
QUERY FROM EXAMPLES

LI HAO

NATIONAL UNIVERSITY OF

SINGAPORE

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/83108256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DOCTORAL THESIS

QUERY FROM EXAMPLES

Author:

LI HAO
(B.Eng., Nankai University)

Supervisor:

Associate Professor:

CHAN Chee Yong

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2016

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its

entirety.

I have duly acknowledged all the sources of information which have been used in the

thesis.

This thesis has also not been submitted for any degree in any university previously.

Li Hao

June, 2016

i

ACKNOWLEDGMENT

I would like to express the deepest appreciation to my supervisor, Professor Chan Chee

Yong, whose expertise, understanding, and patience added considerably to my graduate

experience. Without his guidance and persistent help, I would not have finished my thesis.

During my Ph.D. study, I encountered many different problems. Prof. Chan always gave

me so much support and strength to conquer them. With vast knowledge and skills, he

patiently guided me to build interesting ideas, improve my writing skills and my research

capability. In my personal life, he is also very considerateand generous. He cared about

my health and helped me so much to solve the financial problems. I am really grateful to

have him as my supervisor.

I would also like to thank Professor David Maier, who gave me many useful suggestions

and insightful comments for my first piece of work.

Special thanks go out to my wife, Huang Xiaocheng, who is smart, funny, supportive

and truly makes a difference in my life. Anytime I have doubts, she can always give me

strength and made me a better person. I’m so lucky to have her around during my good

and bad days.

iii

I would like to thank my thesis committee, Prof. Tan Kian Lee and Prof. Stephane

Bressan for their valuable comments on my thesis as well as recommendation letters for

my research assistant position.

I would also like to thank all my friends who have made my Ph.D.life more colorful.

They are Li Lu, Wang Guoping, Zheng Yuxin, Zeng Zhong, Tang Ruiming, Liu Qing, Li

Yuhong, and many others.

Finally, I would like to thank my parents for their support and trust for every decision I

made during my Ph.D. life.

iv

CONTENTS

Declaration i

Acknowledgement iii

Abstract xi

1 Introduction 1

1.1 Example-driven Query Construction 2

1.2 Query-based Approach .5

1.3 Schema-based Approach .7

1.4 Thesis Contributions .10

1.5 Thesis Organization .11

v

CONTENTS

2 Literature Review 13

2.1 Query Construction .14

2.2 Example-Driven Systems .16

2.3 Query Generators .17

2.4 Database Generators .20

2.4.1 Reverse Query Processing .20

2.4.2 Query Equivalence Problem .21

2.4.3 Explaining Missing Answers .23

2.5 Query Refinement Problem .23

3 Query-based Approach 25

3.1 Approach Overview .25

3.2 Cost Model .28

3.2.1 Estimation of Number of Iterations31

3.3 Query Generator .33

3.4 Database Generator .34

3.4.1 Tuple Classes .35

3.4.2 Overview of Approach .37

vi

CONTENTS

3.4.3 Algorithm Skyline-STC-DTC-Pairs38

3.4.4 Algorithm Pick-STC-DTC-Subset40

3.5 Discussion .44

3.5.1 Queries with Set-based Semantics44

3.5.2 Queries with Different Join Schemas45

3.5.3 Database Constraints .46

3.5.4 Supporting More Expressive Queries46

3.6 Experimental Evaluation .47

3.6.1 Database and Queries .48

3.6.2 Results for Default Settings .49

3.6.3 Effect of Scale Factorβ . 51

3.6.4 Effect of Time Thresholdδ . 52

3.6.5 Efficiency of Algorithm3.4 . 53

3.6.6 Effect of Number of Candidate Queries54

3.6.7 Effect of Initial Database-Result Pair 56

3.6.8 Effect of Size & Entropy of Attributes’ Active Domains. 57

3.6.9 User Study .59

3.7 Conclusion .65

vii

CONTENTS

4 Schema-based Approach 67

4.1 Introduction .68

4.2 Approach Overview .70

4.2.1 Limitation .75

4.3 Handling The Scenario With Positive Partition 76

4.3.1 Algorithm Query-Schema-Generator 76

4.3.2 Algorithm Database-Generator79

4.3.3 Result Feedback .84

4.4 Handling the Scenario Without Positive Partition 85

4.4.1 Queries with Bag Semantics .87

4.4.2 Queries with Set Semantics .94

4.4.3 Heuristic Solution .96

4.5 Discussion .98

4.6 Experimental Study .99

4.6.1 Datasets and Queries .100

4.6.2 Performance of Schema-based Approach101

4.6.3 Comparing Query-based and Schema-based approaches 104

4.6.4 User Study .107

4.7 Conclusion .112

viii

CONTENTS

5 Conclusions and Future Work 117

5.1 Contributions .118

5.2 Future Work .118

Bibliography 121

ix

ABSTRACT

In today’s era of Big Data, there is a lot of interest in do-it-yourself data exploration.

For example, cloud-based data sharing and analysis platforms are now available which

provide a web-based interface for users to pose queries on their uploaded data. How-

ever, expressing information needs using database systemsoften require writing queries

in a formal language which is a challenging task for non-expert database users. This has

motivated several recent research efforts to help databaseusers with query construction.

Many of the existing approaches require the users to be familiar with the query language:

some approaches provide users with a repository of shared queries to facilitate browsing

for similar queries, and other approaches provide a recommender functionality to aid users

with query construction by suggesting appropriate query snippets based on their partially

constructed queries.

In this thesis, we aim to lower the barrier for today’s data consumers to utilize database

technology for data analysis by investigating an example-driven approach to help users

with query construction. Our proposal does not require users to be familiar with any

query language; instead, it only requires that the user is able to determine whether a

xi

CONTENTS

given output table is the result of his or her intended query on a given input database.

To kick-start the construction of a target queryQ, the user first provides an example

database-result pair(D,R), whereR is the desired output table ofQ on the databaseD.

As there will be generally multiple candidate queries that transformD toR, our approach

winnows this collection by iteratively presenting the userwith new database-result pairs

that distinguish these candidates. To minimize the user’s effort to determine if a new

database-result pair is consistent with his or her desired query, our approach strives to

make these distinguishing pairs as close to the original(D,R) pair as possible. In this way,

our approach is able to identify the user’s target query by seeking the user’s feedback on a

sequence of slightly modified database-result pairs. Except for the initial database-result

pair, which is provided by the user, all the subsequent pairsare automatically generated

by the system.

We propose two approaches to solve our example-driven method for query construction.

The first approach is a query-based approach that leverages existing research on query

reverse engineering to generate a set of candidate queries for iterative pruning with the

user’s feedback. The second approach is a schema-based approach that first identifies

the target query schema via user feedback before pruning thecandidate queries for the

identified target query schema. Our experimental study demonstrates the feasibility and

effectiveness of our example-driven approach for query construction.

xii

LIST OF FIGURES

1.1 Overall Architecture of QFE . 3

1.2 Employee database and result pair 5

1.3 Employee database and result pair 6

1.4 Employee database and result pair 7

1.5 Employee database and result pair 9

1.6 Employee database and result pair 10

3.1 Overall Architecture of QFE .26

3.2 Queries for Section3.6.7 . 56

3.3 Effect of initial database-result pair 58

3.4 UI screen capture .62

xiii

LIST OF FIGURES

4.1 Queries generated by QBO .69

4.2 Overall Architecture of schema-based QFE 71

4.3 Test queries for experiments .. 101

4.4 User interface screen capture .. . 107

4.5 Total time to find target query (in secs) 112

xiv

LIST OF TABLES

3.1 Notation table of Chapter3 . 26

3.2 Per-round statistics for scientific database. 50

3.3 Effect ofβ for baseball database .52

3.4 Effect ofδ for scientific database .53

3.5 Performance of Algorithm 4 for scientific database 54

3.6 Performance of Algorithm3.4for varying|SP | 54

3.7 Effect of the number of candidate queries onQ2 55

3.8 Breakdown of first iteration’s runing time (in sec) 55

3.9 Properties of datasets and query results 57

3.10 Number of distinct values for attributeA in datasets 58

xv

LIST OF TABLES

3.11 Effect of size & entropy of active attribute domain for queryQ1 60

3.12 Effect of size & entropy of active attribute domain for queryQ2 61

3.13 Per-round statistics for queries 63

3.14 Timing results for user study (in secs) 64

4.1 Notation table of Chapter4 . 68

4.2 Employee database and result pair 86

4.3 Performance for each target query 102

4.4 Number of candidate query schemas with different selection attributes size104

4.5 Results of two approaches .105

4.6 Feedback time forAQ1 (in secs) .109

4.7 Feedback time forAQ2 (in secs) .110

4.8 Feedback time forAQ3 (in secs) .111

4.9 Time results of Q-QFE and S-QFE forAQ1 (in secs)113

4.10 Time results of Q-QFE and S-QFE forAQ2 (in secs)114

4.11 Time results of Q-QFE and S-QFE forAQ3 (in secs)115

xvi

CHAPTER 1

INTRODUCTION

Given today’s ease of collecting large volumes of data and the need for ad-hoc data query-

ing to find information or explore the data, there is growing adoption of relational database

systems, beyond the traditional enterprise context, for managing and querying data. For

example, in the scientific community, the Sloan Digital Sky Survey (SDSS) Project [1]

provides online querying of a large repository of image-based data using SQL queries,

and the recent SQLShare Project [36] provides a web-based interface to facilitate sci-

entists posing SQL queries on their uploaded research data.However, many non-expert

database users still primarily rely on scripts or files to handle their data. Even though some

users can write simple SQL queries, they are not competent enough to express the com-

plicated query intention. Writing SQL queries for such do-it-yourself data exploration

remains a challenging task for non-expert users, and this consideration has motivated sev-

eral recent research efforts to help users with query construction.

1

CHAPTER 1. INTRODUCTION

One approach to help users with query construction is to provide a repository for users to

share their queries and facilitate browsing for similar queries that can be reused, possibly

with minor modifications [35, 42]. For example, SQB maintains a sample of popular user

queries to facilitate query reuse [42], and SQLShare facilitates browsing and searching of

SQL queries posted by users [35].

Another approach is to provide a query recommendation facility. One way is to recom-

mend entire queries based on a user’s and other users’ past queries recorded in a query

log [14]. If they have similar query records, the system will recommend the other users’

queries to the current user. Another kind of recommendationis to recommend query snip-

pets for specified SQL clauses (e.g. tables in from-clause, predicates in where-clause)

based on the partial query fragment that the user has typed and any past queries authored

by the user [41, 55].

Both query browsing as well as query recommendation approaches require the users to be

familiar with SQL as they need to be able to read and write SQL queries. They do not

take account of users’ query intention either, as users can not express their query intention

to these approaches accurately. In addition, these approaches may not be applicable if the

data being queried belongs to a private database that is usedonly by a single user.

1.1 Example-driven Query Construction

In this thesis, we propose a novel example-driven approach,calledQuery from Examples

(QFE), that is targeted at less sophisticated users who might be unfamiliar with SQL. Un-

like the previous approaches, QFE is a more “user-friendly”approach that only requires

that the user be able to determine whether a new given output table is the result of his or

her target query on a given input database.

2

CHAPTER 1. INTRODUCTION

User

Database-Result
Pair (D,R)

Candidate
Generator

Candidate
Queries

Database
Generator

Modified Database D’
&

Query ResultsR1, · · · , Rk

Result
Feedback

Selected
ResultRi

2 3 4 5 6 7

4

8

1 6

Figure 1.1: Overall Architecture of QFE

To kick-start the construction of a target queryQ in QFE, the user first provides an exam-

ple database-result pair(D,R), whereR is the output table ofQ when queryQ is executed

on databaseD. As there will be many candidate queries that transformD toR, QFE win-

nows this collection by iteratively presenting the user with new database-result pairs that

distinguish these candidates. As for different candidate queries, the database-result pairs

could be different. To minimize the user’s effort to determine if a new database-result

pair is consistent with his or her desired query, QFE strivesto make these distinguishing

pairs as close to the original(D,R) pair as possible. In this way, QFE is able to identify

the user’s target query by seeking the user’s feedback on a sequence of slightly modified

database-result pairs. Except for the initial database-result pair, which is provided by the

user, all the subsequent pairs are automatically generatedby the system. The overview of

QFE architecture is shown in Figure1.1.

As shown in Figure1.1, QFE is mainly composed of three components. All these com-

ponents are orthogonal to each other, which makes the whole system easy to maintain.

Given a database-result pair, theCandidate Generator modulefirst generates a set of can-

didate queriesQ1, · · · , Qn, where their query resultsQ1(D) = · · · = Qn(D) = R. To

distinguish the user’s intended query from other candidatequeries, theDatabase Gen-

erator modulemodifiesD to D′, such thatD′ partition queries into different groups by

generating new database-result pairs for the user to examine. TheResult Feedback module

highlights the changes between the initial database-result pair and the new database-result

pairs. If the user’s feedback select the group containing more than one queries, the user’s

3

CHAPTER 1. INTRODUCTION

feedback is returned to theDatabase Generator modulefor another iteration. The process

terminates once QFE has identified the intended query, or none of the candidate queries

are selected.

It is clear that QFE can enhance database usability. First ofall, QFE can help users

construct queries if they are aware of the result, but not aware of how to derive them. For

example, many database users use spreadsheets or other filesto store their query results

and share them with one another without any annotations. It is difficult for the others to

discover the query and explore the data characteristics. Our proposed approach should be

helpful for users who are not familiar with SQL, and that the required input of a single

example database-result pair is a reasonable requirement for users. Another feature of

QFE is that it adopts an iterative data-driven approach. We believe that showing data

and changes to the user can be an intuitive way to help him/herunderstand the essence

of the query. Moreover, QFE provides friendly and efficient interactions with the user.

QFE minimizes the information shown to reduce the user’s effort, and the user can give

feedback in time to help QFE adjust the modify strategy for the following iterations.

Besides constructing queries for users directly, QFE can also collaborate with other tools

to help analyze data. For example, Howe et al. [35] have developed an ad hoc database

management system called SQLShare to help users explore data. It adopts the termstarter

queryto refer to a database-specific example query to help users start their analysis work

[35]. These starter queries are derived from a set of tables justby analyzing their statistical

properties without users’ input. Without concerns of the user’s real demand, these starter

queries may not be helpful for the analysis purpose. However, if the user browses the data

and can provide some information about the results he/she expects, then with QFE he/she

can get a starter query more specifically with concern of the user’s real demand. In this

way, we can avoid the cost for the user to derive his or her query by trial and error, and

analyze the data efficiently.

4

CHAPTER 1. INTRODUCTION

1.2 Query-based Approach

In this section, we introduce our first approach of QFE termedQuery-based approach

(Q-QFE). As shown in Figure1.1, given a database-result pair(D,R), theCandidat Gen-

erator modulefirst generates a set of candidate queries that can deriveR from databaseD.

TheDatabase Generator moduletakes an initial database-result pair(D,R) and a set of

candidate queries QC as input, and generates a new databaseD′ to distinguish the queries

in QC. Although queries in QC can generate the same result on databaseD, onceD is

updated in future, the query results may not be same any more.Here is an example.

Example 1.1.Consider the relation Employee(Eid, name, gender, department, salary) in

a company databaseD and the user’s intended query resultR, as shown in Figure1.2.

Eid name gender dept salary

1 Alice F Sales 3700
2 Bob M IT 4200
3 Celina F Service 3000
4 Darren M IT 5000

name

Bob
Darren

DatabaseD ResultR

Figure 1.2: Employee database and result pair

For simplicity, assume that there are three candidate queries inQC.

Q1: SELECT name FROM Employee WHEREgender = ‘M ′;

Q2: SELECT name FROM Employee WHEREsalary > 4000;

Q3: SELECT name FROM Employee WHEREdepartment = ‘IT ′;

Although they all have the same query results, it is obvious that they have different query

semantics. If the company hires a female employee in department IT, or raises Alice’s

salary up to 4000, these queries will show different query results.

It is well known that if two queriesQ1 andQ2 are not equivalent, then there exists a

databaseD such thatQ1(D) 6= Q2(D). Based on this statement, a straightforward thought

5

CHAPTER 1. INTRODUCTION

to distinguish two queries is to generate a new database (synthetic data) that provides

different query results for different queries. However, ittakes more effort for users to

examine an unfamiliar database and identify the correct query result. Hence, modifying

the existing database to distinguish the candidate queriesis a more reasonable option.

Example 1.2.To illustrate our approach, we continue from Example1.1. To help identify

the user’s target query among these three candidates, our approach will first present to the

user a modified databaseD1
1 and two possible query results,R1 andR2 onD1 (shown in

Figure1.3):

Employee
Eid name gender dept salary

1 Alice F Sales 3700
2 Bob M IT 3900
3 Celina F Service 3000
4 Darren M IT 5000

DatabaseD1

name

Bob
Darren

ResultR1

name

Darren
ResultR2

Figure 1.3: Employee database and result pair

Essentially, the modified databaseD1 serves to partitionQC into multiple subsets. In

this example,QC is partitioned into two subsets with the queries in{Q1, Q3} producing

the same resultR1 on D1 and the only query in{Q2} producing the resultR2 on D1.

The user is then prompted to provide feedback on which ofR1 andR2 is the result of her

target queryQ onD1. If the user choosesR2, then we conclude that the target query is

Q2; otherwise,Q ∈ {Q1, Q3} and the feedback process will iterate with another round

and present the user with another modified databaseD2 and two possible results,R3 and

R4 onD2 (shown in Figure1.4).

If the user feed back thatR3 is the result ofQ on D2, then we conclude thatQ is Q1;

otherwise, we conclude thatQ is Q3. For this example, the target query is determined

1The modification(s) in the database (i.e., Bob’s salary) areshown as boxed text.

6

CHAPTER 1. INTRODUCTION

Employee
Eid name gender dept salary

1 Alice F Sales 3700
2 Bob M Service 4200
3 Celina F Service 3000
4 Darren M IT 5000

DatabaseD2

name

Bob
Darren

ResultR3

name

Darren
ResultR4

Figure 1.4: Employee database and result pair

with at most two rounds of user feedback, each of which involves a single tuple changed

in the database. �

In this thesis, we propose Q-QFE, an iterative data-driven approach to distinguish a set

of candidate queries, by modifying the existing database toshow different query results.

There could be multiple ways to modify database to partitionqueries. We aim to choose

the modifications which minimize the user’s effort as he/sheexamines the new database-

result pairs. We present a cost model to quantify the user’s effort to determine the target

query relative to a modified databaseD′, and we also demonstrate the effectiveness and

efficiency of our approach using real data sets. So far, Q-QFEsupports select-project-join

(SPJ) queries with disjunction predicates.

1.3 Schema-based Approach

In the previous section, we introducedQuery-based approachof QFE. TheCandidate

Generator modulefirst generates a set of candidate queries which can deriveR from

databaseD, and then theDatabase Generator moduledistinguishes these queries to find

the target one. There are several existing works can be used as query reverse engines for

the Candidate Generator module[64, 70, 61]. However, these works are designed for

a more general scenario, not tailored for QFE specially, thequeries they generated may

7

CHAPTER 1. INTRODUCTION

not be suitable for QFE. Some of them generate too many queries to increase the user’s

workload, and some of them do not support selection predicates.

Query by Output (QBO) [64] is the first data-driven approach that aims to augment query

results with interesting query-based characterizations of the tuples in the query result. The

main idea of QBO is to get the queries to enhance the database usability including data

analysis, data security, and etc. Hence, it will generate different queries in different query

schemas to provide more useful information. Other works, such as [70] and [61], focus

only on deriving a set of join queries without selection conditions, which narrows the

query types. One main problem of these works is that the output candidates may involve

too many queries, which have to be eliminated in theDatabase Generator module. It adds

more burden to theDatabase Generator, and more workload for users. As there should

only be one query satisfying users’ query intention, the incorrect queries should be filtered

as soon as possible.

The main reason that there may be too many candidate queries generated is that too many

join schemas can derive different queries. Here is an example.

Example 1.3.Consider the IMDB database with the following tables, ACTOR(pid, fname,

lname, gender), MOVIE (mid, name, year), DIRECTORS (did, fname, lname), CASTS

(pid, mid, role) and MOVIEDIRECTORS (did, mid). Suppose a user needs to find the

query whose result is “Fight Club”. There are so many different ways to get the same

answer. We can compose a query to find the only movie David Fincher directed in 1999,

or the only movie Edward Norton and Brad Pitt starred together, or the only movie David

Fincher and Edward Norton worked together. These three queries join different tables

together and have selections on different attributes.

To avoid generating too many candidate queries, in this section, we introduce a second

approach termedSchema-based approach(S-QFE). In S-QFE, theCandidate Generator

modulegenerates a set of candidatequery schemasinstead of queries. A query schema

8

CHAPTER 1. INTRODUCTION

Employee
name gender dept salary

Alice F Sales 3700
Bob M IT 4200

Celina F Service 3000
Darren M IT 5000

Elly F Seales 4300
Frank M Service 3700
Grace F IT 4000

name

Bob
Darren

DatabaseD ResultR

Figure 1.5: Employee database and result pair

contains a query’s join relations, join predicates, projection attributes and selection pred-

icate attributes. Thus, each query schema can be consideredas a set of queries. With the

candidate queries, theDatabase Generator modulemodifies the database and shows the

user the differences among the candidate query schemas by the database-result examples.

Similar to Q-QFE, the user examines the examples and selectsthe correct query schema.

Then we continue to generate queries with the correct query schema.

Example 1.4. Here is an example to illustrate S-QFE. Consider a database-result pair

(D,R), whereD is a single relation with 4 attributes as shown in Figure1.5.

There are three candidate query schemas, namely, with selection attributes given by

{gender, dept}, {gender, salary} and {dept, salary}. The corresponding candidate

queries are shown as follows.

Q1: SELECT name FROM Employee WHEREgender = ‘M ′ ANDdept = ‘IT ′;

Q2: SELECT name FROM Employee WHEREgender = ‘M ′ AND salary > 4000;

Q3: SELECT name FROM Employee WHEREdept = ‘IT ′ AND salary > 4000;

The query schema with only one attribute is not a candidate, because it can not generate

a queryQ such thatQ(D) = R.

Now let us consider attributedept at first, we present the user with a modified database

D1 and two possible query results,R1 andR2, onD1 as shown in Figure1.6. We modify

9

CHAPTER 1. INTRODUCTION

Employee
name gender dept salary

Alice F Sales 3700
Bob M Service 4200

Celina F Service 3000
Darren M IT 5000
Elly F Seales 4300

Frank M Service 3700
Grace F IT 4000

DatabaseD1

name

Bob
Darren

ResultR1

name

Darren
ResultR2

Figure 1.6: Employee database and result pair

Bob’s department from “IT to “Service”. If the target query schema does not havedept as

a selection attribute, then the query result should not be affected, i.e.R1. Otherwise, the

result should beR2. The user is then prompted to provide feedback on which ofR1 andR2

is the result of the target query onD1. Based on the user’s feedback, we can determine the

correct query schema, and continue to generate the target query with the query schema.

In this thesis, we propose an iterative data-driven approach to identify the target query

schema and construct the target query. There are mainly two challenges. The first chal-

lenge is how to generate candidate query schemas, and the second challenge is how to

modify the database to show the differences among differentquery schemas. So far,

S-QFE only supports select-project-join queries (SPJ queries) without disjunction predi-

cates.

1.4 Thesis Contributions

In this thesis, we make the following key contributions.

First, we propose a novel paradigm, Query From Examples, to help non-expert database

users to construct queries. For users who are not familiar with SQL queries, our approach

offers both an easy-to-use specification of their target queries (via a database-result pair)

10

CHAPTER 1. INTRODUCTION

as well as a low-effort mode of user interaction (via feedback on modified database-result

pairs).

Second, we design a Query-based approach of QFE, which can help users to distinguish

a set of queries and identify the target query.

Third, we design a Schema-based approach of QFE to identify the target query schema

first and then identify the target query.

Fourth, we demonstrate the effectiveness and efficiency of our approaches using three

different datasets. The first is a real dataset from SQLShare[36], a cloud-based platform

designed to help scientists utilize RDBMS technology for data analysis. The second real

dataset is the baseball database containing various statistics (e.g., batting, pitching, and

fielding) for Major League Baseball2, and the third one is the Adult data set extracted

from the 1994 Census database3, from the UCI Machine Learning Repository, which is a

single-relation data set that has been used in many classification works.

1.5 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents the related work on query construction, example-driven system,

query generator and data generator.

• Chapter 3 presents theQuery-based approach. We describe the challenges and

propose our algorithms to solve the problem. We also conductan experimental

study over real datasets.

2http://www.seanlahman.com/baseball-archive/statistics
3http://archive.ics.uci.edu/ml/datasets/Adult

11

CHAPTER 1. INTRODUCTION

• Chapter 4 presents theSchema-based approach. We propose a novel algorithm to

generate candidate query schema and construct the target query. We also conduct

an experimental study over real datasets.

• Chapter 5 concludes the thesis and discusses some interesting directions that future

studies can undertake.

12

CHAPTER 2

LITERATURE REVIEW

In this chapter, we conduct a literature review over the related work of QFE. Although

the title of our work is similar toQuery by Example(QBE) [71], the problem addressed

by QBE, which focuses on providing a more intuitive form-based interface for database

querying, is completely different from our work. Besides, there is another work by Davide

et al. [53] which shares a similar idea of QBE. The user provides a sample of example

of what he needs, and the system returns the relevant answers, which might be expected

by the user. Although these works use examples as ours, the problems we solve are

completely different.

We classify the related works in terms of their similarities/differences with QFE. First we

survey the existing works of other tools that can help users construct queries. Then we

discuss the related works using example-driven methods. After that, we narrow the scope

in the context of query generator. At last, the related worksof database generator are

reviewed.

13

CHAPTER 2. LITERATURE REVIEW

2.1 Query Construction

It has been asserted that the database usability [39] is as important as its capability. Several

different approaches have been developed with the broad objective of helping database

users construct queries. These approaches differ mainly intheir assumptions about the

users’ level of database expertise (e.g., whether users areknowledgeable in SQL), users’

familiarity with the database schema, the type of help provided (e.g., query recommen-

dation, query completion), and the available resources to help with query construction

process (e.g., whether query logs of past queries are available).

One category isquery recommendation systems[49, 11, 32, 30, 15, 5]. Query logs have

been widely used for query recommendation, since they are considered as a rich source

of knowledge on user behaviors. The system analyzes query logs and extracts useful

queries to recommend to users. Some of these works [49, 11, 32] are implemented in

search engines to provide better user experience to recommend relevant queries. They

use techniques in keyword search to explore query logs, rankthe suggested queries and

present them to users. Some other works [30, 15, 5] monitor the current user’s behavior,

like keyword match, and compare it with the previous users’ by looking through the query

logs. If the system determines that current user has similarinformation need, it will

suggest the queries from previous users. Since such solutions are based on the user’s

previous actions, and not on the user’s query intention, theusefulness of the recommended

queries is quite limited. Besides, they are not helpful if the user needs a new query which

is not stored in query logs.

Another direction studied isquery auto-completion[41, 55] that aims to interactively

help users to compose their queries. As the user types an attribute or table name, the

system will automatically provide several available queryfragments like selection or join

predicates on the fly. These works study the database schema or query logs, and find

the most frequently used fragments, and the related tables.Then user will continue to

14

CHAPTER 2. LITERATURE REVIEW

compose the query based on these query fragments. Some otherworks use the keyword

search techniques to help users construct queries [63, 23, 24]. Once a user types in some

keywords, the system interprets them first, and then constructs queries based on these

candidate interpretations. Although these works enhance the database usability and help

users to construct queries, the problem they solve is different from ours. We use query

result to indicate user’s query intention, and take it as thekey input in our approach. All

these works are based on the users’ previous actions, and noton the users’ query intention.

Another approach that have been proposed isquery reuse systems[42, 35]. The idea here

is to store the user’s previous queries in a shared repository so that he/she (or other users)

could later browse them when constructing new queries. Our QFE approach differs from

all these approaches as it does not require users to be familiar with SQL and also does not

rely on the availability of query logs to construct queries.

Besides the above works, Abouzied et al. proposed DataPlay [3, 4], a visualization tool to

help users construct quantified queries using a trial-and-error approach. After a user pro-

vides quantified constraints to the system, the system will generate the query results for

the user to examine and continue tuning and auto-correctingthe incorrect query based on

the user’s feedback. It ranks the query correction suggestions and shows the user the ef-

fects of between the suggested queries and current incorrect query. Our work differs from

their works because instead of query constraints, we ask users to provide input/output

examples at the beginning. Besides, instead of refining query, our approach focuses on

filtering false positive queries having the same query results on an input database, which

they do not.

In addition, some researchers focus on helping users interpret queries. In [38, 62, 44],

Ioannidis et al. proposed a method to explain queries using natural language. They use a

graph-based model to represent a query, and then traverse the graph and compose query

descriptions in natural language. Besides NL query interfaces, Gatterbauer and Dana-

paramita [29, 21] presented a novel system QueryViz to visualize SQL query. They take

15

CHAPTER 2. LITERATURE REVIEW

an existing SQL query and creates a graph that helps user understand its meaning. An-

other approach is to use data examples to illustrate the semantics of queries [47, 56, 57].

They generate input data examples and push them into the query plan tree to get the output

data. For each operator, they show intermediate data and letusers understand the actual

utility of each operator. Since the main focus of our approach is to show the differences

of queries through database-result pairs, these works are quite different from ours.

2.2 Example-Driven Systems

The broad idea of an example-driven approach for problem solving has been applied in

many diverse contexts (e.g., [7, 6, 25, 58, 69]). In [25], an interactive, example-driven ap-

proach was developed to help users explore their databases,which is related to the general

framework for an automatic navigation of databases first introduced in [12]. The approach

in [25] helps users to formulate a plausible SQL query based on the user’s feedback on

samples of database tuples presented to the user. At each iteration, the system presents the

user with a sample of tuples for feedback on which of the showntuples are relevant to the

user’s intention. Based on the user’s feedback, the system generates a different sample of

database tuples for the next iteration of user feedback. When the user decides to terminate

this steering process after some number of iterations, a SQLquery representing the user’s

intended query is generated from a classification model constructed by the system. The

approach is designed to minimize the size of the samples shown and the total processing

time. Our work is different from [25] in three key aspects. First, our context is differ-

ent from theirs as our work is not focused on data exploration, and users using QFE are

required to provide an input/output example to indicate thequery intention. Second, our

approach is different from theirs as QFE operates by first generating a set of candidate

queries and then pruning away false positives via user feedback on several query results

shown in each iteration. In addition, QFE also generates a modified database in each it-

16

CHAPTER 2. LITERATURE REVIEW

eration to distinguish different subsets of candidate queries. In contrast, [25] generates a

plausible query (out of possibly many candidate queries) using classification techniques,

and their focus is not on distinguishing the candidate queries. Third, [25] supports only

select-project-join queries on a single relation whereas our approach is more general.

Example-driven techniques have also been applied for debugging scheme mappings [7, 6].

In [7, 6], users are shown examples to differentiate alternative mapping specifications and

find the desired mapping based on the user’s interests of these data examples. Although

we also show different query outputs to help the user to pick the correct query from the

candidate queries, the methods are different. Unlike schema mapping, we need to modify

the database to distinguish the false positive queries. Qian et al. also proposed a system

for sample-driven schema mapping [58]. The user gives example tuples in a result table

(or partial tuples), and the system attempts to find the best queries that will produce (at

least) those results. However, they look only at project-join mappings and do not handle

queries with selection.

For non-database related applications, S. Gulwani and his colleagues have developed

example-driven techniques to solve many diverse problems.For instance, they have ap-

plied example-driven techniques to reformat text documents [69]. They asked user to

provide input/output examples to show his intent, and reformat the source structured and

semi-structured text as required. Due to the different contexts, the techniques developed

there are not applicable to our work.

2.3 Query Generators

In this section, we review the related works of query reverseproblem, i.e., given a database

D and resultR, the query reverse engine generates a queryQ such thatQ’s result onD is

R, which is also the problemCandidate Generator modulefocuses on.

17

CHAPTER 2. LITERATURE REVIEW

Given a databaseD and query resultR, QBO [64, 65] generates a set of candidate queries

{Q}, whereQ(D) = R. The system can also rank queries, and display the topk queries

to the user to select. In [70], Zhang et al. also proposed a query reverse engine which can

derive a set of join queries without selection conditions. Both works can generate a set of

queries that have the same query result asR. However, their main focus is not help users

construct the intended query.

[59] introduced View Definition Problem(VDP), which is to derive a view definitionQ

when given an input databaseD and a materialized viewV . However, it focuses on a

basic scenario whereD consists of only one single relationR and the derivation ofQ is

essentially finding the selection predicate onR to generateV . Therefore, it cannot be

extended to our case.

In [61], Shen et al. also proposed an algorithm to discover projectjoin queries by given

example tuples. Unlike QBO and QFE, the output of these join queries are not exactly

the same as the given examples. The generated queries are minimal project join queries

whose output contain all the tuples in given examples. Psallidas et al. [2] proposed

a candidate-enumeration and evaluation framework for discovering project-join queries.

Their system handles only text columns and establishes a query relevance score based

evaluation of candidate queries. The system returns the PJ queries with the top-k highest

scores and it discovers not only the queries that exactly match the given example tuples.

As the main focus is finding join queries to cover examples, their approach is orthogonal

to our problem.

Another related area is intensional query answering or cooperative answering, where for

a given queryQ, the goal is to augment the query’s answerQ(D) with additional inten-

sional information in the form of a semantically equivalentquery that is generated through

the database integrity constraints [28, 52]. Two queries are semantically equivalent if for

every valid database, their query results are same. If theirresults are same only on the

18

CHAPTER 2. LITERATURE REVIEW

given databaseD, they are instance equivalent onD. It is obvious that semantic equiv-

alence is data-independent, which is much stronger than instance equivalence, and can

only be computed using database integrity constraints. In our approach, we adopt instance

equivalence instead of semantically equivalent query for the following reasons. First of

all, sometimes the data semantics are not explicitly captured using integrity constraints

in the database for various reasons [31]. The effectiveness of intensional query could be

very limited. Second, it can be very hard to derive semantically equivalent queries for

complex queries. Third, intensional query answering requires the input queryQ to be

known, which QFE does not need. Finally, our approach focuses more on helping user

construct query. Using instance equivalent queries can capture more queries with differ-

ent semantics, giving us a larger chance to include user’s intended query. If we generate

semantically equivalent query, then we do not have this opportunity to find other queries

with different semantics.

In another set of related work, Bruno et al. [10] and Mishra et al. [51] examined the

problem of Targeted Query Generation (TQGen) that aims to generate test queries to

meet certain cardinality constraints. TQGen takes as inputa queryQ, a databaseD, and

a set of target cardinality constraints on intermediate subexpressions inQ’s evaluation

plan. TQGen will modifyQ (by modifying the constant values inQ’s selection predi-

cates) to generate a new queryQ′ such that the evaluation plan ofQ′ onD satisfies the

cardinality constraints. Different from the TQGen problem, our work aims to generate

instance-equivalent queries that satisfy the content constraint of the query result. In addi-

tion, TQGen requires the input query Q to be known whereas we allow the input query to

be unknown.

19

CHAPTER 2. LITERATURE REVIEW

2.4 Database Generators

Our database generator generates a new database to distinguish the candidate queries by

different query results. There are many related works, and in this section, we classify

them into different classes and review them in details.

2.4.1 Reverse Query Processing

One related area is called reverse query processing [9, 8, 10, 46, 51]. Instead of generating

queries, reverse query processing is to generate a databaseD when given a queryQ and a

desired query resultR such thatQ(D) = R [9]. Reverse Query Processing (RQP) is based

on a reverse relational algebra (RRA). For each operator of the relational algebra, Binnig

et al. defined a corresponding operator of the reverse relational algebra that implements

its reverse function. All reverse algebra operators respect the integrity constraints of the

database schema in order to generate correct output. The whole data processing is started

by scanning the query result and pushing each tuple down to the leaves (i.e. the base

tables) of the query tree. RQP can generate synthetic data examples and be applied to

some applications for verification and query debugging. That is related to some of our

motivation, but at the same time, the main focus is still different.

QAGen [8] is another query-aware data generator system. It takes thequery and the set of

constraints (usually cardinality and data distribution) defined on the query as input, and

generates a query-aware test database as output. To processa query before the data is

generated, QAGen introduces the concept of symbolic query processing (SQP). QAGen

uses SQP to populate a symbolic database according to the constraints and schema, and

finally instantiates the symbolic tuples with a data instantiator. [46] extends it to study the

generation of workload-aware data.

20

CHAPTER 2. LITERATURE REVIEW

2.4.2 Query Equivalence Problem

Since our goal is to partition queries into different groupsand show user the differences

among the queries, one related research area is query equivalence or query containment

problem. It has been studied extensively, since it is a fundamental problem in database

research. So far, most of the existing research works focus on characterizing the query

equivalence problem. They study the complexity and sufficient conditions of the query

equivalence problem under different semantics (set, bag, bag-set) [18, 22, 16] and differ-

ent constraints (inequality, aggregation, nested, etc) [67, 40, 22, 19, 20]. The core idea of

these works to solve query containment problem is to check whether homomorphism be-

tween two queries exists. Given two queriesQ1 andQ2, if there exists a homomorphism

from queryQ1 to Q2, thenQ2 is contained inQ1. If Q1 is contained inQ2 at the same

time, then two queries are equivalent. This method can help user check query contain-

ment, but it is not helpful to comprehend the differences between queries. As these works

can not tell more information about the query semantics or correctness, they can not help

user identify the intended query.

Another approach to check query containment is using an instance-based method [45, 66,

68, 27]. Levy and Sagiv [45] first proposed a method to generate canonical databases

to test queries, which is described in [66] as well. The idea is to build an exponential

number of canonical databases, and apply given queries on these databases. If there is

no counterexample to the containment, then the query containment statement is true. In

[68], Wei et al. gave an apriori-like algorithm to optimize the algorithm. Sharing the same

principle, Farré et al. [27] presented the Constructive Query Containment (CQC) method

to check query containment, which aims to construct a counterexample that proves that

the query containment relationship being checked does not hold. Different from the query

equivalence problem, our goal is to help users pick the correct query from a set of queries.

Not just take more than two queries as input, we also avoid using synthetic data to make

the examination process easier.

21

CHAPTER 2. LITERATURE REVIEW

In [47], Mannila and Räihä first introduced a method to distinguish one queryQ from a set

of queriesQ. Related to the well-known concept ofArmstrong database[26], they define

the notion of complete test databases for a given queryQ. The complete test database for

Q is to show the non-equivalence ofQ andQi, for everyQi ∈ Q. They further proposed

a method to construct such complete test databases forQ, if it exists. However, there are

several limitations about their method. First, queries with disjunctions are not supported.

Besides, each queryQi is formed fromQ by removing some conditions.

In [60], Shah et al. addressed the problem of test data generation for checking correctness

of SQL queries, based on the query mutation approach for modeling errors. Given a query,

they generated test data to kill the query mutations. The mutant queries are pre-defined

using certain query templates, such as join/outerjoin mutation (e.g., change equijoin to

outer join), comparison operator mutants (e.g., change< to≤), and aggregation mutation,

etc. A mutant query is said to be killed by a test case when the execution of the mutant

query on a test case produces a different result than the execution of the original query.

For example, if a query uses innerjoin (⊲⊳) instead of left outerjoin (⊲⊳) by mistake, then

some result might be missing in the final result. The goal of [60] is to generate a complete

data set that covers all kinds of mutations. Shah et al. proved that the decision version

of the test data generation problem is NP-Hard in the size of the query, and sketched an

approach to generate test data based on some assumptions, e.g., no nested queries.

The common idea of the above works is to generate database to test query equivalence,

which is not an ideal method for our problem. Considering therequirement that users

should be able to understand the new database easily, we hopeto modify the existing

database to distinguish queries, and limit the modificationas few as possible.

22

CHAPTER 2. LITERATURE REVIEW

2.4.3 Explaining Missing Answers

Recently there have been some works using the instance-based approach to explain miss-

ing answers (or why not answers [13]) [34, 37, 33]. Given an input databaseD, query

Q and a set of missing answersT , Huang et al. [37] explained the missing answersT

by modifying some tuples in the databaseD such that the result of the queryQ on the

modified database will include both the original result and the specified missing tuples

T . They computed the provenance ofT , which consists of the tuplesT can potentially

be derived from. This explanation model is very flexible if arbitrary modifications to the

database are allowed to derive the missing tuples. Similarly, for missing answersT , Her-

schel et al. [34, 33] altered current databaseD to D′ and got the new resultQ(D′) that

Q(D′) = Q(D) ∪ T , and each set of tuples, from whereT can be derived, is called an

explanation. They used the notion of homomorphism to minimize the number of expla-

nations and showed that determining the minimal explanations for unions of conjunctive

queries isNP-complete. Our approach shares the same core principle of modifying

database, but the problem objectives and techniques are different. Instead of the spe-

cific resultQ(D′) containing missing answerst, our purpose is to generate a databaseD′,

which will derive different results for a set of input queries. This characteristic makes

it non-trivial to extend existing algorithms for our problem. Besides, we also need to

make sure that the collection of these modification is as small as possible, which is also

non-trivial.

2.5 Query Refinement Problem

There is also some related work on query refinement to modify an input query so that

its query result can satisfy some cardinality constraints [43]. The works in [43, 54] relax

the queries that return empty result so that the modified queries will yield some answers.

23

CHAPTER 2. LITERATURE REVIEW

As the goal there is to refine the query to return any non-emptyresult, the techniques

there cannot be applied to our problem, which has stronger constraints to satisfy. Another

related direction in [50, 17] deals with the problem when a query returns too many/few

answers by refining the query to satisfy some constraints on the query result size. Similar

to the work in [43], the focus there is on the size of the output but not on the content of

the output, which we have to deal with in this context.

24

CHAPTER 3

QUERY-BASED APPROACH

In this chapter, we present our Query-based approach of QFE (Q-QFE). We first present

the overview of Q-QFE approach in Section3.1, and discuss the details in Sections3.2

to 3.4. Section3.5 presents additional extensions for our approach. An experimental

evaluation of Q-QFE is presented in Section3.6. Finally, we conclude in Section3.7. The

notations used in this chapter is shown in Table3.1.

3.1 Approach Overview

To help non-expert database users construct queries, we propose a novel approach Q-QFE

which takes a database-result pair(D,R) as input, and output the target query for users.

Figure3.1 illustrates the overall architecture of our approach. Notethat theCandidate

25

CHAPTER 3. QUERY-BASED APPROACH

Notation Description
Q Query
D Database
D′ Modified database
R Query result

Q(D) QueryQ’s result on databaseD
A Attribute
QC Set of candidate queries

balance(D) Balance score of databaseD
minEdit(D,D′) Minimal edit distance from datasetD to D′

J(D)/J Result of joining all the join relations in query
TC Tuple class
STC Source-tuple-class
DTC Destination-tuple-class

Table 3.1: Notation table of Chapter3

User

Database-Result
Pair (D,R)

Query
Generator

Candidate SQL
Queries QC

Database
Generator

Modified Database D’
&

Query ResultsR1, · · · , Rk

Result
Feedback

Selected
ResultRi

2 3 4 5 6 7

4

8

1 6

Figure 3.1: Overall Architecture of QFE

Generator modulein Figure1.1 is specialized asQuery Generator. Q-QFE first obtains

an initial database-result pair(D,R) from the user whereR is the result of the user’s target

query on the databaseD. TheQuery Generatormodule takes(D,R) as input to generate

a set of candidate SQL queriesQC = {Q1, · · · , Qn} for (D,R); i.e.,Qi(D) = R for

eachQi ∈ QC.

To efficiently identify the user’s target query fromQC, which is generally a very large

collection, Q-QFE winnows this collection iteratively using a divide-and-conquer strategy.

At each iteration, theDatabase Generatormodule takes as inputs(D,R) andQC ′ ⊆ QC,

which is the set of remaining candidate queries at the start of the iteration, to gener-

ate a new databaseD′. The purpose ofD′ is to distinguish the queries inQC ′ based

26

CHAPTER 3. QUERY-BASED APPROACH

on their query results onD′. Specifically,D′ partitionsQC ′ into a number of subsets,

QC ′
1, · · · , QC ′

k, k ≥ 1, where two queries belong to the same subsetQC ′
j if and only if

they produce the same result (denoted byRj) onD′.

Next, theResult Feedbackmodule presents the user with the new databaseD′ and the

collection of query resultsR1, · · · , Rk. If the user identifiesRx as the correct query

result onD′, it means that the user’s target query is guaranteed to be notin QC ′
j , j 6= x;

therefore, these query subsets can be pruned from further consideration. Q-QFE will start

another iteration using the subset of candidate queriesQC ′
x corresponding toRx if QC ′

x

contains more than one query; otherwise, Q-QFE terminates with the only query inQC ′
x

as the user’s target query.

To help reduce the user’s effort to identifyRx relative toD′, instead of presenting the

user with a new databaseD′ and query resultsR1, · · · , Rk, theResult Feedback module

actually presentsD′ andRi in terms of their differences from the original database-result

pair (D,R), which is denoted by∆(D,Ri) in Figure3.1.

Algorithm 3.1: Q-QFE
Input : A database-result pair(D,R)
Output : Target query

1 QC = Query-Generator(D,R)
2 repeat
3 D′ = Database-Generator(D,QC)
4 QC = QC1 ∪ · · · ∪QCk // PartitionQC usingD′

5 for i = 1 to k do
6 let Ri be the output of query inQCi onD′

7 x = Result-Feedback(D′, R1, · · · , Rk)
8 QC = QCx

9 until |QC| = 1
10 return Q whereQC = {Q}

The overall procedure for Q-QFE is shown in Algorithm3.1. In the event that none of

the query results presented at an iteration is the intended output of the user’s target query

(not shown in Algorithm3.1), it means that the target query is not in the initial set of

candidate queriesQC. In this case, Q-QFE will initiate another round of candidate-query

27

CHAPTER 3. QUERY-BASED APPROACH

generation by taking into account the information gatheredto output additional candidate

queries for iterative pruning.

There are two main challenges for the Q-QFE approach. The first challenge is how to

generate candidate target queries given an initial database-result pair; and the second

challenge is how to optimize the user feedback interactionsto minimize the user’s ef-

fort to identify the desired query. In this chapter, our focus is on the second challenge as

existing techniques [64, 70] are available to address the first challenge.

For the Q-QFE approach to be effective, it is important to minimize the user’s total effort

to obtain his or her target query. A reasonable measure of a user’s effort at each iteration

is the amount of work required to identify the correct query result from the collection

of query resultsR1, · · · , Rk relative to the new databaseD′. Since the user is already

familiar with the initial database-result pair(D,R), the user’s effort at each iteration can

be reduced by minimizing the following three aspects: (1) the number of query results

shown (i.e.,k), (2) the differences between the initial databaseD and the new database

D′, and (3) the differences between the initial query resultR and each new query result

Ri.

As some of these optimization objectives conflict (e.g., minimizing k could increase the

number of iterations), optimizing the choice ofD′ to reduce the user’s effort at each

iteration is a non-trivial problem. In the following sections, we first present a cost model

to quantify the user’s effort to determine the target query relative to a modified database

D′, and then present the details of the key components of Q-QFE.

3.2 Cost Model

In this section, we present a cost model to quantify the user’s effort in identifying the

target query from an initial set of candidate queriesQC. This cost model is used by

28

CHAPTER 3. QUERY-BASED APPROACH

theDatabase Generator moduleto select a “good” modified databaseD′ to partitionQC

into multiple query subsets{QC1, · · · , QCk}, whose query results{R1, · · · , Rk} are then

shown to the user for feedback.

To minimize the number of required iterations, the size of the query subsets (i.e.,|QCi|)

induced by the new databaseD′ at each iteration should ideally be balanced. Given a

collection of partitioned query subsetsC = {QC1, · · · , QCk} induced byD′, we define

the balance scoreof D′, denoted bybalance(D′), to be σ
|C|

, whereσ is the standard

deviation of the set{|QC1|, · · · , |QCk|}. Thus, a smallerbalance(D′) value indicates a

more desirableD′ that induces a partitioning with many subsets of about the same size.

Furthermore, a good balance limits the worst-case number ofiterations.

The user’s effort is also reduced if both the differences between the initial and modified

databases as well as the differences between the initial query resultR and each new query

resultRi are small, since new information is minimized. We quantify the difference be-

tween two instances of a relation,T andT ′, by the minimum edit cost to transformT to

T ′, denoted byminEdit(T, T ′). We consider the following three types of edit operations:

(E1) modifying an attribute value of a tuple inT ,

(E2) inserting a new tuple intoT , and

(E3) deleting a tuple fromT .

The edit cost of (E1) is one, and both (E2) and (E3) have edit cost equal to the arity of the

relation. For convenience, we useminEdit(D,D′) to denote the sum ofminEdit(T, T ′)

for each relationT in databaseD that has been modified toT ′ in the modified database

D′.

The user’s effort relative to the modified databaseD′, denoted bycost(D′), is modeled as

29

CHAPTER 3. QUERY-BASED APPROACH

a sum of two components:

cost(D′) = currentCost + residualCost (3.1)

wherecurrentCost andresidualCost, respectively, denote the user’s effort for the cur-

rent iteration and the remaining iterations. The effort forthe current iteration is modeled

as

currentCost = dbCost+ resultCost (3.2)

wheredbCost denotes the user’s effort to identify the differences between the initial

databaseD and modified databaseD′, andresultCost denotes the user’s effort to iden-

tify the differences between the initial query resultR and each new query resultRi. For

dbCost, it is reasonable to expect that more effort is required fromthe user if the modified

tuples come from a larger number of relations. Thus, we model

dbCost = minEdit(D,D′) + β × n (3.3)

wheren denotes the number of modified relations inD′ andβ is a scale parameter to

normalize the number of relations in terms of some number of attribute modifications.

For the query result differences, we have

resultCost =
k

∑

i=1

minEdit(R,Ri) (3.4)

ModelingresidualCost is somewhat trickier as it depends on the user’s feedback at each

iteration. A conservative estimation of this is to assume that the user’s feedback in the

current iteration picks the largest query subset and for each subsequent iteration, the par-

titioning creates only two query subsets based on a single modified database tuple. We

estimate the minimum edit cost for this single tuple modification from the average of

30

CHAPTER 3. QUERY-BASED APPROACH

the current iteration’s database edit costs. Hence, for each subsequent iteration,dbCost

is modeled asminEdit(D,D′)/µ + β, whereµ denotes the total number of modified

database tuples in the current iteration. Since there are only two query subsets in each

subsequent iteration, we modelresultCost as twice of the current iteration’s average

query result edit cost; i.e.,2
k

∑k

i=1minEdit(R,Ri).

Putting everything together, we have

cost(D′) = minEdit(D,D′) + β · n+
k

∑

i=1

minEdit(R,Ri)+

N × (minEdit(D,D′)/µ + β +
2

k

k
∑

i=1

minEdit(R,Ri)) (3.5)

whereN is the number of remaining iterations.

To minimize the user’s effort, the modified databaseD′ used in each iteration should have

a small value forcost(D′). Note that there is a tradeoff involved in making more database

modifications: although this tends to increase the cost of the current iteration, it is likely to

also increase the number of query subsets in the partition (i.e., reduce the balance score of

modified database) which tends to reduce the number of required iterations and the costs

of the remaining iterations.

3.2.1 Estimation of Number of Iterations

The remaining issue for the cost model concerns the estimation of the number of iterations

N . One simple estimation ofN is given by

N = log2(max{|QC1|, · · · , |QCk|}) (3.6)

31

CHAPTER 3. QUERY-BASED APPROACH

which is based on two assumptions about subsequent iterations: (A1) the only available

query partitionings are binary ones that partition candidate queries into two subsets, and

(A2) the best partitioning that creates two balanced subsets is always available.

In the following, we discuss how to improve the accuracy of this simple estimation by ex-

ploiting additional information that would be available aspart of our approach (Algorithm

3 to be presented in Section 5.2). Specifically, the improvement comes from completely

or partially eliminating assumption (A2).

With assumption (A1), suppose that the most balanced partitioningP in the current itera-

tion creates two query subsets,Sx andSy, containingx andy queries, respectively, where

x ≤ y. As before, we always assume that the largest query subset (i.e.,Sy) is chosen

for the next iteration. Thus, the number of “false positive”queries eliminated by the cur-

rent iteration isx. SinceP is the most balanced partitioning in the current iteration,it

follows that for any other binary partitioning in the current iteration, the number of false

positive queries eliminated by it is at mostx. With this additional knowledge aboutx, the

following property holds for each subsequent iteration.

Lemma 3.1. Based on assumption (A1), the number of false positive queries eliminated

in each subsequent iteration is at mostx, wherex is the number of false positive queries

eliminated by the most balanced binary partitioning in the current iteration.

Proof. We establish the proof by contradiction. Suppose that the claim is false; i.e., in

some subsequent iteration withS ′ ⊆ Sy candidate queries, there exists a binary partition-

ingP ′ that partitionsS ′ into two subsets ofu andv queries, whereu ≤ v andu > x. This

implies that had we chosenP ′ to partition the queries in the current iteration, each of the

two subsets partitioned byP ′ would have more thanx queries, contradicting the fact that

P is the most balanced partitioning in the current iteration.

Based on Lemma3.1, we refine the estimation ofN as the sum of two components as

32

CHAPTER 3. QUERY-BASED APPROACH

follows:

N = N1 +N2 (3.7)

N1 = ⌊(max{|QC1|, · · · , |QCk|})/x⌋ − 1 (3.8)

N2 = ⌈log2(max{|QC1|, · · · , |QCk|})− xN1)⌉ (3.9)

Here,x denotes the number of queries in the smaller query subset created by the most

balanced binary partitioning in the current iteration. In contrast to Equation (3.6), which

optimistically assumes that half the number of queries are eliminated as false positives in

each iteration,N1 denotes the number of iterations wherex false positive queries (i.e., the

upper bound established by Lemma3.1) are eliminated in each iteration. At the end of

N1 iterations, the number of remaining candidate queries is atmost2x − 1, and we fall

back to applying Equation (3.6) to estimate the number of remaining iterations, which is

given byN2. In the event that no binary partitioning exists in the current iteration (i.e.,x

is undefined), we fall back to using Equation (3.6) for the estimation ofN .

3.3 Query Generator

The objective of theQuery Generator moduleis to generate a set of candidate SQL queries

QC for the user’s target query given an initial database-result pair (D,R).

A number of approaches have recently been proposed to reverse-engineer queries given an

input database-result pair [64, 70]. In this paper, we adopted the QBO approach of Tran et

al. [64] for our Query Generator module as it can support more general candidate queries,

specifically, select-project-join (SPJ) queries, compared to the project-join queries (i.e.,

without any selection predicates) considered by Zhang et al. [70].

QBO provides several configuration parameters to control the search space for equiva-

lent candidate queries, such as the maximum number of selection-predicate attributes,

33

CHAPTER 3. QUERY-BASED APPROACH

the maximum number of joined relations, the maximum number of selection predicates in

each conjunct, etc. In our experiments, we configured QBO to generate as many candidate

queries as possible1.

Each generated query is of the formπℓ(σp(J)), whereℓ andp are the query’s projection

list and selection predicate, respectively.J is the foreign-key join2 of a subset of the

relations in the databaseD. For convenience, each selection predicate is assumed to bein

disjunctive normal form; i.e.,p = p1 ∨ · · · ∨ pm, where eachpi is a conjunction of one or

more terms and a term is a comparison between an attribute anda constant.

3.4 Database Generator

The Database Generator moduletakes as input the initial database-result pair(D,R)

and a set of candidate SPJ queriesQC, and generates a new databaseD′ to be used

to distinguish the queries inQC. Recall thatD′ is used to partitionQC into subsets,

QC = QC1 ∪ · · · ∪ QCk, such that all the queries in eachQCi generate the same output

resultRi onD′, andR1, · · · , Rk are all distinct. The goal is to determineD′ such that it

minimizes the user’s effort to identify the target query.

Assumptions.To simplify the discussion in this section, we make two assumptions about

the queriesQC and one assumption onD′. First, we assume that all the queries inQC

share the same join schema withJ(D) being the foreign-key join of all the relations in

the databaseD, simplified asJ . Thus, sinceR determines the projection listℓ, all the

queries inQC are essentially different selection queries on the single relationJ . Second,

we assume that all the queries inQC preserve duplicates (i.e., the DISTINCT keyword

does not appear in any query’s SELECT clause). Third, we assume that any modified

1In practice, it might be better to set these parameters conservatively, then relax them if more candidate
queries are needed.

2If foreign-key constraints are not explicitly provided by the user’s inputs, we can infer soft foreign-key
constraints by applying known techniques (e.g., [48]).

34

CHAPTER 3. QUERY-BASED APPROACH

databaseD′ is valid (i.e.,D′ does not violate any integrity constraints). We discuss how

to relax these assumptions in Section3.5.

3.4.1 Tuple Classes

To facilitate reasoning about the effects of database modifications on the partitioning of

queries, we introduce the concept of a tuple class.

Consider a database relationJ(A1, · · · , An) and a set of queriesQC. For each attributeAi

in J , based on the selection predicate constants involvingAi contained in the queries in

QC, we can partition the domain ofAi into a minimum collection of disjoint subsets,

denoted byPQC(Ai), such that for each subsetI ∈ PQC(Ai) and for each selection

predicatep on Ai in QC, either every value inI satisfiesp or no value inI satisfies

p.

Example 3.1. Consider a relationJ(A,B,C) where bothA andB have numeric do-

mains; and a set of queriesQC = {Q1, Q2}, whereQ1 = σ(A≤50)∧(B>60)(J) and

Q2 = σ(A∈(40,80])∧(B≤20)(J). We havePQC(A) = {[−∞, 40], (40, 50], (50, 80], (80,∞]}

PQC(B) = {[−∞, 20], (20, 60], (60,∞]}, andPQC(C) = {[−∞,∞]}. �

The next example illustrates domain partitioning for non-ordered attribute domains.

Example 3.2. Consider a relationJ(A,B,C) whereA is a categorical attribute with

an unordered domain given by{a, b, c, d, e, f, g}. Suppose that we have a set of queries

QC = {Q1, Q2}, whereQ1 = σA∈{b,c,e}(J) andQ2 = σA∈{a,b,d,e} (J). Based on the

subset of domain values that match the various subsets of selection predicates inQC, the

domain ofA is partitioned into 4 subsets, depending on whether the values satisfy neither,

both, or exactly one ofQ1 andQ2: PQC(A) = {{a, d}, {b, e}, {c}, {f, g}}. �

35

CHAPTER 3. QUERY-BASED APPROACH

Given a relationJ(A1, · · · , An) and a set of queriesQC, a tuple classfor J relative to

QC is defined as a tuple of subsets(I1, · · · , In) where eachIj ∈ PQC(Aj). We say that a

tuplet ∈ J belongs to a tuple classTC = (I1, · · · , In), denoted byt ∈ TC, if t.Aj ∈ Ij

for eachj ∈ [1, n].

Example 3.3.Continuing with Example3.1, TC = ((40, 50], [−∞, 20], [−∞,∞]) is an

example of a tuple class forJ , and(48, 3, 25) ∈ TC. �

By the definition of tuple class, we have the property that forevery queryQ ∈ QC and

for every tuple classTC for a relationJ relative toQC, either every tuple inTC satisfies

Q or no tuple inTC satisfiesQ. In the former case, we say thatTC matchesQ.

This property of a tuple class provides a useful abstractionto reason about the effects

of a database modification. Specifically, we can model a single-tuple modification in a

relationJ by a pair of tuple classes(s, d) of J to represent that some tuplet ∈ J , where

t belongs to the tuple classs (referred to as thesource-tuple class(STC)), is modified to

another tuplet′, wheret′ belongs to the tuple classd (referred to as thedestination-tuple

class(DTC)).

Clearly, if we generate a modified databaseD′ by modifying a single tuplet in D to t′

such that botht andt′ belong to the same tuple class, then all the queries inQC would

still produce the same query result onD′. Thus, forQC to be effectively partitioned by

D′, the(STC,DTC) pair(s, d) corresponding to a modified tuple inD′ must haves 6= d.

The following result states the maximum number of query subsets that can be partitioned

by a modified database.

Lemma 3.2. Consider a set of queriesQC that have the same query result on a database

D, and a new databaseD′ that is obtained fromD by modifyingn distinct tuples inD.

D′ can partitionQC into at most4n query subsets,QC = QC1 ∪ QC2 ∪ · · · ∪ QCm,

m ∈ [1, 4n], such that (1) all the queries in eachQCi produce the same query result on

D′, and (2) for each pair of queriesQi ∈ QCi, Qj ∈ QCj, i 6= j, Qi(D
′) 6= Qj(D

′).

36

CHAPTER 3. QUERY-BASED APPROACH

Proof. Consider the case wheren = 1. LetD′ be a modified database obtained fromD by

modifying a single tuplet in D to t′ such that the projected attribute values oft andt′ are,

respectively,x andx′, wherex 6= x′. For each queryQ ∈ QC, there are four possibilities

for Q(D′): (1) Q(D′) = Q(D) if neithert nor t′ matchesQ; (2) Q(D′) = Q(D) ∪ {x′},

if t does not matchQ but t′ matchesQ; (3) Q(D′) = Q(D)− {x}, if t matchesQ but t′

does not matchQ; and (4)Q(D′) = Q(D) ∪ {x′} − {x}, if both t andt′ matchQ. Thus,

since there are only 4 potential results,QC can be partitioned into at most 4 query subsets

when a single tuple is modified. It follows that the maximum number of query subsets is

4n for n tuples modifications.

Given a databaseD and set of(STC,DTC) pairsS representing modifications toD,

we can generate a modified databaseD′ from D andS as follows: for each(s, d) ∈ S,

choose a tuplet in D that belongs tos and modifyt to t′ such thatt′ belongs tod.

Given this, it is convenient to extend the definitions ofbalance(D′), minEdit(D,D′)

and cost(D′) to sets of(STC,DTC) pairs. Specifically, ifD′ is a modified database

that is generated fromD andS as described, then we definebalance(S) = balance(D′),

minEdit(S) = minEdit(D,D′), andcost(S) = cost(D′).

3.4.2 Overview of Approach

Generating a modified databaseD′ with a small value ofcost(D′) is a complex prob-

lem due to the large search space of possible database modifications. In this section, we

present an effective heuristic approach to computeD′ by searching in the smaller domain

of tuple-class pairs. Our approach first finds a setSopt of (STC,DTC) pairs that mini-

mizesbalance(Sopt) andminEdit(Sopt), and then maps each tuple-class pair inSopt to a

concrete tuple modification to formD′.

For efficiency, our search forSopt is organized iteratively in increasing cardinality of the

candidate tuple-pair sets: we first consider a search space consisting of single-pair sets,

37

CHAPTER 3. QUERY-BASED APPROACH

Algorithm 3.2: Database-Generator
Input : A databaseD, a set of candidate queriesQC
Output : A modified databaseD′

1 SP = Skyline-STC-DTC-Pairs(D,QC)
2 Sopt = Pick-STC-DTC-Subset(SP ,QC)
3 LetD′ be a modified database generated fromD andSopt

4 return D′

and then extend this to consider a search space of two-pair sets, and so on. The search

space extension fromi-pair sets to(i+1)-pair sets is done in such a way that only “good”

candidates are considered, to limit the search space.

The search space for single-pair sets is generated by considering the skyline(STC,DTC)

pairs defined with respect to their balance scores and minimum edit costs. Given two

(STC,DTC)pairs,(s, d) and(s′, d′), we say that(s, d) dominates(s′, d′) if (1) balance({(s, d)})

≤ balance({(s′, d′)}), (2) minEdit(s, d) ≤ minEdit(s′, d′), and (3) at least one of the

two inequalities in (1) and (2) is strict. A setS of skyline (STC,DTC) pairs has the

property that for every two distinct pairs(s, d), (s′, d′) ∈ S, neither(s, d) nor (s′, d′)

dominates the other.

The overall design of the database generator module is shownin Algorithm 3.2, which

takes the initial databaseD and a set of candidate queriesQC as inputs and outputs a mod-

ified databaseD′ with a small value ofcost(D′). The algorithm first generates a setSP of

skyline (STC,DTC) pairs fromD andQC using the functionSkyline-STC-DTC-

Pairs. The second step selects a “good” subset of(STC, DTC) pairsSopt ⊆ SP using

the functionPick-STC-DTC- Subset. Finally, the modified databaseD′ is generated

fromD andSopt.

3.4.3 Algorithm Skyline-STC-DTC-Pairs

The functionSkyline-STC-DTC-Pairs, shown in Algorithm3.3, takes the initial

databaseD and a set of candidate queriesQC as inputs to generate a set of skyline

38

CHAPTER 3. QUERY-BASED APPROACH

Algorithm 3.3: Skyline-STC-DTC-Pairs
Input : The initial databaseD, a set of candidate queriesQC
Output : A set of skyline tuple-class pairs

1 STC = set of source-tuple classes derived fromD & QC
2 initialize set of skyline tuple-class pairsSP = ∅
3 initialize minbalance = ∞
4 let n be the number of distinct selection-predicate attributes in QC
5 for i = 1 to ndo
6 initialize SPi = ∅
7 foreach s ∈ STC do
8 let DTC = set of destination-tuple classes that can be derived froms by modifying

i subsets
9 foreach d ∈ DTC do

10 p = (s, d)
11 if balance({p}) < minbalance then
12 SPi = {p}
13 minbalance = balance({p})

14 else ifbalance({p}) == minbalance then
15 SPi = SPi ∪ {p}

16 SP = SP ∪ SPi

17 if therunningtime is largerthanthresholdδ then
18 break
19 return SP

(STC,DTC) pairsSP .

The function first generates the set of all the source-tuple classesSTC from D andQC.

Recall that all the queries inQC are assumed to be selection queries on a single relation

J formed by joining all the relations inD based on their foreign-key relationships. The

source-tuple classes are derived by first usingQC to computePQC(Ai) for each attribute

Ai in the selection predicates inQC, and then mapping each tuple inJ to its source-tuple

class.

The skyline(STC,DTC) pairs are generated iteratively in order of non-descendingmin-

imum edit cost starting from one ton, wheren is the number of distinct attributes that

appear in the selection predicates inQC. Thus, theith iteration generatesSPi, the set

of skyline (STC,DTC) pairs with a minimum edit cost ofi. By enumerating the sky-

line pairs in this manner, any dominated tuple class pairs can be detected efficiently and

pruned.

39

CHAPTER 3. QUERY-BASED APPROACH

The time complexity of this function isO(mkn), wherem is the total number of source-

tuple classes andk is the maximum number of domain subsets over all selection-predicate

attributes; i.e.,k = maxAi
{|PQC(Ai)|}. Note that in theith iteration, the number of

destination-tuple classes that can be generated from one source-tuple class isCn
i (k − 1)i.

Therefore, the total number of(STC,DTC) pairs considered is at most
∑n

i=1C
n
i (k−1)i,

i.e.,O(kn).

Given the high time complexity of this function, in our experimental evaluation, we used

a threshold parameterδ to control the maximum running time allocated for this function.

Once the threshold is reached, the function terminates and returns all the skyline pairs that

it has enumerated so far.

3.4.4 Algorithm Pick-STC-DTC-Subset

The functionPick-STC-DTC-Subset, shown in Algorithm3.4, takes as inputs the set

of skyline(STC,DTC) pairsSP and the set of candidate queriesQC to select a “good”

subset ofSP for derivingD′. Steps 1 to 8 consider the search space of single-pair sets

and identify the optimal sets with minimum cost, which are maintained inL. Steps 9 to 21

consider the search space ofi-pair sets iteratively,i ∈ [2, |SP |], which is extended from

the search space of(i− 1)-pair sets, denoted byOPi−1. To maintain a small search space

of good candidates for the next iteration, only thosei-pair sets that have a lower balance

score relative to their constituent(i − 1)-pair sets are used for the next iteration. Finally,

in the event thatL contains more than one optimal set, step 22 picks the optimalset with

the lowest balance score. The time complexity of Algorithm3.4 is O(2|SP |). Although

the worst-case complexity is high, our experimental results show that in practice, the size

of the search space considered is small due to our balance-score-based pruning heuristic.

40

CHAPTER 3. QUERY-BASED APPROACH

Algorithm 3.4: Pick-STC-DTC-Subset
Input : A set of skyline(STC,DTC) pairsSP , a set of candidate queriesQC
Output : A subset of(STC,DTC) pairsSopt ⊆ SP

1 initialize L = ∅
2 initialize mincost = ∞
3 foreach p ∈ SP do
4 if cost({p}) < mincost then
5 L = {{p}}
6 mincost = cost({p})

7 else ifcost({p}) == mincost then
8 L = L ∪ {{p}}

9 initialize OP1 = SP
10 for i = 2 to |SP | do
11 initialize OPi = ∅
12 foreach op ∈ OPi−1 do
13 foreach p ∈ SP, p 6∈ op do
14 op′ = op ∪ {p}
15 if balance(op′) < balance(op) then
16 OPi = OPi ∪ {op′}
17 if cost(op′) < mincost then
18 L = {op′}
19 mincost = cost(op′)

20 else ifcost(op′) == mincost then
21 L = L ∪ {op′}

22 let Sopt ∈ L such thatbalance(Sopt) ≤ balance(S) ∀ S ∈ L
23 return Sopt

Side Effects of Tuple-Class Modifications

Recall that given a set of(STC,DTC) pairsS, cost(S) is derived by first mapping each

tuple-class pair(s, d) ∈ S to a pair of tuples(t, t′); wheret ∈ D belongs tos, andt′ is

modified fromt such thatt′ belongs tod. The set of derived modified tuples formD′, and

cost(S), which is defined to becost(D′), is computed using Equation (3.5).

In general, a single database tuple modification fromt to t′ could result in more than one

result tuple inQ(D) being modified, since the modified base tuple could join with multiple

tuples and therefore contribute to multiple result tuples as illustrated by the following

example.

Example 3.4. Consider the following joined relationJ = T1(A,B,C) ⊲⊳A T2(A,D),

41

CHAPTER 3. QUERY-BASED APPROACH

whereT2.A is a foreign key that referencesT1.

A B C D

1 10 50 20

1 10 50 40

2 80 45 25

3 92 80 20

J = T1(A,B,C)⊲⊳AT2(A,D)

Assume that there is a(STC,DTC) pair (s, d) that corresponds to modifying the value

of attributeB in the base tuple(1, 10, 50) in T1 to some other value. This single-tuple

modification inT1 actually affects the first two tuples inJ . �

Thus, the database modification corresponding to a single tuple-class pair can potentially

affect more than one query result tuple. Since the affected tuples might not belong to

the same destination-tuple class, we need to take into account such unintended effects to

accurately computecost(S).

Our implementation of Q-QFE constructs a join index for eachforeign-key relationship

in the database to efficiently keep track of the set of relatedtuples (with respect to the

foreign-key relationship) for each base tuple. Using the join index, the unintended side

effects of a modification corresponding to tuple-class paircan be easily identified to ac-

curately compute the cost. The algorithm is shown in Algorithm3.5, which takes as input

a tuple-class pair(s, d) and initial databaseD, and outputs the cost of(s, d) and the tuple

assigned for(s, d) to be modified. To minimizeresultCost, tuple-class modifications

that have no side-effects are preferred.

As shown in Algorithm3.5, given a(STC,DTC) pair, we first mapSTC to all the

corresponding tuples, which are managed in hash buckets previously when we compute

42

CHAPTER 3. QUERY-BASED APPROACH

Algorithm 3.5: Computing Cost
Input : Tuple-class pair(s, d), databaseD
Output : costc, and chosen tupletmin of (s, d)

1 Ts = set of tuples belonging toSTC s;
2 minn = ∞, tmin = ∅, jmin = ∅;
3 foreach t ∈ Ts do
4 sum = 0, Js = ∅;
5 let Tb be the modified tuples from base relations;
6 foreach tb ∈ Tb do
7 let J be the set of tuples in joined relation composed oftb;
8 J = J − {t};
9 n = |J |;

10 if n > 0 then
11 sum+ = n;
12 Js = Js ∪ J

13 if sum == 0 then
14 computec = cost(s, d) with cost model;
15 tmin = t,minn = 0;
16 break;
17 else
18 if sum < minn then
19 minn = sum;
20 tmin = t;
21 jmin = Js;
22 if minn > 0 then
23 foreach j ∈ jmin do
24 update thebalance(s, d) andminEdit(s, d) with side effect of joined tuple

j;
25 compute costc based on updatedbalance(s, d) andminEdit(s, d) with cost

model;
26 return c, tmin;

all theSTCs(in step 1 of Algorithm3.3). Then we examine whether side effect exists

for a given(STC,DTC) pairs in steps 3 to 21. As mentioned in Section23, we build

a join index to help us detect side effect. The join index is composed of two parts: (1)

for each tuplet in joined relation, the base-relation tuples which are derived fromt are

stored in an array; (2) for each base-relation tupletb, we store the tuples in join relation

which are joined bytb in an array too. With join index, we first find the modified base

tuples with constant time complexity(steps 5); and for eachmodified base tuple, we detect

the influenced tuples in join relation(step 7). If there are more joined tuples rather than

43

CHAPTER 3. QUERY-BASED APPROACH

the given tuplet, we can determine that side effect exists(steps 8 to 12). Otherwise,

we terminate the enumeration and chooset as the tuple to be modified later without side

effect(steps 13 to 21). If we cannot find a modified tuple without side effect, we choose the

tuple with minimal effected joined tuples to update thebalance(s, d) andminEdit(s, d),

and compute the cost based on our cost model(steps 22 to 25). The complexity isO(m∗n),

wherem is the number of tuples belonging to the givenSTC andn is the number of

modified base tuples.

Note that this algorithm is only executed once for the single-pair sets in Algorithm3.4.

Afterwards, a particular tuple has been allocated to each(STC,DTC) pair for modifica-

tion. When we extend the search space toi-pairs sets, the cost can be computed directly

based on the cost model, without considering side effect again.

3.5 Discussion

We first discuss in Sections3.5.1to3.5.3how our approach can be generalized by relaxing

the three assumptions stated in Section3.4. We conclude with a discussion of how our

approach can be extended to support more expressive queriesin Section3.5.4.

3.5.1 Queries with Set-based Semantics

So far, our discussion is based on the assumption of bag-semantics for the queriesQC,

where duplicate values are preserved in the query results. We now explain how our ap-

proach can handle queries with set-semantics, where there are no duplicate values in the

query results.

Consider an example where the schema ofQ(D) consists of a single attributeA and we

are trying to distinguish the set of queriesQC = {Q1, Q2} with an appropriateD′. There

44

CHAPTER 3. QUERY-BASED APPROACH

are two basic ways to achieve this goal. The first approach is to modifyD such that some

value, saya1 ∈ Q(D), is removed fromQ1(D
′) but remains inQ2(D

′). The second

approach is to modifyD such that some value of attributeA, saya2 6∈ Q(D), is inserted

intoQ1(D
′) but is not present inQ2(D

′).

For the first approach, we need to modify the set of tuplesS ⊆ D that matchQ1 with

πA(S) = {a1} such that the modified tuples do not matchQ1. For the second approach, it

is sufficient to modify a single tuple inD such that the modified tuplet hast.A = a2 and

t matchesQ1 but notQ2. The first approach is more complex to handle since the set of

tuplesS to be modified might not all belong to the same tuple class. Thus, our existing Q-

QFE solution can handle set semantics by adopting the secondapproach. Further research

is required to incorporate the first approach as well into Q-QFE.

3.5.2 Queries with Different Join Schemas

We have so far assumed that all the queries inQC share the same join schema. Our ap-

proach can be extended quite easily to handle the more general case where this assumption

does not hold.

The simplest approach to handle different join schemas is touse a divide-and-conquer

strategy. We first partitionQC into different groups so that queries in the same group

share the same join schema and then apply Q-QFE on each of these groups. There are

different strategies to order the query groups for processing. One strategy is to process

the query groups in non-ascending order of the group size based on the assumption that

the target query is more likely to be contained in a larger query group. Once the target

query is identified in some query group, the processing terminates without the need to

process the remaining query groups.

A more complex approach to solve the problem is to compute a full-outer join of all the

relations in the database and to extend our existing Q-QFE approach to work with this

45

CHAPTER 3. QUERY-BASED APPROACH

single joined relation. We plan to evaluate the tradeoffs ofthese different approaches as

part of our future work.

3.5.3 Database Constraints

We have so far not discussed how to ensure that the generated modified databases are

valid with respect to the database integrity constraints that could be provided by the users.

For primary key constraints, it is trivial to ensure that modified tuples do not violate such

constraints. For foreign key constraints, care must be taken to ensure a modified non-

null foreign key value refers to an existing primary key value. However, more research is

required to look into handling more complex database constraints.

3.5.4 Supporting More Expressive Queries

In this section, we discuss how our approach could be extended to handle more expressive

queries.

For select-project-join-union (SPJU) queries, the problem of distinguishing two SPJU

queries can be reduced to that of distinguishing two SPJ queries with some additional

checking. For example, consider the problem of distinguishing two SPJU queriesQ1 =

Q11 ∪Q12 andQ2 = Q21 ∪Q22 with a modified databaseD′. Assume thatt is an output

tuple that is produced by bothQ11 andQ21 on databaseD. The problem could be viewed

as distinguishing two SPJ queriesQ11 andQ21. One way is to generateD′ such that

t ∈ Q11(D
′) andt 6∈ Q21(D

′); additionally, we need to ensure thatt 6∈ Q22(D
′). Another

way is to modify the database such that a new output tuplet′ is contained inQ11(D
′) but

not inQ2(D
′).

Supporting group-by aggregation (SPJA) queries, however,requires more significant ex-

tensions to our approach due to the larger number of diverse options to distinguish such

46

CHAPTER 3. QUERY-BASED APPROACH

complex queries. We plan to investigate this issue more thoroughly as part of our future

work.

3.6 Experimental Evaluation

In this section, we evaluate the efficiency and scalability of our approach using two real

datasets. Our experiments were performed on a PC with an Intel Core 2 Quad 2.83GHz

processor, 4GB RAM, and 256GB SATA HDD running Ubuntu Linux 12.04. The algo-

rithms were implemented in C++ and the database was managed using MySQL Server

5.5.27. All timings reported were averaged over three runs.

The default values for the two configurable parameters in ourapproach are as follows:β =

1 for the scale parameter in Equation (3.3), andδ = 1s for the time threshold parameter in

Algorithm 3. We examine the sensitivity of these parametersin Sections3.6.3and3.6.4.

Sections3.6.2to 3.6.6present experimental results where the result feedback interactions

were automated without involving any real users, by always choosing the largest query

subset (to examine worst-case behavior) in each feedback iteration. This practical ap-

proach enables us to conveniently conduct many experimentsto evaluate the effects of

different parameters on various properties of our approach, including the number of feed-

back iterations, the number of database and result modifications, and the execution time of

the algorithms. Finally, Section3.6.7to Section3.6.9briefly report additional experimen-

tal results, including the effects of input example size, the entropy of the active domains

of attribute, and a simple user study.

47

CHAPTER 3. QUERY-BASED APPROACH

3.6.1 Database and Queries

Our experiments were conducted using two real datasets. Thefirst dataset is a scientific

database of biology information taken from SQLShare3 that consists of two tables: the

first table, named “PmTEALL DE”, contains 3926 records with 16 attributes; and the

second table, named

“table Psemu1FLRT spgpgp ok”, contains 424 records with 3 attributes. The foreign-

key join of these tables is a relation with 417 tuples. We usedtwo actual queries (denoted

asQ1 andQ2 below) posed by a biologist on this database.

The second dataset is a baseball database containing various statistics (e.g., batting, pitch-

ing, and fielding) for Major League Baseball4. In our experiments, we used only three

of its tables (Manager, Team andBatting) which have 11, 29, and 15 columns; and

contain 200, 252, and 6977 tuples, respectively. The foreign-key join of these three tables

is a relation with 8810 tuples. Four synthetic queries were used on this dataset (denoted

byQ3 to Q6 below) with varying complexity in terms of the number of relations, and use

of conjunctions and disjunctions in the selection predicates.

Q1 =π∗(σP.logFCF e<0.5∧P.logFCF e>−0.5∧P.logFCP<−1∧P.logFCSi<−1∧P.logFCUrea<−1

∧(P.PV alueF e<0.05∨P.PV alueP<0.05∨P.PV alueSi<0.05∨P.PV alueUrea<0.05))

(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q2 =π∗(σP.logFCF e<1∧P.logFCP>1∧P.logFCSi>1∧P.logFCUrea>1∧(P.PV alueF e<0.05∨P.PV alueP<0.05

∨P.PV alueSi<0.05∨P.PV alueUrea<0.05))

(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q3 =πmanagerID,year,R(σteamID=“CIN”∧year>1982∧year<=1987)

(Manager ✶ Team)

3http://escience.washington.edu/sqlshare
4http://www.seanlahman.com/baseball-archive/statistics

48

CHAPTER 3. QUERY-BASED APPROACH

Q4 =πManagerID,year,2B(σplayerID=“sotoma01”∨playerID=“brownto05”∨

playerID=“pariske01”∨playerID=“welshch01”)(Manager ✶ Team ✶ Batting)

Q5 =πManagerID,year,HR(σplayerID=“rosepe01”∧HR>1∧2B<=3)

(Manager ✶ Team ✶ Batting)

Q6 =πManagerID,year,3B(σplayerID=“esaskni01”∧(IP>4380

∨(IP<=4380∧BBA<=485)))(Manager ✶ Team ✶ Batting)

The cardinalities of the query results forQ1 to Q6 are, respectively, 1, 6, 5, 14, 4, and

4 tuples. Each of the above queriesQ is used to generate an initial(D,R) pair, and the

target query in an experiment could beQ or one of the candidate queries generated from

(D,R).

3.6.2 Results for Default Settings

In this section, we present experimental results for the default settings withβ = 1 andδ

= 1s, where the largest query subset is always chosen at each iteration. Here we discuss

only the results for the scientific database; the results forthe baseball database will be

partially presented in Section3.6.3.

BothQ1 andQ2 require 6 iterations of result feedback with our prototype.Table3.2shows

the following per-round performance statistics: (1) the number of candidate queries and

(2) the number of query subsets partitioned at the start of each iteration; (3) the number of

skyline tuple-class pairs enumerated by Algorithm3.3; (4) the total execution time, which

is the sum of the running time for the Query Generator module (as part of the first iteration)

and Database Generator module, and running time for modifying the database; (5) the

database modification cost,dbCost; (6) the query result modification cost,resultCost;

and (7) the average query result modification cost,avgResultCost, which is given by the

ratio of (6) to (2).

49

CHAPTER 3. QUERY-BASED APPROACH

Iteration No. 1 2 3 4 5 6

of queries 19 15 13 11 10 8
of query subsets 2 2 2 2 2 8
of skyline pairs 2 100 52 101 51 98
Execution time (s) 2.84 1.91 1.71 1.89 1.91 1.99
dbCost 1 2 2 1 2 8
resultCost 12 11 12 11 13 80
avgResultCost 6 5.5 6 5.5 6.5 10

(a) Results for QueryQ1

Iteration No. 1 2 3 4 5 6

of queries 19 11 7 5 3 2
of query subsets 2 2 2 2 2 2
of skyline pairs 50 6 63 130 54 12
Execution time (s) 2.91 1.69 1.81 2.89 0.69 0.71
dbCost 1 2 2 2 1 2
resultCost 11 9 10 11 11 12
avgResultCost 5.5 4.5 5 5.5 5.5 6

(b) Results for QueryQ2

Table 3.2: Per-round statistics for scientific database.

Note that the total execution times (over 6 iterations) forQ1 andQ2 are11.25s and10.11s,

respectively, of which less than 1 second is spent on the Query Generator module. As

expected, the first iteration took the most time as it included the query generation time

and the first iteration also processed the largest set of candidate queries. Generally, the

execution time decreases as the set of candidate queries progressively becomes smaller.

However, forQ2, observe that there is an increase in the execution time for its fourth

iteration, which is due to the large number of skyline tuple-class pairs enumerated for that

round. The maximum and average per-round execution times are about 3 and 2 seconds,

respectively.

In terms of modification costs, the highest costs were incurred in the last iteration forQ1

where the queries were partitioned into 8 subsets resultingin 8 database attributes and

7 query result tuples being modified. For each of the other iterations, the queries were

partitioned into 2 query subsets requiring modifications ofat most 2 database attributes

50

CHAPTER 3. QUERY-BASED APPROACH

and a single query result tuple. Thus, the average modification cost for each round is low,

implying that the expected user’s effort to provide result feedback is modest.

Besides the worst-case result feedback simulation, we alsoexperimented with an auto-

mated result feedback that always choose the query subset that contains the target query.

ForQ1, it required 6 iterations, as with the worst-case results just presented. ForQ2, only

4 iterations were needed to determine the target query with atotal running time of 7.4s

and an average per-round modification cost of 1 database attribute and an average of 5

modified attributes for each query result.

3.6.3 Effect of Scale Factorβ

In this section, we examine the effect of the scale parameterβ on performance by vary-

ing its value in the range{1, 2, 3, 4, 5} on the number of iterations and the actual total

modification costs (i.e., for both database and query resultmodifications). Recall that

the parameterβ is used in Equation (3.3) of the cost model to normalize the number of

relations in terms of number of attribute modifications.

For both queriesQ1 andQ2 on the scientific database, neither the number of iterationsnor

the actual modification costs were affected by the variationin β.

The results for queriesQ3 toQ6 on the baseball database are shown in Table3.3. In terms

of the effect on the number of iterations, only queriesQ3 andQ4 were slightly affected

with a decrement of one round whenβ is increased to2 and3, respectively. In terms of

the effect on the modification costs, onlyQ4’s cost was affected with an increment of 3

whenβ is increased to3.

Our experimental results indicate performance does not depend greatly uponβ. The rea-

son is that when the modified tuples come mostly from the same relation, the value ofβ

51

CHAPTER 3. QUERY-BASED APPROACH

Effect ofβ on Effect ofβ on
number of iterations modification cost

Query 1 2 3 4 5 1 2 3 4 5

Q3 7 6 6 6 6 29 29 29 29 29
Q4 6 6 5 5 5 24 24 27 27 27
Q5 7 7 7 7 7 32 32 32 32 32
Q6 5 5 5 5 5 25 25 25 25 25

Table 3.3: Effect ofβ for baseball database

does not matter. ForQ1, except for the last iteration where two relations were modified,

only one relation is modified in each iteration. ForQ2, only one relation is modified in

all iterations. ForQ3 andQ6, except for one iteration which modified only one relation,

all iterations modified two relations. ForQ4 andQ5, only one relation is modified in all

iterations. Given this behavior, all our experiments used the default value of 1 forβ.

3.6.4 Effect of Time Thresholdδ

In this section, we examine the effect of the time threshold parameterδ on performance

by varyingδ in the range{0.1, 0.2, 0.5, 1, 2, 5, 10}.

Table3.4 shows the effect ofδ on the number of iterations, total modification cost, and

execution time for the scientific database. Although the execution time generally increases

with δ, an increase inδ could reduce the overall execution time. This is because by

increasing the time for finding skyline tuple-class pairs (i.e., Algorithm 3), the quality of

the subset of tuple-class pairs derived by Algorithm 4 couldimprove leading to a more

balanced partitioning of the candidate queries thereby possibly reducing the number of

iterations or modification cost. For example, in Table3.4(a), the execution time forQ1

decreases whenδ increases from0.1 to 0.2, due to a decrease in the number of iterations.

Similarly in Table3.4(b), the execution time forQ2 decreases whenδ increases from0.1

to 0.2 for the same reason.

52

CHAPTER 3. QUERY-BASED APPROACH

δ (s) 0.1 0.2 0.5 1 2 5 10

of iterations 11 9 9 6 5 8 8
Modification cost 201 201 179 155 155 122 122
Execution time (s) 9.7 9.0 12.2 11.2 14.1 47.4 83.2

(a) Effect ofδ onQ1

δ (s) 0.1 0.2 0.5 1 2 5 10

of iterations 7 4 6 6 4 4 4
Modification cost 87 90 74 74 70 70 70
Execution time (s) 7.2 5.1 8.1 10.0 14.4 26.3 48.4

(b) Effect ofδ onQ2

Table 3.4: Effect ofδ for scientific database

For the baseball database (results not shown due to space constraints), we observe that for

queriesQ3, Q5 andQ6, their lowest execution times occurred whenδ = 1s, and forQ4,

its lowest execution time occurred whenδ = 2s.

Our experimental results suggest that a reasonable value for the time threshold parameter

is 1 or 2 seconds.

3.6.5 Efficiency of Algorithm 3.4

In this section, we examine the efficiency of Algorithm3.4 in finding a “good” subset of

tuple-class pairs to generate the modified database. Although the algorithm has a time

complexity ofO(2|SP |), whereSP denote the input set of skyline tuple-class pairs, our

experimental results demonstrate that the algorithm actually performs well in practice

even with a reasonably large input set forSP .

Table3.5 shows performance results of Algorithm 4 for queriesQ1 andQ2 on the sci-

entific database. Recall that both queries require 6 iterations with the default worst-case

automated result feedback. For each query, Table3.5shows the number of skyline tuple-

class pairs (i.e,|SP |) and the execution time of Algorithm 4 for each iteration.

53

CHAPTER 3. QUERY-BASED APPROACH

Iteration No. 1 2 3 4 5 6

Q1

of skyline pairs 2 100 52 101 51 98
Exec. time (ms) 0.0689 189 11.5 161 33.7 283

Q2

of skyline pairs 50 6 63 130 54 12
Exec. time (ms) 125 0.598 131 1267 7.71 1.78

Table 3.5: Performance of Algorithm 4 for scientific database

The results show that the running times of Algorithm3.4 were very short. ForQ1, the

longest running time was 0.283 seconds in last iteration; and for Q2, the longest running

time was slightly over one second in the4th iteration.

To evaluate the scalability of Algorithm 4 with respect to|SP |, we consider the2nd it-

eration forQ1 with |SP | = 100 which was generated withδ = 1s. By progressively

increasing the time threshold to 15 seconds, we generated 5 subsets of skyline tuple-class

pairs of increasing size with|SP | ∈ {200, 400, 600, 800, 1000}. Table3.6 compares the

execution timings of Algorithm 4 for these 5 subsets. We alsoshow the maximal number

of reduced candidate pair sets in one iteration of Algorithm4.

of skyline pairs 200 400 600 800 1000
Exec. time (s) 3.22 24.55 65.76 104.54 156.49

Max. # of reduced sets 155 241 301 470 649

Table 3.6: Performance of Algorithm3.4for varying|SP |

The results show that the performance of Algorithm 4 was still reasonably fast (less than

25s) when|SP | = 400. We also observed that the query partitionings produced by Algo-

rithm 4 were all the same as the size of the skyline tuple-class subset was increased from

50 to 1000. Thus, this suggests that the size ofSP need not be large to find good query

partitionings.

3.6.6 Effect of Number of Candidate Queries

In this section, we examine the effect of the number of candidate queries produced by the

Query Generator module. Due to space constraints, we present the results only forQ2.

54

CHAPTER 3. QUERY-BASED APPROACH

To go beyond the 19 initial candidate queries generated forQ2, we generated 61 additional

candidate queries from the initial candidate queries by modifying their selection predicate

constants. From the 80 candidate queries forQ2, we created 6 subsets of candidate queries

(denoted byS1, S2, · · · , S6) such thatS1 ⊂ S2 ⊂ · · · ⊂ S6 andQ2 ∈ S1. The cardinality

of these query subsets and their performance results are shown in Table3.7.

Candidate query set S1 S2 S3 S4 S5 S6

of candidate queries 5 10 20 40 60 80
of selection attributes 9 14 18 18 18 18
of iterations 2 3 4 5 6 6
Execution time (s) 3.9 6.4 8.5 7.7 9.4 10.0
Modification cost 37 49 70 82 104 103
Avg. dbCost per round 1.5 2 1 1.6 1.5 2.2
Avg. resultCost per result set6.8 6.1 6.6 6.2 6.3 6

Table 3.7: Effect of the number of candidate queries onQ2

Note that the execution timings reported here did not include the running time of the

Query Generator module, since we had manually generated additional candidate queries;

and in any case, the candidate-query generation time was only a small fraction of the

total execution time. Observe also that both the number of iterations and execution time

increase with the number of candidate queries, and the per-round database and query

result modification costs are reasonably low.

Since the first iteration’s running time is the most time-consuming, Table3.8 presents a

breakdown of this running time in terms of the time spent at each of the three key steps of

the Database Generator module (i.e., Algorithm3.2).

Query set S1 S2 S3 S4 S5 S6

Algorithm 3 1.04 1.12 1.10 1.10 1.10 1.10
Algorithm 4 0.11 0.0006 0.00007 0.000065 0.005 0.002
Modify DB 0.68 0.70 0.67 0.68 0.68 1.02

Total 2.94 2.88 2.85 2.86 2.89 3.24

Table 3.8: Breakdown of first iteration’s runing time (in sec)

Observe that the running time is dominated by the first and third steps, with Algorithm3.4

55

CHAPTER 3. QUERY-BASED APPROACH

incurring the least amount of time. The results demonstratethat our approach can scale

for a reasonably large number of candidate queries.

3.6.7 Effect of Initial Database-Result Pair

In this section, we present additional experimental results to evaluate the effect of the

initial database-result pair on performance.

Figure3.2shows the queries used in this experiment, whereQ1 toQ5 are on the scientific

database andQ6 to Q9 are on the baseball database. Note that among the 5 queries on

the scientific database, two of them are real queries and the remaining three are synthetic

queries.

Q1 =π∗(σP.logFC Fe<0.5∧P.logFC Fe>−0.5∧P.logFC P<−1∧P.logFC Si<−1∧P.logFC Urea<−1∧(P.PV alue Fe<0.05

∨P.PV alue P<0.05∨P.PV alue Si<0.05∨P.PV alue Urea<0.05))(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q2 =π∗(σP.PV alue Si<=7.02e−06)(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q3 =π∗(σS.Groups>24∧S.Groups<=27(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q4 =π∗(σP.logCPM P<=3.91148∧P.logCPM P>3.79204)(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q5 =π∗(σP.logFC Fe<1∧P.logFC P>1∧P.logFC Si>1∧P.logFC Urea>1∧(P.PV alue Fe<0.05∨P.PV alue P<0.05

∨P.PV alue Si<0.05∨P.PV alue Urea<0.05))(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q6 =πManagerID,year,HR(σplayerID=“sotoma01”∨playerID=“brownto05”∨playerID=“pariske01”∨playerID=“welshch01”)

(Manager ✶ Team ✶ Batting)

Q7 =πManagerID,year,HR(σ(playerID=“foleyto02”∨playerID=“vangoda01”∨playerID=“mcgrite01”

∨playerID=“jonestr01”∨playerID=“housepa02”)∧(managerID=”rosepe01m”∨managerID=”rappve99m”

∨managerID=”nixonru01m”)∧Batting.RBI>9∧Batting.SB<=12)(Manager ✶ Team ✶ Batting)

Q8 =πManagerID,year,3B(σplayerID=”esaskni01”∧IP<=4380∧BBA<=485)(Manager ✶ Team ✶ Batting)

Q9 =πmanagerID,year,Rank(σteamID=“CIN”∧year>1982∧year<1988)(Manager ✶ Team)

Figure 3.2: Queries for Section3.6.7

We created four datasets (denoted bySD1 to SD4) for the scientific database as follows.

SD4 is the original scientific database, and each of the remaining datasets are subsets

of SD varying in size created such that they satisfy the followingtwo properties: (1)

for i ∈ [1, 3], we have|SDi| =
i
4
× |SD4| and (2) for each queryQ on the scientific

database,Q(SD1) ⊆ Q(SD2) ⊆ Q(SD3) ⊆ Q(SD). Similarly, we created three

datasets (denoted byBB1 toBB3) for the baseball database with the similar properties.

56

CHAPTER 3. QUERY-BASED APPROACH

The properties of the datasets and query results are shown inTable3.9. For convenience,

the two relations in the scientific database are abbreviatedasP andS, and the three

relations in the baseball database are abbreviated asT , B, andM .

Scientific Data SD1 SD2 SD3 SD4
Size(P) 1000 2000 3000 3926
Size(S) 111 221 316 424

ofQ1(D) 1 1 1 1
ofQ2(D) 3 6 7 8
ofQ3(D) 1 2 4 6
ofQ4(D) 2 3 4 4
ofQ5(D) 3 4 6 6

Baseball Data BB1 BB2 BB3
Size(T) 10 20 30
Size(B) 350 751 1034
Size(M) 10 24 33

ofQ6(D) 5 7 9
ofQ7(D) 2 3 4
ofQ8(D) 2 2 2
ofQ9(D) 2 3 4

(a) Statistics for Scientific Database (b) Statistics for Baseball Database

Table 3.9: Properties of datasets and query results

The experimental results are shown in Figure3.3. For each dataset, we show the total

modification cost, the number of iterations to find the intended query, and the execution

time. As shown in the Figure3.3, the effect of the initial database-result pair on perfor-

mance does not not have a clear trend. For example,Q6 andQ7 on BB3 incurred the

lowest modification cost and number of iterations. However,Q8 andQ9 onBB1 incurred

the lowest modification cost and number of iterations. In terms of the number of iter-

ations,BB2 required the largest number, but in terms of the modificationcost,Q6 on

BB2 outperformsQ6 on BB1. As for the scientific dataset,SD2 incurred the lowest

modification cost and number of iterations forQ2 andQ4. However, forQ3 andQ5, their

performance onSD2 is the worst. In summary, there is no clear trend for the effect of the

initial database-result pair on the performance.

3.6.8 Effect of Size & Entropy of Attributes’ Active Domains

In this section, we present additional experimental results to evaluate the effect of the size

and entropy of the active domains of attributes on performance.

57

CHAPTER 3. QUERY-BASED APPROACH

 0

 20

 40

 60

 80

 100

 120

Q1 Q2 Q3 Q4 Q5

M
od

ifi
ca

tio
n

C
os

t
SD1
SD2
SD3
SD4

 0

 10

 20

 30

 40

 50

Q6 Q7 Q8 Q9

M
od

ifi
ca

tio
n

C
os

t

BB1
BB2
BB3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Q1 Q2 Q3 Q4 Q5

N
um

be
r

of
 r

ou
nd

s

SD1
SD2
SD3
SD4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Q6 Q7 Q8 Q9

N
um

be
r

of
 r

ou
nd

s

BB1
BB2
BB3

 0

 2

 4

 6

 8

 10

 12

Q1 Q2 Q3 Q4 Q5

R
un

ni
ng

 T
im

e(
in

 s
ec

)

SD1
SD2
SD3
SD4

 0

 2

 4

 6

 8

 10

Q6 Q7 Q8 Q9

R
un

ni
ng

 T
im

e(
in

 s
ec

)

BB1
BB2
BB3

(a) Scientific Database (b) Baseball Database

Figure 3.3: Effect of initial database-result pair

For this experiment on the scientific database, we created 5 datasets (denoted byD1, · · · , D5)

by varying the number of distinct values of a chosen attribute (denoted byA). The total

number of distinct values forA for these datasets are shown in Table3.10. D1 is the

Data sets D1 D2 D3 D4 D5

of distinct values 3725 2978 2230 1490 749
% reduced 0% 20% 40% 60% 80%

Table 3.10: Number of distinct values for attributeA in datasets

original dataset, and the each of the other datasets was created by reducing the number

of distinct attribute values forA by a certain percentage as shown in Table3.10. This is

done by replacing each eliminated attribute value by one of the existing attribute values

58

CHAPTER 3. QUERY-BASED APPROACH

such that the following properties hold: (1) letTi denote the instance of relationT in Di,

we haveπA(Ti) ⊃ πA(Ti+1), i ∈ [1, 5). (2) for each intended queryQ on the scientific

database,Q(Di) = Q(Dj) for anyi, j ∈ [1, 5].

For each of two intended queries,Q1 andQ2, on the scientific database, and for each

datasetDj, j ∈ [1, 5], we used the Query Generator module to generate a set of candidate

queries (denoted byQC(Qi, Dj)) for the input database-result pair(Dj, Qi(Dj)). There

were a total of 19 common candidate queries forQ1 and a total of 18 common candidate

queries forQ2; i.e., |S1| = 19 and|S2| = 18, whereSi =
⋂5

j=1QC(Qi, Dj).

Table3.11shows the performance of each of the 19 candidate queries inS1 as intended

query on each of the 5 datasets. As before, the performance ismeasured in terms of the

number of iterations and total modification cost to identifythe intended query. Similarly,

Table3.12shows the performance results for the candidate queries inS2.

Observe that for the same query, the performance results on the datasetsD2 to D5 are

mostly the same. For the datasetsD1 andD2, we observe that some queries perform better

on D1 while other queries perform better onD2. In summary, our experimental results

show that there is no clear trend for the effect of the size andentropy of the attributes’

active domains on performance.

3.6.9 User Study

In this section, we present the results of a user study conducted with 3 participants (all of

whom were CS graduate students) to evaluate the feasibilityof our approach. The screen

capture of the system UI is shown in Figure3.4. The interface first showed the input

database-result pair to the user. The user can scroll up and down to browse the tuples

in database and query result. In each iteration, the system highlighted the differences

between original and modified tuples. We used different colors to mark the modified

59

CHAPTER 3. QUERY-BASED APPROACH

Query ID 1 2 3 4 5 6 7 8 9 10

D1 6 6 4 6 6 3 6 4 6 6
D2 3 8 4 8 7 3 7 5 7 6
D3 3 8 4 8 7 3 7 5 7 6
D4 3 8 4 8 7 3 7 5 7 6
D5 3 8 4 8 7 3 7 5 7 6

Query ID 11 12 13 14 15 16 17 18 19

D1 3 3 6 4 6 3 6 3 3
D2 3 4 5 5 7 4 3 3 3
D3 3 4 5 5 7 4 3 3 3
D4 3 4 5 5 7 4 3 3 3
D5 3 4 5 5 7 4 3 3 3

(a) Number of iterations

Query ID 1 2 3 4 5 6 7 8 9 10

D1 155 155 52 155 155 38 155 52 79 155
D2 38 113 64 113 97 38 97 79 97 85
D3 38 113 64 113 97 38 97 79 97 85
D4 38 113 64 113 97 38 97 79 97 85
D5 36 113 64 113 97 38 97 79 97 85

Query ID 11 12 13 14 15 16 17 18 19

D1 38 38 155 52 155 38 79 38 38
D2 38 64 79 79 97 64 38 38 38
D3 38 64 79 79 97 64 38 38 38
D4 38 64 79 79 97 64 38 38 38
D5 38 64 79 79 97 64 36 38 38

(b) Modification Cost

Table 3.11: Effect of size & entropy of active attribute domain for queryQ1

60

CHAPTER 3. QUERY-BASED APPROACH

Query ID 1 2 3 4 5 6 7 8 9

D1 4 5 5 6 6 5 3 3 3
D2 4 6 5 6 6 5 4 4 4
D3 4 5 4 4 5 5 4 4 4
D4 4 5 4 4 5 5 4 4 4
D5 4 5 4 4 5 5 4 4 4

Query ID 10 11 12 13 14 15 16 17 18

D1 2 2 2 3 3 4 3 4 3
D2 4 3 4 4 3 3 3 3 4
D3 3 4 4 4 3 3 3 3 4
D4 3 4 4 4 3 3 3 3 4
D5 3 4 4 4 3 3 3 3 4

(a) Number of iterations

Query ID 1 2 3 4 5 6 7 8 9

D1 47 60 60 74 74 60 79 79 79
D2 63 81 63 82 82 63 61 61 59
D3 63 82 66 66 82 80 60 60 60
D4 63 82 66 66 82 80 60 60 60
D5 52 82 66 66 82 80 60 60 60

Query ID 10 11 12 13 14 15 16 17 18

D1 55 55 55 67 46 58 46 58 67
D2 59 49 49 49 49 49 38 49 49
D3 48 60 49 49 49 49 53 49 49
D4 48 60 49 49 49 49 53 49 49
D5 48 60 49 49 49 49 53 49 49

(b) Modification Cost

Table 3.12: Effect of size & entropy of active attribute domain for queryQ2

61

CHAPTER 3. QUERY-BASED APPROACH

Figure 3.4: UI screen capture

attribute, the old and updated values to help users examine the modifications. We also

showed the user the groups of query results and asked the userto choose the group with

correct result. Once the user selected a group, we used the corresponding queries as

candidates for the next generation.

For this experiment, we used the the Adult relation (containing 5227 tuples) extracted

from the 1994 Census database5. This dataset was chosen over the scientific and baseball

datasets as we felt that its data domain would be easier to understand for users. The

following three queries were used for this experiment.

Q1 Findworkclass, occupation andeducation for white females who are at least 64

years old, never married, and with a capital gain of more than500.

Q2 Findeducation, occupation andhours-per-week for people whose native country

is Taiwan and occupation is Armed-Forces.

5http://archive.ics.uci.edu/ml/datasets/Adult

62

CHAPTER 3. QUERY-BASED APPROACH

Q3 Findage andeducation for people whose native country is England and occupation

is Tech-support.

The query result sizes forQ1 to Q3 are, respectively, 1, 2 and 1 tuple.

We compare Q-QFE against an alternative strategy Q-QFE’ in terms of number of itera-

tions, modification cost and user’s response time. Instead of guided by current cost model

to find the cheapest modifications, in each iteration, Q-QFE’picks the modifications that

can split queries into the most subsets. Intuitively, this strategy could decrease the size of

query subset, and reduce the number of iterations.

Table3.13shows the per-round statistics for each query using different strategies: “#Queries”

refers to the number of candidate queries at the start of an iteration, “#subsets” refers to

the number of query subsets after an iteration and “Cost” refers to the total modification

cost for an iteration. Observe that Q1 incurs the highest modification cost of 27 using

Q-QFE’ while Q3 has the lowest modification cost of 12 using Q-QFE. For one itera-

tion, maximum modification cost of Q-QFE is 5, while the maximum cost of Q-QFE’

is 22. Although Q-QFE’ reduces the number of iterations to 2 for each query, the total

modification cost is still higher than Q-QFE.

Query
Q-QFE Q-QFE’

i-th iteration 1 2 3 4 5 1 2

Q1
#Queries 10 5 3 2 - 10 5
#subsets 2 2 2 2 - 2 5

cost 5 4 4 4 - 5 22

Q2
CQ Size 17 10 5 3 2 17 2

of subsets 2 2 2 2 - 5 2
cost 4 4 5 4 4 22 4

Q3
CQ Size 11 5 3 2 - 11 5

of subsets 2 2 2 2 - 2 5
cost 3 3 3 3 - 3 17

Table 3.13: Per-round statistics for queries

Table 3.14 shows the experimental results for two of the queries, Q1 andQ3, which,

respectively, took the longest and shortest times among the4 queries. The time taken

63

CHAPTER 3. QUERY-BASED APPROACH

User
Q-QFE Q-QFE’

i-th iteration 1 2 3 4 1 2

1
Utime 17.7 9.1 4.7 28.4 79.2 84.3
Stime 1.3 1.2 0.4 0.1 1.2 1.2
Ttime 19.0 10.3 5.2 28.5 80.5 85.5

2
Utime 50.4 15.8 26.8 29.7 26.5 85.8
Stime 1.3 1.2 0.4 0.1 1.2 1.2
Ttime 51.7 18.1 27.2 29.8 27.7 87.0

3
Utime 19.3 8.1 6.1 25.2 31.9 75.7
Stime 1.3 1.2 0.4 0.1 1.2 1.2
Ttime 20.6 9.3 6.5 25.3 33.1 76.9

(a) Time to find Q1

User
Q-QFE Q-QFE’

i-th iteration 1 2 3 4 1 2

1
Utime 11.2 2.7 1.8 2.1 79.2 84.3
Stime 1.2 1.2 0.5 0.1 1.2 1.3
Ttime 12.4 3.9 2.3 2.2 80.4 85.6

2
Utime 23.7 8.7 9.2 8.7 17.2 40.3
Stime 1.2 1.2 0.5 0.1 1.2 1.3
Ttime 24.9 9.9 9.7 8.8 18.4 41.6

3
Utime 9.9 4.6 3.6 3.7 18.1 22.9
Stime 1.2 1.2 0.5 0.1 1.2 1.3
Ttime 11.2 5.8 4.1 3.8 19.3 24.2

(b) Time to find Q3
Utime: user response time; Stime: system running time; Ttime: total time

Table 3.14: Timing results for user study (in secs)

by the Query Generator module (around 0.5 seconds) is not included in the timings for

the first iteration. Observe that the user response time dominates the total time taken for

each iteration. The longest and shortest user response times are, respectively, around 85

seconds and 2 seconds. Overall, the user study experiment demonstrates that the users

were able to effectively determine the intended queries with reasonable effort.

Comparing Q-QFE and Q-QFE’, it is obvious that users are quite sensitive to the modifi-

cation cost. The response time using Q-QFE’ is much higher than using Q-QFE. Even the

number of iterations is less, the total time is still much higher. E.g., it takes the first user

63 seconds to find Q1 using Q-QFE, while using Q-QFE’ it takes 166 seconds. Therefore,

64

CHAPTER 3. QUERY-BASED APPROACH

our cost model is very practical in terms of user’s response time.

3.7 Conclusion

In this chapter, we have developed a new approach, called Query from Examples (QFE),

to help non-expert database users construct SQL queries. Wealso propose a Query-based

approach of QFE (Q-QFE). Our approach does not expect users to be familiar with SQL

and only requires that users are able to determine whether a given output table is the result

of his or her intended query on a given input database. Using an initial user-specified pair

of databaseD and output table for the user’s target query onD, Q-QFE is able to identify

the user’s target query through a sequence of rounds of interactions with the user. Each

interaction round obtains feedback from the user to identify the correct output result for

a modified database that is judiciously generated to minimize the user’s effort to provide

feedback.

Our experimental evaluation of Q-QFE demonstrates the feasibility of our approach and

the effectiveness of our techniques. As part of our future work, we plan to extend our

approach to support more expressive queries and explore optimization techniques to im-

prove performance. In addition, we also plan to conduct a more extensive user study to

evaluate the approach’s effectiveness.

65

CHAPTER 4

SCHEMA-BASED APPROACH

In the previous chapter, we described a novel Query-based approach for QFE, to help

non-expert database users who are not sophisticated with SQL construct queries. It takes a

database-result pair as input, and generates a set of candidate queries with theQuery Gen-

erator moduleat first. Then theDatabase Generator moduledistinguishes those queries

iteratively. Finally, the approach outputs the user’s target query.

In this chapter, we describe a schema-based approach of QFE (S-QFE) to generate can-

didate queries from a given database-result pair(D,R). Different from Query-based ap-

proach, we adopt an iterative method to identify the target query schema first. We first

introduce the problem in Section4.1, followed by the approach overview in Section4.2.

The details are discussed in Section4.3 to Section4.5. An experimental evaluation is

presented in Section4.6. Finally, we conclude in Section4.7. The notations we use

throughout this Chapter is shown in Table4.1.

67

CHAPTER 4. SCHEMA-BASED APPROACH

Notation Description
Q Query
D Database
D′ Modified database
R Query result

Q(D) QueryQ’s result on databaseD
A Attribute
JS Join schema
JR Set of join relations
PA Set of projection attributes
SA Set of selection attributes
JP Set of join predicates
SP Set of selection predicate
QS Query schema

qs-query Query with the query schemaqs
S Set of candidate query schemas

J(D)/Jqs(D) Result of joining all the join relations inqs
J+
qs Positive partitions ofJ(D)

J−
qs Negative partitions ofJ(D)

Jfree
qs Free partitions ofJ(D)

domain(A) Domain of attributeA
QSqs

min Minimal query of query schemaqs
iscore(A) Impact score of attributeA

Table 4.1: Notation table of Chapter4

4.1 Introduction

Recently, a number of works [64, 70, 61] have been proposed to handle the query reverse

engine problem which focuses on deriving the queryQ such thatQ(D) = R, whereD and

R are from user’s input. In the previous chapter, we proposed aQuery-based approach of

QFE (Q-QFE), which generates all the candidate queries first, and then we help the user to

get the intended one. Recall that we used QBO [64] as the theQuery Generator modulein

Chapter 3. One drawback of using QBO is that it might generatetoo many queries which

increase the burden on theDatabase Generator module. Here is an example.

Example 4.1. Consider the baseball dataset, which contains 9 relations.The number of

attributes in each relation vary from 3 to 29. Among them, relation “Manager” has 11 at-

tributes and “Team” has 29 attributes. To find the following target query, QBO generated

68

CHAPTER 4. SCHEMA-BASED APPROACH

more than 90 queries in total. We show three of the generated queries in Figure4.1.

SELECT distinct Manager.managerID, Team.year, Team.rank

FROM Manager, Team

WHERE Manager.teamID = Team.teamID AND Manager.year = Team.year

AND Team.teamID = ’CIN’ AND Team.year > 1982 AND Team.year < 1988;

Q1 :SELECT distinctManager.managerID, Team.year, Team.rank

FROM Manager, Team

WHERE Team.teamID = Manager.teamID AND Team.year = Manager.yearAND

((Team.franchID = “CIN ′′ AND Team.BB ≤ 563 AND Team.HR > 191 AND Team.E > 113) OR

(Team.franchID = “CIN ′′ AND Team.BB > 563 AND Team.R ≤ 677) OR

(Team.franchID = “CIN ′′ AND Team.BB > 563 AND Team.R > 677 AND Manager.plyrMgr 6= “N ′′));

Q2 :SELECT distinctManager.managerID, Team.year, Team.rank

FROM Batting, Team,Master,Manager

WHERE Master.playerID = Batting.playerID AND Team.teamID = Batting.teamID AND

Team.year = Batting.year AND Master.playerID = Manager.playerID AND

((Manager.plyrMgr 6= “N ′′ AND Manager.G ≤ 161 AND Team.BBA > 577 AND

Team.BBA ≤ 578 AND Manager.lgID 6= “”L′′) OR

(Manager.plyrMgr 6= “N ′′ AND Manager.G > 161 AND Batting.2B ≤ 12 AND

Team.HR > 106 AND Manager.plyrMgr = “Y ′′));

Q3 :SELECT distinctManager.managerID, Team.year, Team.rank

FROM Fielding, Team,Master,Manager

WHERE Master.playerID = F ielding.playerID AND Team.teamID = F ielding.teamID AND

Team.year = F ielding.year AND Master.playerID = Manager.playerID AND

((Team.SO > 855 AND Manager.plyrMgr 6= “N ′′ AND Team.SO ≤ 856 AND Manager.W > 86) OR

(Team.SO > 855 AND Manager.plyrMgr 6= “N ′′” AND Team.SO > 856 AND Team.HA > 1443 AND

Team.HA ≤ 1465 AND Manager.W ≤ 86 AND Manager.plyrMgr = “Y ′′));

Figure 4.1: Queries generated by QBO

As shown above, these queries are quite different from the target query, although they can

get the same query results. In the queries generated by QBO, there are 7 different join

schemas involving 2, 3 or 4 relations, and for each join schema there are more than 10

queries generated. Besides overburdening the Database Generator module, to generate

so many candidate queries is also very time consuming.

To avoid generating too many candidate queries, in this chapter, we propose aSchema-

based approachof QFE (S-QFE) to help non-expert users construct the targetquery. In

69

CHAPTER 4. SCHEMA-BASED APPROACH

the beginning, S-QFE asks the user to provide an initial database-result pair(D,R) of

the target queryQ∗ (i.e., Q∗(D) = R). As there will be many queries under differ-

ent query schemas that can transformD to R, S-QFE first computes a set of candidate

query schemas, and then asks the user to identify the target query schema by changing

the databaseD and showing new database-result pairs iteratively. At eachiteration, we

present a modified databaseD′, and the user examines new database-result pairs to de-

termine if it is correct with respect to his or her intended query. By getting the user’s

feedback on a series of database-result pairs, our approachcan identify the target query

schema, and we continue to generate candidate queries with the target query schema.

4.2 Approach Overview

For the ease of presentation, we first give the definition of query schema, and then we

introduce our approach overview. For simplicity, we only consider SQL queries without

aggregate function at first.

Definition 4.1. Consider a SPJ SQL queryQ, which can be expressed as a 5-tuple,(JR,

JP , PA, SA, SP), whereJR is a set of joined relations inQ; JP is a set of join

predicates forJR; PA is a list of projection attributes;SA is a set of selection predicate

attributes andSP is a set of selection predicates inQ. We refer to(JR, JP, PA, SA),

withoutSP , as thequery schema ofQ. We refer toQ as aqs-query if its query schema is

qs.

To simplify the discussion, we mainly focus on identifyingSA of the target query schema,

which is the most complex problem. We assume that thePA andJR are the same from all

the candidate query schemas, and all the relations inJR are joined based on foreign-key

relationships. We will discuss how to relax these assumptions in Section4.5.

70

CHAPTER 4. SCHEMA-BASED APPROACH

Given a database-result pair(D,R), a query schemaqs is defined to bevalid if there

exists at least oneqs-queryQ whose query resultsQ(D) = R. Otherwise,qs is aninvalid

query schema. Given a pair of(D,R), there may exist different valid query schemas, and

there could be multiple queries sharing the same query schema that can generate the same

query result asR. To avoid generating all those queries, we propose S-QFE to identify

the correct query schema first. The overview of our approach is shown in Figure4.2.

User

Database-Result
Pair (D,R)

Query-Schema
Generator

Candidate Query
SchemasS

Database
Generator

Modified Database D’
&

Query ResultsR1, R2

Result
Feedback

Target Query
SchemaQS

Query
Generator

QS-Queries
QC

2 3 4 5 6 7 8 9

4

8

1 6

Figure 4.2: Overall Architecture of schema-based QFE

S-QFE first obtains an initial database-result pair(D,R) from the user whereR is the

result of the users target query on the databaseD. TheQuery-Schema Generator module

takes(D,R) as input to generate a set of valid query schemasS = {qs1, · · · , qsn} for

(D,R); i.e., ∀qsi ∈ S, ∃qsi-queryQi : Qi(D) = R. To efficiently identify the user’s

target query schema, QFE iteratively modifies the database and presents new database-

result pairs to the user. At each iteration, theDatabase Generator modulemodifies a

tuplet in databaseD to t′, wheret is a tuple satisfies all the query’s selection predicates.

For the ease of description, we say a tuplet is in the query result, if t satisfies all the

query’s selection predicates. The modifiedt′ should partition the query schemasS into

two groupsS1 andS2 as follows: (1)t′ is in the query result for all the query schemas in

S1; (2) t′ is not in the result for any query schemas in groupS2. Next, we ask the user

whether the correct query result should containt′ with respect to the modified database.

If the user’s feedback is yes, we eliminate the query schemasin groupS2. Otherwise, we

eliminate the schemas in groupS1. We continue this process until we could identify the

target query schema. Once we obtain the target schemaqs, we can generate theqs-queries

71

CHAPTER 4. SCHEMA-BASED APPROACH

whose query result isR as the candidate queries. To find the target query, we could simply

use Q-QFE as described in Chapter 3.

As discussed before, we identify the query schema by modifying tuples to partition the

candidate query schemas into different groups in terms of their query results. There are

two main challenges. The first challenge is how to find the candidate valid query schemas.

Given a databaseD with n attributes, the number of possible selection-attribute set is

2n − 1, which could be very large. Hence, it is not practical to consider all of them as the

candidates. The second one is how to choose the tuplet and what new values should be

set. To solve the problem, we propose a two-step approach to identify the query schema.

At the first step, we compute the candidate query schemas by eliminating invalid query

schemas, and at the second step we choose a tuple and calculate the new values which

can group query schema into different groups. Based on the user’s feedback, we continue

modifying database until we identify the target query schema. The approach is shown in

Algorithm 4.1

Algorithm 4.1: QFE: Schema-based approach
Input : A database-result pair(D,R)
Output : Candidate queriesQC

1 Let G be the join graph of all relations in the databaseD
2 PA = Map-Projection-Attributes(D, R)
3 foreachpa ∈ PA do
4 Let rels be the relations where attributespa are from
5 foreachsubgraphJSof G which is avalid join schemado
6 build joined relationJ(D) with all the relations inJS
7 S = Query-Schema-Generator(J(D), R)
8 while |S| > 1 do
9 D′ = Database-Generator(D,S)

10 D′ partitions the schemas into groupsS1,S2 with different query results
11 x= Result-Feedback(D′) // x ∈ {1, 2}
12 S = Sx

13 if |S| 6= 0 then
14 QS be the query schema inS
15 break
16 QC = Query-Generator(D,R,QS)
17 return QC

72

CHAPTER 4. SCHEMA-BASED APPROACH

Algorithm 4.1 takes a database-result pair(D,R) as input, and returns the candidate

queriesQC as output. Given the query result, we first compute the join graphG of

databaseD according to the foreign-key relationships (line 1). Then we find all the pro-

jection attributesPA, wherePA is a set of attribute set{(A1, A2, · · · , An)}, the i-th

column ofR is a projection of attributeAi in D, andAi 6= Aj(i 6= j). The function

Map-Projection-Attributes uses a brute-force method to computePA (line 2).

For simplicity, we omit the details of functionMap-Projection-Attributes here.

For each projection-attribute setpa, we find the relationsrels containing all attributes in

pa (line 3). It is clear that the target query schema must contains all the relations ofrels.

Consider a subgraphJS of G, if it involves all the relations ofrels, we sayJS is a valid

join schema. For each valid join schema, we compute the joined relationJ(D) by join-

ing all the relations inJS, andQuery-Schema-Generator computes the candidate

query schemas (lines 5 to 7).

S-QFE winnows the candidates iteratively using a divide-and-conquer strategy. At each it-

eration, theDatabase-Generator takes as inputs(D,R) and candidate query schemas

S, which is the set of remaining candidates at the start of the iteration, to generate a new

databaseD′. D′ will partition candidates into two groups, and ask the user to select the

correct result (lines 8 to 11). According to the user’s feedback, S-QFE will start another

iteration using the subset of candidatesSx corresponding tox if Sx has more than 1 query

schemas (line 12). Otherwise, S-QFE terminates with the only query schema as the target

query schema (line 14). In the event that none of the query schema is correct, it means the

S will be an empty set in the end. In this case, we will start another round with new valid

join schema or new projection-attribute set.

Once the target query schema is identified, we continue to generate the candidate queries

QC (line 16). Because so far we only consider the SPJ query, given a target query schema,

there will only be one queryQ could get the resultR on databaseD.

Before delving into the details, we first introduce several notions, which we use through-

73

CHAPTER 4. SCHEMA-BASED APPROACH

out the whole chapter. Here we borrow the notation ofdata partitionfrom QBO [64].

Given a query schemaqs = (JR, JP, PA, SA) and a database-result pair(D,R), let

Jqs(D) denote the result of joining all the relations inJR using join predicatesJP with

respect toD. Suppose that there arek distinct tuples inR with R = {r1, · · · , rk}. Then

R can partition the tuples inJqs(D) into k + 1 partitions,P0, · · · , Pk, whereP0 could be

empty, with the following properties: (1) for eachPi, i 6= 0, each tuple inPi can generate

the output tupleri ∈ R; and (2) each tuple inP0 does not generate any output tuple inR.

Note that, if the target query is under bag semantics, it is possible that there are duplicated

records inR. To handle the bag-semantics query, we only use the distinctvalue inR to

partition the tuples inJqs(D). If R contains duplicate tuples, e.g.,ri equals torj, then they

correspond to the same partition. In this way, we partition tuples into multiple partitions

without overlap under either bag or set semantics.

We can classify the partitions inJqs(D) into three types:P0 is a negative partition;Pi

is a positive partition if i > 0 and |Pi| = 1; otherwise,Pi is a f ree partition. A tuple

t ∈ Jqs(D) is classified as a negative/positive/free tuple ift is in a negative/positive/free

partition. LetJqs(D) = J−
qs ∪ J+

qs ∪ Jfree
qs , whereJ−

qs, J
+
qs, andJfree

qs , respectively, denote

the subset of negative, positive, and free tuples inJqs(D).

The intuition of our approach is based on the following observation. Consider two query

schemasqs andqs′, whereqs contains attributeA andqs′ does not. Lett be a positive

tuple that can generate output recordr in query resultR. Now let us modifyt’s attribute

value ofA from v to v′ such thatt would not be selected by any candidate query sharing

query schemaqs, and then ask the user whetherr should appear in the query result with

respect to the modified data. If the target query schema isqs, thenr would not be in the

query result of the modified database; if the target query schema isqs′, thenr should still

be in the query result. Thus, we can identify whetherA is an attribute in target query

schema, and we refer tov′ as aninvalid-(qs, A) value.

74

CHAPTER 4. SCHEMA-BASED APPROACH

In the following sections, we will discuss our approach for two cases. The first one is there

exists at least one positive partition with respect to given(D,R), and the second case is

only free and negative partitions exist in databaseD. The reason is that each free partition

contains multiple records having same projection values. Without positive partition, there

could be many different combination of tuples to generate the query resultR, and we can

not find a positive tuple to modify, which increase the complexity.

4.2.1 Limitation

Note that it is possible that we can not derive the target query schema based on the given

database-result pair because of the constraint of the givendatabase-result pair. Here is an

example.

Example 4.2. Suppose that the user needs help to compose the query for the following

database-result pair(D,R), whereD consists of a single table. The user’s target query

is “find the male employee in IT department whose salary is more than 4500”.

Employee

Eid name gender dept salary

1 Alice F Sales 4700

2 Bob M IT 4700

3 Caleb M Service 5000

4 Darren M IT 5000

5 Elly F IT 4700

name

Bob

Darren

ResultR

Database D

As mentioned in the example, the user’s target query contains three predicates “dept =

‘IT ′”, “ gender = ‘M ′” and “ salary > 4500”. With the given databaseD, we can not

find a record that a male employee works in IT department whosesalary is less than 4500.

75

CHAPTER 4. SCHEMA-BASED APPROACH

Therefore, when we compose the query schema, we can easily construct a valid query

with predicates “dept = ‘IT ′” and “ gender = ‘M ′” without constraints on attribute

“ salary”. It is difficult to deduce a predicate with attribute “salary” due to the absence

of counter example.

As the example shows, to find the target query, for each selection predicate in the target

query, the given database should contain at least one negative tuple which violates the

predicate. Otherwise, we can not derive the predicate from the given database. For sim-

plicity, we assume the given database is sufficient to derivethe target query for the rest of

the chapter.

4.3 Handling The Scenario With Positive Partition

In this section, we discuss how to find the target query schemaif there exists at least one

positive partition in the database. We present our approachas the procedures shown in

Algorithm 4.1. We first discuss how to prune the invalid query schema, and then introduce

an approach to modify the database to identify the target query schema.

4.3.1 Algorithm Query-Schema-Generator

In this section, we discuss how to compute the candidate query schemas. To facilitate the

explanation of our approach, we first introduce the notion ofminimal query schema.

Definition 4.2. (minimal query schema) Given a database-result pair(D,R), a query

schemaqs = (JR, JP, PA, SA) is defined to be a minimal query schema if

1. qs is a valid query schema;

76

CHAPTER 4. SCHEMA-BASED APPROACH

2. for every non-empty proper subsetSA′ ofSA, query schema(JR, JP, PA, SA′) is

not a valid query schema.

Lemma 4.1. If qs = (JR, JP, PA, SA) is a minimal query schema, then for anySA′ ⊃

SA, qs′ = (JR, JP, PA, SA′) is also a valid query schema.

Proof. Supposeqs is a minimal query schema with selection attributesSA, andqs′ is

a query schema whoseSA′ = SA ∪ {Ai}, whereAi /∈ SA. There exists at least one

valid qs-queryQ. We can construct aqs′-queryQ′ by adding new selection predication

range(Ai) = domain(Ai), wheredomain(Ai) is the domain of attributeAi. Thus,Q′ is

also a valid query andqs′ is a valid query schema.

According to Lemma4.1, to find all the valid query schemas, one reasonable method isto

identify all the minimal query schemas first, then we can easily append selection attributes

to get more valid query schemas. In this work, we adopt an elimination method to get the

candidate query schemas. We first introduceminimal query, which can be used to test the

validity of a given query schema. Then, we present our approach to compute the candidate

query schemas.

Definition 4.3. (minimal query) Given a database-result pair(D,R) and a query schema

qs, letFP = {FP1, · · · , FPm} denote the collection of free partitions with respect toqs

andD. We defineQqs
min to be the minimal query belonging toqs (or minimal qs-query

for short) if the set of selection predicates inQqs
min is given by{Ai ∈ [ℓi, ui] : Ai ∈

SA}, whereℓi = min{min{πAi
(J+

qs)}, max{πAi
(FP1)}, · · · ,max{πAi

(FPm)}} and

ui = max{max{πAi
(J+

qs)},min{πAi
(FP1)}, · · · , min{πAi

(FPm)}}.

Lemma 4.2. Given a database-result pair(D,R), if the target query schema isqs, then

Qqs
min(D) ⊆ R.

Proof. According to the definition of minimal query, given a query schemaqs, for each se-

lection attribute, the selection predicate inQqs
min is derived by only the positive partitions.

77

CHAPTER 4. SCHEMA-BASED APPROACH

Thus, if qs is the target query schema, the target queryQ’s selection predicates must

be looser thanQqs
min. Otherwise, positive tuples will not satisfy the conditions. Hence,

Qqs
min(D) ⊆ R.

With Lemma4.2, we can prune invalid query schema as follows: given a database-result

pair(D,R), if Qqs
min(D)−R 6= ∅, thenqs cannot be the target query schema, otherwiseqs

is referred to as acandidate query schema. We compute all the candidate query schemas

and the algorithm is shown in Algorithm4.2.

Algorithm 4.2: Query-Schema-Generator
Input : join relationJ(D), query resultR
Output : Candidate query schemasS

1 Initialize S = ∅, QS1 = ∅
2 LetAS be the set of all the attributes in the joined relationJ(D)
3 foreach attributeA ∈ AS do
4 Construct query schemaqs whoseSA = {A}
5 if Qqs

min(J(D)) −R 6= ∅ then
6 QS1 = QS1 ∪ {qs}
7 else
8 S = S ∪ {qs}

9 QS2 = QS1

10 while QS2 6= ∅ do
11 LetQS3 = ∅
12 foreach qs2 ∈ QS2 do
13 foreach qs1 ∈ QS1 do
14 Let atts be the superset ofqs1 andqs2’s selection attributes
15 if atts hasbeencomputedbeforethen
16 continue
17 Construct query schemaqs whoseSA = atts
18 if Qqs

min(J(D)) −R 6= ∅ then
19 QS3 = QS3 ∪ {qs}
20 else
21 S = S ∪ {qs}

22 QS2 = QS3

23 return S

As shown in Algorithm4.2, we adopt a bottom-up approach to compute the candidate

query schema. Taking join relationJ(D) and query outputR as input, Algorithm4.2uses

all the attributes inJ(D) to compute the candidate query schemas (line 2). We enumerate

the query schema by gradually increasing the number of selection attributes. First we

78

CHAPTER 4. SCHEMA-BASED APPROACH

examine the query schemas with only one selection attribute(lines 3 to 8). For each query

schema, we construct the minimal query and test whether it isa candidate query schema

(line 5). If the answer is yes, we add it intoS, and stop appending more attribute to this

query schema. Otherwise, we append more selection attributes to enumerate more query

schemas (lines 10 to 22). We add one more attribute each time to the selection attributes

of the invalid query schema (line 14). If the selection-attributes set has been computed

before, we do not need to construct minimal query to examine it again (lines 15 to 16).

Then we examine the query schema with minimal query and storeall the candidate query

schemas as before (lines 18 to 24). The whole algorithm terminates when we find all the

potential minimal query schema, and the time complexity isO(2n), wheren is the number

of selection attributesSA.

4.3.2 Algorithm Database-Generator

In this section, we present the details of the functionDatabase-Generator. Recall

that we defineinvalid-(qs, A) value in Section4.2: given a positive tuplet and a query

schemaqs containing selection attributeA, if we changet’s A value to a valuev′, such

thatt becomes a negative tuple, we refer tov′ as an invalid-(qs, A) value. Conversely, if

valuev′ keepst as a positive tuple,v′ is called avalid-(qs, A) value.

Consider two valid query schemasqs andqs′, where attributeA is in selection attributes

of qs and not inqs′’s. To distinguish these two query schemas, we need to determine an

invalid-(qs, A) valuefor attributeA. Then we can modify the database with the invalid

value, and ask the user to identify the correct query schema by showing them the query

results from two query schemas. In this section, we first introduce the method to compute

the invalid value and then present our algorithm to modify the database.

Given a database-result pair(D,R), a query schemaqs and a selection attributeA, to

compute the invalid value, we first identify thepossible valid rangefor A with respect to

79

CHAPTER 4. SCHEMA-BASED APPROACH

qs andD, denoted byPossibleV alidD(A, qs). Specially, ifqs is the target query schema,

thenPossibleV alidD(A, qs) satisfied the following property: for each tuplet ∈ JqsD,

if t.A /∈ PossibleV alidD(A, qs), thent is guaranteed to be a negative tuple. Note that

PossibleV alidD(A, qs) is defined to contain all valid-(qs, A) values including possibly

some invalid-(qs, A) value. Thus, ifv 6∈ PossibleV alidD(A, qs), thenv is an invalid-

(qs, A) value. The reason for adopting this approximate definition is that it is amenable

to efficient computation.

ThePossibleV alidD(A, qs) can be efficiently derived from the selection predicates of

Qqs
min. Given a query schemaqs,Qqs

min’s selection predicates with attributeA is of the form

A ∈ [l, u] whereA ∈ SA and[l, u] is the value range ofA. ThenPossibleV alidD(A, qs)

is given by[ℓ′, u′], whereℓ′ ≤ ℓ andu′ ≥ u such that the following two properties hold:

(1) if queryQ is derived fromQqs
min by changingA’s selection predicate toA ∈ [ℓ′, u′],

thenQ(D)−R = ∅; and (2) ifQ is derived fromQqs
min by changingA’s selection predicate

to A > u’ or A < ℓ′, thenQ′(D) − R 6= ∅. Once we calculatePossibleV alidD(A, qs),

any valuev thatv ∈ domain(A)− PossibleV alidD(A, qs) is an invalid-(qs, A) value.

As each query schema has its own minimal query, for the same attributeA, the possible

value range for different query schemas could be different.It is not efficient if we calculate

the possible valid range for each query schema to compute theinvalid value. Here is an

example.

Example 4.3. Consider three candidate query schemasqs1, qs2 and qs3, and bothqs1

and qs2 have selection attributeA, whereqs3 does not. To identify whether the tar-

get query schema’s selection attribute containsA, one naive method is to determineA’s

possible value range forqs1 and qs2 respectively, and then modifyA’s value to violate

bothPossibleV alidD(A, qs1) andPossibleV alidD(A, qs2). However, it is possible that

such a value does not exist ifPossibleV alidD(A, qs1) ∪ PossibleV alidD(A, qs2) =

domain(A). In that case, we need to modify database to distinguishqs1 and qs3 first,

then distinguishqs2 andqs3.

80

CHAPTER 4. SCHEMA-BASED APPROACH

As shown in the example, to identify whether an attributeA is in the target query schema,

the naive method needs to computeA’s possible value range for each query schema indi-

vidually. To make the approach efficient, instead of calculating the possible value range

for each query schema, we want to find the maximal possible valid value range which is

not domain(A) for each attributeA. In order to find the maximal possible value range,

we first introduce two lemmas.

Lemma 4.3. If a query schemaqs is a minimal query schema with selection attributes

SA, given any query schemaqs′ whereqs′ is the same asqs except thatSA′ ⊃ SA, for

each attributeA′ ∈ SA′ − SA, thePossibleV alidD(A
′, qs′) = domain(A′).

Proof. Becauseqs is a minimal query schema,Qqs
min(D)−Q(D) = ∅. According to our

method to construct the minimal query, for attributeA ∈ (SA∩SA′), the selection predi-

cates are the same inQqs
min andQqs′

min. For an attributeA′ /∈ SA, if PossibleV alidD(A
′, qs′)

is [ℓ, u], which is a subset of thedomain(A′), then we get a tuplet in negative parti-

tion whoseA′ value is larger thanu or smaller thanℓ. At the same time, for attribute

Ai whereAi ∈ (SA ∩ SA′), t’s value still satisfy the selection predicates ofQqs′

min,

which are the same inQqs
min. This implies thatt ∈ Qqs

min(D), contradicting the fact that

Qqs
min(D)−Q(D) = ∅. Therefore, thePossibleV alidD(A

′, qs′) = domain(A′).

Lemma 4.4. Given two minimal query schemasqs1 andqs2, which are the same except

the selection-attribute sets, denoted bySA1 andSA2 respectively, if attributeA ∈ (SA1∩

SA2), then for query schemaqs3, which is the same asqs1 and qs2 except the selection

attributesSA3 = SA1 ∪ SA2, PossibleV alidD(A, qs3) ⊇ (PossibleV alidD(A, qs1) ∪

PossibleV alidD(A, qs2)).

Proof. We consider the query schemaqs1 andqs3 first, whereSA1 ⊂ SA3. For each com-

mon attribute inSA1 andSA3, the selection predicates in minimal query are the same.

As there are more selection attributes inQqs3
min than inQqs1

min, it is clear that except at-

tributeA, Qqs3
min’s whole selection predicates are more restrictive thanQqs1

min’s. Thus, when

81

CHAPTER 4. SCHEMA-BASED APPROACH

we compute thePossibleV alidD(A, qs3), it is obvious thatPossibleV alidD(A, qs3) ⊇

PossibleV alidD(A, qs1). Similarly,PossibleV alidD(A, qs3) ⊇ PossibleV alidD(A, qs2).

Therefore, the lemma holds.

According to Lemma4.3, given a query schemaqs and attributeA, if PossibleV alidD(A, qs)

is notdomain(A), then query schemaqs′, where itsSA′ = SA− {A}, is not a minimal

query schema. Together with Lemma4.4, we observe that to find the maximal possi-

ble valid range of attributeA, we should compute a query schemaqs∗ satisfying two

conditions: (1) the selection attributesSA∗ should be the superset of selection attributes

from all candidate query schemas containingA; (2) the query schema whose selection at-

tributes isSA ∗ −{A} is not a minimal query schema. However, sometimes thisqs∗ may

not exist. If such a query schema does not exist forA, we have to compute several query

schemas forA. We adopt a greedy approach to union the query schemas one by one until

the second condition is violated. After that, we get a set of query schemas, and for each

one, we computeA’s possible valid range individually. If the union of these valid ranges

is notdomain(A), we use the union as the maximal possible value range. Otherwise, we

have to modify the database for each possible valid range before we can identify whether

A belongs to the target query schema.

Consider attributeA that partitions candidate query schemaS to two groupsS1 andS2,

whereS1’s selection attributesSA1 contains attributeA while S2’s selection attributes

SA2 does not. Suppose the user selectsS1 as the group contains the correct query schema,

then all the query schemas inS2 are not correct. Thus, if attributeA′ is inSA2−SA1, then

A′ is not a selection attribute in the target query schema. Intuitively, we can skip asking

the question aboutA′. Furthermore, with the removal of the query schemas inS2, we

reduce the number of the query schemas when we calculate possible value range for other

attributes. Similarly when the user selectsS2, all the candidates inS1 will be eliminated.

As the user’s selection is unknown, to be conservative, we assume the user always select

the group with larger number of candidates. To quantify the effect, we define theimpact

82

CHAPTER 4. SCHEMA-BASED APPROACH

scoreof attributeA, denoted byiscore1(A), as the number of such attributes that are in

one candidate group but not the other one, i.e.iscore1(A) = min(|SA2 − SA1|, |SA1 −

SA2|). iscore(A) indicates the number of iterations we will save. We also define another

scoreiscore2(A) = min(|S1|, |S2|), which indicates the number of eliminated candidates.

To optimize the efficiency, before calling the functionDatabase-Generator, we first

sort the attributes byiscore1, iscore2 in non-increasing order, and then choose the first one

to modify the database. Note that the attribute order may be different in each iteration as

the candidate query schemas change, we have to recomputeiscore1 and iscore2 in the

beginning of each iteration.

Now we present the algorithm as shown in Algorithm4.3.

Algorithm 4.3: Database-Generator
Input : DatabaseD, candidate query schema setS
Output : A modified databaseD′

1 foreach attributeA ∈ S ’s SA do
2 computeiscore1(A), iscore2(A)
3 Sort attributes byiscore1, iscore2 in non-increasing order and pick the first attributeA
4 Initialize atts = ∅, SA = ∅, QSset = ∅
5 SA = {qs ∈ S|A ∈ qs’s SA}
// all the query schemas containing A

6 foreach queryschemaqsi ∈ SA do
7 atts = qsi’s SA
8 foreach queryschemaqsj ∈ SA do
9 if queryschemawith SA = atts ∪ qsj ’SA − {A}, is not acandidatequeryschema

then
10 atts = atts ∪ qsj ’SA
11 removeqsj from SA

12 construct query schemaqs whose SA= atts
13 QSset = QSset ∪ {qs}

14 Let value rangeMaxV = ∅
15 foreach queryshcemaqs ∈ QSset do
16 ComputePossibleV alidD(A, qsj)
17 if MaxV ∪ PossibleV alidD(A, qsj) 6= domain(A) then
18 MaxV = MaxV ∪ PossibleV alidD(A, qsj)

19 Pick valuev /∈ MaxV
20 Modify any positive tuplet ∈ D to t′ ∈ D′ by settingA’s value tov
21 return D′

Given a set of candidate query schemas, we first calculate theimpact score for each se-

83

CHAPTER 4. SCHEMA-BASED APPROACH

lection attribute, and sort the attributes byiscore1, iscore2 (lines 1 to 3). With the first

attributeA, we first find all the candidate query schemasSA whose selection attributes

containA (line 5). For each query schema containingA, we union itsSA with other

query schema’sSA. We find the largest attribute setatts, such that any query schema

with atts−{A} as selection attributes is not a potential minimal query schema (lines 6 to

11). Once the query schema is united with others, it’s removed fromSA (line 11). Then

we compose a new query schemaqs with atts (line 12, 13). For each new query schema,

we computeA’s possible valid range and find the maximal value rangeMaxV which is

notdomain(A) (lines 15 to 18). Then we select a positive tuple fromJqs(D) that gener-

ates some output tupler ∈ R. We modify the database tuplet ∈ D to t′ by modifying the

value of attributeA such thatt′.A /∈ MaxV (lines 19 to 21). Then we return the modified

databaseD′.

The complexity of the algorithm isO(MN2), whereM is the number of the selection

attribute in candidate query schemasS, andN is the number of candidate query schemas,

i.e. |S|.

4.3.3 Result Feedback

Given the modified databaseD′, we highlight the difference between original database

D andD′ and seek the user’s feedback on the following question: If the tuplet ∈ D is

modified tot′ ∈ D′ by changing attributeA’s value, isr ∈ Q(D−{t}∪{t′})? If the user

answers “no”, then attributeA is contained in target query schema, we choose the group

of candidate query schemas whose selection attributes contain attributeA as the candidate

query schema for another iterations. Otherwise, we choose the other group of candidates

for another iteration.

Note that, it is possible that all the candidate query schemas are not correct. In this case,

the select group is an empty set. As shown in Algorithm4.1, we will pick another valid

84

CHAPTER 4. SCHEMA-BASED APPROACH

join schema or projection attributes to compute the query schema.

4.4 Handling the Scenario Without Positive Partition

As discussed in Section4.2, we partition tuples inJqs(D) into three subsets, positive,

free and negative partitions, whereJqs(D) denotes the result of joining all the relations

in query schemaqs with respect toD. So far, we have introduced an approach to help

the user identify the target query schema when the positive partition is not empty. The

approach presented in Section4.3requires to construct minimal queries, and the selection

predicate for each selection attribute is determined by theminimal and maximal value in

the positive partition. However, the approach is not applicable if there are only free and

negative partitions inJqs(D), as we can not construct minimal query as before. In this

section, we discuss how to find the target query schema, if there are no positive partitions

in the given dataset. There are two types of SPJ queries we consider. The first one is SPJ

queries with set semantics and the second one is the queries with bag semantics. For each

query type, we propose an approach to find the target query schema.

As shown in Algorithm4.1, there are mainly two steps to identify the target query schema.

First, we compute the candidate query schemasS, and then we modify the database to

partition the candidates and ask the user to pick the correctone. Recall that the key to

compute the candidates is to construct a minimal query, which can be used to test whether

a given query schema is valid, using positive partitions. However, if positive partition

does not exist, it is not clear what tuples would generate thequery result.

Example 4.4.Consider the following database-result pair(D,R), whereD consists of a

single table. As shown in Table4.2, there are only two records in the query result, which

can partition databaseD into three partitions. Tuple set{E1, E2, E5} is the free partition

for the first record in result, and the set{E3, E4} is the free partition for the second

85

CHAPTER 4. SCHEMA-BASED APPROACH

Employee
Eid name gender dept salary

E1 Alice F Sales 4700
E2 Bob M IT 4700
E3 Caleb M Service 5000
E4 Darren M IT 5000
E5 Elly F IT 4700
E6 Frank M Sales 4900

salary

4700
5000

ResultR

Database D

Table 4.2: Employee database and result pair

record. TupleE6 is the only tuple in negative partition. If the target query is a query with

bag semantics, i.e., duplicates are allowed in the query result, there could be 6 different

combinations of tuples to produce the same query result asR. If the query is under set

semantics, i.e., no duplicates occur in the query result, there are more possible tuple

combinations to generate the query result, as multiple tuples could be used to generate

one tuple result with set semantics.

From the example we can find that without positive partition,it is difficult to identify

which tuple is used to generated the query result. As shown, for different query semantics,

the tuples we need to generate the same query result could be different.

To help explain our approach, we introduce the notion ofresult cover, which is utilized

to compute the candidate query schema. Given a database-result pair (D,R) and query

schemaqs, if we can find a set of tuplesT from the joined relationJqs(D), whereT ’s

projection values are exactly the same as the query resultR, we callT is aresult cover(r-

cover). In example4.4, if the target query is a bag-semantics query, we can find 6 r-covers,

which respectively are tuple sets{E1, E3}, {E2, E3}, {E5, E3}, {E1, E4}, {E2, E4}

and{E5, E4}. Recall that in Section4.3, we use positive partition to construct minimal

query, which helps us test the validity of a given query schema. In this section, since we

do not have positive partition, we use r-cover to construct such a query to verify the query

schema. We will illustrate the details in Sections4.4.1and4.4.2. In Section4.4.3, we

86

CHAPTER 4. SCHEMA-BASED APPROACH

propose a heuristic optimization to solve the problem.

To explain our approach clearly, we describe our algorithmsfor set-semantics and bag-

semantics queries separately.

4.4.1 Queries with Bag Semantics

In this section, we propose our approach to find the target query schema if the target query

is a bag-semantics query. The main algorithm is as same as Algorithm4.1. Here, we first

discuss how to compute the result covers and use them to generate the candidate query

schemaS (Query-Schema-Generator). Then, we present the algorithmto modify the

database and get the target query schema (Database-Generator). Once we get the target

query schema, the same approach as Section4.3is used to generate the candidate queries.

Algorithm Query-Schema-Generator

As mentioned, to get the candidate query schemasS, we need to construct a query to test

the validity of a given query schema, and without positive partitions, we use result covers

to construct such a query. In this section, we discuss how to compute the result covers and

derive a query to test the validity of a given query schema.

Given a database-result pair(D,R), as we assume there is no positive partition, each

output tuple can be generated by multiple tuples from the database. Under bag semantics,

we allow duplicate tuples in the query result. Therefore, any two duplicate tuples inR

must come from different tuples in free partitions. Letmi denote the number of duplicate

output tuples that are to be generated from the tuples in freepartitionPi. There are

(

mi

|Pi|

)

different combinations to generate themi duplicate output tuples, where|Pi| is the total

number of tuples in free partitionPi. We refer to each combination asPartition Cover

87

CHAPTER 4. SCHEMA-BASED APPROACH

of Pi, denoted byPi-cover. Let k denote the number of free partitions. We can get
∏k

i=1

(

mi

|Pi|

)

r-covers in total.

For each r-coverRC, we compute the candidate query schemas as follows. Given a query

schemaqs, we first construct a minimalqs-queryQqs
min. For each selection attributeA in

qs’s SA, we construct a selection predicateA ∈ [ℓ, u], whereℓ = min{πA(ti)|ti ∈ RC}

andu = max{πA(ti)|ti ∈ RC}. If Qqs
min(D) − R 6= ∅, qs is not a valid query schema.

Otherwise,qs is a candidate query schema verified by r-coverRC.

Note that not every r-cover can guarantee to compose a valid query schema. For example,

in Example4.4, if we choose{E1, E3} as a r-cover, we could not construct a queryQ

such thatQ(D)− R = ∅. BecauseE6’s every attribute value is in the value range ofE1

andE3 (we ignore attributes ‘name’ and ‘Eid’ as it does not make sense to modify these

two values), we can not find a SPJ query to eliminateE6 from E1 andE3. If we can’t

construct a valid query based on a given r-coverRC, we sayRC is an invalid r-cover.

Otherwise,RC is avalid r-cover.

Recall that, to compute r-cover, we first select one partition cover for each free partitionP ,

then multiply these partition covers from different free partitions, which could result in a

large number of r-covers. For efficiency reasons, we proposean early detection approach

to avoid generating the r-covers that are invalid.

Definition 4.4. (valid query) Given a databaseD, a set of free tuplesT and query schema

qs = (PA, JS, JP, SA), we defineqs-queryQ as a valid query forT , if πPA(T) ⊂ Q(D)

andQ(D) does not contain any negative tuple.

Lemma 4.5. Given a databaseD, a set of free tuplesT and query schemaqs, if there

does not exist a valid queryQ for T , then for any free-tuple setT ′ ⊃ T , there does not

exist aqs-queryQ′ for T ′, either.

Proof. If there does not exist a valid queryQ for T , that means for any query whose query

result contains tuples fromT , the query result must also contains at least one negative

88

CHAPTER 4. SCHEMA-BASED APPROACH

tuple. To find a query whose query result contains all tuples from T ′, whereT ′ ⊃ T ,

without any negative tuples is impossible. Therefore, there does not exist aqs-queryQ′

for T ′ either.

According to Lemma4.5, it is clear that given a r-coverRC, if there does not exist a valid

queryQ for any tuple setT whereT ⊂ RC, then there does not exist a valid query for

RC. Hence,RC is an invalid r-cover.

To check whether a valid query exists, we first construct aqs−queryQ in the same way

as we construct minimal query. For each selection attributeA, we construct a selection

predicate{A ∈ [ℓ, u]}, whereℓ = min{πA(ti)|ti ∈ T} andu = max{πA(ti)|ti ∈ T}. If

Q(D)−R 6= ∅, there does not exist a valid query, otherwise,Q is a valid query.

Lemma 4.6. Given two sets of free tuplesT1 andT2, consider a tuple setT3 = T1 ∪ T2.

If there exists a valid query schemaqs for T3, thenqs is also a valid query schema forT1

andT2.

Proof. If there exists a valid query schemaqs for T3, then there exists a validqs-query

Q, whose query result contains all tuples ofT3 without any negative tuples. SinceT3 =

T1 ∪ T2, Q’s query result must also contains tuples fromT1 andT2. ThusQ is also a valid

query forT1 andT2, andqs is also a valid query schema forT1 andT2.

Consequently, if query schemaqs is a valid query schema for free-tuple setT1 but not for

T2, thenqs is not a valid query schema forT3, whereT3 = T1 ∪ T2.

Now, we propose our approach to compute r-covers and candidate query schemas. We

adopt a bottom-up method to compute r-covers. First, for each free partitionPi, we com-

putePi-covers. To compute r-covers, we combine p-covers from different free partitions

one by one. Each time we combine a new p-cover from other free partitions, and we ex-

amine whether there exists a valid query schemaqs for the combined tuples. If not, we do

89

CHAPTER 4. SCHEMA-BASED APPROACH

not combine more p-covers to the current combination (Lemma4.5). Otherwise, we cache

qs to testify the next tuple combination, which unions a new p-cover (Lemma4.6). When

we finally compute a r-cover whose minimal query of query schema qs is also a valid

query,qs is a candidate query schema. The whole algorithm is shown in Algorithm4.4.

Algorithm 4.4: Query-Schema Generator (bag semantics)
Input : join relstionJ(D), query resultR
Output : Candidate query schemaS and valid r-coversRC

1 find all the free partitions{P1, P2, · · · , Pn} of J(D)
2 initialize C[][] = ∅ // store the tuples with valid query in each

iteration
3 initialize QS[][] = ∅ // store the query schema in each iteration
4 foreach free partitionPi(i = 1, 2, · · · , n) do
5 ComputePi-covers
6 foreachT ∈ Pi-coversdo
7 initialize QStmp = ∅
8 if i == 1 then
9 QStmp = Compute-Valid-Query-Schema(J(D), T)

10 else
11 foreach queryschemaqs ∈ QS[i− 1] do
12 if valid qs-queryQ for T existsthen
13 QStmp = QStmp ∪ {qs}

14 if QStmp 6= ∅ then
15 if i == 1 then
16 C[i].add(T), QS[i].add(QStmp)
17 else
18 foreachT ′ ∈ C[i− 1] do
19 Let tuple setTmp = T ∪ T ′

20 initialize tmpqs = ∅
21 foreach qs ∈ QStmp do
22 if valid qs-queryQ for Tmp existsthen
23 tmpqs = tmpqs ∪ {qs}

24 if tmpqs 6= ∅ then
25 C[i].add(Tmp), QS[i].add(tmpqs)

26 let n be the number of free partitions
27 S = QS[n], RC = C[n]
28 return S, RC

As shown in the algorithm, given the query resultR and joined relationJ(D), we first find

all the free partitions by mappingR to J(D) (line 1). For each free partitionPi, we first

compute all thePi-covers (line 5), and then examine whether there exists a valid query

schema for eachPi-coverT (lines 8 to 13). If this is the first free partition, we enumer-

90

CHAPTER 4. SCHEMA-BASED APPROACH

Algorithm 4.5: Compute-Valid-Query-Schema
Input : joined relationJ(D), free-tuple setT
Output : a set of valid query schemaQStmp for T

1 InitializeQStmp = ∅, QS1 = ∅ ;
2 Let AS be the set of all the attributes in the join relationJ(D);
3 foreach attributeA ∈ AS do
4 Construct query schemaqs whoseSA = {A};
5 if Qqs

min(J(D))− πT 6= ∅ then
6 QS1 = QS1 ∪ {qs};
7 else
8 QStmp = QStmp ∪ {qs} ;
9 QS2 = QS1 ;

10 while QS2 6= ∅ do
11 LetQS3 = ∅;
12 foreach qs2 ∈ QS2 do
13 foreach qs1 ∈ QS1 do
14 Let atts be the superset ofqs1 andqs2’s selection attributes;
15 if atts hasbeencomputedbeforethen
16 continue;
17 Construct query schemaqs whoseSA = atts;
18 if Qqs

min(J(D))− πT 6= ∅ then
19 QS3 = QS3 ∪ {qs};
20 else
21 QStmp = QStmp ∪ {qs};
22 QS2 = QS3;
23 return QStmp;

91

CHAPTER 4. SCHEMA-BASED APPROACH

ate all the query schemas with functionCompute-Valid-Query-Schema (line 9).

Otherwise, according to Lemma4.6, we only need to test the valid query schemas from

last iteration (line 11). The algorithm ofCompute-Valid-Query-Schema is shown

in Algorithm 4.5, which is similar to Algorithm4.2. We omit the details of how to test

whether a valid query exists, as it is trivial and we already explained it before (line 12). If

a valid query schema exists,T will be cached to combine with p-covers from other free

partitions (lines 14 to 25). For the first free partition, we simply cacheT in C and the

valid query schema inQS (line 15, 16). For the subsequent partitions, we combine the

p-covers with the cached tuples and examine whether there exists a valid query schema

for the new tuple set (lines 19 to 23). Only the tuple sets withvalid query schemas are

cached for the later iterations. Once we finish combining p-covers from all free partitions,

we get the valid r-covers, and the valid query schema corresponding to each r-cover. The

complexity of the algorithm is
∏n

i=1Ci ×N , whereCi is the number ofPi-covers of free

partitionPi, andN is the number of query schemas enumerated. With Lemma4.5 and

4.6, we reduce the number of r-covers and query schemas enumerated as we filter out the

invalid ones during the process.

Algorithm Database-Generator

Once we get the candidate query schemasS, we begin modifying the database to identify

the target one. One challenge is that each valid query schemamay correspond to different

r-covers. As each r-cover has different tuples from others,it is possible that there does

not exist a tuple shared by all r-covers. As a result, we may not use the same approach as

Algorithm 4.3. For example, consider two r-covers containing different tuples, and each

of their valid query schema contains selection attributeA. When calculating the maximal

possible valid range for attributeA, there may exist conflicts between the value ranges

from two r-covers. It is possible thatA’s invalid value range for the first r-cover is valid

for the second r-cover, as they do not use same tuples to generate the query result.

92

CHAPTER 4. SCHEMA-BASED APPROACH

One method to solve the problem is to find a tuple that can be used as positive tuple in

Algorithm 4.3, then we can simply reuse the algorithm to modify the database. It is clear

that if a tuple appears for all the r-covers, then we can consider it as a positive tuple.

Thus, we first partition all the r-covers into different groups on one condition: all r-covers

in the same group share at least one common tuple. For each group, as there is at least

one common tuplet, it is certain that when we calculate the maximal possible valid range

there will be at least one value in common. Therefore, we can avoid the case that attribute

A’s valid value range in one query schema is another query schema’s invalid value range.

Therefore, we can adopt the approach in Algorithm4.3to distinguish the candidate query

schemas. Under the partition condition, there could be multiple ways to partition r-covers.

As we need to run Algorithm4.3 for each partition, to minimize the computation effort,

we choose the partitions which result in least number of groups. The algorithm is shown

in Algorithm 4.6.

Algorithm 4.6: Database-Generator (bag semantics)
Input : DatabaseD, candidate query schemasS and valid r-coversRC
Output : User’s intended query schemaQS

1 G = Partition-RCovers(RC)
2 SortG in descending order of|Gi| and pick the first oneG1

3 let Stmp be an empty set
4 foreach r-coverrci ∈ G1 do
5 Let Si be the candidate query schema derived from r-coverrci
6 Stmp = Stmp ∪ {Sj}

7 D′ =Database-Generator(J(D), Stmp)
8 return D′

We first partition r-covers with functionPartition-RCovers (line 1). Here we adopt

a greedy algorithm which is shown in Algorithm4.7. We always pick the most frequent

tuple t and group the r-covers containingt into one group. Then we sort the groups in

the descending order of each group size (line 2). The reason is that the group with more

r-covers may have more candidate query schemas, which have higher odds to contain the

target query schema. With the largest groupG1, we collect all the candidate query schemas

corresponding to each r-cover, and adopt the same approach as Algorithm4.3 (lines 4 to

93

CHAPTER 4. SCHEMA-BASED APPROACH

Algorithm 4.7: Partition-RCovers
Input : r-coversRC
Output : A groupG of r-covers

1 Initialize G = ∅;
2 tmpRC = RC;
3 while tmpRC 6= ∅ do
4 Initilize G = ∅;
5 Let tuple setT be all the tuples intmpRC;
6 foreach tuplet ∈ T do
7 Initilize g = ∅;
8 foreach rc ∈ tmpRC do
9 if t ∈ rc then

10 g = g ∪ rc;
11 if |g| > |G| then
12 G = g;
13 remove everyrc ∈ G from tmpRC;
14 G = G ∪ {G};
15 return G ;

6). Note that, we pick the common tuple shared by all r-coversto modify, not the positive

tuple as shown in Section4.3. We return the modified databaseD′ to the user.

Result Feedback

Result Feedback moduleis same as Section4.3. Given the modified databaseD′, we

highlight the difference between original databaseD andD′ and ask the user to pick the

correct query result. Note that, once the user selects the correct group, besides of the can-

didate query schemas in the group, we also need to collect allthe r-covers corresponding

to these candidates. Because unlike Section4.3, Algorithm4.6takes both candidate query

schemas and corresponding r-covers as input to modify the database.

4.4.2 Queries with Set Semantics

Now we discuss how to find the target query schema when the target query is a set-

semantics query.

94

CHAPTER 4. SCHEMA-BASED APPROACH

Comparing to bag semantics, query with set-semantics is more complex since without

duplicates in the query result, it is difficult to identify how many tuples are used to gen-

erate one tuple in the result. Assume there is one tupler in query output, and there are

m free tuples from database can be projected tor. As the target query is a set-semantics

query, to get the resultr, there could be2m − 1 different combinations of free tuples, i.e.,

any non-empty subset of them tuples could be selected to get the same resultr. Given

a database-result pair(D,R), whereR containsk output tuples, the number of r-covers

could be
∏k

i=1(2
|Pi|−1), wherePi is the free partition related to the tuples that can gen-

erateri in R. Based on the above observation, if a queryQ is a valid query, there must

exist at least one tupleti from each free partitionPi satisfyingQ’s condition. We refer to

this property as at-least-one semantics as addressed in QBO[64]. Due to the at-least-one

semantics, the number of r-covers could be very large, and itis clear that enumerating all

r-covers to find the candidate query schema is not a practicalapproach.

Before presenting our approach, we defineminimal r-covers, and introduce a lemma first.

Definition 4.5. (minimal r-cover) Given a database-result pair(D,R), and a r-coverT ,

if the number of tuples inT is as same as the number of tuples inR, we sayT is a minimal

r-cover.

It is clear that a minimal r-cover contains only one tuple from each free partition.

Lemma 4.7. Given a database-result pair(D,R) and a r-coversT , if qs is a valid query

schema forT , then there must exist a minimal r-coverTm such thatqs is also a valid

query schema forTm.

Proof. (1) If T is a minimal r-cover, then the lemma holds.

(2) Consider whenT is not a minimal r-cover. Ifqs is a valid query schema forT , then

there must exist aqs-queryQ thatQ(T) = R, and for each output tupleri ∈ R, there must

exist a free tupleti satisfying queryQ. We pick one such tuple from each free partition

95

CHAPTER 4. SCHEMA-BASED APPROACH

and form a minimal r-coverTm, we haveQ(Tm) = R. Hence,qs is also a valid query

schema forTm. The lemma holds.

As Lemma4.7shows, to find all the valid query schemas, we only need to examine all the

minimal r-covers. The total number is
∏k

i=1 |Pi|, which is much less than
∏k

i=1(2
|Pi|−1).

Now we present our algorithm to compute the candidate query schemas. As Lemma4.5

and4.6 still holds with set semantics, we adopt the same approach inAlgorithm 4.4 to

compute the candidates. Recall that in Algorithm4.4, we first compute p-covers for each

free partition and then combine p-covers to compute valid r-covers. Now with set se-

mantics, since we only compute minimal r-cover, for free partition Pi, each free tuple

t ∈ Pi can be considered as aPi-cover. Thus, we can reuse the Algorithm4.4except that

we change the p-cover in Algorithm4.4 to single free tuple. The algorithm is shown in

Algorithm 4.8.

Once the candidate query schemas are computed, we can use thesame approach in Algo-

rithm 4.6to modify the database and ask the user to identify the targetquery schema. The

Result Feedback moduleis also as same as in Section4.4.1, thus we omit the details here.

4.4.3 Heuristic Solution

So far we have presented complete solutions to handle the scenario without positive par-

tition in the databaseD, both with bag and set semantics. As shown, to compute the

candidate query schemas, we need to enumerate all the resultcovers first. The complexity

is quite high as the number of r-covers is quite large. Here wepropose a trial-and-error

heuristic optimization.

The previous approach in Section4.4.1and4.4.2 requires that we formulate a r-cover

which can exactly generate the query resultR, which is a very restrict condition. Re-

call that when computing the candidate query schemas in Section 4.3, we only consider

96

CHAPTER 4. SCHEMA-BASED APPROACH

Algorithm 4.8: Query-Schema Generator (set semantics)
Input : join relstionJ(D), query resultR
Output : Candidate query schemaS and valid r-coversRC

1 find all the free partitions{P1, P2, · · · , Pn} of J(D)
2 initialize C[][] = ∅ // store the tuples with valid query in each

iteration
3 initialize QS[][] = ∅ // store the query schema in each iteration
4 foreach free partitionPi(i = 1, 2, · · · , n) do
5 foreachT ∈ Pi do
6 initialize QStmp = ∅
7 if i == 1 then
8 QStmp = Compute-Valid-Query-Schema(J(D), T)
9 else

10 foreach queryschemaqs ∈ QS[i− 1] do
11 if valid qs-queryQ for T existsthen
12 QStmp = QStmp ∪ {qs}

13 if QStmp 6= ∅ then
14 if i == 1 then
15 C[i].add(T), QS[i].add(QStmp)
16 else
17 foreachT ′ ∈ C[i− 1] do
18 Let tuple setTmp = T ∪ T ′

19 initialize tmpqs = ∅
20 foreach qs ∈ QStmp do
21 if valid qs-queryQ for Tmp existsthen
22 tmpqs = tmpqs ∪ {qs}

23 if tmpqs 6= ∅ then
24 C[i].add(Tmp), QS[i].add(tmpqs)

25 let n be the number of free partitions
26 S = QS[n], RC = C[n]
27 return S, RC

97

CHAPTER 4. SCHEMA-BASED APPROACH

positive partitions and ignore the free partitions. The reason is it is easy to compute and

the target query schema is guaranteed in the candidate queryschemas. In addition, the

Database Generator moduleonly requires to modify the positive tuple. Thus, we do not

need free partitions to identify the target query schema.

Now we consider the case without positive partition in the databaseD, i.e., all the tuples

in resultR are generated from free tuples. Although we do not know whichfree tuples

contribute toR, we assure that some tuple does. Therefore, for each free tuple t, we can

assume that it generates a output tuple inR, and considert as a positive tuple. Once we

have positive tuple, we can reuse the approach in Section4.3 to identify the target query

schema. If our assumption is incorrect, the user should find out that none of the candidate

query schema is correct. We can continue to try another free tuple until the user finds the

target query schema.

For each free partition, there exists at least one free tuplethat contributes toR. Thus, we

do not need to enumerate all the free tuples. We only need to examine free tuples from

one free partition. To be efficient, we choose the free partition with smallest number of

tuples to compute.

4.5 Discussion

In Section4.2, we give the overview of our approach in Algorithm4.1. It is clear that for

each iteration, all query schemas share the same projectionattributes (PA) and join rela-

tions (JR). Thus, we assume that all the candidate query schemas are same except their

selection attributes (SA) in Section4.2. In this section, we discuss how to generalize our

approach by relaxing the assumption. We first discuss how to handle the query schemas

with differentPA, then we discuss how to distinguish query schemas with differentJR.

When we consider query schemas with differentPA (or JR), we always assume they

98

CHAPTER 4. SCHEMA-BASED APPROACH

share the sameSA, otherwise, we can always change the selection attribute’svalue to

show the differences.

Query schemas with differentPA

It is trivial to distinguish two query schemas with different PA. Consider two query

schemasqs andqs′, where attributeA ∈ PA−PA′. As we assume the query schema share

the same selection attributes,A is not a selection attribute. Then we choose a positive tuple

t to modify. If there is no positive tuple, we can choose a free tuple t which contributes

to qs’s query result. After modifyingt’s value ofA to a new value,qs’s query result will

change andqs′’s will stay the same. We present the user the difference between two query

schemas, and ask him to identify the correct one.

Query schemas with differentJR

Without loss of the generality, we assume all the relations are joined under foreign-key

relationships. Hence, we do not consider the case two relations can join with differentJP .

Consider two query schemasqs andqs′, where relationrel ∈ JA − JA′. To distinguish

the query schema, we modify the join attribute ofrel to make sure the tuple can not be

joined with others. Given a tuplet ∈ rel which generatesqs’s query resultr, if we

maket can not join with other tuples, then recordr will be deleted fromqs’s query result.

However,qs′’s result will not be affected. The user can identify the target query schema

by looking at the difference in the query results.

4.6 Experimental Study

In this section, we evaluate the usability, efficiency and scalability of our approach using

two real datasets. Our experiments were performed on a PC with a Intel Core i7-2600

3.4GHz processor, 8GB RAM, and 320GB SATA HDD running UbuntuLinux 14.04.

99

CHAPTER 4. SCHEMA-BASED APPROACH

The algorithms were implemented in C++ and the database was managed using MySQL

Server 5.5.27.

We first introduce the datasets and test queries in Section4.6.1. Section4.6.2presents the

experimental results to show the effectiveness of our approach, in terms of the number of

iteration and running time, where the result feedback interactions were returned by a real

user choosing the correct result. Section4.6.3compares the results of the Schema-based

approach (S-QFE) with the Query-based approach (Q-QFE), interms of the candidate

query size. We also conducted a user study with 10 participants in Section3.6.9, and

compare the users’ feedback time between S-QFE and Q-QFE to show the usability of

our approaches.

4.6.1 Datasets and Queries

We conducted our experiments using two real datasets. The first dataset is a scientific

database of biology information taken from SQLShare1 that consists of two tables: the

first table, named PmTEALL DE, contains 3926 records with 16 attributes; and the sec-

ond table, tablePsemu1FLRT spgpgp ok, contains 424 records with 3 attributes. We

used three queries (denoted bySQ1, SQ2 andSQ3 below) on this database as the target

queries.SQ1 andSQ3 are real queries posted by some biologist on this dataset. Wedo

not use the same queries in Chapter 3 because so far S-QFE doesnot support queries with

disjunctions.

The second dataset is dataset Adult extracted from the 1994 US Census database2. It is

a single-relation dataset with 825 tuples. It contains 14 attributes in total. We also used

three synthetic queries (denoted byAQ1, AQ2 andAQ3) as target queries to conduct our

experiments.

1http://escience.washington.edu/sqlshare
2http://archive.ics.uci.edu/ml/datasets/Adult

100

CHAPTER 4. SCHEMA-BASED APPROACH

All the target queries are shown in Figure4.3.

AQ1 =πage,class,occ,edu(σsex=“F ′′∧age≥64

∧ms=“Never−married′′∧gain>500)adult

AQ2 =πage,edu,occ,hour(σocc=“Farming′′∧gain>500∧nc=“USA′′)adult

AQ3 =πage,edu(σocc=“Tech−support′′∧nc=“USA′′)adult

SQ1 =π∗(σP.logFC Fe<0.5∧P.logFC Fe>−0.5∧P.logFC P<−1)

(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

SQ2 =π∗(σP.logFC Fe≤−3.61∧P.logFC Fe>−3.67)

(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

SQ3 =π∗(σP.logFC Fe<1∧P.logFC Si<−1

∧PmTE ALL DE.logCPM Si>1∧P.PV alue P<0.05)

(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Figure 4.3: Test queries for experiments

The number of selection attributes in the six target queriesare, respectively, 4, 3, 2, 2, 1

and 4. The cardinalities of the query results for the six target queries are, respectively,

3, 4, 26, 27, 2 and 4 tuples. We generated the initial database-result pairs by executing

the above six queries on the database, and we always chose thecorrect query result as

feedback.

4.6.2 Performance of Schema-based Approach

In this section, we present the performance of S-QFE to show the effectiveness. Given

the 6 database-result pairs, S-QFE successfully identifiedthe target query schema for 5

queries exceptAQ1. As for AQ1, there are 4 selection attributes in its query schema,

but S-QFE only identified 3 attributes without attribute“sex” . The reason is that S-QFE

found a valid query with the 3 attributes (without “sex”) to generate the correct query

result. Thus, S-QFE did not add attribute“sex” into the query schema as it would be

redundant.

101

CHAPTER 4. SCHEMA-BASED APPROACH

Query No.
AQ1 AQ2 AQ3 SQ1 SQ2 SQ3

Total execution time (s) 3.84 6.04 7.21 13.55 2.97 5.80
Time to compute candidates (s) 3.82 6.03 7.18 13.03 2.89 5.72
of examined query schemas 6475 9721 8438 12274 4152 8295
of skipped query schemas 9908 6662 7955 53261 61383 57240

of candidates query schemasS 46 8 5 6 12 82
of iterations 8 4 4 2 3 6

Table 4.3: Performance for each target query

Table4.3shows the following performance statistics: (1) the total running time of S-QFE;

(2) the time for computing candidate query schemas; (3) the number of query schemas

we examined to find the candidate query schemas; (4) the number of query schemas we

skipped when we enumerated all the query schemas to find the candidates. (5) the number

of candidate query schemas generated; and (6) the number of iterations to identify the

target query schema;

Here the total execution time is the total running time of ourapproach, which includes

the time for mapping projection attributes, partitioning tuples, computing candidate query

schemas, modifying database and presenting the new database-result pairs to the user. The

time for user’s feedback is not included. It is clear that computing the candidate query

schemas dominated the whole execution time. The time for allthe other operations is less

than 0.1 second. More specifically, the time for partitioning tuples is less than 0.01 second,

and the time for modifying database in each iteration is lessthan 1 millisecond. From

the user’s perspective, the waiting between two iterationsis negligible, except for the first

iteration, which takes a little longer since S-QFE needs to compute all the candidate query

schemas at the beginning.

Computing query schemas takes a long time because S-QFE enumerates all the attribute

combinations to find the minimal query schemas. As shown in Table 4.3, overall, the

running time increases with the number of examined query schemas.SQ1 took the longest

time, more than 13 seconds, to examine 12274 query schema. Note thatAQ2 had more

102

CHAPTER 4. SCHEMA-BASED APPROACH

query schemas enumerated (9721) thanAQ3 (8438), but it took less time to compute the

candidate query schemas. The reason is thatAQ2’s query result size is 4, much smaller

thanAQ3’s, which is 26, and all of them are positive tuples. Recall that to build minimal

query for each query schema, we need to check all the positivetuples’ values. Therefore,

it took longer time to examine one query schema forAQ3 thanAQ2.

We also present the number of query schemas we skipped when computing candidate

query schemas in Table4.3. To compute the candidates, Algorithm4.2 requires to enu-

merate all the query schemas. The number is2n − 1, wheren is the number of attributes

in dataset. For Adult, the total number is 16383, and it is 65535 for the scientific dataset.

However, as our approach stops appending more attributes into candidate query schemas

based on Lemma4.1, we skipped a large number of query schemas to save the computa-

tion cost. For Adult dataset, we skipped half of the total query schemas, and more than

80% for the scientific dataset.

Interestingly, although we skipped query schemas because of the candidate query schema,

the number of skipped query schemas is not proportional to the number of candidate query

schemas. For example,AQ2 skipped less query schemas thanAQ3 though it had 3 more

candidate query schemas.SQ2 skipped more query schemas thanSQ3 with 70 candidate

query schemas less. In fact, more query schemas with smallerset of selection attributes

are found, the less of query schemas S-QFE needs to examine. Here we present the num-

ber of candidate query schemas generated with different number of selection attributes

in Table4.4. In our experiment, the candidate query schema had 6 selection attributes at

most.

As shown in Table4.4, in Adult dataset,AQ3 had 5 candidate query schemas with 2

selection attributes, andAQ2 had 8 candidates with 3 selection attributes. Given a 2-

attribute setS1, the number of attribute sets containingS1 is 2n−2, wheren is the number

of total attributes. Thus, ifS1 is a candidate query schema’s selection-attribute set, we

can skip2n−2 − 1 query schemas. Similarly, given a 3-attribute setS2, the number of

103

CHAPTER 4. SCHEMA-BASED APPROACH

of selection attributes
Query No.

AQ1 AQ2 AQ3 SQ1 SQ2 SQ3

1 0 0 0 5 6 5
2 0 0 5 1 6 0
3 14 8 0 0 0 3
4 27 0 0 0 0 38
5 5 0 0 0 0 30
6 0 0 0 0 0 6

Table 4.4: Number of candidate query schemas with differentselection attributes size

attribute sets containingS2 is 2n−3, half size of2n−2. Therefore,AQ3 skipped more query

schemas. In scientific dataset, note that althoughSQ3 had 82 candidate query schemas in

total, but only 5 of them had less than 3 attributes. However,SQ2 had 12 candidate query

schemas with 2 or 3 selection attributes. Hence, the number of examined query schema

of SQ2 was only half size ofSQ3.

In terms of iterations,AQ1 took the most number of iterations with respect to Adult

dataset, andSQ3 took most iterations with respect to the scientific dataset.S-QFE used 8

iterations to findAQ1 and 6 iterations to findSQ3. Both of the two queries have the largest

number of candidate query schemas among the queries from thesame dataset. BothAQ2

andAQ3 needed 4 iterations althoughAQ2 had 3 more candidate query schemas than

AQ3. Generally speaking, more candidate query schemas requires more iterations to

identify the target one.

4.6.3 Comparing Query-based and Schema-based approaches

In this section, we compare the Schema-based approach (S-QFE) with Query-based ap-

proach (Q-QFE) in terms of the number of iterations, number of candidate query schemas

(candidate queries) and running time to identify the targetquery. We still use the 6 queries

in Figure4.3as the target queries to conduct the experiments.

104

CHAPTER 4. SCHEMA-BASED APPROACH

Query No.
AQ1 AQ2 AQ3 SQ1 SQ2 SQ3

Q-QFE QG time 0.34 0.49 0.84 x 1.851 2.282
Q-QFE DG time 2.44 2.38 1.23 x 6.652 5.346
Q-QFE total time 2.78 2.87 2.08 x 8.503 7.628
S-QFE total time 3.84 6.04 7.21 13.55 2.97 5.80

(a) Execution time(in secs)

Query No.
AQ1 AQ2 AQ3 SQ1 SQ2 SQ3

of candidate queries in Q-QFE 8 5 5 - 9 7
of candidate query schemas in S-QFE46 8 5 6 12 82

of Q-QFE iterations 3 3 2 - 4 3
of S-QFE iterations 8 4 4 2 3 6

(b) Number of candidate queries and iterations

Query No. Approach
Iteration No.

1 2 3 4 5 6 7 8

AQ1
S-QFE 3822 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Q-QFE 1419 1247 106 - - - - -

AQ2
S-QFE 6025 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Q-QFE 1663 1140 65 - - - - -

AQ3
S-QFE 7181 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Q-QFE 2001 56 - - - - - -

SQ2
S-QFE 2886 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Q-QFE 3632 2125 1764 982 - - - -

SQ3
S-QFE 5717 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Q-QFE 4298 1987 1436 - - - - -

(c) System processing time for each iteration (in milliseconds)

Table 4.5: Results of two approaches

The total execution time of two approaches is shown in Table4.5.(a). The execution

time of Q-QFE approach is the sum of the Query-Generator running time (QG time) and

Database-Generator running time (DG time). We do not include feedback time here.

Note that forSQ1, we use “x” to indicate the execution time of Q-QFE. Because the Query

Generator took too much time to generate the candidate queries, we have to terminate the

system manually, the experiment failed forSQ1 query. Thus the number of candidate

queries and iterations are also not available, indicated by“-”. Besides, as mentioned in

Section4.6.2, S-QFE could not find the original query forAQ1, but since it could find a

105

CHAPTER 4. SCHEMA-BASED APPROACH

similar query (missing one redundant selection attribute), we just considered that it found

the target query. Similarly, for queriesAQ2 andSQ3, Q-QFE did not generate the original

query, but it still found some similar queries as the original query. We also considered that

Q-QFE generated the target query.

As shown in Table4.5.(a), there is no clear winner between the two approaches. For AQ1,

AQ2 andAQ3, Q-QFE was faster than S-QFE, and forSQ2 andSQ3, S-QFE needed less

time. For Q-QFE approach, we can see that Database Generatoralways took more time

than the Query Generator, because in each iteration, it needed to calculate the balance

score and the modification cost, then find the best way to partition queries. As to S-

QFE approach, as discussed earlier, the running time was dominated by the time to find

candidate query schemas, which varies a lot for different queries.

The number of candidate queries generated from Q-QFE, the number of candidate query

schemas from S-QFE and the number of iterations are shown in Table4.5.(b). There is

also no clear winner. Generally, there are more candidate query schemas from S-QFE than

the candidates from Q-QFE’s. ExceptSQ2, S-QFE required more iterations than Q-QFE

to identify the target one. The reason is that Q-QFE can partition queries into multiple

groups, and use balance score to control the balance, while S-QFE can only partition

query schemas into two group each time. However, S-QFE only needs to modify one

tuple in each iteration.

As for each iteration, except the first iteration, S-QFE tookmuch less time for each it-

eration, usually less than 1 millisecond. Because at the first iteration S-QFE computed

candidate query schemas, which is quite time-consuming. However, Q-QFE usually took

around 2 seconds between iterations, since it needed to find the optimal way to partition

queries based on the user’s feedback. The system processingtime for each iteration is

shown in Table4.5.(c). Note that if the target query schema was identified in the kth

iteration wherek < 8, then the timing value for each of the remaining iterations will be

indicated by ’-’.

106

CHAPTER 4. SCHEMA-BASED APPROACH

Figure 4.4: User interface screen capture

4.6.4 User Study

In this section, we present the results of a user study conducted with 10 participants (all of

whom were CS students) to evaluate the feasibility of our approach. The screen capture

of the system user interface is shown in Figure4.4. Similar to the user interface in Fig-

ure3.14, the system first showed the input database-result pair to the user. The user can

scroll up and down to browse the tuples in database and query result. In each iteration,

the system highlighted the differences between original and modified tuples. We used

107

CHAPTER 4. SCHEMA-BASED APPROACH

different colors to mark the modified attribute, the old and updated values to help users

examine the modifications. To make it easier for users, instead of asking the user to enter

the group number of the correct query result (in Section3.6.9), we provided Yes/No but-

tons. We asked the question “After the modification, whetherthe new tuple should be in

query result”. The user keeps clicking Yes/No buttons untilhe identifies the target query

schema.

For this experiment, we used the Adult relation and three queries in Section4.6.1as target

queries. This dataset was chosen over the scientific datasetas we felt that its data domain

would be easier to understand for users. Before the participants started, we first expressed

the query intentions to the participants in written English, rather than the SQL queries,

because our purpose is to help users construct SQL queries. For each query, we report

the user’s feedback time at each iteration, which is shown inTable4.6to 4.8. The system

execution time is not included. Note that if the target queryschema was identified in the

kth iteration wherek < 4, then the timing value for each of the remaining iterations will

be indicated by ’-’.

First of all, all of the participants could identify all the target queries correctly. As shown

in Tables 4.6 to 4.8, Q-QFE always took less iterations to identify the target query. For

AQ1, Q-QFE saved 5 iterations comparing to S-QFE, and forAQ2 andAQ3, it saved

1 and 2 iterations respectively. However, the average feedback time at one iteration of

Q-QFE was around 18 seconds, which is much longer than the average time of S-QFE,

less than 10 seconds. It means that S-QFE requires less effort for users to examine the

data examples. Because S-QFE only modifies one tuple each time, and it asks a yes/no

question, which is easier to answer.

It took the participants longer time at the beginning for S-QFE. The reason is that the par-

ticipants needed some time to understand the meaning of the query and the data schema.

After they became familiar with the query meaning and the data schema, it only took

around 8 seconds for each iteration. On the other hand, thereis no such trend for Q-QFE

108

CHAPTER 4. SCHEMA-BASED APPROACH

User Approach
Iteration No.

1 2 3 4 5 6 7 8

1
S-QFE 3.41 3.05 5.09 5.81 2.21 3.28 4.15 4.75
Q-QFE 10.68 14.73 9.43 - - - - -

2
S-QFE 12.96 5.82 4.36 2.89 22.37 11.95 5.08 9.97
Q-QFE 14.67 21.18 8.36 - - - - -

3
S-QFE 25.53 18. 10 9.51 5.01 2.82 6.97 6.93 4.98
Q-QFE 14.93 25.59 10.57 - - - - -

4
S-QFE 4.18 2.52 5.34 2.90 9.17 4.86 5.98 4.81
Q-QFE 9.74 18.42 12.87 - - - - -

5
S-QFE 10.81 19.92 4.99 5.68 19. 83 2.97 6.56 4.65
Q-QFE 13.55 29.81 18.45 - - - - -

6
S-QFE 23.81 18.89 16.04 12.94 29.25 10.31 5.44 10.24
Q-QFE 37.13 53.82 18.56 - - - - -

7
S-QFE 19.05 31. 25 13.06 5.03 27.6 8.01 6.92 7.97
Q-QFE 25.83 50.4 15.8 - - - - -

8
S-QFE 10.51 20.04 3.39 5.82 47.22 7.18 3.76 5.50
Q-QFE 9.85 17.73 7.86 - - - - -

9
S-QFE 11.54 10.67 5.02 6.29 32.33 11.45 8.24 4.93
Q-QFE 18.91 61.58 10.81 - - - - -

10
S-QFE 11.54 9.71 5.49 6.06 19.58 6.62 6.34 11.20
Q-QFE 19.22 16.49 13.27 - - - - -

Table 4.6: Feedback time forAQ1 (in secs)

approach, because unlike S-QFE, Q-QFE could modify more than 1 tuples in one itera-

tion. Thus, the user’s feedback is more related to the modifications in each iteration. For

S-QFE, in some iteration, it took a little longer for the participants to identify the query,

for example, the 5th iteration ofAQ1. The reason is that they were confused by the at-

tribute name, like“relationship” and“material status”. In AQ1, the selection condition

is material status = Never-married. In the 5th iteration, we modified the tuple by chang-

ing its relationship value to “Unmarried”, which was a little ambiguous. If the user is

familiar with the dataset, he would be aware of the problem.

Now we compare the total execution time between Q-QFE and S-QFE, including both

system running time and user’s feedback time. The results are shown in Figure4.5. We

also present the average time of each iteration in Table4.9to 4.11.

ForAQ1, nine participants spent less time to identify the target query with Q-QFE than

109

CHAPTER 4. SCHEMA-BASED APPROACH

User Approach
i-th iteration

1 2 3 4

1
S-QFE 8.58 6.43 5.98 1.76
Q-QFE 9.13 12.19 8.97 -

2
S-QFE 11.82 8.27 10.04 6.21
Q-QFE 14.98 16.23 12.76 -

3
S-QFE 6.79 5.56 6.02 5.03
Q-QFE 3.38 12.34 12.45 -

4
S-QFE 5.02 4.17 4.84 3.26
Q-QFE 11.21 9.45 10.93 -

5
S-QFE 10.61 10.55 10.05 3.94
Q-QFE 8.65 10.92 9.67 -

6
S-QFE 18.44 11.63 6.12 4.82
Q-QFE 28.37 14.09 10.82 -

7
S-QFE 11.35 11.17 19.94 4.63
Q-QFE 17.23 12.64 13.18 -

8
S-QFE 7.39 18.74 10.13 6.01
Q-QFE 10.21 11. 95 11.84 -

9
S-QFE 5.27 5.01 5.42 5.40
Q-QFE 11.47 12.02 10.79 -

10
S-QFE 12.37 6.68 6.19 7.41
Q-QFE 10.79 6.73 8.08 -

Table 4.7: Feedback time forAQ2 (in secs)

S-QFE. It took user 9 almost the same time using Q-QFE (95.08 seconds) and S-QFE

(94.31 seconds). The reason is that S-QFE required 5 more iterations to find the target

query schema. As forAQ2 andAQ3, half of the participants found it was faster to use

S-QFE approach, while the other half took less time to identify the query with Q-QFE

approach. Overall, two approaches are comparable.

In terms of interaction time, forAQ1, the longest feedback time in Q-QFE is 61 seconds,

and the shortest is 7.8 seconds. With S-QFE, the longest timeis 47 seconds and the

shortest is 2.2 seconds. ForAQ2, the longest and shortest feedback time is 18 and 1.7

seconds in S-QFE, and 28.4 and 3.9 seconds in Q-QFE. As forAQ3, the longest and

shortest feedback time is 39 second and 2.7 second in S-QFE and 52 and 8.5 seconds in

Q-QFE. Also as shown in Table4.9 to 4.11, the average time of S-QFE at each iteration

is also much less than Q-QFE.

110

CHAPTER 4. SCHEMA-BASED APPROACH

User Approach
i-th iteration

1 2 3 4

1
S-QFE 2.88 3.05 4.62 2.93
Q-QFE 10.62 9.53 - -

2
S-QFE 12.55 4.69 5.82 5.36
Q-QFE 18.45 13.82 - -

3
S-QFE 15.31 7.84 2.93 2.52
Q-QFE 10.11 11.62 - -

4
S-QFE 7.13 3.96 2.59 3.71
Q-QFE 20.88 17.93 - -

5
S-QFE 9.84 5.38 2.73 4.68
Q-QFE 17.64 8.13 - -

6
S-QFE 21.66 9.84 6.87 6.47
Q-QFE 15.49 13.96 - -

7
S-QFE 32.22 12.13 3.70 6.68
Q-QFE 52.81 25.92 - -

8
S-QFE 38.97 5.39 4.05 6.26
Q-QFE 48.24 26.21 - -

9
S-QFE 3.96 3.43 5.41 6.81
Q-QFE 14.05 8.55 - -

10
S-QFE 6.45 5.98 3.14 11.89
Q-QFE 7.84 6.38 - -

Table 4.8: Feedback time forAQ3 (in secs)

There is no clear trend which approach is better. In general,Q-QFE needs less iterations

to identify the target query, but at each iteration it takes the user longer time to examine

the examples comparing with S-QFE. As a result of our analysis, when Q-QFE generates

more candidate queries and the query schema contains many attributes, it takes Q-QFE

more time to compute the optimal way to modify database, and because of too many mod-

ifications at one iteration, it takes the user longer time to examine the modified database.

On the contrary, it is not suitable to use S-QFE approach whenthe candidate queries are

few, as S-QFE takes a lot of time when calculating candidate query schemas by enumer-

ating all the selection-attribute sets.

111

CHAPTER 4. SCHEMA-BASED APPROACH

 0
 2

0
 4

0
 6

0
 8

0
 1

00
 1

20
 1

40

1 2 3 4 5 6 7 8 9 10

T
im

e
(in

 s
ec

)

User

S-QFE
Q-QFE

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0
 8

0

1 2 3 4 5 6 7 8 9 10

T
im

e
(in

 s
ec

)

User

S-QFE
Q-QFE

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0
 8

0
 9

0

1 2 3 4 5 6 7 8 9 10

T
im

e
(in

 s
ec

)

User

S-QFE
Q-QFE

QueryAQ1 QueryAQ2 QueryAQ3

Figure 4.5: Total time to find target query (in secs)

4.7 Conclusion

In this chapter, we have proposed a Schema-based approach ofQFE (S-QFE) to help

the user construct queries. S-QFE takes as input an initial user-specified pair of sample

databaseD and output tableR for the user’s target query onD, and outputs candidate

queries with the correct query schema as the user’s target query. Unlike Q-QFE, we

propose a novel algorithm to help users identify the valid query schema first through a

sequence of iterations with the user to obtain the feedback on the correct query result on

modified input database. S-QFE does not expect users to be familiar with SQL and only

requires that users are able to determine whether a given output table is the result of his

or her intended query on a given input database.

Our experimental evaluation demonstrates the feasibilityof our approach and the effi-

ciency of our techniques. We also conduct a user study to showthe effectiveness. The

results show that our approach is easy to use. And the comparison between Q-QFE and

S-QFE also demonstrates that two approaches are comparable.

As part of future work, we plan to generalize our approach to handle a larger class of

queries, such as SPJ-union query, query with aggregation function, etc. We would also

like to further integrate Q-QFE and S-QFE into a hybrid system, and build an accurate

cost estimate model to adopt the proper approach.

112

CHAPTER 4. SCHEMA-BASED APPROACH

User Approach Total time # of iterations Average time

1
S-QFE 40.59 8 5.07
Q-QFE 38.62 3 12.87

2
S-QFE 79.24 8 9.91
Q-QFE 47.99 3 16.00

3
S-QFE 83.69 8 10.46
Q-QFE 54.87 3 18.29

4
S-QFE 43.60 8 5.45
Q-QFE 44.83 3 14.94

5
S-QFE 79.25 8 9.91
Q-QFE 65.59 3 21.86

6
S-QFE 130.76 8 16.35
Q-QFE 113.29 3 37.76

7
S-QFE 122.64 8 15.33
Q-QFE 95.81 3 31.94

8
S-QFE 107.26 8 13.41
Q-QFE 39.22 3 13.07

9
S-QFE 94.31 8 11.79
Q-QFE 95.08 3 31.69

10
S-QFE 80.38 8 10.05
Q-QFE 52.76 3 17.59

Table 4.9: Time results of Q-QFE and S-QFE forAQ1 (in secs)
.

113

CHAPTER 4. SCHEMA-BASED APPROACH

User Approach Total time # of iterations Average time

1
S-QFE 28.79 4 7.20
Q-QFE 33.16 3 11.05

2
S-QFE 42.38 4 10.59
Q-QFE 46.84 3 15.61

3
S-QFE 29.44 4 7.36
Q-QFE 31.04 3 10.35

4
S-QFE 23.33 4 5.83
Q-QFE 34.46 3 11.49

5
S-QFE 41.19 4 10.29
Q-QFE 32.11 3 10.70

6
S-QFE 47.05 4 11.76
Q-QFE 56.15 3 18.72

7
S-QFE 53.13 4 13.28
Q-QFE 45.92 3 15.31

8
S-QFE 48.31 4 12.08
Q-QFE 36.87 3 12.29

9
S-QFE 27.14 4 6.79
Q-QFE 37.15 3 12.38

10
S-QFE 38.69 4 9.67
Q-QFE 28.47 3 9.49

Table 4.10: Time results of Q-QFE and S-QFE forAQ2 (in secs)
.

114

CHAPTER 4. SCHEMA-BASED APPROACH

User Approach Total time # of iterations Average time

1
S-QFE 20.59 4 5.15
Q-QFE 22.23 2 11.12

2
S-QFE 35.63 4 8.91
Q-QFE 34.35 2 17.17

3
S-QFE 35.81 4 8.95
Q-QFE 23.81 2 11.91

4
S-QFE 24.60 4 6.15
Q-QFE 40.89 2 20.45

5
S-QFE 29.87 4 7.47
Q-QFE 27.85 2 13.79

6
S-QFE 52.05 4 13.01
Q-QFE 31.53 2 15.76

7
S-QFE 61.94 4 15.49
Q-QFE 80.81 2 40.41

8
S-QFE 61.88 4 15.47
Q-QFE 76.53 2 38.23

9
S-QFE 26.82 4 6.71
Q-QFE 24.68 2 12.34

10
S-QFE 34.67 4 8.67
Q-QFE 16.30 2 8.15

Table 4.11: Time results of Q-QFE and S-QFE forAQ3 (in secs)
.

115

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, aiming to help non-expert database users construct SQL queries, we propose

a novel approach called Query from Examples (QFE), which is designed for users who

might be unfamiliar with SQL, and only requires that the useris familiar with the dataset

and able to determine whether a given output table is the result of his or her intended

query on a given input database. The user inputs a sample databaseD and an output table

R which is the result of the his/her intended queryQ onD, QFE will first generate a set

of candidate queries or query schemas, and then help the userto identify the target query

from these candidates by adopting an instance-driven interactive method.

117

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Contributions

In this thesis, we first introduced Query-based approach of QFE (Q-QFE). We adopted an

interactive instance-driven approach to partition candidate queries into different subsets

with different query results. By using data examples, our system is quite straightforward

and user friendly. We analyzed the characteristics that a good data example should satisfy

and proposed an algorithm to derive it. To make the system more practical, we also

proposed a novel cost model to estimate the user’s workload,so as to minimize the user’s

effort to identify the target query. Besides, we also conducted an extensive experimental

study over real datasets and user studies, which showed thatour system is effective and

efficient.

Secondly, we designed a Schema-based approach of QFE (S-QFE). Given a sample database

D and an output tableR as input, our approach first identifies the target query schema,

and then generates a set of candidate queries sharing the target query schema, which can

transformD to R. We introduced a novel method to help the user identify the target

query schema through a sequence of iterations with the user to provide feedback on the

correct query result on a modified input database. By involving user to the process of

query derivation, we can filter out the incorrect query schemas in advance, and reduce the

search space. An experimental study over different datasets was also conducted to show

that S-QFE is efficient. We also conduct a user study to show the effectiveness of our

approach.

5.2 Future Work

There are several possible directions to extend QFE.

First, we would like to extend QFE to handle more queries types including SPJ-union

(SPJU) queries, group-by aggregation (SPJA) queries, etc.

118

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Second, for Q-QFE, to reduce users’ waiting time, we can use parallelization techniques

to speed up the system performance. One method is to pipelinethe two components, such

that once theCandidate Generator modulestarts generating queries, we run theDatabase

Generator moduleimmediately while theCandidate Generator modulecontinues gen-

erating more queries. Another method is to use multiple threads to execute tasks i.e.

partitioning queries in parallel. Moreover, we can take advantage of users’ feedback to

filter the queries at the beginning that can be ensured not useful for users.

Third, we would like to integrate Q-QFE and S-QFE to build a hybrid system. If we

can directly generate a small number of candidate queries byquery generator, we do not

adopt S-QFE to identify query schema. Otherwise, we adopt S-QFE to identify query

schema first. In addition, to be more flexible, we would like toprovide an option that

the system can terminate S-QFE anytime, and use the remaining candidate query schemas

to generate candidate queries and adopt Q-QFE to identify the target query. The system

could estimate the user’s effort accurately and decide which approach is more efficient.

To sum up, S-QFE and Q-QFE could be easily switch in order to reduce the user’s effort.

Another possible direction is to extend this work to handle incomplete query results. It

is common that users may not know the full query results even for a database that he

is familiar with, or the full query result may be large such that users are reluctant to

completely specify. Thus it is important and useful to generate the user’s intended query

when given a database and part of the query result.

In addition, we would also like to explore other ways to specify the input data. For exam-

ple, a user only needs to input a set of keywords, and then the system will automatically

generate a small set of data (sampling from the existing database) to let users mark the

query result they want. It would also be useful to conduct a user study to examine how

the size of the data the system automatically generates affects the queries that our query

generator produces and how the size could possibly reduce/enlarge the partition space.

119

BIBLIOGRAPHY

[1] Sloan digital sky survey. http://www.sdss.org/.

[2] S4: Top-k Spreadsheet-StyleSearchfor QueryDiscovery. ACM Association for

Computing Machinery, June 2015.

[3] Azza Abouzied, Dana Angluin, Christos Papadimitriou, Joseph M. Hellerstein, and

Avi Silberschatz. Learning and verifying quantified boolean queries by example. In

Proceedingsof the32NdSymposiumon Principlesof DatabaseSystems, 2013.

[4] Azza Abouzied, Joseph Hellerstein, and Avi Silberschatz. Dataplay: Interac-

tive tweaking and example-driven correction of graphical database queries. In

Proceedingsof the25thAnnualACM Symposiumon UserInterfaceSoftwareand

Technology, 2012.

[5] Javad Akbarnejad, Gloria Chatzopoulou, Magdalini Eirinaki, Suju Koshy, Sarika

Mittal, Duc On, Neoklis Polyzotis, and Jothi S. Vindhiya Varman. Sql querie rec-

ommendations.Proc.VLDB Endow., 3:1597–1600, 2010.

[6] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, and Wang Chiew Tan. Muse:

Mapping understanding and design by example. InICDE, 2008.

121

BIBLIOGRAPHY

[7] Bogdan Alexe, Laura Chiticariu, and Wang-Chiew Tan. Spider: A schema mapping

debugger. InVLDB, 2006.

[8] Carsten Binnig et al. Qagen: generating query-aware test databases. InSIGMOD,

pages 341–352, 2007.

[9] Carsten Binnig, Donald Kossmann, and Eric Lo. Reverse query processing. In

ICDE, pages 506–515, 2007.

[10] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. Generating queries with

cardinality constraints for dbms testing. InTransactionson KnowledgeandData

Engineering. IEEE Computer Society, 2006.

[11] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang

Li. Context-aware query suggestion by mining click-through and session data. In

SIGKDD, pages 875–883, 2008.

[12] Ugur Çetintemel, Mitch Cherniack, Justin DeBrabant,Yanlei Diao, Kyriaki Dimi-

triadou, Alexander Kalinin, Olga Papaemmanouil, and Stanley B. Zdonik. Query

steering for interactive data exploration. InCIDR, 2013.

[13] Adriane Chapman and H. V. Jagadish. Why not? InSIGMOD, pages 523–534,

2009.

[14] Gloria Chatzopoulou, Magdalini Eirinaki, and NeoklisPolyzotis. Query recommen-

dations for interactive database exploration. InSSDBM, 2009.

[15] Gloria Chatzopoulou et al. The querie system for personalized query recommenda-

tions. IEEE DataEng.Bull., 34(2):55–60, 2011.

[16] Rada Chirkova. Equivalence and minimization of conjunctive queries under com-

bined semantics. InICDT, pages 262–273, 2012.

[17] W. W. Chu and Q. Chen. A structured approach for cooperative query answering.

IEEE Trans.on Knowl. andDataEng., 6(5):738–749, October 1994.

122

BIBLIOGRAPHY

[18] Sara Cohen. Equivalence of queries that are sensitive to multiplicities. VLDB J.,

18(3):765–785, 2009.

[19] Sara Cohen et al. Equivalences among aggregate querieswith negation.ACM Trans.

Comput.Logic, 6(2):328–360, 2005.

[20] Sara Cohen et al. Deciding equivalences among conjunctive aggregate queries.J.

ACM, 54(2), 2007.

[21] Jonathan Danaparamita and Wolfgang Gatterbauer. Queryviz: helping users under-

stand sql queries and their patterns. InEDBT, pages 558–561, 2011.

[22] David DeHaan. Equivalence of nested queries with mixedsemantics. InPODS,

pages 207–216, 2009.

[23] E. Demidova, Xuan Zhou, and W. Nejdl. A probabilistic scheme for keyword-

based incremental query construction.Knowledgeand Data Engineering,IEEE

Transactionson, 24(3):426–439, March 2012.

[24] Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. Efficient query construction for

large scale data. InSIGIR, pages 573–582, 2013.

[25] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Explore-by-example:

An automatic query steering framework for interactive dataexploration. In

SIGMOD, SIGMOD ’14, pages 517–528, 2014.

[26] Ronald Fagin and Moshe Y. Vardi. Armstrong databases for functional and inclusion

dependencies.Inf. Process.Lett., 16(1):13–19, 1983.

[27] Carles Farré, Ernest Teniente, and Toni Urpı́. Checking query containment with the

cqc method.DataKnowl. Eng., 53(2):163–223, 2005.

[28] Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of cooperative

answering.J. Intell. Inf. Syst., 1(2):123–157, 1992.

123

BIBLIOGRAPHY

[29] Wolfgang Gatterbauer. Databases will visualize queries too.PVLDB, 4(12), 2011.

[30] Arnaud Giacometti, Patrick Marcel, Elsa Negre, and Arnaud Soulet. Query recom-

mendations for olap discovery driven analysis. InProceedingsof theACM twelfth

internationalworkshoponDatawarehousingandOLAP, DOLAP ’09, pages 81–88,

2009.

[31] Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. Exploiting constraint-like data

characterizations in query optimization. InSIGMOD, pages 582–592, 2001.

[32] Jiafeng Guo, Xueqi Cheng, Gu Xu, and Huawei Shen. A structured approach to

query recommendation with social annotation data. InCIKM, pages 619–628, 2010.

[33] Melanie Herschel and Mauricio A. Hernández. Explaining missing answers to spjua

queries.PVLDB, 3(1-2):185–196, 2010.

[34] Melanie Herschel, Mauricio A. Hernández, and Wang-Chiew Tan. Artemis: A sys-

tem for analyzing missing answers.Proc.VLDB Endow., 2(2):1550–1553, August

2009.

[35] Bill Howe, Garret Cole, Nodira Khoussainova, and Leilani Battle. Automatic starter

queries for ad hoc databases. InSIGMOD’11: Proc. of the ACM SIGMOD Int.

Conf.on Managementof Data(demo), 2011.

[36] Bill Howe, Garrett Cole, Emad Souroush, Paraschos Koutris, Alicia Key, Nodira

Khoussainova, and Leilani Battle. Database-as-a-servicefor long-tail science. In

SSDBM, 2011.

[37] Jiansheng Huang et al. On the provenance of non-answersto queries over extracted

data.PVLDB, 1(1):736–747, 2008.

[38] Yannis E. Ioannidis. From databases to natural language: The unusual direction. In

NLDB, pages 12–16, 2008.

124

BIBLIOGRAPHY

[39] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li,

Arnab Nandi, and Cong Yu. Making database systems usable. InSIGMOD, pages

13–24, 2007.

[40] T. S. Jayram et al. The containment problem for real conjunctive queries with in-

equalities. InPODS, pages 80–89, 2006.

[41] Nodira Khoussainova et al. Snipsuggest: Context-aware autocompletion for sql.

PVLDB, 4(1):22–33, 2010.

[42] Nodira Khoussainova, YongChul Kwon, Wei-Ting Liao, Magdalena Balazinska,

Wolfgang Gatterbauer, and Dan Suciu. Session-based browsing for more effective

query reuse. InSSDBM, pages 583–585, 2011.

[43] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. Relaxing join and

selection queries. InVLDB, pages 199–210, 2006.

[44] Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioannidis. Explaining structured

queries in natural language. InICDE, pages 333–344, 2010.

[45] Alon Y. Levy and Yehoshua Sagiv. Queries independent ofupdates. InVLDB, pages

171–181, 1993.

[46] Eric Lo, Nick Cheng, and Wing-Kai Hon. Generating databases for query work-

loads.PVLDB, 3(1):848–859, 2010.

[47] Heikki Mannila and Kari-Jouko Räihä. Automatic generation of test data for rela-

tional queries.J.Comput.Syst.Sci., 38(2):240–258, 1989.

[48] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. Efficient algorithms for

mining inclusion dependencies. InEDBT, 2002.

[49] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion using hitting

time. InCIKM, pages 469–478, 2008.

125

BIBLIOGRAPHY

[50] Chaitanya Mishra and Nick Koudas. Interactive query refinement. InEDBT, EDBT

’09, pages 862–873, 2009.

[51] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. Generating targeted queries

for database testing. InSIGMOD, pages 499–510, 2008.

[52] A Motro. Intensional answers to database queries.Knowledge and Data

Engineering,IEEE Transactionson, 6(3):444–454, Jun 1994.

[53] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. Ex-

emplar queries: Give me an example of what you need.PVLDB, 7(5):365–376,

2014.

[54] Ion Muslea and Thomas J. Lee. Online query relaxation via bayesian causal struc-

tures discovery. InAAAI - Volume2, pages 831–836, 2005.

[55] Arnab Nandi and H. V. Jagadish. Assisted querying usinginstant-response inter-

faces. InProceedingsof the 2007 ACM SIGMOD internationalconferenceon

Managementof data, pages 1156–1158, 2007.

[56] Christopher Olston, Shubham Chopra, and Utkarsh Srivastava. Generating example

data for dataflow programs. InSIGMOD, pages 245–256, 2009.

[57] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. Pig latin: a not-so-foreign language for data processing. InSIGMOD

Conference, pages 1099–1110, 2008.

[58] Li Qian, Michael J. Cafarella, and H. V. Jagadish. Sample-driven schema mapping.

In SIGMOD, 2012.

[59] Anish Das Sarma, Aditya G. Parameswaran, Hector Garcia-Molina, and Jennifer

Widom. Synthesizing view definitions from data. InICDT, pages 89–103, 2010.

[60] Shetal Shah et al. Generating test data for killing sql mutants: A constraint-based

approach. InICDE, pages 1175–1186, 2011.

126

BIBLIOGRAPHY

[61] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri,Bolin Ding, and Lev Novik.

Discovering queries based on example tuples. InSIGMOD, pages 493–504, 2014.

[62] Alkis Simitsis and Yannis E. Ioannidis. Dbmss should talk back too. InCIDR, 2009.

[63] Sandeep Tata and Guy M. Lohman. Sqak: Doing more with keywords. InSIGMOD,

pages 889–902, 2008.

[64] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query by output.

In SIGMOD, pages 535–548, 2009.

[65] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query reverse

engineering.TheVLDB Journal, 23(5), 2014.

[66] Jeffrey D. Ullman. Information integration using logical views. Theor.Comput.

Sci., 239(2):189–210, 2000.

[67] Fang Wei and Georg Lausen. Containment of conjunctive queries with safe negation.

In ICDT, pages 346–360, 2002.

[68] Fang Wei and Georg Lausen. A unified apriori-like algorithm for conjunctive query

containment. InIDEAS, pages 111–120, 2008.

[69] Kuat Yessenov, Shubham Tulsiani, Aditya Menon, RobertC. Miller, Sumit Gul-

wani, Butler Lampson, and Adam Kalai. A colorful approach totext processing by

example. InUIST, 2013.

[70] Meihui Zhang, Hazem Elmeleegy, Cecilia M. Procopiuc, and Divesh Srivastava.

Reverse engineering complex join queries. InSIGMOD, pages 809–820, 2013.

[71] Moshé M. Zloof. Query by example. InAFIPS NationalComputerConference,

pages 431–438, 1975.

127

	Declaration
	Acknowledgement
	Abstract
	Introduction
	Example-driven Query Construction
	Query-based Approach
	Schema-based Approach
	Thesis Contributions
	Thesis Organization

	Literature Review
	Query Construction
	Example-Driven Systems
	Query Generators
	Database Generators
	Reverse Query Processing
	Query Equivalence Problem
	Explaining Missing Answers

	Query Refinement Problem

	Query-based Approach
	Approach Overview
	Cost Model
	Estimation of Number of Iterations

	Query Generator
	Database Generator
	Tuple Classes
	Overview of Approach
	Algorithm Skyline-STC-DTC-Pairs
	Algorithm Pick-STC-DTC-Subset

	Discussion
	Queries with Set-based Semantics
	Queries with Different Join Schemas
	Database Constraints
	Supporting More Expressive Queries

	Experimental Evaluation
	Database and Queries
	Results for Default Settings
	Effect of Scale Factor
	Effect of Time Threshold
	Efficiency of Algorithm 3.4
	Effect of Number of Candidate Queries
	Effect of Initial Database-Result Pair
	Effect of Size & Entropy of Attributes' Active Domains
	User Study

	Conclusion

	Schema-based Approach
	Introduction
	Approach Overview
	Limitation

	Handling The Scenario With Positive Partition
	Algorithm Query-Schema-Generator
	Algorithm Database-Generator
	Result Feedback

	Handling the Scenario Without Positive Partition
	Queries with Bag Semantics
	Queries with Set Semantics
	Heuristic Solution

	Discussion
	Experimental Study
	Datasets and Queries
	Performance of Schema-based Approach
	Comparing Query-based and Schema-based approaches
	User Study

	Conclusion

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography

