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Summary 

The useful-field-of-view (UFOV) is the visual area from which one captures visual 

information with a single glance without any eye movement. Currently, the test for 

UFOV typically relies on an individual’s subjective attentional responses. Two 

physiological signals, namely, steady-state visual evoked potential (SSVEP) and 

pupillary oscillation (PO) have been frequently used as an objective alternative to 

replace subjective attentional responses. Our aim was to investigate the possibility of 

predicting UFOV performance objectively using these signals. Two sets of 

experiments, A & B, were carried out for this purpose.  

Experiment A is a preliminary study that indicates the potential relationship between 

the two signals and UFOV using three tasks of different target difficulties; a simple 

peripheral task, a UFOV task without distractor and a UFOV task with distractor. It 

was found that only UFOV task with distractor can differentiate UFOV percentage 

accuracy performance between individuals and Deming regression analysis indicates 

that this performance is predictable by the normalised SSVEP (F(1,6) =16.250, r = 

0.854, P < 0.01, n = 8) and normalised PO (F(1,6)=20.13, r = 0.878, p < 0.01, n = 8). 

Experiment B adopts the UFOV task with peripheral distractor to measure UFOV 

eccentricity size performance, to evaluates the ability of SSVEP and PO to an 

individual’s UFOV eccentricity size. Deming regression analysis once again shown 

that UFOV can be estimated using normalised SSVEP (F(1,51)=44.86, r = 0.684, p < 

0.01, n = 53),  and pupillary oscillation (F(1,51)=91.73, r = 0.802, p < 0.01, n =53).  

Finally, various structural configurations of feedforward neural network model were 

trained using the data in Experiment B by the Levenberg-Marquardt backpropagation 

function. These network models were evaluated using the 11-fold cross-validation 

method and step-wise elimination of least predictive input vector for the best network 
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structure with the least input vectors that yields the most accurate prediction of 

UFOV eccentricity size performance. The results shown that the network with 7-1-2-

1 structure that takes in normalised SSVEP and OP signal from stimulus with 7.5° to 

10° eccentricity size can best predict UFOV size performance with an accuracy of 

approximately ± 0.278° (MSE = 0.0775). The results indicated that neural network 

models trained to predict UFOV size performance using physiological signals, 

SSVEP and OP, can be used as an objective assessment tool for UFOV, to confirm 

subjective-based UFOV assessment results. By reducing the network to a 4-1-1-1 

structure which takes in only 4 input vectors from OP signals, the network model is 

still able to predict UFOV size performance with an accuracy of approximately ± 

0.545° (MSE = 0.344). The reduction in input vectors shortens signal collection time 

with a small compromise on prediction accuracy, allowing the network to become a 

quick objective UFOV screening tool. 
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Chapter 1: Introductions 

1.1 Background 

Typically, current means of assessing attention is to put individuals through 

psychophysical tests. These tests rely on subjective feedbacks and critical reaction 

time response; hence time must be set aside for multiple trials to gather accurate 

averages and to minimize effects of noise on data. When a test has to be repeated to 

confirm results, the lengthy testing time multiplies with each repetition. Also, a 

subjective test tends to rely on the motivational level of an individual. In the case in 

which a subjective test is used to select suitable candidates for sportsmen or military 

vocation, those mandated by rules to participate may response suboptimally to avoid 

good scores while those who are keen but are not confident about passing the test 

may try guessing tricks to achieve high scores. Recruiters would prefer shorter testing 

times while avoiding subjectivity by having objective markers.  

When attentional performance is a large determinant factor for a particular critical job 

(e.g. combat pilots) or high-paying sports (e.g. professional basketball players), a 

more reliable and faster way of testing attention for the purpose of selecting potential 

trainee or to monitor the actual progress of the attention improvement from training 

becomes important. Time and cost can be minimized with a fast and reliable objective 

attention test when a mass screening for potential candidates are necessary. In 

Singapore, the national call of duty that attracted thousands of young adults to 

undergo military pilot trainee selection is a good example.  

In this study, the aim is to investigate steady-state visual evoked potential (SSVEP) 

and pupil oscillation (PO) as the physiological markers that can quickly and 
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objectively assess individuals for their attentional span around his/her primary gaze, 

or in another more recognized term, the useful-field-of-view (UFOV).  

 

1.2 Literature Review 

This section covers the three key aspects which are of critical importance to the 

research interest here. They are namely, the useful-field-of-view (UFOV), steady-

state visual evoked potential (SSVEP) and pupillary oscillation (PO). This section 

ends with a summary of two sets of experiments to demonstrate how SSVEP and PO 

can be potential objective assessment of UFOV. Note that SSVEP and PO are forms 

of physiological signal from human.  

 

The Useful-Field-Of-View (UFOV)  

UFOV is defined as the visual area from which one captures visual information with 

a single glance without any eye movement (Sanders, 1970; Ball, Beard, Roenker, 

Miller, & Griggs, 1988; Ball, Owsley, Stalvey, Roenker, Sloane, & Graves, 1998; 

Ball, Wadley, & Edwards, 2002). It indicates attentional performance toward 

peripheral visual field while visual information was concurrently processed from 

fixation point. For effective visual processing, the spatial extent of efficient attention 

around any given fixation point determines the amount of information processed at 

any one time (Sanders, 1970). Therefore, a person with less attentional decline from 

his visual fixation point can be said to have a larger UFOV or a more effective visual 

processing for a given UFOV size (Ball, Beard, Roenker, Miller, & Griggs, 1988). 

The bigger the UFOV, the more information can be processed at any one time. The 

current UFOV test has been developed based on this second perspective as a 

screening tool for driver, especially to predict driving performance of elderly drivers 
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(Ball, Wadley, & Edwards, 2002). This computer-based UFOV test (UFOV®, Visual 

Awareness Research Group, Inc, Punta Gorda, USA) comprises of three subtests, 

namely, stimulus identification, divided attention and selective attention (See Figure 

1). The description of the subtests are as follows: 

1. Stimulus Identification. The participant has to identify if the target presented in 

the center of the computer screen is an image of a car or a truck (see Figure 1, 

top). The target will be presented for varying lengths of exposure time (starting 

at 500 ms).  

2. Divided Attention. The participant has to identify the centrally presented 

target image as a car or a truck while localizing a simultaneously presented periphery 

target image (15° eccentricity from the screen centre. See Figure 1, middle). This 

subtest evaluates the attention allocated to the space between central and peripheral 

targets. Individuals who have reduced UFOV may not have the necessary “spatial 

processing bandwidth” to quickly localize the periphery target, hence will perform 

poorly for this subtest 

3. Selective Attention. This task is the same as the divided attention subtest 

except for the triangular distracters that increased task difficulty (see Figure 1, 

bottom). This subset is to test if the participant can ignore the distractors and only 

selectively attend to the relevant central and peripheral targets.  
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Figure 1: The UFOV ® test which comprises of 3 subtests (Adapted from 
http://mecvswetenschap.wordpress.com/2013/05/26/abnormale -visuele-aandacht-bij-myalgische-encefalomyelitis/) 
 

Subtest 1 

Subtest 2 

Subtest 3 

http://mecvswetenschap.wordpress.com/2013/05/26/abnormale-visuele-aandacht-bij-myalgische-encefalomyelitis/
http://mecvswetenschap.files.wordpress.com/2013/05/186-b-ufov.jpg
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As UFOV is about visual information processing performance, it has a wide range of 

assessment application in perceptual science. The majority of the applications are in 

aging and driving performance assessment. 

Aging. Normative data were collected in two studies. One for children and young 

adults age between 5 to 21 years old (Bennett, Gordon, & Dutton, 2009), the other for 

older adults age between 65 to 94 years old (Edwards, et al., 2006). In the first study, 

Bennett and his colleagues (2009) found that UFOV improves with age until it 

reaches stable adult level at the age of 14 approximately. In the second study, 

Edwards et al. (2006) found that UFOV is very much declined in his elderly group of 

participants. The mean reaction time for UFOV Subtest 3 was found to be 319.67 ms 

for Edward’s elderly participants, which was at least 3 times slower than what was 

found in Bennett’s young adult group (age 15 to 21, mean reaction time =  87.5 ms, 

an approximation from Figure 3 in Bennett, Gordon, & Dutton, 2009). Not 

surprisingly, the slower processing speed in older adult as shown by UFOV test was 

found to be associated with poorer attentional efficiency and slower conjunctional 

visual search (Cosman, Lees, Lee, Rizzo, & Vecera, 2012). This finding was also 

supported by studies in age-related learning difficulties (Richards, Bennett, & 

Sekuler, 2006) and eye movement analysis (Scialfa, Thomas, & Joffe, 1994). 

Driving. This is one of the most common transportation activity throughout the 

world, and also one the of most risky activity for accidental death. Accident rate for 

elderly drivers is most likely the case of age-related declined in perceptual and 

attentional functions which are struggling to meet the high visual-response demands 

of driving (Ball, Owsley, Sloane, Roenker, & Bruni, 1993). As such, numerous 

studies have validated the strong relationship between elderly drivers’ accident rate 

and UFOV(Owsley, Stalvey, Roenker, Sloane, & Graves, 1998; Ball, Wadley, & 

Edwards, 2002), and demonstrated that a healthy UFOV is required for driving (Ball, 
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Owsley, Sloane, Roenker, & Bruni, 1993; Isler, Parsonson, & Hansson, 1997; Rogé, 

Pébayle, Kiehn, & Muzet, 2002; Rogé, Pébayle, Hannachi, & Muzet, 2003; Rogé, 

Pébayle, Lambilliotte, Spitzenstetter , Giselbrecht, & Muzet, 2004; Clay, Wadley, 

Edwards, Roth, Roenker, & Ball, 2005; Wood J. M., Chaparro, Lacherez, & Hickson, 

2012).  

While poor UFOV is age-related in general, it is by no means a non-occurring in 

healthy young adult drivers.  UFOV is a very dynamic phenomenon that also declines 

with increased auditory, visual and mobile-phone usage distraction (Wood, et al., 

2006; Puell & Barrio, 2008). Sleep deprivation and reduced vigilance also contributes 

to poorer UFOV (Rogé, Pébayle, Kiehn, & Muzet, 2002; Rogé, Pébayle, Hannachi, & 

Muzet, 2003; Rogé, Pébayle, Lambilliotte, Spitzenstetter , Giselbrecht, & Muzet, 

2004). Hence, the assessment of visual attention using UFOV may not be limited to 

age-related or driving studies. Due to UFOV’s validated concept being increasingly 

accepted by the scientific community, with proper testing design improvement, it can 

be an attentional assessment parameter to differentiate attentional performance levels 

in normal healthy young individuals. 

Steady-State Visual Evoked Potentials (SSVEPs) 

SSVEP is the neuronal signal typically from the occipital brain region that oscillates 

at the same frequency as the flicker/flashing frequency of the visual stimulus 

presented, and this oscillation is modulated by how and where visual attention is 

deployed (Beverina, Palmas, Silvoni, Piccione, & Giove, 2003). The SSVEPs can be 

identified by recording brain signals using electroencephalography (EEG) and then 

transform its recorded data into its frequency domain where SSVEP is seen as an 

increase in amplitude or power in the same frequency as the stimulus presentation 

frequency rate (Beverina, Palmas, Silvoni, Piccione, & Giove, 2003; Herrmann, 

2001) (See Figure 2). 
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Figure 2: An illustration of SSVEP extraction from occipital region of the 
brain and its analysis process.  
 

Relationships between SSVEP and psychophysical assessment of attention have often 

been studied. Mishra, Zinni, Bavelier, & Hillyard, (2011) found that action game 

players have increased suppression of SSVEP amplitudes to unattended peripheral 

stimuli. Many other effects of attention phenomena in modulating SSVEP has also 

been studied (Morgan, Hansen, & Hillyard, 1996; Müller, Teder-Sälejärvi, & 

Hillyard, 1998; Müller et al 1998; Belmonte, 1998; Kim, Grabowecky, Paller, Muthu, 

& Suzuki, 2007). Not surprisingly, objective feedback using SSVEP has become 

potential objective assessments for retinal functions (Herbik, Geringswald, Thieme, 

7.5 Hz flashing 
spot

7.5 Hz 
SSVEP

Flash on 

Flash Off 

EEG from  
Occipital 
Region Fourier 

Transform
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Pollmann, & Hoffmann, 2014), visual acuity (Mackay, Bradnam, Hamilton, Elliot, & 

Dutton, 2008), amblyopia (Baker, Simard, Saint-Amour, & Hess, 2015), stereoscopic 

vision (Johansson, & Jakobsson, 2000),   binocular rivalry (Zhang, Jamison, Engel, 

He, & He, 2011; Sutoyo, & Srinivasan, 2009; Jamison, Roy, He, Engel, & He, 2015;) 

and even fatigue (Cao, Wan, Wong, da Cruz, J& Hu, 2014). In the recent two 

decades, frequency-tagging technique for SSVEPs has been used to study localized 

attention (Ding, Sperling, & Srinivasan, 2006; Toffanin, de Jong, Johnson, & 

Martens, 2009; Müller, Malinowski, Gruber, & Hillyard, 2003; Malinowski, Fuchs, & 

Müller, 2007). This technique requires visual stimulus of interest to flash at a specific 

frequency; hence the stimulus is said to be “tagged” with a frequency. The amplitude 

of SSVEP is modulated by attention to the flashing stimulus regardless of whether 

eye gaze is directed to the stimulus or not (Müller, Malinowski, Gruber, & Hillyard, 

2003; Malinowski, Fuchs, & Müller, 2007). Consequently, many studies have used 

changes in SSVEPs as the neuronal response during experiments in place of or to 

support the occurrence of specific subjective responses (Ding, Sperling, & Srinivasan, 

2006; Toffanin, de Jong, Johnson, & Martens, 2009; Müller, Malinowski, Gruber, & 

Hillyard, 2003; Malinowski, Fuchs, & Müller, 2007).  

 

1.3 Pupillary Oscillation  

The pupil is the aperture in the human eye that modulates light entering the eye for 

optimal vision. It is controlled by both the sympathetic and parasympathetic nervous 

system for dilation and constriction respectively, in response to changes in brightness 

(Loewenfeld, 1999; Beatty, & Lucero-Wagoner 2000). Hence, the instantaneous 

antagonistic activity of both nervous systems determines the size of the pupil at any 

one time. In many previous studies, pupil responses have been used as evidences of 
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visual acquisition of information and activation of visual attention to specific stimuli 

(Hawkes, & Stow 1981; Privitera, Renninger, Carney, Klein, & Aguilar, 2008; 

Daniels, Nichols, Seifert, & Hock, 2012; Wierda, van Rijn, Taatgen, & Martens, 

2012; Mathôt, Van der Linden, Grainger, & Vitu, 2013; Wang, & Munoz, 2014). 

Binda, Pereverzeva, & Murray, 2014; Mathôt, Dalmaijer, Grainger, J., & Van der 

Stigchel, 2014). These studies found strong association between initial pupil 

responses and the onset of attention to visual target located at eye fixation (overt 

attention) as well as peripheral of the fixation (covert attention). When attending to 

targets peripheral to the fixation point, pupil constricts when target is brighter than 

background and dilates when target is darker than background (Mathôt, Van der 

Linden, Grainger, & Vitu, 2013).  The most logical explanation for the occurrence of 

appropriate selective pupil size modulation to selective attention is the need for 

optimal brightness to achieve best possible vision for the attended target anywhere 

within the visual field (Mathôt, & Van der Stigchel, 2015).  Hence, attention-

modulated pupil responses provide an objective means to assess attention anywhere 

within one’s visual field, and can be easily measured by using an eye tracker 

(Klingner, Kumar, & Hanrahan, 2008). 
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Figure 3: An illustration of pupillary oscillation analysis process  
 

Recently, Pupil Frequency Tagging (PFT) method is used instead of analyzing event-

related pupil response (Naber, Alvarez, & Nakayama, 2013). In PFT, the visual target 

onset occurs at a fixed frequency, and this elicited a corresponding pupil responses at 

the same frequency (See Figure 3). Such pupil size response occurring at any specific 

frequency is termed pupillary oscillation (PO). The beauty of PFT is similar to 

SSVEP where signals are analyzed in the frequency domain using Fourier 

transformation (Naber, Alvarez, & Nakayama, 2013). As such, errors in identifying 

correct event-related pupil response can be avoided. In our Experiment A in the next 

section, we deployed PFT techniques to our peripheral targets to verify the presence 

of selective attention for peripheral visual field that is indicative of UFOV. 

 

1 Hz flashing spot 

1 Hz pupillary oscillation  

Pupil Size Tracking  
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1.4 Investigating SSVEP and Pupillary Oscillation for 

their potential role in UFOV assessment. 

Given the literature discussion in the earlier subsection, there is a high possibility that 

combining both SSVEP and PO can offer an objective assessment and prediction of 

UFOV performance. There are three possible parameters to what defines UFOV 

performance of an individual;  

i)  response time (milliseconds) which is the visual processing speed measured for 

responding correctly to an UFOV stimuli,  

ii)  percentage accuracy of detecting peripheral targets while attention is also 

focused on central target, and  

iii)  peripheral field size (in visual angle degrees) of the UFOV in terms of 

eccentricity from centre fixation.  

To avoid cross-interaction, studying the variation of any one of the three parameters 

above would require the other two parameters to be fixed and non-varying. Of the 

three parameters, the commercial UFOV® test only uses visual processing speed 

paradigm as the assessment of UFOV. However, the most important parameter is 

none other than the field size of the UFOV, which literally describes the general 

peripheral boundary between attended and unattended vision away from fixation 

centre, with the assumption that overt attention peaks at central fixation and generally 

declines towards peripheral vision. Hence, field size better describes the practical 

aspect of Useful-Field-Of-View. This dissertation describes two sets of experiments, 

namely, Experiment A and Experiment B. Experiment A fixed both the stimulus 

exposure time and field size to studied the UFOV performance in terms of central-

peripheral target detection accuracy using a small number of human participants. The 

purpose was to use the accuracy parameter to quickly establish a general confidence 
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that SSVEP and pupillary oscillation has indeed a relationship with UFOV. 

Experiment A serves as a feasibility or preliminary study to swiftly confirm study 

design and effects. Note that the visual process speed parameter was not studied as it 

requires expensive high frame rate display monitors, graphic cards and software setup 

that could precisely control stimulus at less than 5ms which is not available at the 

time of the research work. The Experiment B was then designed, based on the success 

in Experiment A, using a typical psychophysical method to estimate the size of 

individuals’ UFOV and to record their SSVEP and PO, the two key physiological 

signals in this study. The purpose was to analysed SSVEP and PO for their ability to 

predict UFOV sizes. The predicted sizes were benchmarked against the estimated 

UFOV sizes collected from psychophysical test.  
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Chapter 2: Experiment A 

Experiment A was design to identify UFOV task(s) that can show differences in 

UFOV performance between individuals and at the same time contains stimuli that 

elicit SSVEP and PO effectively. The aim was to examine and confirm the 

fundamental hypothesis of the relationship between UFOV and the two physiological 

signals. To do so, we designed experimental paradigms with a pattern-reversal 

annulus ring covering only the peripheral visual field to collect peripheral field 

SSVEPs levels. Since SSVEPs are indicative of attentional resources and UFOV is 

about the extent of “spot-light” of attention, hypothetically, SSVEPs stimulated by 

pattern-reversal stimulus at or near the peripheral regions of this “spotlight” should 

carry information about the outer boundary of the attentional field, in a way similar to 

frequency-tagging. Hence, we distributed peripheral stimulus just outside this annulus 

to collect psychophysical performance data to verify if accuracy in detecting 

peripheral stimuli could be predicted by this peripheral field SSVEP. In addition, the 

peripheral stimulus was also designed to collect meaningful pupil response to study 

its relationship with UFOV as well; the PFT method will be implemented for the 

mentioned peripheral stimuli by presenting them at a fixed onset frequency to elicit 

the relevant pupillary oscillation. Hypothetically, larger amplitude of pupillary 

oscillation triggered by peripheral on-off targets indicates better attention towards the 

peripheral visual field, hence better UFOV performance. 
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2.1 Methods 

Eight healthy participants (6 males, 2 females, ages 18–37) with vision correctable to 

6/6 for both far and near in both eyes were recruited. The experiments were 

conducted using a 120-Hz light-emitting diode (LED) monitor (Asus VG278HR; 

ASUSTeK Computer, Inc., Taipei,Taiwan) with a typical computer equipped with a 

GTX 570 Nvidia (Santa Clara, CA, USA) graphics card. The monitor screen was 

positioned 70 cm from the participant’s eyes. A commercial off-the-shelf EEG 

system (ASA LAB waveguard64; ANT-Neuro, Enschede, The Netherlands) was used 

to record brain signals noninvasively by placing the sensors on the scalp at electrode 

positions O1, O2, and Oz of the occipital region according to the international 20–20 

system standard, referenced to M1 and M2 positions on the mastoid. These electrode 

positions have been previously demonstrated to collect strong SSVEPs (Pastor, 

Artieda, Arbizu, Valencia, & Masdeu, 2003; Zhang, Jin, Qing, Wang, & Wang, 2012; 

Störmer, Winther, Li, & Andersen, 2013). All electrodes attained an impedance level 

of 10 kΩ or less before the start of the experiments. An eye tracker (SMI RED 250; 

SensoMotoric Instruments Gmb, Teltow, Germany) was used in this study to collect 

pupil oscillation data as well as to ensure that participants’ eyes were fixating on the 

central stimulus. All participants completed the following experiments, and each 

participant was familiarized using 10 trials of each experiment prior to the 

commencement of the experiment.  

i) Experiment A1 – Baseline Peripheral Attentional Task  

The purpose of this task was to ensure that participants had good covert 

attention to peripheral visual field to begin with. Each trial consisted of a 

baseline phase and an activity phase (See Figure 4). During the baseline phase, 

participant were asked to fixate on the 0.83Hz blinking cross (0.4° visual angle 

in size, 100ms on, 1100ms off) at the centre of a gray screen. Around the 
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blinking cross was an annulus ring of checkered pattern at 7.5 reversal/s (each 

checkered box is 1.5°). The mean illuminance of the checkered pattern was 150 

cd/m2. The thickness of the ring spans between 3.5° to 7° degrees from the 

fixation cross centre, leaving a centre gray zone extending from the fixating 

point to the inner edge of the ring. The baseline phase lasted for 10 seconds 

followed by the activity phase, which was the same as the baseline phase 

except for two aspects. Firstly, just outside and around the annulus ring were 

eight equally distributed small peripheral rings (1.4° visual angle in size). The 

centre of these rings are approximately 8° from the centre of the cross. Only 

one of these circles was randomized to be filled black for 100ms (onset of 

peripheral stimulus) every 1.2 seconds in synchrony with the fixation cross. 

Secondly, the activity phase was randomized to last for 16 to 32 seconds to 

allow sufficient time to adapt to the peripheral stimuli. The end of the activity 

phase is indicated by a white-noise screen which was presented for 2 seconds; 

then participant has to indicate which one of the peripheral circles last seen was 

filled black by pressing a response button corresponding to the peripheral circle 

position (e.g., numeric keypad number 1=bottom left circle, 9=top right circle). 

The purpose was to exclude anticipatory deployment of attention to the 

periphery. Participants were told to hold their blink during the baseline and 

activity phase but were encouraged to blink to their satisfaction during the time 

when they made their response for the peripheral target after the white noise. 

Participants were also told to take their time to make this response so as to 

have ample time for blinking and sufficient rewetting of their eyes. Scores 

were recorded as the percentage of correct responses for the peripheral stimulus 

that occurred just before the white-noise onset. There were a total of 20 trials 

per participant.  
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. Figure 4: An example of a single Experiment A1 trial.  

Note that central 

stimulus is a 

cross (‘+’) 
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Trial results were discarded if a subject was found to fixate beyond 1° away 

from the central stimulus during the entire trial or when a blink occurred during 

the last 5 seconds of the baseline or activity phase. 

ii) Experiment A2 – Central-peripheral dual task:  

The purpose of this task was to investigate the participant’s ability to direct 

simultaneous attention to both central and peripheral stimulus. In other words, 

it measured the likelihood of detecting a target at a given eccentricity while 

attending to a central stimulus, thus assessing the breadth of allocated attention 

in space (i.e., UFOV performance). The trial design was the same as 

Experiment A1 except that during activity phase, the center fixating stimulus 

was a small circular ring, 0.167° (10 arcmin) in size (See Figure 5). The 

circular ring presented a 0.083° (5 arcmin) broken gap every 1.2 seconds in 

synchrony with the peripheral stimulus onset. The presentation of the gap was 

randomized to occur at either the up, down, left, or right part of the circular 

ring. The participant had to actively respond in real time to the gap direction 

using keyboard arrow buttons, while response to the peripheral stimulus 

occurred after the white noise when each trial ended. There were a total of 20 

trials. The UFOV performance scores were recorded as the percentage of 

correct responses for the peripheral stimulus that occurred just before the 

white-noise onset. Note that trial results were excluded from score calculations 

if a participant did not make a correct response to the last central stimulus 

during its simultaneous onset with the last peripheral stimulus just before the 

white noise. 
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iii) Experiment A3 – Central-peripheral dual task with active distractors:  

The purpose of this task was to investigate participant’s ability to perform a 

central–peripheral attention task in the presence of peripheral distractors. The 

trial design was the same as Experiment A2 except that during the activity 

phase, extra distractors between the peripheral circles in the form of black 

spots (1.4° visual angle in size) were presented along with the onset of 

peripheral stimulus (See Figure 6).  
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Figure 5: An example of a single Experiment A2 trial.  

Note that central 

stimulus is a randomly 

oriented ‘C’, which is 

different from the 

cross(‘+’) in A1  
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Figure 6: An example of a single Experiment A3 trial.  

Note that 

distractor spots 

onset at the 

peripheral, which 

are absent in A2 
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Illustration 1: A typical setup of the experiment  
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2.2 Data Processing & Analysis 

Statistical analyses on were conducted using GraphPad Prism 7.0 (La Jolla, CA, 

USA) on the SSVEP and pupil oscillation data pre-processed using the following 

methods.  

SSVEPs 

The raw signal data from O1, O2 and Oz channels underwent noise-removal and band 

pass between 1 and 40 Hz using the zero-phase Hamming-windowed sinc Finite 

Impulse Response (FIR) filters (Widmann, Schröger, & Maess, 2014) from the 

EEGLAB toolbox (Version 13.1.1) for MATLAB R2013b (The MathWorks, Inc., 

Natick, MA, USA). For each channel and for each experiment, the last 5-second 

filtered data before the end of baseline phase were selected and transformed into 

frequency domain from which 7.5-Hz neural oscillation power (in dB = 

10Log10[µV2]) was obtained. The same procedure was done for the activity phase in 

each experiment. Then the obtained power was averaged across all three channels in 

their respective phases and experiments. The normalized SSVEP (nSSVEP) power 

for each experiment was calculated by taking the average 7.5-Hz power of the 

accumulated activity phase minus its accumulated preceding baseline phase’s power 

of the same frequency.  

Pupillary Oscillation 

Pupil sizes from both eyes underwent noise-removal and band-pass using the same 

technique in MATLAB. For each eye and for each experiment, the last 5-second data 

before the end of baseline phase was selected and transformed into frequency domain 

from which 0.83 Hz PO amplitude (in mm) was obtained. The same procedure was 

done for the activity phase in each experiment. Then the obtained PO amplitudes 

were averaged between the two eyes in their respective phases and experiments. The 



23 

 

normalised PO (nPO) amplitude was calculated by taking the averaged 0.83 Hz PO 

amplitude of the accumulated activity phase minus its accumulated preceding 

baseline phase’s amplitude of the same frequency.  

2.3 Psychophysical Behavioral Results 

All participants fixated within 1° away from the stimulus center in all trials, and no 

blinks during the last 5-second window during the baseline and activity phases 

(where SSVEP and PO signals were used for processing) were detected by the eye 

tracker. All participants attained a perfect score for responses to the last central 

stimulus in Experiments A2 and A3 during their simultaneous onset with the last 

peripheral stimulus before the white noise; hence no trials were excluded. In each of 

Experiments A1 to A3, the activity phase lasted for an average of 24 seconds. Since 

responses to central stimuli were consistent with good central fixation behavior for all 

participants in the experiments, all correct responses here were simplified to consider 

only correct responses to peripheral stimulus. On the other hand, accuracy scores 

differed between different experiments for response to peripheral stimuli/targets. 
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Figure 7: Percentage accuracy for peripheral targets in experiments A1 
to A3 for a) Individual and b) group mean (Error bar = SE).  
 

Figure 7 shows the percentage accuracy for peripheral targets for each experiment. 

All participants scored near perfect if not perfect for Experiments A1 and A2, except 

for one who scored 70% in Experiment A2. The accuracy scores started to spread 

within the participants in Experiment A3 where the task difficulty is the greatest with 

the peripheral distractors. Repeated measure ANOVA with Greenhouse-Geisser 

correction indicated a significant difference in percentage correct for peripheral 
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targets among the tasks(F(1.122,7.855) = 32.471, p < 0.01). A post hoc test with 

Bonferroni correction revealed that there were significant differences only between 

A1 and A3 (mean differences = 0.544, 95% CI [0.257, 0.831], p < 0.01), and A2 and 

A3 (mean differences = 0.5, 95% CI [0.224, 0.776], p < 0.01). There was no 

significant differences between A1 and A2 (Mean differences = 0.044, 95% CI [-

0.037, 0.124], p = 0.4). The analysis suggested that Experiment A1 and A2 were 

easily accomplished and exhibited near ceiling effects for all participants except one. 

Hence, these two experiments did not show difference in performance between the 

sampled normal individuals, in contrast to Experiment A3, which showed a spread of 

performance differences between individuals. It was also noted that the top three 

performers in this experiment were a semi-professional volleyball player, a 

competitive basketball player and a frequent video gamer (role-playing game [RPG] 

player) respectively in the descending order of top scores, while the rest of the 

participants are office workers with negligible engagements in sports and video 

games. 

 

2.4 Regression Analysis Results 

nSSVEPs versus performance 

Repeated measure ANOVA indicated no significant difference in nSSVEPs between 

the experiments (F(2,14) = 0.607, p = 0.559). Figure 8 shows the mean values of 

nSSVEP for Experiments A1 to A3. However, looking at the small sample size here 

and the high variance observed in Figure 8, there is a possibility of decreasing 

nSSVEPs with increasing stimulus difficulties given a case of low statistical power. 

Nevertheless, until proven with a larger sample size, the difference in nSSVEPs 

between Experiments A2 and A3 seems to be small if even existent.  
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Figure 8: Normalised SSVEPs in experiments A1 to A3 (Error Bar = SE).  

 

Orthogonal linear regression (Deming regression) and Pearson correlation analyses 

were done to study the relationship between peripheral target accuracies and the 

corresponding nSSVEPs for each of the experiment (See Figure 9). Regression 

analysis showed a significant relationship between target accuracies in Experiment 

A3 and its nSSVEPs (F(1,6)=16.250, p < 0.01), and their correlation coefficient, r = 

0.854, indicates a strong positive relationship. There was no significant relationship 

and correlation found between the accuracy and nSSVEPs for Experiment A1 (F(1,6) 

= 0.065, r = 0.103, p = 0.808) and Experiment A2 (F(1,6) = 0.397, r = 0.249, p = 

0.552). It was also noted that the previously mentioned top three performers had 

nSSVEPs larger than the rest of the participants.  
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Figure 9: Percentage accuracy versus Normalised SSVEPs in Experiment 
A1 to A3.  
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nPO versus performance 

Repeated measure ANOVA indicated no significant difference in pupillary oscillation 

between the experiments (F(2,12) = 0.373, p = 0.696). Note that one participant’s 

pupil data was corrupted for Experiment A2, hence all her data across experiments 

was omitted in this ANOVA analysis. Figure 12 shows the mean values of nPO for 

Experiments A1 to A3. However, looking at the small sample size here and the high 

variance observed in Figure 10, there is a possibility of decreasing nPO with 

increasing stimulus difficulties given a case of low statistical power. The difference in 

nPO between Experiments A2 and A3 seems to be small even if proven to be 

significant. 

 

Figure 10: Normalised Pupillary Oscillation in Experiment A1 to A3 (Error 
Bar = SE).  
 

Regression analysis similar to those for nSSVEPs was done to study the relationship 

between peripheral target accuracies and its corresponding nPO for each of the 

Experiment A1 to A3 (See Figure 11). Deming regression analysis showed a 

significant relationship between target accuracies in Experiment A3 and its nPO 

(F(1,6)=20.13, p < 0.01), and their correlation coefficient, r = 0.878, indicates a 
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strong positive relationship. There was no significant relationship and correlation 

found between the accuracy and nPO for Experiment A1 (F(1,6) = 1.514, r = 0.449, p 

= 0.265) and Experiment A2 (F(1,6) = 0.567, r = 0.319, p = 0.485). It was also noted 

that the previously mentioned top three performers had nPO larger than the rest of the 

participants. The results here is very similar to the findings for nSSVEPs. 
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Figure 11: Percentage accuracy versus Normalised Pupillary Oscillation 
in Experiment A. Also note that Experiment A2 only have 7 participants’ 
data point)  
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Figure 11(Continue): Percentage accuracy versus Normalised Pupillary 
Oscillation in Experiment A. Also note that Experiment 2 only have 7 
participants’ data point)  
 

2.5 Discussion 

Experiment A1 demonstrated that all participants have good peripheral vision to start 

with. Experiment A2 demonstrated that all participants can perform the central-

peripheral task well. Experiment A3 threw in peripheral distractors on top of a 

central-peripheral dual attention task to examine how individuals handle multiple 

information closer to the boundaries of UFOV.  The peripheral distractors in A3 have 

shown to be the effective in increasing task difficulty, providing a wider spread of 

performance differences between participants.  

 

nSSVEPs  

The peripheral distractors in Experiment A3 were shown to be effective in increasing 

peripheral task difficulty, providing a wider spread of performance differences 
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between participants. Noticeably, the relationship between UFOV performance and 

nSSVEP in Experiment A3 is driven by two clusters of data in the current small 

sample size. Hence, at the moment, implementing peripheral distractors in 

Experiment A3 could differentiate the participants’ performance into only two 

different levels. Interestingly, peripheral task difficulty was not accompanied by a 

corresponding significant difference in nSSVEPs when comparing Experiments A3 

and A2 (with and without peripheral distractor comparison, probably partly due to 

small sample size. Even if there is sufficient sample size, this small difference is 

likely to have little practical meaning. Hence, nSSVEPs here is likely to reflect an 

individual’s inherent neuronal states of attention level when engaging a central task 

rather than a dependent variable of task difficulty. Another strong contributing factor 

is how the baseline was designed. Both SSVEPs were stimulated and acquired during 

baseline phase (no task) and activity phase (task). Taking the signal differences 

between them to associate with effects arising from the corresponding task 

performance is more meaningful than purely having an SSVEP extracted and 

baselined to a controlled condition without any checkered stimulus.  

Another observation in Experiment A3 was that most nSSVEPs in this study were 

negative in value, and those with good UFOV had positive nSSVEP values. This may 

be attributed to the fact that good UFOV performers in Experiment A3 maintained 

their attention better under the stress of a difficult peripheral task, hence suffered less 

peripheral field SSVEP attrition when executing central–periphery dual detection 

during the activity phase. Given that SSVEP strength is relatively stronger for 

attended stimuli (Beverina, Palmas, Silvoni, Piccione, & Giove, 2003; Herrmann, C. 

S., 2001), this explanation is plausible. 

The last observation worth noting concerns the top three performers in Experiment 

A3 (mentioned earlier) who included two sportsmen and a video gamer. The effect of 
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video gaming has previously been demonstrated, with specific differences in the 

SSVEPs of video gamers compared to normal individuals (Mishra, Zinni, Bavelier, & 

Hillyard, 2011; Krishnan, Kang, Sperling, & Srinivasan, 2013). Krishnan et al (2013) 

found that Role Playing Game (RPG) players have increased SSVEPs for attended 

flashing stimuli accompanied by an increased detection accuracy in a multi-region 

visual search task. Hence, they are thought to be deploying some form of attention 

enhancement. Findings for the participant in Experiment A3 who was a frequent RPG 

player seem to concur with the findings of Krishnan et al (2013) as her relatively 

higher nSSVEP is accompanied by better peripheral detection accuracy than most of 

the other participants. Unfortunately, Experiment A here did not have participants 

who were active/frequent action video game players. It was known that action video 

gamers performed better in UFOV task (Hubert‐Wallander, Green, & Bavelier, 2011; 

Green, & Bavelier, 2003), and they probably ignore distractors better using a unique 

neural strategy revealed by the suppression of SSVEPs from irrelevant flashing 

stimuli ((Mishra, Zinni, Bavelier, & Hillyard, 2011). 

On the other hand, the influence of sports training on SSVEPs is less studied. Also, 

the findings in the literature regarding better UFOV for ball sport athletes are rather 

mixed. Matos & Godinho (2005) and Memmert, Simons & Grimme (2009) 

highlighted that UFOV for these sportsmen is not significantly better than non-

sportsmen. Memmert, Simons & Grimme (2009) suggested that the commercial 

version of UFOV test is designed for screening elderly persons for risk of driving 

accidents and may not have the sensitivity to find the differences between sportsmen 

and non-sportsmen among healthy young individuals. However, Schwab & Memmert 

(2012) found that sports vision training improves UFOV for hockey players but did 

not report sports performance to suggest any corresponding improvement in actual 

sports activity. Study done by Störmer, Winther, Li, & Andersen (2013) suggested 
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that individuals who are better at tracking multiple flashing moving targets within 

their visual field exhibits higher SSVEPs elicited by the frequency-tagged targets. If 

these individuals are analogous to ball game sportsmen, then there is a good 

possibility that better UFOV in sportsmen could be accompanied by higher levels of 

SSVEPs.  

 

Normalised Pupil Oscillation 

The findings for nPO are very similar to those of the nSSVEPs, especially for the 

results from regression analysis. In general, the results from pupil oscillation here 

strongly supported the differences in UFOV performances among the participants and 

provides strong physiological evidence that different performer has different neural-

physiological characteristics. Just like the nSSVEPs, since there was no significant 

differences between pupillary oscillation findings between the first three experiments 

despite differences in UFOV performance. Even if there is a larger sample size for a 

significant difference, the difference is likely to be small and of little practical 

meaning. Hence, the normalised pupil oscillation here is likely to reflect an 

individual’s inherent neuronal states of attention level when engaging a central task 

rather than a dependent variable of task difficulty. The top 3 performers in 

Experiment A3 mentioned earlier who are sportsmen and video gamers have larger 

amplitudes of normalised pupil oscillation in Experiment A3 than the rest of the 

participants, which supports the nSSVEP results. The pupillary oscillation results 

provide further physiological evidence along with the nSSVEP results in explaining 

the UFOV performance in Experiment A3. On top of that, it was also observed that 

the gradient (beta value) of the Experiment A3’s regression line in Figure 13c for 

nPO was larger compared to the one in Figure 9c for nSSVEP of the same 
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experiment. This indicates the nPO varies wider with UFOV performances compared 

to nSSVEP, hence may be the stronger indictor of UFOV performance. 

 

2.6 Chapter Conclusion 

It was demonstrated that the peripheral stimuli designed in Experiment A can elicit 

different pupil and SSVEP response for different individuals. Experiment A shown 

that changes in peripheral field SSVEP and pupil oscillation can potentially be used 

to identify an individual with good UFOV performance in the presence of distractors. 

Experiment A serve as a preliminary study to ascertain the feasibility of using SSVEP 

and PO as the objective predictors for UFOV performance. While percentage 

accuracy reflects individuals with different UFOV capabilities, it is not informative in 

providing an estimation of the extent of the actively-attended peripheral field (i.e. the 

size of UFOV). The same issue occurs also for the commercial version of UFOV test 

which only relies on the fastest response time to peripheral stimulus for a fixed 

eccentricity peripheral targets; hence, UFOV® does not actually provide any 

quantitative estimation of UFOV size. The size of UFOV is important as it literally 

describes what the term UFOV’s practical meaning, and helped to differentiate 

attended and unattended peripheral vision. The boundary between attended and 

unattended peripheral vision have more practical use compared to performance in 

accuracy or response time within a fixed-eccentricity field of vision. Experiment A3 

setup will be modified for the next set of experiment, Experiment B, for the purpose 

of field size estimation of UFOV, by testing various eccentricities of peripheral 

stimulus to estimate the distribution of attentional performance toward the periphery 

using a much larger sample size. It will also be worthwhile to recruit sportsmen, 

video gamers and office workers to stretch performance distribution.  
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[Note that the portion of the research on SSVEP was published in 2016 by the 

candidate in Investigative Ophthalmology & Visual Science, 57(7), 3248-3256, 

titled “A Preliminary Study on Normalized Pattern-Reversal Peripheral Field 

SSVEPs as a Potential Objective Indicator of Useful Field of View Performance - 

A Potential Neural Indicator of UFOV.”]  
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Chapter 3: Experiment B 

Experiment B was designed to estimate the UFOV size performance of human 

participants and record their SSVEP and PO. The aim was to study the relationship 

between the two physiological signals and UFOV size performance. The secondary 

aim is to provide the foundation findings and grounds to guide the development of a 

neural network model which could predict UFOV size performance from these 

signals. 

 

3.1 Design overview 

The findings from Experiment A indicate that experiment A3 paradigm using 

peripheral distractors is able to differentiate UFOV performance between individuals. 

Therefore, stimulus design from experiment A3 was adopted in Experiment B. 

However, to repeat Experiment A3 for various peripheral target eccentricities is 

impractical due to the enormous testing time which can induce fatigue in participants 

and confound the results. The typical solution is to adopt a typical psychophysical 

staircase testing procedure (Ehrenstein & Ehrenstein, 1999) to adaptively vary the 

target eccentricities for the estimation of UFOV size performance. The term 

eccentricity size which is the angular distance in degree from the central stimulus to 

the peripheral target will be used as the quantitation unit to describe UFOV 

performance throughout this dissertation. The larger the eccentricity size which 

participant can manage, the better is his/her UFOV performance. For a correct 

response to the presented stimulus, the staircase procedure increases the peripheral 

target eccentricity size for the next stimulus. For an incorrect response, the 

eccentricity size decreases for the next stimulus. During the sequence of response, 
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any change in responses from correct to incorrect or incorrect to correct for any two 

adjacent response are defined as reversals (See Figure 12). Typically, the average of 

3, 6 or 9 reversal points defines the score for an individual.  

  
Figure 12: A typical psychophysical staircase procedure 
 

To optimise the procedure for shorter testing time, the first stimulus will not start at 

the smallest eccentricity size, so as to avoid having individual to laboriously plough 

through most of the sizes to reach his/her best eccentricity size. Thus, the first 

stimulus starts at with 8° eccentricity size. This is the same size as that was used in 

Experiment A3. While this method helps to quickly measure the eccentricity size for 

UFOV performance, it has a drawback. The SSVEP and PO data are not homogenous 

across participants for this method. The number of signal recordings for each 

eccentricity size varied among individuals, as most average performers may not reach 

the biggest eccentricity size and excellent performers may not have a chance to see 

the smallest eccentricity size stimulus. Hence, simultaneous physiological signal 

recording during the task will not yield SSVEP and PO data that corresponds to those 

eccentricity sizes not exposed to the participant. The important point here is that 
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different eccentricity size means different sizes of checkered-pattern annulus ring and 

different distances of the peripheral targets from central fixation which may affect 

SSVEP and PO respectively. To solve this problem, a separate Experiment B2 was 

implemented to expose participants to all available sizes of the stimulus once, to 

gather a complete set of SSVEP and PO recordings from all eccentricity sizes. In 

short, Experiment B1 is designed mainly to assess the eccentricity size of the 

participant and Experiment B2 is designed to collect SSVEP and PO data from each 

eccentricity size.  The data in B2 will be analysed for their ability to correlate UFOV 

size performance in B1, and subsequently will also be used to produce predictions of 

eccentricity sizes which will be benchmarked against those eccentricity results from 

B1’s psychophysical UFOV estimation.  

 

3.2 Methods 

Fifty-three healthy male participants (ages 18–36) with vision correctable to 6/6 for 

both far and near in both eyes were recruited. Participants were divided into 4 groups 

based on their activeness in game (first person shooting game or RPG) and sports(ball 

or racket sports). Group 1 participants were those who have less than 6 hours of 

games and sports per week. Group 2 participants were those who have more than 6 

hours of sports per week. Group 3 participants were those who have more than 6 

hours of games per week. Group 4 participants were those who have more than 6 

hours for both sports and games per week. There are 14, 11, 16 and 12 participants 

for Group 1 to 4 respectively. The experiments were conducted using the same 

instruments as in Experiment A. All participants underwent a screening task to ensure 

that they had healthy covert attention to peripheral visual field to begin with. The 

screening task comprises of only the activity phase of Experiment A2 trial stimulus 
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design for four eccentricity sizes of 6°, 8°, 10° and 12° without distractors. The 

minimum and maximum eccentricity of peripheral targets tested in this experiment is 

limited by the monitor display screen size to 6° and 12° respectively. In this screening 

task, eye tracker was used purely for the sake of ensuring participant’s eyes are 

always on the central target, and therefore no recording was made.  Each eccentricity 

size was trial 8 times, one time for each of the eight peripheral target position. Any 

participant who missed more than 1 peripheral target for any one of the eccentricities 

will be excluded from the rest of the experiment, which none of the participants 

committed fortunately. All participants underwent the following 2 experiments. 

i) Experiment B1 – eccentricity size estimation using central-peripheral dual task 

with active distractors  

The purpose of this experiment is to determine the differences in eccentricity 

sizes in different individuals as their UFOV performance indicator. Each trial 

in this experiment was the same as the one in Experiment A3 except that  

a) instead of a fixed 20 trials of randomly assigned peripheral targets at 

a fixed eccentricity, a psychophysical staircase approach is adopted 

to manipulate the eccentricity of the peripheral targets between 6° to 

12° in steps of 0.5°(A total of 13 eccentricity sizes). 

b) a 3-second countdown break is implemented between the baseline 

phase and activity phase, to allow participant to blink to their 

satisfaction between the two phases (See Figure 13). This break 

measure is taking the heed from some of the participants in 

Experiment A who highlighted that holding blink continuously for 

more than 30 seconds was somewhat uncomfortable. 
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Figure 13: An example of a single Experiment B1. Note the insertion of the 3-second break along the green arrow.  

Inclusion of a break 

which was not in 

Experiment A  
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c) the procedure has an improvement in computerised control to allow 

researcher to repeat any trial should the participant exhibits bad 

central fixation. 

There are 3 sessions of trials in Experiment B1. For each session, the first trial 

always starts with 8° peripheral target eccentricity, and an incorrect response to 

the randomly assigned peripheral targets in this trial will reduce the 

eccentricity by 0.5° for the next trial. Likewise, a correct response will increase 

eccentricity by 0.5° for the next trial. The changes in eccentricity is limited to 

within 6° to 12° due to screen size. The same adaptive procedure goes for the 

subsequent trials.  A reversal point is defined as either a correct response 

followed by an incorrect one or vice versa (See Figure 12 for illustrative 

explanation). The session ends when four reversals are committed, or when 

more than three consecutive incorrect responses are committed for the 

minimum 6° eccentricity (lower ceiling), or when more than three correct 

response was committed for the maximum 12° eccentricity (upper ceiling). The 

eccentricity size score here is the average eccentricity of all reversal points 

excluding the first one; hence only the eccentricity size from 3 reversal points 

was averaged. Note that as eccentricity of peripheral targets/distractor changes, 

the outer and inner ring diameter of the annulus ring will change by the same 

proportion (See Figure 14 for illustrative explanation). Table 1 describes the 

dimension of the stimulus’s features in detail. Note that all the stimulus feature 

changes in the same proportion as eccentricity size changes. This is to address 

the issue of decrease sensitivity to stimulus size as eccentricity increases, due 

to reduced cone photoreceptors (Curio et al, 1990) and larger receptive fields 

towards the peripheral retina (Ransom-Hogg, & Spillmann, 1980), and the 

relationship between visual resolution and eccentricity is approximately linear 
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between 6° to 12° eccentricity (Chui et al, 2005). All participants went through 

the 3 sessions of trials in Experiment B1 and the average scores from these 

sessions is recorded as the UFOV performance for Experiment B1. The 

purpose of having 3 sessions is to gather averages from a total of 9 reversals (3 

reversals in each session) while allowing participants to rest between sessions. 

Implementing a single session to capture 9 reversals will require longer testing 

session and participant will not be given the opportunity to rest. Fatigue may 

accumulate to a point where the quality of data collected may be affected.  

ii) Experiment B2 – SSVEP and pupillary oscillation recording for each 

eccentricity size during central-peripheral dual task with active distractors 

 

The stimulus setup is exactly the same as in B1 except that no psychophysical 

methods are used and every eccentricity’s stimulus was shown once to the 

participant. The purpose of this task was to collect SSVEP and PO for stimulus 

starting with peripheral targets from 6° to 12° eccentricity in steps of 0.5°. 

Therefore, there are 13 trials in this experiment.  Experiment B2 is designed for 

two purpose: 

1) to take signals from each of the eccentricity size to complement the issue of 

B1 not able to gather a complete set of signals from all eccentricity sizes. The 

reason for doing so is to gather relevant stimulus sizes that would illicit the 

best signals for predicting UFOV and eliminate those which are not.  

2) to counter check if physiological signals gathered not during the estimation of 

UFOV (hence, defined here as offline SSVEP and PO signals) can still be a 

valid predictor of UFOV sizes estimated on a different occasion.   
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Figure 14: Typical i llustration of peripheral target eccentricities and 
UFOV sizes.  
 

Table 1: Dimension of each stimulus eccentricity size in degrees subtend 
to the eye. 

Eccentricity 
Size 

size of box-
pattern of 
checkerboard 

Peripheral 
circle size 

Size of 
checkerboard 
inner radius 

Size of 
checkerboard 
external 
radius 

6.0° 1.23° 0.90° 2.8° 5.5° 

6.5° 1.31° 0.98° 3.0° 6.0° 

7.0° 1.39° 1.06° 3.3° 6.4° 

7.5° 1.55° 1.15° 3.5° 6.9° 

8.1° 1.64° 1.23° 3.8° 7.5° 

8.5° 1.72° 1.31° 3.9° 7.9° 

9.0° 1.80° 1.39° 4.2° 8.4° 

9.5° 1.88° 1.47° 4.4° 8.8° 

10.0° 2.05° 1.55° 4.7° 9.2° 

10.5° 2.13° 1.55° 4.9° 9.7° 

11.0° 2.21° 1.64° 5.1° 10.2° 

11.5° 2.29° 1.72° 5.4° 10.7° 

12.0° 2.45° 1.80° 5.6° 11.2° 

 

3.3 Data Analysis  

Given that Experiment A revealed a potential linear relationship between percentage 

accuracy performance on fixed eccentricity size and the physiological signals, some 

form of linearity relationship should continue to exist between eccentricity sizes and 

the physiological signals as well. This section examines the relationship between 

Experiment B1’s UFOV sizes performance and the physiological signals collected 
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from Experiment B1 and B2. All Deming regression and Pearson correlation analyses 

were conducted using GraphPad Prism 7.0 (La Jolla, CA, USA) in this section. The 

outcome of the analysis will help to determine the approach towards building the 

model for predicting eccentricity sizes based on these signals. Normalised SSVEP 

and PO were calculated the same way as in Experiment A. 

 

3.4 Results 

Eccentricity sizes and physiological signals in Experiment B1 

As explained in earlier sections, due to the nature of the psychophysical staircase to 

quickly estimate the eccentricity size for each participant, not all participants were 

engaged with stimulus from all 13 different eccentricity sizes. Participants who 

performed relatively well would never need to be given smaller eccentricity size 

stimuli. Vice versa for those who performed relatively worse than average would not 

have the opportunity to be shown big eccentricity size stimuli. Nevertheless, 

considering the findings in Experiment A3 that physiological signals can reflect 

performance in fixed eccentricity size (fixed checkered-pattern annulus ring stimulus) 

condition, one would expect signals averaged from various annulus ring stimulus 

sizes in Experiment B1 should still be able to provide some evidence that 

physiological signals do vary according to eccentricity sizes to a certain degree. 

Deming regression shown in Figure 15 confirmed such evidence from the data in 

Experiment B1. 
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Figure 15: Relationship between physiological signals and eccentricity 
sizes. 
 

Regression analysis showed a significant relationship between UFOV size and its 

nSSVEP (F(1,51)=44.86, p < 0.01), and their correlation coefficient, r = 0.684, 

indicates a moderate positive relationship. Noted that the correlations here was much 

weaker than the nSSVEP in Experiment A3 where r = 0.854. Results also revealed 
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strong relationship between eccentricity size and its nPO (F(1,51)=91.73, p < 0.01), 

and their correlation coefficient, r = 0.802.  The correlation of nPO here was slightly 

weaker compared to the nPO in Experiment A3 where r = 0.878. Between 

Experiment A3 and B1, the differences in correlation is larger in the case of nSSVEP. 

Nevertheless, in Experiment B1, nPO seems to be the stronger predictor of UFOV 

performance over nSSVEP, and this agrees with the findings in Experiment A3.  

 

Eccentricity sizes in Experiment B1 and physiological signals in Experiment 

B2 

With evidence of relationship between physiological signals and UFOV sizes in 

Experiment B1, the analysis moved on to investigate the relationship between 

eccentricity sizes in B1 and physiological signals in B2.  

Pearson correlation analysis revealed that correlation between signals and UFOV 

varies across sizes (See Table 2 and 3). In general, the correlations between nSSVEP 

and UFOV raised to a maximum at 9° UFOV size from the smallest size and drops 

gradually thereafter. The statistical significant changes accordingly as well. The trend 

is even more prominent in the case of nPO where the correlation coefficients are 

generally larger than those corresponding ones in nSSVEP, and peaks at the 10° 

eccentricity size. This concurs with the earlier observation that nPO is the stronger 

predictor of UFOV compared to nSSVEP. 

 
Table 2: Correlation between eccentricity size and nSSVEP across various 
eccentricities  
Peripheral 
Target 
Eccentricity 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 

Pearson 
Correlation, r 

0.27 0.24 0.44 0.02 0.60 0.54 0.64 0.32 0.49 0.27 0.12 0.27 0.21 

p-Value 0.05 0.09 <0.01 0.91 <0.01 <0.01 <0.01 0.02 <0.01 0.05 0.38 0.05 0.14 
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Table 3: Correlation between eccentricity size and nPO across various 
eccentricities  
Peripheral 
Target 
Eccentricity 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 

Pearson 
Correlation, r 

0.51 0.48 0.52 0.76 0.67 0.60 0.68 0.62 0.71 0.54 0.38 0.47 0.59 

p-Value 
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 

 

 

 

Performance differences between gamer, sports-active and inactive 

participants 

One-way ANOVA indicated no significant difference between the groups in nSSVEP 

(F(3,49) = 0.7283, p = 0.540), nPO (F(3,49) = 0.9112, p = 0.442) and UFOV 

eccentricity size (F(3,49) = 0.482, p = 0.6963). Figure 16 shown the averages in each 

group for nSSVEP, nPO and UFOV eccentricity size performance. Although there is 

no statistically significance, there is a trend of lower physiological signals and 

eccentricity sizes for Group 1 compared to the other groups. Surprisingly, those who 

spend more than 6 hours in both games and sports (Group 4) do not seem to show 

trends of be better than Group 2 and 3. The insignificant differences are likely due to 

small sample size in each group and the 6-hour criteria may not necessary reflects the 

capability level in games and sports.   
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Figure 16: Averages across groups for nSSVEP, nPO and UFOV eccentricity size performance  
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3.5 Chapter Conclusion 

The findings provide the valuable first-cut information that UFOV can be predicted 

using physiological signals gathered from eccentricity sizes that are largely between 

7° to 10.5° UFOV. While statistical analysis provides evidence of relationship, it does 

not deal with the unknown non-linearity aspect of the data to accurately predict the 

eccentricity size value from nSSVEP and nPO. As such, modelling is required to 

apply the knowledge into application. In the next Chapter, neural network modelling 

is implemented to deal with the unknown non-linearity part of the physiological data 

to provide a more accurate prediction of UFOV.  
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Chapter 4: Predictive Model for UFOV 

The collected data from Experiment B2 will be used to train and develop a neural 

network model that takes in nSSVEP and nPO as input vectors to predict and estimate 

the eccentricity size (i.e. output vector). Given the good linear correlation results, the 

non-linearity component of the data is likely to be small and can be easily dealt with 

modelling techniques. The strength in correlation also provides strong indications for 

the selection of the appropriate physiological signals stimulated by the optimal 

annulus stimulus ring size and peripheral target position (determined by eccentricity 

sizes) for developing the predictive model. Essentially, good modelling results can be 

achieved by isolating the weakly-related or non-related signals from those stronger 

ones. The following sections describes how neural network models were trained to 

achieve predictions of UFOV eccentricity sizes using the physiological markers. 

 

4.1 Neural network model approach 

While this section does not provide a holistic understanding of neural networks, it 

highlights the important features of a typical feedforward neural network modelling 

(Bebis &Georgiopoulos, 1994), sufficient enough to explain for the work done in this 

research. Neural networks (also known as Artificial Neural Network) is first defined 

in the late 80s in “Neural Network Primer: Part I” (Caudill, 1987) as: 

"...a computing system made up of a number of simple, highly 

interconnected processing elements, which process 

information by their dynamic state response to external 

inputs.” 



51 

 

The idea of neural network was motivated by neurons in the biological brain. The 

fundamental processing elements in the statement above is know as neurons (Gurney, 

1997; Haykin, 2009). These neurons are associated with transfer functions, allowing 

them to process and pass on information to the next node. Figure 17 below illustrated 

the typical 1-hidden layer feedforward network structure. The key components of the 

neural network to transform data lies in the weights and transfer functions. For 

example in Figure 17, there are 100 sets of inputs 1 to 3. The first set is first 

multiplied by the weights when fed into the hidden layer. Bias inputs are thresholds 

implemented to improves the efficiency of the network. The weighted set of inputs 

and bias are then summated at the node and the outcome underwent a transformation 

by the transfer function before passing on to the next layer which essentially does the 

same thing before finally end up as the output. This output value is compared against 

a known target value for differences.  

 

 

Figure 17: Examples of feedforward neural networks: a single-hidden 
layer neural network with a 3-2-1 configuration. The diagram below is 
an equivalent representation from MATLAB Neural Network Toolbox.  
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Every set of inputs went through the same process and end up with 100 set of 

differences. These 100 sets of differences determine how the weights are being 

adjusted before the same sets of inputs are fed into neural network again. The 

adjustment of weights is known as learning. In the case where there is a known target 

value for comparison and learning, the learning process is also known as supervised 

learning. A typical training function for learning, which will be used in the work here, 

is the Levenberg-Marquardt backpropagation training function (Yu, & Wilamowski, 

2011). The learning process will continue until the training goal was reached or when 

the maximum training iterations was reached. Training goal here refers to the 

minimum differences between predicted value and known target value. To check the 

model’s predictive performance, a set of input data with known target values which 

are not used for training is fed into the network, and the predicted values are 

benchmarked against the corresponding known target values. The mean of the 

differences between the two values across the set defines the performance of the 

trained network model, usually in the form of Mean Squared Error (MSE). Neural 

network can also be designed for more than 1 hidden layer. Figure 18 illustrated a 

typical example of a 2-hidden layer feedforward neural network and the information 

processing in each layer is identical to the one described in the 1-hidden layer 

structure. Feedforward network structures with more than 1-hidden layer is also 

known as multilayer feedforward networks. 

Due to the potentially low non-linearity of data in this research, a simple 1-hidden or 

2-hidden layer feedforward network should be sufficient. There are altogether 26 

input vectors in this study, first 13 vectors correspond to nSSVEP signal readings 

from 6° to 12° peripheral target eccentricities, the next 13 vectors correspond to nPO 

signal readings from size 6 to 12° peripheral target eccentricities. The different 
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eccentricities indicates different checkboard annulus size The input vectors are 

detailed in Table 4.  

 

 

Figure 18: Examples of feedforward neural networks: a single -hidden 
layer neural network with a 3-2-2-1 configuration. The diagram below is 
an equivalent representation from MATLAB Neural Network Toolbox.  
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input vector. The question is here: What is the least number of top-performing 

input vectors that will produce the best network model to predict UFOV? The 

motivation for making such a predictive model stems from the fact that input vectors 

are essentially physiology signals that requires time and effort to collect. Reducing 

the number of vector data to be collected means reducing testing time. On the hind 

side, reduction in vectors must also be accompanied by either an improvement or 

negligible reduction in predictive performance. In another words, the removal of 

vectors must be of those which do not contribute or has little influence to the 

predictive performance. From these considerations, the process of model 

development here involves the following 3 steps: 

 

1) Initial modelling with all input vectors. 

This is to ascertain that the group of input vectors are generally capable of 

predicting UFOV to a certain degree.  

 

2) Elimination of vectors with no statistical significance  

The assumption here is that vectors produces no correlation significant with 

eccentricity sizes (See Chapter 3, Section 4) will reduce the predictive 

performance of the model. Hence, by eliminating these non-predictive 

vectors, the model could potentially perform better. 

 

3) Step-wise elimination of least predictive vector  

When step 2 is successful, this part of the work eliminates the least predictive 

vector and then evaluated for its performance before eliminating the next 

least predictive vector. This process continues until only one vector is left for 

the final evaluation.   
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4.2 Initial modelling with all input vectors 

All the modelling work from this section onwards uses the commercially available 

standard Neural Network Toolbox that is well implemented in MATLAB. All 26 

vectors were used as input vectors where each vector is a column of 53 rows of 

physiological signal data from the 53 participants in Experiment B2. Hence, the input 

matrix is a collection of vectors in the form of 53 rows X 26 columns. The data 

structure for modelling consists of the input matrix concatenated with a single label 

vector column of 53 rows. This label vector (27th Vector) is the corresponding 

eccentricity sizes in Experiment B1 for each participant’s row of physiological signal, 

and is defined as the target value which training and validation seek to get as close as 

possible to. Therefore, the data structure is a 53 row X 27 columns matrix altogether. 

In this development of neural network model, supervised training methods were 

implemented with the labelled data in the 27th column vector.  The parameters of the 

training were set according to Table 5. 

Table 5: Neural network settings  
Parameter Type Settings Remarks 

Neural Network 
Model 

Function fitting  
(Feedforward networks) 

26-N1-1 (1-hidden layer) 
and  
26-N1-N2-1 (2-hidden layer) 

 

Training function 
Levenberg-Marquardt 
backpropagation 

- 
 

Input Layer Number of input vectors 26  

Hidden Layer 1 (N1) Number of neurons 1 to 20 
Hyperbolic tangent 
sigmoid transfer 
function (tansig) 

Hidden Layer 2 (N2) Number of neurons 1 to 5 only for 26-N1-N2-1 
Hyperbolic tangent 
sigmoid transfer 
function (tansig) 

Output Layer Number of output vectors 1 
Linear transfer function 
(purelin) 

Epoch 
Maximum number of 
epochs to train 

10000 
 

Learning rate 
Step size to update 
weights and bias to the 
neurons 

0.01 
 

Iterations 
Number of repeats for 
each network model  

10 
 

Goal Training goal 0  
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All the parameters are implemented in a set of MATLAB codes (See Appendix A) 

which was executed in a computer. Upon the execution of the codes, neural network 

model was trained using Levenberg-Marquardt backpropagation training function 

(Yu, & Wilamowski, 2011) on feedforward neural networks (Bebis &Georgiopoulos, 

1994). As per any typical development of model, the data collected is always divided 

into training sets and testing sets. The testing sets are data not involved in training of 

the model and used to validate if the predictive model works for data that does not 

influence the training. It is analogous to a policeman training a guard dog with images 

of several types of gun, for the dog to recognise guns as threats. Following this, the 

dog was shown a gun it never seen before and see if the dog can still recognise it is as 

a threat. To implement such a validation method, a k-fold cross-validation approach 

(Kohavi,1995) is adopted to avoid bias interpretation of the training results while 

involving all data for training. For the k-fold cross-validation to work, the 53 

participants’ data were divided into 11 groups (where k = 11) with 5 data in each 

group and the last group is a wrap-around form consisted of 51st, 52nd, 53rd, 1st and 2nd 

data. The first group was isolated from the dataset as the testing set and the rest of the 

groups were used for training the model. The trained model was then feed with the 

testing data set and the predicted values produced was compared to the corresponding 

target values. The performance of a model was determined by how close these 

predicted values were to the target values, and, as mentioned earlier, was 

mathematically defined as the mean square error (average squared of the differences) 

between the predicted values and the target values. The process was repeated again 

with the second group of data as the testing set and so on until all groups has been 

trial once as the testing set, and this was defined as one iteration of training 

completed. The average of all MSEs in an iteration was computed as the estimated 

performance of the model as if it was trained with all data. As training results will 
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defer slightly when repeated, 10 iterations of training and validation was introduced 

here for an overall average over the already k-fold averaged MSE to ensure a better 

estimation of performance. This 10-iteration 11-fold cross-validation was 

implemented for the permutations of 1 to 30 neurons in a single hidden layer neural 

network (26-N1-1), as well as for permutations of first-hidden layer size (1 – 30 

neurons) X second-hidden layer size (1 – 5 neurons) for a 2-hidden layer setting (26-

N1-N2-1). Figure 19 illustrated the examples of the diagram of the model design for 

single-hidden layer and 2-hidden layer design respectively. Note that hidden layers 

are implemented with the hyperbolic tangent sigmoid transfer function while the 

output layer has linear transfer functions. 

 
 

 
 

 
 
Figure 19: Examples of feedforward neural networks: a single-hidden 
layer neural network with a 26-6-1 configuration(top) and a 2-hidden 
layer network with a 26-17-5-1 configuration (bottom) 
  
 

  



58 

 

The results of the cross-validation are shown in Figure 20. Lower MSE means better 

prediction performance. Note that one can estimate the accuracy of the prediction by 

looking at the square root of the MSE. For example, the first chart (most left side) in 

Figure 20 has an average MSE of 0.57562 with 5 hidden neurons. Hence, the average 

prediction accuracy is estimated to be ±√0.57562 = ±0.7587° from the eccentricity 

size target value.  For a more conservative estimation using upper limit of 95% CI as 

the accuracy index, one can read off the top of the black error bar in Figure 20 as the 

possible “worst case” prediction accuracy. Nevertheless, MSE has been the standard 

performance indicator in the literature, thus will be used throughout this dissertation.  

Several observations can be seen from this training and validation session. Firstly, for 

a l-hidden layer model, the performance network model improves gradually from 1 to 

5 hidden neurons before it starts to worsen, leaving the best performing network as 

26-5-1. Secondly, by introducing the 2-hidden layer models, the best performance of 

the model improves with the introduction of 1 and 2 neurons in the second-hidden 

layer, but for subsequent addition of neurons, performance started to degrade. The 

best performing 2-hidden layer model is 26-24-3-1, where 24 neurons in the first 

layer produces the best results. Overall, the 2-hidden layer network model also seems 

to perform better than a 1-hidden layer one. 
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Figure 20: Average MSE performance across all neural network 
configurations with all 26 input vectors. Error bar indicates 95% CI.  Top 
row of graphs displays all hidden layer neurons, bottom row of graphs 
zoomed in to the best hidden layer neurons.  
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 Figure 20(Continue): Average MSE performance across all neural 
network configurations with all 26 input vectors. Error bar indicates 95% 
CI. Top row of graphs displays all hidden layer neurons, bottom row of 
graphs zoomed in to the best hidden layer neurons.  
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4.3 Elimination of vectors with no statistical significance 

The cross-validation process described in the previous subsection was repeated in this 

stage with only the 19 statistically significant input vectors. Table 6 describes the 

distribution of statistically significant vectors. 

Table 6: Statistically significant input vectors for neural network training 
(highlighted cell indicates statistical significant value)  

Input vector No: 1 2 3 4 5 6 7 8 9 10 11 12 13 

Peripheral target 
eccentricity 
where nSSVEP 
signals are 
collected 

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 

Pearson 
Correlation, r 

0.27 0.24 0.44 0.02 0.60 0.54 0.64 0.32 0.49 0.27 0.12 0.27 0.21 

Input vector No: 14 15 16 17 18 19 20 21 22 23 24 25 26 

Peripheral target 
eccentricity 
where nPO 
signals are 
collected 

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 

Pearson 
Correlation, r 

0.51 0.48 0.52 0.76 0.67 0.60 0.68 0.62 0.71 0.54 0.38 0.47 0.59 

 

The results of the cross-validation are shown in Figure 21. With the exclusion of 

statistically insignificant vectors, the performance of the model generally improves 

across all configurations of hidden neuron layers dropping below 0.5 MSE. It was 

also noted that the variation between iterations of model training was also reduced 

slightly based on the error bars. Hence, the effect of eliminating unnecessary vectors 

has shown to work towards better performance. 
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Figure 21: Average MSE performance across all neural network 
configurations with 19 significant input vectors. Error bar indicates 95% 
CI. Top row of graphs displays all hidden layer neurons, bottom row of 
graphs zoomed in to the best hidden layer neurons.   
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Figure 21(Continue): Average MSE performance across all neural 
network configurations with 19 significant input vectors. Error bar 
indicates 95% CI. Top row of graphs displays all hidden layer neurons, 
bottom row of graphs zoomed in to the best hidden laye r neurons.  
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4.4 Step-wise elimination of least predictive vector  

With the evidence that exclusion of non-predictive vectors improves prediction 

performance, the aim of the subsequent training sessions is to find out what are the 

least number of critical vectors to produce the model with the best predictive 

performance. To accomplish that, the cross-validation process was repeated again in a 

step-wise fashion with the least predictive input vector in each step removed. 

Predictive power is determined by the input vector’s correlation coefficient, r, values 

in Table 6. Table 7 illustrated the survival trend of the input vectors into each repeats 

of cross-validation sessions here. The settings used for the cross validation is exactly 

the same as the previous subsection except for the reduction in input vectors. 

Table 7: Survival trend of the input vectors into each repeats of cross -
validation session 
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session for Figure 21 with the 19 significant input vectors  
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The results of the average MSE performance across step-wise elimination cross-

validation are shown in Table 8, Figure 24 and Figure 25 (All the detailed results can 

be found in Appendix B). The results suggested that the model with the network 7-1-

2-1 seems to provide the best predictive performance (MSE = 0.0775, Accuracy ≈ ± 

0.278°) in Train Session 13 with only 7 input vectors 7, 17,18,19,20,21 and 22 (7.5° 

to 10° eccentricity size). For a more conservative estimation using the 95% CI, the 

worse possible accuracy is approximately ± 0.429° (MSE = 0.184). The MSE results 

in Table 8 is represented in Figure 22 and Figure 23. There are a few observations 

that can be drawn from the results. Firstly, there is an inverted ‘U’ relationship 

between the number of top-performing vectors and MSE performance (See Figure 

22), where MSE started to improve with each round of least predictive vector 

eliminated, but the improvements started to reverse after Session 13 with top 7 

predictive vectors, and this happens for 1-hidden layer model and all five 2-hidden 

layer models. Secondly, the same trend was also observed for the variation between 

iterations (See Appendix B, compare error bars between Session 1, Session 13 and 

Session 19). Thirdly, MSE also improves with the introduction of 1 and 2 neurons in 

the 2nd hidden layer, but degrades for 3 to 5 neurons in that layer (See Table 8). 

 

4.5 Chapter Conclusion 

In this section, it is shown that feedforward neural network modelling has a moderate 

accuracy in determining UFOV performance, in terms of eccentricity sizes, based on 

SSVEP and Pupillary Oscillation gathered during a demanding central-peripheral 

attention task. A large part of the success is due to the low non-linearity in the 

relationship between input vectors and UFOV. 
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Table 8: Best network configuration for each network structure. (First value in each row indicates the average MSE)  

Sessions 1-Hidden Layer 
input-Nb-1 

2-Hidden Layers 
input-Nb-1-1 

2-Hidden Layers 
input-Nb-2-1 

2-Hidden Layers 
input-Nb-3-1 

2-Hidden Layers 
input-Nb-4-1 

2-Hidden Layers 
input-Nb-5-1 

0 0.576, 26-5-1 0.581, 26-7-1-1 0.568, 26-15-2-1 0.537, 26-24-3-1 0.531, 26-29-4-1 0.572, 26-21-5-1 

1 0.479, 19-1-1 0.451, 19-4-1-1 0.433, 19-14-2-1 0.439, 19-20-3-1 0.450, 19-28-4-1 0.420, 19-18-5-1 

2 0.469, 18-1-1 0.465, 18-5-1-1 0.425, 18-8-2-1 0.457, 18-16-3-1 0.441, 18-14-4-1 0.473, 18-24-5-1 

3 0.476, 17-4-1 0.469, 17-1-1-1 0.438, 17-12-2-1 0.463, 17-10-3-1 0.447, 17-20-4-1 0.468, 17-7-5-1 

4 0.390, 16-1-1 0.455, 16-1-1-1 0.443, 16-22-2-1 0.426, 16-17-3-1 0.443, 16-17-4-1 0.428, 16-9-5-1 

5 0.411, 15-1-1 0.357, 15-1-1-1 0.346, 15-1-2-1 0.443, 15-7-3-1 0.418, 15-18-4-1 0.447, 15-20-5-1 

6 0.346, 14-2-1 0.353, 14-1-1-1 0.259, 14-1-2-1 0.449, 14-23-3-1 0.417, 14-17-4-1 0.453, 14-13-5-1 

7 0.333, 13-1-1 0.222, 13-1-1-1 0.228, 13-1-2-1 0.402, 13-9-3-1 0.450, 13-2-4-1 0.464, 13-6-5-1 

8 0.277, 12-1-1 0.269, 12-1-1-1 0.215, 12-1-2-1 0.395, 12-2-3-1 0.465, 12-16-4-1 0.469, 12-12-5-1 

9 0.271, 11-1-1 0.312, 11-1-1-1 0.231, 11-1-2-1 0.369, 11-1-3-1 0.417, 11-3-4-1 0.469, 11-11-5-1 

10 0.192, 10-1-1 0.243, 10-1-1-1 0.155, 10-1-2-1 0.313, 10-2-3-1 0.281, 10-2-4-1 0.423, 10-13-5-1 

11 0.181, 9-1-1 0.187, 9-1-1-1 0.165, 9-1-2-1 0.224, 9-1-3-1 0.284, 9-2-4-1 0.339, 9-5-5-1 

12 0.168, 8-1-1 0.171, 8-1-1-1 0.148, 8-1-2-1 0.166, 8-1-3-1 0.296, 8-2-4-1 0.328, 8-3-5-1 

13 0.170, 7-2-1 0.197, 7-1-1-1 0.077, 7-1-2-1 0.109, 7-1-3-1 0.216, 7-2-4-1 0.265, 7-2-5-1 

14 0.304, 6-1-1 0.315, 6-1-1-1 0.362, 6-2-2-1 0.434, 6-2-3-1 0.495, 6-2-4-1 0.510, 6-5-5-1 

15 0.279, 5-1-1 0.265, 5-1-1-1 0.319, 5-1-2-1 0.371, 5-3-3-1 0.489, 5-7-4-1 0.435, 5-2-5-1 

16 0.312, 4-1-1 0.297, 4-1-1-1 0.344, 4-1-2-1 0.320, 4-1-3-1 0.372, 4-2-4-1 0.345, 4-2-5-1 

17 0.573, 3-1-1 0.587, 3-1-1-1 0.680, 3-3-2-1 0.683, 3-2-3-1 0.711, 3-2-4-1 0.711, 3-2-5-1 

18 0.724, 2-1-1 0.679, 2-1-1-1 0.738, 2-1-2-1 0.769, 2-2-3-1 0.784, 2-1-4-1 0.832, 2-2-5-1 

19 1.041, 1-1-1 1.049, 1-1-1-1 1.119, 1-1-2-1 1.125, 1-1-3-1 1.107, 1-1-4-1 1.191, 1-3-5-1 
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Figure 22: Average MSE performance of the best network configuration in each sessions following a step -wise least significant input 
vector elimination(left) and the details of MSE performance for Session 13(right) . Note that Session 0 and 1 reflects a summary of 
Figure 20 and 21 respectively. Also, note that the best 1 s t hidden layer neuron number is not included for the graph on the left. See 
Table 7, 8 and Appendix B for information on best 1 s t hidden layer neuron number.  
  
 

Session 13 
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Figure 23: Colour map analysis showing the optimal combination of 2 nd hidden layer neurons and input vectors . Also, note that the 
best 1 s t hidden layer neuron number is not included for the graph on the left. See Table 7, 8 and Appendix B for information on best 
1s t hidden layer neuron number.  
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Chapter 5: Discussion and Final Conclusion 

There are many aspects to human vision capabilities. One of the least explored aspect 

of vision is UFOV. The focus on this aspect for research is largely motivated by the 

challenging unknowns of UFOV’s characteristics in human.  To summaries the work 

here towards discovering a new method for the objective assessment of UFOV 

ability, there are four major steps demonstrated in this dissertation. Firstly, Chapter 1 

unveils the importance of UFOV and the two human physiological markers, SSVEP 

and pupil oscillation, which are well published in the literature to have phenomenal 

association with UFOV. Secondly, Chapter 2 investigated different tasks and examine 

the relationship between their UFOV accuracy performance results and these markers 

using a small number of human observers. Through the results, the task paradigm 

with the potential to produce UFOV results that is highly correlated to the markers is 

selected. Thirdly, Chapter 3 expands the concept of the selected task paradigm into 

UFOV eccentricity size performance measurement and test it on a larger sample size 

of human observers, to ascertain the relationship between UFOV size and the 

physiological markers. The work in Chapter 3 also aimed to collect data points for 

training a neural network model that can predict UFOV performance using SSVEP 

and pupillary oscillation markers. Finally, Chapter 4 describes the process of 

designing the neural network model and how 11-fold cross-validation was 

implemented to test the accuracy and reliability of the train model in using these 

markers to predict UFOV performance. 

While much of the scientific discussion of SSVEP and PO has been presented 

towards the end of Chapter 2, there are four points regarding the future potentials of 

the model to be discussed in the following sections. 
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5.1 The predictive model as a performance verifier. 

Experiment A and B demonstrates a data collection paradigm which allows SSVEP, 

OP and psychophysical-derived UFOV performance to be collected concurrently. The 

UFOV performance collected through subjective psychophysical responses can be 

verified by comparing them to the UFOV values predicted by the physiological 

markers. Hence, the predictive model in this case is particularly useful in confirming 

the UFOV capability of an individual, providing an extra supportive evidence over 

the subjective response results. This could be important for the selection of potential 

elite sportsmen or soldiers.  

 

5.2 The predictive model as a screening tool 

Where mass screening of UFOV is desired, current methods in Experiment B2 

provides the quick solution for estimating UFOV. For each trial of checkboard 

stimulus, the maximum duration is around 45 seconds (baseline phase + activity 

phase). Hence, the question here is what is the least number of trials to provide a 

good estimate of UFOV eccentricity size. In the case of psychophysical methods, a 

session in Experiment B1 will take about an average of 9 trials which is a maximum 

of 9 x 45 seconds = 6.75 minutes to output an estimated UFOV reading. Of course, 

this is also assuming that a quick estimation does not require multiple sessions of B1 

task for an average score like in Experiment B1. Similarly, for screening purposes, a 

small compromise in UFOV prediction accuracy can be made for a shorter testing 

time by having lesser trials and using only eye tracker (nOP input vectors only). This 

option is possible based on the supporting result in network training session 16 (See 

Table 8 and Figure 24), where input vectors 17,18, 20 and 22 can potentially provide 

an average accuracy of about ±0.545° (MSE =0.344) and “worse case” accuracy of 
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±0.74° for the best network model  4-1-1-1. The compromise in accuracy is tolerable 

as it is within ±1°. These 4 input vectors, which corresponds to eccentricity 7.5°, 8°, 

9° and 10°, are all nPO inputs from the eye tracker. This option is favourable as 

SSVEP is not as predictive as OP in estimating UFOV sizes and it takes some time to 

setup the SSVEP which requires 5 minutes as oppose to the 1-min calibration for eye 

tracking; therefore, one can leave out the troublesome and less predictive part. Hence, 

the total time required to implement the model prediction with eye tracker only is 1 

minute + (4 x 45 seconds) = 4 minutes only. This is a time saving of more than 2 

minutes from the psychophysical method. 

 

5.3 Verifying the relationship between UFOV and elite 

gamers/sportsmen 

While there are no statistically significant results to suggest the UFOV superiority of 

gamers and sportsmen over those who does not involved in games and sports, the 

descriptive data suggest a trend that non-active group seems to perform worse than 

those involved in games and sports. In view of the possible case of insufficient 

sample size in the activity groupings and it is worthwhile to investigate such traits. As 

mentioned in previous Chapter 3, the case of using 6-hour criteria as the selection for 

groupings may not be ideal as it does not necessary indicates an individual’s ability in 

sports or game. Hence, for future studies, the best solution is to identify a specific 

game and recruit participants to play the game for scores and take part in Experiment 

B. The participants can be divided into several groups according to how well they 

score in the game, and then their UFOV performances are compared between these 

groups. The same can be applied to sports.  
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5.4 Improving the model 

The moderate success in prediction is largely due to good linearity relationship 

between the physiological signals and UFOV which therefore reduces the need for 

the network model to train for the non-linear behaviour of the data. This is probably 

the reason that allows network to achieve moderate accuracy with 53 participant’s 

data which is considered small for most modelling work. Nevertheless, the typical 

way to further improve the prediction accuracy is still to increase the human sample 

size for more input vectors and target/testing values. Given enough resources and 

time, another improvement for consideration is to have 5 or more sessions for both 

Experiment B1 and B2. This study assumes the subjective-based psychophysical 

UFOV performance as the reliable subjective-evidence-based performance indicator. 

Hence, improving the prediction of the model should also consider ways to increase 

the reliability of the target/testing values by minimising the errors arising from the 

variation of the subjective-based UFOV performance. By repeating more sessions of 

psychophysical measurement of UFOV in Experiment B1, the averaged score can be 

more accurate. Along the same tune, by repeating more sessions in Experiment B2, 

more data in each vector can be fed into the model for training and more target/testing 

values are available for learning.  

In conclusion, physiological data, SSVEP and Pupillary Oscillation, gathered during a 

demanding central-peripheral attention task can be used to assess UFOV by using the 

appropriately-trained neural network model that takes in physiological inputs 

(nSSVEP and nPO). 
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Appendix A 

FFN_SSVEPPO.mat 

% Put both SSVEPPO_03102016.mat and FFN_SSVEPPO.mat into a folder and 

% execute the latter FFN_SSVEPPO.mat file from that folder. 

% SSVEPPO_03102016.mat contains the variable “data” which is a variable in the 

% form of 53 x 27 matrix variable described in Chapter 4, Section 4.2.  

% Data in “data” variable is obtained from Experiment B 

% 1) column 1 -13  = nSSVEP data input column vectors,  

% 2) column 14 - 26  = nPO data input column vectors,  

% 3) column 27 = target eccentricity size value vector. 

  

% load input column vectors 1 - 26 and target value vector as 27th column 

load('SSVEPPO_03102016.mat');tic; 

  

 % set training method as Levenberg-Marquardt backpropagation. 

trainFcn = 'trainlm';  

  

adata = data; % backup copy of data for debugging and review purposes 

  

thiddenLayersize1 = 30; 

thiddenLayerSize2 = 5; 

stszi = 1; 

szisz = 5; %fixed to cluster of 5 for 11-fold cross validation 

endszi = size(adata,1); 

  

out1 = [];out = [];bm2 = []; 

  

% select cross validation session based on Table 6 in dissertation 

vec = input('Cross-validation Session ='); 

  

% option to plot data after training sessions ended 

plt = 'Y';  

  

if vec == 0 

    vn = [1:26]; 

elseif vec == 1 

    vn = [3 5:9 14:26]; 

elseif vec == 2 

    vn = [3 5:7 9 14:26]; 

elseif vec == 3 

    vn = [3 5:7 9 14:23 25 26]; 

elseif vec == 4 

    vn = [5:7 9 14:23 25 26]; 

elseif vec == 5 

    vn = [5:7 9 14:23 26]; 

elseif vec == 6 

    vn = [5:7 9 14 16:23 26]; 

elseif vec == 7 

    vn = [5:7 14 16:23 26]; 

elseif vec == 8 

    vn = [5:7 16:23 26]; 

elseif vec == 9 

    vn = [5:7 17:23 26];  

elseif vec == 10 

    vn = [5 7 17:23 26];   

elseif vec == 11 

    vn = [5 7 17:22 26]; 

elseif vec == 12 

    vn = [5 7 17:22 ];   

elseif vec == 13 

    vn = [7 17:22 ];  

elseif vec == 14 

    vn = [7 17 18 20:22 ];   

elseif vec == 15 

    vn = [7 17 18 20 22 ];   

elseif vec == 16 

    vn = [17 18 20 22 ];  
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elseif vec == 17 

    vn = [17 20 22 ];  

elseif vec == 18 

    vn = [17 22 ];  

elseif vec == 19 

    vn = [17];  

end 

  
  

sf = 'vectors-'; % string description of input vectors 

for w = 1:size(vn,2) 

    sf = char(strcat(sf,{' '},num2str(vn(w)))); 

    if w == 26 

        sf ='vectors-all'; 

    end 

end 

  

% create folder to sort the process data, change variable folderin  

folderin = strcat(cd,'\Output_S',num2str(vec),'_',sf,'_',trainFcn,'_',... 

    num2str(yyyymmdd(datetime)),'_',datestr(now,'HHMMSS')); 

mkdir(folderin);  

  

% loop thru second hidden layer size 

for hiddenLayerSize2 = 0:thiddenLayerSize2  

  

% loop thru second hidden layer size 

 for hiddenLayerSize1 = 1:thiddenLayersize1  

    out = []; 

     

  disp('########################################'); 

  % create variable results to store training outcome  

  % for each network model 

  results = cell(1,1);  

  results{1,1} = '1st hiddenlayer;2nd hiddenlayer;vec;iter;k-fold-startpoint'; 

  results{1,2} = 'networks'; 

  results{1,3} = '1st hidden layer size'; 

  results{1,4} = 'iter'; 

  results{1,5} = 'mean network Performance'; 

  results{1,6} = 'std network Performance'; 

  results{1,7} = 'mean*std network Performance'; 

  
  

for iter = 1:10 %number of iteration 

  
  

    disp(strcat(sf, ', Iteration =',num2str(iter),... 

        ', 1st layer hidden size =',... 

        num2str(hiddenLayerSize1),', 2nd layer hidden size =',... 

        num2str(hiddenLayerSize2))); 

     

    gnet = cell(1,1); %sub level results to go into the variable "results" 

    gnet{1,1} = '1st hiddenlayer;2nd hiddenlayer;vec;iter;k-fold-startpoint'; 

    gnet{1,2} = 'NNetwork'; 

    gnet{1,3} = 'tr'; 

    gnet{1,4} = 'trainoutput'; 

    gnet{1,5} = 'gsubtract'; 

    gnet{1,6} = 'Perf-nntool'; 

    gnet{1,7} = 'testoutput'; 

    gnet{1,8} = 'Perf-test'; 

    c = 2; 

for szi = stszi:szisz:endszi % validation process 

  

    data = adata; 

    if (endszi - szi) < 4 % isolate the testing data from the training data 

     dta = data(1:(4 - (endszi - szi)),:); % wrap around for testing data 

     tedata = [data(szi:endszi,:);dta]; 

     data(szi:endszi,:) = []; 

     data(1:(4 - (endszi - szi)),:) = [];  

     fo = strcat('Fold =',num2str(szi),'-',num2str(endszi),',1,2'); 

    else 

    tedata = data(szi:szi+4,:); 

    data(szi:szi+4,:) = []; 

    fo = strcat('Fold =',num2str(szi),'-',num2str(endszi)); 

    end 

     



81 

 

    xc = tedata(:,[vn])';%reassign variables 

    zc = tedata(:,27)'; 

  

    dataX = data(:,1);dataY = data(:,2); 

    dataZ = data(:,27);dataIn = data(:,[vn]); 

  
  

    x = dataIn(1:end,:)'; 

    t = dataZ(1:end,1)'; 

  
  

    % Create Network 

  

    if hiddenLayerSize2 > 0 

        %set the transfer function for 2-hiddenlayer netork 

        net = fitnet([hiddenLayerSize1,hiddenLayerSize2],trainFcn); 

        k1 = 'tansig'; 

        k2 ='tansig'; 

        k3='purelin'; 

        net.layers{1}.transferFcn = k1; 

        net.layers{2}.transferFcn = k2; 

        net.layers{3}.transferFcn = k3; 

    else 

        %set the transfer function for 1-hiddenlayer netork 

        net = fitnet(hiddenLayerSize1,trainFcn); 

        k1 ='tansig'; 

        k2='purelin'; 

        net.layers{1}.transferFcn = k1; 

        net.layers{2}.transferFcn = k2; 

    end 

  

    % Setup configurations for Training, Validation, Testing 

    net.divideParam.trainRatio = 100/100; 

    net.divideParam.valRatio = 100/100; 

    net.divideParam.testRatio = 0; 

    net.trainParam.showWIndow = false; 

    net.performParam.normalization = 'percent'; 

    net.trainparam.lr=0.01; 

    net.trainparam.epochs=10000; 

    net.trainparam.goal=0; 

  

    % Train the Network 

    [net,tr] = train(net,x,t); 

  

    % Internal testing of the Network with training data  

    % contains biases, but just to log anormalities in training for review 

    y = net(x); 

    e = gsubtract(t,y); 

    performance = mse(t,y); 

    % Actual Testing of the Network with testing data isolated earlier on 

    testnet = net(xc); 

    testp = mse(zc,testnet); 

  

    %store subresults 

    gnet{c,1} = [hiddenLayerSize1;hiddenLayerSize2;vec;iter;szi]; 

    gnet{c,2} = net; 

    gnet{c,3} = tr; 

    gnet{c,4} = y; 

    gnet{c,5} = e; 

    gnet{c,6} = performance; 

    gnet{c,7} = testnet; 

    gnet{c,8} = testp; 

     

    c = c + 1; 

    disp(strcat(fo,', MSE =',num2str(testp))); 

  

end 

     %store results 

     results{iter+1,1} = [hiddenLayerSize1;hiddenLayerSize2;iter;vec]; 

     results{iter+1,2} = gnet; 

     results{iter+1,3} = hiddenLayerSize1; 

     results{iter+1,4} = iter; 

     results{iter+1,5} = mean(cell2mat(gnet(2:end,8))); 

     results{iter+1,6} = std(cell2mat(gnet(2:end,8))); 

     results{iter+1,7} = results{iter+1,5}*results{iter+1,6}; 
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    disp(strcat('Average MSE =',num2str(results{iter+1,5}),... 

        ', Average std MSE =',... 

        num2str(results{iter+1,6}),', Average mean*std MSE =',... 

        num2str(results{iter+1,7}))); 

     toc; 

    disp('============================================================='); 

  

end 

   gj = cell2mat(results(2:end,3:7)); 

   mp = mean(gj(:,3)); 

   stdp = mean(gj(:,4)); 

   out(1,:)=[vec hiddenLayerSize1 hiddenLayerSize2 mp gj(:,3)' stdp gj(:,4)']; 

   out1(:,:,hiddenLayerSize1) = out; 

     

    % As the data is very big due to network size, save all variables for 

    % every neuron change instead of saving everything at the end 

    save(char(strcat(folderin,'\outp_l_',trainFcn,'_',... 

        '_',sf,... 

        '_1hl_',num2str(hiddenLayerSize1),... 

        '_2hl_',num2str(hiddenLayerSize2),'_',... 

        num2str(yyyymmdd(datetime)),'_',... 

        datestr(now,'HHMMSS'),'.mat')),'-v7.3'); 

    

 end 

  

 % building variables for plotting later  

 for er = 1:size(out1,3) 

 bm(er,:) = out1(:,:,er); 

 end 

   

 Ya = [1:size(bm,1)]';%Neuron axis in Y 

 bm2(:,:,hiddenLayerSize2+1) = bm; 

 pmatr(1:size(bm(:,4),1),hiddenLayerSize2+1) = bm(:,4); 

  

 end%  

  
  

% Option to plot and save the plot 

if strcmp(plt,'Y') || strcmp(plt,'y')  

    %plottimg of the results 

   

         Ya = [1:size(bm,1)]';%Neuron axis in Y 

          

         warning off; 

  

         sf = 'Vectors-'; 

        for w = 1:size(vn,2) 

            sf = char(strcat(sf,{' '},num2str(vn(w)))); 

        end 

  

         for hiddenLayerSize1 = 0:size(bm2,3)-1 

             bm = bm2(:,:,hiddenLayerSize1+1); 

  

        figure(vec); 

        minp = min(bm(:,4)); 

        minpt = find(bm(:,4) == minp); 

        pmatr(1:size(bm(:,4),1),hiddenLayerSize1+1) = bm(:,4); 

  

        if hiddenLayerSize1 == 0; 

        x0=100; 

        y0=100; 

        width=1800; 

        height=900; 

        set(gcf,'units','points','position',[x0,y0,width,height]); 

        end 

        % plot the top row 

        subplot(2,size(bm2,3),hiddenLayerSize1+1);  

  

        if hiddenLayerSize1 > 0 

        title({char(strcat({'Model = '},num2str(size(vn,2)),'-N_1-',... 

            num2str(hiddenLayerSize1),'-1'));... 

            char(strcat('Best 1st hidden layer size =',... 

            {' '},num2str(minpt)));char(strcat('with average MSE =',... 

            {' '},num2str(minp)))}); 
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        xlabel('1st Hidden Layer Neurons (N_1)'); 

        ylabel('MSE Performance'); 

        else 

        title({char(strcat({'Model = '},num2str(size(vn,2)),'-N_1-1'));... 

            char(strcat('Best hidden layer size =',{' '},num2str(minpt)));... 

            char(strcat('with average MSE =',{' '},num2str(minp)))}); 

        xlabel('Hidden Layer Neurons (N_1)'); 

        ylabel('MSE Performance'); 

        end 

  

        set(gcf,'name',char(sf)); 

         for d = 4:4+((size(bm2,2)-5)/2) 

            hold on; 

             if d == 4 

             sd = std(bm(:,d+1:d+(size(bm2,2)-5)/2),0,2); 

             se = sd./sqrt(size(bm(:,d+1:d+(size(bm2,2)-5)/2),2)); 

             CI = bm(:,d)+(se*1.96); 

             errorbar(Ya,bm(:,d),CI,'-k.','LineWidth',1,'MarkerSize',18);   

  

             else 

             plot(Ya,bm(:,d),'ob','MarkerSize',3);   

             end 

            legend('Average MSE','MSE of each iteration',... 

                'Location','NorthWest'); 

  

        end 

        axis([0 size(bm2,1)+1 -1.5 10]); 

        hold off 

  

        % plot the bottom row 

        subplot(2,size(bm2,3),hiddenLayerSize1+2+thiddenLayerSize2); 

  

         if hiddenLayerSize1 > 0 

          xlabel('1st Hidden Layer Neurons (N_1)');ylabel('MSE Performance'); 

         else 

          xlabel('Hidden Layer Neurons (N_1)');ylabel('MSE Performance'); 

         end 

  

        set(gcf,'name',char(sf)); 

         for d = 4:4+((size(bm2,2)-5)/2) 

            hold on; 

             if d == 4 

             sd = std(bm(:,d+1:d+(size(bm2,2)-5)/2),0,2); 

             se = sd./sqrt(size(bm(:,d+1:d+(size(bm2,2)-5)/2),2)); 

             CI = bm(:,d)+(se*1.96); 

             errorbar(Ya,bm(:,d),CI,'-k.','LineWidth',1,'MarkerSize',18);   

  

             else 

             plot(Ya,bm(:,d),'ob','MarkerSize',3);   

             end 

            legend('Average MSE','MSE of each iteration',... 

                'Location','NorthWest'); 

  

         end 

  

         if minpt < 4 

          axis([0 5.5 -0.5 5]);  

         else 

          axis([minpt-2.5 minpt+2.5 -0.5 5]); 

         end 

        hold off 

  

         end 

    savefig(figure(vec),char(strcat(folderin,'\outp_fig_',trainFcn,'_S',... 

        num2str(vec),'_',sf,num2str(yyyymmdd(datetime)),'_',... 

        datestr(now,'HHMMSS'),'.fig'))); 

end 

  

%Save only the files needed for plotting 

save(char(strcat(folderin,'\outp_all_',trainFcn,'_S',... 

    num2str(vec),'_',sf,'_',... 

    num2str(yyyymmdd(datetime)),'_',... 

    datestr(now,'HHMMSS'),'.mat')),... 

    'out1','bm','pmatr','vn','trainFcn','bm2'); 
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SESSION 0: Average MSE performance across all  neural  network configurations with all  26 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 1: Average MSE performance across all  neural  network configurations with top 19 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 2: Average MSE performance across all  neural  network configurations with top 18 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neu rons 



 

 

 

88 

 

 
SESSION 3: Average MSE performance across all  neural  network configurations with top 17 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden lay er neurons 
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SESSION 4: Average MSE performance across all  neural  network configurations with top 16 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 5: Average MSE performance across all  neural  network configurations with top 15 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 6: Average MSE performance across all  neural  network configurations  with top 14 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 7: Average MSE performance across all  neural  network configur ations with top 13 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 8: Average MSE performance across all  neural  network co nfigurations with top 12 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 9: Average MSE performance across all  neural  netw ork configurations with top 11 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 10: Average MSE performance across al l  neur al network configurations with top 10 significant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 11: Average MSE performance across a l l  neural network configurations with top 9 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 12: Average MSE performance ac ross al l  neural network configurations with top 8 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 13: Average MSE performance across al l  neural network configurations with top 7 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 14: Average MSE performance across al l  neural network configurations with top 6 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 15: Average MSE performance across al l  neural network configurations with top 5 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neur ons 
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SESSION 16: Average MSE performance across al l  neural network configurations with  top 4 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden laye r neurons 
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SESSION 17: Average MSE performance across al l  neural network configurations with top 3 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  
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SESSION 18: Average MSE performance across al l  neural network configurations with  top 2 significant input vectors.  Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  



 

 

 

104 

 

 
SESSION 19: Average MSE performance across al l  neural network configuration s with top signif icant input vectors. Error bar indicates 95% CI.  Top row of 
graphs displays all  hidden layer neurons, bottom row of graphs zoomed in to the best hidden layer neurons  

 


