steps. In the first step,

we determine the closest parent of v. This is done by comparing the cardinality of v’s

parent windows, and find the parent with largest cardinality. The corresponding PID

is recorded in the PID field of I-Index (Lines 7-12). In the second step, the window of

v, Wt(v), is pushed to its children (Lines 16-18). When the processing of v finishes,

its window can be discarded. This frees up the memory, which makes the scheme

space efficient.

We note that the complexity of Algorithm 4 is non-trivial to analyze. This is due

to the difficulty of analyzing of the number of ancestors of each vertex. Suppose the

average number of ancestors for each vertex is H, then Algorithm 4 is of complexity

O(H|V | ∗ d), where d is the average degree of the graph. This complexity is close

to the output complexity. That is to gather the all vertex-window mapping, at least

O(H|V |) elements needs to be outputted. Thus the index construction complexity is

reasonably efficient.

We further note that the size of I-Index is hard to be precisely analyzed. This

is due to the difficulty of analyzing the window differences. Assume the average size

of window difference is D, then the size of I-Index is O(D|V |). Although D can be

as large as O(|V |), our experimental results indicate that the index size is always
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comparable to the graph size. Furthermore, it is possible to reduce the index size

(should it be a concern) by employing compression techniques.

Algorithm 4 Create I-Index

Input: Input graph: G
1: I ← ()
2: p← () . stores the window for each vertex
3: c← () . stores the cardinality of window for each vertex
4: for all v ∈ topological order do
5: diff ← −∞ . the window difference
6: bestu← nil
7: for all u ∈ v.parent do
8: if c[u] > diff then
9: diff ← c[u]

10: bestu← u
11: end if
12: end for
13: I[v].WD ← diff
14: I[v].P ID ← bestu
15: p[v]← p[v] ∪ v
16: for all u ∈ v.child do
17: p[u]← p[u] ∪ p[v]
18: end for
19: c[v]← |p[v]| . update window cardinality
20: p[v]← () . release memory
21: end for
22: return I

3.4.2 Query Processing with I-Index

By employing the I-Index, window aggregation can be processed efficiently for each

vertex according to the topological order. Algorithm 5 provides the pseudocode

for the query processing. Each vertex v’s window aggregation can be calculated as

Σ(Wt(v)) = Σ(v.PID,Σ(v.WD)) , where Σ is the aggregate function8. As the vertex

is processed according to the topological order, Wt(v.PID) would have already been

calculated while processing v’s parent and thus can be directly used for v without any

8For the function average, we need to keep both count and sum
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re-computation. In general, v’s window aggregation is achieved by reusing its par-

ent’s aggregated result and corresponding window differences. This avoids repeated

aggregation and achieves computation sharing between a vertex and its parent. As

a result, the computation overhead is largely reduced. Take the index provided in

Figure 3.5 (c) as an example, assume the query wants to calculate the sum. As a

comparison, the number of add operations are 33, 22, 16 for the cases without any

index, with DBIndex and with I-Index index respectively.

Algorithm 5 QueryProcessingOverIIndex

Input: Input graph G, aggregate function Σ, inheritance index IIndex
1: w ← ()
2: for all v ∈ topological order do
3: u← IIndex[v].P ID
4: WD ← IIndex[w].WD
5: S ← v.val
6: S ← Σ(S,w[u])
7: for all t ∈ WD do
8: S ← Σ(S, t.val)
9: end for

10: w[v]← S
11: end for
12: return w

As the query processing in Algorithm 5 basically scans the I-Index, the query

complexity essentially correlates to the index size. As we shown in the experiment

session, the query can be performed efficiently in various graph conditions.

3.5 Experimental Evaluation

In this section, we present a comprehensive experimental evaluation of our solutions

using several real-world information networks and various synthetic datasets. All

experiments are conducted on an Amazon EC2 r3.2xlarge machine9, with an 8-core

2.5GHz CPU, 60GB memory and 320GB hard drive running with 64-bit Ubuntu

9http://aws.amazon.com/ec2/pricing/
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12.04. As the source code of EAGR is not available, we implemented it and used it

as a reference in our comparative study. All algorithms are implemented in Java and

run under JRE 1.6.

Table 3.1: Large-scale real graphs.

Name Type Number of Vertexes Number of Edges

LiveJournal1 undirected 3,997,962 34,681,189

Pokec directed 1,632,803 30,622,564

Orkut undirected 3,072,441 117,185,083

DBLP undirected 317,080 1,049,866

YouTube undirected 1,134,890 2,987,624

Google directed 875,713 5,105,039

Amazon undirected 334,863 925,872

Stanford-web directed 281,903 2,312,497

Datasets. For real datasets, we use 8 information networks which are available at

the Stanford SNAP10: LiveJournal1, Pokec, Orkut, DBLP, YouTube, Google, Amazon

and Stanford-web. The detail description of these datasets is provided in Table 3.1.

For synthetic datasets, we use two widely used graph data generators. We use the

DAGGER generator [69] to generate all the synthetic DAGs and the SNAP graph

data generator at the Stanford SNAP website to generate non-DAG datasets. For

each dataset, each vertex is associated with an integer attribute.

Query. In all the experiments, the window query is conducted by using the

SUM() as the aggregate function over the integer attribute in each dataset.

3.5.1 Comparison between MC and EMC

We first compare the effectiveness of the two DBIndex construction algorithms: Min-

hash Clustering (MC) and Estimated Min-hash Clustering (EMC). We look at the

index construction time, index size and query performance. All these experiments are

conducted based on two real datasets: Amazon and Stanford-web. For both datasets,

10http://snap.stanford.edu/snap/index.html

46



 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

hop=1 hop=2 hop=3 hop=4

T
im

e 
(s

)
Index Construction on Amazon

EMC-hash
EMC-bfs
MC-hash

MC-bfs

(a) Index built on Amazon

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

hop=1 hop=2 hop=3 hop=4

T
im

e 
(s

)

Index Construction on Stanford-Web

EMC-hash
EMC-bfs
MC-hash

MC-bfs

(b) Index built on Stanford-web

 2

 4

 6

 8

 10

 12

1 2 3 4

In
de

x 
R

at
io

 %

Hop

Index Size on Amazon

EMC-Index
MC-Index

(c) Index size on Amazon

 5

 10

 15

 20

 25

1 2 3 4

In
de

x 
R

at
io

 %

Hop

Index Size on Stanford-Web

EMC-Index
MC-Index

(d) Index size on Stanford-web

Figure 3.6: Index construction analysis for EMC and MC. (a) and (b) depict the
index time for the Amazon and Stanford-web networks. (c) and (d) show the index
size for the Amazon and Stanford-web datasets.

we run a series of k-hop queries.11 For queries with hop count larger than 1, EMC

uses 1-hop information for the initial clustering.

Index Construction. Figures 3.6 (a) and (b) compare the index construction

time between MC and EMC when we vary the windows from 1-hop to 4-hop for the

Amazon and Stanford-web graphs respectively. To better understand the time dif-

ferences, the construction time is split into two parts: the Min-hash cost (EMC-hash

or MC-hash) and the breadth-first-search traversal (to compute the k-hop window)

cost (EMC-bfs or MC-bfs). The results show the same trend for the two datasets.

First, as the number of hops increases, the index construction time increases as well.

11For the Stanford-web graph, which is directed, the k-hop windows are directed k-hop windows
where u ∈W (k) if there is a directed path of at most k hops from vertex v to vertex u.
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This is expected as a larger hop count results in a larger window size and the BFS

and the Min-hash time increase correspondingly. Second, as the hop count increases,

the difference between the index construction time of EMC and that of MC widens.

For instance, as shown in Figures 3.6 (a) and (b), for the 4-hop window queries,

compared to MC, EMC can save 62% and 66% construction time for the Amazon

and Stanford-Web datasets respectively. EMC benefits from both the low Min-hash

cost and low BFS cost. We can also see that the Min-hash cost of MC increases as

the number of hops increases, while that for EMC remains almost the same as the

1-hop case. This shows that the cost of Min-hash becomes more significant for larger

windows. Thus, using 1-hop clustering for larger hop counts reduces the Min-hash

cost in EMC. Similarly, as EMC saves on BFS cost for k-hop queries where k > 1,

the BFS cost of EMC is much smaller than that of MC as well.

Index Size. Figures 3.6 (c) and (d) present the effect of hop counts on the index

size for the Amazon and Stanford-web datasets respectively. The y-axis shows the

index ratio which is the index size over the original graph size. The insights derived

are: First, the index size is rather small compared to the original graph: it varies

from 3% to 12% of the original graph for the Amazon dataset and from 8% to 22%

for the Stanford-web dataset. Second, the index size decreases as the number of hops

increases. While this appears counter-intuitive initially, it is actually reasonable: a

larger hop results in a bigger window, which leads to more dense blocks. Third, the

index ratio of EMC is slightly larger than that of MC for larger hop count. This

indicates that MC can find more dense blocks than EMC to reduce the index size.

Fourth, the index ratio on the Amazon dataset is much smaller than the ones on the

Stanford-web dataset. This is because the Amazon dataset is undirected while the

Stanford-web dataset is directed. For the Stanford-web dataset, since we use directed

k-hop windows, the window size is naturally smaller.

Query Performance. Figures 3.7 (a) and (b) present the query time of MC and
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Figure 3.7: Query performance comparison of MC and EMC.

EMC on the two datasets respectively as we vary the number of hops from 1 to 4. To

appreciate the benefits of an index-based scheme, we also implemented a Non-indexed

algorithm which computes window aggregate by performing k-bounded breadth first

search for each vertex individually in run time. In Figures 3.7 (a) and (b), the

execution time shown on the y-axis is in log scale. The results show that the index-

based schemes outperform the non-index approach by four orders of magnitude. For

instance, for the 4-hop query over the Amazon graph, our algorithm is 13,000 times

faster than the non-index approach. This confirms that it is necessary to have well-

designed index support for efficient window query processing. By utilizing DBIndex,

for these graphs with millions of edges, every aggregation query can be processed in

just between 30ms to 100ms for the Amazon graph and between 60ms to 360ms for the

Stanford-web graph. In addition, we can see that as the number of hops increases, the

query time decreases. This is the case because a larger hop count eventually results

in a larger number of dense blocks where more (shared) computation can be salvaged.

Furthermore, we can see that the query time of EMC is slightly longer than that of

MC when the number of hops is large. This is expected as EMC does not cluster

based on the complete window information; instead, it uses only partial information

derived from the 1-hop windows. However, the performance difference is quite small
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even for 4-hop queries: for the Amazon dataset, the difference is only 20ms; and

for the Stanford-web graph, the difference is 35ms. For small number of hops, the

time difference is even smaller. This performance penalty is acceptable as tens of

milliseconds time difference will not affect user’s experience. As EMC is significantly

more efficient than MC in index construction, EMC may still be a promising solution

to many applications. As such, in the following sections, we adopt EMC for DBIndex

in our experimental evaluations.

3.5.2 Comparison between DBIndex and EAGR

In this set of experiments, we compare DBIndex and EAGR [52] using both large-

scale real and synthetic datasets. As described in [52], for each dataset, EAGR runs

for 10 iterations in the index construction.
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Figure 3.8: Comparison between DBIndex and EAGR for 1-hop query.

3.5.2.1 Real datasets

We first study the index construction and query performance of DBIndex and EAGR

for 1-hop and 2-hop windows using 6 real datasets: DBLP, Youtube, Livejournal,

Google, Pokec and Orkut. The results for 1-hop window and 2-hop window are

presented in Figures 3.8 and 3.9 respectively. As shown in Figures 3.8(a) and 3.9(a),
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Figure 3.9: Comparison between DBIndex and EAGR for 2-hop query.

both DBIndex and EAGR can build the index for all the real datasets for the 1-

hop but EAGR runs out of the memory for the 2-hop query on LiveJournal and

Orkut datasets. This further confirms that EAGR incurs high memory usage as it

needs to build the FP-Tree and maintain the vertex-window mapping information.

We also observe that DBIndex is significantly faster than EAGR in index creation.

We emphasize that the time is shown in logarithmic scale. For instance, for Orkut

dataset, EAGR takes 4 hours to build the index while DBIndex only takes 33 minutes.

Figure 3.8 (b) and Figure 3.9 (b) show the query performance for 1-hop and 2-hop

queries respectively. The results indicate that the query performance is comparable.

For most of the datasets, DBIndex is faster than EAGR. In some datasets (e.g. Orkut

and Pokec), DBIndex performs 30% faster than the EAGR. We see that, for the 1-hop

query on Youtube and LiveJournal datasets and the 2-hop query on Youtube dataset,

DBIndex is slightly slower than EAGR. We observe that these datasets are very sparse

graphs where the intersections among windows are naturally small. For very sparse

graphs, both DBIndex and EAGR are unable to find much computation sharing. In

this case, the performance of DBIndex and EAGR is very close. For instance, in the

worst case of Livejournal, DBIndex is 9% slower than EAGR where the actual time

difference remains tens of milliseconds. Another insight is that as expected, compared

to Figure 3.8 (b), the 2-hop query runs faster for both algorithms. This is because
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there is more computation sharing for the 2-hop query.

In summary, DBIndex takes much shorter time to build but offers comparable, if

not much faster, query performance than EAGR.

3.5.2.2 Synthetic datasets

To study the scalability of DBIndex under large-scale graphs, we generated synthetic

datasets using the SNAP generator.

Impact of Vertexes. First, we study how the performance changes when we fix

the degree12 at 10 and vary the number of vertexes from 2M to 10M. Figures 3.10

(a) and (b) show the execution time for index construction and query performance

respectively. From the results, we can see that DBIndex outperforms EAGR in both

index construction and query performance. For the graph with 10M vertexes and

100M edges, the DBIndex query time is less than 450 milliseconds. Moreover, when

the number of vertexes changes from 2M to 10M, the query performance only in-

creases 3 times. This shows that DBIndex is not only scalable, but offers acceptable

performance. Figures 3.10 (c) and (d) show the performance of DBIndex in process-

ing the 2-hop query. We notice that EAGR fails to run due to the high memory

requirement. For instance, when vertex equals to 2M, the 2-hop query generates

90GB intermediate data, which exceeds the available memory.

Impact of Sparse Graphs. Our proposed DBIndex is effective when there is

significant overlap between windows of neighboring nodes. As such, it is interesting

to study how it performs for sparse graph where the vertexes may not share many

common neighbors. In these experiments, we study the impact of degree when the

graph is relatively sparse. We fix the number vertexes of 2M and vary the vertex

degree from 5 to 30. Figures 3.11 (a) and (c) present the results on index construction

for the 1-hop and the 2-hop queries respectively. For the 1-hop query, as degree

12Degree means average degree of the graph. The generated graph is of Erdos-Renyi model
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Figure 3.10: Impact of number of vertexes.

increases, the time for index construction also increases. However, the index creation

time of DBIndex increases much slower than EAGR. This is because EAGR incurs

relatively more overhead to handle multiple FP-Tree creation and reconstruction. For

the 2-hop query, EAGR again fails to run due to the memory limitation. Therefore,

we only show the results of DBIndex. In Figure 3.11 (c), the index construction time

of DBIndex increases as the degree increases. This is expected as a bigger degree

increases the overhead of graph traversal time to collect the window.

Figures 3.11 (b) and (d) show the results on the query performance for 1-hop and

2-hop queries respectively. We observe a similar pattern for the index construction

time: for the 1-hop query, the query time increases with increasing degree but at a

much slower rate than EAGR. For the 2-hop query, we observe in Figure 3.11 (d) that

the query performance of DBIndex hovers around 100ms, which is much smaller than

that of the 1-hop query performance. This is because there are more dense blocks
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Figure 3.11: Impact of degree in sparse graphs with 2M vertexes.

in the 2-hop case, in which case the query time can be faster compared to the 1-hop

case.

Impact of Dense Graphs. We study the impact of degree over very dense

graphs with 200k vertexes when the degree changes from 80 to 200. Figures 3.12 (a)

and (c) show the execution time for index construction for 1-hop and 2-hop queries

respectively. From the results, we can see that DBIndex also performs well on dense

graphs. As the degree increases, EAGR’s performance degrades much faster than

DBIndex. For the 2-hop query, as shown in Figures 3.12 (b) and (d), EAGR is only

able to work on the dataset with degree 80 due to the memory issue. Even though the

number of vertexes is relatively small (only 200k), the number of edges is very large

when the degree becomes big (e.g. 40M edges with degree of 200). Figures 3.12 (b)

and (d) show the results on query performance for the 1-hop and the 2-hop queries

respectively. The results are consistent with that for sparse graphs: DBIndex is
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superior over EAGR.

In summary, the insight we obtained is that the scalability of EAGR is highly

limited by its large usage of memory. DBIndex achieves better scalability as it does

not need to create a large amount of intermediate data in memory.
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Figure 3.12: Impact of degree in dense graphs with 200K vertexes.

3.5.3 Evaluation of I-Index

In this set of experiments, we evaluate I-Index. All the datasets are generated from

the DAGGER generator.

Impact of Degree. We evaluate the impact of degree when we fix the number of

vertex as 30k and 60k. We compare DBIndex with I-Index. In the query results, we

also implement one non-index algorithm which dynamically calculates the window and

then performs the aggregation. For index construction time, as shown in Figures 3.13

(a) and (c), as the index size increases, both the index construction time of DBIndex
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Figure 3.13: Impact of degree with the fixed number of vertexes.

and I-Index increase. However I-Index is more efficient than DBIndex, this is benefit

from the inheritance optimization. We observe that the index construction time

is almost the same as the non-indexed query time. In other words, we can use one

query time to create the index which is able to subsequently provide much faster query

processing. In terms of query performance, shown in Figures 3.13 (b) and (d), the non-

index approach is in average 20 times slower than the indexed schemes. Meanwhile,

I-Index outperforms DBIndex by 20% to 30%, which confirms the superiority of I-

Index.

Impact of Number of Vertexes. Then, we study the effect of graph size by

varying the number of vertexes from 50k to 350K. Figures 3.14 (a) and (c) show

the index construction time when we fix the degree to 10 and 20 respectively. From

the results, we see that the construction time increases as the number of vertexes
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Figure 3.14: Impact of the number of vertexes with a fixed degree. (a) and (b) are
the results for the graphs with degree 10; (c) and (d) are the graphs with degree 20.

increases and the construction time of a high degree graph is longer than that for

low the degree graph. Figures 3.14 (b) and (d) show the query time when we fix the

degree to 10 and 20 respectively. As shown, the degree affects the query processing

time: when the degree increases, the query time increases as well. We also observe

that the query time is increasing linearly when the number of vertexes increases. This

shows that I-Index has good scalability.

Index Size. Figure 3.15 presents the index size ratio (i.e. size of index divided by

the size of original graph) under different degrees from 3 to 20. There are four different

sizes of data used with 100k, 150k, 200k and 300k vertexes. For every vertex setting,

the index size maintains the same trend in various degrees. The index size is linear

to the input graph size. As a graph gets denser, the difference field of the I-Index

effectively shrinks. Thus, the index size in turn becomes smaller, which explains the
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bends in the figure.

3.6 Summary

In this chapter, we studied the neighborhood analytics in attributed graphs. We lever-

age the distance and comparison neighborhoods to propose two graph windows: k-hop

window and topological window. Based on the two window definitions, we proposed

a new type of graph analytic query, Graph Window Query (GWQ). Then, we studied

GWQ processing for large-scale graphs. In particular, we developed the Dense Block

Index (DBIndex) to facilitate efficient processing of both types of graph windows.

Moreover, we proposed the Inheritance Index (I-Index) that exploits a containment

property of DAG to enhance the query performance of topological window queries.

Last, we conducted extensive experimental evaluations over both large-scale real and

synthetic datasets. The experimental results showed the efficiency and scalability of

our proposed indexes.
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Chapter 4

k-Sketch Query: Neighborhood

Analytics in Sequence Data

4.1 Introduction

Next, we explore the opportunity of neighborhood analytics in the sequence data.

Sequence data is widely adopted to model the history of subjects which consists of

temporally ordered events. For example, in sports application, the subject could

be a player and his history would be the games he participated. Likewise, in stock

application, the subject could be a stock and its history would be its daily closing

prices. An important analytic task in the sequence data domain is to summarize

the subject histories with phenomenal patterns. Such a task benefits a variety of

applications such as computational journalism [21, 74], automatic fact checking [33,

61], and perturbation analysis [62].

An outstanding example of the neighborhood based pattern in the sequence data

is streaks [74]. A streak refers to an aggregated period in a subject’s history, such as

“points scored by a player in the last ten straight games”. Technically, a streak is a

tuple sk = 〈s, L, t, v〉 which represents the last L events of subject s at time t. v is
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the result of an analytic function (e.g., min, average) on all the events in the streak.

A streak is essentially built on a distance neighborhood function. Formally, let

ts(e) be the sequence number of the event e in the history of subject s. Then, a

length-L streak of event e is defined by the following distance neighborhood function:

N (s, L, e) = {ei|ts(e)− ts(ei) ≤ L}.

Based on the streaks, Zhang et. al. [74] studied the problem of summarizing a

subject’s history with prominent streaks. Prominent streaks are the skylines among

all streaks of a subject in terms of streak size (i.e., L) and analytic value (i.e., v).

Hence, they are outstanding to represent the subject’s history. However, there are two

major drawbacks that limit the usability of prominent streaks in real applications.

First, the prominent streaks generated by [74] may not be striking enough because

they are derived from the historical data of a single subject without comparing to

other subjects. For example, “Steve Nash has scored over 15 points in consecutive 10

games” is a prominent streak for “Steve Nash”, but it is not striking given the fact that

there are more than 90 players with better performance1. Second, the number of the

prominent streaks can be overwhelming. Since prominent streaks in [74] are defined

as skylines, a subject with n historical events may generate up to n streaks that are

not dominated (i.e., prominent streaks). Therefore, there calls for a new method

to automatically select a limited number of striking streaks which best summarize a

subject’s history.

In this chapter, we tackle the problem of effectively and efficiently summarizing

a subject’s history by applying a novel comparison neighborhood function to

transform streaks to the ranked-streaks. Given a streak sk = (s, L, t, v), a comparison

neighborhood is first defined as N (sk) = {ski|ski.L = sk.L∧ ski.v >= sk.v}. Then a

count function is applied on this neighborhood to generate the rank of sk. In other

words, the neighborhood function groups the streaks with the same length and rank

1http://www.sporcle.com/games/nbadarinh/nba-all-players

-with-10-consecutive-20-point-games-90-11
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them based on their aggregated values. Compared with streak, ranked-streak is able

to capture the strikingness of a streak which is very newsworthy as evidenced in the

following news excerpts:

1. (26 Feb 2003) With 32 points, Kobe Bryant saw his 40+ scoring streak end at

nine games, tied with Michael Jordan for the fourth place on the all-time list2.

2. (14 April 2014) Stephen Curry has made 602 3-pointer attempts from beyond

the arc,... are the 10th most in NBA history in a season (82 games)3.

3. (28 May 2015) Stocks gained for the seventh consecutive day on Wednesday

as the benchmark moved close to the 5,000 mark for the first time in seven

years4.

4. (9 Jun 2014) Delhi has been witnessing a spell of hot weather over the past

month, with temperature hovering around 45 degrees Celsius, .... highest ever

since 19525.

5. (22 Jul 2011) Pelican Point recorded a maximum rainfall of 0.32 inches for 12

months, making it the 9th driest places on earth6.

In the above examples, each news theme is a ranked-streak which consists of five

indicators: (I) a subject (e.g., Kobe Bryant, Stocks, Delhi), (II) a streak length

(e.g., nine straight games, seventh consecutive days, past month), (III) an aggregate

function on an attribute (e.g., minimum points, count of gains, average of degrees),

(IV) a rank (e.g., fourth, first time, highest), and (V) a historical dataset (e.g., all time

list, seven years, since 1952). The indicators (I)-(IV) are summarized in Table 4.1.

2http://www.nba.com/features/kobe_40plus_030221.html
3http://www.cbssports.com/nba/eye-on-basketball/24525914/

stephen-curry-makes-history-with-consecutive-seasons-of-250-3s
4http://www.zacks.com/stock/news/176469/china-stock

-roundup-ctrip-buys-elong-stake-trina-solar-beats-estimates
5http://www.dnaindia.com/delhi/report-delhi-records

-highest-temperature-in-62-years-1994332
6http://www.livescience.com/30627-10-driest-places-on-earth.html
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Table 4.1: Indicators of ranked-streaks.

E.g. Subject Aggregate Function Streak Length Rank
1 Kobe min(points) 9 straight games 4
2 Stephen sum(shot attempts) 82 games 10
3 Stock Index count(gains) 7 consecutive days 1
4 Delhi average(degree) past months (30 days) 1
5 Pelican Point max(raindrops) 12 months 9

Based on the ranked-streaks, we propose a novel k-Sketch query to effectively

summarize a subject’s history by leveraging a novel scoring function that chooses the

best k ranked-streaks. Our scoring function considers two aspects: (1) we prefer the

ranked-streaks that cover as many events as possible to represent a subject’s history,

and (2) we prefer the ranked-streaks that have better ranks7 as they indicate more

strikingness. Our objective is then to process the k-Sketch query for each subject in

the domain.

We study the k-Sketch query processing under both offline and online scenarios. In

the offline scenario, our objective is to efficiently discover the sketch for each subject

from historical data. The major challenge lies in generating the rank information

of streaks. Since the number of streaks is quadratic with respect to the number

of events, enumerating all of them is not scalable. By leveraging the subadditivity

among the upper bounds of streaks, we design two effective pruning techniques to

facilitate efficient ranked-streak generation. Furthermore, we notice that generating

exact sketches from ranked-streaks is computationally expensive. Thus, we design

an efficient (1 − 1/e)-approximate algorithm by exploiting the submodularity of the

k-Sketch query.

In the online scenario, fresh events are continuously fed into the system and our

goal is to maintain the sketches for each subject up-to-date. When a new event about

subject s arrives, many ranked-streaks of various lengths can be derived. For each

7We consider a ranked-streak with rank i to be more attractive than j if i < j and the other
fields are the same.
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derived ranked-streak, not only the sketch of s but also the sketches of other subjects

may be affected. Dealing with such a complex updating pattern is non-trivial. To

efficiently support the update while maintaining the quality of sketches, we propose

a 1/8-approximate algorithm which only examines 2k ranked-streaks for each subject

whose sketch is affected.

Our contributions of this chapter are hereby summarized as follows:

• We study the neighborhood analytics in sequence data to tackle the problem

of automatic summarization of a subject’s history. We use both the distance

and comparison neighborhood functions to model the ranked-streak, which is a

common news theme in real-life reports but has not been addressed in previous

works. We formulate the summarization problem as a k-Sketch query under a

novel scoring function that considers both strikingness and coverage.

• We study the k-Sketch query processing in both offline and online scenarios.

In the offline scenario, we propose two novel pruning techniques to efficiently

generate ranked-streaks. Then we design a (1− 1/e)-approximate algorithm to

compute the sketches for each subject. In the online scenario, we propose a 1/8-

approximate algorithm to efficiently support the complex updating patterns as

new event arrives.

• We conduct extensive experiments with four real datasets to evaluate the effec-

tiveness and the efficiency of our proposed algorithms. In the offline scenario,

our solution is three orders of magnitude faster than baseline algorithms. While

in the online scenario, our solution achieves up to 500x speedup. In addition, we

also perform an anonymous user study via Amazon Mechanical Turk8 platform,

which validates the effectiveness of our k-Sketch query.

The rest of this chapter is organized as follows. In Section 4.2, we formulate the

8https://requester.mturk.com
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k-Sketch query. Section 4.3 presents the algorithms for processing the k-Sketch query

in the offline scenario. Section 4.4 describes the algorithms for maintaining k-Sketches

in the online scenario. In Section 4.5, comprehensive experimental studies on both the

efficiency and the effectiveness of our algorithms are conducted. Section A.1 discusses

the extension of our methods. Finally, Section 4.6 concludes our chapter.

4.2 Problem Formulation

Let S denote a set of subjects which are of potential interests to journalists. For

example, S can refer to all the players or teams in the NBA application. We use

es(t) to denote an event about subject s, where t is its timestamp or sequence ID.

For example, an event can refer to an NBA game a player participated on a certain

day. Note that we maintain a sequence ID for each subject that is automatically

incremented. It is possible that the events of different subjects may have the same

sequence ID. Consecutive events of the same subject can be grouped as a streak :

Definition 4.2.1 (Streak [74]). Let w be a streak length, a streak Ws(t, w) refers to

w consecutive events of subject s ending at sequence t, i.e., Ws(t, w) = {es(t − w +

1), ..., es(t)}.

If a subject s has |Hs| events, then there are
(|Hs|

2

)
possible streaks9. Given an

aggregate function f , events in a streak can be aggregated to a numerical value v as:

Ws(t, w).v = f(es(t− w + 1), ..., es(t))

Common aggregate functions include sum, avg, count, min and max. In this

thesis, we only consider a single aggregate function. Multiple aggregate functions can

be simply processed independently.

9This number is derived by constructing a streak using start and end sequence IDs.
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Figure 4.1: An illustration of k-Sketch query processing. (A): various streaks are
formed based on events’ sequence IDs. (B): streaks with rank greater than p are
filtered. (C): ranked-streaks for each streak length. (D): k-sketches are discovered for
each subject from their ranked-streaks. (E): newsworthy summary of a subject can
be generated from its k-sketches.

Example 4.2.1. Figure 4.1 (A) illustrates examples of streaks of three NBA play-

ers. Each event records the points scored by a player in a game. In the figure, the

streak Ws1(3, 2) refers to two consecutive events about player s1 ending at t = 3, i.e.,

Ws1(3, 2) = {es1(2), es1(3)}. Given an aggregate function f = avg(points), we yield

Ws1(3, 2).v = (46 + 10)/2 = 28.

With the aggregated value v, we can derive the rank of a streak to measure

its strikingness. For instance, “The total points Kobe has scored is 32, 482” can be

transformed into a rank-aware representation: “Kobe moved into third place on the

NBA’s all-time scoring list”, where the rank is 3. Let W be a length-w streak, and

γw(W.v) be the rank of W by comparing it with all other length-w streaks on their

aggregate values. Let p be a predefined threshold to indicate whether a streak is

striking (i.e., top-p). These concepts lead to our definition of Ranked-streak :

Definition 4.2.2 (Ranked-streak). A streakWs(t, w) can be transformed to a ranked-

streak, denoted by Ns(t, w), if its rank γw(Ws(t, w).v) ≤ p, where p is a user-defined

threshold.
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Example 4.2.2. In step (B) of Figure 4.1, we group the streaks based on their

lengths. Each streak is associated with a rank value γw. If the rank is greater than

the threshold p, the associated streak is pruned. Otherwise, it is considered as a

ranked-streak. In step (C) of Figure 4.1, we present the ranked-streaks in the tabular

format. Each ranked-streak contains the rank computed from step (B). For instance,

among all ranked-streaks with length 1, Ns3(1, 1) (with value 54) is ranked 2nd because

its aggregated value is smaller than that of another streak Ns2(2, 1) (with value 55).

Let Ns be the set of ranked-streaks of a subject s. Since there are at most p

ranked-streaks for each possible streak lengths, the size of Ns can be as large as p|Hs|

which is still overwhelming for summarizing the subject’s history. To control the

output size while maintaining the quality of the summary, we aim to find a subset of

k ranked-streaks from Ns which best summarize the history of s. We name such a

subset a k-Sketch.

To measure the quality of the selected ranked-streaks, we define a scoring function

g(·). The design of g gives rise to two concerns. First, g prefers ranked-streaks

covering as many of the subject’s historical events as possible. This is because a

higher coverage indicates fewer missing historical events in the summary. Second,

g needs to assign a higher score to the ranked-streaks with better ranks. This is

because a better rank indicates higher strikingness which implies that the news themes

generated would be more eye-catching. For instance, we often care more about who

the top scorer in NBA history is rather than who is ranked 50th.

To address these two concerns, we define g as follows: let Xs be a set of ranked-

streaks about subject s (i.e., Xs ⊆ Ns), the score of Xs is:

g(Xs) = αC(Xs) + (1− α)R(Xs), α ∈ [0, 1] (4.1)

where C(Xs) is the ratio between the number of distinct events covered by Xs over

66



the total number of events about subject s. In this way, ranked-streaks with a poor

coverage contribute to a low score. R(Xs) = 1
|Xs|
∑

Xs∈Xs

p−Xs.γ
p

is the strikingness of

Xs. Any ranked-streak in Xs changing to a better rank increases R(Xs). The value

ranges of C(Xs) and R(Xs) are guaranteed to be in [0, 1]. α is an adjustable coefficient

to balance the weights between C(Xs) and R(Xs). If α is high, it means users are

more interested in finding ranked-streaks that cover most of the subject’s history. If

α is low, it indicates that users prefer more striking ranked-streaks.

With Equation 4.1, we then define the k-Sketch Query as follows:

Definition 4.2.3 (k-Sketch Query). Given a parameter k, k-Sketch Query aims to,

for each subject s, find a subset SKs from the ranked-streaks of s (i.e., SKs ⊆ Ns),

s.t. |SK|s = k and g(SKs) is maximized.

Example 4.2.3. In step (D) of Figure 4.1, we show a collection of ranked-streaks

and a k-Sketch derived from them. The y-axis is the rank and the x-axis represents

the complete sequence of events of a subject. Each ranked-streak is represented by

a line segment, covering consecutive events. When k = 4, four of the ranked-streaks

are selected as the 4-Sketch.

Before we move on to the algorithmic part, we first list the frequently used nota-

tions in Table 4.2. For ease of presentation, we present our techniques using avg as

the default aggregate function. Extending our techniques to other aggregate functions

is addressed in Section A.1.

4.3 Offline k-Sketch Query Processing

In the offline scenario, the input is a set of events of all subjects and the output is a

k-sketch for each subject s, denoted by SKs. The k-Sketch query processing consists

of two major steps: first generating the ranked-streaks of each subject (i.e., Ns), and

then discovering the sketches among those ranked-streaks.
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Table 4.2: Notations used in this chapter.

Notation Meaning
S set of subjects
Hs set of events associated with subject s

Ws(t, w) length-w streak of s ending at t
Ns set of ranked-streaks associated with subject s

Ns(t, w) the ranked-streak derived from Ws(t, w)
WI(w) top-p ranked-streaks of length w
β(w) lower bound of WI(w)
SKs sketch for subject s
Js visiting-streak bound for subject s
Ms unseen-streak bound for subject s
Ps online-streak bound for subject s

4.3.1 Ranked-Streak Generation

Generating ranked-streak for each subject is computationally expensive. In order to

generate accurate ranks for selecting ranked-streaks, a brute-force approach needs to

evaluate all the streaks with every possible length. Since there could be
(Hs

2

)
streaks

associated with subject s, the total time complexity for the brute-force approach is

O(
∑

s∈S |Hs|2). Such a complexity makes the solution infeasible even for moderate-

sized datasets.

To improve the efficiency, we observe that it is not necessary to compute all

the streaks to generate Ns. The intuition behind is that the upper bound value

of streaks with longer lengths can be estimated from those with shorter lengths.

This means that we can compute streaks with increasing lengths, and as the shorter

streaks are computed, the longer streaks not in Ns can be pruned. To realize such

an intuition, we design the ranked-streak generation algorithm by adopting two novel

streak-based pruning methods which exploit the subadditivity property among streaks

with different lengths.

68



4.3.1.1 Overview of streak pruning

For each subject, its streaks can be grouped by lengths. Our ranked-streak generation

algorithm gradually evaluates a subject’s streak from a shorter length to a longer

length. To support efficient pruning, we define two concepts, namely visiting-streak

bound (Js) and unseen-streak bound (Ms). In particular, Js(w) is the upper bound of

all the streaks about subject s with length w, i.e., ∀w, Js(w) ≥ max{Ws(t, w).v|t >

w}. Ms(w) is the upper bound of all the streaks about subject s with a length larger

than w, i.e., Ms(w) ≥ max{Js(w1)|w1 > w}. These two bounds will be used for

streak pruning and we will present how to derive these two bounds in Sections 4.3.1.2

and 4.3.1.3.

The overview of ranked-streak generation algorithm is presented in Algorithm 6.

We maintain two global structures WI and β (Lines 1-2). For each length w, WI(w)

stores the top-p streaks with length w among all the subjects and β(w) is the pth value

among the streaks in WI(w). In other words, β(w) serves as a lower bound value. A

streak with length w is a ranked-streak only if its aggregate value is larger than β(w).

A priority queue Q (Line 3) is used to provide an access order among subjects. Each

element in the queue is a triple (s, w, q), where s is a subject, w indicates the next

streak length of s to evaluate, and q denotes the priority. We use the unseen-streak

bound (i.e., Ms(w)) as the priority during every iteration (Lines 13-14). Intuitively,

a subject with higher Ms(w) is more likely to spawn new streaks that can increase β

and benefit the subsequent pruning. During initialization, we insert, for each subject,

an entry with length 1 and priority infinity into Q.

In each iteration, we pop the streak with the highest priority (Line 4). Then,

we compute the visiting-streak bound Js(w) for the subject and determine whether

all the length-w streak about subject s can be pruned (Lines 5-6). If the bound

Js(w) is no greater than β(w), then all these streaks can be ignored. Otherwise,

all the length-w streaks of s are computed to update WI(w) and β(w) accordingly
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Algorithm 6 Ranked-streak Generation Overview

1: WI()← {} // top-p streaks for each length
2: β ← {} // smallest scores in WI for each length
3: Q← {(s, 1,+∞)|s ∈ S}
4: while (s, w, q)← Q.pop() do
5: compute Js(w)
6: if Js(w) > β(w) then
7: for t ∈ w...|Hs| do
8: Update WI(w), β(w), and Js(w)
9: end for

10: end if
11: compute Ms(w) whose value relies on Js(w)
12: if Ms(w) > min{β(w′)|w < w′ ≤ |Hs|} then
13: q ←Ms(w)
14: Q.push(s, w + 1, q)
15: end if
16: end while
17: return WI

(Lines 7-9). In the next step, we estimate the unseen-streak bound Ms and compare

it with the minimum β(w′) for all w′ > w. If Ms is smaller, then we would not find

a better streak and all the streaks about subject s with lengths larger than w can be

pruned (Lines 11-12). Otherwise, we set the priority of Ms to q, and push the triple

(s, w + 1, q) back to Q (Lines 13-14). The algorithm terminates when Q becomes

empty.

4.3.1.2 Visiting-streak pruning

In Algorithm 6, we need to compute the visiting-streak bound Js(w) to facilitate

pruning all length-w streaks associated with subject s. Our idea is that suppose we

have successfully derived the bounds for streaks with smaller lengths, we can use

them to estimate the bounds of larger streaks. We formulate it as the subadditivity

property and use avg10 as the aggregate function for illustration:

10Although here we demonstrate the bound using “avg”, the properties and bounds also hold for
other aggregate functions. Corresponding properties and bounds for other aggregate functions are
listed in Section A.1.
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Theorem 4.3.1 (Subadditivity (for avg)).

max
t
{Ws(t, w).v} ≤ wiJs(wi) + (w − wi)Js(w − wi)

w
, ∀wi ∈ (0, w) (4.2)

Proof. Given any streak W = Ws(t, w) and a value wi ∈ (0, w), we can split the streak

into two non-overlapping sub-streaks with lengths wi and w−wi, i.e., W1 = Ws(t, wi)

and W2 = Ws(t−wi, w−wi). Due to the non-overlapping property of W1 and W2, we

have wW.v = wiW1.v + (w − wi)W2.v. Since Js(wi) and Js(w − wi) are two visiting-

streak bounds, then W1.v ≤ Js(wi) and W2.v ≤ Js(w − wi) must hold for any t. It

then follows that, for any t, wWs(t, w).v ≤ wiJs(wi) + (w−wi)Js(w−wi). Therefore,

wmaxt{Ws(t, w).v} ≤ wiJs(wi)+(w−wi)Js(w−wi), which leads to the theorem.

With Theorem 4.3.1, we can estimate Js(w) by any pair Js(wi) and Js(w − wi),

∀wi < w. Let w∗ corresponds to the tightest Js(w), then w∗ can be formulated as:

w∗ = argmin
wi∈(0,w)

wiJs(wi) + (w − wi)Js(w − wi)
w

(4.3)

A naive solution to compute w∗ is to enumerate every possible wi. However, such

a solution has a worst time complexity of O(|Hs|) for subject s. To quickly compute

w∗ without enumerating all wi, we apply a continuous relaxation to Equation 4.3 as

follows: Let Gs(wi) = wiJs(wi) ∀wi, then Equation 4.3 is equivalent to:

w∗ = argmin
wi∈(0,w)

{Gs(wi) +Gs(w − wi)} (4.4)

Let Ls(wi) be a continuous and smooth fitting function of Gs(wi) for wi ∈ [1, w− 1].

Equation 4.3 can then be relaxed by replacing Gs(wi) with Ls(wi), which produces

the solution at w∗ = w/2 if Ls(w2) is convex and w∗ = 1 if Ls(wi) is concave. We have

observed that the convexity and concavity for Ls(·) when approximating Gs(·) hold

over all aggregate functions. For example, we use 800 game records of a NBA player

71



and plot the function Gs and Ls under various aggregate functions in Figures 4.2. In

Figure 4.2(a), Gs and Ls for min and avg are presented. We can see that the fitting

Ls for min is convex while that for avg is concave. Similarly, in Figure 4.2(b), we

can see that Ls is concave for count, sum and max. In the worst case scenario, even

when Ls(·) is neither convex nor concave, Js(w) < Js(1)+(w−1)Js(w−1))
w

still holds due

to Theorem 4.3.1. Thus we have the visiting-streak bound stated as:

Theorem 4.3.2 (Visiting-Streak Bound). Given a length w > 1, let Js(w) be:

Js(w) =
Js(1) + (w − 1)Js(w − 1)

w
(4.5)

then Js(w) is a visiting-streak bound, i.e. Js(w) ≥ maxt{Ws(t, w).v}

Proof. By substitute wi = 1 to the right hand side of Theorem 4.3.1, we see this

theorem holds.

In Algorithm 6, Js(w) is computed incrementally. Initially, Js(1) is set to be

the single event of s with highest value. Then, as the subject s is processed, Js(w)

is computed by Theorem 4.3.2. In the case when visiting-streak pruning fails, we

update Js(w) to the maximum length-w streak of s to further tighten the bound.

4.3.1.3 Unseen-streak pruning

Unseen-streak pruning utilizes Ms(w) to check if it is necessary to evaluate any streak

with length w′ ∈ (w, |Hs|]. We observe that Ms(w) can be efficiently estimated from

the values of Js(w
′), where w′ ≤ w. For example, when avg is used as the aggregate

function, Js(1) is obviously an upper bound for Ms(w) because Js(1) is essentially

the maximum event value. However, such an upper bound is very loose. By utilizing

the following theorem, we can derive a tighter bound as follows:
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Figure 4.2: Illustration of fitting function L on various aggregation functions; solid
lines represent G while dotted lines represent L. (a) fitting on min and average
(b)fitting on max,sum and count.

Theorem 4.3.3 (Unseen-Streak Bound). Given that Js(1), . . . , Js(w−1) have already

been computed, let Ms(w) be:

Ms(w) = Js(w) + min{1

2
Js(1),

w − 1

w + 1
Js(w − 1)} (4.6)

then Ms(w) is an unseen-streak bound, i.e. Ms(w) ≥ max{Js(wi)| wi ∈ [w, |Hs|]}

Proof. First, given any integer k ≥ 1, we see that Js(kwi) ≤ Js(wi) by making use of

Theorem 4.3.1 in a simple induction. Then, for any integer x > w, x can be written

as x = b x
w
cw + x mod w. Based on the subadditivity of Js(·), we have:

Js(x) ≤
(b x
w
cw)Js(b xwcw) + (x mod w)Js(x mod w)

x

≤ Js(b
x

w
cw) +

x mod w

x
Js(x mod w), since b x

w
cw ≤ x

≤ Js(w) +
x mod w

x
Js(x mod w), since Js(kt) ≤ Js(t)

On one hand, since xJs(x) is a monotone increasing function with respect to x, it

follows (x mod w)Js(x mod w) ≤ (w−1)Js(w−1). Moreover, since x ≥ w+1, we have

(x mod w)Js(x mod w)
x

≤ (w−1)Js(w−1)
w+1

. On the other hand, since Js(x mod w) ≤ Js(1)

and x mod w
x

≤ 1
2

for x > w, we have (x mod w)Js(x mod w)
x

≤ 1
2
Js(1). Therefore,
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Visiting-Streak Pruning 
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Unseen-Streak Pruning 

( )= 51.7 

 1 2 3 4 5 6 7 8 9 … 

 81 72.5 68 57 55 58 54 53 57 … 

 42 39.5 35.3 34.8 31.8 32.0 29.1 30.7 

Next length 
= 8 1 2 3 4 5 6 7 8 … | | 

42.0 39.5 35.3 34.8 31.8 32.0 29.1 

42.0 35.0 34.0 33.0 31.4 30.7 28.9 

37.0 35.0 32.7 31.0 29.8 27.8 28.8 

35.0 34.5 32.3 29.8 29.4 27.8 26.2 

35.0 30.0 30.3 28.0 28.0 27.0 25.8 

33.0 27.5 30.0 28.0 26.8 25.5 24.3 

28.0 27.5 26.0 26.3 25.0 23.7 23.0 

……. 

8 … | |

Figure 4.3: An illustration of streak pruning techniques. Each square slice represents
a set of streaks to be computed for a subject, where the column represents streak
length and the row represents the rank. The value in each cell is the aggregate result
(i.e., v) for the corresponding streak.

(x mod w)Js(x mod w)
x

is smaller than both w−1
w+1

Js(w−1) and 1
2
Js(1), which implies it is

smaller than the minimum of the two values. Then it naturally leads to Theorem 4.3.3.

To utilize Ms(w), we check if Ms(w) is no greater than any β(w′) with w′ > w,

i.e. Ms(w) ≤ min{β(w′)|w′ ∈ (w, |Hs|]}. Whenever the condition holds, it is safe to

stop further evaluation on subject s. Note that we maintain an interval tree [23] on

β to support efficient checking.

Theorem 4.3.4. Each streak returned by Algorithm 6 has a rank no greater than p.

The proof is quite straightforward according to the descriptions of Algorithm 6,

visiting-streak bound and unseen-streak bound. Thus, the details are omitted.

Example 4.3.1. We use Figure 4.3 to illustrate our pruning techniques on a subject

74



s. Each column in the table represents a streak length and the cells contain the

average values among different streaks with different lengths. For example, the cell in

the second row and third column refers to the second largest average value among the

streaks with length 3. Algorithm 6 essentially accesses the streaks in increasing order

of the length. Suppose we are about to estimate the upper bound for streak with

length 8. At this point, the values of β and Js are depicted in the figure. Based on the

visiting-streak bound, we estimate Js(8) = 42+7∗29.1
8

= 30.7125. Since Js(8) < β(8),

we can safely prune the whole column, as highlighted in the figure. Afterwards, we

estimate the upper bound for all the streaks with lengths larger than 8. The value of

Ms(8) is then estimated as Ms(8) = 30.7125 + min{21, 7
9
∗ 29.1} = 51.7. Since all the

values of β are greater than Ms(8), it is safe to terminate the streak enumeration.

4.3.2 k-Sketch Discovery

After the ranked-streaks are obtained, the second step of the k-Sketch query process-

ing is to, for each subject s, select k ranked-streaks to maximize Equation 4.1 (i.e.,

g).

Our goal of optimizing g is related to the Partly Interval Set Cover (PISC) prob-

lem. The goal in PISC is to select a set of intervals which covers at least a certain

percentage of elements. If no rank value is considered in g (i.e., α = 1), the solution

in [28] for PISC maximizes g in O(|Hs|3) time for each subject s. However, when

the rank is considered (i.e., 0 < α < 1), optimizing g becomes an open problem as

stated in [26], where current polynomial time solutions remain unknown. To facilitate

scalable k-Sketch discovery, we provide an efficient (1− 1/e)-approximate algorithm

by exploiting the submodularity property11 of the scoring function. Our idea is that

since g is not submodular, it is not easy to directly maximize it. However, we are able

to transform g to another submodular function g′ s.t. maximizing g′ would result in

11A function I is submodular if and only if given two set A ⊆ B and an element x 6∈ B, then
I(A ∪ {x})− I(A) > I(B ∪ {x})− I(B)).
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the same optimal solution as maximizing g. We design the function of g′ as follows:

g′(Xs) = η1C
′(Xs) + η2R

′(Xs) (4.7)

where C ′(Xs) is the number of distinct events covered by Xs, R
′(Xs) = ΣXs∈Xs(p −

Xs.r), η1 = α/|Hs| and η2 = (1−α)/(pk). Given k, s, p and g, g′ is uniquely defined.

We have the following theorem which links g′ to g:

Theorem 4.3.5. If A∗ is the optimal solution under g′, then A∗ is also the optimal

solution under g.

Proof. First observe that, for any set A ⊆ Ns of size k, (i.e., |A| = k), g(A) = g′(A).

This can be validated by substituting A into Equation 4.1 and Equation 4.7. Then,

we prove the theorem by contradiction: Let A∗ be the optimal solution under g′.

If A∗ is not optimal under g, then ∃B∗ s.t. g(B∗) > g(A∗). Since |A∗| = k, then

g(A∗) = g′(A∗). Similarly, since |B∗| = k, g′(B∗) = g(B∗). As g(B∗) > g(A∗), it

follows g′(B∗) = g(B∗) > g(A∗) = g′(A∗), which contradicts with A∗’s optimality

under g′.

Henceforth, we are able to compute sketches by maximizing g′ instead of g. We

then prove the submodularity on g′ as stated below:

Theorem 4.3.6. Given a ranked-streak set Xs, g
′(Xs) is submodular.

Proof. Note that C ′ is a cover function and R′ is a scalar function, thus C ′ and R′ are

both submodular. Since g′ a linear combination of C ′ and R′, it is also submodular.

By utilizing the submodularity of g′, we can apply the greedy selection algorithm

[53] to efficiently discover the sketches, which guarantees a (1 − 1/e)-approximation

ratio. The greedy scheme is presented in Algorithm 7. During each step (Lines 4-7),
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the algorithm picks the best ranked-streak among the remaining ranked-streaks (i.e.,

Ns \ SKs) to maximizes g′. The algorithm stops at the kth iteration.

Algorithm 7 Greedy Sketch Discovery

1: for s ∈ S do
2: Ns ← ranked-streaks of subject s
3: SKs ← {}
4: for t ∈ [1, k] do
5: x∗ ← argmaxx∈(Ns\SKs) g

′(SKs ∪ {x})
6: SKs ← SKs ∪ {x∗}
7: end for
8: end for
9: return SKs ∀s ∈ S

4.4 Online k-Sketch Maintenance

In the offline scenario, all the events are assumed to be available at the time of

k-Sketch query processing. On the contrary, in the online scenario, events arrive

incrementally. Given an arrival event, our objective is to maintain the k-Sketch for

each subject up-to-date. Since events may arrive at a high speed, such a maintenance

step has to be done efficiently.

Similar to the offline scenario, we maintain an index WI to keep track of the

top-p streaks for all the possible streak lengths. To handle a newly arrived event

es(t), a naive solution would first generate all the streaks containing es(t), (i.e.

Ws(t, w
′), w′ ∈ (1, t]), and then update WI accordingly. Last, Algorithm 7 is invoked

to re-compute the sketches. However, there are t associated streaks for each new

event es(t). Examining all of them is too expensive to support real-time responses.

Moreover, Algorithm 7 runs in O(k|Ns|) time for each affected subject, which imposes

further performance challenges.

To achieve instant sketch maintenance, we propose two techniques: online streak

pruning and sketch update. Online streak pruning tries to reduce the number of
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streaks evaluated in generating ranked-streaks. After obtaining the ranked-streaks,

we need to update the affected sketches. As we shall see later, given a ranked-streak

Ns(t, w), not only the sketch of subject s but also the sketches of other subjects

could be affected. Although we provide a solution with a (1 − 1/e) approximation

in the offline scenario, maintaining sketches to achieve the same approximation ratio

is difficult in the online scenario [5, 7]. Therefore, we propose a 1/8-approximate

solution which updates a sketch in O(k) time.

Algorithm 8 Online k-Sketch Maintenence

Input: es(t)← arrival event
1: WI()// top-p streaks for each length
2: β()// smallest score in WI for each streak length
3: for w ∈ 1, ..., t do
4: if Ws(t, w) can be added to WI(w) then
5: update β(w), Js(w), compute Ns(t, w)
6: SketchUpdate(Ns(t, w))
7: end if
8: compute Ps(w)
9: break if Ps(w) ≤ max{β(w′)|w < w′ ≤ t}

10: end for

Before we present online streak pruning and sketch update, Algorithm 8 first de-

picts the overview of our online solution against a new event es(t). We iteratively

examine streaks which contain es(t) (i.e.,Ws(t, w) in Line 3). Then we update the

sketches which are affected by inserting Ws(t, w) into WI (Lines 4-7). Before con-

tinuing to examine the next streak length w, we compute the maximum score (i.e.,

Ps(w)) of all streaks which have not been evaluated. If Ps(w) is smaller than all

β(w′), w′ ∈ (w, t], we can safely stop processing since no further streaks could cause

any sketches to change.

4.4.1 Online Streak Pruning

Since there are t streaks associated with each new event es(t), we wish to avoid

enumerating all the possible cases. We achieve the online streak pruning by leveraging
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the online-streak bound denoted by Ps(w), which is the upper bound value among

streaks with lengths greater than w. The value of Ps(w) is stated as in the following

theorem:

Theorem 4.4.1 (Online-Streak Bound). Let Ws(t, 1),. . ., Ws(t, w) be the w streaks

computed in Algorithm 8 containing event es(t). Let Ps(w) be:

Ps(w) =
w

w + 1
Ws(t, w).v +min{ t− w

w + 1
Js(t− w),

t− w
t

Js(1)} (4.8)

Where Js(·) is the visiting-streak bound. Then Ps(w) is the online-streak bound, i.e.,

Ps(w) ≥ max{Ws(t, x).v|x ∈ (w, t]}.

Proof. First, ∀x ∈ (w, t], we have:

Ws(t, x).v =
wWs(t, w).v + (x− w)Ws(t− w, x− w).v

x

≤ wWs(t, w).v

w + 1
+

(x− w)Ws(t− w, x− w).v

x

Note that Js(x − w) ≥ Ws(t − w, x − w).v, and yJs(y) monotonically increases

with respect to y. It follows that (x−w)Ws(t−w, x−w).v/x ≤ (x−w)Js(x−w)/x ≤

(t−w)Js(t−w)/(w+1). On the other hand, Js(1) ≥ Ws(·, y).v, for any y. Therefore,

(x−w)Ws(t−w, x−w).v/x ≤ (x−w)Js(1)/x ≤ (t−w)Js(1)/t. Combining the above

deductions, it follows that:

(x− w)Ws(t− w, x− w).v

x
≤ min{ t− w

w + 1
Js(t− w),

t− w
t

Js(1)}

which leads to Theorem 4.4.1.

When w is small, t−w
w+1

Js(t − w) is too loose as t−w
w+1

is large. However, we can

leverage t−w
t
Js(1) to obtain a better bound. As w increases, t−w

w+1
Js(t−w) eventually

becomes smaller than t−w
t
Js(1). Thus, we can leverage t−w

w+1
Js(t − w) to perform
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efficient pruning.

4.4.2 Sketch Update

Once we obtain a streak Ws(t, w) which causes changes in the WI(w), two kinds of

sketch updates may occur. The first update is directly on the sketch of s, which we

refer to as active update. The second update is on the sketches for other subjects.

This happens when some of their ranked-streaks become worse due to Ws(t, w). We

refer to this case as passive update. If these updates are not properly handled, sketches

maintained for those subjects are not able to obtain an approximation ratio on their

qualities. We demonstrate the two types of updates in the following example.

N(4,3,1) 

N(7,3,3) 

Rank 

Sequence 

N(11,4,2) 

(a) Active update cased by the new
ranked-streak N(11, 4)

N(4,3,1) 

N(7,3,3) 

Rank 

Sequence 

N(11,4,2) 

N(11,4,5) 

(b) Passive update cased by the existing
ranked-streak N(11, 4)

Figure 4.4: The illustration of active updates and passive updates, the solid circle
represents the original sketch, the dotted circle represents the updated sketch.

Example 4.4.1. Suppose k = 2 and we maintain a 2-Sketch for each subject. As

shown in Figure 4.4(a), when the ranked-streak N(11, 4) is generated, the maintained

sketch is no longer the best. This is because replacing N(7, 3) would generate a better

sketch. This process is referred as the active update. In Figure 4.4(b), N(11, 4)

is pushed up due to the arrival of the event about another subject; as a result, the

quality of the sketch drops. We name this process as the passive update. If passive

update is not handled, the rank of N(11, 4) may continue to be pushing up and

may eventually be greater than p, making the entire sketch invalid. Nevertheless, it
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is evident that when N(11, 4) degrades, replacing it with N(7, 3) would result in a

sketch with a better quality.

A naive approach to handle these updates is to run Algorithm 7 for each affected

subject. This maintains a (1 − 1/e)-approximation ratio but incurs a high compu-

tational cost. In order to support efficient updates, we make a trade-off between

the quality of the sketch and the update efficiency by providing a 1/8-approximate

solution with only O(k) ranked-streaks being accessed for each affected subject.

In particular, we maintain two size-k sets S1 and S2. S1 maintains the k best

ranked-streaks which collectively cover most events whereas S2 maintains k ranked-

streaks with best ranks. When performing an active update for a streak Ns(t, w),

we check if Ns(t, w) could replace any ranked-streak in S1 to generate a better cover.

Meanwhile, we select the new k best ranked-streaks into S2. After S1 and S2 are

updated, we perform the greedy selection from S1 ∪ S2. During a passive update, S1

is not affected. We simply update S2 to be the new k best ranked-streaks. Afterwards,

the new sketch is obtained by performing a greedy selection from S1∪S2. Algorithm 9

presents both the active and passive updates.

Algorithm 9 SketchUpdate

Input: Ns(t, w)
1: Active update for the subject s
2: S1: k ranked-streaks with best cover
3: S2: k ranked-streaks with best ranks
4: N∗ ← argmaxN∈S1

C(S1 ∪Ns(t, w) \N)
5: if C(S1) < C(S1 ∪Ns(t, w) \N∗) then
6: S1 ← S1 ∪Ns(t, w) \N∗
7: end if
8: S2 ← new k ranked-streaks with best ranks
9: S ← greedy(S1 ∪ S2)

10:

11: Passive update for an affecting subject s′

12: S2 ← new k ranked-streaks with best ranks for s′

13: S ← greedy(S1 ∪ S2)

We state the quality of our sketch update strategy in the following theorem:
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Theorem 4.4.2 (Approximation Ratio for Sketch Update). Each sketch maintained

by Algorithms 8 achieves an at least 1/8-approximation to the optimal solution.

Proof. First, we observe that S2 always keeps the ranked-streaks with optimal ranks.

Second, we note that S1 maintains the streaks with 1/4-approximate coverage as

shown in [55].

Let OPTC be the optimal k streaks that best covers s’s history; Let C() be

the number of events a set of streaks cover. Similarly, let OPTR be the optimal k

streaks with highest ranks; Let R() be the summation of ranks of all members in a

ranked-streak set. Let S∗s be the optimal sketch of subject s. Intuitively, we have the

following:

g′(S∗s ) ≤ η1C(OPTC) + η2R(OPTR)

Since C(S1) ≥ 1/4C(OPTC) and R(S2) = R(OPTR), we have the following:

η1C(S1) + η2R(S2) ≥ 1/4 ∗ η1C(OPTC) + η2R(OPTR)

≥ 1/4g′(S∗s )

which implies max{η1C(S1), η2R(S2)} ≥ 1/8g(S∗s ). As g′(S1) ≥ η1C(S1) and g′(S2) >

η2R(S2), it leads to:

max{g′(S1), g
′(S2)} > 1/8g′(S∗s )

Let SKs be one of the sketch maintained by Algorithms 9, since the greedy algorithm

is run on S1 ∪ S2, g
′(SKs) ≥ max(g′(S1), g

′(S2)) ≥ 1/8g′(S∗s ). As a result, our

algorithm always ensures at least 1/8-approximation for each sketch.

4.5 Experiments

In this section, we study our solutions for k-Sketch query processing in both offline

and online scenarios using the following four real datasets. The statistics of these
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datasets are summarized in Table 4.3.

NBA12 contains the game records for each NBA player from year 1985 to 2013.

Among all the records, we pick 1, 000 players with at least 200 game records. In

total, we obtain a dataset with 569K events.

POWER [47] contains the electricity usage for 370 households between Dec. 2006

and Nov. 2010. Each household is treated as a subject with the daily power usage as

an event. In total, there are 1.4M events.

PEMS [20] contains the occupancy rate of freeway in San Francisco bay area from

Jan. 2008 to Mar. 2009. Each freeway is a subject with the daily occupancy rate as

an event. The dataset contains 963 freeways with 5.7M events.

STOCK contains the hourly price tick for 318 stocks from Mar. 2013 to Feb. 2015.

The dataset is crawled from Yahoo! Finance13 and contains 2.3M events.

Table 4.3: Statistics of datasets used in the experiments.

DataSet Total Events Total Subjects Longest Sequence
NBA 569,253 1,015 1,476

POWER 1,480,000 370 4,000
PEMS 5,798,918 963 6,149

STOCK 2,326,632 318 10,420

In our efficiency study, we evaluate three parameters: (1) p ∈ [20, 200], which

refers to the threshold of the ranked-streaks, (2) k ∈ [20, 100], which refers to the size

of a sketch and (3) h ∈ [20, 100], which refers to the percentage of historical events

for scalability test, i.e. |H|h% events are used in the experiments. We do not evaluate

the performance with respect to α since α does not impact the running time. We use

p = 200, h = 100, and k = 20 as the default values.

All the experiments are conducted on a desktop machine equipped with an Intel

i7 Dual-Core 3.0GHz CPU, 8GB memory and 160 GB hard drive. All algorithms are

implemented in Java 7.

12http://www.nba.com
13https://finance.yahoo.com/
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4.5.1 Offline k-Sketch Query Processing

Our offline k-Sketch query processing algorithms consist of two functional compo-

nents, Ranked-streak Generation and Sketch Discovery. In the ranked-streak gener-

ation, we report the performance with varying p and h. In the sketch discovery, we

report the performance with varying k.

4.5.1.1 Ranked-streak generation algorithms

To evaluate the performance, we design the following four methods for comparison:

Brute Force (BF). BF exhaustively computes and compares for each subject all

the possible streak lengths.

Visiting Streak Pruning (V-SP). V-SP only adopts the visiting-streak bound for

pruning.

Unseen Streak Pruning (U-SP). U-SP only adopts the unseen-streak bound for

pruning.

Unseen+Visiting Streak Pruning (UV-SP). UV-SP adopts both unseen-streak

and visiting-streak bounds for pruning.

4.5.1.2 Ranked-streak generation varying p

The running time of the four algorithms in ranked-streak generation with respect to

p is shown in Figure 4.5. It is evident that when p increases, more ranked-streaks are

qualified and thus all four algorithms require more computation time. The effect of the

two proposed streak-based pruning techniques can also be observed from the figure.

The insight is that the unseen-streak pruning plays a more important role in reducing

the running time. Furthermore, when both pruning techniques are used, our method

(UV-SP) achieves at least two orders of magnitude of performance improvement.
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Figure 4.5: Ranked-streak generation in the offline scenario with varying p.

4.5.1.3 Ranked-streak generation varying h

We then study the performance of the four algorithms with respect to the number of

events and report the results in Figure 4.6. As the figure shows, when h increases,

the running times for all four algorithms increase. This is because more streaks need

to be evaluated. Again, pruning-based methods are much more efficient than the

baseline method. When both pruning methods are adopted, our method (UV-SP)

obtains hundreds of times faster than the baseline method.

4.5.1.4 Sketch discovery varying k

After ranked-streaks are generated, we greedily find the k-sketch for each subject.

Here, we study the effect of k on the performance of the greedy algorithm. The

results on the four datasets are presented in Table 4.4. The table indicates that the

running time of the greedy algorithm increases proportionally to k. This is because
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Figure 4.6: Ranked-streak generation in the offline scenario with varying h.

Table 4.4: Sketch discovery with varying k in (ms)

k 20 40 60 80 100
NBA 9,097 13,345 17,500 21,597 30,769

POWER 36,297 53,513 69,300 86,603 122,856
STOCK 63,679 93,415 122,500 151,179 215,386
PEMS 138,224 206,820 283,190 353,766 491,000

the complexity of the greedy algorithm is O(kΣs|Ns|). Since PEMS is the largest

dataset with highest Σs|Ns|, the greedy algorithm performs worst on PEMS. We also

observe that the greedy algorithm takes near 500 seconds on PEMS, which implies

that the performance of exact solutions with cubic complexity is not acceptable. This

confirms the necessity of adopting the approximate algorithm.

4.5.2 Online Sketch Maintenance

In the online scenario, we evaluate the following four algorithms in our performance

study:
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Sketch Computing (SC). SC examines all streaks generated from a fresh event.

Then Algorithm 7 is invoked for each affected subject. To improve efficiency, the

updates are processed in batches, i.e., multiple updates on the same subject will be

batched and processed by calling Algorithm 7 once.

Sketch with Early Termination (SET). SET adopts online-streak bound in The-

orem 4.4.1 for early termination.

Approx. Sketch (AS). AS is similar to SC except that it only computes the ap-

proximate sketches.

Approx. Sketch with Early Termination (ASET). ASET computes the approx-

imate sketches with early termination, as shown in Algorithm 8.

In the online setting, we are more interested in evaluating the throughput of

algorithms. We report the performance with respect to p, k and h.

4.5.2.1 Query throughput varying p

We increase p from 10 to 200 and the throughput results are shown in Figure 4.7.

The figure demonstrates similar patterns for all four datasets. As p increases, the

throughput of the four algorithms drops. This is because as p increases, the time

required to maintain the top-p ranked-streaks as well as to update the sketch increases.

However, algorithms adopting online-streak bound have higher throughput than their

counterparts. This is because with early termination, fewer streaks are generated. We

can also see that SC and ASC run very slowly in the online setting. This is because

they need to invoke Algorithm 7 upon every update. This confirms the necessity of

our approximate method as ASET achieves up to 500x speedup as compared to SC.

4.5.2.2 Query throughput varying k

We then evaluate how the throughput varies with respect to k. The results are

presented in Figure 4.8. The figure tells similar patterns as Figure 4.7. First, as
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Figure 4.7: Throughput in online scenario with varying p.

k increases, the throughput of all four algorithms decreases. This is because as k

becomes larger, more operations are needed for maintaining the sketch. Second, the

throughput of SC and SET are an order of magnitude smaller than AS and ASET .

This is because SC and SET repetitively call Algorithm 7 which heavily depends on

k. We observe that in some datasets (e.g., Figure 4.8 (a)) there is 100x boost for

ASET as compared to SC.

4.5.2.3 Query throughput varying h

Finally, we study the effect of h in affecting the throughput. We change h from 20

to 100, and the results are represented in Figure 4.9. As shown in the figure, when

h increases, the throughput of the four algorithms drops steadily. This is because as

h increases, |Hs| for each subject increases. Therefore in Algorithm 8, more time is

needed to process each streak. We notice that ASET has a flatter slope than AS ;
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Figure 4.8: Throughput in the online scenario with varying k.

this is benefit from the prunings of online-streak bound.

4.5.3 Comparison with Other Techniques

We also compare the efficiency and effectiveness of our k-Sketch query with the state-

of-the-art Prominent Streaks query [74] (denoted by the skyline method) in providing

newsworthy summaries.

To study the efficiency, we implement the skyline algorithms as described in [74] for

both online and offline scenarios. The results under all four datasets are presented in

Figure 4.10. The figure demonstrates the superiority of our schemes in both scenarios.

Specifically, our offline scheme saves 63% to 75% processing time and our online

scheme achieves 2 to 10 time throughput speedups. These results further indicate the

efficiency of our schemes.

To study the effectiveness, we conduct a user study over Amazon Mechanical
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Figure 4.9: Throughput in the online scenario with varying h.

Turk14 to evaluate the attractiveness of the summaries generated by different methods.

For our method, we set α = 0.5 to pay equal attention to the strikingness and the

coverage. For the skyline method, due to the overwhelming skylines generated for

each subject, we propose two augmented methods to pick k of them. In total, we

compare the following four algorithms:

1. SK: selects the k-sketch for each player generated by the offline k-Sketch query.

2. SKa: selects the k-sketch for each player generated by the online k-Sketch query.

3. SYm: randomly selects k streaks for each player from the bunch of skylines

generated by [74].

4. SYr: attaches ranks15 to the streaks in SYm.

14https://requester.mturk.com
15Rank is generated by our offline method
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We then apply each method on the NBA dataset and set k = 5 to generate 5

streaks for each player. Each streak is then translated into a news theme in the

following format:

2003/04/14: Jordan obtained 30.3 PPGA16 in 989 straight games, ranked 1st in

NBA history!!

We design each job in AMT to contain 5 questions and each question presents

the four summaries of a player generated by the four methods. A sample question

regarding “Kobe Bryant” is listed in Table 4.5. Due to space limitation, we present

SYm and SYr in one row, since they essentially report the same streak, except that

SYr provides additional rank information. We then ask the respondents to endorse

each summary based on the level of attractiveness. We receive responses from 100

participants who have knowledge in NBA17. Then, for each algorithm, we count the

frequency of it being endorsed as the best and report the percentage results in the

pie chart in Figure 4.11.

The chart clearly shows that SK is the most effective method as it takes 51% of

the endorsements from the respondents. Overall, Sketch based methods (i.e., SK and

SKa) receive 75% endorsements, which win the skyline methods (i.e., SYm and SYr)

by three times. The chart also shows that, when applied with the rank information

(i.e., SYr), the number of endorsements increases dramatically, more than two times

of the original number of endorsements (i.e., SYm). This also implies the effectiveness

of our ranked-streaks. We can also observe the quality differences of the four methods

in Table 4.5. As the table shows, SYm and SYr output streaks concentrating on a

shorter period (i.e., 2006) as compared with the output of SKa and SK (i.e., 2003-

2008). This is because Kobe unprecedentedly scored 81 points on 2006/01/22, thus

most skylines are associated with that event. Moreover, the streaks selected by SYm

16PPGA:Point-per-game-average
17In AMT, we are able to request respondents with certain qualifications, i.e. knowledgeable in

NBA.

91



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

NBA PEMS STOCK POWER

R
un

ni
ng

 ti
m

e 
(s

)
Sketch Skyline

(a) Offline Scenario

 0

 5

 10

 15

 20

 25

NBA PEMS STOCK POWER

T
hr

ou
gh

pu
t (

k/
s)

Sketch Skyline

(b) Online Scenario

Figure 4.10: Efficiency comparison with prominent streaks.

and SYr are not ranked well as compared with the results of SKa and SK. The reason

is that skyline based methods only consider the local prominence (i.e., non-dominated

in one’s career) but k-Sketch considers the global prominence (i.e., rank in history).

SK, 51.00%
SKa, 24.80%

SYr, 16.40%

SYm, 7.80%

Figure 4.11: Percentage of endorsements received as the most attractive.

4.5.4 Case Study on Real Data

We further study the k-Sketch query in the NBA dataset. We compute a 5-sketch

for the player “Dominique-Wilkins” using different α and list the ranked-streaks in

Table 4.6. As the table shows, when α is small (i.e., 0.1), the streaks selected tend

to have higher ranks. On the other hand, when α is large (i.e., 0.9), the streaks have
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Table 4.5: Summaries of “Kobe Bryant” on Point-per-game-average (PPGA) obtained
by the four methods. SYr corresponds to the same SYm streak with augmented rank
information.

Method Career Summaries Generated

SYm
(SYr)

1. 2006/04/16, Kobe obtained 37.05 PPGA in 57 straight games
(ranked 10 in NBA history)!
2. 2006/04/16, Kobe obtained 35.09 PPGA in 85 straight games
(ranked 111 in NBA history)!
3. 2006/04/19, Kobe obtained 36.91 PPGA in 61 straight games
(ranked 12 in NBA history)!
4. 2006/11/03, Kobe obtained 35.85 PPGA in 75 straight games
(ranked 63 in NBA history)!
5. 2006/11/08, Kobe obtained 35.29 PPGA in 78 straight games
(ranked 85 in NBA history)!

SKa

1. 2003/03/11, Kobe obtained 38.05 PPGA in 20 straight games,
ranked 25 in NBA history!
2. 2006/02/08, Kobe obtained 38.67 PPGA in 28 straight games,
ranked 1 in NBA history!
3. 2006/02/26, Kobe obtained 38.10 PPGA in 30 straight games,
ranked 1 in NBA history!
4. 2006/04/19, Kobe obtained 37.17 PPGA in 56 straight games,
ranked 5 in NBA history!
5. 2007/10/30, Kobe obtained 32.27 PPGA in 212 straight
games, ranked 194 in NBA history!

SK

1. 2003/02/21, Kobe obtained 43.20 PPGA in 10 straight games,
ranked 3 in NBA history!
2. 2006/01/22, Kobe obtained 81.00 PPGA in 1 straight games,
ranked 1 in NBA history!
3. 2006/02/11, Kobe obtained 38.24 PPGA in 29 straight games,
ranked 1 in NBA history!
4. 2007/03/30, Kobe obtained 46.12 PPGA in 8 straight games,
ranked 1 in NBA history!
5. 2008/02/01, Kobe obtained 32.24 PPGA in 216 straight
games, ranked 195 in NBA history!
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larger coverage.

We observe several interesting facts from the sketches. First, the streaks with

highest coverage (i.e., α = 0.9) concentrate in the period 1986-1993, while the high-

est ranked-streaks (i.e., α = 0.1) locate in the period 1986-1988. Looking up the

ground truth18, we find that “Dominique”’s prime career is in 1985-1993 and he was

selected into the All-Star team every year in 1986-1988, which is consistent with our

discoveries. Second, our k-Sketch query also discovers a length-1 streak of 57 points

(in 1986-04-10, ranked 11th in history), which is in fact the career-highest points

scored by “Dominique”19. Last, we notice that “Dominique” has a length-2 streak

with an average score of 50 points, which ranks 8th in history. Although this streak

ranks better than the length-1 streak with 57 points, interestingly, it has not been

reported in any news. This indicates that our k-Sketch query is able to discover

interesting facts where human experts may miss.

Table 4.6: 5-Sketches for “Dominique-Wilkins” from NBA dataset with respect to α.

α
Sketches

Date Streak Length Avg(points) Rank

0.1

1986-04-01 2 47.00 14
1986-04-10 1 57.00 11
1987-02-10 2 50.00 8
1988-03-01 2 48.50 11
1988-03-01 11 40.54 16

0.5

1986-04-01 2 47.00 14
1987-02-10 2 50.00 8
1988-03-01 2 48.50 11
1988-03-11 14 39.35 18
1991-12-10 3 44.00 38

0.9

1986-11-02 55 32.98 147
1987-03-26 26 32.46 145
1987-02-10 14 32.21 117
1988-04-19 61 33.19 139
1993-03-29 34 32.88 145

18http://www.nba.com/history/players/wilkins_stats.html
19http://articles.latimes.com/1986-12-11/sports/sp-2180_1_22-point-deficit
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4.6 Summary

In this chapter, we looked at the neighborhood analytics in sequence data. We lever-

age the joint distance and comparison neighborhood functions to design the novel

ranked-streak which quantifies the strikingness of a streak. We then formulated the

k-Sketch query which aims to best summarize a subject’s history using k ranked-

streaks. We studied the k-Sketch query processing in both offline and online scenarios,

and propose efficient solutions to cope each scenario. In particular, we designed novel

streak-level pruning techniques and a (1 − 1/e)-approximate algorithm to achieve

efficient processing in offline. Moreover, we designed a 1/8-approximate algorithm

for the online sketch maintenance. Our comprehensive experiments demonstrated

the efficiency of our solutions and a human study confirmed the effectiveness of the

k-Sketch query.
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Chapter 5

GCMP Query: Neighborhood

Analytics in Trajectories

5.1 Introduction

Trajectory analysis is another type of advanced data analytics. A trajectory is the

spatial trace of a moving object which contains a sequence of spatial-temporal records.

Typical trajectories include visitor movements in a shopping mall, taxi flows in a

city, animal migration traces in a continent and user action logs in social networks.

Data analysis on these trajectories benefits a wide range of applications and services,

including traffic planning [78], animal analysis [46], location-aware advertising [30],

and social recommendations [8], to name just a few.

An important analytics on top of trajectories is to discover co-moving objects. A

co-movement pattern [3, 42, 77] refers to a group of objects traveling together for a

certain period of time. Such a pattern can be concisely expressed by two neighborhood

functions in the spatial and the temporal dimensions respectively. Specifically, in the

spatial dimension, let o(t) be the object o’s location at time t. Then the objects co-

moving with an object o at time t are determined by a distance neighborhood function:
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N1(o, t) = {oi|dist(o(t), oi(t)) ≤ r}1. Next, in the temporal dimension, the objects

co-moving with an object o for a time period T are determined by: N2(o, T ) = {oi|∀t ∈

T, oi ∈ N1(o, t)}. A movement pattern is prominent if the size of the group exceeds M

(i.e., |N2(·)| ≥ M) and the length of the duration exceeds K (i.e., |T | ≥ K), where

M and K are parameters specified by users. Rooted from such a basic definition

and driven by different mining applications, there are many variants of co-movement

patterns that have been developed with additional constraints.

Table 5.1 summarizes several popular co-movement patterns with different con-

straints with respect to spatial neighborhood, temporal constraints in consecutiveness

and computational complexity. In terms of spatial neighborhood, the flock [29] and

the group [64] patterns adopt disk-based clustering which requires all the objects in a

group to be enclosed by a disk with radius r2; whereas the convoy [35], the swarm [45]

and the platoon [44] patterns resort to density-based spatial clustering3. In terms of

temporal constraints, the flock and the convoy require all the timestamps of each de-

tected spatial group to be consecutive, which is referred to as global consecutiveness ;

whereas the swarm does not impose any restriction. The group and the platoon adopt

a compromised approach by allowing arbitrary gaps between consecutive segments,

which is called local consecutiveness. They introduce a parameter L to control the

minimum length of each local consecutive segment.

Figure 5.1 is an example to demonstrate the concepts of the various co-movement

patterns. The trajectory database consists of six moving objects and the temporal

dimension is discretized into six snapshots. In each snapshot, we treat the clustering

method as a blackbox and assume that they generate the same clusters. Objects

in proximity are grouped in the dotted circles. As aforementioned, there are three

parameters to determine the co-movement patterns and the default settings in this

1This refers to as the disk-based clustering. Density-based clustering can be expressed similarly
as: N1(o, t) = {oi|dist(oj(t), oi(t)) ≤ ε ∧ oj ∈ N1(o, t)}

2Disk-based clustering is equivalent to N (oi, t) = {oj |dist(oi(t), oj(t)) < r}.
3Density-based clustering is equivalent to N (oi, t) = {oj |dist(oj(t), ok(t)) ≤ ε ∧ ok ∈ N (oi, t)}.

97



Table 5.1: Constraints and complexities of co-movement patterns. The time com-
plexity indicates the performance with respect to |O|, |T| in the worst case, where
|O| is the number of objects, and |T| is the number of discretized timestamps.

Pattern Spatial Neighborhood Temporal Constraint Time Complexity
flock [29] disk based global consecutive O(|O||T| log(|O|))
convoy [35] density based global consecutive O(|O|2 + |O||T|)
swarm [45] density based - O(2|O||O||T|)
group [64] disk based local consecutive O(|O|2|T|)
platoon [44] density based local consecutive O(2|O||O||T|)

example are M = 2, K = 3 and L = 2. Both the flock and the convoy require the

spatial clusters to last for at least K consecutive timestamps. Hence, 〈o3, o4 : 1, 2, 3〉

and 〈o5, o6 : 3, 4, 5〉 are the only two candidates matching the patterns. The swarm

relaxes the pattern matching by discarding the temporal consecutiveness constraint.

Thus, it generates many more candidates than the flock and the convoy. The group

and the platoon add another constraint on local consecutiveness to retain meaningful

patterns. For instance, 〈o1, o2 : 1, 2, 4, 5〉 is a pattern matching local consecutiveness

because timestamps (1, 2) and (4, 5) are two segments with length no smaller than

L = 2. The difference between the group and the platoon is that the platoon has an

additional parameter K to specify the minimum number of snapshots for the spatial

clusters. This explains why 〈o3, o4, o5 : 2, 3〉 is a group pattern but not a platoon

pattern.

As can be seen, there are various co-movement patterns requested by different

applications and it is cumbersome to design a tailored solution for each type. In

addition, despite the generality of the platoon (i.e., it can be reduced to other types of

patterns via proper parameter settings), it suffers from the so-called loose-connection

anomaly. We use two objects o1 and o2 in Figure 5.2 to illustrate the scenario. These

two objects form a platoon pattern in timestamps (1, 2, 3, 102, 103, 104). However,

the two consecutive segments are 98 timestamps apart, resulting in a false positive

co-movement pattern. In reality, such an anomaly may be caused by the periodic
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Platoon (M=2,K=3,L=2) , : 1,2,4,5  , 1,2,3  , : 2,3,5,6  , : 3,4,5  

Swarm  (M=2,K=3) , : 1,2,4,5  , 1,2,3  , : 2,3,5,6  

, : 1,3,4,5  , : 3,4,6  

6 

Figure 5.1: Trajectories and co-movement patterns. The example consists of six
trajectories across six snapshots. Objects in spatial clusters are enclosed by dotted
circles. M is the minimum cluster cardinality; K denotes the minimum number of
snapshots for the occurrence of a spatial cluster; and L denotes the minimum length
for local consecutiveness.

movements of unrelated objects, such as vehicles stopping at the same petrol station

or animals pausing at the same water source. Unfortunately, none of the existing

patterns have directly addressed this anomaly.

The other issue with existing methods is that they are built on top of central-

ized indexes. Thus, they may not be scalable to handle real large-scale trajectories

collected by today’s positioning technologies. Table 5.1 shows their theoretical com-

plexities in the worst cases and the largest real dataset ever evaluated in previous

studies is up to million-scale points collected from hundreds of moving objects. In

practice, the dataset is of much higher scale and the scalability of existing methods

is left unknown. Thus, we conduct an experimental evaluation with 4000 objects

moving for 2500 timestamps to examine the scalability. Results in Figure 5.3 show
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Figure 5.2: Loose-connection anomaly. Even though 〈o1, o2〉 is considered as a valid
platoon pattern, it is highly probable that these two objects are not related as the
two consecutive segments are 98 timestamps apart.

that their performances degrade dramatically as the dataset scales up. For instance,

the detection time of group decreases by a factor of 20 as the number of objects grows

from 1k to 4k. Similarly, the performance of swarm drops over fifteen times as the

number of snapshots grows from 1k to 2.5k. These observations imply that existing

methods are not scalable to support large-scale trajectory databases.
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Figure 5.3: Performance measures on existing co-movement patterns. A sampled
GeoLife dataset is used with up to 2.4 million data points. Default parameters are
M = 15, K = 180, L = 30.

In this chapter, we close these two gaps by making the following contributions.

First, we propose the general co-movement pattern (GCMP) which models various

co-moment patterns in a unified way and can avoid the loose-connection anomaly. In

GCMP, we introduce a new gap parameter G to pose a constraint on the temporal
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gap between two consecutive segments. By setting a feasible G, the loose-connection

anomaly can be effectively controlled. In addition, our GCMP is also general. It can

be reduced to any of the previous pattern by customizing its parameters.

Second, we investigate deploying our GCMP detector on the modern MapReduce

platform (i.e., Apache Spark) to tackle the scalability issue. Our technical contribu-

tions are threefold. First, we design a baseline solution by replicating the snapshots

to support effective parallel mining. Second, we devise a novel Star Partitioning

and ApRiori Enumerator (SPARE) framework to resolve limitations of the baseline.

SPARE achieves workload balance by partitioning objects into fine granular stars.

For each partition, an Apriori Enumerator is adopted to mine the co-movement pat-

terns. Third, we leverage the temporal monotonicity property of GCMP to design

several optimization techniques including sequence simplification, monotonicity prun-

ing and forward closure check to further reduce the number of candidates enumerated

in SPARE.

We conduct a set of extensive experiments on three large-scale real datasets with

hundreds of millions of temporal points. The results show that both our parallel

schemes efficiently support GCMP mining in large datasets. In particular, with over

170 million trajectory points, SPARE achieves up to 112 times speedup using 162

cores as compared to the state-of-the-art centralized schemes. Moreover, SPARE

further achieves almost linear scalability with upto 14 times efficiency as compared

to the baseline algorithm.

The rest of this chapter is organized as follows: Section 5.2 states the problem

of general co-movement pattern mining. Section 5.3 provides a baseline solution.

An advanced solution named Star Partitioning and ApRiori Enumerator (SPARE)

is presented in Section 5.4. Section 5.5 reports our experimental evaluation. Finally,

Section 5.6 summarizes this chapter.
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5.2 Problem Formulation

Let O = {o1, o2, ..., on} be the set of objects and T = (1, 2, ..., N) be the discretized

temporal dimension. A time sequence T is defined as an ordered subset of T. Given

two time sequences T1 and T2, we define the commonly-used operators in this chapter

in Table 5.2.

Table 5.2: Operators on time sequence.

Operator Definition
T [i] the i-th element in the sequence T
|T | the number of elements in T
max(T ) the maximum element in T
min(T ) the minimum element in T
range(T ) the range of T , i.e., max(T )−min(T ) + 1
T [i : j] subsequence of T from T [i] to T [j] (inclusive)
T1 ⊆ T2 ∀T1[x] ∈ T1, we have T1[x] ∈ T2.
T3 = T1 ∪ T2 ∀T3[x] ∈ T3, we have T3[x] ∈ T1 or T3[x] ∈ T2
T3 = T1 ∩ T2 ∀T3[x] ∈ T3, we have T3[x] ∈ T1 and T3[x] ∈ T2

We say a sequence T is consecutive if ∀1 ≤ i < |T |, T [i+1] = T [i]+1. We refer to

each consecutive subsequence of T as a segment. It is obvious that any time sequence

T can be decomposed into one or more segments and we say T is L-consecutive [44] if

the length of every segment is no smaller than L. As illustrated in Figure 5.2, patterns

adopting the notion of L-consecutiveness (e.g., platoon and group) still suffer from

the loose-connection anomaly. To avoid such an anomaly without losing generality,

we introduce a parameter G to control the gaps between timestamps in a pattern.

Formally, a G-connected time sequence is defined as follows:

Definition 5.2.1 (G-connected). A time sequence T is G-connected if the gap

between any of its neighboring timestamps is no greater than G, i.e., ∀1 ≤ i <

|T |, T [i+ 1]− T [i] ≤ G.

We take T = (1, 2, 3, 5, 6) as an example. T can be decomposed into two segments

(1, 2, 3) and (5, 6). T is not 3-consecutive since the length of (5, 6) is 2. But it is safe
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to say either T is 1-consecutive or 2-consecutive. On the other hand, T is 2-connected

since the maximum gap between its neighboring timestamps is 2. It is worth noting

that T is not 1-connected because the gap between T [3] and T [4] is 2 (i.e., 5−3 = 2).

Given a trajectory database that is discretized into snapshots, we can conduct a

clustering method, either disk-based or density-based, to identify groups with spatial

proximity. Let T be the set of timestamps in which a group of objects O are clustered.

We are ready to define a more general co-movement pattern:

Definition 5.2.2 (General Co-Movement Pattern). A general co-movement pattern

finds a set of objects O satisfying the following five constraints: (1) closeness: the

objects in O belong to the same cluster in every timestamps of T ; (2) significance:

|O| ≥ M ; (3) duration: |T | ≥ K; (4) consecutiveness: T is L-consecutive; and

(5) connection: T is G-connected.

There are four parameters in our general co-movement pattern, including object

constraint M and temporal constraints K,L,G. By customizing these parameters,

our pattern can express other patterns proposed in the literature, as illustrated in

Table 5.3. In particular, by setting G = |T|, we achieve the platoon pattern. By

setting G = |T|, L = 1, we reach the swarm pattern. By setting G = |T|, M = 2,

K = 1, we gain the group pattern. Finally by setting G = 1, we result in the

convoy and flock patterns. In addition to the flexibility of representing other existing

patterns, our GCMP is able to avoid the loose-connection anomaly by tuning the

parameter G.

Table 5.3: Expressing other patterns using GCMP. · indicates a user specified value.

Pattern M K L G Clustering
Group 2 1 2 |T| disk
Flock · · K 1 disk
Convoy · · K 1 density
Swarm · · 1 |T| density
Platoon · · · |T| density
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Our definition of GCMP is independent of the clustering method. Users can apply

different clustering methods to facilitate different application needs. We currently

expose both disk-region based clustering and DBSCAN as options to the users. In

summary, the goal of this work is to present a parallel solution for discovering all

the valid GCMPs from large-scale trajectory databases. Before we move on to the

algorithmic part, we list the notations that are used in the following sections.

Table 5.4: Summary of notations.

Symbol Meaning
St snapshot of objects at time t
M significance constraint
K duration constraint
L consecutiveness constraint
G connection constraint

P = 〈O : T 〉 pattern with object set O, time sequence T
St set of clusters at snapshot t
η replication factor in the TRPM framework
λt partition with snapshots St, .., St+η−1
GA aggregated graph in SPARE framework
Sri star partition for object (vertex) i

5.3 Baseline: Temporal Replication and Parallel

Mining

In this section, we propose a baseline solution that resorts to MapReduce as a general,

parallel and scalable paradigm for GCMP mining. The framework, named temporal

replication and parallel mining (TRPM), is illustrated in Figure 5.4. There are two

stages of mapreduce jobs connected in a pipeline manner. The first stage deals with

spatial clustering of objects in each snapshot, which can be seen as a preprocessing

step for the subsequent pattern mining phase. In particular, for the first stage, the

timestamp is treated as the key in the map phase and objects within the same snap-

shot are clustered (DBSCAN or disk-based clustering) in the reduce phase. Finally,
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Figure 5.4: Workflow of Temporal Replication and Parallel Mining (TRPM). (a) and
(b) correspond to the first mapreduce stage which clusters objects in each snapshot.
(c) and (d) is the second mapreduce stage which uses TRPM to detect GCMPs.

the reducers output clusters of objects in each snapshot, represented by a list of key-

value pairs 〈t, St〉, where t is the timestamp and St is a set of clustered objects at

snapshot t.

Our focus in this chapter is on the second mapreduce stage of parallel mining,

which essentially addresses two key challenges. The first is to ensure effective data

partitioning such that the mining on each partition can be conducted independently;

and the second is to efficiently mine the valid patterns within each partition.

It is obvious that we cannot simply split the trajectory database into disjoint par-

titions because a GCMP requires L-consecutiveness and the corresponding segments

may span multiple partitions. Our strategy is to use data replication to enable paral-

lel mining. Each snapshot will replicate its clusters to η − 1 preceding snapshots. In

other words, the partition for the snapshot St contains clusters in St, St+1 . . . , St+η−1.

Determining a proper η is critical in ensuring the correctness and efficiency of TRPM.

If η is too small, certain cross-partition patterns may be missed. If η is too large,

expensive network communication and CPU processing costs would be incurred in

the map and reduce phases respectively. Our objective is to find an η that is not

large but can guarantee correctness.
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In our implementation, we set η = (dK
L
e − 1)(G − 1) + K + L − 1. Intuitively,

with K timestamps, at most dK
L
e− 1 gaps may be generated as the length of each L-

consecutive segment is at least L. Since the gap size is at most G−1, (dK
L
e−1)(G−1)

is the upper bound of timestamps allocated to gaps. The remaining part of the

expression, K + L − 1, is used to capture the upper bound allocated for the L-

consecutive segments. We formally prove that η can guarantee correctness.

Theorem 5.3.1. η = (dK
L
e−1)∗(G−1)+K+L−1 guarantees that no valid pattern

is missed.

Proof. Given a valid pattern P , we can always find at least one valid subsequence of

P.T that is also valid. Let T ′ denote the valid subsequence of P.T with the minimum

length. In the worst case, T ′ = P.T . We define range(T ) = max(T ) − min(T ) + 1

and prove the theorem by showing that range(T ′) ≤ η. Since T ′ can be written

as a sequence of L-consecutive segments interleaved by gaps: l1, g1, . . . , ln−1, gn−1, ln

(n ≥ 1), where li is a segment and gi is a gap. Then, range(T ′) is calculated as

Σi=n
i=1 |li| + Σi=n−1

i=1 |gi|. Since T ′ is valid, then Σi=n
i=1 |li| ≥ K. As T ′ is minimum, if we

remove the last ln, the resulting sequence should not be valid. Let K ′ = Σi=n−1
i=1 |li|,

which is the size of the first (n − 1) segments of T ′. Then, K ′ ≤ K − 1. Note that

every |li| ≥ L, thus n ≤ dK′

L
e ≤ dK

L
e. By using the fact that every |gi| ≤ G − 1,

we achieve Σi=n−1
i=1 |gi| ≤ (n − 1)(G − 1) ≤ (dK

L
e − 1)(G − 1). Next, we consider the

difference between K and K ′, denoted by ∆ = K − K ′. To ensure T ′’s validity, ln

must equal to min(L,∆). Then, Σi=n
i=1 |li| = K ′+ ln = K−∆+min(L,∆) ≤ K−1+L.

We finish showing range(T ′) ≤ η. Therefore, for any valid sequence T , there is at

least one valid subsequence with range no greater than η and hence this pattern can

be detected in a partition with η snapshots.

Based on the above theorem, TRPM forms a partition for every consecutive

η snapshots. In other words, each snapshot St corresponds to a partition λt =

106



{St, ..., St+η−1}. Next, we aim to design an efficient pattern mining strategy within

each partition. Our solution includes a line sweep algorithm to sequentially scan the η

snapshots in a partition and an effective candidate pattern enumeration mechanism.

Algorithm 10 Line Sweep Mining

Input: λt = {St, ..., St+η−1}
1: C ← {} . Candidate set
2: for all clusters s in snapshot St do
3: if |s| ≥M then
4: C ← C ∪ {〈s, t〉}
5: end if
6: end for
7: for all Sj ∈ {St+1, . . . , St+η−1} do
8: N ← {}
9: for all (c, s) ∈ C × Sj do

10: c′ ← 〈c.O ∩ s.O, c.T ∪ {j}〉
11: if c′.T is valid then
12: output c′

13: else if |c′.O| ≥M then
14: N ← N ∪ {c′}
15: end if
16: end for
17: for all c ∈ C do
18: if j −max(c.T ) ≥ G then
19: C ← C − {c}
20: output c, if c is a valid pattern
21: end if
22: if c’s first segment is less than L then
23: C ← C − {c}
24: end if
25: end for
26: C ← C ∪N
27: end for
28: output valid patterns in C

Details of the algorithm are presented in Algorithm 10. We keep a candidate set

C (Line 1) during the sweeping. It is initialized using the clusters with size no smaller

than M in the first snapshot. Then, we sequentially scan each snapshot (Lines 7-27)

and generate new candidates by extending the original ones in C. Specifically, we

join candidates in C with all the clusters in Sj to form new candidates (Lines 9-16).

107



After sweeping all the snapshots, all the valid patterns are stored in C (Line 28). It

is worth noting that C continues to grow during sweeping. We can use three pruning

rules to remove false candidates early from C. Since there is a partition λt for each

St, only patterns that start from timestamp t need to be discovered. Therefore,

those patterns that do not appear in the St are false candidates. In particular, our

three pruning rules are as follows: First, when sweeping snapshot Sj, new candidates

with object set smaller than M are pruned (Line 14). Second, after joining with all

clusters in Sj, candidates in C with the maximum timestamp no smaller than j −G

are pruned (Lines 18-21). Third, candidates in C with the size of the first segment

smaller than L are pruned (Lines 22-24). With the three pruning rules, the size of C

can be significantly reduced.

Algorithm 11 Temporal Replication and Parallel Mining

Input: list of 〈t, St〉 pairs
1: η ← (dK

L
e − 1) ∗ (G− 1) +K + L− 1

2: —Map Phase—
3: for all snapshots St do
4: for all i ∈ 1...η − 1 do
5: emit key-value pair 〈max(t− i, 0), St〉
6: end for
7: end for
8: —Partition and Shuffle Phase—
9: for all key-value pairs 〈t, S〉 do

10: group-by t and emit a key-value pair 〈t, λt〉, where λt = {St, St+1, ..St+η−1}
11: end for
12: —Reduce Phase—
13: for all key-value pairs 〈t, λt〉 do
14: call line sweep mining for partition λt
15: end for

The complete picture of TRPM is shown in Algorithm 11. We illustrate the

workflow of TRPM using Figures 5.4 (c) and (d) with pattern parameters M = 2, K =

3, L = 2, G = 2. By Theorem 5.3.1, η is calculated as (dK
L
e−1)∗(G−1)+K+L−1 =

5. Therefore, in Figure 5.4 (c), every 5 consecutive snapshots are combined into a

partition in the map phase. In Figure 5.4 (d), the line sweep method is illustrated for
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Figure 5.5: Star Partitioning and ApRiori Enumerator (SPARE). (a) Aggregated
graph GA generated from Figure 1. (b) Five star partitions are generated from GA.
Star IDs are circled, vertexes and inverted lists are in the connected tables. (c) Apriori
Enumerator with various pruning techniques.

partition λ1. Let Ci be the candidate set when sweeping snapshot Si. Initially, C1

contains patterns with all object sets in snapshot S1. As we sweep the snapshots, the

patterns in Ci grow. At snapshot S4, the candidate 〈o5, o6〉 is removed because the

gap between its latest timestamp (i.e., 2) and the next sweeping timestamp (i.e., 5)

is 3, which violates the G-connected constraint. Next, at snapshot S5, the candidate

〈o1, o2〉 is removed because its local consecutive segment (4) has only 1 element, which

violates the L-consecutive constraint. Finally, 〈o3, o4〉 is the only valid pattern and is

returned. Note that in this example, η = 5 is the minimum setting that can guarantee

correctness. If η is set to be 4, the pattern 〈o3, o4〉 would be missed.

5.4 SPARE: Star Partitioning and Apriori Enu-

merator

The aforementioned TRPM scheme replicates snapshots based on the temporal di-

mension which suffers from two drawbacks. First, the replication factor η can be large.

Second, the same valid pattern may be redundantly discovered from different parti-

tions. To resolve these limitations, we propose a new Star Partitioning and ApRiori
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Enumerator, named SPARE, to replace the second stage of the mapreduce jobs in

Figure 5.4. Our new parallel mining framework is shown in Figure 5.5. Its input is

the set of clusters generated in each snapshot and the output contains all the valid

GCMPs. In the following, we explain the two major components: star partitioning

and apriori enumerator.

5.4.1 Star Partitioning

Let Gt be a graph for snapshot St, in which each node is a moving object and two

objects are connected if they appear in the same cluster. It is obvious that Gt consists

of a set of small cliques. Based on Gt, we define an aggregated graph GA to summarize

the cluster relationship among all the snapshots. In GA, two objects form an edge

if they are connected in any Gts. Furthermore, we attach an inverted list for each

edge, storing the associated timestamps in which the two objects are connected. An

example of GA, built on the trajectory database in Figure 5.1, is shown in Figure 5.5

(a). As long as two objects are clustered in any timestamps, they are connected in

GA. The object pair 〈o1, o2〉 appears in two clusters at timestamps 2 and 3 and is

thus associated with an inverted list (2, 3).

We use star [70] as the data structure to capture the pair relationships. To avoid

duplication, as Gt is an undirected graph and an edge may appear in multiple stars,

we enforce a global vertex ordering among the objects and propose a concept named

directed star.

Definition 5.4.1 (Directed Star). Given a vertex with global ID s, its directed star

Srs is defined as the set of neighboring vertexes with global ID t > s. We call s the

star ID.

With the global vertex ordering, we can guarantee that each edge is contained in a

unique star partition. Given the aggregated graph GA in Figure 5.5 (a), we enumerate
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all the possible directed stars in Figure 5.5 (b). These stars are emitted from mappers

to different reducers. The key is the star ID and the value is the neighbors in the star

as well as the associated inverted lists. The reducer will then call the Apriori-based

algorithm to enumerate all the valid GCMPs.

Before we introduce the Apriori Enumerator, we are interested to examine the issue

of global vertex ordering. This is because assigning different IDs to the objects will

result in different star partitioning results, which will eventually affect the workload

balance among reducers. The job with the performance bottleneck is often known

as a straggler [39]. In the context of star partitioning, a straggler refers to the job

assigned with the maximum star partition. We use Γ to denote the size of such

straggler partition and Γ is set to the number of edges in a directed star4. Clearly,

a star partitioning with small Γ is preferred. For example, Figure 5.6 gives two star

partitioning results under different vertex ordering on the same graph. The top one

has Γ = 5 while the bottom one has Γ = 3. Obviously, the bottom one has a smaller

Γ and is much more balanced.
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Figure 5.6: Star partitioning with different vertex orderings.

Although it is very challenging to find the optimal vertex ordering from the n!

4A star is essentially a tree structure and the number of nodes equals the number of edges minus
one.
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possibilities, we observe that a random order can actually achieve satisfactory perfor-

mance based on the following theorem.

Theorem 5.4.1. Let Γ∗ be the value derived from the optimal vertex ordering and

Γ be the value derived from a random vertex ordering. With probability 1− 1/n, we

have Γ = Γ∗ +O(
√
n log n).

Proof. See Appendix A.2.1.

If GA is dense, we are able to obtain a tighter bound for (Γ− Γ∗).

Theorem 5.4.2. Let d be the average degree in GA. If d ≥
√

12 log n, with proba-

bility 1− 1/n, Γ = Γ∗ +O(
√
d log n).

Proof. See Appendix A.2.1.

Hence, we can simply use object ID to determine the vertex ordering in our im-

plementation.

5.4.2 Apriori Enumerator

Intuitively, given a GCMP with an object set {o1, . . . , om}, all the pairs of 〈oi, oj〉

with 1 ≤ i < j ≤ m must be connected in the associated temporal graphs {Gt}. This

inspires us to leverage the classic Apriori algorithm [2] to enumerate all the valid

GCMPs starting from pairs of objects. However, we observe that the monotonicity

property does not hold between an object set and its supersets.

Example 5.4.1. In this example, we show that if an object set is not a valid pattern,

we cannot prune all its super sets. Consider two candidates P1 = 〈o1, o2 : 1, 2, 3, 6〉

and P2 = 〈o1, o3 : 1, 2, 3, 7〉. Let L = 2, K = 3 and G = 2. Both candidates are not

valid patterns because the constraint on L is not satisfied. However, when considering

their object superset 〈o1, o2, o3〉, we can infer that their co-clustering timestamps are
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in (1, 2, 3). This is a valid pattern conforming to the constraints of L,K,G. Thus,

we need a new type of monotonicity to facilitate pruning.

5.4.2.1 Monotonicity

To ensure monotonicity, we first introduce a procedure named sequence simplification,

to reduce the number of edges as well as unnecessary timestamps in the inverted lists.

For instance, if the size of the inverted list for an edge e is smaller than K, then the

edge can be safely removed because the number of timestamps in which its supersets

are clustered must also be smaller than K. To generalize the idea, we propose three

concepts: maximal G-connected subsequence, decomposable sequence and sequence

simplification.

Definition 5.4.2 (Maximal G-connected Subsequence). A sequence T ′ is said to be

a maximal G-connected subsequence of T if (1) T ′ is the subsequence of T , (2) T ′ is

G-connected, and (3) there exists no other subsequence T ′′ of T such that T ′ is the

subsequence of T ′′ and T ′′ is G-connected.

Example 5.4.2. Suppose G = 2 and consider two sequences T1 = (1, 2, 4, 5, 6, 9, 10,

11, 13) and T2 = (1, 2, 4, 5, 6, 8, 9). T1 has two maximal 2-connected subsequences:TA1 =

(1, 2, 4, 5, 6) and TB1 = (9, 10, 11, 13). This is because the gap between TA1 and TB1

is 3 and it is impossible for the timestamps from TA1 and TB1 to form a new subse-

quence with G ≤ 2. Since T2 is 2-connected, T2 has only one maximal 2-connected

subsequence which is itself.

The maximal G-connected subsequence has the following two properties:

Lemma 5.4.3. Suppose {T1, T2, · · · , Tm} is the set of all maximal G-connected sub-

sequences of T , we have (1) Ti ∩ Tj = ∅ for i 6= j and (2) T1 ∪ T2 ∪ · · · ∪ Tm = T .

Proof. We assume Ti∩Tj 6= ∅ and prove (1) by contradiction. Let Ti = (Ti[1], · · · , Ti[p])

and Tj = (Tj[1], · · · , Tj[n]). Suppose T [x] is a timestamp occurring in both Ti and Tj.
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Let T [y] = min{Ti[1], Tj[1]}, i.e., the minimum timestamp of Ti[1] and Tj[1] occurs

at the y-th position of sequence T . Similarly, we assume T [z] = max{Ti[p], Tj[n]}.

Apparently, the two subsequences T [y : x] and T [x : z] are G-connected because Ti

and Tj are both G-connected. Then, sequence (Ty, · · · , Tx, · · · , Tz), the superset of

Ti and Tj, is also G-connected. This contradicts with the assumptions that Ti and Tj

are maximal G-connected subsequences.

To prove (2), we assume ∪i=mi=1 Ti does not cover all the timestamps in T . Then,

we can find a subsequence T ′ = T [x : x + t] such that T [x − 1] ∈ Ta (1 ≤ a ≤ m),

T [x+ t+ 1] ∈ Tb (1 ≤ b ≤ m) and all the timestamps in T ′ is not included in any Ti.

Let g′ = min{T [x]−T [x−1], T [x+ t+1]−T [x+ t]}. If g′ ≤ G, then it is easy to infer

that Ta or Tb is not a maximal G-connected subsequence because we can combine it

with T [x] or T [x+ t] to form a superset which is also G-connected. If g′ > G, T ′ itself

is a maximal G-connected subsequence which is missed in ∪i=mi=1 Ti. Both cases lead

to contradictions.

Lemma 5.4.4. If T1 ⊆ T2, then for any maximal G-connected subsequence T ′1 of T1,

we can find a maximal G-connected subsequence T ′2 of T2 such that T ′1 ⊆ T ′2.

Proof. Since T ′1 ⊆ T1 ⊆ T2, we know T ′1 is a G-connected subsequence of T2. Based

on Lemma 5.4.3, we can find a maximal G-connected subsequence of T2, denoted by

T ′2, such that T ′1 ∩ T ′2 6= ∅. If there exists a timestamp T ′1[x] such that T ′1[x] /∈ T ′2,

similar to the proof of case (1) in Lemma 5.4.3, we can obtain a contradiction. Thus,

all the timestamps in T ′1 must occur in T ′2.

Definition 5.4.3 (Decomposable Sequence). T is decomposable if for any of its

maximal G-connected subsequence T ′, we have (1) T ′ is L-consecutive; and (2) |T ′| ≥

K.

Example 5.4.3. Let L = 2, K = 4 and we follow the above example. T1 is not

a decomposable sequence because one of its maximal 2-connected subsequence (i.e.,
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TB1 ) is not 2-consecutive. In contrast, T2 is a decomposable sequence because the

sequence itself is the maximal 2-connected subsequence, which is also 2-consecutive

and with size ≥ 4.

Definition 5.4.4 (Sequence Simplification). Given a sequence T , the simplification

procedure sim(T ) = gG,K · fL(T ) can be seen as a composite function with two steps:

1. f -step: remove segments of T that are not L-consecutive;

2. g-step: among the maximal G-connected subsequences of fL(T ), remove those

with size smaller than K.

Example 5.4.4. Take T = (1, 2, 4, 5, 6, 9, 10, 11, 13) as an example for sequence

simplification. Let L = 2, K = 4 and G = 2. In the f -step, T is reduced to

f2(T ) = (1, 2, 4, 5, 6, 9, 10, 11). The segment (13) is removed due to the constraint

of L = 2. f2(T ) has two maximal 2-consecutive subsequences: (1, 2, 4, 5, 6) and

(9, 10, 11). Since K = 4, we will remove (9, 10, 11) in the g-step. Finally, the output

is sim(T ) = (1, 2, 4, 5, 6).

It is possible that the simplified sequence sim(T ) = ∅. For example, Let T =

(1, 2, 5, 6) and L = 3. All the segments will be removed in the f -step and the output

is ∅. We define ∅ to be not decomposable. We then link sequence simplification and

decomposable sequence in the following lemma:

Lemma 5.4.5. If sequence T is a superset of any decomposable sequence, then

sim(T ) 6= ∅.

Proof. It is obvious that sim(T ) is a one-to-one function. Given an input sequence

T, there is a unique sim(T ). Let Tp be a decomposable subset of T and we prove the

lemma by showing that sim(T ) is a superset of Tp.

Suppose Tp can be decomposed into a set of maximal G-connected subsequences

T 1
p , . . . , T

m
p (m ≥ 1). Since Tp is a subset of T , all the T ip are also subsets of T . By
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definition, each T ip is L-consecutive. Thus, in the f -step of sim(T ), none of T ip will be

removed. In the g-step, based on Lemma 5.4.4, we know that each T ip has a superset

in the maximal G-connected subsequences of fL(T ). Since |T ip| ≥ K, none of T ip will

be removed in the g-step. Therefore, all the T ip will be retained after the simplification

process and sim(T ) 6= ∅.

With Lemma 5.4.5, we are ready to define the monotonicity concept based on the

simplified sequences to facilitate the pruning in the Apriori algorithm.

Theorem 5.4.6 (Monotonicity). Given a candidate pattern P = {O : T}, if sim(P.T ) =

∅, then any pattern candidate P ′ with P.O ⊆ P ′.O can be pruned.

Proof. We prove by contradiction. Suppose there exists a valid pattern P2 such

that P2.O ⊇ P.O. It is obvious that P2.T ⊆ P.T . Based on Definition 2, the

following conditions hold: (1) P2.T is G-connected. (2) |P2.T | ≥ K and (3) P2.T is

L-consecutive. Note that the entire P2.T is G-connected. Thus, P2.T itself is the only

maximal G-connected subsequence. Based on conditions (1),(2),(3) and Definition 6,

P2.T is decomposable. Then, based on Lemma 5.4.5, we know sim(T ) 6= ∅ because

P2.T ⊆ P.T and P2.T is decomposable. This contradicts with sim(P.T ) = ∅.

5.4.2.2 Apriori enumerator

We design an Apriori based enumeration algorithm to efficiently discover all the valid

patterns in a star partition. The principle of the Apriori algorithm is to construct

a lattice structure and enumerate all the possible candidate sets in a bottom-up

manner. Its merit lies in the monotonic property such that if a candidate set is not

valid, then all its supersets can be pruned. Thus, it works well in practice in spite of

the exponential search space.

Our customized Apriori Enumerator is presented in Algorithm 12. Initially, the

edges (pairs of objects) in the star constitute the bottom level (Lines 2-6) and invalid
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candidates are excluded (Line 4). An indicator level is used to control the result size

for candidate joins. During each iteration (Lines 8-28), only candidates with object

size equals to level are generated (Line 10). When two candidates c1 and c2 are joined,

the new candidate becomes c′ = 〈c1.O ∪ c2.O, c1.T ∩ c2.T 〉 (Line 11). To check the

validity of the candidate, we calculate sim(c′.T ). If its simplified sequence is empty,

c′ is excluded from the next level (Line 12). This ensures that all the candidates with

P.O ⊇ c′.O are pruned. If a candidate cannot generate any new candidate, then it is

directly reported (Lines 16-20). To further improve the performance, we adopt the

idea of forward closure [54, 63] and aggressively check if the union of all the current

candidates form a valid pattern (Lines 22-26). If yes, we can terminate the algorithm

early and output the results.

Example 5.4.5. As shown in Figure 5.5 (c), in the bottom level of the lattice struc-

ture, candidate 〈3, 6 : 3〉 is pruned because its simplified sequence is empty. Thus,

all the object sets containing 〈3, 6〉 can be pruned. The remaining two candidates

(i.e., 〈3, 4 : 1, 2, 3〉 and 〈3, 5 : 2, 3〉) derive a new 〈3, 4, 5 : 2, 3〉 which is valid. By the

forward closure checking, the algorithm can terminate and output 〈3, 4, 5 : 2, 3〉 as

the final pattern.

5.4.3 Putting Everything Together

We summarize the workflow of SPARE in Figure 5.5 as follows. After the parallel

clustering in each snapshot, for ease of presentation, we use an aggregated graph GA

to capture the clustering relationship. However, in the implementation of the map

phase, there is no need to create GA in advance. Instead, we simply need to emit

the edges within a star to the same reducer. Each reducer is an Apriori Enumerator.

When receiving a star Sri, the reducer creates initial candidate patterns. Specifically,

for each o ∈ Sri, a candidate pattern 〈o, i : e(o, i)〉 is created. Then it enumerates

all the valid patterns from the candidate patterns. The pseudocode of SPARE is
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Algorithm 12 Apriori Enumerator

Input: Srs
1: C ← ∅
2: for all edges c = 〈oi ∪ oj, Toi ∩ Toj〉 in Srs do
3: if sim(Toi ∩ Toj) 6= ∅ then
4: C ← C ∪ {c}
5: end if
6: end for
7: level← 2
8: while C 6= ∅ do
9: for all c1 ∈ C do

10: for all c2 ∈ C and |c2.O ∪ c2.O| = level do
11: c′ ← 〈c1.O ∪ c2.O : (c1.T ∩ c2.T )〉
12: if sim(c′.T ) 6= ∅ then
13: C ′ ← C ′ ∪ {c′}
14: end if
15: end for
16: if no c′ is added to C ′ then
17: if c1 is a valid pattern then
18: output c1
19: end if
20: end if
21: end for
22: Ou ← union of c.O in C
23: Tu ← intersection of c.T in C
24: if 〈Ou, Tu〉 is a valid pattern then
25: output 〈Ou, Tu〉, break
26: end if
27: C ← C ′;C ′ ← ∅; level← level + 1
28: end while
29: output C
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presented in Algorithm 13. In our implementation of SPARE on Spark [72], we take

advantage of Spark features to achieve better workload balance. In particular, we

utilize Spark DAG execution engine to inject a planning phase between map and

reduce phases. By knowing all map results (i.e., star sizes), a simple best-fit strategy

is adopted which assigns the most costly unallocated star to the most lightly loaded

reducer, where the edges in a star are used as cost estimations. We also leverage

Spark in-memory cache to avoid recomputing all stars after the planning phase.

Algorithm 13 Star Partitioning and ApRiori Enumerator

Input: list of 〈t, St〉 pairs
1: —Map phase—
2: for all C ∈ St do
3: for all o1 ∈ C, o2 ∈ C, o1 < o2 do
4: emit a 〈o1, o2, {t}〉 triplet
5: end for
6: end for
7: —Partition and Shuffle phase—
8: for all 〈o1, o2, {t}〉 triplets do
9: group-by o1, emit 〈o1, Sro1〉

10: end for
11: —Reduce phase—
12: for all 〈o, Sro〉 do
13: call Apriori Enumerator for star Sro
14: end for

Compared with TRPM, the SPARE framework does not rely on snapshot repli-

cation to guarantee correctness. In addition, we can show that the patterns derived

from a star partition are unique and there would not be duplicate patterns mined

from different star partitions.

Theorem 5.4.7 (Pattern Uniqueness). Let Sri and Srj (i 6= j) be two star partitions.

Let Pi (resp. Pj) be the patterns discovered from Sri (resp. Srj). Then, ∀pi ∈

Pi,∀pj ∈ Pj, we have pi.O 6= pj.O.

Proof. We prove by contradiction. Suppose there exist pi ∈ Pi and pj ∈ Pj with

the same object set. Note that the center vertex of the star is associated with the
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minimum id. Let oi and oj be the center vertexes of the two partitions and we have

oi = oj. However, Pi and Pj are from different stars, meaning their center vertexes

are different (i.e., oi 6= oj), leading to a contradiction.

Theorem 5.4.7 implies that no mining efforts are wasted in discovering redundant

patterns in the SPARE framework, which is superior to the TRPM baseline. Finally,

we show the correctness of the SPARE framework.

Theorem 5.4.8. The SPARE framework guarantees completeness and soundness.

Proof. See Appendix A.2.2.

5.5 Experimental Study

In this section, we evaluate the efficiency and scalability of our proposed parallel

GCMP detectors on real trajectory datasets. All the experiments are carried out in

a cluster with 12 nodes, each equipped with four quad-core 2.2GHz Intel processors,

32GB memory and Gigabit Ethernet.

Environment Setup. We use Yarn5 to manage our cluster. We pick one machine

as Yarn’s master node, and for each of the remaining machines, we reserve one core

and 2GB memory for Yarn processes. We deploy our GCMP detector on Apache

Spark 1.5.26 with the remaining 11 nodes as the computing nodes. To fully utilize

the computing resources, we configure each node to run five executors, each taking

three cores and 5GB memory. In Spark, one of the 55 executors is taken as the

Application Master for coordination, therefore our setting results in 54 executors.

We set the number of partitions to be 486 to fully utilize the multi-threading feature

5http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
6We have experimented with a query-based TRPM using Spark-SQL 2.0.0 window function. We

find that Spark-SQL fails to execute the query-based TRPM in parallel, which results in a 120x
performance slowdown compared to mapreduce-based TRPM. Thus we only report the performance
of mapreduce-based TRPM in this work.
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of every core. All our implementations as well as cluster setups are publicly available7.

Datasets. We use three real trajectory datasets that are collected from different

applications:

• Shopping8: The dataset contains trajectories of visitors in the ATC shopping

center in Osaka. To better capture the indoor activities, the visitor locations

are sampled every half second, resulting in 13, 183 long trajectories.

• GeoLife9: The dataset essentially keeps all the travel records of 182 users for

a period of over three years, including multiple kinds of transportation modes

(walking, driving and taking public transportation). For each user, the GPS in-

formation is collected periodically and 91 percent of the trajectories are sampled

every 1 to 5 seconds.

• Taxi10: The dataset tracks the trajectories of 15, 054 taxies in Singapore. For

each taxi, the GPS information are continually collected for one entire month

with the sampling rate around 30 seconds.

Preprocessing. We replace timestamps with global sequences (starting from 1)

for each dataset. We set a fixed sampling rate for each dataset (i.e., GeoLife = 5

seconds, Shopping=0.5 seconds, Taxi = 30 seconds) and use linear interpolation to

fill missing values. For the clustering method, we use DBSCAN [27] and customize its

two parameters ε (proximity threshold) and minPt (the minimum number of points

required to form a dense region). We set ε = 5, minPt = 10 for GeoLife and Shopping

datasets; and ε = 20, minPt = 10 for Taxi dataset. After preprocessing, the statistics

of the three datasets are listed in Table 5.5.

Parameters. To systematically study the performance of our algorithms, we

7https://github.com/fanqi1909/TrajectoryMining/.
8http://www.irc.atr.jp/crest2010_HRI/ATC_dataset/
9http://research.microsoft.com/en-us/projects/geolife/

10Taxi is our proprietary dataset
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Table 5.5: Statistics of datasets.

Attributes Shopping GeoLife Taxi
# objects 13,183 18,670 15,054
# data points 41,052,242 54,594,696 296,075,837
# snapshots 16,931 10,699 44,364
# clusters 211,403 206,704 536,804
avg. cluster size 171 223 484

conduct experiments on various parameter settings. The parameters to be evaluated

are listed in Table 5.6, with default settings in bold.

Table 5.6: Parameters and their default values.

Param. Meaning Values
M min objects 5, 10, 15, 20, 25
K min duration 120, 150, 180, 210, 240
L min local duration 10, 20, 30, 40,50
G max gap 10, 15, 20, 25, 30
Or ratio of objects 20%, 40%, 60%, 80%, 100%
Tr ratio of snapshots 20%, 40%, 60%, 80%, 100%
N number of machines 1, 3, 5, 7, 9, 11

5.5.1 Performance Evaluation

Varying M . Figures 5.7 (a), (b), (c) present the performance with increasing M .

The SPARE framework demonstrates a clear superiority over the TRPM framework,

with a performance gain by a factor of 2.7 times in Shopping, 3.1 times in GeoLife

and 7 times in Taxi. As M increases, the running time of both frameworks slightly

improve because the number of clusters in each snapshot drops, generating fewer valid

candidates.

Varying K. The performance with increasing K is shown in Figures 5.8 (a),

(b), (c). SPARE tends to run faster, whereas the performance of TRPM degrades

dramatically. This is caused by the sequence simplification procedure in SPARE,

which can prune many candidates with large K. However, the line sweep algorithm

in TRPM does not utilize such property for pruning. It takes longer time because
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Figure 5.7: Performance of SPARE and TRPM on real datasets with varying M

more replicated data has to be handled in each partition.
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Figure 5.8: Performance of SPARE and TRPM on real datasets with varying K

Varying L. Figures 5.9 (a),(b),(c) present the performances with increasing L.

When L = 10, SPARE can outperform TRPM by around 10 times. We also observe

that there is a significant performance improvement for TPRM when L increases from

10 to 20 and later the running time drops smoothly. This is because η is proportional

to O(K ∗G/L+L). When L is small (i.e., from 10 to 20), η decreases drastically. As

L increases, η varies less significantly.

Varying G. Figures 5.10 (a), (b), (c) present the performances with increasing

G. TRPM is rather sensitive to G. When G is relaxed to larger values, more valid

patterns would be generated. TPRM has to set a higher replication factor and its

running time degrades drastically when G increases from 20 to 30. In contrast,

with much more effective pruning strategy, SPARE scales well with G. Particularly,

SPARE is 14 times faster than TRPM when G = 20 in GeoLife dataset.
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Figure 5.9: Performance of SPARE and TRPM on real datasets with varying L
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Figure 5.10: Performance of SPARE and TRPM on real datasets with varying G

Varying Or. Figures 5.11 (a), (b), (c) present the performances with increasing

number of moving objects. Both TRPM and SPARE take longer time to find patterns

in a larger database. We can see that the performance gap between SPARE and

TRPM is widened as more objects are involved, which shows SPARE is more scalable.
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Figure 5.11: Performance of SPARE and TRPM on real datasets with varying Or

Varying Tr. Figures 5.12 (a), (b), (c) present the performances with increasing

number of snapshots. As Tr increases, SPARE scales much better than TRPM due

to its effective pruning in the temporal dimension.
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Figure 5.12: Performance of SPARE and TRPM on real datasets with varying T

Resources. Table 5.7 lists the system resources taken by TRPM and SPARE

under the default setting. Both TRPM and SPARE are resource efficient as they

only occupy less than 20% of the available memory (i.e., 270GB) . Again, SPARE

outperforms TRPM in both the execution time and the memory usage.

Table 5.7: Resources taken for TRPM and SPARE. Vcore-seconds is the aggregate
of time spent in each core. Memory is the actual size (in MB) of RDDs.

Dataset Method Vcore-seconds Memory

Shopping
TRPM 90,859 10,019
SPARE 33,638 8,613

Geolife
TRPM 106,428 18,454
SPARE 35,343 14,369

Taxi
TRPM 503,460 51,691
SPARE 68,580 35,912

5.5.2 Analysis on the SPARE framework

In this part, we extensively evaluate SPARE from three aspects: (1) the advantages

brought by the sequence simplification, (2) the effectiveness of load balance, and (3)

the scalability with increasing computing resources.

5.5.2.1 Power of sequence simplification

To study the power of Sequence Simplification (SS), we collect two types of statistics:

(1) the number of pairs that are shuffled to the reducers and (2) the number of pairs
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that are fed to the Apirori Enumerator. Their difference is the number of size-2

candidates pruned by SS. The results in Table 5.8 show that SS is very powerful

and eliminates nearly 90 percent of the object pairs, which significantly reduces the

overhead of the Apriori enumerator. In fact, without SS Apriori cannot finish in five

hours.

Table 5.8: Pruning power of SPARE.

Dataset Shopping GeoLife Taxi
Before pruning 878,309 1,134,228 2,210,101
After pruning 76,672 123,410 270,921
Prune ratio 91.2% 89.1% 87.7%

5.5.2.2 Load balance

To study the effect of load balance in the SPARE framework, we use random task

allocation (the default setting of Spark) as a baseline, denoted by SPARE-RD, and

compare it with our best-fit method. In best-fit, the largest unassigned star is allo-

cated to the currently most lightly loaded reducer. Figure 5.13 shows the breakdown

of the costs in the mapreduce stages for SPARE and SPARE-RD. We observe that

the map and shuffle time of SPARE and SPARE-RD are identical. The difference

is that SPARE incurs an additional overhead to generate an allocation plan for load

balance (around 4% of the total cost), resulting in significant savings in the reduce

stage (around 20% of the total cost). Meanwhile, both SPARE and SPARE-RD out-

perform TRPM in each phase. This shows the efficiency of the star partition and

apriori enumeration. We also report the cost of the longest job (Max) and the stan-

dard deviation (Std. Dev.) for all jobs in Table 5.9, whose results clearly verify the

effectiveness of our allocation strategy for load balance.
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Figure 5.13: Cost breakdown of TRPM, SPARE-RD and SPARE.

Table 5.9: Statistics of execution time (seconds) on all jobs.

Dataset
SPARE-RD SPARE

Max Std. Dev. Max Std. Dev.
Shopping 295 41 237 21
GeoLife 484 108 341 56

Taxi 681 147 580 96

5.5.2.3 Scalability

When examining SPARE with increasing computing resources (number of machines),

we also compare SPARE with the state-of-the-art solutions for swarm and platoon in

the single-node setting. Since the original swarm and platoon detectors cannot handle

very large-scale datasets, we only use 60% of each dataset for evaluation. For a fair

comparisons, we customize two variants of SPARE to mine swarms and platoons,

which are denoted as SPARE-S and SPARE-P respectively. The customization is

according to the settings in Table 5.3 and the results are reported in Figure 5.14.

First, the centralized schemes are not suitable to discover patterns in large-scale

trajectory databases. It takes nearly 30 hours to detect swarms and 11 hours to

detect platoons in the Taxi dataset in a single machine. In contrast, when utilizing the
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Figure 5.14: Comparisons among TRMP, SPARE, PLATOON and SWARM.

multi-core (i.e., a single node with four executors) environment, SPARE-P achieves

7 times speedup and SPARE-S achieves 10 times speedup. Second, we see that

SPARE schemes demonstrate promising scalability in terms of the number of machines

available. The running times decrease almost inversely as more machines are used.

When all the 11 nodes (162 cores) are available, SPARE-P is upto 65 times and

SPARE-S is up to 112 times better than the state-of-the-art centralized schemes.

5.6 Summary

In this chapter, we studied one of the neighborhood analytics, namely the co-movement

pattern discovery, on trajectory data. We proposed a generalized co-movement pat-

tern query to unify those proposed in the past literature. We then devised two types

of parallel frameworks on Apache Spark that can scale to support pattern detec-

tion in trajectory databases with hundreds of millions of points. The efficiency and

scalability were verified by extensive experiments on three real datasets.
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Chapter 6

Conclusion and Future Work

With the increasing variety and volume of the data managed by the today’s database

systems, the adoption of effective analytics becomes remarkably demanding. Window

analytics, being an important part of SQL analytics, has proven to be successful in

many relational applications. However, window analytics requires a strict ordering

among objects which may not be meaningful in other data domains. In this thesis, we

proposed an analogous analytics named neighborhood analytics, which generalizes the

window analytics by eliminating the ordering requirement. Followed by the concept

of neighborhood analytics, we then systematically studied three instances of such

analytics in supporting advanced applications in three data domains. We proposed

domain-tailored neighborhood queries and demonstrated their usefulness. To support

large-scale data, we further designed various optimization techniques which achieved

efficient query processing.

6.1 Thesis Contributions

We hereby revisit our contributions of this thesis. Our first contribution is the Graph

Window Query (GWQ) on data graphs. GWQ computes aggregations for each vertex

on its windows. We formally defined two instances of graph windows: k-hop window
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and topological window. Then, we developed the Dense Block Index (DBIndex) to

facilitate efficient processing of both types of graph windows. In addition, we proposed

the Inheritance Index (I-Index) that exploits a containment property of DAG to

further improve the query performance of topological window queries. Both indexes

integrate window aggregation sharing techniques to salvage partial work done, which

is both space and query efficient. We conducted extensive experimental evaluations

over both large-scale real and synthetic datasets. The experimental results showed

the efficiency and scalability of our proposed indexes.

Our second contribution is the k-Sketch query on sequence data. k-Sketch query

utilizes the ranked-streaks to summarize a subject’s history. The ranked-streak is

formed by a nested neighborhood function: the neighborhood events were grouped to

form a streak; then streaks with the same size were ranked to indicate their striking-

ness. We formulated the k-Sketch query to select k ranked-streaks which best sum-

marize a subject’s history. We studied the k-Sketch query processing in both offline

and online scenarios, and proposed efficient solutions to cope each scenario. Specifi-

cally, we designed novel streak-level pruning techniques and a (1− 1/e)-approximate

algorithm for offline processing. Then we designed a 1/8-approximate algorithm for

online maintenance. Our comprehensive experiments demonstrated the efficiency of

our solutions and a human study confirms the effectiveness of the k-Sketch query.

Our third contribution is the General Co-movement Pattern (GCMP) query on

trajectory. We modeled the GCMP using the spatial neighborhoods among objects:

the invariant portion of an object’s neighborhood across certain timestamps forms

a pattern. By adjusting temporal constraints, our GCMP is able to express all co-

movement patterns proposed in the past literature. On the technical side, we devised

two parallel frameworks on Spark platform which can be scaled to support query

processing in trajectories with hundreds of millions of points. The efficiency and

scalability were verified by extensive experiments on three real datasets.
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6.2 Future Research Directions

This thesis describes the neighborhood analytics in three data domains, which induces

many interesting problems to follow up with. We would like to highlight them to

inspire future explorations.

In Chapter 3, we proposed the graph window query, which leads to at least the

following directions. First, we wish to empower the graph window queries to support

more general aggregate functions such as median, centrality and user-defined aggre-

gate functions. Second, we would like to study how to support graph window queries

to dynamic graph and graph streams. This boils down to the challenging problem of

handling structural updates (i.e., edge insertion and deletion) on our indexes. Last

but not least, we aim to leverage modern parallel systems to facilitate scalable graph

window query processing on graphs with multi-billion vertexes and edges.

In Chapter 4, we introduced k-Sketch query to summarize sequence data. There

are several further directions worthy exploring using the neighborhood based ranked-

streak. First, we would like to generalize the rank-streak to non-schema data such

as tweets and replies in social networks. This requires a more sophisticated ranking

criteria. Second, we plan to study the problem of summarizing a subject’s history in

the sliding window model. This is particular helpful in generating news themes that

are emerging recently. Last, leveraging big data technology to support fast-growing

event data is also important and of our interests.

In Chapter 5, we utilized the neighborhood concept to design the general co-

movement pattern mining framework. In the next stage, we would like to explore

the real-time movement pattern detection. Meanwhile, we also wish to leverage the

co-movement patterns to facilitate advanced trajectory analysis. For example, it is

of great interest to discover the latent social network from drivers based on their

co-moving behaviors.
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Appendix A

Appendix

A.1 Discussions on Other Aggregate Functions in

Chapter 4

First, we shall see that supporting sum is equivalent to supporting avg. A ranked-

streak which has a rank under avg will have the same rank under sum as the ranking

is derived by comparing all candidates with the same length. Second, supporting

count is equivalent to supporting sum. By assigning each event with a value of

either 1 or 0, we can apply the same pruning bounds for sum to support count.

Third, supporting max is equivalent to supporting min. This is because when max

is used as the aggregate function, we are more interested to find streaks which have

smaller aggregation values. For example, “XXX stock has a maximum of $0.2 price

in consecutive 10 days, which is the lowest ever”. Then finding the sketches according

to max can be derived from min directly by negating the event values. Therefore, we

only provide bounds for sum and min, which are shown as in Table A.1.

We present the performance variations of our k-Sketch query under different ag-

gregate functions in Figure A.1. We can see from the figures that when adopting min

(max ) the performance in both online and offline scenarios drops (20% to 30%). This
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Table A.1: Bounds for other aggregate functions

Aggregate Function Subadditivity
sum Js(w) ≤ Js(w1) + Js(w − w1)
min Js(w) ≤ max(Js(w1), Js(w − w1))

Aggregate Function Visting-Streak Bound
sum Js(w) = Js(w − 1) + Js(1)
min Js(w) = Js(w/2)

Aggregate Function Unseen-Streak Bound
sum Ms(w) = Ws(t, w).v + Js(t− w)
min Ms(w) = max{Ws(t, w).v, J(1)}

Aggregate Function Online-Streak Bound
sum Ms(w) = Ws(t, w).v + Js(t− w)
min Ms(w) = max{Ws(t, w).v, J(1)}

indicates that the pruning bounds in min (max ) is weaker than avg (sum, count).
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Figure A.1: Performance under different aggregate functions

A.2 Proofs of Theorems in Chapter 5

A.2.1 Proofs of Theorem 5.4.1 and 5.4.2

Proof. Γ can be formalized in linear algebra as follows: let GA be an aggregated

graph, with a n × n adjacent matrix J . Since a vertex order is a permutation of J ,

the adjacent matrices of any reordered graphs can be represented as PJP T where

P ∈ P is a n × n permutation matrix 1. In star partitioning, we assign each edge

1An identity matrix with rows shuffled
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e(i, j) in GA to the lower vertex, then the matrix B = triu(PJP T )2 represents the

assignment matrix with respect to P (i.e., bi,j = 1 if vertex j is in star Sri). Let

vector ~b be the one3 vector with size n. Let ~c = B~b, then each ci denotes the number

of edges in star Sri. Thus, Γ can be represented as the infinity norm of B~b. Let Γ∗

be the minimum Γ among all vertex orderings as follows:

Γ∗ = min
P∈P
||B~b||∞ ,where ||B~b||∞ = max

1≤j≤n
(cj) (A.1)

Let B∗ be the assignment matrix with respect to the optimal vertex ordering.

Since we have a star for each object, by the degree-sum formula and pigeon-hole

theorem, Γ∗ = ||B∗~b||∞ ≥ d/2. Next, for a vertex ordering P , let ei,j be an entry in

PAP T . Since edges in graph G are independent, then all ei,j are independent. Let

di denote the degree of vertex i, since a vertex ordering does not affect the average

degree, then E[di] = E[Σ1≤j≤nei,j] = d. Therefore, entries in B can be written as :

bi,j =


ei,j, i > j

0, otherwise

There are two observations. First, since ei,j are independent, then bi,j are also

independent. Second, since i > j and ei,j are independent. E[bi,j] = E[ei,j|i > j] =

E[ei,j]E[i > j] = E[ei,j]/2. As ci is a sum of n independent 0-1 variables (i.e, bi.j).

By linearity of expectations, we get: E[ci] = E[Σ1≤j≤nbi,j] = E[Σ1≤j≤nei,j]/2 = d/2.

Let µ = E[ci] = d/2, t =
√
n log n, by Hoeffding’s Inequality, it follows:

2triu is the upper triangle part of a matrix
3every element in ~b is 1
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Pr(ci ≥ µ+ t) ≤ exp(
−2t2

n
)

= exp(−2 log n)

= n−2

The first step holds since all bi,j are 0-1 variables. Next, the event (max1≤j≤n(cj) ≥

µ+ t) can be viewed as ∪ci(ci ≥ µ+ t). By Union Bound, the following holds:

Pr(Γ ≥ µ+ t) = Pr( max
1≤j≤n

(cj) ≥ µ+ t)

= Pr(∪ci(ci ≥ µ+ t))

≤ Σ1≤i≤nPr(ci ≥ µ+ t)

= n−1 = 1/n

Substitute back t and µ, we achieve the following concise form:

Pr(Γ ≥ (d/2 +
√
n log n)) ≤ 1/n

This indicates the probability of (Γ − d/2) being no greater than O(
√
n log n)

is (1 − 1/n). Since Γ∗ ≥ d/2, it follows with probability greater than (1 − 1/n),

the Γ − Γ∗ is no greater than O(
√
n log n). When the aggregated graph is dense

(i.e., d ≥
√

12 log n), the Chernoff Bound can be used to derive a tighter bound of

O(
√

log n) following the similar reasoning.

A.2.2 Proof of Theorem 5.4.8

Proof. For soundness, let P be a pattern enumerated by SPARE. For any two objects

o1, o2 ∈ P.O, the edge e(o1, o2) is a superset of P.T . By the definition of star, o1, o2

belong to the same cluster at every timestamps in P.T . As P.T is a valid sequence,
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by the definition of GCMP, P is a true pattern. For completeness, let P be a true

pattern. Let s be the object with the smallest ID in P.O. We prove that P must

be outputted by Algorithm 12 form Srs. First, based on the definition of star, every

object in P.O appears in Srs. Since P.T is decomposable, then by Lemma 3 ∀O′ ⊆ O,

the time sequence of O′ would not be eliminated by any sim operations. Next, we

prove at every iteration level ≤ |P.O|, P.O ⊂ Ou, where Ou is the forward closure.

We prove by induction. When level = 2, it obviously holds. If P.O ⊂ Ou at level

i, then any subsets of P.O with size i are in the candidate set. In level i + 1, these

subsets are able to grow to a bigger subset (in last iteration, they grow to P.O). This

suggests that no subsets are removed by Lines 16-29. Then, P.O ⊂ Ui+1 holds. In

summary, P.O does not pruned by simplification, monotonicity and forward closure,

therefore P must be returned by SPARE.
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