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Summary 

Strategic level decisions in supply chain are of critical importance to the 

competitiveness of both individual entities and the supply chain as a whole. The 

raising concerns of disruption risks have made the strategic decision making in 

supply chain even more complicated. This thesis aims to provide efficient 

approaches for strategic decision making in supply chain partner selections with 

considerations of disruption risks, as well as protection planning against worst case 

disruptions. The proposed approach for supply chain partner selections 

complements existing methodologies by considering the combination of trade-off 

options and supply chain level performance requirements to allow for a wider range 

of choices and potentially better supply chain structures. The approach developed 

for supply chain protection planning presents a novel definition of supply chain 

networks on graphs, which allows for the modeling of disruptions on financial 

flows and information flows. 

This thesis starts from a detailed discussion on the definitions of supply chain 

performance measurements, followed by an explanation on the trade-off options in 

supply chain partner selections. The trade-off constraints are integrated into a 

mixed integer programming model, which allows for multiple supply chain 

characteristic diversifications in the supply chain designing process. Conditional 

Value-at-Risk is introduced to model the risk consideration in supply chain design, 

and a new decomposition scenario management approach is proposed to reduce the 

number of disruption scenarios to be considered in solving the problem. Numerical 

analysis and case studies have shown that the proposed approach can provide 
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valuable information to support strategic decision makings in designing a 

competitive supply chain.  

To consider potential intentional attacks or worst case disruptions in supply chain, 

this thesis examines possible disruption scenarios due to intentional attacks, and 

defines each scenario as arc disruptions in a graph. The protection problem is then 

modeled as a tri-level defender-attacker-user optimization model, which is 

eventually transformed into an equivalent mixed integer programing model using 

duality theory and standard linearization techniques.  By comparing the solution 

values of some key variables in numerical analysis, we reconfirm a previous finding 

that protection decisions based on the solution of traditional bi-level interdiction 

models may be suboptimal due to its dependency on the attacker’s interdiction 

budget, and find that the solution of our approach is based on the cost efficiency of 

protecting each arc which is independent of the attacker’s budget. A case study of 

a South African third party logistics company in vaccine industry is presented 

showing that the proposed approach can be applied to solve realistic problems. 
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Chapter 1 Introduction 

1.1 Overview 

This chapter provides an introduction of the research covered in this study. Firstly, 

the background and the focus of this research on the strategic decision making in 

supply chain under disruption risks are explained. The aim and objectives of this 

study are outlined, followed by a brief introduction of the research approach. 

Finally, details of the structure of this thesis are presented. 

1.2 Research Background 

The real competition in contemporary business environment is fought between 

supply chains and not companies (Martínez-Olvera and Shunk, 2006), and therefore 

achieving strategic alignments of the supply chain is crucial to the competitiveness 

of each member within the chain. As a matter of fact, each supply chain has one or 

several core companies and many supporting companies, and the core companies 

should be responsible in making the right supply chain decisions and achieving 

strategic alignment of the supply chain. Supply chain decisions can be classified 

into strategic level decisions, tactical level decisions, and operational level 

decisions. Strategic level decisions in supply chain include supply chain strategy 

formulation, supply chain design, product management throughout life cycle, 

information management, and protection strategies against worst case disruptions. 

The focus of this study is on the strategic level decision making in supply chain 

under disruption risks, and the two kinds of strategic level decisions that can be 
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incorporated with risk considerations are supply chain design and protection 

strategies against worst case disruptions. 

As supply chains becoming increasingly complex, designing or renewing a supply 

chain that supports sustainable value creation becomes a rather difficult but critical 

task in supply chain management, since the process of designing a supply chain 

often involves many conflicting criteria such as quality and price, efficiency and 

responsiveness, etc. When risks in supply chain are concerned, it is suggested in 

some studies that the degree of integration in supply chain can affect the reliability 

level of the chain, and thus collaboration within the supply chain could be 

considered as a risk mitigation strategy (Chang Won, Ik-Whan, and Dennis 2007; 

Chen, Sohal, and Prajogo 2012). Therefore, in contemporary supply chain 

management, companies will often keep a long-term partnership with their 

suppliers and retailers so that performance is in alignment with the supply chain 

strategy. Thus, it is quite significant that core companies have an effective approach 

to strategically choose supply chain partners so as to ensure a satisfactory level of 

performance.  

When it comes to managing a supply chain under operation, the strategic level 

decisions are related to the allocation of protection resources in order to fortify 

critical components in the supply chain network system. Recent events have 

demonstrated that a corporation’s ability to provide critical services to customers 

can be affected by a single disruption in supply chain through domino effects 

(Juttner, Peck and Christopher, 2003). Therefore being able to identify the 

vulnerable parts of the supply chain where single disruptions can lead to significant 
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degradation in supply chain performance, is of great importance for the decision 

makers. Risks in supply chain operation stage mainly come from uncertainties and 

intentional attacks. Dealing with daily uncertainties is more related to tactical and 

operational level decisions, and these uncertainties are usually modeled by random 

variables in stochastic optimization or robust optimization models, while 

disruptions due to intentional attacks require more of strategic level decision 

makings, since intentional attacks would often bring catastrophic consequences. 

Efficient methods for identifying critical parts in supply chain to be protected 

against worst case disruptions are needed in order to help supply chain managers 

making strategic decisions. 

In conclusion, the area of research for this thesis is focused on the field of strategic 

decision making in supply chain under disruption risks. In particular, supply chain 

partner selection decisions and decisions on the fortifications of critical parts in 

supply chain against worst case disruptions will be discussed in this thesis. 

1.3 Research Aim and Objectives 

The aim of this study is to provide quantitative approaches that support strategic 

decision making in supply chain subjected to disruption risks. The objective is to 

perform a detailed review of existing literature on the related subjects, and identify 

current tools and methods for strategic decision making in supply chain 

management. Based on the understanding of the state-of-the-art techniques in 

related research themes, the aim of this study is to improve the understanding on 

strategic supply chain decisions when aware of disruption risks by investigating 
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practical methods in solving supply chain partner selection problems as well as 

identifying optimal protection strategies against worst case disruptions. The 

proposed quantitative approaches will enable companies to make informed 

decisions on the selection of strategic supply chain partners, which will then 

enhance the strategic alignment of the supply chain and lead to the increase in 

competitiveness of the company; supply chain managers would also be able to 

make informed decisions on the fortification plans of the supply chain based on the 

solutions of our approach. The specific research objectives in order to achieve the 

research aims are listed as follows:     

1. To develop an efficient approach for strategic decision making in supply 

chain partner selection, which is incorporated with trade-off options and 

risk considerations. 

2. To develop methods to support strategic decision making in the protection 

against worst case disruptions in supply chain. 

3. To validate the proposed approaches by applying them to case studies in a 

number of different industries.  

The proposed approaches can help to form a conceptual framework for strategic 

decision making in supply chain under disruption risks, which includes supply 

chain strategy formulation, supply chain design, supply chain protection strategy, 

and supply chain monitoring and evaluation. In this study, the research focus is on 

the partner selections in supply chain design and supply chain protection strategy 

under disruption risks.  
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The three case studies discussed are based on three companies in different regions 

of the world and in different industries (An European company in chemical industry, 

an Indian company in iron and steel industry, and a South African company in the 

vaccine industry), and the aim is to examine the applicability of the proposed 

approach in both developed and developing countries and in different industries.   
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1.4 Research Approach 

This study starts from performing a detailed review of existing literature on the 

related research fields, which include supply chain strategy formulation, supplier 

selection, supply chain design, supply chain risk management, and network 

vulnerability and network interdiction. Then based on the research gaps identified, 

more practical approaches are developed by using multi-criteria decision making 

techniques, mathematical programming techniques, and decision analysis theories. 

Three case studies are applied to validate the proposed approaches. A detailed 

introduction of research methodology is discussed in Chapter 3. 

1.5 Outline of the Thesis 

There are seven chapters in this thesis, including this chapter. Table 1.1 briefly 

explains the structure of this thesis and the content of each chapter.    

Chapter 1 introduces the content of the thesis, including the background of this 

study, the researched questions, the study aim and objectives and briefly outlines 

contents of each chapter. 

Chapter 2 reviews the key concepts and key approaches related to strategic decision 

making in the context of supply chain, and critically analyses research gaps that 

need to be filled in future studies. Five interconnected themes are examined in the 

literature review, including supply chain strategy, supplier selection problem, 

supply chain network  design, supply chain risk management, and network 

vulnerability and network interdiction. 
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Chapter 3 presents a conceptual framework for strategic decision making in supply 

chain, and outlines the related research methodologies applied in this thesis and the 

justification for the chosen research approach. It explains the theoretical position 

for researching the strategic decision making approaches in supply chain.  

Table 1.1: Structure of the thesis and the focus of each chapter 

Chapter Focus of the chapter 

Chapter 1  

Introduction 
Overall introduction to the thesis 

Chapter 2 

Literature Review 

Review of theories and methodologies 

relevant to the topic and outline of key 

theories and concepts used in this research 

Chapter 3  

A Decision Framework for 

Strategic Planning in Supply 

Chain and Related 

Methodologies 

A conceptual framework for strategic 

decision making in supply chain, and 

related methodologies used in this research 

Chapter 4  

Supply Chain Partner Selection 

with Trade-off Options 

Supply chain partner selections 

incorporated with strategic trade-off 

options and supply chain level performance 

requirements  

Chapter 5  

Supply Chain Partner Selection 

with Risk Considerations 

Supply chain partner selections 

incorporated with Conditional Value-at-

Risk to account for the risk considerations 

Chapter 6  

Supply Chain Fortification 

Against Worst Case 

Disruptions 

Identification of optimal protection 

strategies against intentional attacks or 

worst case disruptions in supply chains 

Chapter 7  

Conclusion 

Conclusions and assessment of the value of 

this research 
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Chapter 4 develops a quantitative approach for supply chain partner selections and 

design, which incorporates the trade-off options and the supply chain level 

requirements to allow for a greater range of choices and potentially better supply 

chain structures. Details of the definitions of supply chain performance 

measurements and trade-off options are explained. The trade-off constraints are 

integrated into a mixed integer programming model, which allows for multiple 

supply chain characteristic diversifications in the supply chain design process. 

Numerical analysis and a case study of a European chemical company are presented 

in the end of this chapter.  

Chapter 5 continues with the discussion of supply chain partner selections and 

design, and introduces Conditional Value-at-Risk to model the risk consideration 

in the supply chain designing process. A new decomposition scenario management 

approach is proposed to reduce the number of disruption scenarios that are needed 

to be examined in solving the problem. Numerical analysis and a case study of an 

Indian iron and steel company are presented in the end of this chapter.  

Chapter 6 presents a quantitative method for identifying the optimal protection 

strategies against intentional attacks or worst case disruptions in supply chain. A 

new way of defining supply chain networks using graph theory is explained. The 

problem is modeled as a tri-level defender-attacker-user optimization model, which 

is then transformed into an equivalent MIP model using duality theory and standard 

linearization techniques.  Numerical analysis and a case study of a South African 

third party logistics company in vaccine industry are presented in the end of this 

chapter. 
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Chapter 7 presents the overall research conclusions and final remarks.  This chapter 

reviews the theoretical purpose, implications and the contribution of this research. 

The key strengths and limitations of the research are discussed in this chapter, 

followed by recommendations for future research. 

1.6 Summary 

This chapter provides an overview of the research presented in this thesis. Firstly, 

this chapter explains the background and the focus of this research on the strategic 

decision making in supply chain under disruption risks. Then the aim and objectives 

of this study is outlined, followed by a brief introduction of the research approach. 

The next chapter reviews the literature, key concepts and theories related to the 

study. 
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Chapter 2 Literature Review 

2.1 Introduction 

The literature review examines key concepts and key approaches related to strategic 

decision making in the context of supply chain, and critically analyses research 

gaps that need to be filled in future studies. Five interconnected themes are 

examined in this literature review, including supply chain strategy, supplier 

selection problem, supply chain network  design, supply chain risk management, 

and network vulnerability and network interdiction. The review begins with a 

discussion of the definition of supply chain strategy and how to formulate supply 

chain strategies. Then the review focuses on supplier selection problems and supply 

chain network designs. The review examines the evaluation criteria, trade-offs 

between conflicting criteria as well as decision making approaches in supplier 

selection problems, and different approaches used for designing a value creating 

supply chain network. Then the review considers the vulnerability of the supply 

chain network by examining issues regarding supply chain risk management and 

network interdiction problems.  

2.2 Supply Chain Strategy 

2.2.1 Supply chain strategy definition  

Supply chain is defined as a ‘networked organization’ based on a group of 

enterprises collaborating in the value chain to acquire and convert raw materials 

into the final product and deliver the product (Ivanov, 2010). Supply chain 

management is the management of flows of goods and services in supply chain, 
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with the objective of reducing cost and boosting efficiency, as well as sustainable 

value creation. In order to achieve such goals, solid competitive strategy and the 

corresponding supply chain strategy are needed.  Competitive strategy is a holistic, 

long-term plan for a company to establish a competitive advantage that helps the 

company outperform others in the industry and guarantees the profitability of the 

company (Porter, 1985; Porter 1987). The company’s supply chain plays an 

important role in the achievement of the strategic goals specified in the competitive 

strategy. As discussed in Cetinkaya et al, (2011), supply chain strategy serves as a 

bridge between competitive strategy and supply chain operations, which determines 

the goals and configurations of the supply chain in terms of supply chain partners, 

structures, processes and systems.   

2.2.2 Supply chain strategy formulation 

The findings of Mckone et al. (2009) revealed that in practice the supply chain 

strategy is often not linked to the competitive strategy. Even of more concerning 

are the facts revealed in Saad et al. (2002) showing that companies in certain 

industries are weak at adapting the supply chain principles. The reason for such 

phenomenon might lies in the fact that supply chain decisions are commonly based 

on individual company profitability goals (Leng and Chen, 2012), though there are 

increasing number of researchers supporting the idea that a supply chain strategy is 

a single entity system that includes all of the participants in a given supply chain 

(Mintzberg et al., 1998, Schnetzler et al., 2007, Perez-Franco, 2010). In fact, in a 

networked supply chain the risks faced by one organization generally cannot be 

prevented by that company alone. In other words, risk management and reduction 
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in a supply chain also depends on the actions of supply chain partners in the system 

(Heal and Kunreuther, 2010; Rice and Caniato, 2003). As a matter of fact, business 

competitions in contemporary society are no longer between individual companies, 

essentially it has become the competition between supply chains. Therefore, the 

competitiveness of the group of companies in a supply chain depends on strategic 

alignment of operations (Sakka et al., 2011), and this fact obviously indicates the 

importance of a solid supply chain strategy for a company. According to the studies 

of Yinan, Xiande and Chwen(2011), enhancing the strategic alignment between the 

supply chain strategy and the competitive strategy has a clear benefit to business 

performance. 

Various methods have been proposed for the supply chain strategy formulation 

problem. The first stage in supply chain strategy formulation should be 

understanding the customer, and as Fisher (1997) stated, the most important factors 

to be considered in formulating supply chain strategy are the demand nature of the 

product, demand predictability, product life cycle, product variety, market 

standards and influences such as the percentage of demand filled in from in-stock 

products. Fisher (1997) also pointed out that the ‘efficiency’ and ‘responsiveness’ 

of a supply chain strategy are fundamental features for the company’s success. 

Alternatively Narasimhan et al. (2008) developed the supply chain strategy based 

on the assessment of internal and external factors that contribute to or limit a 

company’s potential for competitive success. Qu et al. (2010) optimized the 

configuration of a supply chain strategy by applying analytical target cascading 

(ATC) approaches, in which individual companies in the supply chain are 
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represented as separate elements with autonomous and heterogeneous decision 

systems for optimizing decision variables. Schnetzler et al. (2007) constructed a 

structured system of goals and means based on applying axiomatic design, the 

system is known as “supply chain strategy decomposition”, which translates 

strategic priorities into the supply chain strategic operations to generate value and 

support the corporate strategy. Ivanov (2010) considers supply chain strategy, 

supply chain design, tactic decisions and operational decisions as a conceptual 

system for supply chain planning and adaptation, in which supply chain is 

considered as a complex multi-structural decentralized system with active 

independent elements. Some studies made an attempt to apply engineering 

principles to the supply chain strategy problem. For example, Lertpattarapong 

(2002) proposed a system dynamics approach, which used the causal loop diagram 

as a visualization method for the insight of an existing supply chain problem.  

In conclusion, supply chain strategy plays an important role in bridging the 

competitive strategy and supply chain operations, both of which are crucial to a 

company’s profitability and long-term success. As business competitions nowadays 

are essentially the competition of supply chains, achieving strategic alignments of 

the supply chain is crucial to the competitiveness of each member within the chain. 

The reviewed studies on supply chain strategy formulation have the potential to 

help supply chain managers to formulate supply chain strategies that work best with 

the competitive strategy. These studies on supply chain strategy formulation will 

be considered as one of the theoretical foundations of the decision framework for 

strategic planning in supply chain proposed in Chapter 3.  
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2.3 Supplier Selection Problem 

Since strategic alignment is crucial to business competitiveness, selecting the right 

supply chain partners that fit the company’s strategies then becomes an important 

issue. Supplier selection is a complex problem that is closely related to our research 

interest, and have attracted much research attention over the past fifty years. 

2.3.1 Evaluation criterion 

Ho, Xu and Dey (2010) reviewed 78 papers on supplier selection problem using 

multi-criteria decision making approaches that appeared from 2000 to 2008, and 

found that the most frequently used criteria in literature are: quality, delivery, 

price/cost, manufacturing capability, service, management, technology, research 

and development, finance, flexibility, reputation, relationship, risk, and safety and 

environment. Figure 2.1 illustrates the most popular evaluation criteria in supplier 

selection approaches and their percentage of appearance in literatures reviewed in 

Ho, Xu and Dey (2010). This finding reveals the fact that traditional single criterion 

approaches based on minimizing cost are no longer robust enough to support 

decision makings in supplier selection problems. Hence, supplier selection 

approaches are commonly developed based on Multi-criteria decision making 

techniques. 

Some research efforts are focused on defining and quantifying the characteristics 

of supply chain partners. As with the various evaluation criteria, supplier 

characteristics can be classified into intangible characteristics and tangible 

characteristics. Intangible characteristics such as innovation or service quality are 
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more difficult to define or quantify, and some researchers suggest using the analytic 

hierarchy process (AHP) approach (Wang, Huang, and Dismukes 2004), while 

others use a survey-based performance ratings approach (Sarode, Adarsh, and 

Khodke 2010). The definitions of tangible characteristics are much more 

straightforward, for example reliability is defined as the rate of on-time delivery in 

Van Nieuwhnhuyse and Vandeale (2006), and responsiveness is suggested to be 

defined based on length of lead time and quantity flexibility in Pereira et al (2009). 

Some studies suggest that strategic trade-offs should be considered in optimization 

models in order to contribute valuable insights (Huang and Keskar 2007), and a 

model without specifically quantified criteria incorporated is problematic. The 

reviewed studies will be used as references in terms of choosing the evaluation 

criteria in this research.  

 

Figure 2.1: Evaluation criteria in supplier selection approaches 
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2.3.2 Trade-offs between conflicting criteria 

As a matter of fact, the many characteristics of potential supply chain partners are 

often in conflict, and the challenge for a firm is to choose between these conflicting 

characteristics (Benner and Tushman, 2003; Girotra and Netessine, 2011). These 

trade-offs between characteristics are often critical to the business performance, as 

they are the key to achieving strategic alignment. In recent years, some researchers 

began to consider trade-offs in the modelling of supplier selection problems. Jain, 

Benyoucef, and Deshmukh (2008) highlighted the value of modelling the trade-offs 

and the challenge of defining and quantifying the characteristics of suppliers. Later, 

Chung, Talluri and Narasimhan (2010), and Massow and Canbolat (2014) both 

used optimization models that has incorporated trade-offs to assist supplier 

selections. The optimization model discussed in Chung, Talluri, and Narasimhan 

(2010) selects the best suppliers with a trade-off between flexibility and price taken 

into consideration, the results of which suggest that considering trade-off options 

in a decision model could add value to the analysis. Massow and Canbolat (2014) 

used a mixed integer programming model that allows for diversified supplier 

strategies based on not only capacity constraints but also risk pooling and minimum 

performance requirements. For example, sourcing from both a supplier with less 

risk of disruption and a cheaper supplier from overseas may allow for lower 

purchasing costs while maintaining the risk at an acceptable level. Massow and 

Canbolat (2014) also argue that considering risk pooling and minimum 

performance requirements allows for flexibility in the supply chain decision 
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making process, and may provide a greater range of choices and potentially more 

cost efficient structures that meet strategic objectives.  

In this research, the approach for supply chain partner selection will be developed 

based on the concepts of trade-offs, risk pooling, and minimum requirements 

identified from the above reviewed literatures. 

2.3.3 Decision making approaches in supplier selection 

Various methods have been proposed to solve supplier selection problems in the 

literature, and can be classified into individual decision making approaches and 

integrated decision making approaches. Individual approaches include multi-

criteria decision making techniques, mathematical programming techniques, and 

artificial intelligence techniques; while integrated approaches are the combination 

of several independent approaches, which mainly include integrated AHP (Analytic 

hierarchy process)/ ANP (Analytic network process)  approaches, integrated fuzzy 

approaches, and integrated DEA (Data envelopment analysis) approaches. 

Many different multi-criteria decision making techniques have been applied to 

solve supplier selection problems. Multi-attribute utility methods, such as analytic 

hierarchy process (AHP) and analytic network process (ANP), are commonly used 

in the literature. For example, Levary (2008) uses the analytic hierarchy process to 

evaluate and rank potential suppliers based on supply risks in order to build a 

reliable supply chain. Lin et al. (2010) applied the analytic network process 

technique to cope with an interactive vendor evaluation and selection problem, in 

which the weightings to each dimension and criterion in the evaluation model are 
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arranged by summarizing the opinions of the expert. Outranking methods are also 

applied by some researchers to solve supplier selection problems. For example, 

Sevkli (2010) proposed the fuzzy technique for ELECTRE (ELimination and 

Choice Expressing REality) to deal with the imprecise or vague nature of linguistic 

assessment, and applied the proposed method to a manufacturing company in 

Turkey. In general, the ELECTRE method first constructs the outranking relations 

to compare each pair of alternatives, and then go through an exploitation procedure 

that elaborates on the recommendations obtained in the first phase. Chen et al. 

(2011) presents the fuzzy Preference Ranking Organization Method for Enrichment 

Evaluation (fuzzy PROMETHEE) to evaluate four potential information system 

suppliers using seven criteria in an outsourcing context. In general, PROMETHEE 

method starts by making pairwise comparisons through preference functions, a 

multi-criteria preference degree is then computed to globally compare every couple 

of actions, after which the positive and negative preference flows are calculated and 

aggregated into the net preference flow, which will help to determine the complete 

ranking. Besides Multi-attribute utility methods and outranking methods, we can 

also see some application of compromise methods (Yu, 1973) in the supplier 

selection literature. In such methods, a compromise denotes an agreement on the 

basis of mutual concessions, and a compromise solution is the closest solution to 

the ideal one. Chen and Wang (2009) uses the fuzzy VIKOR method to evaluate 

and assess possible suppliers/vendors in an information system/information 

technology (IS/IT) outsourcing problem. In general, the VIKOR method 

determines the best compromise solution from the set of feasible alternatives 
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according to the set of criterion functions, in which each criterion function is 

assigned a best and a worst value. 

Supplier selection problems can also be solved using mathematical programming 

techniques. Wu and Blackhurst (2009) proposes a supplier evaluation and selection 

method based on the data envelopment analysis (DEA) approach, in which weight 

constraints are introduced to reduce the possibility of having inappropriate input 

and output factor weights. Hsu et al. (2010) applies a well-known method used in 

fuzzy sets theory called “the resolution identity result”, to solve nonlinear 

programming problems with bounded variables, and then the best suppliers are 

selected by applying a ranking method of fuzzy preference relations of suppliers. 

Yu et al. (2012) applies a fuzzy multi-objective program (MOP) to solve a vendor 

selection problem under lean procurement, which is based on cost minimization, 

delivery schedule violation minimization, and quality level maximization. Kull and 

Talluri (2008) proposes an integrated method of analytic hierarchy process and goal 

programming (GP) for supplier selection problems with disruption risks and 

product life cycle considerations. Li and Zabinsky (2011) considers a two-stage 

stochastic programming model and a chance-constrained programming model to 

determine a minimal set of suppliers and optimal order quantities with 

consideration of business volume discounts, in which the uncertainty of demand as 

well as supplier capacity are incorporated into the supplier selection problem. 

Methods in artificial intelligence techniques are also applied in supplier selection 

problems. Guneri et al. (2011) proposes an approach for supplier selection based 

on Adaptive Neuro-Fuzzy Inference System (ANFIS), in which criteria are first 
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reduced by applying ANFIS input selection method followed by the construction 

of ANFIS structure using data related to selected criteria and the output of the 

problem. ANFIS integrates both neural networks and fuzzy logic principles in a 

single framework, in which the inference system corresponds to a set of fuzzy IF–

THEN rules that have learning capability to approximate nonlinear functions. Lee 

and Ouyang (2009) presents an artificial neural network-based predictive model 

with application for forecasting the supplier’s bid prices in supplier selection 

negotiation process (SSNP). A method of potential support vector machine 

combined with decision tree is introduced in Guo et al. (2009) to address issues on 

supplier selection including feature selection.  

Examples of Integrated AHP/ANP approaches include integrated AHP and DEA 

(Saen, 2007), integrated AHP and goal programing (Mendoza et al., 2008), 

integrated AHP and multi-objective programing (Xia and Wu, 2007), and 

integrated ANP and multi-objective programing (Demirtas and Üstün, 2008). In 

terms of the integrated fuzzy approaches, Kahraman et al. (2003) presented an 

integrated fuzzy AHP approach for supplier selection, in which preferences about 

the importance of each evaluating criterion could be specified using linguistic 

variables. Jain et al. (2004) suggested an integrated fuzzy and genetic algorithm 

(GA) based approach for supplier selection, in which GA was integrated to generate 

a number of rules inside the rule set according to the nature and type of the priorities 

associated with the products and their supplier’s attributes. Integrated DEA 

approaches are discussed in Talluri et al. (2008), which utilized a combination of 

input oriented DEA and multi-objective programming models to determine the 
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negotiation strategies with efficient suppliers. The advantage of integrated 

approaches is the combined strengths from each individual approach, though 

sometimes the integrated approaches may be more difficult to implement. 

According to the review of Ho, Xu and Dey (2010), the most popular individual 

approach for supplier selection problem is data envelopment analysis (DEA), while 

the most popular integrated approach is the AHP-GP approach (Analytic hierarchy 

process-Goal programming).  However, both approaches have limitations. For 

DEA, there are two major drawbacks. Firstly, the assignment of ratings to 

qualitative criteria is subjective. The second concern is due to the nature of DEA, 

in which suppliers generating more outputs while requiring less input are 

considered as more efficient，but an efficient supplier may not be equivalent to an 

effective supplier. For AHP-GP, the major concern is that it may be time-

consuming in reaching consensus while using the AHP.  

In conclusion, supplier selection is a complex multi-criteria decision making 

problem, which is of crucial importance to the competitiveness of a company. The 

evaluation criteria for potential suppliers are often in conflict with each other, 

therefore it is suggested in the literature that trade-offs between conflicting criteria 

need to be considered in the decision making process. Various decision making 

approaches in supplier selection are reviewed, including multi-criteria decision 

making techniques, mathematical programming techniques, artificial intelligence 

techniques, as well as integrated approaches such as integrated AHP/ANP 

approaches, integrated fuzzy approaches, and integrated DEA approaches. In some 

articles, vendor selection was discussed in an outsourcing context, which 
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essentially belongs to a supplier selection problem. Approaches that deal with the 

selection and evaluation of all types of supply chain partners are rarely seen in the 

literature. 

2.4 Supply Chain Network Design 

The design of supply chain networks (SCN) is another closely related topic, which 

could be categorized into deterministic SCN design, and SCN design under 

uncertainty. SCN design models can have one or multiple objective functions, and 

therefore can be further classified into single-objective SCN design models and 

multi-objective SCN design models. In this section, we will review supply chain 

network design literatures based on the above two classifications. 

2.4.1 Deterministic supply chain network design models 

Facility location models (Drezner, 1995; Daskin et al., 2003), which are 

deterministic models, can be considered as the foundation of SCN design models. 

Classic facility location problems are developed to cope with the optimal placement 

of facilities to minimize costs while considering other factors like avoiding placing 

hazardous materials near certain facilities. Recent research efforts in facility 

location models have been focused on developing location models incorporated 

with transportation and inventory management decisions (Shen 2007; Berger et al. 

2007; Romeijn et al. 2007), and deterministic multi-period SCN design models 

(Vila et al 2006; Paquet et al. 2008).  

Besides facility location models, other mathematical programing models are also 

applied to solve SCN design problem. Costi et al. (2004) presents a mixed integer 
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nonlinear programing (MINLP) model for the location of treatment facilities for 

solid waste management, in which the objective function concerns the economic 

cost while the environmental issues are modeled as constraints. Georgiadis et al. 

(2011) proposed a mixed integer linear programing model for the problem of 

designing supply chain networks operating under time varying demand uncertainty, 

which was solved to global optimality using standard branch-and-bound techniques. 

Qiang and Nagurney (2012) developed a linear programing network model for 

critical needs in the case of disruptions, in which the objective is to minimize the 

total generalized costs that may include the monetary, risk, time, and social costs. 

Elia et al. (2011) proposed a mixed-integer linear program to analyze the energy 

supply chain network for the hybrid coal, biomass, and natural gas to liquids 

(CBGTL) facilities, and the objective function is to minimize the total cost of 

facility investment, feedstock purchase and transportation.  

The above mentioned works are all based on single-objective optimization models, 

while some authors consider multiple objectives in deterministic SCN design 

problems. For example, Chaabane et al. (2012) proposed a multi-period mixed-

integer linear programming based framework for sustainable supply chain design, 

in which two objectives are considered: one is the traditional economic objective 

while the other is concerned with an environmental objective. Quariguasi Frota 

Neto et al. (2008) proposed a bi-objective model for the design and evaluation of 

sustainable logistic networks, in which balancing the profitability and 

environmental impacts is the objective. Erkut et al. (2008) develop a multi-criteria 

facility location model with multiple objectives for the municipal solid waste 
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management, which has five objective functions, one is concerned with minimizing 

total cost of facilities implementation and flows, and the other four are all related 

to environmental impacts. Yue et al. (2014) developed a multi-objective 

optimization model for the sustainable design of bioelectricity supply chain 

networks, which simultaneously considers economic, environmental, and social 

impacts, in which the multi-objective problem is solved by applying the ε-

constraint method. Table 2.1 summarizes the problem formulations discussed in 

literature with respect to deterministic supply chain network design models.  

Table 2.1: Summary of formulation used in deterministic supply chain network design 

 Formulation Literature 

Single 

Objective 

Facility location model 

Drezner (1995) 

Daskin et al. (2003) 

Vila et al (2006) 

Shen (2007) 

Berger et al. (2007) 

Romeijn et al. (2007) 

Paquet et al. (2008) 

Mixed integer nonlinear 

programming model * 
Costi et al. (2004) 

Mixed integer programming 

model * 

Georgiadis et al. (2011) 

Elia et al. (2011) 

Linear programming model * Qiang and Nagurney (2012) 

Multiple 

Objective 

Multi-period mixed integer 

programming model * 
Chaabane et al. (2012) 

Multi-objective programming 

model * 

Quariguasi Frota Neto et al. 

(2008) 

Yue et al. (2014) 

Multi-criteria facility location 

model 
Erkut et al. (2008) 

* stands for models that do not belong to facility location models 
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2.4.2 Supply chain network design under uncertainty 

While deterministic SCN design models provide a solid foundation for SCN design 

problems, the solutions from deterministic models cannot guarantee future 

performance, since deterministic models do not take uncertainties into 

consideration. Uncertainties in supply chain are often modeled by considering 

uncertain parameters as random variables, and the static program turns into a two-

stage stochastic program, in which the design variables must be implemented 

before the outcome of the random variables. Mak and Shen (2012) proposed 

stochastic facility location models for supply chain network design with dynamic 

sourcing under the risk of temporally dependent and temporally independent 

disruptions of facilities, and argue that allowing small to moderate degrees of 

dynamic sourcing can improve robustness against both demand uncertainty and 

disruptions. Baghalian, Rezapour, and Farahani (2013) considers demand-side and 

supply-side uncertainties simultaneously in designing a supply chain network with 

multi-product and capacitated facilities, and developed a stochastic mathematical 

formulation to solve the problem. Verma et al. (2013) proposed a two-stage 

stochastic programming approach developed based on facility location models, to 

determine both the location and stockpile of equipment at the emergency response 

facilities to respond to oil spill events.  

Some authors also considered multiple objectives in stochastic SCN design 

problems. For example, Amin and Zhang (2013) investigate the impact of demand 

and return uncertainties in a closed-loop supply chain by implementing scenario-

based stochastic programming, and both cost minimization and minimizing 
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environmental impacts are considered. Ruiz-Femenia et al. (2013) analyze the 

effect of demand uncertainty on the economic and environmental performance of a 

chemical supply chain, in which they developed a stochastic multi-scenario mixed-

integer linear program (MILP) with two objectives. Guillén-Gosálbez and 

Grossmann (2009) considers simultaneously the maximization of the net present 

value and the minimization of the environmental impact in a bi-criterion stochastic 

mixed-integer nonlinear program (MINLP) for the design of sustainable chemical 

supply chains subjected to life cycle inventory uncertainty. The major difficulty in 

solving stochastic programing models is to cope with the potentially infinite 

number of scenarios. 

The concept of robustness in SCN design has raised many discussions, and 

robustness is defined as the ability of a SCN to carry its functions under all plausible 

future scenarios (Dong 2006). A comprehensive literature review on the design of 

robust supply chain networks can be found in Klibi, Martel and Guitouni (2010). 

Yu and Li (2000) reformulated a stochastic problem into a robust optimization 

model, and the method used to solve the robust model is to transform it into a linear 

program that requires adding n+m variables, which is shown to be highly efficient 

in solving logistics management problems. Snyder and Daskin (2006) developed a 

p-robust facility location model that combines the advantages of traditional 

stochastic and robust optimization approaches, in which the model seeks the 

minimum-expected-cost solution that is p-robust (whose relative regret in each 

scenario is no more than p). Compared to stochastic programing approaches, robust 

optimization models are usually easier to be implemented. However, in practice the 
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problems that robust approaches can be applied to need to be well defined in terms 

of the uncertainty set, and the solution of robust optimization models can be very 

conservative in some cases. Table 2.2 summarizes the approaches used in the 

literature in terms of supply chain network design under uncertainty. 

Table 2.2: Summary of formulation used in supply chain network design under uncertainty 

 Formulation Literature 

Single 

Objective 

Stochastic facility location 

model 
Mak and Shen (2012)  

Stochastic programming 

model * 

Baghalian, Rezapour, and 

Farahani (2013) 

Verma et al. (2013) 

Robust optimization model * Yu and Li (2000) 

p-robust facility location 

model 
Snyder and Daskin (2006) 

Multiple 

Objective 

Stochastic multi-objective 

programming model * 
Amin and Zhang (2013) 

Multi-objective stochastic 

facility location model 

Guillén-Gosálbez and 

Grossmann (2009) 

Ruiz-Femenia et al. (2013) 
* stands for models that do not belong to facility location models 

 

2.4.3 Other classifications 

Besides classifying the SCN design models based on the deterministic and 

stochastic nature or number of objectives considered, some authors consider other 

classifications based on the nature of problems that the SCN design models are 

solving. In Schmidt and Wilhelm (2000), the reviewed literature are classified 

according to the operational, tactical and strategic decision levels. The strategic 

level decisions deal with designing the supply chain network, including facility 

locations and capacity allocations. The tactical level decisions are related to 

material flow management, including production planning and control, inventory 
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levels, and lot sizes. The operational level decisions cope with scheduling 

operations to make sure that the final products will be delivered in-time to 

customers. Lemmens et al. (2016) classifies the existing literature about SCN 

design based on network characteristics, and the reviewed models are classified as 

Location-allocation models, Inventory-location models, and Production-

distribution models. Location-allocation models (Pappis and Karacapilidis 1994; 

Shankar et al. 2013) mainly deal with facility locations, demand allocation, and the 

trade-off between facility costs and transportation costs. Inventory-location models 

(Erlebacher and Meller 2000; Shen et al., 2003) are developed based on the 

location-allocation models, which also considered inventory costs. Production-

distribution models (Gebennini et al., 2009) includes production decisions besides 

locating the DCs and allocating demands.  

From the review, it can be concluded that existing literatures on SCN design 

provide support on strategic and tactical decision making in certain parts of the 

supply chain. The review on supply chain network design approaches can be served 

as references in the development of our approach for the supply chain partner 

selection problems. However, most of the models discussed in the literature are NP-

hard problems, and thus the already high computational complexity makes it very 

challenging to consider the entire supply chain in a SCN design model. As it is 

pointed out in Klibi, Martel and Guitouni (2010), most of the literatures in SCN 

design models are either trying to get the best outcome with minimum cost or to 

mitigate the consequences of uncertainties or disruptions. However, this kind of 

objective is not sufficient to help a company to develop and keep its competitive 
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advantage, the real goal of a company should be sustainable value creation, which 

indicates that strategy alignment of the supply chain should be an important factor 

in designing a value added supply chain. 

2.5 Supply Chain Risk Management 

2.5.1 Definition of supply chain risk 

Definitions of supply chain risk in literature have not reached consensus. Some 

researchers provide definitions that focus on specific parts of supply chain, for 

example, Ellis, Henry, and Shockley (2010) focus on supply risk and define supply 

chain risk as ‘an individual’s perception of the total potential loss associated with 

the disruption of supply of a particular purchased item from a particular supplier’; 

the definition given in Jüttner, Peck, and Christopher (2003) says that ‘supply chain 

risk is any risk for the information, material and product flows from original 

suppliers to the delivery of the final product for the end user’. Some authors define 

supply chain risks from a general perspective. For example, Bogataj and Bogataj 

(2007) define supply chain risk as ‘the potential variation of outcomes that 

influence the decrease of value added at any activity cell in a chain’; in Ho et al. 

(2015), the definition of supply chain risk is given as ‘the likelihood and impact of 

unexpected macro and/or micro level events or conditions that adversely influence 

any part of a supply chain leading to operational, tactical, or strategic level failures 

or irregularities’, and they further defined supply chain risk management as ‘an 

inter-organizational collaborative endeavor utilizing quantitative and qualitative 

risk management methodologies to identify, evaluate, mitigate and monitor 
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unexpected macro and micro level events or conditions, which might adversely 

impact any part of a supply chain’. Norrman and Jansson (2004) proposed a risk 

matrix which illustrates that risk in supply chain is determined by both the 

probability of disruption event and its business impact. Figure 2.2 presents the risk 

matrix discussed in Norrman and Jansson (2004). 

 

Figure 2.2: Risk matrix (Norrman and Jansson, 2004) 

2.5.2 Supply chain risk types 

Researchers have classified supply chain risks in different ways in the literature.  

Tang and Musa (2010) classify supply chain risk according to the flow types, and 

reviewed major issues discussed in material flow risk, financial flow risk and 

information flow risk. The common issues regarding material flow risk can be 

further categorized into sourcing risks, manufacture risks and deliver risks. 

Sourcing risks include single source risk (Peck et al., 2003), flexible supplier 

sourcing (Kamrad and Siddique, 2004) and risks regarding supplier selection and 
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outsourcing (Berger et al., 2004). Studies about manufacture risks mainly discuss 

production capacity risk (Fang and Whinston, 2007) and operational disruption 

(Tomlin, 2006). Deliver risks are caused by demand volatility, balance of unmet 

demand and excess inventory, while these issues are often affected by the 

forecasting difficulties (Tang and Musa, 2010). Financial flow risks include 

exchange rate risk, price and cost risk and financial handling risk, and relevant 

studies can be found in Goh et al. (2007), Bovet(2006) and Hartley-Urquhart (2006). 

Financial strength of supply chain partners is also an important issue in financial 

flow risk, Hendricks and Singhal (2005) empirically investigates financial flow 

vulnerability and long-term effect of supply chain disruptions with focus on 

financial strength of supply chain partners. Information flow risk is another 

important issue in Supply Chain Risk Management, but the research in this area is 

still in an early stage, and there is a lack of quantitative models in information flow 

analysis (Tang and Musa, 2010). It appears that while literatures on managing 

single risks are well developed, the research effort in analyzing and mitigating the 

vulnerability of the supply chain with multiple types of risks taken into 

consideration is hardly seen. Though there is a growing awareness of supply chain 

risk management in industry, quantitative models for analyzing and mitigating the 

risks in supply chain is still lacking.  

Another type of classification is based on the nature of risks. For example, Olson 

and Wu (2010) reviews supply chain risk management literature and supply chain 

risks are categorized into internal risks and external risks. Internal risks come from 

uncertainties in activities inside the supply chain such as available capacity, internal 



32 
 

operations and information systems, while external risks are mainly due to factors 

outside of the supply chain, like natural disasters, political system, competitors and 

market uncertainties. Similarly, in Ravindran et al. (2010), supply chain risk is 

divided into operational risk and disruption risk. Some researchers classified supply 

chain risk types according to the degree of impact. For example, Ho et al. (2015) 

argue that supply chain risks can be divided into macro risks and micro risks, where 

macro risks consist of natural disasters and man-made risks (e.g. war, terrorism and 

political instability) that have relatively greater negative impacts, and micro risks 

come from operations within the supply chain and can be further categorized into 

demand risk, manufacturing risk, supply risk and infrastructural risk.  

In conclusion, supply chain risks can be categorized based on different types of 

flow (material flow, financial flow and information flow), external and internal 

factors, and degree of negative impact (macro risks and micro risks). Figure 2.3 

illustrates the conceptual framework of supply chain risks proposed in Ho et al. 

(2015). In this research, the risk in supply chain will be examined by different types 

of flows, specifically, in the partner selection problems (Chapter 4 and 5), since we 

are focusing more on the supply chain’s overall ability of delivering products to 

customers, the disruption risk will be examined mainly from material flow (which 

will be divided into raw material flow and product flow), while all three types of 

flows are considered in Chapter 6. 
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Figure 2.3: Conceptual framework of supply chain risks (Ho et al., 2015) 

2.5.3 Supply chain risk mitigation 

In terms of supply chain risk mitigation, significant amount of research efforts have 

been devoted in demand risk mitigation and supply risk mitigation. For demand 

risk mitigation, one of the natural problems is how to make replenishment plans to 

best cope with demand uncertainty. Snyder, Daskin, and Teo (2007) proposed a 

stochastic integer linear programming model with risk pooling to optimize location, 

inventory, and allocation decisions under demand uncertainty. Schmitt and Singh 

(2012) developed a simulation model to analyze inventory placement and back-up 

methodologies in a multi-echelon network under supply disruptions and demand 

uncertainty. Some researchers focus their effort on the optimal forecasting 

techniques to mitigate demand risk, for example, a simulation-based decision 
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support framework is presented in Crnkovic, Tayi, and Ballou (2008) to evaluate 

and select alternative forecasting methods in a supply chain under demand 

uncertainty. Another risk mitigating method to deal with demand uncertainty is to 

use risk-sharing contracts to minimize the loss due to uncertain demand. For 

example in Chen and Yano (2010), a weather-linked rebate is proposed to help 

improve the manufacturer’s expected profit in a manufacturer-retailer supply chain 

for a seasonal product whose demand is weather sensitive.  

For supply risk mitigation, both quantitative and qualitative approaches are applied 

in literature. Examples of using quantitative methods to determine supplier 

selection and order allocation include newsvendor model (Giri 2011), data 

envelopment analysis (Wu and Blackhurst, 2009)), stochastic optimization model 

(Li and Zabinsky, 2011), and fuzzy multi-objective program (Yu et al., 2012). Some 

authors discussed the decision of optimal number of suppliers in a supply chain 

subjected to disruption risks, and there is a consensus that a dual-sourcing strategy 

outperforms single-sourcing strategy in the presence of  supply disruptions 

(Xanthopoulos, Vlachos, and Iakovou, 2012). There are also some empirical studies 

showing that supply risk can be mitigated by building strategic relationships with 

suppliers (Hallikas et al., 2005), as well as through early supplier involvement 

(Zsidisin and Smith, 2005). 

The mitigation methods for other types of supply chain risks are also discussed in 

literature, though the research attention is limited compared with that of supply and 

demand risks. Kenné, Dejax, and Gharbi (2012) discussed manufacturing risk 

mitigation by proposing a manufacturing/remanufacturing policy to deal with the 
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production planning and control problem in a closed-loop reverse logistics network 

with machines subject to random failures and repairs. Lundin (2012) applied the 

network flow modelling to mitigate the financial risks in the closed-loop supply 

chains. Le et al. (2013) proposed an association rule hiding algorithm to remove 

sensitive knowledge from the released database, and mitigate information risks by 

minimizing the data distortion. Hale and Moberg (2005) presented a five-stage 

disaster management framework for macro-risks mitigation, in which the 

framework consists of planning, mitigation, detection, response and recovery.  

The literatures on supply chain risk mitigation have provided another layer of 

understanding on supply chain risk management by discussing the detailed methods 

to mitigate different types of supply chain risks, and can provide guidance in our 

discussion of supply chain fortification strategies against disruptions in Chapter 6. 
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2.6 Network Vulnerability and Network Interdiction 

2.6.1 Network vulnerability 

There is no consensus on the definition of network vulnerability in the literature. 

Generally, the definition of network vulnerability can be summarized as: a network 

is considered to be vulnerable if the closure of a set of network elements can cause 

significant reduction in the network performance. Various methodologies for 

measuring network vulnerability have been proposed in the literature. For example, 

importance and exposure measure is proposed in Jenelius et al. (2006) and further 

developed in Jenelius et al. (2012); Primerano and Taylor (2005) and Taylor et al. 

(2012) use accessibility measure to study network vulnerability; a measurement 

developed based on network efficiency is discussed in Holme et al. (2002) and 

Chen et al. (2012); Kurauchi et al. (2009), and Dinh et al. (2012) discuss network 

vulnerability from a connectivity point of view; Erath et al. (2010) consider network 

vulnerability measurement as the direct and indirect consequences of disruptions; 

in Chen and Miller-Hooks (2012), the measure of resilience is considered as an 

indicator of network vulnerability. Generally, under each of these measures, a set 

of network elements is said to be critical if the change in vulnerability measure is 

most significant when this set of network elements is down. Studies in this area 

mainly focused on developing the definition of network vulnerability, but little 

effort was made to improve the computational efficiency. However, the 

computational burden of this approach can be quite heavy, especially for large 

networks.  
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2.6.2 Network interdiction 

Network interdiction problem originates from military applications. It involves two 

players: one is called the attacker, and the other is the defender. The defender uses 

the network to optimize some objective such as maximizing the amount of flow 

that can be pushed through the network or minimizing the cost of travelling through 

the network, while the attacker can operate to impact the functionality of the 

network under a given budget so as to minimize (or maximize) the defender’s 

objective function. Network interdiction is an instance of a static Stackelberg game 

(Simaan and Cruz, 1973), and can be applied to different types of network systems 

such as transportation network, grid network, and water/oil/gas supply network. 

For deterministic network interdiction problems, the most basic models are the max 

flow network interdiction problem (Wood, 1993) and the shortest path network 

interdiction problem (Fulkerson and Harding, 1977). Shortest path network 

interdiction problem can be formulated as a mixed-integer-program (MIP), which 

can be solved readily (Israeli and Wood, 2002). Other variants of shortest path 

model can be found in Malik, Mittal and Gupta (1989) and Corley and Sha (1982). 

Lim and Smith (2007) extend the interdiction models to multi-commodity networks. 

A network interdiction model can be considered as a bi-level optimization problem, 

where the higher level is a resource allocation problem for the attacker and the 

lower level is a shortest path or max flow problem for the defender (Shimizu, 

Ishizuka and Bard, 1997). Although network interdiction models can help to 

identify the vulnerable parts of the network, protection strategies that are developed 

based on such information will often lead to suboptimal solutions (Brown et al., 
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2006). In recent years, tri-level optimization problem has been applied by 

researchers to develop optimal protection strategies. In tri-level programs, we are 

dealing with min-max-min or max-min-max problems, i.e., the defender or network 

user has some knowledge about the interdiction and wants to defend some arcs or 

nodes under a certain budget so that the loss due to interdiction is minimized. For 

example, Brown et al. (2006) studied the Defender-Attacker-Defender Model, 

which is developed based on the max flow network interdiction model, and argue 

that the final formulation can be solved with Benders decomposition. Cappanera 

and Scaparra (2010) develop a game theoretic approach to decide the optimal 

allocation of protection resources in a shortest path network. Jin et al. (2015) 

developed a tri-level defender–attacker–user game theoretic model for the optimal 

allocation of protective resources among rail stations in the rail transit network, and 

the model is solved by applying a nested variable neighborhood search method. 

In stochastic variant of network interdiction problems, the interdiction is successful 

with a known probability and the success of interdiction on each arc is independent, 

while the objective is to optimize the expected value of shortest path length or the 

total flow; in other versions of the stochastic network interdiction model, the arc 

capacities or topology of the network are uncertain, and multiple interdiction 

attempts may take place (Cormican, Morton and Wood, 1998). A two-stage 

stochastic mixed-integer program with recourse was proposed in Pan, Charlton, 

Morton (2003) to identify locations for the installation of nuclear material detectors. 

Held, Hemmecke, Woodruff (2005) proposed to solve the stochastic network 

interdiction problem by a decomposition-based method. 
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The causes of supply chain vulnerability can be categorized into two types: the 

randomness of nature (natural disasters or accidents) and intentional acts of 

intelligent attacker (competitors or dissatisfied labor unions). We believe these two 

different sources of vulnerability should be characterized separately. Specifically, 

reliability theoretic models are more suitable for analyzing networks subjected to 

randomness of nature, while game theoretic models are more appropriate for 

networks that are sensitive to intentional attacks (Golany, Marmur and Rothblum, 

2008). Lawrence et al. (2016) classify supply chain disruptions into endogenous 

disruptions and exogenous disruptions, and point out that endogenous disruptions 

may be affected by the decision-maker’s actions while exogenous disruptions 

cannot be affected. Therefore, endogenous disruptions can only be modeled using 

stochastic process, while exogenous disruptions such as natural disasters and 

accident are often modeled in worst-case disruption models. 

Interdiction models can also be applied in facility location problems. Church et al. 

(2004) presented two interdiction facility location models, the distance-based r-

interdiction median (RIM) problem and the coverage-based r-interdiction covering 

(RIC) problem, in which r out of p facilities are to be chosen to interdict in order to 

cause as much deterioration as possible. Church and Scaparra (2006) present an r-

interdiction median problem with fortification (RIMF), in which q facilities out of 

p existing facilities are chosen to be fortified, in order to minimize the increase in 

demand-weighted distance caused by a worst case facility interdiction. A 

capacitated version of the RIMF is proposed in Scaparra and Church (2012). The 

major differences between network interdiction models and interdiction facility 
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location models are that interdiction can only happen on nodes, and the post-

interdiction measure of interest is the distance or travel cost instead of max-flows 

or shortest path. 

To sum up, research efforts in network vulnerability mainly focused on the 

definition of vulnerability index, while little effort was made to improve the 

computational efficiency. In fact, the computational burden of this approach is quite 

heavy, especially for large networks. The most recent research attentions on 

network interdiction models are related to tri-level network interdiction models and 

stochastic network interdiction models. Network interdiction models are especially 

useful in formulating problems that concern with exogenous disruptions or 

intentional attacks. In Chapter 6, a tri-level network interdiction model is developed 

to formulate the supply chain fortification problem against worst case disruptions. 

2.7 Summary 

This review has outlined key areas in the literature that may enhance the 

understanding of strategic decision making in the supply chain context, which 

includes supply chain strategy formulation, supplier selection problems, supply 

chain network design, supply chain risk management, and network vulnerability 

and network interdiction.  

Supply chain strategy plays an important role in bridging the competitive strategy 

and supply chain operations, both of which are crucial to a company’s profitability 

and long-term success and achieving strategic alignments of the supply chain is 

crucial to the competitiveness of the entire supply chain. One of the first steps 
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towards strategic alignments is to select an optimal portfolio of suppliers. Supplier 

selection is a complex multi-criteria decision making problem, in which the 

evaluation criteria for potential suppliers are often in conflict with each other, and 

therefore trade-offs between conflicting criteria need to be considered in the 

decision making process. Though many techniques have been developed in the 

literature to deal with supplier selections, the research focus is still on optimizing 

one part of the supply chain partner portfolio. In order to achieve strategic 

alignments of the entire supply chain, approaches that deal with the evaluation and 

selection of all types of supply chain partners need to be developed. 

Existing literatures on SCN design provide supports on strategic and tactical 

decision making in certain parts of the supply chain. Most of the models discussed 

in the literature are NP-hard problems, and thus the already high computational 

complexity makes it very challenging to consider the entire supply chain in a SCN 

design model. The traditional objective of minimizing cost or minimizing negative 

impacts of uncertainties or disruptions is not sufficient to help a company to 

develop and keep its competitive advantage, where the real goal of a company 

should be sustainable value creation. Multi-objective SCN design models have 

been well developed in the area of green supply chain designs. There is a potential 

for considering multi-objective models for designing a sustainable value creation 

supply chain. 

Risks due to uncertainties or disruptions in supply chain is another crucial area that 

needs to be considered in the strategic decision making process of supply chain 

manager. While literatures on managing single risks are well developed, the 



42 
 

research effort in analyzing and mitigating the vulnerability of the supply chain 

with multiple types of risks taken into consideration is hardly seen. Studies that 

examine the impacts of multiple risk mitigating methods on the supply chain 

performance or the approaches that can mitigate multiple types of risks are needed 

in the future.  

Studies on network vulnerability and network interdiction can bring insights to the 

strategic decision making in supply chain as well. Studies in network vulnerability 

mainly focused on the definition of vulnerability index, but the computational 

burden of this approach is quite heavy for large networks. Network interdiction 

models are especially useful in formulating problems concerning exogenous 

disruptions or intentional attacks. It is revealed in the literature that fortification 

strategies based on the solution of traditional bi-level network interdiction models 

may lead to sub-optimal results, and tri-level models based on defender-attacker-

user problems are developed to fill the gap. While there are a wide variety of 

application of network interdiction models in different network systems, 

applications of network interdiction models in supply chain context is limited in the 

literature. 

In summary, through the literature review we have identified the following research 

gaps: firstly, there is a lack of approaches dealing with the evaluation and selection 

of supply chain partners throughout the supply chain in the literature; secondly, 

there is a need of research effort in analyzing and mitigating the vulnerability of the 

supply chain with multiple types of risks taken into consideration; thirdly, there is 

a lack of applications of network interdiction models in supply chain context.   
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To fulfill these research gaps, this study is intended to provide a holistic framework 

for strategic decision making in supply chain context, which addresses both partner 

selection decisions and protection strategies against worst case disruptions. In 

particular, we introduce a supply chain partner selection approach for achieving the 

strategic alignment in supply chain, which is also incorporated with risk 

considerations. The proposed approach for supply chain partner selection addresses 

the first research gap. A tri-level defender-attacker-user network interdiction model 

is also developed to identify the optimal protection strategies against worst case 

disruptions in supply chain, which aims at addressing the second and third research 

gaps. Case studies are provided to illustrate the strengths of the proposed 

approaches. The research methodology that guided the research designs in this 

study is discussed in the next chapter. 
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Chapter 3 A Decision Framework for Strategic Planning in Supply 

Chain and Related Methodologies 

This chapter starts by presenting a decision framework for strategic planning in the 

supply chain and specifies the research questions and research focus of this thesis. 

Then this chapter presents a brief introduction to the related methodologies used in 

this research. 

3.1 A Decision Framework for Strategic Planning in Supply Chain 

Based on the concepts and approaches identified in the literature review, we 

developed a conceptual framework for the strategic decision making in the supply 

chain, which is presented in Figure 3.1. Essentially, the decision framework starts 

from the formulation of competitive strategy, followed by the formulation of supply 

chain strategy. After that comes the supply chain design phase, and then the supply 

chain implementation phase. Once in the implementation phase, supply chain 

evaluation is also activated, which provides feedback and enables adjustments for 

the previous phases (namely, competitive strategy, supply chain strategy, and 

supply chain design). Product management and information management are 

factors that can influence the above phases. 

More specifically, in the formulation of competitive strategy, the company should 

specify a long-term plan for establishing a competitive advantage that guarantees 

the profitability and sustainable growth of the company, as well as developing new 

products that match this long-term plan. In the next phase, once the competitive 

strategy is determined, a company should come up with a detailed supply chain 
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strategy that best fits its competitive strategy and business priorities. The third 

phase comes afterwards, in which the company should build its supply chain based 

on its supply chain strategy and collectible information about potential partners in 

supply chain. This process involves supply chain partner selection and supply chain 

structure design. The strategic decisions in this phase are complicated due to the 

multiple conflicting criteria in the partner selection problems and supply chain 

structure designs. The next phase is the supply chain implementation, which 

includes supply chain risk management and protection planning against worst case 

disruptions, tactical allocative planning decisions, and operational tasks. Last but 

not least is the supply chain evaluation. Companies should evaluate the degree to 

which each level of decisions, namely the competitive strategy, supply chain 

strategy and supply chain design, is still valid under the ever-changing business 

environment, and the degree to which each level of decisions is still in alignment 

with each other.  

Product management will influence the formulation of competitive strategy, supply 

chain strategy, supply chain design, and information management. The product 

development in product management will also be influenced by the competitive 

strategy, since the competitive strategy will determine the detailed product 

characteristics. And product management has an impact on the formulation of 

competitive strategy because the nature of the product will influence a company’s 

competitive strategy. For example, functional products like gasoline will lead to an 

efficiency-focused supply chain, while innovative products like the smartphone 

will often be delivered through a responsive supply chain. Product management 



46 
 

also has an influence on the information management system of the company, 

because the product characteristic will determine the level of involvement of the IT 

programs and systems in the company’s daily operations. Product management can 

further influence supply chain implementation through information management 

systems. Information management systems will support the tactical and operational 

decisions in the implementation phase, by reducing unnecessary procedures and 

improving efficiency. 

In conclusion, the proposed framework is a closed-loop system with a self-adjusting 

capability, which aims at maintaining competitive advantage and achieving 

sustainable value creation for the company. 
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Figure 3.1: A decision framework for strategic planning in supply chain 

The main inputs of this framework are the business plan, capital, facilities and 

manpower, and the outputs are the strategic decisions at each phase and sustainable 

value creation capability. Supply chain disruptions can be considered as an external 

factor that can affect the above-mentioned closed-loop and self-adjusting system, 

and it would be both interesting and important to consider the interactions between 

disruptions and the strategic decision system, and more importantly, to study how 
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the strategic decision framework can be effectively enhanced to produce more 

robust strategies, such that the supply chain will be better prepared for or even 

immune to the future disruption events. Therefore in this thesis, the research focus 

is on the supply chain partner selection problems under disruption risks, and the 

optimal protection strategies against worst case disruptions. The research aims are 

to develop an efficient approach to strategic decision making in supply chain 

partner selection, which is incorporated with trade-off options and risk 

considerations; and to develop methods to support strategic decision making in the 

protection planning against worst case disruptions in supply chain. Based on the 

ideas, approaches, and methodologies identified in the literature review, Multi-

attribute utility theory (MAUT), Analytic Hierarchy Process (AHP) in multi-

criteria decision making, and mathematical programming techniques have been 

chosen as the main research methods in this thesis, which will be briefly introduced 

in the following sections.   

3.2 Multi-Criteria Decision Making 

3.2.1 Multi-attribute utility theory 

Utility theory is widely accepted in economics and finance, in which utility 

measures the satisfaction of different individuals towards a service, product, or 

portfolio, and is often measured based on the price. However, in reality utility does 

not depend on only one attribute. For example, when an individual is buying a car, 

there are multiple factors (price, quality, comfortable level, appearance, safety) 

he/she needs to consider. In such situations, multi-attribute utility theory can be 
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applied, in which the alternatives are first measured using each individual attribute 

scale and then aggregated by a multi-attribute utility function to arrive at a utility 

value. More specifically, suppose we have n attributes. Let (x1, x2,…, xn) be the 

vector of attribute values, then the multi-attribute utility function is denoted by u(x1, 

x2,…, xn). The multi-attribute utility function u(x1, x2,…, xn) is often calculated by 

decomposing it into the form of  f(u1(x1), u2(x2),…, un(xn)), where each ui(xi) is a 

single-attribute utility function and function f aggregates the individual utilities into 

a single value. There are three types of multi-attribute utility function, which are 

additive utility function, multi-linear utility function, and multiplicative utility 

function. More details of multi-attribute utility theory can be found in Keeney and 

Raiffa (1976) and Kirkwood (1997). In this research, additive utility function will 

be applied in the definition of supply chain performance requirements, which will 

be discussed in detail in Chapter 4. 

3.2.2 Analytic hierarchy process 

In this research, the performance of supply chain is measured from four aspects: 

disruption risk, flexibility, quality, and innovation capability. While disruption risk 

can be quantitatively measured easily by applying the widely accepted definition 

of probability × consequences, the other three indicators are qualitative concepts 

that are intangible in nature and are often difficult to be quantified. In such cases, 

the Analytic Hierarchy Process (AHP) can be applied to measure these qualitative 

factors. The AHP is a structured technique for organizing and analyzing complex 

decisions, which is based on three basic functions: structuring complexity using 

hierarchies, measurements on a ratio scale, and synthesis. As have discussed in 
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Chapter 2, the AHP is among the popular approaches in supplier selection problems 

(Ho, Xu and Dey, 2010). More details of the AHP approaches can be found in 

Appendix A. 

In this thesis, the flexibility, quality, and innovation capability of each candidate 

supply chain partner will be evaluated using the AHP. In particular, the flexibility 

of a company can be examined from the following five aspects: volume flexibility, 

delivery flexibility, mix flexibility, new product flexibility, and modification 

flexibility (Beamon, 1999); quality can be examined from: customer satisfaction, 

accuracy, fill rate, lead time, response time, and on-time delivery (Chan, 2003; 

Schonsleben, 2004); the innovation capability of a potential partner can be 

evaluated from: the ability to launch new products, and the use of new technology 

(Chan, 2003). More details are discussed in Chapter 4.  

3.3 Mathematical Programming 

Mathematical programming techniques will be applied to search for the optimal 

supply chain partner portfolios, as well as the optimal protection strategies against 

worst case disruptions in supply chain.  

As discussed in the literature review in Chapter 2, supplier selection problems can 

be solved using mathematical programming techniques. In this section, we 

highlight some key methods that have been applied in the related research topics. 

Recall that in section 2.3.3, we have reviewed approaches applied in supplier 

selections, such as data envelopment analysis (DEA) (Wu and Blackhurst, 2009), 

nonlinear programming (Hsu et al., 2010), multi-objective program (Yu et al., 
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2012), goal programming (Kull and Talluri, 2008), stochastic programing (Li and 

Zabinsky, 2011). As discussed in section 2.3.3, multi-criteria decision making 

techniques can be integrated with mathematical programming techniques to solve 

partner selection problems, such as, integrated AHP and goal programing 

(Mendoza et al., 2008), integrated AHP and multi-objective programing (Xia and 

Wu, 2007), etc.. In this research, after the supply chain performance requirements 

are properly defined using multi-attribute utility theory and the AHP, a MIP (mixed 

integer programming) model will be developed to search for the optimal supply 

chain partner portfolio that supports the company’s competitive strategy. Chapters 

4 and 5 discuss more details of this approach.  

The research approach for the problem of identifying optimal protection strategies 

against worst case disruptions in supply chain will be developed based on the 

network interdiction models. As have discussed in Chapter 2, network interdiction 

is an instance of a static Stackelberg game (Simaan and Cruz, 1973), which involves 

two players, the attacker and the defender. The basic models in network interdiction 

problems are the max flow network interdiction model and the shortest path 

network interdiction model. In shortest path network interdiction problems, we are 

given a directed graph G(N,A) with arc lengths and an interdiction budget B,  and 

the attacker wants to increase the effective length of some arcs in graph G so that 

the shortest path is maximized, and the total increase in arc lengths should not 

exceed the interdiction budget B. As discussed in section 2.6.2, this problem can be 

formulated as a mixed-integer-program (MIP), which can be solved readily. In this 

study, the research problem will be analyzed based on the shortest-path/min-cost 
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network interdiction model. More specifically, the formulation of a standard 

shortest-path/min-cost network interdiction model (Israeli and Wood, 2002) is as 

follows: 
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In the above formulation, oij denotes the length of arc (i, j) or cost of using arc (i, 

j), dij is the additional length or cost after the interdiction on arc (i, j), xij is the 

decision variable of network attacker determine whether or not to interdict arc (i, j), 

and yij is the network flow on arc (i, j), f is the total flow from source s to sink t. cij 

is the cost of interdicting arc (i, j), and B is the interdiction budget.   

As discussed in Section 2.6.2, protection strategies that are developed based on the 

solution of the traditional bi-level network interdiction models will often lead to 

suboptimal solutions, while tri-level optimization problem can be applied to 

develop optimal protection strategies. Therefore, in this research a tri-level network 

interdiction model will be developed to identify the optimal protection strategy 

against worst case disruptions in supply chain, and the details can be found in 

Chapter 6. 
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3.4 Summary 

In this chapter, the research methodology and methods applied in this thesis and the 

justification for the chosen research approach are briefly discussed. This chapter 

starts by presenting a decision framework for strategic planning in supply chain, in 

which the research question and research focus of this thesis are specified. Then an 

introduction to the multi-criteria decision making techniques and mathematical 

programming methods used in this research is presented. Multi-attribute utility 

theory is applied to quantify the supply chain level performances of each potential 

partner portfolio, while the AHP approach will be applied to quantify some 

intangible supply chain characteristics such as flexibility, quality, and innovation 

capability. Mixed integer program and tri-level network interdiction models will 

then be applied to solve the two research questions we have specified. 
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Chapter 4 Supply Chain Partner Selection with Trade-off Options  

4.1 Introduction 

In contemporary business environment, supply chains are becoming more and more 

complex, and thus building or renewing a supply chain that supports sustainable 

value creation becomes a rather difficult but critical task in supply chain 

management. As discussed in section 2.2.2, when risks in supply chain are 

concerned, it is shown that in a networked supply chain the risk reduction generally 

cannot be done by one organization alone, but also depends on the interactions 

between the organization and other elements of the supply chain system, and such 

collaborations within the supply chain can be considered as a risk mitigation 

strategy. 

An explicit supply chain strategy is needed when building a value-added supply 

chain, and there are increasing number of studies in existing literatures supporting 

the idea that a supply chain strategy is a single entity system and includes all of the 

participants in a given supply chain (Narasimhan et al., 2008, Perez-Franco, 2010, 

Ivanov, 2010). Therefore, in contemporary business environment, companies will 

often keep a long-term partnership with their suppliers and retailers so as to ensure 

the alignment of supply chain performance and supply chain strategy. Thus, it is 

quite important for the core companies to be able to effectively and strategically 

choose supply chain partners. In this chapter, we propose a strategic decision 

making approach to facilitate the process of selecting supply chain partners and 
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building a value-added chain that incorporates the supply chain level performance 

requirements and trade-off options between some conflicting criteria.  

4.2 Problem Description 

Supply chain partners are important participants in the value added chain, and their 

performance can have significant effects on cost, responsiveness, customer 

satisfaction and competitiveness of the products, all of which can have a dramatic 

impact on the profitability of the entire chain. In order to select the optimum supply 

chain partners, core companies within the supply chain need to first develop a 

comprehensive supply chain strategy according to the company’s competitive 

strategy, which determines the characteristics of the supply chain. A clear 

description of these supply chain characteristics can help the company decide the 

detailed requirements for its partners, and these requirements can be divided into 

two levels. The first level is the basic requirements, which include specific 

requirements such as the location of the potential partner, their political and 

economic environment, accreditation requirements and the minimum or maximum 

number of suppliers or retailers. The first level requirements serve as a filter for the 

company to decide which potential partners could be the candidates in the next 

round of selection. The second level is the supply chain performance requirements, 

which include performance thresholds that not all partners must meet but on 

average the supply chain needs to meet (Massow and Canbolat, 2014). Examples 

of these performance thresholds are overall risk level, flexibility level, overall 

quality, and innovation capability. Figure 4.1 illustrates the two levels of 

requirements for potential partners. By considering the performance requirements 
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on the supply chain level, we can enable strategic trade-offs between different 

characteristics of potential supply chain partners when building the supply chain, 

so that the strategic fit between the competitive strategy and supply chain strategy 

is achieved and the strategic alignment of the supply chain is ensured. For example, 

if innovation is an important factor in a certain supply chain, companies can select 

partners with greater innovation capability (in parts of the chain that innovation 

capability is most needed), despite their flexibility level not meeting the common 

standard, as long as the overall flexibility level of the supply chain is above a 

threshold value. After the supply chain strategy and different levels of requirements 

in the supply chain are specified, the decision makers need to decide which partners 

to select and the allocation of purchase amount or resources to support each partner 

within the chain.  

 

Figure 4.1: Two levels of requirements for identifying potential supply chain partners 

Basic requirements 

Supply Chain level 
requirements 

- Disruption risk 

- Flexibility 

- Quality 

- Innovation 
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In this study, we consider a four-echelon supply chain with a single product 

produced in a single manufacturing plant but with various types of raw materials, 

multiple suppliers, distribution centers and retailers, and we assume that all kinds 

of demand are deterministic and can be estimated by historical data. Popular 

research factors such as uncertainties, and lead times in different stages of the 

supply chain are represented by different supply chain performance indices. In this 

study, we look at the supply chain performance requirements from four aspects, 

namely the disruption risks, flexibility, quality of service, and innovation capability. 

Firstly, disruptions could happen on suppliers, DCs, retailers as well as production 

sites, and disruptions that happen in transportation process are considered as site 

disruptions in this study. For example, all the inbound and outbound transportation 

disruptions associated with DCs are considered as DC disruptions. Then, in order 

to measure the overall flexibility level, quality of service, and innovation capability 

of the supply chain, we define the flexibility score, quality score, and innovation 

score for each type of partners, and all these scores can be evaluated using AHP 

(Analytic Hierarchy Process) approaches. Then, by using the multi-attribute utility 

theory, we define the supply chain level performance indices for disruption risks, 

flexibility, quality, and innovation capability. In the supply chain partner selection 

process, it is required that the supply chain level performance indices of the chosen 

partner portfolio must be above the corresponding threshold for each type of 

performance measure. 

In this study, the strategic decisions include the selection of suppliers, retailers, as 

well as the selection of DCs. Let xij be the decision variable for the selection of 
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supplier, i.e. xij is 1 if supplier i is selected as the supplier of material j, otherwise 

xij is 0. Also, wij denotes the fraction of demand for material j supplied by supplier 

i, where . Similarly, we define yt as the binary decision 

variable for the selection of DCs. Let zr be the binary decision variable for the 

selection of retailers, and πtr is 1 if product for retailer r is shipped from DC t, 

otherwise πtr is 0. The details of the above definitions and notations are listed below: 

Sets  

S                Set of suppliers 

M Set of materials 

T Set of distribution centers 

R Set of retailers 

 

Indices  

i          Supplier, {1,..., }i S m   

j          Material type, {1,..., }j M n   

t          Distribution center (DC), {1,..., }t T g   

r          Retailer, {1,..., }r R l   

 

Decision variables 

xij         1 if supplier i is selected as the supplier of material j, otherwise 0 

wij         the fraction of demand for material j supplied by supplier i, where 

               ∑ 𝑤𝑖𝑗 = 1, 0 ≤ 𝑤𝑖𝑗 ≤ 1𝑖∈𝑆𝑖
 

yt          1 if DC t is selected, 0 otherwise 

zr          1 if retailer r is selected, 0 otherwise 

πtr         1 if product for retailer r is shipped from DC t, 0 otherwise 

 

1, 0 1
j

ij ij

i S

w w


  
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Parameters 

f   the total demand for product  

fr the demand for product from retailer r 

aij   capacity of supplier i for material j, ji S S  ,  

Sj is the set of suppliers providing material j 

bij minimum order quantity of supplier i for material j, ji S S   

dj demand for material j 

cij unit cost of purchasing and shipping material j from supplier i  
 

 Kt capacity of distribution center (DC) t 

ur cost of establishing marketing channel with retailer r 

vt   cost of establishing facilities in DC t  

qij fixed cost of ordering material j from supplier i,  

etr unit cost of shipping product from plant to retailer r via DC t 

Pi
S the probability of disruption in supplier i 

Pt
T  the probability of disruption in DC t 

Pr
R the probability of disruption in retailer r 

Pm the probability of disruption in manufacturer 

ρi
S the flexibility score for supplier i 

ρt
T  the flexibility score for DC t 

ρr
R the flexibility score for retailer r 

ρm the flexibility score for manufacturer 

Qi
S     quality score of supplier i 

Qt
T   quality score of DC t 

Qr
R   quality score of retailer r 

Ii
S Innovation score of supplier i 

It
T innovation score of DC t 

Ir
R innovation score of retailer r 

Prisk the disruption risk threshold index for the supply chain 

Pflex the flexibility threshold index for the supply chain 

Q    the quality threshold index for the supply chain 

ji S S 



60 
 

I the innovation threshold index for the supply chain 

Mnj the minimum number of suppliers for material j  

krisk the weight of material disruptions compared to product disruptions 

kflex the weight of production flexibility compared to service flexibility 

kfm the weight of manufacturing flexibility in the material stage 

kfr the weight of retailing flexibility in the product stage 

kq1 the weight of service quality in the material supply stage 

kq2 the weight of quality in the product distribution stage 

kI1 the weight of innovation in the material supply stage 

kI2 the weight of innovation in the product distribution stage 

  

4.3 Definition of Supply Chain Performance Indices 

As have discussed in Chapter 3, Multiple Attribute Utility Theory can be applied 

in our definition of supply chain performance indices. The performance index of 

each echelon in supply chain, can be defined as single attribute utility function, and 

then aggregated by a multi-attribute utility function to arrive at a utility value for 

the supply chain level performance. In this research, out of three types of multi-

attribute utility function (additive utility function, multi-linear utility function, and 

multiplicative utility function), additive utility function is chosen in the definition 

of the supply chain performance indices.  

Additive utility function is valid when the n attributes are mutually additive 

independent. Two attributes X and Y are additive independent if the paired 

preference comparison of any two alternatives, defined by two joint probability 

distributions on X × Y, depends only on their marginal distributions. In other words, 

the preference comparison can be established by comparing the values one attribute 

at a time. In this research, the supply chain level performances are measured from 
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the bottom up, i.e. supply chain level performance index is a function of individual 

performance indices for every part of the supply chain. If we consider each 

individual performance index as a single utility function, then the supply chain level 

performance index is the multi-attribute utility function. In this study, we assume 

that performance indices for each part of the supply chain are mutually additive 

independent, and then the supply chain level performance can be represented by the 

weighted sum of each individual performance index. The additive utility function 

in Multiple Attribute Utility Theory is defined as follows: 

                                       1 2

1

( , , , ) ( )
n

n i i i

i

u x x x k u x


 ,                                         (4.1) 

where each ui(xi) is a single attribute utility function, u(x1, x2,…, xn) and each ui(xi) 

are normalized with the worst case utility being 0, best case utility being 1; each ki 

is the positive scaling constants, and
1

1
n

i

i

k


 . In practice, the k’s are determined 

by the domain experts using AHP method. 

4.3.1 Disruption index  

There are two major types of commodities in the supply chain system, namely 

materials and products, and we argue that the disruption index for materials and 

products should be considered separately. In this study, disruption in material 

supply and manufacturing stage is defined as any event that interrupts material 

supply and production process, such as supply uncertainties, transportation 

disruptions, and facility breakdowns etc. Disruption in product distribution and 

retailing stage refers to any event that affects the sales of product, such as demand 
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uncertainties, transportation disruptions, and service failures. Though materials and 

products are physically linked, the risks of processing them in the supply chain are 

essentially different. A disruption in processing materials may indeed affect the 

operations of delivering final products to the customers, but that should be 

considered as the consequences of the disruption of materials since the risk of 

processing the products remains unchanged. In typical risk management studies, 

risk is often defined as the product of the probability and the severity of 

consequence. The consequence of material and manufacturing disruptions are more 

severe since disruptions in this stage will have a wider impact to the supply chain, 

and so it is reasonable to assign a larger weight to the material disruption index. 

Therefore, in this study, the disruption in material supply and manufacturing stage 

and disruption in product distribution and retailing stage can be considered as two 

additive independent attributes. 

The disruption index for material supply and manufacturing stage is defined as: 

1

1
( ) (1 )(1 )

j

S

i m ij

j M i S

RIndex P P w
n 

   w ,                                  (4.2) 

where n is the number of material types, and Pi
S, and Pm are the probabilities of 

disruptions in suppliers and manufacturing plant. We assume that the shortage 

consequence of any type of material is the same, because any kind of shortage will 

lead to not being able to produce enough product to fulfill the market demand, and 

therefore we can actually use the decision variable wij (the fraction of demand for 

material j supplied by supplier i) to represent the consequences of supply shortage. 

(1-Pi
s)(1-Pm) is the probability that the material can be processed without disruption. 
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We use this probability instead of the probability that there is some disruption 

(which would be 1-(1-Pi
s)(1-Pm)) because the terms would be simpler while either 

definition is equivalent to each other.  

Similarly, the disruption index for the product distribution and retailing stage is 

defined as: 

2 ( ) (1 )(1 )T R

t r tr r

t T r R

RIndex P P f f
 

   ,                           (4.3) 

where Pt
T, and Pr

R are the probabilities of disruptions in DCs and retailers, and πtrfr/f 

represents the fraction of demand for products from retailer r that is distributed by 

DC t. For simplicity, we assume that the outcome of any disruption event will be 

the worst case, i.e. all demand from that affected retailer is disrupted. 

Then, the overall disruption index for the supply chain is defined as: 

1 2( ) (1 ) ( )risk riskORIndex k RIndex k RIndex  w  ,                        (4.4) 

where krisk is the weight of material disruptions compared to product disruptions. 

As what we have discussed at the beginning of this section, krisk should be larger 

than 0.5 so that the consideration that material disruptions will often have a wider 

range of impact to the supply chain is included in our definition.   

4.3.2 Flexibility index 

There are various definitions of flexibility in the literature. Generally, flexibility is 

a company’s ability to respond to changes. Some studies in the literature have 

proposed quantitative measurements for flexibility (Beamon, 1999; Chan, 2003; 
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Schonsleben, 2004). In this study, we apply a measurement that is developed based 

on the one discussed in Beamon (1999). More specifically, the flexibility of a 

company is examined from the following five aspects: volume flexibility, delivery 

flexibility, mix flexibility, new product flexibility, and modification flexibility. 

Volume flexibility refers to the ability to change the output level of products 

produced; delivery flexibility is the ability to change planned delivery dates; mix 

flexibility refers to the ability to change the variety of products produced; new 

product flexibility refers to the ability to introduce new products; modification 

flexibility is the ability to accomplish product modification without incurring high 

transition penalties. After these five sub-indices are specified, the multi-attribute 

decision making method AHP can be applied to measure the flexibility of each 

potential supply chain partner. The advantage of the AHP approach is its 

adaptability, which makes it easier to be applied in different situations for various 

industries, since the weight of sub-indices can be changed according to different 

requirements of each industry.  

Similar to the definition of disruption index, we consider the overall flexibility 

index separately. More specifically, the overall flexibility index is divided into two 

sub-indices: production flexibility index and service flexibility index. The 

production flexibility index is for the material supply and manufacturing stage, and 

is defined as: 

1

1
( ) (1 )

j

S

fm i ij fm m

j M i S

FlexIndex k w k
n

 
 

   w ,                           (4.5) 
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where n is the number of material types, ρi
S

  is the flexibility score for supplier i, 

and ρm is the flexibility score for manufacturer, wij is the fraction of demand for 

material j supplied by supplier i, and kfm is the weight of manufacturing flexibility 

compared to material supply flexibility in this stage. 

The service flexibility index of the product distribution and retailing stage is 

defined as: 

2 ( ) (1 ) T R

fr t tr r fr r r r

t T r R r R

FlexIndex k f f k z f f  
  

    z ,                (4.6) 

where ρt
T, ρr

R
, are the flexibility score for DCs and retailers, and kfr is the weight of 

retailing flexibility compared to distribution flexibility in this stage. 
r rz f f  is the 

fraction of total demand that is assigned to retailer r. 

The overall flexibility index of the supply chain is then defined as the multiple 

attribute utility function: 

1 2( ) (1 ) ( )flex flexOFlexIndex k FlexIndex k FlexIndex   zw  ,               (4.7) 

where kflex is the weight of production flexibility compared to service flexibility.  

4.3.3 Quality index and Innovation index 

The measurement of quality as a supply chain performance indicator has been 

discussed in many published works (Chan, 2003; Schonsleben, 2004). Generally, 

quality is related to the satisfactory level provided by products and services that a 

company has to offer. In this study, we examine the quality of potential supply 

chain partners from the following aspects: customer satisfaction, accuracy, fill rate, 
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lead time, response time, and on-time delivery. More specifically, customer 

satisfaction is the percentage of satisfied customers; accuracy refers to the 

percentage of accurate goods delivered to customers; fill rate is the proportion of 

immediately filled orders; lead time is the time it takes from manufacturing the 

product to it being fully processed; response time refers to the time between an 

order and the corresponding delivery; on-time delivery is the percentage of 

deliveries that are on-time.  

The innovation score of each partner could be examined from the ability to launch 

new products and the use of new technology (Chan, 2003). More specifically, the 

ability to launch new products is measured by the number of new products launched 

by a company compared to the average number of new products in the industry 

within the same period; the use of new technology refers to the percentage decrease 

in time necessary for producing the same product. The quality scores and 

innovation scores of each potential partners are then generated through an AHP 

approach, in which we can assign different weight to each sub-criterion according 

to industrial difference.    

The definitions of Quality index and Innovation index are different from the 

previous definitions, since quality and innovation are measured based on the 

partners instead of commodity types. Therefore we defined three single 

quality/innovation indices for suppliers, DCs and retailers respectively. The 

quality/innovation score of manufacturer is not considered in our definitions, 

because we only consider one manufacturer and the quality/innovation score for the 
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manufacturer is a constant which can be merged with the threshold value. The 

quality index for suppliers is defined as:  

1

1
( )

j

S

i ij

j M i S

QIndex Q w
n 

 w ,                                              (4.8) 

where Qi
S is the quality score of supplier i. The quality score is weighted by the 

fraction of demand of material that is supplied by this supplier, which is then 

summed for all suppliers and material types, and then the quality index can be 

derived by dividing the sum by n, which is the number of material types, since we 

assume that all types of materials are equally important.  

The quality index of DCs is defined as: 

2 ( ) T

t tr r

t T r R

QIndex Q f f
 

  ,                                          (4.9) 

where Qt
T, is the quality score for DCs, and tr r

r R

f f


  is the fraction of product 

demand that is distributed by DC t, which can be considered as the weight of DC t.  

The quality index of retailers is defined as: 

3( ) R

r r r

r R

QIndex Q z f f


z ,                                              (4.10) 

where Qr
R is the quality score for retailers, and r rz f f  is the fraction of total 

demand that is assigned to retailer r.  

The overall quality index of the supply chain is then defined as: 

1 1 2 2 1 2 3( ) ( ) (1 ) ( )q q q qOQIndex k QIndex k QIndex k k QIndex     zw  ,        (4.11) 
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where kq1, kq2 are the weights for supplier quality index and DC quality index, 

respectively. 0 < kq1, kq2 < 1, and 0 < kq1+ kq2 < 1. 

The innovation indices are defined similarly. The innovation index for suppliers is 

defined as:  

1

1
( )

j

S

i ij

j M i S

IIndex I w
n 

 w ,                                          (4.12) 

where Ii
S is the innovation score of supplier i, and n is the number of material types.  

The innovation index of DCs is defined as: 

2 ( ) T

t tr r

t T r R

IIndex I f f
 

  ,                                       (4.13) 

where It
T, is the innovation score for DCs, and tr r

r R

f f


  is the fraction of product 

demand that is distributed by DC t, which can be considered as the weight of DC t.  

The innovation index of retailers is defined as: 

3( ) R

r r r

r R

IIndex I z f f


z ,                                             (4.14) 

where Ir
R is the innovation score for retailers, and r rz f f  is the fraction of total 

demand that is assigned to retailer r.  

The overall innovation index of the supply chain is:  

1 1 2 2 1 2 3( ) ( ) (1 ) ( )I I I IOIIndex k IIndex k IIndex k k IIndex     zw  ,       (4.15) 
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where kI1, kI2 are the weights for supplier innovation index and DC innovation index, 

respectively. 0 < kI1, kI2 < 1, and 0 < kI1+ kI2 < 1.See Table 4.1 for the details of all 

the definitions of the indices.  
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  Table 4.1: Definitions of supply chain performance indices 

Index name Definition 

Material 

disruption  

index 
1

1
( ) (1 )(1 )

i

S

i m ij

j M i S

RIndex P P w
n 

   w  

Product 

disruption  

index 

2 ( ) (1 )(1 )T R

t r tr r

t T r R

RIndex P P f f
 

    

Overall 

disruption 

index 
1 2( ) (1 ) ( )risk riskk RIndex k RIndex w   

Production 

flexibility 

index 
1

1
( ) (1 )

i

S

fm i ij fm m

j M i S

FlexIndex k w k
n

 
 

   w  

Service 

flexibility 

index 

2 ( ) (1 ) T R

fr t tr r fr r r r

t T r R r R

FlexIndex k f f k z f f  
  

    z  

Overall 

flexibility 

index 
1 2( ) (1 ) ( )flex flexk FlexIndex k FlexIndex  zw   

Supplier 

quality index 
1

1
( )

j

S

i ij

j M i S

QIndex Q w
n 

 w  

DC quality 

index 
2 ( ) T

t tr r

t T r R

QIndex Q f f
 

   

Retailer quality 

index 
3( ) R

r r r

r R

QIndex Q z f f


z  

Overall quality 

index 1 1 2 2 1 2 3( ) ( ) (1 ) ( )q q q qk QIndex k QIndex k k QIndex    zw   

Supplier 

innovation 

index 
1

1
( )

j

S

i ij

j M i S

IIndex I w
n 

 w  

DC innovation 

index 
2 ( ) T

t tr r

t T r R

IIndex I f f
 

   

Retailer 

innovation 

index 

3( ) R

r r r

r R

IIndex I z f f


z  

Overall 

innovation 

index 
1 1 2 2 1 2 3( ) ( ) (1 ) ( )I I I Ik IIndex k IIndex k k IIndex    zw   
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4.4 Supply Chain Partner Selection Models 

4.4.1 The basic model 

In this section we present the Basic Model for the selection of supply chain partners 

with supply chain level performance requirements: 

Min      

j j

ij ij ij ij j t t r tr tr r r

j M i S j M i S t T t T r R r R

TC q x c w d v y f e u z
       

               (4.16) 

s.t       

                                                                                         (4.17) 

                                                                                     (4.18) 

         ij j ij ijw d b x                                                                           (4.19) 

                                                                                                     (4.20) 

                                                                                                                (4.21) 

                                                                                                (4.22) 

                                                                                            (4.23) 

         tr r

t

z                             r R                                                                    (4.24) 

         1 2( ) (1 ) ( )risk risk riskk RIndex k RIndex P  w                                                  (4.25) 

ij ijw x , jj M i S  

ij j ijw d a , jj M i S  

, jj M i S  

1
j

ij

i S

w


 j M 

r r

r R

f z f




tr r t

r

f K  t T 

tr ty  ,t T r R  
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         1 2( ) (1 ) ( )flex flex flexk FlexIndex k FlexIndex P  zw                                   (4.26) 

         1 1 2 2 1 2 3( ) ( ) (1 ) ( )q q q qk QIndex k QIndex k k QIndex Q    zw                  (4.27) 

         1 1 2 2 1 2 3( ) ( ) (1 ) ( )I I I Ik IIndex k IIndex k k IIndex I    zw                        (4.28) 

         

j

ij j

i S

x Mn


                                                                                          (4.29) 

         0 1ijw                                                                               (4.30) 

         {0,1}ijx                                                                               (4.31) 

         {0,1}ty                                                                                               (4.32) 

         {0,1}rz                              r R                                                                   (4.33) 
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The objective function (4.16) is the total cost (TC) of the supply chain, which 

consists of the ordering cost, purchasing costs, cost in DC, product shipping cost, 

and retailing cost. Constraints (4.17) ensure that if supplier i is not chosen then no 

demand will be allocated to it. Constraints (4.18) and (4.19) require the amount of 

material demand for each supplier not to exceed the capacity of the supplier, and to 

at least meet the minimum order quantity. Constraints (4.20) ensure that for each 

material type j, the demand allocation fraction adds up to 1, i.e. material supply 

must be equal to the demand. Constraint (4.21) requires the sum of demands from 

j M 

, jj M i S  
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,t T r R  
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the chosen retailers be equal to the total demand for the product. Constraints (4.22) 

ensure the total amount of product in DC t does not exceed its capacity. In 

constraints (4.23), we ensure that no products will be shipped between a DC and a 

retailer if this DC is not chosen, while constraints (4.24) require that a DC will be 

assigned to deliver products to a retailer if this retailer is chosen. Constraints (4.25) 

- (4.28) are supply chain requirements constraints. Constraint (4.25) requires the 

overall disruption risks of the supply chain formed by the chosen partners not to 

exceed a certain threshold. Constraint (4.26) ensures the overall flexibility level of 

the supply chain is at least equal to a threshold value. Similarly, constraints (4.27) 

and (4.28) require the overall quality level and the overall innovation level of the 

supply chain to at least meet a minimum satisfactory value, respectively. Constraint 

(4.29) ensures the number of suppliers for material j is no less than the minimum 

requirement value. Constraints (4.30)-(4.34) are the non-negativity and integrality 

constraints. 

4.4.2 Strategic trade-off model 

In the Basic Model, the supply chain performance requirements included can enable 

various strategic trade-offs, which could be critical to business performance. In 

other words, after ensuring the supply chain performances are within some 

satisfactory level, the core company may also seek to achieve certain level of 

performance in specific parts of the supply chain, and all these kinds of special 

requirements could be achieved by imposing the trade-off options into the decision 

making process, which can help to fulfill the supply chain strategy. In this 

circumstance, we can add in some additional constraints to the Basic Model to 
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represent these special requirements, and the resulting new model shall be called 

Strategic trade-off Model.      

The Strategic trade-off Model is the Basic Model plus some of the following sets 

of constraints: 

1 1( ) riskRIndex Pw  or 2 2( ) riskRIndex P                                                                                   (4.35) 

1 1( ) flexFlexIndex Pw  or 2 2( ) flexFlexIndex Pz                                                                (4.36) 

1 1( )QIndex Qw  or 2 2( )QIndex Q  or 3 3( )QIndex Qz                                               (4.37) 

1 1( )IIndex Iw  or 2 2( )IIndex I  or 3 3( )IIndex Iz                                                          (4.38)  

where the right hand side parameters are the special requirements each single 

performance index must meet, with details in Table 4.2. 

 Table 4.2: New parameters in Strategic trade-off Model 

Parameters 

Prisk1 the disruption risk threshold index for the material stage 

Prisk2 the disruption risk threshold index for the product stage 

Pflex1 the flexibility threshold index for the material stage 

Pflex2 the flexibility threshold index for the product stage 

Q1 the quality threshold index for suppliers 

Q2 the quality threshold index for DCs 

Q3 

I1 

the quality threshold index for retailers 

the innovation threshold index for suppliers 

I2 the innovation threshold index for DCs 

I3 the innovation threshold index for retailers 
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Constraint (4.35) requires the disruption risk of the material stage or the product 

stage be within a certain level. It is important to note that there can be at most one 

constraint chosen from each set of constraints in one supply chain strategy, because 

there will be no trade-off if we require all parts of the chain to perform at highest 

standards. For example, once the disruption risk threshold index for the supply 

chain Prisk and the disruption risk threshold for material stage Prisk1 are determined, 

Prisk2 will automatically be determined by krisk*Prisk1+(1-krisk)*Prisk2= Prisk. Similarly, 

constraint (4.36) requires the flexibility level of the material stage or the product 

stage be no less than a certain threshold. Constraint (4.37) ensures that the quality 

of the suppliers or DCs or retailers be no less than a certain level. Constraint (4.38) 

requires the innovation level of suppliers or DCs or retailers be no less than a certain 

threshold. 

4.5 Numerical Analysis 

In this section computational examples are applied to test the proposed mixed 

integer programming model for the basic cases, and the Strategic Trade-off Model. 

The computational experiments were performed on a Dell OPTIPLEX 990, Intel 

Core i5-2500, 3.30GHz, RAM 8GB/CPLEX 12.5. The data of the base case 

computational example is illustrated in Appendix G. 

Table 4.3 summarizes the optimal base case results, when Prisk = Q = 0.85, Pflex 

=0.75, and I = 0.65. The computational example applied consists of 16 potential 

suppliers, 3 material types, 6 potential DCs, and 12 potential retailers. By changing 

the inputs of threshold indices, we may get different solutions, while each solution 



76 
 

represents the optimal supply chain partner portfolio under that particular 

performance level. For instance, one possible combination of threshold indices for 

this computational example is when Prisk = Q = 0.9, Pflex =0.8, and I = 0.7, and the 

total cost in this case would be 21654. Figures 4.2, 4.3, 4.4 and 4.5 illustrate the 

changes of total cost when we increase each of the single performance threshold 

value. The four resulting curves are all increasing with an increasing rate. From 

these preliminary results, we can see that the Basic Model behaves as expected, 

essentially better performances require higher costs. 

Table 4.3: Results of the Base Case 

 Results of Base Case (Prisk = Q = 0.85, Pflex =0.75, I = 0.65)  

Total cost 19624 

Suppliers 

selected(wij) 

Material 1 Material 2 Material 3 

S1(0.4), S2(0.6) 
S9(0.3), S10(0.4), 

S11(0.3) 
S12(0.78), S15(0.22) 

DC selected  DC2(distributes R5 and R12), DC3(distributes R2, R3, R4 and R9) 

Retailer 

selected  
R2, R3, R4, R5, R9, R12 
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Figure 4.2: The changes of total cost when disruption risk threshold value increases 

 

 

Figure 4.3: The changes of total cost when flexibility threshold value increases 
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Figure 4.4: The changes of total cost when quality threshold value increases 

 

 

Figure 4.5: The changes of total cost when innovation threshold value increases 

 

In order to test the Strategic trade-off Model, we designed two different strategies 

to see how the optimal solution would differ under these different strategies. 

Specifically, strategy A requires low risk in the upper stream of the supply chain 

16000

17000

18000

19000

20000

21000

22000

0.7 0.75 0.8 0.85 0.9

To
ta

l c
o

st

Quality threshold (other threshold values are 0) 

Total cost under different quality threshold values

16000

17000

18000

19000

20000

21000

22000

0.55 0.6 0.65 0.7 0.75

To
ta

l c
o

st

Innovation threshold (other threshold values are 0) 

Total cost under different innovation threshold values



79 
 

and high flexibility level in the lower stream of the chain, and also requires high 

quality of service and innovation level in the retailers to boost customer satisfaction 

and increase the chance of revisit. Therefore, we set Prisk1=0.9, Pflex2=0.9, Q3=0.9, 

I3=0.7 for strategy A. For strategy B, low risk and high flexibility in the upper 

stream of the chain are required, as well as high quality materials and high 

innovation capability from suppliers, so we set Prisk1=0.9, Pflex1=0.9, Q1=0.9, I1=0.8 

for strategy B. In general, strategy A would often be adopted by fashion industries, 

while strategy B would be more suitable for famous companies in high-technology 

industries.  

The results we got after applying the two strategies to the Strategic trade-off Model 

are illustrated in Table 4.4. The results indicate that under different supply chain 

strategies, we should choose different portfolios of supply chain partners, which is 

consistent with what we have expected. More specifically, in strategy A, suppliers 

12 and 14 are selected for material type 3, while in strategy B, the suppliers for 

material type 3 are suppliers 13 and 14, and this result is consistent with the 

requirements of the two strategies, because compared to supplier 12, supplier 13 

has a higher flexibility level as well as lower risk of disruption. Similarly, DCs 2 

and 5 are selected for strategy A, while for strategy B, DCs 2 and 3 are chosen, and 

for the selection of retailers, four out of six chosen retailers are different between 

the two strategies, because such combination of DCs and retailers in strategy A 

would provide higher flexibility level in the lower stream than that of strategy B. 

In conclusion, the comparison of results between these two strategies indicates that 
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the Strategic trade-off Model is capable of providing optimal suggestions to help 

achieve the strategic fit of the supply chain. 

Table 4.4: Comparison of results between strategy A and strategy B 

 Results (Prisk = Pflex = Q = 0.85, I = 0.65) 

Total cost 
Strategy A 20734 

Strategy B 20385 

Supplier 

selected 

 Material 1 Material 2 Material 3 

Strategy A S2, S3 S6, S7, S9 S12, S14 

Strategy B S2, S3 S6, S7, S9 S13, S14 

DC 

selected 

Strategy A DC2, DC5 

Strategy B DC2, DC3 

Retailer 

selected  

Strategy A R1, R2, R3, R4, R6, R12 

Strategy B R3, R4, R5, R8, R10, R11 

 

  



81 
 

4.6 Case Study 

Based on the Basic Model and Strategic trade-off Model presented above, we 

developed a customized model to optimize the supply chain network for a European 

chemical company. Similar to the numerical analysis section, the optimization 

problems in this section are formulated using OPL in CPLEX Optimization Studio 

12.5, and the mathematical models are solved using a Dell OPTIPLEX 990, Intel 

Core i5-2500, 3.30GHz, RAM 8GB.  

This case is about a network design project for a leading chemical company in 

Europe, which was first discussed in Francas and Simon (2011). The company’s 

supply chain network originally has 4 manufacturing plants, 2 central DCs, and 12 

local warehouses. The 4 manufacturing plants are located in Netherlands, southern 

France, Germany, and Poland; the 2 central DCs are in Germany and southern 

France; while the 12 local warehouses locate in the United Kingdom, northern 

France, Netherlands, Spain, Portugal, Italy, Austria, Czech Republic, Hungary, 

Poland, and Sweden. Figure 4.6 shows the supply chain before re-design. As can 

be seen, the company has local facilities in most of the major countries in Western 

Europe. With such highly localized distribution network, the transportation process 

cannot have economies of scale, which leads to high transportation cost. Inventory 

level in local warehouses is high due to demand uncertainties, which leads to high 

inventory cost. Therefore, the company is looking for a supply chain network re-

design solution to reduce its high transportation and inventory costs and to meet the 

following business requirements: 
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 Requires the re-designed network to support the company’s service 

coverage in Western Europe, as well as the expansion plan in the Middle 

East markets; 

 Requires the overall disruption risk, service quality, and flexibility of the 

new network to be at acceptable levels.  

 Focuses on reducing the complexity of the distribution network. 

 

Figure 4.6: European supply chain before re-design 

After a preliminary research on the existing network, the company decides to keep 

the central DC located in Germany, while the central DC in southern France is 

downgraded to a local warehouse. This is because by aggregating the product 
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inventory in a single central DC, the demand uncertainties from each local markets 

will be balanced out, and the transportation process would have scale economy 

achieved. Then, in order to further reduce the complexity of the distribution 

network, the company need to decide which local facilities to keep and upgrade, by 

choosing from the existing 12 local warehouses plus the southern France warehouse 

degraded from the original DC. The company also considers 4 subcontract 

distributors (SD) located in United Kingdom, Spain, Italy, and Denmark, see Figure 

4.6. Table 4.5 summarizes the cost of establishing the capability for each facility 

and the demand each local facility can handle, as well as the distribution cost of 

each facility once it is chosen. The cost of establishing the capability for each 

subcontract distributor is calculated by subtracting the price of its service by the 

monetary return for selling the nearest company-owned local facility. For example, 

if the subcontract distributor in Denmark is chosen, then the company would sell 

the local facility in Sweden. Since the company would have only one local facility 

in each regional market, the distribution cost of each facility is determined by 

assuming all demand of the nearby markets is provided by that facility. The demand 

capability data for the central DC in Germany is for the direct distribution to nearby 

local markets only, i.e. it does not include those product demands distributed to 

other local warehouses.  
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    Table 4.5: Establishing cost, distribution cost, and capability level in each facility  

Facility 
Establishing 

cost (100 $) 

Demand can handle 

per month (ton) 

Distribution cost 

(100 $) 

United Kingdom 5,000 6,000 40 

Sweden 5,000 8,000 70 

Netherlands 5,000 3,000 30 

northern France 5,000 6,000 45 

Poland 8,000 5,000 68 

Czech Republic 8,000 6,000 50 

Austria 8,000 6,000 55 

Hungary 8,000 6,000 65 

Italy 6,000 6,000 43 

Spain 6,000 5,000 45 

Portugal 6,000 3,000 60 

Turkey 8,000 5,000 55 

southern France 0 10,000 48 

Germany 0 10,000 75 

United Kingdom 

(SD) 
5,750 6,000 35 

Spain (SD) 6,500 5,000 40 

Italy (SD) 6,400 6,000 35 

Denmark (SD)  6,800 8,000 80 

  

 

The remaining challenge is to optimally choose local warehouses so that the 

requirements are satisfied with minimum costs. Note that in this project, the 

material supply stage is not considered, since the project is focusing on the re-

design of the distribution network. Therefore, only the product disruption risk index, 

service flexibility index, and DC quality index are included in the optimization 

model of this project. By applying the AHP method, the company determines the 
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flexibility score and service quality score for each facility. The flexibility score is 

examined from these three aspects: delivery flexibility, mix flexibility, and volume 

flexibility. The service quality score is examined from the following aspects: 

customer satisfaction, response time, on-time delivery, accuracy, and fill rate. Table 

4.6 summarizes the probability of disruption, flexibility score, and service quality 

score for each facility. Details of the problem data and notations can be found in 

Appendix B. Note that some parameters are estimated or collected from the 

available information on the internet.  

The optimization model for this project is as follows: 

Min              ( )t t t t t t t

t T

TC v y e f y y


                                                                   (4.39) 
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In the above formulation, χt is the cost of distributing products to markets for each 

facility t, t =1…18, and the index of t stands for local facility in different areas. For 

example, y1 stands for the selection option for the local warehouse in the United 

Kingdom, while the index from 2 to 11 stands for the local warehouse in Sweden, 

Netherlands, northern France, Poland, Czech Republic, Austria, Hungary, Italy, 

Spain, and Portugal. y12 stands for the selection option for the local warehouse in 

Turkey, and therefore according to the requirements of the company, this local 

warehouse has to be chosen for the expansion plan in the Middle East markets. y13 

represents the option of whether to choose the local warehouse in southern France. 

y14 stands for the central DC in Germany. y15, y16, y17, y18 represent the subcontract 

distributors in the United Kingdom, Spain, Italy, and Denmark, respectively. To 

ensure the demands from all regional markets are covered by the distribution 

network, constraints (4.41) to (4.48) are included in the formulation. For instance, 

constraint (4.45) indicates that enough local facilities in Spain and Portugal will be 

selected to make sure that the Iberian Peninsula markets are covered. Figure 4.7 

illustrates the new distribution network according to the optimal solution. 
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Table 4.6: Disruption probability, flexibility and service quality scores for each facility 

Facility 
Disruption 

probability 
Flexibility score 

Service quality 

score 

United Kingdom 0.01 0.85 0.85 

Sweden 0.03 0.9 0.85 

Netherlands 0.05 0.75 0.9 

northern France 0.05 0.8 0.7 

Poland 0.05 0.7 0.6 

Czech Republic 0.01 0.95 0.85 

Austria 0.03 0.75 0.65 

Hungary 0.05 0.8 0.95 

Italy 0.01 0.85 0.85 

Spain 0.01 0.7 0.9 

Portugal 0.04 0.8 0.6 

Turkey 0.02 0.95 0.9 

southern France 0.01 0.95 0.9 

Germany 0.01 0.95 0.97 

United Kingdom (SD) 0.05 0.95 0.95 

Spain (SD) 0.05 0.9 0.9 

Italy (SD) 0.05 0.95 0.95 

Denmark (SD)  0.01 0.95 0.95 
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Figure 4.7: European supply chain after re-design 

After applying the optimization model, the number of local warehouses is reduced 

to 7, which are located in the UK, southern France, Spain, Italy, Sweden, Czech 

Republic, and Turkey. The new distribution network is much less complicated, 

while the overall risk, flexibility and service quality are maintained at a satisfactory 

level. Specifically, the disruption risk threshold is 0.9, the flexibility threshold is 

0.8, and service quality threshold is 0.8.  

Now suppose the company is considering improving its supply chain performance, 

and has proposed two plans: plan A is to reduce the disruption rate to 2%, while the 

flexibility level and service quality level remain the same as before; plan B is to 
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increase the flexibility level and service quality level to 0.9, while the disruption 

rate is kept within 5%. After applying the optimization model, the optimal solution 

suggests to choose the local facilities located in the United Kingdom, Czech 

Republic, Italy, Spain, Turkey, southern France, and a subcontract distributor in 

Denmark for plan A; while for plan B, it is suggested to choose the local facilities 

located in Czech Republic, Turkey, southern France, and four subcontract 

distributors in the United Kingdom, Spain, Italy, and Denmark. Table 4.7 compares 

the total cost, the number of local warehouses chosen, and the number of 

subcontract distributors chosen in the solution for plan A, plan B, and the base case. 

From the comparison in Table 4.7, we can see that the difference between the 

solutions of plan A and the base case is: the local warehouse in Sweden is replaced 

by the subcontract distributor in Denmark. This change has brought a small increase 

of 210 units in total cost. However, the total cost for plan B increases by 21,442 

units compared with that of the base case, and the local warehouses in the United 

Kingdom, Spain, Italy, and Sweden are replaced by subcontract distributors in the 

United Kingdom, Spain, Italy, and Denmark. 
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            Table 4.7: Comparison of base case solution and plan A, plan B solutions 

 Base case A B 

Total cost (100$) 415226 415436 436668 

Number of local warehouses 7 6 3 

Number of subcontract distributors 0 1 4 

Overall disruption index 0.958 0.981 0.969 

Overall flexibility index 0.881 0.869 0.907 

Overall quality index 0.868 0.881 0.902 

United Kingdom √ √ - 

Sweden √ - - 

Netherlands - - - 

northern France - - - 

Poland - - - 

Czech Republic √ √ √ 

Austria - - - 

Hungary - - - 

Italy √ √ - 

Spain √ √ - 

Portugal - - - 

Turkey √ √ √ 

southern France √ √ √ 

Germany 
Central 

DC 

Central 

DC 

Central 

DC 

United Kingdom (SD) - - √ 

Spain (SD) - - √ 

Italy (SD) - - √ 

Denmark (SD) - √ √ 
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For the base case optimal solution, the overall disruption index is 0.958, the overall 

flexibility index is 0.881, and the overall quality index is 0.868. We can see that all 

three indices exceed the corresponding performance requirement threshold, 

indicating that the re-designed distribution network performs better than expected.  

For the optimal solution of plan A, the overall disruption index (0.981) just meets 

the required performance threshold, while the overall flexibility index (0.869) is 

lower than that of the base case, but the overall quality index (0.881) is higher. This 

result suggests that by changing the Sweden local facility to a subcontract 

distributor in Denmark, the company can reduce the disruption rate to less than 2%, 

while keeping the flexibility and quality level of the distribution network at a 

similar level as in the base case. For the optimal solution of plan B, the overall 

disruption index (0.969) is slightly lower than that of plan A, but the overall 

flexibility index (0.907) and the overall quality index (0.902) are both higher than 

in plan A. However, in order to achieve higher flexibility and quality level, the 

company need to pay much more money to hire all four subcontract distributors. 

This result suggests that by subcontracting the non-core services to the third-party 

service providers, the company can run the distribution network on a higher level 

of overall performance. 

In summary, this case study has shown that customized optimization models can be 

developed based on the proposed supply chain partner selection approach to solving 

a real world problem. 
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4.7 Summary  

In this chapter, we have proposed a strategic decision approach for supply chain 

partner selections and design that considers the strategic trade-offs between 

different performance requirements. The proposed approach provides a perspective 

of considering the performance requirements on a supply chain level, and also 

integrates risk considerations into the decision making process by considering a 

threshold of supply chain level risk . A mixed integer programming model called 

Strategic trade-off Model is presented to test the proposed approach. Numerical 

results and case study suggest that the proposed strategic decision approach can 

effectively support strategic decision makings on supply chain partner selections. 

The work in this chapter addresses the first research gap identified in Chapter 2, 

which is the lack of approaches dealing with the evaluation and selection of supply 

chain partners throughout the supply chain in the literature. 
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Chapter 5 Supply Chain Partner Selection with Risk 

Considerations  

5.1 Introduction 

In contemporary supply chains, material flows are vulnerable to unexpected 

disruption events which are of low probability but high consequences. For example, 

a supply shortage of DRAM chips led to Apple losing many customer orders (Sheffi, 

2005). The disruptions in the electronics industry due to the catastrophic Thailand 

flooding in 2011 have led to huge losses of many Japanese companies (Fuller, 

2012). All these disruption events suggest that disruption risk should be considered 

when building a value-added supply chain. Chapter 4 has covered situations when 

the decision maker wishes to control the overall risk level in supply chain, and when 

controlling the risk level in specific parts in supply chain is desired. In this chapter, 

a situation that occurs more often needs to be discussed, i.e. decision makers want 

to minimize the potential losses in worst cases in supply chain when they are 

selecting partners.  

Here, we use the Conditional Value-at-risk (CVaR) to measure the loss in worst 

cases in supply chain. Specifically, we assume that the decision maker is looking 

for partner portfolios for which the probability of total cost (including additional 

costs due to disruptions) greater than VaR (a threshold value known as Value-at-

risk) is no greater than 1-α, where α is the confidence level. As what Acerbi and 

Tasche (2002) have shown, CVaR belongs to the class of coherent risk measures 

having the following properties: monotonicity, sub-additivity, positive 
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homogeneity and translation invariance, which can imply many real world 

observations in financial risk management. For example, sub-additivity implies 

diversification is beneficial, positive homogeneity implies that the risk of a 

portfolio is proportional to its size, and translation invariance implies that the 

addition of a sure amount of capital reduces the risk by the same amount. With 

these properties, CVaR could serve as an appropriate risk measure in the Min-risk 

Model. 

5.2 Partner Selection with Risk Consideration 

In the previous models, additional costs due to disruptions are not considered 

because in the definition of the disruption index, the consequences of any 

disruptions are modeled by the proportion of the affected amount in the total 

amount of materials or products. However, when the decision maker wants to 

minimize the worst case losses, considering the disruption index alone is no longer 

appropriate, and the additional costs resulting from disruptions have to be taken 

into consideration. In the Min-risk model, the definition of disruption index and the 

corresponding disruption index constraint need not to be modified, since the supply 

chain requirement constraints represent the strategic considerations of the supply 

chain, while the additional costs due to disruptions are for the considerations of 

consequences from potential disruptions which would be an essential part in 

minimizing risk, and these two different types of requirements should be presented 

and examined separately in the new model. Hence, we define disruption scenarios 

β∊θ={1,…, h}, cost of handling disruptions and shortage of materials as shown in 

Table 5.1. Note that the cost of handling shortage of materials could be from 
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repurchasing materials from other suppliers at a higher cost and additional costs 

due to production delays etc. The cost of handling disruptions in DC could be from 

cost of fixing the disruption, additional cost of transportation, and potential loss of 

sales etc. The cost of handling disruptions in retailers could include loss of sales 

and additional marketing cost. Denote Pβ as the probability that disruption scenario 

β happens. Suppose the disruption events are independent, then Pβ should be: 

(1 ) (1 ) (1 )S S T T R R

i i t t r r

i S i S t T t T r R r R

P P P P P P P
     



     

         ,                         (5.1) 

where Sβ, Tβ, Rβ are the subset of suppliers, DCs and retailers with disruptions in 

scenario β, respectively. 

 Table 5.1: New parameters and variables in the Min-risk Model 

Parameters 

α the confidence level  

β  disruption scenario, β∊θ={1,…, h} 

θ the index set of potential disruption scenarios 

Pβ  the probability of scenario β 

cj
S unit cost of handling shortage of material j, {1,..., }j M n   

ct
T unit cost of handling disruptions in DC t 

cr
R unit cost of handling disruptions in retailer r 

Decision Variables 

τβ tail cost in scenario β  

δjβ
S shortage of material j in scenario β 

γ 
a threshold such that the probability of the total cost exceeding γ is not 

greater than 1-α  
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In Sawik (2013), an auxiliary function introduced by Rockafellar and Uryasev 

(2000) is applied to simulate the risk-averse behavior of a decision maker in a 

supplier selection problem. Define τβ as the tail cost in scenario β, where tail cost is 

the amount by which the total cost in scenario β exceeds VaR. Denote γ as the 

threshold such that the probability of the total cost exceeding it is not greater than 

1- α. Then the Conditional Value-at-Risk could be represented by the auxiliary 

function below: 

1(1 )CVaR P 

 

  



                                                   (5.2) 

According to Rockafellar and Uryasev (2000), minimizing CVaR is equivalent to 

minimizing the right hand side of equation (5.2) subjected to some common 

constraints in portfolio optimization problems plus the following two constraints, 

τβ ≥0 for all β∊θ and the sum of γ and τβ must be no smaller than the total cost. In 

the Min-risk case, the total cost should include the additional cost (AC) due to 

disruptions, which should be represented by: 

j

S S T R

j t tr r r r r

j M t T r R r R

AC c c f c z f


 

 
   

      ,                    (5.3) 

where j

S

ij j

i S

w d







 is the shortage of material j in scenario β. Then, the total cost 

under disruption scenario β in the Min-risk model should be: 

j j

ij ij ij ij j t t r tr tr r r

j M i S j M i S t T t T r R r R

TC q x c w d v y f e u z
       

          

j

S S T R

j t tr r r r r

j M t T r R r R

c c f c z f


 

 
   

                                                                      (5.4) 
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Hence, the Min-risk Model could be represented by: 

Min           CVaR = 
1(1 ) P 
 

  



                                                                           (5.5) 

s.t           

              Constraints (4.17) - (4.34) of the Basic Model in Chapter 4 

              Constraints (4.35) – (4.38) of the Strategic trade-off Model in Chapter 4 

              
j j

ij ij ij ij j t t r tr tr

j M i S j M i S t T t T r R

q x c w d v y f e  
      

         

             j

S S T R

r r j t tr r r r r

r R j M t T r R r R

u z c c f c z f


 

 
    

                             (5.6) 

              0                                                                                                     (5.7) 

              j

S

ij j

i S

w d







                       , j M                                                 (5.8) 

The number of variables and constraints in the Min-risk Model grows exponentially 

with the number of potential supply chain partners, since the number of disruption 

scenarios is h=2m+g+l, where m, g, l are the number of potential suppliers, DCs and 

retailers respectively. In some cases, the number of potential supply chain partners 

would be tens or even hundreds. For example, assuming we have 20 potential 

supply chain partners, then the number of potential disruption scenarios is 1048576. 

The resulting large size problem can be very computationally heavy as the number 

of potential partners grows, and therefore methods to reduce the number of 

disruption scenarios to be examined need to be discussed.  
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5.3 Scenario Management 

In fact, scenario reduction techniques have been well developed in the fields of 

stochastic programming, in which the uncertain parameters of the second stage 

could lead to a large number of scenarios. The basic idea of scenario reduction is 

to select a subset of scenarios from the original scenario set such that the objective 

value approximated from the subset is as close as possible to the original objective 

value. Various approaches have been developed in the literature, such as the 

forward selection (FS) and backward reduction (BR) heuristics (Dupacova et al., 

2003), clustering algorithms (Latorre et al., 2007), and importance sampling 

approach (Papavasiliou and Oren, 2013). However, none of these approaches can 

be applied to effectively reduce the size of the Min-risk Model, since these 

techniques were developed based on scenario trees for multistage models. A 

scenario management approach for environmental disaster planning introduced by 

Jenkins (2000) could be applied to reduce the number of scenarios for our problem, 

which is developed based on maximizing similarity between selected scenarios and 

original set of scenarios. Based on the ideas in these scenario reduction techniques, 

a detailed scenario management approach is discussed in this section. 

Similar to the scenario reduction algorithms developed in Growe-Kuska et al. 

(2003), two criteria are used to determine the scenario subset and assign new 

probabilities to the selected scenarios in the subset. 

Criterion 1: the selected scenarios should represent the original scenarios as 

closely as possible in terms of the overall risks 
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Criterion 2: the new probability of a selected scenario is the sum of its former 

probability and all the probabilities of deleted scenarios that are represented by it. 

There are two important concepts in this scenario management approach, namely 

similarity and coverage. In Jenkins (2000), similarity is defined as the extent to 

which the disruption scenario does the same damage as another disruption scenario. 

In our case, damage of a disruption refers to the maximum percentage of materials 

and products that are affected, and thus the similarity could be given as 𝜑𝑗𝑘 = 1 −

∑ 𝜔𝑖|𝜀𝑖𝑗 − 𝜀𝑖𝑘|3
𝑖=1 , where 𝑖 is the index for material supply disruptions, DC 

disruptions and retailer disruptions, and j, k are indices for different disruption 

scenarios. ε𝑖𝑗  is the damage of type i disruption in scenario j, which is scaled 

between 0 and 1, and ω𝑖 is the weight for disruption type i. Coverage refers to the 

similarity of a candidate disruption scenario to all possible scenarios including itself, 

and thus can be defined as ∑ 𝜑𝑗𝑘
ℎ
𝑗=1 . Let Ψ be the maximum number of candidate 

scenarios to be selected, ηk is the binary variable deciding whether candidate 

scenario k is selected, ξjk is 1 only if scenario k is selected, and for each j ξjk should 

have value 1 for the scenario k that scenario j resembles most. The definitions of 

parameters and variables are listed as follows: 

ωi the weight for disruption type i, ∑ 𝜔𝑖=1. 

εij the damage level of type i disruption in scenario j, which is scaled 

between 0 and 1. 

φjk similarity between disruption scenario j and k, the extent to which 

scenario j. does the same damage as scenario k; 𝜑𝑗𝑘 = 1 −

∑ ω𝑖|ε𝑖𝑗 − ε𝑖𝑘|3
𝑖=1 . 

Ψ the maximum number of candidate scenarios to be selected. 
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ηk the binary variable deciding whether candidate scenario k is selected. 

ξjk a variable that equals to 1 only if scenario k is selected. 

 

Then we can use the integer program introduced in Jenkins (2000) to maximize the 

overall coverage weighted by the probability, which gives the formulation MOC 

(Maximize Overall Coverage) as follows:  

Max        OC = j jk jk

k j

P                                                                              (5.9)    

Subject to     

            k

k

                                                                                                                   (5.10) 

            1, 1,...,jk

k

j h                                                                                             (5.11) 

            , 1,..., 1,...,jk k j h k q                                                                            (5.12) 

            0 1, 1,..., 1,...,jk j h k q                                                                         (5.13) 

            {0,1}, 1,...,k k q                                                                                           (5.14)  

 

Note that in the above integer program, k represents the index of candidate 

disruption scenarios, and q is the total number of candidate disruption scenarios. 

Constraint (5.10) ensures that no more than Ψ candidate scenarios could be selected; 

constraints (5.11) requires that for each scenario j, ξjk should have value 1 for the 

scenario k that scenario j resembles most; constraints (5.12) ensure that ξjk is 1 only 

if scenario k is selected. Due to the number of disruption scenarios h being large, 

the number of ξjk variables would be even larger, and hence the resulting integer 

program would also be a large size problem. In order to cope with the large size 

problems, we introduce a Decomposition Scenario Management approach in this 
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section. The idea of this new approach is inspired by the clustering algorithms 

discussed in Latorre et al. (2007). The decomposition approach is described as 

follows: 

Step 1:  Divide the disruption scenarios into several subsets (e.g 50 subsets) with 

each subset containing similar disruption events, which can be done by 

applying the Clustering techniques in Data Mining. 

Step 2:  

 

For each subset, compute and rank the risk (which is the product of 

probability and damage) for all scenarios, and choose the top q scenarios 

with highest risk as the candidate set; then compute the similarity 𝜑𝑗𝑘 

between each candidate scenario k and each scenario j in the subset. 

Step 3: 

 

For each subset of scenarios, run MOC model and select some scenarios 

from the candidate set, assign new probabilities to the selected scenarios 

and put them into the final candidate set. The number of candidates 

drawn from each subset is determined according to the sum of scenario 

probabilities in that subset, i.e. subsets with a higher total probability 

would have more candidates selected into the final candidate set. More 

specifically, let n1 be the number of candidates drawn from subset 1, p1 

be the sum of probabilities in subset 1, and λ be the total number of 

candidates to be drawn; then n1=⌊p1λ⌋. If n1=0, then set n1 to be 1. 

Repeat the process until all the subsets are scanned, after which the new 

set of candidate scenarios becomes available. 
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Step 4: 

 
Compute the similarity 𝜑𝑗𝑘 between each scenario in the final candidate 

set, and do another MOC run with q = h = the number of scenarios in 

the final candidate set, and choose Ψ scenarios as the final set of 

representatives for the disruption scenarios, assign new probabilities to 

the final set of representatives.  

 

Note that according to Criterion 2, after each MOC run, the probability of each 

selected candidate scenario would be changed to the sum of probabilities of those 

scenarios it represents including itself, so that the probabilities of the final set of 

representatives would still add up to one. The major effort in the above approach is 

to determine every similarity value ξjk as the input data. In this study, the clustering 

stage is carried out by applying the clustering package in R, while the MOC runs 

are conducted in CPLEX Optimization Studio. Figure 5.1 illustrates the basic 

procedures of this decomposition approach. 
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Figure 5.1: The basic procedures of the decomposition scenario management approach 
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5.4 Numerical Analysis 

In this section, computational examples are applied to test the proposed mixed 

integer programming model for the Min-risk Model. A comparison between the 

traditional scenario management approach and the proposed decomposition 

scenario management approach has also been conducted. The computational 

experiments were performed on a Dell OPTIPLEX 990, Intel Core i5-2500, 

3.30GHz, RAM 8GB/CPLEX 12.5.  

The proposed decomposition scenario management approach is tested and 

compared with the results of the traditional scenario management approach. In 

order to see how accurate the two approaches are in predicting the real impact of 

all potential scenarios, we use a set of randomly generated data with relatively 

smaller size, i.e. with 4 potential suppliers, 3 potential DCs and 3 potential retailers, 

which makes h=210, so that calculating the result of real impact of potential 

disruptions with all possible scenarios taken into consideration is made possible. 

Table 5.2 compares the results of the two approaches and the original results with 

all disruption scenarios considered. For simplicity, the original results with all 

scenarios considered would be called ‘Original’ in the table, while the traditional 

scenario management approach is called ‘Traditional SMA’ and the decomposition 

approach is called ‘Decomposition SMA’. The ‘Solution Gap’ indicates the 

differences between the CVaR solutions of the scenario management approaches 

and that of the original solutions, in which the CVaRs of the two scenario 

management approaches are calculated by using the values of the decision variables 

along with the data for the original problem. This is because the CVaRs we directly 
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obtained from the solutions for the two approaches are based on the reduced version 

of the disruption scenario set, and so they cannot represent the real CVaRs under 

the corresponding solutions when all potential disruption scenarios are considered. 

Therefore the real CVaRs for all the Traditional SMA solutions and the 

Decomposition SMA solutions need to be calculated, so that we can clearly see and 

compare the quality of the solutions. Figure 5.2 and Figure 5.3 demonstrate and 

compare the CVaRs of the original problem and the real CVaRs of the traditional 

and decomposition SMA, as well as the solution gaps between the two. 

   Table 5.2: Comparison between the Traditional SMA and the Decomposition SMA 

α =0.95 

Original Traditional SMA Decomposition SMA 

CVaR CVaR Solution Gap CVaR 
Solution 

Gap 

Data 1 9901.5 11583.7 16.99% 9985.8 0.85% 

Data 2 10170.4 10208.4 0.37% 10228.5 0.57% 

Data 3 8574.7 10782 25.74% 8665.2 1.06% 

Data 4 7757.3 7979.9 2.87% 7890.3 1.71% 

Data 5 7753.5 8412.7 8.50% 7755 0.02% 

Data 6 10409.6 11711.1 12.50% 10646.5 2.28% 

Data 7 10254.7 10868.9 5.99% 10398.1 1.40% 

Data 8 8859.5 9219.9 4.07% 9046.2 2.11% 

Data 9 8679.9 10304.6 18.72% 8921.7 2.79% 

Data 10 6095.8 6926.2 13.62% 6829.2 12.03% 

 

From comparison of results in the table and graphs, we can see that the 

Decomposition SMA has outperformed the Traditional SMA in terms of the CVaR 

solution gap. The reason for this result lies in the fact that Decomposition SMA has 

reserved some positions for the low probability scenarios in the final representatives 

set, while the traditional SMA generally would only choose scenarios with highest 
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probabilities. Given that the decomposition approach is more capable of dealing 

with huge data sets, we have clearly shown that it can be applied to solve the Min-

risk Model. Thus, it can be concluded that the proposed Decomposition Scenario 

Management Approach could be applied for the selection of supply chain partners 

with risk considerations in a supply chain subjected to disruption risks. 

 

Figure 5.2: Real CVaRs between Original problem and Traditional SMA 

 

Figure 5.3: Real CVaRs between Original problem and Decomposition SMA 
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The computation complexity for both approaches is O(hq), where h is the number 

of potential disruption scenarios, and q is the number of candidate scenarios. In the 

worst case, when q=h, the computation complexity becomes O(h2). The comparison 

of CPU time of the two approaches is illustrated in Table 5.3. Note that the total 

CPU time of Decomposition SMA consists of the CPU time of clustering, the CPU 

time of second stage MOCs, and the CPU time of final stage MOC. We compare 

the running time using three data sets of different sizes, in which the size is 

determined by the number of potential disruption scenarios. For each data set, the 

number of candidate scenarios selected is the same for both approaches. From the 

comparison, we can see that Decomposition SMA generally requires less CPU time 

to process. Moreover, as the problem size grows larger, the CPU time of traditional 

SMA grows rapidly, and when dealing with 220 scenario data set, the traditional 

SMA becomes inaccessible, while Decomposition SMA could still be processed.  

It is clear that Decomposition SMA is more capable of solving problems with large 

data set. In fact, the bottleneck for the Decomposition SMA lies in the clustering 

stage, because the clustering stage is the only stage that deals with large data set, 

after which the data is divided into multiple subsets that can be processed efficiently. 

Since the clustering is executed in R, the real bottleneck becomes the RAM of the 

computer. As long as there is enough RAM for R to work with the data, there is no 

concern over problem size. However, since the Decomposition SMA has O(h2) 

computation complexity, the running time would be quite long when working with 

extremely large data. In practice, the number of potential disruption scenarios can 

be reduced by eliminating the ones that are unlikely to happen. Alternatively, 



108 
 

certain rules could be added to the decomposition approach to make it more 

efficient. For example, when processing the first stage MOC runs, clusters that with 

individual probabilities lower than a certain number (e.g. 10-8) can be skipped and 

be replaced with one scenario randomly chosen from this cluster with a probability 

that equals to the sum of probabilities in this cluster. 

Table 5.3: Comparison of CPU time (sec.) between Traditional and Decomposition SMA 

 Traditional SMA Decomposition SMA 

210 data set 0.59 0.32 

215 data set 296.92 19.43 

220 data set NA 592.38 

 

Table 5.4 presents the results of Min-risk Model (confidence level α=0.9) compared 

with the results of Basic Model. The observations from Table 5.4 indicate that when 

the decision maker is aiming at lowering the risk, more suppliers would be selected 

and partners with lower risk of disruptions would be favored regardless of the 

higher cost. More specifically, all the suppliers are selected in the Min-risk Model 

results in order to mitigate the high cost of material shortage, and the combination 

of D1 and R2, R3 would indeed produce less risk while keeping the total cost as low 

as possible. Refer to Appendix H for the detailed data. 
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Table 5.4: Results of Min-risk Model compared with Basic Model 

 
Min-risk 

Model 

Basic 

Model 

Cost 4268 3725 

CVaR 8574.7 —— 

Supplier 

selected 
S1,S2,S3,S4 S1,S2,S4 

wij 

w11=0.25, 

w21=0.75, 

w32=0.5, 

w42=0.5 

w11=0.25, 

w21=0.75, 

w42=1 

DC 

selected 
D1 D1, D2 

Retailer 

selected 
R2, R3 R1, R2 

πtr 
π12=1,  

π13=1 

π11=1,  

π22=1 

 

5.5 Case Study 

Base on the proposed supply chain partner selection approach, we developed a 

customized model in this section to optimize the supply chain network for an India 

company in the iron and steel industry. The optimization problems are also 

formulated using OPL in CPLEX Optimization Studio 12.5, and the mathematical 

models are solved using a Dell OPTIPLEX 990, Intel Core i5-2500, 3.30GHz, 

RAM 8GB.  

Taken from Parida and Andhare (2014), this case is about a thermo mechanically 

treated (TMT) bar manufacturing company in Maharashtra, India. The major 

products of this company are L channels and iron bars, which are supplied to 

distributors located in western part of India. The distributors basically cover areas 
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like Maharashtra, Gujarat, Karnataka, Andhra Pradesh, and Madhya Pradesh. Raw 

materials (mild steel) are supplied by foreign suppliers and shipped by vehicles 

from Mumbai to Maharashtra, and transportation cost in this stage is borne by the 

company. The final products are manufactured through different processes such as 

heat treatment and rolling mill, and the cost incurred in the manufacturing stage 

includes labor cost and manufacturing overhead. The supply chain network 

includes only suppliers and distributors without retailers. More specifically there 

are two foreign suppliers (one from Japan, the other from China), one 

manufacturing plant, and four distributors situated at Vadodara (Gujarat), 

Amaravati (Maharashtra), Baramati (Maharashtra) and Ahwa (Gujarat). Figure 5.4 

illustrates the existing supply chain network of the company. 

Now suppose that the company’s supply chain is suffering from high frequency of 

service failures in some of its distributors and is therefore in desperate need for a 

supply chain re-design. After a thorough survey, it is reported that there are two 

major problems with the existing distributors: one being the low service quality 

which leads to customer complaints and loss of future sales, and the other problem 

is the high occurrence of disruptions in transporting the products. The company is 

also looking for new suppliers that provide decent quality raw materials with 

negotiable prices to be potential long-term partners. After a market research, the 

company has identified two potential suppliers and six potential distributors. Now 

the company is considering the newly identified two potential suppliers along with 

the two existing suppliers as the candidates for long-term partners, and six newly 

identified distributors along with two of the existing distributors that have relatively 
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decent performance are considered as the candidate long-term partners. The two 

existing distributors with decent performance are located in southern Gujarat 

(Vadodara) and central Maharashtra (Amaravati). The six newly identified 

distributors are located in central Gujarat, Madhya Pradesh, eastern Maharashtra, 

southern Maharashtra, Karnataka, and Andhra Pradesh, see Figure 5.4. The 

company has carefully evaluated each candidate in terms of their quality of 

products or services and their disruption risks. The quality score is examined from 

the following aspects: customer satisfaction, response time, on-time delivery, 

accuracy, and fill rate. Table 5.5 summarizes the supply capacity of each supplier, 

the cost of purchasing and shipping material from each supplier, ordering cost from 

each supplier, disruption probability of each supplier, and quality score for each 

supplier. Table 5.6 presents the cost of establishing the partnership with each 

distributor, the demand each distributor can handle, the cost of shipping product 

from plant to each distributor, probability of disruption for each distributor, and the 

quality score for each distributor. 
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Figure 5.4: The supply chain network of the company before re-design 

Table 5.5: Summary of input parameters for potential suppliers 

Supplier 

Supply 

capacity per 

month (ton) 

purchasing 

and shipping 

cost ($/ton) 

Ordering 

cost ($) 

Disruption 

probability 

Quality 

Score 

Supplier A  18,000 440 6,000 0.02 0.9 

Supplier B 24,000 440 5,000 0.01 0.8 

Supplier C 30,000 420 4,500 0.05 0.98 

Supplier D 15,000 450 5,000 0.02 0.95 

     

 

Mumbai 

Gujarat Madhya Pradesh 

Andhra Pradesh 

Maharashtra 

Karnataka 

Raw material DC 

Manufacturing plant 

Existing distributors 

Product transportation 

Distribution to markets 

Material transportation 

Newly identified distributors 
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 Table 5.6: Summary of input parameters for potential distributors 

Distributor 

Location 

Establishing 

cost (100 $) 

Demand can 

handle per 

month (ton) 

Shipping 

cost ($/ton) 

Disruption 

probability 

Quality 

Score 

central 

Maharashtra 
1,500 3,600 15.5 0.05 0.75 

southern 

Gujarat 
2,000 3,600 19 0.02 0.85 

Madhya 

Pradesh 
5,000 3,600 17 0.03 0.98 

southern 

Maharashtra 
5,000 3,600 17.5 0.01 0.9 

Karnataka 5,000 3,600 19 0.05 0.95 

eastern 

Maharashtra 
6,500 3,600 19 0.01 0.9 

central 

Gujarat 
6,000 3,600 23 0.01 0.9 

Andhra 

Pradesh 
5,600 3,600 19 0.01 0.9 

 

Details of these data and problem notations can be found in Appendix C. Note that 

some data are estimated or collected from the available information on the internet. 

Besides the overall supply chain performance requirements, the company also 

wants to control the distribution disruption risk level, and the quality level for the 

product distribution. The Strategic trade-off Model is applied to solve the 

company’s problem, and the mathematical formulation is as follows: 

Min              ( )i i i i t t t t t

i S i S t T

TC q x c w d v y e f y
  

                                              (5.15) 

Subject to 

                     i iw x                              i S                                                            (5.16) 

                     i iw d a                            i S                                                           (5.17) 
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                     i i iw d b x                         i S                                                           (5.18) 

                     1i

i S

w


                                                                                                  (5.19) 

                     t t

t T

f y f


                                                                                             (5.20) 

                     (1 )(1 ) (1 ) (1 )S T

risk i m i risk t t t risk

i S t T

k P P w k P f y f P
 

                  (5.21) 

                     (1 )S T

q i i q t t t

i S t T

k Q w k Q f y f Q
 

                                                   (5.22) 

                     (1 )T

t t t riskT

t T

P f y f P


                                                                      (5.23) 

                     
T

t t t T

t T

Q f y f Q

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The optimal solution suggests the company to keep one of the old suppliers from 

Japan as the secondary supplier, while the majority of raw material (85.7%) will be 

supplied by a new supplier from China. In terms of the distributors, one of the old 

distributors located in southern Gujarat (Vadodara) and three new distributors 

located at Madhya Pradesh, southern Maharashtra, and Karnataka are chosen as the 

new distributors. Figure 5.5 illustrates the new supply chain network after re-design. 
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Figure 5.5: The supply chain network of the company after re-design 

The company also has concerns about the worst case cost of the new supply chain 

network design. Therefore the Min-risk Model is also applied to examine whether 

the newly designed network is also optimal under the min-risk requirements. The 

additional costs of handling disruptions are carefully estimated by the company. 

The details of the Min-risk formulation are presented in Appendix D. The 

confidence level α is 0.95, define cS as the unit cost of handling supply disruptions, 

while ct
T refers to the unit cost of handling product disruptions in distributor t, 

where specifically in this case study, the product disruptions refer to disruptions in 
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transporting the final product to distributors. In this case, cS is 820$/ton, and the 

value of ct
T is 15$ /ton, 20$/ton, 18$/ton, 16$/ton, 18.5$/ton, 15.5$/ton, 15$/ton, 

and 16$/ton for t=1…8, respectively. In particular, the index t from 1 to 8 refers to 

the distributor located in central Maharashtra, southern Gujarat, Madhya Pradesh, 

southern Maharashtra, Karnataka, eastern Maharashtra, central Gujarat, and Andhra 

Pradesh. The Min-risk formulation is shown as follows: 

Min           
1(1 )CVaR P 
 

  



                                                                 (5.28) 

Subject to 

                  Constraints (5.16) – (5.27)                      

                 + ( )+cS T

i i i i t t t t t i t t

i S i S t T i S t T

q x c w d v y e f y w d c f
 

 
    

          

                                                                                                                          (5.29)                                                 

                   0                                                                                         (5.30)                                                             

                      

The result we obtained after applying the Min-risk Model suggests choosing the 

distributors located in central Gujarat, eastern Maharashtra, southern Maharashtra, 

and Andhra Pradesh, while all four suppliers are chosen in Min-risk Model 

compared to two suppliers chosen in strategic trade-off model. The percentages of 

material supply for the four chosen suppliers are 28.2%, 28.6%, 27.8%, and 15.4%. 

Figure 5.6 illustrates the supply chain network design suggested by the Min-risk 

Model. Table 5.7 compares the differences between the strategic trade-off results 

and the min-risk results.  
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Figure 5.6: The supply chain network design suggested by the Min-risk Model  

Compared to the strategic trade-off results, the min-risk results produce a higher 

total cost, and the overall disruption index is higher than that of strategic trade-off 

results, indicating a less disruption risk. The overall quality index is lower than that 

of the strategic trade-off results, but still above the performance requirement 

threshold value. The disruption index and quality index for distributors for the min-

risk results share the same trend as the overall indices. Compared to the strategic 

trade-off results, all four suppliers are chosen in the min-risk results, which 
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indicates that having multiple suppliers can effectively reduce the supply risks. The 

min-risk results suggest to choose distributors that have lower disruption risks but 

with higher establishing cost and shipping cost, indicating that when minimizing 

the disruption risk becomes the objective, the supply chain partner portfolio will 

change to include those partners with lower risk, as long as the performance 

requirements can be satisfied.   

                 Table 5.7: Comparison of base case solution and min-risk solutions 

 
Strategic 

Trade-off 
Min-risk 

Total cost (1000$) 9,168.5 9,481.78 

Overall disruption index 0.956 0.975 

Overall quality index 0.939 0.901 

Distributor disruption index 0.973 0.990 

Distributor quality index 0.920 0.90 

Supplier A  √ √ 

Supplier B - √ 

Supplier C √ √ 

Supplier D - √ 

central Maharashtra - - 

southern Gujarat √ - 

Madhya Pradesh √ - 

southern Maharashtra √ √ 

Karnataka √ - 

eastern Maharashtra - √ 

central Gujarat - √ 

Andhra Pradesh - √ 
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5.6 Summary 

In this chapter, we proposed a Min-risk Model that incorporated the basic supply 

chain partner selection approach with conditional value-at-risk measurements, and 

developed a Decomposition Scenario Management approach to deal with the 

resulting large size problems of the Min-risk Model. Numerical results have shown 

that the proposed Decomposition Scenario Management approach outperformed 

the traditional Scenario Management approach in terms of CVaR solution gaps and 

can be applied to search for the near optimal solution for the selection of supply 

chain partners in the context when minimizing risk is the objective. By comparing 

the results of Min-risk Model under different confidence levels and the results of 

Basic Model for supplier selection, we have shown that the solutions of Min-risk 

Model are in line with real world observations, indicating that the proposed Min-

risk Model is capable of supporting the decision making in supply chain partner 

selection problems when minimizing the risk is the first priority. In conclusion, the 

proposed strategic decision making approach in supply chain partner selections 

meets the needs identified in the literature review, and can help practitioners to 

better achieve strategic alignment and create value in supply chain. 

The proposed strategic decision approach for supply chain partner selections is also 

extendable. For example, nowadays global climate change is a big issue and the 

need for greener supply chain is pressing. In such a circumstance, we can add in 

the carbon footprint as one of our supply chain level requirements as well as trade-

off options in our model. Another extension would be considering the outsourcing 

of manufacture. In this case, manufacturers would also be considered as supply 
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chain partners, and besides cost new factors such as economic stability, political 

stability etc. should be considered. In conclusion, the proposed approach can be 

applied to help with making strategic supply chain decisions under different 

business environments.  
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Chapter 6 Supply Chain Fortification against Worst Case 

Disruptions  

6.1 Introduction 

When a supply chain is fully built through the strategic planning and careful 

selections of supply chain partners that we have discussed in the previous chapters, 

the next challenge is to make sure the supply chain will function smoothly in the 

operation stage. Risks in supply chain operation stage mainly come from various 

types of uncertainties (demand uncertainty, supply uncertainty, natural disasters, or 

accidents), and intentional attacks (from business competitors, enemies, terrorist 

attacks, or dissatisfied labors). Supply chain disruptions due to uncertainties are 

more related to tactical and operational level decisions, and are usually modeled by 

applying stochastic optimization or robust optimization approaches, while 

disruptions due to intentional attacks require more of strategic level decision 

makings, since intentional attacks would often bring catastrophic consequences. 

Essentially, the strategy against intentional attacks is to identify and protect the 

most vulnerable parts in the network system, so that the potential damage is 

minimized. Recent events have demonstrated that a single disruption in supply 

chain can have domino effects, which will directly affect a corporation’s ability to 

provide critical services to customers. For example, in the year 2000, a fire accident 

in Ericsson’s chips supplier immediately disrupted the material supply, which led 

to a loss of about USD 400 million (Norrman and Jansson, 2004). A simple accident 

on a weak spot in supply chain can already bring such a huge loss, and there would 
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be worse consequences if the disruptions are deliberately caused by intelligent 

attackers. Therefore being able to identify the vulnerable parts of the supply chain, 

where a single disruption can lead to significant degradation in supply chain 

performance, is of great importance for the decision makers. Essentially, given the 

supply chain network and typical operational information, one should be able to 

identify the areas of weakness in the network, and based on such information, 

improvements and protections can be made.  

Consider a company in a highly competitive market or a company dealing with 

strategic products that are crucial to the economic development or land security of 

a country. Business competitors or terrorists/enemies/dissatisfied labors will 

intentionally cause disruptions in order to maximize the damage taken up by the 

company, which could be profit loss, market share loss, or reputation loss etc. In 

such situations, given a limited protection budget, the company wants to know how 

to allocate the resources to protect the supply chain against these intentional attacks 

such that the damage taken is minimized. In this chapter, we will explore the 

optimal protection strategies against intentional attacks in supply chain. By 

studying the protection strategies against intentional attacks, we can have a better 

understanding of the supply chain network in terms of its vulnerable parts, and 

therefore can be better prepared to deal with future worst case disruption events.  

As have discussed in the literature review, network interdiction models can be 

applied to model intentional attacks in supply chain. In particular, we use a tri-level 

defender-attacker-user network interdiction model to simulate the problem in this 

study, since protection decisions based on the solution of traditional two-level 



123 
 

network interdiction model may be suboptimal. In tri-level programs, we are 

dealing with min-max-min or max-min-max problems, i.e., the defender or network 

user has some knowledge about the interdiction and wants to defend some arcs or 

nodes under a certain budget so that the loss due to interdiction is minimized.  The 

major challenge of modeling risk from intentional attacks in supply chain is the 

definition of attacks in the network, and in this study we provide a detailed 

definition of different types of intentional attacks in supply chain that can be readily 

applied in the tri-level network interdiction model. 

6.2 Problem Description 

6.2.1 Define the supply chain network 

Consider the supply chain as a directed graph G(N,A), where N is the set of nodes, 

and A is the set of arcs. Nodes can represent factories, DCs, warehouses or retailers, 

while arcs can be roads, production processing lines or procedures. We assume that 

disruptions only happen on arcs. In fact, disruptions happening in nodes can be 

transformed into arc disruptions if we define the network properly (see Bertsimas 

and Tsitsiklis, 1997). In particular, disruptions in a node can be replaced by two 

nodes connected by an arc, so that only arc disruptions need to be considered. The 

flows in the supply chain network include material flow, money flow and 

information flow, and material flow can be defined as commodities that flow from 

a source node to a sink node in the network. Since money flow and information 

flow could also be the target of intentional attacks in this information age, it is 

important to define these two types of flows in the network. Therefore, we define 
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special nodes and arcs to help represent money and information flows in a supply 

chain network. The nodes in supply chain network can be categorized into supplier 

nodes, retailer nodes, contract nodes, manufactory nodes, product nodes, DC nodes 

and road junction nodes. Contract nodes and product nodes are special nodes 

defined to help represent the money flow and information flow. In particular, as 

shown in in Table 6.1, we define the following node sets for different types of nodes.  

Table 6.1: Definition of node sets 

Definition of node sets  

Purchase contract nodes Np 

Sales contract nodes Nd 

Manufactory nodes  M 

Product nodes                     P 

Supplier nodes  Ns 

Retailer nodes   Nr 

DC nodes   NDC 

Road junction nodes Nj 

 

Similarly, arcs in supply chain are classified into purchase contract arcs, sales 

contract arcs, manufacture arcs and transportation arcs, with specific definitions are 

shown in Table 6.2 

Table 6.2: Definition of arc sets 

Definition of arc sets   

purchase contract arcs Ap   The set of arcs linking Np to M 

sales contract arcs Ad   The set of arcs linking Nd to P 

manufacture arcs  Am   The set of arcs linking M to P 

transportation arcs At All other arcs(A\(Ap∪Ad∪Am)) 

 

Purchase contract arcs start from the purchase contract nodes and end with 

manufactory nodes, and sales contract arcs start from the sales contract nodes and 

end with product nodes. The flows on these arcs are special commodities 
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representing the purchase or sales contracts. Figure 6.1 shows an example of a 

supply chain consisting of two suppliers, two retailers, one factory and two products. 

Nodes A and B are suppliers, X and Y are retailers, A’ and B’ are purchase contract 

nodes, and X1, Y2 are sales contract nodes. The nodes without any label are road 

junction nodes. The blue arcs (At) are transportation arcs, purple arcs (Am) are 

manufacture arcs, black arcs (Ap) are purchase contract arcs, red arcs (Ad) are sales 

contract arcs. Essentially, the material flows will travel through the transportation 

and manufacture arcs, while the financial and information flows will travel through 

the purchase and sales contract arcs. 

 

Figure 6.1: An example of supply chain network 

6.2.2 Define disruptions due to intentional attacks 

Intentional attacks from business competitors would mainly focus on the contract 

arcs, whose disruptions will affect all three types of flows in the supply chain 
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system. For example, competitors can make it more difficult for the company to get 

sales contracts by promoting sales campaigns or introducing new competitive 

products; competitors can also increase the sourcing cost for the company by 

forming strategic partnerships with its key suppliers. Note that information flow is 

affected because competitions from other entities will cause suppliers and 

distributors or retailers to hide certain information from the company, and lead to 

distrust issues and information distortions. All these acts from competitors and the 

corresponding impacts will eventually lead to supply disruptions or demand 

disruptions. Supply disruptions could be the price increase of raw materials or the 

decrease in amount of supply, which is assumed to happen only on the purchase 

contract arcs (Ap). When supply disruption happens, the company will look for 

other suppliers or negotiate with the existing supplier to make sure enough raw 

materials are supplied, which leads to the increase in sourcing cost. If the company 

fails to get enough raw materials, there will be backlogs or even loss of sale, which 

leads to the increase of selling costs and marketing cost or revenue loss (equivalent 

to increase in cost). Therefore we assume that the increase in arc cost includes all 

the additional costs caused by supply disruption. Similarly, demand disruptions will 

only happen on sales contract arcs (Ad), and will lead to promotion or loss of sale, 

and the increase in arc cost includes all the additional costs (revenue loss) caused 

by decrease in demand.  

Intentional attacks from terrorists/enemies/dissatisfied labors would mainly be 

targeted on material flows, and will lead to manufacture disruptions and 

transportation disruptions. Manufacture disruptions can be strikes or breaking down 
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of facility due to intentional damage, which happen only on manufacture arcs (Am), 

and will lead to strike handling costs, overtime costs etc. The consequence of 

transportation disruptions would be delays of delivery and the increase in various 

costs, and we assume that transportation disruptions happen only on transportation 

arcs (At). The increase in arc cost includes all the additional costs caused by 

manufacture disruptions and transportation disruptions.  

Protective activities are measures that can be taken by the company to reduce the 

loss caused by disruptions, which include signing strategic contracts and 

developing strategic partnerships with suppliers and retailers, reserving redundant 

facility/capacity, having emergency inventories, improving the welfare of workers 

and buying insurance. Signing strategic contracts can reinforce the contract arcs 

(Ap∪Ad), while reserving redundant facility/capacity, having emergency 

inventories and improving the welfare of workers can reinforce the manufacture 

arcs and transportation arcs (A\(Ap∪Ad)). Theoretically, buying insurance can 

reinforce any arcs in the network, but in reality insurance can only mitigate the 

monetary loss while leaving the impact of disruptions undisposed. Therefore, 

buying insurance will not be considered as a protective strategy against intentional 

attacks and worst case disruptions in this study. The cost for protecting each arc is 

the estimation of monetary cost the company has to pay for completely securing 

this arc from potential harms by using one or more of the above mentioned 

protective measures.  

As mentioned previously, the consequences of all the disruptions are measured by 

the increase in monetary cost. Therefore, the objective is to minimize the total cost 
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after interdiction, which means the network interdiction model we are about to 

discuss is based on the minimum-cost network flow problem.  

6.2.3 Problem formulation 

In this study, we are dealing with a multi-commodity flow network, in which each 

commodity k∈K has a commodity flow from source sk to sink tk, where K is the 

set of commodities. fk is the demand for commodity k. oij is the original cost of using 

arc (i, j), dij is the additional cost of using arc (i, j) if it is interdicted, cij is the cost 

for interdiction on arc (i, j) and B is the interdiction budget. xij is the decision 

variable for the network attacker, which determines the percentage of arc (i, j) 

destroyed by the attacker, and the additional cost of using arc (i, j) is increased by 

xij ×100 %. yij
k is the decision variable for network user, which represents the flow 

of commodity k on arc (i, j). In terms of the company’s defensive options, let rij be 

the decision variable of the defender, which determines the protection decision on 

arc (i, j), such that the disruption xij on this link must satisfy xij≤1-rij. Define eij as 

the cost for reinforcing arc (i, j), and H as the company’s budget for such defensive 

options. We specify the list of notations as follows: 

N set of nodes 

A set of arcs 

K set of commodities 

fk the demand of commodity k, k∈K 

sk source of commodity flow k 

tk sink of commodity flow k 

oij original cost of using arc (i, j) 

dij additional cost of using arc (i, j) 

cij cost for interdicting arc (i, j) 

eij the cost for reinforcing arc (i, j) 

B interdiction budget 
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H protection budget 

xij the decision variable for the network attacker, the percentage of 

interdiction on arc (i, j),  0 ≤ 𝑥𝑖𝑗 ≤ 1, ∀ (𝑖, 𝑗) ∈ 𝐀 . 

yij
k the decision variable of network user, determines the flow of commodity 

k on arc (i, j). 

rij the decision variable of the defender, which determines the protection 

decision on arc (i, j) 

 

The Network Fortification (NF) formulation for the tri-level defender-attacker-user 

problem is as follows: 
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X is the domain of the attacker’s decision variable, requiring the total cost of 

interdiction not to exceed the interdiction budget B. R is the domain of the 

defender’s decision variable, bounded by the protection budget constraint. Note that 

arc capacity is not considered in this study, because the consequences of intentional 
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attacks or worst case disruptions are represented by cost increase. Moreover, since 

we are focused on the strategic level decisions, we can assume that the capacities 

of transportation arcs are unlimited in most cases. In terms of manufacturing 

capacity, it can also be ignored in this study because consequences of 

manufacturing disruptions are modeled as cost increase, and the flows between 

manufacturing nodes to product nodes are independent flows and are predefined in 

the problem data. 
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6.3 Optimal Protection against Worst Case Disruptions 

In this section, we discuss how to solve the tri-level optimization problem presented 

in the previous section, so that optimal protection strategies against intentional 

attacks in supply chain are identified. 

Consider Model NF. If we fix x and r, and take the dual of the inner minimization, 

then release x, the formulation becomes: 
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This formulation is a bi-level mixed integer optimization problem. Similarly, if we 

fix r, and take the dual of inner maximization, then release r, we have: 
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             0, 0, 0  α π                                                                       (6.10) 

The objective function of model NFD (Network Fortification-Dual) is bilinear, 

because πij and rij are both decision variables. NFD can be solved via standard 

linearization techniques discussed in Lim and Smith (2007). For each bilinear term 

πijrij, we substitute it with a single variable λij. In addition we add the following 

constraints: 

,                                                           (6.11) 
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where  is the upper bound of πij. If rij=1, λij cannot be greater than the upper 

bound , while if rij=0, λij cannot be positive. The upper bound of πij can be found 
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k
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K

is an upper bound of πij. After applying the standard 

linearization techniques, the formulation becomes: 
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Model LNFD (Linearized Network Fortification-Dual) is a mixed integer program 

and can be extended to model multiple attackers. For example, if we have two types 

of attackers, namely business competitors and terrorists/enemies/dissatisfied labors, 

the objective function would become: 
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                    (6.22) 

and constraints (6.16) become: 
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Note that Bc and Bu are the interdiction budgets for competitor and 

terrorists/enemies/dissatisfied labors respectively. The formulation remains a MIP. 

Next, we develop a Lemma and a Theorem to show that model LNFD can be used 

to solve the problem represented by Model NF. 

LEMMA 1. If an optimal solution
* * * * *( , , , , )α π λ r solves LNFD and if 

* * * ( , )ij ij ijr i j   A , then 
* * * *( , , , )α π r is an optimal solution to NFD. 

Proof.  

If ( , )ij ij ijr i j   A holds, the value of objective function in LNFD equals to 

that in NFD, and 
* * * *( , , , )α π r in 

* * * * *( , , , , )α π λ r satisfies all the constraints in 

NFD, in addition, constraints (6.18) and (6.19) only help to guarantee 

( , )ij ij ijr i j   A , so the feasible set of 
* * * *( , , , )α π r  is the same for both 

models. Hence, if 
* * * * *( , , , , )α π λ r  is an optimal solution to LNFD, 

* * * *( , , , )α π r

is an optimal solution to NFD.                                                                               □ 

Next, we prove that the optimal solution r in LNFD is also optimal to NF.  

THEOREM 1. The optimal solution r in LNFD is also optimal to NF. 

Proof. 

First we prove that the optimal solution r in NFD is also optimal to NF. According 

to the property of duality, the optimal objective value of NFD equals to that of NF, 

and because r is the decision variable in outer level minimization problem, it 
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remains unchanged during the two dual transformations. Therefore, the optimal r 

in NFD is also optimal in NF.  

Next, we show that the optimal r in LNFD is also optimal to NFD. Since each rij 

is binary, if rij=1, λij cannot be greater than the upper bound and therefore it is 

bounded to πij, and since the objective function is to be minimized, we must have 

λij=πij; while if rij=0, λij is 0. Thus, ( , )ij ij ijr i j   A is ensured. According to 

LEMMA 1, we know that the optimal r in LNFD is also optimal to NFD, and 

therefore optimal to NF. 

Hence, THEOREM 1 is proved.                                                                                          □ 

6.4 Numerical Analysis 

6.4.1 Preliminary results 

We first test model LNFD using a simple network consisting of 20 nodes and 22 

arcs with 2 suppliers, 2 retailers and 2 products. Extreme cases were used in order 

to check the correctness of the results. For example, the additional costs on 

manufacture arcs are set to be extremely high such that an optimal solution will 

surely protect manufacture arcs. The layout of the example network is shown in 

Figure 6.2, where for simplicity, each arc is indexed with a number. All 

computational experiments in this section were performed on a Dell OPTIPLEX 

990, Intel Core i5-2500, 3.30GHz, RAM 8GB/CPLEX 12.5. After implementing 

the data in LNFD model, we find that the solution is indeed optimal. Tables 6.3 

ij
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and 6.4 present the list of parameters and Table 6.5 show some key variables in the 

results. Note that the budget Bc=50, and Bu=50, while the budget H is 105. 

                                    Table 6.3: List of commodity parameters 

k fk sk tk k fk sk tk 

PA 1 A’ M CB 20 B M 

PB 1 B’ M P1 30 M P1 

SX1 1 X1 P1 P2 20 M P2 

SX2 1 X2 P2 CX1 15 P1 X 

SY1 1 Y1 P1 CX2 10 P2 X 

SY2 1 Y2 P2 CY1 15 P1 Y 

CA 15 A M CY2 10 P2 Y 

 

                      

                      Table 6.4: List of arc parameters 

arc 1 2 3 4 5 6 7 8 9 10 11 

oij 2 1 1 2 2 2 100 100 15 15 80 

dij 1 1 1 1 2 2 150 150 10 10 100 

cij 5 5 5 5 5 5 10 10 10 10 10 

eij 5 5 5 5 5 5 15 15 10 10 10 

arc 12 13 14 15 16 17 18 19 20 21 22 

oij 80 90 90 0 0 2 3 2 2 2 3 

dij 80 90 85 0 0 1 1 1 1 1 1 

cij 10 10 10 0 0 5 5 5 5 5 5 

eij 10 10 10 0 0 5 5 5 5 5 5 
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Figure 6.2: Network structure of the first test case 

                  Table 6.5: Key variables in the results 

 1 2 3 4 5 6 7 8 9 10 11 

πij 15 20 35 0 70 0 150 150 300 200 100 

λij 0 0 0 0 70 0 150 150 300 200 100 

rij 0 0 0 0 1 0 1 1 1 1 1 

 12 13 14 15 16 17 18 19 20 21 22 

πij 80 90 85 0 0 50 0 50 0 25 25 

λij 80 90 85 0 0 50 0 50 0 0 0 

rij 1 1 1 0 0 1 0 1 0 0 0 

 

The results showed that = ( , )ij ij ijr i j   A，  holds and the optimal solution 

suggests protecting those arcs that have higher πij/eij ratio. More specifically, if we 

sort πij/eij in a descending order, the arcs with higher ratios would be arc 9, 10, 5, 7, 

8, 11, 17, 19, 13, 14 and 12, and the values of rij suggest protecting these arcs. Table 

6.6 presents the πij/eij ratio for some arcs in the example network, and the arcs that 

are not listed in the table are those with zero πij value. In this example, manufacture 
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arcs 9 and 10 are the most critical arcs and are protected first, followed by 

transportation arc 5 and purchase contract arcs 7 and 8. After that, if we still have 

protection budget remaining, we can proceed to protect sales contract arc 11 and 

two transportation arcs 17 and 19. If we increase the budget H, more arcs would be 

protected. 

Table 6.6 also provides evidence showing that protective strategies developed 

based on the vulnerability information derived from bi-level network interdiction 

model are often suboptimal. Since πij is the dual variable of the attacker’s decision 

variable xij, it actually indicates the attacker’s gain if one unit of interdiction 

variable xij is allowed, and thus it can be regarded as a vulnerability indicator. If 

protections are built based on this vulnerability indicator πij, then the optimal 

solution would be different, which turns out to be suboptimal. As will be further 

discussed in the sensitivity analysis, the cost efficiency of protecting arc (i, j), i.e. 

the πij/eij ratio, is the new indicator of how critical an arc is in our problem. 

Table 6.6: The πij/eij ratio for some arcs 

Arc 9 10 5 7 8 11 17 19 13 14 12 3 21 22 2 1 

πij 300 200 70 150 150 100 50 50 90 85 80 35 25 25 20 15 

πij/eij 30 20 14 10 10 10 10 10 9 8.5 8 7 5 5 4 3 

rij 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

Arc 

type 
Am Am At Ap Ap Ad At At Ad Ad Ad At At At At At 

 

6.4.2 Sensitivity analysis 

In this section, sensitivity analysis is conducted by changing budget Bc, Bu and H, 

using a larger network with 28 nodes, 28 arcs, 4 suppliers, 4 retailers and 2 products. 

The network layout of this test case is presented in Figure 6.3, and the detailed data 
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of this example network are presented in Appendix E. The results are presented in 

Tables 6.8, 6.9, 6.10, 6.11 and Figures 6.4, 6.5, 6.6. Note that the base case is Bc=30, 

Bu=25 and H=50. If one budget is changing, the other two are fixed to be the same 

as in the base case. Table 6.7 summarizes some key variables in the base case results. 

From these results, we can see that when budget Bc=30, Bu=25 and H =50, the 

optimal arcs to protect are arcs 5, 6, 8, 11, 12 and 23. 

 

Figure 6.3: Network structure of the second test example       

            Table 6.7: Key variables in the base case results 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

πij 0 5 0 0 45 35 0 60 0 30 255 155 0 0 

λij 0 0 0 0 45 35 0 60 0 0 255 155 0 0 

rij 0 0 0 0 1 1 0 1 0 0 1 1 0 0 

 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

πij 0 0 0 0 0 0 0 0 35 35 0 0 0 0 

λij 0 0 0 0 0 0 0 0 35 0 0 0 0 0 

rij 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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     Table 6.8: Results under different values of Bc 

Bc 20 25 30 35 40 

Obj. 3000 3060 3120 3160 3200 

Solution 
5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

 

 

Figure 6.4: Objective values under different values of Bc                    

     Table 6.9: Results under different values of Bu 

Bu 15 20 25 30 35 

Obj. 3090 3105 3120 3130 3135 

Solution 
5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

5, 6, 8, 11, 
12, 23 

 

 

Figure 6.5: Objective values under different values of Bu 
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 Table 6.10: Results under different values of H 

H 30 35 40 45 50 

Obj. 3215 3180 3140 3130 3120 

Solution 
5, 11,  
12, 23 

5, 11, 12, 
23, 24 

5, 6, 11,  
12, 23, 24 

2, 5, 6, 11, 
12, 23, 24 

5, 6, 8,  
11, 12, 23 

H 55 60 65 70 75 

Obj. 3080 3070 3050 3010 3000 

Solution 
5, 6, 8, 11,  
12, 23, 24 

2, 5, 6, 8, 11,  
12, 23, 24 

5, 8, 10, 11,  
12, 23, 24 

5, 6, 8, 10,  
11, 12, 23, 24 

2, 5, 6, 8, 10,  
11, 12, 23, 24 

 

 

Figure 6.6: Objective values under different values of H 

The results show that changing the values of Bc and Bu will not affect the solution 

of rij, but as the interdiction budget Bc or Bu grows, the objective value or the overall 

cost will increase accordingly. However changing the values of H will not only 

change the objective value but also affect the solution of rij, as protection budget H 

grows, the optimal objective value drops accordingly. The reason is that our method 
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systematically identifies the optimal arcs to protect according to the protection 

budget H, regardless of how big or small the interdiction budgets are. This can also 

be explained by examining the formulation of LNFD, in which the interdiction 

budget B only appears in the objective function. Essentially, if attackers have more 

budgets, they can affect more unprotected arcs in the network. Similarly, if the 

company has more protection budget, we can protect more arcs from attacks, thus 

bringing down the overall cost. In fact, this procedure is quite close to real world 

cases, in which the defenders do not know the attackers’ budget and therefore the 

decisions are solely based on the property of the network and the protection budget.  

Table 6.11 presents the πij/eij ratio for some arcs in the second test example. From 

the results in Table 6.10 and Table 6.11 we can see that as the protection budget H 

grows, our method chooses arcs that with higher πij/eij ratio to protect first. More 

specifically, when H=30, the company is suggested to protect arcs 5, 11, 12 and 23, 

because arcs 11, 12 and 5 are the three arcs that with the highest πij/eij ratio, and 

protecting them will cost 25 units of money, while the remaining 5 units are 

invested in the protection of arc 23 which has the highest πij/eij ratio among arcs 

that cost 5 units to protect. When H=50, the company is suggested to protect arcs 

5, 6, 8, 11, 12 and 23. This is because protecting arc 8 will produce a 60-unit cost 

decrease which is larger than the total cost decrease brought by protecting arc 10 or 

protecting arcs 24 and 2. Hence, when there is not enough budget to protect both 

arcs, our method will choose the arc with the larger πij as long as the protection 

budget H is not exceeded, though the chosen arc may have a smaller πij/eij ratio. 
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                  Table 6.11: The πij/eij ratio for some arcs in the 2rd test example, when H=50 

 11 12 5 6 23 24 8 10 2 

πij/eij 25.5 15.5 9 7 7 7 4 2 1 

eij 10 10 5 5 5 5 15 15 5 

Arc type Am Am At At At At Ap Ap At 

 

During the sensitivity analysis, we find that the πij value will change as protection 

budget H changes. This can be explained by analyzing the economic meanings of 

each variable. If we look closely at the economic meanings of each dual variable, 

we find that πij indicates the attacker’s gain if one unit of interdiction variable xij is 

allowed (i.e. arc (i, j) can be interdicted); and β is the attacker’s gain if one more 

unit of interdiction budget is allowed. Therefore, πij/eij ratio represents the reduction 

of attacker’s gain per unit of money spent on protecting arc (i, j), which can be 

considered as the cost efficiency of protecting arc (i, j). As the protection budget H 

increases, more arcs will be fortified, which leads to the decrease of attacker’s 

marginal gain β if one unit of interdiction budget is allowed. The decrease in β will 

then lead to the increase in πij, as seen in constraints (6.16). The economic 

explanation is that as few arcs can be interdicted, the marginal gain of being able 

to attack an arc πij will grow. In the extreme cases where the protection budget H is 

large enough to allow for fortifications in all arcs, the value of β will become 0, 

since increasing interdiction budget will not bring any benefit for the attacker, and 

the value for each πij is the attacker’s marginal gain if only arc (i, j) can be 

interdicted in the network. Therefore, the πij/eij ratio when H is large enough to 

protect all the arcs can be used as an indicator of how critical an arc is in the supply 

chain network. Table 6.12 presents the πij/eij ratios when protection budget H is 225. 

Note that arcs 21and 22 in the second test example are auxiliary arcs that have no 
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usage cost, which is used to represent that the products are ready for shipment. 

Since the two auxiliary arcs do not have physical meanings, they cannot be attacked, 

and therefore the πij/eij ratios are set to be 0.  

  Table 6.12: The πij/eij ratio for arcs in the 2rd test example, when H=225 

 11 12 5 8 6 23 24 10 7 9 13 18 14 15 

πij/eij 30 20 12 12 10 10 10 10 8 8 8 8 7 5.3 

eij 10 10 5 15 5 5 5 15 15 15 10 10 10 15 

Arc type Am Am At Ap At At At Ap Ap Ap Ad Ad Ad Ad 

 16 19 17 2 3 20 25 28 1 4 26 27 21 22 

πij/eij 5.3 5 4 4 3 3 3 3 2 2 2 2 0 0 

eij 15 10 15 5 5 10 5 5 5 5 5 5 0 0 

Arc type Ad Ad Ad At At Ad At At At At At At At At 

 

According to Table 6.12, the most critical arcs in this example network are two 

manufacture arcs (arcs 11, 12) followed by a transportation arc (arc 5), and a 

purchasing contract arc (arc 8). The solution indicates that these arcs should be 

protected with the highest priority. If company has more protection budget, several 

transportation arcs (arcs 6, 23, 24)and purchase contract arcs (arcs 10, 7, 9) should 

also be protected. These results can give supply chain managers some useful 

information about which parts of the supply chain are vulnerable and need more 

managerial attention. For example, the company can improve the welfare of the 

workers to prevent strikes from happening so that the manufacturing process is 

protected; if the purchase contract with supplier D is very likely to be affected, the 

company should use multiple suppliers to get the raw material originally provided 

solely by supplier D.  
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In fact, the above observation about πij/eij has a theoretical foundation. THEOREM 

2 illustrates why the πij/eij ratios when H is large and β=0 can be considered as 

indicators of the critical level of arcs in a supply chain network.    

THEOREM 2. If H is large enough, the value of β will be zero, and πij will reach 

its maximum value for each arc (i, j). 

Proof.  

If H is large enough, most of the rij will become 1, i.e. majority of the arcs in the 

supply chain would be fortified. In such a circumstance, the attackers will have no 

more arc to interdict even though they have remaining interdiction budget, and as 

β is the attacker’s marginal gain if one unit of interdiction budget is allowed, β will 

become zero. 

If β=0, constraint (6.16) becomes: 

0 ( , )k

ij ij ij

k

d i j 


   
K

A                                                  (6.25) 

Since constraints (6.18) and (6.19) only ensures , ( , )ij ij ijr i j   A  but do not 

affect the value of πij, and the objective function (6.14) is to be minimized, we have

= , ( , )k

ij ij ij

k

d i j 


 
K

A .  

In comparison, when β>0, we will have = , ( , )k

ij ij ij ij

k

d c i j  


  
K

A . Hence, 

when β=0, πij will reach its maximum for each arc (i, j).                                                       □                   
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From THEOREM 2, we can see that when H is large and β=0, 

= , ( , )k

ij ij ij

k

d i j 


 
K

A , which can be considered as the attacker’s best possible 

gain of interdicting arc (i, j). While in cases when H is not large enough, the values 

of πij for some arc might be smaller or even zero, as shown in Table 6.11. Therefore, 

the πij/eij ratios when H is large and β=0 would be a better representation of the cost 

efficiency of protecting each arc. 

6.4.3 Solution time 

Next, we check whether our model is capable of solving real world size problems 

of large size. Let n be the number of arcs in the network, and so the computational 

complexity of model LNFD is O(n2). We use some larger networks to test the 

model: one with 6 suppliers, 6 retailers, 3 products, 47 nodes and 50 arcs, one with 

10 suppliers, 9 retailers, 4 products, 81 nodes and 93 arcs, one with 20 suppliers, 

18 retailers, 6 products, 184 nodes and 221 arcs, and one with 40 suppliers, 38 

retailers, 8 products, 382 nodes and 469 arcs. Table 6.13 compares the solution time 

of network examples with different sizes, and all network examples are solved to 

optimality. For simplicity, we will subsequently refer to network examples with 

different sizes according to the numbers of suppliers and retailers. For example, the 

previous network example we have used that has 6 suppliers and 6 retailers is 

referred to as ‘6×6’ network.  
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        Table 6.13: Comparison of solution time and cuts applied for different size networks  

Problem size (# of supplier × # of retailer) 6×6 10×9 20×18 40×38 

Number of constraints 2272 5780 31282 130726 

Number of variables 
binary 50 93 221 469 

others 2253 6327 36689 158525 

Implied bound cuts 12 17 49 162 

Flow cuts 7 18 64 207 

Mixed integer rounding cuts 9 20 83 169 

Gomory fractional cuts 4 11 24 33 

Average Solution time(s) 

Total 0.18 0.39 1.26 3.85 

Root 0.18 0.38 0.53 0.69 

Branch & cut 0 0.01 0.73 3.17 

 

From the results, we can see that for the smaller networks like “6×6” and “10×9”, 

almost all the solution time is spent on root node processing, while the parallel 

branch & cut phase almost takes no time. The solution times for “20×18” and 

“40×38” are above 1 second, and the parallel branch & cut phases take longer time 

as the network grows larger, but overall the solution times are still very short. This 

implies that our MIP model is not a hard one which will generate billions of nodes 

in the branch & cut tree even with a small amount of variables. If we apply a real 

world problem for a large size manufacturing company, it would be a ‘50×50’ 

network and above, which has over 1000 different types of commodities, and the 

number of constraints is estimated to be over 800,000. In fact, CPLEX is capable 

of handling large MIP problems with hundreds of thousands of constraints and 
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variables, given that the MIP model is not an extremely hard one. Thus it is 

reasonable to conclude that our model can handle real world size problems. 

6.5 Case Study 

In this section, we discuss a case study about outsourcing the vaccine supply chain 

in South Africa, which was originally presented in PATH (2011). As the new 

vaccines become more bulky and more expensive, the Ministry of Health in South 

Africa can no longer afford to have inefficient and ineffective vaccine supply chains. 

In 2003, the South Africa National Department of Health (DOH) decided to 

outsource the vaccine supply chain and logistic system to a 3PL (third-party logistic) 

provider called ‘Biovac Institute’ in the private sector, since compared to public 

systems, the 3PL providers have more incentives in utilizing the available resources 

and technologies, minimizing wastage of resources, and achieving economy of 

scale. The vaccines in South Africa are imported from foreign countries and will 

be shipped to the airport in the capital city Johannesburg. The major responsibility 

of Biovac Institute is to manage the vaccine arrival and transfer, vaccine storage at 

all levels of the supply chain, as well as vaccine distributions.  

Among the nine provinces in South Africa, the Western Cape Province has a unique 

agreement that requires Biovac to manage its in-province vaccine supply chain. For 

the rest of the eight provinces, Biovac’s duty is just to deliver the vaccine to the 

provincial warehouse, because the warehousing and transportation of vaccines in 

these eight provinces are managed by provincial departments of health. The South 

Africa National DOH consider the Western Cape vaccine supply chain system as a 
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pilot project, which can provide guidance to other provinces that wish to outsource 

their vaccine supply chain. Therefore, Biovac considers the service in Western 

Cape as highly important, and cannot afford to have any significant disruption event 

happening to the supply system. 

One of the advantages of the Western Cape’s vaccine supply chain is that it is 

streamlined, which means the number of touch points for vaccines before reaching 

their final destinations is decreased. A streamlined vaccine supply chain decreases 

the lead time, raises efficiency by holding less buffer stock, and minimizes the risk 

to vaccines due to fewer touch points. In particular, the Western Cape supply chain 

bypasses the district-storage level compared to other provinces. All vaccines are 

stored in Biovac’s Pineland facility located in Cape Town. In practice, Biovac 

distributes directly to 131 health centers out of 277 in Western Cape, while the other 

146 health centers prefer to transport their vaccines from the district hospital to 

their facilities at their own expense, which means Biovac just needs to distribute 

their vaccines to the corresponding district hospitals. A possible reason for such 

preference is that these districts prefer to have control over their stock of vaccines 

so that they can reallocate vaccines from the district level to ensure no stock out 

occurs in any of their health centers. The vaccine supply chain structure is shown 

in Figure 6.7.  Note that WCDH stands for Western Cape Department of Health. 
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Figure 6.7: The Western Cape vaccine supply chain structure 

Table 6.14 presents the South Africa national vaccination schedule in 2010. From 

the table, we can see that there are in total eight types of vaccines in the South 

Africa supply chain. The demand for each type of vaccine varies in each month, 

and such information is communicated through monthly email reports between 

Biovac and WCDH. Biovac imposes a minimum order size of $120. 

 Table 6.14: South Africa national vaccination schedule in 2010 

Vaccine(doses 

per FIC) 
Birth 6 wks. 10 wks.   

14 

wks. 
9 mo.   

18 

mo. 
6 yrs.   

12 

yrs.   

BCG(1) X        

OPV(2) X X       

DTP-IPV-

Hib(4) 
 X X X  X   

Measles(2)     X X   

Hep B(3)  X X X     

Rotavirus(3)  X       

Pneumococcal 

(3) 
 X  X X    

Td(2)       X X 

Biovac Pineland facility 

Health Centers 

District 

Hospitals 
Health Centers 

Biovac Vehicle 

Biovac Vehicle 

WCDH 

Vehivle 
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Biovac has identified three major risks from intentional attacks in the Western Cape 

vaccine supply chain system. The first risk comes from internal dissatisfied labors, 

who will cause temperature failure in the cold chain storage and lead to large 

amount of spoiled vaccines. To prevent such internal attacks, Biovac plans to 

develop a temperature monitoring system and link the bonus of employees to the 

number of accidents they have in their duty, and employees with zero accident will 

be rewarded. The second and third types of risks come from terrorists or enemies, 

who will cut off transportation routes or create explosions to destroy Biovac 

facilities, vehicles and vaccine stocks. The protection strategy against these two 

types of risk is to prepare emergency inventory in vaccine storage facilities at each 

level, and employ armed guards to protect facilities and vehicles on the road. Now 

Biovac wants to identify the most critical links in their supply chain to protect, 

given a protection budget of $15000.  

In order to apply our approach to solve Biovac’s problem, certain transformation is 

needed in terms of the problem network structure. In particular, we add in some 

auxiliary nodes and arcs to the supply chain network. Sorting nodes and arcs are 

added to the network between Biovac’s Pineland facility and each destinations, to 

represent the vaccine management and sorting process before the vaccines are 

delivered to their destinations. Entry inspections nodes and storage arcs are added 

before the vaccines are stored in local facilities, so that we can model the protection 

of facilities. Figure 6.8 illustrates the reformed network structure for Biovac’s 

vaccine supply chain. In practice, temperature failure disruptions can happen both 

in the sorting stage and transportation stage, but since the protective measures for 
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such kind of disruption work directly on the employees, their effect will cover both 

sorting and transportation stages. So for simplicity we assume that the temperature 

failure disruptions will only happen on sorting arcs and the corresponding 

protective measures will be implemented on sorting arcs only. Disruptions from 

terrorists/enemies cutting off the transportation route are assumed to happen only 

on transportation arcs, and the corresponding protective measure that can be 

implemented is to have emergency inventories at local warehouses.  Storage 

facilities are most likely to be the target of extreme events like explosions, which 

are assumed to happen on storage arcs in the reformed network, and Biovac can 

fortify storage facilities by placing armed guards around the facilities. 

 

Figure 6.8: Reformed network structure for Biovac 

Define AD as the set of sorting arcs, AT as the set of transportation arcs, and AS as 

the set of storage arcs. Then BD, BT, and BS are the interdiction budgets for 

temperature failure incidents, blocking transportation routes, and explosion attacks, 

respectively. The remaining notations are consistent with those in the LNFD Model. 
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disruptions is set to the number of sorting arcs. In other words, all sorting arcs can 

be disrupted simultaneously in the worst case, since in this Biovac case it is 

generally easy for dissatisfied employees to make such temperature failure 

incidents happen. Therefore Biovac should pay significant amount of attention to 

this kind of internal attacks. The monthly demand data for each type of vaccines is 

based on the monthly report from Biovac to WCDH, and therefore the solution of 

the model changes monthly. The vaccine demand data in this model is estimated in 

US dollars, and among the six districts in Western Cape, the city of Cape Town has 

the highest vaccine demand of $27000 due to its dense population, followed by 

Cape Winelands($5700), Eden($4200), West Coast($2800), Overberg($1800), and 

Central Karoo($500). Hospitals and Health Centers in Cape Town, Cape Winelands 

and Overberg receive delivery service from Biovac, while the vaccines for West 

Coast, Eden, and Central Karoo districts are delivered to their District Hospitals. 

The costs of transportation are estimated by the distance between Pineland facility 

and destinations, and the average cost of transportation per kilometer for Biovac in 

2010 (PATH, 2011). The costs on sorting arcs are estimated from the cold chain 

management costs and salary of management staff, and the costs on storage arcs 

mainly consists of packaging and labeling costs (PATH, 2011). Details of the 

problem data can be found in Appendix F. The LNFD formulation of Biovac’s 

problem is as follows: 
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The protection budget of Biovac is set to be $15000. By solving the above 

mathematical model to optimality, the solution we obtained suggests that Biovac 

should protect all the sorting arcs by implementing the temperature monitoring 

system and rewarding employees with zero temperature accidents, and Biovac 

should also protect some storage arcs by employing armed guards to protect storage 
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facilities and to secure the vaccine transferring process.  The arc with the highest 

πij/eij ratio is the storage arc flowing into Pineland facility, followed by the sorting 

arcs and some storage arcs flowing into district hospitals. Figure 6.9 briefly 

illustrates the optimal protection strategies suggested by our approach. No 

transportation arc is protected according to the solution under $15000 budget. This 

is because the loss due to transportation disruption is relatively small compared to 

the other two disruption types, and the corresponding protective measure of having 

buffer inventory costs more than that of the other two protective measures, in other 

words, the πij/eij ratio of transportation arcs in Biovac’s case is relatively small. 

Moreover, the protective measure of having buffer inventory works against 

Biovac’s competitive advantage of streamlined supply chain. The vaccines’ cold 

chain storage management process and some of the important vaccine storage 

facilities such as the Pineland facility, three district hospitals, and major hospitals 

in Cape Town are suggested to be secured or fortified. This is because the 

consequences of disruptions in these two areas are unaffordable to Biovac, while 

the corresponding protective measures are relatively easy to be implemented, i.e. 

the πij/eij ratios of these arcs are the highest, and therefore should be protected with 

first priority. From this case study of Biovac’s vaccine supply chain, we can 

conclude that the proposed approach can be applied to effectively solve a real world 

problem. 
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Figure 6.9: The optimal protection strategies suggested by the solution of LNFD 
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6.6 Recommended Applications 

The optimal solution of LNFD can provide supply chain managers with useful 

information in the strategic decision making process. If the optimal solution 

suggests protecting more purchase contract arcs and upper stream transportation 

arcs, supply chain managers should be more focused on building the robustness of 

material supply. For example, companies can have multiple suppliers to make sure 

that the flow of supply will not easily be interrupted. If more sales contract arcs and 

lower stream transportation arcs are suggested to be protected, companies then 

should make more efforts in boosting the responsiveness of the supply chain, 

because rapid reactions are needed to deal with changing customer needs and 

unsatisfied demand. To sum up, companies should adjust their supply chain 

strategies according to the protection suggestions. The weaknesses within the 

supply chain network identified by our approach could also serve as a guideline for 

the redesign of network structure such that the new supply chain system is more 

robust against intentional attacks and worst case disruptions.    

This research provides practitioners, supply chain managers and government 

agencies a useful tool that can automatically suggest where to allocate protection 

resources so that loss is minimized. Besides supply chain applications, our model 

can also be applied to the protection of critical infrastructures such as pipelines used 

for oil or gas transportation. The method proposed is also capable of solving 

problems in military fields, for instance, how to allocate defensive facilities so that 

national security is ensured. The advantage of this approach is that no detailed 

information about the opponents’ interdiction budget is needed, which means 
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practitioners could readily know the optimal protection plan based on the supply 

chain network and typical operational data, without having to know the opponents’ 

interdiction budget. 

6.7 Summary 

This chapter presents a quantitative method for identifying the optimal protection 

strategies against intentional attacks or worst case disruptions in supply chain. We 

consider the supply chain system as a directed graph and define different functional 

components in the system as nodes and arcs. Based on these definitions, we 

developed a tri-level optimization problem to identify the optimal arcs to protect, 

given a budget for performing protective activities. A MIP model LNFD is 

proposed to solve the tri-level problem, and is proved to be equivalent to the tri-

level problem. It is shown in the numerical studies that model LNFD can efficiently 

solve small to medium size problems and is also capable of solving large size 

problems. In addition, the optimal solution is found to be independent of the 

interdiction budget, which matches reality well because in most cases, decision 

makers have little information on how much money or resources the opponents plan 

to use. The proposed method can provide supply chain managers with useful 

information in the strategic decision making process and can serve as a guideline 

for the redesign of supply chain network structure. 
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Chapter 7 Conclusion 

7.1 Introduction 

This research has presented a framework for strategic supply chain planning under 

multiple criteria and uncertainty, and two quantitative approaches for the strategic 

decision making in supply chain subjected to disruption risks. The research focus 

is on making the strategic level decisions in supply chain partner selections and 

protection planning against worst case disruptions.  

This research has proposed an efficient quantitative approach for strategic decision 

making in supply chain partner selections with considerations of disruption risks, 

which complements existing methodologies by considering the combination of 

trade-off options and supply chain level performance requirements to allow for a 

wider range of choices and potentially better supply chain structures. The supply 

chain level performance requirements are developed based on a detailed definition 

of four supply chain performance indices: disruption index, flexibility index, 

quality index, and innovation index. In practice, the values of performance indices 

are determined by evaluating historical data and applying Analytic Hierarchy 

Process (AHP) approaches. The supply chain level requirements are then modeled 

by enforcing a performance threshold on each of the performance index. Trade-off 

options are enabled once supply chain level performance requirements are 

implemented, by enforcing the performance index of certain parts of the supply 

chain to meet a target value. The trade-off constraints and supply chain level 

performance requirements constraints are integrated into a mixed integer 
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programming model, which allows for supply chain characteristic diversifications 

in the supply chain designing process. In order to model the risk considerations in 

supply chain designing, Conditional Value-at-Risk (CVaR) is introduced and 

incorporated into a Min-risk model as an objective function to be minimized. The 

number of variables and constraints in the Min-risk Model grows exponentially 

with the number of potential supply chain partners, which can lead to large size 

problems that are difficult to solve. To overcome the computational issues, a new 

decomposition scenario management approach is proposed to reduce the number of 

disruption scenarios to be considered in solving the problem. Numerical results 

have shown that the proposed decomposition scenario management approach can 

provide near optimal solutions for the supply chain partner selection problem when 

minimizing risk is the objective. By comparing the results of Min-risk model under 

different confidence levels with that of the basic model for supplier selection, it is 

shown that the solutions of Min-risk model are in line with real world observations, 

indicating that the proposed Min-risk model can be applied to support the decision 

making in supply chain partner selections and design problems when minimizing 

the risk is the first priority. Case studies on a European chemical company and an 

Indian TMT bar company have further validated the applicability of the proposed 

methods in solving realistic problems.  

This study has also proposed a method for the protection planning against worst 

case disruptions in supply chains. To consider potential intentional attacks or worst 

case disruptions in supply chain, possible disruption scenarios due to intentional 

attacks are examined, followed by a novel definition of supply chain networks on 
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graphs, which allows for the modeling of disruptions on financial flows and 

information flows. The protection problem is then modeled as a tri-level defender-

attacker-user optimization model.  By using duality theory and standard 

linearization techniques, the tri-level problem is transformed into a mixed integer 

programming model which can be solved readily using commercial software.  By 

comparing the solution values of some key variables in numerical analysis, we 

reconfirm a previous finding that protection decisions based on the solution of 

traditional bi-level interdiction models may be suboptimal due to its dependence on 

attacker’s interdiction budget, and find that the solution of our approach is based 

on the cost efficiency of protecting each arc, which is independent of the attacker’s 

budget. The weaknesses of the supply chain system identified by our approach 

could also serve as a guideline for the redesign of network structure such that the 

new supply chain system is more robust against intentional attacks or worst case 

disruptions. A case study of a South African third party logistics company in 

vaccine industry is presented showing that the proposed approach can be applied to 

solve realistic problems. 

7.2 Main Contributions 

This thesis presented a decision framework for strategic supply chain planning 

under multi-criteria and risk consideration. This research also proposed a novel 

definition of supply chain networks on graphs, which considers all types of flows 

in supply chain and enables the modeling of disruptions on financial flows and 

information flows. The application of this new definition for the protection 
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planning problems in this thesis has proven that it can be used to effectively model 

realistic problems in supply chain. 

This thesis also presented a decision framework for strategic planning in supply 

chain, which is a closed-loop system with a self-adjusting capability, and is useful 

in maintaining the competitive advantage and achieving sustainable value creation 

for the company. Supply chain disruptions are considered as an external factor that 

can affect this closed-loop and self-adjusting system. Based on this decision 

framework, this thesis proceeds to discuss the strategic decision making in supply 

chain under disruption risks. 

This thesis derived a quantitative approach for the supply chain partner selection 

problems under disruption risks, and this new approach complements existing 

methods by considering both supply chain level requirements and trade-off options 

to enable diversification in supply chain characteristics, which can effectively assist 

in achieving the supply chain strategic alignment. The new approach can also be 

extended to consider the risk concerns of decision makers by incorporating 

Conditional Value-at-Risk into the model, which provides solutions with minimum 

disruption risk to the decision maker. The method proposed for solving the 

protection planning problem against worst case disruptions manages to consider all 

three types of flow disruptions and provides a practical way of identifying the weak 

spots in supply chain. 

This thesis also developed a new algorithm called ‘Decomposition Scenario 

Management’ approach for effective scenario reductions. This new algorithm is 

focused on reducing the number of scenarios in LP or MIP problems, and numerical 
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results have proven that it is more efficient and more accurate than the original 

scenario management approach.  

The proposed approaches can provide managers and practitioners in supply chain 

with useful information in the strategic decision making process. Based on the 

suggestions of the proposed supply chain partner selection approach, decision 

makers can identify good quality suppliers, vendors or service providers and 

develop strategic partnerships with them to enhance the strategic alignment of the 

supply chain, which is critical to the competitiveness of the company. In terms of 

fortification strategies in supply chain, companies can adjust the characteristics of 

the supply chain or even reconsider the supply chain strategy according to the 

protection suggestions. The weak spots within the supply chain network identified 

by our approach could also serve as a guideline for the redesign of network structure 

such that the new supply chain system is more robust against intentional attacks 

and worst case disruptions.    

In summary, the work in Chapter 4 and 5 present new methodologies for supply 

chain partner selection with trade-offs options and supply chain partner selection 

under risk considerations with a novel scenario reduction algorithm, which 

addresses the first research gap identified in Section 2.7. Chapter 6 discusses a 

supply chain fortification methodology using a tri-level network interdiction model, 

which is developed based on a novel graph representation of supply chain networks 

that allows for the definition of various types of intentional disruptions. The work 

in Chapter 6 addresses the second and third research gaps identified in Section 2.7. 
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7.3 Limitations and Future Work 

While the proposed approaches for strategic decision making in supply chain under 

disruption risks have addressed the identified research gaps in the literature, several 

new research questions emerged. This section presents a discussion of the 

limitations of this research and some interesting research directions remain to be 

considered in the future.  

In the process of modeling the supply chain partner selection problem, the material 

supply and product demand are assumed to be constant values estimated from 

historical data, since the uncertainty factors are modeled in the disruption index and 

quality index. After the partner selection phase, however, it will be unrealistic to 

have the assumptions of constant supply and demand when decision makers need 

to design the detailed network structure of the supply chain. Hence, one possible 

future extension is to discuss the optimal strategies in the next phase of partner 

selections, i.e. supply chain structure design. In particular, stochastic programming 

can be applied to cope with supply and demand uncertainties, and the decision 

outputs of the approach are the optimal number and location of manufacturing 

plants, warehouses, and distribution centers to maximize profitability. Trade-off 

options and supply chain level performance requirements can be modeled in the 

supply chain network design model to allow for more design possibilities and 

potentially better combinations of plants, DCs, and warehouses. Demand-side and 

supply-side uncertainties should be considered simultaneously in designing the 

supply chain network. Scenario reduction approaches such as the forward selection 

(FS) and backward reduction (BR) heuristics (Dupacova et al., 2003), clustering 
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algorithms (Latorre et al., 2007), and importance sampling approach (Papavasiliou 

and Oren, 2013) can be applied to reduce the number of scenarios in the stochastic 

formulation of supply chain network design. 

The supply chain performance measures considered in this research are cost, 

disruption risk, flexibility, quality, and innovation capability, all of which are 

focused on the profitability and competitiveness of the supply chain. The increasing 

concerns about global climate change and pollution issues have prompted decision 

makers to consider the environmental impacts in supply chain designing, and social 

responsibilities such as labor conditions, and improving healthcare and education 

of population are also very important to the social sustainability of the supply chain. 

Future research extensions can discuss the quantitative definitions of performance 

measurements for environmental factors and social factors, and incorporate these 

factors into supply chain partner selection and structure design approaches. 

Environmental performance measures can be examined from aspects such as 

greenhouse gas emissions, waste, energy use, material recovery etc., while social 

performance measures can be examined from work conditions, societal 

commitment, as well as customer issues (Eskandarpour et al., 2015). According to 

the review in Eskandarpour et al. (2015), still very few published models handle 

the economic, environmental and social dimensions simultaneously. It would be 

interesting to investigate the relationship between economic factors and 

environmental/social factors, and compare the impacts of these factors on supply 

chain decisions and the resulting competitiveness. Multi-objective optimization 

models can be applied to simultaneously consider the economic, environmental and 
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social objectives of the company, and the Pareto-optimal front we get from solving 

the multi-objective optimization model can be used to analyze the trade-offs 

between different objectives. Furthermore, the impacts of supply chain disruptions 

on the environmental and social objectives of the supply chain need to be discussed, 

since certain types of disruptions like accidents and disasters will lead to severe 

consequences that affect multiple dimensions of supply chain performances. For 

example, the oil spill accidents in maritime transportation can lead to catastrophic 

environmental problems (Jenkins, 2000); fire accidents would not only bring 

economic losses, but also cause environmental and social issues such as the air 

pollutions and unemployment issues. The challenge in this research direction is to 

develop a comprehensive definition of environmental performance and social 

performance in supply chain, and to investigate how the disruptions in supply chain 

will impact the environmental and social performances.     

In the approach developed for protection planning against worst case disruptions, 

the protection option on each arc is represented by an estimated protection cost, 

while the possibility that one arc can have multiple protection options is not 

considered. One possible research direction is to develop an approach to consider 

alternative protection strategies on the same arc to allow for more realistic models. 

For example, for the transportation links within the supply chain, companies can 

either choose to fortify them by having emergency inventories and improving the 

welfare of employees, or choose to outsource the logistics to a 3PL provider. 

Furthermore, it would be interesting to investigate how alternative protection 

strategies will impact the supply chain performance. In other words, the strategic 
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decisions in protection planning against worst case disruptions in supply chain are 

more than identifying optimal parts to fortify, the options of choosing the optimal 

fortification methods should also be implemented in the decision making approach. 

In the protection planning model, the supply and demand are assumed to be 

constant numbers. However, in reality the supply and demand are subjected to 

change, and how to deal with uncertainties in supply and demand is one of the most 

important topics in supply chain management problems. Therefore, another 

possible future extension is to incorporate supply and demand uncertainties with 

the protection planning model using stochastic programing or robust optimization 

techniques to allow for a holistic risk management strategy. The challenge for such 

an extension would be to formulate a valid mathematical programming model to 

combine both the consideration of uncertainties and the consideration of worst case 

disruptions from intentional attacks or disastrous incidents, and to deal with the 

resulting complex formulations and discover efficient algorithms to solve the 

problem.     
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Appendix A 

The AHP is a structured technique for organizing and analyzing complex decisions, 

which is based on three basic functions: structuring complexity using hierarchies, 

measurements on a ratio scale, and synthesis. Figure A.1 illustrates the hierarchy 

structure of the AHP approach. The AHP helps decision makers find solutions that 

best suit their goal and their understanding of the problem. It provides a 

comprehensive and rational framework for structuring a decision problem, 

representing and quantifying its elements, relating those elements to overall goals, 

and evaluating alternative solutions. The AHP can be applied to a wide variety of 

decision situations, such as selection of alternatives, resource allocation, ranking, 

conflict resolution, quality management etc., and the procedure of the AHP can be 

summarized as: 

1. Define the problem. 

2. Structure a hierarchy to model the problem, which contains decision goals, 

attributes, criteria, sub-criteria, activities, alternatives etc.  

3. Establish weights among the elements of the hierarchy by making a series 

of judgments based on pairwise comparisons of the elements at each level 

of the hierarchy.  

4. Synthesize these judgments to yield a set of overall weights for the 

hierarchy. Check the consistency of the judgments, revise the pairwise 

comparison matrices until the inconsistencies are within acceptable limits if 

necessary. 
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5. Combine the weights to obtain global weights for the alternatives using 

hierarchical composition. 

6. Come to a final decision based on the results of this process. 

 

 

Figure A.1: The hierarchy structure of the AHP approach 
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Appendix B 

Table B.1: Notation, description and value for optimization model in European supply 

chain case  

Notation Description and Value 

f   the total demand for product per month;  

f=56000 

ft 

the demand local facility t  can handle per month; 

 f1=6000, f2=8000, f3=3000, f4=6000, f5=5000, f6=6000, f7=6000,  

f8=6000, f9=6000, f10=5000, f11=3000, f12=5000, f13=10000, f14=10000, 

f15=6000, f16=5000, f17=6000, f18=8000 

vt   cost of upgrading and establishing facilities in local facility t (100 $); 

v1=5000, v2=5000, v3=5000, v4=5000, v5=8000, v6=8000, v7=8000,  

v8=8000, v9=6000, v10=6000, v11=6000, v12=8000, v13=0, v14=0, 

v15=5750, v16=6500, v17=6400, v18=6800   

et unit cost of shipping product from central DC to local facility t ($); 

e1=6.7, e2=6.8, e3=4, e4=4.9, e5=6.1, e6=6, e7=6.1, e8=8.1, e9=6.7, 

e10=11,  e11=19, e12=19, e13=5.6, e14=0, e15=7.5, e16=13, e17=7.5, e18=6.6       

PcDC the probability of disruption in central DC; 

PcDC=0.01 

Pt
T  the probability of disruption in local facility t; 

P1
T=0.01, P2

T=0.03, P3
T=0.05, P4

T=0.05, P5
T=0.05, P6

T=0.01, P7
T=0.03, 

P8
T=0.05, P9

T=0.01, P10
T=0.01, P11

T=0.04, P12
T=0.02, P13

T=0.01, 

P14
T=0.01, P15

T=0.05, P16
T=0.05, P17

T=0.05, P18
T=0.01 

ρcDC the flexibility score of central DC; 

ρcDC=0.95 

ρt
T the flexibility score of local facility t; 

ρ1
T=0.85, ρ2

T=0.9, ρ3
T=0.75, ρ4

T=0.8, ρ5
T=0.7, ρ6

T=0.95, ρ7
T=0.75, 

ρ8
T=0.8, ρ9

T=0.85, ρ10
T=0.7, ρ11

T=0.8, ρ12
T=0.95, ρ13

T=0.95, ρ14
T=0.95, , 

ρ15
T=0.95, ρ16

T=0.9, ρ17
T=0.9, ρ18

T=0.95 

QcDC     quality score of central DC;  

QcDC=0.97 

Qt
T   quality score of local facility t; 

Q1
T=0.85, Q2

T=0.85, Q3
T=0.9, Q4

T=0.7, Q5
T=0.6, Q6

T=0.85, Q7
T=0.65, 

Q8
T=0.95, Q9

T=0.9, Q10
T=0.95, Q11

T=0.6, Q12
T=0.9, Q13

T=0.9, 

Q14
T=0.97, Q15

T=0.95, Q16
T=0.9, Q17

T=0.95, Q18
T=0.95 

Prisk the disruption risk threshold index for the supply chain; Prisk= 0.9 

Pflex The flexibility threshold index for the supply chain; Pflex=  0.8 

Q   the quality threshold index for the supply chain; Q=0.8 
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Appendix C 

Table C.1: Notation, description and value for models in Indian company’s case  

Notation Description and Value 

f   the total demand for product per month (ton);  

f=14400 

ft 
the demand for product from distributor t per month (ton); 

 f1=3600, f2=3600, f3=3600, f4=3600, f5=3600, f6=3600, f7=3600, f8=3600     

ai   supply capacity of raw material for supplier i (ton);  

a1=18000, a2=24000, a3=30000, a4=15000 

bi minimum order quantity of supplier i (ton);  

b1=3000, b2=6000, b3=5000, b4=3000 

d demand for raw material per month;  

d= 21000 

ci cost of purchasing and shipping material from supplier i per ton ($); c1=440, 

c2=440, c3=420, c4=450 

vt   cost of establishing partnerships with distributor t (100$); 

v1=1500, v2=2000, v3=5000, v4=5000, v5=5000, v6=6500, v7=6000, v8=5600     

qi fixed cost of ordering material from supplier i ($); 

q1=6000, q2=5000, q3=4500, q4=5000 

et cost of shipping product from plant to distributor t per ton ($); 

e1=15.5, e2=19, e3=17, e4=17.5, e5=19, e6=19, e7=23, e8=19   

Pi
S the probability of disruption in supplier i; 

P1
S=0.02, P2

S=0.01, P3
S=0.05, P4

S=0.02 

Pt
T  the probability of disruption in distributor t; 

P1
T=0.05, P2

T=0.02, P3
T=0.03, P4

T=0.01, P5
T=0.05, P6

T=0.01, P7
T=0.01, 

P8
T=0.01 

Pm the probability of disruption in manufacturing plant; 

Pm=0.01 

Qi
S     quality score of supplier i;  

Q1
S=0.9, Q2

S=0.8, Q3
S=0.98, Q4

S=0.95 

Qt
T   quality score of distributor t; 

Q1
T=0.75, Q2

T=0.85, Q3
T=0.98, Q4

T=0.9, Q5
T=0.95, Q6

T=0.9, Q7
T=0.9, 

Q8
T=0.9 

Prisk the disruption risk threshold index for the supply chain; Prisk= 0.85 

Q   the quality threshold index for the supply chain; Q=0.8 

PriskT the disruption risk threshold index for distributors; PriskT= 0.95 

QT the quality threshold index for distributors; Q=0.9 

Mn the minimum number of suppliers; Mn=2  

krisk the weight of material disruptions compared to product disruptions; 

krisk=0.6 

kq the weight of quality in the material supply stage; kq=0.4 
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Appendix D 

Min-risk model and its additional data in Indian company’s case  

Min           
1(1 ) P 
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Appendix E 

Table E.1:  List of commodity parameters for the second test example 

k fk sk tk k fk sk tk 

PA 1 A’ M CB 20 B M 

PB 1 B’ M CC 15 C M 

PC 1 C’ M CD 10 D M 

PD 1 D’ M P1 30 M P1 

SW1 1 W1 P1 P2 20 M P2 

SX1 1 X1 P1 CW1 10 P1 W 

SY1 1 Y1 P1 CX1 5 P1 X 

SZ1 1 Z1 P1 CY1 5 P1 Y 

SW2 1 W2 P2 CZ1 10 P1 Z 

SX2 1 X2 P2 CW2 5 P2 W 

SY2 1 Y2 P2 CX2 5 P2 X 

SZ2 1 Z2 P2 CY2 5 P2 Y 

CA 10 A M CZ2 5 P2 Z 

 

   Table E.2:  List of arc parameters for the second test example 

arc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

oij 1 1 1 1 2 2 150 200 160 180 15 18 100 100 

dij 1 1 1 1 2 2 120 180 120 150 10 10 80 70 

cij 5 5 5 5 5 5 10 10 10 10 15 15 10 10 

eij 5 5 5 5 5 5 15 15 15 15 10 10 10 10 

arc 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

oij 100 100 100 100 100 100 0 0 2 2 1 1 1 1 

dij 80 80 60 80 50 30 0 0 2 2 1 1 1 1 

cij 10 10 10 10 10 10 0 0 5 5 5 5 5 5 

eij 15 15 15 10 10 10 0 0 5 5 5 5 5 5 
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Appendix F 

Table F.1 presents the list of commodity parameters for the Biovac case study, in 

which we have 135 commodities. Commodity P135 represents the total amount of 

vaccine for Western Cape Province transported from central warehouse (node 1) to 

Pineland facility (node 3).  P132, P133, P134 are the vaccines for the three district 

hospitals in West Coast, Eden, and Central Karoo. The remaining 131 commodities 

are the vaccines for different health centers that receive delivery services from 

Biovac. All the demand data are measured in terms of US dollars, and are estimated 

according to the population of the corresponding area. 

Table F.1: List of commodity parameters for the Biovac case 

k fk sk tk k fk sk tk 

P1 3000 3 275 P69 200 3 343 

P2 3000 3 276 P70 200 3 344 

P3 3000 3 277 P71 200 3 345 

P4 1000 3 278 P72 200 3 346 

P5 1500 3 279 P73 200 3 347 

P6 1500 3 280 P74 200 3 348 

P7 200 3 281 P75 200 3 349 

P8 200 3 282 P76 200 3 350 

P9 200 3 283 P77 900 3 351 

P10 200 3 284 P78 240 3 352 

P11 200 3 285 P79 120 3 353 

P12 200 3 286 P80 120 3 354 

P13 200 3 287 P81 120 3 355 

P14 200 3 288 P82 120 3 356 

P15 200 3 289 P83 120 3 357 

P16 200 3 290 P84 120 3 358 

P17 200 3 291 P85 120 3 359 

P18 200 3 292 P86 120 3 360 

P19 200 3 293 P87 120 3 361 

P20 200 3 294 P88 120 3 362 

P21 200 3 295 P89 120 3 363 

P22 200 3 296 P90 120 3 364 

P23 200 3 297 P91 120 3 365 

P24 200 3 298 P92 120 3 366 

P25 200 3 299 P93 120 3 367 

P26 200 3 300 P94 120 3 368 

P27 200 3 301 P95 120 3 369 

P28 200 3 302 P96 120 3 370 

P29 200 3 303 P97 120 3 371 
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P30 200 3 304 P98 120 3 372 

P31 200 3 305 P99 120 3 373 

P32 200 3 306 P100 120 3 374 

P33 200 3 307 P101 120 3 375 

P34 200 3 308 P102 120 3 376 

P35 200 3 309 P103 120 3 377 

P36 200 3 310 P104 120 3 378 

P37 200 3 311 P105 120 3 379 

P38 200 3 312 P106 120 3 380 

P39 200 3 313 P107 120 3 381 

P40 200 3 314 P108 120 3 382 

P41 200 3 315 P109 120 3 383 

P42 200 3 316 P110 120 3 384 

P43 200 3 317 P111 120 3 385 

P44 200 3 318 P112 120 3 386 

P45 200 3 319 P113 120 3 387 

P46 200 3 320 P114 120 3 388 

P47 200 3 321 P115 120 3 389 

P48 200 3 322 P116 120 3 390 

P49 200 3 323 P117 120 3 391 

P50 200 3 324 P118 120 3 392 

P51 200 3 325 P119 120 3 393 

P52 200 3 326 P120 120 3 394 

P53 200 3 327 P121 120 3 395 

P54 200 3 328 P122 120 3 396 

P55 200 3 329 P123 120 3 397 

P56 200 3 330 P124 120 3 398 

P57 200 3 331 P125 120 3 399 

P58 200 3 332 P126 120 3 400 

P59 200 3 333 P127 120 3 401 

P60 200 3 334 P128 120 3 402 

P61 200 3 335 P129 120 3 403 

P62 200 3 336 P130 120 3 404 

P63 200 3 337 P131 120 3 405 

P64 200 3 338 P132 2800 3 6 

P65 200 3 339 P133 4200 3 9 

P66 200 3 340 P134 500 3 12 

P67 200 3 341 P135 42000 1 3 

P68 200 3 342     
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Table F.2 presents the arc parameters for the Biovac case, where the left most 

column is the index for each arc, and the top most row illustrates the arc types.     

 

Table F.2: List of arc parameters for the Biovac case 

 

original cost additional cost interdiction cost reinforce cost 

sorting trans. storage sorting trans. storage sorting trans. storage sorting trans. storage 

1 180 2.7 18 7500 3.375 3000 1 800 800 360 1500 1050 

2 180 1.35 18 7500 1.6875 3000 1 800 800 360 1500 1050 

3 180 2.7 18 7500 3.375 3000 1 800 800 360 1500 1050 

4 60 3.24 6 2500 4.05 1000 1 600 600 120 500 350 

5 90 4.05 9 3750 5.0625 1500 1 600 600 180 750 525 

6 90 4.86 9 3750 6.075 1500 1 600 600 180 750 525 

7 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

8 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

9 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

10 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

11 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

12 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

13 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

14 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

15 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

16 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

17 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

18 12 5.4 1.2 500 6.75 200 1 300 300 24 100 70 

19 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

20 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

21 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

22 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

23 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

24 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

25 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

26 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

27 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

28 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

29 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

30 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

31 12 6.75 1.2 500 8.4375 200 1 300 300 24 100 70 

32 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

33 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

34 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

35 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 
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36 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

37 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

38 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

39 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

40 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

41 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

42 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

43 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

44 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

45 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

46 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

47 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

48 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

49 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

50 12 8.1 1.2 500 10.125 200 1 300 300 24 100 70 

51 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

52 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

53 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

54 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

55 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

56 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

57 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

58 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

59 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

60 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

61 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

62 12 12.15 1.2 500 15.1875 200 1 300 300 24 100 70 

63 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

64 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

65 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

66 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

67 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

68 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

69 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

70 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

71 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

72 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

73 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

74 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

75 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

76 12 13.5 1.2 500 16.875 200 1 300 300 24 100 70 

77 54 14.85 5.4 2250 18.5625 900 1 600 600 108 450 315 

78 14.4 14.85 1.44 600 18.5625 240 1 500 500 28.8 120 84 
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79 7.2 14.85 0.72 300 18.5625 120 1 200 200 14.4 60 42 

80 7.2 14.85 0.72 300 18.5625 120 1 200 200 14.4 60 42 

81 7.2 14.85 0.72 300 18.5625 120 1 200 200 14.4 60 42 

82 7.2 14.85 0.72 300 18.5625 120 1 200 200 14.4 60 42 

83 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

84 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

85 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

86 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

87 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

88 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

89 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

90 7.2 20.25 0.72 300 25.3125 120 1 200 200 14.4 60 42 

91 7.2 20.25 0.72 300 25.3125 120 1 200 200 14.4 60 42 

92 7.2 20.25 0.72 300 25.3125 120 1 200 200 14.4 60 42 

93 7.2 20.25 0.72 300 25.3125 120 1 200 200 14.4 60 42 

94 7.2 22.95 0.72 300 28.6875 120 1 200 200 14.4 60 42 

95 7.2 22.95 0.72 300 28.6875 120 1 200 200 14.4 60 42 

96 7.2 22.95 0.72 300 28.6875 120 1 200 200 14.4 60 42 

97 7.2 24.3 0.72 300 30.375 120 1 200 200 14.4 60 42 

98 7.2 24.3 0.72 300 30.375 120 1 200 200 14.4 60 42 

99 7.2 24.3 0.72 300 30.375 120 1 200 200 14.4 60 42 

100 7.2 24.3 0.72 300 30.375 120 1 200 200 14.4 60 42 

101 7.2 27 0.72 300 33.75 120 1 200 200 14.4 60 42 

102 7.2 27 0.72 300 33.75 120 1 200 200 14.4 60 42 

103 7.2 27 0.72 300 33.75 120 1 200 200 14.4 60 42 

104 7.2 29.7 0.72 300 37.125 120 1 200 200 14.4 60 42 

105 7.2 29.7 0.72 300 37.125 120 1 200 200 14.4 60 42 

106 7.2 29.7 0.72 300 37.125 120 1 200 200 14.4 60 42 

107 7.2 32.4 0.72 300 40.5 120 1 200 200 14.4 60 42 

108 7.2 32.4 0.72 300 40.5 120 1 200 200 14.4 60 42 

109 7.2 32.4 0.72 300 40.5 120 1 200 200 14.4 60 42 

110 7.2 37.8 0.72 300 47.25 120 1 200 200 14.4 60 42 

111 7.2 37.8 0.72 300 47.25 120 1 200 200 14.4 60 42 

112 7.2 40.5 0.72 300 50.625 120 1 200 200 14.4 60 42 

113 7.2 40.5 0.72 300 50.625 120 1 200 200 14.4 60 42 

114 7.2 40.5 0.72 300 50.625 120 1 200 200 14.4 60 42 

115 7.2 45.9 0.72 300 57.375 120 1 200 200 14.4 60 42 

116 7.2 45.9 0.72 300 57.375 120 1 200 200 14.4 60 42 

117 7.2 16.2 0.72 300 20.25 120 1 200 200 14.4 60 42 

118 7.2 16.2 0.72 300 20.25 120 1 200 200 14.4 60 42 

119 7.2 17.55 0.72 300 21.9375 120 1 200 200 14.4 60 42 

120 7.2 18.9 0.72 300 23.625 120 1 200 200 14.4 60 42 

121 7.2 20.25 0.72 300 25.3125 120 1 200 200 14.4 60 42 
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122 7.2 21.6 0.72 300 27 120 1 200 200 14.4 60 42 

123 7.2 24.3 0.72 300 30.375 120 1 200 200 14.4 60 42 

124 7.2 25.65 0.72 300 32.0625 120 1 200 200 14.4 60 42 

125 7.2 27 0.72 300 33.75 120 1 200 200 14.4 60 42 

126 7.2 32.4 0.72 300 40.5 120 1 200 200 14.4 60 42 

127 7.2 33.75 0.72 300 42.1875 120 1 200 200 14.4 60 42 

128 7.2 36.45 0.72 300 45.5625 120 1 200 200 14.4 60 42 

129 7.2 40.5 0.72 300 50.625 120 1 200 200 14.4 60 42 

130 7.2 43.2 0.72 300 54 120 1 200 200 14.4 60 42 

131 7.2 48.6 0.72 300 60.75 120 1 200 200 14.4 60 42 

132 168 36.72 16.8 7000 45.9 2800 1 200 200 336 1400 980 

133 252 98.01 25.2 10500 122.5125 4200 1 200 200 504 2100 1470 

134 30 112.59 3 1250 140.7375 500 1 200 200 60 250 175 

135 -- 2000 252 -- 2500 210000 -- 2000 1000 -- 21000 840 
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Appendix G 

The OPL data for the computational example (Base Case) in Section 4.5: 

--------------------------------------------------------------------------------------------------- 

 // Definition of supply chain partners and material types 

Supplier={"a","b","c","d","e","f","g","h","a1","b1","c1","d1","e1","f1","g1","h1"

}; 

Material={"m1","m2","m3" }; 

DC={"D1","D2","D3","D4","D5","D6"}; 

Retailer={"u","v","w","x","y","z","x1","y1","z1","u1","v1","w1"}; 

// Define total demand, and demand from each potential retailer  

TotalDemand=600; 

Demand=[100,100,100,100,100,100,100,100,100,100,100,100]; 

// Define supply capacity of each supplier for each material 

Capacity=[ 

           [500,0,0], 

           [600,0,0], 

           [400,0,0], 

           [500,0,0], 

           [550,0,0], 

           [0,750,0], 

           [0,700,0], 

           [0,800,0], 

           [0,600,0], 

           [0,800,0], 

           [0,650,0], 

           [0,0,700], 

           [0,0,800], 

           [0,0,700], 
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           [0,0,800], 

           [0,0,800]   ]; 

// Minimum Order Quantity, set "1" values to avoid suppliers being chosen 

wrongly by the model    

MOQ=[ 

           [50,1,1], 

           [100,1,1], 

           [50,1,1], 

           [100,1,1], 

           [50,1,1], 

           [1,100,1], 

           [1,80,1], 

           [1,100,1], 

           [1,100,1], 

           [1,80,1], 

           [1,100,1], 

           [1,1,50], 

           [1,1,80], 

           [1,1,80], 

           [1,1,50], 

           [1,1,50]  ]; 

// Demand for each material 

DM=[1000,2000,800]; 

// Unit cost of purcharsing and shipping each material from each supplier  

CPS=[ 

           [3.5,0,0], 

           [3.4,0,0], 

           [3.8,0,0], 

           [2.8,0,0], 
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           [3.2,0,0], 

           [0,2.4,0], 

           [0,2.6,0], 

           [0,2.8,0], 

           [0,1.8,0], 

           [0,2.1,0], 

           [0,2.2,0], 

           [0,0,9.2], 

           [0,0,9.6], 

           [0,0,9.7], 

           [0,0,8.5], 

           [0,0,9]  ]; 

// Capacity of each potential Distribution Center 

CapacityDC=[300,200,400,300,400,200]; 

// Cost of establishing marketing channel with each retailer 

CR=[500,600,550,550,500,580,400,400,450,350,400,480]; 

// Cost of establishing facilities in each DC 

CDC=[300,200,600,240,400,160]; 

// Fixed ordering cost  

CO=[  [50,0,0], 

           [60,0,0], 

           [55,0,0], 

           [60,0,0], 

           [55,0,0], 

           [0,60,0], 

           [0,70,0], 

           [0,65,0], 

           [0,50,0], 
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           [0,60,0], 

           [0,55,0], 

           [0,0,30], 

           [0,0,30], 

           [0,0,40], 

           [0,0,30], 

           [0,0,35]  ]; 

// Unit cost of shipping product from plant to retailer via DC 

CS=[ 

           [1,1,2,2,2.5,3,1,1,2,2,2.5,3], 

           [3,3,2.5,1.5,1,1,3,3,2.5,1.5,1,1], 

           [2,1,1,1,1.5,2.5,2,1,1,1,1.5,2.5], 

           [1,1,2,2,2.5,3,1,1,2,2,2.5,3], 

           [2,1,1,1,1.5,2.5,2,1,1,1,1.5,2.5], 

           [3,3,2.5,1.5,1,1,3,3,2.5,1.5,1,1]        ]; 

// Probability of disruption for each supplier, DC, retailer and manufacturing site 

PdisS=[0.08,0.1,0.03,0.25,0.2,0.1,0.05,0.02,0.25,0.2,0.15,0.1,0.06,0.03,0.25,0.15]

; 

PdisD=[0.1,0.05,0.05,0.25,0.15,0.2]; 

PdisR=[0.1,0.03,0.08,0.07,0.1,0.05,0.2,0.2,0.15,0.25,0.25,0.1]; 

PdisM=0.02; 

// Flexibility score of each supplier, DC, retailer, and manufacturing site 

PdelS=[0.88,0.9,0.95,0.75,0.7,0.9,0.88,0.98,0.75,0.7,0.8,0.88,0.95,0.9,0.75,0.7]; 

PdelD=[0.95,0.9,0.95,0.7,0.85,0.75]; 

PdelR=[0.88,0.95,0.88,0.9,0.9,0.95,0.7,0.85,0.88,0.75,0.78,0.9]; 

PdelM=0.99; 

// Quality score of each supplier, DC, and retailer  

QS=[0.9,0.8,0.9,0.7,0.75,0.8,0.9,0.95,0.7,0.7,0.8,0.9,0.85,0.95,0.7,0.7]; 

QD=[0.8,0.95,0.9,0.8,0.75,0.7]; 
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QR=[0.9,0.9,0.95,0.9,0.88,0.95,0.8,0.7,0.7,0.7,0.78,0.8]; 

 

// Innovation score of each supplier, DC, and retailer  

IS=[0.8,0.5,0.6,0.4,0.7,0.9,0.6,0.7,0.7,0.5,0.6,0.4,0.5,0.7,0.6,0.4]; 

ID=[0.5,0.6,0.5,0.6,0.7,0.8]; 

IR=[0.9,0.9,0.9,0.7,0.6,0.7,0.5,0.4,0.8,0.7,0.6,0.8]; 

// Threshold values 

DisIndex=0.85; 

ResIndex=0.75; 

QIndex=0.85; 

IIndex=0.65; 

// Minimum number of suppliers required for each material 

Mn=[2,2,1]; 

// Different weight values 

krisk=0.65; 

krsp=0.6; 

kfm=0.7; 

kfr=0.7; 

kq1=0.4; 

kq2=0.25; 

kI1=0.1; 

kI2=0.3; 

// Number of material types 

n=3; 

--------------------------------------------------------------------------------------------------- 
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Appendix H 

The OPL data for the computational example in Table 5.4: 

--------------------------------------------------------------------------------------------------- 

// Definition of supply chain partners and material types 

Supplier={"a","b","c","d"}; 

Material={"m1","m2"}; 

DC={"D1","D2","D3"}; 

Retailer={"u","v","w"}; 

// Define total demand, and demand from each potential retailer  

TotalDemand=300; 

Demand=[150,150,150]; 

// Define supply capacity of each supplier for each material 

Capacity=[ 

           [300,0], 

           [300,0], 

           [0,700], 

           [0,900], 

 ]; 

// Minimum Order Quantity, set "1" values to avoid suppliers being chosen 

wrongly by the model  

MOQ=[ 

           [60,1], 

           [50,1], 

           [1,100], 

           [1,200] 

 ]; 

// Demand for each material 

DM=[400,700]; 
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// Unit cost of purcharsing and shipping each material from each supplier  

CPS=[ 

           [3.5,0], 

           [3.2,0], 

           [0,2.8], 

           [0,2.4] 

 ]; 

// Capacity of each potential Distribution Center 

CapacityDC=[200,200,200]; 

// Cost of establishing marketing channel with each retailer 

CR=[45,40,53]; 

// Cost of establishing facilities in each DC 

CDC=[120,80,50]; 

// Fixed ordering cost  

CO=[       [50,1], 

           [20,1], 

           [1,100], 

           [1,80] 

 ]; 

// Unit cost of shipping product from plant to retailer via DC 

CS=[ 

           [1,2.5,2], 

           [2.5,1,2], 

           [2,2,1.5]           ]; 

// Probability of disruption for each supplier, DC, retailer and manufacturing site 

PdisS=[0.05,0.03,0.08,0.1]; 

PdisD=[0.02,0.05,0.08]; 

PdisR=[0.1,0.01,0.05]; 
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PdisM=0.01; 

// Flexibility score of each supplier, DC, retailer, and manufacturing site 

PdelS=[0.98,0.97,0.96,0.95]; 

PdelD=[0.972,0.967,0.985]; 

PdelR=[0.9,0.99,0.93]; 

PdelM=0.99; 

// Quality score of each supplier, DC, and retailer 

QS=[0.9,0.9,0.9,0.9]; 

QD=[0.93,0.92,0.95]; 

QR=[0.95,0.99,0.9]; 

// Innovation score of each supplier, DC, and retailer 

IS=[0.9,0.9,0.9,0.95]; 

ID=[0.93,0.92,0.95]; 

IR=[0.95,0.99,0.9]; 

// Threshold values 

DisIndex=0.85; 

ResIndex=0.75; 

QIndex=0.85; 

IIndex=0.65; 

// Minimum number of suppliers required for each material 

Mn=[1,1]; 

// Different weight values 

krisk=0.65; 

krsp=0.58; 

kfm=0.6; 

kfr=0.7; 

kq1=0.4; 

kq2=0.25; 
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kI1=0.1; 

kI2=0.3; 

// Number of material types 

n=2; 

 

--------------------------------------------------------------------------------------------------- 


