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ABSTRACT

In today’s era of Big Data, there is a lot of interest in dg«tdrself data exploration.
For example, cloud-based data sharing and analysis ptadfare now available which
provide a web-based interface for users to pose queriesednuploaded data. How-
ever, expressing information needs using database systiéemsrequire writing queries
in a formal language which is a challenging task for non-exgatabase users. This has

motivated several recent research efforts to help datalsess with query construction.

Many of the existing approaches require the users to beitamailth the query language:
some approaches provide users with a repository of shamkgito facilitate browsing
for similar queries, and other approaches provide a recamdardunctionality to aid users
with query construction by suggesting appropriate queiymis based on their partially

constructed queries.

In this thesis, we aim to lower the barrier for today’s datastoners to utilize database
technology for data analysis by investigating an exampied approach to help users
with query construction. Our proposal does not require userbe familiar with any

query language; instead, it only requires that the user lis mbhdetermine whether a

Xi
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given output table is the result of his or her intended queraaiven input database.
To kick-start the construction of a target quepy the user first provides an example
database-result paiiD, R), whereR is the desired output table 6f on the databas®.
As there will be generally multiple candidate queries thasformD to R, our approach
winnows this collection by iteratively presenting the uaéth new database-result pairs
that distinguish these candidates. To minimize the usditsté¢o determine if a new
database-result pair is consistent with his or her desitetyg our approach strives to
make these distinguishing pairs as close to the origibalR?) pair as possible. In this way,
our approach is able to identify the user’s target query lekisg the user’s feedback on a
sequence of slightly modified database-result pairs. BEXoephe initial database-result
pair, which is provided by the user, all the subsequent @agsautomatically generated

by the system.

We propose two approaches to solve our example-driven rétinauery construction.
The first approach is a query-based approach that leveraigse research on query
reverse engineering to generate a set of candidate querig¢grative pruning with the
user’s feedback. The second approach is a schema-baseaxhelpphat first identifies
the target query schema via user feedback before pruningatheidate queries for the
identified target query schema. Our experimental study deinates the feasibility and

effectiveness of our example-driven approach for quengtrantion.
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CHAPTER 1

INTRODUCTION

Given today'’s ease of collecting large volumes of data aachéed for ad-hoc data query-
ing to find information or explore the data, there is growidgpation of relational database
systems, beyond the traditional enterprise context, faragang and querying data. For
example, in the scientific community, the Sloan Digital Skyn&y (SDSS) Projectl]
provides online querying of a large repository of imagedoadata using SQL queries,
and the recent SQLShare Proje86] provides a web-based interface to facilitate sci-
entists posing SQL queries on their uploaded research #etaever, many non-expert
database users still primarily rely on scripts or files todiatheir data. Even though some
users can write simple SQL queries, they are not competentgtnto express the com-
plicated query intention. Writing SQL queries for such tigourself data exploration
remains a challenging task for non-expert users, and tinisideration has motivated sev-

eral recent research efforts to help users with query coctsbn.

1



CHAPTER 1. INTRODUCTION

One approach to help users with query construction is toigeca repository for users to
share their queries and facilitate browsing for similarripgethat can be reused, possibly
with minor modifications 35, 42]. For example, SQB maintains a sample of popular user
queries to facilitate query reusé?], and SQLShare facilitates browsing and searching of

SQL queries posted by usef&].

Another approach is to provide a query recommendationitiaciDne way is to recom-
mend entire queries based on a user’s and other users’ pastgjvecorded in a query
log [14]. If they have similar query records, the system will recoemah the other users’
queries to the current user. Another kind of recommendagitmrecommend query snip-
pets for specified SQL clauses (e.g. tables in from-claussgigates in where-clause)
based on the partial query fragment that the user has typkdrgnpast queries authored
by the user41, 55].

Both query browsing as well as query recommendation appesaequire the users to be
familiar with SQL as they need to be able to read and write SQérigs. They do not

take account of users’ query intention either, as users caexpress their query intention
to these approaches accurately. In addition, these agmeacay not be applicable if the

data being queried belongs to a private database that isom$ety a single user.

1.1 Example-driven Query Construction

In this thesis, we propose a novel example-driven apprazledQuery from Examples
(QFE), that is targeted at less sophisticated users who mightfaenilar with SQL. Un-

like the previous approaches, QFE is a more “user-friendpfroach that only requires
that the user be able to determine whether a new given owpld is the result of his or

her target query on a given input database.

2



CHAPTER 1. INTRODUCTION

5

Databa%e-Resu& Candidate| 3 Candidate 4| Database _5 Modified gatabaseDG— Result |7 Selected

Pa|r|(D,R) Generator Queries Gen:erator Query Results?,, - - - , Ry Feedback ResultR;
4

Figure 1.1: Overall Architecture of QFE

To kick-start the construction of a target quéryn QFE, the user first provides an exam-
ple database-result paib, i), whereR is the output table af) when query) is executed
on databas®. As there will be many candidate queries that transfarmo R, QFE win-
nows this collection by iteratively presenting the usehwiew database-result pairs that
distinguish these candidates. As for different candidaerigs, the database-result pairs
could be different. To minimize the user’s effort to detemmif a new database-result
pair is consistent with his or her desired query, QFE strivasake these distinguishing
pairs as close to the originaD, R) pair as possible. In this way, QFE is able to identify
the user’s target query by seeking the user’s feedback oquesee of slightly modified
database-result pairs. Except for the initial databasehreair, which is provided by the
user, all the subsequent pairs are automatically genebogtdte system. The overview of

QFE architecture is shown in Figuiel

As shown in Figurel.l, QFE is mainly composed of three components. All these com-
ponents are orthogonal to each other, which makes the whstera easy to maintain.
Given a database-result pair, tBandidate Generator modufest generates a set of can-
didate querieg)y, - - - , Q,,, where their query result9,(D) = --- = Q,(D) = R. To
distinguish the user’s intended query from other candidaieries, theDatabase Gen-
erator modulemodifies D to D’, such thatD’ partition queries into different groups by
generating new database-result pairs for the user to examireResult Feedback module
highlights the changes between the initial databaseirpaiiland the new database-result

pairs. If the user’s feedback select the group containingertitan one queries, the user’s

3



CHAPTER 1. INTRODUCTION

feedback is returned to thzatabase Generator moduler another iteration. The process
terminates once QFE has identified the intended query, o nbthe candidate queries

are selected.

It is clear that QFE can enhance database usability. FirsilofQFE can help users
construct queries if they are aware of the result, but notawhhow to derive them. For
example, many database users use spreadsheets or othter $ilese their query results
and share them with one another without any annotations.difficult for the others to
discover the query and explore the data characteristicspf@posed approach should be
helpful for users who are not familiar with SQL, and that tequired input of a single
example database-result pair is a reasonable requirermensérs. Another feature of
QFE is that it adopts an iterative data-driven approach. Wele that showing data
and changes to the user can be an intuitive way to help hinuthgerstand the essence
of the query. Moreover, QFE provides friendly and efficiemteractions with the user.
QFE minimizes the information shown to reduce the usergrgfaind the user can give

feedback in time to help QFE adjust the modify strategy ferftllowing iterations.

Besides constructing queries for users directly, QFE cam @llaborate with other tools
to help analyze data. For example, Howe et @b] have developed an ad hoc database
management system called SQLShare to help users explard it opts the terrstarter
gueryto refer to a database-specific example query to help usetgtstir analysis work
[35]. These starter queries are derived from a set of tablebymhalyzing their statistical
properties without users’ input. Without concerns of therissreal demand, these starter
gueries may not be helpful for the analysis purpose. Howébe user browses the data
and can provide some information about the results he/gheces then with QFE he/she
can get a starter query more specifically with concern of g8e’si real demand. In this
way, we can avoid the cost for the user to derive his or herygotrial and error, and

analyze the data efficiently.
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1.2 Query-based Approach

In this section, we introduce our first approach of QFE terQe@ry-based approach
(Q-QFE). As shown in Figur#.1, given a database-result paip, R), theCandidat Gen-
erator moduldirst generates a set of candidate queries that can deifirem database®.
The Database Generator modutakes an initial database-result paiy, R) and a set of
candidate queries QC as input, and generates a new databtsdistinguish the queries
in QC. Although queries in QC can generate the same resulatabdseD, onceD is

updated in future, the query results may not be same any rHere.is an example.

Example 1.1. Consider the relation Employee(Eidame, gender, department, salary) in

a company databasP and the user’s intended query resiélt as shown in Figurd..2

| Eid | name | gender| dept | salary |

1 Alice F Sales | 3700 Bob
2 Bob M IT 4200 Darren
3 | Celina F Service| 3000
4 | Darren M IT 5000
Database) ResultR?

Figure 1.2: Employee database and result pair
For simplicity, assume that there are three candidate reemQC'.

Q1. SELECT name FROM Employee WHERRder = ‘M’
(QQ2: SELECT name FROM Employee WHEREary > 4000;
3. SELECT name FROM Employee WHE®partment = ‘IT",

Although they all have the same query results, it is obvibasthey have different query
semantics. If the company hires a female employee in depatthh, or raises Alice’s

salary up to 4000, these queries will show different quesylts.

It is well known that if two querieg); and (), are not equivalent, then there exists a

databasé such that), (D) # (D). Based on this statement, a straightforward thought

5



CHAPTER 1. INTRODUCTION

to distinguish two queries is to generate a new databaseh@yn data) that provides
different query results for different queries. Howevertaikes more effort for users to
examine an unfamiliar database and identify the correctygquesult. Hence, modifying

the existing database to distinguish the candidate quisreemore reasonable option.

Example 1.2.To illustrate our approach, we continue from Exampl& To help identify
the user’s target query among these three candidates, qumoagh will first present to the
user a modified databade,;* and two possible query result8; and R, on D; (shown in

Figure 1.3):

Employee

| Eid | name | gender| dept | salary | Di(r)rt;n

1 Alice F Sales | 3700 Resultiz

2 | Bob M IT 3900 !
3 | Celina F Service| 3000

name

4 | Darren M IT 5000

Databasé),

ResultRz,

Figure 1.3: Employee database and result pair

Essentially, the modified databagg serves to partition)C' into multiple subsets. In
this example@C' is partitioned into two subsets with the querie§ip,, @3} producing
the same resulf?; on D; and the only query i{Q.} producing the resul?, on D;.
The user is then prompted to provide feedback on whidk, &ind R, is the result of her
target query@ on D;. If the user chooseR,, then we conclude that the target query is
()»; otherwise, € {Q;, @3} and the feedback process will iterate with another round
and present the user with another modified datab@s@nd two possible result$i; and

R, on D, (shown in Figurel.4).

If the user feed back thak; is the result ofQ) on D,, then we conclude thad is Q1;

otherwise, we conclude th&} is ;. For this example, the target query is determined

1The modification(s) in the database (i.e., Bob’s salarysamvn as boxed text.

6
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Employee

| Eid | name | gender| dept | salary | Di(r)rt()-:'n
1 | Alice F Sales | 3700 Resuliz,

2 | Bob | M 4200
3 | Celina F Service | 3000
name
4 | Darren M IT 5000
Databasdé),

ResultRR,

Figure 1.4: Employee database and result pair

with at most two rounds of user feedback, each of which iegodvsingle tuple changed

in the database. 0

In this thesis, we propose Q-QFE, an iterative data-driy@r@ach to distinguish a set
of candidate queries, by modifying the existing databashtwv different query results.
There could be multiple ways to modify database to partitjoaries. We aim to choose
the modifications which minimize the user’s effort as he/sk@mines the new database-
result pairs. We present a cost model to quantify the us#ost ¢o determine the target
guery relative to a modified databa®?, and we also demonstrate the effectiveness and
efficiency of our approach using real data sets. So far, Q-Qfgports select-project-join

(SPJ) queries with disjunction predicates.

1.3 Schema-based Approach

In the previous section, we introduc€liery-based approacbf QFE. TheCandidate
Generator moduldirst generates a set of candidate queries which can détrifiem
databasé), and then th&atabase Generator modutistinguishes these queries to find
the target one. There are several existing works can be gsgaesy reverse engines for
the Candidate Generator modul&4, 70, 61]. However, these works are designed for

a more general scenario, not tailored for QFE speciallygineries they generated may

7



CHAPTER 1. INTRODUCTION

not be suitable for QFE. Some of them generate too many gquirimcrease the user’s

workload, and some of them do not support selection presicat

Query by Output (QBO)q4] is the first data-driven approach that aims to augment query
results with interesting query-based characterizatiétisectuples in the query result. The
main idea of QBO is to get the queries to enhance the datalsabdity including data
analysis, data security, and etc. Hence, it will generdferént queries in different query
schemas to provide more useful information. Other workshsas [0] and [61], focus
only on deriving a set of join queries without selection dtinds, which narrows the
guery types. One main problem of these works is that the tegndidates may involve
too many queries, which have to be eliminated inDia@abase Generator moduld adds
more burden to th®atabase Generatoand more workload for users. As there should
only be one query satisfying users’ query intention, theirect queries should be filtered

as soon as possible.

The main reason that there may be too many candidate quemnesajed is that too many

join schemas can derive different queries. Here is an exampl

Example 1.3.Consider the IMDB database with the following tables, ACT@R, fname,
Iname, gender), MOVIE (mjchame, year), DIRECTORS (dithame, Iname), CASTS
(pid, mid, role) and MOVIEDIRECTORS (didmid). Suppose a user needs to find the
query whose result is “Fight Club”. There are so many diffgrevays to get the same
answer. We can compose a query to find the only movie Davidhé&irdirected in 1999,
or the only movie Edward Norton and Brad Pitt starred toggtbethe only movie David
Fincher and Edward Norton worked together. These threeigagoin different tables

together and have selections on different attributes.

To avoid generating too many candidate queries, in thisaeolve introduce a second
approach terme8chema-based approa¢8-QFE). In S-QFE, th€andidate Generator

modulegenerates a set of candidafeery schemamstead of queries. A query schema

8
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Employee
| name | gender| dept | salary|
Alice F Sales | 3700
Bob | M IT | 4200
Celina F Service| 3000 Bob
Darren M IT 5000 Darren
Elly F Seales| 4300
Frank M Service| 3700
Grace F IT 4000
Database) ResultR

Figure 1.5: Employee database and result pair

contains a query’s join relations, join predicates, prijggcattributes and selection pred-
icate attributes. Thus, each query schema can be consideredet of queries. With the
candidate queries, tHeatabase Generator moduteodifies the database and shows the
user the differences among the candidate query schemas bathbase-result examples.
Similar to Q-QFE, the user examines the examples and seélectorrect query schema.

Then we continue to generate queries with the correct quérgmsa.

Example 1.4. Here is an example to illustrate S-QFE. Consider a datalbraseit pair

(D, R), whereD is a single relation with 4 attributes as shown in Figuré.

There are three candidate query schemas, namely, withtg®ieattributes given by
{gender,dept}, {gender, salary} and {dept, salary}. The corresponding candidate

queries are shown as follows.

@1: SELECT name FROM Employee WHERRder = ‘M’ AND dept = ‘IT";
@2: SELECT name FROM Employee WHERERder = ‘M’ AND salary > 4000;
@3: SELECT name FROM Employee WHE®t = ‘I'T" AND salary > 4000;

The query schema with only one attribute is not a candidageabse it can not generate

a query@ such that)(D) = R.

Now let us consider attributéept at first, we present the user with a modified database

D, and two possible query result®; and R,, on D; as shown in Figurd..6. We modify

9



CHAPTER 1. INTRODUCTION

Employee
[ name | gender] dept | salary]
Alice F Sales | 3700 Bob
Bob | M 4200 Darren
Celina| F Service | 3000 | ResultR,
Darren M IT 5000
Elly F Seales | 4300
Frank | M Service | 3700
Grace F IT 4000 ResultRR,

Databasé),

Figure 1.6: Employee database and result pair

Bob’s department from “IT to “Service”. If the target quergleema does not haviept as

a selection attribute, then the query result should not liecséd, i.e.R;. Otherwise, the
result should beR,. The user is then prompted to provide feedback on whiéh @ind R,

is the result of the target query dn,. Based on the user’s feedback, we can determine the

correct query schema, and continue to generate the targetyquith the query schema.

In this thesis, we propose an iterative data-driven appréaddentify the target query
schema and construct the target query. There are mainly haieages. The first chal-
lenge is how to generate candidate query schemas, and thedselsallenge is how to
modify the database to show the differences among diffeyaety schemas. So far,
S-QFE only supports select-project-join queries (SPJigslewithout disjunction predi-

cates.

1.4 Thesis Contributions

In this thesis, we make the following key contributions.

First, we propose a novel paradigm, Query From Examplesglp ton-expert database
users to construct queries. For users who are not familidw QL queries, our approach

offers both an easy-to-use specification of their targetigagvia a database-result pair)

10
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as well as a low-effort mode of user interaction (via feedtimt modified database-result

pairs).

Second, we design a Query-based approach of QFE, which tauders to distinguish

a set of queries and identify the target query.

Third, we design a Schema-based approach of QFE to idehgfyarget query schema

first and then identify the target query.

Fourth, we demonstrate the effectiveness and efficiencyuofapproaches using three
different datasets. The first is a real dataset from SQLSI¥&jea cloud-based platform
designed to help scientists utilize RDBMS technology famdenalysis. The second real
dataset is the baseball database containing varioustiss{is.g., batting, pitching, and
fielding) for Major League Basebajland the third one is the Adult data set extracted
from the 1994 Census datab3sieom the UCI Machine Learning Repository, which is a

single-relation data set that has been used in many clagsficvorks.

1.5 Thesis Organization

The rest of this thesis is organized as follows:

e Chapter 2 presents the related work on query constructi@ample-driven system,

query generator and data generator.

e Chapter 3 presents thguery-based approachWe describe the challenges and
propose our algorithms to solve the problem. We also condnatxperimental

study over real datasets.

2http://www.seanlahman.com/baseball-archive/statisti
3http://archive.ics.uci.edu/ml/datasets/Adult
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e Chapter 4 presents tl&chema-based approackVe propose a novel algorithm to
generate candidate query schema and construct the targst dife also conduct

an experimental study over real datasets.

e Chapter 5 concludes the thesis and discusses some inmgrésgctions that future

studies can undertake.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we conduct a literature review over theteelavork of QFE. Although

the title of our work is similar tdQuery by Exampl@BE) [71], the problem addressed
by QBE, which focuses on providing a more intuitive form-easnterface for database
guerying, is completely different from our work. Besiddgrte is another work by Davide
et al. [b3] which shares a similar idea of QBE. The user provides a sawijpéxample

of what he needs, and the system returns the relevant ansmrech might be expected
by the user. Although these works use examples as ours, tideprs we solve are

completely different.

We classify the related works in terms of their similarittéerences with QFE. First we

survey the existing works of other tools that can help usensituct queries. Then we
discuss the related works using example-driven methodsr &fat, we narrow the scope
in the context of query generator. At last, the related warkdatabase generator are

reviewed.

13
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2.1 Query Construction

It has been asserted that the database usaldififyd as important as its capability. Several
different approaches have been developed with the broasting of helping database
users construct queries. These approaches differ mairtlyein assumptions about the
users’ level of database expertise (e.g., whether usetshamedgeable in SQL), users’
familiarity with the database schema, the type of help mredi(e.g., query recommen-
dation, query completion), and the available resourcesetp Wwith query construction

process (e.g., whether query logs of past queries are bigila

One category igjuery recommendation systefd®, 11, 32, 30, 15, 5]. Query logs have
been widely used for query recommendation, since they arsidered as a rich source
of knowledge on user behaviors. The system analyzes qugsydnd extracts useful
queries to recommend to users. Some of these warkslfl, 32] are implemented in
search engines to provide better user experience to recothneéevant queries. They
use techniques in keyword search to explore query logs, tfekuggested queries and
present them to users. Some other wofl [L5, 5] monitor the current user’s behavior,
like keyword match, and compare it with the previous useysbbking through the query
logs. If the system determines that current user has sinmfarmation need, it will
suggest the queries from previous users. Since such swudice based on the user’s
previous actions, and not on the user’s query intentionyse¢ulness of the recommended
queries is quite limited. Besides, they are not helpful & tiser needs a new query which

is not stored in query logs.

Another direction studied iguery auto-completiofdl1, 55| that aims to interactively
help users to compose their queries. As the user types abugdtior table name, the
system will automatically provide several available quieagments like selection or join
predicates on the fly. These works study the database schemeery logs, and find

the most frequently used fragments, and the related taflesn user will continue to
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compose the query based on these query fragments. Somenattksruse the keyword
search techniques to help users construct queBig®, 24]. Once a user types in some
keywords, the system interprets them first, and then cartstiqueries based on these
candidate interpretations. Although these works enhameelatabase usability and help
users to construct queries, the problem they solve is difeirom ours. We use query
result to indicate user’s query intention, and take it ask#einput in our approach. All

these works are based on the users’ previous actions, and tled users’ query intention.

Another approach that have been proposeqliery reuse systeni$2, 35]. The idea here
is to store the user’s previous queries in a shared repgsitothat he/she (or other users)
could later browse them when constructing new queries. (it goproach differs from
all these approaches as it does not require users to bedamith SQL and also does not

rely on the availability of query logs to construct queries.

Besides the above works, Abouzied et al. proposed DataB|dy; p visualization tool to
help users construct quantified queries using a trial-arat-approach. After a user pro-
vides quantified constraints to the system, the system wilegate the query results for
the user to examine and continue tuning and auto-correttiengicorrect query based on
the user’s feedback. It ranks the query correction sugyestind shows the user the ef-
fects of between the suggested queries and current intouery. Our work differs from
their works because instead of query constraints, we agls tiggrovide input/output
examples at the beginning. Besides, instead of refiningygoer approach focuses on
filtering false positive queries having the same query tesanl an input database, which

they do not.

In addition, some researchers focus on helping users neteqoieries. In38, 62, 44],

loannidis et al. proposed a method to explain queries usatigral language. They use a
graph-based model to represent a query, and then traverggaph and compose query
descriptions in natural language. Besides NL query inteda Gatterbauer and Dana-

paramita P9, 21] presented a novel system QueryViz to visualize SQL quehgyTtake
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an existing SQL query and creates a graph that helps userstade its meaning. An-
other approach is to use data examples to illustrate thergarmaf queries47, 56, 57).
They generate input data examples and push them into thg plaertree to get the output
data. For each operator, they show intermediate data anddées understand the actual
utility of each operator. Since the main focus of our apphnaado show the differences

of queries through database-result pairs, these worksugtedjfferent from ours.

2.2 Example-Driven Systems

The broad idea of an example-driven approach for problemrgphas been applied in
many diverse contexts (e.g7, 6, 25, 58, 69)). In [25], an interactive, example-driven ap-
proach was developed to help users explore their databalsies, is related to the general
framework for an automatic navigation of databases firsbthiced in [L2]. The approach
in [25] helps users to formulate a plausible SQL query based ondbesufeedback on
samples of database tuples presented to the user. At eatioitethe system presents the
user with a sample of tuples for feedback on which of the shioyles are relevant to the
user’s intention. Based on the user’s feedback, the systemrgtes a different sample of
database tuples for the next iteration of user feedback.nifeeuser decides to terminate
this steering process after some number of iterations, a@@Ly representing the user’s
intended query is generated from a classification modeltonacted by the system. The
approach is designed to minimize the size of the samplesrshow the total processing
time. Our work is different fromZ5] in three key aspects. First, our context is differ-
ent from theirs as our work is not focused on data exploraton users using QFE are
required to provide an input/output example to indicateghery intention. Second, our
approach is different from theirs as QFE operates by firsegdimg a set of candidate
queries and then pruning away false positives via user tegdbn several query results

shown in each iteration. In addition, QFE also generates dififad database in each it-
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eration to distinguish different subsets of candidate iggeln contrast,45] generates a
plausible query (out of possibly many candidate queriesiguslassification techniques,
and their focus is not on distinguishing the candidate gserThird, P5] supports only

select-project-join queries on a single relation whereasapproach is more general.

Example-driven techniques have also been applied for dgbggcheme mappings,[6].

In [7, 6], users are shown examples to differentiate alternatiyeping specifications and
find the desired mapping based on the user’s interests o theta examples. Although
we also show different query outputs to help the user to ghekcorrect query from the
candidate queries, the methods are different. Unlike selvaapping, we need to modify
the database to distinguish the false positive queriesn €ial. also proposed a system
for sample-driven schema mappirgg]. The user gives example tuples in a result table
(or partial tuples), and the system attempts to find the besties that will produce (at
least) those results. However, they look only at projest-joappings and do not handle

queries with selection.

For non-database related applications, S. Gulwani and dlisagues have developed
example-driven techniques to solve many diverse probldfosinstance, they have ap-
plied example-driven techniques to reformat text docusésl]. They asked user to

provide input/output examples to show his intent, and refdrthe source structured and
semi-structured text as required. Due to the differentexst the techniques developed

there are not applicable to our work.

2.3 Query Generators

In this section, we review the related works of query revpreblem, i.e., given a database
D and resuliR, the query reverse engine generates a qaesych that)’s result onD is

R, which is also the problef@andidate Generator modufecuses on.
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Given a databasP and query resuliz, QBO [64, 65] generates a set of candidate queries
{Q}, whereQ(D) = R. The system can also rank queries, and display thé tpperies

to the user to select. 17], Zhang et al. also proposed a query reverse engine which can
derive a set of join queries without selection conditionsttBrvorks can generate a set of
gueries that have the same query resulkasiowever, their main focus is not help users

construct the intended query.

[59 introduced View Definition Problem(VDP), which is to degia view definition(
when given an input databag¢e and a materialized view. However, it focuses on a
basic scenario wherP consists of only one single relatidi and the derivation of) is
essentially finding the selection predicate Brio generatd/. Therefore, it cannot be

extended to our case.

In [61], Shen et al. also proposed an algorithm to discover pr@pattqueries by given
example tuples. Unlike QBO and QFE, the output of these joierigs are not exactly
the same as the given examples. The generated queries aneairnoject join queries
whose output contain all the tuples in given examples. #sallet al. P] proposed
a candidate-enumeration and evaluation framework forogisgng project-join queries.
Their system handles only text columns and establishes gy gakevance score based
evaluation of candidate queries. The system returns thei®deg with the top-k highest
scores and it discovers not only the queries that exactlgimthie given example tuples.
As the main focus is finding join queries to cover examplesiy tpproach is orthogonal

to our problem.

Another related area is intensional query answering or exaijye answering, where for
a given query, the goal is to augment the query’s answ¥D) with additional inten-

sional information in the form of a semantically equivalguéry that is generated through
the database integrity constraing8[52]. Two queries are semantically equivalent if for

every valid database, their query results are same. |If tesiflts are same only on the
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given databasé, they are instance equivalent éh It is obvious that semantic equiv-
alence is data-independent, which is much stronger thaarios equivalence, and can
only be computed using database integrity constraintsutmpproach, we adopt instance
equivalence instead of semantically equivalent queryHerfollowing reasons. First of
all, sometimes the data semantics are not explicitly cagtuising integrity constraints
in the database for various reasofi§][ The effectiveness of intensional query could be
very limited. Second, it can be very hard to derive semaltyieguivalent queries for
complex queries. Third, intensional query answering nexputhe input queryy to be
known, which QFE does not need. Finally, our approach facusere on helping user
construct query. Using instance equivalent queries catumamore queries with differ-
ent semantics, giving us a larger chance to include usdesded query. If we generate
semantically equivalent query, then we do not have this dppity to find other queries

with different semantics.

In another set of related work, Bruno et alL(] and Mishra et al. $1] examined the
problem of Targeted Query Generation (TQGen) that aims tege test queries to
meet certain cardinality constraints. TQGen takes as iamutery(), a databasé#), and
a set of target cardinality constraints on intermediateegplessions ir)’s evaluation
plan. TQGen will modify@ (by modifying the constant values @’s selection predi-
cates) to generate a new quépy such that the evaluation plan ¢f on D satisfies the
cardinality constraints. Different from the TQGen problemar work aims to generate
instance-equivalent queries that satisfy the contenttcaing of the query result. In addi-
tion, TQGen requires the input query Q to be known whereaslie ¢he input query to

be unknown.
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2.4 Database Generators

Our database generator generates a new database to dgdtitigeicandidate queries by
different query results. There are many related works, antthis section, we classify

them into different classes and review them in details.

2.4.1 Reverse Query Processing

One related area is called reverse query procesSiiiy 10, 46, 51]. Instead of generating
queries, reverse query processing is to generate a datBbaken given a query) and a
desired query resuR such that)(D) = R [9]. Reverse Query Processing (RQP) is based
on a reverse relational algebra (RRA). For each operatdreofdlational algebra, Binnig
et al. defined a corresponding operator of the reverse sakdtalgebra that implements
its reverse function. All reverse algebra operators ragecintegrity constraints of the
database schema in order to generate correct output. THe déit@a processing is started
by scanning the query result and pushing each tuple downetdetives (i.e. the base
tables) of the query tree. RQP can generate synthetic darap®&s and be applied to
some applications for verification and query debugging. t Thaelated to some of our

motivation, but at the same time, the main focus is stillediént.

QAGen B] is another query-aware data generator system. It takegpuidngy and the set of
constraints (usually cardinality and data distributiosjied on the query as input, and
generates a query-aware test database as output. To peogessy before the data is
generated, QAGen introduces the concept of symbolic queryessing (SQP). QAGen
uses SQP to populate a symbolic database according to tk&a@ats and schema, and
finally instantiates the symbolic tuples with a data instdot. [46] extends it to study the

generation of workload-aware data.
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2.4.2 Query Equivalence Problem

Since our goal is to partition queries into different groaps show user the differences
among the queries, one related research area is query E@gaor query containment
problem. It has been studied extensively, since it is a foretdal problem in database
research. So far, most of the existing research works foousharacterizing the query
equivalence problem. They study the complexity and sufftco®nditions of the query
equivalence problem under different semantics (set, bagsiet) L8, 22, 16] and differ-
ent constraints (inequality, aggregation, nested, é{;)40, 22, 19, 20]. The core idea of
these works to solve query containment problem is to cheakhdn homomorphism be-
tween two queries exists. Given two querigsand(), if there exists a homomorphism
from query@; to )5, then(), is contained inY,. If (), is contained i, at the same
time, then two queries are equivalent. This method can h&dp check query contain-
ment, but it is not helpful to comprehend the differencesveen queries. As these works
can not tell more information about the query semantics oectness, they can not help

user identify the intended query.

Another approach to check query containment is using aangstbased method4, 66,

68, 27]. Levy and Sagiv 45] first proposed a method to generate canonical databases
to test queries, which is described 6] as well. The idea is to build an exponential
number of canonical databases, and apply given queriesese ttatabases. If there is
no counterexample to the containment, then the query contait statement is true. In
[68], Wei et al. gave an apriori-like algorithm to optimize tHgaithm. Sharing the same
principle, Farré et al.J7] presented the Constructive Query Containment (CQC) naetho
to check query containment, which aims to construct a coexéenple that proves that
the query containment relationship being checked doesaidt Different from the query
equivalence problem, our goal is to help users pick the cocgueery from a set of queries.
Not just take more than two queries as input, we also avoilgusynthetic data to make

the examination process easier.
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In [47], Mannila and Raiha first introduced a method to dististuone query) from a set
of queriesQ. Related to the well-known concept Afmstrong databasg26], they define
the notion of complete test databases for a given g@eryhe complete test database for
@ is to show the non-equivalence @fand();, for everyQ; € Q. They further proposed
a method to construct such complete test database&g, fibit exists. However, there are
several limitations about their method. First, queriedhwdisjunctions are not supported.

Besides, each query; is formed from@ by removing some conditions.

In [60], Shah et al. addressed the problem of test data generatichdécking correctness
of SQL queries, based on the query mutation approach for limgderors. Given a query,
they generated test data to kill the query mutations. Theantgueries are pre-defined
using certain query templates, such as join/outerjoin trarge.g., change equijoin to
outer join), comparison operator mutants (e.g., change<), and aggregation mutation,
etc. A mutant query is said to be killed by a test case whenxbeution of the mutant
query on a test case produces a different result than theigxeof the original query.
For example, if a query uses innerjoir) instead of left outerjoini) by mistake, then
some result might be missing in the final result. The goab6fis to generate a complete
data set that covers all kinds of mutations. Shah et al. prtivat the decision version
of the test data generation problem is NP-Hard in the sizéefjuery, and sketched an

approach to generate test data based on some assumptipnsoeaested queries.

The common idea of the above works is to generate databassttquery equivalence,
which is not an ideal method for our problem. Considering rédguirement that users
should be able to understand the new database easily, wettiapedify the existing

database to distinguish queries, and limit the modificadi®few as possible.
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2.4.3 Explaining Missing Answers

Recently there have been some works using the instance-bppeoach to explain miss-
ing answers (or why not answersd) [34, 37, 33]. Given an input database, query
@ and a set of missing answefs Huang et al. 37] explained the missing answetrs
by modifying some tuples in the databaSesuch that the result of the que¢y on the
modified database will include both the original result amel $pecified missing tuples
T. They computed the provenanceBf which consists of the tupl€g can potentially
be derived from. This explanation model is very flexible bitnary modifications to the
database are allowed to derive the missing tuples. Similir missing answerg’, Her-
schel et al. 34, 33] altered current databade to D’ and got the new resutp(D’) that
QD) = Q(D) U T, and each set of tuples, from whéfecan be derived, is called an
explanation. They used the notion of homomorphism to minénthe number of expla-
nations and showed that determining the minimal explanatior unions of conjunctive
queries isN'P-complete. Our approach shares the same core principle of modifying
database, but the problem objectives and techniques dezetif. Instead of the spe-
cific result@)(D’) containing missing answetsour purpose is to generate a databB&e
which will derive different results for a set of input querieThis characteristic makes
it non-trivial to extend existing algorithms for our probie Besides, we also need to
make sure that the collection of these modification is asIsasgbossible, which is also

non-trivial.

2.5 Query Refinement Problem

There is also some related work on query refinement to modifinput query so that
its query result can satisfy some cardinality constraig [The works in i3, 54] relax

the queries that return empty result so that the modifiedigsi@rill yield some answers.

23



CHAPTER 2. LITERATURE REVIEW

As the goal there is to refine the query to return any non-emgsult, the techniques
there cannot be applied to our problem, which has strongestaaints to satisfy. Another
related direction in§0, 17] deals with the problem when a query returns too many/few
answers by refining the query to satisfy some constrainte@query result size. Similar
to the work in j3], the focus there is on the size of the output but not on théerdrof

the output, which we have to deal with in this context.
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QUERY-BASED APPROACH

In this chapter, we present our Query-based approach of QFRRE). We first present
the overview of Q-QFE approach in Secti8ri, and discuss the details in Sectidh®
to 3.4 Section3.5 presents additional extensions for our approach. An exjpgrial
evaluation of Q-QFE is presented in Sect®f. Finally, we conclude in Sectio®.7. The

notations used in this chapter is shown in Tahle

3.1 Approach Overview

To help non-expert database users construct queries, Wwes®@ novel approach Q-QFE
which takes a database-result pdir, R) as input, and output the target query for users.

Figure 3.1 illustrates the overall architecture of our approach. Nbtg theCandidate
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Notation Description
Q Query
D Database
D’ Modified database
R Query result
Q(D) Query(@’s result on database
A Attribute
QC Set of candidate queries
balance(D) Balance score of databage
minEdit(D, D") | Minimal edit distance from datasét to D’
J(D)/J Result of joining all the join relations in queny
TC Tuple class
STC Source-tuple-class
DTC Destination-tuple-class

Table 3.1: Notation table of Chapt8r

————————

Database-Resul2 Query
Pair (D,R) Generator

_3> Candidate SQL4
Queries QC

Database
Generator

—

]

4

8
5 Modified Database D’6
&
Query ResultfR;, - - - , Ry

Figure 3.1: Overall Architecture of QFE

Result

Feedback|

7

Selected
ResultR;

Generator modulén Figurel.1is specialized aQuery Generatar Q-QFE first obtains

an initial database-result pdib, R) from the user wher& is the result of the user’s target

query on the databade. TheQuery Generatomodule take$D, R) as input to generate

a set of candidate SQL querieg” = {Q1,---,Q,} for (D, R); i.e.,Q;(D) = R for

eachQ@; € QC.

To efficiently identify the user’s target query fro@C', which is generally a very large

collection, Q-QFE winnows this collection iteratively ngia divide-and-conquer strategy.

At each iteration, th®atabase Generatanodule takes as input®, R) andQC’ C QC,

which is the set of remaining candidate queries at the sfattieiteration, to gener-

ate a new database’. The purpose of)’ is to distinguish the queries IQC’ based
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on their query results o®’. Specifically, D" partitionsQC’ into a number of subsets,
QCYL, -+ ,QC}, k > 1, where two queries belong to the same sulggéf if and only if

they produce the same result (denotedyon D'.

Next, theResult Feedbacknodule presents the user with the new databasand the
collection of query results?,, - -- , R,. If the user identifieskR, as the correct query
result onD’, it means that the user’s target query is guaranteed to be 6g€", j # z;
therefore, these query subsets can be pruned from furtherdmration. Q-QFE will start
another iteration using the subset of candidate qué}i€s corresponding taz, if QC’,
contains more than one query; otherwise, Q-QFE terminaitixstiae only query inQC’,

as the user’s target query.

To help reduce the user’s effort to identify, relative toD’, instead of presenting the
user with a new databade’ and query result®,, - - - , Ry, the Result Feedback module
actually present®’ and R; in terms of their differences from the original databassile

pair (D, R), which is denoted byA(D, R;) in Figure3.1

Algorithm 3.1: Q-QFE
Input: A database-result pafiD, R)
Output: Target query
1 QC =Query- CGenerator(D,R)
2 repeat
3 D’ =Dat abase- Gener at or (D, QC)
4 QC =QC,U---UQCy [l PartitionQC usingD’
5 fori=1tokdo
6
7
8
9

| let R; be the output of query i)C; on D’
x =Resul t - Feedback (D', Ry, -+, Ry)
QRC =QC,

until |QC| =1
10 return Q whereQC = {Q}

The overall procedure for Q-QFE is shown in Algoritl8rL In the event that none of
the query results presented at an iteration is the intendgmlibof the user’s target query
(not shown in Algorithm3.1), it means that the target query is not in the initial set of

candidate querieQC'. In this case, Q-QFE will initiate another round of candedgtiery
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generation by taking into account the information gathéosautput additional candidate

queries for iterative pruning.

There are two main challenges for the Q-QFE approach. Thechiedlenge is how to
generate candidate target queries given an initial dagatesslt pair; and the second
challenge is how to optimize the user feedback interacttonminimize the user’s ef-
fort to identify the desired query. In this chapter, our fecsion the second challenge as

existing techniquesl4, 70] are available to address the first challenge.

For the Q-QFE approach to be effective, it is important toimire the user’s total effort
to obtain his or her target query. A reasonable measure ofisieffort at each iteration
is the amount of work required to identify the correct quezgult from the collection
of query resultsk,, - - - , R, relative to the new databade’. Since the user is already
familiar with the initial database-result pdib, R), the user’s effort at each iteration can
be reduced by minimizing the following three aspects: (¥)nlamber of query results
shown (i.e..k), (2) the differences between the initial databasand the new database
D', and (3) the differences between the initial query reguéind each new query result

R;.

As some of these optimization objectives conflict (e.g.,imiming k& could increase the

number of iterations), optimizing the choice bf to reduce the user’s effort at each
iteration is a non-trivial problem. In the following seati®, we first present a cost model
to quantify the user’s effort to determine the target quetsitive to a modified database

D', and then present the details of the key components of Q-QFE.

3.2 Cost Model

In this section, we present a cost model to quantify the ssaffort in identifying the

target query from an initial set of candidate queri@S. This cost model is used by

28



CHAPTER 3. QUERY-BASED APPROACH

the Database Generator module select a “good” modified databag® to partitionQC

into multiple query subsets)C1, - - - , QCy}, whose query resultsR,, - - - , R, } are then

shown to the user for feedback.

To minimize the number of required iterations, the size efdhery subsets (i.dQC;|)
induced by the new databag¥ at each iteration should ideally be balanced. Given a
collection of partitioned query subsets= {QC1, - -, QCy} induced byD’, we define
the balance scoreof D’, denoted bybalance(D’), to be e whereo is the standard
deviation of the sef|QC,|,--- ,|QCk|}. Thus, a smallebalance(D’) value indicates a
more desirable)’ that induces a partitioning with many subsets of about tineessize.

Furthermore, a good balance limits the worst-case numhégrations.

The user’s effort is also reduced if both the differencesveen the initial and modified
databases as well as the differences between the initigy gegult R and each new query
result R; are small, since new information is minimized. We quantify tifference be-
tween two instances of a relatioh,and7”, by the minimum edit cost to transforii to

T', denoted bynin Edit(T, T"). We consider the following three types of edit operations:

(E1) modifying an attribute value of a tuplem
(E2) inserting a new tuple intd, and

(E3) deleting a tuple frord'.

The edit cost of (E1) is one, and both (E2) and (E3) have editegual to the arity of the
relation. For convenience, we useénEdit(D, D') to denote the sum ohin Edit(T,T")
for each relatiory” in databaseD that has been modified 6 in the modified database

D'

The user’s effort relative to the modified datab&sedenoted by-ost(D’), is modeled as
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a sum of two components:
cost(D") = currentCost + residualCost (3.1)

wherecurrentCost andresidualCost, respectively, denote the user’s effort for the cur-
rent iteration and the remaining iterations. The efforttfe current iteration is modeled

as
currentCost = dbCost + resultCost (3.2)

where dbCost denotes the user’s effort to identify the differences betwéhe initial
databaseD and modified databage’, andresultCost denotes the user’s effort to iden-
tify the differences between the initial query reshliand each new query resut;. For
dbCost, it is reasonable to expect that more effort is required ftioeuser if the modified

tuples come from a larger number of relations. Thus, we model
dbCost = minEdit(D, D)+ 8 xn (3.3)

wheren denotes the number of modified relations/ and S is a scale parameter to
normalize the number of relations in terms of some numbeittabate modifications.

For the query result differences, we have

k
resultCost = Z minEdit(R, R;) (3.4)

i=1

ModelingresidualCost is somewhat trickier as it depends on the user’s feedbackcht e
iteration. A conservative estimation of this is to assuna the user’s feedback in the
current iteration picks the largest query subset and fon sabsequent iteration, the par-
titioning creates only two query subsets based on a singl#ified database tuple. We

estimate the minimum edit cost for this single tuple modifaafrom the average of
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the current iteration’s database edit costs. Hence, fdr sabsequent iteratiodpCost

is modeled asninEdit(D, D)/ + (3, wherey denotes the total number of modified
database tuples in the current iteration. Since there dyeten query subsets in each
subsequent iteration, we modelsultCost as twice of the current iteration’s average

query result edit cost; i.e2 S5 | minEdit(R, R;).

Putting everything together, we have

k
cost(D") = minEdit(D,D") + 5 -n+ Z minEdit(R, R;)+

=1

k
N x (minEdit(D,D")/u + B+ % Z minEdit(R, R;)) (3.5)

i=1

whereN is the number of remaining iterations.

To minimize the user’s effort, the modified datab@¥eaised in each iteration should have
a small value forost(D’). Note that there is a tradeoff involved in making more dasaba
modifications: although this tends to increase the costeoftirent iteration, it is likely to
also increase the number of query subsets in the partiten@duce the balance score of
modified database) which tends to reduce the number of extjiigrations and the costs

of the remaining iterations.

3.2.1 Estimation of Number of Iterations

The remaining issue for the cost model concerns the estmatithe number of iterations

N. One simple estimation a¥ is given by

N = logy(max{|QCy], -+, |QC4|}) (36)
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which is based on two assumptions about subsequent itesat{é1) the only available
query partitionings are binary ones that partition candidpieries into two subsets, and

(A2) the best partitioning that creates two balanced ssbsetlways available.

In the following, we discuss how to improve the accuracy o #fimple estimation by ex-
ploiting additional information that would be availablegest of our approach (Algorithm
3 to be presented in Section 5.2). Specifically, the impramimomes from completely

or partially eliminating assumption (A2).

With assumption (A1), suppose that the most balanced joaitig P in the current itera-
tion creates two query subset, and.S,, containingr andy queries, respectively, where
z < y. As before, we always assume that the largest query subsgtSj) is chosen
for the next iteration. Thus, the number of “false positigeieries eliminated by the cur-
rent iteration isz. SinceP is the most balanced partitioning in the current iteratibn,
follows that for any other binary partitioning in the curtéeration, the number of false
positive queries eliminated by it is at mastWith this additional knowledge about the

following property holds for each subsequent iteration.

Lemma 3.1. Based on assumption (Al), the number of false positive ggieliminated
in each subsequent iteration is at mastwherez is the number of false positive queries

eliminated by the most balanced binary partitioning in tluerent iteration.

Proof. We establish the proof by contradiction. Suppose that taencis false; i.e., in
some subsequent iteration with C .S, candidate queries, there exists a binary partition-
ing P’ that partitionsS’ into two subsets o andv queries, where < v andu > x. This
implies that had we chosef to partition the queries in the current iteration, each ef th
two subsets partitioned by’ would have more tham queries, contradicting the fact that

P is the most balanced partitioning in the current iteration. O

Based on Lemma&.1, we refine the estimation oV as the sum of two components as
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follows:

N = N+ N, (3.7)
N = [(max{[QCy|, - ,|QCk|}) /x| — 1 (3.8)
Ny = [loga(max{|QC\[,---,|QCk|}) — zNy)] (3.9)

Here,r denotes the number of queries in the smaller query subsatecrdy the most
balanced binary partitioning in the current iteration. émtrast to Equation3(6), which
optimistically assumes that half the number of queries lngireated as false positives in
each iteration)V; denotes the number of iterations wherfalse positive queries (i.e., the
upper bound established by Lemrdd) are eliminated in each iteration. At the end of
N, iterations, the number of remaining candidate queries magt2x — 1, and we fall
back to applying Equatior8(6) to estimate the number of remaining iterations, which is
given by N,. In the event that no binary partitioning exists in the catiigeration (i.e.x

is undefined), we fall back to using Equatidh@) for the estimation ofV.

3.3 Query Generator

The objective of th€@uery Generator moduls to generate a set of candidate SQL queries

QC for the user’s target query given an initial database-tgzit (D, R).

A number of approaches have recently been proposed to esgagneer queries given an
input database-result paii4, 70]. In this paper, we adopted the QBO approach of Tran et
al. [64] for our Query Generator module as it can support more géoanalidate queries,
specifically, select-project-join (SPJ) queries, comgdcethe project-join queries (i.e.,

without any selection predicates) considered by Zhang TGl

QBO provides several configuration parameters to conteisdgarch space for equiva-

lent candidate queries, such as the maximum number of gelgutedicate attributes,
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the maximum number of joined relations, the maximum numbselection predicates in
each conjunct, etc. In our experiments, we configured QB@nbeate as many candidate

queries as possible

Each generated query is of the form(o,(.J)), where/ andp are the query’s projection
list and selection predicate, respectively.is the foreign-key joif of a subset of the
relations in the databade. For convenience, each selection predicate is assumedrto be
disjunctive normal form; i.ep = p; V- -- V p,,, Where eaclp; is a conjunction of one or

more terms and a term is a comparison between an attribute eoistant.

3.4 Database Generator

The Database Generator modutakes as input the initial database-result gdi, R)
and a set of candidate SPJ querig€’, and generates a new databdgeto be used
to distinguish the queries i@QC. Recall thatD’ is used to partitiorC' into subsets,
QC = QCLU---UQCy, such that all the queries in eaGIC; generate the same output
resultR; on D', andRy, - - - , Ry are all distinct. The goal is to determid& such that it

minimizes the user’s effort to identify the target query.

Assumptions.To simplify the discussion in this section, we make two agsions about
the queries)C and one assumption aid’. First, we assume that all the queries(’
share the same join schema withD) being the foreign-key join of all the relations in
the databasé®, simplified asJ. Thus, sinceR determines the projection ligf all the
gueries inQC' are essentially different selection queries on the sirgjlion.J. Second,
we assume that all the queries@C preserve duplicates (i.e., the DISTINCT keyword

does not appear in any query’s SELECT clause). Third, wenasghat any modified

LIn practice, it might be better to set these parameters ceatseely, then relax them if more candidate
queries are needed.

2|f foreign-key constraints are not explicitly provided thetuser’s inputs, we can infer soft foreign-key
constraints by applying known techniques (e.¢g]).
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databasé)’ is valid (i.e., D’ does not violate any integrity constraints). We discuss how

to relax these assumptions in Secti®h.

3.4.1 Tuple Classes

To facilitate reasoning about the effects of database nuadiifins on the partitioning of

gueries, we introduce the concept of a tuple class.

Consider a database relatidfA,, - - - | A,,) and a set of queriggdC'. For each attributé;

in J, based on the selection predicate constants involdingontained in the queries in
QC, we can partition the domain of; into a minimum collection of disjoint subsets,
denoted byPy(A;), such that for each subséte Py-(A;) and for each selection

predicatep on A; in QC, either every value il satisfiesp or no value in/ satisfies

p.

Example 3.1. Consider a relation/(A, B, C') where bothA and B have numeric do-
mains; and a set of querig3C' = {Q1, @2}, whereQ, = o(a<so)n(B>60)(J) and

Q2 = 0(acos0)n(B<20)(J). We havePoc(A) = {[—o0, 40], (40, 50], (50, 80], (80, 0o]}
Paoc(B) = {[—00,20], (20,60], (60, 0]}, andPoc(C) = {[—o0, o0]}. O

The next example illustrates domain partitioning for nedesed attribute domains.

Example 3.2. Consider a relation/(A, B, C') where A is a categorical attribute with
an unordered domain given Hy:, b, ¢, d, e, f, g}. Suppose that we have a set of queries
QC = {Q1,Q2}, whereQ, = oacqpee}(J) and Q2 = oacfapaer (J). Based on the
subset of domain values that match the various subsetseuftgel predicates id))C, the

domain ofA is partitioned into 4 subsets, depending on whether theegadatisfy neither,
both, or exactly one af); andQ: Poc(A) = {{a,d}, {b, e}, {c},{f,9}}. O
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Given a relation/(Ay,--- , A,) and a set of querieQC, atuple classfor J relative to
QC'is defined as a tuple of subséfs, - - - , I,,) where eacl; € Pyc(A;). We say that a
tuplet € J belongs to atuple classC = (I, --- , I,), denoted by € T'C, if t.A; € I;

for eachj € [1,n].

Example 3.3. Continuing with Exampl&.1, T'C' = ((40, 50], [—o00, 20|, [—00, 00]) is an

example of a tuple class fof, and (48, 3,25) € T'C. O

By the definition of tuple class, we have the property thatefgery queryQ € QC and
for every tuple clas$'C for a relationJ relative toQC, either every tuple if'C' satisfies

Q or no tuple inT'C' satisfieg). In the former case, we say tHAC matcheg).

This property of a tuple class provides a useful abstradboreason about the effects
of a database modification. Specifically, we can model a sitighle modification in a
relation.J by a pair of tuple class€s, d) of J to represent that some tuples J, where
t belongs to the tuple class(referred to as theource-tuple class(STE s modified to
another tuple’, wheret’ belongs to the tuple class(referred to as thdestination-tuple

class(DTC).

Clearly, if we generate a modified databd3eby modifying a single tuple in D to ¢’
such that botht andt’ belong to the same tuple class, then all the queriggdhwould
still produce the same query result 8h. Thus, forQC' to be effectively partitioned by
D', the(STC, DTC) pair (s, d) corresponding to a modified tuple I must haves # d.
The following result states the maximum number of query stdathat can be partitioned

by a modified database.

Lemma 3.2. Consider a set of queriggC' that have the same query result on a database
D, and a new databasP’ that is obtained fromD by modifyingn distinct tuples inD.

D' can partitionQC' into at most4™ query subsetsQC = QC; U QCy U --- U QC,,,

m € [1,4"], such that (1) all the queries in eacpC; produce the same query result on

D', and (2) for each pair of querie; € QC;, Q; € QC;,1 # j, Q:(D') # Q;(D’).
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Proof. Consider the case whene= 1. Let D’ be a modified database obtained frahby
modifying a single tuple in D to ¢’ such that the projected attribute values ahd¢’ are,
respectivelyy andz’, wherex # z’. For each query) € QC, there are four possibilities
for Q(D'): (1) Q(D') = Q(D) if neithert nort’ matches); (2) Q(D') = Q(D) U {z'},

if ¢ does not matcly butt’ matches; (3) Q(D’) = Q(D) — {z}, if ¢ matches) but#’
does not matcly); and (4)Q(D’) = Q(D) U {z'} — {z}, if both ¢ and?’ match@. Thus,
since there are only 4 potential resuls,’ can be partitioned into at most 4 query subsets
when a single tuple is modified. It follows that the maximunmioer of query subsets is

4™ for n tuples modifications. O

Given a databas® and set of(ST'C, DTC') pairs S representing modifications tb,
we can generate a modified databéasdrom D and S as follows: for each{s,d) € S,
choose a tuple in D that belongs tos and modifyt to ¢’ such thatt’ belongs tod.
Given this, it is convenient to extend the definitionsbafance(D’), minEdit(D, D’)
and cost(D') to sets of(STC, DTC) pairs. Specifically, ifD’ is a modified database
that is generated fror» and S as described, then we defib@ance(S) = balance(D’),
minEdit(S) = minEdit(D, D), andcost(S) = cost(D").

3.4.2 Overview of Approach

Generating a modified databas® with a small value ofcost(D’) is a complex prob-
lem due to the large search space of possible database mtdiig In this section, we
present an effective heuristic approach to comgitby searching in the smaller domain
of tuple-class pairs. Our approach first finds asgt of (ST'C, DT'C) pairs that mini-
mizesbalance(S,,:) andminEdit(S,,), and then maps each tuple-class paifjy to a

concrete tuple modification to form'.

For efficiency, our search fdf,,, is organized iteratively in increasing cardinality of the

candidate tuple-pair sets: we first consider a search spasesting of single-pair sets,
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Algorithm 3.2: Database-Generator
Input: A databased), a set of candidate queriéx’
Output: A modified databas®’
1 SP=8Skyl i ne- STC- DTC- Pai r s(D, QC)
2 Sopt = Pi ck- STC- DTC- Subset (SP,QC)
3 Let D’ be a modified database generated ftbrand S,
4 return D’

and then extend this to consider a search space of two-fajrasel so on. The search
space extension frompair sets tdi + 1)-pair sets is done in such a way that only “good”

candidates are considered, to limit the search space.

The search space for single-pair sets is generated by evimgidhe skyliné STC, DTC)

pairs defined with respect to their balance scores and mmimdit costs. Given two
(STC, DTC) pairs,(s,d)and(s’, d'), we say thdts, d) dominatess’, ') if (1) balance({(s,d)})
< balance({(s',d")}), (2) minEdit(s,d) < minEdit(s',d'), and (3) at least one of the
two inequalities in (1) and (2) is strict. A sétof skyline (STC, DT'C') pairs has the
property that for every two distinct pai(s, d), (s',d’) € S, neither(s,d) nor (s',d")

dominates the other.

The overall design of the database generator module is sihmowigorithm 3.2, which
takes the initial databade and a set of candidate queri@§’ as inputs and outputs a mod-
ified databasé®’ with a small value ofost(D’). The algorithm first generates a $&® of
skyline (ST'C, DTC) pairs fromD andQC' using the functiorSkyl i ne- STC- DTC-
Pai r s. The second step selects a “good” subs€t5afC, DT'C) pairsS,,: C SP using
the functionPi ck- STC- DTC- Subset . Finally, the modified databad®’ is generated

from D andsS,,;.

3.4.3 Algorithm Skyline-STC-DTC-Pairs

The functionSkyl i ne- STC- DTC- Pai r s, shown in Algorithm3.3, takes the initial

databaseD and a set of candidate queri€g” as inputs to generate a set of skyline
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Algorithm 3.3: Skyline-STC-DTC-Pairs
Input: The initial databasé, a set of candidate queriéx’
Output: A set of skyline tuple-class pairs

1 STC = set of source-tuple classes derived fron& QC

2 initialize set of skyline tuple-class paifsP = ()

3 initialize minbalance = oo

4 letn be the number of distinct selection-predicate attribute3d

5 fori=1tondo

6 initialize SP; = 0

7 foreachs € STC do

8 let DT'C' = set of destination-tuple classes that can be derived frbsnmodifying
i subsets

9 foreachd € DTC do

10 p=(s,d)

11 if balance({p}) < minbalance then

12 SP; = {p}

13 minbalance = balance({p})

14 else ifbalance({p}) == minbalance then

15 | SP,=5P; U {p}

16 SP=SP U SP,

17 if therunningtime is largerthanthresholds then

18 | break

19 return SP

(STC,DTC) pairsSP.

The function first generates the set of all the source-tuplesesSTC from D andQC.
Recall that all the queries iIQC are assumed to be selection queries on a single relation
J formed by joining all the relations i based on their foreign-key relationships. The
source-tuple classes are derived by first ugpigto computeP,(A;) for each attribute

A; in the selection predicates (pC, and then mapping each tupledrto its source-tuple

class.

The skyline(STC, DT'C') pairs are generated iteratively in order of non-descenatimg
imum edit cost starting from one to, wheren is the number of distinct attributes that
appear in the selection predicates(d@’. Thus, thei’" iteration generate§ P;, the set
of skyline (ST'C, DTC) pairs with a minimum edit cost of By enumerating the sky-
line pairs in this manner, any dominated tuple class pamsbeadetected efficiently and

pruned.
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The time complexity of this function i®(mk™), wherem is the total number of source-
tuple classes andis the maximum number of domain subsets over all selectiedipate
attributes; i.e.k = maxa,{|Pgc(A;)|}. Note that in thei'” iteration, the number of
destination-tuple classes that can be generated from amesstuple class €7 (k — 1)".
Therefore, the total number 6§7'C, DT'C') pairs considered is at most, | CI"(k—1)",
i.e.,O(k™).

Given the high time complexity of this function, in our exjmeental evaluation, we used
a threshold parametérto control the maximum running time allocated for this fuoot
Once the threshold is reached, the function terminatesetndhs all the skyline pairs that

it has enumerated so far.

3.4.4 Algorithm Pick-STC-DTC-Subset

The functionPi ck- STC- DTC- Subset , shown in Algorithnm3.4, takes as inputs the set
of skyline (STC, DT'C) pairsS P and the set of candidate queri@é’ to select a “good”
subset ofS P for deriving D’. Steps 1 to 8 consider the search space of single-pair sets
and identify the optimal sets with minimum cost, which arentaned inL. Steps 9to 21
consider the search spaceigfair sets iteratively; € [2, |SP|], which is extended from
the search space ¢f — 1)-pair sets, denoted by P,_;. To maintain a small search space
of good candidates for the next iteration, only thogmir sets that have a lower balance
score relative to their constituefit— 1)-pair sets are used for the next iteration. Finally,
in the event thaf. contains more than one optimal set, step 22 picks the optetatith
the lowest balance score. The time complexity of AlgoritBriis O(2!571). Although
the worst-case complexity is high, our experimental resslibw that in practice, the size

of the search space considered is small due to our balance-sased pruning heuristic.
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Algorithm 3.4: Pick-STC-DTC-Subset
Input: A set of skyline(ST'C, DT'C') pairsS P, a set of candidate queriéx’'
Output: A subset of( STC, DT'C) pairs Sy, € SP
initialize L = ()
initialize mincost = oo
foreachp € SP do
if cost({p}) < mincost then

1
2
3
4
5 L={{p}}
6
7
8

mincost = cost({p})
else ifcost({p}) == mincost then
| L=Lu {{p}}
9 initialize OP; = SP
10 fori=2to|SP|do
11 initialize OP; = ()
12 foreachop € OP,_; do

13 foreachp € SP, p € opdo

14 op =op U {p}

15 if balance(op’) < balance(op) then
16 | OP,=0P; U {op'}

17 if cost(op’) < mincost then

18 L ={op'}

19 mincost = cost(op')

20 else ifcost(op’) == mincost then
21 | L=L U {op'}

22 let Sy, € L such thabalance(Syp:) < balance(S)V S € L
23 return S

Side Effects of Tuple-Class Modifications

Recall that given a set ¢57T'C, DT'C) pairsS, cost(S) is derived by first mapping each
tuple-class paifs, d) € S to a pair of tuplegt, t'); wheret € D belongs tos, andt’ is
modified from¢ such that’ belongs tai. The set of derived modified tuples forbi, and

cost(.S), which is defined to beost(D’), is computed using Equatio.).

In general, a single database tuple modification framt’ could result in more than one
resulttuple inQ (D) being modified, since the modified base tuple could join wititiple
tuples and therefore contribute to multiple result tuplesllastrated by the following

example.

Example 3.4. Consider the following joined relatiod = T\(A, B,C) x4 Ty(A, D),
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whereT;. A is a foreign key that referencés.

Al B|C|D

110|50]| 20

10 | 50| 40

=

80| 45| 25

2
3192|8020

J = Ty(A, B, O)=1uTy(A, D)

Assume that there is @7'C, DTC) pair (s, d) that corresponds to modifying the value
of attribute B in the base tuplé1, 10, 50) in 7} to some other value. This single-tuple

modification in7; actually affects the first two tuples ih OJ

Thus, the database modification corresponding to a single-ttlass pair can potentially
affect more than one query result tuple. Since the affeaipte$ might not belong to
the same destination-tuple class, we need to take into atsoch unintended effects to

accurately computeost(S).

Our implementation of Q-QFE constructs a join index for edmign-key relationship

in the database to efficiently keep track of the set of relaigtes (with respect to the
foreign-key relationship) for each base tuple. Using the jodex, the unintended side
effects of a modification corresponding to tuple-class pair be easily identified to ac-
curately compute the cost. The algorithm is shown in AldgwnB.5, which takes as input
a tuple-class paifs, d) and initial databas®, and outputs the cost 0f, d) and the tuple

assigned for(s, d) to be modified. To minimize-esultCost, tuple-class modifications

that have no side-effects are preferred.

As shown in Algorithm3.5, given a(STC, DTC) pair, we first mapSTC to all the

corresponding tuples, which are managed in hash bucketopsty when we compute
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Algorithm 3.5: Computing Cost
Input: Tuple-class paits, d), databaseé
Output: coste, and chosen tuplg,;,, of (s, d)
1 T's = set of tuples belonging t67°C' s;
2 Min, = 00, tmin = 0, jmin = 0;
3 foreacht € T's do
4 sum =0, Js = ;

5 let 7}, be the modified tuples from base relations;
6 foreacht, € T, do

7 let J be the set of tuples in joined relation composed,pf
8 J=J—{th

9 n=|J|;

10 if n > 0then

11 sum-+ = n,

12 Js=JsUJ

13 if sum == 0 then

14 computer = cost(s, d) with cost model;

15 tmin = t, min, = 0;

16 break;

17 else

18 if sum < min, then

19 min, = sum,

20 tonin = Us

21 Imin = JS;

22 if min,, > 0 then
23 foreachj € j,.;, dO

24 update théalance(s, d) andminEdit(s, d) with side effect of joined tuple
Js
25 compute cost based on updatddilance(s, d) andminEdit(s, d) with cost
model;

26 return ¢, tin.

all the ST Cs(in step 1 of AlgorithnB.3). Then we examine whether side effect exists
for a given(STC, DTC) pairs in steps 3 to 21. As mentioned in Sectik8) we build

a join index to help us detect side effect. The join index imposed of two parts: (1)
for each tuple in joined relation, the base-relation tuples which arew&tifromt are
stored in an array; (2) for each base-relation tupleve store the tuples in join relation
which are joined by, in an array too. With join index, we first find the modified base
tuples with constant time complexity(steps 5); and for eaoldified base tuple, we detect

the influenced tuples in join relation(step 7). If there amrenjoined tuples rather than
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the given tuplet, we can determine that side effect exists(steps 8 to 12).er@ike,
we terminate the enumeration and chooss the tuple to be modified later without side
effect(steps 13 to 21). If we cannot find a modified tuple wittgide effect, we choose the
tuple with minimal effected joined tuples to update théunce(s, d) andminEdit(s, d),
and compute the cost based on our cost model(steps 22 tol&bgomplexity isD (mxn),
wherem is the number of tuples belonging to the giveéi'C' andn is the number of

modified base tuples.

Note that this algorithm is only executed once for the sifggé sets in Algorithn.4.
Afterwards, a particular tuple has been allocated to €&arC, DT'C') pair for modifica-
tion. When we extend the search space-pairs sets, the cost can be computed directly

based on the cost model, without considering side effedhaga

3.5 Discussion

We first discuss in Sectior#s5.1to 3.5.3how our approach can be generalized by relaxing
the three assumptions stated in Sectioh We conclude with a discussion of how our

approach can be extended to support more expressive qire8estion3.5.4

3.5.1 Queries with Set-based Semantics

So far, our discussion is based on the assumption of bagrtesifor the queries)C,
where duplicate values are preserved in the query resulésn®¥ explain how our ap-
proach can handle queries with set-semantics, where themoaduplicate values in the

guery results.

Consider an example where the schem&)@D) consists of a single attributé and we

are trying to distinguish the set of queri@s’ = {Q1, Q- } with an appropriatd)’. There

44



CHAPTER 3. QUERY-BASED APPROACH

are two basic ways to achieve this goal. The first approadhnsodify D such that some
value, saya; € Q(D), is removed from@,(D’) but remains inQy(D’). The second
approach is to modifyp such that some value of attribute saya, ¢ Q(D), is inserted

into @1(D’) butis not present i, (D’).

For the first approach, we need to modify the set of tupleS D that match(); with
7a(S) = {a1} such that the modified tuples do not mafgh For the second approach, it

is sufficient to modify a single tuple ifv such that the modified tupkehast. A = a5, and

t matches), but not@,. The first approach is more complex to handle since the set of
tuplesS to be modified might not all belong to the same tuple classsTbur existing Q-
QFE solution can handle set semantics by adopting the seqprdach. Further research

is required to incorporate the first approach as well into EEQ

3.5.2 Queries with Different Join Schemas

We have so far assumed that all the querieQn share the same join schema. Our ap-
proach can be extended quite easily to handle the more deaseawhere this assumption

does not hold.

The simplest approach to handle different join schemas isséa divide-and-conquer
strategy. We first partitiod)C' into different groups so that queries in the same group
share the same join schema and then apply Q-QFE on each efdhmgps. There are
different strategies to order the query groups for proogssOne strategy is to process
the query groups in non-ascending order of the group sizedbas the assumption that
the target query is more likely to be contained in a largemrygeoup. Once the target
guery is identified in some query group, the processing teates without the need to

process the remaining query groups.

A more complex approach to solve the problem is to computdl-adter join of all the

relations in the database and to extend our existing Q-QpEoaph to work with this
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single joined relation. We plan to evaluate the tradeoffthete different approaches as

part of our future work.

3.5.3 Database Constraints

We have so far not discussed how to ensure that the generateidied databases are
valid with respect to the database integrity constrairdas¢buld be provided by the users.
For primary key constraints, it is trivial to ensure that nfied tuples do not violate such
constraints. For foreign key constraints, care must bentaeensure a modified non-
null foreign key value refers to an existing primary key \altiowever, more research is

required to look into handling more complex database caimgs.

3.5.4 Supporting More Expressive Queries

In this section, we discuss how our approach could be extetodeandle more expressive

gueries.

For select-project-join-union (SPJU) queries, the pnobkd distinguishing two SPJU
gueries can be reduced to that of distinguishing two SPJiepignth some additional
checking. For example, consider the problem of distingoghwo SPJU querie§; =
Q11 U Q12 and@Q)y = ()21 U Q92 With a modified databasP’. Assume that is an output
tuple that is produced by both,; and(@,; on databas®. The problem could be viewed
as distinguishing two SPJ queri€s; and ()>;. One way is to generat®’ such that
t € Q1 (D) andt € Q21 (D’); additionally, we need to ensure that ()»,(D’). Another
way is to modify the database such that a new output ttifidecontained inQ); (D’) but
notinQs(D’).

Supporting group-by aggregation (SPJA) queries, howegguires more significant ex-

tensions to our approach due to the larger number of divgrserns to distinguish such
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complex queries. We plan to investigate this issue moreotighly as part of our future

work.

3.6 Experimental Evaluation

In this section, we evaluate the efficiency and scalabilitgwr approach using two real
datasets. Our experiments were performed on a PC with aihGote 2 Quad 2.83GHz
processor, 4GB RAM, and 256GB SATA HDD running Ubuntu Lindk@4. The algo-
rithms were implemented in C++ and the database was managyegl MySQL Server

5.5.27. All timings reported were averaged over three runs.

The default values for the two configurable parameters impproach are as followg: =
1 for the scale parameter in Equatidh3), andd = 1s for the time threshold parameter in

Algorithm 3. We examine the sensitivity of these parameateections3.6.3and3.6.4

Sections3.6.2to 3.6.6present experimental results where the result feedbaekaictions

were automated without involving any real users, by alwdysosing the largest query
subset (to examine worst-case behavior) in each feedbackidn. This practical ap-
proach enables us to conveniently conduct many experinterggaluate the effects of
different parameters on various properties of our appragachuding the number of feed-
back iterations, the number of database and result modificatand the execution time of
the algorithms. Finally, Sectio®.6.7to Section3.6.9briefly report additional experimen-
tal results, including the effects of input example size, ¢htropy of the active domains

of attribute, and a simple user study.
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3.6.1 Database and Queries

Our experiments were conducted using two real datasetsfifBheataset is a scientific
database of biology information taken from SQLSRatet consists of two tables: the
first table, named “PmTRLL _DE”, contains 3926 records with 16 attributes; and the
second table, named

“table_ PsemulFLRT _spgpgp.ok”, contains 424 records with 3 attributes. The foreign-
key join of these tables is a relation with 417 tuples. We us&dactual queries (denoted

as(@), and(@, below) posed by a biologist on this database.

The second dataset is a baseball database containingwvataistics (e.g., batting, pitch-

ing, and fielding) for Major League Baselallin our experiments, we used only three
of its tables (/anager, Team and Batting) which have 11, 29, and 15 columns; and
contain 200, 252, and 6977 tuples, respectively. The far&gy join of these three tables

is a relation with 8810 tuples. Four synthetic queries wesedwon this dataset (denoted
by 5 to Q)¢ below) with varying complexity in terms of the number of t&as, and use

of conjunctions and disjunctions in the selection predisat

Ql =Tx (UP.logFCFe<O.5/\P.logFC'pe>—O.5/\P.logFCP<—l/\P.logFC’Si<—lAP.logFCUrea<—l
A(P.PValuere<0.05VP.PValuep <0.05\/P.PValuesz'<0.05\/P.PValueUrea<0.05))
(PmTE_ALL_DE(P) X table_Psemul F'L_RT _spgp_gp-ok)

Q2 =T« (UP.logFCpe<1AP.logFCp>lAP.logFCSi>lAP.logFCUrea>1/\(P.PValuepe<0.05\/P.PValuep <0.05
\/P.PValueSi<0.O5\/P.PValueUrea<0.05))

(PmTE_ALL_DE(P) X table_Psemul F'L_RT _spgp_gp-ok)

Q3 =TmanagerID,year,R (UteamID: “CIN” Nyear>1982A\year<=1987 )

(Manager X Team)

3http://escience.washington.edu/sglshare
“http://www.seanlahman.com/baseball-archive/stasisti

48



CHAPTER 3. QUERY-BASED APPROACH

Q4 =T ManagerID,year,2B (UplayerID: “sotoma01” Vplayer I D= “brownto05”V
playerI D=“pariske01” VplayerI D=“welshch01” ) (Manager X Team M Batting)

Qs :FManagerID,yeanHR(UplayerID: “rosepe01” /\HR>1/\2B<:3)

(Manager X Team X Batting)

QG =T ManagerID,year,3B (UplayerID: “esaskni01” A(IP>4380

V(IP<=4380nBBA<=485)) ) (Manager X Team X Batting)

The cardinalities of the query results f@y to Qs are, respectively, 1, 6, 5, 14, 4, and
4 tuples. Each of the above queri@ss used to generate an initieD, R) pair, and the
target query in an experiment could §eor one of the candidate queries generated from

(D, R).

3.6.2 Results for Default Settings

In this section, we present experimental results for thawetettings with3 = 1 andé
= 1s, where the largest query subset is always chosen at teaatian. Here we discuss
only the results for the scientific database; the resultsHerbaseball database will be

partially presented in Sectidh6.3

Both@Q; and@, require 6 iterations of result feedback with our prototypehle3.2shows
the following per-round performance statistics: (1) thenter of candidate queries and
(2) the number of query subsets partitioned at the startaf garation; (3) the number of
skyline tuple-class pairs enumerated by AlgoritBrg (4) the total execution time, which
is the sum of the running time for the Query Generator modagdgért of the first iteration)
and Database Generator module, and running time for modifithe database; (5) the
database modification costhC'ost; (6) the query result modification costesultCost,;
and (7) the average query result modification cesy,ResultCost, which is given by the
ratio of (6) to (2).
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Iteration No. | 1 | 2 [ 3] 4] 5 | 6 |
# of queries 19 | 15 | 13 | 11 | 10 8
# of query subsets 2 2 2 2 2 8
# of skylinepairs | 2 | 100 | 52 | 101 | 51 | 98
Executiontime (s) 2.84|1.91|1.71| 1.89| 1.91| 1.99
dbCost 1 2 2 1 2 8
resultCost 12 | 11 | 12 | 11 | 13 | 80
avgResultCost 6 5.5 6 55| 65| 10

(a) Results for Querg),

Iteration No. | 1 | 2 [ 3] 4] 5 | 6 |
# of queries 19 | 11 7 5 3 2
# of query subsets 2 2 2 2
# of skyline pairs | 50 6 63 | 130 | 54 | 12
Execution time (s) 2.91| 1.69| 1.81| 2.89| 0.69| 0.71
dbCost 1 2 2 2 1 2
resultCost 11 9 10 11 11 12
avgResultCost 55| 45 5 55| 55 6

(b) Results for Query),

N
N

Table 3.2: Per-round statistics for scientific database.

Note that the total execution times (over 6 iterations)YJeand(), arel1.25s andl10.11s,
respectively, of which less than 1 second is spent on theyQ@enerator module. As
expected, the first iteration took the most time as it inctuttee query generation time
and the first iteration also processed the largest set ofidatedqueries. Generally, the
execution time decreases as the set of candidate querigsepsovely becomes smaller.
However, for(@),, observe that there is an increase in the execution timet$diourth
iteration, which is due to the large number of skyline tugliess pairs enumerated for that
round. The maximum and average per-round execution tineealayut 3 and 2 seconds,

respectively.

In terms of modification costs, the highest costs were irclim the last iteration fof),
where the queries were partitioned into 8 subsets resulirfgydatabase attributes and
7 query result tuples being modified. For each of the otheatitans, the queries were

partitioned into 2 query subsets requiring modificationsitofnost 2 database attributes
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and a single query result tuple. Thus, the average modditatist for each round is low,

implying that the expected user’s effort to provide reseétdback is modest.

Besides the worst-case result feedback simulation, weeadperimented with an auto-
mated result feedback that always choose the query sulagetahtains the target query.
For @), it required 6 iterations, as with the worst-case resulisuesented. Fdp,, only

4 iterations were needed to determine the target query witiah running time of 7.4s

and an average per-round modification cost of 1 databaskut¢trand an average of 5

modified attributes for each query result.

3.6.3 Effect of Scale Factors

In this section, we examine the effect of the scale paranteter performance by vary-
ing its value in the rangé1, 2, 3,4,5} on the number of iterations and the actual total
modification costs (i.e., for both database and query resatifications). Recall that
the parametep is used in Equation3(3) of the cost model to normalize the number of

relations in terms of number of attribute modifications.

For both queries); and@, on the scientific database, neither the number of iterations

the actual modification costs were affected by the variatigh

The results for querie@; to ()¢ on the baseball database are shown in Tal8eln terms
of the effect on the number of iterations, only querigsand @, were slightly affected
with a decrement of one round whenis increased t@ and3, respectively. In terms of
the effect on the modification costs, orlly,’'s cost was affected with an increment of 3

wheng is increased t@.

Our experimental results indicate performance does natriegreatly upors. The rea-

son is that when the modified tuples come mostly from the sataéion, the value of
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Effect of 5 on Effect of 5 on
number of iterationg modification cost
Query 1\2\3\4\ 5 1\2\3\4\5

Q3 7/6/6|6| 6 291291292929
Q4 6/6/5/5| 5 24| 24| 27| 27| 27
Qs Ty T 7 32132323232
Qs 5/5|5|5] 5 25|25|25|25|25

Table 3.3: Effect of5 for baseball database

does not matter. Fap,, except for the last iteration where two relations were rfiedj
only one relation is modified in each iteration. K¢, only one relation is modified in
all iterations. For); and()g, except for one iteration which modified only one relation,
all iterations modified two relations. Fo}, and@s, only one relation is modified in all

iterations. Given this behavior, all our experiments useddefault value of 1 fof.

3.6.4 Effect of Time Threshold)

In this section, we examine the effect of the time threshaldameter on performance

by varyingd in the range{0.1,0.2,0.5,1,2,5,10}.

Table3.4 shows the effect 0§ on the number of iterations, total modification cost, and
execution time for the scientific database. Although theetien time generally increases
with §, an increase i could reduce the overall execution time. This is because by
increasing the time for finding skyline tuple-class pairs.(iAlgorithm 3), the quality of
the subset of tuple-class pairs derived by Algorithm 4 canddrove leading to a more
balanced partitioning of the candidate queries therebgiplysreducing the number of
iterations or modification cost. For example, in TaBléa), the execution time faf),
decreases whenincreases frond.1 to 0.2, due to a decrease in the number of iterations.
Similarly in Table3.4(b), the execution time faf), decreases whehincreases frond.1

to 0.2 for the same reason.
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\5(3) H 0.1\ 0.2\ 0.5 \ 1 \ 2 \ 5 \ 10 \
# of iterations 11| 9 9 6 5 8 8
Modification cost || 201 | 201 | 179 | 155 | 155 | 122 | 122

Executiontime (s)| 9.7 | 9.0 | 12.2| 11.2| 14.1| 47.4| 83.2
(a) Effect ofé on ),

\5(3) H 0.1\0.2\0.5\ 1 \ 2 \ 5 \ 10 \

# of iterations 71 4|6 6 4 4 4

Modificationcost || 87 | 90 | 74| 74 | 70 | 70 | 70

Executiontime (s)| 7.2 5.1| 8.1 | 10.0| 14.4| 26.3| 48.4
(b) Effect ofd on (),

Table 3.4: Effect ob for scientific database

For the baseball database (results not shown due to spasiaints), we observe that for
queriess, Q5 and (g, their lowest execution times occurred whee= 1s, and forQ),,

its lowest execution time occurred whénr= 2s.

Our experimental results suggest that a reasonable valtieeftime threshold parameter

is 1 or 2 seconds.

3.6.5 Efficiency of Algorithm 3.4

In this section, we examine the efficiency of Algoritt#w in finding a “good” subset of
tuple-class pairs to generate the modified database. Ajththe algorithm has a time
complexity of O(2/°1), whereSP denote the input set of skyline tuple-class pairs, our
experimental results demonstrate that the algorithm Hgtparforms well in practice

even with a reasonably large input set .

Table 3.5 shows performance results of Algorithm 4 for querigsand (), on the sci-
entific database. Recall that both queries require 6 itearatwith the default worst-case
automated result feedback. For each query, Tallshows the number of skyline tuple-

class pairs (i.€,,S P|) and the execution time of Algorithm 4 for each iteration.
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| | teratonNo. | 1 [ 2 [ 3 | 4 [ 5 | 6 |
# of skyline pairs| 2 100 | 52 | 101 | 51 | 98
Q4| Exec.time (ms) | 0.0689| 189 | 11.5| 161 | 33.7| 283
# of skyline pairs| 50 6 63 | 130 | 54 | 12
(4| Exec.time(ms)| 125 | 0.598| 131 | 1267 7.71| 1.78

Table 3.5: Performance of Algorithm 4 for scientific databas

The results show that the running times of Algoritl3d were very short. Fo€),, the
longest running time was 0.283 seconds in last iteratiod;fan(,, the longest running

time was slightly over one second in thé iteration.

To evaluate the scalability of Algorithm 4 with respect|tP|, we consider the"? it-
eration for@; with |SP| = 100 which was generated with = 1s. By progressively
increasing the time threshold to 15 seconds, we generatglolsets of skyline tuple-class
pairs of increasing size witlt' P| € {200, 400, 600, 800, 1000}. Table3.6 compares the
execution timings of Algorithm 4 for these 5 subsets. We alsow the maximal number

of reduced candidate pair sets in one iteration of Algorithm

# of skyline pairs 200 | 400 | 600 | 800 1000
Exec. time (s) 3.22| 24.55| 65.76| 104.54| 156.49
Max. # of reduced set§ 155 | 241 | 301 470 649

Table 3.6: Performance of Algorith@4 for varying|SP)|

The results show that the performance of Algorithm 4 wasrsidlsonably fast (less than
25s) when S P| = 400. We also observed that the query partitionings producedlgg-A

rithm 4 were all the same as the size of the skyline tuplesdabset was increased from
50 to 1000. Thus, this suggests that the sizeS9? need not be large to find good query

partitionings.

3.6.6 Effect of Number of Candidate Queries

In this section, we examine the effect of the number of camtdiqueries produced by the

Query Generator module. Due to space constraints, we prégeresults only for),.
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To go beyond the 19 initial candidate queries generate@fpwe generated 61 additional
candidate queries from the initial candidate queries byifyiod) their selection predicate
constants. From the 80 candidate queriesfgrwe created 6 subsets of candidate queries
(denoted bys,, Sy, - -+, Sg) such thatS; € S, C --- C Sg and@, € S;. The cardinality

of these query subsets and their performance results anshdable3.7.

| Candidate query set | S1 | S | Ss | S| S5 | Se |
# of candidate queries 5110 20| 40| 60 | 80
# of selection attributes 9 | 14| 18| 18| 18 | 18
# of iterations 21 3|45 6 6
Execution time (s) 39|6.4|85|7.7| 94100
Modification cost 37 49| 70 | 82 | 104 | 103
Avg. dbCost per round 15/ 2| 1]16|15| 2.2
Avg. resultCost perresult s¢t6.8 | 6.1 | 6.6 | 6.2| 6.3 | 6

Table 3.7: Effect of the number of candidate queriegn

Note that the execution timings reported here did not ingltite running time of the
Query Generator module, since we had manually generateticaxdd candidate queries;
and in any case, the candidate-query generation time wgseosimall fraction of the
total execution time. Observe also that both the numbelegdtions and execution time
increase with the number of candidate queries, and theogoedr database and query

result modification costs are reasonably low.

Since the first iteration’s running time is the most timesaming, Table3.8 presents a
breakdown of this running time in terms of the time spent ahed the three key steps of

the Database Generator module (i.e., AlgoritBu®).

Query set S So S Sy S5 S
Algorithm 3 | 1.04| 1.12 1.10 1.10 1.10 | 1.10
Algorithm 4 | 0.11| 0.0006| 0.00007| 0.000065| 0.005| 0.002
Modify DB | 0.68| 0.70 0.67 0.68 0.68 | 1.02

[ Total [294] 2.88 | 285 | 2.86 | 2.89 | 3.24]

Table 3.8: Breakdown of first iteration’s runing time (in yec

Observe that the running time is dominated by the first and gteps, with Algorithn8.4
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incurring the least amount of time. The results demonstrettour approach can scale

for a reasonably large number of candidate queries.

3.6.7 Effect of Initial Database-Result Pair

In this section, we present additional experimental restatevaluate the effect of the

initial database-result pair on performance.

Figure3.2shows the queries used in this experiment, wiigréo (05 are on the scientific
database an@g to ()9 are on the baseball database. Note that among the 5 queries on
the scientific database, two of them are real queries ancthaining three are synthetic

gueries.

Ql =Tx (UP.logFC_FE<O.5/\P.logFC_Fe>70.5/\P.logFC_P<71/\P.logFC_Si<71/\P.logFC_Urea<71/\(P.PVa,lue_F6<0.05
VP.PValue_P<0.05V P.PValue.Si<0.05v P.PValue.Urea<0.05) ) (PMTE_ALL_DE(P) X table_PsemulF' L_RT _spgp-gp-ok)

Q2 =7« (0P.PValue.Si<=7.02¢—06) (PmMTE_ALL_DE(P) X table_-Psemul F L_RT _spgp_gp-ok)

Q3 =7« (US.Groups>24/\S.G7'oup5<:27(PmTE—ALL—DE(P) N table—PsemUIFL—RT—Spgp—gp—Ok)

Q4 =7+ (0P.1ogC PM.P<=3.91148AP.logCPM.P>3.79204 ) (PmMTE_ALL_DE(P) X table-Psemul F' L_RT _spgp-gp-ok)

Q5 =Tx (UP.lOgFC_FE< 1AP.logFC_P>1AP.logFC_.Si>1AP.logFC_.Urea>1A(P.PValue_.Fe<0.05VP.PValue.P<0.05

VP.PValue_5i<0.05V P. PV alue_Urea<0.05) ) (PMT E_ALL_DE(P) X table_Psemul ' L_RT -spgp_gp-ok)

Q6 :ﬂ'klanagerID,year,HR(UplayerID:“sotomaOl”\/playerID:“b7‘ownto()5”\/playerID:“pa'riskeOl”\/playe'rID:“welshchOl”)
(Manager X Team X Batting)

Q7 :ﬂ'klanagerID,year,HR(U(playerID: “foleyto02” VplayerI D="“vangoda01”VplayerI D=“mcgrite01”
VplayerI D=*jonestr01” VplayerI D=*“housepa02”)A(managerI D="rosepe0lm”VmanagerI D="rappve9d9m”
\/managerID:”nizonru()lm”)/\Batting.RBI>9/\Batting.SB<:12)(Manager X Team N Batting)

QS :ﬂ'klanagerID,year,SB(UplayeTID:”esaskni()l”/\IP<:4380/\BBA<:485)(Manager X Team M Batting)

QQ :ﬂ'manageTID,year,R,ank(UteamID:“CIN”/\year>1982/\year<1988)(ManageT X Tea‘m)

Figure 3.2: Queries for Sectid6.7

We created four datasets (denoteddy1 to S D4) for the scientific database as follows.
SD4 is the original scientific database, and each of the remgidatasets are subsets
of SD varying in size created such that they satisfy the followtiwg properties: (1)
for i € [1,3], we have|SD;| = + x |SD,| and (2) for each query) on the scientific
database(SD1) C Q(SD2) C Q(SD3) C Q(SD). Similarly, we created three

datasets (denoted byB1 to BB3) for the baseball database with the similar properties.
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The properties of the datasets and query results are shovabla3.9. For convenience,
the two relations in the scientific database are abbreviasel and S, and the three

relations in the baseball database are abbreviatét 8s andM .

Scientific Data)| SD1 | SD2 | SD3 | SD4 Baseball Datgd BB1 | BB2 | BB3
Size(P) 1000| 2000 | 3000| 3926 Size(T) 10 | 20 | 30
Size(S) 111 | 221 | 316 | 424 Size(B) 350 | 751 | 1034

#0fQ,(D) 1 1 1 1 Size(M) 10 | 24 | 33

#of Q2(D) 3 6 7 8 #of Qs(D) 5 7 9

#of Q3(D) 1 2 4 6 #of Q7(D) 2 3 4

#of Qu(D) 2 3 4 4 #of Qs(D) 2 2 2

# of Q5(D) 3 4 6 6 # of Qo(D) 2 3 4
(a) Statistics for Scientific Database (b) Statistics fosd&zll Database

Table 3.9: Properties of datasets and query results

The experimental results are shown in Fig@r8. For each dataset, we show the total
modification cost, the number of iterations to find the inehduery, and the execution
time. As shown in the Figur8.3, the effect of the initial database-result pair on perfor-
mance does not not have a clear trend. For exanipjeand @); on BB3 incurred the
lowest modification cost and number of iterations. Howeggrand(y on BB1 incurred
the lowest modification cost and number of iterations. Imtiof the number of iter-
ations, BB2 required the largest number, but in terms of the modificatiost, ()5 on

B B2 outperforms)s on BB1. As for the scientific dataseff D2 incurred the lowest
modification cost and number of iterations s and@,. However, forQ); and@s, their
performance oy D2 is the worst. In summary, there is no clear trend for the éfiéthe

initial database-result pair on the performance.

3.6.8 Effect of Size & Entropy of Attributes’ Active Domains

In this section, we present additional experimental redolevaluate the effect of the size

and entropy of the active domains of attributes on perfogaan
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Figure 3.3: Effect of initial database-result pair

For this experiment on the scientific database, we creatatbsets (denoted by, - - - , D5)
by varying the number of distinct values of a chosen attalfdenoted by4). The total

number of distinct values for for these datasets are shown in TaBl&Q D, is the

‘ Data sets ‘ D, ‘ Do ‘ D3 ‘ D, ‘ D5 ‘
# of distinct valueg 3725| 2978 | 2230| 1490| 749
% reduced 0% | 20% | 40% | 60% | 80%

Table 3.10: Number of distinct values for attributeén datasets

original dataset, and the each of the other datasets waedreg reducing the number
of distinct attribute values foA by a certain percentage as shown in TahtEQ This is

done by replacing each eliminated attribute value by oné@feiisting attribute values
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such that the following properties hold: (1) [Etdenote the instance of relati@hin D;,
we haver4(T;) D wa(Ti41), @ € [1,5). (2) for each intended query on the scientific

databasel)(D;) = Q(D,) for anyi, j € [1,5].

For each of two intended querie®; and ()., on the scientific database, and for each
datasetD;, j € [1,5], we used the Query Generator module to generate a set otieaadi
queries (denoted b C(Q;, D;)) for the input database-result p&a;, Q;(D,)). There
were a total of 19 common candidate queries@grand a total of 18 common candidate

queries forQ,; i.e.,|S1| = 19 and|S,| = 18, whereS; = ﬂ?zl QC(Qi, D;).

Table3.11shows the performance of each of the 19 candidate querigsas intended
guery on each of the 5 datasets. As before, the performamoeasured in terms of the
number of iterations and total modification cost to identifg intended query. Similarly,

Table3.12shows the performance results for the candidate querigs in

Observe that for the same query, the performance resulteeoddtasetd, to D; are
mostly the same. For the datasétsandD,, we observe that some queries perform better
on D; while other queries perform better do,. In summary, our experimental results
show that there is no clear trend for the effect of the sizearttbpy of the attributes’

active domains on performance.

3.6.9 User Study

In this section, we present the results of a user study cdaadweath 3 participants (all of
whom were CS graduate students) to evaluate the feasibiliiyr approach. The screen
capture of the system Ul is shown in Figudel. The interface first showed the input
database-result pair to the user. The user can scroll up @nd tb browse the tuples
in database and query result. In each iteration, the systghlighted the differences

between original and modified tuples. We used different rsoto mark the modified
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|QueryID|1 |2 [3]4|5[6]7|8][9]10]

D, 664/ 6|63 6|4|6]|6
D, 3|8(4|8|7|3|7|5|7|6
Ds 3|8(4|8|7|3|7|5|7|6
D, 3|8(4|8|7|3|7|5|7|6
Ds 3|8(4|8|7|3|7|5|7|6
‘QueryID‘ 11‘ 12‘ 13‘ 14‘ 15‘ 16‘ 17‘ 18‘ 19‘
D, 3|3 6|4|]6]3|]6|3]|3
D, 3|4 |55 7]4|3|]3]|3
Ds 3|4 |55 7]4|3|]3]|3
D, 3|4 |55 7]4|3|]3]|3
Ds 3|4 |5|5|7]4]3|3]|3

(a) Number of iterations

|QueryiD| 1 [ 2 [3]4 |5 |67 [8]9] 10|
D, 155| 155] 52 ] 155] 155| 38| 155] 52| 79| 155
D, 38 [ 113|641 113] 97 | 38| 97 | 79| 97| 85
D, 38 [ 113|641 113| 97 [ 38| 97 | 79| 97| 85
D, 38 [ 113|641 113| 97 [ 38| 97 | 79| 97| 85
Ds 36 | 113|641 113] 97 | 38| 97 | 79| 97| 85

‘Querle‘ll‘lZ‘13‘14‘15‘16‘17‘18‘19‘
D, 38|38|155|52|155|38| 79| 38| 38
D, 38|64 79 | 79| 97 | 64| 38| 38| 38
Ds 38|64 79 | 79| 97 | 64| 38| 38| 38
D, 38|64 79 | 79| 97 | 64| 38| 38| 38
Ds 38|64 79 | 79| 97 | 64| 36| 38| 38

(b) Modification Cost

Table 3.11: Effect of size & entropy of active attribute domf@ar query
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|QueryID|1 |2 [3]4|5[6 |7 [8]9]

D, 415|/5|6|6|5|3|3|3
D, 4,/6|5|6(6|5|44]|4
Ds 4,544,554 4]|4
D, 4,544,554 4]|4
D 4,544,554 4]|4

[Query D[ 10] 11[12[13[14]15]16]17] 18]

D, 212213343 ,4]|3
D, 4131443 |3|3|3]|4
Ds 314443 |3|3|3]|4
D, 314443 |3|3|3]|4
Ds 3|44 ,4|3|3|3|3)4

(a) Number of iterations

‘QueryID‘l‘2‘3‘4‘5‘6‘7‘8‘9‘
D, 47160 60| 74| 74|60 79| 79|79
D, 638163828263 |61|61|59
Dy 63| 82|66|66|82|80|60| 60|60
D, 63| 82|66|66|82|80|60|60| 60
D 52|82|66|66|82|80|60|60| 60

\QueryID\10\11\12\13\14\15\16\17\18\

D, 55| 55(55| 67|46 | 58| 46| 58| 67

D, 59149(49|49|49|49|38|49| 49

D5 48| 60| 49|49| 49|49 |53 |49 49

D, 48| 60| 49|49| 49|49 |53 |49 49

Ds 48| 60| 49|49| 49| 49|53 |49 49
(b) Modification Cost

Table 3.12: Effect of size & entropy of active attribute domi@r queryQ-
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Original Data:

id age  workelass  education education num  material status occupation  relationship race  sex capital gain capital loss hours_per_ week native_country i
1 39  State-gov  Bachelors 13 Never-married Adm-clerical ~ Not-in-family White Male 2174 0 40 United-States H
2 50 Sclf-cmp-not-inc Bachelors 13 Marricd-civ-spousc  Excc-managerial  Husband ~ White Male 0 0 13 United-States

338 Private HS-grad 9 Divorced Handlers-cleancrs Notwin-family White  Male 0 0 40 United-States Ll
Original Result:

workclass  occupation  education

Local-gov Excc-managerial Masters

OLD AND NEW DATABASE

id age workclass cducation cducation num  matcrial stafus  occupation  rclationship race  sex  capital gain capital loss hours_per_week native_country
old1 12127 67 Local-gov Masters 14 Never-married ~ Exec-managerial Other-relative White Female 15831 0 72 United-States
newl 12127 67 Local-gov Masters 14 Married-civ-spouse E: 1 Other-relative White Female 15831 0 72 United-States

THERE ARE 2 GROUPS
QUERY RESULT (Compared to original query result)

1st result group

DELETE: Local-gov Excc-managerial Masters

2nd result group

NO CHANGE

Figure 3.4: Ul screen capture

attribute, the old and updated values to help users exarheenbdifications. We also

showed the user the groups of query results and asked théousepose the group with

correct result. Once the user selected a group, we used thesponding queries as

candidates for the next generation.

For this experiment, we used the the Adult relation (cormtgirs227 tuples) extracted

from the 1994 Census databas€his dataset was chosen over the scientific and baseball

datasets as we felt that its data domain would be easier terstathd for users. The

following three queries were used for this experiment.

Q1 Findworkclass, occupation andeducation for white females who are at least 64

years old, never married, and with a capital gain of more 8Gh

Q2 Findeducation, occupation andhours-per-week for people whose native country

is Taiwan and occupation is Armed-Forces.

Shttp://archive.ics.uci.edu/ml/datasets/Adult
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Q3 Findage andeducation for people whose native country is England and occupation

is Tech-support.

The query result sizes f@p1 to )3 are, respectively, 1, 2 and 1 tuple.

We compare Q-QFE against an alternative strategy Q-QFErimg of number of itera-
tions, modification cost and user’s response time. Instégdided by current cost model
to find the cheapest modifications, in each iteration, Q-Qit&Ks the modifications that
can split queries into the most subsets. Intuitively, thiategy could decrease the size of

guery subset, and reduce the number of iterations.

Table3.13shows the per-round statistics for each query using difteseategies: “#Queries”
refers to the number of candidate queries at the start ofeaatibn, “#subsets” refers to
the number of query subsets after an iteration and “Cosérseto the total modification
cost for an iteration. Observe that Q1 incurs the highestification cost of 27 using
Q-QFE’ while Q3 has the lowest modification cost of 12 usinQE. For one itera-
tion, maximum modification cost of Q-QFE is 5, while the maxim cost of Q-QFE’

is 22. Although Q-QFE’ reduces the number of iterations t@R2elach query, the total

modification cost is still higher than Q-QFE.

Q-QFE Q-QFFE’

Query i-thiteration| 1 | 2 [3]4]5] 1] 2
01 #Queries | 10| 5 (3|2 |-]10| 5
#subsets | 2 | 2 |2|2]|-]| 2 5

cost 514 (4|4|-]|5] 22

Q2 CQSize [17|10|5[3] 217 2
#ofsubsets)| 2 | 2 |2|2]|-| 5 2

cost 4 1 415141422 4

03 CQSize [11|5|3[|2|-|11] 5
#ofsubsets| 2 | 2 |2|2]|-] 2 5

cost 3(13|13(3|-|3]| 17

Table 3.13: Per-round statistics for queries

Table 3.14 shows the experimental results for two of the queries, Q1 @&dwhich,

respectively, took the longest and shortest times amond tipeeries. The time taken
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Q-QFE Q-QFE’
User ithiteraton| 1 | 2 | 3 | 4 1] 2
1 Utime 17.7| 9.1 | 4.7 | 28.4| 79.2| 84.3
Stime 13|12, 04 01| 12| 12
Ttime 19.0| 10.3| 5.2 | 28.,5| 80.5| 85.5
2 Utime 50.4| 15.8| 26.8| 29.7| 26.5| 85.8
Stime 13|12, 04| 01| 12| 12
Ttime 51.7|18.1| 27.2| 29.8| 27.7| 87.0
3 Utime 19.3| 8.1 | 6.1 | 25.2| 31.9| 75.7
Stime 1312, 04|01 12| 1.2
Ttime 206| 9.3 | 6.5 ]253|33.1| 76.9
(a) Time to find Q1
Q-QFE Q-QFFE’
USel | thiteration| 1 | 2 | 3 4| 1 | 2
1 Utime 11227118 2.1| 79.2| 84.3
Stime 12 (12]05/01 12| 13
Ttime 124139 23|2.2| 80.4| 85.6
5 Utime 23.718.7(19.2|8.7|17.2| 40.3
Stime 12 (12]05{01 12| 13
Ttime 249|199/ 9.7/ 8.8|18.4| 41.6
3 Utime 99 |46|3.6|3.7|18.1| 229
Stime 1.2 112|05(01 1.2 | 1.3
Ttime 11.21 58] 41| 3.8|19.3|24.2

(b) Time to find Q3
Utime: user response time; Stime: system running time; &titotal time

Table 3.14: Timing results for user study (in secs)

by the Query Generator module (around 0.5 seconds) is nltded in the timings for

the first iteration. Observe that the user response time rgtes the total time taken for
each iteration. The longest and shortest user responss @iregrespectively, around 85
seconds and 2 seconds. Overall, the user study experimemtndérates that the users

were able to effectively determine the intended queriek vaasonable effort.

Comparing Q-QFE and Q-QFE’, it is obvious that users areegénsitive to the modifi-
cation cost. The response time using Q-QFE’ is much higteer tising Q-QFE. Even the
number of iterations is less, the total time is still muchh@g E.qg., it takes the first user

63 seconds to find Q1 using Q-QFE, while using Q-QFE’ it talé&geconds. Therefore,
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our cost model is very practical in terms of user’s respoimse.t

3.7 Conclusion

In this chapter, we have developed a new approach, calledyGroen Examples (QFE),
to help non-expert database users construct SQL queriealsd/propose a Query-based
approach of QFE (Q-QFE). Our approach does not expect usbesfamiliar with SQL
and only requires that users are able to determine whetheea gutput table is the result
of his or her intended query on a given input database. Usingigal user-specified pair
of databaseé) and output table for the user’s target query/onQ-QFE is able to identify
the user’s target query through a sequence of rounds ofrttens with the user. Each
interaction round obtains feedback from the user to idgnlti€ correct output result for
a modified database that is judiciously generated to mir@rthiz user’s effort to provide

feedback.

Our experimental evaluation of Q-QFE demonstrates thelfdiss of our approach and
the effectiveness of our techniques. As part of our futurekwave plan to extend our
approach to support more expressive queries and explarairation techniques to im-
prove performance. In addition, we also plan to conduct aeneatensive user study to

evaluate the approach’s effectiveness.
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CHAPTER 4

SCHEMA-BASED APPROACH

In the previous chapter, we described a novel Query-baspagh for QFE, to help
non-expert database users who are not sophisticated witlte&truct queries. It takes a
database-result pair as input, and generates a set of eémdigeries with th®uery Gen-
erator moduleat first. Then thddatabase Generator modutistinguishes those queries

iteratively. Finally, the approach outputs the user'séagery.

In this chapter, we describe a schema-based approach of ElFE) to generate can-
didate queries from a given database-result QairR). Different from Query-based ap-
proach, we adopt an iterative method to identify the targetrg schema first. We first
introduce the problem in Sectighl, followed by the approach overview in Sectiér.

The details are discussed in Sectib to Section4.5. An experimental evaluation is
presented in SectioA.6. Finally, we conclude in Sectiod.7. The notations we use

throughout this Chapter is shown in Talld.
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Notation Description
Q Query
D Database
D’ Modified database
R Query result
Q(D) Query(@’s result on databasb
A Attribute
JS Join schema
JR Set of join relations
PA Set of projection attributes
SA Set of selection attributes
JP Set of join predicates
SP Set of selection predicate
QS Query schema
gs-query Query with the query schemga
S Set of candidate query schemas
J(D)/J4s(D) | Result of joining all the join relations ips
J. Positive partitions of/ (D)
Jo Negative partitions of (D)
Jiree Free partitions of/ (D)
domain(A) Domain of attributeAd
QSr. Minimal query of query schemgs
iscore(A) Impact score of attributel

Table 4.1: Notation table of Chaptér

4.1 Introduction

Recently, a number of work$4, 70, 61] have been proposed to handle the query reverse
engine problem which focuses on deriving the qugisuch thaty)(D) = R, whereD and

R are from user’s input. In the previous chapter, we propos@dexry-based approach of
QFE (Q-QFE), which generates all the candidate queriesdinstthen we help the user to
get the intended one. Recall that we used QBQ@ &s the the&Query Generator moduli@
Chapter 3. One drawback of using QBO is that it might gendcatenany queries which

increase the burden on tB@tabase Generator modulélere is an example.

Example 4.1. Consider the baseball dataset, which contains 9 relatidrie number of
attributes in each relation vary from 3 to 29. Among thermatieh “Manager” has 11 at-

tributes and “Team” has 29 attributes. To find the followirgget query, QBO generated
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more than 90 queries in total. We show three of the generatedep in Figured.1

Q1

Qs

SELECT di stinct Manager. nanager| D, Team year, Team rank
FROM Manager, Team
VWHERE Manager.team D = Team team D AND Manager.year = Team year

AND Teamteam D = "CIN AND Team year > 1982 AND Team year < 1988;

:SELECT distinctManager.managerI D, Team.year, Team.rank

FROM Manager, Team

WHERE Team.teamID = Manager.teamID AND Team.year = Manager.year AN D
((Team.franchID = “CIN"” AND Team.BB < 563 AND Team.HR > 191 AND Team.E > 113) OR
(Team. franchID = “CIN” AND Team.BB > 563 AND Team.R < 677) OR
(Team. franchID = “CIN"” AND Team.BB > 563 AND Team.R > 677 AND Manager.plyrMgr # “N’"));

:SELECT distinct Manager.managerI D, Team.year, Team.rank

FROM Batting, Team, Master, M anager

WHERE Master.playerI D = Batting.playerID AN D Team.teamID = Batting.teamID AN D
Team.year = Batting.year AN D Master.playerI D = Manager.player]I D AN D
((Manager.plyrMgr # “N"” AND Manager.G < 161 AND Team.BBA > 577 AND
Team.BBA < 578 AND Manager.lgID # “’ L") OR
(Manager.plyrMgr # “N" AND Manager.G > 161 AND Batting.2B < 12 AND
Team.HR > 106 AND Manager.plyrMgr = “Y"));

:SELECT distinct Manager.managerI D, Team.year, Team.rank

FROM Fielding, Team, Master, M anager
W HERE Master.playerI D = Fielding.playerID AN D Team.teamID = Fielding.teamID AN D
Team.year = Fielding.year AN D Master.playerI D = Manager.playerID AN D

((Team.SO > 855 AND Manager.plyrMgr # “N" AND Team.SO < 856 AND Manager.W > 86) OR
(Team.SO > 855 AND Manager.plyrMgr # “N"” AND Team.SO > 856 AND Team.HA > 1443 AND
Team.HA < 1465 AND Manager.W < 86 AND Manager.plyrMgr = “Y"));

Figure 4.1: Queries generated by QBO

As shown above, these queries are quite different from tigettguery, although they can

get the same query results. In the queries generated by Qi@ aire 7 different join

schemas involving 2, 3 or 4 relations, and for each join schémere are more than 10

gueries generated. Besides overburdening the Databaser&®n module, to generate

so many candidate queries is also very time consuming.

To avoid generating too many candidate queries, in thistelnaywe propose &chema-

based approaclof QFE (S-QFE) to help non-expert users construct the taypgety. In
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the beginning, S-QFE asks the user to provide an initialldete-result paifD, R) of

the target queny). (i.e., Q.(D) = R). As there will be many queries under differ-
ent query schemas that can transfabhto R, S-QFE first computes a set of candidate
query schemas, and then asks the user to identify the tangey gchema by changing
the databas® and showing new database-result pairs iteratively. At é@chtion, we
present a modified databas®, and the user examines new database-result pairs to de-
termine if it is correct with respect to his or her intendectiyu By getting the user’s
feedback on a series of database-result pairs, our appoaacidentify the target query

schema, and we continue to generate candidate queriesheitarget query schema.

4.2 Approach Overview

For the ease of presentation, we first give the definition @rgschema, and then we
introduce our approach overview. For simplicity, we onlyismler SQL queries without

aggregate function at first.

Definition 4.1. Consider a SPJ SQL que€y, which can be expressed as a 5-tupléR,
JP, PA, SA, SP), where JR is a set of joined relations id); JP is a set of join
predicates for/R; P A is a list of projection attributesS A is a set of selection predicate
attributes andS P is a set of selection predicates ¢p. We refer to(JR, JP, PA,SA),

withoutS P, as thequery schema of ). We refer ta) as ags-query if its query schema is

qs.

To simplify the discussion, we mainly focus on identifyifigl of the target query schema,
which is the most complex problem. We assume thaftdeand.J R are the same from all
the candidate query schemas, and all the relationdirare joined based on foreign-key

relationships. We will discuss how to relax these assumptin Sectiort.5.
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Given a database-result pdib, R), a query schemas is defined to bevalid if there
exists at least ongs-query( whose query result9(D) = R. Otherwisegs is aninvalid
query schema. Given a pair @b, R), there may exist different valid query schemas, and
there could be multiple queries sharing the same query szhigahcan generate the same
guery result ask. To avoid generating all those queries, we propose S-QF&etatify

the correct query schema first. The overview of our appragashown in Figure.2

1 6

R T L . ‘
I

| |

! 1

i i

1 I 8 i

H " l

Database-Result 2 | Query-Schema| 3 Candidate Query4 | Database | 5 Modified gatabase DL Result | 7 Target Query 8 Query | 9 QS-Queries
Pair (D,R) Generator Schemass Generator Query Resultsk,, R Feedback SchemaR s Generator QC

4 i

Figure 4.2: Overall Architecture of schema-based QFE

S-QFE first obtains an initial database-result gdk, R) from the user where is the
result of the users target query on the databias&he Query-Schema Generator module
takes(D, R) as input to generate a set of valid query sche®as {gsy,- - ,¢s,} for
(D, R); i.e.,Vqs; € S,3qs;-queryQ; : Q;(D) = R. To efficiently identify the user’s
target query schema, QFE iteratively modifies the databadeeesents new database-
result pairs to the user. At each iteration, hatabase Generator modulaodifies a
tuplet in database) to t’, wheret is a tuple satisfies all the query’s selection predicates.
For the ease of description, we say a tupls in the query resultif ¢ satisfies all the
query’s selection predicates. The modifié¢ghould partition the query schem&snto
two groupsS; andS; as follows: (1)t is in the query result for all the query schemas in
Si1; (2) t' is not in the result for any query schemas in grdiyp Next, we ask the user
whether the correct query result should contaiwith respect to the modified database.
If the user’s feedback is yes, we eliminate the query schemgi®upsS,. Otherwise, we
eliminate the schemas in grodh. We continue this process until we could identify the

target query schema. Once we obtain the target sclygmee can generate the-queries
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whose query result iR as the candidate queries. To find the target query, we caulolgi

use Q-QFE as described in Chapter 3.

As discussed before, we identify the query schema by maoujffuples to partition the
candidate query schemas into different groups in termsef tjuery results. There are
two main challenges. The first challenge is how to find the ichatd valid query schemas.
Given a databas® with n attributes, the number of possible selection-attributeisse
2" — 1, which could be very large. Hence, it is not practical to ¢desall of them as the
candidates. The second one is how to choose the tupte what new values should be
set. To solve the problem, we propose a two-step approacietify the query schema.
At the first step, we compute the candidate query schemasrinating invalid query
schemas, and at the second step we choose a tuple and eatbe@latew values which
can group query schema into different groups. Based on #rsdsedback, we continue
modifying database until we identify the target query scaeirhe approach is shown in

Algorithm 4.1

Algorithm 4.1: QFE: Schema-based approach

Input: A database-result pajiD, R)

Output: Candidate querieQC

Let G be the join graph of all relations in the databdse

P A = Map-Projection-Attributed), R)

foreachpa € PA do

Let rels be the relations where attributgs are from
foreach subgraph/Sof G whichis avalid join schemado
build joined relation/( D) with all the relations in/.S
S = Query-Schema-Generatdi(D), R)

while |S| > 1do

D’ = Database-Generatd?(S)

D’ partitions the schemas into groufs S, with different query results
= Result-Feedback{) /| z= € {1,2}

S=3S8,

if |S| # 0 then

QS be the query schema &

break

QC = Query-Generatofp, R, Q)5)

return QC

© 0 N O 0o b W N B

R e =
A W N B O

S
N o o
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Algorithm 4.1 takes a database-result p&ip, R) as input, and returns the candidate
queriesQC as output. Given the query result, we first compute the joaplG of
databasé) according to the foreign-key relationships (line 1). Themfid all the pro-
jection attributesP A, where PA is a set of attribute sef(A;, Ay, -, A,)}, thei-th
column of R is a projection of attributed; in D, and A; # A;(i # j). The function
Map- Proj ecti on-Attri but es uses a brute-force method to compitd (line 2).
For simplicity, we omit the details of functiovlap- Pr oj ecti on- Att ri but es here.
For each projection-attribute sgi, we find the relationsels containing all attributes in
pa (line 3). Itis clear that the target query schema must castall the relations ofels.
Consider a subgraphsS of G, if it involves all the relations ofels, we say.JS is a valid
join schema. For each valid join schema, we compute thedaiekation.J(D) by join-
ing all the relations in/.S, andQuer y- Schema- Gener at or computes the candidate

guery schemas (lines 5 to 7).

S-QFE winnows the candidates iteratively using a dividd-eonquer strategy. At each it-
eration, thebat abase- Gener at or takes as input&D, R) and candidate query schemas
S, which is the set of remaining candidates at the start oftdration, to generate a new
database)’. D’ will partition candidates into two groups, and ask the ueesdiect the
correct result (lines 8 to 11). According to the user’s fesaky S-QFE will start another
iteration using the subset of candidatgéscorresponding ta if S, has more than 1 query
schemas (line 12). Otherwise, S-QFE terminates with thg quebry schema as the target
query schema (line 14). In the event that none of the quemrsahs correct, it means the
S will be an empty set in the end. In this case, we will start haptound with new valid

join schema or new projection-attribute set.

Once the target query schema is identified, we continue tergenthe candidate queries
QC (line 16). Because so far we only consider the SPJ queryngivarget query schema,

there will only be one querg) could get the resulk on databas®.

Before delving into the details, we first introduce severlons, which we use through-
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out the whole chapter. Here we borrow the notatiodath partitionfrom QBO [64].

Given a query schemgs = (JR,JP, PA,SA) and a database-result p&ib, R), let
J.s(D) denote the result of joining all the relations.jiR using join predicated P with
respect taD. Suppose that there akedistinct tuples ink with R = {ry,--- ,r}. Then
R can partition the tuples it (D) into k + 1 partitions,Fy, - - - , P;, whereF, could be
empty, with the following properties: (1) for each, i # 0, each tuple inP; can generate

the output tuple; € R; and (2) each tuple i, does not generate any output tuplefin

Note that, if the target query is under bag semantics, itssiide that there are duplicated
records inR. To handle the bag-semantics query, we only use the distatge in R to
partition the tuples i/ (D). If R contains duplicate tuples, e.g; equals to-;, then they
correspond to the same partition. In this way, we partitigrids into multiple partitions

without overlap under either bag or set semantics.

We can classify the partitions iff,;(D) into three types:F, is anegative partition;?;
is apositive partition ifi > 0 and|P;,| = 1; otherwise,P; is afree partition. A tuple
t € J,s(D) is classified as a negative/positive/free tupleig in a negative/positive/free
partition. LetJ,(D) = J, U .JL U JIr*c, whereJ;, J, and.J/*, respectively, denote

the subset of negative, positive, and free tuples,iiD).

The intuition of our approach is based on the following olzagon. Consider two query
schemags andgs’, wheregs contains attributed andqs’ does not. Let be a positive
tuple that can generate output recerith query resultk. Now let us modifyt’s attribute
value of A from v to v’ such that would not be selected by any candidate query sharing
guery schemas, and then ask the user whetheshould appear in the query result with
respect to the modified data. If the target query schema, ihenr would not be in the
guery result of the modified database; if the target quergmehisgs’, thenr should still

be in the query result. Thus, we can identify whetHeis an attribute in target query

schema, and we refer t6 as aninvalid-(¢s, A) value
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In the following sections, we will discuss our approach feo tases. The first one is there
exists at least one positive partition with respect to givBnR), and the second case is
only free and negative partitions exist in datab&sé& he reason is that each free partition
contains multiple records having same projection valuath®it positive partition, there
could be many different combination of tuples to generageqilrery resuli?, and we can

not find a positive tuple to modify, which increase the comibje

4.2.1 Limitation

Note that it is possible that we can not derive the targetygseinema based on the given
database-result pair because of the constraint of the giataibase-result pair. Here is an

example.

Example 4.2. Suppose that the user needs help to compose the query fallhging
database-result paifD, R), where D consists of a single table. The user’s target query

is “find the male employee in IT department whose salary isenttwain 4500”.

Employee
Eid | name | gender| dept | salary
name
1 Alice F Sales | 4700
Bob
2 Bob M IT 4700
Darren
3 Caleb M Service| 5000
ResultR
4 | Darren M IT 5000
5 Elly F IT 4700
Database D

As mentioned in the example, the user’s target query conthiree predicatesdept =
T, " gender = ‘M and * salary > 4500”. With the given databas®), we can not

find a record that a male employee works in IT department whalsey is less than 4500.
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Therefore, when we compose the query schema, we can easdiyuwa a valid query
with predicates tept = ‘IT" and “ gender = ‘M’” without constraints on attribute
“salary”. Itis difficult to deduce a predicate with attributesélary” due to the absence

of counter example.

As the example shows, to find the target query, for each sefeptedicate in the target
query, the given database should contain at least one wedaple which violates the

predicate. Otherwise, we can not derive the predicate flagiven database. For sim-
plicity, we assume the given database is sufficient to déneearget query for the rest of

the chapter.

4.3 Handling The Scenario With Positive Partition

In this section, we discuss how to find the target query schiethare exists at least one
positive partition in the database. We present our appraadhe procedures shown in
Algorithm 4.1 We first discuss how to prune the invalid query schema, agnlititroduce

an approach to modify the database to identify the targetycgahema.

4.3.1 Algorithm Query-Schema-Generator

In this section, we discuss how to compute the candidateyqotremas. To facilitate the

explanation of our approach, we first introduce the notiomofimal query schema

Definition 4.2. (minimal query schema) Given a database-result pai{D, R), a query

schemas = (JR, JP, PA, SA) is defined to be a minimal query schema if

1. gsis avalid query schema;
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2. for every non-empty proper subset’ of S A, query schemé/R, JP, PA,SA’) is

not a valid query schema.

Lemma4.1.1f gs = (JR, JP, PA, SA) is a minimal query schema, then for afiyl’ O
SA, qs = (JR,JP,PA,SA’)is also a valid query schema.

Proof. Suppose;s is a minimal query schema with selection attribute$, andqs’ is
a query schema whoseA’ = SA U {4;}, whereA; ¢ SA. There exists at least one
valid ¢gs-query@. We can construct as’-queryQ’ by adding new selection predication
range(A;) = domain(A;), wheredomain(A;) is the domain of attributel;. Thus,Q’ is

also a valid query angls’ is a valid query schema. O

According to Lemmal. ], to find all the valid query schemas, one reasonable method is
identify all the minimal query schemas first, then we canlgagipend selection attributes
to get more valid query schemas. In this work, we adopt aniedition method to get the
candidate query schemas. We first introdogrimal query which can be used to test the
validity of a given query schema. Then, we present our agbromcompute the candidate

query schemas.

Definition 4.3. (minimal query) Given a database-result paiD, R) and a query schema
gs,let FP ={FPy,---, FP,} denote the collection of free partitions with respectto
and D. We defing)?”. to be the minimal query belonging t@ (or minimal ¢s-query
for short) if the set of selection predicates @y, is given by{A; € [(;,u;] : A; €
SA}, wherel; = min{min{rs, (J)}, max{ma,(FP)}, -, max{m, (FP,)}} and

u; = max{max{ma, (J5)}, min{ma, (FP)}, -, min{ma, (FPy)}}.

Lemma 4.2. Given a database-result pajiD, R), if the target query schema ig, then
> (D) C R.

min

Proof. According to the definition of minimal query, given a queremays, for each se-

S

lection attribute, the selection predicatel}fy.  is derived by only the positive partitions.
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Thus, if ¢gs is the target query schema, the target qu@ty selection predicates must
be looser thar®)?®. . Otherwise, positive tuples will not satisfy the condisorHence,

With Lemmad4.2, we can prune invalid query schema as follows: given a databasult
pair (D, R), if Q. (D)— R # (), thengs cannot be the target query schema, otheryise
is referred to as aandidate query schemaVe compute all the candidate query schemas

and the algorithm is shown in Algoritheh2.

Algorithm 4.2: Query-Schema-Generator
Input: join relationJ (D), query result?
Output: Candidate query schem&s
1 Initialize S = 0, QS; =0
2 Let AS be the set of all the attributes in the joined relatibfD)
3 foreach attribute A € AS do
4 Construct query schemga whoseSA = {A}
5 if Q¥ (J(D)) — R # () then
6 ‘ QST = QS1 U{gs}
7
8
9

else
‘ S =8SU{gs}
QS = QS5
10 while QS; # 0 do

11 LetQS3; =0

12 foreach gs, € Q.55 do

13 foreach gs; € Q.5; do

14 Let atts be the superset @fs; andgss’s selection attributes
15 if atts hasbeencomputedbeforethen

16 | continue

17 Construct query schemg whoseS A = atts
18 if Q7°. (J(D)) — R # () then

19 ‘ QS3 = QS3U{gs}

20 else

21 | §=8U{gs}

2 | QS =053

23 return S

As shown in Algorithm4.2, we adopt a bottom-up approach to compute the candidate
query schema. Taking join relatiof{ D) and query outpuR as input, Algorithm4.2uses
all the attributes in/( D) to compute the candidate query schemas (line 2). We enuenerat

the query schema by gradually increasing the number of tsateattributes. First we
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examine the query schemas with only one selection attr{fints 3 to 8). For each query
schema, we construct the minimal query and test whetheaitendidate query schema
(line 5). If the answer is yes, we add it infy and stop appending more attribute to this
query schema. Otherwise, we append more selection adshbatenumerate more query
schemas (lines 10 to 22). We add one more attribute each dithe tselection attributes
of the invalid query schema (line 14). If the selectionihtites set has been computed
before, we do not need to construct minimal query to exantiagain (lines 15 to 16).
Then we examine the query schema with minimal query and atbtiee candidate query
schemas as before (lines 18 to 24). The whole algorithm text@s when we find all the
potential minimal query schema, and the time complexiy(2"), wheren is the number

of selection attribute$ A.

4.3.2 Algorithm Database-Generator

In this section, we present the details of the functiart abase- Gener at or . Recall
that we defindnvalid-(¢s, A) valuein Section4.2 given a positive tuplé and a query
schemays containing selection attribute, if we changel’s A value to a value’, such
thatt becomes a negative tuple, we refent@as aninvalid-(¢s, A) value Conversely, if

valuev’ keepst as a positive tupley’ is called avalid-(¢s, A) value

Consider two valid query schemas andgs’, where attributed is in selection attributes
of ¢s and not ings’’s. To distinguish these two query schemas, we need to diteram
invalid-(¢s, A) valuefor attribute A. Then we can modify the database with the invalid
value, and ask the user to identify the correct query schgnshbwing them the query
results from two query schemas. In this section, we firsbahice the method to compute

the invalid value and then present our algorithm to modigydiatabase.

Given a database-result pdib, R), a query schemas and a selection attributd, to

compute the invalid value, we first identify tipessible valid rangéor A with respect to
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gs andD, denoted byPossibleV alidp (A, gs). Specially, ifgs is the target query schema,
then PossibleV alidp (A, gs) satisfied the following property: for each tugle= J,,D,

if t.A ¢ PossibleValidp(A,qs), thent is guaranteed to be a negative tuple. Note that
PossibleValidp(A, gs) is defined to contain all validgs, A) values including possibly
some invalidfgs, A) value. Thus, ifv & PossibleValidp(A,qs), thenv is an invalid-
(¢s, A) value. The reason for adopting this approximate definitiothat it is amenable

to efficient computation.

The PossibleValidp(A, gs) can be efficiently derived from the selection predicates of
.. Givenaquery schemg, Q¥. ’s selection predicates with attributeis of the form

A € [l,u] whereA € SA and]l, u] is the value range ofl. ThenPossibleV alidp(A, qs)

is given by[¢', «'], where?” < ¢ andw’ > wu such that the following two properties hold:

(1) if query @ is derived from@Q?’. by changingA’s selection predicate td € [¢', v/],

thenQ(D)— R = 0); and (2) ifQ is derived fromQ?*. by changingA'’s selection predicate

to A > wuor A< /{, thenQ' (D) — R # 0. Once we calculat®ossibleValidp (A, gs),

any valuev thatv € domain(A) — PossibleValidp(A, gs) is an invalid{gs, A) value.

As each query schema has its own minimal query, for the saimleut¢ A, the possible
value range for different query schemas could be diffedérg not efficient if we calculate
the possible valid range for each query schema to computexhkd value. Here is an

example.

Example 4.3. Consider three candidate query schemas, ¢s, and ¢s3, and bothgs;
and ¢s, have selection attributel, whereqs; does not. To identify whether the tar-
get query schema’s selection attribute contaihhone naive method is to determirdés
possible value range fafs; and ¢s, respectively, and then modi#§’s value to violate
both PossibleV alidp (A, qs1) and PossibleV alidp(A, gso). However, it is possible that
such a value does not exist HossibleV alidp (A, gs1) U PossibleValidp(A, qsy) =
domain(A). In that case, we need to modify database to distinguishand ¢s; first,

then distinguishys, andgss.

80



CHAPTER 4. SCHEMA-BASED APPROACH

As shown in the example, to identify whether an attribdtis in the target query schema,
the naive method needs to computs possible value range for each query schema indi-
vidually. To make the approach efficient, instead of calnudpthe possible value range
for each query schema, we want to find the maximal possibld value range which is
not domain(A) for each attributed. In order to find the maximal possible value range,

we first introduce two lemmas.

Lemma 4.3. If a query schemgs is a minimal query schema with selection attributes
S A, given any query schemg’ wheregs’ is the same ags except thatSA” O S A, for

each attributed’ € SA’ — S A, the PossibleV alidp(A’, qs') = domain(A’).

Proof. Becauseys is a minimal query schem&?’. (D) — Q(D) = (). According to our

method to construct the minimal query, for attributec (SANSA’), the selection predi-

cates are the samed@f’. andQ?. . For an attributet’ ¢ SA,Iif PossibleValidp(A’, qs')

is [¢,u], which is a subset of théomain(A’), then we get a tuple in negative parti-

tion whoseA’ value is larger tham or smaller thar/. At the same time, for attribute

/

A; where A; € (SA N SA’), t's value still satisfy the selection predicates @f’

which are the same i@?’. . This implies that € Q¥’. (D), contradicting the fact that

Q¥ (D) — Q(D) = 0. Therefore, théPossibleV alidp(A’, qs') = domain(A’). O
Lemma 4.4. Given two minimal query schemas; and ¢s», which are the same except
the selection-attribute sets, denoted®y; and S A, respectively, if attributel € (SA; N
SA,), then for query schemgss, which is the same ags; and ¢s, except the selection

attributesSA; = SA; U SAy, PossibleValidp(A,qss) 2 (PossibleValidp(A, gs;) U
PossibleValidp(A, gs2)).

Proof. We consider the query schema andgss; first, whereSA; ¢ SA;. For each com-
mon attribute inS A; and S As, the selection predicates in minimal query are the same.
As there are more selection attributes@f’ than inQ%! |, it is clear that except at-

tribute A, Q7 's whole selection predicates are more restrictive Q& 's. Thus, when

min
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we compute thePossibleV alidp(A, gss), it is obvious thatPossibleV alidp (A, gs3) 2
PossibleValidp(A, gsy). Similarly, PossibleV alidp(A, gs3) O PossibleValidp(A, gsa).

Therefore, the lemma holds. O

According to Lemma.3 given a query schema and attributed, if PossibleV alidp(A, gs)
is notdomain(A), then query schemg’, where itsSA’ = SA — {A}, is not a minimal
query schema. Together with Lemmal, we observe that to find the maximal possi-
ble valid range of attributed, we should compute a query schema satisfying two
conditions: (1) the selection attribut&six should be the superset of selection attributes
from all candidate query schemas containitig2) the query schema whose selection at-
tributes isSA x+ —{ A} is not a minimal query schema. However, sometimesdghisnay
not exist. If such a query schema does not existApwe have to compute several query
schemas for. We adopt a greedy approach to union the query schemas omeshyntil
the second condition is violated. After that, we get a setusrg schemas, and for each
one, we computel’s possible valid range individually. If the union of thesaid ranges

is notdomain(A), we use the union as the maximal possible value range. Ogesrwe
have to modify the database for each possible valid rangedefe can identify whether

A belongs to the target query schema.

Consider attributed that partitions candidate query sche®#o two groupsS; andS,,
whereS;’s selection attribute$' A; contains attributed while S,’s selection attributes

S A, does not. Suppose the user seléstas the group contains the correct query schema,
then all the query schemasdh are not correct. Thus, if attribut& isin SA, — S Ay, then

A’ is not a selection attribute in the target query schemau.itiviely, we can skip asking
the question abou#’. Furthermore, with the removal of the query schemas.inwe
reduce the number of the query schemas when we calculatiblgossiue range for other
attributes. Similarly when the user seleéts all the candidates i§; will be eliminated.

As the user’s selection is unknown, to be conservative, \sarae the user always select

the group with larger number of candidates. To quantify ffece we define thempact
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scoreof attribute A, denoted byiscore;(A), as the number of such attributes that are in
one candidate group but not the other one,iiseore; (A) = min(|SAy — SA;|,|SA; —
SAs|). iscore(A) indicates the number of iterations we will save. We also @edimother

scoreiscores(A) = min(|Sy|, |S2|), which indicates the number of eliminated candidates.

To optimize the efficiency, before calling the functibat abase- Gener at or , we first

sort the attributes biscore,, iscores in non-increasing order, and then choose the first one
to modify the database. Note that the attribute order mayifiereht in each iteration as
the candidate query schemas change, we have to recomyjpute; andiscore, in the

beginning of each iteration.

Now we present the algorithm as shown in Algoriths.

Algorithm 4.3: Database-Generator
Input: DatabaséD, candidate query schema set
Output: A modified databas®’
1 foreach attributeA € S's SAdo
2 | computeiscorei(A),iscores(A)
3 Sort attributes byscorey, iscores in non-increasing order and pick the first attribute
4 Initialize atts = 0, S4 =0, QSset =
5 Sa = {gs € S|A € ¢s’s SA}
/1 all the query schemas containing A
6 foreach queryschemas; € S4 do
7 atts = qs;'s SA
8 foreach queryschemays; € S5 do
9 if queryschemawith SA = atts U ¢gs;'SA — {A}, isnot acandidategueryschema

then
10 atts = atts U qs;'SA
11 removegs; from Sy

12 construct query schemg whose SA= atts

13 QSset = QSset U {qs}

14 Let value rangéVfazV = ()

15 foreach queryshcemays € QSset do

16 ComputePossibleV alidp (A, gs;)

17 if MaxV U PossibleValidp(A, qs;) # domain(A) then

18 ‘ MazV = MazV U PossibleValidp(A, gs;)

19 Pick valuev ¢ MaxV

20 Modify any positive tuple € D tot' € D’ by settingA’s value tov
21 return D’

Given a set of candidate query schemas, we first calculatenjact score for each se-
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lection attribute, and sort the attributes tyore;, iscores; (lines 1 to 3). With the first
attribute A, we first find all the candidate query schensgswhose selection attributes
contain A (line 5). For each query schema containidagwe union itsS A with other
query schema’'s’ A. We find the largest attribute setts, such that any query schema
with atts — { A} as selection attributes is not a potential minimal quergsth(lines 6 to
11). Once the query schema is united with others, it's remdne@n S, (line 11). Then
we compose a hew query schegsawith atts (line 12, 13). For each new query schema,
we computed’s possible valid range and find the maximal value radfyerl” which is
notdomain(A) (lines 15 to 18). Then we select a positive tuple frag( D) that gener-
ates some output tuptec R. We modify the database tuplec D to ¢’ by modifying the
value of attributed such that’.A ¢ MaxV (lines 19 to 21). Then we return the modified

databasd)’.

The complexity of the algorithm i©(M N?), where M is the number of the selection
attribute in candidate query schensgsandN is the number of candidate query schemas,

i.e.|S.

4.3.3 Result Feedback

Given the modified databade’, we highlight the difference between original database
D and D’ and seek the user’s feedback on the following question:dittiplet € D is
modified tot’ € D’ by changing attributel’s value, isr € Q(D — {t} U {t'})? If the user
answers “no”, then attributd is contained in target query schema, we choose the group
of candidate query schemas whose selection attributeaioaitributeA as the candidate
query schema for another iterations. Otherwise, we chdwsether group of candidates

for another iteration.

Note that, it is possible that all the candidate query sclseame not correct. In this case,

the select group is an empty set. As shown in Algorithi) we will pick another valid
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join schema or projection attributes to compute the quengisa.

4.4 Handling the Scenario Without Positive Partition

As discussed in Sectiof.2, we partition tuples in/,,(D) into three subsets, positive,
free and negative partitions, wheyg, (D) denotes the result of joining all the relations
in query schemas with respect taD. So far, we have introduced an approach to help
the user identify the target query schema when the positwetipn is not empty. The
approach presented in SectidiBrequires to construct minimal queries, and the selection
predicate for each selection attribute is determined byrtimémal and maximal value in
the positive partition. However, the approach is not apylie if there are only free and
negative partitions i/ (D), as we can not construct minimal query as before. In this
section, we discuss how to find the target query schema,rié e no positive partitions

in the given dataset. There are two types of SPJ queries wadsnThe first one is SPJ
queries with set semantics and the second one is the quetielsag semantics. For each

query type, we propose an approach to find the target quegnsch

As shown in Algorithmid. 1, there are mainly two steps to identify the target query sehe
First, we compute the candidate query scheaand then we modify the database to
partition the candidates and ask the user to pick the coomet Recall that the key to
compute the candidates is to construct a minimal query,wtan be used to test whether
a given guery schema is valid, using positive partitions.weher, if positive partition

does not exist, it is not clear what tuples would generatetieey result.

Example 4.4. Consider the following database-result paip, R), whereD consists of a
single table. As shown in Tabfe2, there are only two records in the query result, which
can partition databas® into three partitions. Tuple sét&'1, £2, E5} is the free partition

for the first record in result, and the s¢i~3, £4} is the free partition for the second
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Employee
| Eid | name | gender| dept | salary|

El| Alice | F Sales | 14700 salary

E2| Bob | M IT | :4700 | [ 14700

E3 | Caleb| M | Service| 5000 15000

E4 | Darren M IT 5000 ResultR

E5| Elly F IT |:4700

E6 | Frank | M Sales | 4900
Database D

Table 4.2: Employee database and result pair

record. TupleE6 is the only tuple in negative partition. If the target quesyai query with
bag semantics, i.e., duplicates are allowed in the queryltethere could be 6 different
combinations of tuples to produce the same query resuR.al the query is under set
semantics, i.e., no duplicates occur in the query resultyehare more possible tuple
combinations to generate the query result, as multipledgsiglould be used to generate

one tuple result with set semantics.

From the example we can find that without positive partitibns difficult to identify
which tuple is used to generated the query result. As shawuljfferent query semantics,

the tuples we need to generate the same query result coultfdrert.

To help explain our approach, we introduce the notionestilt covey which is utilized
to compute the candidate query schema. Given a databadepas (D, R) and query
schemays, if we can find a set of tuple® from the joined relation/ (D), where1’s
projection values are exactly the same as the query rEswte callT is aresult cover(r-
cover). In exampld.4, if the target query is a bag-semantics query, we can findovers,
which respectively are tuple sef&'1, £3}, {E2, E3}, {Eb5, E3}, {E1, E4}, {E2, B4}
and{E5, F4}. Recall that in Sectiod.3, we use positive partition to construct minimal
guery, which helps us test the validity of a given query sclen this section, since we
do not have positive partition, we use r-cover to construchsa query to verify the query

schema. We will illustrate the details in Sectiohd.1and4.4.2 In Section4.4.3 we
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propose a heuristic optimization to solve the problem.

To explain our approach clearly, we describe our algoritfonset-semantics and bag-

semantics queries separately.

4.4.1 Queries with Bag Semantics

In this section, we propose our approach to find the targeypolema if the target query
is a bag-semantics query. The main algorithm is as same asithlign 4.1. Here, we first
discuss how to compute the result covers and use them toajertee candidate query
schemaS (Query-Schema-Generator). Then, we present the algotithmodify the
database and get the target query schema (Database-®ene@aice we get the target

query schema, the same approach as Sedtidis used to generate the candidate queries.

Algorithm Query-Schema-Generator

As mentioned, to get the candidate query schef)ase need to construct a query to test
the validity of a given query schema, and without positiveipans, we use result covers
to construct such a query. In this section, we discuss howntpate the result covers and

derive a query to test the validity of a given query schema.

Given a database-result pdib, R), as we assume there is no positive partition, each
output tuple can be generated by multiple tuples from thalaete. Under bag semantics,
we allow duplicate tuples in the query result. Thereforg, ®vo duplicate tuples irk
must come from different tuples in free partitions. betdenote the number of duplicate
output tuples that are to be generated from the tuples irpiet@ion P;. There are<|n;f|)
different combinations to generate the duplicate output tuples, whefé| is the t:)tal

number of tuples in free partitiofy;, We refer to each combination &artition Cover
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of P;,, denoted byP;-cover Let k£ denote the number of free partitions. We can get

k my; .
| (‘m) r-covers in total.

For each r-coveRC, we compute the candidate query schemas as follows. Givaarg q
schemays, we first construct a minimajs-query@?. . For each selection attributéin
gs's SA, we construct a selection predicatec [¢, u|, wherel = min{m(t;)|t; € RC'}
andu = max{ma(t;)|t; € RC}. If Q¥ (D) — R # 0, qs is not a valid query schema.

min

Otherwiseys is a candidate query schema verified by r-colér.

Note that not every r-cover can guarantee to compose a vadiygchema. For example,
in Example4.4, if we choose{ F'1, E3} as a r-cover, we could not construct a quéry
such that)(D) — R = (). BecausdZ6’s every attribute value is in the value rangefof
and £'3 (we ignore attributes ‘name’ and ‘Eid’ as it does not makesseil modify these
two values), we can not find a SPJ query to elimin@tefrom E1 and E3. If we can’t
construct a valid query based on a given r-cokér, we sayRC' is aninvalid r-cover.

Otherwise,RC is avalid r-cover

Recall that, to compute r-cover, we first select one partitiover for each free partitioR,
then multiply these partition covers from different freetgeons, which could result in a
large number of r-covers. For efficiency reasons, we proposarly detection approach

to avoid generating the r-covers that are invalid.

Definition 4.4. (valid query) Given a databas®, a set of free tuple® and query schema
qgs = (PA,JS, JP,SA), we defings-query( as a valid query fofl', if mpA(T) C Q(D)
and@Q(D) does not contain any negative tuple.

Lemma 4.5. Given a databasé, a set of free tuple$’ and query schemas, if there

does not exist a valid query for 7', then for any free-tuple s@t’ > T, there does not

exist ags-query(’ for 17, either.

Proof. If there does not exist a valid quegyfor 7', that means for any query whose query

result contains tuples frorf, the query result must also contains at least one negative
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tuple. To find a query whose query result contains all tuplesfl”, whereT’ > T,
without any negative tuples is impossible. Therefore,dltres not exist as-query )’

for T’ either. ]

According to Lemmal.5, itis clear that given a r-covek(C, if there does not exist a valid
query @ for any tuple sefl” whereT C RC, then there does not exist a valid query for

RC'. Hence,R(C is an invalid r-cover.

To check whether a valid query exists, we first construgt-aquery( in the same way
as we construct minimal query. For each selection attriByte/e construct a selection
predicate{ A € [¢, u]}, wherel = min{ma(t;)|t; € T} andu = max{ma(t;)|t; € T}. If

Q(D) — R # 0, there does not exist a valid query, otherwigds a valid query.

Lemma 4.6. Given two sets of free tuplds andT5, consider a tuple s€t; = 17 U Ts.
If there exists a valid query schemafor T3, thengs is also a valid query schema fa@F

andTs.

Proof. If there exists a valid query schema for T3, then there exists a valigs-query
@, whose query result contains all tuplesigfwithout any negative tuples. Sindg =
T, UTy, Q's query result must also contains tuples fréimand75. Thus( is also a valid

qguery for7; andTs;, andgs is also a valid query schema féy andTs. O

Consequently, if query schema s a valid query schema for free-tuple §étbut not for

T5, thengs is not a valid query schema fa@g, whereT; = 17 U 7.

Now, we propose our approach to compute r-covers and caedigeery schemas. We
adopt a bottom-up method to compute r-covers. First, fon é&e partition’;, we com-
pute P;-covers. To compute r-covers, we combine p-covers fronesfit free partitions
one by one. Each time we combine a new p-cover from other faettipns, and we ex-

amine whether there exists a valid query scheri@r the combined tuples. If not, we do

89



CHAPTER 4. SCHEMA-BASED APPROACH

not combine more p-covers to the current combination (Lerfa Otherwise, we cache
gs to testify the next tuple combination, which unions a newoper (Lemmai.6). When
we finally compute a r-cover whose minimal query of query sthes is also a valid

query,gs is a candidate query schema. The whole algorithm is showngarAhm 4.4,

Algorithm 4.4: Query-Schema Generator (bag semantics)
Input: join relstion.J (D), query resulR
Output: Candidate query schentaand valid r-coverdRC'

1 find all the free partitiong Py, P, --- , P, } of J(D)

2 initialize C[]] =0// store the tuples with valid query in each
iteration

3 initialize QS[|][] =0// store the query schema in each iteration

4 foreach free partitionP;(i = 1,2,--- ,n) do

5 ComputeP;-covers

6 foreachT € P;-coversdo

7 initialize QStmp = 0

8 if i == 1then

9 | QStmp = Conput e- Val i d- Query- Schena(J(D), T)

10 else

11 foreach queryschemays € QS[i — 1] do

12 if valid ¢gs-query( for T existsthen

13 ‘ QStmp = QStmp U {gs}

14 if QStmp # 0 then

15 if i == 1 then

16 | Cli].add(T), QS[i].add(QStmp)

17 else

18 foreachT' € C[i — 1] do

19 Let tuple sel'mp =T U T’

20 initialize tmpgs = 0

21 foreach gs € QStmp do

22 if valid gs-query@ for T'mp existsthen

23 ‘ tmpqs = tmpgs U {qs}

24 if tmpgs # () then

25 | Cli].add(Tmp), QSi].add(tmpgs)

26 let n be the number of free partitions
27 § = QS[n], RC = C[n]
28 return S, RC

As shown in the algorithm, given the query reskland joined relatio/ (D), we first find
all the free partitions by mapping to J(D) (line 1). For each free partitioft;, we first
compute all theP;-covers (line 5), and then examine whether there existsid gakry

schema for eacl?;-coverT (lines 8 to 13). If this is the first free partition, we enumer-
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Algorithm 4.5: Compute-Valid-Query-Schema

Input: joined relation/ (D), free-tuple sef’
Output: a set of valid query schent@aStmp for T’
Initialize QStmp = 0, QS; =0 ;

Let AS be the set of all the attributes in the join relatidfD);
foreach attributeA € AS do
Construct query schemig whoseSA = {A};
if Q¥ (J(D)) — =T # () then

| QS =QS1 U{gs};
else

| QStmp = QStmp U {gs} ;
QS = Q51
10 while QS; # () do

o N o o b~ W N P

©

11 LetQS; = 0;

12 foreachgs, € S, do

13 foreachgs; € S do

14 Let atts be the superset @fs; andgs,’s selection attributes;
15 if atts hasbeencomputedoeforethen

16 | continue;

17 Construct query schemga whoseS A = atts;
18 if Q¥ (J(D)) — «T # () then

19 ‘ QSs; = QS U{gs};

20 else

21 ‘ QStmp = QStmp U {¢s};

22 | QSy=(QS3

23 return QQStmp;
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ate all the query schemas with functi@onput e- Val i d- Quer y- Schena (line 9).
Otherwise, according to Lemn#a6, we only need to test the valid query schemas from
last iteration (line 11). The algorithm @onput e- Val i d- Quer y- Schenma is shown

in Algorithm 4.5, which is similar to Algorithm4.2 We omit the details of how to test
whether a valid query exists, as it is trivial and we alreaxiyl@ned it before (line 12). If

a valid query schema existg, will be cached to combine with p-covers from other free
partitions (lines 14 to 25). For the first free partition, wengly cacheT” in C and the
valid query schema i@)S (line 15, 16). For the subsequent partitions, we combine the
p-covers with the cached tuples and examine whether thésesexvalid query schema
for the new tuple set (lines 19 to 23). Only the tuple sets wéld query schemas are
cached for the later iterations. Once we finish combiningyecs from all free partitions,
we get the valid r-covers, and the valid query schema cooretipg to each r-cover. The
complexity of the algorithm i§["_, C; x N, whereC; is the number of’;-covers of free
partition P;, and N is the number of query schemas enumerated. With Lesrsand
4.6, we reduce the number of r-covers and query schemas enatastve filter out the

invalid ones during the process.

Algorithm Database-Generator

Once we get the candidate query scheiase begin modifying the database to identify
the target one. One challenge is that each valid query scheayaorrespond to different
r-covers. As each r-cover has different tuples from othieiis, possible that there does
not exist a tuple shared by all r-covers. As a result, we mayise the same approach as
Algorithm 4.3, For example, consider two r-covers containing differeples, and each

of their valid query schema contains selection attribit&Vhen calculating the maximal
possible valid range for attributé, there may exist conflicts between the value ranges
from two r-covers. It is possible that’s invalid value range for the first r-cover is valid

for the second r-cover, as they do not use same tuples toajeribe query result.
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One method to solve the problem is to find a tuple that can be asgositive tuple in
Algorithm 4.3, then we can simply reuse the algorithm to modify the databkiss clear
that if a tuple appears for all the r-covers, then we can clemsi as a positive tuple.
Thus, we first partition all the r-covers into different gpston one condition: all r-covers
in the same group share at least one common tuple. For eaagp,@s there is at least
one common tuplé, it is certain that when we calculate the maximal possiblelvange
there will be at least one value in common. Therefore, we vaiddhe case that attribute
A’s valid value range in one query schema is another querynsalsenvalid value range.
Therefore, we can adopt the approach in Algorithi3ito distinguish the candidate query
schemas. Under the partition condition, there could beiplakvays to partition r-covers.
As we need to run Algorithm.3 for each partition, to minimize the computation effort,
we choose the partitions which result in least number of gsorhe algorithm is shown

in Algorithm 4.6.

Algorithm 4.6: Database-Generator (bag semantics)
Input: DatabaséD, candidate query schem&sand valid r-coverdRC
Output: User’s intended query schemxs
1 G=Partition-RCovers(RC
2 SortG in descending order d&;| and pick the first on€,
let Sy, be an empty set
foreachr-coverrc; € G; do
Let S; be the candidate query schema derived from r-cower
Stmp = Stmp U {Sj}
D' =Database-Generatdf(D), S;p)
return D’

0 N o 0o b~ W

We first partition r-covers with functioRar t i t i on- RCover s (line 1). Here we adopt

a greedy algorithm which is shown in Algorithin7. We always pick the most frequent
tuplet and group the r-covers containimgnto one group. Then we sort the groups in
the descending order of each group size (line 2). The reasibrai the group with more
r-covers may have more candidate query schemas, which Igivertodds to contain the
target query schema. With the largest gréiipwe collect all the candidate query schemas

corresponding to each r-cover, and adopt the same appreaklgarithm4.3 (lines 4 to
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Algorithm 4.7: Partition-RCovers
Input: r-coverskRC'
Output: A groupg of r-covers

1 Initialize G = 0;

2 tmpRC = RC,

3 while tmpRC # () do

4 | Initilize G = 0;

5 Let tuple sefl" be all the tuples inmpRC;
6 foreachtuplet € T do

7 Initilize g = 0;

8 foreachrc € tmpRC do

9 if t € rethen

10 ‘ g=gUrc

11 if |g| > |G| then

12 ‘ G =g,

13 remove everyc € G fromtmpRC);
14 G =6U{G}

15 return G ;

6). Note that, we pick the common tuple shared by all r-cot@modify, not the positive

tuple as shown in Sectich3. We return the modified databasg to the user.

Result Feedback

Result Feedback module same as Sectio#.3. Given the modified database’, we

highlight the difference between original databasand D’ and ask the user to pick the
correct query result. Note that, once the user selects theat@roup, besides of the can-
didate query schemas in the group, we also need to colletteattcovers corresponding
to these candidates. Because unlike Secti@nAlgorithm 4.6takes both candidate query

schemas and corresponding r-covers as input to modify tiaddse.

4.4.2 Queries with Set Semantics

Now we discuss how to find the target query schema when thettargery is a set-

semantics query.
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Comparing to bag semantics, query with set-semantics i® momplex since without
duplicates in the query result, it is difficult to identify\wanany tuples are used to gen-
erate one tuple in the result. Assume there is one tuphequery output, and there are
m free tuples from database can be projected tAs the target query is a set-semantics
guery, to get the resutt, there could b@™ — 1 different combinations of free tuples, i.e.,
any non-empty subset of the tuples could be selected to get the same resukiven

a database-result pdiD, R), where R containsk output tuples, the number of r-covers
could berzl(Q‘P”—l), whereP; is the free partition related to the tuples that can gen-
erater; in R. Based on the above observation, if a quérys a valid query, there must
exist at least one tuple from each free partitio®; satisfying@’s condition. We refer to
this property as at-least-one semantics as addressed ifiggdBDue to the at-least-one
semantics, the number of r-covers could be very large, asdiear that enumerating all

r-covers to find the candidate query schema is not a praepgabach.

Before presenting our approach, we defimaimal r-coversand introduce a lemma first.

Definition 4.5. (minimal r-cover) Given a database-result paiiD, R), and a r-coverT,
if the number of tuples ifi’ is as same as the number of tuplegiywe sayl" is a minimal

r-cover.

It is clear that a minimal r-cover contains only one tuplarreach free partition.

Lemma 4.7. Given a database-result paiD, R) and a r-coverdl’, if ¢s is a valid query
schema forl’, then there must exist a minimal r-covef, such thatgs is also a valid

query schema far,,.

Proof. (1) If T"is a minimal r-cover, then the lemma holds.
(2) Consider wher" is not a minimal r-cover. lf;s is a valid query schema fdf, then
there must exist as-query@ thatQ(7T") = R, and for each output tupte € R, there must

exist a free tuple; satisfying query). We pick one such tuple from each free partition
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and form a minimal r-covef,,,, we haveQ(7,,) = R. Henceyqs is also a valid query

schema foff,,,. The lemma holds. O

As Lemmad.7 shows, to find all the valid query schemas, we only need to eaall the

minimal r-covers The total number i§[*_, | P;|, which is much less thaf[;_, (2/7:1-1),

Now we present our algorithm to compute the candidate qudrgreas. As Lemmad.5
and4.6 still holds with set semantics, we adopt the same approaétigorithm 4.4 to
compute the candidates. Recall that in Algorithm, we first compute p-covers for each
free partition and then combine p-covers to compute vatidvers. Now with set se-
mantics, since we only compute minimal r-cover, for freetifan P;, each free tuple
t € P; can be considered asfa-cover. Thus, we can reuse the Algoritldnd except that
we change the p-cover in Algorithm4 to single free tuple. The algorithm is shown in

Algorithm 4.8,

Once the candidate query schemas are computed, we can @sarte@pproach in Algo-
rithm 4.6to modify the database and ask the user to identify the taigety schema. The

Result Feedback modukealso as same as in Sectidd.], thus we omit the details here.

4.4.3 Heuristic Solution

So far we have presented complete solutions to handle timascevithout positive par-
tition in the databasé, both with bag and set semantics. As shown, to compute the
candidate query schemas, we need to enumerate all thegeseis first. The complexity
is quite high as the number of r-covers is quite large. Hergropose a trial-and-error

heuristic optimization.

The previous approach in Sectidm.1and4.4.2requires that we formulate a r-cover
which can exactly generate the query resjtwhich is a very restrict condition. Re-

call that when computing the candidate query schemas inddett3, we only consider
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Algorithm 4.8: Query-Schema Generator (set semantics)

Input: join relstion.J (D), query resulR
Output: Candidate query schendaand valid r-coverRC'
1 find all the free partition§ P, P, - - , P, } of J(D)

2 initialize C[]] =0// store the tuples with valid query in each
iteration

3 initialize QS[|][] =0// store the query schema in each iteration

4 foreach free partitionP;(i = 1,2,--- ,n) do

5 foreachT € P, do

6 initialize QStmp = 0

7 if i == 1then

8 | QStmp = Conput e- Val i d- Query- Schema(J(D), T)

9 else

10 foreach queryschemays € QS[i — 1] do

11 if valid gs-query( for T existsthen

12 ‘ QStmp = QStmp U {gs}

13 if QStmp # 0 then

14 if i == 1then

15 | Cli].add(T), QS[i].add(QStmp)

16 else

17 foreachT’ € C[i — 1] do

18 Let tuple sel'mp =T U T’

19 initialize tmpgs = 0

20 foreach gs € QStmp do

21 if valid gs-query@ for T'mp existsthen

22 ‘ tmpgs = tmpgs U {qs}

23 if tmpgs # () then

24 | Cli].add(Tmp), QSIi].add(tmpgs)

25 letn be the number of free partitions
26 S = QS[n], RC = C|n]
27 return S, RC

97



CHAPTER 4. SCHEMA-BASED APPROACH

positive partitions and ignore the free partitions. Thesogais it is easy to compute and
the target query schema is guaranteed in the candidate qokeynas. In addition, the
Database Generator modutmly requires to modify the positive tuple. Thus, we do not

need free partitions to identify the target query schema.

Now we consider the case without positive partition in theadaseD, i.e., all the tuples
in result R are generated from free tuples. Although we do not know whiel tuples
contribute toR, we assure that some tuple does. Therefore, for each fréetiupe can
assume that it generates a output tuplé&jrand considet as a positive tuple. Once we
have positive tuple, we can reuse the approach in Sedt®to identify the target query
schema. If our assumption is incorrect, the user should findhat none of the candidate
guery schema is correct. We can continue to try another tige until the user finds the

target query schema.

For each free partition, there exists at least one free thgliecontributes td?. Thus, we
do not need to enumerate all the free tuples. We only needamiere free tuples from
one free partition. To be efficient, we choose the free pantitvith smallest number of

tuples to compute.

4.5 Discussion

In Section4.2, we give the overview of our approach in Algorithfril It is clear that for
each iteration, all query schemas share the same projetigivutes £ A) and join rela-
tions (JR). Thus, we assume that all the candidate query schemasraeeesaept their
selection attributesyA) in Section4.2. In this section, we discuss how to generalize our
approach by relaxing the assumption. We first discuss hovamallle the query schemas
with different P A, then we discuss how to distinguish query schemas withreiiie/ R.

When we consider query schemas with differé (or JR), we always assume they
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share the sam#@ A, otherwise, we can always change the selection attributdise to

show the differences.

Query schemas with differentP A

It is trivial to distinguish two query schemas with diffeteRA. Consider two query
schemags andgs’, where attributed €¢ PA—PA’. As we assume the query schema share
the same selection attributesjs not a selection attribute. Then we choose a positive tuple
t to modify. If there is no positive tuple, we can choose a frgaet which contributes

to gs’s query result. After modifying’s value of A to a new valuegs’s query result will
change andgs’’s will stay the same. We present the user the differencedsstvwo query

schemas, and ask him to identify the correct one.

Query schemas with differentJ R

Without loss of the generality, we assume all the relaticesj@ned under foreign-key
relationships. Hence, we do not consider the case twooektan join with different P.
Consider two query schemas andqs’, where relatiorrel € JA — JA’. To distinguish
the query schema, we modify the join attributeref to make sure the tuple can not be
joined with others. Given a tuple € rel which generategs’s query resultr, if we
maket can not join with other tuples, then recaravill be deleted fromys’s query result.
However,gs’’s result will not be affected. The user can identify the &rguery schema

by looking at the difference in the query results.

4.6 Experimental Study

In this section, we evaluate the usability, efficiency armauaility of our approach using
two real datasets. Our experiments were performed on a HCanittel Core i7-2600

3.4GHz processor, 8GB RAM, and 320GB SATA HDD running Ububiux 14.04.
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The algorithms were implemented in C++ and the database wasged using MySQL

Server 5.5.27.

We first introduce the datasets and test queries in Seéttbf Sectiord.6.2presents the
experimental results to show the effectiveness of our aaran terms of the number of
iteration and running time, where the result feedback atigons were returned by a real
user choosing the correct result. Sectib.3compares the results of the Schema-based
approach (S-QFE) with the Query-based approach (Q-QFHEgrins of the candidate
query size. We also conducted a user study with 10 partitspanSection3.6.9 and
compare the users’ feedback time between S-QFE and Q-QHiow the usability of

our approaches.

4.6.1 Datasets and Queries

We conducted our experiments using two real datasets. Tétedfitaset is a scientific
database of biology information taken from SQLSRatet consists of two tables: the
first table, named PmTRLL _DE, contains 3926 records with 16 attributes; and the sec-
ond table, tabld’semulFLRT_spgpgp.ok, contains 424 records with 3 attributes. We
used three queries (denoted ¢, SQ, andSQs below) on this database as the target
queries.SQ, and SQs are real queries posted by some biologist on this datasetdd/Ne
not use the same queries in Chapter 3 because so far S-QFRat@epport queries with

disjunctions.

The second dataset is dataset Adult extracted from the 189€&hsus databasdt is
a single-relation dataset with 825 tuples. It contains idbates in total. We also used
three synthetic queries (denoted A¥),, AQ> and A()s) as target queries to conduct our

experiments.

http://escience.washington.edu/sqlshare
2http://archive.ics.uci.edu/ml/datasets/Adult
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All the target queries are shown in Figutes.

AQI :7ra967class7occ7edu(Usez:“F”/\agEZ(M

Ams=“Never—married"’ Again>500 ) adult
AQQ =T age,edu,occ,hour (Uocc: “Farming’ Again>500Anc=“US A" ) adult
AQS —Tage,edu (Uocc: “T'ech—support” Anc=“USA" )adUZt

S Q1 =T« (U P.logFC_Fe<0.5/\P.logFC_Fe>—0.5/\P.logFC_P<—1)
(PmTE_ALL_DE(P) X table_Psemul FL_RT _spgp_gp-ok)

SQy =, (UP.zoch_Feg—3.61AP.zoch_Fe>—3.67)

(PmTE_ALL_DE(P) X table_Psemul F L_RT _spgp_gp-ok)
S Q:s =Ty (0 P.logFC_Fe<1AP.logFC_Si<—1

APmTE_ALL_DE.logCPM_Si>1AP.PV alue_P<0.05)
(PmTE_ALL_DE(P) X table_Psemul FL_RT _spgp_gp-ok)

Figure 4.3: Test queries for experiments

The number of selection attributes in the six target queatesrespectively, 4, 3, 2, 2, 1
and 4. The cardinalities of the query results for the sixdageries are, respectively,
3, 4, 26, 27, 2 and 4 tuples. We generated the initial datatessdt pairs by executing
the above six queries on the database, and we always chosertleet query result as

feedback.

4.6.2 Performance of Schema-based Approach

In this section, we present the performance of S-QFE to sheveffectiveness. Given
the 6 database-result pairs, S-QFE successfully identifiedarget query schema for 5
qgueries except@,. As for AQ,, there are 4 selection attributes in its query schema,
but S-QFE only identified 3 attributes without attribtisex”. The reason is that S-QFE
found a valid query with the 3 attributes (without “sex”) tergerate the correct query
result. Thus, S-QFE did not add attribusex” into the query schema as it would be

redundant.

101



CHAPTER 4. SCHEMA-BASED APPROACH

Query No.
AQ, | AQy | AQ3 | SQi | SQy | SQs
Total execution time (s) 3.84| 6.04| 7.21| 13.55| 297 | 5.80
Time to compute candidates (3) 3.82 | 6.03 | 7.18 | 13.03| 2.89 | 5.72
# of examined query schemas| 6475| 9721 | 8438 | 12274| 4152 | 8295
# of skipped query schemas || 9908 | 6662 | 7955 | 53261| 61383 | 57240
# of candidates query schem&s| 46 8 5 6 12 82
# of iterations 8 4 4 2 3 6

Table 4.3: Performance for each target query

Table4.3shows the following performance statistics: (1) the tataining time of S-QFE;
(2) the time for computing candidate query schemas; (3) thmber of query schemas
we examined to find the candidate query schemas; (4) the nuohlogery schemas we
skipped when we enumerated all the query schemas to find tlokdedes. (5) the number
of candidate query schemas generated; and (6) the numberations to identify the

target query schema;

Here the total execution time is the total running time of approach, which includes
the time for mapping projection attributes, partitioningles, computing candidate query
schemas, modifying database and presenting the new datedmast pairs to the user. The
time for user’s feedback is not included. It is clear that pating the candidate query
schemas dominated the whole execution time. The time fohalbther operations is less
than 0.1 second. More specifically, the time for partitigrtumples is less than 0.01 second,
and the time for modifying database in each iteration is teas 1 millisecond. From
the user’s perspective, the waiting between two iteratisnggligible, except for the first

iteration, which takes a little longer since S-QFE need®topute all the candidate query

schemas at the beginning.

Computing query schemas takes a long time because S-QFEcestesall the attribute
combinations to find the minimal query schemas. As shown bl€l4.3 overall, the
running time increases with the number of examined quergmeels.S @, took the longest

time, more than 13 seconds, to examine 12274 query schente.tiNaAQ, had more
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guery schemas enumerated (9721) tHa&py (8438), but it took less time to compute the
candidate query schemas. The reason is #fta's query result size is 4, much smaller
than AQs’s, which is 26, and all of them are positive tuples. Recadl tio build minimal
query for each query schema, we need to check all the postifples’ values. Therefore,

it took longer time to examine one query schemaAq}; than AQ)s.

We also present the number of query schemas we skipped wimeputing candidate
guery schemas in Tabe3. To compute the candidates, Algorithh2 requires to enu-
merate all the query schemas. The numberis- 1, wheren is the number of attributes

in dataset. For Adult, the total number is 16383, and it is3&bfr the scientific dataset.
However, as our approach stops appending more attributesamdidate query schemas
based on Lemmad.1, we skipped a large number of query schemas to save the camput
tion cost. For Adult dataset, we skipped half of the totalrgueshemas, and more than

80% for the scientific dataset.

Interestingly, although we skipped query schemas becduke oandidate query schema,
the number of skipped query schemas is not proportionaktatimber of candidate query
schemas. For exampld(), skipped less query schemas th&f); though it had 3 more
candidate query schemas(), skipped more query schemas th&f; with 70 candidate
query schemas less. In fact, more query schemas with srsall@f selection attributes
are found, the less of query schemas S-QFE needs to exanenewe present the num-
ber of candidate query schemas generated with differenbeumf selection attributes
in Table4.4. In our experiment, the candidate query schema had 6 sateatributes at

most.

As shown in Table4.4, in Adult dataset,AQ); had 5 candidate query schemas with 2
selection attributes, and(), had 8 candidates with 3 selection attributes. Given a 2-
attribute setS;, the number of attribute sets containifigis 2”2, wheren is the number

of total attributes. Thus, ib; is a candidate query schema’s selection-attribute set, we

can skip2"—2 — 1 query schemas. Similarly, given a 3-attribute Sgt the number of
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_ ) _ Query No.

# of selection attributes AQ, [ AQ, [ AQs | 5Q1 [ 5Qs | 5Q;
1 O | 0] 0|5 6 |5
7 0 J]0[5[]1]6]0
3 1418 ] 0] 0] o073
2 271 0 | 0 | 0] 0] 38
5 5 ] 010 0[]0 ]30
6 cJoJofJoJ]o]es

Table 4.4: Number of candidate query schemas with diffeselgction attributes size

attribute sets containingj, is 2”3, half size of2"~2. Therefore AQ; skipped more query
schemas. In scientific dataset, note that althoti@h had 82 candidate query schemas in
total, but only 5 of them had less than 3 attributes. Howe¥€x had 12 candidate query
schemas with 2 or 3 selection attributes. Hence, the nunflexammined query schema

of SQ); was only half size 05Q)s.

In terms of iterations, AQ); took the most number of iterations with respect to Adult
dataset, and'(); took most iterations with respect to the scientific dataSeQFE used 8
iterations to findAQ, and 6 iterations to find'();. Both of the two queries have the largest
number of candidate query schemas among the queries frosathe dataset. Both(),

and AQ); needed 4 iterations although(), had 3 more candidate query schemas than
AQs. Generally speaking, more candidate query schemas requicge iterations to

identify the target one.

4.6.3 Comparing Query-based and Schema-based approaches

In this section, we compare the Schema-based approach E$\@th Query-based ap-
proach (Q-QFE) in terms of the number of iterations, numlbenadidate query schemas
(candidate queries) and running time to identify the taggetry. We still use the 6 queries

in Figure4.3as the target queries to conduct the experiments.
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Query No.
AQ, | AQy [ AQs | SQ1 | SQs | SQs
Q-QFE QG time| 0.34| 0.49| 0.84| x 1.851| 2.282
Q-QFE DG time| 2.44| 2.38| 1.23| x 6.652| 5.346
Q-QFE total time|| 2.78 | 2.87 | 2.08| X 8.503| 7.628
S-QFE total time|| 3.84 | 6.04 | 7.21| 13.55| 2.97 | 5.80
(a) Execution time(in secs)
Query No.
AQ, | AQs | AQ3 | SQy | SQs | SQ3
# of candidate queries in Q-QFE 8 5 5 - 9 7
# of candidate query schemas in S-QfFE46 8 5 6 12 | 82
# of Q-QFE iterations 3 3 2 - 4 3
# of S-QFE iterations 8 4 4 2 3 6
(b) Number of candidate queries and iterations
Query No.|| Approach lteration No.
1 1 2] 3 | 4]|]5]6]7]s8
AQ S-QFE 3822 <1 | <1 | <l |<l|<l|<1|<1
! Q-QFE | 1419 1247| 106 | - - - - -
AQ S-QFE | 6025 <1 | <1 | <1l |<l|<l|<1|<1
2 Q-QFE | 1663| 1140| 65 | - - - - -
AQ. S-QFE | 7181 <1 | <1 | <l |<l|<l|<1|<1
3 Q-QFE | 2001| 56 - - - - - -
SO, S-QFE 2886 <1 | <1 | <1l |<l|<l|<1|x<1
Q-QFE | 3632| 2125|1764 | 982 | - - - -
Q. S-QFE [5717| <1 | <1 |<l|<l|<l|<l|<1
3 Q-QFE | 4298 1987 1436| - - - - -

(c) System processing time for each iteration (in milligets)

Table 4.5: Results of two approaches

The total execution time of two approaches is shown in Tdbtga). The execution

time of Q-QFE approach is the sum of the Query-Generatoringrtime (QG time) and

Database-Generator running time (DG time). We do not ircheédback time here.

Note that forSQ,, we use “x” to indicate the execution time of Q-QFE. BecahgsQuery
Generator took too much time to generate the candidateeg)eve have to terminate the
system manually, the experiment failed 6€); query. Thus the number of candidate
queries and iterations are also not available, indicateti’byBesides, as mentioned in

Section4.6.2 S-QFE could not find the original query feiQ;, but since it could find a
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similar query (missing one redundant selection attriute)just considered that it found
the target query. Similarly, for querieg), andSQs, Q-QFE did not generate the original
query, but it still found some similar queries as the origmeery. We also considered that

Q-QFE generated the target query.

As shown in Tablel.5.(a), there is no clear winner between the two approachesd®e,
AQ, and AQ3, Q-QFE was faster than S-QFE, and fap, andSQ3, S-QFE needed less
time. For Q-QFE approach, we can see that Database Genahatys took more time
than the Query Generator, because in each iteration, itegetedcalculate the balance
score and the modification cost, then find the best way totjgartqueries. As to S-
QFE approach, as discussed earlier, the running time wagdted by the time to find

candidate query schemas, which varies a lot for differeetigs.

The number of candidate queries generated from Q-QFE, tmbawuof candidate query
schemas from S-QFE and the number of iterations are showahbleZ.5.(b). There is
also no clear winner. Generally, there are more candidag/gechemas from S-QFE than
the candidates from Q-QFE’s. Excef),, S-QFE required more iterations than Q-QFE
to identify the target one. The reason is that Q-QFE cantmartqueries into multiple
groups, and use balance score to control the balance, WiiEEScan only partition
query schemas into two group each time. However, S-QFE osdy$ to modify one

tuple in each iteration.

As for each iteration, except the first iteration, S-QFE tomkch less time for each it-
eration, usually less than 1 millisecond. Because at theifesation S-QFE computed
candidate query schemas, which is quite time-consumingeder, Q-QFE usually took
around 2 seconds between iterations, since it needed tohiendgdtimal way to partition
queries based on the user’s feedback. The system procdssmdpr each iteration is
shown in Table4.5.(c). Note that if the target query schema was identified ekt

iteration wherek < 8, then the timing value for each of the remaining iteratiori lve

indicated by ’-.

106



CHAPTER 4. SCHEMA-BASED APPROACH

Original Data:
id age kel ducati ducation_num material status occupation relationship race sex capital gain capital loss hours_per_week native_country F
41979 48 Self-emp-not-inc ~ Prof-school 15 Married-civ-spouse Sales Husband ~ White Male 0 0 20 United-States
2349 55 Private Bachelors 13 Married-civ-spouse Sales Husband ~ White Male 0 0 50 United-States
41104 22 Self-emp-not-inc  Some-college 10 Never-married Sales Own-child ~ White Male 0 0 20 United-States
44488 18 Private 11th 7 Never-married Sales Own-child White Female 0 0 5 United-States
10197 32 Private Some-college 10 Married-civ-spouse _ Tech-support Husband  White Male 0 0 45 United-States ~
Original Result:
age education E
71 Bachelors
45 HS-grad
32 Bachelors
25  Bachelors
23 Some-college
start
Original Data:
id age kel ducati ducation_num material status occupation relationship race sex  capital gain capital loss hours_per week native_country =
41979 48 Self-emp-not-inc ~ Prof-school 15 Married-civ-spouse Sales Husband ~ White Male 0 0 20 United-$§|
2349 55 Private Bachelors 13 Married-civ-spouse Sales Husband ~ White Male 0 0 50 United-§)
gl M T D
Original Result:

Tl »

age education
71  Bachelors
45  HS-grad
21 Rashalaes

At query time:

L

OLD AND NEW DATABASE

id age workclass education education num material status occupation relationship race  sex capital_gain capital loss hours_per week native country

old 1230 71 Private Bachelors 13 Divorced  Tech-support Own-child White Female 2329 0 16 United-States
new 1230 71 Private Prof-school 13 Divorced  Tech-support Own-child White Female 2329 0 16 United-States
Should the new tuple be in query result? O Yes ) No

=

Figure 4.4: User interface screen capture

4.6.4 User Study

In this section, we present the results of a user study caadwdgth 10 participants (all of
whom were CS students) to evaluate the feasibility of our@ggh. The screen capture
of the system user interface is shown in Figdré Similar to the user interface in Fig-
ure 3.14 the system first showed the input database-result pairetagkr. The user can
scroll up and down to browse the tuples in database and gasujtr In each iteration,

the system highlighted the differences between origindl modified tuples. We used
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different colors to mark the modified attribute, the old apdiated values to help users
examine the modifications. To make it easier for users, awnkté asking the user to enter
the group number of the correct query result (in Sec8dh9, we provided Yes/No but-
tons. We asked the question “After the modification, whethemew tuple should be in
guery result”. The user keeps clicking Yes/No buttons urgildentifies the target query

schema.

For this experiment, we used the Adult relation and threeigsién Sectiont.6.1as target
queries. This dataset was chosen over the scientific dataset felt that its data domain
would be easier to understand for users. Before the paahtsstarted, we first expressed
the query intentions to the participants in written Englisither than the SQL queries,
because our purpose is to help users construct SQL querigsea€h query, we report
the user’s feedback time at each iteration, which is showiabie4.6t0 4.8 The system
execution time is not included. Note that if the target queaiyema was identified in the
kth iteration wheré: < 4, then the timing value for each of the remaining iteratioils w

be indicated by ’-".

First of all, all of the participants could identify all tharget queries correctly. As shown
in Tables 4.6t0 4.8, Q-QFE always took less iterations to identify the targetrgu For
AQ,, Q-QFE saved 5 iterations comparing to S-QFE, and4A@r, and AQ)s, it saved
1 and 2 iterations respectively. However, the average @gdbme at one iteration of
Q-QFE was around 18 seconds, which is much longer than thageéime of S-QFE,
less than 10 seconds. It means that S-QFE requires lessfeffarsers to examine the
data examples. Because S-QFE only modifies one tuple eaehdima it asks a yes/no

question, which is easier to answer.

It took the participants longer time at the beginning for BEQThe reason is that the par-
ticipants needed some time to understand the meaning oLémy @nd the data schema.
After they became familiar with the query meaning and the dathema, it only took

around 8 seconds for each iteration. On the other hand, ivamesuch trend for Q-QFE
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Iteration No.
User | Approach 1 ‘ 5 ‘ 3 ‘ 7 ‘ 5 ‘ 6 ‘ = ‘ 3
1 S-QFE | 341 | 3.05 | 5.09| 581 | 221 | 3.28 | 4.15| 4.75
Q-QFE | 10.68| 14.73 | 9.43 - - - - -
5 S-QFE | 1296| 582 | 4.36 | 2.89 | 22.37 | 11.95| 5.08| 9.97
Q-QFE | 14.67| 21.18 | 8.36 - - - - -
3 S-QFE | 25.53| 18.10| 951 | 5.01 | 282 | 6.97 | 6.93| 4.98
Q-QFE | 14.93| 25,59 | 10.57| - - - - -
4 S-QFE | 418 | 252 | 534 | 290 | 9.17 | 4.86 | 5.98| 4.81
Q-QFE | 9.74 | 1842 | 12.87| - - - - -
5 S-QFE | 10.81| 19.92| 499 | 5.68 | 19.83| 2.97 | 6.56| 4.65
Q-QFE | 13.55| 29.81 | 18.45| - - - - -
6 S-QFE | 23.81| 18.89| 16.04| 12.94| 29.25| 10.31| 5.44| 10.24
Q-QFE | 37.13| 53.82| 18.56| - - - - -
7 S-QFE | 19.05| 31. 25| 13.06| 5.03 | 27.6 | 8.01 | 6.92| 7.97
Q-QFE | 25.83| 50.4 | 15.8 - - - - -
8 S-QFE | 10.51| 20.04| 3.39 | 582 | 47.22| 7.18 | 3.76| 5.50
Q-QFE | 9.85 | 17.73| 7.86 - - - - -
9 S-QFE | 11.54| 10.67| 5.02 | 6.29 | 32.33 | 11.45| 8.24| 4.93
Q-QFE | 18.91| 61.58 | 10.81| - - - - -
10 S-QFE | 1154 9.71 | 549 | 6.06 | 19.58 | 6.62 | 6.34| 11.20
Q-QFE | 19.22| 16.49 | 13.27| - - - - -

Table 4.6: Feedback time fot@; (in secs)

approach, because unlike S-QFE, Q-QFE could modify mone th@aples in one itera-
tion. Thus, the user’s feedback is more related to the madiibics in each iteration. For
S-QFE, in some iteration, it took a little longer for the pepants to identify the query,
for example, the 5th iteration 0d(),. The reason is that they were confused by the at-
tribute name, likérelationship” and“material status”. In AQ,, the selection condition

is materialstatus = Never-marriedin the 5th iteration, we modified the tuple by chang-
ing its relationship value to “Unmarried”, which was a little ambiguous. If thesuss

familiar with the dataset, he would be aware of the problem.

Now we compare the total execution time between Q-QFE and-5;@cluding both
system running time and user’s feedback time. The reswtslawwn in Figuret.5. We

also present the average time of each iteration in TalSleo 4.11

For AQ., nine participants spent less time to identify the targetrguvith Q-QFE than
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1-th iteration
User | Approach 1 ‘ 5 ‘ 3 ‘ 7]
1 S-QFE | 858 | 6.43 | 5.98 | 1.76
Q-QFE | 9.13 | 12.19| 8.97 -
5 S-QFE | 11.82| 8.27 | 10.04| 6.21
Q-QFE | 14.98| 16.23 | 12.76| -
3 S-QFE | 6.79 | 556 | 6.02 | 5.03
Q-QFE | 3.38 | 12.34 | 12.45| -
4 S-QFE | 5.02 | 4.17 | 4.84 | 3.26
Q-QFE | 11.21| 9.45 | 10.93| -
5 S-QFE | 10.61| 10.55| 10.05| 3.94
Q-QFE | 8.65 | 10.92| 9.67 -
6 S-QFE | 18.44| 11.63| 6.12 | 4.82
Q-QFE | 28.37| 14.09| 10.82| -
7 S-QFE | 11.35| 11.17 | 19.94| 4.63
Q-QFE | 17.23| 12.64 | 13.18| -
8 S-QFE | 7.39 | 18.74 | 10.13| 6.01
Q-QFE | 10.21| 11.95| 11.84| -
9 S-QFE | 5.27 | 5.01 | 542 | 5.40
Q-QFE | 11.47| 12.02| 10.79| -
10 S-QFE | 12.37| 6.68 | 6.19 | 7.41
Q-QFE | 10.79| 6.73 | 8.08 -

Table 4.7: Feedback time fotQ (in secs)

S-QFE. It took user 9 almost the same time using Q-QFE (9%08rls) and S-QFE
(94.31 seconds). The reason is that S-QFE required 5 moatiates to find the target
guery schema. As foAQ, and AQ3, half of the participants found it was faster to use
S-QFE approach, while the other half took less time to iderniie query with Q-QFE

approach. Overall, two approaches are comparable.

In terms of interaction time, foAQ, the longest feedback time in Q-QFE is 61 seconds,
and the shortest is 7.8 seconds. With S-QFE, the longestitm& seconds and the
shortest is 2.2 seconds. Eap,, the longest and shortest feedback time is 18 and 1.7
seconds in S-QFE, and 28.4 and 3.9 seconds in Q-QFE. Addpr, the longest and
shortest feedback time is 39 second and 2.7 second in S-QiFB2aand 8.5 seconds in
Q-QFE. Also as shown in Tabk9to 4.11, the average time of S-QFE at each iteration

is also much less than Q-QFE.
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1-th iteration
User | Approach 1 ‘ 5 ‘ 3 ‘ 7
1 S-QFE | 2.88 | 3.05|4.62| 2.93
Q-QFE | 10.62| 9.53 - -
5 S-QFE | 12.55| 4.69 | 5.82| 5.36
Q-QFE | 18.45| 13.82| - -
3 S-QFE | 15.31| 7.84 | 2.93| 2.52
Q-QFE | 10.11| 11.62| - -
4 S-QFE | 7.13 | 3.96 | 259| 3.71
Q-QFE | 20.88| 17.93| - -
5 S-QFE | 9.84 | 5.38 | 2.73| 4.68
Q-QFE | 17.64| 8.13 - -
6 S-QFE | 21.66| 9.84 | 6.87| 6.47
Q-QFE | 15.49| 13.96| - -
7 S-QFE | 32.22| 12.13| 3.70| 6.68
Q-QFE | 52.81| 25.92| - -
8 S-QFE | 38.97| 5.39 | 4.05| 6.26
Q-QFE | 48.24| 26.21| - -
9 S-QFE | 3.96 | 343 |541| 6.81
Q-QFE | 14.05| 8.55 - -
10 S-QFE | 6.45 | 598 | 3.14| 11.89
Q-QFE | 7.84 | 6.38 - -

Table 4.8: Feedback time fotQ; (in secs)

There is no clear trend which approach is better. In gen@@)FE needs less iterations
to identify the target query, but at each iteration it takes wser longer time to examine
the examples comparing with S-QFE. As a result of our anglyghen Q-QFE generates
more candidate queries and the query schema contains nabwutas, it takes Q-QFE

more time to compute the optimal way to modify database, acdlse of too many mod-
ifications at one iteration, it takes the user longer timexana@ne the modified database.
On the contrary, it is not suitable to use S-QFE approach wihegandidate queries are
few, as S-QFE takes a lot of time when calculating candidagygschemas by enumer-

ating all the selection-attribute sets.
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Figure 4.5: Total time to find target query (in secs)

4.7 Conclusion

In this chapter, we have proposed a Schema-based appro@QREO{S-QFE) to help
the user construct queries. S-QFE takes as input an inged-specified pair of sample
database) and output table? for the user’s target query oP, and outputs candidate
queries with the correct query schema as the user’s targay.qunlike Q-QFE, we
propose a novel algorithm to help users identify the validrgjuischema first through a
sequence of iterations with the user to obtain the feedbadke correct query result on
modified input database. S-QFE does not expect users to lkafanith SQL and only
requires that users are able to determine whether a giveguitatble is the result of his

or her intended query on a given input database.

Our experimental evaluation demonstrates the feasilitgur approach and the effi-
ciency of our techniques. We also conduct a user study to shewffectiveness. The
results show that our approach is easy to use. And the cosgpabetween Q-QFE and

S-QFE also demonstrates that two approaches are comparable

As part of future work, we plan to generalize our approachdondte a larger class of
gueries, such as SPJ-union query, query with aggregatiwtiéun, etc. We would also
like to further integrate Q-QFE and S-QFE into a hybrid systand build an accurate

cost estimate model to adopt the proper approach.
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User| Approach|| Total time | # of iterations| Average time
1 S-QFE 40.59 8 5.07
Q-QFE 38.62 3 12.87
5 S-QFE 79.24 8 9.91
Q-QFE 47.99 3 16.00
3 S-QFE 83.69 8 10.46
Q-QFE 54.87 3 18.29
4 S-QFE 43.60 8 5.45
Q-QFE 44.83 3 14.94
5 S-QFE 79.25 8 9.91
Q-QFE 65.59 3 21.86
6 S-QFE 130.76 8 16.35
Q-QFE 113.29 3 37.76
7 S-QFE 122.64 8 15.33
Q-QFE 95.81 3 31.94
8 S-QFE 107.26 8 13.41
Q-QFE 39.22 3 13.07
9 S-QFE 94.31 8 11.79
Q-QFE 95.08 3 31.69
10 S-QFE 80.38 8 10.05
Q-QFE 52.76 3 17.59

Table 4.9: Time results of Q-QFE and S-QFEAG}; (in secs)
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User | Approach|| Total time | # of iterations| Average time
1 S-QFE 28.79 4 7.20
Q-QFE 33.16 3 11.05
5 S-QFE 42.38 4 10.59
Q-QFE 46.84 3 15.61
3 S-QFE 29.44 4 7.36
Q-QFE 31.04 3 10.35
4 S-QFE 23.33 4 5.83
Q-QFE 34.46 3 11.49
5 S-QFE 41.19 4 10.29
Q-QFE 32.11 3 10.70
6 S-QFE 47.05 4 11.76
Q-QFE 56.15 3 18.72
7 S-QFE 53.13 4 13.28
Q-QFE 45.92 3 15.31
8 S-QFE 48.31 4 12.08
Q-QFE 36.87 3 12.29
9 S-QFE 27.14 4 6.79
Q-QFE 37.15 3 12.38
10 S-QFE 38.69 4 9.67
Q-QFE 28.47 3 9.49

Table 4.10: Time results of Q-QFE and S-QFEAQ); (in secs)
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User| Approach|| Total time | # of iterations| Average time
1 S-QFE 20.59 4 5.15
Q-QFE 22.23 2 11.12
5 S-QFE 35.63 4 8.91
Q-QFE 34.35 2 17.17
3 S-QFE 35.81 4 8.95
Q-QFE 23.81 2 11.91
4 S-QFE 24.60 4 6.15
Q-QFE 40.89 2 20.45
5 S-QFE 29.87 4 7.47
Q-QFE 27.85 2 13.79
6 S-QFE 52.05 4 13.01
Q-QFE 31.53 2 15.76
7 S-QFE 61.94 4 15.49
Q-QFE 80.81 2 40.41
8 S-QFE 61.88 4 15.47
Q-QFE 76.53 2 38.23
9 S-QFE 26.82 4 6.71
Q-QFE 24.68 2 12.34
10 S-QFE 34.67 4 8.67
Q-QFE 16.30 2 8.15

Table 4.11: Time results of Q-QFE and S-QFEAQ; (in secs)
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, aiming to help non-expert database usestiwant SQL queries, we propose
a novel approach called Query from Examples (QFE), whictesghed for users who
might be unfamiliar with SQL, and only requires that the usdamiliar with the dataset
and able to determine whether a given output table is thdtrekhis or her intended
query on a given input database. The user inputs a samplead&ia and an output table
R which is the result of the his/her intended quéron D, QFE will first generate a set
of candidate queries or query schemas, and then help théauslentify the target query

from these candidates by adopting an instance-drivereictiee method.
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5.1 Contributions

In this thesis, we first introduced Query-based approachHi (R-QFE). We adopted an
interactive instance-driven approach to partition caaticqueries into different subsets
with different query results. By using data examples, ostey is quite straightforward
and user friendly. We analyzed the characteristics thabd gata example should satisfy
and proposed an algorithm to derive it. To make the systenerpaactical, we also
proposed a novel cost model to estimate the user’s workkmads to minimize the user’s
effort to identify the target query. Besides, we also cotedi@an extensive experimental
study over real datasets and user studies, which showeduhalstem is effective and

efficient.

Secondly, we designed a Schema-based approach of QFE (b-Gii#&h a sample database
D and an output tablé& as input, our approach first identifies the target query sehem
and then generates a set of candidate queries sharing gle¢ qailery schema, which can
transformD to R. We introduced a novel method to help the user identify tingeta
query schema through a sequence of iterations with the ag@otide feedback on the
correct query result on a modified input database. By inmgiuiser to the process of
query derivation, we can filter out the incorrect query scagim advance, and reduce the
search space. An experimental study over different datagas$ also conducted to show
that S-QFE is efficient. We also conduct a user study to shevwetfectiveness of our

approach.

5.2 Future Work

There are several possible directions to extend QFE.

First, we would like to extend QFE to handle more queries syipeluding SPJ-union

(SPJU) queries, group-by aggregation (SPJA) queries, etc.
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Second, for Q-QFE, to reduce users’ waiting time, we can asallglization techniques
to speed up the system performance. One method is to pifieériero components, such
that once th&€€andidate Generator modusgtarts generating queries, we run i&tabase
Generator modulemmediately while theCandidate Generator moduleontinues gen-
erating more queries. Another method is to use multipleattiseto execute tasks i.e.
partitioning queries in parallel. Moreover, we can takeaadage of users’ feedback to

filter the queries at the beginning that can be ensured néilifse users.

Third, we would like to integrate Q-QFE and S-QFE to build dtg system. If we
can directly generate a small number of candidate queriegibgy generator, we do not
adopt S-QFE to identify query schema. Otherwise, we adoRFE-to identify query
schema first. In addition, to be more flexible, we would likegptovide an option that
the system can terminate S-QFE anytime, and use the remgaanuidate query schemas
to generate candidate queries and adopt Q-QFE to iden#fyatiget query. The system
could estimate the user’s effort accurately and decide hvapproach is more efficient.

To sum up, S-QFE and Q-QFE could be easily switch in orderdoae the user’s effort.

Another possible direction is to extend this work to handieoimplete query results. It
is common that users may not know the full query results eeerafdatabase that he
is familiar with, or the full query result may be large suclattlusers are reluctant to
completely specify. Thus it is important and useful to gateethe user’s intended query

when given a database and part of the query result.

In addition, we would also like to explore other ways to spethie input data. For exam-
ple, a user only needs to input a set of keywords, and thenytera will automatically

generate a small set of data (sampling from the existingodat to let users mark the
guery result they want. It would also be useful to conductex gssudy to examine how
the size of the data the system automatically generatestaftee queries that our query

generator produces and how the size could possibly rechlaege the partition space.
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