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Summary  

 

The aim of this work was to investigate the effects of external factors on 

EGFR complex fractions, since substaintial discrepanies exist in preformed 

Epidermal Growth Factor Receptor (EGFR) levels. In this regard, we 

investigated the different experimental conditions, which influenced the 

dynamics of EGFR in living cells, by using various Fluorescence Cross-

Correlation Spectroscopy (FCCS) modalities. 

Chapter 1 provides an overview about the biological background of the EGFR. 

It summarizes important aspects about EGFR signaling pathways, 

dimerization of the receptor, the clinical relevance, the plasma membrane 

organization, EGFR ligands, alternative genetic tags and the scope of this 

study. 

Chapter 2 focuses on the main techniques applied in this study. The principles 

of the single molecule techniques are introduced and discussed which 

includes Single Wavelength Fluorescence Cross-Correlation Spectroscopy 

(SW-FCCS), quasi Pulsed Interleaved Excitation (quasi PIE-FCCS), Dual Color 

FCCS (DC-FCCS) and Dual Color-Internal Total Illumination Reflection-FCCS 

(DC-ITIR-FCCS). The basics and the instrumental setup are described in this 

chapter. 

Chapter 3 presents the materials and methods used in this work.  

Chapter 4 describes the influence of the experimental factors on the receptor 

dimerization amount. We investigated here the influence of cell lines 

(HEK293, COS-7 and CHO-K1), temperature (room temperature and 37°C) and 

membrane localization on the quantitation of preformed dimers using SW-

FCCS, DC-FCCS, quasi PIE-FCCS, and imaging FCCS. While measurement 

modality, temperature, and localization on upper or lower membrane have 

only a limited influence on the dimerization amount observed, cell line, and 

location to periphery versus centre of the cell can change dimerization results 
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significantly. The observed dimerization amount is strongly dependent on the 

expression level of endogenous EGFR in a cell line and also shows a strong 

cell-to-cell variability even within the same cell line. In addition, using 

imaging FCCS, we find that dimers have a tendency to be found at the 

periphery of cells compared to central positions.  

Chapter 5 illustrates the cloning of alternative genetic tags to existing 

fluorescently labeled probes, which were used in the determination of EGFR 

complexes. The new receptor tags, as well as an improved red fluorescent 

protein were tested for its biological functionality and suitability for FCS 

measurements. 

Chapter 6 is the conclusion and outlook section of this entire work. It 

presents the discoveries in this work and discusses possible future work to 

understand the proper EGFR activation.  
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1  Introduction 

The Epidermal Growth Factor Receptor (EGFR) is a cell surface protein from 

the transmembrane Receptor Tyrosine Kinase (RTK) family. It is also known as 

HER-1 and ErbB-1, and is a member of the ErbB receptor family (Yarden and 

Sliwkowski 2001, Hynes and Lane 2005). There are 58 human RTKs grouped in 

20 subfamilies with the same structural features, consisting of an 

extracellular domain with ligand binding site, a transmembrane region, an 

intracellular region with tyrosine kinase domain (TK) with an attached 

Carboxyl (C)-terminus and a juxtamembrane (JM) region (Lemmon and 

Schlessinger 2010). Other members of the ErbB family are ErbB2 (Neu/HER2), 

ErbB3 (HER3) and ErbB4 (HER4). 

EGFR is expressed in epithelial, mesenchymal and neuronal tissues of the 

body. Its activity is crucial to maintain and process different signaling 

cascades. Consequently, its proper functioning is responsible for tissue 

development and homeostasis.  

The discovery of EGFR can be tracked back to the 1960s, when Stanley Cohen 

and Rita Levi-Montalcini almost coincidentally reported that a component of 

the salivary gland has induced early eyelid opening and tooth eruption in 

baby mice (Levi-Montalcini and Cohen 1960). Not long thereafter, Cohen 

(1962) identified the amino acid sequence of this component, which was 

later named epidermal growth factor or in short EGF (Cohen 1962). After 

discovering this ligand and identifying its physiological impact on baby mice, 

Cohen in collaboration with Carpenter focused further on its binding 



2 
 

properties (Carpenter and Cohen 1979). They succeeded to characterize 

EGFR by binding radiolabeled I125-labeled EGF ligand in the human 

epidermoid carcinoma cell line A431. Cells stimulated with EGF responded 

with increased phosphorylation (Carpenter, King et al. 1978). Initial cloning of 

the complete cDNA from epidermal carcinoma cells revealed the sequence of 

EGFR. It gave a more detailed insight into the organization of the molecular 

receptor. EGFR functionality in mammalian cells has been identified from 

results obtained in studies involving transgenic mices with known receptor 

and ligand concentration. Further research on EGFR contributed to the 

understanding on receptor activation and downstream signaling. Moreover, 

the aberrant activity of this receptor was linked to the onset of cancer. 

Overexpression or hyperactivation of EGFR has been reported in a number of 

head, breast, lung and neck cancers (Seshacharyulu, Ponnusamy et al. 2012, 

Sasaki, Hiroki et al. 2013). It is well known today that EGFR and ErbB 

members control cellular proliferation and therefore show a significant 

relationship between ErbB receptor function and cancer pathology (Citri, 

Skaria et al. 2003). Hence, it is important to obtain insight into the underlying 

biological mechanisms of EGFR and ErbBs in order to develop alternative 

therapeutic approaches for anti-cancer treatment. EGFR is known to reside in 

the plasma membrane where important biochemical events were initiated. 

To understand the mechanism of EGFR activation, the localization of the 

receptor in the plasma membrane and the diversity of the plasma membrane 

are crucial and require a detailed investigation.  
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1.1 Characteristics of the plasma membrane 

The semipermeable plasma membrane in the cell represents an important 

border between the extracellular and intracellular environment. The key 

constituents of plasma membranes are membrane proteins together with 

sterols, glycerophospholipids and sphingolipids (van Meer 2005). In aqueous 

solution, lipids induce spontaneous lipid bilayer formation, which is 

generated by the association of the hydrophobic features of lipids and by 

aggregation of hydrophilic parts of the lipids. Lipids are amphipathic 

molecules, which are asymmetrically distributed between the inner and outer 

leaflet. In mammalian cells, the lipids phosphatidylcholine and sphingomyelin 

are primarily placed in the outer monolayer, whereas nearly all 

phosphatidylethanolamine and all phosphatidylserine (PS) are in the inner 

leaflet (Verkleij, Zwaal et al. 1973, Zwaal and Schroit 1997). Fluid-Mosaic 

Membrane model introduced in 1972 had an important impact on the 

perception of dynamics in cell membranes (Singer and Nicolson 1972). Their 

concept hypothesizes that membranes are of two-dimensional fluid nature 

and the membrane proteins can diffuse easily in the lipid layers. Later on, this 

model has been expanded and modified in order to include other factors 

such as protein and lipid aggregation, lipid domains and cytoskeleton. A 

recent study demonstrated that phospholipids can do rapid spontaneous flip-

flop between the two leaflets (van Meer, Voelker et al. 2008). This can be 

observed when newly synthesized phospholipids in the cytoplasmic leaflet 

need to be transported to the exoplasmic leaflet in order to maintain bilayer 

function (Gummadi and Kumar 2005). 
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All organelles are surrounded by cell membranes in order to isolate them 

from the extracellular milieu. This is important as many cellular processes, 

trafficking and machineries are located within the membrane, and because it 

controls a wide range of signaling events. The membrane surrounding cell 

organelles consists of 1000 different lipid species and varies between 

different kinds of organelles. Membrane diversity can be observed also 

between the apical and basal plasma membrane of the cell. Biological 

membranes show a lamellar organization, which is aligned by the association 

of polar headgroup of lipids and of hydrophobic lipid chains in 2-dimensional 

form (van Meer, Voelker et al. 2008). This formed asymmetric bilayer 

structure is important for maintaining functionality of the membrane 

proteins as they consume ATP as flipping of lipids across the lipid bilayer is an 

ATP-dependent process (van Meer 2011). The properties of lipids play an 

important role in maintaining a robust, resistant and dense structure as some 

signaling events may induce changes in pH or local compositions on the cell 

surface.  

Different types of lipids, proteins and cholesterol are accumulated at certain 

areas in the cell membrane. These regions, enriched with cholesterol and 

glycosphingolipid, are referred to as lipid rafts. Their lipids seem to be highly 

saturated which enables close packing with sphingolipids and causes phase 

separation from the surroundings (Pike 2003). Much research has been 

focused on the elucidation of the nature of the rafts as it is involved in many 

signal transduction and processes of membrane proteins. The size of lipid 
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rafts was found to be around 50 nm in live fibroblasts by photonic force 

microscopy (Varma and Mayor 1998, Pralle, Keller et al. 2000). Lipid rafts are 

also known as liquid-ordered (L0) phase; they contain high level of cholesterol 

and saturated lipids, which results in lower fluidity. On the cell membrane, 

lipid rafts are surrounded by non-raft regions, which are termed as liquid-

disordered (LD) phase. Some studies investigated the properties of 

cholesterol in mixtures; it has been demonstrated that the packing of 

cholesterol with saturated lipids activates phase separation in mixtures 

(Silvius, del Giudice et al. 1996, Polozov and Gawrisch 2006). Further studies 

found that tight lipid packing and phase separation cause their insolubility in 

nonionic detergents, e.g. 1% Triton-X (London and Brown 2000). Brown and 

Rose (1992) investigated 1% Triton X detergent-resistance membranes 

(DRMs) from MDCK cells. Their analysis revealed that the cholesterol and 

sphingomyelin amount in the DRMs was 32 mol% and 14 mol%, respectively, 

while only 12 mol% cholesterol and 1 mol% sphingomyelin occurred in the 

whole cell lysate (Brown and Goldstein 1992). However, extraction procedure 

disturbs many lipid-protein association and subsequently lead to a loss of a 

huge part of proteins from the DRMs. Therefore, DRMs do not reflect the 

actual composition of liquid-ordered regions in the cell membrane. 

Moreover, the highest content of cholesterol (30-50% of total lipids) was 

estimated to be in the plasma membrane in mammalian cells, whereas 

endoplasmic reticulum (ER) membrane revealed low cholesterol amount (3-

6% of total lipids) (Lange 1991). A tightly maintained packing of cholesterol 

indicates its possible role in participation in signal transduction, regulation of 
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membrane fluidity and permeability and due to a possible role in building a 

platform for different proteins in the plasma membrane. 

One of the lipid raft subgroups, called caveolae, have a similar composition to 

lipid rafts but with the difference that it also contains caveolin-1 (Murata, 

Peranen et al. 1995). This additional protein seems to be responsible for the 

formation of flask-shaped invagination on the membrane, observed as 

caveolae. Their sizes were determined to be around ~100 nm by electron 

microscopy (Murata, Peranen et al. 1995). In contrast, the size determination 

of lipid rafts is less straightforward as they cannot be discriminated by the 

neighboring membrane and can therefore be measured only indirectly. GPI-

linked proteins are located in these domains and applied as references of 

lipid rafts (Brown and Goldstein 1992). Analysis of GPI-linked protein 

reported a size of around 70 nm in fluorescence depolarization studies 

(Varma and Mayor 1998). Studies with scanning electron microscopy 

revealed that the diameter of these domains are 60-80 nm, with a 10-50 nm 

diameter neck (McIntosh, Tan et al. 2002, Predescu, Predescu et al. 2007). 

Moreover, studies show that lipid rafts are mostly concentrated in the apical 

plasma membrane in polarized epithelial cells and only a limited amount is 

present in the basal and dendritic membranes (Simons and Ikonen 1997). 

Lipid rafts contain some important receptors such as EGFR and other RTKs 

(Pike, Han et al. 2005). However, the influence of these domains in EGFR 

signaling is quite complex. A line of evidence shows that the activation of 

EGFR that resides in these domains is prevented (Chen and Resh 2002, 
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Roepstorff, Thomsen et al. 2002). On the other hand, other reports suggest 

that lipid rafts enhance EGFR activation and signaling (Zhuang, Lin et al. 2002, 

Peres, Yart et al. 2003). A common method to explore the relationship 

between EGFR and lipid rafts is to disrupt the cholesterol content by drugs 

methyl-β-cyclodxtrin (mβCD) from the plasma membrane. For instance, 

studies with cholesterol depletion have demonstrated that EGFR signaling is  

disrupted (Orr, Hu et al. 2005). New evidence presented by Bag et al. (2015) 

have shown that EGFR reside in cholesterol-dependent as well as cholesterol-

independent domains (Bag, Huang et al. 2015). It is well accepted that lipid 

rafts have a big impact in activation, mobility and localization of EGFR and 

therefore many researchers focus on the investigation of their influence in 

EGFR signaling. Moreover, it is important to take into account the 

experimental conditions when comparing different results of EGR localization 

in lipid rafts. 

 

1.2 The architecture of EGFR 

The human EGFR is a glycoprotein with a size of 170-kDA where the encoding 

gene is positioned at chromosome 7, 7p11.2 (Reiter, Threadgill et al. 2001). 

This receptor gene is composed of 28 exons and 27 introns, of which the first 

16 encode the extracellular domain, exon 17 is responsible for the 

transmembrane helix, exons extending from 18 to 24 are involved in the 

tyrosine kinase domain and those from 25 to 28 in the formation of the C-

terminus. When EGFR is in the form of a precursor, it contains 1210 amino 
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acids. However, after cleavage of the signal peptide, the receptor is made up 

of the remaining 1186 amino acids and is referred to be in the matured form. 

Among the ErbB receptor members, the tyrosine kinase domain shows the 

highest sequence identity (59-81%), while the lowest one can be found in the 

C-terminus (12-30%) (Nair 2005).  

 

Figure 1.2.1 Domain organization of the EGFR. Extracellular domains (1-620): I (L1), II 
(CR1), III (L2) and IV (CR2). transmembrane helix (TM) (621-643), juxtamembrane 
segment (JM): JM-A/-B (644-685) and the intracellular domain: tyrosine kinase 
domain (TK) and C-tail (686-1186) 

 

As shown in Figure 1.2.1, the extracellular domain of EGFR is connected to 

the transmembrane (TM) helix, the juxtamembrane (JM) segment, followed 

by the intracellular tyrosine kinase catalytic domain, which contains the C-

terminal tail. The extracellular part is composed of four functional domains, 

i.e. domain I (L1), III (L2), II (S1, CR1) and IV (S2, CR2). The first two are built 

with ß-helical folds showing 37% identical sequences and provide the ligand 

binding pocket. The other two are elongated and composed from many 

cysteine-rich residues, whichare held together by disulfide bonds. The 

function of the dimerization arm (domain II) is to establish EGFR dimers. 

EGFR can dimerize with another EGFR, which is known as homodimerization, 

whereas dimerization with other ErbB member is referred to be as 

heterodimerization. Ligand binding to homo-or heterodimers leads to 
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phosphorylation of the tyrosine residues in the C-terminus. The extracellular 

domain of all ErbB members is densely glycosylated in the N-terminus. There 

are twelve N-glycosylation compounds present in EGFR which is necessary for 

the localization of the receptor on the cell surface (Slieker, Martensen et al. 

1986). In a pair of reports, the EGFR glycosylation mutant N420Q and N579Q 

led to an increase in ligand-independent dimerization. This led to the notion 

that glycosylation of the ectodomain prevents dimerization when the ligand 

is absent (Tsuda, Ikeda et al. 2000, Whitson, Whitson et al. 2005). 

Nuclear magnetic resonance (NMR) analysis revealed that the 

transmembrane section of EGFR is a single helix (Rigby, Grant et al. 1998). 

The transmembrane helix is connected to the juxtamembrane (JM) segments 

JM-A and JM-B. Recently, the studies of Jura et al. (2009) has demonstrated 

that the JM is crucial for EGFR dimer stabilization (Jura, Endres et al. 2009). 

The direct contact of the two JM domains and the neighboring kinases lead to 

the stabilization of the active receptor. Deletion of the JM domain induced 

changes in EGFR dimerization (Jura, Endres et al. 2009). Other studies 

reported that deletion of JM the region resulted in aberrant ligand binding 

(Macdonald-Obermann and Pike 2009) and induced decreased 

phosphorylation (Thiel and Carpenter 2007). Furthermore, the impact of JM 

domain on the formation of asymmetric kinase has been approved by other 

groups as well (Thiel and Carpenter 2007, Hubbard 2009, Red Brewer, Choi et 

al. 2009, Arkhipov, Shan et al. 2013, Endres, Das et al. 2013). 
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The tyrosine kinase domain (TK) is divided in N-lobe and C-lobe. The first one 

is mostly made up of β-sheets, as for the second one, α-helical structure is 

prevailing. This active asymmetric EGFR dimer leads to the binding of 

adenosine-5`-triphophate (ATP) to the rift between these two lobes. This 

process catalyzes the trans-autophosphorylation reaction of the tyrosine 

residues located in the C-terminus, leading to triggering of specific signaling 

pathways. In particular, the dimerization partner of EGFR determines which 

specific signaling pathway will be activated. Interestingly, the activation of 

EGFR tyrosine kinase domains occurs in a similar way as the activation of 

other kinase groups, e.g. cyclin-dependent kinases (Zhang, Gureasko et al. 

2006). The C-terminus equipped with multiple tyrosines as well as some 

serine/threonine residues, which will be phosphorylated upon ligand 

activation and leads to the recruitment of several effector proteins such as 

Grb2 or STAT, which control downstream signaling pathways. The complete 

functionality of the C-terminus is not well understood, but it was shown to 

possess regulatory impact on receptor activation (Gajiwala 2013); e.g. the 

residues 984-996 on the C-terminal have been found to be crucial for the 

interaction with actin (den Hartigh, van Bergen en Henegouwen et al. 1992).   

Despite technical challenges to crystallize single-transmembrane proteins, 

the x-ray crystal structure (Figure 1.2.2) of the extracellular domain of EGFR 

as well as of the other three ErbBs, have been solved in a liganded (EGFR and 

ErbB4) and unliganded state (all ErbBs) (Ogiso, Ishitani et al. 2002). Structural 

studies detected two principal conformations of the extracellular domains 
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within EGFR, ErbB3 and ErbB4 in the absence of the ligand. In the `tethered`  

conformation, the domain II and IV are very close to each other and folded by 

intramolecular interactions, thus obstructing the ligand binding. In contrast, 

in the open/extended form, the overall domain is stretched out and domain I 

and III provide the binding site for the ligand. Domain II, often called the 

dimerization arm, enables building receptor-receptor complexes. Ligand 

binding to extracellular domain promotes a ~130° rotation of domains I and 

II, leading to a transition from the tethered to the open extended 

configuration. Thus, these conformations promote a back-to-back 

dimerization that is stabilized by domain II.  

Apart from the two possible configurations in the unliganded state described 

above, another proposed EGFR model is the rotation model of inactive 

dimers in the absence of a ligand. When a ligand binds to the receptor this 

will cause the extracellular domain to become flexible, inducing rotation of 

juxtamembrane and reorganization of the kinase domains in an asymmetric 

manner (Moriki, Maruyama et al. 2001). 
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Figure 1.2.2 The crystal structure of the 2:2 EGFR-EGF complexes. (A) Ribbon 
diagram illustrates the extracellular domain of EGF-EGFR complexes. The two ligands 
are colored pink and pale green. Organization  of domain I (yellow), II (orange), III 
(red) and IV (gray) are shown of the receptor 1 and the domain I (cyan), II (dark 
blue), III pale  blue and IV (gray) of the receptor 2. disulfide bonds are marked in 
yellow (B) Ribbon diagram in the top view (C) Surface model of the EGF-EGFR 
complexes of (A) Figure taken from (Ogiso, Ishitani et al. 2002) 

 

The ErbB-2 extracellular domain was also crystallized in the unliganded state. 

The structure of ErbB-2 is unique and it is the only receptor that was 

detected in the extended conformation even in the absence of a ligand. 

Moreover, this receptor did never exhibit the tethered mode in structural 

analysis. Until now, the structure of liganded Heterodimer of ErbB2 has not 

been solved yet.  
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1.3 Receptor ligands and affinity 

Eleven ligands are known to bind with different specificity and affinity to their 

respective receptors, namely EGF, transforming growth factor (TGF-a), 

heparin-binding EGF-like growth factor (HB-EGF), amphiregulin, betacellulin, 

epiregulin, epigen and neuregulin (NRG1-4) (Harris, Chung et al. 2003, 

Schneider and Wolf 2009). A large part of these ligands is found as type I 

single-pass membrane proteins as an integral part of the cell surface. When 

proteolytic cleavage by proteins from the ADAMs (disintegrin and 

metalloproteases) and MMPs (matrix metalloproteinases) family occur, 

ligands float in the extracellular milieu and subsequently bind to the 

respective receptors. This proteolytic processing of the ligands is also known 

as protein ectodomain shedding. 

 

Figure 1.3.1 ErbB family members and ligands 



14 
 

When released ligand binds to the extracellular domain of ErbB receptors, 

the monomeric receptors will either homo-/hetero-dimerize or already 

existing preformed dimers will undergo a rearrangement. This receptor 

activation is then followed by intracellular auto-phosphorylation of tyrosine 

residues. Depending on which ligand has bound to EGFR, different 

downstream signaling will be triggered. Some studies suggest that distinct 

biological outcomes are caused by specific ligand binding and can be 

correlated to certain phosphorylated residues in the C-terminus of EGFR 

(Saito, Okada et al. 2004, Wilson, Mill et al. 2012). An interesting study was 

shown by Sako et. al (2000); fluorescently labeled EGF bound mostly to 

preformed dimers (Sako, Minoghchi et al. 2000). Ligand binding to receptor 

dimers leads to rearrangement of existing dimers and subsequent clustering. 

Researchers also found that these ligands exhibit high or low binding affinity 

to EGFR. High receptor affinities, ranging from 0.1–1 nM, are achieved by 

EGF, TGF, BTC and heparin-binding EGF, whereas AREG, epiregulin, and 

epigen show affinities which are 10- to 100-fold lower (Jones, Akita et al. 

1999, Wilson, Gilmore et al. 2009). The first discovered and well 

characterized EGF ligand is a polypeptide consisting of 53 amino acids and 

associated with the regulation of different cellular processes. It shows three 

disulfide bonds which are formed by six cysteine residues. According to a 

previous study, the N-terminus of EGF and TGF-α is responsible for binding it 

to the L1 domain in the ectodomain of EGFR (Garrett, McKern et al. 2002, 

Ogiso, Ishitani et al. 2002). No ligand is known which can bind to ErbB2 

(Wada, Qian et al. 1990, Qian, LeVea et al. 1994). A study conducted by Daub 
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et al. (1996) showed that EGFR can be activated not only by ligand, but also 

by G-protein coupled receptors (GPCR) (Daub, Weiss et al. 1996). However, 

later on, this mechanism was contradicted by Prenzel et al. (1999) (Prenzel, 

Zwick et al. 1999). Their study reported that EGFR could not be activated by 

the GPCR as previously concluded. Although GPCR plays a role in EGFR 

activation, it only induces cleaving of HB-EGF from the membrane, which 

consequently binds to the receptor (Prenzel, Zwick et al. 1999). 

Extensive research has been conducted to reveal the properties of low and a 

high binding process of EGF to EGFR. In order to investigate these bindings, 

King et al. (1982) used I125-labeled EGF and EGFR (King and Cuatrecasas 

1982). The findings showed a concave-up curvilinear Scatchard plot. The 

initial slope of the curve refers to apparent high affinity receptors and the 

shallow slope indicates receptors with low affinity. Among the populations, 

those with high affinity represent only 2-5% (KD ~300 pM), whereas the rest 

of 95-98% has a low affinity (KD ~2-5 nM) (King and Cuatrecasas 1982). In a 

later study, the model of low-and high affinity receptors has been explained 

by the occurrence of monomeric receptors and preformed dimers, 

respectively (Yarden and Schlessinger 1987). In contrast, a mathematical 

approach by Klein et al. (2004) suggests that the results obtained from 

Scatchard plots are incomplete. They claim that the external site, which is the 

cause of the two different binding affinities, has not been taken into account 

(Klein, Mattoon et al. 2004). However, it must be emphasized that these 

hypothesizes are yet to be proved experimentally. On the contrary, the 

experiments performed by the group of Ogiso et al. (2002) shows the 
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crystallographic structure of EGFR as tethered and open/extended form. 

Moreover, the first configuration is assumed to represent monomeric 

receptors with low ligand affinity and the latter preformed dimers with high 

ligand affinity. Rees et al. (1984) characterized the properties of these two 

different receptor groups and found that some immobile receptors and low 

diffusion coefficients are the ones accounting for high affinity classes, 

whereas the low-affinity receptors showed to be more mobile with higher 

diffusion coefficients (Rees, Gregoriou et al. 1984). Depending on whether 

the binding affinity of the ligand to the receptor is low or high, different 

signaling pathways will be activated (Krall, Beyer et al. 2011). Another study 

described the origin of the two distinct receptor classes through the 

localization of the receptors in different regions on the heterogeneous 

membrane (Mayawala, Vlachos et al. 2005).  

In opposition to King et al (1982), who showed a positive cooperativity by 

using Scatchard plots, the model of Macdonald and Pike explains the 

occurrence of two distinct states by negative cooperativity (Macdonald and 

Pike 2008). Their hypothesis predicts that depending on its low or high ligand 

concentration, EGFR exist as single occupied dimers or/and double occupied 

dimers, respectively. Further evidence of negative cooperativity is provided in 

the studies of Drosophila EGFR (Alvarado, Klein et al. 2010).  

The difficulties in the investigation of low-and high affinity receptor 

population rely on the fact that both are encoded from the same gene. 

Therefore, it is not possible to interfere in these two distinct populations. 
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One potential experimental approach to investigate these affinities is the 

insertion of a mutation in EGFR transcript in order to explore the receptor 

classes. For instance, an addition of cysteine residues in EGFR resulted in an 

increase of preformed dimers, which consequently shifted the equilibrium 

from the fraction of low affinity to the high affinity receptors (Sorokin, 

Lemmon et al. 1994). The study conducted by Garret (2002) provides 

additional evidence for the existence of the high affinity population. EGFR 

with CR1 loop deletion showed only low affinity binding and no high affinity 

state (Garrett, McKern et al. 2002). Moreover, the insertion of a cysteine 

bridge between domain II and IV reduced significantly the fraction of high 

affinity receptors (Walker, Orchard et al. 2004). However, EGFR mutations 

with a defective domain II, essential to form a back-to-back dimer, shows that 

more complex autoinhibtory mechanisms are involved (Mattoon, Klein et al. 

2004). 

 

1.4 Cycle of EGFR signaling 

Homo-or heterodimerization of EGFR is an important step for activation of 

different signaling cascades. Ligand binding promotes dimerization of 

receptors or conformational changes on existing preformed dimers, allowing 

activation of tyrosine kinase domains and subsequently trans-

autophosphorylation of several tyrosine residues in the C-terminus. Receptor 

activation is essential to main cell functions, for example cell differentiation, 

survival, apoptosis and proliferation. Among all ErbB members, there is no 
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known ligand that can bind to ErbB2. However, the ligandless receptor is 

important as it participates in dimerization with other ErbBmembers (Garrett, 

McKern et al. 2003). The dimerization of ErbB2 with EGFR appears to be 

stronger than EGFR homodimerization resulting in a longer lifetime in the 

membrane and elongated receptor activation (Li, Macdonald-Obermann et 

al. 2012). ErbB3 is equipped with a defective or very low tyrosine kinase 

activity (Citri, Skaria et al. 2003, Shi, Telesco et al. 2010). Regardless, ErbB3 is 

still efficient to conduct signaling cascades by dimerization with ErbB2. In this 

ErbB2/ErbB3 heterodimer, the ligandless ErbB2 has adequate kinase activity 

to phosphorylate ErbB3 (Schulze, Deng et al. 2005). Interestingly, a recent 

study has demonstrated that ErbB2/ErbB3 must be in a tetrameric form in 

order to phosphorylate each other. It has been found that ErbB2 from one 

dimer phosphorylates ErbB3 in the second dimer (Zhang, Park et al. 2012). 

Activated ligand-receptor complexes then promote trans-

autophosphorylation of tyrosine kinase residues in the C-terminus. These 

phosphorylated residues in turn recruit and bind to the intracellular proteins 

such as Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains. 

Consequently, relief of these proteins from the C-terminus will induce 

stimulation of distinct cellular signaling pathways, i.e. mitogen-activated 

protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, signal 

transducers and activators of transcription (STAT) signaling pathways (Figure 

1.4.1). Another unique feature of EGFR is the fact that it can function as an 

oncogene through stimulation of the Ras oncoprotein, as it promotes the 

conversion of inactive GDP-bound Ras to its active GTP-bound form (Margolis 
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and Skolnik 1994). Ligand induced EGFR activation plays an important role in 

signaling due to its location in the center of many distinct cellular signaling 

pathways. Activated EGFR complexes are spatially well controlled by receptor 

internalization, ubiquitination and degradation, referred to as down-

regulation of EGFR (Wells, Welsh et al. 1990). Signal termination of ligand-

activated receptors is primarily achieved by internalization of EGFR 

complexes from the cell membrane and forwarded to the endosomes. The 

major endocytosis clathrin-dependent pathway is the translocation of 

activated EGFR complexes to the early endosomes via clathrin-coated pits 

(CCP) which are released as vesicles from the membrane (Roepstorff, Grøvdal 

et al. 2008). Once this complex reached this compartment, it will be either 

recycled back to the cell surface or further transferred to the lysosomes. 

During the last few years, alternative possible endocytosis pathway, the 

clathrin-independent, has been reported. In the studies conducted by 

Sigismund et al. (2005) it has been observed that the presence of high EGF 

ligand concentration (20 ng/ml) results in clathrin-independent endocytosis 

via flask-shaped oligomerized caveolae to the early endosomes (Sigismund, 

Woelk et al. 2005). The same group demonstrated that clathrin-dependent 

endocytosis is preferred at low EGF ligand concentration (1-2 ng/ml) 

(Sigismund, Woelk et al. 2005). In the current model of endocytosis, 

ubiquitination is an essential step where ubiquitin polypeptide interacts with 

lysine residues in the C-terminus of ErbB receptors. EGFR was one of the first 

receptors in which this process was discovered. It was recently hypothesized 

that ubiquitination is a common process among RTKs (Goh and Sorkin 2013). 
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However, it has been only indirectly proved by mutations or down-regulation 

of its elements. In the presumed model of the clathrin-dependent pathway, 

the ligand-receptor complex located inside of clathrin-coated pits will be 

released from the cell surface and transported to the early endosomes. The 

studies of Goh et al. (2010) reported that clathrin element AP-2 adaptor 

protein identifies activated receptors for internalization on their motifs 

located in the C-terminus (Goh, Huang et al. 2010). Contrarily, a pair of 

reports has shown that AP-2 is unimportant for recognition of EGFR 

complexes in clathrin-coated carriers (Hinrichsen, Harborth et al. 2003, 

Motley, Bright et al. 2003, Huang, Khvorova et al. 2004).  

Another possible internalization pathway compared to the clathrin-

dependent and independent pathway of EGFR is through circular dorsal 

ruffles. These are membrane protrusions consisting of actin structures (Hoon, 

Wong et al. 2012). 
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Figure 1.4.1 Main signaling pathways triggered by EGFR 

The circular dorsal ruffles are accumulated on the apical cell surface and are 

activated by growth factors as EGF, hepatocyte growth factor (HGF), and 

platelet-derived growth factor (PDGF) (Buccione, Orth et al. 2004, Orth and 

McNiven 2006, Hoon, Wong et al. 2012). However, the participation of the 

actin cytoskeleton in the formation of circular dorsal ruffles and its signaling 

remains unclear. Nevertheless, Orth et al. (2006) showed that clathrin-

independent internalization via circular dorsal ruffles enables intake of a 

large amount of EGFR (~50%) (Orth, Krueger et al. 2006). Once the liganded 

receptor complex reaches the early endosomes, the complex will be either 

recycled back to the cell membrane or transported via intraluminal vesicles 

(ILVs) to lysosomes for degradation. Dependent on homo-or 

heterodimerization by ErbB members, the type and concentration of the 
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ligand determines the destination of the internalized receptor complexes. 

Sorkin et al. (1991) reported that high EGF and EGFR concentration led to 

recycling back 80% of internalized receptors from endosomes to the cell 

surface (Sorkin, Krolenko et al. 1991). Furthermore, after fragmentation of 

EGFR complexes, the unoccupied EGFRs were transported back to the cell 

surface (Masui, Castro et al. 1993). Another study showed that the rate of 

recycling is much slower for ligand-receptor complex than for ligandless one 

(Resat, Ewald et al. 2003). A unique feature of EGFR is that it starts to initiate 

signaling from the cell membrane and reaches the nucleus instead of ending 

up in the early endosomes. In this possible pathway, EGFR and its ligands can 

function as a transcription factor of the cyclin D1 gene (Lin, Makino et al. 

2001, Brand, Iida et al. 2011) or associate as a cofactor of STAT3 and E2F1 

transcription factors (Seshacharyulu, Ponnusamy et al. 2012). However, the 

exact mechanism of how EGFR is transported to the nucleus has yet to be 

elucidated. Apart from the functioning of EGFR in the nucleus, the EGFR will 

be transported to the early endosomes by ongoing different steps. Ligand 

activated EGFR complexes enable some binding sites on the C-terminus and 

interacts with proteins such asGrb2 and Casitas B-lineage lymphoma proto-

oncogene (Cbl). Cbl is an ubiquitin ligase that attaches mono or 

polyubiquitins to EGFR (Jiang and Sorkin 2003). This Cbl-EGFR binding has 

been considered to be important for internalization of the early endosomes. 

There, the receptor complexes will be forwarded to late endosomes and 

ubiquitinated EGFR will undergo degradation in lysosomes (Barriere, Nemes 

et al. 2007). In addition, the acidic environment in the endosomes is critical, 
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influencing whether the activated receptor complexes will remain 

ubiquinated and end up in the lysosomes. For instance, ErbB2/ErbB1 

heterodimers are tagged by some proteins for recycling back to cell surface, 

whereas ErbB1 homodimers are destined for degradation in lysosomes. 

Interestingly, EGFR ligands also determine which endocytosis pathway will be 

taken. EGF-EGFR complex will end up in lysosomes for degradation and the 

TGF-α-receptor will be recycled back to the cell surface. Recent studies 

performed by Bag et al. (2015) reported that low EGF concentration (10 

ng/ml) promotes the EGFR homodimers to be transported back to the cell 

membrane (Bag, Huang et al. 2015). Low pH in the endosomes also 

determines if certain ligand-receptor complex will be further degraded in 

lysosomes or recycled back to the cell membrane. Another possible 

inactivation process of ligand-EGFR complexes is the process of 

dephosphorylation by phosphatases (PTP), which can bind covalently to EGFR 

and induces dephosphorylation and hydrolysis (Zhang and VanEtten 1991, 

Barriere, Nemes et al. 2007). 

 

1.5 Dimerization and clustering of EGFR 

According to the traditional model of EGFR activation, the receptor in the 

membrane of resting cells exists in monomeric form. Upon binding of its 

ligand (epidermal growth factor, EGF), the receptor undergoes a 

conformational change into an open conformation allowing association of 

two EGFR molecules into a dimer (Cochet, Kashles et al. 1988) (Figure 1.5.1). 
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Consequently, dimerization leads to auto-phosphorylation of tyrosine 

residues in the intracellular domain (Schlessinger 2002, Lemmon and 

Schlessinger 2010). Neverthless, EGFR can be activated by auto-

phosphoprylation even in in the absence of ligand (Ma, Ahmed et al. 2011) 

and the suppression of spontaneous activation of EGFR has been investigated 

(Baumdick, Bruggemann et al. 2015). This traditional model has been 

supported by crystal structures of the extracellular domain of EGFR (Garrett, 

McKern et al. 2002, Ogiso, Ishitani et al. 2002) as well as by reports of EGFR 

dimerization following stimulation with EGF. However, numerous studies 

have also shown the presence of EGFR dimers or even larger oligomers in the 

membranes of resting cells (Gadella Jr and Jovin 1995, Sako, Minoghchi et al. 

2000, Martin-Fernandez, Clarke et al. 2002, Clayton, Walker et al. 2005, 

Saffarian, Li et al. 2007, Clayton, Orchard et al. 2008, Hofman, Bader et al. 

2010, Hiroshima, Saeki et al. 2012, Needham, Hirsch et al. 2013, Needham, 

Zanetti-Domingues et al. 2014, Valley, Lidke et al. 2014, Gao, Wang et al. 

2015). In C.elegans, the extracellular domain of EGFR (named as LET-23) has 

been found in dimeric form in the absence of ligand (Freed, Alvarado et al. 

2015). Historically, the existence of preformed dimers and oligomers were 

initially demonstrated by immunogold labeling of the EGFR in the absence of 

ligand using electron microscopy (Webb, Roberts et al. 2008). In this 

research, approximately 40% of the receptor population was found as 

preformed dimers and approximately 10% as oligomers in A431 cells. When 

ligand was added, there was a noticeable increase in the fraction of 

oligomers (~30%) and a decrease in monomeric EGFR (~30%). However, the 
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amount of preformed dimers remained similar (~40%). These findings were 

further shown by the techniques of chemical cross-linking and co-

immunoprecipitation (Moriki, Maruyama et al. 2001, Yu, Sharma et al. 2002, 

Zhu, Iaria et al. 2003). The studies of Hofmann et al. (2010) found that the 

amount of preformed dimers was around 40% in resting cells by the method 

of Homo-FRET (Hofman, Bader et al. 2010). This technique can measure the 

energy transfer between identical fluorescence proteins in order to quantify 

receptor dimerization. The structural studies conducted by Jura et al. (2009) 

demonstrated that activity of the tyrosine kinase domain is inhibited by the 

dimerization of the C-terminus in the absence of ligand (Jura, Endres et al. 

2009). Moreover, Clayton et al. (2008) have shown the occurrence of higher 

order EGFR oligomers. In unstimulated cells, all receptors are in the form of 

dimers or trimers, while EGF addition increased the cluster size to four 

receptors (Clayton, Orchard et al. 2008). The presence of clusters and 

oligomers of EGFR has been also reported by using different technologies 

(Needham, Zanetti-Domingues et al. 2015, Zanetti-Domingues, Hirsch et al. 

2015, Needham, Roberts et al. 2016), although the macromolecular structure 

of EGFR remains elusive. 

EGFR resides in lipid rafts in the plasma membrane which is enriched with 

different kind of lipids, cholesterol and proteins (Pike and Miller 1998, Pike 

2005, Lajoie, Partridge et al. 2007). Depletion of cholesterol from the plasma 

membrane enhanced the binding of EGF to EGFR (Pike and Casey 2002). A 
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recent work showed the presence of EGFR in cholesterol-dependent and 

cholesterol-independent domains (Bag, Huang et al. 2015).  

Two populations of EGFR, which differ by their affinity for EGF, have been 

identified and attributed by some authors to monomers and preformed 

dimers, respectively (Macdonald and Pike 2008). The preformed dimers have 

a higher affinity for EGF and thus allowing faster signaling (Gadella Jr and 

Jovin 1995, Chung, Akita et al. 2010). This is supported by the different 

pathways taken at low and high signal doses (Sigismund, Argenzio et al. 2008, 

Krall, Beyer et al. 2011). However, the studies on Drosophila EGFR revealed 

that these low and high affinity classes for EGF do not show evidence for two 

populations and the scatchard plot was derived from negatively cooperative 

EGF binding (Alvarado, Klein et al. 2010). Nevertheless, the existence of 

preformed dimers, their relative amount in resting cells and their role in EGFR 

signaling present an open question as the findings of individual studies differ 

considerably (Jovin 2014, Valley, Lidke et al. 2014). While some authors 

reported negligible amounts of preformed dimers (Endres, Das et al. 2013, 

Yamashita, Yano et al. 2015), others have found mostly EGFR molecules in 

dimeric form (Moriki, Maruyama et al. 2001, Lemmon and Schlessinger 2010, 

Valley, Lidke et al. 2014, Sarabipour and Hristova 2015). For instance, spatial 

intensity distribution analysis revealed ~90% monomeric EGFR in 

unstimulated cells (Swift, Godin et al. 2011). Similar findings were observed 

by Nagy et al. (2010); preformed dimers could be detected only at high 

expression levels of approximately 600.000 receptors per cell (Nagy, Claus et 
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al. 2010). Furthermore, another research group found monomeric EGFR at 

low expression levels in COS-7 cells in the absence of the ligand (Huang, 

Bharill et al. 2016). In contrast to that, our previous study has shown that 

dimerization to be independent of receptor expression levels in the range 

from 20.000 to 260.000 copies in individual CHO-K1 cells and the average 

dimer amount was ~60% (Liu, Sudhaharan et al. 2007). Here, the dimer 

fraction was calculated by considering monomers in dimers divided by total 

the number of monomers. According to the single particle tracking studies of 

EGFR, the receptor forms transient dimers in the absence of EGF (Chung, 

Akita et al. 2010, Low-Nam, Lidke et al. 2011, Cutler, Malik et al. 2013). 

 

Figure 1.5.1 Traditional activation model of dimerization and the ligand-independent 
model 
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On the other hand, results presented by Tao and Maruyama indicate that 

EGFR dimers are already formed in the endoplasmic reticulum, which would 

suggest a much more stable association (Tao and Maruyama 2008). The 

structural studies of Jura et al. (2009) demonstrated that activity of the 

tyrosine kinase domain is inhibited by the dimerization of the C-terminus in 

the absence of t ligand (Jura, Endres et al. 2009).  

Among possible explanations for the contradictory findings, those addressing 

the intrinsic differences between cell lines as well as differences in the state 

of the cells used in the individual studies are the most promising. It has been, 

for instance, suggested that fixed cells frequently used in super-resolution 

microscopy studies can display a higher abundance of receptor oligomers due 

to aggregation artificially promoted by fixation (Kusumi and Suzuki 2005). 

Insufficient starvation of cells and the use of phosphatase inhibitors have also 

been proposed as potential sources of elevated levels of receptor dimers 

(Nagy, Claus et al. 2010). EGFR dimerization has been found to depend 

strongly on temperature (Gadella Jr and Jovin 1995). Other factors which 

should be considered include specific artifacts and limitations of the 

experimental techniques used. Techniques differ in the efficiency with which 

they can detect short-lived transient dimers as well as in their ability to 

distinguish true functional receptor dimers from groups of receptors in close 

proximity due to co-localization in membrane domains (Lidke, Nagy et al. 

2003, Yeow and Clayton 2007, Anikovsky, Dale et al. 2008, Szabo, Horvath et 

al. 2008). 
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Fluorescence lifetime correlation spectroscopy has been deployed to 

investigate the interaction of antagonist antibody with EGFR (Chen and 

Irudayaraj 2010) which resulted in initiation of receptor internalization.  

EGFR is frequently misregulated in cancer cells. For instance, the EGFR 

mutant L858R showed dimerization in the absence of ligand (Wang, Longo et 

al. 2011). Many anti-cancer treatmtents aim to interfere in improper receptor 

activation in order to stop malignant cell survival and proliferation. 

 

1.6 Clinical relevance of EGFR 

As previously mentioned, EGFR can be found in epithelial human tissues and 

it is crucial in cellular processes, e.g. differentiation, proliferation and 

development (Carpenter 1987, Ullrich and Schlessinger 1990). Misregulation 

of downstream signaling induced by EGFR occurs in different carcinomas 

(head, neck, breast, bladder ovarian, renal, colon, non-small-cell-lung cancer 

(NSCLC)) and plays an important role in the formation, survival and 

progression of a number of diseases (Klapper, Kirschbaum et al. 2000, 

Baselga 2002, Ciardiello  and Tortora 2008). Around 10% to 30% of NSCLC 

diagnosed patients show either mutations in EGFR or EGFR, which is mostly 

overexpressed (Siegelin and Borczuk 2014). The most common one was 

observed to be Exon 19 and L858R. The latter mutation is based at exon 21, 

where leucine is substituted by arginine, accounting for 43% EGFR mutations 

in lung tumors. 
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These mutations, known also as activating mutations, are leading to 

uncontrolled ligand-independent activation of EGFR and prolonged kinase 

phosphorylation (Greulich, Chen et al. 2005, Okabe, Okamoto et al. 2007). 

Besides mutations, misregulation of EGFR can also be caused by EGFR 

overexpression in epithelial tumors as a response to its hypoxic 

microenvironment or by gene amplification (Franovic, Gunaratnam et al. 

2007). A previous study suggests that EGFR overexpression can lead to a high 

production level of autocrine signaling such as TGF-α and EGF (Sizeland and 

Burgess 1992), which induces activation of different signaling pathways. 

Glioblastoma mulitforme (GBM) is the most common aggressive brain tumor, 

which is caused by EGFRvIII mutation (Padfield, Ellis et al. 2015). GBM 

diagnosis has been associated with poor prognosis and a maximum of 15 

months’ survival time (Gan, Cvrljevic et al. 2013). This variant has an in-frame 

deletion of 801 base pair (bp) of the coding sequences in exon 2-7, leading to 

the loss of 267 amino acids in the extracellular domain and being 

consequently only 145 kilo Dalton (kD). Interestingly, this mutated EGFR is 

characterized by an additional junction site and a novel glycine residue. A 

previous study has reported that dimerization of transient EGFRvIII with itself 

and wild-type EGFR may be a crucial factor for altered signaling 

downregulation and GBM cell proliferation (Pillay, Allaf et al. 2009). 

Furthermore, the stabilization of this transient homodimers is facilitated by 

disulfide bonds through free aminoterminal cysteines. 
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Over the last decades, a lot of improvements has been achieved in targeting 

EGFR in carcinomas with anti-EGFR agents to interfere with downstream 

signaling. Monoclonal antibodies (Mabs) and Tyrosine kinase inhibitors (TKIs) 

are two of the most common classes of agents used to target EGFR signaling 

(Dassonville, Bozec et al. 2007). These drugs differ in their specificity and 

mechanisms. Cetuximab is a Mab used to prevent binding of endogenous 

ligand to EGFR by occupying the binding pocket in the extracellular domain 

and by inducing internalization of EGFR-cetuximab complexes. This will 

reduce the amount of EGFR on the cell surface. In contrast to Mabs, TKIs 

compete with adenosine triphosphate (ATP) and bind to the intracellular 

domain of tyrosine kinase in order to inhibit auto-phosphorylation and 

downstream signaling. Another class of TKIs available on the market is 

Gefinitib, Erlotinib and Lapatinib. The disadvantage of using TKIs is that ATP 

competitors are not specific to EGFR. Consequently, Gefinitib can be also 

prescribed to inhibit the growth of ErbB2-overexpressing tumor cells (e.g. 

breast cancer). In clinical studies, Gefinitib has been shown as the most 

effective in around 10% of NSCLC patients. However, therapeutic approaches 

are limited and sometimes ineffective; after initially good responses to TKI 

treatments, the drug has shown to be widely ineffective, associated with 

increased patient resistance to the targeted therapy. Moreover, researchers 

found that long-term intake of drugs might cause a second mutation, T790M, 

which was present in around 50% of TKI resistant patients (Kobayashi, 

Boggon et al. 2005, Pao, Miller et al. 2005). However, in most cases, this 
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T790M mutation disappears after interrupting TKI therapy (Sequist, Waltman 

et al. 2011). 

Drawbacks of available drugs targeting EGFR dysregulation are many side 

effects (rash, acne, nausea, and diarrhea) and patients often acquired drug 

resistance. Indeed, there is a need for improvement and new alternatives in 

cancer therapy to be explored.  

In this study, we aim to investigate the experimental effects on EGFR 

dimerization in the absence of a ligand. Imaging and tracking of EGFR were 

enabled by its labeling with Fluorescent Proteins (FP) in order to address the 

question to which extent experimental factors influence the amount of EGFR 

dimers and to obtain insights into EGFR function. Results in this field will help 

to develop new intervention strategies to overcome current limitations. 

 

1.7 Improvements of the fluorophores and validation of this 

approach 

Genetic labeling of a target molecule with FPs is routinely used in cell biology 

to investigate protein function and interaction. .Many FPs have been isolated 

from distinct organisms or the first discovered green fluorescent protein 

(GFP) has been modified by mutagenesis in order to evolve a wide range of 

FPs starting from the blue until yellow regions (Day and Davidson 2009, 

Kremers, Gilbert et al. 2011). Although the usage of mutated FPs faces some 

challenges. It was reported that some of them show fast photobleaching, 
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limited quantum yield, incomplete maturation and restricted spectral 

properties which limit its usage in the investigation of molecular interaction 

(Wiedenmann, Oswald et al. 2009). Consequently, there is a need for 

improved fluorophores especially in the red region with specific properties 

e.g. brightness, photostability and a wide range of spectral features. In our 

previous and recent work, it has been shown that the cross-correlation of the 

positive control mRFP-EGFR-eGFP never reaches 100% due to a non-

fluorescent fraction of mRFP (Foo, Naredi-Rainer et al. 2012).The cross-

correlation amount is a measure to evaluate whether distinct labeled 

molecules interact with each other. This limitation comes from the restricted 

maturation of the mRFP. Protein folding and the formation of chromophore 

are the two important processes. The tertiary structure of the FPs is in the 

form of β-barrel, which protects the chromophore from quenching by the 

solvent (Day and Davidson 2009). The incomplete folding of these proteins is 

due to the trapping of a protein fraction as nonfluorescent green species and 

defective shielding of the fluorophore by the surrounding cylindrical shell of 

β-strands. In addition, low extinction coefficient and quantum yield of mRFP 

(44,000 M−1 cm−1 and 0.25, respectively) contribute to low brightness and 

consequently reduces the precision of dimerization amount (Yang, Cheng et 

al. 1996, Campbell, Tour et al. 2002). Therefore, an improved version of a red 

FPs, namely, mApple has been cloned into EGFR plasmid and tested for its 

functionality. This FP shows an extinction coefficient of 75 000 M−1 cm−1and a 

quantum yield of 0.49 (Shaner, Lin et al. 2008). 
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A number of alternatives to the traditional FPs have been developed, known 

as chemical tags. These small polypeptides were fused to the molecule of 

interest and need to be covalently labeled with organic dyes or fluorophores. 

In this work, ACP-tag on EGFR was studied to determine the receptor 

interaction in order to compare it with the results obtained by FPs. In 

addition, the variant SNAP-tag and CLIP-tag were additionally cloned and 

investigated as they show improved selectivity and high signal-to-noise 

ratios. There is a wide range of substrates for SNAP-tag labeling available, for 

example, dyes, fluorophores, beads or biotin. 

 

1.8 Scope of this study 

Despite more than 35 years’ research on EGFR dimerization and signaling, the 

underlying molecular mechanism is not yet solved and requires further 

investigation. The exact knowledge of EGFR activation and signaling will help 

in order to develop effective therapeutic interventions to target aberrant 

EGFR activity. Especially the mechanism of EGFR dimerization in the absence 

of a ligand and in ligand stimulated cells will help to get insight in EGFR 

misregulated cancer cells.  

EGFR exists as a mixture of monomers and dimers even in the unliganded 

state (section 1.8). A pair of studies have been conducted in order to quantify 

the dimerization of EGFR in the absence of EGF but have demonstrated 

inconsistent results in dimerization amount (Moriki, Maruyama et al. 2001, 

Chung, Akita et al. 2010, Hofman, Bader et al. 2010, Nagy, Claus et al. 2010, 
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Valley, Lidke et al. 2014). This made it necessary to investigate distinct 

possible misleading sources for this inconsistency as already a huge range of 

EGFR dimers and monomers reported in the literature are not insightful in 

receptor dynamics. The question addressed in this thesis is whether these 

huge discrepancies in results are related to the sample preparation method 

or to the application of distinct techniques. The first scope of this work was 

to systematically investigate the experimental factors, which could have 

impact in the determination of EGFR dimerization. For that reason, the 

experiments were performed under various conditions at different 

temperature ranges, in distinct cell lines and membrane position as each 

single study´s result arised using distinct temperature and cell lines. Room 

and physiological temperature were chosen individually in previous studies 

and we aim to investigate the temperature factor on the outcome of EGFR 

dimers. In addition, three different cell lines with distinct proportions of 

endogenous EGFR were used for the determination of EGFR dimerization in 

unliganded state. Furthermore, the amount of EGFR dimers was examined 

and focused to the basal and apical membrane in all cell lines. The second 

part was to compare the dimerization results obtained by different 

Fluorescent Correlation Spectroscopy (FCS) methods. To solve these 

inconsistencies, the fraction of EGFR molecules present in the form of 

homodimers in the plasma membranes has been performed at physiological 

as well as at room temperature and on the apical and on basal membranes in 

different cell lines by using EGFR constructs labeled with fluorescent proteins 

EGFP and/or mRFP. In addition, we compared CHO-K1 cells, selected as an 



36 
 

example of a cell line lacking endogenous EGFR, with two lines of fibroblasts 

which express endogenously intermediate and low levels of EGFR (COS-7 

approximately 100.000 EGFR/cell (Tong, Taylor et al. 2008) and HEK293 

20.000 EGFR/cell (Carter and Sorkin 1998). The measurements of EGFR 

dimerization have been performed bySingle Wavelength Fluorescence Cross-

Correlation Spectroscopy (SW-FCCS). In addition, selected experiments were 

repeated using other Fluorescence Cross-Correlation Spectroscopy (FCCS) 

modalities, namely Dual-Color FCCS (DC-FCCS), quasi Pulsed Interleaved 

Excitation FCCS (quasi PIE-FCCS) (Padilla-Parra, Auduge et al. 2011) and Dual-

Color imaging Total Internal Reflection FCCS (DC-ITIR-FCCS). Moreover, the 

influence of cholesterol and the cytoskeleton on EGFR dimerization has been 

investigated by means of methyl-β-cyclodextrin (mβCD) and Latrunculin-A 

(LAT-A) treatment in resting cells.  

Lately, a series of new constructs with chemical tags (ACP, SNAP and CLIP) 

and an improved version of the red Fluorescent Protein (FP) mRFP, namely 

mApple, were cloned and tested for their suitability for FCS measurements.  

2 Single-molecule techniques 

2.1 Fluorescence Correlation Spectroscopy (FCS) 

Single-molecule techniques have become important tools in life science, 

providing access to complex biological molecular systems. Fluorescence 

Correlation Spectroscopy (FCS) is a powerful technique with a single-

molecule sensitivity that is routinely used to investigate protein conformation 
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dynamics, aggregation, kinetics of chemical reactions, diffusion and 

photophysical properties of molecules. For instance, FCS has been applied for 

drug screening, enzyme kinetic bindings and diffusion measurements on 

membranes (Weidemann 2014). FCS was initially developed by Magde and 

Elson in the seventies (Magde, Elson et al. 1972). In that study, FCS was 

successfully used to investigate the binding of ethidium bromide with DNA. 

The application of this tool increased fast when FCS was successfully coupled 

to confocal detection, which enabled measurements with high signal to noise 

ratio (Rigler, Mets et al. 1993). This combination delivered several 

advantages; it suppressed background fluorescence and scattered light and 

provided dramatic improvement of detection efficiency of fluorophores. 

Other important advantages are the wide range of time scales of FCS from 

nanoseconds to seconds and that it works at sub-nanomolar to micromolar 

concentrations, which is similar to the physiological expression level of 

membrane receptors. The underlying principle of FCS is based on monitoring 

the fluorescence fluctuations caused by the movement of the fluorescently 

labeled molecules through an observation volume due to Brownian motion. 

These fluctuations come from noise and chemical and physical properties of 

the fluorophores and are recorded as a function of time. Autocorrelation of 

these fluctuations results in an autocorrelation function, which decays in 

time. It allows one to extract physical parameters of molecular processes. For 

that reason, FCS enables to monitor important chemical kinetics, quenching, 

complexation and diffusion of fluorophores. Hence, it has found massive 

applications in the life sciences. FCS is non-invasive and experiments can be 
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performed in live cells. By using sensitive detectors, it establishes detection 

at the single-molecule level with high accuracy, which in turn helps to resolve 

fundamental undiscovered cellular processes in living systems. However, this 

technique is based on the recording of fluorescence fluctuations and 

therefore requires probes, labeled with fluorescent tags.  

One of the most important achievements in cell biology is the discovery of 

green fluorescent protein (GFP) (27kD) in jellyfish Aequorea victoria. 

Molecular cloning allows genetic labeling of any protein with GFP by fusion to 

its N-or C-terminus. GFP serves as a molecular marker in cells, which enables 

the investigation of dynamics at the molecular level in situ. In addition, GFP 

and other fluorescent proteins sustain the biological function and cellular 

localizations of many chimeric proteins. Fluorescent proteins are commonly 

used in single molecule techniques. For instance, it allows measurement of 

local concentrations and diffusions that would not be possible by 

conventional techniques. Particularly, mutant versions of GFP, known as 

enhanced GFP (eGFP) and superfolder GFP (sfGFP) have been cloned which 

show improved spectral properties. Other homologs over a broad range of 

different colors are available for the application in fluorescence spectroscopy.  

Fluorescently tagged probes are used in many variants of single molecule 

techniques. Another advanced single molecule technology is Förster 

resonance energy transfer (FRET) which is known to be a powerful method to 

detect molecular interactions. However, for high efficiency and accurate 

results, it requires a close distance in the range of 10-100 Angstrom (Å) 
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between molecules of interest to transfer energy from the donor (excited 

fluorophore) to the acceptor.  

Nowadays, FCS has been applied to determine various diffusion modes such 

as Brownian diffusion (Mets and Rigler 1994, Di Rienzo, Piazza et al. 2014), 

anomalous diffusion (Metzler, Jeon et al. 2016), rotational and translational 

diffusion (Oura, Yamamoto et al. 2016) and flow (Magde, Webb et al. 1978, 

Gosch, Blom et al. 2000, Ashdown, Pandzic et al. 2015). Additionally, FCS was 

used to determine the kinetic rate constants of distinct reactions (Brandao, 

Sangji et al. 2014, Kanno and Levitus 2014, Bi, Yin et al. 2016, Ye, Luo et al. 

2016) and found application in clinical research (Torres, Genzen et al. 2012, 

Olson, Torres et al. 2013, El-Shaheny 2014).  

Complementary methods to FCS are photon counting histogram (PCH) (Chen, 

Muller et al. 1999, Müller, Chen et al. 2000)and fluorescence intensity 

distribution analysis (FIDA) (Kask, Palo et al. 2000, Palo, Brand et al. 2002) in 

which the brightness of the fluorophores is evaluated.  

An extended version of FCS is the Fluorescence Cross-correlation 

Spectroscopy (FCCS), which is based on measuring temporal fluctuation of 

the movements of differently labeled molecules. This variant allows one to 

measure molecular interactions and dynamics and will be further discussed in 

section 2.3. In this work, different versions of FCCS have been used to 

investigate EGFR interaction in living cells. This method provides the 

possibility to measure receptor dynamics and dimerization in real time in 

living systems. Investigation of EGFR interaction in live systems provides 
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temporal and spatial information, which makes it attractive especially in cell 

biology and cancer research.  

 

2.2 Theory of FCS 

As mentioned in the previous section, FCS is based on the measurements of 

the movement of fluorophores in an observation volume and works in 

nanomolar up to high micromole rconcentrations. The observation volume in 

a confocal setup is generated by a focused laser beam. The pinhole 

positioned in front of the detection channel creates a small detection volume 

of less than a femtolitre (fl). Fluorophores move in and out through the 

observation volume and induce temporal fluctuations. The statistical analysis 

of the average fluorescence fluctuations provides information on physical 

parameters such as concentration, association/dissociation kinetics and 

motion of the molecules. To get physical information about the molecules, 

the intensity trace is correlated with itself at time shift  and transformed into 

an autocorrelation function (ACF). At zero time shift  0, intensity traces 

overlap with each other to 100%; this is reflected by the highest correlation 

value in the autocorrelation curve. The correlation value decreases by 

increasing  . Autocorrelation of the intensity traces allows the derivation of 

an autocorrelation curve, which enable the quantification of the average 

diffusion time by the width of the curve and to determine the underlying 

processes by the shape of the curve.  Additionally, the amplitude of the curve 

represents the particle numbers in the observation volume. 
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The fluorescence fluctuations at a certain time t is presented as 

   ( )   ( )  〈 ( )〉 (2.2.1) 

F(t) is the fluorescence intensity, 〈 〉 represents the average fluorescence 

intensity. 〈F(t) 〉 is calculated by  
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The normalized ACF is defined as 
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  stands for the lag time. 

Substitution of equation 2.2.1 into 2.2.3 results in  
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Given in this form, the ACF decays to 1 at infinite   ( ( )   )  

The autocorrelation amplitude G(0) is inversely proportional to the average 

particle number (N) in the confocal volume and is given by 
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(2.2.5) 

The autocorrelation curves are fitted with different mathematical models to 

extract the diffusion time and numbers of molecules in the observation 
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volume. Organic dyes diffuse freely solution.  The fitting of free diffusing 

particles was performed by 3-dimensional-1-particle-1-triplet (3D1p1t) 

model, in which the function is expressed as  
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  is the average diffusion time of the fluorophores in the detection volume 

and defined as    
  
 

  
.     

  is the radial distance at which the maximum 

intensity is decreased by a factor of 1/e2.       stands for the fraction of 

particles in the triplet state and       is the triplet state relaxation time.  

The structure factor K of the confocal volume is mathematically defined as  

K= ωz/ω0 (height over its waist of the confocal volume). 

 

2.3 Principles of Fluorescence cross-correlation spectroscopy 

(FCCS) and Single-Wavelength Fluorescence Cross-

Correlation Spectroscopy (SW-FCCS) 

Fluorescence Cross-Correlation Spectroscopy (FCCS), an extension of FCS, is 

commonly used to explore molecular interactions and is the focus of this 

thesis. The theory of Dual-Color Fluorescence Cross-Correlation Spectroscopy 

(DC-FCCS) was initially introduced by Eigen and Rigler (Eigen and Rigler 1994) 

and first successfully applied on the measurement of the interactions of 
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fluorescently labeled DNA in 1997 (Schwille, Meyer-Almes et al. 1997). The 

application of this tool has increased rapidly to monitor protein-protein 

interactions and dynamics in the cytosol and membrane of cells in a 

predefined confocal volume. In confocal FCS, the evaluation of molecular 

complexes is limited by the diffusion coefficients and mass (Meseth, Wohland 

et al. 1999). The development of FCCS has increased the sensitivity and 

resolution of the traditional FCS. In addition, this method does not require a 

certain spatial distance between the molecules as in the case of FRET. In DC-

FCCS, two different lasers are used to excite distinctly labeled molecules; 

fluorescence fluctuations are recorded in two different emission channels 

and auto- and cross-correlated. FCCS evaluates molecular interactions by 

means of a cross-correlation curve without any restriction. The cross-

correlation curve will rise up if molecules interact or/and are co-localized and 

move together.  

However, FCCS in general and DC-FCCS show some artifacts. The major 

problem in FCCS is spectral cross-talk in which the photons are wrongly 

assigned to the detection channels. The long tail of the emission spectrum of 

the green molecule GFP causes photons to arrive in the green channel and 

some in the red channel. Accordingly, it leads to a false positive cross-

correlation and reduces the sensitivity of the method. Fortunately, a modality 

of FCCS, namely pulsed interleaved excitation FCCS (PIE-FCCS) can get rid of 

cross-talk. The principle of this technique will be further discussed in the next 

subsection.  
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The main drawback in DC-FCCS is the imperfect overlap of the detection 

volumes. The origin of this problem arises with the usage of two distinct laser 

beams with different beam waists resulting in different sizes of the confocal 

volumes. If the volumes are shifted along the axis and do not overlap 

perfectly, the cross-correlation amplitude is reduced and the dynamic range 

decreases. The dynamic range of the experiments strongly depends on the 

calibration of the two laser beams. Thus, a new modality of FCCS, Single 

wavelength cross-correlation spectroscopy (SW-FCCS) was developed (Hwang 

and Wohland 2005, Liu, Sudhaharan et al. 2007). This simplified technique 

uses only one laser (514 nm) to excite differently labeled fluorophores 

simultaneously and cancels out the difficult calibration of two laser spots 

which is the case in DC-FCCS. Another similar tool to SW-FCCS is two-photon 

excitation FCCS (TP-FCCS) which can also excite fluorophores with one laser, 

but uses two-photon excitation (Swift, Burger et al. 2007). However, the 

count per particle per second (cps) of TP-FCCS is much lower (Berland and 

Shen 2003)than that of DC-FCCS due to strong photobleaching and saturation 

present in TP-FCCS (Dittrich and Schwille 2001). In TP-FCCS, a wider range of 

fluorophores can be used, while in SW-FCCS only selected fluorophores with 

overlapping excitation spectra and large distances between their emission 

spectra are adequate. 

SW-FCCS was developed by our group and is the main technique used in this 

thesis besides other FCCS modalities. The proteins of interest are labeled 

with enhanced green fluorescent protein (eGFP) and monomeric red 

fluorescent protein (mRFP). The fluorescence fluctuations of eGFP and mRFP 
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are recorded in the green and red channels, respectively and the auto- and 

cross-correlation curves are calculated. The normalized cross-correlation 

function (CCF) is given by 

 
  ( )  
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(2.3.1) 

  ( ) stands for the fluorescence intensity of green labeled molecules and 

  ( ) of red labeled molecules. Compared to auto-correlation, here, the 

fluorescence fluctuations of two distinctly labeled molecules are cross-

correlated at different time points.  

 

2.3.1 Curve fitting of 2-dimesional systems 

The auto-and cross-correlation functions (ACFs and CCFs) were fitted with a 

model for 2-dimensional diffusion with the reversible switching of the 

fluorophores to a dark (triplet) state. The model (equation 2.3.1.1) contains 

five unknown parameters: the apparent particle number Napp, the diffusion 

coefficient D, the fraction of fluorophores in the dark state Ftrip, the 

characteristic time of switching to the dark state τtrip and the asymptotic 

value for long correlation times Ginf. The switching to the dark state is, in this 

case, most likely a combination of photophysical processes (triplet 

transitions, isomerization) and a protonation-deprotonation equilibrium 

(Widengren 2010, Sun, Guo et al. 2015). While a single exponential may not 

be the correct description of the correlation function of such processes, it 

provides a reasonably well parametrization of the correlation curve, thanks 
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to a sufficient difference between τtrip and the characteristic diffusion time, 

where the actual choice of the parametrization of the initial decay of the 

correlation function has only limited effect on its diffusional part. The 

asymptotic value for long correlation times Ginf is in the ideal case of a 

perfectly stationary process equal to 0. However, in practice, small non-zero 

values are commonly encountered due to the finite length of the sampled 

intensity time-trace or due to non-stationarity of the time-trace caused by 

photobleaching. Therefore, we leave Ginf as a free fitting parameter. The 

radius of effective detection area ω0 was determined by calibration with a 

dye with known value of D. The fitting was performed by a self-written 

module in Igor Pro (WaveMetrics, Portland, OR). 
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(2.3.1.1) 

To estimate the receptor interaction amount measured in the confocal 

volume, the particle numbers Napp were extracted by fitting both the ACF and 

CCF curves. Background-corrected particle numbers N were obtained from 

Napp as described previously (Koppel 1974, Hess and Webb 2002). The 

background was measured in cells not expressing any fluorescent proteins 

and illuminated by excitation light of the same intensity as used in the actual 

SW-FCCS recordings. The typical background levels were between 500-800 

cps. 

The amount of cross-correlation q (the ratio of the concentration of the 

double-labelled species to that of all the particles carrying the less abundant 
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label) was calculated according to equation 2.3.1.2 and used as a measure of 

the amount of molecules existing in the form of complexes (Kohl, Haustein et 

al. 2005). q is written as 
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Ng, Nr and Nx are the backgrounds corrected particle numbers extracted from 

the ACFs in the green and the red channel and from the CCF, respectively. 

The mean values and standard deviations of or standard errors of the q mean 

are calculated from all measurements performed under given conditions. We 

measured in at least four cells, typically maximal nine measurements per cell. 

The numbers of individual cells and measurements for each type of 

experiment are provided in the tables or in the text together with the 

respective results. 
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2.3.2 Instrumentation and calibration of SW-FCCS system 

The SW-FCCS instrumentation was described in previous publications (Pan, 

Foo et al. 2007). Briefly, the setup consists of an Olympus FV300 confocal 

microscope (Olympus, Tokyo, Japan) equipped with two avalanche 

photodiodes (SPCM-AQR-14; PerkinElmer, Canada) as light detectors for FCS 

measurements. The Argon ion 514 nm laser line (Melles Griot, Albuquerque, 

NM) was focused by a 60x, NA 1.2 water immersion objective (UplanApo, 

Olympus, Japan) into a diffraction limited spot. Laser power (measured at the 

back aperture of the objective) was 20 µW in all experiments. The emitted 

fluorescence passed a 488/514 major dichroic (Omega Optical, Brattleboro, 

VT), a 150 µm pinhole, was split by a560 DCLP emission dichroic mirror 

(Omega Optical, Brattleboro, VT), passed through emission band-pass filters 

(545AF35 or 615DF45), respectively, Omega Optical, Brattleboro, VT) and 

reached the avalanche photodiodes. The output of the avalanche 

photodiodes was processed by a hardwarecorrelator (Flex02-01D, 

www.correlator.com, Bridgewater, NJ) to obtain the auto- and cross-

correlation functions. The inbuilt photomultipliertubes (PMTs) of the FV300 

were used for confocal imaging of the cells. The schematic setup is shown in 

the Figure 2.3.2.1. 

The effective detection volume was calibrated with a 20 nM aqueous solution 

of Rhodamine 6G (Sigma-Aldrich, St. Louis, MO) which has a known diffusion 

coefficient of 382 µm²/s at room temperature and 555 µm²/s at 37°C (as 

calculated from values and equation (temperature and viscosity dependent) 

given in (Kapusta 2010, PicoQuant, Berlin). Each channel, correction collar 
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and the position of the pinhole is optimized to detect the highest 

fluorescence count rate. The autocorrelation curve is fitted with a 3D1p1t 

model equation 2.2.6. FCCS measures the diffusion time of the membrane 

receptor and the diffusion coefficient is calculated by solving the following 

equation 

 

 

 

                 
(                             )

           
 

(2.3.2.1) 

 

Figure 2.3.2.1 Schematic setup of SW-FCCS (image taken from Yong Hwee Foo) 

 

The 37°C temperature during the measurements was maintained by a non-

stage incubator (TempContro 37-2, Pecon, Erbach, Germany) and the 

corresponding temperature of the objective by an objective heating ring (TC-

124A, Warner Instruments, Hamden, CT). The room temperature was 22°C, 
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as maintained by the air-conditioning system in the laboratory. Three 30 s 

data acquisitions were run consecutively in each selected point.  

 

2.4 Dual-color fluorescence cross-correlation spectroscopy (DC-

FCCS) and quasi pulsed interleaved excitation fluorescence 

cross-correlationspectroscopy (quasi PIE-FCCS) 

DC-FCCS and quasi pulsed interleaved excitation fluorescence cross-

correlation spectroscopy (quasi PIE-FCCS) are modalities of FCCS, which have 

been implemented to investigate molecular interactions and co-localizations 

in biological samples and solutions. In DC-FCCS, two different continuous 

lasers are used to excite spectrally separated fluorescent proteins. The 

emission is split by a dichroic mirror and forwarded to two distinct detectors. 

However, the main concern of FCCS arises from the non-perfect overlap of 

the detection volumes and wrong assignment of photons in the non-

corresponding channel. This spectral crosstalk of emission in distinct 

detectors reduces the sensitivity and specificity of the method. More 

recently, alternating laser excitation (ALEX) source has been combined with 

FCCS (Kapanidis, Lee et al. 2004). The two excitation lasers are interleaved at 

time frame between 25 to 3000 milliseconds. The excitation lasers are 

alternatively operated in a time rate faster than the diffusion time of the 

molecules of interest. An important component in ALEX-FCCS is the time 

correlated single photon counting (TCSPC) module in which individual 

channel`s photons are detected. The exact arrival time of each photon in 
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TCSPS enables the generation of a fluorescence decay curve.By using ALEX as 

an excitation source, it is possible to obtain a cross-talk free correlation curve 

which prevents false positive cross-correlation. The studies of Lee et al. 

(2005) have demonstrated that the precision of single-pair fluorescence 

resonance energy transfer (spFRET) has been increased by combining it with 

ALEX (Lee, Kapanidis et al. 2005). In the same year, Mueller et al. developed 

the concept of pulsed interleaved excitation and increased the alternation 

time scale from microseconds to nanoseconds (Müller, Zaychikov et al. 2005).  

Importantly, the usage of this improved interleaved excitation source in FCS 

enables one to operate with submicro second resolution. The major 

advantage of PIE is the capacity to remove spectral crosstalk from cross-

correlation curves and therefore increases the accuracy of FCCS. In addition, 

the cross-correlation function can be corrected for input of detector 

afterpulsing and background signal (Böhmer, Wahl et al. 2002, Kapusta, Wahl 

et al. 2007). PIE was used to investigate complexes which undergo FRET 

(Müller, Zaychikov et al. 2005). In these experiments, the amplitude ratios of 

correlation curves provide the FRET efficiency. As the arrival time of the 

photon is known, additional information such as the lifetime of the 

fluorophore can be extracted.  

Besides using SW-FCCS, the modalities DC-FCCS and the variant of PIE-FCCS, 

quasi PIE-FCCS, were used to conduct receptor interaction experiments. This 

method of crosstalk elimination in FCCS is based on similar principles as PIE-

FCCS (Müller, Zaychikov et al. 2005); however, it requires only a single pulsed 
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laser (485 nm), the second laser being continuous wave (543 nm). We 

therefore named it as quasi PIE-FCCS. 

 

2.4.1 Instrumentation of quasi PIE-FCCS and DC-FCCS 

DC-FCCS and quasi PIE-FCCS experiments were carried out in CHO-K1 cells at 

room temperature on a confocal microscope (FV1200, Olympus, Tokyo, 

Japan) equipped with a time-resolved FCS upgrade kit (PicoQuant, Berlin, 

Germany). For DC-FCCS, the cells were illuminated by two continuous wave 

laser lines of 488 nm and 543 nm (GLG 3135 and GLG 7000 respectively, 

Showa Optronics, Japan) through a 60x, NA 1.2 water immersion objective 

(UplanSApo, Olympus, Japan) to excite eGFP and mRFP, respectively. The 

same 543 nm laser was used for quasi PIE-FCCS together with a pulsed 485 

nm laser (LDH-D-C-488, PicoQuant, Germany) operated at 20 MHz repetition 

rate. 20 µW of laser power for each individual laser line was used in all 

measurements. The fluorescence emission passed through a 

405/488/543/635 major dichroic mirror (Chroma Technology, Bellows Falls, 

VT), a 120 µm confocal pinhole and, after being split by a 560DCXR (Chroma 

Technology, Bellows Falls, VT) emission dichroic, through a 600/50 (Chroma 

Technology, Bellows Falls, VT) or 513/17 (Brightline, Semrock, Rochester, NY) 

band-pass emission filter, respectively, to be detected by avalanche 

photodiodes (SPCM-AQR-14; PerkinElmer,Canada). The photon counts from 

the detectors were registered by aTimeHarp 260 time correlated single 

photon counting board (PicoQuant,Berlin, Germany) and processed by the 

SymPhoTime 64 software (PicoQuant,Berlin, Germany); the same software 
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was also used to calculate the correlation functions. Those were then 

analyzed in the same manner as the correlation functions obtained by SW-

FCCS. As in the case of SW-FCCS, the dimensions of the effective detection 

volumes were determined by calibration of FCS measurements in solutions of 

reference dyes. Atto-488 (Atto-Tec, Siegen, Germany) was used for the 488 

nm and 485 nm laser lines and Rhodamine 6G for the 543 nm line. The 

diffusion coefficient of Atto-488 was taken as 369 µm²/s at 22°C, based on 

values in Kapusta 2010, PicoQuant, Berlin. Each data acquisition lasted 30 s in 

the case of DC-FCCS and 60s in the case of quasi PIE-FCCS. When analyzing 

data acquired with the pulsed 485 nm laser, we used statistical filtering 

(Machan, Kapusta et al. 2014) to eliminate detector after-pulses and spectral 

crosstalk between the two detection channels as described previously 

(Padilla-Parra, Auduge et al. 2011).  



54 
 

 

Figure 2.4.1.1 Schematic setup of quasi PIE-FCCS and DC-FCCS (adapted from Yong 
Hwee Foo image) 

2.5 Total Internal Reflection Fluorescence Microscopy (TIRFM) 

Historically, Axelrod (1981) first suggested that Total internal reflection 

fluorescence microscopy (TIRFM) is an efficient method to investigate cells-

substrate contact (Axelrod 1981, Axelrod, Thompson et al. 1983). When the 

light passes from a higher refractive index medium to a lower refractive index 

medium, it will be refracted. In the case of refraction, the light path bends at 

the boundary of the two different media. Snell`s Law of refraction is 

expressed as  

                 (2.5.1) 

n1and n2 indicate the refractive index of the two different media (n1  n2) and 

θ1andθ2are the incident and refractive angles, respectively.   
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When the light beam passes from a denser medium to a less dense medium, 

it undergoes bending. However, if the angle of incident is bigger than the 

critical angle θc, the light is internally reflected and does not go beyond the 

boundary of these two media.θc is expressed as 

       
  (     ) (2.5.2) 

This internal reflection causes an evanescent field on the boundary. The 

energy of the evanescent field is strong enough to excite the fluorophores 

within this location. The intensity of the evanescent field is distance-

dependent and shows an exponential decay from the boundary. Depth d can 

be calculated by 

   (     )  (  
         

 )     (2.5.3) 

0 is the wavelength of the light and n2sinθ indicates the numerical aperture 

(NA) of the objective. The depth of the evanescent field can reach around 

100 nm and depends on several factors such as refractive indexes, incident 

angle, and wavelength.  

TIRFM is a powerful imaging tool to detect fluorophores adherent to the cell 

surface and at the meantime, it reduces background signal significantly. Thus, 

it increases the signal to noise ratio and protect the living organism from 

photodamage. The total internal reflection illumination in FCS (ITIR-FCS) has 

shown to be an efficient and very sensitive method in studying membrane 

organization.  

As shown previously, confocal FCS is a very effective method and it is usually 

combined with either photomultiplier tubes (PMTs) or avalanche 

photodiodes (APDs) as detectors. Unfortunately, the measurements are 
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performed on a selected small spot at a certain time and therefore misses to 

capture multiple spots at the same time. To extend the single spot 

measurements to a region of an image, TIRF has been equipped with cooled 

charge coupled detector (CCD) or electron multiplying (EM) CCDs dependent 

on the needs. Using EMCCD in ITIR-FCS has been successfully applied in 

monitoring of molecular dynamics in living organisms (Kannan, Har et al. 

2006, Kannan, Guo et al. 2007, Sankaran, Manna et al. 2009, Sankaran, Shi et 

al. 2010, Sankaran, Bag et al. 2013, Singh, Krieger et al. 2013). In ITIR-FCS, 

every pixel in an image will be correlated and it enables to collect many 

positions at the same time.  The effective detection area (Aeff) is defined as a 

convolution between the pixel area (axa) and the point spread function (PSF) 

of the microscope and expressed as       
      . The PSF can be 

approximated as a Gaussian function with center x0 and width w, the result of 

PSF (Bag, Sankaran et al. 2012) is given in 2.5.4 

 
    (    )  

 

 √  
 
(    )

 

    
(2.5.4) 

where 

 
      

   
  

 
(2.5.5) 

em is the emission wavelength and NA the numerical aperture of the 

objective. σ0 was calculated to be 0.4 (Bag, Sankaran et al. 2012) . 

 

2.5.1 Instrumentation of DC-ITIR-FCCS 

Measurements in CHO-K1 cells at 37°C were also performed by DC-ITIR-FCCS. 

The setup consisted of an inverted epi-fluorescence microscope (IX83, 
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Olympus, Japan) equipped with a motorized TIRF illumination combiner (IX3-

MITICO, Olympus, Japan), an image splitter (OptoSpilt II, Cairn Research, 

Faversham, UK) and an electron multiplying charge-coupled device (EM-CCD) 

camera (Evolve 512, Photometrics, Tucson, AZ). 491 nm and 561 nm lasers 

(LAS/491/100 and LAS/561/100, Olympus, Germany) were connected to the 

TIRF illumination combiner in which the incidence angles for individual laser 

lines were adjusted to give 110 nm penetration depth of the evanescent field. 

The laser power measured at the back aperture of the objective was 0.6 mW 

for the 491 nm laser and 0.9 mW for the 561 nm laser. A 60x, NA 1.49 oil 

immersion objective (ApoN, Olympus, Japan) was used to illuminate the 

sample and collect the fluorescence image. The fluorescence light then 

passes through a major dichroic (Di01-R488/561, Semrock, Rochester, NY) 

and was split by the image splitter into the two halves of the camera chip. 

The image splitter was fitted with an emission dichroic (FF560-FDi01, 

Semrock, Rochester, NY) and band-pass filters (510AF23 and 615DF45 

respectively, Omega Optical, Brattleboro, VT). A bright-field image of a stage 

micrometer was used to align the image splitter following a procedure 

described previously (Kohl, Haustein et al. 2005). The camera was controlled 

by Micro-Manager 1.4 (Edelstein, Tsuchida et al. 2014) and in each 

measurement, a stack of 30000 frames with 3.4 ms per frame was acquired. 

The captured region of interest consist of 20 lines (to allow sufficiently fast 

read-out) spanning the whole width of the camera chip (to include 

corresponding images in both the green and the red spectral region). The 

chamber with imaged cells was placed in an on-stage incubator (Chamlide TC, 
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Live Cell Instrument, Seoul, Korea) maintaining the temperature of 37˚C and 

5% CO2 atmosphere. 

The image stacks were then analyzed by a self-written FIJI (Schindelin, 

Arganda-Carreras et al. 2012) plug-in (Sankaran, Shi et al. 2010), which 

calculates the ACF from intensity fluctuations in each pixel as well as the CCF 

for each pair of corresponding pixels in the two halves of the image. In order 

to correct for gradual changes in fluorescence intensity caused by bleaching 

or membrane undulations, correlations were calculated in sliding windows of 

2500 frames and then averaged to avoid distortion of correlation functions 

due to intensity changes caused by photo-bleaching or whole cell movement. 

The plug-in is analogous to our previously described program ImFCS 

(Sankaran, Shi et al. 2010). The correlation functions were fitted with a model 

for 2-dimensional diffusion derived previously (Sankaran, Manna et al. 2009) 

to extract values of apparent particle numbers N, diffusion coefficient D and 

asymptotic correlation Ginf. The size of the microscope point spread function 

(PSF) was calibrated by measurement in supported lipid bilayers as described 

earlier (Bag, Sankaran et al. 2012). The background was set at 500 counts 

based on recordings in samples of cells not expressing any fluorescent 

protein. 2x2 pixels were binned for the analysis. 

Since the EM-CCD camera is not a true photon counting detector, recovering 

absolute particle numbers is not straightforward (Unruh and Gratton 2008). 

We, therefore, did not attempt to determine the absolute dimer fractions but 

instead characterized the level of dimerization by cross-correlation amount q 

defined by equation 2.3.1.2, in line with a previous work on dual-color 
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imaging FCCS (Kohl, Haustein et al. 2005). By performing the analysis for 

every pair of corresponding pixels, we obtained a map of the distribution of q 

in the imaged cell. 

 

 

Figure 2.5.1.1 Schematic setup of ITIR-FCS. The laser beam passes through the lens 
in order to focus it to the dichroic mirror and is forwarded to the sample. In ITIR-
FCCS, two lasers are used to illuminate the sample. The emissions are collected by 
the objective and forwarded to the EMCCD camera 

  



60 
 

3 Materials and Method 

To investigate the factors influencing the dimer amount, the construct EGFR 

labeled with fluorescent proteins has been used for our measurements. 

Additionaly, the protein plasma membrane target (PMT) labeled with 

fluorescent proteins were included in the experiment plan to perform 

negative control on the FCCS system. PMT is derived from N-terminal (15 

amino acids) of the X-linked retinitis pigmentosa protein RP2. Palmitoylation 

of this N-terminal is responsible for targeting of the protein to the plasma 

membrane localization (Chapple, Hardcastle et al. 2002). Therefore, PMTs 

were selected as a plasma membrane protein for conducting negative 

controls as they did not show any interactions when using FCCS. 

  

3.1 Cloning of mApple-EGFR 

The cloning of mApple-EGFR includes several steps. First, the insert mApple 

(a gift from Dr. David Piston, Washington University, St. Louis) was amplified 

by polymerase chain reaction( PCR) with Q5® High-Fidelity PCR Kit (New 

England BioLabs® Inc.,Ipswich, MA) using following primers 

(NewEnglandBioLabs® Inc., Ipswich, MA): Forward primer XhoI 5-

3’AAACTCGAGATGGTGAGCAAGGG and Reverse primer XhoI 5-

3’AAACTCGAGCTTGTACAGCTCGTC (Integrated DNA TechnologiesPte. Ltd, SG) 

in Eppendorf Mastercycler ep Gradient S (Hamburg, Germany). The PCR 

product was seperated by gelelectrophoresis and afterward extracted with 

GeneJET gel extraction kit (Thermo Scientific, Waltham, MA). The purified 



61 
 

PCR product was digested with XhoI enzyme. mRFP-EGFR plasmid (pNUT 

backbone, Figure 3.10.1) has been digested by XhoI to cut out mRFP, purified 

by gelelectrophoresis and dephosphorylated withFastAP Thermosensitive 

Alkaline Phosphatase (Thermo Scientific, Waltham, MA). Furthermore, the 

vectorbone was cleaned up by precipitation. Finally, EGFR vectorbone was 

ligated with mApple to the final construct mApple-EGFR (N-terminus). Ligated 

product was transformed to DH-5αcompetent cells, successfully cloned 

mApple-EGFR has been amplified for further measurements.  

 

3.2 Cloning of SNAP-EGFR, EGFR-CLIP, PMT-SNAP, PMT-CLIP and 

SNAP-EGFR-CLIP 

The inserts for the cloning were amplified by PCR using Q5® High-Fidelity PCR 

Kit (New England BioLabs® Inc. (NEB)) and the optimal annealing 

temperatures for a given set of primers were calculated in NEB Tm calculator 

online. Following primers were designed for the particular insert: SNAP to 

fuse it as N-terminus SNAP-EGFR: forward primer 5-3’ 

AAACTCGAGATGGACAAAGACTGCG  and reverse primer 5’-3’ 

AAACTCGAGACCCAGCCCAG, EGFR for the fusion protein EGFR-CLIP forward 

primer 5’-3’AAAACCGGTATGCGACCCTCCG  and reverse primer 5’-3’ 

GAAACCGGTTGCTCCAATAAATTCACTGCTTTG, PMT for SNAP-PMT forward 

primer 5’-3’ AAAGGATCCATGGGCTGCTTCTTCAGC and reverse primer 5’-3’ 

AAAGGATCCTTAGCTCTCCTTGTCGGCC, PMT for PMT-CLIP forward primer 5’-

3’AAAACCGGTATGGGCTGCTTCTTC and reverse primer 5’-3’ 



62 
 

AAAACCGGTGCTCTCCTTGTCG,  SNAP for SNAP-EGFR-CLIP forward primer 5’-

3’ AAAGATATCATGGACAAAGACTGCG and reverse primer 5’-3’ 

AAAGATATCACCCAGCCCAGG. To get the final product SNAP-EGFR, SNAP 

were amplified by PCR using the primers mentioned above, digested with 

XhoI and precipitated. The vectorbone mRFP-EGFR was also digested with 

XhoI to remove mRFP and afterward dephosphorylated with FastAP 

Thermosensitive Alkaline Phosphatase (Thermo Scientific, Waltham,MA). The 

insert and vectorbone were purified by gelelectrophoresis. Finally, the SNAP 

and EGFR vectorbone were ligated for 5 minutes (min) at room temperature 

with Quick Ligase (New England BioLabs® Inc.). Ligated product was 

transformed and successful clones amplified. To clone the construct EGFR-

CLIP (C-terminus), EGFR has been amplified using the given primers above, 

digested with AgeI and purified. The vectorbone CLIP (purchased from New 

England BioLabs® Inc.) were digested with AgeI, dephosphorylated and 

purified with gelelectrohporesis. The final substrates were ligated at room 

temperature for 5 minutes. The same procedure was used to clone the 

constructs SNAP-PMT and PMT-CLIP with the appropriative primers and 

enzymes. BamHI and AgeI were used to digest the PCR products and cut the 

vectorbone for SNAP-PMT (SNAP-vectorbone, Figure 3.10.3) and PMT-CLIP 

(CLIP-vectorbone, Figure 3.10.2). The cloning of the positive control SNAP-

EGFR-CLIP were conducted in the plasmid EGFR-CLIP. SNAP were amplified by 

PCR, digested with EcoRV and cloned using same cloning protocol mentioned 

above.  
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3.3 Cloning of EGFR (I706Q, V948R) 

The plasmid EGFR (1706Q, V948R) was a gift from Professor Tony Ng, King`s 

College London. Three PCR reactions have been conducted to get the insert 

EGFR (1706Q, V948R)-eGFP. In the first PCR, EGFR (1706Q, V948R) was 

amplified using DNA template EGFR (1706Q, V948R) and the forward primer 

1 5’-3’: (AgeI) AAAACCGGTATGCGACCCTCCGGGA and reverse primer 2 5’-3’: 

AAATCCTCGCCCTTGCTCACCATACTTCCTCCTCCTGCTCCAATAAATTCA. The first 

PCR product contained EGFR (1706Q, V948R) and the protein linker (GGGS) 

with eGFP starting sequence. In the second PCR reaction, eGFP (linker and 

EGFR part) were amplified from the template PMT-eGFP with the following 

forward primer 35’-3’: (underlined: codon of protein linker GGGS) 

AAATGAATTTATTGGAGCAGGAGGAGGAAGTATGGTGAGCAAGGGCGAGGAGC 

and reverse primer 4 5’-3’ (NotI) AAAGCGGCCGCTTACTTGTACAGCTCGTCCAT. 

In the last PCR, the PCR product EGFR (1706Q, V948R) and the EGFP were 

used as a template with the forward primer 1 (from the first PCR reaction) 

and reverse primer 4 (from the second PCR reaction) to construct the insert 

EGFR (1706Q, V948R)-eGFP. The final product was cut by the restriction 

enzyme AgeI, precipitated, digested with NotI and gelelectrophoresis 

purified. The plasmid PMT-mRFP (vectorbone YFP, Figure 3.10.4) were cut by 

AgeI and NotI to remove PMT-mRFP and purified by gelectrophoresis. In the 

last step, the vectorbone and insert were ligated using T4 Ligase (Thermo 

Scientific, Waltham, MA) at 16°C overnight. Afterward, the ligated product 

was transformed into DH-5α cells and amplified.  
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3.4 Cell culture and plasmid transfection 

COS-7 (monkey kidney, fibroblast), HEK293 (human kidney, fibroblast) and 

CHO-K1 (Chinese hamster ovary, epithelial) cells purchased from ATCC 

(Manassas, VA) were cultured in DMEM (Hyclone Dulbecco’s Modified Eagle’s 

Medium, GE Healthcare, UK) containing 10% FBS (Hyclone fetal bovine 

serum, GE Healthcare, UK) and 1% PS,penicillin G and streptomycin (PAA, 

Austria) at 37˚C in 5% CO2 atmosphere. Cells to 90% confluence were 

trypsinized with 0.5-1 ml 0.25% trypsin-0.03% EDTA solution (BSF, the 

Biopolis Shared Facilities, SG) for 3 min and ~5-10% of them were 

resuspended in 5 ml DMEM and placed back into the flask and incubator. 

Around 6x105 - 1x106 (CHO-K1 and COS-7) and ~5 106 (HEK293) splitted cells 

were centrifuged for 3 min and resuspended in ~8 µl electroporation buffer R 

when using 10 µl transfection system or ~90 µl R buffer at 100 µl transfection 

system. I used for COS-7 and CHO-k1 10 µl and for Hek293 cells 100 µl 

transfection system as Hek293 cells give better results when using 100 µl 

system. In general, ~3 µg EGFR-eGFP/mRFP, ~5 µg mRFP-EGFR-eGFP or 0.3 µg 

PMT-eGFP/mRFP  were used in 10 µl transfection system or ~7 µg EGFR-

eGFP/mRFP, ~13 µg mRFP-EGFR-eGFP or ~4 µg PMT-eGFP/mRFP  in 100 µl 

transfection system. To do analysis at lower receptor concentration, only 1.5-

2 µg labeled EGFR were transfected. With the aid of electroporation (NeonR 

Transfection system, Life Technologies, Carlsbad, CA) appropriative amounts 

of EGFR constructs and plasma membrane targeting sequence (PMT) tagged 

with enhanced green fluorescent protein (eGFP) or monomeric red 

fluorescent protein (mRFP) were introduced into the cells using 
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manufacturer`s electroporation parameters for certain cell lines. The cells 

seeded on coverslips (30 mm in diameter; Lakeside, Monee, IL) or glass 

dishes (MatTek Corporation, Ashland, MA) submerged in DMEM with 10% 

FBS were kept in the incubator at 37˚C in 5% CO2 atmosphere. After an 

overnight incubation, the transiently transfected cells were serum-starved for 

minimum 4 hours and incubated for 30 min with the following three 

inhibitors with the final concentrations of 2 mM for NaF, 10 mM for NaN3 and 

5 mM for 2-deoxy-D-glucose (all inhibitors from Sigma-Aldrich, St. Louis, MO). 

Finally, the coverslip with the cells was washed with PBS and mounted to an 

imaging chamber in the case of using glass slides filled with 1 ml PBS 

containing the three inhibitors. To analyze phosphorylated receptors, ~5-6 x 

106 cells were transfected in 100 µl system with ~5-6 µg plasmid and seeded 

on a glass dish. 

 

3.5 Western Blotting of phosphorylated chimera ErbB receptors 

Cells were transfected with ~5-6 µg plasmid (wt-EGFR, mApple-EGFR, SNAP-

EGFR, EGFR-CLIP, SNAP-EGFR-CLIP) in CHO-K1 cells and kept in the incubator 

overnight. Next day, the cells were starved for minimum 4 h and later on 

stimulated with a final concentration of 100ng/ml EGF for 30 minutes on 

ice(Moriki, Maruyama et al. 2001). The cells were washed three times with 

cold 1xPBS and lysed with RIPA buffer supplemented with phosphatase and 

protease inhibitor cocktail (Thermofischer, Waltham, MA) for 5 minutes on 

ice. After 15 min centrifugation at 4.000 g at 4 °C, the supernatant has been 
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stored at -80°C until its usage. Around 20 µl 2x Laemmli buffer (Bio-Rad, CA), 

supplemented with mercaptoethanol, were added to 25 µl cell aliquot and 

boiled for 10 min at 95 °C. The samples were loaded into the wells of a 7% 

SDS- polyacrylamide gel and were run at 100 V for ~1.20 h. The gel was 

blotted onto PVDF membrane (pore size 45 um, GE Healthcare, Little 

Chalfont, UK) at 100V for 1h. Afterward, the membrane was blocked in 3% 

BSA in 1xTBST solutionovernight at 4°C. Next day, the membrane has been 

washed three times with 1xTBST for 5 min and incubated with the primary 

antibody anti-pTyr (PY20) (sc-508; Santa Cruz Biotech., Santa Cruz, CA) in 

1%BSA 1xTBST for 3-4 h. Afterward, the membrane has been washed three 

times with 1xTBST and incubated with sheep anti-mouse IgG conjugated with 

horseradish peroxidase (HRP) as a secondary antibody in 1% BSA for 1-2 h. 

Finally, the membrane waswashed with 1xTBST three times. The proteins 

were visualized by incubation the membrane in ECL substrate solution using 

manufactures recommendation (Clarity Western, ECL substrate, Bio Rad, CA). 

Finally, the membrane was analyzed in ImageQuant LAS4000 (GE Healthcare, 

Little Chalfont, UK). 

 

3.6 Labeling procedure of ACP-EGFR with CoA-Atto488, CoA-

OregonGreen and CoA-Cy3 

ACP-EGFR was a gift from gift from Dr. Donna J Arndt-Jovin, Germany. Before 

covalently labeling of the receptors, CHO-K1 cells expressing the fusion 

protein were serum-starved for at least 4 h and to reduce the activity of EGFR 
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fusion protein (Bosch, Correa et al. 2014). Afterward, 1 µM CoA-label (CoA-

Atto488, CoA-OregonGreen or CoA-Cy3) and 1 µM ACP Synthase (New 

England BioLabs® Inc.) were added to the cells in colorless DMEM 

supplemented with 1% 1 mg/mL bovine serum albumin (BSA) (Sigma Aldrich) 

at 37 °C, 5 % CO2 for 30-40 min. Cells were washed three times with 

phenolred-free DMEM supplemented with 1% BSA and incubated with three 

inhibitors with the final concentrations of 2 mM NaF, 10 mM NaN3 and 5 mM 

2-deoxy-D-glucose (all inhibitors from Sigma-Aldrich). 

 

3.7 Labeling of the constructs SNAP-EGFR, EGFR-CLIP and SNAP-

EGFR-CLIP 

The transfected cells with SNAP-EGFR were serum-starved and incubated 

with ~5-7 μM SNAP-Surface®488 substrate (New England BioLabs® Inc.) in 

colorless DMEM supplemented with 0.5% 1 mg/mL BSA at 37 °C, 5% CO2 for 

30 min. For the EGFR-CLIP construct, ~1.8μM CLIP-Cell™ TMR-Star (New 

England BioLabs® Inc.) substrates were added for 30 min. After labeling, the 

cells were after washing incubated for another 30 min as CLIP-Cell™ TMR-Star 

is cell-permeable. This step is necessary to remove unreacted substrates. 

Dual-labeling of SNAP-EGFR-CLIP were conducted in a similar way; first SNAP-

tag were labeled with 7 μM SNAP-Surface®488 substrate, washed several 

times with DMEM and afterward labeled with~1.8μM CLIP-Cell™ TMR-Star 

solution. The labeling solution were replaced by DMEM and incubated for 
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another 30 min to remove uncreated CLIP substrates. All measurements were 

performed in the presence of internalization inhibitors as mentioned before.  

 

3.8 Drug treatment and Ligand stimulation 

Methyl-β-cyclodextrin (mβCD, Sigma) is routinely used in membranes tudies 

to extract cholesterol from lipid rafts. mβCD s capable to form a complex with 

cholesterol (Nishijo, Moriyama et al. 2003). Itwas solved in PBS buffer and 

kept at -20ºC. Transfected cellswere treated with a final concentration of 3 

mM in serum-free media 1 ml 1xPBS. After 25 min incubation time, the cells 

were measured in the time frame until 10 min. Latrunculin A (LAT-A, 

Calbiochem) is obtained from red sea sponge Latrunculiamagnifica. In cell 

biology, it is used to inhibit actin polymerizationand destroy cytoskeleton. A 

stock solution of LAT-A in DMSO witha concentration of 10 mM was stored at 

-20ºC. For the experiments, a final concentration of 3 µM in 1ml 1xPBS was 

used to destroy cytoskeleton and the measurements were done within 15 

min. The transfected cells with EGFR were stimulated with a final 

concentration of EGF (100ng/ml) or (10 ng/ml).  

 

3.9 Estimation of number of labeled receptors per cell 

We used the sum of background-corrected particle numbers from both the 

channels (Ns = Ng + Nr) to estimate the number of EGFR copies per cell. Ns is 

the number of labeled receptor molecules within the observation area π  0² 
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defined by the focus of the confocal microscope. The radius of the 

observation area  0 is determined by the calibration of the confocal volume. 

To obtain the number Nc of receptors per cell we need to estimate the area 

of the whole cell membrane Ac and then Nc = Ns Ac/(π  0²). The area of the 

basal cell membrane Ab can be directly determined from the confocal images 

of the cells in which we performed the measurements. Approximating the 

shape of the apical membrane as a spherical surface, we can write 

Ac = 2Ab + π h², where the height of the cell h can be estimated as the typical 

difference in axial focus position between the basal and the apical 

membrane. The average calculated cell surface of CHO-K1, HEK293 and COS-7 

were 691 µm2, 602 µm2 and 1501 µm2, respectively. The calculated surface 

area of CHO-K1 is consistent with the literature value ~632 µm2 (Kluba, 

Engelborghs et al. 2015). 
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3.10 Plasmid maps of different constructs 

 

Figure 3.10.1 Plasmid map of mApple-EGFR 
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Figure 3.10.2 pCLIPf vectorbone (NEB website) 

 

 

 

Figure 3.10.3 pSNAPf vectorbone (NEB website) 
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Figure 3.10.4 Plasmid map of EGFR (1706Q, V948R)-eGFP 
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4 Quantification of EGFR dimers in resting cells by using 

different FCCS modalities 

After more than 35 years’ research, uncertainty about the receptor 

dimerization in the absence of ligand still exists. We and other groups 

attempt to determine the amount of preformed dimers on the cell surface by 

using different technical and experimental approaches, but the results 

deviate extremely among the studies. 

In this chapter, we address the question to which extent the experimental 

conditions influence the presence of receptor dimerization. In the second 

part, we perform the measurements on different FCCS modalities to test 

whether the results remain consistent.  

In addition, some experiments on EGFR have been repeated to verify the 

consistency with our previously shown results (Liu, Sudhaharan et al. 2007, 

Ma, Ahmed et al. 2011).    

 

4.1 Determination of Diffusion coefficient 

It is thought that plasma membrane associated signaling relies on the 

surrounding of receptor localization. Therefore, three distinct cell lines CHO-

K1, COS-7 and HEK293 have been chosen to evaluate the dimerization 

amount. Epithelial cells (CHO-K1) consist of distinct apical and basal 

membrane domains which are divided by tight junctions (Tanos and 

Rodriguez-Boulan 2008). Some evidence shows that the distinct lipid 

composition in the apical membrane makes it robust (Brasitus and Schachter 



74 
 

1980, Simons and van Meer 1988). However, fibroblasts as COS-7 do not 

contain characteristic apical basal polarity. In our experimental design, the 

transfected cells on the glass side named as lower membrane refers to basal 

membrane and the upper membrane on the top of the cell refers as apical 

membrane even in cell lines with no basal-apical polarity. Furthermore, the 

experiments were conducted in CHO-K1, COS-7 and HEK293 as they possess a 

different amount of endogenous EGFR. CHO-K1 does not express any 

endogenous EGFR.COS-7 and HEK293 have ~100,000 and ~20,000 receptors 

per cell, respectively. The temperature was set to room and physiological 

temperature during the experiments to examine the extent of physiological 

and non-physiological conditions on EGFR dynamics. This temperature was 

selected as it was frequently used in the past studies. 

The cells were transiently transfected with mRFP-EGFR and EGFR-eGFPand 

kept in the incubator overnight. Usually, the glass dishes were covered up to 

with~50-60% confluent cells during experiments. Next day, the cells have 

been starved for minimum 4 h and afterward incubated with internalization 

inhibitors for 30 min. The localization of EGFR-eGFP was in the apical and 

basal plasma membrane. Healthy cells with firm attachment have been 

selected for FCCS measurements and analysis. To avoid artifacts on the 

correlation functions, the count rate of the fluorescence intensity did not 

exceed 300 kHz and the ratio between the two distinct intensity traces was 

between 0.5 to 2. The measurements were carried out on the apical and 

basal membrane to determine the diffusion coefficient D. To obtain D, the 

diffusion time τhas been extracted from the fitting and calculated using 
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equation 2.3.1. The average D of the transmembrane EGFRat the apical and 

basal membrane was approximately 0.3 ± 0.2 µm²/s (mean ± standard 

deviation (SD) at room temperature and showed no differences between 

these two membrane locations (t-test (one tail, type 1 for all data in this 

section), p=0.32) (Figure 4.1.1). D is consistent with previously reported value 

(Chung, Akita et al. 2010, Kluba, Engelborghs et al. 2015) in resting cells. At 

the physiological temperature of 37°C, D reaches a higher value of 

approximately 0.7 ± 0.3 µm²/s (t-test, p=0.0016). All correlation curves were 

successfully fitted with a model with a single diffusive component (2D1p1t); 

this is in agreement with the Saffman-Delbrueck model, which predicts only a 

negligible difference in D between a monomer and a dimer of a membrane 

protein (Weiß, Neef et al. 2013). In general, the D of mRFP-EGFR and EGFR-

eGFP was in the same range in the apical and the basal membranes of all 

studied cell lines. In all cases, D increases with the increase of temperature as 

expected. In addition, we observed an increase of the standard deviation of D 

with temperature which is probably due to increased heterogeneity in local 

membrane organization at physiological temperature; similar effects have 

been observed previously (Ries, Chiantia et al. 2009). Consistently, D of EGFR 

measured by DC-FCCS and quasi PIE-FCCS at room temperature was also in 

the range 0.3 ± 0.2 µm²/s in agreement with SW-FCCS results.The average D 

at 37°C determined by DC-ITIR-FCCS in both the green and the red detection 

channel was approximately 0.6 ± 0.3 µm²/s. A detailed description of the 

results obtained from quasi-PIE-FCCS, DC-FCCS and DC-ITIR-FCCS will be given 

in the sections 4.7 and 4.8.  
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Figure 4.1.1 Diffusion coefficient in different cell lines. Diffusion coefficient D ± SD of 
EGFR-eGFP (white bar at RT, grey bar at 37°C) and mRFP-EGFR (striped bar at RT, 
black bar at 37°C) in the apical and the basal membranes of CHO-K1 (A) COS-7 (t-
test:p=0.053 (basal/apical, RT), p=0.00005 (basal, RT/37°C) (B) and HEK293 cells (t-
test:p=0.45 (basal (red and green EGFR, RT), p=0.00053 (apical, RT/37°C, mRFP-
EGFR) (C) D values are similar in all three cell lines. (t-test: one tail, type 1). 

 

4.2 EGFR complex fractions in resting cells using SW-FCCS 

EGFR complex formation has been investigated under certain experimental 

conditions in three different cell lines. To investigate the cross-correlation 

amount q, transiently transfected labeled EGFR were measured for 30 

seconds to obtain auto-and cross-correlation curves. An interaction of the 

receptors will result in an elevated cross-correlation curve, while non-

interaction will lead to a flat cross-correlation curve (Figure 4.2.2). The 

amount of factor q was calculated by using equation 2.3.1.2. The 

measurements were initially performed on SW-FCCS. Control experiments as 

positive and negative were conducted for each cell line and each 
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temperature in order to determine the dynamic range of our method. Double 

labeled receptor mRFP-EGFR-eGFP as a positive control gave a cross-

correlation amount q of 58% ± 1% in CHO-K1 cells; the value is the average 

from measurements on both membranes and at both temperatures, errors 

are given as the standard error of the mean (SEM) unless stated otherwise(t-

test, p=0.44 (RT group), p=0.0002 (37˚C)). The average values of q of the 

controls are presented in Figure 4.2.1, determined on different membrane 

location, temperature and cell lines. 

 

Figure 4.2.1 Results of positive and negative controls. (A-C) positive control mRFP-
EGFR-eGFP q (± SEM) (D-F) negative control labeled PMT/EGFR q (± SEM) in HEK293, 
CHO-K1 and COS-7. The positive control set the upper limit of the system; the 
average q is similar in each cell line.  
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In COS-7 and HEK293 cells, the apparent complex fraction of mRFP-EGFR-

eGFP was 68% ± 2% (t-test (one-tail, type 1 for all data used in this section), 

p=0.16 (RT group), p=0.15 (37˚C)) and 58% ± 1% (t-test, p=0.45 (RT group), 

p=0.28 (37˚C)), respectively. Consistently, the values q of the positive control 

is similar in all examined cell lines. The apparent complex fraction lower than 

100% can be explained by the incomplete maturation of mRFP and its 

prolonged residence in dark or dim states (Hillesheim, Chen et al. 2006, Foo, 

Naredi-Rainer et al. 2012). In a previous study, the labeled plasma membrane 

targeting sequence (PMT) did not show protein interaction in CHO-K1 cell 

(Liu, Sudhaharan et al. 2007), making them a suitable negative control for 

FCCS measurements in cell membranes. Surprisingly, when using these 

labeled PMTs to determine the lower limit of our method, different behavior 

of these proteins was observed in COS-7 and HEK293. In these cell lines, a 

considerably higher amount of cross-correlation was found. A possible 

explanation for the increased cross-correlation is the partitioning of PMT into 

membrane microdomains. This will be discussed in section 4.8. Hence, we 

selected monomeric labeled PMT and EGFR as the negative control for all 

three cell lines. We obtained the following cross-correlation amounts q: 10% 

± 2% (t-test, p=0.45 (RT group), p=0.11 (37˚C)) in CHO-K1, 15% ± 0.5% (t-test, 

p=0.18 (RT group), p=0.41 (37˚C)) in HEK293 and 21% ± 1% (t-test, p=0.17 (RT 

group), p=0.25 (37˚C)) in COS-7 cells (Figure 4.2.1). The apparent complex 

fraction is significantly higher than in the other cell lines; possibly caused by 

partitioning of PMT and EGFR into the same domains and makes detection of 

low levels of EGFR dimerization difficult in these cell lines. The fact that 
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different cell lines can show different organization on membranes is the goal 

of a present study in our lab but has also been shown previously (Bag, Yap et 

al. 2014, Kraft and Klitzing 2014, Kreder, Pyrshev et al. 2015). The higher 

value of 10% for the negative control in CHO-K1 can be explained by spectral 

emission crosstalk of eGFP in the red detector channel. Besides the control 

experiments, the actual experiments have been evaluated to give insight into 

the EGFR-EGFR interactions in the absence of ligand. Three different 

individual experimental sets are displayed in Figure 4.2.2 and represent 

examples. In these selected FCCS plots, the positive control and the 

experiment revealed 43% and 37% complex fraction, respectively. In the case 

of the negative control, it did not form any complexes, leading to a q of 0%.  

Figure 4.2.2 ACF and CCF samples of selected experimental targets in all cell lines. 
(A) Positive control mRFP-EGFR-eGFP (B) experiment mRFP-EGFR-eGFP and (C) 
negative control PMT-mRFP/EGFR-eGFP. Experiments were done in CHO-K1 
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The receptor interaction in the absence of ligand was extensively probed in 

CHO-K1 (epithelial cells) as it is known to not express endogenous EGFR. This 

cell line show apical and basal plasma membrane domains which is necessary 

to perform distinct cell processes. The density of the labeled receptors can be 

estimated by fitting the auto-correlation curves. It provides the number of 

particles N green and red in the defined confocal volume, which can be used 

to determine the density of the receptor in the entire cell. The surface of the 

CHO-K1 area was calculated as described in section 3.6. The average surface 

from around 10 cells was ~691 µm2, consistent with the literature value 

of~632 µm2 (Kluba, Engelborghs et al. 2015). To probe whether the complex 

fraction is concentration-dependent, cells ranging from low to very high EGFR 

expression were examined. The number of receptors in the observation area 

was ranged between 3 to 462. These receptor amounts correspond 

approximately to cell surface receptor densities of 17 to 2222 per µm2. Our 

results yielded an average apparent complex fraction of 32% ± 3% (n=47, 20 

cells) on the basal (t-test, p=0.33) and 33% ± 5% (n=46, 19 cells) on the apical 

membrane (t-test, p=0.007) at room temperature (Figure 4.2.3). At 

physiological temperature (37°C), the apparent complex fraction in the basal 

membrane is 28% ± 2% (n=47, 15 cells) which does not differ significantly (t-

test, p=0.16) from the value at room temperature. A slight increase to 39% ± 

4% (n=30, 17 cells) occurs in the apical membrane (t-test, p=0.16) (Figure 

4.2.4). The data analyzed in the apical membrane at room temperature is 

consistent with previously reported values determined in our group (Liu, 

Sudhaharan et al. 2007) and given in the table 4.2.1. 
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Figure 4.2.3 FCCS cuves obtained by SW-FCCS. (A) positive control mRFP-EGFR-eGFP 
(B) negative control PMT-eGFP/mRFP-EGFR and (C) mRFP-EGFR/EGFR-eGFP  
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Figure 4.2.4 Complex fraction in distinct cell lines. (A) The cross-correlation amounts 
q in CHO-K1 cells expressing mRFP-EGFR/EGFR-eGFP with ≤ (●) or > (◌) 200 
receptors per um2 at different conditions (basal and apical membrane, physiological 
and room temperature) (B) An analogous plot for COS-7 cells expressing ≤ (●) or > 
(◌) 200 receptors per um2 (C) q values for HEK293 cells expressing ≤ (●) or > (◌) 200 
receptors per um2. The upper and lower gray zones in (A), (B) and (C) represent the 
positive and negative controls with corresponding ± standard deviations (SD), 
respectively. The box represents the average q ± SD 
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A summary about the complex fraction of the receptors under different 

conditions is shown in table 4.2.1. Assuming 100% dimerization in the 

positive control, we normalize these values by diving it by the average q of 

the positive control. The normalized values are an estimate of the actual 

dimer fraction and are represented in table 4.2.1. 

 

Table 4.2.1 Comparison of EGFR-EGFR interaction amount with previous work and 
this present work measured at different conditions in CHO-K1. *the values were 
normalized to the average positive control 58% under different situations in this 
thesis 

 

As seen in Figure 4.2.4, the subpopulations of cells with receptor densities 

below and above 200 receptors per µm2, respectively, do not differ in the 

apparent complex fractions. The independence of cross-correlation fraction 

on the expression level is even more evident from the plot of q versus the 

number of EGFR copies per detection area (Figure 4.2.5). 

Protein in CHO-K1 Complex q  
 (± SEM)  

Normalized 
dimer  

n (cell) 

mRFP-EGFR/EGFR-eGFP 
at RT (Liu Ping) 
basal 
apical 

 
 
 
0.50 ± 0.05 

 
 
 
0.68 ± 0.08 

 
 
 
-    (18) 

mRFP-EGFR/EGFR-eGFP 
at RT (Xiaoxiao Ma) 
basal 
apical 

 
 
- 
0.33 ± 0.02 

 
 
 
0.65 ± 0.04 

 
 
- 
-    (71) 

mRFP-EGFR/EGFR-eGFP 
at RT (this thesis) 
 
basal 
apical 

 
 
 
0.32 ± 0.03 
0.33 ± 0.03 

 
 
 
0.55 ± 0.05 
0.57 ± 0.05 

 
 
 
47 (20) 
46 (19) 

mRFP-EGFR/EGFR-eGFP 
37°C (this thesis) 
basal 
apical 

 
 
0.28 ± 0.02 
0.39 ± 0.04 

 
 
0.53 ± 0.04 
0.67 ± 0.07 

 
 
47 (15) 
30 (17) 
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Figure 4.2.5 Scatter plots. (A-D) q for mRFP-EGFR/EGFR-eGFP in HEK293 and COS-7 
plotted against cell surface density per µm². q increases with expression level (Ns) 
due to the presence of endogenous EGFR in these cell lines. Experiments were 
performed on the apical and the basal membranes in CHO-K1 at room temperature 
(E-F) q for mRFP-EGFR/EGFR-eGFP in CHO-K1 plotted against the receptor density 
per µm². 

 

No dependence of q on receptor density was observed within the range of 

expression levels probed. Experiments were performed on the apical and the 

basal membranes at 37°C. 

Furthermore, the investigation of EGFR complexation has been extended to 

the cell lines HEK293 and COS-7, which express endogenously approximately 
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20.000 and 100.000 EGFR copies per cell, respectively (Figure 4.2.4). The 

labeled receptor densities in HEK293 and in COS-7 cells were in the range of 

34 to 6212 per µm2 (Ns=7-1242) and 62 to 1543 per µm2 (Ns=13-321), 

respectively (Figure 4.2.5). In these cases, differences in q are observed 

between cells with labeled receptor densities below and above 200 per µm2. 

In both cell lines HEK293 and COS-7, the dependence of the apparent q factor 

on the labeled EGFR expression level is apparent from Figure 4.2.5. 

In the presence of endogenous EGFR, the complex formation of labeled EGFR 

results in a decrease in cross-correlation amount q and, thus, in 

underestimation of the complex fraction, unless the number of endogenous 

receptors is made negligible by overexpressing of the labeled ones (Figure 

4.2.5). Figure 4.2.6 showst two different outcomes of cross-correlation 

amplitudes in HEK293 when using low to high expression levels. High 

receptor density with 427.420 receptors on the entire cell surface resulted in 

a complex formation of 35%. While at low receptor expression of 36.120 

labeled receptors, the endogenously present receptor was noticeable and 

decreased the q value down to 10%, comparable with the negative control.  
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Figure 4.2.6 FCCS curves obtained from HEK293 cells expressing labeled EGFR (A) 
high expression level of labeled EGFR (427,420) compared to the presence of 
endogenous EGFR; leading to a q of 35%. (Ns=142) (B) In this case, low labeled 
receptor concentrations result in only 10% complex fraction (Ns=12) at 36.120 
receptor densities 

 

These results show that in the presence of endogenous receptor it is 

impossible to draw any definite conclusions on EGFR dimerization from FCCS 

measurements in cells that are not overexpressing the fluorescently labeled 

receptor. 

 

4.3 Effect of Latrunculin A (LAT-A) treatment on EGFR 

dimerization 

The movement of membrane proteins is assumed to be restricted by the 

cortical, membrane-associated F-actin, a component of the cytoskeleton 

(Chen and Resh 2002). It is supposed that the actin strands in the 

cytoskeleton network sterically interact with the cytoplasmic tail of the 

proteins, confining them into microdomains (Toral, Solano-Agama et al. 
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2007).To study the role of actin cytoskeleton on EGFR dimerization, we chose 

CHO-K1 cells as an endogenous EGFR free platform. The measurements were 

conducted at 37°C and focused on the upper and lower membrane.  The cells 

were co-transfected with similar amounts of mRFP-EGFR/EGFR-eGFP, 

incubated overnight and serum-starved for a minimum of 4-5 h. 

Internalization inhibitors were added to keep the receptors on the cell 

surface and treated with a final concentration of 3 µM Latrunculin (LAT-A). 

This drug is commonly used to disrupt the cytoskeleton and is an indirect 

method to explore the association of EGFR dimers with the network of actin 

filaments. In this set of experiments, the glass dishes were fixed with a 

double-sided tape on the objective stage in order to detect the same cell 

before and after drug treatment. The non-treated cells were tested for the 

dimer fraction and the data of LAT-A treated cells were acquired after 15 min 

incubation at 37 °C. Three laser spots with maximal three data recording on 

each cell were evaluated.  

LAT-A treated cells exhibit apparent complex fractions of 26% ± 2% (n=32, 4 

cells) and 27% ± 3% (n=24, 4 cells) in the basal and the apical membrane, 

respectively. This agrees well with control cells having 23% ± 3% (n=27, 4 

cells) and 27% ± 2% (n=28, 4 cells) complexes in the basal and the apical 

membrane, respectively.The results are displayed in Figure 4.3.1. 
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Figure 4.3.1 Disruption of the cytoskeleton in CHO-K1 cells. No changes are detected 
after LAT-A treatment compared with untreated cells. (t-test (one tail, type 1), 
p=0.28 (basal)and and p=0.45 (apical)).  

 

Note that the average of q of untreated cells is slightly lower than the value 

that we stated in the previous section; this is most likely caused by the cell-to 

-cell variability and the limited size of the cells tested for cytoskeleton 

disruption.These results indicate that the EGFR complex formation in the 

plasma membrane does not depend on the actin cytoskeleton, which is 

consistent with the study of Ariotti et. al (Ariotti, Liang et al. 2010). In Table 

4.3.1, the mobility of EGFR is summarized and compared before and after the 

LAT-A treatment. 
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Table 4.3.1 The diffusion times of differently labeled EGFR. The diffusivity increases 
after cytoskeleton in the apical membrane. However, the diffusivity decreases after 
drug treatment in the basal surface 

 

The diffusion times of eGFP- and mRFP-labeled receptors were 54 ± 37 ms 

and 53 ± 19 ms in the basal membrane, respectively, before the drug 

treatment. The LAT-A incubation reduced the diffusivity of the receptors to 

79 ± 12 ms and 84 ± 87 ms in the lower surface, respectively. However, 

opposite effect was observed in the apical membrane. The data showed an 

overall increase in the motion of the green and red labeled protein. The 

average value of the diffusion time was for green and red receptors 69 ± 26 

ms and 79 ± 38 ms before the treatment, respectively and changed to 48 ± 19 

ms and 55 ± 24 ms for green and red EGFR, respectively, after the LAT-A 

treatment.  

  

 Non-treated cells LAT-A treated cells 

 basal apical basal Apical 

τDmRFP (ms ± SD) 53 ± 19 79 ± 38 84 ± 87 55 ± 24 

τDeGFP (ms ± SD) 54 ± 37 69 ± 26 79 ± 12 48 ± 19 

n (cells) 27 (4) 28 (4) 32 (4) 24 (4) 
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4.4 Influence of cholesterol depletion on EGFR complex fraction 

In this work, the focus was to investigate the cause for inconsistent results of 

reported EGFR dimer amount. For this reason, dimerization of the receptor 

was tested at different experimental conditions and different techniques. It 

has been suggested that EGFR dimerization is dependent on the localization 

in the plasma membrane. A number of studies reported that the presence of 

EGFR in lipid rafts influences receptor dimerization (Nagy, Vereb et al. 2002, 

Ringerike, Blystad et al. 2002). Rafts on the cell membrane are tightly packed 

with cholesterol and glycosphingolipid. The studies of Kusumi et. al (2004) 

showed that ligand stimulation or receptor oligomerization lead to the fusion 

of small transient rafts into larger stable domains (Kusumi, Koyama-Honda et 

al. 2004). The function of these rafts is considered to serve as an 

intermediate platform in the signaling mechanism (Simons and Ikonen 1997, 

Simons and Ikonen 2000, Ikonen 2001). An indirect method to test the 

participation of lipid rafts in receptor dimerization and activation is the 

removal of cholesterol from the plasma membrane. A number of studies 

demonstrated that alteration of lipid rafts had a significant effect on signaling 

cascades (den Hartigh, van Bergen en Henegouwen et al. 1993, Chen and 

Resh 2002, Pike and Casey 2002, Roepstorff, Thomsen et al. 2002). 

Nevertheless, the underlying mechanism is not solved yet.  

In this section, cholesterol was depleted to investigate the involvement of 

cholesterol-dependent domains in the receptor dimerization. The 

experiments were performed in cells expressing mRFP-EGFR/EGFR-eGFP in 
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CHO-K1. The effect of cholesterol disruption was tested in the apical and 

basal membrane with methyl-β-cyclodextrin (mβCD) that binds to cholesterol 

and induces depletion from the membrane. The final concentration was kept 

at 3mM. The same cell was analyzed before and after drug treatment. The 

receptor dynamics were monitored after 25 min mβCD incubation to 

maximize cholesterol depletion at room temperature (Bag, Huang et al. 

2015). Independent cells were tested and the apparent dimer fraction in 

untreated cells was 26% ± 3% (n=25, 5 cells) in the basal and 33% ± 3% (n=36, 

8 cells) in the apical membrane. On average, cholesterol depletion showed a 

trend to increase the complex forms up to 40% ± 4% (n=29, 5 cells) and 

58% ± 5% (n=40, 8 cells) on basal and apical surface, respectively (Figure 

4.4.1). These values are higher than cross-correlation amounts measured in 

untreated cells, demonstrating that the EGFR complex formation is to some 

extent inhibited by partitioning of the receptor into cholesterol-dependent 

domains. The results are in agreement with a previously published study 

(Saffarian, Li et al. 2007) and are consistent with the findings that EGFR 

resides in cholesterol-dependent domains (Bag, Huang et al. 2015, Gao, 

Wang et al. 2015).  
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Figure 4.4.1 Influence of cholesterol removal on EGFR complex fraction (A) The 
cross-correlation amount of EGFR before and after cholesterol depletion in 
individual cells (B) In the apical membrane, the dimer amount increased mostly in all 
individual cells after drug treatment (C) average apparent complex fraction in mβCD 
treated cells in the lower (t-test (one tail, type 1): p=0.05 and the upper membrane 
p= 0.000057) 

 

The mobility of EGFR before and after drug treatment is summarized in table 

4.4.1. Similar diffusion times of red and green labeled receptors were 

observed almost in all cases, only a slight increase in mobility in cholesterol 

depleted cells in the apical membrane is seen.  
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Table 4.4.1 Average lateral mobility of EGFR under different conditions 

 

The impact of cholesterol disruption resulted in an overall increase in dimer 

fraction. However, it is important to show the difference in behavior in the 

case of a low dimer% before the drug treatment in a resting cell. As seen in 

Figure 4.4.2 A, the complex fraction remained at the same level of 14% even 

after drug treatment. In all other cases, cholesterol removal had a significant 

effect on receptor dimerization. For instance, in a selected resting cell, the 

apparent dimer fraction was 38% which increased up to an amount 84% after 

depletion of cholesterol. Figure 4.4.2 B displays FCCS analysis of EGFR after 

drug treatment. 

 

 Non-treated cells mβCD treated cells 

 basal apical basal apical 

τDmRFP (ms ± SD) 91 ± 36 92 ± 40 104 ± 52 81 ± 85 

τDeGFP (ms ± SD) 94 ± 55 80 ± 42 100± 78 118 ± 198 

n (cells) 25 (5) 36 (8) 29 (5) 40 (8) 
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Figure 4.4.2 FCCS analysis of EGFR after drug treatment. (A) No changes on complex 
amount after cholesterol depletion when the initial cross-correlation amount was 
14% (B) In the case of a complex fraction of 38%, the cross-correlation value 
increased up to 84% after drug treatment 

 

4.5 Effect of unlabeled receptor molecules on apparent dimer 

fraction 

When unlabeled EGFR molecules (such as the endogenous EGFR expressed by 

COS-7 and HEK293 cells) are present in the cell membrane, the dimer fraction 

derived from our FCCS data is underestimated because some of the labeled 

EGFR molecules dimerize with unlabeled ones and appear as apparent 

monomers in FCCS. To test the sensitivity of our method in the presence of 

unlabeled EGFR, we co-transfected CHO-K1 cells with labeled mRFP-EGFR, 

EGFR-eGFP and wild-type (wt) EGFR and performed SW-FCCS measurements 

at room temperature (Figure 4.5.1). In the first experiment, EGFR-eGFP, 

mRFP-EGFR, and wild-type EGFR plasmids were transfected in the ratio 

1:1.5:2 (EGFR-eGFP:mRFP-EGFR:wt EGFR). The apparent complex amounts 

were 19% ± 2% (n=25, 5 cells) in the basal and 22% ± 2% (n=34, 5 cells) in the 
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apical membrane. In the second experiment, the amount of transfected wild-

type EGFR plasmid was reduced (1:1.5:1.3 ratio), and the results yield an 

increased apparent complex fractions of 23% ± 2% (n=16, 5 cells) and 

34% ± 2% (n=20, 5 cells) in the basal and apical membrane, respectively. 

 

Figure 4.5.1 Decrease in q values in CHO-K1 cells co-transfected with fluorescent as 
well as wild-type EGFR. Cells transfected with mRFP-EGFR/EGFR-eGFP/wt-EGFR in 
the ratios of 1.5:1:2 (white bar) and 1.5:1:1.3 (gray bar) are compared to control 
cells (t-test (one tail, type 2)): p= 0.002 (white/black bar), p=0.04 (gray/black bar), p= 
0.15 (white/gray bar) at basal; p= 0.0008 (white/black bar), p= 0.37 (gray/black bar), 
p= 0.0009 (white/gray bar) at apical) without unlabeled EGFR (black bar) 

 

The q factor is therefore underestimated by artificially introduced wild-type 

EGFR and the values are given in the table 4.5.1. 
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Table 4.5.1 q values with different molar ratio of labeled and unlabeled EGFR  

The expression level ofeGFP and mRFP labeled receptor varied between 

99,663 and 3,375,269 on the entire 691 µm2 CHO-K1 cell surface. It is not 

known how much unlabeled EGFR was expressed on the cell surface.  

Nevertheless, the effect of wild-type EGFR on dimer% can be seen in the 

results. The measurements with unlabeled EGFR demonstrate the sensitivity 

of our technique to changing complex fractions of the receptor; this is in line 

with our results in COS-7 and HEK293 cell lines where the competition 

between labeled and endogenous EGFR molecules causes an apparent 

dependence of the complex amount on the expression level. 

 

4.6 Effect of internalization inhibitor on dimerization amount 

In all the above described experiments, the cells were incubated for 30 min 

with internalization inhibitors (NaN3, NaF and 2-deoxy-D-glucose) and the 

measurements were conducted in the presence of the inhibitors to avoid 

internalization and endocytosis of EGFR from the plasma membrane. To 

verify that the presence of inhibitors does not influence the measured 

mRFP-EGFR/EGFR-

eGFP/wt-EGFR  

 

basal  

q (± SEM) 

n (cell) apical n (cells) 

1.5:1:2 0.19 ± 0.02    25 (5) 0.22 ± 0.02    34 (5) 

1.5:1:1.3 0.23 ± 0.02    16 (5) 0.34 ± 0.02    20 (5) 
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complex fraction of EGFR in the plasma membrane, we repeated the SW-

FCCS experiments in CHO-K1 cells at room temperature in the absence of the 

inhibitors. The obtained apparent complex fractions of 23% ± 5% (n=21, 5 

cells) on the basal and 33% ± 4% (n=25, 3 cells) on the apical membrane are 

in good agreement with the data acquired in the inhibitor-treated cells, 

confirming that the inhibitors do not interfere with EGFR complex formation. 

Additionally, no significant internalization of EGFR was observed within the 

time frame of the measurements (Figure 4.6.1). 

 

Figure 4.6.1 influence of inhibitors on the EGFR complex fraction. q values of the 
positive control mRFP-EGFR-EGFR (black bar, (p=0.41 for lower and 0.1 for upper 
membrane) and the experiment mRFP-EGFR/EGFR-eGFP (gray bar, p=0.04 for lower 
and 0.28 for upper membrane) without internalization inhibitors added in basal and 
apical membranes are compared to a control group treated with the inhibitors 
(p=0.41). No effect of internalization inhibitors on the q values is observed (t-test 
one tail, type 1). 

 

However, the use of inhibitors ensures the compatibility of the present 

experiments with our previous study and with our future experiments in 
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which we intend to monitor the influence of EGFR activation upon its 

oligomerization. The results are summarized in table 4.6.1. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6.1 q factor of mRFP-EGFR/EGFR-eGFP and mRFP-EGFR-eGFP in the absence 
and presence of internalization inhibitors 

 

4.7 EGFR complex fractions in CHO-K1 determined by DC-FCCS 

and quasi PIE-FCCS 

The same sets of EGFR experiments in CHO-K1 cells at room temperature 

were also performed by DC-FCCS and quasi PIE-FCCS to test whether results 

Protein in CHO-K1 Complex q  

(± SEM) RT 

n (cell) 

mRFP-EGFR-eGFP 

(without inhibitor) 

basal 

apical 

 

 

0.57 ± 0.03 

0.50 ± 0.02 

 

 

27 (5) 

30 (5) 

mRFP-EGFR/EGFR-eGFP 

(without inhibitor) 

basal 

apical 

 

 

0.23 ± 0.05 

0.33 ± 0.04 

 

 

21 (5) 

25 (3) 

mRFP-EGFR-eGFP 

(with inhibitor) 

basal 

apical 

 

 

0.60 ± 0.02 

0.57 ± 0.02 

 

 

52 (18) 

36 (14) 

mRFP-EGFR/EGFR-eGFP 

(with inhibitor) 

basal 

apical 

 

 

0.32 ± 0.03 

0.33 ± 0.03 

 

 

47 (20) 

46 (19) 
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obtained by these FCCS modalities are consistent with our SW-FCCS findings. 

The correlation curves were analyzed as described in Materials and Methods. 

In the case of quasi PIE-FCCS, the cross-correlation amount q was calculated 

as q = Ng/Nx; Ng was preferred because the ACF in the green spectral channel 

was corrected for background and detector after-pulsing, unlike the ACF in 

the red channel (Padilla-Parra, Auduge et al. 2011).  

 

Figure 4.7.1 ACF curves for EGFR-eGFP (green) and mRFP-EGFR (red) and CCF curves 
(blue) recorded by DC-FCCS: (A) positive control mRFP-EGFR-eGFP, (B) negative 
controlPMT-eGFP/-mRFP and (C) mRFP-EGFR/EGFR-eGFP (the actual experiment)  

 

The DC-FCCS curves are displayed in Figure 4.7.1. It illustrates the correlation 

functions from distinct experimental sets and cross-correlation values are 

summarized in table .7.1. 
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 Quasi PIE-

FCCS  

q (± SEM) 

n DC-FCCS 

q (± SEM) 

N SW-FCCS 

q (± SEM) 

n 

Positive control  

apical 

basal 

 

0.51 ± 0.11 

- 

 

7 (5) 

- 

 

0.71 ± 0.06 

0.60 ± 0.08 

 

28 (8) 

17 (7) 

 

0.57 ± 0.02 

0.60 ± 0.02 

 

36 (14) 

52 (18) 

EGFR-

eGFP/mRFP-

EGFR 

apical 

basal 

 

 

 

0.33 ± 0.09 

- 

 

 

 

9 (7) 

- 

 

 

 

0.37 ± 0.04 

0.44 ± 0.04 

 

 

 

19 (7) 

18 (9) 

 

 

 

0.33 ± 0.03 

0.32 ± 0.03 

 

 

 

46 (19) 

47 (20) 

Negative 

control 

apical 

basal 

 

 

0 

- 

 

 

5 (2) 

- 

 

 

0.09 ±0.01 

0.13 ± 0.02 

 

 

29 (5) 

22 (4) 

 

 

0.10 ± 0.02 

0.10 ± 0.02 

 

 

16 (3) 

17 (4) 

 

Table 4.7.1 The average cross-correlation amounts q from the different FCCS 
modalities. mRFP-EGFR-eGFP was used as a positive control. PMT-eGFP/PMT-mRFP 
was used as negative control for DC-FCCS and quasi PIE-FCCS whereas labeled 
PMT/EGFR used in the case of SW-FCCS 

 

DC-FCCS measurements gave EGFR complex fractions of 44% ± 4% (n=18, 9 

cells) at the basal and 37% ± 4% (n=19, 7 cells) at the apical membrane. The 

positive control mRFP-EGFR-eGFP yielded a cross-correlation amount of 

q = 60% ± 8% and 71% ± 6% at the apical and the basal membrane, 

respectively. The lower detection limit was determined by the negative 

control (PMT-eGFP/PMT-mRFP) to be 13% ± 2% and 9% ± 1% in the basal and 

the apical membrane, respectively (table 4.7.1). 

To obtain cross-talk free values of q, we repeated the measurements using 

quasi PIE-FCCS (Figure 4.7.2). Negative control measurements in cells 
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expressing PMT-eGFR/PMT-mRFP give q = 0% ± 0%, thus, demonstrating the 

efficiency of spectral cross-talk elimination. For the positive control mRFP-

EGFR-eGFP we found q = 51% ± 11%. The EGFR apparent dimer fraction in the 

apical membrane is 33% ± 9% (n=9, 7 cells). Collectively, all the FCCS 

modalities applied provided mutually consistent results, lending further 

support to the conclusions based on our SW-FCCS data. 

 

Figure 4.7.2 quasi PIE-FCCS curves (A) of the positive control mRFP-EGFR-eGFP (B) 
negative control PMT-eGFP/-mRFP and (C) mRFP-EGFR/EGFR-eGFP (the actual 
experiment)  

 

4.8 Investigation of EGFR dimerization by using DC-ITIR-FCCS 

The experiments on EGFR interaction were repeated with another FCCS 

modality DC-ITIR-FCCS to investigate the consistency of dimer amount and 

distribution of receptor state of monomers, dimers and oligomers. 
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Measurements were performed in the basal membranes of CHO-K1 cells at 

37°C. Cells expressing PMT-eGFP and PMT-mRFP and cells expressing mRFP-

EGFR-eGFP were used as the negative and the positive controls, respectively. 

The acquired image stacks were analyzed as described in the Materials and 

Methods chapter. An analyzed region of interest consisted typically of more 

than 1000 pixels, not all of which contained useful information. There were 

pixels corresponding to areas outside of cells or to regions within the cells 

where the membrane is too far from the glass surface to be efficiently 

excited by the evanescent field or, possibly, regions of cell membrane 

inaccessible to the fluorescent tracer. To exclude pixels outside of the cell 

from the calculation and fitting of correlation functions, an intensity 

threshold was set for each stack and only pixels having in the first frame 

larger than threshold intensity were processed. Most stacks contained some 

pixels, which, although having high intensity, gave very noisy ACFs, fitting of 

which was unreliable and likely to produce unrealistic values of parameters. 

In order to exclude such pixels from further analysis, upper and lower limits 

were set on D and Ginf obtained from ACFs fits. Only values from pixels for 

which the fitted D and Ginf in both of the autocorrelation channels lay 

between the respective lower and upper limits were included in the further 

evaluation. The limits for Ginf were  50% of the correlation function 

amplitude G(0) from the ideal asymptotic value, which in our definition of 

ACF was 1. The limits for D were set separately for EGFR and for PMT 

according to the actual distribution of the measured D values. Histograms of 

natural logarithms of measured D values were fitted with normal 
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distributions and the limits were set as the mean  3 times the standard 

deviation. For PMT they were Dmin = 0.2 and Dmax = 2.7 µm²/s and for EGFR 

Dmin = 0.1 and Dmax = 1.4 µm²/s. 

There were some pixels in which both ACFs were fitted successfully and the 

fit parameters satisfied the above described criteria, yet the fit of the CCF did 

not give realistic parameter values. This was especially common in the case of 

the negative control, where the CCFs consist mainly of noise. The fits of such 

curves give sometimes extremely high value of D (e.g. on the order of 

1016
 µm²/s) or a very low value of D (e.g. on the order of 10-6

 µm²/s) together 

with a very low Ginf (e.g. < 0). Both situations result in large overestimation of 

the amplitude (1/N, Figure 4.8.1).  

 

Figure 4.8.1 Illustration of artefacts in the fitting of CCFs with very low amplitudes. 
(A) shows an example of an erroneous fit with a very high value of D (on the order of 
107 μm2s-1) resulting in q = 18,1429 (B) shows an example of an erroneous fit with a 
very low value of Ginf (-7.2) resulting in q = 2339. Both examples were taken from the 
fits of the negative control DC-ITIR-FCCS data 

 

To avoid such unrealistic values, the amplitudes of CCFs were set to 0 if the 

fitted D and Ginf were not within certain limits. The limits for Ginf were the 

same as in the case of ACFs ( 50% of the amplitude from the ideal 
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asymptotic value) and the limits for Dwere broadened to Dmin/2 and 2 Dmax 

where Dmin and Dmax are the respective limits for ACFs. In other words, q = 0 

in such pixels. The CCF amplitude was set to 0 also in pixels where the CCF fit 

gave a negative value of N. q was, thus, set to 0 in almost 60% of pixels of the 

negative control, in 27% of pixels of the actual experiment and only in 

approximately 7% of pixels of the positive control. 

The final values of q, thus obtained, were 10% ± 14% for the negative control, 

53% ± 23% for the positive control and 34% ± 28% for the actual experiment. 

In Figure 4.8.2, FCCS curves of distinct experimental data sets are presented. 

The values are given as mean  standard deviation; the standard errors of the 

mean are negligible because of the large number of pixels evaluated. 

 

Figure 4.8.2 FCCS curves of distinct obtained experiment sets (A) positive control 
mRFP-EGFR-eGFP (B) negative control PMT-mRFP/-eGFP (C) actual experiment 
mRFP-EGFR/EGFR-eGFP. 
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It can be seen in Figure 4.8.3 that the distribution of q measured in the 

positive control has a shoulder around 80%. Out of the eight cells 

investigated, the shoulder around 80% was dominant in three cells while in 

the remaining cells the q distribution was mono-modal with a maximum 

around 45% (Figure 4.8.4). The very high amount of cross-correlation 

observed in some pixels may be caused by elevated amounts of dimers of the 

EGFR tandem constructs or possibly even higher order EGFR oligomers. Q 

values obtained in the actual experiment show an even broader distribution. 

 

Figure 4.8.3 Histogram of pooled q values and examples of q maps obtained by DC-
ITIR-FCCS. The q values obtained in all pixels of all investigated cells were pooled 
together for the three series of measurements: the negative control (10,053 pixels 
from 10 cells), the positive control (6,696 pixels from 8 cells) and the actual 
experiment with EGFR-eGFP and mRFP-EGFR (16,779 pixels from 16 cells). The 
frequencies plotted in the histogram (A) are numbers of pixels in each bin divided by 
the total number of pixels in the respective series. Examples of q maps are shown 
for a cell from the negative control (B) positive control (C) and the actual experiment 
(D) The colour-scale of q and a 10 μm scale-bar are shown next to the maps. Pixels 
shown in striped pattern were excluded from fitting (either because of having lower 
than threshold intensity or because the parameters obtained by fitting of the ACFs 
were not within the set limits) 

 

In some cells, the average q was as low as 11% indicating negligible amounts 

of dimers, while in other cells the average q reached values as high as over 
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70% (Figure 4.8.4). The cells with intermediate average values of q show 

regions of high and low q. The regions of high q values are typically located 

closer to the cell boundaries. It remains to be investigated further what is the 

nature of those regions and whether they contain only elevated amounts of 

dimers or whether they contain higher EGFR oligomers. To conclude, the DC-

ITIR-FCCS data are in agreement with the results of the confocal FCCS 

modalities; moreover, they provide further insight into the distribution of 

dimer fraction values and how the cell-to-cell variations relate to variations in 

different regions of the membrane of each individual cell. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.4 Illustration of cell-to-cell variability in the level of EGFR dimerization as 
measured by cross-correlation amount q obtained by DC-ITIR-FCCS. Data from two 
cells from the positive control (A) and from three cells from the actual experiment 
with EGFR-eGFP (B) are shown in the form of q maps and histograms of q values for 
each cell. The frequencies plotted in the histograms are numbers of pixels in each 
bin divided by the total number of pixels in the respective cell. The colour-scale of q 
and a 10 μm scale-bar are shown next to the maps. Pixels shown in gray were 
excluded from fitting (either because of having lower than threshold intensity or 
because the parameters obtained by fitting of the ACFs were not within the set 
limits). 
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4.9 PMT in different cell lines 

As mention in the previous sections, the plasma membrane target (PMT), a 

small membrane protein, has been used as a negative control to set up the 

dynamic range in the FCCS system. In the studies of Liu et al. (2007), PMT 

labeled with eGFP and mRFP revealed a complex fraction of ~10-15% (Liu, 

Sudhaharan et al. 2007).This value is caused by spectral cross-talk from the 

green particles into the red detection channel.  The membrane proteins PMT-

eGFP/-mRFP, assumed to be monomeric and non-interacting, showed a 

considerably higher cross-correlation amount q in HEK293 and COS-7 than 

usually found in CHO-K1. To verify whether this high cross-correlation was 

caused by partitioning of the proteins into cholesterol-dependent domains, 

we depleted cholesterol from HEK293 cells at room temperature with mβCD 

(3 mM final concentration) and performed SW-FCCS measurements in the 

interval of 5-10 min after 25 min incubation. The results in Figure 4.9.1 B 

show a q value of 23% ± 1% (n=46, 5 cells) in the basal membrane of 

untreated cells; mβCD treatment resulted in a value of 25% ± 2% (n=39, 4 

cells). Similar results were obtained on the apical membrane; cholesterol 

depleted cells gave a cross-correlation amount of 28% ± 1% (n=40, 4 cells), 

which does not differ from untreated cells with an amount of 24% ± 2% 

(n=48, 6 cells). The results revealed that cholesterol removal did not affect 

the q value. We can therefore conclude that partitioning into cholesterol-

dependent domains is not responsible for the elevated cross-correlation. 

Whether partitioning into cholesterol-independent domain or other 

interactions are the cause for the high cross-correlation remains to be 
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answered. However, this question is not relevant for the objectives of the 

present study. 

 

Figure 4.9.1 Co-localization of PMTs in domains in HEK293 and COS-7. (A) ACF curves 
of PMT-eGFP (green) and PMT-mRFP (red) and CCF (blue). In these cell lines, we get 
elevated CCF amplitudes (B) Depletion of cholesterol by mβCD did not induce 
significant differences in the q value on the membranes compared to the untreated 
cells. (t-test: one tail, type 1. p-values: 0.18 at basal and 0.03 at apical membrane) 

 

4.10 Effect of (I706Q, V948R) Mutation on EGFR dimerization 

The concept of EGFR dimerization is based on the stabilization of asymmetric 

dimers between the kinases. The C-terminus of one kinase and the N-

terminus from the other kinase are responsible for the formation of an 

asymmetric dimer (Zhang, Berezov et al. 2007, Zhang, Pickin et al. 2007, 

Songtawee, Bevan et al. 2015). The studies of Tai Kiuchi et al. provided 

evidence that the double mutation (I706Q, V948R) leads to the 

destabilization of EGFR:ErBB4 dimers (Kiuchi, Ortiz-Zapater et al. 2014). These 
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mutations are located in N-terminal lobe (I706Q) and in C-terminal lobe 

(V948R). The combination of both of them impairs activator and receiver 

function and demonstrates that the N and C lobes have an impact in the 

formation of EGFR dimers. In this work, we have tested the influence of 

double mutated EGFR (I706Q, V948R) on the presence of preformed dimers 

by using SW-FCCS.  This construct was transfected together with mRFP-EGFR 

into CHO-K1 cells and measured in the apical membrane at room 

temperature. Fitting of the correlation curves and data analysis (table 4.10.1, 

Figure 4.10.1) showed in the presence of EGFR (I706Q, V948R) a cross-

correlation  amount of 16% ± 2% (n=26, 5 cells). 

 

Figure 4.10.1 Factors effecting EGFR dimer fraction. Cross-correlation amount q of 
mRFP-EGFR/EGFR-eGFP (apical membrane, RT) compared with mRFP-EGFR/EGFR 
(I706Q, V948R)-eGFP (apical membrane, RT), EGFR interaction in COS-7 at receptor 
densities <200/µm² and >200/µm² (basal membrane, RT), EGFR dimerization in CHO-
K1 at <200/µm² and >200/µm² (basal membrane, RT), mRFP-EGFR/EGFR/wt-EGFR 
(1.5:1:2) (basal and apical membrane, RT) and mRFP-EGFR/EGFR/wt-EGFR (1.5:1:1.3) 
basal and apical membrane, RT).The mean values and standard errors of the mean 
are shown. 
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Compared to the control measurement of mRF-EGFR/EGFR-eGFP, which 

exhibited ~33% cross-correlation amount, the dimerization of the mutated 

EGFR (I706Q, V948R) is significantly reduced (Figure 4.10.1). 

Figure 4.10.1 illustrates several factors leading to a decrease in the measured 

cross-correlation amount and, thus, to a decrease in the apparent dimer 

fraction. In the cell line CHO-K1 which lacks endogenous EGFR, the cross-

correlation amount is independent of receptor density; the average complex 

fractions at densities <200 molecules/µm2 and >200/µm2 do not differ. 

However, the situation is different when using COS-7 cells expressing 

endogenously ~100.000 EGFR molecules per cell. At densities lower than 200 

molecules/µm2, the cross-correlation amount was only ~15% ± 3%, whereas, 

at densities higher than 200/µm2, the average cross-correlation amount 

reached 27% ± 2%. A similar effect was obtained by co-expressing different 

concentrations of wt EGFR in CHO-K1 cells (Figure 4.10.1). At ratios of 

(1.5/1/2) mRFP-eGFR/EGFR-eGFP/wt-EGFR, the cross-correlation was 

reduced to 19% ± 2% and 22% ± 2% in the basal and apical membrane, 

respectively. However, at ratios of (1.5/1/1.3) mRFP-eGFR/EGFR-eGFP/wt-

EGFR, the cross-correlation amount was 22% ± 2% and 34% ± 2% in the basal 

and apical membrane, respectively. The unchanged cross-correlation amount 

of 34% in the presence of wt-EGFR might be caused by very low or lacking 

expression of the unlabeled protein. 
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Table 4.10.1 q factor of the control experiment, EGFR mutation (I706Q, V948R) and 
the diffusion times  
 

4.11 EGF stimulation of EGFR in CHO-K1 

Analyzing EGFR interaction in different resting cells has shown the 

importance of the selection of cell lines. Cells expressing labeled EGFR were 

stimulated with the ligand EGF at low and high dose 10 ng/ml and 100ng/ml, 

respectively. At high EGF concentration, the cells have been tracked before 

stimulation and after 3 min, 10 min, 15 min and 20 min (Figure 4.11.1). 

Before starting with the experiment, the glass dishes were fixed with double-

sided tape on the objective stage to record the same cell before and after 

ligand activation. Some stimulated cells showed significant clusters, which 

were visible as spikes in the intensity traces or in the ACF and CCF curves 

itself. The data set chosen for analysis excludes this mentioned FCCS curves 

containing big oligomers. The measurements were focused on the apical 

membrane at room temperature.  

Figure 4.11.1 displays the influence of the EGF ligand at high concentration 

100 ng/ml on a selected cell captured at different time points after 

apical membrane 

at room temperature 

q (± SEM) τDmRFP  

(ms ± SD) 

τDeGFP 

 (ms ± SD) 

n (cells) 

mRFP-EGFR/EGFR-

eGFP 

mRFP-EGFR/EGFR 

-eGFP (I706Q, 948R) 

0.33 ± 0.03 

 

0.16 ± 0.02 

54 ± 23 

 

62 ± 24  

51 ± 22 

 

29 ± 17  

46 (19) 

 

26 (5) 
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stimulation. Before ligand activation, EGFR cross-correlation amount was 

33%. After 3 min incubation with the ligand, the cross-correlation rose to 

63%, which is around 50% increase in the complex fraction compared to the 

unstimulated one. Changes in the ACF and CCF shapes observed after 10 min 

of incubation with EGF demonstrate the formation of large EGFR oligomers. 

No evidence of the large oligomers remained 15 min after EGF addition; 

however, the cross-correlation did not decrease. This indicates loss of the 

large oligomers accompanied by an increase in the fraction of dimers and 

smaller oligomers (such as tetramers or hexamers), which do not affect the 

shape of the correlation functions. An overview of the average changes in 

cross-correlation amount is shown in table 4.11.1.  

 

Figure 4.11.1 Analysis of EGFR-EGFR interaction in resting cells. (A) Around 33% of 
the receptors resided in a complex form (B). After 3 min EGF (100ng/ml) addition, 
the complex amount increased rapidly to ~63% (C) oligomerization of stimulated 
EGFR molecules (D) complex fraction of 88% at 15 min 
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In resting cells, the average value was 39% ± 3% (n=22, 4 cells), it increased 

slightly to 44% ± 5% (n=12, 4 cells) at 3 min and remained at 42% ± 6% (n=10, 

4 cells) at 5 min and 44% ±6% (n=8, 4 cells) at 10 min. The cross-correlation 

then rose slightly to 52% ± 6% (n=9, 4 cells) at 15 min and remained at 53% ± 

6% (n=8, 4 cells) at 20 min. The small average increase in cross-correlation 

and the lack of changes in cross-correlation in some of the cells do not 

contradict formation of large EGFR oligomers and clusters. Very large 

oligomers and clusters result in high spikes in intensity time-trace, which 

distort the correlation functions and were excluded from analysis. 

Furthermore, rapid endocytosis of those oligomers and clusters would 

deplete them from the plasma membrane. 

A summary about the effect of EGF on the complex fraction is given in table 

4.11.1.The q factor increased in resting cells from 39% up to 53% after 20 min 

incubation.  

 

EGF 100 

ng/ml 

τDmRFP   

(ms ± SD) 

τDeGFP  

(ms ± SD) 

EGFR-

eGFP/mRFP-

EGFR q (± SEM) 

n (cell) 

No EGF 58 ± 32 59 ±42 0.39 ± 0.03 22 (4) 

3 min 69 ± 41 57 ± 30 0.44 ± 0.05 12 (4) 

5 min 91 ± 55 81 ± 71 0.42 ± 0.06 10 (4) 

10 min 72 ± 55 81 ± 73 0.44 ± 0.06 8 (4) 

15 min 54 ± 32 62 ± 35 0.52 ± 0.06 9 (4) 

20 min 62 ± 38 83 ± 73 0.53 ± 0.06 8 (4) 

 

Table 4.11.1 Influence of EGF ligand (100 ng/ml) on the diffusion times of EGFR and 
changes in q value 
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Besides the changes in q value, the diffusion time was also monitored at 

different time points. As seen in table 4.11.1, the diffusion time of mRFP 

labeled and eGFP labeled protein are in the same range in the absence of the 

ligand. Incubation with EGF increased slightly the diffusion times over the 

time. However, the standard deviation increased after 5min EGF incubation. 

 

Figure 4.11.2 High dose (100 ng/ml) and low dose (10 ng/ml) EGF stimulation on 
mRFP-EGFR/EGFR-eGFP in CHO-K1 

 

The same set of experiment was carried out at a lower EGF concentration of 

10 ng/ml. In this case, the cells were monitored over a longer time period at 

10 min, 20 min and 25 min after incubation with EGF as no strong 

internalization was expected at this concentration. As seen in Figure 4.11.3, a 

stepwise increase in q factor was observed in the presence of EGF ligand.  

Unstimulated cells showed an average cross-correlation of 41% ± 3% (n=13, 3 

cells), which increased to 58% ± 7% (n=7, 3 cells) 10 min after stimulation. 

After 20 min of incubation with EGF, the cross-correlation reached its highest 

value of 77% ± 5% (n=4, 3 cells) and then decreased to 59% ± 8% at 25 min 

(n=7, 3 cells). The high cross-correlation of 77% ± 5% observed after 20 min 

of incubation with EGF is higher than the cross-correlation for the positive 
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control (positive control in average ~60%). This indicates that is most likely 

not caused by EGFR dimers only, but probably by higher oligomers (such as 

tetramers or hexamers) which are, however, not large enough to be 

manifested by the broadening of the correlation functions as observed after 

high dose EGF stimulation (Figure 4.11.2). 

The initial q amount of EGFR was around 32% before activation. However, 

after 10 min EGF influence, the cross-correlation curve rose up slightly, the q 

value was around 37%, very similar to the initial value of 32%. Even at 20 min 

EGF incubation, the q factor remained in the same range, with a calculated 

fraction of 32%. Nonetheless, an increase in q factor was observed which 

reached a value of 67% after 25 min. In average, a stepwise increase in q 

factor was observed in the presence of EGF ligand. 

 

Figure 4.11.3 Impact of EGF ligand at a final concentration of 10ng/ml on a selected 
cell. (A) in the absence of the ligand, cross-correlation amount q was 32% (B) 10 min 
incubation of the cell with EGF, no changes in q observed (C) after 20 min 
incubation, the complex amount stayed at similar level at around 34% (D) up to 50% 
increase in q fraction at 25 min 
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The calculated value of EGFR interaction is summarized in the table 4.11.2. A 

significant increase in EGFR complexation was recorded at 25 min ligand 

incubation.  

EGF 10 ng/ml EGFR-eGFP/mRFP-EGFR q (± SEM) 

No EGF 0.41 ±0.03 

10 min  0.58 ± 0.07 

20 min  0.77 ± 0.05 

25 min 0.59 ±0.08 

 

Table 4.11.2 Effect of EGF ligand (10 ng/ml) on EGFR complex fraction. Three cells 
were measured. In average, the q factor is increasing by EGF incubation time 
 
 

The diffusion time of red and green labeled receptors changed slightly during 

ligand treatment. These values are also similar with those measured at high 

EGF concentration of 100 ng/ml. The average values are summarized in table 

4.11.3. 

 

 

Table 4.11.3 Diffusion times of EGFR complex in the absence and presence of EGF 
ligand (10 ng/ml). Three cells were measured. In average, the q factor is increasing 
by EGF incubation time 
 

As previously mentioned, curves which showing oligomerization were 

excluded in the data. This phenomenon was visible on the shape of the ACF 

and CCF as well as the slow diffusion times. Some examples of the formation 

of clusters are shown in the following Figure 4.9.4. Cells showed a different 

EGF 10 ng/ml No EGF 10 min EGF 20 min EGF 25 min EGF 

τDmRFP (ms ± SD) 69 ± 39 67 ± 65 81 ± 21 52 ± 34 

τDeGFP (ms ± SD) 69 ± 38 59 ± 37 64 ± 23 69 ± 47 

n (cells) 13 (3) 7 (3) 4 (3) 7 (3) 
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response to the EGF at different concentrations. For instance, low EGF 

concentration (10 ng/ml) has induced clustering after 20 min. However, the 

same situation was recorded even at very short incubation time of 5 min at 

high dose EGF in Figure 4.9.4 B. It has to be pointed out that not all cells 

respond with significant changes. Overall, EGF has induced receptor 

activation independent onEGF concentration differences but the impact of 

EGF was distinct.  

 

Figure 4.11.4 Impact of EGF ligand at distinct concentration of 10ng/ml and 100 
ng/ml (A) 10 ng/ml EGF resulted in oligomerization after 20 min (B) 100ng/ml EGF 
induced oligomerization after 5 min 

 

4.12 Discussion 

In the present study, we have tested the influence of several experimental 

factors on the amount of EGFR complexes in resting cells as measured by SW-

FCCS and other FCCS modalities. No significant differences were observed 

between the basal and the apical membranes in all cell lines. The lack of 

apical-basal polarity in fibroblasts might be the reason of seeing no 

differences in upper and lower membranes. Even performing experiments at 

differen temperature ranges (physiological (37°C) and room temperature 
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(22°C) did not play a crucial role in dimer estimation. The normalized complex 

fraction of around 57% obtained here is comparable with our previous study 

on EGFR (Liu, Sudhaharan et al. 2007 as well as the reported EGFR complex 

fractions of 30% (Saffarian, Li et al. 2007, Kluba, Engelborghs et al. 2015) or 

40% (Hofman, Bader et al. 2010). On the other hand, we have observed 

significant cell-to-cell variability, which was especially obvious from the DC-

ITIR-FCCS experiments. Approximately 1/3 of cells showed very low cross-

correlation amounts indicating negligible complex fractions, while in 

approximately 1/3 of cells most EGFR molecules were in the form of 

complexes. The remaining cells, exhibiting on average intermediate cross-

correlation, contained regions of very high as well as negligible complex 

fractions. This demonstrates the utility of DC-ITIR-FCCS (and imaging FCS 

modalities in general) for linking the cell-to-cell variability with the variability 

between regions within individual cells. The regions of high complex fractions 

were located predominantly at the cell periphery in agreement with previous 

reports (Chung, Akita et al. 2010, Bag, Huang et al. 2015). It remains to be 

investigated further what is the nature of those regions and whether they 

contain only elevated amounts of dimers or whether they contain higher 

EGFR oligomers. Interestingly, we have found recently that EGFR forms 

microscopic clusters upon activation in cholesterol-depleted cells, those 

clusters being in some cases more frequent at the cell periphery (Foo, Naredi-

Rainer et al. 2012). 
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Our technique cannot easily discriminate between dimers and higher 

oligomers. The contribution to the cross-correlation in FCCS scales with the 

square of the brightness of the complexes; therefore, a very small fraction of 

large clusters can give rise to high CCF amplitudes. On the other hand, large 

clusters are expected to be manifested in the correlation functions by a 

component with slower diffusion, which we have not observed in resting 

cells. We, therefore, assume that the complexes observed in our study 

contain mostly small oligomers such as dimers or tetramers. 

Besides the brightness, the lifetime of the complexes also determines their 

contribution to the CCF. The contribution increases with increasing lifetime of 

the complexes and saturates when the lifetime is longer than the 

characteristic residence time of the molecules in the effective observation 

area. The characteristic residence times are around 50 ms in our confocal 

measurements and close to 1s in the case of DC-ITIR-FCCS. The good 

agreement of the cross-correlation amount between confocal FCCS and DC-

ITIR-FCCS indicates that the EGFR complexes are stable on timescales longer 

than the order of seconds. This is consistent for example with the single 

molecule study of Chung et al. reporting transient EGFR dimers in resting cells 

with lifetimes around 10 s (Chung, Akita et al. 2010). 

Most of our measurements were done in CHO-K1 cells, which were selected 

because of their negligible endogenous EGFR expression. The presence of 

endogenous EGFR would interfere with the FCCS detection of complexes 

because dimers between an endogenous and a labeled receptor carry only a 



120 
 

single fluorescent label and contribute, therefore, to the monomer fraction. 

This is illustrated by the lower cross-correlation amount in the cells where 

wild-type EGFR was co-expressed alongside the labeled receptor. Another 

example of the influence of the endogenous EGFR on the apparent complex 

fraction is provided by the measurements in HEK293 and COS-7 cell lines, 

which express low to intermediate levels of endogenous EGFR (HEK-293 

20,000 EGFR/cell (Carter and Sorkin 1998) and COS-7 100,000 EGFR/cell 

(Tong, Taylor et al. 2008). The cross-correlation amounts were low to 

negligible in cells expressing less than 200 labeled receptors per µm2. Only at 

higher labeled receptor densities, which means at receptor densities much 

higher than those of the endogenous receptors (30/µm2 in HEK-293 and 

(70/µm2 in COS-7), the cross-correlation amounts are comparable to those 

obtained in CHO-K1 cells. Together, these results demonstrate the sensitivity 

of our FCCS approach to the changes in the EGFR complex fraction. Even 

more importantly, they prove that the observed complex formation is not an 

artifact of the artificially introduced labeled receptor, but that the same 

phenomenon involves also the EGFR in cells where it is endogenously 

expressed. Contrary to the situation in HEK293 and COS-7 cells, no 

dependence of the cross-correlation amount on the EGFR expression level 

was observed in CHO-K1 cells. The measurements were performed in cells 

expressing from 10.000 to 1.600.000 EGFR copies, values ranging from very 

low expression to over-expression (Carpenter and Cohen 1979). We can 

therefore conclude that the complex formation is not an artifact induced by 

high receptor densities.  
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The involvement of cholesterol-dependent lipid rafts in EGFR activation and 

signaling has been reported earlier (Nagy, Vereb et al. 2002, Ringerike, 

Blystad et al. 2002). A line of evidence shows that the activation of EGF 

receptors which reside in these domains are prevented (Chen and Resh 2002, 

Roepstorff, Thomsen et al. 2002). At the other hand, other reports suggest 

that lipid rafts enhance EGFR activation and signaling (Zhuang, Lin et al. 2002, 

Peres, Yart et al. 2003). Studies with cholesterol depletion have 

demonstrated that EGFR signaling is totally disrupted (Orr, Hu et al. 2005). 

Our recent results show that EGFR partitions into cholesterol-dependent as 

well as cholesterol-independent domains and that its diffusion is affected by 

the actin cytoskeleton (Bag, Huang et al. 2015). Our data revealed that 

cholesterol depletion by mßCD leads to an increase in the EGFR complex 

fraction. This increase is more pronounced in the apical membrane, which is 

possibly related to differences in lipid or lipid domain distribution between 

the two cell surfaces. The result proves that the observed cross-correlation 

does not stem from co-localization of multiple receptors into small plasma 

membrane domains, but that it is rather a result of the formation of EGFR 

complexes held together by receptor-receptor interactions. At the same 

time, we may speculate that the complexes are of a transient nature; the 

transient trapping of receptor molecules into small cholesterol-dependent 

domains prevents them from diffusing freely and, thus, reduces the 

frequency of their encounters with other receptors, which lead to the 

formation of the transient complexes. At the same time, there is no obvious 

reason why the fraction of long-lived stable dimers should be affected in any 
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way by their membrane domain partitioning. Consistently with our results, 

Saffarian et. al (2007) reported an increase of oligomeric EGFR fraction after 

cholesterol depletion (Saffarian, Li et al. 2007). Other studies have reported 

decreased EGFR clustering upon cholesterol depletion (Ariotti, Liang et al. 

2010, Gao, Wang et al. 2015); however, the EGFR clusters described in those 

studies are much larger and most likely of a different nature than the mobile 

complexes investigated here. In addition, the disruption of the actin 

cytoskeleton by LAT-A treatment had no effect on the EGFR complex fraction. 

Similarly, Low-Nam et al. (2011) reported that actin disruption did not change 

the EGFR dimer stability (Low-Nam, Lidke et al. 2011). 

Our results showed that the usage of internalization inhibitors did not affect 

the cross-correlation amount. By adding of unlabeled EGFR, a decrease 

incross-correlation amount q was observed which is due to dimerization of 

the labeled one with the unlabeled and therefore underestimation of the 

apparent fraction.  

Activation of EGFR by its ligand EGF has been usually reported to enhance 

formation of receptor complexes, either dimers or higher oligomers (Ariotti, 

Liang et al. 2010, de Heus, Kagie et al. 2013, Yamashita, Yano et al. 2015). Our 

results agree with that. At 10 ng/ml EGF induced a considerable increase in 

the EGFR complex fraction. Stimulation by EGF also triggers increased 

complex formation. The high values of cross-correlation (comparable to the 

positive control) suggest that the increase is not only caused by elevated 

dimerization, but probably also by higher oligomers (such as tetramers or 
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hexamers) which are, however, not large enough to be manifested by the 

broadening of the correlation functions. Different effects were observed after 

stimulation with a higher dose of EGF (100 ng/ml). The average increase in 

the cross-correlation amount was smaller in this case; on the other hand, 

broadening of correlation curves indicated the presence of large EGFR 

complexes or clusters, which diffuse slower than the monomers and small 

oligomers. While oligomers of increasing size contribute more prominently to 

the CCF (the contribution scales with the square of brightness), very large 

oligomers and clusters by FCCS is problematic. Due to their decreasing 

mobility, their passages through the observation area are increasingly rare 

and the measured ensemble of resulting intensity bursts is not statistically 

significant enough to be suitable for correlation analysis. Besides, our recent 

findings show that such large complexes and clusters undergo rapid 

endocytosis which depletes them from the plasma membrane (Bag, Huang et 

al. 2015). 

In conclusion, we have demonstrated the experimental factors investigated 

(basal versus apical plasma membrane and physiological versus room 

temperature) have no systematic influence on EGFR complex formation in 

resting cells; we have observed EGFR complexes in all cases. Nevertheless, 

there is a considerable cell-to-cell variability with approximately 1/3 of cells 

showing negligible complex fractions. We believe this large variability existing 

even within the same culture dish is a potential explanation of the 

discrepancies between different studies. The fraction of receptors in 

complexes increases upon cholesterol depletion and is insensitive to actin 
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cytoskeleton disruption. Stimulation by EGF increases EGFR complex fraction 

in a dose dependant manner. We assume the EGFR complexes to be transient 

with lifetimes longer than the order of seconds. The complexes potentially 

represent the population of EGFR with high affinity towards EGF, which is 

believed to facilitate faster signaling. Future studies - taking into account 

receptor transport to the membrane and internalization will have to 

elucidate how the receptor dimerization and its domain clustering are 

dynamically regulated and how an equilibrium is reached. 
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5 Evaluation of alternative genetic tags and improved 

fluorescent protein 

In our previous sections, receptors labeled with red (mRFP) and green (eGFP) 

fluorescent proteins (FPs) were tracked at different conditions and different 

FCCS modalities to quantify receptor dimerization in living cells. However, 

protein maturation issue of mRFP posed constraints in dynamic 

measurements. Studies by Foo et. al (2012) showed that only ~30% mRFP is 

fluorescent (Foo, Naredi-Rainer et al. 2012). Therefore, results obtained with 

mRFP will lead to the underestimation of the percentage of dimers. In this 

chapter, an advanced red FP, mApple, had been fused to the N-terminus of 

EGFR.  This improved red FP had been tested for its biological functionality 

and applied to FCCS experiments. Here, we also constructed a range of other 

new o genetic tags such as SNAP- and CLIP-tag on EGFR and investigated their 

suitability in dynamics measurements.   

 

5.1 Improved version of red fluorescent protein: mApple 

Fluorescent proteins (FP) (~25 kD) have a large application in live cell imaging. 

FP are genetically fused on the target molecule and have the advantage that 

they do not require further labeling with exogenous molecules or other 

procedures such as fixation or permeabilization such as in the case of 

immunofluorescence. However, many FP versions suffer from low 

photostability and brightness. The variants of red FPs show a high occurrence 

of protein misfolding which limits its usage for tracking in live cells. 
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The first developed monomeric red fluorescent protein (mRFP) showed 

acceptable brightness, however, it has a drawback of fast photobleaching. To 

resolve this issue, Shaner et al. (2008) designed improved versions of the 

available red fluorescent protein, namely mApple and TagRFP-T (Shaner, Lin 

et al. 2008). mApple possesses higher photostability and brightness than 

mRFP and mCherry. Brightness is defined as the average fluorescence 

intensity divided by the particle number in the observation volume. 

Therefore, mApple was cloned into EGFR to study the dimerization 

percentage in resting live cells. The cloning was conducted under my 

supervision by LiuYanting (FYP student, NUS, 2015). The new clone, mApple-

EGFR, was transfected into CHO-K1 cells to determine the fluorescence 

properties in order to compare it with mRFP labeled EGFR protein. Overall, 

mApple displays higher brightness compared to mRFP. mApple has a 

brightness of ~500 counts per second (cps). A similar value was obtained for 

mRFP. When multiplying the brightness with the extinction coefficients of 

mApple (75,000 M-1cm-1) and mRFP (50,000 M-1cm-1), mApple (37,500,000) 

gave a higher brightness as compared to mRFP (25,000,000). 

To test the performance of mApple fused EGFR in receptor dynamics studies, 

this protein and EGFR-eGFP were co-transfected. In FCCS measurements, the 

cross-correlation amount was 44% in the basal surface, whereas a cross-

correlation amount of 51% was determined in the apical surface. The results 

are summarized in table 5.1.1. Experiments conducted with mApple 

receptors revealed higher complex fraction than those of mRFP-based 
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experiments that can be explained by improved fluorescence properties of 

this protein.  

 

Table 5.1.1 q factor measured with mApple-EGFR/EGFR-eGFP combination in CHO-
K1 at room temperature 

 

In addition, the diffusion times were estimated and are consistent with the 

times of mRFP and EGFP labeled receptors. On average, it was 70 ± 41 ms and 

51 ± 27 ms in the basal and apical membrane, respectively (table 5.1.2). 

 

 

 

 

 

Table 5.1.2 Diffusion times of mApple and eGFP labeled receptor in resting CHO-K1 

cells 

 

5.1.1 Biological Functionality test of chimeric receptor: mApple-

EGFR 

After determining the dimer amount of EGFR in resting cells, the biological 

functionality of the new construct was investigated by SDS and Western blot 

analysis. For that purpose, approximately 5 µg of mApple-EGFR were 

transfected into 4-5 x106 cells and incubated overnight. Afterward, the 

Protein in CHO-K1 basal  

q (± SEM) 

n (cell) apical  

q (± SEM) 

n (cell) 

 

mApple-EGFR/EGFR-

eGFP 

 

0.44 ± 0.02 

 

26 (4) 

 

0.51 ± 0.05 

 

27 (4) 

 basal apical 

τDmApple (ms ± SD) 70 ± 41 51 ± 27 

τDeGFP (ms ± SD) 86 ± 29 65 ± 44 

n (cells) 26 (4) 27 (4) 



128 
 

medium was replaced with serum-free medium and kept for a minimum of 4-

5 h in the incubator. In the next step, transfected cells were activated with 

EGF at a final concentration of 100 ng/ml for 30 min at 4 °C. The incubation 

was conducted at a lower temperature as it was necessary to avoid receptor 

internalization (Oksvold, Skarpen et al. 2000). Degradation of activated EGFR 

from the membrane will result in multiple bands in the western blot. 

Reactions at lower temperature prolong dynamics, which allows stimulating 

the cells for up to 60 min or longer (Defize, Boonstra et al. 1989). The 

reaction was stopped by washing the cells with 1xPBS buffer and 

subsequently lysing with RIPA buffer supplemented with phosphatase and 

protease inhibitor cocktail. This supplement is important to keep the 

phosphorylated protein and protect it from denaturation. It was mixed with 

Lamelli buffer and heated up for 10 min at 95 °C. A 7% SDS-gel was prepared 

to separate the proteins and the gel was transferred to a Hybond-P PVDF 

membrane. The incubation time of the first antibody anti-pTyr (PY20) was 

around 4-5 h, while the second antibody sheep anti-mouse IgG remained in 

the membrane solution for 1-2 h. As a positive control, the endogenous EGFR 

in COS-7 cells were phosphorylated by EGF and blotted on the membrane. 

This experiment was repeated three times independently. The western blot 

analysis in Figure 5.1.1.1 displayed one band between 150-200kD which 

corresponds to the size of tyrosine phosphorylated ~170 kD EGFR. This 

protein band verified the full biological functionality of the mApple labeled 

receptor. 
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Figure 5.1.1.1 Western Blotting of COS-7 cells and mApple-EGFR in CHO-K1. The 
band present in this plot confirmed the biological activity as the second antibody 
specifically binds to phosphorylated tyrosine residues 

 

5.2 Evaluation of the genetic tag Acyl Carrier Protein (ACP)-

EGFR 

FPs have shortcomings as their photophysical properties and color palette 

are limited. Besides FPs, another class of protein-based tags is available for 

live cell imaging. The principle of these tags is based on the process of self-

labeling with organic dyes or fluorophores. The self-labeling procedure shows 

advantages over the commonly used FPs. For instance, labeling can be 

conducted sequentially tagged protein is fluorescent only after its labeling 

and tagged protein can change its substrates which are available in a wide 

color range of different organic dyes and fluorophores. Another expected 

advantage of this new tagging system is the increase of signal to noise ratio 

enabled by using bright organic dyes. The company New England Biolabs 

(NEB) developed different tagging systems such as ACP-tag, SNAP- and CLIP-

tag that uses different labeling strategies and substrates.  

Acyl carrier protein (ACP)-tag is a small protein of ~8 kDa (77aa) and the 

labeling process requires an ACP-synthase for the covalent binding of CoA 
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derivates. The labeling mechanisms of ACP-tagged proteins is shown in Figure 

5.2.1. In the presence of ACP-synthase, CoA-substrate will be covalently 

attached to the ACP-tag protein. 

 

 

Figure 5.2.1 Labeling system of ACP-tagged proteins with a CoA-derivate 

However, ACP substrates do not penetrate through the plasma membrane 

and are limited in their application. In this work, the ACP-tagged EGFR was 

analyzed in order to test for its eligibility in FCS measurements and to apply it 

in interaction measurements. For that purpose, ACP-EGFR was transiently 

transfected into CHO-K1 cells. Labeling was carried out with 1 µM CoA-label 

(CoA-Atto488, CoA-OregonGreen or CoA-Cy3) in the presence of 10 mM 

MgCl2and 1 µM ACP Synthase in phenol-red and serum free DMEM 

supplemented with 1% bovine serum albumin (BSA) for 30-40 min. The cells 

were detected in the presence of internalization inhibitors. 

Protein 
τD 

 (ms ± SD) 

n (cell) 

EGFR-eGFP 59 ±42 22 (4) 

ACP-EGFR (CoA-OregonGreen488) 576 ± 278 9 (4) 

ACP-EGFR (CoA-Cy3) 315 ± 328 6 (2) 

ACP-EGFR (CoA-Atto488) 281 ± 167 30 (4) 

 

Table 5.2.1 Diffusion times of different genetic tags on EGFR measured in CHO-K1  
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As shown in table 5.2.1, the calculated diffusion times of labeled ACP-EGFR 

with distinct CoA derivates are all much higher than those of the fluorescent 

protein labeled EGFR-eGFP. The slowest diffusion time was obtained by 

labeling with CoA-OregonGreen488 which gave an average value of 576 ms, 

followed by CoA-Cy3 with a value of 315 ms and CoA-Atto488 with 281 ms. 

This illustrates that the ACP-tag has modified the kinetics of EGFR which 

makes it improper to investigate the mechanisms of EGFR in FCS. The large 

diffusion time of ACP-EGFR might be due to cluster formation by ACP-tag 

itself. Another reason for the altered mobility can be caused by unspecific 

labeling of the ACP-substrates to endogenous proteins or other biomolecules 

or transport to certain organelles into the cell.  In addition, a large fraction of 

CoA-Cy3 dye showed photobleaching and therefore many data was excluded 

from data evaluation 

 

Figure 5.2.2 ACF of ACP-EGFR (A) labeled (τD = 150 ms) with CoA-Cy3 and (B) CoA-
Atto488 (τD = 158 ms) in CHO-K1 
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Figure 5.2.2 represents some selected ACF curves of ACP-EGFR labeled with 

CoA-Cy3 and CoA-Atto488. The red fluorescent fluctuations in the intensity 

trace in Figure 5.2.2 are caused by crosstalk of CoA-Atto488 into the red 

channel. The crosstalk amount was on average ~15-20% which is higher than 

eGFP`s (~10%).  

 

5.3 Cloning and evaluation of new genetic tags: SNAP-EGFR, 

CLIP-EGFR and SNAP-EGFR-CLIP 

SNAP-tag, with a size of 20 kDa, is evolved from the DNA repair protein O6-

alkylguanine-DNA alkyltransferase (AGT) (Juillerat, Gronemeyer et al. 2003, 

Keppler, Gendreizig et al. 2003). The reaction is based on specifical binding of 

benzylguanine (BG) derivatives to the cysteine residues of the protein that 

leads to irreversible covalent labeling. The O6-alkylguanine is degraded 

afterward to inhibit toxic effect to the cell. Cells expressing SNAP-tag fused 

proteins can be labeled specifically with various organic dyes and 

fluorophores. Another similar variant is the CLIP-tag, a derivate of SNAP-tag, 

which specifically reacts with O2-benzylcytosine (BC) derivatives (Gautier, 

Juillerat et al. 2008). CLIP-tag is commonly used together with SNAP-tag to 

conduct dual-labeling with two distinct substrates. The reaction mechanism is 

presented in Figure 5.3.1. 
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Figure 5.3.1 Principles of SNAP- and CLIP-tag labeling with appropriate substrates 

 

The fusion of SNAP and CLIP-tag to EGFR was prepared in our lab. For that 

purpose, EGFR was amplified by PCR and inserted into the CLIP vectorbone 

purchased by NEB and SNAP was amplified and replaced mRFP in the EGFR 

vectorbone as described in Materials and Methods. The expression and 

labeling efficiency of SNAP and CLIP-receptors were probed in CHO-K1 at RT. 

In this set of experiments, cells were incubated with SNAP-Surface®488 or 

CLIP-Cell™ TMR-Star for SNAP- and CLIP-tag EGFR, respectively. The diffusivity 

of these tags are compared with EGFR-eGFPand displayed in table 5.3.1 

Protein 
τD 

(ms ± SD) 

n (cell) 

EGFR-eGFP 59 ±42 22 (4) 

SNAP-EGFR (SNAP-Surface®488) 62 ± 47 15 (5) 

EGFR-CLIP (CLIP-Cell™ TMR-Star) 31 ± 10 9 (9) 

 

Table 5.3.1 Lateral mobility of the receptors measured at RT in CHO-K1 
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SNAP-EGFR and EGFR-eGFP revealed similar diffusion times of around 60 ms. 

The diffusion time of the construct EGFR-CLIP (31 ms) was a bit faster than 

the others. However, EGFR-CLIP showed another set of fast moving 

molecules ranging from 1-10 ms which had been excluded. This might be 

explained by unreacted CLIP substrates that remain in the cell even after 

extensive washing and incubation for a certain time in serum- and phenolred-

free DMEM which allowed them to diffuse out of the intracellular part. 

Another possible reason for the fast diffusion time could be due to 

nonspecific staining of CLIP substrates to the cells or nonspecific binding to 

other biomolecules/proteins. The specific binding of SNAP substrates to 

SNAP-tag proteins made it eligible for further investigations of receptor 

dimerization. However, it should be noted that high specific labeling 

efficiency of SNAP-Surface®488 was not detected and the results did not 

show high signal to noise ratios. Figure 5.3.2 displays the ACF curves of 

labeled SNAP-and CLIP-EGFR. 

 

 

Figure 5.3.2 ACF curves of SNAP-EGFR covalently labeled with SNAP-Surface®488  
(left) and EGFR-CLIP with CLIP-Cell™ TMR-Star (right) obtained by SW-FCCS 
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After testing and comparing the lateral mobility of these tags, the next step 

was to investigate its biological functionality. SNAP-EGFR, CLIP-EGFR and 

SNAP-EGFR-CLIP were transfected separately into CHO-K1 cells and serum 

starved cells were activated by EGF at a final concentration of 100 ng/ml for 

30 min. After cell lysis, ~25 µl lysate were mixed with SDS containing 

mercaptaethanol and heated at 95 °C for 10 min. The proteins were 

separated in a 7% SDS gel that was running for 1.20 h, blotted onto the 

membrane, and visualized. However, the constructs showed no bands in the 

western blotting. This trial was repeated five times (Figure 5.3.3). These 

results indicate that these protein tags are not biologically functional. To 

confirm this, internalization assay was used to further test its biological 

activity.  

 

Figure 5.3.3 Western Blot analysis of SNAP-EGFR and EGFR-CLIP to detect 
phosphorylated tyrosine residues. No band is visible in the range of 170 KD 

 

Cells expressing SNAP-fused EGFR were first labeled with 5 µM SNAP-

Surface®488 and washed several times to remove unreacted substrates. 

However, nonspecific binding of substrates was observed in Figure 5.3.4 at 

the stage before ligand stimulation. This substrate is known to be cell 

impermeable (NEB website) but even in the absence of EGF, some substrates 

are visible inside the cell and in the background. A recent study reported 
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suitability of certain SNAP-substrates and demonstrated unspecific labeling 

and high background caused by certain ligands (Bosch, Correa et al. 2014).  

In addition, the substrate concentrations of 5 µM lie in the range of the 

recommended labeling concentration between 1 and 5 µM. However, high 

labeling efficiency was still not achieved as visible in the images.  

 

Figure 5.3.4 Internalization assay of SNAP-EGFR. Receptors were stimulated by EGF 
at a final concentration of 100 ng/ml  
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Confocal images of cells were recorded before and after 100 ng/ml EGF 

stimulation. As can be seen in Figure 5.3.4, receptor dynamics were recorded 

every five minutes. The membrane fluorescence did not change before and 

even after 20 min EGF addition for the four cells. The internalization assay of 

SNAP-EGFR provides further evidence for the non-biological functionality of 

this receptor. In addition, dead cells showed more nonspecific binding and 

higher background than live cells. As this protein did not show any biological 

activity, it was not applied in the estimation of interaction amount in resting 

cells.  

 

5.4 Dual labeling of SNAP-EGFR-CLIP 

The construct SNAP-EGFR-CLIP was prepared in order to investigate its 

function as an alternative positive control to the existing fluorescently 

double-labeled mRFP-EGFR-eGFP. As shown previously, the upper limit of the 

dynamic range by using mRFP-EGFR-eGFP reached, on average, ~60% in 

different cell lines. The value of less than 100% is caused by the restricted 

photophysical properties of the FPs. By labeling of SNAP-EGFR-eGFP with 

bright and photostable organic dyes, an improvement in the complex level is 

expected. For that purpose, cells expressing this tandem receptor were 

labeled with 7 µM SNAP-Surface®488 and 1.8 µM CLIP-Cell™ TMR-Star 

sequentially, according to NEB recommendations. Labeled receptors were 

excited by 488 nm and 543 nm lasers. The measurement revealed a 62% 

complex fraction of this positive control (n=10, 4 cells) and did not reach the 
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expected value close to 100%. This might be due to several reasons (Figure 

5.4.1). The labeling of SNAP-substrate was not very efficient. A count rate of 

approximately 9000 cps was detected even after labeling with high substrate 

concentration. The cells were very dimly labeled and high background signal 

was recorded. Our data showed that labeling of SNAP-tag was not very 

specific with this substrate and some tags may not have been labeled 

successfully. This might explain the lower value of the positive control. 1:1 

labeling was not achieved. This low labeling efficiency led to the 

underestimation of protein interaction.  

However, the substrate CLIP-Cell™ TMR-Star bound very specifically to CLIP-

tag and with high affinity. Therefore, the labeling of SNAP-EGFR-CLIP was 

repeated few times to adjust the intensity rate to similar values. Due to the 

low labeling efficiency of the SNAP-tag, the concentration of CLIP-substrate 

was lowered significantly. In addition, the diffusion times of EGFR were in the 

range of cytosolic proteins and far away from transmembrane receptors, 

likely caused by unbound substrates in the cell.  

 

Figure 5.4.1 FCCS curve of dual labeled SNAP-EGFR-CLIP 
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However, testing of different SNAP-substrates could help to increase the 

dynamic range. There are different kinds of green color substrates from 

different companies available.  

 

5.5 Discussion 

Available red fluorescent proteins exhibit deficiencies in brightness and 

photostability. Unfortunately, the performance of these proteins does not 

match with the one of eGFP. Therefore, alternative constructs with improved 

red fluorescent protein and different genetic tags on the receptor have been 

cloned in order to test their performance and eligibility in FCS measurements. 

An improved red version of mRFP, known as mApple, shows improved 

photophysical properties over currently available red variants. Accordingly, 

mApple on the N-terminus of EGFR was constructed and the expression and 

biological activity were investigated in living CHO-K1 cells. Biochemical 

methods such as SDS page and Western plot assay proved the biological 

functionality of the construct mApple-EGFR. The addition of EGF led to the 

phosphorylation of EGFR that was evident in the Western plot assay. 

Maturation time and subsequent brightness of FPs depend on many local 

factors, such as oxygen level, cell type, temperature and linker protein. To 

obtain a parameter about the properties of this construct, the cell expression 

and brightness of mApple-labeled protein was evaluated. mApple-tagged 

protein revealed improved brightness compared to mRFP with an excitation 

laser wavelength of 514 nm. This result is in agreement with previously 
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reported studies (Shaner, Lin et al. 2008). Therefore, mApple labeled EGFR 

was used for FCCS measurements to determine the cross-correlation amount 

of EGFR. Our data revealed a cross-correlation amount of 44% in the basal 

membrane and cross-correlation amount of 51% in the apical membrane. 

Compared to the measurements with mRFP, the q amount was ~30% in the 

basal and apical membrane using different FCCS modalities. The results 

demonstrate that using improved red fluorescent proteins, which in contrast 

to mRFP showed a larger fluorescent fraction, increased the detected cross-

correlation amount in living cells.  

The cloning of the new constructs SNAP-EGFR, EGFP-CLIP and SNAP-EGFR-

CLIP was successful and they were tested for their performance. The 

diffusivity of SNAP-EGFR was in a similar range as EGFR-EGFP, whereas EGFR-

CLIP showed a fraction with fast moving molecules. This is possibly caused by 

unreacted CLIP substrates in the cells. However, western blot assay could not 

detect any bands of the phosphorylated receptor with these new constructs 

after their stimulation with EGF. In addition, the alternative positive control 

SNAP-EGFR-CLIP was labeled with distinct substrates and revealed a cross-

correlation amount of 62%. This value is close to the value obtained by the 

positive control labeled with fluorescent proteins. The expected value of 

100% is not reached, which is due to non-specific and weak labeling of SNAP-

Atto488. However, the cross- correlation amount of this construct can be 

improved by testing further substrates with improved labeling efficiency.  
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6 Conclusion and Outlook 

6.1 Conclusion 

The goal of this work was to investigate EGFR dimerization by SW-FCCS 

(Hwang and Wohland 2004, Liu, Sudhaharan et al. 2007) with the aim to 

understand the potential role of selected experimental factors in the 

discrepancies in reported levels of EGFR dimerization in resting cells. Intense 

research has contributed to the quantification of the level of receptor dimers 

in the absence of a ligand in the past. However, the results vary extremely 

from study to study. Reported values range over almost all possible values 

from 0 to 100%. The discrepancies arose in the estimation of dimerization 

amount required an explanation, and investigation of the source of these 

differences was needed. The inconsistency of EGFR results can originate from 

using different techniques and conditions, handling in cell culture, 

measurements on different membrane locations and using different 

temperature ranges. Besides using SW-FCCS, other advanced FCCS modalities 

including dual-color FCCS, quasi-PIE-FCCS and DC-ITIR-FCCS were utilized to 

analyze the dimer fraction of EGFR and test whether we obtain consistent 

results by measuring with different techniques. The important finding is that 

we found evidence for the existence of EGFR complexes under all 

experimental conditions probed. Our results show that temperature has little 

effect and the dimer fraction is consistent between measurements at room 

temperature and physiological temperature. Also membrane location on the 

apical and basal membranes does not show strong differences. In contrast to 



142 
 

these parameters, the cell line plays a strong role in the results. Cell lines that 

express endogenous EGFR (COS-7, HEK293) show low apparent dimerization 

at low expression of the labeled EGFR as the endogenous receptor will 

interfere and mainly dimers between endogenous and transiently expressed, 

labeled receptors will be observed. The apparent dimer fraction in these 

cases will increase with the expression level of labeled EGFR due to 

competition between labeled and endogenous EGFR molecules. The presence 

of endogenous EGFR suppressed the actual apparent complex fraction when 

the labeled EGFR was at low to middle expression level. For cells that do not 

possess any endogenous EGFR (CHO-K1), the dimer fraction is always high, 

independent of the expression level of labeled EGFR. The normalized 

dimerization amount of 57% tested in CHO-K1 cells is comparable and in 

agreement with our previous studies (Liu, Sudhaharan et al. 2007, Ma, 

Ahmed et al. 2011). Our findings also provid evidence for the complex 

concept of ligand-independent activation in which EGFR exists as a mixture of 

monomeric, dimerc and oligomeric fraction in the plasma membrane. A body 

of data also indicates the presence of preformed dimers in the absence of 

ligand (Maruyama 2014, Valley, Lidke et al. 2014). EGFR dimerization plays an 

important role also in C.elegans; it was found in dimeric state in unliganded 

environment (Freed, Alvarado et al. 2015). Recent reports propose that EGFR 

resides in oligomeric form in the plasma membrane in the absence of ligand 

(Needham, Zanetti-Domingues et al. 2015, Needham, Roberts et al. 2016). 

Current studies together with our results implicate the complexity of this 

membrane receptor in signal activation. Our results indicate a complex model 



143 
 

in which signaling is drived by dimeric and oligomeric organization of EGFR in 

the absence of ligand. 

All FCCS modalities used in this work (SW-FCCS, DCFCCS, quasi PIE-FCCS, and 

imaging FCCS) show the same high dimer fraction but provide different 

advantages. SW-FCCS is the simplest in terms of setup but even the negative 

control will have some cross-correlation due to spectral cross-talk. Quasi PIE-

FCCS is cross-talk free and provides perfect negative controls that should 

increase the sensitivity of the technique when low cross-correlation need to 

be quantified. Imaging FCCS has a lower time resolution but is well suited for 

membrane measurements. Its main advantage is the multiplexing of 

measurements and its spatial resolution. Here we were able to show that 

dimer fractions tend to be higher at the border compared to the center of the 

cell in agreement with previous reports (Chung, Akita et al. 2010, Bag, Huang 

et al. 2015). This would not have been easily possible with single-point FCS 

measurements. Overall, our results indicate that the largest factors in the 

variability of dimer measurements are cell line and cell-to cell variability, and 

to some extent the location of the measurement while temperature plays a 

minor role. 

Further investigations of EGF dimers by drug treatments by LAT-A revealed 

no changes in EGFR complex fraction after the depletion of the actin 

cytoskeleton compared to the control cells. However, the situation was 

different when cholesterol was removed from the plasma membrane by the 

drug mβCD. The complex fraction rose up significantly in the apical as well as 

in the basal membrane when cholesterol was removed consistent with 
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previous reports (Saffarian, Li et al. 2007). This finding is also in agreement 

with our recent publication (Bag, Huang et al. 2015) in which its indicating 

that EGFR resides in cholesterol and cholesterol-independent domains. The 

increase in complex fraction after drug treatment indicates that EGFR 

complexes are held together by receptor-receptor interactions. EGFR at least 

co-exists as monomers dimers and possibly higher oligomers. However, by 

using FCCS, it is not possible to distinguish between dimers and higher-oder 

oligomers. EGFR is domain dependent and insensitive to cytoskeleton 

disruption. An early study demonstrated that EGFR dynamics is influenced in 

some extent by cholesterol level. The localization of EGFR in lipid domains 

affects EGFR activation. Cholesterol depletion induced release of EGFR from 

lipid rafts, which caused suppression of EGFR activation (Pike and Casey 

2002). This data is in agreement with our findings as we observed an increase 

in the EGFR complex fraction after cholesterol removal. The transient 

trapping of receptor molecules into small cholesterol-dependent domains 

prevents them from diffusing freely and, thus, reduces the frequency of their 

encounters with other receptors, which lead to formation of the transient 

complexes. Furthermore, the binding of EGF on EGFR has shown to change 

receptor organization and to promote oligomerization (McLaughlin, Smith et 

al. 2005). This property of EGF binding to EGFR is comparable with our 

results; EGF enhanced the formation of complexes. 

The last research topic involved the cloning and evaluation of alternative tags 

to FP`s labeled receptors. The purpose of this project was to evaluate the 

influence of fluorescent properties of alternative tags on the quantification of 
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EGFR complexes. An improved version of mRFP, named mApple was 

successfully cloned to EGFR and the biological activity confirmed by Western 

blot assay. The application of mApple labeled receptors in the interaction 

measurements with eGFP-labeled EGFR showed an increase in the average 

apparent complex fraction. This was enabled by the improved fluorescence 

properties of the red FP mApple.  

 

6.2 Outlook 

The findings illustrated in this work provide insight into factors, which need 

to be considered, for the quantification of EGFR dimers in live cells. We 

showed that EGFR exists as preformed dimers under resting conditions, while 

EGF ligand causes increase in dimerization amount and oligomerization. The 

biological meaning of predimerization of EGFR relies on speeding up the 

signaling cascades.  

An important factor is cell-to-cell variability, which is considerable. In 

confocal FCS measurements, this is difficult to quantify as one has only a 

limited number of measurements per cell. Imaging FCS allowed us to quantify 

with good statistical significance the dimer fraction over a large part of the 

cell membrane. This showed that we have about a third of all cells that have 

a high dimer fraction, a third that has low dimer fraction and a third in 

between. This alone can lead to large variability when averaging 

measurements over different cells and is possibly one of the factors leading 

to a variety of results. It will be interesting to investigate whether this 
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variability in 2D cell cultures is an artefact or whether it also exists in 3D cell 

cultures, tissues and live organisms. Other possible approaches are to create 

a CRISPR/CAS9 transgenic lines in cells with endogenous level of EGFR which 

allows measuring of receptor interaction in a stable expressing cell line. The 

performance of measurements in synchronized cells would provide useful 

information about EGFR dynamics at each single cell cycle. 

Another outstanding future work is a detailed investigation of the nature of 

the receptor complex regions in resting cells can be performed, by using DC-

ITIR-FCCS, in order to understand if these complex regions contain only 

elevated amounts of dimers or also contains higher EGFR oligomers.  

A possible future direction is the clinical study on biopsies in lung cancer 

patients. Available drugs from the class TKIs (gefinitib and erlotinib) requires 

further investigation on lung cancer patients as many of them develop a 

second mutation during the drug treatment. Biopysies are ideal samples from 

patients before and after drug treatment to monitor tumor dynamics and to 

understand the relationship between drug and receptor interaction by using 

FCCS. 
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