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SUMMARY 

Host defence peptides (HDPs) have been proposed as blueprints for the 

development of new antimicrobials to combat drug-resistant infections. To 

enhance their clinical utility, short synthetic analogues have been designed by 

fine-tuning their selectivity to preferentially interact with microbial over 

mammalian cells. However, the strategies employed by the majority of these 

studies are largely empirical and synthetic peptides derived from natural HDPs 

possess high sequence similarity, which may promote cross-resistance when 

applied as therapeutic agents. Adopting a de novo approach enables the 

rational design of short synthetic antimicrobial peptides (AMPs), whilst 

mitigating concerns of resistance development to naturally occurring innate 

immune peptides. Thus, the overall aim of this thesis is to rationally design 

novel short synthetic cationic AMPs using a de novo approach and evaluate 

their efficacy and safety in anti-infective applications. We hypothesised that 

rationally designed synthetic AMPs, comprising of repeated sequences 

corresponding to the hydrophobic periodicity of natural α-helical peptides, can 

be safely and effectively applied in tuberculosis mono- and combination 

therapy, and in the treatment and prevention of drug-resistant biofilms and 

endotoxemia. 

 

To test our hypothesis, we explored four specific aims: 

(1)!Rationally design and evaluate short cationic α-helical AMPs for their 

cytotoxicity, and anti-mycobacterial activity alone and in combination 

with first line anti-tubercular drugs. 
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(2)!Investigate the influence of hydrophobicity and helicity of α-helical 

AMPs on the anti-mycobacterial mechanisms of action and synergistic 

interactions in combination therapy. 

(3)!Examine the impact of various unnatural amino acid substitutions on 

the stability and anti-mycobacterial selectivity of synthetic α-helical 

AMPs. 

(4)!Assess the effect of sequence pattern and length on the biological 

activity of multifunctional α-helical peptides with idealised facial 

amphiphilicity. 

 

In Specific Aim 1, we described the rational design of short synthetic 

amphipathic α-helical peptides, and studied the effect of various N- and C-

terminal modifications on cytotoxicity, anti-mycobacterial activity and 

synergism with rifampicin. It was demonstrated that the peptides were 

effective against both drug-susceptible and MDR-TB, displayed minimal 

cytotoxicity, interacted synergistically with rifampicin against M. smegmatis 

and BCG, and that such combination treatment could delay the emergence of 

rifampicin resistance. In Specific Aim 2, six α-helical peptides were designed 

with varied hydrophobicity and helical characters and evaluated for their anti-

mycobacterial mechanisms and synergism with rifampicin. It was found that 

increasing hydrophobicity beyond a certain threshold was detrimental to cell 

selectivity, and that enhancements in hydrophobicity and helicity improved 

synergism and increased the rate and extent of peptide-mediated membrane 

permeabilisation. In Specific Aim 3, several unnatural amino acid-modified 

peptides were assessed for their in vitro and intracellular activity against M. 
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tuberculosis, and their ability to resist protease degradation. We demonstrated 

that L to D amino acid substitutions proved most effective in enhancing cell 

selectivity, and that the D-isomer was stable to trypsin degradation and could 

reduce the intracellular bacterial burden of both drug-susceptible and MDR-

TB. In Specific Aim 4, we presented the rational design of α-helical peptides 

with idealised facial amphiphilicity, and evaluated the influence of peptide 

length and sequence on the antimicrobial, anti-biofilm and anti-endotoxin 

activities. The peptide with the optimal composition was found to be a broad-

spectrum and potent inhibitor of both drug-susceptible and MDR bacteria, able 

to suppress biofilm growth after 24 h and disrupt mature biofilms within 2 h of 

treatment, and also suppress the production of LPS-induced pro-inflammatory 

mediators to levels of unstimulated controls at low micromolar concentrations. 

 

In conclusion, the findings of this thesis have supported the hypothesis that 

rationally designed synthetic AMPs, adopting α-helical conformations, are 

safe and effective in TB mono- and combination therapy, and in the treatment 

and prevention of drug-resistant biofilms and endotoxemia. Thus, the de novo 

designed peptides presented herein should be evaluated in vivo using animal 

models to establish their clinical potential for various anti-infective 

applications.  
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depolarisation, monitored by fluorescence recovery of diS-C3-5, was 
immediate at 4x and 8x MIC.  
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Figure 5.10. Extracellular ATP release in a concentration-dependent manner 
after exposure of M. smegmatis to II for 2 h. Peptide-induced membrane 
damage is accompanied by leakage of intracellular content due to 
compromised membrane integrity. Data expressed as mean ± S.E.M. for three 
independent experiments. 
 
Figure 5.11. Plot of viable CFU after treatment of M. smegmatis with various 
concentrations of II. 100% reduction in bacterial burden was observed at 2x, 
4x and 8x MIC, suggestive of a bactericidal mechanism of action at these 
concentrations. Data expressed as mean ± S.E.M. for three independent 
experiments. 
 
Figure 6.1. CD spectra demonstrating α-helical secondary conformations of II 
and its synthetic analogues with unnatural amino acid substitutions in 25 mM 
SDS micelle solution. Data are expressed as the mean of three runs per 
peptide. 
 
Figure 6.2. Toxicity profiles of synthetic peptides modified with unnatural 
amino acids against (a) human red blood cells and (b) the mouse macrophage 
cell line RAW 264.7. (c) Viability of RAW 264.7 cells after 4 days of 
treatment with II-D. Peptides displayed minimal haemolytic activity and 
cytotoxicity against mammalian cells at various concentrations tested. Data 
are expressed as mean ± S.D. for two independent experiments. 
 
Figure 6.3. Inhibitory activity of synthetic peptides against BCG at 
concentrations of 4x MIC following 6 h treatment with trypsin at a ratio of 
1:100. Only the unmodified peptide, II, did not inhibit bacterial growth after 7 
days. Data are expressed as mean ± S.D. for two independent experiments. 
 
Figure 6.4. Killing efficiencies of antimicrobial peptide II-D against (a) 
H37Rv, (b) Mtb 411 and (c) CSU87 following treatment for 7 days at various 
concentrations. Data are expressed as mean ± S.D. for two independent 
experiments. 
 
Figure 6.5. Intracellular killing of the drug-susceptible clinical isolate Mtb 411 
by (a) antimicrobial peptide II-D and (b) rifampicin, and the MDR clinical 
isolate CSU87 by (c) antimicrobial peptide II-D and (d) moxifloxacin. Data 
expressed as mean ± S.D. and are representative of two independent 
experiments. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).  
 
Figure 6.6. Time-lapse fluorescence microscopy images of BCG following 
treatment with antimicrobial peptide II-D at (a) 4x MIC and (b) 8x MIC in the 
presence of the membrane-impermeable dye, PI. Peptide-mediated membrane 
disruption promoted uptake of PI into bacterial cells. Scale bar = 10 µm. 
 
Figure 6.7. Flow cytometric analysis of the proportion of bacterial cells 
positively stained by the membrane-impermeable dye PI after 3 h exposure to 
different antimicrobials. Controls consisted of (a) H37Rv and (d) CSU87 
treated with media alone. H37Rv was treated with (b) rifampicin and (c) II-D, 
while CSU87 with (e) moxifloxacin and (f) II-D at 4x MIC concentrations. II-
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D induced a significant shift in the percentage of H37Rv and CSU87 taking up 
PI, suggestive of membrane permeabilising mechanisms of action. The levels 
of PI uptake for negative controls, rifampicin and moxifloxacin, were similar 
to that of media. Data are representative of three independent experiments. 
 
Figure 6.8. The ability of antimicrobial peptide II-D to promote (a) NO and (b) 
TNF-α production in unstimulated RAW 264.7 mouse macrophage cells 
following 24 h treatment. II-D did not induce NO or TNF-α when compared 
to positive controls consisting of cells stimulated with 100 ng mL-1 LPS. Data 
are expressed as mean ± S.D. for two independent experiments. 
 
Figure 6.9. Killing efficiencies of antimicrobial peptides (a) II-D and (b) 
FITC-II-D against BCG following treatment for 7 days at various 
concentrations. II-D had killing efficiencies of > 98% and > 99% at 31.3 and 
62.5 mg L-1, respectively, while FITC-II-D had killing efficiencies of > 99% at 
both 250 and 500 mg L-1. Data are expressed as mean ± S.E.M. for three 
independent experiments. 
 
Figure 6.10. (a) Fluorescence microscopy images of BCG treated with 500 mg 
L-1 FITC-labelled II-D for 2 h using the CellASIC ONIX Microfluidic 
Platform. Scale bar = 10 µm (inset scale bar = 5 µm). Confocal microscopy 
images following incubation of 500 mg L-1 FITC-labelled II-D for 2 h with (b) 
BCG-mCherry and (c) BCG in the presence of 2 µg mL-1 membrane dye FM4-
64. Scale bar = 2 µm. 
 
Figure 6.11. Fluorescence intensity profiles of BCG-mCherry along the cell 
length (dashed lines) showing (a) entry of FITC-II-D into the cytoplasm while 
(b) and (c) represent unaffected cells. Fluorescence intensity profiles of BCG 
along the cell width (dashed lines) showing presence of FITC-II-D in the 
bacterial membrane segments (d) and (e). Images were acquired following 2 h 
treatment with 500 mg L-1 of antimicrobial peptide FITC-II-D. Scale bar = 2 
µm. 
 
Figure 7.1. Helical wheel projection of α-helical peptides with idealised facial 
amphiphilicity, possessing the backbone sequence (X1Y1Y2X2)n, where X1 and 
X2 are hydrophobic amino acids, Y1 and Y2 are cationic amino acids, and n is 
the number repeat units. 
 
Figure 7.2. CD spectra representing α-helical propensity of peptides with the 
backbone sequence (a) (LKKL)n (b) (IKKI)n and (c) (WKKW)n in 25 mM 
SDS micelle solution, where n = 2, 2.5 and 3. Data are expressed as the mean 
of three runs per peptide. 
 
Figure 7.3. Haemolytic activity of synthetic α-helical peptides possessing (a) 2 
repeat units, (b) 2.5 repeat units and (c) 3 repeat units tested against blood 
from two healthy donors. Peptides induced minimal haemolysis at 
concentrations corresponding to the respective MICs. Data are expressed as 
mean ± S.D. for two independent experiments. 
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Figure 7.4. Killing efficiency of antimicrobial peptide L12 against (a) E. coli, 
(b) S. aureus, (c) P. aeruginosa and (d) K. pneumoniae following treatment 
for 18 h at concentrations corresponding to 0, 0.5x, 1x, 2x and 4x MIC. Data 
are expressed as mean ± S.D. for two independent experiments. 
 
Figure 7.5. Time-lapse fluorescence microscopy images of E. coli (a, b, c) and 
S. aureus (d, e, f) following treatment with (a and d) media alone, (b and e) 
L12 at 4x MIC and (c and f) L12 at 8x MIC in the presence of the membrane 
impermeable dye, PI. The uptake of PI into bacterial cells within minutes of 
exposure supports the rapid membrane-lytic antimicrobial mechanisms of the 
synthetic peptides. No uptake of PI was observed in negative controls while a 
concentration dependent increase in the proportion of fluorescent bacteria was 
evident with peptide treatment. Scale bar = 10 µm. 
 
Figure 7.6. (a) Inhibition of drug-susceptible and drug-resistant P. aeruginosa 
and S. aureus biofilms formation following overnight exposure to L12. (b) 
IVIS imaging and (c) radiance quantification of biofilm growth inhibition of 
bioluminescent P. aeruginosa treated with L12 overnight. (d) Cell viabilities 
of pre-formed PA-W25 and MRSA 252 biofilms after treatment with L12 for 
2 h. (e) IVIS imaging and (f) radiance quantification of pre-formed biofilm 
disruption of bioluminescent P. aeruginosa exposed to L12 for 2 h. Rows in 
(b) and (e) represent individual replicates. L12 inhibits biofilm formation at 1x 
and 2x MIC, and effectively disrupts pre-established biofilms at supra-MIC 
levels. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001). 
 
Figure 7.7. The ability of de novo designed peptides to (a) bind LPS within 30 
min exposure and (b) restrict LPS-stimulated NO production following 24 h 
treatment with peptides at various concentrations. The synthetic peptides L12 
and W12 strongly bound LPS and effectively inhibited NO production at sub-
MIC concentrations of 3.9 µM. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, # p ≤ 
0.0001). (c) The effect of synthetic peptides on viability of RAW 264.7 mouse 
macrophage cells following 24 h treatment with peptides at various 
concentrations. Data are expressed as mean ± S.E.M. for three independent 
experiments. 
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CHAPTER 1: Introduction 

1.1. Antimicrobial resistance: An overview 

The widespread emergence of antimicrobial resistance (AMR) over the past 

several decades is rapidly becoming a global health emergency, especially 

given the dwindling number of new antibiotics undergoing clinical 

development [1]. In Europe and the US alone, at least 50,000 deaths are 

attributed to antimicrobial-resistant infections each year [2]. While the 

development of resistance by microorganisms to new drugs is unavoidable due 

to natural evolutionary processes, the indiscriminate use of antibiotics in both 

humans and livestock has inadvertently accelerated the selection of resistant 

pathogens [1, 3]. Inevitably, AMR diminishes drug efficacy which results in 

significant complications, higher costs, poorer treatment outcomes, and 

consequently, higher mortality rates [1]. 

 

Recently, the discovery of bacterial resistance to what was reported as “the 

last line antibiotic”, colistin, has fuelled speculation that the world could be on 

the brink of the post-antibiotic era, an age where common ailments and 

infections could prove deadly [4]. By the middle of the 21st century, AMR is 

expected to pose a greater threat to human health than cancer, resulting in over 

10 million deaths a year [2]. Without any firm action, the economic burden of 

AMR is projected to cost the world up to 100 trillion USD with a reduction in 

global Gross Domestic Product (GDP) of between 2 to 3.5% by 2050 [2]. 

Hence measures to curb the spread of resistance to existing antibiotics, while 

developing therapeutics with novel mechanisms of action, will be instrumental 

in tackling the escalating threat of AMR [1].  
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1.1.1. The burden and management of tuberculosis  

Even though mortality and incidence rates have steadily declined since the 

World Health Organisation (WHO) declared tuberculosis (TB) as a global 

public health emergency over 20 years ago, it now ranks alongside HIV as the 

leading cause of death from an infectious disease worldwide, with 9.6 million 

new cases and 1.5 million deaths in 2014 [5]. Multidrug-resistant TB (MDR-

TB), defined as resistance to at least rifampicin and isoniazid, two of the most 

effective first-line anti-tubercular drugs, accounted for 3.3% of the new cases 

and 20% of the previously treated cases [5]. Approximately 9.7% of MDR-TB 

cases are extensively drug-resistant TB (XDR-TB), an even more severe form 

of the disease, defined as resistance to rifampicin, isoniazid, at least one 

fluoroquinolone, and a second line injectable (amikacin, kanamycin or 

capreomycin) [5]. The WHO recently developed a new framework (The End 

TB Strategy) to succeed the Millennium Development Goals, aimed at 

reducing TB death and incidence rates in 2035 by 95% and 90% respectively, 

in comparison to 2015 [6]. However, given that second-line drugs only cure an 

estimated 60% of MDR-TB, and 40% of XDR-TB, resistant strains of 

Mycobacterium tuberculosis pose a significant challenge to global efforts in 

controlling TB [7].  

 

The standard regimen for drug-susceptible TB comprises a cocktail of four 

drugs administered in two separate phases. The two-month long intensive 

phase consists of isoniazid, rifampicin, ethambutol and pyrazinamide, 

followed by a four-month continuation phase with isoniazid and rifampicin 

[8]. Although highly effective when adhered to strictly, the lengthy and 
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complex nature of this six-month regimen inevitably gives rise to patient 

compliance issues [9]. Moreover, inadequate dosing or inappropriate treatment 

conditions are associated with higher mortality rates and the development of 

MDR-TB [10]. The treatment of MDR-TB requires a combination of second- 

and third-line anti-tubercular agents which are not only more costly and toxic, 

but also less effective and entail prolonged treatment durations of 18 to 24 

months [8]. While two new drugs, bedaquiline and delamanid, have recently 

been approved for MDR-TB treatment, rifampicin was the last first-line drug 

to be developed in 1967. Thus, there is an urgent need for novel anti-

mycobacterial compounds that are more potent, less toxic, and effective 

against both MDR and XDR-TB, with the aim of shortening treatment 

regimens and improving treatment outcomes [6, 10, 11]. 

 

1.1.2. The discovery of new antibiotics  

The serendipitous discovery of penicillin by Alexander Fleming in 1928 

heralded the dawn of the antibiotic era, and has proven vital in saving 

countless number of lives as it enabled the effective control of bacterial 

infections [12]. However, it was the systematic screening approach pioneered 

by Selman Waksman in the 1940s, and subsequently termed as the ‘Waksman 

platform’, which proved widely successful in uncovering major antibiotic 

classes [13]. These discoveries spurred the golden era of antibiotic discovery 

from 1940 to 1960, a period which accounts for a vast majority of the 

antibiotics we use today [12]. Since then however, there has been a dearth in 

the discovery of novel classes of antibiotics [12, 13].  
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In a time when the development of new classes of antibiotics is imperative, 

paradoxically, antibiotic pipelines are shrinking. A combination of high failure 

rates in drug research, uncertainty of future market size for a new antibiotic 

due to ever-changing resistance patterns, and the prospect of achieving 

profitability only decades after initial financial outlay, have served as financial 

disincentives for pharmaceutical companies to invest in the R&D of new 

antibiotics [14]. With approximately two-thirds of the 37 antibiotics under 

development still in phase one or two clinical trials [15], only a handful may 

eventually obtain market approval [16]. With regards to TB, there are 

currently only eight new or repurposed drugs undergoing late phase clinical 

trials [5]. Even then, withdrawals due to efficacy concerns following post-

market surveillance and emergence of resistance for follow-on compounds 

without novel mechanisms of action will increase attrition rates [14]. Hence, 

there is an urgent need to expand the size and quality of the current antibiotic 

pipeline to provide effective therapeutics for drug-resistant and biofilm-related 

infections. 

  

1.2. Natural antimicrobial peptides  

1.2.1. Structure and diversity  

Natural antimicrobial peptides (AMPs) have long been regarded as 

fundamental pillars of human immunity that are indispensable components of 

both the adaptive and innate immune systems. The first in a series of landmark 

studies, which put the spotlight on AMPs was the discovery of cecropins in 

1980 from the haemolymph of the moth Hyalophora cecropia [17]. Further 

revelations of the existence of α-defensins in human neutrophils [18], and 
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magainins in the skin of the frog Xenopus laevis [19], were suggestive of the 

ubiquitous presence of such defence molecules among eukaryotes, possessing 

broad-spectrum antimicrobial activity. Since then, over 2000 AMPs have been 

isolated and characterised to date from various plants and animal species 

including vertebrates such as amphibians, reptiles, birds, mammals, fish, and 

arthropods such as insects and crustaceans. Given the multiplicity of sources, 

it is no surprise that AMPs adopt diverse conformations, belonging to four 

main structural classes: α-helical, β-sheet, extended structures enriched with a 

particular amino acid and loop peptides (Figure 1.1) [20]. Despite the 

exceptional disparities in sequence and configuration, AMPs are innately 

similar with a high proportion of hydrophobic and cationic residues, adopting 

amphipathic structures upon folding, which have been implicated in their 

ability to kill microbes [21]. 
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Figure 1.1. Structure and sequences of naturally occurring antimicrobial 
peptides. Reproduced with permission from [22]. Copyright (2006) Nature 
Publishing Group.   
 

1.2.2. Mechanisms of action  

1.2.2.1. Direct antimicrobial activity  

AMPs are revered for their potential as anti-infective agents due to their 

broad-spectrum of activity encompassing bacteria, fungi, viruses and parasites 

[22]. Although the exact mechanisms of action remain unclear, the cationic 

and amphiphilic regions of AMPs are widely understood to be influential in 

their direct microbicidal activity. These positively charged peptides initially 

accumulate on the bacterial surface, mediated largely by electrostatic 

interactions with anionic polymers, such as lipopolysaccharide (LPS) and 

lipoteichoic acids (LTA) in Gram-negative and Gram-positive bacteria, 



! 7!

respectively. Subsequent pore formation has been explained via several 

complex models including the toroidal-pore or barrel-stave mechanisms or 

detergent-like membrane solubilisation as espoused by the “carpet-like” 

mechanism [22, 23]. Penetration of peptides into the lipid bilayer, driven by 

their inherent hydrophobicity, triggers membrane disruption that provokes 

homeostatic imbalances and loss of cellular content, culminating in cell death. 

However, the bacterial membrane may not necessarily be the sole target of 

AMPs as some traverse the lipid bilayer, without inducing membrane 

permeabilisation, and inhibit enzymatic activity or impede cell wall, nucleic 

acid, or protein synthesis [23-25]. Importantly, these bactericidal mechanisms 

are not limited to drug-susceptible bacteria, but also target their drug-resistant 

counterparts including methicillin-resistant Staphylococcus aureus (MRSA), 

vancomycin-resistant Enterococcus faecalis, MDR Pseudomonas aeruginosa 

and M. tuberculosis [24]. In addition, the rapid membrane-lytic mechanisms of 

AMPs has been suggested to diminish their propensity for resistance 

development, while their ability to synergise with conventional antibiotics 

underlines their potential as adjuvants in combinatorial drug therapies for 

infection control [21, 26]. 

 

1.2.2.2. Immune modulating effects  

AMPs are increasingly understood to play a multifaceted role in the regulation 

of the immune system. Figure 1.2 highlights the diverse biological functions 

of AMPs, comprising a multitude of immunomodulatory properties including 

endotoxin neutralising ability, induction of cytokine and/or chemokine 
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production, modulation of dendritic cell and T cell immune response, and 

promotion of wound healing and angiogenesis [27].  

 

Figure 1.2. Multiple functions of antimicrobial peptides in host defence 
ranging from activation of innate immune cells (monocytes, macrophages, 
neutrophils and epithelial cells), stimulation of cytokine and chemokine 
production, promotion of dendritic and T cells migration, and modulation of 
TLR signalling. Abbreviations: AMP, antimicrobial peptide; DC, dendritic 
cell; LPS, lipopolysaccharide; pDC, plasmacytoid dendritic cell; PMN, 
polymorphonucleocyte; TLR, Toll-like receptor. Reproduced with permission 
from [27]. Copyright (2009) Elsevier B.V. 
 
1.2.3. Biological functions of host defence peptides  

The term host defence peptide (HDP) has been increasingly applied to 

accurately describe peptides exhibiting immune-regulating properties in 

addition to direct antimicrobial activity. Of the countless HDPs prevalent in 

humans and mammals, human defensins and cathelicidins are the two most 

well characterised. The following section explores the direct antibacterial 

activity and immunomodulatory activity of cathelicidins and human defensins. 
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1.2.3.1. HDPs as antimicrobials 

The only member of the cathelicidin family to be isolated from humans is the 

α-helical peptide, hCAP-18. Existing as a pro-peptide, hCAP-18 undergoes 

proteolytic cleavage at the C-terminal region to produce a 37 amino acid 

domain, widely known as LL-37. This cationic peptide has demonstrated 

potent inhibitory activity against a broad range of Gram-positive and Gram-

negative bacteria in vitro [28]. Furthermore, the successful elimination of both 

MDR Acinetobacter baumannii and MRSA in vitro following treatment with 

LL-37, highlights the potential utility of this peptide in eradicating drug-

resistant infections [28, 29]. LL-37 has been found to be inactive against M. 

tuberculosis in vitro up to concentrations of 50 mg L-1 [30]. However, in M. 

tuberculosis infected macrophages, LL-37 exhibited moderate anti-

mycobacterial activity after 24 hours when added exogenously at 

concentrations of 15 to 25 mg L-1 [31]. This observed intracellular activity 

also translated into in vivo efficacy when treatment with 32 µg of LL-37, three 

times per week for four weeks was found to significantly reduce bacterial 

burden in the lungs of mice infected with M. tuberculosis, as compared to 

untreated controls (p < 0.05) [32]. Despite its inherent poor activity in vitro, 

the anti-mycobacterial activity of LL-37 is augmented in vivo, indicative of 

potential underlying immunomodulatory mechanisms.   

 

On the other hand, the two major classes of human defensins are comprised of 

α- and β- defensins, each containing six cysteine (Cys) residues which form 

three pairs of disulfide bonds. The fundamental distinction resides in the 

connectivity of these disulfide bonds, with linkages between Cys residues in 
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positions 1 to 6, 2 to 4 and 3 to 5 in α-defensins, but in positions 1 to 5, 2 to 4 

and 3 to 6 in β-defensins. In a similar fashion to cathelicidins, proteolysis of 

the precursor pro-peptide liberates the active element of defensins. Early work 

on α-defensins, or human neutrophil peptides (HNP), in the mid-1980s 

revealed that HNP 1-3 mixture was not only effective against Gram-positive 

and Gram-negative bacteria, but also displayed antifungal and antiviral 

properties [18]. Follow on studies extended this spectrum of activity to include 

various mycobacterial strains. HNP-1 exhibited bactericidal activity against 

M. tuberculosis while HNP-1, HNP-2 and HNP-3 were found to effectively 

eradicate M. avium complex (MAC) in vitro [33, 34]. Treatment of M. 

tuberculosis infected macrophages with 40 mg L-1 HNP-1 also showed strong 

bactericidal activity with 98% killing after 3 days [35]. In vivo however, a 

much lower dose of 5 µg per mouse once weekly for 4 weeks resulted in 

significant reduction in mycobacterial burden in the lungs (p < 0.001) [36]. 

 

The human β-defensins (hBD) were also effective in eradicating Gram-

positive and Gram-negative bacteria, though hBD-2 demonstrated ~10 fold 

greater activity than hBD-1 [37].  However, their ability to reduce bacterial 

load was severely undermined upon exposure to high salt concentrations of 

NaCl. Interestingly, hBD-3 emerged as a promising candidate for the 

treatment of nosocomial infections, buoyed by evidence of its rapidly 

bactericidal activity against MDR clinical isolates of S. aureus, Enterococcus 

faecium, P. aeruginosa, Stenotrophomonas maltophilia, and A. baumannii 

[38]. Combination treatment with HDPs has been shown to induce synergism 

and improve antimicrobial efficiency as compared to treatment with a lone 
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agent. The addition of hBD-1, hBD-2, hBD-3 and LL-37 in various 

permutations revealed that a combination of two or more HDPs was essential 

in eliciting synergistic interactions against S. aureus and E. coli [39]. A 

separate study evaluating the effect of combining sub-lethal doses of HNP-1 

and LL-37 on their antimicrobial potency found that combination of both 

agents augmented the killing of S. aureus and E. coli [40]. These findings 

suggest that though devoid of activity when present alone at sub-inhibitory 

concentrations, combination of defensins with other HDPs can produce 

synergistic modulation of antibacterial activity in order to exert a bactericidal 

response. 

  

1.2.3.2. HDPs as immune modulators 

Facilitating the chemotaxis of a myriad of immune cells remains one of the 

principal functions of HDPs. This chemotactic activity is induced either 

directly by chemokine production or indirectly via the activation of receptors. 

The ability of LL-37 to promote receptor-mediated chemotaxis of various 

immune cells has been widely established. LL-37 has demonstrated direct 

chemoattractant properties for mast cells, with cell migration mediated via the 

Gi protein-phospholipase C (PLC) signalling pathway [41]. LL-37 was also 

found to be chemotactic for various leucocytes such as monocytes, 

neutrophils, eosinophils and T lymphocytes [42, 43]. The involvement of the 

formyl peptide receptor–like 1 (FPRL1) proved central to the recruitment of 

human leucocytes in mounting an immune response.  
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In pioneering research aimed at elucidating the chemotactic properties of 

human defensins, Yang et al. revealed that hBD-2 was a potent inducer of 

both T cell and immature dendritic cell migration through interactions with 

CC chemokine receptor 6 (CCR6) [42]. In a follow on study, the team 

determined that α-defensins, HNP-1 and HNP-2, were similarly chemotactic 

for both immature human dendritic cells and T lymphocytes, though 

independent of CCR6 activation [44]. Both dendritic and T cells are key 

modulators of adaptive immune responses. Taken together, these findings 

serve to reinforce the critical role of α- and β- defensins in both innate and 

adaptive immunity. HNP-1 and HNP-3 were also found to be chemoattractants 

for mast cells, T lymphocytes and macrophages while HNP-1 and HNP-2 

were implicated as essential mediators of monocyte migration [45, 46]. 

Macrophage recruitment by HNP-1 was initiated following signal transduction 

by Gαi proteins and mitogen-activated protein kinases (MAPK) [46].  

 

Besides their chemotactic activities, HDPs can elicit pro- or anti-inflammatory 

responses, dependent on the extent of cytokine induction or inhibition in 

different cell types. LL-37 effectively inhibited the release of the pro-

inflammatory cytokine, tumour necrosis factor-α (TNF-α), from macrophages 

while inducing anti-inflammatory chemokine monocyte chemoattractant 

protein-1 (MCP-1). In epithelial cells, however, MCP-1 production was 

antagonised, while significant induction of interleukin-8 (IL-8) was observed. 

The immunomodulatory activity of LL-37 was achieved partly through the up-

regulation of chemokine receptors including CCR2, CXC chemokine receptor 

type 4 (CXCR-4) and IL-8RB [47]. HNP-1, HNP-2 and HNP-3 increased 
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TNF-α and IL-1 release from human monocytes while down regulating the 

expression of IL-10, a known inhibitor of cytokine production. Moreover, the 

reduction in vascular cell adhesion molecule 1 (VCAM-1) expression in 

endothelial cells could potentially enhance HNP-mediated chemotaxis of 

leucocytes [48]. The stimulation of keratinocytes by hBD-2 and hBD-3 

induced an array of pro-inflammatory cytokines and chemokines including IL-

6, IL-10, IP-10, MCP-1, macrophage inflammatory protein-3α (MIP-3α) and 

RANTES [49]. The G protein and PLC signalling pathways were found to be 

involved in the potentiation of this stimulatory effect. 

 

1.3. Limitations of HDPs  

The clinical development of HDPs has been largely limited to topical 

applications as anti-infectives in skin diseases, rosacea, oral candidiasis and 

diabetic foot ulcers [50, 51]. There are several pertinent issues related to 

toxicity and stability which need to be resolved before peptides can be 

successfully applied as therapeutics [21, 22]. Firstly, peptides are vulnerable to 

degradation by proteases in the blood, resulting undesirable pharmacokinetic 

properties due to their relatively short in vivo half-lives [50]. To overcome this 

limitation, stability-enhancing modifications including peptide cyclisation, N-

terminal acetylation, unnatural or D-amino acid substitutions, and the 

development of peptidomimetics have been proposed [22, 26]. Secondly, the 

complex interactions of HDPs with the immune system, as a consequence of 

their diverse biological functions (Figure 1.2), could result in undesirable 

systemic toxicities during therapeutic administration [22, 51]. As such, 

investigations into the more subtle cytotoxic effects of HDPs including 
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degranulation of mast cells and induction of apoptosis could facilitate the 

development of safer peptide analogues [22, 51], although this is not in the 

scope of this thesis. Instead, the design of synthetic AMPs which bear minimal 

resemblance to the sequences of HDPs, could be explored as a means of 

reducing undesirable immune activation, and in turn circumventing unwanted 

side effects.  

 

Another major barrier is the high cost of manufacturing, as solid phase 

chemical synthesis of peptides can cost between $100 to $600 per gram [22]. 

Natural peptides tend to have long sequences (> 20 amino acids) and complex 

secondary structures, further complicating synthesis and increasing costs, 

thereby hindering large-scale production [51]. While novel approaches are 

being explored to reduce the manufacturing costs of peptide therapeutics, the 

development of shorter synthetic HDP analogues could also provide an 

effective means of minimising costs [22].  

 

A significant draw of AMPs lies in the diminished propensity of microbes to 

develop resistance against these compounds in comparison to conventional 

antibiotics [52]. Given that AMPs non-specifically target the cytoplasmic 

membrane, it has been suggested that reconfiguration of the bacterial 

membrane, an energetically unfavourable and seemingly unlikely process, 

would be necessary for resistance development [21]. The improbability of 

microbial resistance developing against AMPs was demonstrated in vitro 

when efforts to generate pexiganan resistance against S. aureus and S. 

epidermidis proved unsuccessful [53]. In contrast, a 64-fold increase in the 
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minimum inhibitory concentration (MIC) of mupirocin after seven passages, 

and a >1000-fold increase in the MIC of fusidic acid after 14 passages, was 

observed against S. aureus [53]. Similarly, exposure of P. aeruginosa and 

MRSA to sub-inhibitory concentrations of protegrin-1 (PG-1) failed to induce 

resistance after 11 and 18 passages, respectively [54]. Treatment of P. 

aeruginosa with gentamicin, and MRSA with norfloxacin, under similar 

conditions, produced remarkably different results with 190-fold and 85-fold 

increase in MIC, respectively [54]. However, these studies have only selected 

for resistance over a relatively short period and it has been suggested that 

prolonged exposure to AMPs at high concentrations, when applied 

therapeutically, would almost certainly promote the development of resistance 

[55]. Such a situation, when it arises, would have severe implications for 

human health due to cross-resistance to innate HDPs [22, 55]. 

 

1.4. Clinical application of HDPs  

Although many HDP-based therapeutics have been evaluated clinically over 

the past few decades, none have been approved for use in the clinic to date 

[50]. The development of promising drug candidates including iseganan, 

pexiganan, and omiganan, undergoing late stage phase III trials was hampered 

either due to a lack of efficacy, various regulatory barriers, poor clinical trial 

design or commercial considerations. The development of pexiganan for the 

treatment of diabetic foot ulcers was dealt a major blow back in 1999 when 

the drug was not approved US Food and Drug Administration (FDA) [56]. 

Citing ethical concerns over the trial design and lack of evidence 

demonstrating superiority over conventional therapies, the FDA did not deem 
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the drug approvable. As such, dwindling resources coupled with a shift in 

commercial priorities of its pharmaceutical partner forced Magainin 

Pharmaceuticals to cease operations. However, Dipexium Pharmaceuticals 

recently initiated phase III trials for the pexiganan cream, Locilex, in the 

treatment of diabetic foot ulcers (NCT01590758 and NCT01594762).  

 

Omiganan was also unsuccessful in receiving FDA approval for the treatment 

of catheter-associated infections following phase III trials due to its failure to 

meet its primary clinical endpoint. Despite demonstrating statistically 

significant efficacy in the prevention of both catheter colonisation and 

microbiologically confirmed infections, it did not satisfactorily meet the 

primary clinical endpoint of ‘physician determined infections’ [56]. This 

failure prompted Cutanea Life Sciences to explore other potential indications, 

with the recently initiated phase II and III studies for the treatment of acne 

vulgaris (NCT02571998) and rosacea (NCT02576860), respectively.  

 

The development of iseganan, the first antimicrobial peptide to be evaluated as 

an oral decontaminant, was also discontinued by Intrabiotics following Phase 

3 trials which did not significantly reduce ventilator-associated pneumonia 

(VAP) among surviving patients [57]. The trial was halted early due a higher 

rate of VAP and death in the arm receiving iseganan as compared to placebo, 

although this was not shown to be statistically significant. The investigators 

attributed this failure to the short contact time between iseganan in solution 

and the pathogens [58]. In addition, ethical issues surrounding the design of 
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the trial were also raised as patients in the control arm received placebo rather 

than the best available treatment option [58]. 

 

In other instances, commercial considerations have seen promising lead 

compounds being shelved despite strong preclinical evidence of therapeutic 

efficacy. Plectasin was one such antibiotic which saw its clinical development 

come to a halt following a licensing agreement between Novozymes and 

Sanofi-Aventis in 2008. The relatively small market size of pneumococcal 

infections failed to justify the financial investment required for the clinical 

development of this narrow-spectrum antibiotic [59]. Successful efforts to 

extend the plectasin’s spectrum of activity have led to the development a 

broad-spectrum derivative NZ2114, and despite announcing plans to initiate 

Phase 1 trials in 2010, no progress has been made since [59].  

  

Natural AMPs have been studied for the past 25 years and their importance as 

antimicrobials and immunomodulators is well established. Although none 

have been approved as drugs, there are more than 10 phase II and III clinical 

trials using AMPs or their inducers, currently in progress or recently 

completed [60]. Table 1.1 provides a summary of the AMPs being actively 

pursued in clinical development [61]. Compared to a total of about 37 new 

antibiotics which are mostly analogues of old drug classes in clinical 

development, there is indeed significant emphasis on AMP therapeutics in this 

space as a novel class of antibiotics. Importantly, the industry estimates that 

the proportion of peptides in pharma will grow faster (9.4% annual growth in 

2012–2018) than the global industry (3–6% annual growth in 2012–2016) 
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[62]. This is contrary to longstanding scepticism about this class of molecules 

being unstable and hence ineligible for drug development and inferior to small 

molecules. The difference is that with rapid advancement of peptide science, 

computer-aided analysis and combinatorial chemistry, we now have the means 

to modify and produce clinically relevant artificial variants and alternatives. 

While there are no AMPs currently being evaluated in clinical studies for 

application in TB chemotherapy, our background work has indeed provided 

strong support for this approach in the TB context.
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Table 1.1. Synthetic host defence peptides undergoing active clinical development. Reproduced with permission from [61]. Copyright (2015) 
Springer International Publishing. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Research programs that were terminated or suspended indefinitely have been excluded 
b Reference or registration numbers are obtained from http://clinicaltrials.gov 
 

Peptidea Description Clinical application Phase Status Company Ref/Reg no.b 
Brilacidin 
(PMX30063) 

Synthetic 
defensin mimetic 

Treatment for acute 
bacterial skin and skin 
structure infections 
(ABSSSI) caused by S. 
aureus 

II In progress Cellceutix 
Corporation 
 

NCT02052388 
 

HB1345 Synthetic 
lipohexapeptide 

Anti-infective for skin 
infections such as acne 

Pre-phase 
I 

In progress Helix BioMedix http://helixbio
medix.com/ 

LTX-109 Synthetic 
antimicrobial 
peptidomimetic 
(SAMP) 

Treatment of nasal 
MRSA/MSSA infection 

I/II Completed Lytix Biopharma NCT01158235 

Impetigo II Completed NCT01803035 

Omiganan 
(CLS001) 

Synthetic 12-mer 
peptide derived 
from indolicidin 

Treatment of inflammatory 
papules and pustules 
associated with rosacea 

II Completed Cutanea Life 
Sciences 

NCT01784133 

PAC-113 Synthetic 12-mer 
peptide from 
histatin  

Treatment of oral 
candidiasis in HIV 
seropositive patient 

IIb Completed Pacgen 
Biopharmaceuticals 

NCT00659971 

Pexiganan 
(MSI-78) 

Synthetic 22- 
amino acid 
peptide isolated 
from the skin of 
the African 
Clawed Frog 

Treatment of mild 
infections associated with 
diabetic foot ulcers 

III In progress Dipexium 
Pharmaceuticals 
 

NCT01590758 
NCT01594762 
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1.5. Design strategies for development of synthetic AMPs 

In a bid to develop shorter synthetic peptide antibiotics with higher potency, 

greater intrinsic stability and lower toxicity, researchers are turning towards 

naturally occurring peptides for inspiration. One strategy utilises these 

molecules as a reference template for systematic modification by substitution, 

deletion or scrambling of amino acid sequences to produce structurally related 

compounds termed as congeners. When the intention is to strategically 

combine the vital domains of two or more individual compounds, the end 

product is either a conjugate (peptide-ligand) or a hybrid (peptide-peptide). 

Another emerging class of synthetic AMPs is peptidomimetics, designed to 

structurally resemble naturally occurring HDPs whilst addressing their 

inherent drawbacks. The following section closely examines the numerous 

approaches that have been utilised for the purposes of designing synthetic 

peptides endowed with superior killing and immune-regulating properties.  

 

1.5.1. Peptide conjugates 

In essence, this approach entails the coupling of a specific ligand or drug 

molecule to AMPs with the aim of imparting dual antibacterial and 

immunomodulating properties. Though straightforward in principle, the 

application of this design strategy has been limited thus far. Cationic steroid 

antibiotics (CSA), designed as synthetic mimics of the antibiotic polymyxin B, 

consist of steroid polyamine conjugates capable of killing both Gram-positive 

and Gram-negative bacteria [63]. Spermine, a polyamine that has been shown 

to possess broad-spectrum antibacterial activity, is inherently positively 

charged and bears a marked structural resemblance to cationic AMPs [64]. 
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This polycation was covalently linked to dexamethasone, a corticosteroid with 

known anti-inflammatory and immunosuppressant properties, to give a 

disubstituted dexamethasone-spermine (D2S). Not only was this conjugate 

effective against P. aeruginosa and MRSA, D2S was further shown to inhibit 

the release of IL-6 and IL-8 from neutrophils exposed to LPS or LTA [65]. 

The conjugate also retained glucocorticoid activity suggesting that the anti-

inflammatory activity of D2S was likely mediated via the engagement of 

glucocorticoid receptors.  

 

Recently, conjugation of thymopentin (RKDVY), a synthetic pentapeptide 

corresponding to amino acid residues 32-36 from the thymus hormone 

thymopoietin, to the N- and C- terminus of a highly cationic AMP comprising 

of six arginine (Arg) residues to confer the molecule with immunomodulatory 

properties, has been reported [66]. Thymopentin, being an immunostimulant, 

replicates the biological activity of thymopoietin and promotes thymocyte 

differentiation and maturation. The resultant peptides, RR-11 

(RKDVYRRRRRR) and RY-11 (RRRRRRRKDVY), displayed potent 

bactericidal activity against both drug-susceptible and drug-resistant M. 

smegmatis while preserving the pro-inflammatory functions of thymopentin. 

Both RR-11 and RY-11 induced significant TNF-α�release from macrophages 

which was found to be comparable to levels following stimulation with 

thymopentin alone.  

 

Lipopeptide conjugates are also being explored for their potential as novel 

antibiotics with improved antibacterial and immunomodulatory properties. 
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The conjugation of lipophilic acyl chains of various lengths to 12 amino acid 

residue fragments of human lactoferrin, LF12, was shown to enhance 

antibacterial killing considerably [67]. Lipopeptides comprising of acyl chains 

12 carbon units in length (LF12-C12) were deemed the optimal composition, 

with enhancements in activity of 50-fold and 75-fold against E. coli and S. 

aureus, respectively. Furthermore, LF12-C12 possessed a 12-fold superior 

endotoxin neutralising potency as compared to the parent peptide LF12. These 

results highlight the applicability of lipophilic modification to augment both 

antimicrobial and anti-inflammatory activity of AMPs.  

 

1.5.2. Hybrid peptides  

Hybridisation is a technique combining the functional domains of two or more 

naturally occurring peptides with the intention of enhancing selectivity by 

improving antibacterial activity while minimising cytotoxicity against 

mammalian cells. Liu et al. successfully employed this in the development of 

hybrid β-hairpin peptides by merging various segments derived from porcine 

cathelicidin PG-1, cecropin A (CA) isolated from haemolymph of Hyalophora 

cecropia, and a 25 amino acid peptide from the N-terminus of lactoferrin 

called bovine lactoferricin (LB) [68]. The resulting hybrid peptides, LB-PG 

and CA-PG, exhibited superior antibacterial efficiencies and broader 

antimicrobial spectra as compared to parental peptides. The enhancement in 

potency of the constructed hybrids was attributed in part to their greater net 

positive charge, amphiphilicity and propensity to adopt β-hairpin 

conformation. Moreover, LB-PG and CA-PG inhibited the expression and 

release of pro-inflammatory cytokines, TNF-α and inducible nitric oxide 
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synthase (iNOS), and chemokines, MIP-1α and MCP-1, from macrophages 

stimulated with LPS. This finding underlines their potential as anti-

inflammatory agents to suppress cytokine production and mitigate over-

stimulation of the immune system by bacterial endotoxins.  

 

This design strategy has also been utilised to endow previously inactive 

peptides with enhanced antimicrobial and anti-endotoxic activities. An LPS 

binding motif, termed as β-boomerang motif, GWKRKRFG, was bereft of 

both antimicrobial and anti-endotoxic properties but provided promise due to 

its LPS-anchoring capabilities [69]. This boomerang motif was exploited to 

abolish LPS-induced aggregation, which traps peptides at the outer membrane 

and in turn limits their bactericidal activity. In a bid to salvage inactive 

peptides TA, TB and KL-12, synthetic peptides incorporating the β-

boomerang motif at the C-terminus were constructed and the hybrids 

displayed remarkable improvement in activity against both Gram-positive and 

Gram-negative bacteria [70]. This modification also produced hybrids with 

superior endotoxin-neutralising abilities, with peptides TA and TB having 

previously demonstrated poor activity in neutralising LPS.  

 

Synthetic hybrids may also be designed with the goal of incorporating the 

individual benefits of each fragment into a fusion product capable of 

manifesting desirable traits. Scudiero et al. set out to develop a hybrid peptide 

possessing the high salt tolerance capabilities of hBD-3 while preserving the 

antibacterial activity of hBD-1 [71]. Three analogues, 3N, IC and 3I 

consistently displayed the highest potency against P. aeruginosa, E.coli and E. 
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faecalis, even at high salt concentrations. The chemotactic activity of the 

analogues for neutrophils and monocytes was maintained relative to parent 

peptides hBD-1 and hBD-3.  

 

1.5.3. Peptidomimetics  

In the pursuit of developing novel therapeutics with comparable efficacies to 

AMPs whilst overcoming their shortcomings including poor in vivo stability 

and high manufacturing costs, investigators have focused their attention 

towards designing non-peptidic oligomers and polymers. Drawing inspiration 

from key structural features of natural AMPs, these molecules possess an 

inherent amphiphilic backbone and present net positive charges to mimic the 

biological functions of these peptides.  

 

Magainin, an AMP isolated from the skin of African frog Xenopus laevis, 

provided the template for the development of peptide mimetic, meta-

phenylene ethynylene (mPE), which was explored for its anti-biofilm activity 

against oral pathogens [72]. mPE effectively inhibited the growth of bacterial 

pathogens S. aureus, Porphyromonas gingivalis, and S. mutans, and prevented 

S. mutans biofilm formation. An assessment into the anti-inflammatory 

activity of this peptide mimetic revealed a considerable decline in TNF-α�

secretion following LPS stimulation of macrophages, indicative of preserved 

biological function. mPE was further evaluated for its application in 

periodontal disease and displayed inhibitory activity against both A. 

actinomycetemcomitans  and P. gingivalis  biofilms [73]. Low concentrations 

of 2 µg mL-1 adequately suppressed IL-1β and induced IL-8 release in 
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epithelial and myeloid cells, reiterating its potential utility as an anti-

inflammatory agent in the management of other diseases.  

 

CSAs represent another class of peptidomimetics resembling AMPs, with 

positive charges and hydrophobic residues on opposite faces giving rise to 

amphiphilic secondary conformations. Antimicrobial testing of analogues 

CSA-13, CSA-90 and CSA-92 against a wide array of bacterial strains found 

that these mimetics exhibited far superior antimicrobial activities than human 

cathelicidin LL-37 [74]. Furthermore, all three mimetics induced IL-8 release 

from keratinocytes, suggestive of dual antimicrobial and pro-inflammatory 

responses.  

 

In an attempt to overcome challenges associated with poor solubility and 

complicated synthetic pathways, ultra-short histidine (His) derived AMPs 

(HDAMPs) were designed to possess both antimicrobial and anti-

inflammatory activities. Comprising of one His and one or two Arg moieties, 

these peptidomimetics proved effective against both Gram-positive and Gram-

negative bacteria, including MRSA [75]. HDAMPs also demonstrated 

immunosuppressive properties with LPS-neutralising ability and significantly 

inhibited the secretion of NO and TNF-α from macrophages stimulated with 

LPS.   

 

Cyclic peptidomimetics comprising mainly of the cyclic lipo-α-AApeptides 

(N-acylated-N-aminoethyl peptides), on the other hand, displayed enhanced 

antimicrobial activities against both Gram-positive and Gram-negative 
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bacteria as compared to the linear analogue [76]. The ability of these 

peptidomimetics to suppress inflammatory responses was apparent from the 

inhibition of nitric oxide (NO) and TNF-α production, mediated by 

antagonising TLR4-induced nuclear factor kappa-light-chain-enhancer of 

activated B-cells (NF-kB). 

 

1.5.4. Peptide congeners 

A far more direct and common approach, in designing peptides with higher 

antimicrobial efficacy and reduced systemic toxicity, involves systematic 

manipulation of the amino acid sequence of peptides with known activity. 

Many naturally occurring peptides from mammals, amphibians and insects 

have served as AMP templates including cathelicidin LL-37, hBDs, 

lactoferrin, heparin and thrombin. Such template-based studies are carried out 

by either substituting specific amino acids within the parent peptide sequence, 

or truncating the N- and C-terminus of the parent peptide, or a combination of 

both these steps. These systematic modifications not only allow the 

investigation of crucial physiochemical parameters for improved potency and 

efficacy, but also seek to identify the shortest possible active domains of the 

parental peptides. 

 

The effect of length, charge, helicity, hydrophobicity and amphiphilicity on 

antimicrobial and haemolytic activity of AMPs has been extensively evaluated 

and reviewed in-depth [77]. However, the modulating effect of these 

physicochemical parameters on the immunomodulatory functions of AMPs 

has been limited thus far. An investigation into the relationship between 
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hydrophobicity and LPS-neutralising activity of synthetic bovine myeloid 

antimicrobial peptide-18 (BMAP-18) revealed that both factors were linearly 

correlated. Increments in hydrophobicity of BMAP-18 analogues resulted in 

greater inhibition of NO and TNF-α production [78]. These findings were 

echoed in a separate study assessing the amino acid-substituted analogues of 

IG-19, corresponding to the α-helical region of cathelicidin LL-37, which also 

found that enhancements in peptide hydrophobicity showed significant linear 

correlation with improved LPS-binding activity [79].  

  

Apart from overall peptide hydrophobicity, the pinpoint substitution of 

specific hydrophobic amino acids along a peptide sequence can potentiate 

both antimicrobial and anti-inflammatory activities. Swapping out a single 

serine (Ser) residue at position 9 along the hydrophobic face of LL-23 with 

valine (Val), rendered the weakly bactericidal and immunosuppressive peptide 

more active, with a pronounced reduction in the release of pro-inflammatory 

cytokines TNF-α and MCP-1 [80]. This point mutation directed the formation 

of a continuous hydrophobic face, which had previously been segregated by 

the hydrophilic Ser residue. Another study comparing two tryptophan (Trp)-

substituted analogues uncovered that substitution of this hydrophobic amino 

acid at the amphipathic interface, rather than at the centre of the hydrophobic 

face, produced analogues with greater LPS-neutralising activity [79]. Taken 

together, these results highlight the importance of site-specific Trp 

substitutions and a continuous hydrophobic surface in directing the design of 

novel AMPs with improved selectivity and anti-inflammatory activity.  
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The substitution of D-amino acids into the peptide sequence is a practice 

usually aimed at decreasing the inherent cytotoxicity of AMPs, as well as 

improving their stability to proteolytic degradation. Interestingly however, a 

study investigating the effect of swapping the entire amino acid sequence from 

L- to D-isomers found that the D-analogue exhibited the greatest antimicrobial 

potency amongst all the peptides tested [81]. Notably, the D-analogue proved 

to be a stronger inhibitor of NO production and pro-inflammatory cytokines 

TNF-α and MIP-2 at all concentrations. In a separate study, several D-amino 

acid substituted analogues of an amphipathic α-helical peptide, K9L8W, were 

found to possess superior cell selectivity while maintaining potent anti-

inflammatory activity [82]. Given the paucity of research in this regard, the 

benefits of such an approach to develop more potent anti-inflammatory agents 

while concurrently improving their antibacterial activity, warrants further 

investigation. 

 

1.5.5. Genomic mining strategies  

Recently, the first report on mycobacteriophage-derived AMPs found to 

exhibit potent antibacterial and immunoregulative properties has emerged 

[83]. The researchers systematically screened the complete genome of over 70 

mycobacteriophages for peptides capable of inhibiting both the growth of M. 

tuberculosis and activity of trehalose-6,6’-dimycolate (TDM), an 

immunostimulant produced by virulent M. tuberculosis that induces 

inflammatory responses and pulmonary granuloma formation. Out of 200 

shortlisted candidates, a 34 amino acid peptide, PK34, was found to possess 

the strongest anti-mycobacterial activity with an MIC of 50 mg L-1. PK34 also 
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hampered the in vitro release of pro-inflammatory cytokines IFN-γ, TNF-α, 

MCP-1, IL-6, IL-10 and IL-12 in a concentration-dependent manner. In vivo, 

PK34’s mitigating effect on M. tuberculosis granuloma formation and TDM-

induced inflammatory response was likely mediated by blocking MAPK 

activation. Given the diversity of bacteriophages and the abundance of 

information nestled within their genomic sequences, such innovative 

approaches could provide the key to unlocking novel compounds in our quest 

to expand our arsenal of antibiotics. 

 

1.5.6. De novo design strategies 

The de novo design of AMPs is based upon an appreciation of the structural 

commonalities including cationic charge, hydrophobicity, and amphiphilicity, 

and the intricacies surrounding the folding of proteins into different secondary 

conformations. This minimalist approach entails the combination of bulky 

lipophilic and cationic amino acids, often using a generic sequence to generate 

short synthetic peptides, usually consisting of ≤ 20 amino acids [26]. Trp-rich 

peptides such as indolicidin and tritrpticin, and their synthetic analogues, have 

emerged as an important class of peptides due to their broad-spectrum of 

antimicrobial activity, even at very short peptide lengths [84]. Park et al. 

explored short Trp-rich AMPs bearing the sequence XXWXXWXXWXX-

NH2, where X represents leucine (Leu) or lysine (Lys)/Arg, for their potential 

antibacterial and anti-endotoxin activities [85]. Several synthetic analogues 

possessed enhanced activity against E. coli and S. aureus while majority 

displayed superior killing properties against MRSA relative to indolicidin. 

These analogues also proved to be potent anti-inflammatory agents, evident 
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from their ability to strongly inhibit NO production and neutralise LPS. A 

separate study evaluating short peptides ranging from five to 11 amino acids 

revealed that the hexapeptide comprising of three Arg and three Trp residues 

was the most efficient motif for antimicrobial activity [86]. A follow-on study 

aimed at identifying the minimal motif or pharmacophore required to produce 

active antibacterial peptides, comprising solely of Arg and Trp, demonstrated 

that the tripeptide (WRW-NH2) was moderately active against S. aureus [87]. 

In contrast, the tetra- and tripeptides were inactive against the Gram-negative 

E. coli, and a minimum of five residues (three hydrophobic and two cationic) 

were required for antibacterial activity. 

 

A linguistic model – defined by a set of grammatical rules based on the 

sequences of natural AMPs – was proposed in the development of short 

synthetic antibacterial peptides [88]. Recently, α-helical peptides were 

rationally designed based upon principles governing the folding of natural α-

helical AMPs including: 1) stabilisation of the helical coil by repetitive 

hydrogen bonding between the carbonyl oxygen of each amino acid and the 

amide hydrogen four residues ahead [89], 2) maximisation of hydrophobic 

moment with periodic distributions of hydrophobic and cationic amino acids 

having repeat periods corresponding to that of the α-helix of 3.6 residues [90, 

91], and 3) the incorporation of amino acids possessing helix-forming rather 

than helix-breaking tendencies [92]. Natural α-helical AMPs tend to unfold in 

solution and adopt their secondary conformation upon contacting bacterial 

membranes. Thus, same-charge amino acids were placed at (i + 2)th and (i + 

3)th positions so that cationic repulsive forces would ensure peptides remained 
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unfolded in solution. Therefore, the recurring sequence comprising four amino 

acids (XXYY)n – where X is a hydrophobic amino acid, Y is a cationic amino 

acid, and n is the number of repeat units – was devised to preserve the α-

helical periodicity while ensuring a balance between hydrophobic and charged 

residues. The designed peptides were effective against Gram-positive bacteria 

and yeast, with (LLKK)3 exhibiting the highest selectivity for microbial over 

mammalian cells [93]. A follow-on study, aimed at capitalising on the 

presence of free sulfhydryl (thiol) groups in natural AMPs, which has been 

shown to augment antibacterial killing [94], demonstrated that incorporating 

L-Cys residues at the end-terminals of peptides extended the spectrum of 

activity to Gram-negative bacteria [95]. Following this strategy, this thesis 

expounds the applicability of short synthetic AMPs, mimicking the α-helical 

folding of naturally occurring peptides, as a novel class of TB therapeutics. 

 

Another similar strategy for the design of α-helical AMPs was proposed by 

Javadpour et al., based on the repetitive heptad sequence: [(PNN)(PNN)P]n 

and [(PNN)P(PNN)]n (P= polar residue, N = nonpolar residue, and n = 1, 2, 3) 

[96]. An increase in the heptad repeats not only showed an increase in helical 

content, but also antimicrobial activity, with the 7-mers failing to adopt helical 

structures in membrane mimetic environments, thus rendering them inactive. 

While the longer 14- and 21-mers were more potent, a corresponding increase 

in cytotoxic and haemolytic activity was also observed. Recently, β-sheet 

forming peptides were generated using the short recurring sequence 

(X1Y1X2Y2)n-NH2 (X1 and X2= hydrophobic residue, Y1 and Y2 = cationic 

residue, and n = 1, 2, 3) [97]. This design principle was successfully 
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implemented in the development of broad-spectrum synthetic AMPs, capable 

of eradicating biofilms and inhibiting LPS-stimulated NO production. 

Furthermore, the most selective peptides possessed more desirable lethal dose, 

50% values (LD50) of 35.2 mg kg-1 in comparison to gramicidin (1.5 mg kg-1) 

and polymyxin B (5.4 mg kg-1) [97].  

 

Short β-hairpin structured peptides have also been developed using various 

sequence-based approaches [98-100]. Peptides comprising the simplified 

sequence (WRXxRW)n, where Xx represents the turn sequence and n = 1, 2, 3 

or 4, retained antimicrobial activities even in the presence of salts at 

physiological concentrations and demonstrated synergistic interactions with 

ciprofloxacin and chloramphenicol against S. aureus and E. coli respectively 

[100]. Similarly, the generic sequence Ac-C-HBHB(P)HBH-GSG-

HBHB(P)HBH-C-NH2, where Ac is an acetyl moiety, H is a hydrophobic 

residue, P is a polar residue and B is a cationic residue, served as a framework 

to design cyclic β-hairpin peptides with LPS and lipid A binding properties 

[101]. Besides being anti-endotoxic, these synthetic AMPs were highly 

selective for microbes over mammalian cells.  

 

1.5.7. Critical comparison of design strategies 

The various design strategies to develop synthetic AMPs, as discussed in the 

previous sections, each present with their own set of advantages and 

drawbacks. In general, synthetic AMPs are produced with the intention of 

enhancing the clinical utility of natural HDPs, by improving stability, reducing 

toxicity, and enhancing the antimicrobial efficacy of these compounds.  In 
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addition, peptide conjugates and hybrid peptides have the added advantage of 

producing multifunctional peptides endowed with improved biological 

properties. For example, combining an AMPs with an immunomodulating 

peptide or ligand can create conjugates or hybrids with dual functions. In other 

instances, such combinations can produce synthetic conjugates and hybrids 

which are resistant to high salt concentrations found in biological fluids or 

those that possess lower cytotoxicity than the parent peptides. Having said that 

however, these approaches fail to account for the structural folding or 

refolding as a consequence of combining the two separate domains, resulting 

in unpredictable outcomes [102]. In line with this, one study investigating the 

activity of SMAP28 with a targeting domain for P. gingivalis did not find any 

significant increase in activity or specificity against the bacteria [103]. 

Similarly, peptide congeners produced by modifications to template sequences 

derived from natural HDPs present similar challenges in that the interactions 

between amino acids, which regulate the three-dimensional peptide structure, 

are not accounted for [102]. Furthermore, the influence of specific amino acid 

substitutions is often context-dependent, and varies according to the initial 

template sequences being studied [102]. This in turn limits the generalisability 

of the findings from one study to another.  

 

Despite the abovementioned limitations of hybrid peptides, peptide conjugates 

and congeners, a far greater concern is the implications associated with 

antimicrobial resistance development against these compounds. Should 

bacteria evolve resistance mechanisms against synthetic AMPs, which bear 

close structural similarities to natural HDPs, it would most certainly 
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compromise our innate immune responses during infections [104]. Therefore, 

alternative strategies including the design of synthetic AMPs using de novo 

approaches and the development of peptoids which comprise of non-peptidic 

monomers, could help allay these concerns. A significant draw of peptoids or 

peptidomimetics, over conventional peptides, lies in their ability to resist 

proteolytic degradation due the absence of the α-polyamide backbone [26]. 

This enhances in vivo stability and in turn, prolongs the half-life of these 

compounds. While de novo generated peptides containing L-amino acids are 

typically rendered inactive due to proteases, this limitation can easily be 

overcome by incorporating D-amino acids into the sequence instead [26]. In 

addition, the de novo approach enables the rational design of short synthetic 

peptides while majority of the other approaches are largely empirical and often 

require multiple steps and several substitutions for optimisation of activity. 

Overall, the de novo approach provides a simple and straightforward means of 

producing short synthetic AMPs, allowing for greater flexibility in the design 

process, and the delineation of the effect of various physicochemical 

properties on biological activities.    

 
 

1.6. Summary and concluding remarks 

As discussed in this chapter, the escalating threat of AMR has increased 

pressure to develop novel therapeutic strategies to tackle drug-resistant 

infections. AMPs have gathered considerable interest as a new source of 

antibiotics due to their broad-spectrum and rapid bactericidal activities, in 

addition to their ability to synergise with conventional antibiotics against 

drug-resistant pathogens [105]. Even three decades after their discovery, 
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researchers are still drawing inspiration from naturally occurring peptides, 

including defensins, cathelicidins, magainins, melittins and cecropins, in their 

quest to develop novel peptide therapeutics [24]. However, natural AMPs are 

increasingly recognised as poor therapeutic candidates due to their long 

sequences, which inadvertently induce significant systemic toxicities and 

translate into higher manufacturing costs [22]. To enhance their clinical utility, 

short synthetic analogues have been designed by fine-tuning their selectivity 

to preferentially interact with microbial over mammalian cells. However, the 

strategies employed by the majority of these studies have remained largely 

empirical, often utilising natural AMPs as templates, or helical wheel 

projections to perform modifications by replacing, deleting or scrambling 

amino acid sequences [26]. Rational design strategies based upon an 

appreciation of the structural intricacies surrounding protein secondary 

structures have been successfully implemented in the de novo design of short 

synthetic α-helical [96], β-sheet [97, 106], and β-hairpin peptides [98-100], 

which bear minimal resemblance to natural HDPs. However, such rational 

approaches have yet to be applied to the de novo design of short synthetic anti-

mycobacterial peptides. As such, this thesis first explores the feasibility of 

rationally designed synthetic α-helical AMPs as anti-tubercular agents and 

subsequently, a new sequence-based approach for the design of 

multifunctional α-helical peptides with idealised facial amphiphilicity, is 

proposed. In doing so, we demonstrate that the adoption of such systematic 

design principles, in the optimisation of short synthetic AMPs, could facilitate 

the development of safe and effective novel peptide therapeutics for 

application in infectious and inflammatory human diseases. 
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CHAPTER 2: Hypothesis and aims 

 

The rapid emergence of AMR, coupled with shrinking antibiotic pipelines, has 

increased demands for antimicrobials with novel mechanisms of action. HDPs 

have been proposed as blueprints for the development of new antimicrobials to 

combat drug-resistant infections. Given their nonspecific membrane-lytic 

mechanisms, AMPs possess broad-spectrum activities, are rapidly bactericidal 

and consequently, more resilient to antibiotic resistance development as 

compared to conventional antimicrobials [24]. These inherent advantages have 

firmly placed the limelight on AMPs over the past decade as an alternative 

class of therapeutics. As discussed in Chapter 1, the clinical application of 

HDPs has been limited thus far, due to a combination of high manufacturing 

costs, toxicity issues, poor in vivo stability and reduced efficacy in comparison 

to existing treatment options [56, 107]. The synthetic approach has been 

adopted in the development of HDPs analogues with shorter sequence lengths 

to reduce production costs, while achieving equal, if not greater effectiveness 

and stability under physiological conditions [26, 108]. In addition, various 

structural modifications aimed at improving cell selectivity by minimising 

toxicity to host cells while enhancing antimicrobial potency have been 

proposed [109]. Amongst the different synthetic design strategies, hybrid 

peptides, peptide conjugates, and a template-based approach to generate 

peptide congeners, are most commonly employed. However, these approaches 

are mainly empirical and synthetic peptides derived from natural HDPs 

possess high sequence similarity, which may promote cross-resistance when 

applied as therapeutic agents [55]. Adopting a de novo approach enables the 
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rational design of short synthetic AMPs, whilst mitigating concerns of 

resistance development to naturally occurring innate immune peptides.  

 

Thus, the overall aim of this thesis is to rationally design novel short synthetic 

cationic AMPs using a de novo approach and evaluate their efficacy and safety 

in anti-infective applications. We hypothesised that rationally designed 

synthetic AMPs, comprising of repeated sequences corresponding to the 

hydrophobic periodicity of natural α-helical peptides, can be safely and 

effectively applied in TB mono- and combination therapy, and in the treatment 

and prevention of drug-resistant biofilms and endotoxemia. 

 

To test our hypothesis, we explored four specific aims: 

(1)!Rationally design and evaluate short cationic α-helical AMPs for their 

cytotoxicity, and anti-mycobacterial activity alone and in combination 

with first line anti-tubercular drugs. 

(2)!Investigate the influence of hydrophobicity and helicity of α-helical 

AMPs on the anti-mycobacterial mechanisms of action and synergistic 

interactions in combination therapy. 

(3)!Examine the impact of various unnatural amino acid substitutions on 

the stability and anti-mycobacterial selectivity of synthetic α-helical 

AMPs. 

(4)!Assess the effect of sequence pattern and length on the biological 

activity of multifunctional α-helical peptides with idealised facial 

amphiphilicity. 
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The work undertaken to address each of the specific aims is outlined as 

follows: in Chapter 4, short synthetic amphipathic α-helical peptides, with 

various N- and C-terminal modifications, were evaluated for synergism with 

rifampicin against mycobacteria, and whether such combination therapy was 

effective in delaying the emergence of rifampicin resistance (Specific aim 1). 

In Chapter 5, systematic evaluation of the anti-mycobacterial and cytotoxic 

activities of six α-helical peptides, with varied hydrophobicity and helical 

characters, was performed to determine the optimal composition for enhanced 

mycobacterial selectivity. The modulating effect of hydrophobicity and α-

helicity on the anti-mycobacterial mechanisms of synthetic AMPs, and their 

synergism with rifampicin, was reported for the first time (Specific aim 2). In 

Chapter 6, several unnatural amino acid-modified peptides were assessed for 

their resistance to protease degradation, in addition to their in vitro and 

intracellular activity against M. tuberculosis. Mechanistic studies were also 

undertaken to elucidate the site of action of the most selective peptide 

(Specific aim 3). In Chapter 7, the de novo design of α-helical peptides with 

idealised facial amphiphilicity, based on an understanding of the pertinent 

features of protein secondary structures, is presented. The α-helical 

amphiphiles were evaluated for broad-spectrum antimicrobial activities 

against clinical isolates of drug-susceptible and MDR bacteria, their ability to 

suppress biofilm growth and disrupt mature biofilms, and also their potential 

to neutralise bacterial endotoxins (Specific aim 4). Finally, in Chapter 8, we 

provide conclusions based on the pertinent findings in this thesis and explore 

potential future directions for the development of synthetic peptides as 

therapeutics. 
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The successful completion of this thesis has provided insights into the design 

of synthetic peptide amphiphiles with improved cell selectivity, enhanced 

synergistic interactions and superior anti-biofilm and anti-endotoxin activities. 

Overall, the findings presented in this thesis underscore the applicability of de 

novo strategies employed here for the rational design of synthetic α-helical 

AMPs against drug-susceptible and drug-resistant biofilms and infections, 

including MDR-TB.  
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CHAPTER 3: Materials and methods 

 
3.1. Materials  

Synthetic peptides, including the N-terminal fluorescein isothiocyanate 

(FITC)-labelled II-D, were synthesised by GL Biochem (Shanghai, China) and 

their purity was confirmed to be more than 95% by reversed-phase high-

performance liquid chromatography (RP-HPLC) carried out by the 

manufacturer. Acetonitrile (HPLC grade) and agar-agar technical for 

microbiology were purchased from Merck (Darmstadt, Germany). Dimethyl 

sulfoxide (DMSO, synthesis grade, 99.9%), Dulbecco’s Modified Eagle’s 

medium (DMEM), Dulbecco’s phosphate-buffered saline (PBS) solution, 

Tween 80, glycerol, rifampicin, ethambutol, moxifloxacin, trifluoroacetic acid 

(TFA), propidium iodide (PI), carbenicillin, crystal violet (CV), HPLC grade 

water, Triton X-100, LPS from E. coli 0111:B4 and 150 kDa dextran-FITC 

were acquired from Sigma-Aldrich (St Louis, MO, USA). Hygromycin B was 

from Roche Diagnostics (Indianapolis, IN, USA). Nutrient broth (Acumedia 

No. 7146) and bacteriological agar (Acumedia No. 7176) were purchased 

from Neogen Corporation (Michigan, USA). Difco Middlebrook 7H9 broth, 

Difco Middlebrook 7H11 agar, BBL Middlebrook oleic acid-albumin-

dextrose-catalase (OADC), BBL Middlebrook ADC supplement and Bacto 

Brain Heart Infusion (BHI) were purchased from BD (Sparks, MD, USA). 

Fetal bovine serum (FBS) was obtained from Thermo Scientific Hyclone 

(Logan, UT, USA). 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazolium bromide 

(MTT) was acquired from Duchefa Biochemie (Haarlem, Netherlands). 3’,3’-

dipropylthiadicarbocyanine (diS-C3-5) dye was purchased from AnaSpec Inc 

(Fremont, CA, USA). Adenosine triphosphate (ATP) bioluminescence kit was 
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obtained from Molecular Probes Inc (OR, USA). Dry powders of the 

phospholipids 1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPG) 

and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were obtained 

Avanti Polar Lipids, Inc (Alabaster, AL, USA). The membrane dye FM4-

64FX was from Molecular Probes, Inc (Eugene, OR, USA). N-tosyl-L-

phenylalanyl chloromethyl ketone (TPCK)-treated trypsin was from AB Sciex 

(Framingham, MA, USA). The mouse TNF-α enzyme-linked immune sorbent 

assay (ELISA) Ready-SET-Go kit was from eBioscience (San Diego, CA, 

USA) and Griess Reagent System from Promega (Madison, WI, USA). The 

Limulus Amebocyte Lysate (LAL) Chromogenic Endotoxin Quantitation Kit 

was from Pierce Biotechnology (Rockford, IL, USA). 

 

3.2. Peptide characterisation 

3.2.1 Matrix-assisted laser desorption/ionisation time-of-flight mass 

spectroscopy (MALDI-TOF MS) 

MALDI-TOF MS (Model 4800, Applied Biosystems, USA), using α-cyano-4-

hydroxycinnamic acid (CHCA) as matrix, was performed in Chapters 4 and 5 

to confirm peptide molecular weights and ensure that the peptides were 

synthesised to desired specifications. An equal volume of peptide solution (0.5 

mg mL-1 in deionised water) and CHCA solution (saturated in 

acetonitrile/water mixture at 1:1 volume ratio) was spotted onto the MALDI 

ground-steel target plate for molecular weight determination.  
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3.2.2. Surface-enhanced laser desorption/ionisation-TOF MS (SELDI-TOF 

MS) 

SELDI-TOF MS was performed in Chapters 6 and 7 by Dr Melissa Shea 

Hamilton (Department of Medicine, Imperial College London) to confirm the 

molecular weights of the synthetic peptides. ProteinChip® NP20 arrays (Bio-

Rad Laboratories) were primed with 5 µL of HPLC grade water, and 5 µL of 

each peptide (0.5 mg mL-1) was applied to the array surface and allowed to 

air-dry for 1 h at room temperature. The arrays were washed twice with 5 µL 

of HPLC grade water and allowed to air-dry for a further 15 min at room 

temperature. 20% CHCA was applied twice (2 × 0.7 µL) to each spot on the 

arrays, allowing the matrix to air-dry between each application. Time-of-flight 

spectra were generated using a PCS 4000 SELDI-TOF MS instrument (Bio-

Rad Laboratories). Spectra from the peptide pools were obtained at a laser 

energy of 800 nJ, using a focus mass based on the theoretical molecular 

weight of each individual peptide and with the matrix attenuated to 500 Da. 

Ten shots were obtained per position and a total of 500 shots kept per array. 

Mass accuracy was calibrated externally using All-in-One Peptide (Bio-Rad 

Laboratories).  

 

3.2.3. Circular dichroism (CD) spectroscopy 

The secondary structures of the synthetic peptides were evaluated using CD 

spectroscopy. The peptides were first dissolved in 25 mM sodium dodecyl 

sulphate (SDS) surfactant to a final concentration of 0.5 mg mL-1.  Peptide 

solutions were then transferred to a quartz cell with a path length of 1.0 mm 

and the CD spectra were measured at room temperature with a Jasco J-810 CD 



!43!

spectrometer (Jasco, Tokyo, Japan) at the National University of Singapore, 

and the Chirascan™ CD spectrometer (Applied Photophysics, Surrey, UK) at 

Imperial College London. CD spectra were recorded from a wavelength of 

190 to 240 nm, at a scanning speed of 50 nm min-1 and averaged from two to 

three runs per peptide. The acquired spectra were converted to mean residue 

ellipticity using the following equation:  

θ" = $
θ%&'
10 ⋅

M,-
c ⋅ /  

where θM is the mean residue ellipticity (deg cm2 dmol-1), θobs is the observed 

ellipticity corrected for the blank at a given wavelength (mdeg), MRW is 

residue molecular weight (MW / number of amino acids), c is peptide 

concentration (mg mL-1), and l is the path length (cm).  

 

3.2.4. Peptide hydrophobicity analysis  

The molecular hydrophobicity of the synthetic peptides in Chapter 5 was 

analysed by RP-HPLC on a Shimadzu Prominence UFLC™ system 

(Shimadzu Corporation, Kyoto, Japan) equipped with a CBM-20A 

communications bus module, a SPD-20AV UV/Vis detector, a SIL-20A HT 

autosampler, LC-20AD pumps, a DGU-20A 5 vacuum degasser and a CTO-

20A column oven. Runs were performed using an Agilent Poroshell 120 EC-

C18 Threaded column (4.6 × 50 mm, particle size 2.7 µm) monitored at 220 

nm, with an injection volume of 50 µL and a flow rate of 1 mL min-1. The 

mobile phase consisted of solvent A (0.1% TFA in water) and solvent B (0.1% 

TFA in acetonitrile). The gradient profile applied was a 30 min linear gradient 
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from 5 to 50% of solvent B followed by 1 min linear gradient of 5% solvent B 

and 9 min at 5% solvent B for a total time of 40 min.  

 

3.3. Bacterial and cell cultures 

3.3.1. Mycobacterial strains and growth conditions 

M. smegmatis (ATCC 14468) and M. tuberculosis H37Rv (H37Rv) were 

purchased from ATCC (USA). M. smegmatis was cultured in nutrient broth 

containing 0.05% Tween 80 and colonies were grown on bacteriological agar. 

M. bovis BCG lux (BCG), Montreal strain, transformed with the reporter 

plasmid construct pSMT1 as previously described [110], was a gift from 

Professor Douglas Young (Imperial College London). mCherry-expressing 

BCG (BCG-mCherry) was produced by transforming M. bovis BCG Danish 

strain 1331 (Statens Serum Institut) with pCherry3 (Addgene plasmid #24659 

encoding mCherry and conferring hygromycin resistance) [111], which was a 

kind gift from Dr Tanya Parish (University of Washington), using established 

protocols for mycobacteria [112]. Transformation of BCG-mCherry was 

performed by Dr. Iria Uhia (Department of Medicine, Imperial College 

London). M. tuberculosis CSU87 (CSU87) is a MDR clinical isolate that was 

a gift from Dr Diane Ordway (Colorado State University) and is resistant to 

rifampicin, isoniazid, ethambutol, streptomycin and kanamycin. Three other 

clinical isolates, provided by Dr Guy Thwaites and the Oxford University 

Clinical Research Unit (OUCRU), were M. tuberculosis 173 (Mtb 173) from 

the Euro-American lineage and, M. tuberculosis 212 (Mtb 212) and M. 

tuberculosis 411 (Mtb 411), both from the East Asian/Beijing lineage. Liquid 

cultures of all mycobacterial strains were grown in Middlebrook 7H9 broth 
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supplemented with 0.05% Tween 80, 0.2% glycerol and 10% ADC 

supplement. Mycobacterial colonies were grown on solid media consisting of 

Middlebrook 7H11 agar supplemented with 0.5% glycerol and 10% OADC 

supplement. BCG and BCG-mCherry were grown in 7H9 broth or 7H11 agar 

in the presence of 50 µg mL-1 hygromycin.  Bacterial stocks were frozen at -

80 oC in 15% glycerol and a fresh vial was defrosted, inoculated into media 

and grown at 37 oC in a shaking incubator until mid-log phase.  

 

3.3.2. Gram-positive and Gram-negative bacterial strains and growth 

conditions 

The P. aeruginosa reference strain (PAO1), laboratory strains of E. coli (K-12 

MG1655) and methicillin-sensitive S. aureus (MSSA 8325-4), and the clinical 

isolate of Klebsiella pneumoniae (MIDG1643) were evaluated in this study. 

Drug-resistant strains included the hospital-acquired MRSA (MRSA 252), and 

MDR P. aeruginosa wound isolates (PA-W1, PA-W14 and PA-W25). We 

would like to thank Dr John Tregoning (Imperial College London) for 

providing the MSSA and MRSA strains, Professor Paul Williams (University 

of Nottingham) for the P. aeruginosa wound isolates and Dr Martin Goldberg 

(University of Birmingham) for the E. coli strain. All liquid bacterial strains 

were grown in BHI broth at 37 oC in a shaking incubator until mid-log phase, 

while colonies were grown on BHI agar. 
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3.3.3. Cell culture 

Mouse macrophage cell line RAW 264.7 was maintained in DMEM 

supplemented with 10% FBS, and cultured in a humidified atmosphere at 37 

oC and 5% CO2.  

 

3.4. Antimicrobial activity  

3.4.1. MIC measurements  

The MIC of the peptides and drugs against the six mycobacterial strains, and 

Gram-positive and Gram-negative bacteria, was determined by the broth 

microdilution method as described previously [93, 113, 114]. Peptide stock 

solutions were prepared in sterile water for all experiments before performing 

a series of two-fold serial dilutions in broth. Solutions were vortexed for 10 to 

15 seconds each time to ensure thorough mixing, prior to removing half for 

dilution. The peptides were serially diluted with the appropriate broth (7H9 for 

mycobacteria and BHI for all other strains), and 100 µL was added to each 

well of the 96-well plate. Bacterial cultures were grown up to mid-log phase 

and diluted to an initial inoculum of 106 CFU mL-1 before seeding an equal 

volume into each well. The plates were incubated at 37 oC and read after 18 h 

for Gram-positive and Gram-negative bacteria, 72 h for M. smegmatis, and 7 

days for BCG, H37Rv, CSU87, Mtb 173, Mtb 212 and Mtb 411. The MIC 

was defined as the concentration at which no microbial growth was observed 

visually or spectrophotometrically by OD600 readings taken by Tecan Infinite 

200 Pro (TECAN, Switzerland). Growth media containing only microbial cells 

was used as the negative control. Each test was carried out in at least three 

replicates and repeated two to three times.  
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3.4.2. In vitro killing efficiency   

The antimicrobial peptides displaying the highest selectivity for bacterial over 

mammalian cells were tested for their ability to kill mycobacteria, and Gram-

positive and Gram-negative bacteria. Peptides were serially diluted with the 

appropriate broth (7H9 for mycobacteria and BHI for all other strains) to give 

solutions with final concentrations ranging from 0.5x to 8x MIC. Bacterial 

cultures were diluted to a cell density of 106 CFU mL-1 and 100 µL was added 

to an equal volume of peptide solution. The plates were incubated at 37 oC for 

18 h for Gram-positive and Gram-negative bacteria, 72 h for M. smegmatis 

and 7 days for all other mycobacterial strains, after which they were serially 

diluted in broth for determination of viable counts. Diluted samples (100 µL) 

were plated in triplicate onto agar plates and total bacterial counts were 

determined after incubation at 37 oC for 24h for Gram-positive and Gram-

negative bacteria, 72 h for M. smegmatis, 14 days for BCG and 14 days in the 

presence of 5% CO2 for all other mycobacterial strains. The results are 

expressed as mean log (CFU mL-1) ± standard deviation (S.D.).  

 

3.4.3. Time-kill curve 

Flasks containing 10 mL of nutrient broth with antimicrobial agents at 

concentrations corresponding to 1x, 4x and 8x MIC were inoculated with M. 

smegmatis at a density of approximately 105 CFU mL-1 and incubated in a 

shaking incubator at 37 oC. A flask without any drug served as a growth 

control. Aliquots were removed at time 0, 8, 24, 48 and 72 h post-inoculation 

and serially diluted in nutrient broth for the determination of viable counts. 

Diluted samples (100 µL) were plated in triplicate onto agar plates and total 
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bacterial counts determined after incubation at 37 oC for 72 h.  The results are 

expressed as mean log (CFU mL-1) ± S.D.  

 

3.4.4. Chequerboard assay  

Antimicrobial interactions between peptides and rifampicin in Chapters 4 and 

5 were evaluated via the chequerboard assay as described elsewhere [115]. 

Briefly, two-fold serial dilutions of rifampicin and each peptide were prepared 

and added in a 1:1 volume ratio to the wells of a 96-well plate. An equal 

volume of bacterial solution (100 µL) at approximately 105 CFU mL-1 was 

then seeded into each well. The plates were incubated in a shaking incubator 

at 37 oC and 200 rpm and read after 72 h for M. smegmatis, and 7 days for 

BCG and H37Rv. Bacterial growth was assessed visually or 

spectrophotometrically via OD600 readings taken by Tecan Infinite 200 Pro 

(TECAN, Switzerland). Each assay was performed in triplicate and repeated 

two to three times. The fractional inhibitory concentration index (FICI) for 

each drug combination was calculated using the following equation: 

0121 = $
312$45$67689:7$9;$<4=>9;?894;

312$45$67689:7$?/4;7 + $$
312$45$A95?=69<9;$9;$<4=>9;?894;

312$45$A95?=69<9;$?/4;7  

 
An FICI of ≤ 0.5 was interpreted as synergy, 0.5 < FICI ≤ 1.0 as additive, 1.0 

< FICI ≤ 4.0 as indifferent, and an FICI > 4.0 as antagonism [116, 117]. 

 

3.4.5. Drug resistance stimulation study  

In Chapter 4, drug resistance was induced in M. smegmatis by repeated 

treatment with sub-inhibitory concentrations of antimicrobial agents. The 

MICs of the peptide M(LLKK)2M and rifampicin were tested for up to 10 

passages against M. smegmatis using the same broth microdilution method. 



!49!

For each antimicrobial agent, bacterial cells exposed to sub-MIC (⅛ of MIC at 

that particular passage) were re-grown to the log phase and reused for the 

following passage’s MIC measurement. To explore if the combination of 

rifampicin and peptides could suppress resistance development in M. 

smegmatis, a fixed concentration of M(LLKK)2M (equivalent to ¼ of MIC) 

was added to two-fold increasing concentrations of rifampicin. Bacterial cells 

from the highest drug combination showing growth were re-grown to the log 

phase before measuring the MIC of rifampicin and treating them with the drug 

combination again. Changes in the MIC were depicted by normalising the 

MIC at passage n to that of the first passage.  

 

3.4.6. Intracellular anti-mycobacterial activity  

The intracellular activity of the antimicrobial peptide II-D in Chapter 6 was 

assessed against M. tuberculosis clinical isolates Mtb 411 and CSU87 as 

described previously [118]. Briefly, RAW 264.7 cells were plated at a final 

concentration of 4 x 104 per well in 96-well plates and incubated for 24 h to 

allow adherence. Prior to infection, mid-log phase bacterial cultures were 

washed twice with PBS, resuspended in DMEM, and added at a final 

concentration of 4 x 105 CFU per well to achieve a multiplicity of infection 

(MOI) of 10:1. Plates were incubated at 37 oC and 5% CO2 for 4 h to allow 

uptake of bacteria by macrophages. Subsequently, cells were washed thrice 

with prewarmed DMEM to remove extracellular bacteria before adding 200 

µL of DMEM, with or without drugs, to each well. II-D was tested at 

concentrations corresponding to 0.5x, 1x, 2x and 4x MIC, while rifampicin 

and moxifloxacin were evaluated at 1x, 2x, 4x and 8x MIC. Each 
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concentration was tested in triplicate. For determination of bacterial viability 

at various time points, macrophages were lysed with 200 µL of sterile water 

for 30 min, serially diluted with PBS and 10 µL was plated out in duplicate on 

7H11 agar. Following incubation at 37 oC for 14 days, bacterial colonies were 

enumerated and data are expressed as mean log (CFU mL-1) ± S.D. 

 

3.5. Toxicity and stability  

3.5.1. Haemolytic activity test  

The safety of the peptides against mammalian cells was assessed by evaluating 

their haemolytic activity using freshly drawn RBCs as reported previously [93, 

113, 114]. Rat RBCs used in this study were obtained from the Animal 

Handling Units of the Biomedical Research Centre (AHU, BRC, Singapore) 

while whole blood was obtained from healthy adult donors at Imperial College 

London. Prior to commencement, ethics approval was granted by Imperial 

College London NHS Healthcare Tissue Biobank (sub-collection reference 

number: Pae-SN-15-001) and written informed consent was obtained from all 

participants. Briefly, the RBCs were diluted 25 times with PBS to obtain a 4% 

(v/v) suspension for subsequent testing. Two-fold serial dilutions of the 

peptides were prepared in PBS to give solutions with final concentrations 

ranging from 0 up to 1000 mg L-1 or 2000 µM. Three hundred µL of the blood 

suspension was then mixed with an equal volume of the peptide solution and 

incubated at 37 oC for 2 h. Following incubation, the mixtures were 

centrifuged at 1700 g for 5 min and 100 µL of the supernatant was transferred 

to each well of the 96-well plate. Haemoglobin release was quantified 

spectrophotometrically by absorbance measurements at 576 nm by Tecan 
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Infinite 200 Pro (TECAN, Switzerland). Data are expressed as mean ± S.D. 

for two independent experiments performed in at least four replicates. RBCs 

treated with 1% Triton X-100 served as the positive control while untreated 

RBCs served as the negative control. The extent of haemolysis was calculated 

using the following equation: 

B?7=4/CD9D$ % = (GHIJKLM$NO$PQRSPRT$USVWXRYGHIJKLM$NO$ZR[SP\]R$^NZPQNX)
(GHIJKLM$NO$WNU\P\]R$^NZPQNXYGHIJKLM$NO$ZR[SP\]R$^NZPQNX)

×$100%  
 

3.5.2. Cytotoxicity testing 

Peptides were evaluated for their cytotoxicity against the mouse macrophage 

RAW 264.7 cell line using the MTT assay. The cells were seeded into 96-well 

plates at a density of 1 x 104 cells per well and incubated overnight at 37 oC 

and 5% CO2. Peptides, serially diluted in DMEM to give final concentrations 

ranging from 1.95 to 250 mg L-1, were added and the plates further incubated 

for 24 h. Cells without peptides served as controls. Following treatment, the 

media was replaced with 200 µL fresh growth media and 40 µL MTT solution 

(5 mg mL-1) and incubated for an additional 4 h at 37 oC. Next, 150 µL of 

DMSO was added to each well to dissolve the resultant formazan crystals and 

absorbance at 595 nm was measured using Tecan Infinite 200 Pro (TECAN, 

Switzerland) or a VersaMax Tunable microplate reader (Molecular Devices, 

Sunnyvale, CA, USA). Cell viability was expressed as 

aIbILM$%c$defgdfh$'gijkf
aIbILM$%c$l%mde%k

×100%. Experiments were performed in triplicate per 

concentration.   
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3.5.3. Protease stability assay 

The proteolytic stability of the synthetic peptides in Chapter 6 was assessed by 

measuring their antimicrobial activity against BCG after pretreatment with the 

serum protease, trypsin, in accordance with methods described previously 

[119]. Briefly, peptide solutions at a fixed concentration of 4x MIC were 

incubated with trypsin at an enzyme to peptide ratio of 1:100. Following 

incubation at 37 oC for 6 h, the solutions were heat-treated at 80 oC for 10 min 

to inactivate the enzyme. One hundred µL of the treated peptide solution was 

then added to an equal volume of bacterial culture (106 CFU mL-1) and 

incubated at 37 oC in a shaking incubator for 7 days. Inhibition of bacterial 

growth was determined by spectrophotometric measurements at OD595. Data 

are expressed as mean ± S.D. for two independent experiments performed in 

triplicate. 

 

3.6. Anti-biofilm activity  

3.6.1. Inhibition of biofilm formation  

The ability of L12 to prevent biofilm formation was studied in Chapter 7 in 

96-well plates using the CV staining assay as described previously [120].  

Briefly, bacterial cultures were grown to mid-log phase before diluting to give 

an inoculum of 106 CFU mL-1. Fifty µL of the bacterial suspension was seeded 

into each well together with an equal volume of peptide solution. The anti-

biofilm activity of the L12 was assessed at concentrations corresponding to 

0.06x 0.125x, 0.25x, 0.5x, 1x and 2x MIC. Following overnight incubation at 

37 oC to facilitate biofilm formation, the culture media was aspirated and wells 

washed with deionised water to remove planktonic cells. Adherent biofilms 
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were stained with 0.1% (w/v) CV solution (125 µL) for 10 min at room 

temperature and subsequently washed with deionised water to remove the 

excess dye. Two hundred µL of 70% ethanol was transferred to each well to 

solubilise the dye and the biomass of biofilms was quantified by absorbance 

measurements at 595 nm taken with the VersaMax Tunable microplate reader 

(Molecular Devices, Sunnyvale, CA, USA). Data are expressed as mean ± 

S.E.M. for three independent experiments performed in triplicate. 

 

3.6.2. Disruption of pre-formed biofilms  

The viability of pre-formed biofilms following peptide treatment was assessed 

in Chapter 7 according to previously established protocols [121]. Mid-log 

phase cultures of PA-W25 and MRSA 252 were diluted to 106 CFU mL-1 and 

100 µL was added to each well. After incubation for 18 h at 37 oC to allow 

biofilm formation, wells were washed with deionised water and 100 µL of 

peptide solution was added at concentrations equivalent to 2x, 4x, 8x and 16x 

MIC. After 2 h exposure to L12, wells were washed with deionised water 

before determination of biofilm viability using the MTT assay as described in 

Section 3.5.2. Data are expressed as mean ± S.E.M. for three independent 

experiments performed in triplicate. 

 

3.6.3. Bioluminescence imaging of biofilms 

To complement the microbiological biofilm assays, bioluminescence imaging 

studies were performed in Chapter 7 to visualise the extent of peptide-

mediated biofilm eradication and growth suppression. Bioluminescent P. 

aeruginosa (ATCC 9027), transformed using a recombinant plasmid 
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containing the luxCDABE gene cassette of Photorhabdus luminescens excised 

from pAKlux1.1, which was a kind gift from Attilia Karsi (Mississippi State 

University), and cloned into the PUCP19 vector backbone by electroporation, 

was employed in the screening of anti-biofilm activity of the synthetic 

peptides [122]. Transformed P. aeruginosa was maintained in LB broth 

containing carbenicillin (300 µg mL-1). Preparation of bacterial inoculums and 

treatment of biofilms were conducted according to protocols reported in the 

previous sections. Inhibition of biofilm growth was assessed after 18 h 

treatment with L12 up to 4x MIC while pre-formed biofilms were evaluated 

following 2 h exposure to L12 up to 64x MIC. The IVIS imaging system was 

utilised for imaging of bioluminescent biofilms and acquired with Living 

Image software. Bioluminescence signals are expressed as photons per second 

per centimetre squared per steradian (p/s/cm2/sr) and presented as an intensity 

map. Biofilm imaging was performed by Ms. Sybil Obuobi (Department of 

Pharmacy, National University of Singapore).    

 

3.7. Antimicrobial mechanisms  

3.7.1. Membrane permeability studies 

3.7.1.1. Flow cytometry  

Mycobacterial membrane integrity of M. smegmatis, H37Rv and CSU87 

following peptide treatment was evaluated in Chapters 5 and 6 using flow 

cytometry. Briefly, mid-log phase bacterial cultures were washed twice with 

PBS and re-suspended to give ~108 CFU mL-1 in the same buffer. M. 

smegmatis was treated with peptides at different concentrations (62.5, 125 and 

250 mg L-1) for 2 h, while cells treated with rifampicin and ethambutol (1x, 2x 
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and 4x MIC) served as negative controls. H37Rv and CSU87 were treated 

with peptides at 4x MIC for 3 h, while cells treated with rifampicin and 

moxifloxacin at 4x MIC served as negative controls for H37Rv and CSU87, 

respectively. Next, treated cells were incubated with 20 µg mL-1 PI for 30 min, 

followed by washing and re-suspension in PBS to remove any unbound dye. 

Cells were then fixed overnight with 4% formaldehyde solution. The fixed 

samples were washed twice with PBS before performing flow cytometric 

analysis using LSR II and FACSDiva software (Becton Dickinson, San Jose, 

CA) at the St Mary's FACS Facility, Imperial College London or using 

CyAn™ ADP Analyser (Becton Dickinson, San Jose, CA) at the Flow 

Cytometry Laboratory, National University Health System, Singapore.   

 

3.7.1.2. Cytoplasmic membrane depolarisation assay  

The ability of the peptides to disrupt the mycobacterial membrane potential 

was assessed in Chapter 5 using the membrane potential sensitive dye diS-C3-

5. An overnight M. smegmatis culture was first washed with 5 mM HEPES 

buffer containing 20 mM glucose and 0.1 M KCl (pH 7.2) and re-suspended to 

an OD600 of 0.4 in the same buffer. The cells were then incubated with 10 µM 

of diS-C3-5 for 1 h at 37 oC after which 600 µL was transferred to a stirred 

quartz cuvette. Change in fluorescence intensity following the addition of 

peptides at 1x, 4x and 8x MIC was monitored using a Quanta Master 

spectrofluorometer (Photon Technology International, NJ, USA) with an 

excitation and emission wavelength of 622 and 670 nm respectively.  
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3.7.1.3. ATP bioluminescence assay  

Extracellular ATP levels following treatment of M. smegmatis with peptides 

were measured in Chapter 5 as described previously [123]. Briefly, an 

overnight M. smegmatis culture was first washed and re-suspended in 10 mM 

phosphate buffer to an OD600 of 0.4. Peptides serially diluted with the same 

buffer to give final concentrations from 15.6 to 500 mg L-1 were added to an 

equal volume of bacterial suspension (300 µL) and incubated at 37 oC for 2 h. 

Next, samples were centrifuged at 5000 g for 5 min and 50 µL of the 

supernatant was added to 450 µL of boiling TE buffer (50 mM Tris, 2 mM 

EDTA, pH 7.8). The mixture was boiled for an additional 2 min and stored on 

ice until assayed. One hundred µL of cooled mixture was added to 100 µL of 

luciferin-luciferase assay mixture and luminescence was recorded using Tecan 

Infinite 200 Pro (TECAN, Switzerland). Extracellular ATP concentrations 

were determined from ATP standard curves using ATP assay kit according to 

the manufacturer’s instructions. Data are expressed as mean ± S.E.M. for three 

independent experiments performed in duplicate. 

 

3.7.1.4. Calcein leakage assay 

The calcein leakage assay was performed in Chapter 5 by Dr. Ke Xi Yu (IBN, 

Singapore). Large unilamellar vesicles (LUVs) loaded with calcein dye were 

prepared according to methods described previously [124]. Calcein dye was 

dissolved to a final concentration of 40 mM in 10 mM Na2HPO4 in H2O (pH 

7.0). 476 µL PE and 127 µL PG dissolved in 25 mg mL-1 CHCl3 were mixed 

in a round bottom flask. Solvent removal by rotatory evaporator left behind a 

thin lipid film which was then hydrated using 1 mL calcein solution. The 
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mixture was stirred for an additional hour on the rotary evaporator at 

atmospheric pressure before being subjected to ten freeze-thaw cycles (dry 

ice/acetone to freeze and warm water to thaw). Extrusion of the suspension 

was then carried out twenty times through a polycarbonate membrane with 

400 nm pore diameter. Removal of excess dye was performed using a 

Sephadex G-50 column, with a buffer consisting of 10 mM Na2HPO4 and 90 

mM NaCl as the eluent. Dye-filled LUVs were then diluted 2000 times using 

the same buffer to achieve a final lipid concentration of approximately 5.0 

mM. The calcein fluorescence emission intensity It (λem = 515nm, λex = 

490nm) was measured following treatment of LUVs with peptides at various 

concentrations (125, 250 and 500 mg L-1) for 1 h and 2 h. Fluorescence 

emission following addition of 50 µL Triton X-100 (20% in DMSO) (Ix) was 

taken as 100% leakage while the baseline (I0) was measured without peptide 

addition. Treatment with pure DMSO did not produce any leakage. Data are 

expressed as mean ± S.D. for two independent experiments performed in 

triplicate. The percentage of calcein leakage was calculated as follows: 

Leakage (%) = 1P − 1o /(1q − 1o)×100% 
 

3.7.2. Microscopy studies 

3.7.2.1. Membrane integrity study using confocal laser scanning microscopy 

(CLSM) 

The loss of membrane integrity after exposure of M. smegmatis to peptides in 

Chapter 4 was studied using CLSM. M. smegmatis was incubated overnight in 

a Lab-Tek 8-well-chambered coverglass (Nalge Nunc International, 

Rochester, NY, U.S.A.) at 37 oC at 200 rpm to allow for adherence of bacterial 

cells to the chamber surface. After the removal of the bacterial solution from 
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the chamber, the adhered bacterial cells were treated with M(LLKK)2M at its 

MIC for 10, 30 and 60 min, in the presence of FITC-labelled dextran probe. 

Following treatment, the peptide solution was removed and the bacterial cells 

washed thoroughly with PBS thrice to ensure that no free probe remained. 

Imaging was carried out using the Zeiss LSM 510 inverted confocal 

microscope (Carl Zeiss, Inc.) Bacterial cells treated with PBS in the presence 

of FITC-labelled probe served as a control for this study. 

  

3.7.2.2. Peptide localisation study using CLSM  

The site of action of II-D in BCG was studied in Chapter 6 using CLSM. BCG 

and BCG-mCherry cultures were grown to mid-log phase, centrifuged at 2000 

g for 10 min, washed, and resuspended in PBS at a cell density of 108 CFU 

mL-1. Following treatment with 500 mg L-1 FITC-labelled II-D for 2 h, 

bacterial cells were centrifuged at 2000 g for 10 min and washed three times 

with PBS. To stain bacterial membranes, BCG cells were resuspended in PBS 

with 2 µg mL-1 FM4-64 for 10 min at 37 oC with shaking. Cells were then 

pelleted, washed twice with PBS to remove any unbound dye, and fixed 

overnight with 4% formaldehyde solution at 4 oC. Following fixation, cells 

were pelleted, resuspended in PBS and allowed to air dry on microscope slides 

for 20 min. Samples were mounted with Mowiol mounting medium and 

imaged with a 100x oil-immersion objective lens using a Zeiss LSM 510 

inverted confocal microscope (Carl Zeiss, Inc.). FITC was excited with a 488 

nm laser and detected with a 505-530 nm band-pass filter while mCherry and 

FM4-64 were both excited with a 543 nm laser and detected with a 615 nm 

and 650 nm long-pass filters, respectively.  
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3.7.2.3. Field emission scanning electron microscopy (FE-SEM) 

Mycobacterial membrane damage following peptide treatment in Chapter 4 

was visualised using FE-SEM. M. smegmatis suspension at ~108 CFU mL-1 

was treated with an equal volume of peptide at lethal doses of 250 mg L-1 (4x 

MIC) or PBS for 2 h. Five replicates were pooled together, centrifuged at 2700 

g for 10 min and washed twice with PBS. The samples were then fixed with 

4% formaldehyde for 30 min before rinsing with deionised water. A series of 

ethanol solutions (35%, 50%, 75%, 90%, 95%, and 100%) was used to 

perform sample dehydration, after which they were mounted on copper tapes 

and allowed to air-dry for 2 days. Samples were finally sputter coated with 

platinum before imaging under a FE-SEM (JEOL JSM-7400F, Japan) at IBN, 

Singapore.   

 

3.7.2.4. Microfluidic live-cell imaging with time-lapse fluorescence 

microscopy  

Live-cell imaging was performed in Chapters 6 and 7 using the automated 

CellASIC ONIX Microfluidic Platform with the CellASIC ONIX B04A-03 

Microfluidic Bacteria Plates (EMD Millipore Corporation, Hayward, CA, 

USA). Mid-log phase bacterial cultures were first diluted in the appropriate 

broths (7H9 for BCG and BHI for E. coli and S. aureus) to a final density of 

107 CFU mL-1, before adding 100 µL to each of the cell loading wells. To 

evaluate the antimicrobial mechanisms of action, the most selective peptides 

II-D and L12, were serially diluted in broth to give final concentrations 

corresponding to 4x and 8x MIC. Peptide solutions were then added to the 

inlet wells together with the membrane-impermeable dye, PI (10 µg mL-1), in 
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a total volume of 350 µL. Next, the microfluidic plate was vacuum-sealed to 

the F84 manifold and the CellASIC ONIX FG Software initiated. Loading and 

subsequent washing of un-trapped bacterial cells was carried out according to 

the manufacturer’s protocol [125]. Peptide solutions were perfused into 

culture chambers at the recommended pressure of 2 psi for up to 4 h. The 

temperature was maintained at 37 oC and bacterial cells treated with medium 

and PI alone served as negative controls. Phase contrast and fluorescent 

images of bacterial cells were captured with a 63x oil-immersion objective 

lens every 10 min using the Zeiss Axiovert 200M inverted microscope (Carl 

Zeiss, Inc.). Microscopy was performed in the Facility for Imaging by Light 

Microscopy (FILM) at Imperial College London. 

 

3.7.2.5. Image and statistical analysis  

The Huygens Deconvolution software (Scientific Volume Image) was used to 

perform deconvolution of confocal images. Fluorescence intensity profiles 

along the bacterial cell length were obtained with the segmented line and 

multi-channel intensity line profile plot tools in the ImageJ software. 

Processing and compiling of phase and fluorescent images into movies at two 

frames per second, were carried out using the ImageJ software. All statistical 

analysis in this study was performed with GraphPad Prism 6 software 

(GraphPad Software Inc., CA, USA) using either one-way analysis of variance 

(ANOVA), with Bonferroni’s post hoc test for multiple comparisons or a non-

parametric Kruskal Wallis multiple comparisons test with Dunn’s post-test. 

Significant differences between groups were indicated as follows: * p ≤ 0.05, 

** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.  
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3.8. Immune-modulating activity   

3.8.1. NO production by peptide-treated macrophages  

The ability of II-D to active macrophages in Chapter 6 was determined by 

measuring NO production following peptide treatment. RAW 264.7 cells were 

seeded in 96-well plates at a density of 4 x 104 per well, followed by 

incubation at 37 oC and 5% CO2 for 24 h. The medium was removed and cells 

were treated with peptide solutions ranging from 7.81 to 250 mg L-1 for an 

additional 24 h. NO production was estimated by measuring nitrite 

concentrations in supernatants using the Griess reagent (0.1% N-1-

napthylethylenediamine dihydrochloride, 1% sulfanilamide and 5% 

phosphoric acid) according to the manufacturer’s protocols. The absorbance 

was measured at 540 nm and nitrite concentrations were determined using 

standard curves generated with NaNO2 solutions. Macrophages stimulated 

with 100 ng mL-1 LPS served as positive controls while unstimulated 

macrophages served as negative controls. Data are expressed as mean ± S.D. 

for two independent experiments performed in triplicate. 

 

3.8.2. TNF-α production by peptide-treated macrophages  

The ability of II-D to active macrophages in Chapter 6 was also determined by 

measuring TNF-α production following peptide treatment. RAW 264.7 cells 

were seeded in 96-well plates at a density of 4 x 104 per well, followed by 

incubation at 37 oC and 5% CO2 for 24 h. The medium was removed and cells 

were treated with peptides solutions ranging from 7.81 to 250 mg L-1 for an 

additional 24 h. TNF-α concentration in supernatants was determined using 

the mouse TNF-α ELISA kit as per the manufacturer’s instructions. 
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Absorbance readings were measured at 450 nm. Unstimulated macrophages 

served as negative controls, and positive controls were stimulated with 100 ng 

mL-1 LPS. Data are expressed as mean ± S.D. for two independent 

experiments performed in triplicate. The degree of TNF-α production was 

calculated as follows: 

rs0 − t$6A4:u<894;$ % GHvIwLM$NO$PQRSPRT$USVWXRYGHvIwLM$NO$ZR[SP\]R$^NZPQNX
GHvIwLM$NO$WNU\P\]R$^NZPQNXYGHvIwLM$NO$ZR[SP\]R$^NZPQNX

×100%  

 

3.8.3. NO production by LPS-stimulated macrophages 

The de novo designed peptides were evaluated for their anti-endotoxic activity 

in Chapter 7 by determining the reduction in NO production in macrophages 

stimulated with LPS. RAW 264.7 cells were seeded at a density of 4 x 104 

cells per well in 96-well plates and incubated for 24 hours at 37 oC and 5% 

CO2. Following medium removal, cells were stimulated with LPS (100 ng mL-

1), either in the presence or absence of peptides for an additional 24 hours. NO 

formation was determined by measuring nitrite concentrations in supernatants 

using the Griess reagent (0.1% N-1-napthylethylenediamine dihydrochloride, 

1% sulfanilamide and 5% phosphoric acid) according to the manufacturer’s 

protocols. Absorbance readings were taken at 540 nm by the VersaMax 

Tunable microplate reader (Molecular Devices, Sunnyvale, CA, USA) and 

standard curves generated with NaNO2 solutions were used to quantify nitrite 

levels. Untreated cells and those stimulated with LPS alone served as negative 

and positive controls, respectively. Data are expressed as mean ± S.E.M. for 

three independent experiments performed in triplicate. 
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3.8.4. Neutralisation of endotoxins  

The de novo designed peptides were evaluated for their LPS-binding activity 

in Chapter 7 using the LAL chromogenic assay in accordance with the 

manufacturer’s protocols. Peptides were serially diluted in endotoxin-free 

water and added to an equal volume of LPS (0.5 EU mL-1) in 96-well plates in 

a final volume of 50 µL. The plates were incubated for 30 min at 37 oC to 

facilitate interactions between the peptides and LPS, following which, 50 µL 

of LAL was added to each well. After additional 10 min incubation at 37 oC, 

100 µL of the chromogenic substrate solution (Ac-Ile-Glu-Ala-Arg-p-

nitroalanine) was added to each well. Next, the plates were incubated for a 

further 6 min at 37 oC before adding 50 µL of 25% acetic acid to terminate the 

reaction. The extent of LPS binding was quantified relative to untreated 

controls by absorbance measurements at 405 nm taken with the VersaMax 

Tunable microplate reader (Molecular Devices, Sunnyvale, CA, USA). Data 

are expressed as mean ± S.D. for three independent experiments. 
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CHAPTER 4: Anti-mycobacterial activities of synthetic cationic α-helical 

peptides and their synergism with rifampicin 

4.1. Introduction  

Inspired by nature, many AMPs are currently under clinical development for 

treating various bacterial infections [56]. There is a huge diversity in 

sequences, although their common cationic and amphiphilic nature is apparent 

[22]. With their overall positive charges, AMPs contact bacterial cell surfaces 

by associating with acidic polymers and other negatively charged molecules, 

after which they insert themselves into the membrane and disrupt its physical 

integrity via membrane thinning, transient pore formation and/or disruption of 

the barrier function [126-128]. Some studies have also shown that they kill 

bacteria by translocating across the membrane and acting on internal targets 

[21]. This membrane-targeted mechanism of action is responsible for their 

activity against a wide range of pathogens. While natural AMPs have 

demonstrated potent activity against Gram-positive and Gram-negative 

bacteria, their efficacy tends to be diminished against M. tuberculosis. In the 

context of tuberculosis, even though the composition of the mycobacterial cell 

wall is inherently different with a higher proportion of lipids such as mycolic 

acids, natural AMPs, including the human cathelicidin LL-37, hBDs and 

HNPs, have been documented to kill M. tuberculosis albeit at rather high 

concentrations. LL-37 has been found to be inactive in vitro against H37Rv 

and MDR M. tuberculosis at concentrations of 50 mg L-1 [30]. hBD-2 and 

hBD-3 demonstrated superior in vitro activities in comparison to LL-37, with 

MICs against H37Rv of 12 and 24 mg L-1, respectively [129]. hBD-1, 

however, exhibited poor in vitro killing of H37Rv and MDR M. tuberculosis 
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even up to concentrations of 128 mg L-1 [130]. Amongst the HDPs, HNP-1 

emerged as the most potent inhibitor of H37Rv in vitro with a relatively low 

MIC of 2.5 mg L-1 [35]. 

 

It is, however, widely recognised that natural AMPs do not make good drug 

candidates mainly due to their large sizes that translate to higher production 

cost and significant toxicity [22, 26]. As such, synthetic variants have been 

developed via several design approaches (described in Section 1.5) in attempts 

to enhance the biological activities of natural HDPs against mycobacteria, 

while minimising undesirable toxic side effects. Sonawane et al. prepared a 

truncated LL-37 congener with threefold greater potency than the native 

peptide [31], while a 15-amino acid analogue of LL-37 possessed a fourfold 

lower MIC against M. smegmatis and a 5.6-fold reduction in cytotoxicity 

[131]. The recombinant hBD-2 and hBD-3 hybrid also displayed the best 

activity against MDR M. tuberculosis in comparison to either of the peptides 

alone [129]. Unsurprisingly, the empirical nature of majority of these 

strategies implies that failure, to some extent, is unavoidable. For example, 

congeners based on truncations of granulysin proved unsuccessful in 

producing synthetic analogues with superior killing efficacy against M. 

tuberculosis, with the full-length granulysin exhibiting the most potent 

antimicrobial effect [132]. Additionally, it has been argued that widespread 

clinical use of AMPs bearing close resemblance to host innate immunity 

peptides will inevitably select for drug-resistant bacteria, thereby posing an 

immense threat to human health [104].  
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To mitigate concerns of antimicrobial resistance development to host peptides, 

and to overcome their inherent drawbacks, the rational approach via de novo 

design is thus being adopted to produce counterparts endowed with superior 

properties. To the best of our knowledge, there are no studies assessing 

rationally designed de novo synthetic AMPs for their antimicrobial activity 

against M. tuberculosis. As discussed in Section 1.5.6, the recurring sequence 

comprising four amino acids (XXYY)n – where X is a hydrophobic amino 

acid, Y is a cationic amino acid, and n is the number of repeat units – was 

successfully implemented in the design of α-helical AMPs [93]. C(LLKK)2C 

was shown to be the most selective peptide against Gram-positive and Gram-

negative bacteria, and yeast [95]. The inclusion of arginine instead of lysine as 

the cationic residue was found to produce peptides with greater haemolytic 

activities, while incorporating alanine or phenylalanine instead of leucine as 

the hydrophobic amino acid resulted in peptides with reduced helical 

propensity [95]. Thus, based on this information, (LLKK)2 was used as a 

starting point in this study, to elucidate the influence of various structural 

modifications on anti-mycobacterial activity of the synthetic α-helical AMPs. 

 

The synthetic α-helical AMPs comprising the backbone sequence (XXYY)n 

were systematically evaluated against several mycobacterial strains including 

clinically isolated MDR M. tuberculosis. Additionally, the approach of 

combination therapy of conventional antibiotics and AMPs was evaluated with 

the objective of preventing or delaying the development of antibiotic 

resistance in TB. Such combination has not been reported in the literature and 

if successful, synergism is expected to reduce treatment costs and minimise 
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peptide toxicity for the application of AMPs in TB treatment. Initially, 

characterisation of peptide secondary structures was performed, followed by 

the evaluation of their anti-mycobacterial properties by MIC measurements 

against M. smegmatis, BCG, H37Rv and the MDR strain, CSU87. The 

antimicrobial mechanism of the peptides was evaluated using CLSM, while 

haemolytic toxicity against mammalian cells was assessed using rat RBCs. 

Drug resistance was stimulated in vitro by repeatedly exposing M. smegmatis 

to sub-inhibitory concentrations of rifampicin and the peptides. Lastly, 

synergistic interactions were determined by co-treatment of the mycobacterial 

strains with rifampicin and AMPs via the chequerboard assay. 
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4.2. Results and Discussion 

4.2.1. Peptide design and characterisation 

Peptides were designed on the basis of evaluating if two different structural 

modifications of the primary peptide, (LLKK)2, could potentially modulate its 

anti-mycobacterial activity. The first was to evaluate if the presence of free 

sulfhydryl (thiol) groups in L-Cys residues could enhance the anti-

mycobacterial activity of these synthetic α-helical peptides. The second was to 

assess if positional hydrophobicity was an important determinant of anti-

mycobacterial activity of these synthetic α-helical peptides. To do so, L-Cys 

was substituted to either or both the N- and C-terminals of the peptides to 

obtain the following peptides: C(LLKK)2, (LLKK)2C and C(LLKK)2C. To 

verify the influence of free sulfhydryl groups on antimicrobial activity, control 

peptides were included by substituting methionine (Met) on either or both 

terminals to obtain the following peptides: M(LLKK)2, (LLKK)2M and 

M(LLKK)2M. It should be noted that the peptides (LLKK)2C, C(LLKK)2C 

and M(LLKK)2M have been previously evaluated against yeast and Gram-

positive and Gram negative bacteria, although the influence of positional 

hydrophobicity on antimicrobial activity was not studied [95]. The primary 

peptide without any additional amino acid residues, (LLKK)2, also served as a 

control. C-terminal amidation of peptides was performed to augment anti-

mycobacterial activity via enhancement of net positive charge [133, 134]. 

MALDI-TOF MS analysis showed that there was close agreement between the 

measured and theoretical molecular weights of the peptides (Table 4.1), 

confirming that peptide synthesis had been performed to the desired 

specifications.  
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Table 4.1. α-helical peptide sequences and their molecular weights. The close 
agreement between the theoretical and measured molecular weights (Mw) 
confirmed the fidelity of peptide synthesis.   
AMP Peptide sequence Theoretical 

Mw 
 

Measured Mw
a 

(LLKK)2 LLKKLLKK-NH2 982.37 983.02 
C(LLKK)2 CLLKKLLKK-NH2 1085.51 1086.01 
(LLKK)2C LLKKLLKKC-NH2 1085.51 1085.76 
C(LLKK)2C CLLKKLLKKC-

NH2 
1188.66 1188.76 

M(LLKK)2 MLLKKLLKK-NH2 1113.57 1113.79 
(LLKK)2M LLKKLLKKM-NH2 1113.57 1114.08 
M(LLKK)2M MLLKKLLKKM-

NH2 
1244.76 1247.07 

a Measured by MALDI-TOF MS, apparent Mw = [Mw + H]+. 
 

4.2.2. CD spectroscopic study  

The peptides adopted a random conformation in aqueous solution (data not 

shown) but folded into α-helical structures once a membrane-like environment 

was provided with the addition of SDS surfactant. Figure 4.1 summarises the 

CD spectra of the peptides with Met and Cys terminal residues. The addition 

of Cys and Met residues resulted in greater α-helical folding as characterised 

by the presence of double minima at 208 nm and 222 nm. These additional 

amino acids increased the peptide length and hydrophobicity, which in turn 

enhanced hydrogen bonding between the ith and (i+4)th amino acid in the 

peptide backbone [135]. As a result, there was stabilisation of the α-helix and 

increased peptide helicity. Thus, peptides with amino acid substitutions on 

both faces had the greatest helicity as determined by a more negative mean 

residue ellipticity value (θM). By comparing the θM values of the peptides at 

these wavelengths, it can be ascertained that the peptides C(LLKK)2 and 

(LLKK)2M had a higher propensity for α-helical folding as compared to 

peptides (LLKK)2C and M(LLKK)2, respectively. A plausible explanation is 
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that the substitution of a hydrophobic Met residue onto the non-polar peptide 

face increased peptide amphiphilicity, which in turn stabilised the α-helical 

conformation of (LLKK)2M. Cys, on the other hand, is a polar uncharged 

residue and exerted similar influence only when it was substituted onto the 

polar peptide face in C(LLKK)2 and not the non-polar face as in (LLKK)2C. 

These results are in agreement with previous findings that showed that 

hydrophobicity of the non-polar region is important for conserving the α-

helical configuration of peptides and that addition of polar residues onto the 

non-polar peptide region could potentially destabilise its helical structure 

[136]. 

 

Figure 4.1. CD spectra of α-helical peptides with (a) Met and (b) Cys 
residues. The presence of the double minima at 208 nm and 222 nm confirmed 
the α-helical secondary structures of the synthetic peptides. Data are 
expressed as the mean of two runs per peptide. 
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4.2.3. In vitro anti-mycobacterial activity 

The antimicrobial activities of the peptides were determined by the standard 

broth microdilution method with the corresponding MICs against M. 

smegmatis summarised in Table 4.2. The peptides efficiently inhibited 

bacterial growth at varying MICs, with the primary (LLKK)2 peptide having a 

MIC of 125 mg L-1. Generally, the addition of one or more amino acids either 

increased or preserved the inhibitory activity of the peptides, except for 

C(LLKK)2C which displayed a decline in inhibitory activity as reflected by a 

MIC of 250 mg L-1. The addition of L-Cys to the N-terminus served to 

enhance the potency of the primary peptide with C(LLKK)2 having the lowest 

MIC of 62.5 mg L-1, while its incorporation at the C-terminus did not render 

the parent peptide any more active against M. smegmatis. However for 

C(LLKK)2C, a reduction in efficacy may partly be due to its sparingly soluble 

nature at high concentrations as seen from its high solution turbidity. As for 

the peptides with Met substitutions, (LLKK)2M and M(LLKK)2M recorded 

the lowest MIC of 62.5 mg L-1, while there was no improvement in activity for 

M(LLKK)2 as compared to the primary peptide. It is likely that the increase in 

hydrophobicity/α-helicity enhanced the membrane permeabilisation and 

antimicrobial potency of these peptides. These findings are consistent with 

those reported previously by Chen et al. who found that increasing the 

hydrophobicity of α-helical peptides consequently improved their 

antimicrobial activity against both Gram-positive and Gram-negative bacteria 

[136, 137]. The lack of improvement in activity of M(LLKK)2 and (LLKK)2C 

could be in part due to the influence of positional hydrophobicity, whereby the 

substitution of a hydrophobic Met residue onto the polar peptide face, and a 
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polar Cys residue onto the non-polar peptide face, decreased facial 

amphiphilicity, in turn reducing antimicrobial activity [138]. Notably, the 

antimicrobial potency of the three most effective peptides (MIC of 62.5 mg L-

1) was preserved in rifampicin-resistant M. smegmatis (Table 4.2). This 

confirmed that the synthetic peptides functioned via a different mechanism of 

action as compared to rifampicin, which hinders transcription by inhibiting 

DNA-dependent RNA polymerase. 

 
Table 4.2. MICs of synthetic α-helical peptides against M. smegmatis and 
their 50% haemolysis concentration (HC50). Addition of Cys and Met residues 
enhanced the antimicrobial activity of the primary peptide, (LLKK)2, as 
reflected by lower MIC values. 
Antimicrobial 
agent 

MIC (mg L-1) HC50 (mg L-1) 
Susceptible strain Resistant strain 

Rifampicin 7.8 500 ND 
(LLKK)2 125 NDa >1000 
(LLKK)2M 62.5 62.5 >1000 
M(LLKK)2 125 ND >1000 
M(LLKK)2M 62.5 62.5 >1000 
(LLKK)2C 125 ND >1000 
C(LLKK)2 62.5 62.5 >1000 
C(LLKK)2C 250 ND >1000 

 a ND, not determined 

The antimicrobial activities of the three most effective peptides against M. 

smegmatis were further evaluated in BCG, H37Rv and CSU87 and the results 

are summarised in Table 4.3. Of the three peptides, the most hydrophobic 

analogue M(LLKK)2M proved to be the most effective against all three 

mycobacterial strains. It had the lowest MIC of 15.6 mg L-1 against BCG and 

was the only peptide active against H37Rv with an MIC of 125 mg L-1. 

Against CSU87, the MIC of M(LLKK)2M was reduced to 62.5 mg L-1. It is 

likely that the enhancement of peptide hydrophobicity resulted in an increase 

in anti-mycobacterial activity, in line with observations from previous studies 

[139, 140]. Despite being ineffective against H37Rv, (LLKK)2M had an MIC 
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of 125 mg L-1 against CSU87. Since alterations of the membrane barrier is one 

way in which resistance develops [141], it is plausible that the CSU87 strain 

studied may have undergone cell wall modifications that enhanced the 

permeabilisation of more hydrophobic AMPs. As such, the addition of one or 

two hydrophobic Met residues to the parent (LLKK)2 peptide resulted in an 

increased antimicrobial potency against CSU87 as compared to H37Rv for 

both (LLKK)2M and M(LLKK)2M. Although the inclusion of L-Cys on the N-

terminus of (LLKK)2 corresponded with a twofold reduction in MIC against 

BCG, this modification proved ineffective in augmenting anti-mycobacterial 

activity against both H37Rv and CSU87.   

Table 4.3. MICs of synthetic α-helical peptides against BCG, H37Rv and 
CSU87. M(LLKK)2M was the most effective peptide against all three 
mycobacterial strains. 
Antimicrobial 
agent 

 MIC (mg L-1)  
BCG H37Rv  CSU87 

(LLKK)2 500 >500 >500 
(LLKK)2M 500 >500 125 
M(LLKK)2M 15.6 125 62.5 
C(LLKK)2 250 >500 >500 
Rifampicin 0.001 0.008 >32 
Moxifloxacina ND ND 0.06 

    a Moxifloxacin served as a positive control 

4.2.4. Killing efficiency and time-kill curve 

The antimicrobial potency of the most effective peptide, M(LLKK)2M, was 

further studied by measuring its killing efficiency against M. smegmatis, BCG 

and H37Rv. As shown in Figure 4.2, M(LLKK)2M had a killing efficiency of 

≥ 99.9 % at MIC and 2x MIC levels against both M. smegmatis and BCG. The 

killing efficiency against H37Rv was found to be ≥ 99 % and ≥ 99.9 % at MIC 

and 2x MIC respectively.  
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Figure 4.2. Plot of viable CFUs after treatment of (a) M. smegmatis, (b) BCG 
and (c) H37Rv with M(LLKK)2M at concentrations corresponding to 0, 0.5x, 
1x and 2x MIC. M(LLKK)2M reduced bacterial burden by ≥ 99.9% against M. 
smegmatis and BCG, and ≥ 99 % against H37Rv, at the respective MICs. Data 
expressed as mean ± S.D. and are representative of two independent 
experiments. 
 
The bactericidal properties of M(LLKK)2M were further evaluated by time-

kill assay against M. smegmatis and the results were compared to that of 

rifampicin. As shown in Figure 4.3, the peptide exhibited dose-dependent 

bactericidal effects, defined as a ≥ 3 log decrease in the initial inoculum [142]. 

The peptide was rapidly bactericidal within 8 h of exposure at 8x MIC and 

within 24 h of exposure at MIC and 4x MIC. Furthermore, at 8x MIC, there 

was complete eradication of all bacteria by 24 h. The bactericidal effect of the 

peptide was much stronger than that of the first-line anti-TB drug, rifampicin. 

Rifampicin was only bacteriostatic at MIC and 4x MIC and bactericidal 

activity was achieved only at 8x MIC after 48 h. This rapid killing kinetics is 

commonly observed for AMPs due to their membrane-lytic mechanisms of 
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action, which results in pore formation, and leakage of cellular contents [38, 

143].  

 

Figure 4.3. Killing curves of M. smegmatis following exposure to (a) 
M(LLKK)2M and (b) rifampicin over 72 h at 1x, 4x and 8x MIC. 
M(LLKK)2M was rapidly bactericidal at MIC within 24 h while rifampicin 
remained bacteriostatic at MIC even after 72 h. Data expressed as mean ± S.D. 
for two independent experiments. 
 
4.2.5. Haemolytic activity  

The potential of the synthetic peptides to cause haemolysis was assessed to 

provide an indication of their cytotoxicity. The 50% haemolysis concentration 

of the peptides (HC50) against rat RBCs is summarised in Table 4.2 and Figure 

4.4. Generally, the synthetic peptides, including the most potent peptide 

M(LLKK)2M, exhibited low haemolytic activity even up to concentrations of 

1000 mg L-1. Importantly, the peptides displayed very low haemolytic activity 

at their respective MICs (< 1% haemolysis). The peptides M(LLKK)2M and 
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C(LLKK)2C induced the highest haemolysis of 1.1% and 12.9% respectively 

at 1000 mg L-1. It is likely that both of these peptides possessed higher 

membrane disrupting abilities due to an increase in peptide hydrophobicity, 

thus resulting in greater haemolysis of mammalian RBCs, similar to 

observations in other studies [136, 137]. 

 

Figure 4.4. Haemolytic activity of α-helical AMPs following treatment with 
two-fold increasing peptide concentrations. All peptides possessed desirable 
cytotoxicity profiles with < 1% haemolysis at their respective MIC. Data 
expressed as mean ± S.D. for two independent experiments. 
 

4.2.6. Antimicrobial mechanisms  

M. smegmatis was treated with M(LLKK)2M for 10, 30 and 60 min in the 

presence of FITC-labelled dextran probe so as to elucidate the antimicrobial 

mechanisms of the α-helical peptides. AMPs are membrane active agents 

which compromise the cell membrane integrity and result in pore formation. 

As such, exposure of bacterial cells to the peptides would induce pore 

formation and result in the passive diffusion of the fluorescent dye into the 

cells. It can be seen in Figure 4.5a that treatment with PBS alone did not result 
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in the uptake of FITC-dextran, supported by the absence of any green 

fluorescence signal. Treatment with M(LLKK)2M, however, induced a 

significant increase in the uptake of the fluorescence probe. Furthermore, 

increasing the duration of exposure to this peptide resulted in a greater uptake 

of FITC-dextran, evidenced by the greater proportion of fluorescently stained 

cells at the three different time points (Figures 4.5b to d). This progressive 

increase in the fraction of fluorescent bacterial cells imaged from 10 to 60 min 

implies that longer treatment potentially resulted in greater destruction and 

pore formation in the bacterial membrane. Together, these findings lend 

support to the membrane-permeabilising mechanisms of the synthetic AMPs 

presented here. 



!78!

 

Figure 4.5. Confocal microscopic images of M. smegmatis after treatment 
with (a) PBS, and M(LLKK)2M at its MIC for (b) 10 min, (c) 30 min and (d) 
60 min in the presence of 150 kDa FITC-dextran. Increasing fluorescence 
intensity from 10 to 60 min after peptide treatment is indicative of progressive 
membrane damage and pore formation, allowing for greater uptake of the 
fluorescent probe. 
 

4.2.7. Development of drug resistance  

The problem of drug resistance mainly stems from inappropriate drug use, 

often associated with poor adherence to regimens or inappropriate dosing. To 

simulate these conditions in vitro, M. smegmatis cells were exposed to sub-

therapeutic doses of rifampicin and M(LLKK)2M over 10 passages. As shown 

in Figure 4.6, there was rapid onset of rifampicin resistance as early as passage 
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two and a 16-fold increase in MIC was observed by passage four. After 10 

passages, the MIC had increased by 32-fold, demonstrating that resistance to 

rifampicin can indeed develop rapidly with sub-therapeutic doses. In contrast, 

resistance did not readily develop with M(LLKK)2M treatment as shown by 

the consistent MIC obtained over 10 passages. Furthermore, the occurrence of 

rifampicin resistance could be delayed with the addition of a fixed 

concentration of M(LLKK)2M (15.6 mg L-1) to rifampicin treatment. This was 

shown by a twofold increase in MIC after five passages and a MIC that was 

four times lower in combination as compared to treatment with rifampicin 

alone after 10 passages. These findings underline the potential benefits that 

using the synthetic α-helical peptide M(LLKK)2M alone or in combination 

with first-line anti-TB drugs can have in preventing the emergence of drug-

resistant bacteria.  

 

Figure 4.6. Changes in MIC of M(LLKK)2M and rifampicin alone, and in 
combination, after exposure of M. smegmatis to sub-lethal doses over 10 
passages. Resistance against rifampicin developed rapidly when administered 
alone but was delayed when a fixed concentration of M(LLKK)2M was added. 
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4.2.8. Synergistic antimicrobial interactions  

The antibacterial interactions between the M(LLKK)2M and rifampicin were 

analysed via the chequerboard assay. As shown in Table 4.4, M(LLKK)2M 

displayed synergism with rifampicin with an FICI value of 0.5 against 

rifampicin-susceptible M. smegmatis. Subsequent testing against rifampicin-

resistant M. smegmatis (MIC = 250 mg L-1) and BCG produced similar results, 

whereas the peptide-drug combination had an additive effect against H37Rv 

with an FICI of 0.56. Notably, a low peptide concentration equivalent to 1/16th 

its MIC, halved the amount of rifampicin required to inhibit H37Rv growth. It 

is likely that peptide-mediated destruction of membrane integrity facilitated 

the entry of rifampicin to cytoplasmic targets and was responsible for the 

synergism observed. Synergistic interactions between rifampicin and natural 

AMPs have been reported previously and this effect has also been attributed to 

the enhanced intracellular access of the drug aided by these membrane-

permeabilising peptides [144-146]. It is thus likely that peptides with stronger 

membrane-permeabilising properties would potentially display stronger 

synergistic interactions. This may be the reason why C(LLKK)2 did not 

exhibit synergism with rifampicin (Table 4.4), in part due to its lower α-

helicity (Figure 4.1) and reduced membrane permeabilisation in comparison to 

M(LLKK)2M and (LLKK)2M, both of which demonstrated synergism with 

rifampicin against rifampicin-susceptible M. smegmatis. 
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Table 4.4. Chequerboard assay of rifampicin and synthetic peptides against 
four different mycobacterial strains. Synergism was observed for the 
Μ(LLKK)2M and rifampicin combination against rifampicin-susceptible and –
resistant M. smegmatis and BCG while additivity was observed against 
H37Rv.  

a Antimicrobial interactions were classified as additive (A) or synergistic (S). 
 

4.3. Conclusions 

In this study, a series of synthetic α-helical peptides modified with L-Cys or 

L-Met residues on either or both the N- and C-terminals have been evaluated 

for their anti-mycobacterial activities and cytotoxicity towards mammalian 

cells. The peptide (LLKK)2 modified with two Met residues (i.e. 

M(LLKK)2M) was effective against both drug-susceptible (H37Rv) and MDR 

(CSU87) M. tuberculosis without causing any cytotoxicity at concentrations 

eightfold greater than its highest MIC. The peptide eradicated mycobacteria 

based on membrane-lytic mechanism, and displayed synergistic interactions 

with rifampicin against both M. smegmatis and BCG, and an additive effect 

against H37Rv. Moreover, resistance against M(LLKK)2M did not develop 

readily, and when used in combination with rifampicin, the peptide was shown 

to delay the emergence of rifampicin resistance. These findings underscore the 

potential applicability of M(LLKK)2M to fight drug-resistant mycobacterial 

infections and could eventually lead to its incorporation into multi-drug 

Mycobacteri
al strain 

Drug 
combination 

MIC (mg L-1)     FIC FICIa 

Alone Combination 
M. smegmatis Rifampicin 

M(LLKK)2M 
(LLKK)2M 
C(LLKK)2 

7.81 
62.5 
62.5 
62.5 

1.95 
15.6 
15.6 
31.3 

0.25 
0.25 
0.25 
0.50 

- 
0.50 (S) 
0.50 (S) 
0.75 (A) 

Rifampicin-
resistant  
M. smegmatis 

Rifampicin 
M(LLKK)2M 

 

250 
62.5 

62.5 
15.6 

0.25 
0.25 

- 
0.50 (S) 

BCG Rifampicin 
M(LLKK)2M 

0.001 
15.6 

0.00025 
3.91 

0.25 
0.25 

- 
0.50 (S) 

H37Rv Rifampicin 
M(LLKK)2M 

0.008 
125 

0.004 
7.81 

0.50 
0.06 

- 
0.56 (A) 
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regimens as a cost-effective and non-toxic alternative in overcoming MDR-

TB. 
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CHAPTER 5: Designing α-helical peptides with enhanced synergism and 

selectivity against Mycobacterium smegmatis − Discerning the role of 

hydrophobicity and helicity 

 

5.1. Introduction 

TB is a preventable and curable infectious disease caused by M. tuberculosis, 

a pathogen which possesses marked biological and genomic differences as 

compared to both Gram-positive and Gram-negative bacterium [147]. One 

major distinction is that the composition of the mycobacterial cell wall, which 

unlike its Gram-positive counterparts, is highly complex and consists of an 

outer membrane with mycolic acids covalently linked to the peptidoglycan-

arabinogalactan polymer (Figure 5.1) [148, 149]. Mycolic acids are high 

molecular weight branched fatty acids containing about 70-90 carbon atoms, 

which accounts for up to 60% of the dry weight of mycobacterial cells [150]. 

This lipid-rich cell envelope forms a formidable barrier to prevent the entry of 

noxious substances and therapeutic agents alike, thereby posing an immense 

challenge to the design of new anti-tubercular drugs which must first penetrate 

this layer to exert their action at the target site [151]. 
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Figure 5.1. Diagram illustrating the basic component of the mycobacterial cell 
wall consisting of MAPc (mycolic acid-arabinogalactan-peptidoglycan 
complex). Reproduced with permission from [149]. Copyright (2008) 
American Society for Microbiology.  
 

The permeation of hydrophilic solutes across the mycobacterial cell wall 

mainly occurs through porin channels while lipophilic solutes are able to 

traverse the lipid-rich outer membrane [152]. As such, it has been suggested 

that in principle, more lipophilic compounds are expected to exhibit improved 

activity against mycobacteria due to enhanced intracellular drug uptake [148]. 

Yajko et al. demonstrated that the more hydrophobic fluoroquinolone, 

sparfloxacin, displayed superior killing effect against the MAC as compared to 

ciprofloxacin [153]. Haemers et al. found that increasing hydrophobicity by 

adding N-alkyl substituents to ciprofloxacin served to enhance M. tuberculosis 

and M. avium inhibition [154]. The enhancement of hydrophobicity of the 

hydrophilic isoniazid by the addition of palmitoyl substituent improved 

activity against the MAC as reported by Rastogi et al. [155]. Hence, structural 

modifications aimed at enhancing the hydrophobicity of compounds could 
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serve as an effective strategy when designing new anti-tubercular drugs with 

enhanced anti-mycobacterial activity. 

 

With respect to AMPs, such a strategy has been used to optimise the activity 

against Gram-positive and Gram-negative bacteria. Lee et al. showed that 

increasing the hydrophobicity of the antimicrobial peptide HP (2-20) by 

specific amino acid substitution brought about a considerable increase in 

antimicrobial activity against both Gram-positive and Gram-negative bacteria 

[139]. Meng and Kumar found that the increased hydrophobicity of peptides 

modified with fluorinated amino acids also yielded greater activity against 

both Gram-positive and Gram-negative bacteria [156]. Radzishevsky et al. 

studied the effect of hydrophobicity by conjugating various acyl moieties to 

AMPs and observed that the potency of the parent peptide against Gram-

positive and Gram-negative bacteria was enhanced [157]. To the best of our 

knowledge, the only study employing this strategy to systematically design 

and evaluate AMPs for their activity against mycobacteria met with limited 

success [158]. In fact, enhancements in peptide hydrophobicity decreased 

antimicrobial efficacy against M. tuberculosis, and this was accompanied by 

dramatic increments in haemolytic activity of up to 120-fold, resulting in 

reduced selectivity indices [158]. These findings highlight the long-standing 

impediment to the clinical application of AMPs: their high systemic toxicity. 

Hence, the challenge thus far has been to develop compounds with improved 

microbial selectivity, especially against the genus Mycobacterium.  
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In Chapter 4, we reported on a series of short amphipathic α-helical peptides, 

comprising the backbone sequence (LLKK)2, with the ability to kill drug-

susceptible and drug-resistant M. tuberculosis. The addition of free sulfhydryl 

(thiol) groups by incorporating Cys residues in the AMPs did not improve 

anti-mycobacterial activity against drug-susceptible and drug-resistant M. 

tuberculosis, while the enhancement of peptide hydrophobicity by 

incorporation of Met residues increased the efficacy of the primary peptide 

against all mycobacterial strains tested, including clinically isolated MDR M. 

tuberculosis. The peptide with the optimal composition M(LLKK)2M was 

bactericidal, and eradicated mycobacteria via a membrane-lytic mechanism. 

Furthermore, a reduction in α-helical character for C(LLKK)2 was found to 

unfavourably impact peptide-drug synergistic interactions. These preliminary 

findings suggest that several key physicochemical parameters, namely 

hydrophobicity and α-helicity, are critical determinants of anti-mycobacterial 

activity, thus warranting further investigation.  

 

In this chapter, we set out to systematically evaluate the importance of both 

hydrophobicity and α-helicity in potentiating the anti-mycobacterial 

mechanism of action of AMPs against the mycobacterial cell wall, as well as 

their synergistic activity in combination with rifampicin. A series of six 

synthetic α-helical peptides, designed from the parent peptide (LLKK)2 over a 

range of hydrophobicities, were evaluated for their activity against M. 

smegmatis and eukaryotic cells, with the primary objective of developing 

synthetic analogues with enhanced selectivity. Herein, we provide the first 

report on the modulating effect of hydrophobicity and α-helicity on the 
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antimicrobial mechanisms of synthetic AMPs and their synergism with first-

line antibiotics against mycobacteria. Peptide hydrophobicity was 

experimentally determined using RP-HPLC and changes in secondary 

conformation were assessed by CD spectroscopy. In vitro antimicrobial 

efficacy was evaluated by MIC and synergy chequerboard assays followed by 

cytotoxicity studies against rat RBCs and the murine macrophage RAW 264.7 

cell line. The anti-mycobacterial mechanisms were investigated by membrane 

depolarisation, flow cytometry and FE-SEM. Membrane destruction triggering 

the leakage of cytoplasmic content was examined by dye leakage and ATP 

bioluminescence assays.   

 

 

 

 

 

 

 

 

  



!88!

5.2. Results and discussion 

5.2.1. Peptide design and characterisation  

The interactions between peptides and bacterial membranes are modulated by 

various physicochemical properties including peptide hydrophobicity, charge, 

secondary structure, and amphiphilicity [102, 159]. In order to elucidate the 

influence of hydrophobicity on their antimicrobial activity, synthetic peptides 

were designed with minimal sequence modification to maintain their charges 

and amphiphilicity fairly unaltered. To achieve this, (LLKK)2 was used as a 

framework to systematically modify peptide hydrophobicity by substituting 

amino acids to both the N- and C- terminals to obtain peptides with the 

backbone sequence X(LLKK)2X, where X is a hydrophobic amino acid. Five 

amino acids, Met, Cys, proline (Pro), isoleucine (Ile) and Trp were selected to 

obtain the following peptides: M(LLKK)2M, C(LLKK)2C, P(LLKK)2P, 

I(LLKK)2I and W(LLKK)2W, which will henceforth be referred to as per their 

abbreviated denotations listed in Table 5.1. The C-terminal of all six 

analogues was amidated to improve antimicrobial activity by conferring 

peptides with an extra net positive charge [133, 134]. The fidelity of peptide 

synthesis was confirmed via MALDI-TOF MS and the results are summarised 

in Table 5.1. The close agreement between the measured and theoretical 

molecular weights of the peptides indicates that the compounds were 

synthesised to the desired specifications. The overall hydrophobicity of the 

peptides was measured by their retention time (tR) using RP-HPLC and ranged 

from 15.68 to 24.40 min (Table 5.1). The parent peptide LK without any 

additional amino acid residues recorded the lowest tR of 15.68 min while WW, 

with two extra Trp residues, displayed the greatest hydrophobicity with a 
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corresponding tR of 24.40 min. The ranking of the peptides in terms of 

increasing overall hydrophobicity is as follows: LK < PP < CC < II < MM < 

WW.      

Table 5.1. Amino acid sequence of synthetic cationic α-helical peptide 
analogues and their physiochemical parameters including charge, hydrophobic 
moment, hydrophobicity and helicity.  

 a Measured by MALDI-TOF MS, apparent Mw = [Mw + H]+. 
b The hydrophobic moment (µH) was determined by the Totaliser module of 
Membrane Protein Explorer (MPEx) which uses the experimentally based interfacial 
Wimley-White hydrophobicity scales and is available online at 
http://blanco.biomol.uci.edu/mpex.  
c Retention time as determined by RP-HPLC. 
d % helicity was calculated from ratio of [θ]222/[θ]max using a modified Baldwin 
equation as described in section 4.3.2. 
e An additional dimer peak was observed at m/z 2374.78 for CC. 
 
 
5.2.2. CD spectroscopic study  

The secondary structure of the synthetic peptides in a membrane-like 

environment was studied using CD spectroscopy and the results are 

summarised in Figure 5.2. The peptides adopted α-helical structures in 25 mM 

SDS solution as confirmed by the presence of the double minima at ~208 and 

222 nm. Generally, the addition of amino acids to both the N- and C- 

terminals resulted in greater α-helical conformation as determined by a more 

negative mean residue ellipticity value at 222 nm (θ222). Although, the value at 

θ222 is commonly used to determine the degree of helicity of peptides, these 

estimates tend to be less accurate for short helices [160]. Hence, the 

percentage α-helicity of synthetic peptides was calculated using an equation 

Amino acid sequence AMP Theoretical 
Mw 

 

Measured 
Mw

a 
Net 

charge 
µHb tR

c 
(min) 

% 
Helicity

d 
LLKKLLKK-NH2 LK 982.37 983.02 +4 3.69 15.68 9.3 
PLLKKLLKKP-NH2 PP 1176.60 1177.02 +4 3.69 17.80 9.7 
CLLKKLLKKC-NH2 CC 1188.66 1187.51e +4 3.69 20.76 29.3 
ILLKKLLKKI-NH2 II 1208.69 1209.14 +4 3.69 21.63 38.1 
MLLKKLLKKM-NH2 MM 1244.76 1245.18 +4 3.69 21.69 35.4 
WLLKKLLKKW-NH2 WW 1354.79 1355.15 +4 3.69 24.40 25.1 
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described by Baldwin and subsequently modified by Fairlie, given by the ratio 

of θ222/θmax, and θmax is calculated using the following equation:  

θVSq = $ −44000$ + $250T 1 − |
m , where T is the temperature in oC, k is 

the finite length correction and n is the number of peptide residues [161, 162]. 

The θmax for 8 and 10 residue helices is -19500 and -23400 respectively when 

k = 4 and T = 20 oC. The percentage helicity of the peptides is summarised in 

Table 5.1. Of the six, LK and PP were found to possess the lowest α-helical 

contents of about 9%, while the α-helicity of the other four peptides was three 

to fourfold greater. These findings suggest that increasing peptide 

hydrophobicity results in an increase in α-helical structure, and is consistent 

with reports by other research groups [137, 163]. Only PP did not conform to 

this trend as its enhanced hydrophobicity as compared to LK did not improve 

its propensity for α-helical folding. This finding implies that factors other than 

hydrophobicity may be modulating the helical propensity of the Pro 

substituted analogue. One possibility could be that steric hindrance induced by 

the bulky pyrrolidine ring present in Pro residues, gives rise to conformational 

distortion in the preceding helical turn, thus hindering the formation of stable 

α-helices [164, 165]. In addition, the inclusion of Pro in the middle of helices 

or near the C-terminal also causes breakage of adjacent hydrogen bonds and 

premature termination of the helix [166, 167]. Both of these factors could have 

in turn mitigated the effects of increasing hydrophobicity on α-helicity, 

resulting in similar α-helical contents as seen for both LK and PP. 
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Figure 5.2. CD spectra of synthetic peptide analogues displaying 
characteristic double minima at ~208 and 222 nm, confirming their α-helical 
secondary conformations. Data are expressed as the mean of two runs per 
peptide. 
 

5.2.3. In vitro anti-mycobacterial activity  

The antimicrobial activities of the synthetic peptides and rifampicin against M. 

smegmatis determined by the broth microdilution method are summarised in 

Table 5.2. The peptide analogues displayed varying efficacy against M. 

smegmatis with MICs ranging from 62.5 to 250 mg L-1. Overall, hydrophobic 

modifications to LK produced three analogues with improved antimicrobial 

activity while the other two inhibited bacterial growth less effectively. The 

addition of Trp, Met and Ile residues to both the N- and C- terminals enhanced 

the potency of LK, reflected by the decrease in MIC from 125 to 62.5 mg L-1 

for WW, MM and II. While enhancing the hydrophobicity of α-helical 

peptides has been shown to improve antimicrobial activity, high peptide 

hydrophobicity is associated with stronger peptide self-association resulting in 

the formation of dimers/oligomers [136, 137]. Peptide self-association in turn 

correlates with weaker antimicrobial activity since peptide dimers/oligomers 
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are prevented from readily passing through the bacterial cell wall in order to 

reach their target plasma membrane. Therefore, a lack of improvement in the 

MIC of the most hydrophobic peptide, WW, against M. smegmatis could 

possibly be attributed to stronger self-association as compared to the less 

hydrophobic analogues, MM and II. Surprisingly, despite its increased 

hydrophobicity and α-helicity, CC demonstrated poorer anti-mycobacterial 

activity as compared to LK. Since CC is less hydrophobic than MM, II and 

WW, any peptide self-association resulting in dimer/oligomer formation 

should not significantly compromise its activity as compared to the three most 

hydrophobic analogues. Yet it was found to be the least potent analogue, 

which implies that another factor unique to this peptide alone might be 

responsible for this observation. Further discussions on the diminished activity 

of CC will be carried out in Section 5.2.6 together with the flow cytometric 

analysis. As for PP, it is likely that the reduced propensity for helical 

formation observed (Figure 5.2) was responsible for the decrease in 

antimicrobial potency as compared to WW, MM and II. A decrease in α-

helicity by introducing Pro residues into helices has been shown to greatly 

reduce the antimicrobial efficacy and activity spectrum of α-helical peptides 

[168]. Hence, peptide helicity is another important parameter which should be 

given due consideration when looking to design more potent peptides. Even 

though our findings highlight that flanking of both the N- and C-terminals 

with Pro can produce detrimental effects on antimicrobial potency, the 

incorporation of Pro residues in peptides should not be dismissed entirely as 

an ineffective strategy in designing more selective analogues. A recent study 
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found that the careful substitution of Pro residues into peptide sequences can 

reduce cytotoxicity and improve antibacterial selectivity [169].  

Table 5.2. MIC, FICI, and SI values of synthetic peptides against M. 
smegmatis 
Antimicrobial 
agent 

MIC (mg L-1) FIC FICIa HC50 (mg L -1) SIb 

Alone Combination    
LK 
PP 
CC 
II 
MM 
WW 
Rifampicin 

125 
250 
250 
62.5 
62.5 
62.5 
3.90 

62.5 
125 
250 
15.6 
15.6 
15.6 
0.98 

0.5 
0.5 
1.0 

0.25 
0.25 
0.25 
0.25 

0.75 (A) 
0.75 (A) 
1.25 (I) 
0.50 (S) 
0.50 (S) 
0.50 (S) 

- 

>500 
>500 
>500 
>500 
>500 
363 

- 

8 
4 
4 

16 
16 
5.8 
- 

a Antimicrobial interactions were classified as additive (A), indifferent (I) or 
synergistic (S). 
b SI is determined as follows: (HC50/MIC). When no detectable haemolysis was 
observed at the highest tested concentration of 500 mg L-1, a value of 1000 mg L-1 

was used for SI calculations. 
 

5.2.4. Haemolytic activity and cell selectivity 

The haemolytic activities of the synthetic peptides were evaluated using 4% 

(v/v) rat blood as a measure of their toxicity against mammalian cells, and the 

results are summarised in Figure 5.3. The HC50 values, defined as the peptide 

concentration producing 50% haemolysis of rat RBCs, are shown in Table 5.2. 

Except for WW, all the other five peptides exhibited very low haemolysis (≤ 

3%) even up to concentrations of 500 mg L-1. Notably, all six peptide 

analogues induced minimal haemolysis (≤ 3%) at their respective MICs. The 

most hydrophobic peptide, WW, displayed the strongest haemolytic activity of 

~19% and 69% at 250 and 500 mg L-1, respectively. This corresponded to a far 

lower HC50 value of 363 mg L-1 for WW as compared to the other peptides (> 

500 mg L-1). While the modulating effect of hydrophobicity on the haemolytic 

activity of the peptides was evident, the contribution of α-helicity was far less 

apparent. The two most helical peptides, MM and II, were minimally 
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haemolytic even at 500 mg L-1, suggesting that hydrophobicity, rather than 

helicity, was more likely the driving force behind the enhanced haemolytic 

activity observed for WW. Previous studies examining the membrane 

permeability of electrically neutral POPC vesicles treated with peptide 

analogues of varying hydrophobicity have also shown that increasing 

hydrophobicity produced a greater degree of haemolysis [140, 170]. This 

phenomenon was attributed to the zwitterionic nature of eukaryotic 

membranes, which facilitates deeper penetration of more hydrophobic 

peptides thus inducing greater pore formation and consequently, stronger 

haemolysis.  

 

Figure 5.3. Haemolytic activity of synthetic α-helical peptides against rat 
RBCs following 2 h treatment. All peptides except WW induced minimal 
haemolysis up to 500 mg L-1. Data expressed as mean ± S.D. for two 
independent experiments. 
 

The selectivity indices (SIs) shown in Table 5.2, defined as the ratio of HC50 

to MIC values, serve as a measure of antibacterial selectivity, with larger SI 

values indicative of greater selectivity towards microbial over mammalian 
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membranes. MM and II proved to be the best analogues (SI = 16), while the 

most hydrophobic analogue, WW, had a lower selectivity index as compared 

to LK. Previous studies have also shown that increasing peptide 

hydrophobicity may decrease antimicrobial selectivity of α-helical peptides 

[158, 171]. However, the findings presented in this study suggest that a 

moderate increase in peptide hydrophobicity can translate into better 

selectivity, as seen for MM and II, but further increments could produce 

deleterious effects on peptide selectivity, as observed for WW.   

 
5.2.5. Cytotoxic effect of peptides on macrophages  

The cytotoxicity of the peptides against mammalian cells was further 

evaluated against RAW 264.7 macrophage cells and the results are shown in 

Figure 5.4. LK, PP and II were found to be the least cytotoxic analogues with 

cell viabilities in excess of 85% even up to concentrations of 250 mg L-1. The 

most hydrophobic analogue, WW, was also the most cytotoxic, recording the 

greatest reduction in cell viability from 92.3 to 13.2% with an increase in 

concentration from 3.95 to 250 mg L-1. At MIC levels (62.5 mg L-1), 

approximately 50% of the cells treated with WW remained viable, whereas for 

MM and II, which also had similar MICs, cell viabilities were higher at 77.9% 

and 98.5%, respectively. Similar to the trends observed with regards to their 

haemolytic activities, hydrophobicity was found to be a more significant 

contributor towards cytotoxicity than the α-helical character of the peptides. 

This observation is in line with previous findings reported by Jacob et al. who 

also found that increasing the hydrophobicity of α-helical peptides induced 

greater cytotoxicity against RAW 264.7 cells [172]. Interestingly, despite its 

superior hydrophobicity and helicity, the Ile substituted analogue II possessed 
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a comparable cytotoxicity profile to LK even up to 250 mg L-1. Though the 

hydrophobic and helical characters of MM and CC were comparable to II, 

both were found to be more toxic towards mammalian cells with 80% cell 

viabilities even at 15.6 mg L-1. Given that macrophages are potentially major 

reservoirs for mycobacteria during pulmonary TB infection, the incorporation 

of Ile as compared to other hydrophobic amino acids such as Met, Cys and 

Trp, may be a more suitable when designing potent peptides with reduced 

cytotoxicity against mammalian cells.  

 

Figure 5.4. Cytotoxicity profiles of the synthetic α-helical peptides against the 
mouse macrophage cell line RAW 264.7 after exposure for 24 h treatment. 
WW was found to be the most toxic analogue of all six peptides tested. Data 
expressed as mean ± S.E.M. for three independent experiments. 

 

5.2.6. Flow cytometry  

To investigate the extent of membrane disruption induced by the peptide 

analogues, M. smegmatis was treated with all six peptides in the presence of 

the DNA intercalating agent PI. Peptide-mediated destruction of the bacterial 

membrane is expected to facilitate the intracellular diffusion of PI and the 

proportion of bacterial cells fluorescently stained by PI following incubation 
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with peptides at various concentrations (62.5, 125 and 250 mg L-1) is 

summarised in Figure 5.5. First-line anti-tubercular agents, rifampicin and 

ethambutol, served as negative controls given that they target DNA-dependent 

RNA polymerases and arabinosyl transferases, respectively, rather than the 

mycobacterial membrane directly. Both drugs resulted in staining of 

approximately 1% of bacterial cells at 1x, 2x and 4x MIC implying that 

mycobacterial membrane integrity remained largely uncompromised (Figure 

5.5b). Notably, > 99% of cells treated with LK and PP did not present any 

fluorescent signal even up to concentrations of 250 mg L-1, indicative of intact 

bacterial cell membranes. This implies that the anti-mycobacterial mechanism 

of action of both these peptides could be different from that of the other 

peptides. In contrast, treatment with the three most hydrophobic peptides, 

WW, MM and II resulted in a significant concentration dependent increase in 

proportion of bacterial cells taking up the fluorescence dye. At concentrations 

equivalent to MIC, 63.8%, 88.3% and 84.0% of cells were stained with PI 

following treatment with WW, MM and II, respectively. The stronger 

membrane-permeabilising capacity of these peptide analogues could be 

attributed to their higher hydrophobic and α-helical character as compared to 

LK and PP. Additionally, we found that helicity was more closely correlated 

to PI uptake as compared to hydrophobicity (Figure 5.5c). This suggests that 

the folding of the synthetic peptides into amphipathic structures was necessary 

for the penetration of peptides into the hydrophobic core and subsequent 

disruption of the lipid bilayer in bacterial cell membranes.  
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Figure 5.5. Flow cytometric analysis of the mycobacterial cell membrane-
permeabilising properties of (a) synthetic α-helical peptides (b) first-line drugs 
ethambutol and rifampicin. WW, MM and II induced significant membrane 
damage as shown by the greater uptake of PI into bacterial cells as compared 
to CC, PP and LK. Negligible PI uptake into bacterial cells after treatment 
with ethambutol and rifampicin confirmed the absence of rapid membrane-
targeted mechanism of action. MIC of ethambutol and rifampicin was 0.5 and 
3.90 mg L-1 respectively. Data expressed as mean ± S.D for three independent 
experiments. (c) Correlation of PI uptake and peptide hydrophobicity (■) or 
helicity (●) with R2 values of 0.6945 and 0.9683 respectively. CC was 
excluded from the analysis due to the formation of dimers.  
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As for CC, only 6% of cells were stained with PI even up to concentrations of 

250 mg L-1. A plausible explanation for this observation could be the 

dimerisation/oligomerisation of CC monomers, driven not by self-association, 

but by the oxidation of reactive sulfhydryl groups present in Cys residues. 

MALDI-TOF MS analysis covering up to 10,000 Da confirmed the formation 

of dimers as a distinct peak was observed at m/z 2374.78 (Figure 5.6), 

however no oligomer formation was observed. It is likely that these CC dimers 

are prevented from readily penetrating the mycobacterial cell wall to reach the 

target cytoplasmic membrane, thus reducing its antimicrobial efficacy. 

 

Figure 5.6. MADLI-TOF mass spectra of CC displaying a distinct peak at m/z 
2374.78, indicating possible dimerisation of CC monomers due to the 
presence of reactive sulfhydryl groups.  
 

5.2.7. Synergistic antimicrobial interactions 

Given that combinatorial drug regimens are the cornerstone of successful anti-

tubercular chemotherapy, the potential for synergistic interactions between the 

peptides and rifampicin was assessed by the chequerboard assay. As shown in 

Table 5.2, none of the six synthetic peptides demonstrated antagonistic 
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activity when treated in combination with rifampicin. The three most effective 

peptides WW, MM and II exhibited synergism with a FICI of 0.5 against M. 

smegmatis while LK and PP both displayed an additive effect with rifampicin 

(FICI of 0.75). The combination of CC and rifampicin was interpreted as 

indifferent with a FICI value greater than 1. The mechanism behind this 

observed synergism could be attributed to the membrane-permeabilising 

activity of peptides that compromises membrane integrity. This in turn allows 

for the increased uptake of rifampicin into the cells and enhances its 

accessibility to intracellular targets [145, 146]. As such, peptides with superior 

membrane-disrupting properties would be expected to better facilitate the 

cytoplasmic entry of rifampicin and consequently demonstrate stronger 

synergistic interactions. The flow cytometric analysis revealed that LK and PP 

possessed poor membrane-permeabilising activity (Figure 5.5a), which lends 

support as to why they were additive with rifampicin while WW, MM and II, 

synergistic. Due to their lower hydrophobic and α-helical propensity, LK and 

PP possessed weaker membrane disrupting properties and hence, a higher 

concentration of these two peptides was required to inhibit bacterial growth as 

compared to WW, MM and II (62.5 and 125 versus 15.6 mg L-1) when co-

administered with the same amount rifampicin (0.98 mg L-1).  

 

5.2.8. Antimicrobial mechanisms  

The ability of the peptides to perturb the phospholipid bilayer was investigated 

by determining the dye leakage from calcein-loaded LUVs composed of 

PE/PG lipids (4:1). As shown in Figure 5.7, II induced calcein release from 

the bacterial membrane-mimicking vesicles in a concentration- and time-
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dependent manner. As compared to LK, ≥ 4 fold increment in dye leakage was 

observed for II at all concentrations tested. The more hydrophobic and helical 

nature of II, in comparison to LK, is likely responsible for its stronger 

membrane-permeabilising properties. This in turn translated into improved 

anti-mycobacterial efficiency, evident from the lower MIC and FICI values 

seen for II (Table 5.2). These results are supported by previous findings that 

compounds inherently more injurious to membranes, as ascertained by dye 

leakage assays, also tend to possess enhanced antimicrobial activities [173].  

 

Figure 5.7. Concentration- and time-dependent dye leakage from PE/PG 
vesicles following antimicrobial peptide treatment. II induced greater leakage 
as compared to LK, representative of its superior membrane-disrupting 
properties. Data are expressed as mean ± S.D. for two independent 
experiments. 
 

Based on the MIC, FICI, and SI values, and cytotoxicity profiles of the 

synthetic peptide analogues, II possessed the greatest potential for practical 

applications and hence, was selected for further evaluation of its antimicrobial 

mechanisms of action against M. smegmatis. The surface morphology of M. 

smegmatis was visualised by scanning electron microscopy following 

incubation with II at 4x MIC for 2 h, and compared to controls treated with 
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PBS. The untreated bacterial cells had regular, smooth surfaces and remained 

visibly intact without any extracellular debris (Figures 5.8a and b). Cells 

treated with II however, had suffered significant structural changes. Compared 

to the control, cells exposed to II possessed extensively rough, corrugated 

surfaces covered with irregular debris (Figures 5.8c and d). The significant 

cell surface damage induced by lethal doses of II provides evidence of the 

membrane-targeted mechanism of action of this peptide. 

 

Figure 5.8. SEM micrographs of M. smegmatis treated with PBS for 2 h, 
imaged at magnifications of (a) 7500× and (b) 18000×. Cells were incubated 
with II at 4x MIC for 2 h and similarly image at magnifications of (c) 7500× 
and (d) 18000×. Untreated cells presented with smooth surfaces while peptide 
treatment induced damage to the cell surface. 
 

This proposed mechanism was further investigated by examining the ability of 

II to depolarise the cytoplasmic membrane of M. smegmatis using the 

membrane potential sensitive dye diS-C3-5. As diS-C3-5 partitions into the 

cytoplasmic membrane, its fluorescence is self-quenched due to the polarised 
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membrane surface. Subsequent exposure to pore-forming or membrane-

disrupting peptides will dissipate the membrane potential, resulting in the 

release of diS-C3-5 into the medium [174]. Fluorescence recovery is then 

measured by spectrofluorometry and is indicative of the extent of membrane 

potential reduction. As seen in Figure 5.9, there was a rapid, concentration-

dependent surge in fluorescence intensity upon the addition of II to M. 

smegmatis. Cells exposed to II at 4x and 8x MIC produced an instantaneous 

increase in fluorescence signals while those treated with II at 1x MIC showed 

gradual dissipation of membrane potential instead.     

 

Figure 5.9.  Dissipation of cytoplasmic membrane potential following 
treatment of M. smegmatis with II at 1x, 4x and 8x MIC. Membrane 
depolarisation, monitored by fluorescence recovery of diS-C3-5, was 
immediate at 4x and 8x MIC.  

 

Membrane destruction leading to loss of barrier function would result in the 

depletion of intracellular stores of critical components. As such, extracellular 

ATP levels following exposure of M. smegmatis to supra and sub-inhibitory 

concentrations of II were assessed and the findings are summarised in Figure 

5.10. The peptide induced concentration-dependent release of ATP from 
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bacterial cells after 2 h, with no detectable ATP at concentrations below 15.6 

mg L-1. At 4x and 8x MIC, the amount of ATP released was 106 and 132 nM 

respectively, an increase of approximately three to fourfold as compared to 

ATP concentrations at MIC (33 nM).  

 

Figure 5.10. Extracellular ATP release in a concentration-dependent manner 
after exposure of M. smegmatis to II for 2 h. Peptide-induced membrane 
damage is accompanied by leakage of intracellular content due to 
compromised membrane integrity. Data expressed as mean ± S.E.M. for three 
independent experiments. 
 

To determine if the bactericidal activity of the peptides is associated with ATP 

release and membrane depolarisation, killing efficiency assays were 

performed for II at the relevant concentrations. As shown in Figure 5.11, 

100% reduction in bacterial load was observed at 2x, 4x and 8x MIC while in 

contrast, II was only bacteriostatic at its MIC, with < 1 log reduction in final 

CFU counts as compared to the initial inoculum. These findings suggest that 

the bactericidal activity of II is possibly mediated through disruption of the 

mycobacterial cytoplasmic membrane, with high levels of ATP release and 

dissipation of membrane potential, in a concentration-dependent manner.     
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Figure 5.11.  Plot of viable CFU after treatment of M. smegmatis with various 
concentrations of II. 100% reduction in bacterial burden was observed at 2x, 
4x and 8x MIC, suggestive of a bactericidal mechanism of action at these 
concentrations. Data expressed as mean ± S.E.M. for three independent 
experiments.  
 

Taken together, our results highlight that the bacterial membrane is the main 

target site of the synthetic cationic α-helical peptide, II. Flow cytometric 

analysis revealed that the formation of helical structures is crucial for rapid 

pore or channel formation, in agreement with previously published works 

[159]. Though active against mycobacteria, LK and PP did not induce 

significant membrane permeabilisation, suggesting that they may either act via 

non-membrane lytic mechanisms or that the duration of drug exposure was 

insufficient to cause appreciable membrane damage. WW, MM and II, 

however, rapidly permeabilised the mycobacterial membrane, enabling the 

free diffusion of PI into the cytoplasm. Concomitantly, peptides induced 

immediate dissipation of the cytoplasmic membrane potential, accompanied 

by leakage of intracellular components as quantified by the ATP 

bioluminescence assay, eventually leading to cell death. Furthermore, SEM 

analysis revealed that the peptides possessed strong membrane-disrupting 
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properties while calcein leakage from LUVs was reflective of their ability to 

permeabilise the lipid bilayer, resulting in the loss of intracellular contents.  

 

5.3. Conclusions 

In this study, six synthetic peptide analogues with varying hydrophobicity and 

helical propensities were assessed for their potency against M. smegmatis, and 

toxicities towards eukaryotic cells. Hydrophobic modifications produced three 

analogues, WW, MM and II with improved anti-mycobacterial activity. 

Increasing peptide hydrophobicity/helicity induced greater membrane 

perturbation as shown by the significant PI uptake as compared to controls 

during flow cytometry assays. Furthermore, the three most hydrophobic 

peptides were found to interact synergistically with rifampicin, potentially 

mediated by enhanced intracellular access of the drug. Amongst the six, II (the 

Ile substituted peptide) was selected for elucidation of anti-mycobacterial 

mechanisms, given its superior selectivity index and safer toxicity profile 

against macrophage cells. This peptide was shown to primarily target the 

plasma membrane, acting rapidly in a concentration-dependent manner, and 

exhibiting bactericidal activity at ≥ 2x MIC. II induced instantaneous 

membrane depolarisation, damaged structural integrity of the membrane and 

caused the leakage of cellular contents within 2 h. These findings serve to 

deepen our understanding of the modulating effect of hydrophobicity/helicity 

on the anti-mycobacterial mechanisms of action and demonstrate the 

applicability of strategies employed here for the rational design of AMPs with 

the aim of improving cell selectivity and synergistic interactions when co-
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administered with first line antibiotics in the fight against drug-resistant 

tuberculosis. 
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CHAPTER 6: Unnatural amino acid analogues of membrane-active 

helical peptides with enhanced anti-mycobacterial selectivity and 

improved stability 

6.1. Introduction 

Various virulence strategies have been implicated in the persistence and 

survival of microbes during chronic infections, including the secretion of 

proteinases to facilitate tissue invasion, evade host defences and modulate host 

immune responses [175]. Natural HDPs are essential components of the innate 

immune response, and contribute towards the first line of defence against 

invading pathogens [176]. Therefore, unsurprisingly, the inactivation of 

antimicrobial proteins and peptides by microbial proteases could serve as 

crucial means of overcoming host defence mechanisms. This is supported by 

evidence that the human cathelicidin LL-37 was rapidly degraded by 

proteinases of P. aeruginosa, E. faecalis, Proteus mirabilis and Streptococcus 

pyogenes, which resulted in loss of antibacterial activity [177]. LL-37 was also 

found to be inactivated by staphylococcal aureolysin, leading to diminished 

anti-staphylococcal activity [178]. Thus, the production of extracellular 

proteases can contribute towards bacterial resistance against HDPs. 

 

AMPs have gained prominence over the past few decades as a promising class 

of therapeutics due to their potent broad activity spectrum encompassing both 

drug-susceptible and drug-resistant pathogens [24]. However, the transition of 

AMPs from bench to bedside has largely been hindered by their susceptibility 

to enzymes in biological fluids and degradation by bacterial proteases, 

resulting in short half-lives and loss of antimicrobial properties [26]. Several 
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strategies have been employed to enhance AMP stability including the 

incorporation of unnatural amino acids, N- and/or C-terminal modifications, 

cyclisation, inclusion of non-peptidic backbones (peptidomimetics), and 

multimerisation of AMP monomers to form dimers, oligomers and dendrimers 

[26]. Previously, D-enantiomers were studied to determine the influence of 

peptide chirality on function, and the importance of stereospecific interactions 

with enzymes, receptors or lipids in membranes [179, 180]. While both L- and 

D-enantiomers of peptides emerged equally active, suggesting a lack of 

specific peptide-receptor interactions, the latter were more resistant to trypsin 

degradation [181]. This in turn translated into longer half-lives in vivo, 

reinforcing their potential as therapeutic candidates.  

     

Increasing evidence suggests that incorporation of D-amino acids not only 

confers protection against proteolysis by trypsin, but also enhances stability 

against bacterial proteases, thus rendering peptides more active. While the all 

L-amino acid analogue of M33 underwent proteolysis by staphylococcal 

aureolysin within 1 h, the D-amino acid analogue remained unchanged even 

after 24 h of treatment, which in turn translated into superior in vitro and in 

vivo activity for the D-isomer against S. aureus [182]. Similarly, specific D-

amino acid substitutions were also found to enhance stability towards P. 

aeruginosa elastase, staphylococcal V8 protease and aureolysin [183]. 

Recently, the D-enantiomer of a lactoferricin-derived peptide demonstrated 

better inhibitory activity against M. avium in comparison to the L form, likely 

due to higher resistance to proteases [184].  
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M. tuberculosis is also known to secrete enzymes such as proteases, lipases, 

esterases, and dehydrogenases, which contribute towards its pathogenicity and 

persistence in the host [185]. As such, the above mentioned strategy of 

incorporating unnatural amino acids into peptide sequences could potentially 

be exploited to develop more selective anti-mycobacterial peptides. One study 

in particular demonstrated that D-enantiomeric forms of AMPs, including the 

all D-analogue of LL-37, were found to inhibit growth of H37Rv to a greater 

extent than the L-enantiomers [158]. However, there are limited reports 

systematically evaluating the impact of various stability-enhancing 

modifications on the anti-mycobacterial activity of synthetic AMPs.  

 

In Chapter 5, N- and C-terminal capping of short amphipathic α-helical anti-

mycobacterial peptides evaluated in Chapter 4, with hydrophobic residues 

revealed the importance of both hydrophobicity and helicity on the anti-

mycobacterial activity, with I(LLKK)2I emerging as the most selective 

peptide. These synthetic α-helical peptides primarily targeted the 

mycobacterial membrane, inducing rapid membrane permeabilisation and 

depolarisation, resulting in leakage of intracellular contents. In this chapter, 

the effect of various unnatural amino acid substitutions on the anti-

mycobacterial properties and stability of the peptide, I(LLKK)2I, were 

investigated. Peptide secondary structures were assessed by CD spectroscopy, 

while cytotoxicity was evaluated against human RBCs and the murine 

macrophage RAW 264.7 cell line. Antimicrobial activities were studied 

against a panel of six mycobacterial strains using the broth microdilution 

method. The stability of the modified peptides was also evaluated against the 



!111!

serine protease trypsin. Since M. tuberculosis is a major intracellular 

pathogen, the ability of peptides to activate macrophages and eliminate 

intracellular mycobacteria was also examined. Finally, the in vitro anti-

mycobacterial mechanisms were studied using CLSM and time-lapse 

fluorescence microscopy. 
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6.2. Results and discussion 

6.2.1. Peptide design and characterisation 

In this study, systematic substitutions with unnatural or D-amino acids were 

performed in an attempt to design synthetic analogues with improved stability 

and selectivity indices. The Ile substituted analogue, I(LLKK)2I or II, which 

emerged as one of the most selective peptides against mycobacteria in Chapter 

5, served as a framework for these structural modifications. To maintain 

sequence identity and structural integrity of the optimised lead peptide, the 

two main modifications involved (a) swapping all L-amino acid with D-amino 

acid residues and (b) substitution of Lys residues with Lys analogues 

possessing shorter side-chains including ornithine (Orn), 2,4-diaminobutyric 

acid (Dab) or 2,3-diaminopropionic acid (Dap). The C-terminal of all 

synthetic analogues was amidated to improve anti-mycobacterial activity by 

increasing net positive charge [133, 134]. The sequences and abbreviated 

names of the five synthetic peptides evaluated in this study are listed in Table 

6.1. In order to verify that the peptides were successfully synthesised 

according to the desired specifications, SELDI-TOF MS was performed for 

molecular weight determination. As shown in Table 6.1, the close agreement 

between the theoretical and measured molecular weights of the peptides 

served as confirmation of the fidelity of peptide synthesis.  
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Table 6.1. Design of α-helical peptides modified with unnatural amino acids 
and their molecular weights. 

AMP Peptide sequencea Theoretical 
MW 

Measured 
MW

b 
 [θ]222

c Relative 
helicityd  

II I(LLKK)2I-NH2 1208.67 1209 11290 1.00 
II-D i(llkk)2i-NH2 1208.67 1209 10033 0.89 
II-Orn I(LL-Orn-Orn)2I-NH2 1152.56 1153 11432 1.01 
II-Dab I(LL-Dab-Dab)2I-NH2 1096.70 1097 11081 0.98 
II-Dap I(LL-Dap-Dap)2I-NH2 1040.35 1041 11765 1.04 

a D-amino acids are represented by lower case letters. Ornithine, 2,4-diaminobutyric 
acid and 2,3-diaminopropionic acid are abbreviated as Orn, Dab and Dap 
respectively.  
b Mw determined by SELDI-TOF MS. 
c The mean residue ellipticity values at 222 nm (θ222) were measured in 25 mM SDS 
solution by CD spectroscopy. 
d The helical content of modified peptides relative to the mean residue ellipticity 
values at 222 nm of II. 
 

6.2.2. CD spectroscopic study 

The influence of unnatural or D-amino acid substitutions on the secondary 

conformation of the synthetic peptides was investigated in a membrane-like 

environment consisting of 25 mM SDS micelle solution, and studied using CD 

spectroscopy. The CD spectra of the synthetic peptides are summarised in 

Figure 6.1. The presence of the characteristic absorption bands at ~208 and 

222 nm suggests that all five synthetic peptides adopted α-helical structures in 

25 mM SDS. The replacement of Lys residues with Orn, Dab or Dap, did not 

compromise the helical structure of peptides, evident from the comparable 

relative helicities and mean residue ellipticity values at 222 nm (θ222) as 

shown in Table 6.1. As expected, II-D exhibited a CD spectrum of opposite 

sign to that of II, though not an exact mirror image. II-D recorded a lower 

absolute θ222 value than II (10033 versus 11290), indicative of a slight 

reduction in α-helical conformation. Since, D-allo-Ile was utilised during 

peptide synthesis, the observed differences in CD ellipticity at 222 nm could 

be attributed to II and II-D being diastereomers, rather than enantiomers of 
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each other [186]. 

 

Figure 6.1. CD spectra demonstrating α-helical secondary conformations of II 
and its synthetic analogues with unnatural amino acid substitutions in 25 mM 
SDS micelle solution. Data are expressed as the mean of three runs per 
peptide. 
 

6.2.3. In vitro anti-mycobacterial activity 

The antimicrobial activities of the synthetic helical peptides were evaluated by 

the broth microdilution method against a panel of six mycobacterial strains 

and the results are summarised in Table 6.2. Overall, structural modifications 

with unnatural or D-amino acids were effective in producing analogues with 

improved anti-mycobacterial activities. A two to fourfold reduction in the GM 

of the MICs was observed for the modified peptides as compared to II. 

Importantly, three of the synthetic peptides displayed a fourfold reduction in 

MIC in comparison to II against the MDR clinical isolate CSU87. The 

replacement of Lys with Orn proved least effective, with II-Orn demonstrating 

similar activity as II against 50% of the mycobacterial strains tested. This 

analogue was more active against only two of the six strains, while 

replacement of Lys with Dab and Dap resulted in a decrease in MICs against 
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five and four of the six strains, respectively. The all D-amino acid analogue 

exhibited superior efficacy as compared to II against all six mycobacterial 

strains, which translated into a fourfold reduction in the GM of its MICs.  

 
Table 6.2. MICs and SIs of helical peptides against various mycobacterial 
strains including drug-susceptible and MDR clinical isolates of M. 
tuberculosis  
AMP 
 

MICa (mg L-1) GMb  
(mg L-1) 

HC50 
(mg L-1) SIc 

BCG H37Rv Mtb 
173 

Mtb 
212 

Mtb 
411 

CSU87    

II 125 500 >500 >500 250 250 397 >1000 5 
II-D 31.3 250 125 250 62.5 62.5 99 >1000 20 
II-Orn 62.5 >500 >500 500 250 250 354 >1000 6 
II-Dab 31.3 >500  500 500 62.5 62.5 177 >1000 11 
II-Dap 62.5 >500 > 500 500 62.5 62.5 223 >1000 9 
Rifampicin 0.001 0.015 0.008 0.004 0.002 >32 0.004 - - 
a MIC results are representative of 2 to 3 independent experiments. 
b The geometric mean (GM) of the MICs against the 6 mycobacterial strains. A value 
of 1000 mg L-1 was used for GM calculations when no anti-mycobacterial activity at 
observed at the highest tested concentration of 500 mg L-1. 
c SI is determined as follows: (HC50/GM). When no detectable haemolysis was 
observed at the highest tested concentration of 1000 mg L-1, a value of 2000 mg L-1 
was used for SI calculations. 
 
We had previously reported in Chapter 5 that both hydrophobicity and folding 

of peptides into amphipathic helical structures was crucial for inducing 

mycobacterial membrane permeability and augmenting anti-mycobacterial 

activity. Given that II and II-D are diastereomers of each other, their amino 

acid composition, charge, molecular weight, amphiphilicity and in turn 

hydrophobicity is expected to be similar. However, the lower relative helicity 

of 0.89 for II-D (Table 6.1), as compared to II, would be expected to 

compromise its activity, but the converse was true. The reduced 

hydrophobicities of II-Orn, II-Dab and II-Dap relative to that of II, also did not 

translate into reduced activities. This suggests that factors unrelated to the 

physiochemical properties of the peptides may also be responsible for the 

observed differences in anti-mycobacterial efficacy of the synthetic peptides. 

A plausible explanation is that the structural modifications employed in this 
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study could potentially have enhanced peptide stability to extracellular 

proteolytic enzymes of M. tuberculosis, in turn rendering them more active 

against the pathogen. M. tuberculosis culture filtrates containing proteases 

were found to diminish the anti-tubercular activity of the L- rather than D-

enantiomer of peptides, with the latter demonstrating greater resistance to 

degradation, evident from the significantly higher recovery as compared to the 

L-enantiomer (89% versus 26%) after 7 days exposure [158]. These findings 

suggest that stability-enhancing modifications such as the incorporation of 

unnatural amino acids may be crucial to developing AMPs with superior 

efficacies against slowly-replicating bacilli such as M. tuberculosis. 

 

6.2.4. Haemolytic activity, cytotoxicity and cell selectivity  

The haemolytic activities of the synthetic peptides were evaluated using 4% 

(v/v) human blood from two healthy adult donors and the results are 

summarised in Figure 6.2a. Even at the highest tested concentration of 1000 

mg L-1, all five peptides displayed minimal haemolysis of approximately 2%. 

The HC50 values, defined as the lowest peptide concentration resulting in 50% 

haemolysis of RBCs, of all five peptides was found to be >1000 mg L-1 (Table 

6.2). Similar observations were also made with respect to the cytotoxicity of 

the peptides against the murine macrophage cell line, RAW 264.7. As 

highlighted in Figure 6.2b, cell viabilities remained in excess of 80% even at 

concentrations of 250 mg L-1 following 24 h exposure to synthetic peptides. 

Importantly, none of the modifications produced analogues of II with an 

inferior toxicity profile against mammalian cells. The SIs highlighted in Table 

6.2, defined as the ratio of HC50 to GM MIC values, are often utilised to 
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identify analogues with superior antibacterial selectivity. The D-amino acid 

analogue of II emerged as the most selective for mycobacterial over 

mammalian cells, with a SI value of 20. This was fourfold greater than that of 

II and approximately 1.8 and 2.2 times higher than that of II-Dab and II-Dap, 

respectively. Since larger SI values are deemed as more desirable, the 

strategies presented in this study could therefore prove useful in designing 

more selective AMPs to treat M. tuberculosis infections.  

 

Figure 6.2. Toxicity profiles of synthetic peptides modified with unnatural 
amino acids against (a) human red blood cells and (b) the mouse macrophage 
cell line RAW 264.7. (c) Viability of RAW 264.7 cells after 4 days of 
treatment with II-D. Peptides displayed minimal haemolytic activity and 
cytotoxicity against mammalian cells at various concentrations tested. Data 
are expressed as mean ± S.D. for two independent experiments. 
 
6.2.5. Resistance to protease degradation  

A major barrier limiting the clinical application of AMPs is their susceptibility 

to protease degradation in biological fluids [26]. Trypsin specifically cleaves 

the C-terminal of both Lys and Arg, thus, peptides containing these cationic 

residues are likely to be rendered inactive. We therefore assessed the stability 
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of the Lys-rich II and its unnatural amino acid substituted analogues by pre-

treating the peptides with trypsin before evaluating their antimicrobial 

activities against BCG using the standard broth microdilution method. As 

shown in Figure 6.3, all five peptides inhibited bacterial growth after 7 days 

when no prior treatment with trypsin was performed. However, following pre-

treatment with trypsin, the antimicrobial activity of only II was lost while that 

of the other four modified peptides was preserved. The modifications to II not 

only produced analogues with superior mycobacterial selectivity (Table 6.2), 

but also conferred protection against the serine protease trypsin, enhancing 

their clinical utility.  

 

Figure 6.3. Inhibitory activity of synthetic peptides against BCG at 
concentrations of 4x MIC following 6 h treatment with trypsin at a ratio of 
1:100. Only the unmodified peptide, II, did not inhibit bacterial growth after 7 
days. Data are expressed as mean ± S.D. for two independent experiments. 
6.2.6. In vitro and intracellular killing efficiency  

The D-amino acid analogue of II was not only more resistant to enzymatic 

degradation, but also exhibited the highest SI of all peptides evaluated in this 

study. Hence, II-D was evaluated for its in vitro killing efficiency against 

laboratory strain H37Rv, the drug-susceptible clinical isolate Mtb 411, and the 
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MDR clinical isolate CSU87. II-D displayed killing efficiencies of > 90% at 

the respective MICs for all three strains (Figure 6.4). At 2x the respective MIC 

values, II-D killing efficiency was > 99% against both H37Rv and CSU87 and 

> 97% against Mtb 411.  

 

Figure 6.4. Killing efficiencies of antimicrobial peptide II-D against (a) 
H37Rv, (b) Mtb 411 and (c) CSU87 following treatment for 7 days at various 
concentrations. Data are expressed as mean ± S.D. for two independent 
experiments. 
 
The intracellular activity of II-D was subsequently evaluated against both 

drug-susceptible and MDR clinical isolates of M. tuberculosis during 

macrophage infection, at concentrations corresponding to 0.5x, 1x, 2x and 4x 

MIC. The first-line anti-tubercular drug, rifampicin, and second-line 

fluoroquinolone, moxifloxacin, served as controls for Mtb 411 and CSU87, 

respectively. As shown in Figures 6.5a and b, significant reductions in 

intracellular Mtb 411 counts were observed in comparison to untreated 

controls following 4-day treatment with II-D (p < 0.0001) and rifampicin (p < 
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0.001) at the highest concentrations tested. Both II-D and rifampicin 

demonstrated concentration-dependent killing of Mtb 411, although peptide 

treatment was more effective in rapidly eliminating the intracellular pathogen. 

At their respective MICs, rifampicin and II-D reduced bacillary loads within 3 

days by 36% and 84%, respectively. Furthermore, exposure to II-D at 250 mg 

L-1 (4x MIC) resulted in approximately 1 log reduction of intracellular 

bacterial burden by days 3 and 4 (Figure 6.5a). This effect was less 

pronounced with rifampicin as bacterial counts decreased by 66% and 70% on 

days 3 and 4, respectively, even up to concentrations corresponding to 8x MIC 

(0.016 mg L-1). Similarly, significant reductions in intracellular CSU87 counts 

were observed after 4 days in comparison to untreated controls for both II-D 

(p < 0.001) and moxifloxacin (p < 0.0001) at the highest concentrations tested. 

II-D brought about a 62% decrease in bacterial load within 4 days, even at 

sub-MIC of 31.3 mg L-1 (Figure 6.5c). II-D was also more effective than 

moxifloxacin in clearing intracellular CSU87 at equivalent concentrations of 

1x, 2x and 4x MIC (Figure 6.5d). Given that II-D demonstrated minimal 

toxicity towards RAW 264.7 macrophage cells after 4 days, with a cell 

viability of 75% even up to concentrations of 250 mg L-1 (Figure 6.2c), the 

observed reductions in intracellular mycobacterial load were a direct 

consequence of peptide treatment rather than cytotoxic effects on 

macrophages. Overall, these findings reinforce the applicability of AMPs for 

the treatment of intracellular pathogens such as M. tuberculosis. 
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Figure 6.5. Intracellular killing of the drug-susceptible clinical isolate Mtb 
411 by (a) antimicrobial peptide II-D and (b) rifampicin, and the MDR clinical 
isolate CSU87 by (c) antimicrobial peptide II-D and (d) moxifloxacin. Data 
expressed as mean ± S.D. and are representative of two independent 
experiments. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).  
 
 
6.2.7. In vitro and intracellular antimicrobial mechanisms  

The bactericidal activity of AMPs is largely mediated by non-specific 

membrane-lytic mechanisms, which induce pore formation and/or membrane 

destruction, leading to membrane depolarisation and outflow of cytoplasmic 

contents [22]. In this study, the antimicrobial mechanisms of II-D were 

investigated against BCG using microfluidic live-cell imaging by employing 

the CellASIC™ ONIX Microfluidic Platform. Bacterial cells were treated with 

peptides at 4x and 8x MIC, in the presence of the DNA intercalating dye PI 

for up to 4 h. Exposure of BCG to II-D at 4x and 8x MIC resulted in 

fluorescence staining of bacterial cells within 10 min. The uptake of PI was 

concentration-dependent, with ~50% of bacterial cells exhibiting fluorescence 

after 210 min at 8x MIC of II-D (Figure 6.6b) while a much lower proportion 

of cells were stained over the same time period at 4x MIC of II-D (Figure 

6.6a). Since we do not have facilities for live-cell imaging with Hazard Group 
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3 pathogens such as M. tuberculosis, the ability of II-D to compromise the 

membrane integrity of H37Rv and CSU87 was evaluated using flow 

cytometry of fixed cells. As shown in Figure 6.7, exposure of H37Rv to 

rifampicin, and CSU87 to moxifloxacin, for up to 3 h did not induce any 

appreciable uptake of the fluorescent probe. Treatment with II-D at 4x MIC 

however, resulted in the appearance of a new cell population, with PI-positive 

cells accounting for approximately 21% and 40% of the entire H37Rv and 

CSU87 cell populations, respectively (Figures 6.7c and f). Given the 

membrane-impermeant nature of PI, the dye is generally excluded from viable 

cells with intact bacterial membranes. Hence, the observed fluorescence 

provides evidence of the membrane-permeabilising activity of II-D, resulting 

in the loss of membrane integrity which in turn facilitates intracellular 

diffusion and binding of PI to DNA. These findings also reiterate the rapid 

membrane disruption induced by peptides in comparison to first-line anti-

tubercular drugs. Furthermore, II-D demonstrated bactericidal activity at 4x 

and 8x MIC against BCG with a > 2 log reduction in RLU readings after 7 day 

treatment as compared to controls (Figure 6.9a). Taken together, these 

findings suggest that the bactericidal activity of II-D may partly be mediated 

by disrupting the structural integrity of the mycobacterial membrane.   
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Figure 6.6. Time-lapse fluorescence microscopy images of BCG following 
treatment with antimicrobial peptide II-D at (a) 4x MIC and (b) 8x MIC in the 
presence of the membrane-impermeable dye, PI. Peptide-mediated membrane 
disruption promoted uptake of PI into bacterial cells. Scale bar = 10 µm. 
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Figure 6.7. Flow cytometric analysis of the proportion of bacterial cells 
positively stained by the membrane-impermeable dye PI after 3 h exposure to 
different antimicrobials. Controls consisted of (a) H37Rv and (d) CSU87 
treated with media alone. H37Rv was treated with (b) rifampicin and (c) II-D, 
while CSU87 with (e) moxifloxacin and (f) II-D at 4x MIC concentrations. II-
D induced a significant shift in the percentage of H37Rv and CSU87 taking up 
PI, suggestive of membrane permeabilising mechanisms of action. The levels 
of PI uptake for negative controls, rifampicin and moxifloxacin, were similar 
to that of media. Data are representative of three independent experiments. 
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Increasingly, the ability of AMPs to modulate the host innate immunity has 

been explored as an alternative strategy for effective infection control [176]. 

To evaluate the capacity of II-D to modulate host immunity by activating 

macrophages, unstimulated RAW 264.7 cells were treated with up to 250 mg 

L-1 of the peptide for 24 h and pro-inflammatory responses were quantified by 

analysing NO and TNF-α production relative to that of LPS-stimulated 

macrophages. As shown in Figure 6.8, II-D neither induced NO nor TNF-α 

production, suggestive of its inability to effect macrophage activation. Thus, 

the observed intracellular anti-mycobacterial activity of II-D is likely due to 

direct bactericidal mechanisms rather than the induction of secondary pro-

inflammatory responses.  

 

Figure 6.8. The ability of antimicrobial peptide II-D to promote (a) NO and 
(b) TNF-α production in unstimulated RAW 264.7 mouse macrophage cells 
following 24 h treatment. II-D did not induce NO or TNF-α when compared 
to positive controls consisting of cells stimulated with 100 ng mL-1 LPS. Data 
are expressed as mean ± S.D. for two independent experiments. 
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6.2.8. Cellular localisation of II-D  

To ascertain the site of action of II-D, BCG was exposed to FITC-labelled II-

D for 2 h using the CellASIC™ ONIX Microfluidic Platform and its 

localisation was visualised by fluorescence microscopy. FITC-II-D was tested 

at 500 mg L-1 as the killing efficacy against BCG was similar to that of II-D at 

2x MIC (Figures 6.9a and b).  

 

Figure 6.9. Killing efficiencies of antimicrobial peptides (a) II-D and (b) 
FITC-II-D against BCG following treatment for 7 days at various 
concentrations. II-D had killing efficiencies of > 98% and > 99% at 31.3 and 
62.5 mg L-1, respectively, while FITC-II-D had killing efficiencies of > 99% at 
both 250 and 500 mg L-1. Data are expressed as mean ± S.E.M. for three 
independent experiments. 
 

As shown in Figure 5.10a, treatment of BCG with 500 mg L-1 of FITC-II-D 

resulted in peptide accumulation within the cytoplasm as evidenced by the 

bright green fluorescence signal. This was confirmed by CLSM studies with 

mCherry-expressing BCG where the co-localisation of FITC-II-D with the 

cytosolic fluorescence protein mCherry was observed (Figure 6.10b). 

Bacterial cells unaffected by FITC-II-D demonstrated strong red fluorescence 

signal across the entire cell length without any detectable green fluorescence 

peptide signal (Figures 6.10b, 6.11b and c), while peptide penetration into 

bacterial cells resulted in a stronger green than red intracellular fluorescence 

intensity profile along the cell length (Figure 6.11a). This observed reduction 
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in red fluorescence mCherry signal in cells which internalised FITC-II-D was 

likely due to peptide-mediated membrane permeabilisation resulting in 

leakage of cytosolic contents.   

 

Figure 6.10. (a) Fluorescence microscopy images of BCG treated with 500 
mg L-1 FITC-labelled II-D for 2 h using the CellASIC ONIX Microfluidic 
Platform. Scale bar = 10 µm (inset scale bar = 5µm). Confocal microscopy 
images following incubation of 500 mg L-1 FITC-labelled II-D for 2 h with (b) 
BCG-mCherry and (c) BCG in the presence of 2 µg mL-1 membrane dye FM4-
64. Scale bar = 2 µm. 
 

Next, co-labelling studies with the membrane-binding dye FM4-64 in BCG 

revealed that the red FM4-64 signal was predominantly located on the 

bacterial cell surface, and showed the same pattern of staining as the green 

fluorescence of FITC-II-D (Figure 6.10c). Moreover, the fluorescence 

intensity profile of FM4-64 across the cell width matched that of FITC-II-D 
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(Figures 6.11d and e). Previous studies have reported that the cell-penetrating 

peptide, buforin II, accumulates in cytoplasm without inducing the influx of PI 

into bacterial cells, suggestive of a non-membrane permeabilising mode of 

action [187]. Following internalisation, buforin II promotes cell death by 

inhibiting cellular functions through binding strongly to DNA and RNA [188]. 

In contrast, the membrane-permeabilising α-helical peptide magainin II, binds 

to the bacterial membrane, inducing pore formation and promoting the influx 

of PI [187]. In this study, fluorescence and CLSM analysis revealed that II-D 

permeates the mycobacterial cell membrane and accumulated in the cytoplasm 

(Figure 6.10). Additionally, membrane integrity studies with PI provided 

evidence of the membrane-lytic mechanisms of action (Figures 6.6 and 6.7). 

Taken together, the killing mechanisms of II-D could potentially be attributed 

to both pore-formation and targeting of intracellular components. Recently, 

non-membrane lytic, cell-penetrating synthetic AMPs (SAMPs) were reported 

to selectively kill M. smegmatis by binding bacterial DNA and consequently 

inhibiting DNA-dependent processes including replication and transcription 

[189]. Hence, the ability of the membrane-active peptide II-D to interact with 

intracellular targets such as bacterial DNA and RNA warrants further 

investigation.  
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Figure 6.11. Fluorescence intensity profiles of BCG-mCherry along the cell 
length (dashed lines) showing (a) entry of FITC-II-D into the cytoplasm while 
(b) and (c) represent unaffected cells. Fluorescence intensity profiles of BCG 
along the cell width (dashed lines) showing presence of FITC-II-D in the 
bacterial membrane segments (d) and (e). Images were acquired following 2 h 
treatment with 500 mg L-1 of antimicrobial peptide FITC-II-D. Scale bar = 2 
µm. 
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6.3. Conclusions 

In summary, synthetic helical AMPs modified with unnatural amino acids 

demonstrated improved anti-mycobacterial activities and stability to trypsin 

degradation as compared to the all L-amino acid peptide, II. The incorporation 

of D-amino acids proved to be the most effective modification, with the 

diastereomer II-D exhibiting a fourfold increase in SI as compared to II, likely 

due to the enhanced stability to M. tuberculosis proteases. In addition to its in 

vitro inhibitory activity against both drug-susceptible and MDR M. 

tuberculosis, II-D was equally, if not more effective, at clearing intracellular 

mycobacteria than both rifampicin and moxifloxacin at MIC equivalent 

concentrations. Mechanistic studies revealed that the site of action of II-D may 

not be limited to the mycobacterial membrane, but could potentially involve 

intracellular targets following internalisation of the peptide. Overall, these 

findings reiterate the importance of unnatural amino acid substitutions towards 

enhancing protease stability while highlighting their applicability in designing 

AMPs with superior mycobacterial selectivity.  
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CHAPTER 7: Disruption of drug-resistant biofilms using de novo 

designed short synthetic α-helical antimicrobial peptides with idealised 

facial amphiphilicity 

 

7.1. Introduction 

Besides their direct antimicrobial activity, AMPs demonstrate diverse 

immunomodulatory properties including their ability to reduce the production 

of pro-inflammatory mediators in response to bacterial endotoxins [190]. 

Moreover, these multifunctional molecules also effectively inhibit biofilm 

formation and disrupt mature biofilms [191]. Biofilms are structured 

aggregates of microbial cells enclosed within an extracellular polymeric 

substance (EPS) matrix, which adhere to biological or non-biological surfaces 

[192]. Associated with over 65% of all infections, biofilms are involved in 

various device-related infections and chronic infections, including cystic 

fibrosis pneumonia, endocarditis, necrotising fasciitis and musculoskeletal 

infections [191]. These sessile bacterial communities are inherently resistant 

to antimicrobials due to poor drug penetration through the EPS matrix, and the 

existence of subpopulations of stationary phase and persister cells with drug 

tolerant phenotypes [193]. Despite the immense challenges of eradicating 

biofilm-related infections, the antimicrobials being developed are rarely 

evaluated for their anti-biofilm activities. 

 

Over the past few decades, various efforts directed toward understanding the 

structural determinants of AMPs affecting activity, have revealed that the 

clustering of hydrophobic and cationic amino acids into spatially distinct 
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regions is fundamental to the formation of amphipathic structures [21]. 

Building upon these findings, investigations aimed at optimising the 

amphipathic α-helix as a means of enhancing antimicrobial potency uncovered 

that peptides with idealised facial amphiphilicities, comprising of 

uninterrupted hydrophobic and cationic segments, possessed superior 

membrane-targeting activities and in turn enhanced selectivity [172, 194]. One 

such study found that amongst a series of peptides presenting perfectly 

amphipathic helices, the peptide demonstrating optimal antibacterial 

selectivity, LBU2, also had the highest mean hydrophobic moment – a 

measure of amphiphilicity of an α-helix [195]. The otherwise continuous 

hydrophobic face of the LL-23 fragment of human cathelicidin is interrupted 

by a single hydrophilic Ser residue at position 9, creating two amphipathic 

domains [80]. Substitution of Ser9 with either of the hydrophobic residues Val 

or alanine (Ala) creating the uninterrupted hydrophobic surface found in 

primate cathelicidins not only resulted in higher antimicrobial activity due to 

enhanced membrane penetration and depolarisation, but also increased the 

suppression of LPS-induced pro-inflammatory mediators [80]. These findings 

highlight the importance of optimising the facial amphiphilicity of synthetic 

peptides in order to generate more selective lead compounds to be brought 

forward for clinical testing.   

 

A commonality amongst majority of these studies is the adoption of a 

template-based approach, utilising naturally-occurring or synthetic AMPs as a 

starting point, generating helical wheel projections based on their amino acid 

sequences, and subsequently introducing point mutations to achieve idealised 
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facial amphiphilicity. However, these strategies remain largely empirical, 

often entailing multiple steps and requiring several substitutions for structural 

optimisation [106]. Additionally, optimised sequences derived from natural 

AMPs, with high sequence homology to HDPs, could inadvertently 

compromise innate immunity should antimicrobial resistance develop [104]. 

As such, implementing a rational approach in the design of short synthetic 

peptides presenting idealised facial amphiphilicity, and with distinct sequences 

from natural AMPs, could allay these concerns.  

 

In Chapter 4, the repeating sequence (XXYY)n, devised on the basis of 

mimicking the hydrophobic periodicity of natural α-helical AMPs, was 

successfully applied in the development of short synthetic amphipathic α-

helical peptides. However, in order to maintain a balance between 

hydrophobic and charged residues, the number of repeat units is restricted to 

positive integers (n = 1, 2, 3, and so forth) and, moreover, this sequence 

approach cannot be utilised to generate peptides with idealised facial 

amphiphilicity for n > 2. Therefore, in this study, α-helical amphiphiles with 

perfectly segregated hydrophobic and cationic faces were designed using the 

recurring sequence comprising four amino acids (X1Y1Y2X2)n – where X1 and 

X2 are hydrophobic amino acids, Y1 and Y2 are cationic amino acids, and n is 

the number repeat units. This proposed sequence preserves the α-helical 

periodicity, recognised as a key driver of helical formation [196], while 

allowing for amphipathic peptides of intermediate lengths (n = 1.5, 2.5, 3.5, 

and so forth). Importantly, this sequence enables the de novo design of 

peptides with perfectly amphipathic structures for n ≤ 3. 
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Various amino acid substitutions were performed to understand the effect of 

sequence pattern and length on the biological activity of peptides with 

idealised facial amphiphilicities. The synthetic amphiphiles were initially 

characterised for their α-helical propensity in a membrane-mimicking 

environment, before evaluation of their therapeutic efficacy against a range of 

both drug-susceptible and drug-resistant bacteria. Live-cell imaging studies 

provided insights into the membrane-lytic antimicrobial mechanisms, while 

their versatility in inhibiting biofilm formation and disrupting pre-formed 

drug-resistant biofilms was also assessed. Finally, the anti-endotoxin activity 

of the designed peptides was studied to determine their potential applicability 

in the treatment of endotoxemia. 
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7.2. Results and Discussion 

7.2.1. Peptide design and characterisation  

In this study, short cationic helical peptides with idealised facial 

amphiphilicity were designed based on the recurring sequence (X1Y1Y2X2)n, 

where the hydrophobic residues X1 = X2 = Leu or Ile or Trp, and the cationic 

residues Y1 = Y2 = Lys. The influence of size of the cationic and hydrophobic 

faces on the biological and haemolytic activities was assessed by comparing 8-

mer, 10-mer and 12-mer peptides with varying number of repeat units (n = 2 

or 2.5 or 3) (Figure 7.1). Besides the inclusion of residues which were helix 

formers rather than breakers, another key consideration was the selection of 

amino acids that could enhance peptide selectivity for microbial over 

mammalian cells. Hence, Lys was selected over Arg as the polar residue due 

to its high helical propensity [92], and lower cytotoxicity [93]. The 

hydrophobic residue Leu was also included due to its high helical propensity 

[92], while Trp was chosen because of its strong interaction with the lipid 

bilayer interface [197]. Finally, the selection of Ile was supported by evidence 

that Lys to Ile substitutions produced peptides with identical bactericidal 

activity, but markedly reduced toxicity [198]. The synthetic peptides were 

amidated at the C-terminus to improve antimicrobial activity by increasing net 

positive charge [133, 134].  
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Figure 7.1. Helical wheel projection of α-helical peptides with idealised facial 
amphiphilicity, possessing the backbone sequence (X1Y1Y2X2)n, where X1 and 
X2 are hydrophobic amino acids, Y1 and Y2 are cationic amino acids, and n is 
the number repeat units. 
 
The sequences of the de novo peptides, their denotations and molecular 

weights are provided in Table 7.1. The molecular weights of the synthetic 

peptides were verified using SELDI-TOF MS, and agreement between the 

theoretical and measured molecular weights confirmed that the peptides had 

been synthesised to the desired specifications.  

Table 7.1. Design of α-helical peptides with idealised facial amphiphilicity 
and their molecular weights. 

a Mw determined by SELDI-TOF MS. 
 

The secondary structures of the synthetic peptides were evaluated in the 

presence of a 25 mM SDS micelle solution to simulate a microbial membrane 

environment. Under these conditions, the synthetic peptides readily adopted 

α-helical conformations, as supported by the characteristic double minima at 

~208 and 222 nm (Figure 7.2). In general, increasing the number of repeat 

AMP No. of 
repeat 
units [n] 

Repeat 
unit 
 

Peptide sequence Theoretical 
MW 

Measured 
MW

a 
Charge 

L8 2  
LKKL 

 

LKKLLKKL-NH2 982.36 982 +4 
L10 2.5 LKKLLKKLLK-NH2 1223.69 1224 +5 
L12 3 LKKLLKKLLKKL-NH2 1465.02 1465 +6 
I8 2  

IKKI 
 

IKKIIKKI-NH2 982.36 982 +4 
I10 2.5 IKKIIKKIIK-NH2 1223.69 1224 +5 
I12 3 IKKIIKKIIKKI-NH2 1465.02 1466 +6 
W8 2  

WKKW 
 

WKKWWKKW-NH2 1274.57 1276 +4 
W10 2.5 WKKWWKKWWK-NH2 1588.95 1589 +5 
W12 3 WKKWWKKWWKKW-

NH2 
1903.33 1904 +6 
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units enhanced the helical propensity of synthetic peptides comprising of Leu 

and Ile residues, evident from the lower mean residue ellipticity values at 222 

nm (θ222). While the shorter Trp-containing peptides W8 and W10 displayed 

strong helical signatures, the longer W12 exhibited a broader minima between 

208 and 222 nm (Figure 7.2c), possibly due to self-aggregation of the more 

hydrophobic peptide [199].  

 

Figure 7.2. CD spectra representing α-helical propensity of peptides with the 
backbone sequence (a) (LKKL)n, (b) (IKKI)n and (c) (WKKW)n in 25 mM 
SDS micelle solution, where n = 2, 2.5 and 3. Data are expressed as the mean 
of three runs per peptide. 
 
7.2.2. Antimicrobial activity  

The antimicrobial activity of the synthetic peptides was studied against a panel 

of clinically relevant Gram-positive and Gram-negative bacteria and the 

results are summarised in Table 7.2. The designed peptides effectively 

inhibited bacterial growth over a range of concentrations, with L12 and W12 

emerging as the most potent antimicrobials. Both of these peptides recorded 
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the lowest GM of the MICs of 13.1 µM, followed by W10 with a value of 22.1 

µM. The three least effective peptides, L8, I8 and I10 also exhibited the lowest 

α-helical conformation (Figure 7.2), suggesting that folding of peptides into 

amphipathic structures was essential for antimicrobial activity. This 

observation is supported by evidence that helix formation is a major driver of 

peptide insertion into the lipid bilayer [200]. In general, an increase in size of 

the continuous cationic and hydrophobic faces in the amphipathic helix 

corresponded with reduced MIC values. Upon closer examination, the choice 

of non-polar amino acid was a key determinant of the minimum number of 

residues required in each uninterrupted segment for peptide activity. Amongst 

the hydrophobic amino acids studied, the incorporation of Ile proved least 

effective, as a minimum of six residues in each of the continuous cationic and 

hydrophobic faces was necessary for activity. Even then, I12 recorded a 16- 

and 32-fold higher MIC against the Gram-positive S. aureus as compared to 

L12 and W12 respectively. For Leu-containing peptides, cationic and 

hydrophobic segments consisting of at least five amino acids were required to 

inhibit bacterial growth, in line with findings from previous reports [194, 201]. 

However, only four residues per segment were sufficient to render peptides, 

comprising of bulky Trp residues, active. The superior potency of Trp-

containing amphiphiles could be attributed to the strong affinity of Trp for 

membrane interfaces, which facilitates peptide penetration and disruption of 

the lipid bilayer [197, 202]. Therefore, the inclusion of bulky Trp residues 

could prove effective in designing shorter and more potent helical peptides.  
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Table 7.2. MICs and SIs of peptides with idealised facial amphiphilicity 
against Gram-positive and Gram-negative bacteria.  

a The GM of the MICs for the 4 bacterial strains. 
b SI is determined as follows: (HC50/GM). The highest tested concentration of 2000 
µM was used for SI calculations when less than 50% haemolysis was observed at this 
concentration.  
 

7.2.3. Haemolytic activity and cell selectivity 

The synthetic peptides were evaluated for their haemolytic activity using 4% 

(v/v) blood from two healthy donors and as shown in Figure 7.3, all peptides 

induced minimal haemolysis at their respective MICs. The Ile-containing 

peptides (I8, I10 and I12), and those consisting of two repeat units (L8, I8 and 

W8) displayed the lowest haemolysis of <1.5% even at 2000 µM. Notably, the 

most active peptide L12 only induced 16% haemolysis at 2000 µM, a 

concentration 150-fold greater than its GM MIC value. Trp incorporation 

(W8, W10 and W12) produced peptides with stronger haemolytic activity with 

W10 and W12 inducing haemolysis of 28% and 78% at 2000 µM, 

respectively. This corresponded to a far lower HC50 value, defined as the 

lowest peptide concentration producing 50% haemolysis of RBCs, of 483 µM 

for W12 as compared to all other peptides (Table 7.2).  

 

To enhance clinical utility of the amphipathic helical peptides, they should 

preferentially interact with microbial over mammalian cell membranes in 

AMP 
 

MIC [µM] GMa  
[µM] 

HC50 
[µM] SIb E. coli K. pneumoniae P. aeruginosa S. aureus 

L8 500 > 500 > 500 > 500 - >2000 - 
L10 31.3 > 500 62.5 > 500 - >2000 - 
L12 7.81 31.3 7.81 15.6 13.1 >2000 152 
I8 > 500 > 500 >500 > 500 - >2000 - 
I10 500 > 500 >500 > 500 - >2000 - 
I12 15.6 > 500 15.6 250 - >2000 - 
W8 31.3 250 >250 62.5 - >2000 - 
W10 15.6 62.5 15.6 15.6 22.1 >2000 91 
W12 15.6 15.6 15.6 7.81 13.1 483 37 
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order to maximise antimicrobial efficacy while minimising toxicity. The SI, 

defined as the ratio of HC50 to GM MIC values, is one measure devised to aid 

in the selection of the best therapeutic candidates, with higher SI values 

deemed more desirable. Of the nine peptides designed, L12 displayed the 

highest SI of 152, followed by W10 and W12. Although both L12 and W12 

emerged equally active against the panel of bacteria with similar GM values of 

13.1 µM, the relatively low haemolytic activity displayed by L12 translated 

into a fourfold superior SI compared to W12 (Table 7.2). Among the Trp-

containing peptides, W10 possessed the optimal composition with the highest 

SI of 97, despite recording a higher GM value of 22 µM as compared to W12. 

While increasing the number of lipophilic Trp residues increased both 

antimicrobial and haemolytic activities, the reduction in the HC50 value for 

W12 occurred to a far greater extent than the corresponding decrease in MICs. 

Thus, limiting the continuous hydrophobic face to ≤ 5 Trp residues may be 

crucial in designing more selective peptides, as the expansion of this 

uninterrupted segment beyond that proved detrimental to the SI. 
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Figure 7.3. Haemolytic activity of synthetic α-helical peptides possessing (a) 
2 repeat units, (b) 2.5 repeat units and (c) 3 repeat units tested against blood 
from two healthy donors. Peptides induced minimal haemolysis at 
concentrations corresponding to the respective MICs. Data are expressed as 
mean ± S.D. for two independent experiments. 
 

7.2.4. Antimicrobial mechanisms  

The bactericidal mechanisms of the synthetic peptides were evaluated by 

performing in vitro killing efficiency studies against a panel of Gram-positive 

and Gram-negative bacteria. L12 demonstrated killing efficiencies of > 99.9% 

at 2x MICs of all four species (Figure 7.4). The bactericidal activity was more 



!143!

significant at 4x MIC with L12 achieving > 4 log reduction for P. aeruginosa, 

> 5 log reduction for E. coli and K. pneumoniae, and > 6 log reduction for S. 

aureus.  

 

Figure 7.4. Killing efficiency of antimicrobial peptide L12 against (a) E. coli, 
(b) S. aureus, (c) P. aeruginosa and (d) K. pneumoniae following treatment 
for 18 h at concentrations corresponding to 0, 0.5x, 1x, 2x and 4x MIC. Data 
are expressed as mean ± S.D. for two independent experiments. 
 

AMPs adopting amphipathic helical structures are recognised to interact with 

bacterial membranes in order to exert their antimicrobial effect by creating 

pores, or inducing widespread collapse of membrane structural integrity [22]. 

In this study, live-cell imaging of bacterial cells was performed using the 

CellASIC™ ONIX Microfluidic Platform to elucidate the antimicrobial 

mechanisms of the most selective peptide L12. The DNA intercalating dye PI 

was utilised to detect peptide-mediated membrane damaged to E. coli and S. 

aureus following treatment with L12 at concentrations up to 8x MIC. As 
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shown in Figure 7.5a, E. coli cells doubled continuously without taking up the 

fluorescent dye in the absence of L12. Under similar conditions, S. aureus 

cells also excluded PI and replicated uninterruptedly (Figure 7.5d). However, 

exposure of E. coli to L12 at 4x MIC rapidly induced fluorescent staining of 

bacterial cells within 15 min (Figure 7.5b). The effect was more pronounced at 

8x MIC with PI uptake into bacterial cells occurring within 5 min of peptide 

treatment (Figure 7.5c). Similarly, S. aureus exhibited fluorescence within 15 

min of peptide introduction at both 4x and 8x MIC (Figures 7.5e and f). 

Moreover, the replication of L12-treated E. coli and S. aureus cells was 

promptly halted after 25 min exposure to 8x MIC, suggesting that 

permeabilisation of bacterial membranes likely culminated in cell death. Live-

cell imaging studies also provide a useful means of assessing the relative 

kinetics of the membrane-permeabilising activity of AMPs when comparing 

Gram-positive versus Gram-negative bacteria. Treatment of S. aureus with 

L12 at 8x MIC resulted in rapid fluorescent staining of > 90% and ~100% of 

cells within 15 and 35 min, respectively (Figure 7.5f). For E. coli however, 

membrane permeabilisation was far more gradual with ~65% of cells 

displaying fluorescence within 15 min and > 90% staining only achieved at 45 

min (Figure 7.5c). The more rapid fluorescence observed for S. aureus is 

consistent with the fact that Gram-positive bacteria lack an outer membrane, 

hence binding of PI to intracellular DNA is readily achieved upon compromise 

of cytoplasmic membrane integrity. The presence of an outer membrane in 

Gram-negative bacteria necessitates that both outer and inner membranes are 

sequentially permeabilised before PI can gain access to DNA, thus slowing 

down the rate at which PI can diffuse into the bacterial cell. 
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Figure 7.5. Time-lapse fluorescence microscopy images of E. coli (a, b, c) and 
S. aureus (d, e, f) following treatment with (a and d) media alone, (b and e) 
L12 at 4x MIC and (c and f) L12 at 8x MIC in the presence of the membrane 
impermeable dye, PI. The uptake of PI into bacterial cells within minutes of 
exposure supports the rapid membrane-lytic antimicrobial mechanisms of the 
synthetic peptides. No uptake of PI was observed in negative controls while a 
concentration dependent increase in the proportion of fluorescent bacteria was 
evident with peptide treatment. Scale bar = 10 µm. 
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7.2.5. Inhibition of MDR bacteria and biofilms  

The antimicrobial activity of the three most selective peptides was further 

evaluated against drug-resistant bacteria including MRSA, and MDR clinical 

isolates of both P. aeruginosa and M. tuberculosis. As shown in Table 7.3, the 

synthetic peptides remained equally effective against drug-resistant pathogens, 

with MICs ranging from 7.81 to 125 µM. While both 12-mers demonstrated 

relatively similar activity against MDR P. aeruginosa and M. tuberculosis, 

W12 recorded an 8-fold lower MIC than L12 against MRSA. The observed 

retention of broad-spectrum inhibitory activity against drug-resistant bacteria 

largely stems from the non-specific membrane-lytic mode of action displayed 

by most AMPs [24].  

Table 7.3. MICs of synthetic peptides against clinical isolates of MRSA 252, 
MDR M. tuberculosis (CSU87), and MDR P. aeruginosa (PA-W1, PA-W14 
and PA-W25). 
Antimicrobial 
peptide 

MIC [µM] 
MRSA 252 PA-W1 PA-W14 PA-W25 CSU87 

L12 62.5 15.6 15.6 15.6 62.5 
W10 15.6 31.3 125 125 62.5 
W12 7.81 15.6 31.3 15.6 62.5 
 

Besides their efficacy against planktonic bacteria, AMPs could provide useful 

alternatives to address challenging biofilm-related infections [191]. Thus, the 

most selective peptide L12 was evaluated for its ability to inhibit biofilm 

formation at sub and supra-MIC levels. As shown in Figure 7.6a, L12 

prevented the development of both drug-susceptible and drug-resistant 

biofilms to similar extents. Though ineffective at sub-MIC levels, L12 

significantly reduced the biomass of PAO1 and PA-W25 biofilms by ~90% at 

both 1x and 2x MIC (p ≤ 0.0001). These findings were corroborated by 

bioluminescent imaging of P. aeruginosa which revealed that L12 effectively 
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inhibited biofilm formation at 1x, 2x and 4x MIC (Figure 7.6b), with > 99% 

reduction in luminescence signal (Figure 7.6c). Unlike the inhibition of P. 

aeruginosa biofilms, the reduction in biomass of S. aureus biofilms occurred 

in a dose-dependent manner (Figure 7.6a). L12 inhibited MSSA and MRSA 

biofilms by ~37% and 39% at 0.25x MIC, respectively, and ~53% and 45% at 

0.5x MIC, respectively. The anti-biofilm properties of AMPs are partly 

attributed to direct killing of planktonic bacteria, hence, the prevention of 

biofilm formation at sub-MIC suggests that alternative mechanisms could 

potentially be involved. It has been shown that coating AMPs onto surfaces 

reduces bacterial adherence in turn inhibiting biofilm formation and this may 

contribute here [121].   

 

The treatment of mature biofilms also poses a significant clinical problem; 

hence L12 was further evaluated for its potential to disrupt pre-formed 

biofilms of drug-resistant pathogens. As shown in Figure 7.6d, L12 displayed 

significant concentration-dependent reduction in cell viabilities of pre-

established biofilms of both MRSA and MDR PA-W25 at 8x and 16x MIC 

within 2 h of treatment (p ≤ 0.0001). Bioluminescent imaging studies of pre-

formed P. aeruginosa biofilms confirmed that L12 effectively eradicates 

mature biofilms at supra-MIC levels after 2 h (Figure 7.6e), accompanied by 

significant reductions in luminescence at 16x MIC (p ≤ 0.05), and 32x and 64x 

MIC (p ≤ 0.01) (Figure 7.6f). All in all, these findings underscore the potential 

utility of the de novo AMPs presented here in tackling the mounting problem 

of MDR biofilms and infections. 
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Figure 7.6. (a) Inhibition of drug-susceptible and drug-resistant P. aeruginosa 
and S. aureus biofilms formation following overnight exposure to L12. (b) 
IVIS imaging and (c) radiance quantification of biofilm growth inhibition of 
bioluminescent P. aeruginosa treated with L12 overnight. (d) Cell viabilities 
of pre-formed PA-W25 and MRSA 252 biofilms after treatment with L12 for 
2 h. (e) IVIS imaging and (f) radiance quantification of pre-formed biofilm 
disruption of bioluminescent P. aeruginosa exposed to L12 for 2 h. Rows in 
(b) and (e) represent individual replicates. L12 inhibits biofilm formation at 1x 
and 2x MIC, and effectively disrupts pre-established biofilms at supra-MIC 
levels. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001). 
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7.2.6. Anti-endotoxin activity  

Host innate immune responses during sepsis, elicited by exposure to the 

Gram-negative bacterial cell wall component, LPS, could lead to septic shock 

and eventually death if uncontrolled. The neutralisation of endotoxins by 

amphipathic peptides could provide an effective means of blocking the 

overproduction of inflammatory mediators induced by LPS. Thus, the LPS-

binding abilities of the de novo peptides were evaluated from 3.9 to 31.3 µM 

using the LAL chromogenic assay, as cell viabilities were > 70% for all 

peptides, except L12 which recorded ~30% cell viability at the highest 

concentration (Figure 7.7c). As shown in Figure 7.7a, the most hydrophobic 

12-mer, W12, bound LPS most effectively with ≥ 90% binding even at low 

peptide concentrations of 7.81 µM. In comparison, I12 and L12 only 

neutralised ~29% and 47% of LPS, respectively at similar concentrations. 

Increasing the number of repeat units by 0.5 contributed to stronger LPS-

binding for W12 to W10 at all concentrations tested. Taken together, these 

findings suggest that both peptide length and hydrophobicity are important 

determinants of the LPS-neutralising properties of amphipathic peptides. 

 

The overproduction of the pro-inflammatory mediator NO has been implicated 

in the pathogenesis of septic shock, inducing harmful effects including tissue 

damage and myocardial depression [203]. Hence, the ability of the peptides to 

restrict LPS-induced macrophage activation was assessed by quantifying 

nitrite production from LPS-stimulated RAW 264.7 cells treated with 

peptides. The most potent inhibitors L12 and W12 limited NO production to 

levels similar to controls even at the lowest peptide concentration of 3.9 µM (p 
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≤ 0.0001) (Figure 7.7b). W10 and I12, however, demonstrated a dose-

dependent reduction in NO release from macrophages. While NO production 

was enhanced > 6-fold in the absence of peptides, treatment with 7.81 µM of 

W10 and I12 suppressed NO production to concentrations ~2.7 and 2.5-fold, 

respectively, higher than that of controls. In general, there was close 

agreement between the LPS-binding and neutralising activities of the peptides, 

except for I12 which demonstrated similar LPS-blocking activity as W10 

despite exhibiting the lowest LPS-binding affinity. This finding suggests that 

in addition to the direct binding of LPS by I12, other mechanisms may be 

involved in the suppression of pro-inflammatory responses induced by LPS 

[204, 205]. Overall, the short amphiphilic peptides presented in this study 

could potentially be developed as anti-inflammatory agents in the treatment of 

endotoxemia by blocking LPS-mediated induction of inflammatory mediators. 
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Figure 7.7. The ability of de novo designed peptides to (a) bind LPS within 30 
min exposure and (b) restrict LPS-stimulated NO production following 24 h 
treatment with peptides at various concentrations. The synthetic peptides L12 
and W12 strongly bound LPS and effectively inhibited NO production at sub-
MIC concentrations of 3.9 µM. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, # p ≤ 
0.0001). (c) The effect of synthetic peptides on viability of RAW 264.7 mouse 
macrophage cells following 24 h treatment with peptides at various 
concentrations. Data are expressed as mean ± S.E.M. for three independent 
experiments. 
 

7.3. Conclusions 

In summary, the design principles proposed in this study, with peptides 

comprising of the backbone sequence (X1Y1Y2X2)n, were successful in 

producing broad-spectrum α-helical AMPs. Optimisation of peptide selectivity 

by varying the number of repeat units and choice of hydrophobic amino acid, 

found that the sequences (LKKL)3 and (WKKW)2.5 possessed the highest SIs 

of 152 and 91 respectively. The bactericidal activity of L12 was likely due to 

membrane-lysis, inducing rapid disruption of Gram-positive and Gram-

negative bacterial membranes within minutes. L12 also effectively inhibited 

the formation, and promoted the disruption, of drug-resistant biofilms. Finally, 
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both L12 and W12 demonstrated potent suppression of LPS-induced pro-

inflammatory mediators even at low peptide concentrations of 3.9 µM. All in 

all, the design strategies presented in this study could provide a useful tool for 

developing therapeutic peptides with broad-ranging clinical applications in the 

treatment and prevention of drug-resistant biofilms and endotoxemia. 

  



!158!

CHAPTER 8: Conclusions and future perspectives 

 

The overall aim of this thesis was to apply a de novo approach in the design of 

short synthetic AMPs to develop novel compounds for anti-infective 

applications. We tested the hypothesis that rationally designed synthetic 

AMPs, comprising of repeat sequences corresponding to the hydrophobic 

periodicity of natural α-helical peptides, could be safely and effectively 

applied in TB mono- and combination therapy, and in the treatment and 

prevention of drug-resistant biofilms and endotoxemia. In Chapter 4, we 

provided important evidence that short synthetic amphipathic α-helical 

peptides, of only eight to ten residues, could effectively inhibit both drug-

susceptible and drug-resistant M. tuberculosis. While the presence of free thiol 

groups in Cys residues did not serve to enhance the anti-mycobacterial activity 

of the parent peptide (LLKK)2, enhancement in hydrophobicity by 

incorporating Met residues was shown to be an effective strategy to improve 

activity. The most selective peptide, M(LLKK)2M, was found to be minimally 

toxic at its MIC, and rapidly disrupted the mycobacterial membrane within 10 

min of treatment. Notably, mycobacteria did not develop resistance after 

multiple exposures to sub-lethal doses of this peptide. In addition, AMPs 

displayed synergism in combination with rifampicin against both M. 

smegmatis and M. bovis BCG and additivity against M. tuberculosis. 

Moreover, such combination therapy was effective in delaying the emergence 

of rifampicin resistance, highlighting the potential utility of AMPs as 

adjuvants in combinatorial treatment regimens for TB. 
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In Chapter 5, the effect of key physicochemical parameters including 

hydrophobicity and helicity on anti-mycobacterial activity and synergism of 

our synthetic AMPs was investigated for the first time. The three most 

hydrophobic peptides (WW, MM and II) were the most active, and exhibited 

synergism with rifampicin. However, increasing hydrophobicity beyond a 

certain threshold was found to be detrimental to cell selectivity, with peptides 

possessing intermediate hydrophobicity displaying the highest SI. Flow 

cytometric analysis revealed that enhancements in hydrophobicity and helicity 

increased the rate and extent of peptide-mediated membrane permeabilisation. 

This finding corroborated the postulation that synergism between the peptides 

and rifampicin was likely mediated via peptide-induced pore formation. The 

rapid, concentration-dependent membrane depolarisation, leakage of 

intracellular ATP and calcein release from PE/PG LUVs supported the 

membrane-lytic mechanism of action of the peptides. Together, these findings 

suggest that hydrophobicity and helicity significantly impact anti-

mycobacterial activity and optimisation of both parameters is necessary to 

develop synthetic analogues with superior selectivity indices and enhanced 

synergistic potential with conventional antibiotics. 

 

In Chapter 6, unnatural amino acid-modified α-helical peptides were 

systematically evaluated in an attempt towards enhancing anti-mycobacterial 

activities and stability. Substitutions were well tolerated without an 

appreciable effect on toxicity profiles and secondary conformations, and the 

modified peptides withstood proteolytic digestion by trypsin. The most 

selective peptide II-D, the all D-amino acid analogue, exhibited a fourfold 
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increase in selectivity index in comparison to the unmodified L-amino acid 

peptide. This peptide also effectively reduced the intracellular bacterial burden 

of both drug-susceptible and MDR clinical isolates of M. tuberculosis after 4-

days of treatment. Live-cell imaging studies with BCG provided evidence of 

the membrane-permeabilising mechanisms of II-D. Flow cytometric analysis 

of II-D treated H37Rv and CSU87 further corroborated the membrane-

targeted mode of action of this peptide. Overall, unnatural amino acid 

modifications not only serve to decrease the susceptibility of peptides to 

proteases, but also enhance mycobacterial selectivity. 

 

In Chapter 7, a new sequence-based approach is presented in the de novo 

design of α-helical peptides with idealised facial amphiphilicity. Synthetic 

amphiphiles composed of the backbone sequence (X1Y1Y2X2)n, where X1 and 

X2 are hydrophobic residues (Leu or Ile or Trp), Y1 and Y2 are cationic 

residues (Lys), and n is the number repeat units (2 or 2.5 or 3), demonstrated 

potent broad-spectrum antimicrobial activities against clinical isolates of drug-

susceptible and MDR bacteria. The most selective peptide, L12, promoted 

rapid permeabilisation of bacterial membranes. Importantly, L12 not only 

suppressed biofilm growth, but effectively disrupted mature biofilms after 

only 2 h of treatment. The peptides bound LPS, with L12 and W12 

suppressing the production of LPS-induced pro-inflammatory mediators to 

levels of unstimulated controls at low micromolar concentrations. Thus, the 

proposed rational design strategy can be implemented to develop potent, 

selective and multifunctional α-helical peptides to eradicate drug-resistant 

biofilm-associated and endotoxemia.      
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In addition to providing insights into the rational design of short α-helical 

AMPs for broad-ranging clinical applications, the present study has helped 

identify possible new avenues for future research. While findings from the in 

vitro efficacy studies are promising, the clinical potential of the optimised lead 

compounds needs to be established in vivo using animal models of TB 

infection. Combinatorial drug regimens form the bedrock of successful TB 

chemotherapy, and hence new anti-tubercular agents are unlikely to obtain 

approval for use as monotherapy [206]. Thus, it is necessary for new or re-

purposed drugs to be evaluated either as adjuncts to first-line anti-tubercular 

drugs or as part of a new combination regimen. As such, synergistic two, three 

or four drug combinations comprising of peptides plus rifampicin, isoniazid, 

ethambutol and pyrazinamde should first be evaluated for their intracellular 

bactericidal activity using macrophage cell lines. This can be done by 

enumeration of CFU after treatment with various drug combinations over four 

and seven days. For MDR-TB, synergistic interactions can be evaluated 

between peptides and second-line drugs including moxifloxacin, amikacin, 

kanamycin and streptomycin. Following this, promising drug combinations 

should be brought forward for further evaluation in vivo. Therapeutic efficacy 

of drug combinations can be determined by enumeration of CFU in the lungs 

and spleen, and histopathological evaluation of the degree of lung tissue 

damage [207].  

 

Since the in vivo activity of AMPs is affected by the presence of salts, proteins 

and enzymes in serum, the route of administration could have a profound 

impact on the bioavailability and in turn, efficacy of peptides at the site of 
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infection [109]. While first-line anti-tubercular drugs are typically 

administered orally, therapeutic doses of AMPs have been delivered either 

subcutaneously, intranasally or intratracheally [32, 207-209]. Furthermore, 

variation in the dosing frequency and treatment duration between studies 

raises pertinent questions regarding the ideal therapeutic regimen for AMPs in 

TB chemotherapy. The pharmacokinetics of synthetic AMPs can be studied by 

measuring peptide concentrations in plasma, urine, liver, kidney and lung 

homogenates following administration via the different routes. Samples can be 

obtained at every 10 min intervals up to 90 min and quantification of peptides 

can be carried out using a HPLC system couple to a MS (LC-MS) [210]. This 

would provide information on the drug concentration immediately after 

administration, the maximum drug concentration achieved, the half-life, 

volume of distribution and clearance rate. The peptides should be evaluated at 

two different doses in order to determine which achieves a more favourable 

therapeutic range (period of time the drug concentration remains over the 

MIC). With a better understanding of how long a peptide remains in the 

therapeutic range, the dosing interval can then be adjusted accordingly. Such a 

systematic comparison of the effect of different administration routes and drug 

regimens on the dose requirements and pharmacokinetics of synthetic AMPs 

for effective clearance of TB infection in vivo is necessary. This would 

provide invaluable guidance for the preclinical testing of drug candidates and 

ensure that promising compounds are fairly evaluated under similar treatment 

conditions, according to robust and established protocols.   
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The spread of AMR has compelled the exploration of alternative anti-infective 

strategies, and modulation of host immunity using immunotherapies is one 

approach which holds promise [176]. This paradigm shift towards host-

directed, rather than pathogen-directed therapies, is beneficial from the 

standpoint of avoiding selection pressure for microbial resistance development 

[176]. The use of immunomodulating AMPs, or their inducers, as therapeutic 

agents in the control of pulmonary TB has been proposed as a promising 

strategy [211]. As discussed in Chapter 5, the peptides presented in this study 

do not activate macrophages, implying that the observed intracellular activity 

was likely due to direct antimicrobial killing rather than immunomodulatory 

effects. Recently, N-formylation of synthetic peptides was found to 

significantly improve their immunomodulatory effects, which in turn 

enhanced H37Rv clearance in vivo, both alone and in combination with 

rifampicin and isoniazid [212]. Hence, this strategy could be exploited to 

impart the most selective α-helical peptides presented here with 

immunomodulatory properties. An investigation into the effect of N-

formylation on the immunomodulatory activity of synthetic AMPs, followed 

by both intracellular and in vivo efficacy studies can be performed to 

determine the feasibility of this strategy in augmenting mycobacterial killing. 

N-formylated peptides including M(LLKK)2M and I(LLKK)2I can be 

evaluated in combination with rifampicin and isoniazid in animal models and 

their effectiveness determined by quantifying CFU in the lungs and spleen. 

Pulmonary histopathological changes following treatment with drug 

combinations should be compared to both monotherapy and untreated controls 
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in order to assess their effect on the size and distribution of TB lesions and the 

extent of granuloma formation.  

 

In conclusion, the findings of this thesis have supported the hypothesis that 

rationally designed synthetic AMPs, adopting α-helical conformations, are 

safe and effective in TB mono- and combination therapy, and in the treatment 

and prevention of drug-resistant biofilms and endotoxemia. While there is 

immense therapeutic potential for synthetic AMPs in anti-infective 

applications, several issues including production costs, toxicity and stability 

need to be overcome. However, with advances in peptide synthesis and drug 

delivery, it may be sooner rather than later that the first HDP, or synthetic 

analogues thereof, makes it from the lab to the clinic.   
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