
DYNAMIC MULTIOBJECTIVE

OPTIMIZATION USING

EVOLUTIONARY ALGORITHMS

ARRCHANA MURUGANANTHAM

NATIONAL UNIVERSITY OF SINGAPORE

2017

DYNAMIC MULTIOBJECTIVE OPTIMIZATION

USING EVOLUTIONARY ALGORITHMS

ARRCHANA MURUGANANTHAM

(B.Eng. (Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisors:

Professor Tan Kay Chen

Associate Professor Prahlad Vadakkepat

Examiners:

Associate Professor Abdullah Al Mamun

Dr Lin Feng

Professor Zhang Mengjie, Victoria University of Wellington

Declaration

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly acknowledged all

the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

Arrchana Muruganantham

May 3, 2017

Name : Arrchana Muruganantham

Degree : Doctor of Philosophy

Supervisor(s) : Professor Tan Kay Chen, Associate Professor Prahlad

Vadakkepat

Department : Department of Electrical & Computer Engineering

Thesis Title : Dynamic Multiobjective Optimization using Evolutionary

Algorithms

Abstract

This thesis focuses on solving Dynamic Multiobjective Optimization

Problems(DMOPs) using Evolutionary Algorithms in unconstrained and

constrained environments.

Multiobjective Optimization involves the optimization of two or more

conflicting objectives simultaneously. There is no single solution to such

problems, but multiple trade-off solutions. Evolutionary Algorithms are a

good candidate to solve such problems as they can obtain multiple solutions

in a single run. When the optimal solutions change with time, it results in a

Dynamic Multiobjective Optimization problem. Many real-world problems

involve multiple objectives which maybe conflicting, are dynamic in nature

and affected by constraints. In this thesis, the issues of dynamicity and

presence of constraints are addressed by providing some possible solutions.

Evolutionary Algorithms have shown remarkable performance in solv-

ing static Multiobjective Optimization Problems. In general, they take

i

significant time to converge, which becomes an impediment in dynamic

environments. The optimization algorithm must be able to track the moving

optima efficiently. A prediction model can learn the patterns from past

experience and predict future changes. To address dynamicity of problems,

prediction techniques are implemented to work in tandem with Evolutionary

Algorithms.

Firstly, a Dynamic Multiobjective Evolutionary Algorithm based on

MOEA/D-DE (Multiobjective Evolutionary Algorithm based on Decomposi-

tion with Differential Evolution) using Kalman Filter predictions in decision

space is proposed to solve DMOPs. The predictions help to guide the search

towards the changed optima, thereby accelerating convergence. A scoring

scheme is devised to hybridize the Kalman Filter prediction with a random

reinitialization method. The proposed algorithm is tested on a number of

benchmark problems and it shows significantly improved performances over

a number of test benchmark problems. The Kalman Filter based prediction

mechanism does not require any learning time and provides predictions of

the changing Pareto Optimal Solutions reasonably well right from the start

of the run.

MOEA/D-DE assisted by a non-linear prediction method using Support

Vector Regression predictions is also proposed to solve DMOPs. Support

Vector Machines have traditionally been used in the context of classification

and regression. In this method, a time series is formed by the near-optimal

solutions obtained by the Evolutionary Algorithm during previous changes.

Support Vector Machines, which are data-driven are used in tandem with

the Evolutionary Algorithm to predict new solutions for future generations

from the time series, when a change in the environment is detected. Results

of testing the proposed algorithm on several benchmark problems show that

the Support Vector assisted MOEA/D-DE performs significantly better

ii

than the other algorithms in the more complicated problems as Support

Vector Regression does not make any assumptions about the underlying

process or structure of the changing Pareto Optimal Fronts.

Dynamic Multiobjective Optimization in constrained environments

has not been explored much in the literature. Only a handful of algo-

rithms have been proposed to solve constrained dynamic optimization

problems. However, a number of strategies have been proposed for constraint

handling alone (in single objective optimization or static multiobjective

optimization). To address the second issue of handling constraints, the

Kalman Filter based prediction mechanism is combined with an adaptive

threshold based constraint handling method to ensure solution feasibility

while simultaneously tracking the time varying solutions. An existing

static constrained Multiobjective Optimization benchmark problem set is

modified to incorporate dynamicity. The proposed algorithm is tested on

these benchmark problems and the performance compared against Dynamic

NSGA-II algorithm variants is encouraging as the proposed algorithm

performs significantly better in many of the problems. Further, the proposed

algorithms are more robust and tend to perform even better with increasing

problem difficulty.

Keywords : dynamic, evolutionary multi-objective optimization, pre-

diction, kalman filter, support vector machines, constraint

handling

iii

Acknowledgment

My PhD journey would not have been possible without the support and

guidance of a multitude of people. I would like to thank:

My Supervisor, Associate Professor Tan Kay Chen, for his unwavering

support and guidance throughout these years.

My Co-Supervisor, Associate Professor Prahlad Vadakkepat, for his

philosophical guidance, not just in research, but in life in general as well,

which has made me a much better person.

ECE Dept and NUS, for providing me with the NUS Research Scholar-

ship, without which this journey would not have been possible.

My lab colleagues, Willson, Senbong, Hu Jun, Yu Qiang, Bharath and

Arun, who were my guiding seniors in this PhD journey. This journey would

not have been as eventful and fun without my partner-in-crime in the lab,

Qiu Xin. Lim Pin, Zhang Chong, Sim Kuan, Ruoxu and Stella for their

help in various circumstances. Sivam and Raj, helped me cope with the

stress of the last stretch in this journey with their fun-filled personalities. I

would also like to thank lab officers, Ms. Sara and Mr. Zhang Hengwei for

their continued assistance in various tasks.

My friends, Arun, Divya, Kritika, Vanchi, Sunethra, and Shweta who

have lent their shoulders for support whenever I needed them without any

hesitation. Lalitha Aunty and Raghu Uncle who have been a family away

from home in Singapore.

My family - Dad, Mom and brother, Vishnu for believing in me always

and immensely supporting me in all my endeavors.

May 3, 2017

iv

Publications Resulting from this Thesis

Journal Papers

1. A. Muruganantham, K. C. Tan and P. Vadakkepat, ”Evolutionary

Dynamic Multiobjective Optimization Via Kalman Filter Prediction,”

in IEEE Transactions on Cybernetics, vol. 46, no. 12, pp. 2862-2873,

Dec. 2016.

2. A. Muruganantham, K. C. Tan and Vadakkepat, P. Data-driven

Accelerated Convergence in Evolutionary Dynamic Multiobjective

Optimization, IEEE Transactions on Cybernetics(Under Review),

2016

3. A. Muruganantham, K. C. Tan and Vadakkepat, P. Constraint

Handling Approaches for Dynamic Multiobjective Optimization

Problems with Constraints (Under Preparation)

Conference Papers

1. A. Muruganantham, Yang Zhao, Sen Bong Gee, Xin Qiu, Kay Chen

Tan. Dynamic Multiobjective Optimization Using Evolutionary

Algorithm with Kalman Filter, Procedia Computer Science, Volume

24, 2013

2. A. Muruganantham, Tan, K. C. and Vadakkepat, P. Solving the

IEEE CEC 2015 Dynamic Benchmark Problems Using Kalman Filter

Based Dynamic Multiobjective Evolutionary Algorithm, Proceedings

of the 19th Asia Pacific Symposium on Intelligent and Evolutionary

Systems 2015, November 2015

v

Contents

1 Introduction 1

1.1 Basic Definitions . 3

1.1.1 Multiobjective Optimization Problem 3

1.1.2 Concept of Domination 4

1.1.3 Pareto Optimality 4

1.1.4 Goals of an MOEA 4

1.1.5 Dynamic Multiobjective Optimization Problem . . . 5

1.2 Goals and Scope of the Thesis 6

1.3 Major Contributions . 8

1.4 Organization . 10

2 Background & Literature Review 12

2.1 Diversity Introduction . 13

2.2 Diversity Maintenance . 14

2.3 Memory approaches . 15

2.4 Prediction approaches . 15

2.5 Self-adaptive methods . 17

2.6 Multi-population approaches 18

3 Kalman Filter Prediction based Evolutionary Dynamic Mul-

tiobjective Optimization 19

3.1 Introduction . 19

vi

3.2 Related Work . 22

3.3 Algorithm Design . 25

3.3.1 Multiobjective Evolutionary Algorithm with Decom-

position based on Differential Evolution 25

3.3.2 Kalman Filter . 25

3.3.3 Kalman Filter Prediction Model 27

3.3.4 Change Detection Function 30

3.3.5 Scoring Scheme . 31

3.4 Empirical Study . 34

3.4.1 Benchmark problems 34

3.4.2 Parameter Settings 34

3.4.3 Performance Metrics 36

3.4.4 Results . 39

3.4.5 Performance comparison with other DMOEAs 43

3.5 Discussion . 44

3.5.1 Results on FDA1-FDA5, dMOP1 and dMOP2 45

3.5.2 Results on F5-F8 . 47

3.5.3 Results on F9 and F10 50

3.5.4 Parameter Sensitivity 50

3.5.5 Influence of frequency of change 52

3.6 Chapter Conclusion . 54

4 Data-driven Accelerated Convergence in Evolutionary Dy-

namic Multiobjective Optimization 56

4.1 Introduction . 56

4.2 Background . 59

4.3 Related Work . 62

vii

4.3.1 Time Series Prediction Using Support Vector Ma-

chines: A Survey . 62

4.4 Algorithm Design . 65

4.4.1 Multiobjective Evolutionary Algorithm with

Decomposition based on Differential Evolution 65

4.4.2 Change Detection Function 66

4.4.3 Support Vector Regression based Prediction model . 67

4.5 Empirical Study . 78

4.5.1 Benchmark problems 78

4.5.2 Parameter Settings 78

4.5.3 Performance Metrics 79

4.6 Results . 81

4.6.1 Performance Comparison with other DMOEAs 81

4.6.2 Discussion . 82

4.7 Analysis . 83

4.7.1 Prediction visualization 83

4.7.2 Parameter Selection 83

4.7.3 MOEA/D-SVR Time Series Formulation Visualization 87

4.7.4 Influence of severity of Change 87

4.8 Chapter Conclusion . 90

5 Adaptive Constraint Handling in Constrained Dynamic Mul-

tiobjective Optimization 92

5.1 Introduction . 92

5.2 Background . 94

5.2.1 Constrained Multiobjective Optimization Problem

Definition . 94

viii

5.2.2 Dynamic Constrained Multiobjective Optmization

Problem Definition 95

5.2.3 Other definitions . 96

5.3 Related Work . 97

5.3.1 Penalty function based methods 98

5.3.2 Modified Genetic Operators 100

5.3.3 Repair methods . 100

5.3.4 Multiobjective Approach 101

5.3.5 Preference based methods 102

5.3.6 Dynamic Constrained Multiobjective Evolutionary

Algorithms . 103

5.4 Methodology . 104

5.4.1 Constraint Handling Mechanisms 104

5.4.2 Dynamic Optimization Techniques 108

5.5 Empirical Study . 108

5.5.1 Benchmark Problems 108

5.5.2 Experimental Setup 109

5.5.3 Performance Metrics 109

5.5.4 Results . 112

5.5.5 Performance Comparison 113

5.5.6 Discussion . 114

5.6 Analysis . 117

5.6.1 Influence of severity of change 117

5.6.2 Influence of frequency of change 119

5.7 Chapter Conclusion . 122

6 Conclusions & Directions for Future Research 125

6.1 Conclusions . 125

ix

6.2 Directions for Future Research 126

x

List of Figures

3.1 Relationship of EA with Kalman Filter model 31

3.2 Relationship diagram for scoring scheme. 32

3.3 Visualization of Kalman Filter prediction performance in

FDA1. 42

3.4 IGD Trend comparison of MOEA/D-KF and PPS algorithms

over number of changes for 30 runs : FDA1 - FDA5, dMOP1 48

3.5 IGD Trend comparison of MOEA/D-KF and PPS algorithms

over number of changes for 30 runs : dMOP2, F5 - F10 . . . 49

3.6 Influence of frequency of change on FDA1, FDA2 and FDA5

problems. The figures show the box plot of IGD values for

RND, MOEA/D-KF and PPS algorithms for the 3 benchmark

problems for τT = 10, 20 and 30. Each row is for a particular

benchmark problem and τT value varies from 10 to 30. . . . 53

3.7 Influence of frequency of change on F5, F9 and F10 problems.

The figures show the box plot of IGD values for RND,

MOEA/D-KF and PPS algorithms for the 3 benchmark

problems for τT = 10, 20 and 30. Each row is for a particular

benchmark problem and τT value varies from 10 to 30. . . . 54

4.1 Support Vector Regression formulation 60

4.2 ε-insensitive loss function . 61

4.3 Relationship of EA with SVR prediction model 66

xi

4.4 Change Occurrence . 67

4.5 Time Series Formulation . 68

4.6 Comparison of kernel types 70

4.7 Boundary Correction Approaches 74

(a) Clamping approach . 74

(b) Deflection approach 74

4.8 Visualization of SVR prediction performance in dMOP2 . . 80

4.9 C Parameter Selection Visualization based on decision vari-

able number . 85

4.10 Gamma Parameter Selection Visualization based on decision

variable number . 86

4.11 MOEA/D-SVR Time Series Formulation Visualization. Blue

circles represent the training data and red square denotes

the predicted value. 88

4.12 Influence of Severity of Change 89

(a) dMOP2 . 89

(b) F5 . 89

(c) F9 . 89

(d) F10 . 89

5.1 Hypervolume trend comparison in DCTP1, τT = 10, nT = 10 114

5.2 Hypervolume trend comparison in DCTP2, τT = 10, nT = 10 115

5.3 Hypervolume trend comparison in DCTP3-5, τT = 10, nT = 10116

5.4 Hypervolume trend comparison in DCTP6 and DCTP7, τT =

10, nT = 10 . 117

5.5 Influency of severity of change in DCTP2, DCTP6 and DCTP7118

5.6 Influency of severity of change in DCTP3, DCTP4 and DCTP5119

5.7 Influence of Frequency of Change in DCTP1 and DCTP2 . . 120

(a) DCTP1 . 120

xii

(b) DCTP2 . 120

5.8 Influence of Frequency of Change in DCTP3-5 121

(a) DCTP3 . 121

(b) DCTP4 . 121

(c) DCTP5 . 121

5.9 Influence of Frequency of Change in DCTP6 and DCTP7 . . 121

(a) DCTP6 . 121

(b) DCTP7 . 121

xiii

List of Tables

1.1 Four Different Types of DMOP 6

3.1 Experiment Settings . 37

3.2 Experiment Results of MOEA/D-KF and RND 40

3.3 Performance Comparison with other DMOEAs 45

3.4 Averaged Hausdorff distance statistics 46

3.5 Tuning of Q and R matrices of Kalman Filter 51

4.1 Possible range for C and Gamma 70

4.2 Grid search values . 71

4.3 Experiment Settings . 79

4.4 Performance Comparison with other DMOEAs 81

5.1 Experiment Settings . 110

5.2 Experiment Results of CMOEA/D-KF, CMOEA/D-RND,

CMOEA/D-HYP . 112

5.3 Performance Comparison on DCTP DCMOPs 113

xiv

List of Algorithms

3.1 Scoring Scheme based prediction model 33

3.2 MOEA/D-DE with Kalman Filter prediction for Dynamic

Multiobjective Optimization 35

4.1 SVR Parameter Selection . 72

4.2 MOEA/D-DE with SVR for Dynamic Multiobjective Opti-

mization . 76

5.1 MOEA/D-DE with Kalman Filter prediction and adaptive

constraint handling for Constrained Dynamic Multiobjective

Optimization . 123

xv

List of Symbols

f , f(·) Objective vector or functions

x,y Decision vector

z∗ Ideal vector

F Objective space

Ω Decision space

g(·), h(·) Inequality, equality constraint function

m Number of objective functions

n Number of decision variables

p, q Number of inequality, equality contraints

[·]T , [·]−1 Transpose, inverse operation

E [·] Expectation operation

R Real space

N Normal distribution

≺,�,∼ Strongly, weakly dominates and incomparable

I(·) Performance indicator function

xvi

List of Abbreviations

MOP Multi-objective Optimization Problem

SOP Single-objective Optimization Problem

DMOP Dynamic Multi-objective Optimization Problem

EA Evolutionary Algorithm

GA Genetic Algorithm

EDO Evolutionary Dynamic Optimization

EMO Evolutionary Multi-objective Optimization

EDMO Evolutionary Dynamic Multi-objective Optimization

MOEA Multi-Objective Evolutionary Algorithm

DMOEA Dynamic Multi-Objective Evolutionary Algorithm

POF Pareto Optimal Front

POS Pareto Optimal Set

EDA Estimation of Distribution Algorithm

MOEA/D Decomposition-based Multi-Objective Evolutionary Algorithm

MOEA/D-DE Decomposition-based Multi-Objective Evolutionary Algo-

rithm with Differential Evolution

xvii

NSGA-II Non-dominated Sorting Genetic Algorithm II

dCOEA Dynamic Competitive-Cooperative Coevolutionary Algorithm

D-QMOO Dynamic Queuing Multi-Objective Optimizer

DOMOEA Dynamic Orthogonal Multi-objective Evolutionary Algorithm

SBX Simulated Binary Crossover

DE Differential Evolution

GD Generational Distance

IGD Inverted Generational Distance

HD Hausdorff Distance

HPV Hypervolume

GS Generalized Spread

FDA Farina-Deb-Amato dynamic multi-objective benchmark

CDT Change Detection Test

RMSE Root Mean Square Error

MO Multiobjective

MOO Multiobjective Optimization

DMO Dynamic Multiobjective Optimization

SOO Single-Objective Optimization

RND Random Reinitialization

MOEA/D-KF Dynamic Multiobjective Evolutionary Algorithm based on

Kalman Filter Prediction

xviii

HYP Hypermutation

PPS Population Prediction Strategy

RM-MEDA Regularity Model-based Multiobjective Estimation of Distri-

bution Algorithm

DNSGA-II-A Dynamic NSGA-II with 20% random reinitialization

DNSGA-II-B Dynamic NSGA-II with 20% hypermutation

SVM Support Vector Machines

SVR Support Vector Regression

MOEA/D-SVR Dynamic Multiobjective Evolutionary Algorithm based

on Support Vector Regression Prediction

DCMOP Dynamic Constrained Multiobjective Optimization Problem

CMOEA Constrained Multiobjective Evolutionary Algorithm

DCMOEA Dynamic Constrained Multiobjective Evolutionary Algorithm

GENOCOP Genetic Algorithm for Numerical Optimization of Constrained

Problems

ENORA Evolutionary Algorithm of Nondominated Sorting with Radial

Slots

CMOEA/D-RND Constraint Handling embedded MOEA/D with Ran-

dom Reinitialization

CMOEA/D-HYP Constraint Handling embedded MOEA/D with Hy-

permutation

xix

CMOEA/D-KF Constraint Handling embedded MOEA/D with 3by3

Kalman Filter

CMOEA/D-KFSC Constraint Handling embedded MOEA/D with 3by3

Kalman Filter using Scoring Scheme

xx

Chapter 1

Introduction

Optimization problems are aplenty and are found in various fields such as

science, engineering, economics, finance, management, scheduling, planning,

design, control, etc. The list is ever growing, and scientists and industrialists

alike are in the lookout for better and more efficient techniques to solve

their problems. Optimization in general refers to the process of finding

one or more feasible solutions which correspond to extreme values of one

or more objectives. Many researchers have tend to focus on optimization

problems which consider a single objective, although most real-world search

and optimization problems involve more than one objective. Further, the

presence of conflict in the multiple objectives makes these optimization

problems (commonly termed as Multiobjective Optimization (MOO) prob-

lems) more interesting and challenging to solve. Since no single solution can

satisfy the multiple conflicting objectives simultaneously, the solution to a

MOO problem is a set of trade-off optimal solutions. Classical optimization

methods such as hill climbing, simulated annealing can at best find one

solution in a simulation run, thereby deeming these methods inefficient to

solve MOO problems.

Evolutionary algorithms are inspired from biological evolution and

1

mimic nature’s evolutionary principles to drive the search towards optimal

solution(s). These algorithms use a population of solutions in each iteration,

consequently making them ideal candidates for solving MOO problems. Nu-

merous Evolutionary Algorithms(EAs) have been developed in the past few

decades to solve MOO problems such as NSGA-II, MOEA/D, MOEA/D-DE,

to name a few. The advances of Evolutionary Multiobjective Optimization

research has been drastic and has resulted in many new paradigms to

be developed such as the Estimation of Distribution Algorithms(EDAs),

decomposition based algorithms, and so on. However, there has only been

lukewarm interest in applying Evolutionary Algorithms to solve dynamic

optimization problems, where the optimum(or optima) changes with time.

Furthermore, most of the EA researchers in this area have tend to focus on

dynamic Single-Objective Optimization (SOO) problems, while most real-

world problems are Dynamic Multiobjective Optimization (DMO) problems.

Using Evolutionary Algorithms to solve DMO problems has started

gaining attention over the past few years. Nevertheless, there is large scope

for contribution and improvement in this field. In DMO problems the

fitness landscape is changing over time. Preliminary research in solving

proposed benchmark problems involved applying Multiobjective (MO)

Evolutionary Algorithm(MOEA) directly to solve them. However, the

inherent characteristic of an MOEA is that it takes significant amount of

time to converge to the Pareto Optimal Front(POF). This is an important

issue in DMO where the POF and/or the Pareto Optimal Solution(s) (POS)

are continuously changing with time. In the current literature, various

approaches have been proposed to solve DMO problems.

2

1.1 Basic Definitions

This section provides the basic definitions used in the evolutionary MO

community together with some key concepts which are essential for under-

standing the work described in a scientific manner.

1.1.1 Multiobjective Optimization Problem

A MO problem can be expressed in its general form mathematically as

Minimize/Maximize fm(x), m = 1, 2, . . . ,M ;

subject to gj(x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K;

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n.

where fi is the i-th objective function and M is the number of objectives.

f(x) = [f1(x)f2(x)...fm(x)]T forms the objective vector, f(x) ∈ RM . A

solution x is a vector of n decision variables: x = [x1x2...xn]T . The above

general problem is associated with J inequality and K equality constraints.

The last set of constraints are called variable bounds, restricting each decision

variable xi to take a value within a lower x
(L)
i and an upper x

(U)
i bound.

These variable bounds constitute the decision variable space Ω ∈ Rn, or

simply the decision space.

In the presence of constraints gj and hk, the entire decision variable

space Ω may not be feasible. The feasible region S is the set of all feasible

solutions in the context of optimization. The feasible search space can be

divided into 2 sets of solutions - pareto optimal and non pareto otpimal

set. To define pareto optimality, first we need to look into the concept of

domination.

3

1.1.2 Concept of Domination

There are M objective functions in a MO problem. Say, we have 2 solutions,

i and j. i < j implies i is better than j or i dominates j. A solution x1 is

said to dominate another solution x2, if both the following conditions are

true.

1. The solution x1 is as good as x2 in all objectives, i.e. fm(x1) ≤ fm(x2)

for all m = 1, 2, ...,M , assuming a minimization problem.

2. The solution x1 is strictly better than x2 in at least one objective, i.e.

fm(x1) < fm(x2) in atleast one objective.

1.1.3 Pareto Optimality

Among a set of solutions P , the non-dominated solutions, P ∗ are those that

are not dominated by any member of the set P . When the set P comprises

the entire search space, the resulting non-dominated set P ∗ is the Pareto

Optimal Set(POS in the decision space). Pareto optimal solutions joined

together as a curve form the Pareto Optimal Front(POF in the objective

space). The front lies in the bottom-left corner of the search space for

problems where all objectives are to be minimized.

1.1.4 Goals of an MOEA

The working principle for an ideal MO procedure consists of finding multiple

trade-off optimal solutions with a wide range of values for the objectives, and

later choosing one of the obtained solutions using higher level information.

In such a case it is difficult to prefer one solution over the other without

any further information about the problem. If higher level information is

satisfactorily available, this can be used to make a biased search. However,

4

in the absence of any such information, all pareto optimal solutions are

equally important. Therefore, there are 2 goals:

1. To find a set of solutions as close as possible to the POF, i.e. Conver-

gence

2. To find a set of solutions as diverse as possible, i.e. Diversity

For each of the M conflicting objectives, there exists one different optimal

solution. An objective vector constructed with these individual optimal

objective values constitutes the ideal objective vector, z∗, which in general

lies in the infeasible space. For more detailed discussion of the concepts on

MOO , please refer to [1].

1.1.5 Dynamic Multiobjective Optimization Problem

The various concepts discussed for MO are still essential in DMO together

with some additional issues and goal(s). In general, in a DMO prob-

lem(DMOP), the optimum changes with time. Mathematically, a DMOP

can be described as

minimize
x

f(x, t) = [f1(x, t) f2(x, t) . . . fm(x, t)]T

subject to x ∈ Ω

(1.1)

where t represents time index, x ∈ Rn represents the decision vector,

n is the number of decision variables and Ω ⊂ Rn represents the decision

space. m is the number of objectives, Rm is the objective space and f(x, t)

consists of m real-valued objective functions, each of which is continuous

with respect to x over Ω. Thus, the POF and/or POS may change over

time.

[2] have classified DMO problems based on the possible ways a problem

can demonstrate a time varying change.

5

Type I POS changes, but POF does not change

Type II Both POS and POF change

Type III POS does not change, POF changes

Type IV Both POS and POF do not change, although the problem

can change

These four cases are summarized in the Table 1.1. There are other

possible ways of classifying DMOPs as well such as based on severity of

change, predictability, etc [3].

Table 1.1: Four Different Types of DMOP

POS
POF No Change Change

No Change Type IV Type I
Change Type III Type II

1.2 Goals and Scope of the Thesis

Evolutionary Multiobjective Optimization has been a very active research

field and numerous works have shown excellent results in solving static

Multiobjective Optimization Problems. Even dynamic single objective

optimization has been relatively well explored. However, the challenging area

of Evolutionary Dynamic Multiobjective Optimization has been attempted

only sparsely.

Summary of the limitations of existing work in the literature are enu-

merated as follows:

• A number of different approaches have been proposed to tackle

dynamic single objective optimization problems. Evolutionary Al-

gorithms have strongly established their strength in solving static

Multiobjective Optimization problems. However, they take significant

6

amount of time to converge to the optima. This becomes a very

important issue in Multiobjective Optimization problems in dynamic

environments, as the continuous tracking of the time-varying optima

becomes a crucial goal in addition to the MO objectives of convergence

and diversity. Therefore, the Evolutionary Algorithms need to be

strengthened in order to attain fast convergence to enable continuous

tracking.

• Prediction based approaches have a good potential to contribute

in this context as they can learn from the movement of the time-

varying optima and work in tandem with the Evolutionary Algorithms

to predict the subsequent location of the pareto optimal solutions.

This is only recently beginning to gain traction in the Evolutionary

Dynamic Multiobjective Optimization literature.

• The few prediction based algorithms seen in the literature require

significant amount of time to learn the patterns exhibited in the

changing optima before they can start predicting for future changes.

• Further, nonlinear prediction mechanisms have not been explored in

the literature to solve Dynamic Multiobjective Optimization problems

using Evolutionary Algorithms. Many real-world problems inherently

have non-linear characteristics and employing only linear prediction

methods may not be fully fruitful.

• Multiobjective Optimization in the presence of constraints has been

well explored in static environments. However, only unconstrained or

boundary constrained (limits on the decision variables range) have

been considered widely and Dynamic Multiobjective Optimization in

the presence of constraints has not been explored well.

7

This thesis aims to bridge the research gap in DMO by exploring the

aforementioned issues and proposing possible solutions, as follows.

• Firstly, a Dynamic Multiobjective Optimization Evolutionary Al-

gorithm assisted by an efficient linear prediction method should

be explored. It is important to look at using as little time for

training/learning the patters before the DMOEA can begin to provide

reasonably good results, as this would pose a significant advantage

compared to the linear prediction methods available in the literature.

• Notwithstanding the linear prediction methods usually considered,

a non-linear prediction method should also be explored. A number

of non-linear prediction methods are generally available. However,

important conditions such as less number of free parameters to tune,

fast convergence, etc need to be carefully considered in the selection

of the method to be employed.

• Constraints in dynamic environments pose a significant challenge, as

they add a further goal of finding feasible solutions apart from the

goals of convergence, diversity and tracking of the time-varying optima

in Dynamic Multiobjective Optimization. An adaptive constraint

handling method which can be easily combined with the proposed

dynamic optimization techniques is a possible solution to be evaluated

to address the various goals of DMO in constrained environments

using Evolutionary Algorithms.

1.3 Major Contributions

The major contributions of this thesis are listed as follows:

1. A linear Kalman Filter based prediction method is combined with

8

MOEA/D-DE (Multiobjective Evolutionary Algorithm based on De-

composition with Differential Evolution) to predict the location of

subsequent optima in the decision variable space of time-varying

Dynamic Multiobjective Optimization problems. The Kalman Filter

operates in real-time and does not require any learning time, which

results in a significant advantage when combined with the Evolutionary

Algorithm. A scoring scheme mechanism has been proposed to

hybridize the Kalman Filter prediction mechanism with a random

reinitialization method. Performance comparison with the current

state-of-the-art algorithms shows that the proposed algorithm predicts

the time-varying solutions in the decision space efficiently right from

the beginning while the second best algorithm, Population Prediction

Strategy, takes a significant amount of training time before providing

reasonable results. While the proposed algorithm’s performance may

not be superior when the linear dynamical assumption is violated,

the Kalman Filter does not make any assumptions about the shape

of the pareto fronts, unlike the existing methods and could therefore

be considered a more generalized solution for Evolutionary Dynamic

Multiobjective Optimization.

2. A non-linear prediction method using Support Vector Machines is

explored. A time series formed by near-optimal solutions obtained by

the Evolutionary Algorithm during previous changes is formulated

as training data. Algorithm design encompasses data formulation,

preprocessing and selection of parameters of the Support Vector

Machines. Support Vector Regression, a data-driven method, learns

from the training data to provide predictions for subsequent changes.

The Support Vector Regression based algorithm performs comparably

with the Kalman Filter assisted DMOEA in some of the problems.

9

Nevertheless, the Support Vector Regression based prediction model

does not make any assumptions about the underlying process (linear

dynamical or otherwise) or similarity in shape of consecutive Pareto

Optimal Fronts, thereby leading to its better performance in more

complicated problems with sharp and irregular change environments.

The visualization of parameter selection for the Support Vector Re-

gression model showed interesting patterns which may prove useful to

get insights on problems with unknown pareto optimal characteristics

or linkages between decision variables.

3. In Constrained Dynamic Multiobjective Optimization, feasibility of

solutions also need to be ensured while simultaneously tracking the

time-varying optima. An adaptive threshold based constraint handling

mechanism is combined with dynamic optimization techniques such

as the Kalman Filter prediction method, random reinitialization

and hypermutation to solve these problems. The performance of

the proposed algorithms are quite encouraging in the performance

comparison results. While there is scope for improvement in terms

of increasing the selection pressure, better diversity maintenance

especially for problems with highly disconnected pareto optimal fronts,

the proposed algorithms tend to perform better in most of the problems

with both increasing frequency and severity of change.

1.4 Organization

The rest of the thesis is organized as follows:

Chapter 2 provides some background in Evolutionary Computation

in general, and Dynamic Multiobjective Optimization in particular. The

chapter also reviews some existing state-of-the-art in Dynamic Optimization,

10

both single and multiobjective.

Chapter 3 gives a brief introduction on the background of the Kalman

Filter. The algorithm design involving the Kalman Filter prediction tech-

nique, the manner in which it is combined with MOEA/D-DE and the

scoring scheme is described in detail. This chapter also covers the empirical

study entailing performance comparison of the proposed algorithm with

existing state-of-the-art algorithms.

Chapter 4 outlines related work in which Support Vector Regression

is used to predict for time-series. A brief introduction on Support Vector

Regression is also provided. The algorithm design comprising data formula-

tion, data preprocessing and parameter selection of the SVM are provided

in detail. The proposed algorithm is compared with the linear Kalman

Filter prediction technique as well as random reinitialization.

Chapter 5 gives a detailed review of various constraint handling methods

in both single and multiobjective optimization. It highlights the lack of

contributions in dynamic constrained multiobjective optimization. An

adaptive threshold based constraint handling mechanism is combined with

dynamic optimization techniques to evaluate their performance in DCMOPs.

Comparative studies are performed to show the improvements provided by

the proposed algorithms.

Chapter 6 concludes this thesis and possible directions for future research

are also discussed.

11

Chapter 2

Background & Literature

Review

Despite the widespread victory of research on evolutionary multiobjective

optimization, there is a growing need to apply evolutionary algorithms

on DMO problems in the past two decades only. Efficient algorithms,

benchmark problems, as well as appropriate performance metrics are needed

to further the research in this field. Some preliminary research includes

applying static MOEA directly to solve dynamic problems [4]. However, in

a DMO problem, the fitness landscape is changing over time. Due to the

inherent characteristics of evolutionary algorithm, MOEA generally takes a

significant amount of time to converge to POF. Thus, explicit strategies are

required to solve these time varying optimization problems efficiently.

In stationary single-objective optimization, the goal is to find the

optimum as quickly as possible. In the case of MOO , diversity also

becomes important. In DMO , the goal also encompasses tracking the

changing optimum apart from convergence and diversity. The general

assumption is that the problem after a change is in some way related

to the problem before the change, and therefore it would be sensible for

12

an optimization algorithm to learn as much from the past experience to

advance the search more effectively in solving the future problems after a

change. Many methods have been proposed and investigated in the past, not

restricted to evolutionary DMO . The main approaches suggested include

1. diversity introduction after a change

2. diversity maintenance throughout the run

3. memory approaches

4. prediction approaches

5. self-adaptive methods

6. multi-population approaches

2.1 Diversity Introduction

While convergence is sought after in static optimization, it can be detrimental

in DMO. Intuitively, a simple solution is to increase the diversity in the

population of an EA after a change so that the newly introduced solutions

can aim to discover regions of the search space where the new optimum

might be which was not available to the EA previously. Pioneering studies

employing this strategy are hyper-mutation [5] and variable local search

(VLS) [6]. Hyper-mutation is an adaptive mutation operator whose mutation

rate is a product of the normal mutation rate and a hyper-mutation factor,

which is invoked after a change in the problem is detected. In the VLS

algorithm, as the name suggests, the mutation size is determined by a

variable local search range. Hyper-mutation, though is one of the oldest

methods, it is still traditionally used in many of the recent algorithms [7].

13

2.2 Diversity Maintenance

While diversity introduction has its advantages of maintaining the focus on

search and need not waste their efforts on maintaining diversity throughout

the time, it has some weaknesses resulting from dependence on change

detection, difficulty in identifying the correct mutation size and little

retention of information from previous search experience. Using diversity

maintenance strategy, the algorithms continuously maintain population

diversity throughout the search process to avoid the whole population

converging to one place, and hence unable to track either the moving

optimum or detect a new competing optimum. In this strategy, the

algorithms need not detect the change in the problem explicitly as they rely

on their diversity to cope with the changes adaptively. Classic example of this

approach are Random Immigrants [8], fitness sharing [9], Thermo-Dynamical

GA [10], Population-Based Incremental Learning [11]. In the Random

Immigrants method, in every generation a number of randomly generated

individuals are added to the population to maintain diversity. Cobb [12] has

combined the usage of hyper-mutation and Random Immigrants leading to

the development of a single mechanism that can work well in both stationary

and nonstationary environments. Though the performance of algorithms

following this approach is better than with the EA alone, continuously

focusing on diversity maintenance can slow down, or even distract the

optimization performance and may also perform poorly in problems where

the changes are small, as totally stochastic individuals are introduced

without making use of any historical information.

14

2.3 Memory approaches

Memory approaches have proved to be very useful in the case of periodical

or recurrent changes, wherein it would be useful to reuse previously found

solutions by adding memory components to the EAs. This helps in saving

computational time and to bias the search process.The memory component

can be implicit (as in redundant coding using diploid genomes) or explicit

(as in archiving previous good solutions and environmental information).

However, drawbacks of this approach lies in the fact that it is effective

only for problems with cyclic environments and further, only in problems

that return to the same optimum as before. Furthermore, it also results in

diversity loss and redundancy coding may not be good for cases where the

number of oscillating states is large.

2.4 Prediction approaches

While memory approaches can perform very well in problems with periodic

or recurrent changes, they do not perform well with other types of changes

which may also exhibit some patterns. In such dynamic environments, it

would be sensible to learn from such patterns that are predictable and

predict changes in the future. Memory approaches can indeed be considered

as a subset of prediction approaches. In such approaches, a learning model

is built to estimate the current change and use the knowledge to predict for

the next change, to generate new individuals that best match the estimation.

A detailed overview of various works following this approach is given, as

prediction strategy is the proposed mechanism for solving DMO problems

in this thesis.

[13] have combined a time series forecasting technique, autoregressive

model with an EA to predict the movement of the moving optima. The

15

concept used here is to maintain two anchor points at each end of the pareto

front of a 2 objective problem. The forecasting technique is used to track

the movement of these 2 points and predict for the future when a change is

detected. A more advanced strategy is used in the proposed methodology

in the paper to account for 3 objective problems and not restricted to 2

objective problems. Further, problems with complicated pareto sets could

also be solved using the proposed methodology, which will be discussed in

detail in the following chapters. In [14], the focus has been on utilizing

history information to guide future search by firstly, predicting the new

location of individuals and secondly, by perturbing the current population

with a Gaussian noise whose variance is estimated according to previous

changes. A simple linear model is used as the prediction model to estimate

the new location of solutions in the decision space.

Some of the earlier works have focused on combinatorial optimization

problems as well. In [15], the authors have investigated the usage of 2

prediction mechanisms in using EAs for dynamic environments. Linear

regression is used to predict the generation when a change in the environment

will occur, and Markov chains are used to predict to which state (or

states) the environment may change. This strategy combines the usage of

prediction and memory approaches and was successfully applied to several

instances of the dynamic bit matching problem. The same authors have

also stressed on the importance of better anticipating the changes in the

landscape and maximizing the EA’s adaptability and have implemented

nonlinear regression mechanisms to evaluate the predictor’s accuracy [16].

Apart from the other works using this approach, [17] have proposed a

predictive gradient strategy for multiobjective evolutionary algorithms in

a fast changing environment. The predicted direction and magnitude of

the next change, known as the predictive gradient, is estimated based on

16

the history of previously discovered solutions using a weighted average

approach.

Solving DMO problems has not been restricted only to genetic algorithms.

Other evolutionary computation algorithms such as Artificial life [18],

Particle Swarm Optimization (PSO) [19], Differential Evolution (DE) [20]

algorithms have also been implemented to tackle dynamic environments.

More recently, [21] have proposed usage of an Estimation of Distribution

Algorithm (EDA), RM-MEDA [22] together with autoregressive time series

forecasting technique to solve DMO problems. In this work, they have

focused on a population prediction strategy which utilizes the properties

of continuous DMOPs by modeling the pareto set as a center point and

manifold. The movement of centres is learnt by maintaining a sequence

of center points by the time series model and the previous manifolds are

used to estimate the next manifold. They have systematically compared

the proposed strategy PPS with 2 other strategies on a variety of test

instances with linear or nonlinear correlation between design variables and

the statistical results have shown that PPS is promising for dealing with

dynamic environments.

2.5 Self-adaptive methods

The basic notion behind this approach is to make use of the self-adaptive

characteristics of EAs to cope with the changes. Some researchers have

adaptively tuned the different parameters such as mutation rate, crossover

probability, selection ratio, etc by encoding them in the genomes [23] [24].

These methods still do not give better performance than hypermutation and

the difficulty level is high when trying to solve complex dynamic optimization

problem where the velocity of the moving peaks is not constant (in the case

17

of the moving peaks benchmark problem [25]). Here also, some researchers

have used other EAs such as Evolution Strategy (ES) and Evolutionary

Programming (EP).

2.6 Multi-population approaches

This approach can be considered as a combination of diversity intro-

duction/maintenance, memory and adaptation by maintaining multiple

sub-populations concurrently which may take in different search areas

or even different tasks. Algorithms using this approach are numerous

in the literature. While most of them have focused on dynamic single

objective optimization, more recently, [26] have implemented a Competitive-

Cooperative Coevolutionary paradigm to solve dynamic multiobjective

optimization problems. This algorithm is considered as one of the state-of-

the-art algorithms in DMO currently.

Although various approaches have been in vogue in evolutionary dynamic

optimization, there is still a growing need for more efficient algorithm to

solve different kinds of DMO problems. Most of the previous works have

focused on a particular kind of problems and their performance can still be

improved upon. In the following sections, a novel Kalman filter based EA

for dynamic MO is designed and its performance is analysed compared to

other state-of-the-art algorithms.

18

Chapter 3

Kalman Filter Prediction

based Evolutionary Dynamic

Multiobjective Optimization

3.1 Introduction

Multiobjective Optimization (MOO) involves finding a set of trade-off

solutions by optimizing conflicting objectives simultaneously. Most real-

world problems are multiobjective in nature. Evolutionary algorithms (EAs)

which evolve multiple solutions in a single run are good candidates to solve

MO problems compared to classical methods such as gradient descent and

simulated annealing [1]. Various Multiobjective Evolutionary Algorithms

(MOEAs) exist that are capable of attaining the MO goals of convergence

and diversity with high efficacy [27–29]. Many-objective optimization is

one of the recent topics that has gathered Evolutionary Computation

researchers’ attention [30–36]. In addition to multiobjectivity and many-

objectivity, real-world optimization problems have various uncertainties [37]

and dynamics which need to be handled effectively [38]. These uncertainties

19

and dynamics can occur in the form of fluctuating stock prices in financial

markets, new jobs or breakdown of machines in a production line, and

inflation of component costs in a design scenario [39] [40]. Instances of

dynamic problems in literature are dynamic job shop scheduling [41], hydro

thermal power scheduling [7], war resource allocation [42] and UAV online

path planning [43], to name a few.

While static MOO and dynamic single-objective optimization problems

are addressed using EAs, little attention was given to dynamic MO problems

until recently. The objective functions, constraints, and decision variables

may vary with time in Dynamic Multiobjective Optimization Problems

(DMOPs). EAs are useful in solving DMOPs as they are inspired by natural

evolution which is a continuous process of adaptation [44]. Traditional EAs

once converged, cannot adapt quickly to environmental changes [45]. Speed

of convergence is considered an important issue in dynamic multiobjective

optimization [46] [44] [17]. An ideal dynamic Multiobjective Evolutionary

Algorithm (DMOEA) must possess fast convergence capabilities to track

the varying optimum solutions effectively either through inherent design

or by incorporating additional dynamic handling techniques [17]. Changes

in dynamic environments may exhibit some patterns that are predictable.

Consequently, from the past optimum solutions, subsequent changes based

on the patterns exhibited can be predicted. In this work, a novel prediction

mechanism using Kalman Filter is proposed for solving DMOPs.

The number of state estimation and tracking applications in which

Kalman filter has been applied cannot be overstated [47] [48]. Genetic

algorithms have been traditionally used to tune the parameters of Kalman

Filter in a variety of applications [49] [50]. Kalman Filter has also been

used with evolutionary algorithms in noisy objective evaluations [51] in

a multiobjective optimization context. Hybridization of GA and Kalman

20

Filter for optimization problems is not uncommon [52] [53]. A vision based

tracking robotic application in a dynamic single objective optimization

context used genetic algorithms to search for the optimum together with

Kalman filter to incorporate motion information [54].

Kalman Filter is an algorithm that uses a series of measurements observed

over time, containing noise and other inaccuracies, and produces statistically

optimal estimates of the underlying system state [55]. The algorithm works

in a two-step process involving a prediction step and a measurement step.

In the prediction step, the Kalman filter estimates the current state a priori.

Once the subsequent measurement is obtained, the a priori estimates from

the Kalman filter are updated to obtain the a posteriori estimates. The

Kalman filter can run in real-time, thereby making it a good candidate for the

prediction model in solving DMOPs. In the proposed algorithm, the Linear

Discrete Time Kalman filter [56] is applied to the whole population to direct

the search for Pareto Optimal Solutions (POS) in the decision space after

a change has occurred. Although nonlinear formulations of the Kalman

filter are available by means of the Extended Kalman Filter(EKF) and

Unscented Kalman Filter(UKF) [57], the state transition and observation

matrices which are required in the prediction and update steps are formed

by Jacobian(matrix containing partial derivatives of f with respect to x)

of the nonlinear functions, which are not directly available to us. Though

particle filters may give better results for non-linear conditions, it would

come at the price of large computational cost [58]. Thus, considering the

optimal state estimation performance of Kalman Filter in linear conditions

and its low computational cost, we use the Kalman filter over other methods

for predicting the pareto optimal sets in our work.

The rest of the chapter is organized as follows. Section 3.2 provides

background on related work. Section 3.3 presents the proposed algorithm.

21

The underlying MOEA, MOEA/D-DE and the Kalman Filter based pre-

diction method are also elaborated. Section 3.4 describes the experiment

results and performance comparisons. Section 3.5 provides the discussion

and analysis. Section 3.6 concludes the work and potential future research

directions are highlighted.

3.2 Related Work

Many methods have been proposed and investigated in the past, not

restricted to evolutionary DMO . The main approaches suggested include,

1. diversity introduction after a change [5] [6] [59],

2. diversity maintenance throughout the run [10] [11],

3. memory approaches [25],

4. prediction approaches [13] [14] [17],

5. self-adaptive methods [24] [25] [60], and,

6. multi-population approaches [26] [61] [62].

The above approaches have been well investigated in evolutionary

dynamic single objective optimization, but only a few strategies have been

proposed to solve DMOPs. Farina et al. [2] proposed a direction-based

hybrid algorithm based on evolutionary strategies and deterministic local

search to increase the convergence speed by searching for nadir points,

Utopia points and payoff matrix. This is followed by searching for uniformly

distributed solutions between the Utopia points. The optimization process

is restarted when change is detected. Deb et al. [7] extended the NSGA-

II to Evolutionary DMO by proposing to solve a hydro-thermal power

22

scheduling problem. 10% of the population is re-evaluated at the start of

each generation to check for changes. Adaptation to dynamic environments

is achieved either by following the random immigrants strategy [8] or by

hypermutation [5].

Orthogonal design methodology has been incorporated in Dynamic

Orthogonal Multi-objective Evolutionary Algorithm (DOMOEA) [63] to

improve convergence. Dynamic Queuing Multi-objective Optimizer [13]

exploits past information by employing an autoregressive model to estimate

the location of the changed pareto optimal set and the predicted individuals

are used to seed the new population after a landscape change is detected. In

contrast, changing dimension of objective space is also accounted for in the

development of Multiobjective Optimization Immune Algorithm [18] where

a novel algorithm suitable for DMO problems is proposed based on Pareto

dominance and immune functions of the germinal center in the immune

system. A new coevolutionary paradigm is proposed by Goh et al. [26] that

hybridizes competitive and cooperative mechanisms observed in nature to

solve multiobjective optimization problems and to track the Pareto front

in a dynamic environment. The aforementioned approach falls under the

multi-population category, wherein a number of subpopulations compete

with each other to find the best solutions for their subcomponent. Finally,

they cooperate to evolve for better solutions thereby enabling the algorithm

to adapt and emerge better solutions in dynamic environments. DMOPs

have also been solved by Particle Swarm Optimization methods [19] [64].

A few algorithms based on the prediction strategy seemed to have become

increasingly popular. Koo et al. [17] proposed a prediction strategy, wherein

a predictive gradient (predicted direction and magnitude of the next change)

is estimated based on the history of previously discovered solutions using

a weighted average approach. A new memory technique is introduced to

23

exploit any periodicity in the dynamic problem. The importance of utilizing

history information to guide future search is further highlighted by Aimin

et al. in their Feed-forward prediction strategy (FPS) [14] and Population

prediction strategy (PPS) [21] algorithm proposals. FPS uses a simple

linear prediction model to predict the location of the individual for the next

change. Four types of reinitialization procedures are experimented with

FPS - Random reinitialization, Variation (perturbing the individuals by an

amount estimated from previous changes), Prediction and a Hybrid of the

previous two methods. In PPS, an Estimation of Distribution Algorithm

together with autoregressive time series forecasting technique is proposed.

This algorithm uses the properties of DMOPs by modeling the changing

pareto optimal set as a center point and manifold. The movement of centers

is learnt by maintaining a sequence of center points by the time series

model and the previous two manifolds are used to estimate the subsequent

manifold.

While research on dynamic single objective optimization has been

extensive [65] [66] [67] [68] [3], algorithms proposed to solve DMOPs are only

a handful. Further, usage of powerful prediction techniques to assist EAs

in solving DMOPs has not been fully explored yet. Many of the prediction

techniques require a training or learning time before which they can be

used for tracking the changing POF/POS. Kalman Filter can estimate the

state of a process without any such learning time. It can predict from the

start and correct itself based on subsequently made measurements. In this

thesis chapter, we propose a novel DMOEA algorithm based on Kalman

filter predictions in the decision space [69] [78]. Further, while employing

this prediction approach as the tracking technique, other approaches such

as diversity maintenance / introduction, and memory, can also be used

simultaneously to build more efficient algorithms.

24

3.3 Algorithm Design

In this section, the underlying EA for the proposed DMOEA is outlined,

followed by a brief introduction to the Kalman Filter. The Kalman Filter

prediction model, change detection function and scoring scheme used are

described in detail.

3.3.1 Multiobjective Evolutionary Algorithm with De-

composition based on Differential Evolution

The prediction model of Kalman filter proposed is built on the structure of

Multiobjective Evolutionary Algorithm with Decomposition based on Differ-

ential Evolution (MOEA/D-DE) [29]. MOEA/D-DE has received significant

attention due to its good optimization performance in solving continuous

multiobjective optimization problems with relatively fast convergence and

diverse spread. The algorithm decomposes a problem into several sub-

problems and simultaneously optimizes them using neighborhood relations.

The neighborhood relations are defined based on the distances among their

weight vectors. The decomposition is performed using classical approaches,

such as the Tchebycheff approach or the weighted sum approach. The

Tchebycheff approach is used in this work due to its simplicity and decent

optimization performance.

3.3.2 Kalman Filter

The Kalman filter is a set of mathematical equations that provides an

efficient computational means to estimate the state of a process, in a way

that minimizes the mean of the squared error [56]. The filter is very powerful

in several aspects as it provides the past, present and future estimates even

when the precise nature of the modeled system is unknown.

25

The Kalman filter addresses the general problem of estimating the state

x ∈ Rn of a discrete-time controlled process that is governed by the linear

stochastic difference equation,

xk = Axk−1 +Buk−1 + wk−1, (3.1)

with a measurement z ∈ Rm that is given by,

zk = Hxk + vk, (3.2)

where, A is the state transition matrix that relates the state at the

previous time step, k − 1 to the state at the current step k. B, the control

input matrix relates the optional control input, u ∈ Rl to the state x. H

in the measurement equation (4) relates the state to the measurement, zk

and is known as the measurement matrix. The random variables wk and

vk represent the process and measurement noise respectively. They are

assumed to be independent of each other, white and with normal probability

distributions(5, 6).

p(w) ∼ N(0, Q) (3.3)

p(v) ∼ N(0, R) (3.4)

The matrices Q and R are the process noise and measurement noise

covariance matrices respectively. These matrices are assumed as diagonal

matrices with equal elements which can lead to saving computational effort

in estimating the exact values [51]. The various matrices in equations

3.1, 3.2, 3.3 and 3.4 can be time varying, however, for simplicity they are

assumed to be invariant.

26

3.3.3 Kalman Filter Prediction Model

The Kalman filter estimates a process by using a form of feedback control.

The filter estimates the process state at some time and then obtains feedback

in the form of (noisy) measurements. The discrete Kalman Filter is employed

in this work. The equations for the discrete Kalman filter fall into two

groups: time update equations and measurement update equations. The

time update equations, which can be thought of as predictor equations,

are responsible for projecting forward in time the current state and the

error covariance estimates to obtain the a priori estimates for the next

time step. The measurement equations can be thought of as corrector

equations and are responsible for the feedback wherein they incorporate

a new measurement into the a priori estimate to obtain an improved a

posteriori estimate.

The Linear Discrete Time Kalman Filter is used to predict the location(s)

of the Pareto Optimal Set after a change is detected in the problem. A

simple state transition matrix is assumed to represent the process : xk =

xk−1 + ẋk−1∆t. In matrix formulation, the above equation becomes

xk
ẋk

 =

1 ∆t

0 1

xk−1
ẋk−1

 . (3.5)

This one dimensional example is extended to n dimensions, to obtain the

state transition matrix for the n-dimensional state (decision variables) and

their estimated velocities.

The equations [56] for the time update and measurement update steps

27

are presented in (8) and (9). The equations for the time update step are,

x̂−k = Ax̂k−1 +Buk−1,

P−k = APk−1A
T +Q,

(3.6)

and, the equations for the measurement update step are,

Kk = P−k H
T (HP−k H

T +R)−1,

x̂k = x̂−k +Kk(zk −Hx̂−k),

Pk = (I −KkH)P−k ,

(3.7)

where x is the state vector to be estimated by the Kalman Filter, A denotes

the state transition matrix, u is the optional control input to the state

x, B is the control input matrix, P is the error covariance estimate. z

denotes the measurement of the state vector, H is the observation matrix

and the process and measurement noise covariance matrices are Q and R

respectively. K is the Kalman filter gain.

As shown, the current estimates are made using only the previous

predictions and the current observation. There are two variants of Kalman

Filters designed for prediction, a two-dimensional Kalman Filter (2by2KF)

and a three-dimensional Kalman filter (3by3KF). In both the variants, the

observation matrix is the identity matrix, since the decision variables can

be directly measured from the EA. Further, there are no control inputs in

the system. The process and observation noise are Gaussian noise of zero

mean and assumed variance. The corresponding covariance matrices Q and

R can be calculated.

2by2 Kalman Filter (2by2KF)

The state vector is

X =

[
x v

]T
, (3.8)

28

where x is the vector for the decision variables and v is the vector of the

first order change in the decision variables. The state transition model used

is

A =

1 1

0 1

 , (3.9)

and the covariance of state vectors is initialized as

P0 =

1 0

0 1

 . (3.10)

In this case, the Kalman Filter is a first order linear model perturbed by

Gaussian noise. The initial covariance P0 suggests some uncertainty in the

initial state vectors, which is adaptive and will be updated as time proceeds.

Noise cannot be modelled exactly in this context and assumed to be a

constant Gaussian noise.

3by3 Kalman Filter (3by3KF)

The state vector in this case is

X =

[
x v a

]T
, (3.11)

where x, v are the same as in 2by2KF, and a is the vector of the second

order change in the decision variables. The state transition model used is

A =

1 1 0

0 1 1

0 0 1

 , (3.12)

29

and the covariance of state vectors is initialized as

P0 =

1 0 0

0 1 0

0 0 1

 . (3.13)

In this case, the Kalman Filter is a second order linear model perturbed

by Gaussian noise. According to the state transition model, the decision

variables are updated by previous state and first order rate of change only.

The second order vector a, is controlled by the Gaussian noise and is only

used to estimate the first order change term of the state vector, as can be

deducted from the state transition model. It is designed in this way to

include more historical information but not greatly rely on it. Both the

variants are discrete and linear Kalman Filters. Higher order change is

ignored in trade-off for speed and computational resources.

3.3.4 Change Detection Function

The relationship of MOEA/D-DE with the Kalman Filter (KF) prediction

model is shown in Figure 3.1.

When there is no change detected, MOEA/D-DE takes control and the

population evolves accordingly. Otherwise, the Kalman Filter prediction

model directs the search for Pareto optimal solutions in the decision space.

A change detection function is needed to combine the prediction model

with the MOEA/D-DE algorithm. Assuming that there is no noise in

objective functions evaluation, some individuals are randomly selected

as detectors and their objective values are stored in the system. At the

beginning of each generation, the detectors’ objective values are recalculated

and compared with the previously stored values. A mismatch in the objective

values suggests that a change in the problem has occurred caused by moving

30

Change Detection Function

MOEA/D-DE:
Static MOP

N
o

C
h
an

ge
:

ev
ol

ve
so

lu
ti

on
s

Kalman Filter
Prediction

Model

C
h
an

ge
o
ccu

rs:

predict
new

solutions

Correct model
with observations

Update problem
& references
after change

Figure 3.1: Relationship of EA with Kalman Filter model

POS or POF landscape.

3.3.5 Scoring Scheme

Since Kalman Filter prediction makes the assumption of linear dynamic

model of the system, it may cause some problems when the system violates

the assumption. To circumvent such a situation, random re-initialization

method (RND) is introduced into the algorithm. A scoring scheme (SC) is

proposed to hybridize Kalman Filter prediction and random re-initialization

method. The diagram illustrating the relationship of the scoring scheme

with the proposed model is shown in Figure 3.2.

In order to allocate resources efficiently, the scoring scheme computes a

score or proportion of using random re-initialization method against Kalman

filter prediction. A random number can then be generated and if it is smaller

than this score, random re-initialization is used; otherwise, Kalman Filter

prediction is used. The procedure following by the scoring scheme based

31

MOEA/D-
DE: Static

MOP

Scoring
Scheme

Predict when a
change occurs

Evolve when there
is no change

Kalman Filter
prediction

model

Random
re-initialization

model

Resource
Allocation

Figure 3.2: Relationship diagram for scoring scheme.

model is given in Algorithm 3.1.

To start with, the chance of producing one solution for the next genera-

tion is 50-50 between random re-initialization method and Kalman Filter

prediction. The method used to produce each child solution is stored as

an attribute of the individual. After a change is detected, the Euclidean

distances from the solutions just before the change to the solutions after the

previous change are computed and the average is taken. A smaller-than-

average distance implies that the improvements made over generations by

MOEA/D-DE are small. Therefore, the corresponding prediction method

in use is likely to produce solutions closer to the POS in the current setting.

The scores of both methods are recorded and normalized by the total

number of solutions produced by each method. The overall score of random

re-initialization to Kalman Filter prediction is then calculated by dividing

the re-initialization score to the sum of both scores.

The scoring scheme dynamically alters the probability of implementing

either one of the methods, with the higher probability favoring the method

that performs better in the previous prediction. It is to be noted that even

if the random re-initialization model is used, the measurement update step

32

Algorithm 3.1 Scoring Scheme based prediction model

Require:
N: Population size
rndcount, kfcount: Number of individuals that are reinitialized/predicted
using RND and Kalman Filter(KF) method respectively
rndscore, kfscore: Proportion of individuals that RND and KF reinitial-
ize/predict with less than average distance respectively

Loop through Steps 1 to 4 for every change detected

Step 1 âInitialization:

1. Scores and counts are initialized to zero, i.e.

rndscore, kfscore, rndcount, kfcount = 0

Step 2 âAverage distance calculation:

1. For each individual i in the population of size N , Euclidean
distance(disti) between solution, i at t+k−1 to t−k is computed. k
is a time instant.

2. Average of the distances is calculated.

distaverage =
1

N

N∑
i=1

disti

Step 3 âScore Computation: For each individual i in the population,

1. If i used RND during previous change, increment rndcount by 1. Else
increment kfcount by 1.

2. Increment corresponding score by 1, if disti < distaverage

Normalize scores:

rndscore =
rndscore
rndcount

,

kfscore =
kfscore
kfcount

,

overallscore =
rndscore

(rndscore + kfscore)

Step 4 âMethod Selection: For each individual i in the population,

1. Perform Kalman filter measurement update

2. Generate random number, r between 0 to 1

3. if r < overallscore use random re-initialization method, else use
Kalman filter prediction method

33

of the Kalman Filter model is still performed. This is to keep track of the

changes in the system and update the model, in case that the Kalman Filter

prediction model is used later for an individual.

The various steps of the proposed model to solve DMOP are shown in

Algorithm 3.2 for clarity.

3.4 Empirical Study

3.4.1 Benchmark problems

The proposed algorithm is tested on problems from 3 test benchmark suites

- FDA [2], dMOP [26], and F [21]. The FDA benchmark suite is commonly

used in the performance evaluation of DMO algorithms. It consists of

5 different problems pertaining to the different types of DMOP. Two of

the problems (FDA3 and FDA5) have time varying density distribution

of solutions along the pareto front. The dMOP benchmark problems are

an extension of the FDA benchmark suite to test further performance

characteristics of DMO algorithms such as learning that the POS/POF does

not change. The problem suite proposed in [21] is very recent and consists

of 10 problems which are partly adopted from the above 2 benchmark suites.

Nevertheless, they have also proposed 6 new test instances in which non-

linear linkages between the decision variables are considered and problems

with sharp and irregular environments are also constructed.

3.4.2 Parameter Settings

The proposed Kalman filter prediction model is implemented in MOEA/D-

DE, which is referred as MOEA/D-KF for simplicity. The parameter settings

for the experiments of the various test benchmark suites are tabulated in

34

Algorithm 3.2 MOEA/D-DE with Kalman Filter prediction for Dynamic
Multiobjective Optimization

Require:
MOP
A stopping criterion
N : Population size
P : the number of subproblems considered in MOEA/D
A uniform spread of N weight vectors: λ1, λ2, . . . , λP

T : neighbourhood size
Kalman Filter Parameters

Ensure:
Approximated POF {f 1, . . . , fN}
Approximated POS {x1, . . . , xN}
Step 1 â Initialization:

1. Generate evenly spread weight vectors. Initialize the neighbourhood
of each vector by finding its T closest weight vectors in terms of
Euclidean distance.

2. Generate an initial population, x1, . . . ,xN by uniform random
initialization within the decision space. Evaluate objective function
values of each solution and set f i = f(xi).

3. Initialize Kalman Filter matrices and vectors for each solution. Initial
population decision variables are set as the initial state of the Kalman
Filter.

4. Initialize ideal vector by setting zk = min
j=1,...,N

f jk where k = 1. . . . ,m

5. Randomly initialize a set of detector individuals within the decision
space for change detection.

Step 2 â Update:

1. Change Detection: Evaluate the objective function values of
the detector individuals and check whether they have changed to
indicate a change in the dynamic multiobjective problem. If change
is detected go to Step 2.2. Otherwise, go to Step 2.4

2. If scoring scheme based model, iterate through the steps in Algorithm
1

3. If Kalman Filter prediction, perform

(a) Measurement Update

(b) Time Update

Else, perform random reinitialization.

4. Reproduction: Mating selection, Differential Evolution, update
neighbourhood and the ideal vector

35

Step 3 â Stopping Criteria: If stopping criteria is satisfied, then stop
and output the final population and their corresponding values in the
objective space. Otherwise, go to Step 2.

Table 3.1. The number of decision variables is set as 20 for all the test

problems. FDA4, FDA5, and F8 are 3-objective problems and are assigned

a population size of 200 for better search capability, while the rest of the

problems which are 2-objective are assigned a population size of 100. The

various parameters for MOEA/D-DE are implemented as guided in [29]. 10

detector individuals are utilized for change detection purpose.

A random reinitialization method (RND) is implemented for baseline

performance comparison of MOEA/D-KF. In this algorithm, instead of

the Kalman filter prediction model, 20% of the population is randomly

reinitialized after a change is detected.

The matrices of Kalman Filter are initialized according to the description

given in Section 3.3.3. The Q and R diagonal matrices are with equal

element values q and r, respectively 0.04 and 0.01. These numbers are

obtained by tuning the values of q and r for FDA1 resulting in best

performance. The change frequency (τT) and severity (nt) setting of the

problems determine their difficulty. A reasonable setting of τT = 30, and

nt = 10 is used. Each algorithm is run 30 times for each test instance

independently for 161 environmental changes in each run.

3.4.3 Performance Metrics

A number of metrics are in use for performance assessment of static MOEAs

which evaluate convergence and diversity quite effectively. These metrics

have been modified for evaluating DMOEAs. The Inverted Generational

Distance (IGD) is a unary performance indicator which provides a quanti-

tative measurement for the proximity and diversity goal of MOO [70]. It is

36

Table 3.1: Experiment Settings

Number of decision
variables, n

20 for all test problems

Population size
100 for 2 objective problems,
200 for 3 objective problems.

Neighborhood Size: 20.

Probability that parents are
selected from the

neighborhood
0.9

Decomposition method Tchebycheff

Differential Evolution CR = 1.0 and F = 0.5

Polynomial Mutation η = 20, pm = 1/n.

Number of detectors 10

Percentage for RND model 20%

KF model process noise Gaussian of N(0, 0.04)

KF model observation noise Gaussian of N(0, 0.01)

Dynamic Setting
Frequency of change τT : 30,

Severity of change nt: 10

Number of changes 161

Number of generations 4835

Number of runs 30

mathematically given by,

IGD(P t∗, P t) =

∑
v∈P t∗ d(v, P t)

|P t∗|
, (3.14)

where, P t∗ is a set of uniformly distributed Pareto optimal solutions in the

POF at time t (POF t) and P t is an approximation of the POF obtained

by the algorithm in consideration. d is a distance measure between P t and

P t∗, given by,

d(v, P t) = min
u∈P t
‖F (v)− F (u)‖. (3.15)

37

A lower value of IGD implies that the algorithm has better optimization

performance. To obtain a low value of IGD, it can be seen from the equations

(3.14 and 3.15) that, P t must be very close to POF t and cannot miss any

part of POF t, thus measuring both convergence and diversity.

To adapt the IGD metric for DMO [21], the mean of the IGD values in

some time steps over a run is taken as the performance metric, given by,

MIGD =
1

|T |
∑
t∈T

IGD(P t∗, P t), (3.16)

where, T is a set of discrete time points (immediately before the change

occurs) in a run and |T | is the cardinality of T . A lower value of the MIGD

metric would assist in evaluating the tracking ability, as the approximated

pareto front obtained from the algorithm with the changing pareto optimal

front is measured before every change. 1000 and 2500 equidistant points

along the POF, P t∗ are chosen for computing the IGD metrics for bi-

objective and tri-objective problems, respectively.

Another performance metric that is proposed recently to evaluate the

performance of MOEAs is the Averaged Hausdorff Distance proposed in [71].

Shortcomings of the previously widely used indicators, GD (Generational

Distance) and IGD have been identified and a new indicator to measure

the Hausdorff distance to the pareto front is proposed from the corrected

GD (GDp) and IGD (IGDp) metrics. The Averaged Hausdorff distance

38

∆p(X, Y) is defined as

∆p(X, Y) = max (GDp(X, Y), IGDp(X, Y))

= max

(1

N

N∑
i=1

dist(xi, Y)p

)1/p

,

(
1

M

M∑
i=1

dist(yi, X)p

)1/p
 (3.17)

where X and Y are finite sets in the objective space [71]. This metric is

also modified similar to IGD to act as a performance metric for evaluating

DMOEAs.

3.4.4 Results

The statistical results of MIGD values for the various test benchmark

problems are tabulated in Table 3.2.

The performance of the Kalman Filter based models are definitely much

better than the performance of the simplistic RND method. This shows

that the Kalman Filter prediction model substantially enhances the MOEA

adapted for dynamic optimization compared to the static MOEA with restart

(partial) mechanism. Kalman3by3SC algorithm performs significantly better

than the other Kalman Filter based models and RND in 6 out of the 13

problems.

The benchmark problems’ characteristics are such that the changing

pareto optimal solutions do not move in the decision space or objective

space uniformly. In the proposed Kalman Filter models combined with

MOEA/D-DE, the 2by2 variants only account for first order change, while

the 3by3 variants take second order change into account as well. As a

result, the 3by3 variants tend to perform better in many of the problems.

From Table 3.2, it can be observed that the performance of Kalman3by3

39

Table 3.2: Experiment Results of MOEA/D-KF and RND

Problems Kalman2by2 Kalman2by2SC Kalman3by3 Kalman3by3SC RND

FDA1 0.00836 ± 0.00491(+) 0.00802 ± 0.00489(+) 0.00786 ± 0.00497(+) 0.00736 ± 0.00495 0.0192 ± 0.00966(+)

FDA2 0.00622 ± 0.0086(-) 0.00581 ± 0.00867(-) 0.00741 ± 0.00739(+) 0.00572 ± 0.00753 0.00615 ± 0.00864(-)

FDA3 0.0307 ± 0.02032(+) 0.0278 ± 0.01731(+) 0.0585 ± 0.07018(+) 0.0263 ± 0.01626 0.0388 ± 0.02128(+)

FDA4 0.104 ± 0.04578(+) 0.103 ± 0.04577(+) 0.0926 ± 0.02881(+) 0.0892 ± 0.02829 0.123 ± 0.05481(+)

FDA5 0.194 ± 0.07244(+) 0.197 ± 0.07438(+) 0.19 ± 0.06149(+) 0.167 ± 0.04438 0.316 ± 0.11351(+)

dMOP1 0.0084 ± 0.02968(+) 0.00725 ± 0.02972(-) 0.0123 ± 0.03098(+) 0.00773 ± 0.03136(+) 0.00707 ± 0.02977

dMOP2 0.00977 ± 0.00769(+) 0.00923 ± 0.00768(+) 0.00878 ± 0.00773(+) 0.00822 ± 0.00768 0.026 ± 0.01509(+)

F5 0.044 ± 0.03687(+) 0.042 ± 0.03988(+) 0.0292 ± 0.02902(-) 0.0287 ± 0.03099 0.149 ± 0.15027(+)

F6 0.0575 ± 0.17951(-) 0.0564 ± 0.18286(+) 0.0553 ± 0.18959 0.0566 ± 0.1919(-) 0.0868 ± 0.18803(+)

F7 0.0345 ± 0.10026(+) 0.0329 ± 0.1028(-) 0.0325 ± 0.09218(-) 0.0318 ± 0.09381 0.0512 ± 0.10295(+)

F8 0.108 ± 0.03687(+) 0.101 ± 0.03814 0.137 ± 0.03798(+) 0.105 ± 0.038(+) 0.111 ± 0.03875(+)

F9 0.243 ± 0.46665(+) 0.116 ± 0.23707 0.24 ± 0.50978(+) 0.152 ± 0.39725(+) 0.205 ± 0.16993(+)

F10 0.153 ± 0.10423(+) 0.155 ± 0.14985(+) 0.0793 ± 0.0292(+) 0.0408 ± 0.0359 0.351 ± 0.20895(+)

(+) (and (−)) indicates that the difference between the
marked entry and the best entry is statistically significant
(and insignificant, respectively) using paired two-sample

t-test(both are at the 5% significance level).

and Kalman3by3SC are not significantly different in problems F5-F7, while

Kalman3by3SC tends to perform significantly better than Kalman3by3 in

most of the other problems. The scoring scheme aims to hybridize the

Random Reinitialization (RND) method with the Kalman Filter based

prediction method to get the benefit of both the methods. Problems in

which the Pareto Optimal Solutions do not change with time, such as FDA2

and dMOP1, if the converged population is not altered it would result

in good performance. Thus, in such scenarios, it becomes beneficial to

40

hybridize the Kalman Filter based prediction method with RND, as RND

retains majority of the population to be as is.

In general, scoring scheme based method is better compared to stan-

dalone Kalman Filter based methods. The 3by3 variant in particular may

be recommended, as second order change is also taken into account, which

may lead to better predictions. For more performance analysis on each

problem, kindly refer to section 3.5.

The Kalman filter prediction model predicts in the decision space and

assists the evolutionary algorithm in the tracking of the Pareto Optimal

Solutions (POS) in dynamic environments. The prediction performance for

the FDA1 problem is shown in Figure 3.3.

The left half of Figure 3.3 depicts the objective space and the right half

depicts the decision space. The Pareto Optimal Front in FDA1 problem

remains fixed, while its Pareto Optimal Set changes with time making

it a Type I DMOP [2]. In the right half, the solid line represents the

POS for the current time instant. In the following time instant, the POS

would be shifted to the dotted line. The dotted and solid circles represent

the current measurement and prediction estimate of the Kalman filter

respectively. It can be seen that the prediction estimate is quite close

to the new POS while the solutions obtained by MOEA/D-DE without

the Kalman Filter prediction method remain close to the previous POS.

Further, the MOEA/D’s [29] weight vectors further assist the algorithm

in getting a widely distributed set of solutions covering the entire front.

Similar performance is observed in most of the other benchmark problems

as well.

41

Figure 3.3: Visualization of Kalman Filter prediction performance in FDA1.
The time steps associated with the figures (referred in the order - top left,
top right, bottom left, bottom right) are the first 4 changes which occur in
the problem at generation numbers 30, 60, 90 and 120 respectively. The
rings indicate the values before the change, while the circles represent the
values after the change. The POF front is indicated in yellow color. The
full line represents the current POF while the dotted line represents the
POF after the change.

42

3.4.5 Performance comparison with other DMOEAs

Population Prediction Strategy

The Population Prediction Strategy (PPS) formulated in [21], takes into

consideration the properties of continuous DMO problems and is used to

predict a whole population. The Pareto set is divided into two parts, a

center point and a manifold. A sequence of center points is maintained

to predict the subsequent center, and the previous manifolds are used to

estimate the subsequent manifold. The univariate autoregression model, a

time series prediction method is applied to forecast the next location of the

center. The next manifold is obtained by studying the similarity between

previous manifolds and estimating the variance which is subsequently used

in solution generation. The source code for the PPS algorithm is obtained

from the authors of [21] and the parameter settings are maintained in the

simulations.

Dynamic NSGA-II

The original Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [27] is

modified to handle DMO problems in [7]. 10% of the population members

are picked randomly from the parent population to act as change detector

individuals similar to the change detection mechanism proposed in the

current work. Two versions of dynamic NSGA-II are proposed. In the first

version, DNSGA-II-A, a ζ% of the population is replaced with new random

solutions whenever there is a change in the problem. In the second version,

DNSGA-II-B, a ζ% of the population is replaced with mutated solutions of

randomly chosen existing solutions, similar in principle to hypermutation

based GAs for single objective optimization [5]. DNSGA-II-A is expected to

perform better in problems undergoing a large change, while DNSGA-II-B

43

may perform better in problems undergoing a small change. The source

code of static NSGA-II is obtained from [72] and the 2 dynamic versions are

implemented according to [7]. The ζ parameters for the 2 versions, which

determine the portion of population reinitialized and the hypermutation

rate for the second version are tuned for the benchmark problems. The

values used are ζ% of 20%, and hypermutation rate ηh of 0.5 which is much

higher than the probability of mutation in normal use.

The statistical values of MIGD for the 3by3SC Kalman filter formulation

in comparison with PPS, DNSGA-IIA and DNSGA-II-B are presented in

Table 3.3.

Statistical test of T-test for independent samples is performed for

the MIGD statistical values. The null hypothesis is that the proposed

algorithm of Kalman prediction based MOEA, MOEA/D-KF does not

perform significantly better than the compared algorithms at the 95%

significance level. However, the results tabulated show that the proposed

algorithm performs significantly better than the compared algorithms in 7

out of the 13 benchmark problems.

The averaged Hausdorff distance statistics for the proposed algorithm,

MOEA/D-KF with the Kalman third order formulation, and the comparison

strategies of RND and PPS are provided in Table 3.4. T-test is performed

on these statistical values at the 95% significant level as well. It is observed

that the MOEA/D-KF algorithm performs significantly better than the

compared strategies in 9 out of the 13 problems.

3.5 Discussion

In this section, the results on various benchmark problems are elaborated

and the analyses on parameter settings and influence of frequency of change

44

Table 3.3: Performance Comparison with other DMOEAs

Problems MOEA/D-KF PPS DNSGA-II-A DNSGA-II-B RND

FDA1 0.00736 ± 0.00495 0.0136 ± 0.0429(+) 0.0405 ± 0.10008(+) 0.0721 ± 0.09713(+) 0.0192 ± 0.00966(+)

FDA2 0.00572 ± 0.00753 0.00877 ± 0.01404(+) 0.0806 ± 0.13219(+) 0.144 ± 0.12528(+) 0.00615 ± 0.00864(-)

FDA3 0.0263 ± 0.01626 0.238 ± 0.28847(+) 0.147 ± 0.16913(+) 0.216 ± 0.09985(+) 0.0388 ± 0.02128(+)

FDA4 0.0892 ± 0.02829 0.148 ± 0.05673(+) 0.398 ± 0.07428(+) 0.238 ± 0.10781(+) 0.123 ± 0.05481(+)

FDA5 0.167 ± 0.04438 0.201 ± 0.06615(+) 0.324 ± 0.10786(+) 0.354 ± 0.13003(+) 0.316 ± 0.11351(+)

dMOP1 0.00773 ± 0.03136(+) 0.0281 ± 0.0958(+) 0.198 ± 0.7372(+) 0.245 ± 0.69538(+) 0.00707 ± 0.02977

dMOP2 0.00822 ± 0.00768 0.0183 ± 0.0655(+) 0.088 ± 0.17409(+) 0.27 ± 0.15227(+) 0.026 ± 0.01509(+)

F5 0.0287 ± 0.03099 0.0344 ± 0.09251(-) 0.132 ± 0.15775(+) 0.577 ± 0.14982(+) 0.149 ± 0.15027(+)

F6 0.0566 ± 0.1919 0.0584 ± 0.25025(-) 0.0836 ± 0.15129(+) 0.153 ± 0.15904(+) 0.0868 ± 0.18803(+)

F7 0.0318 ± 0.09381(+) 0.0268 ± 0.13148 0.0802 ± 0.11834(+) 0.149 ± 0.14522(+) 0.0512 ± 0.10295(+)

F8 0.105 ± 0.038 0.408 ± 0.18856(+) 0.425 ± 0.35938(+) 0.245 ± 0.36647(+) 0.111 ± 0.03875(+)

F9 0.152 ± 0.39725(+) 0.106 ± 0.15577 0.124 ± 0.1606(-) 0.437 ± 0.13881(+) 0.205 ± 0.16993(+)

F10 0.0408 ± 0.0359 0.106 ± 0.10662(+) 0.119 ± 0.09741(+) 0.271 ± 0.12189(+) 0.351 ± 0.20895(+)

(+) (and (−)) indicates that the difference between the marked entry and
the best entry is statistically significant (and insignificant, respectively)

using paired two-sample t-test(both are at the 5% significance level).

are discussed.

3.5.1 Results on FDA1-FDA5, dMOP1 and dMOP2

From Table 3.3 and Table 3.4, it is observed that the proposed Kalman Filter

prediction based dynamic MOEA, MOEA/D-KF, performs significantly

45

Table 3.4: Averaged Hausdorff distance statistics

Problem MOEA/D-KF PPS RND

FDA1 0.0337 ± 0.7831 0.04013 ± 0.11846(-) 0.06816 ± 0.03545(+)

FDA2 0.02111 ± 0.3294 0.03052 ± 0.05248(+) 0.02139 ± 0.0318(-)

FDA3 0.78926 ± 0.00001 99.9425 ± 1260.895(+) 0.82426 ± 1.21056(-)

FDA4 0.47897 ± 0.00001 0.7622 ± 0.28473(+) 0.68908 ± 0.31593(+)

FDA5 0.92068 ± 0.00001 1.06425 ± 0.36334(+) 1.82485 ± 0.6473(+)

dMOP1 0.03653 ± 0.00001(-) 0.12332 ± 0.36318(+) 0.03304 ± 0.14687

dMOP2 0.0308 ± 0.00001 0.0653 ± 0.23301(+) 0.08739 ± 0.05148(+)

F5 0.15191 ± 0.00001 0.22393 ± 0.67515(+) 1.51016 ± 1.91353(+)

F6 0.23105 ± 0.00001 0.39948 ± 1.82883(+) 0.45312 ± 0.69313(+)

F7 0.12907 ± 0.00001 0.19043 ± 1.05816(+) 0.25202 ± 0.35812(+)

F8 0.83853 ± 0 2.19536 ± 1.0138(+) 1.79629 ± 1.74289(+)

F9 0.57029 ± 0.00001 0.81257 ± 0.96851(+) 1.61727 ± 1.74865(+)

F10 0.17825 ± 0 1.12794 ± 1.44951(+) 1.9724 ± 1.09394(+)

(+) (and (−)) indicates that the difference between the marked entry and
the best entry is statistically significant (and insignificant, respectively)

using paired two-sample t-test(both are at the 5% significance level).

better than the other algorithms. MOEA/D-KF predicts the solution set

much more efficiently than the second-best algorithm, PPS in almost all

of the problems right from the beginning. PPS takes a significant amount

of time (23 changes, which is the training time of the autoregressive filter

prediction model in PPS) before providing reasonable results. This can

be observed in the peaks in IGD values of PPS till just after 20 changes

in Figures 3.4 and 3.5. The Kalman filter does not require any learning

time and starts to provide reasonable predictions from the start of the run.

The changing pareto optimal set of FDA1 and dMOP2 follow a sinusoidal

46

pattern. The simple linear filter model, implemented as the prediction

method in MOEA/D-KF, is able to provide reasonable performance except

for those instants when the sinusoid changes direction and causes the IGD

trend to follow patterns as shown in Figure 3.4 and Figure 3.5.

Both in FDA2 and dMOP1, the optimal values of a number of or all of

the decision variables are observed to remain the same throughout a run.

MOEA/D-KF and PPS produce stable results throughout the entire run

where less fluctuations in IGD values are observed. FDA4 and FDA5 are

3-objective problems. The absolute values of MIGD obtained for FDA4 and

FDA5 are slightly lower than those obtained for 2-objective problems. In

FDA3 and FDA5, the density of solutions along the pareto front changes

with time, thereby making the problems challenging. MOEA/D-KF has

MOEA/D as the underlying MOEA, which produces an evenly distributed

set of solutions throughout the evolution, and tends to perform more

consistently than PPS.

3.5.2 Results on F5-F8

F5, F6 and F7 are Type II DMOPs and have non-linear linkages among

the decision variables. It is observed that PPS performs significantly better

than MOEA/D-KF. In spite of MOEA/D-KF’s immediate results in the

start, PPS is able to outperform MOEA/D-KF in later stages. It was shown

in [21] that the underlying MOEA plays a significant role in the dynamic op-

timization performance of the algorithm. The underlying algorithm of PPS,

RM-MEDA [22] is an estimation of distribution algorithm (EDA) which is

able to learn linkages among decision variables. MOEA/D-KF’s performance

in problems with non-linear linkages may be improved by hybridizing with

state-of-the-art EDAs [73], wherein the superior optimization performance

of decomposition based approach in MOEA/D-DE and linkage learning

47

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

IG
D

IGD for FDA1

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

IG
D

IGD for FDA2

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

IG
D

IGD for FDA3

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-2

10-1

100

IG
D

IGD for FDA4

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-2

10-1

100

IG
D

IGD for FDA5

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

IG
D

IGD for dMOP1

MOEA/D-KF
PPS

Figure 3.4: IGD Trend comparison of MOEA/D-KF and PPS algorithms
over number of changes for 30 runs : FDA1 - FDA5, dMOP1

48

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

IG
D

IGD for dMOP2

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

IG
D

IGD for F5

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

101

IG
D

IGD for F6

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-3

10-2

10-1

100

101

IG
D

IGD for F7

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-2

10-1

100

101

IG
D

IGD for F8

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-2

10-1

100

101

IG
D

IGD for F9

MOEA/D-KF
PPS

0 20 40 60 80 100 120 140 160 180
No. of changes

10-2

10-1

100

IG
D

IGD for F10

MOEA/D-KF
PPS

Figure 3.5: IGD Trend comparison of MOEA/D-KF and PPS algorithms
over number of changes for 30 runs : dMOP2, F5 - F10

49

in EDAs may be utilized simultaneously. The Autoregressive time series

used in PPS is able to provide more stable performance than the Kalman

Filter in MOEA/D-KF. F8 is a 3 objective problem whose Pareto Optimal

Front remains the same. For F8, MOEA/D-KF is able to outperform PPS

throughout the 160 changes and the MIGD value obtained is significantly

better (Table 3.3).

3.5.3 Results on F9 and F10

In all the previously discussed problems, the environment changes smoothly

from one time instant to the next and the geometric shapes of two consecutive

Pareto Optimal fronts/sets are similar to each other. Two more complicated

problems, F9 and F10, are proposed in [21], to further test the performance

of dynamic MOEAs. In F9, the pareto set jumps from one area to another

occasionally. The geometric shapes of consecutive POFs are completely

different from each other in F10. The proposed strategy, MOEA/D-KF

makes the assumption of a linear dynamical process in the Kalman filter

formulation which is violated in F9. Therefore, it is not surprising that the

performance of MOEA/D-KF is not on par with that of PPS. Nevertheless,

it must be noted that the IGD values of PPS also follows a pattern similar to

that of MOEA/D-KF, but are less affected by the jumps. In F10, MOEA/D-

KF seems to perform better than PPS. This may be due to the fact that the

Kalman Filter does not make any assumptions about the shape of the pareto

fronts, while the PPS does so in the estimation of successive manifolds.

3.5.4 Parameter Sensitivity

The model and parameters of Kalman filter may have a significant impact on

MOEA/D-KF algorithm’s performance. The linear dynamic model affects

the tracking performance of the Kalman filter when there is a deviation

50

from such an assumption. The Q and R matrices may have substantial

effect on the prediction performance and thereby affecting the IGD values

obtainable by MOEA/D-KF.

Q is defined as the process noise covariance matrix and quantitatively

denotes the noise present in the ‘process’ that the Kalman filter tries to

estimate. Similarly, R is the measurement noise covariance matrix and

denotes the amount of noise present in the ‘measurements’ that are passed to

the Kalman filter. The two matrices are assigned as diagonal matrices having

diagonal element values of q and r, respectively. The results presented in

Sections 3.4.4 and 3.4.5 are based on a single fixed pair of (q, r) = (0.04, 0.01)

for all the test benchmark problems. In this section, the q and r values are

varied from 0.01 to 0.1 in steps of 0.01, resulting in 100(10×10) combinations

of values.

Table 3.5: Tuning of Q and R matrices of Kalman Filter

Problem lowest MIGD highest MIGD Range of MIGD

FDA1 0.39 0.5 0.11

FDA2 0.37 0.4 0.03

FDA3 1.08 3.64 2.56

FDA4 3.77 4.87 1.1

FDA5 5.94 12.42 6.48

dMOP1 0.63 0.76 0.13

dMOP2 0.45 0.68 0.23

F5 2.19 7.75 5.56

F6 4.43 7.8 3.37

F7 3.73 5.25 1.52

F8 4.81 5.93 1.12

F9 4.94 31.97 27.03

F10 5.19 21.73 16.54

Table 3.5 shows the lowest and highest MIGD values obtained by utilizing

the 100 combinations of q and r values. Range of MIGD is given to

51

demonstrate the impact of values on the performance. For less complicated

problems the range of MIGD is quite low. In these problems, the linear

dynamical assumption of Kalman filter is not affected such as in FDA1,

FDA2, dMOP1, dMOP2. In the case of F9 and F10, the range of MIGD is

substantially higher than those of the other problems. In F9, the pareto set

jumps from one area to another implying that the ‘process’ is not as assumed

by the Kalman Filter model occasionally and therefore, subsequently causing

fluctuations in performance.

3.5.5 Influence of frequency of change

Problem difficulty increases substantially with increase in the occurrence of

change as the DMOEA has to frequently adapt the solutions to the moving

optima. In this section, the frequency of change parameter is varied in steps

of 10 and the box-plots of IGD values are obtained for MOEA/D-KF, PPS

and RND methods (Figures 3.6 and 3.7). It is observed that the Kalman

Filter predictions result in better IGD values than the autoregressive filter

predictions in PPS, even when the problem changes every 10 generations.

RND and MOEA/D-KF have the same underlying MOEA and the

difference is in the tracking mechanism. It is observed that the Kalman

Filter improves the performance of MOEA/D in most of the problems. In

the case of complicated problems such as F5, F6 and F7, MOEA/D-KF’s

performance is comparable to that of PPS in spite of the advantage of EDA

in PPS and is significantly better than that of RND. It is observed that in

the case of the more complicated problems of F9 and F10, increasing the

frequency of change has resulted in the Kalman Filter assisted MOEA/D

outperforming the PPS strategy.

52

RND MOEA/D-KF PPS0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IG
D

FDA1:τT = 10

RND MOEA/D-KF PPS0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

IG
D

FDA1:τT = 20

RND MOEA/D-KF PPS0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

IG
D

FDA1:τT = 30

RND MOEA/D-KF PPS0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

IG
D

FDA2:τT = 10

RND MOEA/D-KF PPS0.004

0.006

0.008

0.010

0.012

0.014

IG
D

FDA2:τT = 20

RND MOEA/D-KF PPS0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

IG
D

FDA2:τT = 30

RND MOEA/D-KF PPS0.0

0.5

1.0

1.5

2.0

2.5

IG
D

FDA5:τT = 10

RND MOEA/D-KF PPS0.0

0.1

0.2

0.3

0.4

0.5

0.6

IG
D

FDA5:τT = 20

RND MOEA/D-KF PPS0.0

0.1

0.2

0.3

0.4

0.5

0.6

IG
D

FDA5:τT = 30

Figure 3.6: Influence of frequency of change on FDA1, FDA2 and FDA5
problems. The figures show the box plot of IGD values for RND, MOEA/D-
KF and PPS algorithms for the 3 benchmark problems for τT = 10, 20 and
30. Each row is for a particular benchmark problem and τT value varies
from 10 to 30.

53

RND MOEA/D-KF PPS0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

IG
D

F5:τT = 10

RND MOEA/D-KF PPS0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

IG
D

F5:τT = 20

RND MOEA/D-KF PPS0.0

0.1

0.2

0.3

0.4

0.5

IG
D

F5:τT = 30

RND MOEA/D-KF PPS0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IG
D

F9:τT = 10

RND MOEA/D-KF PPS0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IG
D

F9:τT = 20

RND MOEA/D-KF PPS0.0

0.1

0.2

0.3

0.4

0.5

0.6

IG
D

F9:τT = 30

RND MOEA/D-KF PPS0

1

2

3

4

5

6

IG
D

F10:τT = 10

RND MOEA/D-KF PPS0.0

0.5

1.0

1.5

2.0

IG
D

F10:τT = 20

RND MOEA/D-KF PPS0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

IG
D

F10:τT = 30

Figure 3.7: Influence of frequency of change on F5, F9 and F10 problems.
The figures show the box plot of IGD values for RND, MOEA/D-KF and
PPS algorithms for the 3 benchmark problems for τT = 10, 20 and 30. Each
row is for a particular benchmark problem and τT value varies from 10 to
30.

3.6 Chapter Conclusion

A novel Dynamic Multiobjective Evolutionary Algorithm using Kalman

Filter predictions in the decision space is proposed. It is built on the

MOEA/D framework and the Linear Discrete Time Kalman Filter is used

to estimate the subsequent optimal values of decision variables. Change

detection is performed through sentry particles and a scoring scheme is

devised to hybridize the Kalman Filter with the random reinitialization

method. Experimental results demonstrate that the proposed algorithm

shows significantly improved performances over a number of test benchmark

problems.

54

The 3by3 variant of the proposed model is particularly recommended as

second order change is also taken into account and when hybridized with

RND using the scoring scheme, the method shows superior performance over

the other Kalman Filter prediction model variants as well as other DMOEAs.

The Kalman Filter prediction model does not require any learning time

and starts to provide reasonable predictions from the start of the run and

corrects itself from subsequent measurements of the decision variables from

the Evolutionary Algorithm. In problems with linkages between decision

variables, the underlying EA plays a significant role in the optimization

and it may be useful to implement the Kalman Filter prediction model

in an Estimation of Distribution Algorithm to get even better dynamic

optimization performance. Problems in which the linear dynamical process

assumption is violated, the proposed algorithm’s performance is not optimal.

However, the Kalman Filter does not make any assumptions about the

shape or structure of consecutive Pareto Optimal Fronts resulting in better

performance in such problems. Parameter sensitivity of the model on Q and

R matrices is studied and it can be observed that for problems with more

non-linear movements the values need to be carefully tuned to get better

performance. In spite of the aforementioned shortcomings, with increasing

problem difficulty the Kalman Filter based DMOEA is able to outperform

the other methods.

In the following chapter, a non-linear prediction method is explored.

While MOEA/D-KF and its variants provide many advantages, a non-linear

prediction method such as Support Vector Regression may be able to tackle

the more complicated problems with better efficacy.

55

Chapter 4

Data-driven Accelerated

Convergence in Evolutionary

Dynamic Multiobjective

Optimization

4.1 Introduction

The Support Vector algorithm [74] [75] is a nonlinear generalization of

the Generalized Portrait algorithm developed in Russia in the 1960s [76].

Initially, research on Support Vector Machines (SVM) was focused on Optical

Character Recognition (OCR) and object recognition tasks. However, soon

after, excellent performances were obtained in regression and time series

prediction applications as well [77]. Since then, SVM has been an active field

of research. However, little research has been done on using Support Vector

Machines with Evolutionary Algorithms for solving Dynamic Multiobjective

Optimization Problems.

Evolutionary algorithms have been traditionally used to solve a wide

56

variety of Multiobjective Optimization Problems (MOPs) [1]. MOPs consist

of two or more conflicting objectives that need to be solved simultaneously.

As a result, there is no single solution but a number of trade-off solutions.

Evolutionary algorithms work with a population of solutions at any single

time and this poses a unique advantage for them as they can produce a

number of pareto optimal solutions in a single run [27–29]. While there has

been extensive research to solve MOPs in the past few decades, another

class of challenging problems have received only tepid interest. Most real-

world problems are multiobjective in nature, but they are also filled with

uncertainties and dynamics [38] [37]. Dynamic Multiobjective Optimization

Problems (DMOPs) consist of MOPs which change with time, due to changes

in the objective or decision space and constraints [2].

Evolutionary algorithms exhibit competitive performance in solving

static MOPs. However, they cannot solve DMOPs in a standalone manner.

One of the important drawbacks of Multiobjective Evolutionary Algorithms

(MOEAs) is that they require significant amount of time to converge to the

optimal solutions [45]. This is an important issue in DMOPs as the problems

change with time and tracking the changing solutions takes up a high priority.

In this context, algorithms that accelerate convergence of the solutions

towards the pareto optimal front would be highly preferred [17, 44, 46].

Various kinds of methods have been proposed to solve dynamic problems

in both single-objective and multiobjective scenarios. However, prediction

based methods stand out as their contributions can prove to be of high

efficacy. Prediction based methods can help identify the pattern exhibited

by the time-varying solutions and assist the Evolutionary Algorithm in

converging to the Optimal solutions faster than if they were left to work on

their own.

A Kalman Filter based Dynamic Multiobjective Evolutionary Algorithm

57

(DMOEA) was proposed and shown to have competitive dynamic optimiza-

tion performance compared to other existing algorithms [78]. However,

when assumptions of the Linear Discrete Kalman Filter are violated, the

performance was not up to the par. Nonlinear formulations of the Kalman

filter are available by means of the Extended Kalman Filter(EKF) [58],

Unscented Kalman Filter(UKF) [57], and numerous other variants. However,

the state transition and observation matrices which are required in the

prediction and update step are formed by Jacobian (matrix containing

partial derivatives of f with respect to x) of the nonlinear functions, which

are not directly available to us. Thus, we need to resort to other prediction

techniques.

When considering real-world dynamical systems, the underlying system

models are complex and not known a priori. Accurate and unbiased

estimation of such systems cannot be achieved using linear techniques

resulting in the need for more advanced time series prediction algorithms.

The machine learning approach of Support Vector Machines(SVM) [79] [80]

has been extensively applied and it is found to be able to accurately forecast

time series data even when the underlying system processes are not defined a

priori [81]. It is not model dependent and can outperform traditional Neural

Networks and also has the advantage of small number of free parameters.

Unlike the Kalman filter and Autoregressive time series models, SVM

is not dependent on linear, stationary processes, can obtain guaranteed

convergence and is computationally efficient.

Considering the various advantages of using SVM for prediction, it

is proposed to build a SVM based prediction model for solving DMOPs.

When using Kalman Filter, it is a state estimation problem to predict the

subsequent optimal solutions, while a time series prediction problem is

modeled when using Support Vector Regression to assist the Evolutionary

58

Algorithm in solving the DMOPs. The DMOPs considered in this work

change in discrete periods of time followed by a stasis, where there is no

change in the optimal solutions. In this method, a time series is formed

by the near-optimal solutions obtained by the Evolutionary Algorithm in

previous changes. Support Vector Machines are used in tandem with the

Evolutionary Algorithm to predict new solutions for future generations from

the time series, when a change in the environment is detected. LibSVM [82],

an open-source library software for various SVM formulations is utilized to

build the prediction model.

The rest of the chapter is organized as follows. Section 4.2 provides

background on Support Vector Machines. A review of existing work using

SVM for time series prediction in various domains is discussed in Section

4.3. Section 4.4 presents the proposed algorithm. The underlying MOEA,

MOEA/D-DE and the Support Vector Regression based prediction method

are also elaborated. Section 4.5 describes the empirical study. Section 4.6

provides the results and discussion. Section 4.7 elaborates on the analysis.

Section 4.8 concludes the work and potential future research directions are

highlighted.

4.2 Background

Support Vector Machine [76], a widely accepted novel artificial intelligence-

based method developed from statistical learning theory, is used in this

study to predict the pareto optimal solutions after a change in the problem.

The SVM, which is based on structural risk minimization (SRM) principle,

theoretically minimizes the expected error of a learning machine and thereby

reduces the problem of over-fitting [83]. The SVM has been proven to be

a robust and competent algorithm for both classification [84] [85] and

59

regression [86] [87] in many disciplines.

The application of SVMs to general regression analysis case is called

Support Vector Regression(SVR). Support Vector Machines and Support

Vector Regression are based on statistical learning theory, or VC theory.

Support Vector Regression, or SVR, is the methodology by which a function

is estimated using observed data which in turn trains the SVM [81]. This is

different from traditional time series prediction methodologies as there is

no model in the strict sense - the data drives the prediction. SVR uses a

kernel function which provides the capability of mapping nonlinear data into

feature spaces that are essentially linear. Following this the optimization

process can be similar to the linear case.

There are a few formulations of SVR, the most common types are ε−SV R

and ν − SV R. Let the given training data be (x1, y1), . . . , (xl, yl) ⊂ X ∗ R,

where X denotes the space of the input patterns and yi is a target output.

For nonlinear models, an implicit mapping is done via kernels. Kernel

function can be represented by k(x, x‘) =< Φ(x),Φ(x‘) >, where k is the

kernel function and Φ is the map.

x

y

ε

ε

ξi
ξ∗i

Figure 4.1: Support Vector Regression formulation

60

ν-Support Vector optimization problem can be stated as,

min
1

2
wTw + C(νε+

1

l

l∑
i=1

(ξi + ξ∗i))

(wTφ(xi) + b)− yi ≤ ε+ ξi,

yi − (wTφ(xi) + b) ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, ..., l, ε ≥ 0.

subject to
l∑

i=1

(αi + α∗i) = 0 and αi, α
∗
i ∈ [0, C]

(4.1)

In ν− SVR, the goal is to find a function f(x) that has at most ε

deviation from the actually obtained targets yi for all the training data. At

each point xi, an error of ε is permissible. The ε-insensitive loss function

(Fig 4.2) means that if (wTφ(x) + b) is in the range of y ± ε, no loss is

considered. Here, 0 ≤ ν ≤ 1, C is the regularization parameter, and training

vectors, xi are mapped into a higher dimensional space by the function

φ. Any error above ε is captured through the slack variables ξ
(∗)
i , which

are penalized in the objective function via the regularization constant C.

αi and α∗i are multipliers used to solve the Support vector optimization

problem using the Lagrangian formulation.

y − f(x,w)

Loss

ε-ε

Figure 4.2: ε-insensitive loss function

ν-SVR was introduced by [88] since it is difficult to select appropriate

ε value in ε − SV R as ε can range from 0 to ∞. ν can take values only

61

between 0 and 1, which proves advantageous in parameter selection. ν

controls the number of support vectors and training errors. It was proved

that ν is an upper bound on the fraction of margin errors and a lower bound

on the fraction of support vectors. Due to ease of choosing appropriate

value of ν, ν − SV R is used in the proposed algorithm.

The key parameters used in SVR model are:

• gamma - defines how far the influence of a single training example

reaches, with low values meaning ‘far’ and high values meaning ‘close

by’.

• C - defines balance between training error and the simplicity of the

decision surface. A low C makes the decision surface smooth, while

a high C aims at reducing the training error to as close to zero as

possible.

• ν - proportion of maximum deviation of the predicted value from the

obtained targets.

4.3 Related Work

4.3.1 Time Series Prediction Using Support Vector

Machines: A Survey

Support Vector Regression forms a key component of the proposed model.

Support Vector Regression is proposed to be used as the prediction model for

estimating the time series formed by dynamic multiobjective optimization

problems. [81] presents a survey of the applications of Support Vector

Machines (SVMs) in time series prediction. It was a good starting point for

understanding the existing work in the field of Support Vector Regression.

62

SVMs provide a method for predicting and forecasting time series for

numerous applications including financial market and time series forecasting

[89] [90] [91] [80] [86] [87], weather and environmental parameter estimation

[92] [93], electrical utility loading prediction [94] [95] [96] [97], machine

reliability forecasting [98], various signal processing and control system

applications [99] [100], and several other applications. The fundamental

reason for considering SVR as an approach for time series prediction in these

applications is the nonlinear aspect of the prediction problem. Traditional

model-based techniques do not perform as well as SVR in predicting time-

series generated from nonlinear systems. The main challenge of using SVR is

that the performance of SVR is highly dependent on the design choices made

by the designer such as selection of kernel function [101], hyperparameters,

etc.

Application of Support Vector Machines in Financial Time Series

Forecasting

SVR time series prediction has been extensively researched in the area of

financial market prediction. Based on a survey conducted in the year 2009,

over 21 research papers had been published in this field [81]. Financial time

series are said to be inherently noisy, non-stationary and deterministically

chaotic. The complete information about the past behavior of financial

market is unavailable, hence making the data noisy. The distribution of

financial series changes over time making the problem non-stationary. The

term deterministically chaotic means that the financial time series are

random in short term but deterministic in the long run.

[102] observes that SVMs forecast significantly better than neural

networks trained using backpropagation. This can be accounted to the fact

that SVR has comparatively fewer free parameters, guarantees convergence,

63

and minimizes the upper bound of the generalization error. The study

also emphasizes the proper selection of the free parameters. Improper

selection of the parameters can cause either over-fitting or under-fitting of

the training data. It is hence important to develop a structured way of

selecting optimum parameters of SVMs. The proposed algorithm of using

SVR in this work is hence in line with the recommendation of [102]. The

rationale behind choosing optimum parameters for SVM used in this work

is explained in section 4.4.

Load Forecasting Using Support Vector Machines

Electricity load forecasting is one of the predominant areas in which SVR

has been used as the prediction model. Forecasting of electrical power

consumption demands by consumers is a nonlinear prediction problem. [103]

proposed using SVR approach for EUNITE Network Competition which

entails the prediction of daily maximal electrical load. The electricity

load forms a periodic time series. This is due to the seasonal variation

of consumer electricity demand, lesser usage during major holidays, and

the impact of weather on electricity demand. The SVR model was built

using several attributes such as the day of the week, whether it is a holiday,

etc. Based on the SVR model built, the maximum load was predicted. In

order to select the proper values of SVR parameters, the training data was

divided into two sets. One of the sets was used to train the model while

the other was used to evaluate the model. [103] was the winning approach

for the EUNITE Network competition.

64

4.4 Algorithm Design

This section elaborates on the design and functionality of the proposed

algorithm. There are 3 main sub-parts to the algorithm which are expanded

in the following subsections. The goal of the proposed algorithm is to

solve Dynamic Multiobjective Optimization problems wherein the solutions

change with time. To accelerate the convergence of Evolutionary Algorithms,

MOEA/D-DE (refer to subsection 3.3.1) in this case, we propose to use

Support Vector Regression (refer to subsection 4.4.3) as the prediction

technique to find the optimal solutions after a change in the problem. To

do so, we need a change detection function, which is explained in subsection

4.4.2.

4.4.1 Multiobjective Evolutionary Algorithm with

Decomposition based on Differential Evolution

The Support Vector Regression based prediction model proposed is built on

the structure of Multiobjective Evolutionary Algorithm with Decomposition

based on Differential Evolution (MOEA/D-DE) [29]. MOEA/D-DE has

received significant attention due to its good optimization performance in

solving continuous multiobjective optimization problems with relatively fast

convergence and diverse spread. The algorithm decomposes a problem into

several sub-problems and simultaneously optimizes them using neighborhood

relations. The neighborhood relations are defined based on the distances

among their weight vectors. The decomposition is performed using classical

approaches, such as the Tchebycheff approach or the weighted sum approach.

The Tchebycheff approach is used in this work due to its simplicity and

decent optimization performance.

65

4.4.2 Change Detection Function

The relationship of MOEA/D-DE with the SVR prediction model is shown

in Figure 4.3.

Change
detection
function

Evolution by
MOEA/D-DE

Prediction by Support
Vector Regression

N
o

C
han

ge

C
hange

detected

T
rain

in
g

D
ata

P
re

d
ic

te
d

S
ol

u
ti

on
s

Figure 4.3: Relationship of EA with SVR prediction model

When there is no change detected, MOEA/D-DE takes control and the

population evolves accordingly. Otherwise, the SVR Filter prediction model

directs the search for Pareto optimal solutions in the decision space. Data

for training the SVR Prediction model is obtained from MOEA/D-DE and

the solutions predicted by the SVR model are provided to MOEA/D-DE.

A change detection function is needed to combine the prediction model

with the MOEA/D-DE algorithm. The DMOPs considered in this work

consist of discrete changes in the optimization problem followed by a stasis

period when there is no change. Assuming that there is no noise in objective

functions evaluation, some individuals are randomly selected as detectors

and their objective values are stored in the system. At the beginning of each

generation, the detectors’ objective values are recalculated and compared

with the previously stored values. A mismatch in the objective values

suggests that a change in the problem has occurred caused by moving POS

66

or POF landscape.

4.4.3 Support Vector Regression based Prediction model

The proposed prediction model consists of a number of components which

are discussed in detail in this subsection.

Data Formulation

A change in the problem occurs every τt number of generations. In order to

aid the Evolutionary Algorithm in searching effectively for optimal solutions,

SVR predicts the changed optimal values of decision variables. It is assumed

that the Evolutionary Algorithm reaches the optima prior to the subsequent

change. For instance, in Figure 4.4, the problem changes at t1, t2 and t3.

The optimum has to be found by t3 − 1 since the problem changes at t3.

To aid this, SVR needs to predict for t3 − 1 using values of individuals at

t1 − 1 and t2 − 1.

t1 − 1 t2 − 1 t3 − 1

t1 t2 t3

τt

Figure 4.4: Change Occurrence

The SVR model needs to be trained for a number of changes, n, before

it can start predicting. This is referred to as the training window size.

Initially, the SVR model waits for n number of changes to occur in the

problem, before it can come into play. Subsequently, the training window

is moved forward in a fashion akin to moving window concept, wherein

SVR needs to be trained with values from previous n changes, before it

can predict for subsequent change. This is illustrated in Figure 4.5, where

SVR is trained with values from ti−n to ti changes, to predict the value of

67

decision variable for change ti+1. In this example, the training window size

is 5.

(t1, x1)

(t2, x2)

(t3, x3)

(t4, x4)

(t5, x5)
(t6, ?)

t

x

Figure 4.5: Time Series Formulation

Data Preprocessing

Feature scaling or normalization is an important step when using machine

learning techniques. It becomes even more so in the case of SVM. Many

studies have shown that feature scaling affects the overall performance to

a good extent [82] [104]. In this work, the decision variable values are the

target. For most of the problems, their boundary values are in the range

of −1 to +1. However, the input consists of the generation number of the

evolutionary algorithm, which ranges from 1 to 4835 in this work. Therefore,

the generation number is scaled to a range from 0 to +8, obtained through

empirical analysis.

Mean Square Error

A mechanism needs to be established for choosing appropriate SVR param-

eters for good predictions. Mean Square Error of predicted solutions from

subsequently reached near optimal solutions can be used as a performance

metric to assess the success level of the prediction method. Based on the

current and past data about decision variables, SVR predicts the value of

decision variables following a change. The Evolutionary Algorithm then

searches the neighborhood of the predicted decision variables to find the

68

new optima. Hence the performance of SVR prediction can be measured by

comparing the values predicted by SVR with those that are subsequently

obtained by the Evolutionary Algorithm. The mean square error between

the solutions predicted by SVR immediately following a change, and the

value of decision variables found by the Evolutionary Algorithm just before

the subsequent change is a key indicator of the performance of SVR.

The mean square error for each decision variable is calculated using the

formula:

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 (4.2)

where n is the population size, Ŷi is the value predicted by SVR and the Yi

is the value obtained from MOEA/D-DE algorithm.

SVR Parameter Selection

• Kernel Type - SVR uses a kernel function to map nonlinear data into

feature spaces that are essentially linear. There are three common

types of SVR kernels: linear, polynomial and radial basis function

(RBF). These can be mathematically represented as,

Linear: < x, x′ >

Polynomial: (γ < x, x′ > +r)d

RBF: exp(−γ ∗ |u− v|2)

where x represents a point in the training data, d represents the degree

of polynomial, r represents the coefficient, γ represents the influence

of a single training example.

Preliminary testing of SVR was done on simple functions and RBF

kernel type was found to be most effective for simple non linear

functions as seen in Figure 4.6.

69

Figure 4.6: Comparison of kernel types

• C and gamma values - Preliminary testing for the SVR prediction

model was done on basic functions by varying data to noise ratio,

gamma, nu and C values. Performance of SVR heavily depends on

the chosen value of its free parameters, mentioned in section 3.2.2.

Table 4.1: Possible range for C and Gamma

Range C Gamma

Minimum 1e-4 1e-4

Maximum 1e4 1e4

Step size factor of 10 factor of 10

Grid search was performed on a range of C, gamma and nu values.

SVR performance was analyzed for the values mentioned in table

4.1 [82]. The gamma parameter can be considered as the inverse of

the radius of influence of samples selected by the model as support

vectors. If gamma is too large, it results in over-fitting and no amount

of regularization with C will be able to prevent over-fitting. If gamma

is too low, the model becomes very simplistic and will not be able to

capture the complexity of the data. The resulting model will behave

70

similar to a linear model. Hence the intermediate values showed

promising results. Upon analysis of the SVR results obtained from

Table 4.2: Grid search values

C 1 1 1 10 10 10 100 100 100

Gamma 0.1 1 10 0.1 1 10 0.1 1 10

the possible combinations of C and gamma mentioned in Table 4.1,

exhaustive grid search was performance on the values mentioned in

Table 4.2. The population of the Evolutionary Algorithm was divided

equally between each combination of C and gamma values. After

each change, SVR was used for prediction. Mean square error was

calculated as proposed in section 4.4.3. For each decision variable,

the SVR parameters used on the population set with the least mean

square were chosen. This process is repeated until the Evolutionary

Algorithm’s stopping criteria is reached. A vast variation is observed

in the SVR parameters chosen for each problem. The various steps

of the proposed SVR parameter selection mechanism used to solve

DMOP are shown in Algorithm 4.1 for clarity.

The above mentioned method performs the mean square error calcu-

lation in the decision space by comparing the values of the decision

variables. An alternative method of calculating the mean square

error on the objective space was implemented for comparison. The

parameters where selected based on the mean square error in the

objective values of the individuals in the population rather than the

decision variables. The performance of SVR in this alternate method

was not on par with the proposed method. This is because the

dimensionality of the decision space is typically more than that of the

objective space. The absolute value of mean square error in decision

space is of a higher magnitude as compared to that in the objective

71

Algorithm 4.1 SVR Parameter Selection

Require:
MOP
A stopping criterion
N : Population size
P : the number of parameter combinations
SVR parameters
T : Training window
Step 1 â Initialization:

1. Select the range and step size of SVR parameters.

2. Generate a grid of size P with the possible combinations of SVR
parameters.

3. Divide the individuals in the population equally into P segments.

4. Each segment is assigned a set of parameters

Step 2 â Parameter Selection:

1. Save the solutions associated with each individual before the change.

2. If number of changes is less than training window size T, randomly
reinitialize solutions and increment number of changes counter, and
go to Step 2.1. Else if number of changes is equal to T, go to Step
2.5. Otherwise, go to Step 2.3.

3. Calculate the mean square error of each population segment according
to equation below,

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2

where n is the population segment size, Ŷi is the value predicted by
SVR and the Yi is the value obtained from MOEA/D-DE algorithm.

4. Choose and save the SVR parameters associated with the population
segment resulting in the least mean square error.

5. Train SVR using the solutions just before the change and the SVR
parameter values associated with each individual.

6. Predict new solutions associated with each individual in the decision
space.

7. Save the predicted values associated with each individual after the
change.

8. Increment number of changes counter.

Step 3 â Stopping Criteria: If stopping criteria is satisfied, then stop
and output the selected SVR parameters.
Otherwise, go to Step 2.

72

space since the mean square error in each dimension gets added. Due

to the magnification of error in decision space, mean square error in

the decision space is a more accurate indicator of the performance of

SVR.

• nu - SVR performance was tested with values of nu ranging from 0.2

to 0.8. It was observed that nu = 0.5 gave the best results. This can

be accounted for by the fact that a smaller nu results in over-fitting

of the SVR model. The training input noise level is quite high. Hence

setting a small error margin would adversely affect the performance

of SVR.

• Training window size - SVR training window refers to the number of

training instances used to build the SVR prediction model. The SVR

training window for each problem was tuned based on the performance

optimization of SVR. A training window too large would require larger

number of changes to be completed before SVR can be used to predict.

A training window too small would not be sufficient to capture complex

time series formulation.

The performance of SVR was tested on the following training windows:

10, 15, 20, 25, 30, 35, 40, 45, 50. Subsequently, a training window size

of 35 was chosen for use.

Boundary Correction

The SVR prediction model is provided with a time series of the previous

near-optimal solutions obtained by the evolutionary algorithm. There are

boundary conditions for the decision variables in the search space that need

to be adhered to in the optimization process, as defined in 1.1. In case the

solutions predicted by SVR violate the boundary condition and lie outside

73

the search space, the new solutions are corrected to fit inside the boundary

condition (Refer to Figure 4.7). Two types of boundary corrections were

implemented and analyzed [19].

• Clamping approach

In clamping approach (illustrated in Figure 4.7a), if the predicted

solutions violated a specific boundary condition, they are placed on

or close to the violated boundary of the search space. It can be

mathematically represented as :

if x(t+ 1) > xmax then x(t+ 1) = xmax − ε

if x(t+ 1) < xmin then x(t+ 1) = xmin

(4.3)

ε is a very small positive number.

t

x(t)

(a) Clamping approach

t

x(t)

(b) Deflection approach

Figure 4.7: Boundary Correction Approaches

• Deflection approach

In deflection approach (illustrated in Figure 4.7b), if the predicted

solution is outside the search range, the difference between the solution

74

and the boundary value is subtracted from the boundary value.

if x(t+ 1) > xmax

then x(t+ 1) = xmax − (x(t+ 1)− xmax)

if x(t+ 1) < xmin

then x(t+ 1) = xmin + (xmin − x(t+ 1))

(4.4)

where x, xmin and xmax are any dimension of the decision variable,

and its corresponding minimum and maximum boundary constraints

respectively.

It was found that the deflection boundary correction was more effective

for correcting solutions predicted by SVR.

LibSVM [82], an open source library for various SVM formulations was

used to build the prediction model. If there is a change in the detector’s

objective values, the proposed prediction method comes into play. For a

predetermined number of changes, RND method is used and SVR is trained.

For the subsequent changes, SVR is used to predict the locations of the

solutions in the decision space after the change. The solutions just before

the change occurs are considered to be true values (corrupted by Gaussian

noise) of a priori estimates. They are used to train the prediction model

accordingly. Thereafter, new solutions associated with each individual in

the decision space are predicted using SVR. The new predicted solutions

are checked for boundary conditions and are corrected to fit inside the

boundary if required. The reference points and sub-problems are updated

with these new solutions and this completes one generation when a change is

detected in the system. Pseudo-code of the proposed algorithm is provided

in Algorithm 4.2 for clarity.

75

Algorithm 4.2 MOEA/D-DE with SVR for Dynamic Multiobjective
Optimization

Require:
MOP, A stopping criterion
N : Population size
P : the number of subproblems considered in MOEA/D
A uniform spread of N weight vectors: λ1, λ2, . . . , λP

T : neighbourhood size
SVR Parameters

Ensure:
Approximated POF {f 1, . . . , fN}, Approximated POS {x1, . . . , xN}
Step 1 â Initialization:

1. Generate evenly spread weight vectors. Initialize the neighborhood
of each vector by finding its T closest weight vectors in terms of
Euclidean distance.

2. Generate an initial population, x1, . . . ,xN by uniform random
initialization within the decision space. Evaluate objective function
values of each solution and set f i = f(xi).

3. Load SVR parameters obtained from Parameter Selection mechanism
described in Algorithm 1.

4. Initialize ideal vector by setting

zk = min
j=1,...,N

f jk

where k = 1. . . . ,m

5. Randomly initialize a set of detector individuals within the decision
space for change detection.

76

Step 2 â Update:

1. Change Detection: Evaluate the objective function values of
the detector individuals and check whether they have changed to
indicate a change in the dynamic multiobjective problem. If change
is detected go to Step 2.2. Otherwise, go to Step 2.3.

2. SVR prediction

(a) Save population.

If number of changes is lesser than training window size,
randomly reinitialize the population using RND algorithm and
go to Step 2.1. Otherwise, go to Step 2.2.2.

(b) Formulate training and testing file to be provided to LibSVM.

(c) Train SVR using the solutions just before the change and the best
SVR parameters obtained from parameter selection mechanism.

(d) Predict new solutions associated with each individual in the
decision space.

(e) Repair solutions according to deflection approach of boundary
correction if necessary.

3. Reproduction: Mating selection, Differential Evolution, update
neighborhood and the ideal vector.

Step 3 â Stopping Criteria: If stopping criteria is satisfied, then stop
and output the final population and their corresponding values in the
objective space. Otherwise, go to Step 2.

77

4.5 Empirical Study

4.5.1 Benchmark problems

The proposed algorithm is tested on problems from 3 test benchmark

suites - FDA [2], dMOP [26], and F [21]. The FDA benchmark suite is

commonly used in the performance evaluation of DMO algorithms. The

dMOP benchmark problems are an extension of the FDA benchmark suite to

test further performance characteristics of DMO algorithms such as learning

that the POS/POF does not change. The problem suite proposed in [21] is

very recent and consists of 10 problems which are partly adopted from the

above 2 benchmark suites. Nevertheless, they have also proposed 6 new test

instances in which non-linear linkages between the decision variables are

considered and benchmark problems with sharp and irregular environments

are also constructed.

4.5.2 Parameter Settings

The proposed SVR prediction model is implemented in MOEA/D-DE, which

is referred as MOEA/D-SVR for simplicity. The parameter settings for the

experiments of the various test benchmark suites are tabulated in Table 4.3.

The number of decision variables is set as 20 for all the test problems. All

the test problems considered in this study are 2-objective problems, hence

a population size of 100 is used. The various parameters for MOEA/D-DE

are implemented as guided in [29]. 10 detector individuals are utilized for

change detection purpose.

A random reinitialization method (RND) is implemented for baseline

performance comparison of MOEA/D-SVR. In this algorithm, instead of

the SVR prediction model, 20% of the population is randomly reinitialized

after a change is detected.

78

The SVR prediction model parameters are selected as described in

Section 4.4.3.

Table 4.3: Experiment Settings

Number of decision
variables, n

20 for all test problems

Population size
100 for 2 objective problems,
200 for 3 objective problems.

Neighborhood Size: 20.

Probability that parents are
selected from the

neighborhood
0.9

Decomposition method Tchebycheff

Differential Evolution CR = 1.0 and F = 0.5

Polynomial Mutation η = 20, pm = 1/n.

Number of detectors 10

Percentage for RND model 20%

Dynamic Setting
Frequency of change τT : 30,

Severity of change nt: 5

Number of changes 161

Number of generations 4835

Number of runs 10

4.5.3 Performance Metrics

MIGD, Mean Inverted Generational Distance, elaborated in Chapter 3,

Section 3.4.3 is employed as performance metric for performance comparison.

A lower value of MIGD indicates better dynamic optimization performance.

79

Figure 4.8: Visualization of SVR prediction performance in dMOP2

80

Table 4.4: Performance Comparison with other DMOEAs

Problem RND MOEAD/D-KF MOEA/D-SVR

FDA1 0.054629 ± 0.041(+) 0.010603 ± 0.004 0.015078 ± 0.010(+)

FDA2 0.006180 ± 0.001(+) 0.005471 ± 0.001 0.005767 ± 0.001(+)

dMOP1 0.004392 ± 0.000 0.004891 ± 0.000(+) 0.004799 ± 0.000(+)

dMOP2 0.079694 ± 0.063(+) 0.012550 ± 0.005 0.017388 ± 0.011(+)

F5 0.523506 ± 0.319 (+) 0.210278 ± 0.171(+) 0.067280 ± 0.027

F6 0.139782 ± 0.113(+) 0.085984 ± 0.041 0.104402 ± 0.139(+)

F7 0.186740 ± 0.179(+) 0.036362 ± 0.024 0.037965 ± 0.015(-)

F9 0.453211 ± 0.250(+) 0.484315 ± 0.496(+) 0.367412 ± 0.531

F10 0.523506 ± 0.319(+) 0.210278 ± 0.171(+) 0.065992 ± 0.027

(+) (and (−)) indicates that the difference between the marked entry and
the best entry is statistically significant (and insignificant, respectively)
using paired two-sample t-test(both are at the 5% significance level).

4.6 Results

4.6.1 Performance Comparison with other DMOEAs

MOEA/D-SVR is compared with RND and MOEA/D-KF, Kalman Filter

assisted MOEA/D [78]. Statistical test of T-test for independent samples

is performed for the MIGD statistical values. The null hypothesis is that

the proposed algorithm of SVR prediction based MOEA, MOEA/D-SVR

does not perform significantly better than the compared algorithms at

the 95% significance level. The results tabulated in Table 4.4 show that

the proposed algorithm performs significantly better than the compared

algorithms in 3 out of the 9 benchmark problems. Also, MOEA/D-SVR

performs comparably with MOEA/D-KF in one problem (F7), where the

statistical test shows that their performances are not significantly different.

81

4.6.2 Discussion

• Type I DMOPs - FDA1: In Type I DMOPs, the POF remains constant,

while the POS changes with time. From Table 4.4, it can be seen that

MOEA/D-SVR performs much better than RND in FDA1, however

it falls behind MOEA/D-KF, albeit only a small amount.

• Type III DMOPs - dMOP1: In these problems, the POS remains

constant, while POF changes with time. RND retains 80% of the

populations after a change, thereby giving the algorithm an edge in

such problems, where no change is made to the existing converged

solutions.

• Type II DMOPs: The rest of the problems used in this empirical

study, FDA2, dMOP2 and F5-F10, fall under this category, where

both the POF and POS change with time. MOEA/D-SVR performs

significantly better than the other 2 algorithms in 3 out of 7 of

these problems. F5-F7 have nonlinear linkages between their decision

variables and their POS/POF shapes have more difficult structure

than that of FDA and dMOP problems. MOEA/D-SVR performs

relatively close to MOEA/D-KF in the other 4 problems as well.

F9 and F10 are complicated problems, wherein the environment does

not change smoothly from one time instant to the next unlike all the

previously discussed problems. Further, their geometric shapes of

two consecutive POF/POS are dissimilar to each other. In F9, the

pareto set jumps from one area to another occasionally. The geometric

shapes of consecutive POFs are completely different from each other

in F10. MOEA/D-SVR is able to perform significantly better than

the other 2 algorithms in F9 and F10. The proposed Support Vector

Regression based prediction model does not make any assumptions

82

about the underlying process or similarity in shape of consecutive

POFs, thereby leading to its better performance.

4.7 Analysis

4.7.1 Prediction visualization

The SVR prediction model predicts in the decision space and assists the

evolutionary algorithm in the tracking of the Pareto Optimal Solutions

(POS) in dynamic environments. The prediction performance for the dMOP2

problem is shown in Figure 4.8. The left half of sub-figures in Figure 4.8

depicts the objective space and the right half depicts the decision space.

Both the Pareto Optimal Front and Pareto Optimal Set in dMOP2 problem

changes with time, making it a Type II DMOP [2]. The solid lines represent

the POF/POS for the current time instant. In the following time instant,

the POF/POS would be shifted to the dotted line. The red rings and

solid circles represent the current measurement and prediction estimate of

MOEA/D-SVR respectively, while the black ones indicate that of random

reinitialization method (RND). It can be seen that the prediction estimate

of SVR in MOEA/D-SVR is quite close to the new POS while the solutions

obtained by MOEA/D-DE with the RND method remain close to the

previous POS. It is to be noted that the MOEA/D’s [29] weight vectors

further assist the algorithm in getting a widely distributed set of solutions

covering the entire front.

4.7.2 Parameter Selection

C and Gamma parameters of the SVR model are selected based on the

mechanism described in 4.4.3. Both the parameters have significant impact

83

on the performance of the SVR prediction model. Based on the benchmark

problem characteristics, different values of C and Gamma may get selected

according to the problem definition. Further, since the population prediction

is performed in a univariate manner, each decision variable has its own set

of parameters that give the best performance and are chosen for future use.

Visualization of the parameters selected for various dimensions of the

decision variable shows interesting patterns as observed in figures 4.9 and

4.10. The figures are heatmaps in which the individual boxes in a figure

indicate the frequency at which the particular item was selected. For

instance, Figure 9, top left figure shows the visualization of C parameter for

the FDA1 problem. For decision variable 0, it can be seen that C values of

1 and 10 were selected much less frequently compared to the value of 100.

There are a number of observations that can be made from the visual-

izations, as enumerated below.

1. The heatmaps’ patterns are relatively distinctive for different problems.

2. Problems in which some of the decision variables share similar charac-

teristics such as in FDA2, a repetitive pattern is observed.

3. It can be observed that problems with similar characteristics as a

whole, such as F6 and F7 have very similar patterns exhibited, as

seen in Figure 4.10.

Observations made from such visualizations may prove useful when

drawing conclusions about problems with unknown pareto-optimal char-

acteristics. This may prove to be useful in understanding and analyzing

real-world problems whose POS/POF are unknown.

84

Figure 4.9: C Parameter Selection Visualization based on decision variable
number

85

Figure 4.10: Gamma Parameter Selection Visualization based on decision
variable number

86

4.7.3 MOEA/D-SVR Time Series Formulation Visu-

alization

In this subsection, the time series formed in MOEA/D-SVR is visualized

for a few problems in Figure 4.11. Each row shows the plots for a particular

problem, and different dimensions of the decision variable (nvar) are con-

sidered column-wise. A few observations from the figures are enumerated

below.

1. The training data contains some noise, as observed for FDA2, nvar =

2 subfigure in Figure 4.11. This results from the fact that the DMOEA

may not fully converge to the optimal solution prior to subsequent

change.

2. MOEA/D-SVR predictions though not optimal in all cases, are quite

close to expectation from visual analysis. Improvements can be

attained by further tuning of parameters to search for finer values.

3. Training size was chosen empirically and set as a common value of 35

for all test problems. Problem-specific training size may be needed to

improve performance based on the periodicity of POS movement, as

observed for nvar = 0, in problems F9 and F10.

4.7.4 Influence of severity of Change

nt determines the severity of change in a problem. A smaller value of

nt means a larger change occurs. The difficulty of the problem increases

with decrease in the value of nt. In this section the severity of the change

parameter is varied by steps of 5 and box-plots of IGD values are obtained

for MOEA/D-SVR, MOEA/D-KF and RND methods.

87

Figure 4.11: MOEA/D-SVR Time Series Formulation Visualization. Blue
circles represent the training data and red square denotes the predicted
value.

88

(a) dMOP2

(b) F5

(c) F9

(d) F10

Figure 4.12: Influence of Severity of Change

89

As nt changes from 5 to 10, the performance of all algorithms improve.

This implies that the smaller the change, the better the algorithm performs.

This can be accounted to the fact that when the change is small, the

prediction model can be corrected faster and more efficiently from subsequent

observations. As seen from Figure 4.12a, the performance of MOEA/D-SVR

becomes comparable to that of MOEA/D-KF as the severity of change

decreases, i.e., nt increases. Due to small changes, difference in values used

to train SVR are close to each other. The set of values in the training

window of SVR could be approximated to a linear time series. Hence the

performance of SVR becomes comparable to Kalman Filter, which also

assumes the time series to be linear. In other complex problems like F5

(Figure 4.12b), F9 (Figure 4.12c) and F10 (Figure 4.12d), it is observed that

performance of MOEA/D-KF becomes better than MOEA/D-SVR. It can

be inferred from the discussion that MOEA/D-SVR tends to perform better

when the severity of change is higher compared to the other algorithms.

4.8 Chapter Conclusion

A novel Dynamic Multiobjective Evolutionary Algorithm using Support

Vector based predictions in the decision space is proposed. It is built on the

MOEA/D framework and the Support Vector Regression prediction model

is used to estimate the subsequent optimal values of decision variables.

In this method, a time series is formed by the near-optimal solutions

obtained by the Evolutionary Algorithm in previous changes. Support Vector

Machines are used in tandem with the Evolutionary Algorithm to predict

new solutions for future generations from the time series, when a change in

the environment is detected. Change detection is performed through sentry

particles. Experimental results demonstrate that the proposed algorithm

90

shows significantly improved performances over a number of test benchmark

problems.

MOEA/D-SVR performs significantly better in some of the problems,

while it performs comparably with MOEA/D-KF in some problems. The

performance of MOEA/D-SVR is particularly good in the more complicated

problems wherein the environment does not change smoothly from one time

instant to another unlike all the other problems, as the proposed prediction

model using Support Vector Regression does not make any assumptions

about the underlying process or similarity in shape of consecutive POFs.

Analysis of the parameter selection visualization provides insights in the

decision variable feature space which may be useful in understanding and

analyzing real-world problems whose Pareto Optimal characteristics or the

linkages between decision variables are unknown.

91

Chapter 5

Adaptive Constraint Handling

in Constrained Dynamic

Multiobjective Optimization

5.1 Introduction

Optimization problems are abundant in all walks of life, whether in a

scheduling scenario or deciding which product to buy from a multitude of

choices. While the problems can be single objective or multiobjective, static

or dynamic, constraints are common in most of the problems. However,

in the Evolutionary Computation literature the problems are divided into

two categories - unconstrained or constrained. Unconstrained problems

consist of only finding the decision variables that minimize or maximize the

given objective(s). They are commonly referred to as boundary constrained

problems, wherein constraints are imposed on the range of values that the

decision variables are allowed. In essence, these problems are unconstrained

problems. In the previous chapters in the thesis, unconstrained dynamic

problems have been explored and a number of mechanisms to solve them

92

have been discussed. Once the boundary conditions of decision variables are

taken into account, the entire search space is feasible space in unconstrained

problems.

In constrained problems, however, the presence of constraints alters the

feasibility of regions resulting in many types of difficulty to optimization

algorithms. Constraints can leave most of the search space untouched

and therefore, feasible, while regions close to the original pareto optimal

front are rendered infeasible. The resultant pareto optimal front is at the

boundary/intersection of feasible and infeasible regions. Other problems

cause difficulty in the entire search space. Some problems make the

entire unconstrained Pareto-optimal region infeasible in the presence of

the constraints. Constraints make the Pareto-optimal region discontinuous,

with a number of disconnected continuous regions. In some other cases, the

disconnected continuous regions could be just a single point. Such problems

can be made even more difficult by making it harder to reach the single

optimal points by surrounding them with long infeasible tunnel regions.

Another form of difficulty is experienced when the disconnected regions are

not uniformly distributed.

Problems with such constraints cause difficulties only in the vicinity

of the original Pareto Optimal Front. While the previously discussed

problems bring in higher difficulty in the vicinity while the rest of the

search space remains continuously feasible, other problems bring in higher

complexity by making the transition from feasible to infeasible regions far

away from the Pareto-optimal region. Feasible and infeasible regions are

interspersed whereby the algorithm has to tunnel through an infeasible

region(s) to reach the Pareto-optimal region. The interspersion could

also occur along the pareto-optimal region rendering some parts infeasible

resulting in disconnected feasible pareto optimal regions.

93

Constrained test benchmark problems with such difficulties and a tunable

manner are proposed in [105]. These problems have been converted to

dynamic constrained problems in this thesis to test the performance of

dynamic optimization strategies such as diversity introduction, diversity

maintenance and prediction techniques combined with an adaptive threshold

based constraint handling mechanism.

The rest of the chapter is organized as follows. Section 5.2 provides

some background on constraint problems. Section 5.3 reviews related

work in the literature on static constraint handling methods as well as

those in dynamic environments. Section 5.4 describes the methodology

adopted in this chapter to study DCMOPs. Section 5.5 shows the empirical

study involving test benchmark problems, performance metrics, results and

performance comparison with other algorithms. Section 5.6 provides an

analysis on the results. Section 5.7 concludes this chapter.

5.2 Background

It is necessary to consolidate understanding of the problem definitions in

constrained environments to able to tackle them better. To that end, a

number of definitions are elaborated in this section.

5.2.1 Constrained Multiobjective Optimization Prob-

lem Definition

A Constrained Multiobjective Optimization problem can be expressed in

its general form mathematically as

94

Minimize/Maximize fm(x),m = 1, 2, . . . ,M ;

subject to gj(x) ≥ 0,j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K;

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n.

where fi is the i-th objective function and M is the number of objectives.

f(x) = [f1(x)f2(x)...fm(x)]T forms the objective vector, f(x) ∈ RM . A

solution x is a vector of n decision variables: x = [x1x2...xn]T . The above

general problem is associated with J inequality constraints, gj(x) and K

equality constraints, hk(x). The last set of constraints are called variable

bounds, restricting each decision variable xi to take a value within a lower

x
(L)
i and an upper x

(U)
i bound. These variable bounds constitute the decision

variable space Ω ∈ Rn, or simply the decision space.

In the presence of constraints gj and hk, the entire decision variable

space Ω may not be feasible. The feasible region S is the set of all feasible

solutions in the context of optimization.

5.2.2 Dynamic Constrained Multiobjective Optmiza-

tion Problem Definition

When considering dynamic environments, the objectives (by extension,

the Pareto Optimal Front(s)), Pareto Optimal Set and/or the constraints

may change with time. In this thesis, the focus is to analyze dynamic

optimization techniques in constrained environments. Therefore, we consider

the constraints to be static while the Pareto Optimal Solutions change with

time. This can be represented mathematically in the following form,

95

Minimize/Maximize fm(x, t),m = 1, 2, . . . ,M ;

subject to gj(x) ≥ 0,j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K;

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n.

wherein the time variable, t in the objective expression indicates that

the problem changes with time.

5.2.3 Other definitions

Feasibility ratio is a measure of the number of feasible solutions in the

population in a generation over the total population size.

Feasibility ratio, fr =
Number of feasible individuals

Total Population Size

Constraint violation in inequality constraints occurs when gj(x) < 0. In

the case of equality constraints, strict adherence to complete equality is

not expected. A user-defined tolerance value (δ) is defined, usually very

small such as 0.001 or 0.0001 [106]. Therefore, constraint violation can be

measured as

cj(x) =

 gj(x), when gj(x) < 0

0, otherwise

for inequality constraints. For equality constraints, constraint violation can

be expressed as

ck(x) = max(0, |hk(x)| − δ)

96

5.3 Related Work

Various constraint handling methods have been proposed in the literature.

Constraint handling for single objective problems has been a highly active

research area for a number of decades [107] [108] [109]. Approaches proposed

for single objective optimization have been directly ported to multiobjective

optimization. However, it is much more recently that constraint handling is

being considered in Evolutionary Multiobjective Optimization [110]. Any

Evolutionary Algorithm encounters three stages of the population during

optimization -

• Only infeasible individuals

• Mix of feasible and infeasible individuals

• Only feasible individuals

In initial generations of the evolutionary process, depending on the

difficulty and complexity of the problem, the population might contain a

mix of feasible and infeasible individuals or only infeasible individuals. The

goal of a Constrained Multiobjective Optimization Evolutionary Algorithm

(CMOEA) is to ultimately find feasible as well as importantly, optimal

solutions. The numerous methods seen in the literature approach these

population stages in different perspectives leading to differing performances.

They can be grouped into the following main categories:

1. Penalty function based

2. Modified Genetic Operators

3. Repair

4. Multiobjective Approach

97

5. Preference based

A review of the various groups of methods from numerous works is

discussed in detail in the following subsections.

5.3.1 Penalty function based methods

Penalty function based methods are the simplest and most easy to implement

(thereby commonly used) constraint handling methods. Constrained opti-

mization problems are generally converted to unconstrained optimization

problems by taking the constraint violation into account with the objective

functions or fitness value by adding a penalty. These methods can be further

divided into static, death, dynamic and adaptive approaches.

Static penalty function methods are those in which current generation

number is not taken into account [108] [111]. In [112], genetic algorithms

are used to solve non-linear constrained optimization problems where a

multi-stage weight assignment to the penalty applied is designed to handle

constraint violation which showed better performance than a single-stage

weight assignment.

In death penalty method [108], irrespective of the degree (whether

they violate only one constraint to a small extent or many constraints) to

which individuals violate constraints, infeasible individuals are discarded

without extracting any information from them. While this method is very

easy to implement, it ignores the fact that some infeasible individuals

may carry important information in some generations compared to their

feasible counterparts, making use of which may lead to faster convergence.

Also, in highly constrained problems where the ratio of feasible to total

search space is very low, it might be very difficult to arrive at a population

with a reasonable feasibility ratio, let alone finding optimal solutions. In

many problems, finding feasible solutions itself is considered a NP-hard

98

problem [109]. Many studies have shown that the performance of death

penalty methods is inferior to other penalty methods such as adaptive

penalty or through use of penalties that drive the solutions towards the

feasible region [113] [114].

When current generation number is used in determining the penalties,

then the method is termed as dynamic penalty function method. In [115],

the authors proposed a non-stationary penalty function which increases

with generation number to solve general nonlinear programming problems

using real-valued genetic algorithms. As the penalty number increases with

increasing generation number, it puts higher selective pressure on the GA

to find a feasible solution. A varying fitness function technique is proposed

in [116] where the penalty factors are dynamically adjusted during the

evolutionary search process. A number of shapes for the penalty function is

considered ranging from exponential, linear to square, cubic and quadratic.

The proposed method is tested on the cutting stock problem and the Unit

Commitment problem. Gradual application of the penalty is crucial for the

success of the GA as certain penalty functions reach the maximum very

quickly leading to poor performance. Further, the choice of penalty function

is highly problem dependent and it is not easy to design a function that

would work for a number of problems.

In adaptive penalty function methods [117], information gathered through

the evolutionary search process is taken into account to arrive at the penalty

to apply. An adaptive constraint handling approach embedded in MOEA/D

which adaptively decides on the violation threshold for comparison is

proposed in [118]. In [119], a self adaptive penalty function approach

is proposed, in which a new fitness value, called distance measure in the

normalized fitness-constraint violation space and two penalty values are

applied to infeasible individuals to identify the best infeasible individuals

99

in the current population. The feasibility ratio of the current population

determines whether the search should be towards finding feasible solutions

or optimal solutions. Initially proposed for single objective optimization, the

self adaptive penalty method was extended to multiobjective constrained

problems in [110] [106] by implementing the technique on NSGA-II.

5.3.2 Modified Genetic Operators

GENOCOP, Genetic Algorithm for Numerical Optimization of Constrained

Problems system assumes linear constraints only and a feasible initial popu-

lation. The GENOCOP system showed superior performance to traditional

methods when applied to the nonlinear transportation problem and also

effectively reduces the search space by eliminating equality constraints along

with an equal number of decision variables. Strategic Oscillation, originally

proposed in an Operations Research technique [109], has subsequently been

used in combinatorial and nonlinear optimization problems. It entails

an estimation of locating the boundary of the feasible region through an

adaptive penalty mechanism in which a mechanism is devised to cross

the feasibility boundary back and forth to identify the best direction of

movement.

5.3.3 Repair methods

Repairing involves modifying infeasible individuals and pushing them

towards the feasible region [120]. This method increases the computational

complexity of the algorithm based on the rate at which repairing is done to

the infeasible population and repair method is highly problem dependent

and need to be designed specifically for each problem [109]. In [118],

gradient local search is used, along with the adaptive penalty threshold

to further accelerate the rate of convergence by invoking repair method

100

to repair the infeasible solutions at a probability of 5%. The weakness

of Genocop [121] method discussed in the previous subsection lies in

its inability to handle nonconvex search spaces, to deal with nonlinear

constraints in general. Genocop III [122] is able to overcome this restriction

by using a dual population approach. A repair mechanism is implemented

by identifying fully feasible points known as reference points and generating

random solutions between a reference point and the infeasible solution in

consideration.

5.3.4 Multiobjective Approach

In this approach, even single objective optimization problems are solved

using Multiobjective Evolutionary Algorithms wherein constraints are

incorporated as one or more objectives. In [111], the authors proposed

a Multiobjective approach for solving single objective but constrained

problems. A two-phase approach is adapted wherein in the first phase,

the objective function is completely ignored and the problem is treated

as a constraint satisfaction problem. Individual with the least constraint

violation is considered as an elite solution and is archived. The genetic

search is guided towards minimizing the constraint violation and eventually

finding feasible solutions. In the second phase, the objective function and

satisfaction of constraints are considered as 2 objectives of a bi-objective

problem and are tried to be simultaneously optimized.

An Evolutionary Algorithm of Nondominated Sorting with Radial Slots

known as ENORA is proposed in [123], which incorporated the Pareto

concept of Multiobjective optimization using the min-max formulation for

constraint handling and a new diversity mechanism based on the partitioning

of search space in a set of radial slots along which successive populations

are positioned. Another algorithm based on multiobjective optimization

101

techniques to handle constraints is proposed in [124] in which three models

of a population-based algorithm generator, an infeasible solution archiving

and replacement mechanism are introduced.

5.3.5 Preference based methods

Many methods involve exercising preference of feasible solutions over infeasi-

ble solutions. In such methods, infeasible solutions may be considered worse

than feasible solutions irrespective of their objective values. One of the most

popular techniques proposed is proposed in [27] named as the Constraint

Domination principle. The concept of domination in multiobjective context

is modified to include constraints. Constraint handling is attained through

applying a modified binary tournament selection in choosing the individuals

that survive to the next generation. When two individuals are considered

in the binary tournament selection, only three situations are possible -

1. both solutions are feasible

2. both solutions are infeasible

3. one is feasible, while the other is infeasible.

A solution i is said to constrained-dominate a solution j, if any of the

following conditions is true.

1. Solution i is feasible and solution j is not.

2. Both solutions are infeasible, but solution i has a smaller constraint

violation value.

3. Both solutions are feasible, but solution i dominates solution j.

Using the constraint domination principle, feasible solutions are always

better ranked than infeasible solutions. Between infeasible solutions, the

102

one with smaller constraint violation value has a better nondomination

rank. This method is easy to implement and shows competitive performance

as well, but the selection pressure may not be sufficient in problems with

highly constrained environments. In [125], the authors proposed a MOEA

in which constraint handling is performed through three nondominated

rankings - firstly based on objectives, secondly on the different constraints,

and finally ranked based on the combination of all objectives and constraints.

This demands a larger computational complexity, while that of the Con-

straint Domination Principle is not deviant from the original NSGA-II’s

computational complexity.

Penalty functions based methods are relatively unable to strike the

balance between objective functions and penalties applied to constraint

violations. Runarsson and Yao introducted the stochastic ranking approach

in [126] [127] wherein the objective functions and penalties are stochastically

ranked using a probability factor that determines which of the two (objective

functions or penalties) determine the rank of an individual.

A CMOEA with ensemble of constraint handling methods is proposed

in [128] based on the argument that it is impossible for a single constraint

handling method to outperform all other methods on all problems irrespec-

tive of the exhaustiveness of parameter tuning. In this CMOEA, self adaptive

penalty, superiority of feasible solution and ε-constraint are employed as

the constraint handling techniques, each method associated with its own

population.

5.3.6 Dynamic Constrained Multiobjective Evolution-

ary Algorithms

Several Evolutionary Algorithms have been proposed to tackle Dynamic

Single objective Constrained problems [107]. However, only a handful of

103

Dynamic Constrained Multiobjective Evolutionary Algorithms (DCMOEA)

have been seen in the literature. In [129], the authors implemented the

self adaptive penalty function method proposed in [106] for Dynamic

Multiobjective Optimization. A bio-inspired Artificial immune system [130]

[131] is used to develop a Dynamic Constrained Multiobjective Optimization

Artificial Immune System (DCMOAIS) to dynamically track the Pareto

fronts of time-varying constrained multiobjective problems with changing

variable dimensions. Constraint Domination Principle [105] discussed in

the previous section implemented in Dynamic NSGA-II also results in a

DCMOEA which outperforms the algorithm proposed in [125].

5.4 Methodology

To bridge the research gap in Evolutionary Dynamic Constrained Multiob-

jective Optimization, a DCMOEA based on an adaptive constraint handling

mechanism inspired from works in the literature [105] [118] along with

dynamic optimization strategies are proposed in this work. The following

subsections elaborate the constraint handling mechanisms considered and

the dynamic optimization techniques to track the time-varying optima.

5.4.1 Constraint Handling Mechanisms

A review of the various constraint handling methods in the literature (refer

to section 5.3) indicated that there has not been much work in tackling

constraints in the decomposition framework of MOEAs such as incorporating

the mechanisms in MOEA/D, MOEA/D-DE or related algorithms. The

penalty function based methods involve adding a penalty expression from

the constraint violation space to the objective function values, which might

distort the neighbourhood relationship underlying the weighted vector

104

formulation in MOEA/D framework.

The Constraint Domination Principle [105] showed competitive per-

formance in finding feasible solutions to static constrained multiobjective

optimization problems. This method was proposed to be incorporated

in a domination-based framework wherein the Constraint Domination

Principle is used to determine the rank(s) of the population to be used in

the nondominated sorting. The principle’s main ideology has been extracted

and incorporated into the decomposition-based framework of MOEA/D-

DE in this work. The evolution of individuals in the population proceeds

normally through Differential Evolution in every generation followed by

mutation. Each child population needs to be evaluated on whether it can

replace individuals in the parent population. In MOEA/D and MOEA/D-

DE, the comparison between child and parent population is performed

by evaluating their fitness value using the Weighted-Sum or Tchebycheff

approach (by taking into account the parent’s weight vector). If the child’s

fitness is better than that of the parent’s, then the child replaces the parent

and the ideal vector is updated accordingly. In the proposed approach for

handling constrained problems, the constraint violation of each parent and

child individual is computed during objective function evaluation. When

survivor selection needs to be performed, the following steps are employed

to determine the individual that can survive to the next generation.

1. If parent has no constraint violation, while the child violates some

constraint(s), then the parent solution is not replaced and no update

is required.

2. If parent has some constraint violation(s), while the child is feasible,

then the child replaces the parent in the population and the ideal

point reference is updated.

105

3. If both have constraint violations, then the solution with lower

constraint violation is selected.

4. If both are feasible solutions, then their fitness is evaluated normally

using weighted-sum or tchebycheff approach and the solution with

lower fitness value is chosen to survive (assuming minimization prob-

lem).

However, one of the drawbacks in this approach is that a feasible

individual is always preferred over an infeasible individual. Scenarios

wherein an infeasible individual might have better objective function val-

ues are not taken into account when employing this constraint handling

principle. If some amount of information can be incorporated into the

evolutionary process from the infeasible individuals (even when compared

against feasible individuals) with reasonably small constraint violation,

convergence towards feasibility and subsequently optimality may be achieved

faster. In order to incorporate information from infeasible individuals, the

feasibility/infeasibility definition is altered using an adaptive threshold.

Individuals whose constraint violation values are lesser than that of the

threshold are considered at par with feasible individuals.

Adaptive Constraint Threshold

The performance of the algorithm would be highly dependent on the

threshold value set and care should be taken not to set too low a value, which

would mean that only infeasible individuals very close to the feasibility

boundary may be affected. Setting too high a value may also result in

many infeasible individuals replacing feasible individuals in the population.

During initial generations, it is helpful to start with a relatively higher

threshold value, which is subsequently gradually reduced when the feasibility

106

ratio of the population increases, i.e. the number of feasible individuals

in the population increases. Range of constraint violation values is highly

dependent on each test benchmark problem. Therefore, firstly, the mean

constraint violation of the population, CVmean is computed after fitness

evaluation as follows,

CVmean =

∑N
i=1CVi
N

, (5.1)

where N denotes the population size, CVi stands for the constraint

violation value of individual i. The feasibility ratio (fr) is calculated as

the ratio of the number of feasible individuals in the population to the

population size(refer to 5.2.3). Subsequently, the constraint threshold (CVδ)

is calculated as

CVδ = fr × CVmean. (5.2)

The computed adaptive constraint threshold is used to determine whether

the parent or the child solution survives to the next generation.

• If both the solutions are feasible, or if one of them is feasible and

the other’s constraint violation value is lesser than CVδ, then the

solutions are compared based on their fitness value computed using

weighted-sum or tchebycheff approach.

• If both of them are infeasible, then three conditions are possible.

– If the constraint violation value of both are below the threshold,

then comparison is again based on their fitness value.

– However, if one of the constraint violation values is lesser than

CVδ and the other is not, then the former is chosen.

107

– If both the CVi are greater than CVδ, then the solution with

lesser constraint violation value is chosen.

5.4.2 Dynamic Optimization Techniques

The proposed constraint handling mechanism needs to be incorporated

in a dynamic MOEA to track the time-varying optima. The Kalman

Filter based prediction DMOEA proposed in Chapter 3 is chosen as the

main Dynamic Optimization technique to act along with the adaptive

constraint threshold based constraint handling mechanism to tackle Dynamic

Constrained Multiobjective Optimization Problems(DCMOPs). Further,

random reinitialization method (RND) is also considered to study the effect

of this strategy in handling DCMOPs. In RND, when change occurs in the

problem during evolution, 20% of the population is randomly reinitialized

in the decision search space, while the remaining 80% of the population is

retained as such. Hypermutation is another method that is considered to

introduce diversity in the population after a change is detected in DMOPs. A

high value of mutation probability (0.5) is employed to increase exploration

in hypermutation after a change has occurred.

Algorithm pseudocode of proposed constraint handling method with

the dynamic optimization techniques is provided in Algorithm 5.1 for easy

reference.

5.5 Empirical Study

5.5.1 Benchmark Problems

There is a lack of benchmark problems in the context of constrained multi-

objective optimization in dynamic environments [129]. Static constrained

108

Multiobjective Optimization benchmarks proposed by Deb et al in [105]

pose significant difficulties to finding pareto optimal solutions in constrained

environments. These problems have been modified to incorporate dynamic

characteristics. The Pareto Optimal Set of all problems changes with time,

and there are nonlinear constraints of varying difficulties applied in the

objective space. All problems have 2 objectives and 10 decision variables.

DCTP1 has 2 constraints while DCTP2-7 have 1 constraint each of varying

difficulty which are attained by assigning different values to 6 parameters

in the benchmark function definition. Frequency of change, τT and severity

of change, nT are applicable to the designed DCMOPs as well.

5.5.2 Experimental Setup

The parameter values for various components of the proposed DCMOP

are tabulated in table 5.1. A population size of 100 is generally employed

for bi-objective problems. However, because of the increased difficulty in

considering the DCMOPs, a population size of 200 is used for all problems.

The problem changes every 10 generations, i.e. the frequency of change, τT

is 10 and the severity of change, nT is also set at a reasonable value of 10.

5.5.3 Performance Metrics

The Hypervolume measure or Hypervolume performance indicator [70] was

first proposed in [132] as ‘size of the space covered’. The Hypervolume

indicator is one of the most popularly used measures for the performance

of Multiobjective Optimization algorithms due to its theoretically good

characteristics [70] [133] [134] [135]. Also, the class of algorithms known as

Indicator based algorithms [136] [137] [138] [139] [135] [140], usually employ

Hypervolume as the performance indicator to provide feedback to the

Optimization algorithm about its performance as the Hypervolume metric

109

Table 5.1: Experiment Settings

Number of decision
variables, n

10 for all test problems

Population size 200 for all problems

Number of Constraints
2 for DCTP1, 1 for DCTP2

to DCTP7

Neighborhood Size: 20.

Probability that parents are
selected from the

neighborhood
0.9

Decomposition method Tchebycheff

Differential Evolution CR = 1.0 and F = 0.5

Polynomial Mutation η = 20, pm = 1/n.

Number of detectors 10

Percentage for RND model 20%

Percentage for HYP model 20%

Hypermutation probability
for HYP model

0.5

KF model process noise Gaussian of N(0, 0.04)

KF model observation noise Gaussian of N(0, 0.01)

Dynamic Setting
Frequency of change τT : 10,

Severity of change nt: 10

Number of changes 40

Number of generations 400

Number of runs 30

does not require the knowledge of the Pareto Optimal Front. However,

the high computational complexity of Hypervolume calculation has been

frequently criticized in the literature, especially when there are many

objective functions. To address this issue, many fast and efficient methods

to perform hypervolume calculation/approximation have been proposed

110

[141] [142] [143] [144].

Hypervolume of a solution set can be defined as the volume of the region

dominated by the solution set given the location of a reference point. The

Hypervolume measure is computed in the objective space and it contains

both convergence and divergence information. A higher value of the measure

implies better optimization performance. Hypervolume is the only known

indicator that is in compliance with the concept of Pareto dominance,

i.e. if one set of solutions dominate another set of solutions, the former’s

hypervolume value is always higher than that of the latter.

The Hypervolume metric is modified for evaluating performance in

dynamic environments, by taking average of the hypervolume values during

certain time instances over a run. The chosen time points are the instances

immediately before a change occurs. Therefore, the modified Hypervolume

metric is given by,

MHPV =
1

|T |
∑
t∈T

HPV (P t, Nadir∗), (5.3)

where, T is a set of discrete time points in a run, |T | is the cardinality of T .

The Hypervolume of the obtained pareto front at a particular time instant,

P t is calculated by providing a reference point. The reference point is chosen

as the estimated nadir point, i.e. the point in the objective space with the

worst objective function values that is obtained in the population [145]. A

higher value of MHPV implies better dynamic optimization performance.

The measure can be combined with the feasibility ratio of the population

to evaluate whether constraints have been adhered to.

111

5.5.4 Results

The statistical results of MHPV values for the DCTP test benchmark

problems are tabulated in Table 5.2. The proposed constraint handling

mechanism implemented in MOEA/D-DE with the dynamic optimization

techniques of Kalman Filter prediction method, random reinitialization

and hypermutation are denoted as CMOEA/D-KF, CMOEA/D-RND and

CMOEA/D-HYP respectively. The 3by3 variant of Kalman Filter prediction

method is employed. Both the standalone(CMOEA/D-KF) and the scoring

scheme based method(CMOEA/D-KFSC) are used to solve the DCMOPs.

Table 5.2: Experiment Results of CMOEA/D-KF, CMOEA/D-RND,
CMOEA/D-HYP

Problems CMOEA/D-RND CMOEA/D-HYP CMOEA/D-KF CMOEA/D-KFSC

DCTP1 0.300333 ± 0.001(+) 0.302992 ± 0.001 0.297087 ± 0.001(+) 0.301753 ± 0.001(+)

DCTP2 0.444539 ± 0.057(+) 0.474703 ± 0.011 0.337455 ± 0.039(+) 0.417221 ± 0.047(+)

DCTP3 0.277976 ± 0.002(+) 0.288567 ± 0.002 0.270304 ± 0.001(+) 0.274611 ± 0.004(+)

DCTP4 0.076447 ± 0.013(+) 0.074765 ± 0.012(+) 0.087591 ± 0.004 0.061592 ± 0.008(+)

DCTP5 0.275923 ± 0.003(+) 0.284768 ± 0.003 0.268160 ± 0.001(+) 0.269971 ± 0.003(+)

DCTP6 0.297524 ± 0.008(-) 0.261173 ± 0.088(+) 0.175568 ± 0.048(+) 0.298233 ± 0.008

DCTP7 0.428832 ± 0.002(+) 0.431772 ± 0.003 0.208133 ± 0.009(+) 0.431298 ± 0.003(-)

(+) (and (−)) indicates that the difference between the
marked entry and the best entry is statistically significant
(and insignificant, respectively) using paired two-sample

t-test(both are at the 5% significance level).

Statistical test of T-test for independent samples is performed for the

MHPV statistical values. The hypermutation based method performs best

112

in 4 out of the 7 problems, while the Kalman filter based methods perform

best in 2 of the problems. In DCTP7, the hypermutation and scoring

scheme based Kalman filter method perform comparatively well.

5.5.5 Performance Comparison

The proposed algorithms are compared with Dynamic NSGA-II (DNSGAIIA

and DNSGAIIB) embedded with the constraint domination principle to

tackle DCMOPs. DNSGAIIA randomly reinitializes a part of the popula-

tion when a change occurs, while DNSGAIIB employs a higher mutation

probability when a change is encountered.

The statistical results of MHPV values for the various algorithms are

presented in Table 5.3.

Table 5.3: Performance Comparison on DCTP DCMOPs

Problems CMOEA/D-KF CMOEA/D-KFSC DNSGAIIA DNSGAIIB

DCTP1 0.297087 ± 0.001(+) 0.301753 ± 0.001 0.287386 ± 0.003(+) 0.288957 ± 0.002(+)

DCTP2 0.337455 ± 0.039(+) 0.417221 ± 0.047 0.326238 ± 0.004(+) 0.327419 ± 0.003(+)

DCTP3 0.270304 ± 0.001(+) 0.274611 ± 0.004(+) 0.284389 ± 0.003(-) 0.285820 ± 0.003

DCTP4 0.087591 ± 0.004(+) 0.061592 ± 0.008(+) 0.128391 ± 0.011(-) 0.133737 ± 0.010

DCTP5 0.268160 ± 0.001(+) 0.269971 ± 0.003(+) 0.281710 ± 0.004(-) 0.282511 ± 0.003

DCTP6 0.175568 ± 0.048(+) 0.298233 ± 0.008 0.263610 ± 0.008(+) 0.260739 ± 0.049(+)

DCTP7 0.208133 ± 0.009(+) 0.431298 ± 0.003 0.382348 ± 0.011(+) 0.390969 ± 0.009(+)

(+) (and (−)) indicates that the difference between the
marked entry and the best entry is statistically significant
(and insignificant, respectively) using paired two-sample

t-test(both are at the 5% significance level).

113

Statistical test of T-test for independent samples is performed for the

MHPV statistical values. The null hypothesis is that the proposed algorithm

of Kalman prediction based MOEA, MOEA/D-KF combined with the novel

adaptive constraint handling mechanism does not perform significantly

better than the compared algorithms at the 95% significance level. However,

the results tabulated show that the proposed algorithm performs significantly

better than the compared algorithms in 4 out of the 7 benchmark problems.

5.5.6 Discussion

DCTP1 problem has two constraints which render a portion of the uncon-

strained Pareto Optimal Front infeasible. The two constraints boundary

form part of the constrained Pareto Optimal Front. Trend of Hypervolume

performance metric over number of changes for DCTP1 is shown in figure 5.1.

While all algorithms perform competitively in later changes, CMOEA/D-KF

and CMOEA/D-KFSC perform better right from the first change.

Figure 5.1: Hypervolume trend comparison in DCTP1, τT = 10, nT = 10

DCTP2 to DCTP7 have single constraints but their difficulty varies

based on the difficulty posed by the constraints to reach the optimal

114

solutions. DCTP2 consists of disconnected pareto optimal regions which

poses difficulty to the DCMOEA to find as many disconnected regions as

possible. CMOEA/D-KFSC performs significantly better than the other

algorithms in this problem (refer to Figure 5.2).

Figure 5.2: Hypervolume trend comparison in DCTP2, τT = 10, nT = 10

In DCTP3, the disconnected pareto optimal regions in DCTP2 reduces to

single pareto optimal solutions by increasing the value of d in the benchmark

problem definition. The problem complexity is further increased in DCTP4

by increasing the value of parameter a which makes the transition from

continuous to discontinuous feasible region far away from the pareto optimal

region. In DCTP5, the disconnected regions are not equally distributed

in the objective space. DNSGAII algorithm variants, DNSGAIIA and

DNSGAIIB perform better than the proposed algorithms in these problems,

which may indicate that selective pressure needs to be increased to tunnel

to the optimal regions as well as to increase focus on diversity maintenance.

The hypervolume trends for these problems are given in Figure 5.3.

The Pareto Optimal Front of DCTP6 lies entirely on a part of the

constraint boundary. DCTP6 consists of a number of holes of infeasible

115

Figure 5.3: Hypervolume trend comparison in DCTP3-5, τT = 10, nT = 10

regions before coming to the island containing the Pareto Optimal Front

which significantly increases the difficulty of the problem. Infeasibility in

the objective search space comes along the Pareto Optimal Front in DCTP7.

This problem renders some portions of the unconstrained Pareto Optimal

116

Front infeasible, resulting in a disconnected set of continuous regions. It

has been pointed out that an algorithm need to maintain adequate diversity

right from the beginning of a simulation run to find all (or atleast many)

such disconnected regions. The hypervolume trends for these problems are

given in Figure 5.4.

Figure 5.4: Hypervolume trend comparison in DCTP6 and DCTP7, τT =
10, nT = 10

5.6 Analysis

5.6.1 Influence of severity of change

Decreasing change severity parameter value, nT results in increase in problem

difficulty as the distinction between subsequent Pareto Optimal Solutions is

117

Figure 5.5: Influency of severity of change in DCTP2, DCTP6 and DCTP7

higher. In this section, the severity of change, nT is provided with 3 values

- 5, 10 and 20. The frequency of change remains constant at a value of 10.

The box-plots of MHPV values for CMOEA/D-KF variants and DNSGAII

variants are provided in Figures 5.5 and 5.6.

It can be observed in Figure 5.5 that even with increasing problem

difficulty from right to left, CMOEA/D-KFSC performs better than the

DNSGAII variants.

In DCTP3-5 problems results in the performance comparison section, the

DNSGAII variants performed better than that of the proposed algorithms

for problem parameters, nT = 10 and τT = 10. However, when problem

difficulty increases with decreasing nT value, the proposed algorithms

perform better as can be observed in Figure 5.6.

118

Figure 5.6: Influency of severity of change in DCTP3, DCTP4 and DCTP5

5.6.2 Influence of frequency of change

When the problem changes often, the difficulty posed increases as the

DMOEA has to swiftly adapt to the new environment and track the

time-varying solutions. This difficulty is compounded in DCMOPs as

the constraint handling mechanism needs to find feasible as well as optimal

solutions quickly to attain fast convergence which is essential in dynamic

scenarios. In this subsection, the frequency of change parameter, τT is

varied and takes three values - 5, 10, and 25, while the severity of change

parameter, nT is maintained at a constant value of 10.

For DCTP1, CMOEA/D-KFSC provides the best performance for all

values of τT . It can be observed in Figure 5.7a that the performance of all

algorithms improves as the problem difficulty decreases, as can be expected.

When problem changes more frequently for DCTP2, i.e. lower value of

τT , the scoring scheme based method CMOEA/D-KFSC performs highly

119

(a) DCTP1

(b) DCTP2

Figure 5.7: Influence of Frequency of Change in DCTP1 and DCTP2

competitively. However, when changes are well-separated in the time scale,

i.e. they occur less frequently, the standalone Kalman Filter based method

CMOEA/D-KF performs significantly better than the other algorithms

(refer to Figure 5.7b).

DNSGAII variants performed better than the proposed algorithms for

problems, DCTP3, DCTP4 and DCTP5, for the experiment setting of

nT = 10 and τT = 10. However, in Figure 5.8a it can be observed that

CMOEA/D-KFSC performs better than the DNSGAII variants for lower

value of frequency of change parameter, τT . Also, it can be observed in

Figures 5.8b and 5.8c, the proposed algorithms perform continuously better

with increasing problem difficulty compared to the DNSGAII variants.

In problems DCTP6 and DCTP7, the proposed algorithms continue to

provide best performance for all values of frequency of change. The variance

of Hypervolume values (indicated by the vertical length of the box plot) for

CMOEA/D-KFSC does not fluctuate much for changing problem difficulty

indicating better robustness, compared to the DNSGAII variants whose

120

(a) DCTP3

(b) DCTP4

(c) DCTP5

Figure 5.8: Influence of Frequency of Change in DCTP3-5

(a) DCTP6

(b) DCTP7

Figure 5.9: Influence of Frequency of Change in DCTP6 and DCTP7

121

variance increases substantially with increasing problem difficulty.

5.7 Chapter Conclusion

In this chapter, dynamic multiobjective optimization in the presence of

constraints has been explored. There has been some amount of work in DMO

but only in unconstrained or boundary constrained situations. There is a

lack of algorithms and benchmark problems in the field of constrained DMO.

In this chapter, the various related works in the literature on constraint

handling mechanisms have been reviewed. Further, an existing static

constrained multiobjective optimization benchmark set has been modified

to make it a dynamic benchmark set. An adaptive threshold based constraint

handling has been proposed which has been embedded in a number of DMO

algorithms and their performance has been tested on the test benchmark

problems. The performance compared against Dynamic NSGA-II algorithm

variants is encouraging as the proposed algorithms perform better in four out

of the seven benchmark problems. Furthermore, the proposed algorithms

have better robustness and tend to perform better with increasing problem

difficulty.

122

Algorithm 5.1 MOEA/D-DE with Kalman Filter prediction and adaptive
constraint handling for Constrained Dynamic Multiobjective Optimization

Require:
MOP
A stopping criterion
N : Population size
P : the number of subproblems considered in MOEA/D
A uniform spread of N weight vectors: λ1, λ2, . . . , λP

T : neighbourhood size
Kalman Filter Parameters

Ensure:
Approximated POF {f 1, . . . , fN}
Approximated POS {x1, . . . , xN}
Step 1 â Initialization:

1. Generate evenly spread weight vectors. Initialize the neighbourhood
of each vector by finding its T closest weight vectors in terms of
Euclidean distance.

2. Generate an initial population, x1, . . . ,xN by uniform random
initialization within the decision space. Evaluate objective function
values of each solution and set f i = f(xi).

3. Initialize Kalman Filter matrices and vectors for each solution. Initial
population decision variables are set as the initial state of the Kalman
Filter.

4. Initialize ideal vector by setting zk = min
j=1,...,N

f jk where k = 1. . . . ,m

5. Randomly initialize a set of detector individuals within the decision
space for change detection.

Step 2 â Update:

1. Change Detection: Evaluate the objective function values of
the detector individuals and check whether they have changed to
indicate a change in the dynamic multiobjective problem. If change
is detected go to Step 2.2. Otherwise, go to Step 2.4

2. If scoring scheme based model, iterate through the steps in Algorithm
3.1

3. If Kalman Filter prediction, perform

(a) Measurement Update

(b) Time Update

Else, if RND perform random reinitialization, or if HYP, perform
hypermutation.

4. Reproduction: Mating selection, and Differential Evolution as per
normal MOEA/D

123

Update offspring population with parent population:

1. Compute the mean constraint violation of the population, CVmean

CVmean =

∑N
i=1CVi
N

,

where N is population size, and CVi denotes constraint violation
value of individual i.

2. Calculate feasibility ratio, fr of current population

fr =
Number of feasible individuals

Total Population size

3. Compute adaptive constraint threshold value, CVδ for current
generation update

CVδ = fr × CVmean

4. Survivor selection between parent solution, i and child solution, j

(a) If CVi < CVδ and CVj < CVδ, compare individuals based on
fitness value using tchebycheff approach

(b) Else if CVi = 0 and CVj > CVδ, choose i

(c) Else if CVj = 0 and CVi > CVδ, choose j

(d) Else, choose the individual with smaller constraint violation
value.

5. Update ideal vector

Step 3 â Stopping Criteria: If stopping criteria is satisfied, then stop
and output the final population and their corresponding values in the
objective space. Otherwise, go to Step 2.

124

Chapter 6

Conclusions & Directions for

Future Research

6.1 Conclusions

Evolutionary Multiobjective Optimization has been explored vastly in

the literature. However, there is a research gap to tackle Multiobjective

Optimization in dynamic environments using Evolutionary Algorithms. The

primary aim of this thesis is to aim to contribute in this research gap by

proposing algorithms to tackle Dynamic Multiobjective Optimization prob-

lems in unconstrained as well as constrained environments using Prediction

techniques and an adaptive constraint handling mechanism embedded in

MOEA/D-DE. In chapter 3, a linear Kalman Filter based prediction method

was built on the MOEA/D framework to tackle DMOPs. A scoring scheme

mechanism was designed to hybridize the Kalman Filter prediction with

random reinitialization. The experiment results on the FDA [2], dMOP [26]

and F [21] benchmark suite showed that the proposed algorithm shows

improved performances on a number of test benchmark problems. The

proposed algorithm is able to swiftly predict the time-varying optimal

125

solutions without needing any additional learning time. One drawback,

however, was that the linear Kalman Filter is not fully capable to tackle

non-linear problems.

Support Vector Regression, a non-linear prediction mechanism which

is data-driven, was considered in Chapter 4. A time series formed by

near-optimal solutions obtained by the Evolutionary Algorithm in previous

changes, is formulated as training data. Support Vector Machines are used

in tandem with the Evolutionary Algorithm to predict subsequent optimal

solutions for future generations from the time series, when a change in

the environment is detected. The proposed algorithm, MOEA/D-SVR

tends to perform well in complicated problems where the environment does

not change smoothly from one time instant to the next. MOEA/D-SVR’s

performance also improves with increase in severity of change. Analysis of

the parameter selection module through a heatmap visualization is capable

of providing insights for linkages in the decision variable feature space.

Chapter 5 outlines an adaptive threshold based constraint handling

mechanism combined with Dynamic Multiobjective Optimization techniques

to handle DMOPs in constrained scenarios. The proposed algorithm

performs competitively with the existing state-of-the-art and shows improved

performances with increase in the difficulty of the problem resulting from

increase in severity and frequency of change.

6.2 Directions for Future Research

The Kalman Filter prediction based DMOEA proposed in Chapter 3 showed

significantly improved dynamic optimization performance in a number of

benchmark problems. Two formulations were proposed - the first one,

2by2 considered only in the first order change in decision variables, while

126

the second one, 3by3 considered both first and secord order change. The

3by3 formulation showed better performance than the former, and this was

further improved by hybridization with the diversity introduction technique

of random reinitialization using the scoring scheme mechanism. There is

still scope for improvement by adapting the process noise and observation

noise matrices which currently take on empirically chosen values from a

Gaussian distribution. An adaptive Kalman Filter formulation may be able

to show improved performances by taking on problem-dependent parameter

values for the matrices.

Hybridization of the Kalman Filter prediction and Support Vector

Regression methods through ensembling could also result in taking advantage

of both their strengths. Diversity maintenance throughout the evolutionary

process could also be crucial in problems which especially test this aspect.

The prediction mechanisms could be further strengthened by combining

with a diversity maintenance mechanism such as online diversity assessment

at each generation.

The scoring scheme mechanism used distance travelled by DMOEA

immediately after a change to just before subsequent change as a measure

of the prediction mechanism’s performance. Indicator-based algorithm

formulation could also be embedded, wherein the Hypervolume is employed

to evaluate the performance. Other Multiobjective Optimization frameworks

such as the Multipopulation approach may also be considered.

The DCMOPs in Chapter 5 consisted of problems whose Pareto Optimal

Solutions change with time. The work can be extended to consider scenarios

in which the constraints may change with time as well.

127

Bibliography

[1] Kalyanmoy Deb and Deb Kalyanmoy. Multi-Objective Optimization

Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York,

NY, USA, 2001.

[2] Marco Farina, Kalyanmoy Deb, and Paolo Amato. Dynamic

multiobjective optimization problems: test cases, approximations,

and applications. IEEE Trans. Evolutionary Computation, 8(5):425–

442, 2004.

[3] Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke.

Evolutionary dynamic optimization: A survey of the state of the

art. Swarm and Evolutionary Computation, 6(0):1 – 24, 2012.

[4] Jrn Mehnen, Tobias Wagner, and Gnter Rudolph. Evolutionary

optimization of dynamic multiobjective functions. Technical report,

2006.

[5] Helen G. Cobb. An investigation into the use of hypermutation

as an adaptive operator in genetic algorithms having continuous,

time-dependent nonstationary environments. Technical report, Navy

Center for Applied Research in Artificial Intelligence, Naval Research

Laboratory, Code 5514, Washington, D.C. 20375-5320, 1990.

128

[6] F. Vavak, K. Jukes, and T.C. Fogarty. Learning the local search

range for genetic optimisation in nonstationary environments. In

Evolutionary Computation, 1997., IEEE International Conference on,

pages 355–360, Apr 1997.

[7] Kalyanmoy Deb, UdayaBhaskara Rao N., and S. Karthik. Dynamic

multi-objective optimization and decision-making using modified nsga-

ii: A case study on hydro-thermal power scheduling. In Shigeru

Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and

Tadahiko Murata, editors, Evolutionary Multi-Criterion Optimization,

volume 4403 of Lecture Notes in Computer Science, pages 803–817.

Springer Berlin Heidelberg, 2007.

[8] John Grefenstette. Genetic algorithms for changing environments.

In Parallel Problem Solving from Nature 2, pages 137–144. Elsevier,

1992.

[9] H. C. Andersen. An Investigation into Genetic Algorithms, and

the Relationship between Speciation and the Tracking of Optima

in Dynamic Functions. Honours thesis, Queensland University of

Technology, Brisbane, Australia, 1991.

[10] Naoki Mori, Hajime Kita, and Yoshikazu Nishikawa. Adaptation to

a changing environment by means of the feedback thermodynamical

genetic algorithm. In AgostonE. Eiben, Thomas Bck, Marc Schoe-

nauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from

Nature PPSN V, volume 1498 of Lecture Notes in Computer Science,

pages 149–158. Springer Berlin Heidelberg, 1998.

129

[11] Shengxiang Yang and Xin Yao. Experimental study on population-

based incremental learning algorithms for dynamic optimization

problems. Soft Comput., 9(11):815–834, November 2005.

[12] Helen G. Cobb. Genetic algorithms for tracking changing environ-

ments. In Proceedings of the Fifth International Conference on Genetic

Algorithms, pages 523–530. Morgan Kaufmann, 1993.

[13] Iason Hatzakis and David Wallace. Dynamic multi-objective opti-

mization with evolutionary algorithms: a forward-looking approach.

In in: Genetic and Evolutionary Computation Conference, GECCO,

ACM, pages 1201–1208. Press, 2006.

[14] Aimin Zhou, Yaochu Jin, Qingfu Zhang, Bernhard Sendhoff, and

Edward P. K. Tsang. Prediction-based population re-initialization for

evolutionary dynamic multi-objective optimization. In EMO, pages

832–846, 2006.

[15] Anabela Simes and Ernesto Costa. Evolutionary algorithms for

dynamic environments: Prediction using linear regression and markov

chains. In Gnter Rudolph, Thomas Jansen, Simon Lucas, Carlo

Poloni, and Nicola Beume, editors, Parallel Problem Solving from

Nature PPSN X, volume 5199 of Lecture Notes in Computer Science,

pages 306–315. Springer Berlin Heidelberg, 2008.

[16] Anabela Simões and Ernesto Costa. Improving prediction in

evolutionary algorithms for dynamic environments. In Proceedings of

the 11th Annual conference on Genetic and evolutionary computation,

pages 875–882. ACM, 2009.

130

[17] WeeTat Koo, ChiKeong Goh, and KayChen Tan. A predictive gradient

strategy for multiobjective evolutionary algorithms in a fast changing

environment. Memetic Computing, 2(2):87–110, 2010.

[18] P. Amato and M. Farina. An alife-inspired evolutionary algorithm for

dynamic multiobjective optimization problems. In Frank Hoffmann,

Mario Kppen, Frank Klawonn, and Rajkumar Roy, editors, Soft

Computing: Methodologies and Applications, volume 32 of Advances

in Soft Computing, pages 113–125. Springer Berlin Heidelberg, 2005.

[19] Mard Helbig and AndriesP. Engelbrecht. Dynamic multi-objective

optimization using pso. In Enrique Alba, Amir Nakib, and Patrick

Siarry, editors, Metaheuristics for Dynamic Optimization, volume 433

of Studies in Computational Intelligence, pages 147–188. Springer

Berlin Heidelberg, 2013.

[20] Shuzhen Wan, Shengwu Xiong, and Yi Liu. Prediction based multi-

strategy differential evolution algorithm for dynamic environments.

In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages

1–8, June 2012.

[21] Aimin Zhou, Yaochu Jin, and Qingfu Zhang. A population prediction

strategy for evolutionary dynamic multiobjective optimization. IEEE

T. Cybernetics, 44(1):40–53, 2014.

[22] Qingfu Zhang, Aimin Zhou, and Yaochu Jin. Rm-meda: A regularity

model-based multiobjective estimation of distribution algorithm.

Evolutionary Computation, IEEE Transactions on, 12(1):41–63, 2008.

[23] J.J. Grefenstette. Evolvability in dynamic fitness landscapes: a genetic

algorithm approach. In Evolutionary Computation, 1999. CEC 99.

131

Proceedings of the 1999 Congress on, volume 3, pages –2038 Vol. 3,

1999.

[24] Rasmus K. Ursem. Multinational gas: Multimodal optimization

techniques in dynamic environments. In In Proceedings of the

Second Genetic and Evolutionary Computation Conference. Morgan

Kaufmann, 2000.

[25] J. Branke. Memory enhanced evolutionary algorithms for changing

optimization problems. In Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on, volume 3, pages –1882 Vol. 3,

1999.

[26] Chi-Keong Goh and K. Chen Tan. A competitive-cooperative

coevolutionary paradigm for dynamic multiobjective optimization.

Evolutionary Computation, IEEE Transactions on, 13(1):103–127,

Feb 2009.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist

multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation,

IEEE Transactions on, 6(2):182–197, 2002.

[28] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary

algorithm based on decomposition. IEEE Trans. Evolutionary

Computation, 11(6):712–731, 2007.

[29] Hui Li and Qingfu Zhang. Multiobjective optimization problems with

complicated pareto sets, moea/d and nsga-ii. Trans. Evol. Comp,

13(2):284–302, April 2009.

[30] Zhenan He, G.G. Yen, and Jun Zhang. Fuzzy-based pareto

optimality for many-objective evolutionary algorithms. Evolutionary

Computation, IEEE Transactions on, 18(2):269–285, April 2014.

132

[31] K. Deb and H. Jain. An evolutionary many-objective optimization

algorithm using reference-point-based nondominated sorting approach,

part i: Solving problems with box constraints. Evolutionary

Computation, IEEE Transactions on, 18(4):577–601, Aug 2014.

[32] Jixiang Cheng, G.G. Yen, and Gexiang Zhang. A many-objective

evolutionary algorithm with enhanced mating and environmental

selections. Evolutionary Computation, IEEE Transactions on,

19(4):592–605, Aug 2015.

[33] K. Li, K. Deb, Q. Zhang, and S. Kwong. An evolutionary

many-objective optimization algorithm based on dominance and

decomposition. Evolutionary Computation, IEEE Transactions on,

19(5):694–716, Oct 2015.

[34] Handing Wang, Licheng Jiao, and Xin Yao. Two arch2: An improved

two-archive algorithm for many-objective optimization. Evolutionary

Computation, IEEE Transactions on, 19(4):524–541, Aug 2015.

[35] P.C. Roy, M.M. Islam, K. Murase, and Xin Yao. Evolutionary path

control strategy for solving many-objective optimization problem.

Cybernetics, IEEE Transactions on, 45(4):702–715, April 2015.

[36] H. Ishibuchi, N. Akedo, and Y. Nojima. Behavior of multiobjective

evolutionary algorithms on many-objective knapsack problems. Evo-

lutionary Computation, IEEE Transactions on, 19(2):264–283, April

2015.

[37] J.E. Fieldsend and R.M. Everson. The rolling tide evolutionary

algorithm: A multiobjective optimizer for noisy optimization problems.

Evolutionary Computation, IEEE Transactions on, 19(1):103–117, Feb

2015.

133

[38] Chi-Keong Goh and KayChen Tan. Dynamic evolutionary multi-

objective optimization. In Evolutionary Multi-objective Optimization

in Uncertain Environments, volume 186 of Studies in Computational

Intelligence, pages 125–152. Springer Berlin Heidelberg, 2009.

[39] PeterA.N. Bosman. Learning and anticipation in online dynamic

optimization. In Shengxiang Yang, Yew-Soon Ong, and Yaochu

Jin, editors, Evolutionary Computation in Dynamic and Uncertain

Environments, volume 51 of Studies in Computational Intelligence,

pages 129–152. Springer Berlin Heidelberg, 2007.

[40] Jurgen Branke. Evolutionary approaches to dynamic optimization

problems - updated survey. In Proceeding of GECCO Workshop on

Evolutionary Algorithms for Dynamic Optimization Problems, 2001.

[41] Su Nguyen, Mengjie Zhang, M. Johnston, and Kay Chen Tan.

Automatic design of scheduling policies for dynamic multi-objective

job shop scheduling via cooperative coevolution genetic programming.

Evolutionary Computation, IEEE Transactions on, 18(2):193–208,

April 2014.

[42] S. Palaniappan, S. Zein-Sabatto, and A. Sekmen. Dynamic multiob-

jective optimization of war resource allocation using adaptive genetic

algorithms. In SoutheastCon 2001. Proceedings. IEEE, pages 160–165,

2001.

[43] Peng Xingguang, Xu Demin, and Zhang Fubin. Uav online path

planning based on dynamic multiobjective evolutionary algorithm. In

Control Conference (CCC), 2011 30th Chinese, pages 5424–5429, July

2011.

134

[44] M. Camara, J. Ortega, and F.J. Toro. Parallel processing for

multi-objective optimization in dynamic environments. In Parallel

and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, pages 1–8, March 2007.

[45] Hongfeng Wang, Dingwei Wang, and Shengxiang Yang. A memetic al-

gorithm with adaptive hill climbing strategy for dynamic optimization

problems. Soft Computing, 13(8-9):763–780, 2009.

[46] Mario Camara, Julio Ortega, and Francisco de Toro. A single front

genetic algorithm for parallel multi-objective optimization in dynamic

environments. Neurocomputing, 72(1618):3570 – 3579, 2009. Financial

Engineering Computational and Ambient Intelligence (IWANN 2007).

[47] A. Kiruluta, E. Eizenman, and S. Pasupathy. Predictive head

movement tracking using a kalman filter. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27(2):326–

331, 1997.

[48] J.M. del Rincon, D. Makris, C.O. Uruuela, and J.-C. Nebel. Tracking

human position and lower body parts using kalman and particle filters

constrained by human biomechanics. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 41(1):26–37, Feb 2011.

[49] W.S. Chaer, R.H. Bishop, and J. Ghosh. A mixture-of-experts

framework for adaptive kalman filtering. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27(3):452–

464, Jun 1997.

[50] Jianguo Yan, Dongli Yuan, Xiaojun Xing, and Qiuling Jia. Kalman

filtering parameter optimization techniques based on genetic algorithm.

135

In Automation and Logistics, 2008. ICAL 2008. IEEE International

Conference on, pages 1717–1720, Sept 2008.

[51] P.D. Stroud. Kalman-extended genetic algorithm for search in non-

stationary environments with noisy fitness evaluations. Evolutionary

Computation, IEEE Transactions on, 5(1):66–77, Feb 2001.

[52] John Lyons and Hadi Nasrabadi. Well placement optimization under

time-dependent uncertainty using an ensemble kalman filter and a

genetic algorithm. Journal of Petroleum Science and Engineering,

109(0):70 – 79, 2013.

[53] Fengyun Qiu, Yong Wang, Mingyan Jiang, and Dongfeng Yuan.

Adaptive image restoration based on the genetic algorithm and kalman

filtering. In De-Shuang Huang, Laurent Heutte, and Marco Loog,

editors, Advanced Intelligent Computing Theories and Applications.

With Aspects of Contemporary Intelligent Computing Techniques,

volume 2 of Communications in Computer and Information Science,

pages 742–750. Springer Berlin Heidelberg, 2007.

[54] Claudio Rossi, Mohamed Abderrahim, and Julio César Dı́az. Tracking

moving optima using kalman-based predictions. Evol. Comput.,

16(1):1–30, March 2008.

[55] R. E. Kalman. A New Approach to Linear Filtering and Prediction

Problems. Transactions of the ASME Journal of Basic Engineering,

(82 (Series D)):35–45, 1960.

[56] Greg Welch and Gary Bishop. An introduction to the kalman filter.

Technical report, Chapel Hill, NC, USA, 1995.

[57] Simon J. Julier and Jeffrey K. Uhlmann. A new extension of the

kalman filter to nonlinear systems. pages 182–193, 1997.

136

[58] Dan Simon. Optimal State Estimation: Kalman, H, and Nonlinear

Approaches, chapter The particle filter, pages 461–483. John Wiley &

Sons, Inc., 2006.

[59] Lam Thu Bui, H.A. Abbass, and J. Branke. Multiobjective

optimization for dynamic environments. In Evolutionary Computation,

2005. The 2005 IEEE Congress on, volume 3, pages 2349–2356 Vol.

3, Sept 2005.

[60] Changhe Li, Shengxiang Yang, and Ming Yang. An adaptive multi-

swarm optimizer for dynamic optimization problems. Evol. Comput.,

2014.

[61] Jrgen Branke, Thomas Kaussler, Christian Smidt, and Hartmut

Schmeck. A multi-population approach to dynamic optimization

problems. In I.C. Parmee, editor, Evolutionary Design and Manufac-

ture, pages 299–307. Springer London, 2000.

[62] S. Das, A. Mandal, and R. Mukherjee. An adaptive differential

evolution algorithm for global optimization in dynamic environments.

Cybernetics, IEEE Transactions on, 44(6):966–978, June 2014.

[63] Sang you Zeng, Guang Chen, Liang Zheng, Hui Shi, H. De Garis, Lixin

Ding, and Lishan Kang. A dynamic multi-objective evolutionary algo-

rithm based on an orthogonal design. In Evolutionary Computation,

2006. CEC 2006. IEEE Congress on, pages 573–580, 2006.

[64] M. Helbig and A.P. Engelbrecht. Analysing the performance of

dynamic multi-objective optimisation algorithms. In Evolutionary

Computation (CEC), 2013 IEEE Congress on, pages 1531–1539, June

2013.

137

[65] Jrgen Branke. Optimization in dynamic environments. In Evolu-

tionary Optimization in Dynamic Environments, volume 3 of Genetic

Algorithms and Evolutionary Computation, pages 13–29. Springer US,

2002.

[66] Jrgen Branke. Survey: State of the art. In Evolutionary Optimization

in Dynamic Environments, volume 3 of Genetic Algorithms and

Evolutionary Computation, pages 31–52. Springer US, 2002.

[67] Yaochu Jin and J. Branke. Evolutionary optimization in uncertain

environments-a survey. Evolutionary Computation, IEEE Transac-

tions on, 9(3):303–317, 2005.

[68] Ronald W. Morrison. Designing Evolutionary Algorithms for Dynamic

Environments. SpringerVerlag, 2004.

[69] Arrchana Muruganantham, Yang Zhao, Sen Bong Gee, Xin Qiu,

and Kay Chen Tan. Dynamic multiobjective optimization using

evolutionary algorithm with kalman filter. Procedia Computer Science,

24(0):66 – 75, 2013. 17th Asia Pacific Symposium on Intelligent and

Evolutionary Systems, {IES2013}.

[70] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G.

da Fonseca. Performance assessment of multiobjective optimizers: an

analysis and review. Evolutionary Computation, IEEE Transactions

on, 7(2):117–132, April 2003.

[71] O. Schutze, X. Esquivel, A Lara, and Carlos A Coello Coello.

Using the averaged hausdorff distance as a performance measure in

evolutionary multiobjective optimization. Evolutionary Computation,

IEEE Transactions on, 16(4):504–522, Aug 2012.

[72] Kanpur Genetic Algorithms Laboratory. Software developed at kangal.

138

[73] V.A. Shim, Kay Chen Tan, and K.K. Tan. A hybrid adaptive

evolutionary algorithm in the domination-based and decomposition-

based frameworks of multi-objective optimization. In Evolutionary

Computation (CEC), 2012 IEEE Congress on, pages 1–8, June 2012.

[74] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A

training algorithm for optimal margin classifiers. In Proceedings of the

Fifth Annual Workshop on Computational Learning Theory, COLT

’92, pages 144–152, New York, NY, USA, 1992. ACM.

[75] Corinna Cortes and Vladimir Vapnik. Support-vector networks.

Machine Learning, 20(3):273–297.

[76] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait

method. Automation and Remote Control, 24:774780, 1963.

[77] K.-R. Mller, A.J. Smola, G. Rtsch, B. Schlkopf, J. Kohlmorgen, and

V. Vapnik. Predicting time series with support vector machines. In

Wulfram Gerstner, Alain Germond, Martin Hasler, and Jean-Daniel

Nicoud, editors, Artificial Neural Networks ICANN’97, volume 1327

of Lecture Notes in Computer Science, pages 999–1004. Springer Berlin

Heidelberg, 1997.

[78] A. Muruganantham, K. C. Tan, and P. Vadakkepat. Evolutionary

dynamic multiobjective optimization via kalman filter prediction.

IEEE Transactions on Cybernetics, 46(12):2862–2873, Dec 2016.

[79] Vladimir Cherkassky and Yunqian Ma. Practical selection of {SVM}

parameters and noise estimation for {SVM} regression. Neural

Networks, 17(1):113 – 126, 2004.

139

[80] L. J. Cao and F. E. H. Tay. Support vector machine with adaptive

parameters in financial time series forecasting. IEEE Transactions on

Neural Networks, 14(6):1506–1518, Nov 2003.

[81] N.I. Sapankevych and Ravi Sankar. Time series prediction using

support vector machines: A survey. Computational Intelligence

Magazine, IEEE, 4(2):24–38, May 2009.

[82] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and

Technology, 2:27:1–27:27, 2011.

[83] P.-S. Yu, S.-T. Chen, and I-F. Chang. Practical Hydroinformatics:

Computational Intelligence and Technological Developments in Water

Applications, chapter Real-Time Flood Stage Forecasting Using

Support Vector Regression, pages 359–373. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.

[84] Y. H. Liu and Y. T. Chen. Face recognition using total margin-based

adaptive fuzzy support vector machines. IEEE Transactions on Neural

Networks, 18(1):178–192, Jan 2007.

[85] H. Drucker, Donghui Wu, and V. N. Vapnik. Support vector machines

for spam categorization. IEEE Transactions on Neural Networks,

10(5):1048–1054, Sep 1999.

[86] Z. Shi and M. Han. Support vector echo-state machine for chaotic time-

series prediction. IEEE Transactions on Neural Networks, 18(2):359–

372, March 2007.

[87] T. Van Gestel, J. A. K. Suykens, D. E. Baestaens, A. Lambrechts,

G. Lanckriet, B. Vandaele, B. De Moor, and J. Vandewalle. Financial

140

time series prediction using least squares support vector machines

within the evidence framework. IEEE Transactions on Neural

Networks, 12(4):809–821, Jul 2001.

[88] Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, and

Peter L. Bartlett. New support vector algorithms. Neural Comput.,

12(5):1207–1245, May 2000.

[89] T. B. Trafalis and H. Ince. Support vector machine for regression and

applications to financial forecasting. in Proc. IEEE-INNS-ENNS Int.

Joint Conf. on Neural Networks 2000 (IJCNN, 6:348–353, 2000.

[90] Francis E.H Tay and Lijuan Cao. Application of support vector

machines in financial time series forecasting. Omega, 29(4):309 – 317,

2001.

[91] H. Yang, L. Chan, and I. King. Support vector machine regression

for volatile stock market prediction. in Proc, 2002.

[92] T. B. Trafalis, B. Santosa, and M. B. Richman. prediction of rainfall

from WSR- 88D radar using kernel-based methods. Int. J. Smart

Eng. Syst. Design, vol. 5, no, 5(4):429438, 2003.

[93] W. Lu, W. Wang, A. Y. T. Leung, and S. M. Lo. R. K. K, 1:630635,

2002.

[94] L. Tian and A. Noore. a novel approach for short-term load forecasting

using support vector machines. Int. J. Neural Syst., vol. 14, no,

14(5):329335, August 2004.

[95] P. F. Pai and W. C. Hong. forecasting regional electricity load based on

recurrent support vector machines with genetic algorithms. Electric

Power Syst. Res., vol. 74, no, 74(3):417425, 2005.

141

[96] M. G. Zhang. short-term load forecasting based on support vector

machine regression. in Proc, 7:43104314, 2005.

[97] C. C. Hsu, C. H. Wu, S. C. Chen, and K. L. Peng. dynamically

optimizing parameters in support vector regression: An application

of electricity load forecasting. in Proc. 39th Annu. Hawaii Int. Conf.

on System Sciences (HICSS, 2:18, 2006.

[98] J. Yang and Y. Zhang. application research of support vector machines

in condition trend prediction of mechanical equipment. in Proc. 2nd

Int. Symp. on Neural Networks (ISNN, 3498:857864, 2005.

[99] S. Gezici, H. Kobayashi, and H. V. Poor. A new approach to mobile

position tracking. in Proc, 2003.

[100] Q. Yang and S. Xie. an application of support vector regression on

narrow-band interference suppression in spread spectrum systems.

Lect, 3611:442450, August 2005.

[101] K. Ikeda. Effects of kernel function on nu support vector machines

in extreme cases. IEEE Transactions on Neural Networks, 17(1):1–9,

Jan 2006.

[102] Lijuan Cao Francis E.H. Tay. Application of support vector machines

in financial time series forecasting. Journal, Omega Tge Internation

Journal of Management Science, 2001.

[103] Bo-Juen Chen, Ming-Wei Chang, and Chih-Jen Lin. Load forecasting

using support vector machines: a study on eunite competition 2001.

Power Systems, IEEE Transactions on, 19(4):1821–1830, Nov 2004.

[104] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical

guide to support vector classification. 2003.

142

[105] Kalyanmoy Deb, Amrit Pratap, and T. Meyarivan. Constrained

Test Problems for Multi-objective Evolutionary Optimization, pages

284–298. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[106] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema. Constraint han-

dling in multiobjective evolutionary optimization. IEEE Transactions

on Evolutionary Computation, 13(3):514–525, June 2009.

[107] Trung Thanh Nguyen and Xin Yao. Evolutionary Optimization on

Continuous Dynamic Constrained Problems - An Analysis, pages

193–217. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[108] Zbigniew Michalewicz. A survey of constraint handling techniques in

evolutionary computation methods. Evolutionary Programming, 1995.

[109] Carlos A Coello Coello. Theoretical and numerical constraint-handling

techniques used with evolutionary algorithms: a survey of the state

of the art. Computer Methods in Applied Mechanics and Engineering,

191(1112):1245 – 1287, 2002.

[110] Y. G. Woldesenbet, B. G. Tessema, and G. G. Yen. Constraint

handling in multi-objective evolutionary optimization. In 2007 IEEE

Congress on Evolutionary Computation, pages 3077–3084, Sept 2007.

[111] S. Venkatraman and G. G. Yen. A generic framework for constrained

optimization using genetic algorithms. IEEE Transactions on

Evolutionary Computation, 9(4):424–435, Aug 2005.

[112] Abdollah Homaifar, Charlene X. Qi, and Steven H. Lai. Constrained

optimization via genetic algorithms. SIMULATION: Transactions of

The Society for Modeling and Simulation, April 1994.

143

[113] David W Coit and Alice E Smith. Penalty guided genetic search for

reliability design optimization. Computers & Industrial Engineering,

30(4):895–904, September 1996.

[114] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary algorithms

for constrained parameter optimization problems. Evol. Comput.,

4(1):1–32, March 1996.

[115] J. A. Joines and C. R. Houck. On the use of non-stationary penalty

functions to solve nonlinear constrained optimization problems with

ga’s. In Proceedings of the First IEEE Conference on Evolutionary

Computation. IEEE World Congress on Computational Intelligence,

pages 579–584 vol.2, Jun 1994.

[116] S. Kazarlis and Vassilios Petridis. Varying fitness functions in genetic

algorithms: Studying the rate of increase of the dynamic penalty

terms. In Proceedings of the 5th International Conference on Parallel

Problem Solving from Nature, PPSN V, pages 211–220, London, UK,

UK, 1998. Springer-Verlag.

[117] M. A. Jan and Q. Zhang. Moea/d for constrained multiobjective

optimization: Some preliminary experimental results. In 2010 UK

Workshop on Computational Intelligence (UKCI), pages 1–6, Sept

2010.

[118] M. Asafuddoula, T. Ray, R. Sarker, and K. Alam. An adaptive

constraint handling approach embedded moea/d. In 2012 IEEE

Congress on Evolutionary Computation, pages 1–8, June 2012.

[119] B. Tessema and G. G. Yen. A self adaptive penalty function based

algorithm for constrained optimization. In 2006 IEEE International

Conference on Evolutionary Computation, pages 246–253, 2006.

144

[120] D. Orvosh and L. Davis. Using a genetic algorithm to optimize

problems with feasibility constraints. In Proceedings of the First IEEE

Conference on Evolutionary Computation. IEEE World Congress on

Computational Intelligence, pages 548–553 vol.2, Jun 1994.

[121] Zbigniew Michalewicz and Cezary Z. Janikow. Handling constraints

in genetic algorithms. In Proceedings of the Fourth International

Conference on Genetic Algorithms, 1993.

[122] Zbigniew Michalewicz and Girish Nazhiyath. Genocop iii: A co-

evolutionary algorithm for numerical optimization problems with

nonlinear constraints.

[123] F. Jimenez, A. F. Gomez-Skarmeta, G. Sanchez, and K. Deb. An

evolutionary algorithm for constrained multi-objective optimization.

In Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002

Congress on, volume 2, pages 1133–1138, 2002.

[124] Z. Cai and Y. Wang. A multiobjective optimization-based evolutionary

algorithm for constrained optimization. IEEE Transactions on

Evolutionary Computation, 10(6):658–675, Dec 2006.

[125] Tapabrata Ray, Tai Kang, and Seow Kian Chye. An evolutionary

algorithm for constrained optimization. In Proceedings of the

2Nd Annual Conference on Genetic and Evolutionary Computation,

GECCO’00, pages 771–777, San Francisco, CA, USA, 2000. Morgan

Kaufmann Publishers Inc.

[126] T. P. Runarsson and Xin Yao. Stochastic ranking for constrained

evolutionary optimization. IEEE Transactions on Evolutionary

Computation, 4(3):284–294, Sep 2000.

145

[127] T. P. Runarsson and Xin Yao. Search biases in constrained

evolutionary optimization. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 35(2):233–243,

May 2005.

[128] B. Y. Qu and P. N. Suganthan. Constrained multi-objective

optimization algorithm with an ensemble of cosntraint handling

methods. Engineering Optimization, 43(4), 2011.

[129] Radhia Azzouz, Slim Bechikh, and Lamjed Ben Said. Multi-objective

optimization with dynamic constraints and objectives: New challenges

for evolutionary algorithms. In Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation, GECCO ’15,

pages 615–622, New York, NY, USA, 2015. ACM.

[130] Zhuhong Zhang and Shuqu Qian. Artificial immune system in

dynamic environments solving time-varying non-linear constrained

multi-objective problems. Soft Computing, 15(7):1333–1349, 2011.

[131] Zhuhong Zhang, Min Liao, and Lei Wang. Immune optimization

approach for dynamic constrained multi-objective multimodal op-

timization problems. American Journal of Operations Research,

2(2):193–202, June 2012.

[132] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a

comparative case study and the strength pareto approach. IEEE

Transactions on Evolutionary Computation, 3(4):257–271, Nov 1999.

[133] Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler.

Theory of the hypervolume indicator: Optimal mu-distributions and

the choice of the reference point. In Proceedings of the Tenth ACM

146

SIGEVO Workshop on Foundations of Genetic Algorithms, FOGA

’09, pages 87–102, New York, NY, USA, 2009. ACM.

[134] Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler.

Hypervolume-based multiobjective optimization: Theoretical founda-

tions and practical implications. Theor. Comput. Sci., 425:75–103,

March 2012.

[135] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The Hypervolume

Indicator Revisited: On the Design of Pareto-compliant Indicators

Via Weighted Integration, pages 862–876. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007.

[136] Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-emoa:

Multiobjective selection based on dominated hypervolume. European

Journal of Operational Research, 181(3):1653 – 1669, 2007.

[137] Dimo Brockhoff, Tobias Friedrich, and Frank Neumann. Analyzing

Hypervolume Indicator Based Algorithms, pages 651–660. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008.

[138] Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix

adaptation for multi-objective optimization. Evol. Comput., 15(1):1–

28, March 2007.

[139] Hisao Ishibuchi, Noritaka Tsukamoto, Yuji Sakane, and Yusuke

Nojima. Indicator-based evolutionary algorithm with hypervolume

approximation by achievement scalarizing functions. In Proceedings

of the 12th Annual Conference on Genetic and Evolutionary Com-

putation, GECCO ’10, pages 527–534, New York, NY, USA, 2010.

ACM.

147

[140] Eckart Zitzler and Simon Künzli. Indicator-Based Selection in

Multiobjective Search, pages 832–842. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2004.

[141] L. Bradstreet, L. While, and L. Barone. A fast incremental hyper-

volume algorithm. IEEE Transactions on Evolutionary Computation,

12(6):714–723, Dec 2008.

[142] Nicola Beume. S-metric calculation by considering dominated

hypervolume as klee’s measure problem. Evol. Comput., 17(4):477–492,

December 2009.

[143] L. While, L. Bradstreet, and L. Barone. A fast way of calculating exact

hypervolumes. IEEE Transactions on Evolutionary Computation,

16(1):86–95, Feb 2012.

[144] Lúıs M. S. Russo and Alexandre P. Francisco. Extending quick

hypervolume. Journal of Heuristics, 22(3):245–271, 2016.

[145] Yongtao Cao, Byran J. Smucker, and Timothy J. Robinson. On using

the hypervolume indicator to compare pareto fronts: Applications

to multi-criteria optimal experimental design. Journal of Statistical

Planning and Inference, January 2015.

[146] Muhammad Asif Jan and Rashida Adeeb Khanum. A study of two

penalty-parameterless constraint handling techniques in the framework

of moea/d. Applied Soft Computing, 13(1):128 – 148, 2013.

[147] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng. An adaptive tradeoff model

for constrained evolutionary optimization. IEEE Transactions on

Evolutionary Computation, 12(1):80–92, Feb 2008.

148

	Introduction
	Basic Definitions
	Multiobjective Optimization Problem
	Concept of Domination
	Pareto Optimality
	Goals of an MOEA
	Dynamic Multiobjective Optimization Problem

	Goals and Scope of the Thesis
	Major Contributions
	Organization

	Background & Literature Review
	Diversity Introduction
	Diversity Maintenance
	Memory approaches
	Prediction approaches
	Self-adaptive methods
	Multi-population approaches

	Kalman Filter Prediction based Evolutionary Dynamic Multiobjective Optimization
	Introduction
	Related Work
	Algorithm Design
	Multiobjective Evolutionary Algorithm with Decomposition based on Differential Evolution
	Kalman Filter
	Kalman Filter Prediction Model
	Change Detection Function
	Scoring Scheme

	Empirical Study
	Benchmark problems
	Parameter Settings
	Performance Metrics
	Results
	Performance comparison with other DMOEAs

	Discussion
	Results on FDA1-FDA5, dMOP1 and dMOP2
	Results on F5-F8
	Results on F9 and F10
	Parameter Sensitivity
	Influence of frequency of change

	Chapter Conclusion

	Data-driven Accelerated Convergence in Evolutionary Dynamic Multiobjective Optimization
	Introduction
	Background
	Related Work
	Time Series Prediction Using Support Vector Machines: A Survey

	Algorithm Design
	Multiobjective Evolutionary Algorithm with Decomposition based on Differential Evolution
	Change Detection Function
	Support Vector Regression based Prediction model

	Empirical Study
	Benchmark problems
	Parameter Settings
	Performance Metrics

	Results
	Performance Comparison with other DMOEAs
	Discussion

	Analysis
	Prediction visualization
	Parameter Selection
	MOEA/D-SVR Time Series Formulation Visualization
	Influence of severity of Change

	Chapter Conclusion

	Adaptive Constraint Handling in Constrained Dynamic Multiobjective Optimization
	Introduction
	Background
	Constrained Multiobjective Optimization Problem Definition
	Dynamic Constrained Multiobjective Optmization Problem Definition
	Other definitions

	Related Work
	Penalty function based methods
	Modified Genetic Operators
	Repair methods
	Multiobjective Approach
	Preference based methods
	Dynamic Constrained Multiobjective Evolutionary Algorithms

	Methodology
	Constraint Handling Mechanisms
	Dynamic Optimization Techniques

	Empirical Study
	Benchmark Problems
	Experimental Setup
	Performance Metrics
	Results
	Performance Comparison
	Discussion

	Analysis
	Influence of severity of change
	Influence of frequency of change

	Chapter Conclusion

	Conclusions & Directions for Future Research
	Conclusions
	Directions for Future Research

