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Summary 

 

In this thesis, growth and simulation study of gallium nitride on silicon (111) 

facets of V-grooves patterned on silicon (100) substrates are performed. The 

theme of GaN growth on silicon substrate is widely studied, as it enables the 

integration of III-V based electronic and optoelectronic devices with Si-CMOS-

based logic devices. 

 

 In order to grow GaN on Si (100) substrate, V-grooves are patterned on Si (100) 

substrate to expose the Si (111) facets. The growth is performed in an EMCORE 

D180 MOCVD system. Three types of substrates are prepared, with their V-

grooves placed at 0
o
, 45

o 
and 90

o
 to the precursor flow direction. It is found that 

single-facet growth of GaN is achieved when V-grooves are placed perpendicular 

to precursor flow. For 45
o
 placement, two triangular prisms which differ in size 

are obtained on the two Si (111) facets. For the case of 0
o
 placement, no growth is 

observed. This observation could be used to replace the current method of 

masking one Si (111) facet by Glancing Angle Deposition prior to GaN growth to 

achieve single-facet growth of GaN within V-grooves. It can simplify the growth 

process.  

 



 

VIII 

 

A simulation study is performed in COMSOL software to elucidate the impact of 

V-grooves on laminar flow and heat transfer within the reactor. The distributions 

of precursor velocity, pressure and temperature within the reactor chamber are 

simulated. Due to mesh size limit of COMSOL, the V-grooves simulated will 

have larger dimensions than those used in the experiment. It is found that velocity 

of precursor over the V-grooves would be slower than that over the flat substrate. 

Furthermore, the presence of V-grooves on Si substrate will cause the pressure 

over one of the two facets to increase. This increase in pressure is related to an 

increase in gas flux and adsorption rate through the Hertz-Knudsen Equation. On 

the contrary, the presence of V-grooves has little impact on temperature 

distributions.  

 

Lastly, a novel single-photon emitting and coupling structure within a V-groove 

of Si (100) substrate is proposed and simulated. The proposed structure consists 

of an InGaN / GaN quantum dot within a single quantum well (SQW) based light-

emitting diode structure in a smaller V-groove, and an optical fiber in a bigger 

cascaded V-groove. In order to create a QD within the SQW, selective quantum 

well intermixing (QWI) is proposed. A small QW region designed to be non-

intermixed is covered by circular patch-shape layer of SiO2 with diameter of 200 

nm. Then, the QW is covered by a Molybdenum:SiO2 cap layer. Simulation in 

SILVACO has revealed that the bandgap in the selectively intermixed region with 

diffusion length of 10 Å increases by 20 meV. A QD region is obtained under the 

SiO2 patch layer with a smaller bandgap. In order to couple the emitted photons, a 



 

IX 

 

single-mode optical fiber is proposed to be embedded within a larger V-groove 

cascaded to the smaller V-groove. This structure would provide a predictable and 

controllable way to collect photons emitted. 
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Chapter 1. Introduction 

 

 

1.1. Motivation for GaN-on-Si 

The discovery and utilization of semiconductor materials have led to vast 

developments in various scientific and industrial fields. Semiconductor materials 

could be classified into single element semiconductors and compound 

semiconductors. Silicon, the nearly ubiquitous single-element semiconductor, is 

the foundation for the current integrated circuit technology. Among compound 

semiconductors, gallium nitride (and its alloys with indium and aluminum) is an 

important family of semiconductors for optoelectronics and switching devices. 

The effort of growing gallium nitride on silicon (GaN-on-Si) aims to bridge the 

best of the two worlds, and realize the integration of silicon electronics and 

compound semiconductor devices. This thesis would focus on selective-area 

growth of GaN on silicon (100) substrate patterned with V-grooves. Firstly, 

growth experiments are performed using EMCORE D180 MOCVD system. Then, 

simulation of growth dynamics is performed in COMSOL software environment.  

 

1.1.1. Background 

Silicon's ubiquitous usage in the semiconductor industry stems from its distinct 

properties. It has vast abundance in nature, making up 25.7% by weight of the 

earth crust. Silicon could be relatively easily extracted from compounds using the 
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Czochralski process. Moreover, the oxide form of silicon could be grown with 

high quality on silicon, forming a Si / SiO2 interface that consists of a low number 

of traps. This high quality Si / SiO2 interface defines a higher upper boundary of 

the active channel of CMOS transistor. On the other hand, silicon's limitations 

include an indirect bandgap, which hinders its applications in optoelectronic 

devices. Its relatively small bandgap of 1.11 eV also makes it unsuitable for high 

frequency and high power switching devices.     

 

A compound semiconductor is composed of elements from more than one group 

of the periodic table. Among them, III-V semiconductors have a number of 

beneficial properties. Firstly, they are widely used in optoelectronic devices. 

Among them, conventional cubic III-V semiconductors such as arsenides and 

phosphides exhibit high efficiency in the infrared to red spectrum when used in 

light-emitting diodes (LED), although towards higher energy the bandgap 

becomes indirect and efficiency drastically drops. On the contrary, III-V nitride 

semiconductors and their alloys possess direct bandgap across the whole 

compositional range from AlN to InN. The wavelengths of light corresponding to 

their bandgaps could cover the whole visible spectrum. This allows them to be 

used in full-spectrum light emitting diodes and laser diodes. The current industrial 

production of LEDs and laser diodes use InGaAsP system or InAlGaN system.  

 

Secondly, III-V semiconductor materials have excellent electron transport 

properties under both high field and low field. They also exhibit ultrahigh 
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switching speeds at low supply voltages. Figure 1 below shows the frequency and 

power operating range of various semiconductor materials. III-V semiconductors 

such as gallium nitride and gallium arsenide could be used for high power and 

high frequency applications. These properties enable III-V materials to be used in 

high electron mobility transistor (HEMT) and wireless infrastructure. For example, 

high electron mobility of GaAs and InP enables them to be implemented for  

transistors operating above 100 GHz. Gallium nitride's wide bandgap at 3.4 eV 

makes it a suitable candidate for high voltage and high power switching devices. 

High power and high frequency transistors based on III-V semiconductors possess 

strategic significance, as they are important components for military and space 

applications.  

 

One constraint faced by III-V semiconductors is the expensive and size-

constrained substrates. For gallium nitride, the mainstream substrates currently 

used are sapphire substrate with low temperature AlN buffer layer, or silicon 

carbide substrate (SiC). Growth of GaN on planer silicon substrate has also been 

reported in the literature (Mo et al., 2005), although many complications in the 

growth process such as large lattice mismatch and melt-back etching make it 

unsuitable for industrial production (Wan et al., 2001). Sapphire and silicon 

carbide substrates are only available in smaller sizes of 2 or 4 inches, whereas 

silicon substrates are available in size of 6 or 12 inches. Current lack of large 

sapphire and silicon carbide wafers put constraints on wafer expansion and further 
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reduction in the cost of LEDs. The advantages and disadvantages of silicon and 

III-V semiconductors are summarized in the Table 1 below. (Li et al., 2010)  

 

Figure 1-1. Diagram for frequency and power applicability of semiconductor 

materials. (Li et al., 2010) 

 

 Silicon GaN 

Bandgap (eV) 1.1 3.49 

Electron Mobility 

(cm
2
/Vs) 

≤ 1400 990 - 2200 

Critical breakdown field 

(MV/cm) 

0.3 3.3 

Saturated electron drift 

velocity (x10
7
 cm/s) 

1.0 2.5 

Table 1-1. Summary of silicon and gallium nitride's important parameters at 300K. 

Data extracted from online material catalog www.ioffe.ru. 

 

Among III-V semiconductors, gallium nitride's wide and direct bandgap makes it 

an important material for switching and optoelectronic devices. Growth of 

gallium nitride on silicon (GaN-on-Si) is an attempt to bridge the technological 

advantages of gallium nitride and silicon semiconductors. Silicon and gallium 
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nitride have different technical advantages, and could complement each other 

when integrated together. When used as substrate, silicon could provide a mature 

and sizable integration platform with cost advantages. Large silicon wafers in 

sizes of 6 inches or larger are available. Furthermore, GaN-on-Si technology 

could enable the fabrication of GaN-based switching devices or photonic devices 

on silicon, and their integration with CMOS electronic devices. Such integration 

could increase the density of devices on wafer. Moreover, the prospects of GaN-

on-Si are not only limited to integration at the device level, but also on the 

material level. For example, gallium nitride and other III-V materials such as InSb 

are investigated to replace the silicon channel in MOSFETS, in order to increase 

the speed of switching.  

 

1.1.2.  Challenges of GaN-on-Si 

The attempt of growing gallium nitride on silicon comes with inherent difficulties 

due to mismatch in material properties.  

(a) Mismatch in lattice constants and thermal expansion coefficients 

In Table 2 below, it summaries the lattice constants and thermal expansion 

coefficients (TEC) of silicon, gallium nitride, sapphire and aluminum nitride. 

There exists a 17% mismatch in lattice constants of Si and GaN.  When the lattice 

mismatch between two materials exceeds 7%, edge dislocations and defects 

would be formed and the material system would be strained. (Li et al., 2010) One 

serious consequence of such mismatch is the formation of cracks when the 

gallium nitride epilayer thickness exceeds 1 μm. Furthermore, the stress induced 
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within crystal due to lattice mismatch would cause the wafer to bend, and pose 

serious difficulties for subsequent photolithography processes . Thus, the control 

of defects is crucial in heteroexpitaxial growth of gallium nitride on silicon.  

 

The mismatch in thermal expansion coefficients between silicon and gallium 

nitride is 115%. During the cooling processes from growth temperature in the 

range of 700 to 1000
o
C to room temperature, epitaxial gallium nitride film and 

silicon substrate will undergo different extents of contraction, which might cause 

the grown film to crack.  

Material GaN Si Sapphire AlN 

Lattice 

           Å) 

a=3.189 

c=5.185 

a=5.431   

 

a=4.759 

c=12.991 

a=3.112 

c=4.982 

Lattice 

mismatch 

w.r.t GaN 17% -16% -2.5% 

Thermal 

expansion 

coefficient 

(10
-6

K
-1

) 

5.59 (a) 

3.17 (c) 

2.6 7.30 (a) 

8.50 (c) 

5.27 (a) 

4.15 (c) 

Thermal 

expansion 

mismatch 

w.r.t GaN -115% 23.4% -34.7% 

Table 1-2. Lattice constants and thermal expansion coefficients of silicon, gallium 

nitride, sapphire and aluminum nitride. The values are taken from review article.  

 

To overcome the problems arising from mismatches in lattice constants and TECs, 

various methods of stress management have been reported. The cracking of 

nitrides on Si could be mitigated by substrate patterning or stress compensation. 

(Krost & Dadgar, 2002) For GaN, the method of growing an intermediate buffer 

layer in between gallium nitride and silicon is widely used to prevent cracks and 
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reduce defects in gallium nitride. Candidates for buffer layers include low 

temperature GaN buffer layer, metal Al pre-deposition, and the most used 

aluminum nitride. 

 

The reasons for using AlN as a preferred buffer layer are two-fold. Firstly, a AlN 

buffer layer could prevent direct contact between Ga atoms with Si, which reacts 

easily with each other (Ishikawa et al., 1998). Secondly, AlN buffer layer in 

between silicon and GaN could cause the nature of strain between them to switch 

from tensile to compressive. This could help reduce cracks in gallium nitride. For 

mitigating the mismatch in thermal expansion coefficients, the use of buffer layer 

is not effective, as the silicon substrate is much thicker than the buffer layer and 

dominates the extent of thermal expansion or contraction. 

  

Comparing to growth on sapphire substrate, growth of GaN on silicon substrate 

requires more steps to ensure crystal quality. Firstly, the oxide layer on top of the 

silicon substrate should be removed. This can be done by using dry etching 

technique and then an immersion in diluted HF solution. Additionally, after the 

growth of AlN buffer layer, an intermediate layer of AlGaN or multiple 

GaN/AlGaN superlattice needs to be grown preceding GaN growth to ensure a 

smooth transition from AlN to GaN.  

 

(b) Selective area growth and lateral epitaxial overgrowth  
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Selective area growth (SAG) of gallium nitride on silicon refers to constraining 

the growth on certain crystalline planes patterned on the substrate. It is a 

promising method to grow high quality GaN having lower dislocation density 

with release of thermal stress on silicon substrate. Lateral epitaxial overgrowth 

(ELO) is an extension of SAG, by allowing crystal in adjacent growth areas to 

coalesce and form a flat surface. When SAG or ELO is performed on patterned 

substrates, masking of one or more facets with silicon oxide or nitride by angle 

electron beam deposition is required to ensure growth of AlN and GaN on the 

desired facet along the (0001) axis. For example, when GaN is grown on Si (100) 

substrates patterned with V-grooves, one of the V-groove sidewalls needs to be 

masked to avoid collision of crystals on the two facets. The masking step further 

complicates the processing flow of GaN-on-Si, and requires the use of angle 

electron beam deposition setup. The second chapter of this thesis would be 

devoted to propose a method of manipulating the relative direction of V-grooves 

on Si (100) substrate to precursor flow, in order to achieve single facet growth of 

GaN without masking the other facet.    

 

 (c) Other difficulties  

During the growth of GaN on silicon in H2 ambient, silicon might outgas into 

GaN layer, and result in an unintentional n-doping. This would pose difficulties 

for p-doping in device fabrication. Moreover, while there is continuing effort to 

devleop GaN-on-Si technology, we have to be aware that there is a continuing 

effort in growing larger sapphire, silicon carbide, or even GaN native substrates. 
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Nonetheless, GaN-on-Si technology could provide benefits other than substrate 

cost savings, for example improving the performance of switching devices.   

 

1.1.3. Development history and market prospects of GaN-on-Si technology 

The first LED based on GaN-on-Si dated back to late 1990s, when IBM 

researchers utilized Molecular Beam Epitaxy (MBE) method for growth. (Guha & 

Bojarczuk, 1998) To reduce density of cracks in thick GaN layer, low-

temperature buffers layers were developed. (Dadgar et al., 2000) There are also 

reports on further improving the LED performance in the green light region. 

(Reuters et al., 2014) (Reuters et al., 2015) Recently, optically pumped lasing has 

been achieved from InGaN / GaN quantum wells fabricated on silicon (001) 

substrate. (Kushimoto et al., 2015) 

 

The potential market for GaN-on-Si lies in two fields, namely light-emitting 

diodes (LEDs) and power electronics. According to a market survey conducted by 

Yole Development, the market penetration rate for silicon substrate for LED 

applications is forecasted to increase to 5% by 2020. For power devices, GaN-on-

Si power devices is forecasted to make up 1.5% of overall power substrate 

volume by 2020. 
1
 

 

                                                           
1
 "GaN-on-silicon enabling GaN power electronics, but to capture less than 5% of LED making by 

2020." http://www.semiconductor-today.com/features/PDF/SemiconductorToday_AprMay2014-
GaN-on-silicon.pdf 
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1.2. Research objective 

This thesis aims to study the MOCVD growth of GaN on Si (100) substrate 

patterned with V-grooves. It is observed that by placing the V-grooves' Si (111) 

facets perpendicular to precursor flow, single facet growth of GaN is achieved 

without masking the other facet with silicon oxide or nitride. Simulation study in 

COMSOL environment will be performed to study the growth mechanisms of 

GaN on V-groove patterned silicon substrate. The aim is to clarify the impact of 

V-groove directions to gas flow on the growth mechanism and morphology of 

GaN. Lastly, this thesis will explore the prospects of cascading light emitting 

devices based on GaN / InGaN single quantum well in a V-groove, together with 

fiber in an adjacent bigger V-groove to couple light out for analysis. This could be 

used for single-photon generation and detection technology.  

 

1.3. Organization of the thesis 

Chapter 1 has given an overview of GaN-on-Si technology, with emphasis on 

selective area growth. Chapter 2 starts with providing a literature review on GaN 

growth on patterned silicon substrate. Growth of GaN on Si (100) substrate 

patterned with V-grooves by EMCORE D180 MOCVD is then presented. The 

GaN quality would be characterized by scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM). Chapter 3 will first present a review of 

GaN MOCVD growth simulation. The physics models of COMSOL software will 

be then be introduced. Then, simulation is performed to study the impact of V-

groove directions with respect to precursor flow on the growth mechanism and 
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morphology of GaN. The results will be compared with and corroborate 

experiment results in Chapter 2. Chapter 4 will study the prospects of  using 

quantum well intermixing to create a quantum dot region within InGaN / GaN 

quantum well in a V-groove. The structure is cascaded to a single-mode fiber in 

an adjacent bigger V-groove to couple light out for analysis. This proposed 

structure’s possible applications for single-photon technology will be discussed. 

The thesis will end with a summary and recommendations for future work. 
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Chapter 2  MOCVD growth of GaN on Si (100) substrates 

patterned with V-grooves 

 

2.1. Overview of GaN growth in MOCVD 

The mainstream commercial equipments used for growth of GaN include 

metalorganic chemical vapor deposition (MOCVD, also known as organo-

metallic vapor phase epitaxy or OMVPE) and molecular beam epitaxy (MBE). 

These two equipments have different advantages and disadvantages. The MBE 

method does not require carrier gas and could produce crystalline growth with 

better quality. However, the deposition rate is slow, which is normally less than 

1000 nm per hour. (Long & Mclntyre, 2012) Thus, it is not suitable for large-scale 

industrial production.  

 

 In comparison, MOCVD usually uses hydrogen or nitrogen as carrier gas, and the 

deposition rate is higher than MBE, usually in the range of several microns per 

hour. The MOCVD technology is versatile and economical. It is widely used for 

large-scale industrial production of light-emitting diodes (LEDs), laser diodes 

(LD), solar cells, transistors and other optoelectronic devices. Its extensive use in 

industry also spurs research and development of growing new and better quality 

materials. In this work, Emcore D180 vertical chamber rotating-disk MOCVD 

system will be the focus of study. 
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2.2. MOCVD equipment 

In the development history of MOCVD equipments, various types of reactors 

have been invented, with the aim of providing facilitating growth environment for 

crystalline materials. The types of reactors include horizontal reactor, vertical 

reactor and planetary reactor. (Yao & Hong, 2009) In Figure 2-1 below, 

schematics of various types of MOCVD reactors are illustrated. For horizontal 

reactor (Figure 2-1 b), the reactant gases are fed in parallel flows to the substrate. 

In vertical reactor, the precursor flow is injected through nozzles perpendicularly 

to the substrate.  

 

An important variant of vertical reactor is the rotating-disk vertical reactor (Figure 

2-1 a), in which the susceptor rotates at speed over 1000 rpm. The rotating 

susceptor functions as a centrifugal pumping device, drawing precursors injected 

from nozzles down to the susceptor, and spread them over the substrate surface in 

an evenly manner. In such reactors, the inlet nozzles have to be placed in a 

distance away from the heated susceptor, in order to prevent overheating of the 

inlets. The planetary reactor is usually a large system. On top of a main rotating 

susceptor reside multiple smaller sub-susceptors (Figure 2-1 c). While the main 

susceptor rotates, sub-susceptors will simultaneously rotate around their own axis, 

in a similar fashion as planets' rotation around the sun while self-rotating.  In this 

thesis, the MOCVD equipment used for GaN growth is EMCORE D180 

TurboDisc Vertical Chamber MOCVD. Its dimensions are listed in Table 2-1 

below. 
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Figure 2-1. Schematics of variants of MOCVD reactors: (a) rotating-disk vertical 

reactor (b) horizontal reactor (c) planetary reactor. Blue circles and rectangles 

represent wafers placed on susceptor.  

 

Dimension Unit Magnitude 

Reactor diameter mm 250 

Disk diameter mm 182 

Disk to inlet spacing mm 125/200 

Deposition area mm
2
 2.66 x 10

4
  

Capacity / run of 50 mm wafers n.a 7 

Table 2-1. Specifications for Emcore D180 TurboDisc vertical reactor. 
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2.2.1. Precursors 

For the growth of GaN in MOCVD, trimethylgallium (TMG) is widely used as 

the source for gallium (Ga), due to its relatively high vapor pressure. The TMG 

molecule consists of one Ga atom attached to three methyl groups. It undergoes 

decomposition and other reactions to supply Ga atoms for GaN growth. It is also 

more stable compared to the alternative Ga source - triethylgallium (TEGa). The 

latter could decompose during storage and trigger undesirable reactions during 

growth. TMG is highly flammable, and catches fire spontaneously if exposed to 

air. Thus its storage and handling require careful precautions. For the growth of 

AlN buffer layer, trimethylaluminum (TMAl) is used as the source for aluminum. 

The most common source for nitrogen used in MOCVD is ammonia gas (NH3).  

 

2.2.2. GaN growth process 

For growth of GaN on sapphire, a standard two-step process is used, as illustrated 

in Figure 2-2 below. Initially, a pre-nitridation process is performed. Then, a GaN 

nucleation layer with approximate thickness of 25 nm is grown at a temperature in 

the range of 520
o
C to 530

o
C. This lower-temperature GaN nucleation layer 

mainly consists of cubic GaN grains. Afterwards, the temperature is increased to 

1015
o
C to 1030

o
C for GaN growth.   
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Figure 2-2. Two-step growth flow of GaN on sapphire. 

 

For growth of GaN on silicon, the growth process is more complicated, and 

includes more growth stages.  In Figure 2-3, major stages for growth of GaN on 

sapphire and silicon substrates are summarized. A major difference is the 

requirement of an additional intermediate layer for growth on silicon.  

 

Figure 2-3. Comparison of growth processes for GaN on (a) sapphire and (b) 

silicon. 

 

As stated in Chapter 1, the most challenging task for growing GaN on Si is to 

overcome the difference in crystalline structures, vast mismatch in lattice 
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constants and thermal expansion coefficients between the two materials. The use 

of an intermediate layer such as AlN causes the nature of strain between GaN and 

Si to switch from tensile to compressive. Another function of the intermediate 

layer is to prevent the problem of destructive interactions between Si and GaN. 

The thermal stability of lower-temperature GaN on Si is much inferior to that on 

sapphire substrate. (Ishikawa et al., 1998) If the same lower temperature (530
o
C) 

GaN buffer layer is used for GaN-on-Si growth, GaN will undergo reactions with 

out-gassing silicon during thermal annealing at temperature of 1050
o
C. One type 

of such reactions is that silicon and gallium atoms could form a eutectic alloy, 

with melting point as low as 29
o
C. (Olesinski et al., 1985) These reactions would 

cause serious etching and damage to GaN grown and lead to the formation of 

hollow swellings and pits within it, also called the melt-back etching of silicon by 

gallium. An intermediate layer in between GaN and silicon substrate could shield 

GaN from reactions with silicon. 

 

The growth of the intermediate layer needs to be carefully designed to ensure 

good quality. When AlN is used as the buffer layer, the silicon surface could be 

exposed to an initial short wash of TMAl for 12 seconds, leaving a few 

monolayers of aluminum atoms on the silicon substrate surface. This step is found 

to induce good quality GaN layer. (Zhang et al., 2005) After growing the AlN 

intermediate layer, in order to further reduce the stress between AlN intermediate 

layer and silicon substrate, multilayer AlN / GaN supperlattice could be grown. 

(Lin et al., 2007) One thing to note is that in this work, the growth of GaN is 
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performed within V-grooves on silicon substrate, which are limited in size. Thus, 

the growth stack in this work includes only a 100 nm AlGaN layer on top of the 

AlN intermediate layer.  

 

2.3. Overview of GaN growth on patterned silicon substrate 

2.3.1. Processing steps 

When silicon substrate is used for GaN growth, certain special preparations need 

to be performed. The dangling bonds on the silicon surface need to be 

hydrogenated. (Cartier et al., 1993) This is done by immersing the silicon 

substrate in a 60
o
C 1:1:1.5 solution of HCl : H2O2 : H2O for 10 minutes. (Morkoç, 

2009) This would form a porous oxide on the substrate. After washing with 

deionized water, the silicon substrate is placed in a 10:1 aqueous HF solution for 

20 seconds. The exposure to HF would hydrogenate dangling bonds on the silicon 

surface.  

 

The most matching silicon plane for GaN growth is the Si (111) plane. For silicon 

substrates with various crystalline orientations other than Si (111), Si (111) facets 

need to be exposed preceding the growth of GaN. In order to achieve this, the 

common method used is that a layer of silicon nitride mask is first deposited on 

the silicon substrate. Standard photolithography process is used to open 

rectangular strip patterns on nitride mask, in a calculated direction. Then, etching 

is performed to expose the desired Si (111) facets. The etching could be isotropic 

dry etching or anisotropic wet etching, depending on the crystalline orientation of 
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substrate. For wet etching, choices for etchants include tetra methyl ammonium 

hydroxide (TMAH) and aqueous potassium hydroxide (KOH). Wet etching is 

anisotropic on silicon, due to different packing factors on different silicon planes. 

Planes with higher packing factor such as the Si (111) plane would undergo 

slower etching than planes with lower packing factor.   

 

In most cases, etching on silicon would result in two opposite facets both suitable 

for GaN growth. For example, in the case of KOH etching of Si (100) substrate, 

anisotropic etching by KOH will produce a V-shaped groove, with two opposite 

facets being Si (111) and Si (-1-11) planes. In order to achieve epitaxial lateral 

overgrowth (ELO), one facet has to be masked with silicon oxide, in order to 

prevent simultaneous growth from the two opposite facets and subsequent 

meeting of the two GaN crystals, which could result in defects or even collapse of 

the crystal grown. The equipment used for this purpose is the Glancing Angle 

Deposition Stage (GLAD), as illustrated in Figure 2-4 below. It is a modified 

version of electron beam deposition (EBL). The substrate is mounted on a rotation 

motor capable of two axis rotations. By rotating the substrate, one can selectively 

deposit materials on desired parts of the substrate. In the case of growing GaN on 

patterned silicon substrate, GLAD is utilized to deposit silicon dioxide on one of 

the matching facets for GaN growth. In the case of Si (100) substrate patterned 

with V-grooves, either Si (111) plane or Si (-1-11) plane could be masked. 

Masking one facet by GLAD could help prevent simultaneous growth on two 

facets, but it requires extra equipment and processing step. In Section 2.4 below, 
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an observation is reported that, by placing V-grooves on Si (100) substrate 

perpendicular to the direction of precursor flow on susceptor, single-facet growth 

is achieved without masking either of the V-groove facets.  

 

Figure 2-4. Schematic of Glancing Angle Deposition system (GLAD). 

 

2.3.2. Growth of GaN on silicon substrates with various crystalline orientations 

A technical advantage provided by GaN-on-Si technology is that, it is relatively 

easy to produce different planes of GaN by performing growth of it on silicon 

substrates with various crystalline orientations. For example, semi-polar GaN (1-

101) could be obtained by growth on Si (100) substrate, and non-polar GaN (11-

20) could be obtained by growth on Si (110) substrate. Below, a brief review of 

polarization effect in GaN is presented, and a number of combinations between Si 

substrate and GaN are reviewed.  
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The thermodynamically stable structure of GaN is wurtzite, with hexagonal unit 

cells. GaN exhibits significant polarization effect, including both spontaneous 

polarization and piezoelectric polarization. Polarization effect in GaN induces a 

significant built-in internal electric field. Under the influence of this built-in 

electric field, energy band would tilt in active region, thus causing electrons and 

holes to separate. The overlap of electron and hole wavefunctions will be reduced. 

For strained InGaN / GaN quantum wells, the transition energy will be reduced, 

as the band alignment of well is tilted by the piezoelectric field. Such effect is 

called the quantum confined stark effect (QCSE). Photogenerated carriers under 

excitation would screen the piezoelectric field. (Takeuchi et al., 1997) This 

screening effect is more pronounced for high indium content quantum wells, and 

it is believed to be hindering the realization of high efficiency LEDs or laser 

diodes in the green light region.  

 

The root cause of the above mentioned problems is that GaN is usually grown in 

polar (0001) axis. A logical solution is to utilize semi-polar and non-polar planes 

of GaN, in which the effective polarization is given by the projection of 

polarization vector to growth direction. (Romanov et al., 2006)  In order to 

achieve growth of semi-polar or non-polar GaN, homoepitaxy on native substrate 

with matching crystalline orientation could be used, but native GaN substrates 

have issues of limited availability and high cost.  
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In this backdrop, silicon substrates are an attractive alternative, and could be used 

for semi-polar and non-polar GaN growth. One advantage offered by using silicon 

substrate for GaN growth is that, silicon substrates are readily available in 

different crystalline orientations, as shown in Figure 2-5. 

 

Figure 2-5. Silicon atomic structure as viewed from different crystalline directions. 

 

By forming Si (111) facets on various substrates, GaN in different crystalline 

orientations (Figure 2-6) could be obtained. This offers a convenient method to 

obtain semi-polar or non-polar GaN planes for further device fabrication. A 

number of combinations between silicon and GaN with matching crystalline 

orientations will be reviewed: GaN (1-101) on Si (001), GaN (11-22) on Si (113), 

GaN (11-20) on Si (110), and GaN (1-100) on Si (112). 
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Figure 2-6. Various planes in GaN unit cell. 

 

 (a) Growth of GaN (1-101) on Si (100) substrate 

The current industrial standard for substrate of CMOS-based integrated circuit is 

Si (100) substrate. Achieving growth of GaN on Si (100) substrate is particularly 

crucial, as it is the key to integration of GaN-based devices with silicon-based 

electronics. However, Si (100) is not the most suitable silicon platform for the 

growth of GaN. This is because the Si (100) plane has a larger lattice mismatch to 

GaN, compared to Si (111) substrate. Also Si (111) substrate’s trigonal crystal 

symmetry favors more the growth of GaN (0001) plane. A way to solve this 

dilemma is to expose Si (111) facets on Si (001) substrate by anisotropic etching.  
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The process flow of growing GaN on patterned Si (100) substrate is illustrated in 

Figure 2-7 below. (Sawaki et al., 2009) A trapezoidal trench with flat bottom is 

first formed on a 7.3
o
 off-oriented Si (001) substrate, through anisotropic etching 

by KOH. Si (111) and Si (-1-11) facets are exposed as a result. Si (-1-11) facet is 

then masked by silicon oxide, before the substrate is loaded into MOCVD 

chamber for GaN growth. A 7.3
o
 off-oriented Si (001) substrate is used instead of 

a nominally-cut one. This is because the lateral overgrowth of GaN from Si (111) 

facet of a 7.3
o
 off-cut substrate would result in a planar and horizontal top semi-

polar GaN (1-101) surface, instead of a tilted surface for the case of nominally-cut 

substrate. The planar top semi-polar GaN (1-101) plane could then be 

conveniently used as a platform for fabrication of devices such as light emitting 

diodes.  

 

As illustrated in Figure 2-7, GaN growth would initiate from the Si (111) facet, 

which has a 50-nm AlN intermediate layer grown on it. When GaN grown 

extends out of the groove, it would extend laterally over the mask and grow in the 

[1-101] direction as well. As a result of coalescence between laterally-grown GaN 

and some GaN grains deposited on SiO2 mask, stacking faults are observed. 

(Sawaki et al., 2009) To study the crystal quality of GaN (1-101) grown, high 

resolution transmission electron microscopy (TEM) is used in the literature. It is 

found that threading dislocations at the interface between silicon and GaN would 

bend to the horizontal direction, leaving fewer dislocations propagating in the 

vertical direction. (Tanaka et al., 2002) Thus, the top semi-polar surface of (1-101) 
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GaN has a better quality for device fabrication.  

 

Figure 2-7. Process flow for growth of GaN on 7
o
 off-cut Si (100) substrate. 

 

One thing to note is that, for growth of GaN on Si (100) substrate in this thesis, a 

nominally-cut Si (100) is used. V-shaped grooves are formed instead of trapezoid 

trenches. 

 

(b) Growth of GaN (11-22) on Si (113) substrate 

For growth of GaN on Si (113) substrate, photolithography is first used to open 

strip patterns on nitride mask along the <21-1> direction.  Then, etching will 

expose the Si (111) facets, which are at an angle of 58.5
o 

to the (113) plane. In 

this case, masking one facet is not required. It is because the right-side Si (111) 

facet is inclined inwards and would not receive sufficient precursors from inlets 

above for growth. Also, there will not be substantial growth of GaN on the bottom 

surface of the trench, because it would not receive sufficient amount of precursor 

injected from inlets above. The final top surface grown is a semi-polar GaN (11-

22) surface.  
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Figure 2-8. Process flow for growth of GaN on Si (113) substrate. 

 

(c) Growth of GaN (11-20) on Si (110) 

For growth of GaN on Si (110) substrate, Si (111) planes formed by etching are 

perpendicular to the substrate. One facet of the rectangular trench is masked by 

SiO2. The top surface grown is GaN (11-20), which is non-polar. The c-axis of 

GaN in this case is parallel to substrate surface. (Tanikawa et al., 2008) 

 

Figure 2-9. Process flow for growth of GaN on Si (110) substrate. 

 

(d) Growth of (1-100) GaN on Si (112) 

For growth of GaN on Si (112) substrate, strip patterns are opened on nitride 

mask in the Si (1-10) direction. After etching, the Si (-1-11) plane is 

perpendicular to the substrate, and growth would initiate from this plane. The c-
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axis is parallel to the substrate, and threading dislocations would not propagate to 

the top surface. The top surface is GaN (1-100) plane. (Ni et al., 2010) 

 

2.4. Growth of GaN in EMCORE D180 MOCVD 

2.4.1. Growth equipment 

The MOCVD equipment used in this work is Emcore D180 TurboDisc vertical 

reactor. This section of work is performed in collaboration with Dr. Kwadwo 

Konadu Ansah-Antwi, and has resulted in a manuscript in preparation for 

submission to journal, as listed in the publication list in appendix. The gas inlets 

consist of one hydride zone for injection of ammonia and two alkyl zones for 

injection of TMG. The designated gas delivery passages for hydride and alkyl 

species are spaced at a distance from each other. This is to prevent premature 

contact among reactants and subsequent reactions, which would disturb chamber 

reactions. 

 

2.4.2. Substrate preparation 

The silicon (100) substrate preparation starts with surface cleaning by immersing 

the substrate in acetone for ten minutes. It is then cleaned with isopropanol 

alcohol (IPA). Afterwards, degreasing process is carried out by immersing the 

substrate in piranha solution at 120
o
C. The piranha solution is a mixture of H2SO4 

and H2O2, with 3:1 ratio between concentrated sulfuric acid and 30% hydrogen 

peroxide solution. A strong oxidizing agent, piranha solution could help remove 
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organic contaminants on the substrate surface. One thing to note is that great care 

should be paid for the preparation of piranha solution. The mixing procedure 

should be performed by adding H2O2 to H2SO4 acid, and not in the reverse 

sequence. The mixing process is highly exothermic, and it has to be gradually 

performed to prevent boiling the solution and releasing corrosive fumes. Then, in 

order to remove the native oxide on the silicon substrate, the substrate is placed in 

a 7:1 buffered hydrofluoric acid solution for a short period of time. 

 

2.4.3. Substrate patterning 

The processing steps for Si (100) substrate patterning are shown in Figure 10 (a). 

The cleaned silicon substrate is then loaded into the chamber of a plasma 

enhanced chemical vapor deposition system (PECVD), to deposit a 100 nm thick 

silicon nitride mask layer. 

  

The Si (100) substrate used has its primary flat cut in the <110> direction. 

Standard photolithography process is used to pattern rectangular window 

openings on the nitride mask along the <110> direction, with the dimensions of 4 

um in width and 100 um in length. Then, the substrate is immersed in an aqueous 

potassium hydroxide (KOH) solution for wet etching, in order to expose the Si 

(111) facets. The etching solution is 45% by weight aqueous KOH solution mixed 

with 15% (v/v) isopropyl alcohol (IPA). The etching solution is heated to 75
o
C 

and the etching time is 10 minutes.  
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The etching process will produce V-groove trenches on the Si (100) substrate, 

having width of 4 um, depth of 2.82 um, and separated by 4 um silicon nitride 

mask. The SEM image is shown in Figure 2-10 (b).  The angle of tilt for Si (111) 

facet with respect to horizontal is 54.7
o
.   

 

Figure 2-10. Schematic illustrating the processing steps for patterning V-grooves 

on Si (100) substrate for GaN growth. 

 

2.4.4. MOCVD growth of GaN  

In this section, MOCVD growth of GaN is performed on Si (100) substrate 

patterned with V-grooves. The aim is to investigate the impact of V-grooves 

placement directions relative to precursor flow within the reactor chamber on 

GaN growth mechanisms and resulting morphology. Three Si (100) substrates 

patterned with V-grooves are prepared and labeled as Sample A, B and C. The 

longitudinal axis of V-grooves of different samples are placed at specific angles 

with respect to radial direction of susceptor, which coincides with the presursor 

flow direction. As illustrated in Figure 2-11 below, for Sample A, V-grooves are 
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placed at 0
0
 to radial direction; for Sample B, V-grooves are placed at 45

0
 to 

radial direction; for Sample C, V-grooves are placed at 90
0
 to radial direction. The 

precursor flow direction is indicated by the red arrow. 

 

Figure 2-11. Layout of susceptor loaded with V-groove-patterned Si (100) 

substrates, with V-grooves aligning in 0
o
, 45

o
, 90

o
 to precursor flow (red arrow) 

for Samples A (purple grooves), B (orange grooves) and C (green grooves) 

respectively. v


denotes the direction of precursor flow. n


denotes the normal 

direction to V-grooves. 

 

The sources used for gallium, nitrogen and aluminum are trimethylgallium 

(TMGa), ammonia (NH3) and trimethylaluminum (TMAl) respectively. The 

precursors are diluted in hydrogen carrier gas.   

 



 

31 

 

Prior to growth, substrates are cleaned in 10% aqueous hydrofluoric acid, in order 

to remove the easily formed silicon oxide layer on the substrate surface. After 

placing the substrates on susceptor, the chamber is sealed for deposition. The 

growth stages are as follows. Firstly, an AlN buffer layer of 50 nm is grown, at 

pressure of 80 Torr, temperature of 1020
o
C, and V/III ratio RV/III = 1000.  Then a 

100 nm layer of Al0.3Ga0.7N is grown to help absorb and withstand the stress 

induced between GaN and silicon substrate, and prevent cracking especially 

during the cooling stage. Finally, the GaN layer growth is performed with 

pressure of 90 Torr, temperature of 1010
o
C, and RV/III=2000. The stack of layers 

grown on Si (111) facets are illustrated in Figure 2-12.  

 

Figure 2-12. Schematic illustrating the stack of material layers grown on Si (111) 

facets of V-grooves patterned on Si (100) substrates. 

  

2.4.5. characterization 

The growth morphology of GaN obtained is characterized by a JEOL 6700F field-

emission scanning electron microscope (FE-SEM) system. For Sample A, having 

V-grooves at 0
0 

to radial direction, i.e. parallel to precursor flow, there is no 

significant visible growth of GaN within the trenches, as shown in Figure 2-13(a). 
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For Sample B, having V-grooves at 45
0
 to radial direction or precursor flow, there 

is one smaller and one larger triangular prisms on opposite facets of V-grooves 

respectively, as highlighted in red in Figure 2-13(b). For Sample C, having V-

grooves at 90
0 

to
 
precursor flow direction, i.e. perpendicular to precursor flow, 

GaN grown exhibits single-facet growth, as highlighted in red in Figure 2-13(c). 

 
 

Figure 2-13. SEM images of (a) Sample A (b) Sample B (c) Sample C. 

 

In Figure 2-13, the materials with non-uniform thickness grown on top of the 

nitride mask are GaN poly-crystals. This kind of undesirable growth would 

happen when the growth temperature and pressure are not optimal. With optimal 

growth conditions, there will not GaN poly-crystals deposited on the mask, and 

growth of GaN would only take place on the V-groove facets, as illustrated in 
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Figure 2-14. Figure 2-14 is a depiction of GaN grown for sample C, when the 

growth time is increased to 20 minutes. It can be seen that there is no undesirable 

growth of GaN poly-crystals on the mask, and the top (1-101) surface of GaN is 

smooth with no observable defects and pits.  

 

Figure 2-14. SEM image of Sample C after a growth time of 20 minutes. 

 

The quality of the GaN grown in Sample C is studied by photoluminescence 

spectroscopy (PL). PL is chosen as the main characterization technique, because 

the ultimate aim of the GaN growth in this work is for fabrication of optical 

devices. TEM and XRD are not employed due to the small dimension of the 

structure grown. The PL spectra is shown in Figure 2-15 below. The full width at 

half maximum (FWHM) is approximately 30 nm. The absence of yellow band 

indicates the low level of defects in GaN crystal.  

 

From experiments above, it is observed in Sample C that, without masking one 

facet of V-grooves on Si (100) substrate, by placing the V-grooves perpendicular 

to precursor flow direction, single-facet growth of GaN is achieved. This 
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observation is corroborated by two other samples A and B. When the V-grooves 

are aligned at an angle of 45
o
 to the precursor flow in Sample B, growth takes 

place on both facets, whereas one triangular prism grown is bigger than the other. 

When the V-grooves are aligned in parallel to radial precursor flow direction in 

Sample A, no observable growth takes place on either of the V-groove facets.  

 

 

Figure 2-15. PL spectra of GaN grown in Sample C. 

 

A trend could be extrapolated that a possible relationship exists between the 

relative direction of surface V-groove with respect to precursor flow, and GaN 

growth morphology on Si (100) substrates patterned with V-grooves. In terms of 

practical application, this observation could be utilized to replace the masking 

step in epitaxial lateral overgrowth of GaN on silicon, and thus simplify the 

process flow and save cost of equipment. In order to understand this observation, 

simulation of GaN growth mechanisms on Si (100) substrate patterned with V-
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grooves is performed in COMSOL software, and the results are presented in 

Chapter 3.  
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Chapter 3  Simulation of GaN growth on Si (100) substrates 

patterned with V-grooves 

 

3.1. Motivation for MOCVD simulation 

Simulation of material growth in MOCVD has received great attention from the 

research and industry communities, due to its enormous economic and efficiency 

benefits. The cost per run of MOCVD is expensive. The issue of high cost per run 

is aggravated by the trend that MOCVD chambers are increasing in size to 

accommodate more wafers, in order to achieve economies of scale in the industry. 

In this backdrop, simulation provides a way to better design experiments, by 

optimizing reaction parameters beforehand and reduce the number of trial runs. 

Moreover, simulation could yield in a more thorough analysis and understanding 

of the growth results, and facilitate the improvement of growth processes. For 

MOCVD equipment manufacturers, simulation of reaction kinetics and dynamics 

within the reactor chamber could help investigate and verify new designs, and 

yield in better understanding and proper design of the chamber. In the field of 

scientific research, MOCVD is increasingly used for the growth of III-V materials 

on silicon platforms to achieve their integration and improve the performance of 

devices such as MOSFETs and HEMTs. MOCVD simulation could help us 

understand the growth issues arising from the integration of two different material 

systems, and find solutions for improving the material quality.  
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In this thesis, in order to investigate and understand the growth mechanisms of 

GaN on V-groove-patterned Si (100) substrates, simulation is performed in the 

COMSOL
®
 software. Particularly, the simulation is aimed at investigating and 

explaining the observation in Chapter 2, that single-facet growth of GaN is 

achieved when V-grooves on Si (100) substrate are placed perpendicular to the 

direction of precursor flow.  

 

In order to achieve the above mentioned goals, the approach for simulation of 

GaN growth should be carefully selected, as there are several simulation methods 

focusing on different aspects of GaN growth. One approach is Computation Fluid 

Dynamics (CFD) simulation, which studies the flow and distribution of precursors 

within the reactor by computing the distributions of velocity and temperature. 

Another approach is the study of atomic assembly using various methods such as 

molecular dynamics (MD) simulation, which simulates the mechanism of atomic 

deposition during GaN growth. (Zhou et al., 2006) In this work, CFD simulation 

is chosen to be the simulation approach. The is because the aim of this work is to 

study the impact of silicon substrate’s V-grooves on the growth dynamics of GaN. 

The presence of V-grooves are likely to have an effect on the distribution of 

precursors on the substrates. Although CFD simulation does not directly simulate 

actual growth morphology of GaN, it could provide us with crucial information 

such as precursor velocity and pressure for prediction of GaN growth. To achieve 

this, the partial pressures and atomic masses of the precursors would be taken into 
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account, and precursor flow supplying the atomic constituents for GaN growth 

would be the focus of study. Furthermore, parameters like precursor velocity and 

reactor temperature could be used to construct the simulation model for 

simulation of atomic assembly. The result in this thesis could serve for future 

work on simulation of atomic assembly and study of deposition mechanisms and 

morphology.  

 

The MOCVD simulation in this thesis is a two-step process. The first step is to 

feed reactions leading to GaN growth into the space-independent “Chemi  ry” 

interface of COMSOL, in order to compute important parameters of the batch 

reactor. In the second step, a space-dependent study based on real dimensions of 

the MOCVD reactor is set up, and the Laminar Flow and Heat Transfer modules 

in COMSOL will be utilized to compute the distributions of velocity, pressure and 

temperature within the MOCVD reactor chamber. A comparison would be made 

between flat substrates and substrates patterned with V-grooves, in order to 

investigate the impact of V-grooves on the growth mechanisms and dynamics of 

GaN.  

 

The two-step simulation process above requires an understanding of the growth 

reactions leading to GaN growth, as well as MOCVD reactor chamber design 

principles and growth dynamics within. Therefore, in the following sections, a 

review will be first presented for reactions leading to GaN growth in MOCVD, 
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followed by a review for MOCVD reactor design. Then, the simulation setup and 

results in COMSOL will be presented.  

 

3.2. Review of MOCVD growth of GaN 

3.2.1. Reactions leading to growth of GaN 

Due to the intrinsic complexity of chemical reactions leading to growth of GaN in 

MOCVD, there is yet to be an unambiguous consensus on the growth processes 

and mechanisms. The main differences and ambiguities reside in intermediate 

reactions, the relative importance of gas-phase reactions' role in determining 

deposition kinetics (Chen et al., 1995; Pawlowski et al., 2000), and values of 

reaction rate parameters such as activation energies and reaction rate constants.    

 

Despite discrepancies in the exact sequence of reactions leading to the growth of 

GaN in MOCVD, there is a consensus on a number of major gas-phase and 

surface chemical reactions. When gas-phase precursors (trimethylgallium (TMG) 

and ammonia) are injected into the growth chamber, gas-phase chemical reactions 

would take place first. These reactions could be classified into two competing 

routes: one is adduct formation pathway, and the other is thermal decomposition 

of TMG pathway, as illustrated in Figure 3-1 below. For adduct formation, the 

starting point is the interaction between TMG and ammonia, which will result in 

the formation of stable Lewis acid – Lewis base adducts. (Almond et al., 1992) 

The formed adducts would then undergo intermediate decompositions and 
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interactions to form GaN and methane (CH4), as shown in the upper box of Figure 

3-1. On the other hand, the TMG thermal decomposition route shown in the lower 

box of Figure 3-1 would result in Ga atoms and a methyl group, which would take 

part in surface reactions and form GaN.  

 

Figure 3-1. Gas-phase reaction pathways for GaN growth in MOCVD. Adapted 

from (Parikh & Adomaitis, 2006) 

 

In Tables 3-1 to 3-3 below, major gas-phase and surface reactions leading to 

growth of GaN are listed, based on a review by Parikh et al. (Parikh & Adomaitis, 

2006) These reactions would be used in Section 3.3 to model the precursors in 

batch reactor. 

(i)  Gas-phase reactions 

In Table 3-1 below, gas-phase reactions involving thermal decomposition of 

TMG are presented. In Equations 1-3, TMG decomposes in three stages to 
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generate Ga atoms, while expelling one methyl radical (CH3) in each stage. 

Equations 4-6 capture the formation of methane (CH4) and ethane (C2H6) as by-

products.  According to a report by Thon et al., the thermal decomposition process 

of TMG will be triggered when the temperature exceeds around 723 K. (Thon & 

Kuech, 1996) This would set a minimum temperature requirement for the growth 

of GaN in MOCVD. 

 

The commonly used nitrogen source for GaN growth is ammonia. It undergoes a 

pyrolysis pathway to generate nitrogen atoms. Various studies have indicated that 

the extent of decomposition of NH3 would be limited, especially when the 

temperature is below 1073K. (Monnery et al., 2001) In order to compensate for 

the low decomposition rate of ammonia, high growth temperature and high V/III 

ratio are used. (Lobanova et al., 2006). This could facilitate the thermal 

decomposition of ammonia into active nitrogen species (N, NH, NH2), and supply 

enough nitrogen atoms for the growth of high quality GaN expitaxial films. 

Although ammonia has the disadvantage of low decomposition rate under low 

temperature and being corrosive, it is still widely used. This is because other 

alternatives of nitrogen source, such as hydrazine or hydrogen azide, are toxic and 

flammable. In comparison, ammonia is much safer to handle with.   
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 Thermal decomposition of TMG 

1 (CH3)3Ga   (CH3)2Ga + CH3 

2 (CH3)2Ga   (CH3)Ga + CH3 

3 (CH3)Ga   Ga + CH3 

4 CH3 + H2  CH4 + H 

5 CH3 + CH3  C2H6 

6 CH3 + H  CH4 

Table 3-1. Gas phase reactions of GaN growth involving decomposition of TMG. 

 

Table 3-2 lists gas-phase reactions involving adducts formation and 

oligomerization, as the result of important interactions between TMG and 

ammonia. In Equation 1, TMG accepts an electron pair from NH3, and thus 

forming a Lewis acid-Lewis base adduct (CH3)3Ga : NH3. This is because TMG is 

electron deficient with the Ga atom having an empty p-orbital. The reaction in 

Equation 1 represents the initial stage of coordination between group III and 

group V sources, and is believed to have a significant effect on following 

reactions. Equation 2 is its reverse reaction. In Equations 3-4, the adduct formed 

eliminates methane molecules. In Equation 5, three molecules of (CH3)2Ga : NH2 

combine to form a trimer [(CH3)2Ga : NH2]3. In the final step, the dissociation of 

the trimer leads to GaN and CH4.     
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 Adduct formation and oligomerization 

1 (CH3)3Ga + NH3  (CH3)3Ga : NH3 

2 (CH3)3Ga : NH3  (CH3)3Ga + NH3 

3 (CH3)3Ga : NH3  (CH3)2Ga : NH2 + CH4 

4 (CH3)3Ga : NH3 + NH3  (CH3)2Ga : NH2 +NH3 + CH4 

5 3[(CH3)2Ga : NH2]  [(CH3)2Ga : NH2]3 

6 [(CH3)2Ga : NH2]3  3GaN + 6CH4 

Table 3-2. Gas phase reactions of GaN growth involving adduct formation and 

oligomerization. 

 

(ii) Surface reactions 

Growth of GaN on the substrate surface involves a number of stages, including 

adsorption of reactants onto the substrate surface, and movement of atoms into 

active sites for combination and growth. In Table 3-3 below, surface reactions 

le di g    G N gr w h i   umm rized. The le  er “S” de   e     ive  i e      he 

substrate. Moreover, due to the commonly used high V/III ratio for GaN growth, 

it is assumed that reactions on the substrate surface are limited by the amount of 

gallium-containing species arriving on growth sites available on substrate, rather 

than the arrival rate of nitrogen-containing species.  

 

Equations 1-4 denote the arrival of TMG on substrate surface and decomposition 

into gallium atoms. In Equations 5-6, adducts of (CH3)3Ga : NH3 and (CH3)2Ga : 

NH2 arrive at active sites on substrate surface, forming GaN and eliminating 
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methane molecules. Equation 7 and 8 depict the deposition of GaN by the trimer 

[(CH3)2Ga : NH2]3 and GaN molecules respectively. Lastly, Equation 9 depicts 

the incorporation of nitrogen on substrate from ammonia.  

 Surface reactions 

1 (CH3)3Ga + S  Ga(s) + 3CH3 

2 (CH3)2Ga + S  Ga(s) + 2CH3 

3 (CH3)Ga + S  Ga(s) + CH3 

4 Ga + S  Ga(s) 

5 (CH3)3Ga : NH3 + 2S  GaN(s) + 3CH4 

6 (CH3)2Ga : NH2 + 2S  GaN(s) + 2CH4 

7 [(CH3)2Ga : NH2]3 + 6S  3GaN(s) + 6CH4 

8 GaN + S  GaN(s) 

9 NH3 + S  N(s) + 1.5H2 

Table 3-3. Surface reactions for GaN growth in MOCVD. 

 

3.2.2. Review of MOCVD design  

The purpose of MOCVD is to provide a facilitating environment for expitaxial 

growth of high quality crystalline materials. It is carefully designed to provide the 

most suitable growth environment, characterized in terms of parameters such as 

temperature, pressure of gas flow, speed of gas flow, uniformity of temperature 

distribution etc. These parameters are coupled together and would have impact on 

each other. For example, the gas flow in MOCVD chamber determines the 
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distribution of precursor within the chamber, and will have a key impact on the 

distribution of heat and pressure. Understanding and simulating these parameters 

to the highest fidelity achievable could provide us a more accurate image of the 

growth dynamics and mechanisms of GaN within MOCVD. In this thesis, 

rotating-disk vertical MOCVD will be analyzed in detail, because it is used for 

GaN growth in this work, and it is also an important category of reactor in the 

research community.   

 

The rotating susceptor in a rotating-disk MOCVD plays a critical role in 

generating laminar flows within the reactor, and thus creating suitable 

distributions of temperature, pressure and precursor for GaN growth. The study of 

flow generated by a rotating infinite disk in an infinite fluid is pioneered by von 

Karman. (Kármán, 1921) The approach is to use a similarity transformation to 

convert the three-dimensional Navier-Stokes partial differential equations to a 

one-dimensional ordinary differential equation boundary value problem. The 

rotating disk acts like a centrifugal pump, drawing precursors injected from inlets 

above towards the disk. Precursors are then spread evenly over the susceptor 

surface, as shown in Figure 3-2 below. Over the disk, a uniform thickness 

boundary layer is formed. The boundary layer could be visualized as a layer of 

precursors moving at the same speed relative to the spinning susceptor. It 

balances with convection effect induced by the heated suceptor surface, and 

improves uniformity of material grown.  
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When considering a realistic reactor with finite-radius disk, the dimensions of 

disk and chamber have to be significantly larger than the thickness of boundary 

layer. Furthermore, the reactor has to be designed as a "flow-through" system, 

allowing gases spinning off the disk to leave the reactor, and thus preventing 

recirculation in the chamber. (Breiland & Evans, 1991) There are also studies 

focusing on improving and optimizing the injection concentration and speed of 

alkyl injection systems of MOCVD, with the aim of improving growth uniformity 

and efficiency. (Kadinski et al., 2004)  

 

Figure 3-2. Gas flow visualization in a rotating disk MOCVD reactor chamber. 

(Breiland & Evans, 1991) 

 

3.3. Simulation of GaN growth on Si (100) substrates patterned with V- 

grooves in COMSOL  

3.3.1. Setup of COMSOL simulation  

COMSOL's Chemical Reaction Engineering Module is an extension package of 

COMSOL Multiphysics
®
. It is tailored for the modeling of chemical reaction 
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systems, with customized physics interfaces and functionalities for the study of 

phenomena like chemical reactions, mass transport, thermodynamic properties, 

etc. It is a perfect simulation platform for GaN growth in MOCVD reactor, 

because it is equipped with in-built mathematical and physical models capable of 

characterizing important phenomena happening within the MOCVD reactor, 

including mass transport, fluid flow, heat transfer etc. The interfaces relevant to 

MOCVD modeling include Chemistry, Fluid Flow and Heat Transfer.  

 

The overall flow of simulation for MOCVD growth of GaN is summarized in 

Figure 3-3.  

 

Figure 3-3.  Simulation flow chart using COMSOL to study the growth of GaN on 

V-groove-patterned Si (100) substrates. 
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Firstly, reaction equations of GaN growth are entered into the Reaction 

Engineering interface. The aim is to calculate important transport and 

thermodynamic parameters of the mixed batch reactor. Then, a space-dependent 

model is generated to incorporate chemical reactions into a physical geometry 

with real specifications of the EMCORE D180 reactor chamber. Afterwards, the 

growth dynamics during GaN growth in the reactor is simulated. The detailed 

modeling setup and results will be explained in sections below. 

 

(a) Reaction Engineering Interface 

The Reaction Engineering Interface is designed for modeling chemical reactions 

and material transport. In order to simulate GaN growth reactions, equations listed 

in Section 3.2.1 are keyed into the Reaction Engineering Interface. Reaction 

parameters such as activation energies and rate constants are based on values 

reported by Parikh et al. in a review article and references therein.(Parikh & 

Adomaitis, 2006) The interface would assume that the reactor is perfectly mixed, 

and calculate important parameters for simulation of laminar flow (density, 

dynamic viscosity), and heat transfer (thermal conductivity, density, heat capacity 

at constant pressure).  

 

(b) Fluid Flow Interface 
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One fundamental design requirement for MOCVD is to provide laminar flows of 

precursors within the reactor chamber, meaning that gas flows within the chamber 

are in parallel layers without disturbances among them. Laminar flow also implies 

that the flow speed is under a critical Reynolds number, at which disturbances 

would start to grow into turbulences. For laminar flow of fluid, velocity and 

pressure fields could be calculated in the Laminar Flow node under Fluid Flow 

Interface in COMSOL. The approach is to solve Navier-Stokes equations and 

continuity equation. The former equation is based on conservation of momentum, 

and the latter is based on conservation of mass.  

 

The continuity equation in COMSOL is written in the form   

  0
t





u





                                          (Eq 3.1 ) 

The form of Navier-Stokes Equation for compressible flow in COMSOL is 

written as 

         FIuuupuu
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))(({           (Eq 3.2 ) 

In Equation 3.2 above,  is density (kg/m
3
); u


is velocity vector (m/s); p is 

pressure (Pa);  is dynamic viscosity (Pa.s); I


is the identity matrix; F


is the 

volume force vector (N/m
3
).     

 

Proper boundary conditions have to be set for the computation domain in Laminar 

Flow Interface, as shown in Figure 3-4. On the top of the reactor, there are eight 
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inlets for injection of precursors. I  COMSOL,  he “I le ”  p i   i  u ed to define 

conditions at gas injection points. The inlet can be set as either a pressure 

condition or a velocity condition, while the velocity condition is more robust. In 

this case, the inlet speed is set at 0.4 m/s, and the direction of injection is 

vertically downwards. At the bottom of the reactor, two outlets are responsible for 

guidi g w   e g  e   u   f  he re    r. I  COMSOL,  he “Ou le ” boundary 

option is prescribed as a pressure constraint via a normal stress condition.   

 
Figure 3-4. Setup in Laminar Flow Interface. 

 

In COMSOL, the "Wall" option is used to define flow conditions at various 

boundaries and surfaces within the reactor. The "Slip Wall" option describes wall 

boundaries which have the main purpose of containing reactants within the 

domain. This condition implies the absence of boundary layer formation and other 

viscous effects at the wall. Thus, the reactor walls other than inlets and outlets are 

 e     “Slip W ll”. The rotating susceptor is set as "Moving Wall", which is used 
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in COMSOL to model moving surfaces. The susceptor rotation speed is set to be 

1500 rpm.  

 

(c) Heat Transfer Interface 

The MOCVD growth process is carried out in an environment of elevated 

temperature. The precise control of temperature is crucial for ensuring crystal 

quality. In EMCORE D180 MOCVD, the tungsten-based alloy heating element 

consists of one inner and one outer filament, embedded below the susceptor. In 

this simulation, the substrate and susceptor are assumed to be at the same growth 

temperature, instead of adding a separate heating component, in order to facilitate 

calculation. The initial temperature of reactor walls and interior are set at 300K 

denoted by "Temperature 1" in Figure 3-5, while the substrate is set at the growth 

temperature of GaN denoted by "Temperature 2".  

 

After setting the temperatures, Heat Transfer in Fluid Interface of COMOSL is 

used to model the temperature distribution within the reactor chamber. The 

fundamental law governing heat transfer is the principle of conservation of energy, 

or termed as the First Law of Thermodynamics. The heat transfer equation could 

be written in terms of internal energy, but internal energy is not a parameter 

convenient for measurement. Thus in COMSOL, the heat transfer equation is 

written in terms of temperature as:  
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In Equation 3.3 above,  is the density; Cp is the specific heat capacity at 

constant pressure; T is the absolute temperature; u


is the velocity vector; q


is the 

heat flux by conduction; P is pressure;  is the viscous stress tensor; S


is the 

strain-rate tensor; Q contains heat sources other than viscous heating. 

 

Figure 3-5. Setup in Heat Transfer in Fluids Interface of COMSOL. 
 

Solving the heat transfer equation above for temperature distribution requires 

setting up proper boundary conditions. The “Ou fl w”  p i   i  u ed    defi e the 

boundary condition at the outlet. The "Outflow" option is suitable for convection-

dominated heat transfer. It specifies that at the outlet, the temperature gradient in 

the normal direction is zero, and radiation is absent.  
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The setups of Laminar Flow and Heat Transfer modules have to be linked, 

because the phenomena of laminar flow and heat transfer in a MOCVD chamber 

are coupled together. In COMSOL, the Multiphysics node is designed to feed 

computation results from one physics interface to another, catering to simulations 

involving coupled physics systems such as MOCVD. A "Temperature Coupling" 

option under Multiphysics node is added to the simulation setup. Heat Transfer 

Interface is set as the "Source", and Laminar Flow Interface is selected as the 

"Destination". A "Flow Coupling" is also added, and the selection of source and 

destination is the reverse. 

 

3.3.2. COMSOL simulation results 

In order to investigate the impact of patterned V-grooves of substrate on the 

growth of GaN in MOCVD, a reference simulation run is first conducted for 

growth of GaN on flat substrates in COMSOL. Then, GaN growth on substrates 

patterned with V-grooves is simulated to compare with the flat substrate case. For 

maximum accuracy, the exact three-dimensional (3D) reactor dimensions should 

be used for simulation. In 3D simulation, substrates with V-groove alignment 

directions of 0
o
, 45

o
 and 90

o 
with respect to the direction of precursor flow could 

be all simulated to verify the experiment results in Chapter 2. However, 

computation time for the simulation setup above in 3D geometry is immense. A 

single run could easily cost hours on a Dell T7500 workstation. Such detailed 

setup is not suitable for an initial study of a new phenomenon, which requires 

many test runs. Thus, in order to make the study more efficient, the scope of 
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Chapter 3 in this master thesis is chosen to be a 2D simulation for the case of V-

grooves placed at 90
o
 angle to radial precursor flow. This case could suitably 

represent the impact of V-grooves on GaN growth dynamics.  

 

For experiments in Chapter 2, the dimensions of V-groove on wafer is 4 um wide 

and 100 um long, separated by 4 um from each other by silicon nitride mask. The 

Si (111) facet makes an angle of 54.7 degrees to the horizontal, and the groove 

depth is 2.82 um. When such dimensions are used for simulation, there is no 

discernible impact on the velocity and pressure distributions. This is due to the 

limitation of COMSOL in mesh size. Such limitation would not prohibit the effort 

to gain a deeper understanding of the impact of surface groove placement 

direction on growth mechanisms and the final morphology of GaN. Furthermore, 

in many cases of GaN growth on patterned substrates, the magnitude of surface 

depression is much larger than the dimensions used in Chapter 2. Thus, the 

dimension of V-groove chosen for simulation has an opening width of 4 mm and 

a depth of 2.82 mm, as illustrated in Figure 3-6 below. The wafer and susceptor 

are assumed to be an entity, due to the small thickness of the wafer. 
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Figure 3-6. Geometry setup for reactor chamber loaded with substrate patterned 

with V-grooves. 

 

3.3.3. COMSOL simulation results 

3.3.3.1. Velocity magnitude distributions 

The velocity distribution in reactor loaded with flat substrate is plotted in Figure 

3-7 below. There are a number of important observations, which could serve as 

validations to the simulation model used. Firstly, at the edge of the rotating 

susceptor, the velocity of precursor is much larger than that in other parts of the 

reactor. This is firstly due to the fact that precursor gases are being forced through 

a narrow opening between the suscpetor and reactor walls to reach outlets below. 

Moreover, the heating element below the susceptor has caused precursor gases to 

increase in temperature and expand in volume. This further increases the amount 

of gas flow and its velocity through the narrow opening. Secondly, the velocity of 

precursors directly above the susceptor is slightly higher than that further above. 

This indicates the formation of a distinct layer of precursor that has a slightly 
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different velocity. This layer matches the characteristic of a boundary layer, 

which moves at a speed close to that of the rotating susceptor, and could be 

visualized as relatively stationary to susceptor. Besides above-mentioned 

validations, the velocity simulation model is carefully calibrated by comparing to 

other reports in the literature. (Tseng et al., 2015)  Lastly, the conditions on inlet 

velocity and rotating speed of susceptor are varied in a trend, and the resulting 

changes on velocity distribution are checked if they are reasonable.  

 

Figure 3-7. Velocity magnitude distribution within reactor chamber loaded with 

flat substrates. 

 

For reactors loaded with V-groove patterned substrate, the velocity distribution is 

presented is Figure 3-8 below. A distinctive observation compared to the case of 

flat substrates is that the velocity of precursors immediately above the V-grooves 

has become slower. The presence of V-grooves has altered the symmetry of 

velocity distribution above the susceptor. A number of reasons are speculated to 
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be the cause. Firstly, the V-grooves would trap precursors within them, and thus 

creating a "dragging" effect on precursors passing over the V-grooves. 

Furthermore, if equi-velocity contours are plotted over the V-grooves, the 

direction of flow is from the right facet of V-groove to the outer reactor chamber. 

This directed flow would not be disturbed due to the absence of a precursor layer 

with slightly larger velocity over the V-grooves. This directed flow of precursor 

away from the right facet would improve the chance of growth on the other facet 

of V-grooves. This could be one factor contributing to the single-facet growth on 

V-grooves observed in Chapter 2.     

 

Figure 3-8. Velocity magnitude distribution within reactor chamber loaded with 

V-grooves-patterned substrate. 
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3.3.3.2. Pressure distributions 

Next, pressure distributions within the reactor chamber loaded with both flat and 

V-groove-patterned substrates are presented. For flat substrate, the pressure 

distribution within the reactor is symmetrical as shown in Figure 3-9 (a).  

 

 

Figure 3-9. Pressure distributions in reactor chamber loaded with (a) flat and (b) 

V-groove-patterned substrates.  

(a) 

(b) 
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On the contrary, the pressure distribution for substrate with patterned V-grooves 

is asymmetrical as shown in Figure 3-9 (b). Upon close examination of the 

enlarged inlet, for V-grooves near the left end of susceptor, there is a region of 

higher pressure directly above the left-side facets, compared to pressure over the 

right-side facets.  

 

The effect of pressure on growth rate of GaN in MOCVD is widely studied. 

(Hirako et al., 2005) This effect is more pronounced in vertical MOCVD with 

rotating-disk. The chamber pressure would significantly affect the thickness of 

boundary layer which is generated by the rotating disk, and in turn affect the 

growth rate. In a report by Kadinski et al., the growth rate of GaN increases from 

1.2 µm/h to 2.3 µm/h, when the growth pressure is increased from 100 torr to 400 

torr. (Kadinski et al., 2004) In terms of physics explanation, an increase in growth 

pressure would increase the residence time of precursors. Furthermore, the 

probability of intermolecular collisions would increase, and the mean free path 

would decrease. (Dauelsberg et al., 2007) In mathematical terms, the relationship 

between pressure and adsorption rate could be written as  

                                 
 

Sx
TRM

P
SFR i

gasi

i

S

i 
5.0

2
                               (Eq 3.4) 

In Equation 3.4 above, S

iR is the adsorption rate of ith species; iF is the flux of 

ith species arriving at the surface; iM is the molecular weight; gasR is the ideal 
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gas constant; T is absolute temperature; 
ix is the mole fraction of species i above 

the surface; S is sticking probability.  

 

The expression of flux 
iF is derived from the kinetic theory of gases, and it is 

governed by Hertz-Knudsen Equation. (Kolasinski & Kolasinski, 2012) It could 

be seen that pressure is directly proportional to the gas flux and adsorption rate. 

Thus, the observation of higher pressure over the left-side facets of V-grooves in 

Figure 3-9 (b) is related to a higher product of gas flux and adsorption rate on the 

left facet. A higher product of gas flux and adsorption rate is a contributing factor 

for preferable growth of GaN on one of the two V-groove facets, when the V-

grooves are placed perpendicular to the direction of precursor flow.    

 

3.3.3.3. Temperature distributions 

The following section will present simulations of temperature distributions within 

MOCVD chamber loaded with flat and V-groove patterned substrates. Chemical 

reactions leading to the growth of GaN are heavily dependent on temperature. 

Temperature not only determines reaction rates, but also the sequence of gas 

phase reaction pathways. For example, one study on the effect of heating on gas 

phase reactions has revealed that higher temperature would make direct pyrolysis 

of TMG a preferable pathway compared to decomposition via intermediate 

products. (Zuo et al., 2012) Other studies also reveal that a change in the 

temperature distribution, even a small amount, will affect the concentration of 
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growth species on the growth surface. (Hirako & Ohkawa, 2005) In this report by 

Hirako et al., the simulation finds that the decomposition of TMG into (CH3)2Ga 

and (CH3)2Ga (as listed in Equations 1 and 2 in Table 3-1) will be almost 

complete at temperatures around 800 K. Then, the decomposition of (CH3)2Ga 

and formation of Ga atoms (Equation 3 in Table 3-2) require a higher temperature 

than 800 K. Thus, larger amount of Ga atoms will be generated at higher-

temperature regions. The 

maximum amount is more likely 

to be generated at the outer 

circumferential regions, which are 

usually at the highest temperature.  

 

In this thesis, the simulation of 

temperature distributions is 

computed by the Heat Transfer 

Interface in COMSOL. For the 

case of flat substrate, the 

temperature distribution and 

temperature contour diagrams are 

plotted in Figure 3-10. From the 

temperature distribution and 

contour plot, it could be seen that 

the heating element would create a 

Figure 3-10. Temperature distribution (a) and 

contour plot (b) in reactor chamber loaded with 

flat substrates. 
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significant radiation field within the reactor chamber.  

 

The temperature and contour plots for reactor loaded with substrates patterned 

with V-grooves are shown in Figure 3-11. There are no discernible changes 

compared to the case of flat substrate. This might be due to the fact the radiation 

field from the heating element 

is intense, and changes 

induced by the presence of V-

grooves are subtle or obscured 

by the high radiation field.    

 

 

 

In order to better understand 

the effect of V-grooves on 

temperature distributions 

within a MOCVD reactor 

chamber, a hypothetical study 

is performed next. The heat 

capacity of gases within the 

reactor chamber is arbitrarily 

increased by ten times. This 

deviation from realistic Figure 3-11. Temperature distribution (a) and 

contour plot (b) in reactor chamber loaded with 

V-groove patterned substrates. 
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parameters could serve as a test run for an initial study of surface depressions’ 

effect on the temperature distribution within a reactor chamber. The resulting 

temperature and contour plots are shown in Figure 3-12 below.  

 

It could be seen that the 

temperature distribution is still 

symmetrical, but the radiation 

field directly above the 

susceptor edges has been 

reduced.  

 

When the reactor chamber is 

loaded with V-groove patterned 

substrate, the temperature 

distribution and contour plot is 

presented in Figure 3-13. The 

temperature distribution has 

become asymmetrical. One 

region above the flat part of the 

substrate is of lower 

temperature. The temperature 

contours are more loosely 

Figure 3-12. For hypothetical study of higher 

specific heat capacity of precursor, temperature 

distribution (a) and contour plot (b) in reactor 

chamber loaded with flat substrates. 
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spaced compared to the 

region above V-grooves. This 

temperature gradient would 

cause the heat flux to be tilted 

towards the region above V-

grooves. This observation 

could be linked to the 

observation in velocity 

distribution, that velocity 

above the V-grooves is slower 

than that above the flat part of 

substrate. The higher 

temperature region above the 

V-grooves would induce a 

more facilitating environment 

for the growth of GaN, 

especially for the 

decomposition of (CH3)Ga 

into Ga atoms, which require 

a higher temperature than 800 

K.  

 

  

Figure 3-13. For hypothetical study of higher 

specific heat capacity of precursor. Temperature 

distribution (a) and contour plot (b) in reactor 

chamber loaded with V-grooves-patterned 

substrates. 
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In summary, the effect of V-grooves on distributions of velocity, pressure and 

temperature within the reactor chamber have been simulated in this chapter. The 

slower velocity above V-grooves and flow flux directly away from the right-side 

facets would induce preferable growth on the left-side facets. Moreover, a higher 

pressure region is observed over the left-side V-groove facets. This increase in 

pressure is linked to a higher product of gas flux and adsorption rate through the 

Hertz-Knudsen Equation. These factors will make single-facet growth of GaN 

more favorable. Even though the simulation of heat transfer has not revealed 

significant differences between the cases of flat and V-groove patterned substrates, 

the role of heat transfer in facilitating single-facet growth should not be deemed 

negligible. A hypothetical study with increased gas heat capacity has revealed that 

the presence of surface V-grooves could disturb the symmetry of temperature 

distribution, and induce a region of lower temperature above the flat part of 

substrate. Its detailed effect on growth dynamics of GaN could be performed in 

future study. 
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Chapter 4  Proposed integration of single-photon emitter with 

optical fiber in cascaded V-grooves on Si (100) substrate 

 

 

4.1. Motivation  

4.1.1. Overview 

The advance of GaN-on-Si technology has enabled the monolithic integration of 

logic switching, optoelectronics and photonics devices on one silicon platform. 

Compared to previous integration techniques such as flip-chip or wafer-bonding 

assemblies, monolithic integration of GaN with Si-based devices offers benefits 

such as denser and more efficient wafer layout, reduction of interconnect size and 

losses. For logic switching application, the integration of CMOS and HEMT is 

widely studied. (Hoke et al., 2012) For optoelectronic application, the integration 

usually involves a light source based on III-V semiconductors, and silicon-based 

photonic devices such as modulators and couplers. (Chilukuri et al., 2006)  

 

One cutting-edge and promising future application of GaN-on-Si integration 

technology for optoelectronic application is in the field of non-classical light 

generation. The reasons are two-fold. Firstly, GaN-based quantum dots have been 

demonstrated to be able to generate single photons at higher temperatures, 

compared to other single-photon emitters which usually require cryogenic 

operation temperatures. In a report by Kako et al. (Kako et al., 2006), hexagonal 

GaN / AlN quantum dots grown by Stranski–Krastanov mode on a (0001)-
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oriented 6H-SiC substrate have been demonstrated to generate single photons at 

an operation temperature of 200K. It is a promising single-photon source in the 

blue to ultraviolet region of spectrum. This spectral region is particularly 

interesting for quantum-optical applications, as a shorter wavelength of photons 

could reduce the size of transmitters and receivers. Kako et al. have attributed the 

higher operation temperature of the single-photon emitter to a number of special 

properties of the GaN / AlN quantum dot system, including high optical-phonon 

energies and pronounced quantum-confinement effect. 

 

An inherent problem relating to the process of non-classical light generation is 

that the coupling and guiding of non-classical light generated are difficult and 

unpredictable. These problems arise due to the ultra-small size of non-classical 

light generator. The second reason for the application of GaN-on-Si technology 

for non-classical light generation is that it offers a solution to the above problem. 

GaN-based non-classical light emitter could be monolithically integrated with Si-

based photonic devices or an optical fiber, and achieve easier and more 

predictable coupling and guiding of photons generated. In this thesis, a non-

classical light emitting and coupling system based on GaN-on-Si platform is 

proposed and verified in simulation. A schematic of the proposed device structure 

is illustrated in Figure 4-1. The blue prism is the light emitting structure fabricated 

by method reported in Chapter 2. Then an optical fiber is embedded within a 

larger V-groove cascaded to the smaller V-groove containing the light source. 
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Figure 4-1. Proposed device structure consisting of a single-photon source and an 

optical fiber, embedded within cascaded V-grooves on Si (100) substrate. 

 

In the literature, there are yet to be reports on single-photon emitters fabricated 

within V-grooves patterned on Si (100) substrate, based on author’s best 

knowledge. Nonetheless, fabrication of classical light sources such as LEDs has 

been achieved within the V-grooves patterned on Si (100) substrate. For example, 

Reuters et al. have fabricated semi-polar green and blue (1-101) InGaN / GaN 

QW-based LEDs within V-groove trenches patterned on Si (100) substrate. 

(Reuters et al., 2015) The device structure is shown in Figure 4-2. In another 

report by Kushimoto et al., (1-101) InGaN / GaN MQWs are also fabricated on Si 

(111) facets of V-grooves etched on Si (100) substrate. The difference is that the 

QWs are enclosed within a cavity structure, which consist of two inner GaN 

waveguides and two outer AlGaN cladding layers. With the confinement effect of 

the cavity structure, optically-pumped lasing is achieved. (Kushimoto et al., 2015) 

References would be made to these reports in simulation and analysis below, in 

order to validate the proposed structure. 
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Figure 4-2. (a) Semipolar (1-101) InGaN/GaN LED grown on Si (111) facets of 

V-grooves patterned on Si (100) substrate. (b) Reference LED on polar (0001) 

plane. (Reuters et al., 2015)  

 

4.1.2. Introduction to non-classical light generation 

4.1.2.1. Non-classical light 

Light could be classified according to its intensity correlation characteristics into 

categories of bunched light, coherent light, and anti-bunched light. Figure 4-3 

provides a simplified visualization of the distinct characteristics of various types 

of light sources. For bunched light, photons would arrive in groups. For coherent 

light source, photons arrive at random intervals. For anti-bunched light, photons 

arrive at regular intervals between them.  
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Figure 4-3. Illustration for photon streams in different types of light sources. 

 

In order to quantify the characteristic of non-classical light sources, second-order 

correlation function is used. It is defined as: 
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In Eq. 4.1 above, )(t  is the electric field of light at time t; I(t) is the intensity of 

light at time t. 

 

Table 4-1 below summarizes the corresponding values of the second-order 

correlation function at zero time delay for different types of light. Also, the 

classical equivalent descriptions for various types of light are listed.  

Types of light g
(2)

(0) Classical Description 

Bunched >1 Chaotic 

Coherent (Random) 1 Coherent 

Anti-bunched <1 No classical equivalent 

Table 4-1.  Classification of light based on photon arrival intervals, and 

corresponding values of second-order correlation functions and classical 

descriptions. (Fox, 2006)  



 

71 

 

One thing to note is that anti-bunched light does not have a classical equivalent 

description, because it is a purely quantum phenomenon. 

 

One special type of anti-bunched light sources is single-photon emitter. In 

idealistic situation, a single-photon source should produce exactly one photon in 

response to an external trigger. The emitted photon could then be modulated in 

terms of its polarization or other properties and carry information. Due to the 

indivisibility of photon and the invasive nature of quantum system measurement, 

tapping on communication link using single photons as information-carriers 

would cause the wave functions of photons to collapse and the information will be 

lost. (Fox, 2006) Thus, single-photon emitter is a crucial component for 

applications of quantum cryptography (Gisin et al., 2002), quantum 

communication and quantum information processing (Monroe, 2002). 

 

In order to measure the value of second-order correlation function and judge the 

performance of a single-photon emitter, Hanbury Brown and Twiss setup (HBT) 

is used. (Brown & Twiss, 1957; Brown & Twiss, 1958) A schematic of the HBT 

setup is shown in Figure 4-4. In the setup, photons emitted from an emitter are fed 

into a beam splitter and split into two paths, each connecting to a photon detector.  



 

72 

 

 

Figure 4-4. Hanbury Brown and Twiss setup for measuring second-order 

correlation function. 

 

The second-order correlation function above is defined in terms of intensity 

correlations. Because the number of photons arriving at a detector is proportional 

to the intensity of light, the second-order correlation function could be re-written 

as  
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g                                   (Eq. 4.2) 

In Eq. 4.2, nd(t) is the number of counts at detector d at time t. The above 

expression indicates that, the second-order correlation function is directly related 

to the probability of detecting photons simultaneously on one photon detector at 

time t, and on the other detector at time t . (Fox, 2006) The HBT setup is 

connected to a computer to plot a histogram showing the number of photon 

detection events happening within a certain time interval. For an ideal single-

photon source, there should be no simultaneous photon arrival events on the two 

photon detectors at a time delay of zero. 
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4.1.2.2. Single photon source 

A number of material systems have been proposed for the purpose of single-

photon generation, such as nitrogen-vacancy center in diamond. (He et al., 1993) 

Among them, single-photon sources based on solid-state quantum dots are an 

important category of non-classical light emitters. Quantum dot’s discrete and 

optically active energy states have made it a suitable candidate for single-photon 

emitter. Another advantage of it is that solid-state quantum dots could be 

relatively easily integrated with passive optical devices such as optical cavities 

and waveguides. The types of cavities suitable for integration with single-photon 

sources based on solid-state quantum dots include microdisk cavities, micropillar 

cavities, photonic crystal cavities, etc. (Vahala, 2003)  

  

The realization of single-photon emitters with electrical pumping is an important 

development. An electrically driven single-photon source based on self-assembled 

InAs / GaAs quantum dot is demonstrated by Yuan et al. in 2002. (Yuan et al., 

2002) The structure consists of InAs quantum dots embedded within a GaAs p-i-n 

diode. A schematic illustrating the device structure is shown in Figure 4-5.  Back-

contact method is used for n-ohmic contact. The p-ohmic contact on the top also 

functions as an aperture, allowing photon emissions from only one quantum dot to 

be detected, and filtering out emissions from other quantum dots. In another 

report, self-assembled InAs quantum dots are embedded within a cavity, which 

provides horizontal confinement of light by an AlOx layer produced by wet 

oxidation of aluminum-rich AlxGa1-xAs, as well as vertical confinement of light 
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by a GaAs / AlGaAs distributed Bragg mirror. (Ellis et al., 2007) The AlOx layer 

is also used as an aperture allowing emissions from a single quantum dot to be 

detected. The design of using an aperture to obtain emission from a single 

quantum dot has an inherent problem. The alignment of a single quantum dot and 

the aperture opening is not well controllable and predictable. It requires many 

time-consuming trial and error experiments. Furthermore, extra effort is required 

to grow sparsely distributed quantum dots, in order to increase the probability of 

getting a single quantum dot directly under the aperture.  

 

Figure 4-5. Single-photon emitter structure based on self-assembled quantum dots 

with electrical pumping. (Yuan et al., 2002) 

 

One approach to solve this problem is to detect the location of a single quantum 

dot first by cathodoluminescence spectroscopy. Then electron-beam lithography 

(EBL) is used to define a circular sub-micron mesa containing the single quantum 

dot. The mesa is subsequently etched, and it would contain a single quantum dot 

within. (Gschrey et al., 2013)  

 

The proposed single-photon emitter structure in this thesis is embedded within a 

V-groove trench on Si (100) substrate, and connected to an optical fiber 
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embedded within a bigger cascaded V-groove. The aim is to achieve predictable 

single-photon source location and photon coupling. The details of the proposed 

structure are presented in Section 4.3. 

 

4.2. Area-selective quantum well intermixing and quantum dot fabrication  

Quantum well intermixing (QWI) refers to inter-diffusion of atoms across the 

heterointerface between well layers and boundary layers in quantum wells (QW). 

As-grown QW structures have well defined boundaries between well regions and 

barrier regions. When atoms inter-diffuse across these boundaries under the 

external influence such as heat, the composition profile across the QW structure 

will be modified. This will lead to changes in bandgap, refractive index and 

optical absorption coefficient, etc. The techniques used to induce QWI include 

impurity-free vacancy disordering (IFVD), impurity induced disordering, laser 

induced disordering and focused ion beam induced intermixing. (Li & Lie, 1998) 

Among these methods, IFVD has been widely studied for monolithic integration 

of photonic devices. This is because it provides the advantage of not affecting 

carrier concentrations and not requiring implantation of impurity atoms which 

will cause crystal damage.  

 

The bandgap modification induced by QWI could be used to form QDs within 

QW structures, if the bandgap modification could be restrained within a selected 

area of QW. In order to achieve area-selective QWI, a commonly used method is 

to deposit a capping layer on top of the QW region desired for QWI, and subject 
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the QW to thermal annealing. The cap layer could be dielectric, metal, or 

dielectric / metal materials. The capping layer will affect the extent of QWI, either 

promoting or inhibiting it, through two different mechanisms namely diffusion 

mechanism and thermal stress mechanism. 

 

For AlGaAs / GaAs quantum wells, a dielectric SiO2 capping layer is found to 

induce QWI. (Ooi et al., 1997) The first reason is that Ga atoms possess a high 

diffusion coefficient in SiO2 dielectric cap layer at annealing temperatures above 

800
o
C. Rapid thermal annealing (RTA) would induce Ga atoms to out-diffuse into 

the SiO2 cap layer, and thus generate group-III vacancies under it. The presence 

of Ga vacancies in the QW will promote intermixing of Ga atoms with Al atoms, 

and thus results in blue-shifted emission energy under the cap layer.  

 

The second mechanism responsible for enhanced inter-diffusion under the SiO2 

cap layer is the tensile thermal stress created at the interface between GaAs and 

SiO2 layer. Compared to SiO2, GaAs has a much larger thermal expansion 

coefficient. At elevated temperatures, GaAs will expand more than the SiO2 layer 

on top. The tensile stress in SiO2 layer will result in broken bonds in it, making it 

more porous. The presence of more broken bonds in SiO2 will induce greater out-

diffusion of Ga atoms.  

 

On the contrary, SrF2 cap layer is used to shield and inhibit QWI effect from 

AlGaAs / GaAs QWs. This is because the diffusion coefficient of Ga atoms is 



 

77 

 

much lower in SrF2 layer, and the thermal stress created at SrF2-GaAs interface 

during annealing is compressive. The compressive stress would obstruct out-

diffusion of Ga atoms. SiO2 and SrF2 cap layers could be used in combination to 

confine QWI in desired parts of a QW structure.  This method has been used to 

create integrated photonic devices. (Yeo et al., 2001) 

  

For InGaN / GaN QWs, reports on selective QWI are limited. This is partly due to 

the fact that inter-diffusion in InGaN / GaN MQWs is complicated by the 

immiscibility of GaN and InN. Phase separation is also reported at higher 

temperatures. In order to induce QWI in InGaN / GaN MQWs, higher 

temperatures in the range of 1200-1400
o
C are usually required. Under such high 

annealing temperatures, a high nitrogen over-pressure in the range of 15 kbar 

within the RTA chamber is required to prevent surface decomposition. 

(McCluskey et al., 1998) The use of high temperature and high pressure during 

annealing process will post serious challenges in inducing QWI while preserving 

the material quality. 

  

Recently, the use of dielectric and dielectric/metal layers to achieve area-selective 

QWI on InGaN / GaN MQWs has been reported in the literature. (Shen et al., 

2015) It is found that Molybdenum:SiO2 capping layer with Mo concentration of 

4 atomic-percent could effectively induce intermixing within a LED structure 

consisting of 12 pairs 3 nm In0.2Ga0.8N well / 13.5 nm GaN barrier QWs. The shift 

in emission photon energy is about 80 meV after annealing at 950 °C for two 
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cycles of 120 seconds. In contrast, SiO2 capping layer could effectively shield 

QWI effect from QWs. This observation shows an opposite role of SiO2 cap layer 

in inhibiting QWI rather than inducing it in InAlGaAs system. The reason is that 

in the report above, a tensile stress of 140 MPa is obtained in the Mo:SiO2 

capping layer, while a compressive stress is obtained in the SiO2 dielectric layer. 

A tensile stress in the Mo:SiO2 capping layer would induce broken bonds in it and 

attract Ga atoms to diffuse out. On the contrary, a compressive stress in SiO2 layer 

would obstruct the out-diffusion of Ga atoms.   

 

In this work, the single-photon source proposed in this thesis would be based on 

InGaN / GaN quantum dot (QD). There are several ways to fabricate InGaN / 

GaN QDs. One approach is strain-induced island growth. (Damilano et al., 1999) 

This method is relatively easy to operate, but the QDs fabricated are unpredictable 

in location and emission wavelength. Another approach is to fabricate InGaN / 

GaN QWs first, and then obtain QDs within QWs through modifications to the 

QW structure. One type of modification is that on top of a planar single quantum 

well, pillars with height about 100 nm are fabricated through reactive ion etching. 

(Zhang et al., 2013) The pillars will each contain a single InGaN nanodisk, 

functioning as the active region of a quantum dot.  

 

In this thesis, another type of modification through area-selective QWI by thermal 

annealing is proposed to form QDs within InGaN / GaN QW. On a QW structure, 

a small region is covered by SiO2 cap layer. According to Shen et al.’s report, 
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QW structure under SiO2 cap layer will be shielded from QWI. Then, other parts 

of the QW structure is covered by Mo : SiO2 cap layer, which will induce QWI 

within QW region below and cause an increase in bandgap. QW region under the 

SiO2 cap layer will have a smaller bandgap compared to other parts of the QW. If 

the difference in emission energy is large enough, confinement will be achieved, 

and a quantum dot is created. The detailed structure is explained below.    

 

4.3. Proposed structure 

Two types of photon emitting structures are proposed. For the first type, the 

demonstrated growth of GaN on Si (111) facet of V-groove patterned on Si (100) 

substrate in Chapter 2 is performed. Growth time is carefully controlled to allow 

the main growth direction of GaN to switch from (0001) c-plane direction to (1-

101) direction. In other words, the aim is to obtain a GaN prism with a flat top (1-

101) plane sufficiently large for device fabrication. Then, a single InGaN / GaN 

QW with 3 nm wide InGaN well and 10 nm wide GaN barrier is fabricated on the 

top (1-101) semi-polar plane of the GaN prism grown. The detailed layer stack 

proposed to be grown on Si (111) facet of V-groove on Si (111) substrate is 

presented in Figure 4-6. 
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Figure 4-6. Proposed detailed layer stack grown on Si (111) facet of V-groove.  

 

In order to obtain a non-classical light emitter with sufficiently small size, the 

method of QWI by RTA is proposed to form one quantum dot in the InGaN / GaN 

quantum well. In order to achieve area-selective QWI, a circular patch-shape SiO2 

layer with a diameter of 200 nm and thickness of 300 nm is proposed to be 

deposited on top of the QW structure. In Figure 4-7, it is illustrated as a yellow-

color circular disk. It is deposited by sputtering and patterned by a standard 

photolithography lift-off process. Then, a 300 nm thick Mo : SiO2 capping layer 

(purple layer in Figure 4-7) is deposited on top of the GaN prism, covering the 

circular patch-shape SiO2 cap layer and the entire GaN (1-101) semi-polar plane.  

 

The small region covered by SiO2 path-shape layer is designed to be non-

intermixed when subjected to a rapid thermal annealing at 950 °C for two cycles 

of 120 seconds. Other parts of the QW structure covered by only Mo:SiO2 layer is 
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designed to be intermixed, and a blue-shift in emission photon energy is expected. 

This design aims to create a small-size region under the SiO2 cap layer, having a 

smaller bandgap compared to other parts of the QWs, i.e a QD. Photons emitted 

from this QD region are of lower energy compared to emission from the 

intermixed QW region. When these lower-energy photons are travelling through 

other QW regions with larger bandgap, they would not be absorbed. This is 

because photons emitted from the QD region do not possess enough energy to 

excite electrons in intermixed QW regions to jump from one energy level to a 

higher one.  

 

 

Figure 4-7. Proposed cap layer depositions on semi-polar InGaN / GaN SQW 

fabricated on Si (111) facet of V-groove.  

 

For the second type of proposed structure, the growth of GaN is stopped while the 

main growth direction is still in the (0001) c-plane direction. The resulting GaN is 

of trapezoidal shape, filling half of the V-groove trench (blue region in Figure 4-
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8). Then, the above specified SQW structure is grown. The circular patch-shape 

SiO2 layer is deposited on the (0001) c-plane. The top (1-101) plane is also 

covered with SiO2 dielectric layer (yellow region). Then, a Mo : SiO2 cap layer 

(purple region) is deposited on the (0001) plane, covering the patch-shape SiO2 

layer. In the following sections, the proposed structures will be simulated to 

calculate the change in bandgap after QWI. 

 

Figure 4-8. Proposed cap layer depositions on polar InGaN / GaN SQW 

fabricated on Si (111) facet of V-groove.  

 

 

4.4. Simulation of proposed single-photon emitter with optical fiber in 

cascaded V-grooves on Si (100) substrate 

4.4.1. Fabrication of QD by QWI 

The aim of this part of thesis is to validate the proposed method of creating an 

InGaN / GaN QD within QW by QWI, for the purpose of single-photon emitter. 
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More specifically, the focus is to simulate the extent of QWI and subsequent shift 

in emission length in  selective region of QW. 

 

The indium profile in the QW structure after QWI is first calculated. Due to the 

effect of QWI, the concentration profile of indium with respect to diffusion length 

(Ld) along the growth direction is governed by the Fick’s Law, i.e, 
2
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in which C0 is the initial concentration of indium; h is half of the well-width; z = 0 

is the center of well. C0 used is 15% (In0.15Ga0.85N), because it is the indium 

content easily achievable. h = 3/2=1.5 nm. Ld is the inter-diffusion length, and can 

be expressed as DtLd   , in which D is diffusion coefficient, and t is annealing 

time. Its value is set to be  he   me    i  She  e   l.’  rep r , whi h i  10 Å. 

 

The indium profile obtained in the intermixed QW region covered with Mo : SiO2 

cap layer is shown in Figure 4-9.   
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Figure 4-9. Indium composition profile for as-grown QWs (blue), and intermixed 

QWs (red). 

 

The indium profile is then entered into SILVACO software to calculate the band 

structure and the shift in emission photon energy after QWI. The way to feed 

indium profile into SILVACO is to approximate the smooth error function using a 

piecewise function. In this thesis, it is done by dividing the well width into seven 

equal parts and finding the average indium content within each part. Then, seven 

layers of InGaN with the respective average indium content are defined in 

SILVACO. The setup in SILVACO is included in Appendix A.5.  

 

 In SILVACO, the method to calculate QW bandgap and bound state energy is by 

using classical drift-diffusion solver with self-consistent Schrödinger-Poisson 

solver. Quantum well bound state energy could be used to calculate spontaneous 
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emission rate by using effective mass approximation from k.p theory, under 

parabolic band approximation.  

 

Calculation in SILCACO reveals that the QW bandgap for non-intermixed SQW 

structure defined in Figure 4-6 is 2.62 eV. For intermixed QW region with inter-

diffusion length DtLd   =10 Å, the QW bandgap changes to 2.64 eV. The QW 

bandgap for intermixed QW region increases by 20 meV, compared to non-

intermixed region. Relating this result to the structure design in Figure 4-7 and 4-

8, the selectively intermixed region in the QW region covered with Mo:SiO2 cap 

layer will produce blue-shifted emissions, while region under the SiO2 cap layer 

will not be intermixed and the emission photon energy is not shifted. The blue-

shifted emission photons could be filtered out, leaving photons emitted from the 

QD region under SiO2 circular patch-shape layer to test for its photon 

characteristics. In order to achieve single-photon emission, the annealing time 

needs to be adjusted to obtain the right amount of emission shift within the 

selectively intermixed region of QW, so that the quantum dot region could have 

one bound energy state for emission. The simulation model constructed in the 

work involving QWI modeling and bandgap calculation could be used to 

corroborate experiments on fabricating single photon emitters within V-grooves 

on Si (100) substrates. 
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4.4.2. Coupling with silicon waveguide 

It is an inherent problem to couple and guide photons emitted from small 

structures like QDs in a controllable way. The V-groove-patterned Si (100) 

substrate provides a platform to solve this problem. To achieve this, the method of 

wet etching is used to fabricate a bigger-size V-groove cascaded to the smaller V-

groove with light emitting device within. Then a single-mode optical fiber is 

stripped of its outer cladding, and its core section with a diameter of 8 micron is 

embedded within the bigger V-groove to couple light generated. The air will act 

as a cladding to allow light in the core to achieve total internal reflection while 

propagating in it.   

 

Figure 4-10. Single-mode optical fiber core placed within V-groove patterned on 

Si (100) substrate. 

 

A few precautions have to be made. Firstly, the wet etching time of the bigger V-

groove needs to be carefully controlled. For placement of fiber, the sidewalls of 

V-grooves are desired to be smooth, in order to ensure tight fitting. Furthermore, 

the right type of optical fiber should be selected according to the emission 
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wavelength, in order to minimize absorption and losses. For InGaN / GaN QWs, 

the emission wavelength is in the blue region, and Thorlabs’ SM300 fiber with 

operating wavelength in the range of 320-430 nm could be used. Lastly, the 

dimension of the bigger V-groove has to be carefully calculated to ensure that the 

photons emitted are within the acceptance angle of the optical fiber. Another 

possibility other than optical fiber is to fabricate a rectangular silicon waveguide 

connected to the V-groove with photon emitter. However, it is not suitable for this 

case, as the absorption coefficient of silicon for light in the blue to ultra-violet 

region is very high. 
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Chapter 5     Conclusion and future work 

 

 

5.1  Conclusion 

The prime focus of this master thesis has been studying the growth of GaN on V-

groove patterned Si (100) substrates, and investigating the issues associated with 

both material growth and device fabrication. In the experimental part of this thesis, 

the contribution of this thesis is to study the growth morphology of GaN when V-

grooves on Si (100) substrates are placed at different angles to the direction of 

precursor flow over the susceptor. It is found that by placing the longitudinal axis 

of V-grooves perpendicular to the direction of radial precursor flow, single-facet 

growth of GaN on V-groove is obtained. This observation is corroborated by the 

cases of 45
o
 and 0

o
 placements. When V-grooves are placed at 45

o
 to the direction 

of precursor flow, two prisms which differ in size are obtained. When V-grooves 

are placed in parallel to precursor flow, no growth is observed. This systematic 

study suggests that there could exist a relationship between V-groove placement 

direction relative to precursor flow and growth morphology of GaN. This 

observation offers a more convenient method to obtain single-facet growth of 

GaN on V-grooves patterned on Si (100) substrate, compared to the method of 

masking one facet with silicon oxide using Glancing Angle Deposition equipment.  

 

The second contribution of this thesis is to study the dynamics of GaN growth on 

V-groove patterned Si (100) substrates. A simulation model has been set up in 
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COMSOL software to incorporate precursor flow and heat transfer effects within 

the reactor together. The presence of V-grooves has disturbed the symmetries in 

distributions of precursor flow velocity and pressure. A region of higher pressure 

is observed over one of the two facets of V-grooves on Si (100) substrate. This 

increase in pressure would cause an increase in gas flux and adsorption rate 

through the Hertz-Knudsen Equation, thus facilitating GaN growth. The 

simulation also reveals that the impact of V-grooves on the temperature 

distribution is more pronounced for precursors with higher specific heat capacity. 

  

Lastly, a single-photon emitting and coupling structure within the V-groove of Si 

(100) substrate is proposed and simulated to validate its feasibility. The light 

source is proposed to be an InGaN / GaN QD formed within SQW. Selective 

QWI in region of the SQW covered by Molybdenum : SiO2 capping layer will 

result in a region of larger bandgap, while the small region covered by SiO2 

circular patch cap is shielded from QWI, and becomes a region of smaller 

bandgap. To calculate the amount of bandgap shift in intermixed QW region, a 

simulation model is set up in SILVACO. It reveals that for a diffusion length of 

10 Å, QWI will result in an increase of 20 meV in bandgap. This simulation 

platform could be used to compute shift in bandgap as a result of QWI, and guide 

the planning of experiments which utilize QWI as the method to create QD for 

application in single-photon generation. 
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5.2  Future work 

The growth of GaN on patterned Si substrate is a powerful technique to enable the 

integration of III-nitride semiconductor and Si electronics. In this work, the 

simulation of growth dynamics is conducted for a 2D model of MOCVD reactor, 

instead of a 3D simulation. Simulation is performed for only the case of V-

grooves placed at 90
o
 to precursor flow direction. This is because 3D simulation 

requires large computation power, as it involves a much detailed geometry. In 

future work, 3D simulation could be performed for GaN growth on V-grooves 

placed at other angles to the direction precursor flow direction. Also, atomic 

assembly simulation could also be performed to study the actual growth of GaN. 

 

In the last part of this thesis, a single-photon emitting and coupling structure 

within the V-groove of Si (100) substrate is proposed. The experimental 

realization of this structure should undergo several stages. Firstly, InGaN / GaN 

SQW should be grown on Si (111) facets of V-groove patterned  on Si (100) 

substrate. This experiment is already being carried out in our research group. The 

key to obtain good quality InGaN layer is to precisely control the pressure during 

growth. The second stage is to deposit cap layers on SQW to define regions for 

QWI. Firstly, a 200 nm diameter circular patch-shape SiO2 cap layer is deposited 

on QW region designed to be non-intermixed. Then, Molybdenum:SiO2 cap layer 

with Mo concentration of 4 atomic-percent is deposited on QW region designed to 

be intermixed. The precise deposition of SiO2 patch-shape capping layer requires 

Glancing Angle Deposition System. The last step is to thermally anneal the 
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sample. Due to the high annealing temperature close to 1000
o
C, multiple cycles of 

annealing are expected to prevent decomposition of material. Photoluminescence 

mapping will be used to reveal the extent and spatial variation of QWI. In order to 

test whether the area-selective QWI is able to create a region of QD, low 

temperature PL is needed. Simulation model is this work could provide a 

guideline for the annealing temperature and time, and assist experiment planning 

and result analysis.  
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A.5 Setup of InGaN / GaN QW in SILVACO 

 

# Define barrier layer 

region material=GaN thickness=0.0065 bottom NY=20 name=qb 

 

# Define well layer, which is divided into seven layers with calculated 

# average indium content 

region material=InGaN thickness=0.0017 compx.top=0 compx.bottom=8e-4 

bottom ny=20 name=qb 

region material=InGaN thickness=0.0016 compx.top=8e-4 

compx.bottom=0.0582407 bottom ny=20 name=qb 

region material=InGaN thickness=0.0012 compx.top=0.0582407 

compx.bottom=0.14477 bottom ny=20 led qwell name=well 

region material=InGaN thickness=0.001 x.comp=0.14477 bottom ny=20 led 

qwell name=well 

region material=InGaN thickness=0.0012 compx.top=0.14477 

compx.bottom=0.0582407 bottom ny=20 led qwell name=well 

region material=InGaN thickness=0.0016 compx.top=0.0582407 

compx.bottom=8e-4 bottom ny=20 name=qb 

region material=InGaN thickness=0.0017 compx.top=8e-4 compx.bottom=0 

bottom ny=20 name=qb 

 

# Define barrier layer 

region material=GaN thickness=0.0015 bottom NY=20 name=qb 
 

 


