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Abstract

Solar irradiance forecasting and modeling for smart cities with high photovoltaic

penetration

Aloysius Wishnu Aryaputera

This thesis focuses on the development of solar irradiance forecasting meth-

ods. Spatio-temporal modeling and forecasting of irradiance will be essential re-

quirements for the management of electricity grids in all cities with high photo-

voltaic (PV) penetration. Temporal variability of the harvestable solar energy on

earth remains a great challenge facing widespread deployment of PV. To increase so-

lar energy competitiveness, this work aims to provide tools to mitigate the problems

caused by variability. Accurate near future forecasts and predictions of geographi-

cal smoothing effects of distributed systems over a certain area enhance the energy

manageability, but the precise manner in which this occurs must be quantified. In

this thesis, very short-term (≤ 5 minutes ahead) solar irradiance forecasting and

modeling of irradiance geographical smoothing are performed using the anisotropic

kriging method. Probabilistic forecasts on accumulated irradiance (6 and 12 hours

ahead) are also generated using various ensemble methods. Finally, preliminary

results of day-ahead irradiance forecast in Singapore using the Weather Research

and Forecasting (WRF) model are presented.
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Chapter 1

Introduction

The imperative to reduce the global carbon footprint incurred from the combus-

tion of fossil fuels is driving a massive global deployment of renewable energy,

such as wind, solar, biomass, and geothermal. However, such energy sources are

inherently time variable (Miller et al., 2013) and this variability has significant

consequences for large scale implementation. The temporal variability of renew-

able energy sources has been studied on various time scales, from seconds, days,

months, to years. Intra-day variability is perhaps the most important timescale,

and is usually described in terms of “ramp rate” events where the resource exhibits

significant increases or decreases in magnitude in less than one hour. Intra-day

ramp events present challenges to conventional electric power grid management

and can cause disturbances to grid stability (Lave and Kleissl, 2010). On the other

hand, longer-scale (inter-day) variability is of interest for generation and transmis-

sion scheduling (Martinez-Anido et al., 2016). Both intra- and inter-day variability

can be mitigated using a variety of methods, amongst which generation forecasting

is a cost-effective method (West et al., 2014). In the field of solar energy, solar fore-

casting at various timescales is required for grid integration purposes, especially in
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locations with high photovolatic (PV) penetration1 (GE, 2010). When the solar re-

source can be forecast accurately, spinning energy reserves can be minimized (Miller

et al., 2013). Accurate forecasts can help to reduce dependency on large energy

storage systems, which are not generally attractive from the economical point of

view (McMahan et al., 2013). Mixed technology solutions which employ batteries,

spinning reserves, and other short period storage capacity (Nottrott et al., 2013)

may be optimal, but these solutions require locally tailored forecasting to facilitate

operational grid management (Hanna et al., 2014).

Fig. 1.1 illustrates the effect of higher PV penetration on the severity of

energy generation variability. It is generated using the measurement data of 24

irradiance sensors spread throughout the island of Singapore (section 1.5.1.1). To

produce this plot, every 1 W/m2 is directly converted into 1 W. The data used come

from four days when sudden storm took place (Nobre et al., 2016). During these

moments, adding more measurement data from several sensors increases the severity

of the aggregated measurement (Aryaputera et al., 2016a). At other moments, when

irradiance variability at several sites are caused mainly by transformations of small-

scale clouds, the irradiance variability at one place can be cancelled out by those

at other places. This effect is called geographic smoothing.

This thesis focuses on solar irradiance forecasting, with a strong focus on the

application of forecasting methods to Singapore. Singapore is a tropical city-state

currently highly dependent on fossil fuel power generation. To reduce greenhouse

gas emissions and to improve energy security, Singapore is actively pursuing the only

significant renewable energy resource available locally, namely solar energy (NCCS,

2016). Studies have indicated that up to 30% of total electricity generation could

be provided by inland and floating PV systems (Luther and Reindl, 2013).

1PV grid penetration is not consistently defined, and what constitutes ’high’ penetration is
somewhat dependent on the nature of the grid in question, but figures of 15% or more are com-
monly quoted (Bank et al., 2013).
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Fig. 1.1: Effect on PV penetration level on the severity of energy generation variability during
sudden storm in Singapore.

Grid management issues will be particulalry acute in Singapore, owing to

its small physical size, and the isolated nature of its electricity grid. However, the

lessons learned in Singapore will be of direct relevance to any other urban area that

implements high PV power generation in the coming decades. Given the ongoing

decline in PV system installed costs, it is very likely that many Asian and tropical

cities will face similar power grid challenges to those currently arising in Singapore.

Irradiance and PV system characteristics are the major factors that deter-

mine PV power generation, but temperature also influence the amount of electricity

generated, since silicon cells’ output decreases as temperature increases. However,

since changes in irradiance are almost always much more extreme than those in

temperature, irradiance has more influence on PV power generation (Yang, 2014),

and thus irradiance becomes the central object of this thesis.

This introduction chapter covers the following:
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• Section 1.2 reviews irradiance and forecast terminology and lists forecast time

horizons.

• Sections 1.3 and 1.4 describe the general and specific contributions of this

thesis.

• Section 1.5 lists the data sources utilized in this thesis.

• Section 1.6 explains the verification methods used in this thesis

• Section 1.7 describes the data processing tools employed.

1.1 Energy market in Singapore and lessons to

learn from Germany

In this section, the energy market system in Singapore is briefly explained. Besides,

some descriptions on the German electricity production are included. Germany

is chosen since it is one of the leading countries which have successfully utilized

significant amount of renewable energy for the electricity consumption. In 2015,

38% of the German net electricity consumption is covered by renewable energy. PV

covered 7.5% of the net electricity consumption (Wirth, 2017).

1.1.1 The Singapore electricity plan

The National Electricity Market of Singapore (NEMS) was formed in 2003, with

a vision: to create the effective supply of electricty with competitive price (En-

ergy Market Authority, 2010). Today, there are two main groups of electricity

consumers: the non-contestable and contestable ones. The former group purchases

electricity from the SP Services Limited, as the Market Support Services Licensees
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(MSSL), at the regulated tariff. The latter one may get electricity from the whole-

sale market directly, from the wholesale market indirectly through the MSSL, or

from a retailer. Retailers may provide several pricing plans and services which are

designed for different usage patterns (MyPower, 2017b). Contestable consumers

who buy the electricity from the wholesale market directly, are charged based on

real time prices which change every half-hour, based on the demand and supply.

Currently, only commercial or industrial consumers with an average monthly elec-

tricity usage of equal to or larger than 2, 000 kWh are able to be in the contestable

group (MyPower, 2017a).

In order to support the competition in the NEMS, the Energy Market Au-

thority has created a Demand Response (DR) programme. This programme en-

courages the contestable consumers to cut off their electricity demand voluntarily,

by giving them a share in the system-wide advantage from their actions (Energy

Market Authority, 2016). The reduction of the electricity demand can be per-

formed by running on-site back-up generators, energy storage systems, or using

renewable energy. In Singapore, the main renewable energy option is solar energy

(Bieri et al., 2016). In this context, short-term irradiance forecasting, as will be

described in Section 1.2, may assist the decision makings of contestable consumers

with private PV systems in the DR programme.

In the future, when there are more solar power plants in Singapore, from

the operator point of view, accurate forecasts with longer horizons, such as day-

ahead, will also be useful. It is because they can avoid over-commitment of con-

ventional generators with ”slow” downward ramping capabilities (Martinez-Anido

et al., 2016).
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1.1.2 The German power supply: lessons to learn

In 2016, the power generated from PV in Germany adds up to 38.3 TWh (Wirth,

2017). This comes from 1.5 million power plants whose total capacity reaches

41 GW. Compared to Singapore, Germany has several advantages as follows (Wirth,

2017):

• The PV systems in Germany are spread out throughout the country. Cloud

cover changes which happen locally do not affect the total energy production

of Germany as a whole.

• The generated solar energy in Germany is relatively predictable. This is in

contrast with that in Singapore, which is located in the tropics. Tropical

forecasts have been extremely challenging due to the local and mesoscale

weather phenomena, and the sparse weather sensor network in the area (Laing

and Evans, 2011).

• In Germany, wind and solar energy typically complement each other. Due

to the particular climate condition, high wind speed is generally negatively

correlated with high solar irradiance. In Singapore, however, there is no

significant amount of hydro, wind, and geothermal resources (Bieri et al.,

2016).

Therefore, the solar energy manageability in Singapore may be very chal-

lenging. To aim for significantly higher portion of renewable energy may require

collaborations with the neighbouring countries whose renewable resources are more

bountiful.
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1.2 Solar irradiance, forecast horizons and irradi-

ance modeling

The solar irradiance components which fall on the earth’s surface are illustrated

in Fig. 1.2. Irradiance received along the line of sight towards the sun is called

“direct” while “diffuse” irradiance is that which comes from multiple scatterings

and reflections within the atmosphere to produce an almost isotropic “diffuse”

component. The sum of direct normal irradiance (DNI, IDir) and diffuse horizontal

irradiance (DHI, IDif) on a horizontal plane is called global horizontal irradiance

(GHI, IGlo). IRef in Fig. 1.2 symbolizes the ground-reflected irradiance received by

a tilted plane. The summation of IDir.tilt, IDif.tilt, and IRef is called global tilted

irradiance (It), which is the total irradiance received by a tilted plane (Duffie and

Beckman, 2013). In this thesis, the word ”irradiance” refers to the GHI, unless

stated otherwise.

IDir IDir.tilt IRef

IDif.tilt

IDif

Fig. 1.2: Visualization of diffuse, direct and reflected irradiance on horizontal and tilted surfaces
at the earth’s surface, see text.

Solar irradiance is forecasted from several minutes up to several days in

advance, depending on the application (Diagne et al., 2013; Kostylev and Pavlovski,

2011; Miller et al., 2013):

• Minutes to approximately one hour ahead forecasts are utilized by grid man-
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agement operators to deal with high-frequency ramping events due to cloud

movements, and also by real time market where electricity is sold on cycles as

short as five minutes (Ela et al., 2014). Such high temporal resolution fore-

casting is, at present, always statistical in nature, and this kind of forecasting

may also require high spatial resolution modeling.

• Hour to ∼6 hours ahead forecasts are utilized to deal with load following

forecasting2.

• Single day to ∼3 days ahead forecasts are utilized to deal with unit commit-

ment3 and day-ahead markets4.

• Week to months ahead forecasts are utilized to deal with generator planning

and asset optimization.

• One or more years ahead forecasts are utilized to deal with resource assess-

ment, which may not be strictly considered as forecasting, but can involve

broadly similar techniques. Resource assessment covers at least two aspects,

namely the expected amount of solar energy and spatio-temporal variability

in different timescales.

1.3 Thesis novelty

Working to provide solutions for better management of solar power variability,

this thesis has contributed to the development of forecasting algorithms for three

types of forecasts, namely very short-term (several seconds to 5 minutes ahead)

2Load following is the adjustment made within the day to follow the general pattern of elec-
tricity load of the day (Ela et al., 2011).

3Unit commitment problem is an optimization problem of generating unit scheduling con-
strained by the demand and grid operation (Ashraphijuo et al., 1999).

4Day-ahead market is an electricity market system where energy is sold one day ahead (Ela
et al., 2014).
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spatial forecasts, intraday (6 to 12 hours ahead), and day-ahead (±24 hours ahead).

There is a very large variety of forecasting methods available in the literature, but

forecasting of solar irradiance in the tropics is a new field. There are very few

published studies that are of direct relevance to the questions that must be answered

by Singapore’ grid management system. In particular, the topic of spatial irradiance

forecasting is almost completely new, but such forecasting is required in order to

quantify the effects of varying irradiance over a spatially distributed collection of

PV generation systems across the grid.

The first contribution made by this thesis is an advancement to the existing

methods describing how to accurately forecast irradiance at unobserved locations,

by exploiting the spatio-temporal correlations of irradiance measurement of a sensor

network. The second contribution utilizes ensemble techniques to produce proba-

bilistic forecasts for accumulated irradiance. These ensemble methods have been

widely used in meteorological forecasts, but not, until now, for irradiance forecasts.

Lastly, this thesis provides results of day-ahead irradiance forecasting in Singapore,

a tropical site, using the Weather and Research Forecasting (WRF) model.

A secondary contribution of this thesis is in the modeling the spatio-temporal

variability of solar irradiance and its geographic smoothing. This second contribu-

tion is more useful for resource assessment.

1.4 Thesis chapters: overview and their specific

contributions

Chapters 2-8 are the core chapters of this thesis. Chapters 2, 5, and 6 deal princi-

pally with resource assessment, while chapters 4, 7, and 8 describe the development

of intra-hour- and several-hour-ahead forecasts.
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1.4.1 Chapter 2: Singapore irradiance characteristics

This chapter presents the spatial and temporal irradiance variations in Singapore for

various timescales (less than one hour) and the comparison with those in Colorado,

Southern Great Plains (Oklahoma and Kansas), and Oahu (Hawaii). Fluctuations

in solar irradiance on these timescales are mainly affected by formation, destruc-

tion and passings of clouds. Affected by these phenomena, extreme ramp events

can occur, and PV systems may cause problems with the grid stability (Lave et al.,

2012). Since fluctuations do not occur uniformly within a large area, the ramps

of irradiance at different spatial locations may cancel each other (Hoff and Perez,

2012). This is called the geographic smoothing effect, a phenomenon which will be

described further quantitatively in chapter 5. Understanding the spatial behaviour

of irradiance for a region of interest (in this case Singapore) is important for meteo-

rological station design and resource assessment, especially when the whole system

is intended to be less dependent on base load power and more reliant on variable

renewable generation.

Some parts of this chapter have been published in Aryaputera et al. (2015d).

1.4.2 Chapter 3: Short-term forecasts using a network of

PV systems

This chapter exhibits preliminary work on 5-minute-ahead power output forecast

of various PV systems in a network. Here, the least absolute shrinkage and selec-

tion operator (lasso) method is implemented to systematically select the historical

observation values of adjacent PV systems to do forecast for a particular system.

The materials in this chapter has been submitted for publication (Aryaputera

et al., 2016a).
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1.4.3 Chapter 4: Very short-term forecasting using spatio-

temporal kriging

Using spatio-temporal statistical methods, this chapter presents irradiance forecast-

ing with very short forecast horizons (less than five minutes) using only irradiance

data from a sensor network as input. This chapter shows novelty in this particu-

lar topic compared to existing studies since it exhibits forecasting at unobserved

locations using leave-one-out cross-validation. The core method is adopted from

Gneiting et al. (2007b) although the method is tailored to irradiance forecasting

by way of implementation of fitted functions to represent anisotropy in correlation

functions.

A sensor network in Oahu, Hawaii, is utilized for validation. The reason

for the choice of this area is the consistent wind direction throughout the year

(Hinkelman, 2013) and thus it is very suitable for the first step to develop the

forecasting model.

The materials in this chapter have been published in Aryaputera et al.

(2015a,c).

1.4.4 Chapter 5: Modeling variability and geographic smooth-

ing

Moving a step ahead from chapters 2 and 4, this chapter presents modeling of so-

lar variability and the geographic smoothing effect using spatio-temporal statistics.

From the model presented, a quantitative prediction on the distribution of irradi-

ance ramp rates in the presence of geographic smoothing is performed. Similarly

to chapter 4, this chapter is inspired by the work of Gneiting et al. (2007b). The

results of the proposed methods are compared with those of Lave et al. (2013);

Arias-Castro et al. (2014); Perez et al. (2011); Monger et al. (2016).
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Most materials in this chapter have been published in Zhao et al. (2015).

1.4.5 Chapter 6: Optimizing solar PV system orientations

This chapter consists of a work on the refinement of satellite image-based solar ra-

diation and optimum photovoltaic orientation maps by incorporating ground mea-

surement data. The kriging method is applied here.

1.4.6 Chapter 7: Numerical weather prediction applied to

Singapore irradiance forecasts

This chapter presents a work using the Weather Research and Forecasting (WRF)

model to forecast irradiance in Singapore. The WRF model takes in the Global

Forecast System (GFS) data as boundary conditions, and produces more spatially-

and temporally-refined forecasts. This chapter has been published in Aryaputera

et al. (2015b).

1.4.7 Chapter 8: Ensemble techniques for probabilistic fore-

casts

In this chapter, intra-day accumulated solar irradiance forecasts for Singapore are

reported. Here, spatially coarse outputs of some global numerical weather pre-

dictions (NWPs), including perturbed variants of each model, are blended using

various methods and input combinations in order to produce the best predictive

probability density function (PDFs) of the aggregated solar irradiance forecast in

Singapore for 6 and 12-hours ahead. A predictive PDF gives more information

than a deterministic forecast, and thus is more useful in practice (Sloughter et al.,

2010). There are three main probabilistic ensemble methods which are tested here,

namely Bayesian model averaging (BMA) (Raftery et al., 2005), ensemble model
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output statistics (EMOS) (Gneiting et al., 2005), and analog ensemble (AnEn)

(Delle Monache et al., 2013).

This chapter can be considered as the continuation of the work of Thorey

et al. (2015), which used similar datasets, but only performed a deterministic fore-

cast. Zamo et al. (2014) showed an analogous work, but only utilizes a set of

perturbed forecasts from single NWP.

Some parts of this chapter have been presented in Aryaputera et al. (2016b).

1.5 Data

There are two types of data used in this thesis: observation data and NWP out-

puts. The former are obtained from six sources: Singapore (SG), Colorado (CO),

Southern Great Plains (SGP-OK), Oahu, Hawaii (HI), Canberra (CNB), and the

US National Solar Radiation Database (NSRDB), while the latter are gathered

from The Observing System Research and Predictability Experiment (THORPEX)

Interactive Grand Global Ensemble (TIGGE) (Bougeault et al., 2010).

1.5.1 Observation data sources

1.5.1.1 SG irradiance sensor network

The SG irradiance sensor network, maintained by the Solar Energy Research Insti-

tute of Singapore (SERIS), consists of 25 stations and it covers regions throughout

the island of Singapore (∼ 45 km × 25 km) (Kubis and Nobre, 2014). Fig. 1.3

shows the map of this network. Only 24 stations, however, are displayed in the

figure since one of the stations do not have sufficient data in the period of interest

used in this thesis. The data of this network are used in chapters 2, 8, and 7. Each

station shown on the map has at least a silicon irradiance sensor which measures

the GHI.
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Fig. 1.3: Map of the SG solar irradiance sensor network. Map data source: Google Maps.

1.5.1.2 CO irradiance sensor network

The CO irradiance sensor network consists of five measurement stations maintained

by the USA’s National Renewable Energy Laboratory (NREL), located in an area

of ∼ 47 km×37 km. Fig. 1.4 shows the map of this network. The five stations are

situated at the National Wind Technology Center (NWTC) M2 Tower (Jager and

Andreas, 1996), the NREL Solar Radiation Research Laboratory (SRRL) (Andreas

and Stoffel, 1981), the Vehicle Testing and Integration Facility (VTIF) (Lustbader

and Andreas, 2012), the Solar Technology Acceleration Center (SolarTAC) (An-

dreas and Wilcox, 2011), and the Lowry Range Solar Station (LRSS) (National

Renewable Energy Laboratory, 2014). Table 1.1 shows the details of each station.

The data of this network are used in chapter 2.

Table 1.1: List of stations in the CO irradiance sensor network

Station Longitude (◦) Latitude (◦) Elevation (m)
NWTC -105.23 39.91 1855
SRRL -105.18 39.74 1829
VTIF -105.18 39.74 1793
SolarTAC -104.62 39.76 1674
LRSS -104.58 39.61 1860



15

●

●

●
●●

LRSS

NWTC

SolarTACSRRL

VTIF

25 km25 km

39.6

39.8

40.0

−105.2 −105.0 −104.8 −104.6
Longitude (°)

La
tit

ud
e 

(°)

Fig. 1.4: Map of the CO solar irradiance sensor network. Map data source: Google Maps.

1.5.1.3 SGP-OK irradiance sensor network

The SGP-OK irradiance sensor network (Ackerman and Stokes, 2003) is located at

the border of Kansas and Oklahoma states in the USA and is part of the United

States Department of Energy’s Atmospheric Radiation Measurement (ARM) pro-

gramme. It covers an area of ∼ 140 km × 140 km and consists of 13 irradiance

measurement sites where each site has a pyranometer as the GHI measurement

device. Fig. 1.5 shows the map of this network and Table 1.2 shows the detail of

each station. The data of this network are used in chapter 2.

Table 1.2: List of stations in the SGP-OK irradiance sensor network

Station Longitude (◦) Latitude (◦) Elevation (m)
C1 -97.49 36.60 318.00
E11 -98.29 36.88 360.00
E12 -96.43 36.84 331.00
E15 -98.28 36.43 418.00
E31 -98.36 37.15 412.10
E32 -97.82 36.82 328.00
E33 -97.08 36.93 357.00
E34 -96.76 37.07 417.00
E35 -97.07 35.86 294.10
E36 -97.51 36.12 336.80
E37 -97.93 36.31 378.90
E38 -98.17 35.88 371.20
E9 -97.27 37.13 386.00
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Fig. 1.5: Map of the SGP-OK solar irradiance sensor network. Map data source: Google Maps.

1.5.1.4 HI irradiance sensor network

The HI irradiance sensor network (Sengupta and Andreas, 2010) is located at the

vicinity of the Honolulu International Airport (in an area of ∼ 1 km × 1 km) in

the island of Oahu, Hawaii, USA and was managed by NREL until October 2011.

Each station has a LICOR LI-200 pyranometer as the GHI measurement device

which recorded data every second. The data obtained from this network are used

in chapters 4 and 5.

This dataset has been used in previous works (Hinkelman, 2013; Arias-Castro

et al., 2014; Yang et al., 2015b; Lave et al., 2015). An interesting property of

this dataset is the existence of wind with persistent direction, as mentioned in

section 1.4.3. The map of this network, including the dominant wind direction, is

shown in Fig. 1.6.
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Fig. 1.6: Map of the HI solar irradiance sensor network. Dominant wind direction is shown by
the arrow. Map data source: Google Maps.

1.5.1.5 CNB PV system network

The CNB PV system network (Engerer and Hansard, 2015) is a network located

in the Australian Capital Territory (ACT), Australia and it covers an area of

∼ 19.8 km × 35.9 km. The map of the network is shown in Fig. 1.7 while the

histogram of the array ratings is displayed in Fig. 1.8. Each PV system has its own

capacity, tilt angle, and orientation. The dataset contains each system power out-

put with 5-minute temporal resolution. Based on data availability, there are only

93 systems whose data are utilized in this thesis. The dataset is used in chapter 3

of this thesis.

1.5.1.6 NSRDB Typical Meteorological Year (TMY3) data

The third NSRDB Typical Meteorological Year (TMY3) dataset contains year-

long (12-month-long) hourly-averaged solar irradiance and various meteorological

parameters taken from monitoring stations in 1,020 locations in the continental US,

Puerto Rico, Guam, Alaska, and Hawaii (Lubitz, 2011; Wilcox, 2012). The TMY3
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Fig. 1.7: Map of the CNB PV system network. The station colour coding is arranged based on
the longitude. The same coding is used in Fig. 3.1.

dataset was derived from 1991 - 2005 data. For each month, data of a particular

year which represents the best typical condition of that month were taken into the

dataset. The dataset is used in chapter 6 of this thesis.

1.5.1.7 NSRDB State University of New York (SUNY) data

The NSRDB SUNY data were derived from satellite images, specifically those of

the Geostationary Operational Environmental Satellites-East (GOES-East) and the

GOES-West, using the model of SUNY, Albany (Perez et al., 2002; Wilcox, 2012).

The SUNY data comprise of instantaneous (with resolution of one hour) and hourly-

averaged Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), and

Diffuse Horizontal Irradiance (DHI) from 1 January 1998 to 31 December 2005.

Only hourly-averaged data are used in this work. The area covered is US land

within 125oW to 66oW and 24oN to 50oN with 0.1o× 0.1o (10 km × 10 km) reso-

lution. Originally, the GOES satellite image resolution is 1 km × 1 km. However,

simplification was made to reduce the computational time of the SUNY model

(Wilcox, 2012). Surface irradiation values were derived from calculated cloud in-
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dex together with atmospheric turbidity, snow index, specular reflectans of ground,

altitude, and sun-satellite angle (Lave and Kleissl, 2011).

The dataset is used in chapter 6 of this thesis.

1.5.2 TIGGE forecasting outputs

TIGGE (Bougeault et al., 2010) is a project which gathers various forecast outputs

of global NWPs: the Australia’s Bureau of Meteorology (BoM), China Meteoro-

logical Administration (CMA), the Brazil’s Centro de Previsão Tempo e Estudos

Climáticos (CPTEC), the Environment Canada (EC), the European Centre for

Medium-Range Weather Forecasts (ECMWF), the Japan Meteorological Agency

(JMA), the Korea Meteorological Administration (KMA), the Météo France, the

United States’s National Centers for Environmental Prediction (NCEP), and the

UK Met Office (UKMO). Each NWP model has one control forecast output and

several perturbed forecast members, containing forecasts of multiple meteorological

variables, including, in the case of some NWPs, accumulated irradiance parameter.

These data are available free-of-charge with a 2-day delay (Thorey et al., 2015).
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In chapter 8 of this thesis, only the accumulated irradiance parameter is uti-

lized. Furthermore, only three global models are used, namely the ECMWF, JMA,

and KMA due to the data availability and literature review on forecast accuracies

(Thorey et al., 2015).

1.6 Error metrics

1.6.1 Deterministic forecasts evaluation

In order to quantify forecast accuracies, standard error metrics are employed.

For deterministic forecasts, root mean square error (RMSE) and relative RMSE

(rRMSE) are utilized, where

RMSE =

√√√√ 1

N

N∑
n=1

(
În − In

)2

(1.1)

rRMSE =
RMSE

1
N

∑N
n=1 In

× 100% (1.2)

where În represents the forecast irradiance, In is the actual irradiance, and N

signifies the number of data in the series. When the RMSE value of one method is

to be compared with that of a benchmarking method, forecast skill (FS) is employed

FS = 1− RMSEf

RMSEbenchmark

(1.3)

where RMSEf is the RMSE of a forecasting technique and RMSEbenchmark is that

of the benchmarking method. Eq. (1.3) shows that FS has a maximum value of 1

when the forecasting technique is a perfect one. Negative FS value indicates that

the benchmarking method performs better than the proposed forecasting technique.
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1.6.2 Ramp rate cumulative density functions (CDFs) evalu-

ation

In chapter 5, the simulated ramp rate cumulative density functions (CDFs) are

validated against the measured ones using the two-sample Kolmogorov-Smirnov

(KS) test (Arnold and Emerson, 2011). The KS statistic (D) signifies the maximum

distance of two CDFs being compared and mathematically can be written as follows

Dn,n′ = sup
x
{|Fa,n (x)− Fb,n′ (x) |} (1.4)

where Fa and Fb are two discrete CDFs being tested, n and n′ are the discretized

length of Fa and Fb respectively, and sup{·} represents the supremum function.

1.6.3 Probabilistic forecasts evaluation

For probabilistic forecasts (chapter 8), continuous ranked probability score (CRPS)

is utilized to quantify forecast accuracies, and squared bias (SB) (Raftery et al.,

2005) is used to measure the calibratedness of a forecasting method

CRPS =
1

N

N∑
i=1

crps (Fi, yi) =
1

N

N∑
i=1

[∫ ∞
−∞

[Fi (x)−H [x− yi]]2 dx
]

(1.5)

SB =
1

NB

NB∑
i=1

(RFi − 1)2 (1.6)

where Fi (·) and yi denote the predictive CDF and observation value respectively

for the case i, H [·] represents the Heaviside step function, NB signifies the number

of bins in the probability integral transform (PIT) histogram, and RFi is the i-

th bin relative frequency (RF) in the PIT histogram. PIT is the predictive CDF

value at the observation value (Raftery et al., 2005). A well-calibrated probabilistic

forecasting method typically produces a uniform PIT histogram.
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1.7 Simulation and visualization tools

Besides the WRF simulation in chapter 7, results in this thesis are produced using

the R statistical software (R Core Team, 2015). R is a free application for statistical

computing and graphics, having various abilities for data simulations and visualiza-

tions. It has been built by the R core team, together with a wide network of contrib-

utors, who are producing contributed packages, expanding the usability of R. These

packages are downloadable at: https://cran.r-project.org/web/packages/.

The most frequently employed packages in this thesis are as follows. For

plotting, two packages are used: ggplot2 (Wickham, 2009) and ggmap (Kahle

and Wickham, 2013). For calculation of solar positions, package insol (Corripio,

2014) is mainly employed. The other contributed packages used in this thesis are

mentioned separately in the corresponding chapters.

https://cran.r-project.org/web/packages/
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Chapter 2

Singapore irradiance

characteristics

2.1 Introduction and literature review

Fluctuations of solar irradiance on the earth surface, mainly due to cloud formation

and movement and hydrological activities (at short- and medium-term), pose chal-

lenges for the stability of electric power systems. Spatial variations may mitigate

unwanted temporal fluctuations as aggregating power production from several solar

power plants spread over a region takes advantage of the geographical smoothing

phenomenon. Various authors have reported studies on this topic. Lave and Kleissl

(2010) conducted computational experiments on solar variability based on irradi-

ance data from four sites in Colorado (CO). Hoff and Perez (2012) attempted to

model irradiance correlations in terms of distance from satellite images in three

locations in the United States (US): Southwest, Southern Great Plains (SGP-OK),

This chapter is partly based on: A. W. Aryaputera, L. Zhao, and W. M. Walsh, ”So-
lar irradiance variation in Singapore,” PV Asia Scientific Conference, Singapore, 2015 (poster
presentation).
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and Hawaii (HI). Marcos et al. (2012); van Haaren et al. (2014); Klima and Apt

(2015) assessed the geographical smoothing effect using photovoltaic (PV) system

data in Spain, US and Canada, and Gujarat respectively.

The aforementioned studies show different degrees of smoothing in different

areas. Therefore, in this chapter, an empirical study is made of the irradiance

variability in Singapore (SG), which may be representative of tropical regions. For

comparison purposes, data from irradiance sensor networks in three other regions,

namely CO, SGP-OK, and HI (refer to sections 1.5.1.2 - 1.5.1.4), are studied.

This chapter is arranged as follows. Section 2.1 presents short literature

review and motivation of the work. Section 2.2 briefly describes the data used in

this study. Section 2.3 explains the methods employed in this chapter, especially

the frequency domain analysis using power spectral density (PSD). The results

are discussed in section 2.4 and finally the chapter is closed with a conclusion in

section 2.5.

2.2 Data

The data used in this chapter are taken from, as mentioned in section 2.1, four

irradiance sensor networks which are explained in section 1.5.1. Table 2.1 shows

more details on the data, including the 1-minute average global horizontal irradiance

(GHI) values since they may be compared with ramp rate values. These averages

are computed after excluding data with zenith angle (θz) > 80◦. It should be noted

that every dataset has a length of approximately 1 year.

Table 2.1: Network details

Network name
1-min. average

GHI
(W/m2min)

Period

SG 403 2 January 2014 - 31 December 2014
CO 457 1 January 2013 - 31 December 2013
SGP-OK 427 9 May 2014 - 10 May 2015
HI 504 1 November 2010 - 31 October 2011
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In this work, station 22 of the SG network (refer to Fig. 1.3) is ignored due to

the occurence of sensor shading during the corresponding period of measurement.

Station AP3 of the HI network (refer to Fig. 1.6) is excluded as well due to its

incomplete data during the period mentioned in Table 2.1.

2.3 Methods

2.3.1 PSD computation

Temporal variability of solar irradiance can be characterized in the frequency do-

main by utilizing power spectral density (PSD) (Katzenstein et al., 2010). In this

chapter, the PSD values are computed using the function lsp in the R package lomb

(Ruf, 1999; R Core Team, 2015). It works by employing the Lomb periodogram

which is appropriate or ”safe” for data with uneven time intervals (Katzenstein

et al., 2010). Nevertheless, all datasets mentioned in Table 2.1 have data complete-

ness rate of more than 99%.

In order to minimize the noise of the plots in the frequency domain (especially

in the high frequency region), the data are temporally partitioned and passed into

the periodogram algorithm, then the results are averaged in all frequencies (Klima

and Apt, 2015). Furthermore, those PSD values, of all possible combinations of a

certain amount of aggregated sensors, are averaged as well. To enable this, the lsp

function is slightly modified to guarantee a fixed set of scanned frequencies.

The number of data partitions is fixed at 24, resulting in a partition length

of around 15 days. Due to the partitioning process, seasonality which takes place

longer than 6 - 15 days will not be reflected in the PSD plots.
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2.3.2 PSD fitting

For comparability, following Klima and Apt (2015), the PSD values are fitted ac-

cording to

PSD (f) =
A

1 +Bf ε
(2.1)

where f is the frequency value, A represents the PSD value at low frequencies,

B corresponds to the interception at y-axis in log-log domain, and ε signifies the

PSD slope at high frequencies. The degree of variability is represented by ε (Lave

and Kleissl, 2010). More negative ε means less high frequency component in the

irradiance time series.

The fittings of A, B, and ε are done in a certain manner which allows com-

parability between PSD plot of single irradiance sensor with those of aggregated

sensors (Klima and Apt, 2015).

• Eq. (2.1) is fitted to the empirical PSD plot of single irradiance sensors in

the log-log domain. Fitting is done only in the frequency region slower than

48 hours and faster than 6 hours in order to exclude the impulses occur at

frequencies related to solar diurnal cycle. All the fittings in this chapter

are done using the limited–memory Broyden–Fletcher–Goldfarb–Shanno al-

gorithm with boundary conditions (L–BFGS–B) (Byrd et al., 1995) integrated

in the function optim in R.

• Empirical PSD plots of aggregated multiple irradiance sensors are normalized

by, first, multiplying all its values by
Asingle

Aaggregated
. Then, fitting is done for

the second time by forcing as much as possible that the fitted curves would

cross that of the single sensor at f = 1
24 hours

. This is done since we may

assume that the variabilities of single and aggregated sensors located in the

same geographical region are getting more similar to each other in the long

time step (Hoff and Perez, 2012). Here, the frequency of 24 hours is used as a
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benchmark although this procedure generally also causes the lower frequencies

to have similar PSD values.

An example of a fitting of a PSD plot derived from time series of single

irradiance sensors is displayed in Fig. 2.1.
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Fig. 2.1: PSD plot of irradiance from time series of single sensors in the SG network.

2.3.3 Computation of correlation and purely spatial corre-

lation fitting

Apart from analysis of the SG data in the frequency domain, the correlations of

irradiance ramps between two points in the four networks (SG, CO, SGP-OK,

and HI) are investigated as well. Here, ramp means the difference between two

consecutive irradiance values. Empirical correlations between two variables are

computed using the Pearson’s correlation coefficient formula

cor (X, Y ) =
E [(X − µX) (Y − µY )]

σXσY
(2.2)

where cor (X, Y ) is the empirical correlation between variables X and Y , E rep-

resents the expectation, µX symbolizes the mean of variable X, and σX is the

standard deviation of variable X.
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Afterwards, following Gneiting (2002); Yang (2015), the relationship between

empirical correlations and pair-station distances are fitted according to

C (h) =
(1− η) (c||h||)ν Kν (c||h||)

2ν−1Γ (ν)
+ ηδh=0, 0 ≤ η ≤ 1, c > 0, ν > 0 (2.3)

where C (·) is the function of correlation with respect to spatial displacement h, η

is the nugget effect, Kν represents the second kind modified Bessel function of the

order ν, Γ (·) is the gamma function, and c and ν are fitted parameters.

2.3.4 Clear sky model and index

Spatial correlation analysis described in section 2.3.3 can also be done on ramps of

clear sky index. Clear sky index is a fraction between actual irradiance value and

the corresponding modeled clear sky irradiance. Clear sky irradiance model (Yang

et al., 2014b) used in this chapter is as follows

Iclr = areIsc (cos θz)
b eΥ(90−θz) (2.4)

re =1.00011 + 0.034221 cos Ξ + 0.001280 sin Ξ+

0.000719 cos 2Ξ + 0.000077 sin 2Ξ (2.5)

Ξ =
2π (dn − 1)

365
(2.6)

where Iclr is the modeled clear sky irradiance, Isc is the solar constant which is

equal to 1362 W/m2, re is the earth eccentricity correction factor, Ξ is day angle

(in radians), dn is day sequence in the corresponding year, and a, b, and Υ are fitted

parameters.

For the SG network, the fitted parameters are taken from Yang et al. (2014b)

while for the other three networks, the parameters are fitted using actual clear sky

irradiance days, by considering only data with θz < 80◦. The fitted parameters are

written in Table 2.2.
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Table 2.2: Clear sky model fitting details

Network
Parameters

a b Υ
SG (Yang et al., 2014b) 0.82980 1.35850 -0.00135
CO 0.93051 1.19228 -0.00209
SGP-OK 0.87510 1.28812 -0.00135
HI 0.89075 1.25756 -0.00186

2.4 Results and discussion

2.4.1 Geographical smoothing, PDF of ramp events, and

general sky conditions

Fig. 2.2 shows the normalized empirical PSD plots of the irradiance sensors in the

SG networks together with that of the clear sky model (Yang et al., 2014b). Here,

the numbers of combinations of aggregated multiple sensors are capped at 100,

and the combinations are chosen at random. The distances between stations are

not taken into account. Nevertheless, the correlations between measurements of

pair-stations and their relations with the corresponding inter-station distances are

investigated in section 2.4.2.
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Fig. 2.2: Normalized PSD plots of irradiance from single and aggregated multiple sensors in the
SG network. That of clear sky irradiance is included as well. The numbers of combinations of
aggregated multiple sensors are capped at 100.

As expected, in Fig. 2.2, the clear sky model produces high PSD values only
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at frequencies related to diurnal cycle. For the measured irradiance values, as men-

tioned in section 2.3.2, the variabilities at the lower frequency region are the same

for irradiance values of single and aggregated multiple sensors. Due to geographic

smoothing, high frequency components diminish as the number of aggregated sen-

sors increases. As a consequence, the fitted PSD curves (in Fig. 2.3) tend to have

steeper gradient in the high frequency region as there are more sensors aggregated

together.
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Fig. 2.3: The corresponding fitted plots of those of SG network in Fig. 2.2.
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Following Klima and Apt (2015), the fitted PSD values of aggregated mul-
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Fig. 2.5: Histogram of the ramp events at the SG, CO, SGP-OK, and HI networks. The numbers
of station combinations are capped at 100. Average distances between stations are shown in the
parentheses. The numbers of the aggregated stations are included in the plot and represented by
the colours of the plot lines. Data with θz > 80◦ are excluded.

tiple stations can be compared to those of single sensors by computing

fracPSD =
PSDmultiple

PSDsingle

(2.7)

Plotting the fracPSD with respect to the number of interconnected sensors in the SG

network produces the graph in Fig. 2.4. It shows that the averaged irradiance values

have much less fluctuations compared to that of single sensors when 2-10 sensors are

interconnected. As the number of aggregated sensors grows, the increment of the

geographical smoothing effects are not as effective as those of fewer interconnected

stations.

The geographical smoothing effect can be visualized as well using the prob-

ability density function (PDF) of the ramp events as shown in Fig. 2.5. The figure

reveals that a point in the SG network generally has more large fluctuations com-

pared to those in the CO and SGP-OK networks. However, when the irradiance

values from 23 sensors in the SG network are averaged, the resulting time series
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Fig. 2.6: 2-dimensional histogram of the ramp events at single sensors in the SG, HI, CO, and
SGP-OK networks broken down according to daily clear sky indeces. Data with θz > 80◦ are
excluded.

has significantly less fluctuations, even less than those of the averaged irradiance

values from maximum number of sensors in the CO network. The irradiance values

in the HI network seem to fluctuate the most. The fluctuations remain high even

after the irradiance values from the 16 HI stations are averaged. This is related to

the spatial closeness between stations in the HI network. The correlations between

ramp events and inter-station distances will be discussed in section 2.4.2.

In agreement with Fig. 2.4, as the number of aggregated stations keeps in-

creasing, the increment in the geographical smoothing effect saturates. For the SG

network, it does not seem to be much difference in the PDF of the ramp events for

12 and 23 aggregated stations. Similar phenomenon can be observed in the other
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Fig. 2.7: Histogram of the daily clear sky indeces at the four networks. Data with θz > 80◦ are
excluded.

networks as well.

Fig. 2.6 shows 2-dimensional PDF plots of the ramp events of single stations

in the four networks broken down by the daily clear sky index. As expected, this

plot reveals that the ranges of ramping events typically grow progressively as the

daily clear sky indeces increase. Ultimately, they drop as the clear sky indeces

get bigger than 1. Clear sky index may grow larger than unity due to the diffuse

component of the irradiance (Yang, 2014). In line with Fig. 2.5, there are more

large ramp events of single stations in the SG network than those in the CO and

SGP-OK networks. In addition, the HI network is shown to possess many large

ramp events of single stations for clear sky indeces between 0.6 - 0.9.

Fig. 2.7 visualizes the PDF of the clear sky indeces in the four networks.

Stations in the SG network generally have much more cloudy days than the other

three networks do. This explains the relatively low 1-minute average irradiance

of the SG network in Table 2.1 although this network is located very near to the

equator. It is worthwhile to note that during the period of the SG dataset (Ta-

ble 2.1), based on the historical pollutant standards index (PSI) values, there was
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Fig. 2.8: Ramp correlations of station pairs with respect to their distances at the four networks
(1-year data). Data with θz > 80◦ are excluded.

almost no significant smoke haze event, which is normally triggered by forest fires

in Indonesia and affects Singapore almost every year (NEA, 2016; Asiaone, 2016).

The CO and SGP-OK networks have the most clear sky days while the HI network

has the fewest overcast days. This network also has more cloudy days compared to

those of the CO and SGP-OK networks.

2.4.2 Spatial variations

Fig. 2.8 shows the purely spatial correlations of ramp events with respect to pair-

station distances. The lines in the figure are fitted according to Eq. (2.3). It shows

that in general the spatial variations in the SG network is higher than those in
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Fig. 2.9: As in Fig. 2.8, but for clear sky index. Data with θz > 80◦ are excluded.

the CO and SGP-OK networks, but comparable to those in the HI network. In

agreement with Hoff and Perez (2012), the ramp correlations tend to get higher as

the time step gets longer.

The fact that the SG network has high spatial variations may be related to

Fig. 2.7 which shows that the SG network has many cloudy days and hardly any

clear sky day. On top of that, weather phenomena in the tropical areas are typic-

ally dominated by local and mesoscale events while in midlatitude regions, synoptic

phenomena are dominant (UCAR, 2011). Further investigations on other meteoro-

logical parameters such as wind speed and cloud types are required (Remund et al.,

2015) in order to understand the spatial variations in different climates.

Following Hinkelman (2013), Figs. 2.10 and 2.11 show the ramp correlations
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of station pairs in the SG network with respect to their distances according to

various orientation degrees (shown on the top of the panels). These degrees show

the rotation angles of the Singapore map. The distances of the station pairs are

calculated based on the original horizontal axis. For smaller timescales, there is a

nonuniformity in terms of spatial correlations for various orientation degrees. This

phenomenon may be attributed to the dominant wind during this period, and it

may be investigated further.

2.5 Conclusion

This chapter has shown that Singapore has higher spatial irradiance ramp vari-

ability compared to that in Colorado and Southern Great Plains. High spatial

variability (low inter-station irradiance correlation) causes effective geographical

smoothing, which is expected to make PV grid integration more manageable. How-

ever, the improvement of the geographical smoothing in Singapore becomes less

obvious as more than ±10 stations are interconnected.
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Fig. 2.10: Ramp correlations of station pairs in the SG network with respect to their distances
according to various orientation degrees, and for various timescales. The number on the top of
each panel shows the corresponding orientation degree.
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Fig. 2.11: As in Fig. 2.10, but for clear sky index.
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Chapter 3

Short-term forecasts using a

network of PV systems

3.1 Introduction

Photovoltaic (PV) power output forecasting techniques are critical tool in manag-

ing PV variability. These techniques vary widely in their application and methods,

according to their spatial and temporal scales. For sub-hourly PV power or irradi-

ance forecasting, most approaches have relied on statistical methods which utilize

the recent historical values to make a short-term prediction, doing so for single sites.

Recently however, several studies have attempted to expand forecasting to include

multiple sites in their predictions. Since many studies now produce solar forecasts,

baseline metrics have been established, and it has become common to compare

new forecasting methods to pre-established methods. The most prominent baseline

is that of smart persistence where it is assumed that the sky condition remains

This chapter is partly based on: A. W. Aryaputera, N. Engerer, L. Zhao, and W. M. Walsh,
”Output power forecast of a photovoltaic network,” 26th International Photovoltaic Science and
Engineering Conference, Singapore, 2016 (poster presentation).
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unchanged between time-steps. One of the most commonly utilized models for

single-site forecasting is the auto-regressive integrated moving average (ARIMA).

Both of these methods are utilized as baselines for forecast improvements in this

study.

For distributed PV forecast applications, sky cameras have been suggested as

one promising approach (Yang et al., 2014c). Sky camera images may be utilized to

anticipate coming clouds using temporal extrapolation upon cloud detection in the

images. Satellite image analysis is another solution deployed for larger areas and

longer timescales. However, universal coverage by sky-imagers is impractical, and

satellite-derived forecasts often lack sufficient ground validation networks or may

be limited in their resolution (in both space and time). In these cases, utilizing the

historical data of neighbouring PV systems to forecast the output power of a given

PV system is a promising approach.

Methods which utilize distributed networks of the power generation systems

themselves to produce solar forecasts mean that it is possible to anticipate fluctua-

tions in power output by sensing similar behaviour in the power output of adjacent

PV systems. In this chapter, we apply this approach to a network of 93 PV sys-

tems, located in the Australian Capital Territory (ACT), Australia, to produce

5 min forecasts of single sites and collective power output via the least absolute

shrinkage and selection operator (lasso) method (Efron et al., 2004; Tibshirani,

2011). The description of the network is written in section 1.5.1.5. The forecasting

results are compared with smart persistence and ARIMA.

This work can be considered as a continuation of the previous work on the

lasso method (Yang et al., 2015b), but it exchanges a distributed solar irradiance

network for a solar PV one. This work is novel in that it is a first step in quantifying

the accuracy of the lasso method for various meteorological events in the ACT which

feature critical collective ramp events (Wellby and Engerer, 2016).



41

3.2 Methods and results

Before forecasts are performed, filtering is done to exclude data with solar zenith

angle larger than 70◦. Furthermore, only stations with data availability more than

95% are used. Missing data of the selected stations are filled using the most recent

available data, or in the case of missing data at the start of a time series, arbitrary

values are assigned.

ARIMA and lasso forecasts are performed by, first, training the models using

the earliest 20% of the data (the ”morning” part of the day). Subsequently, a mov-

ing training window is applied. This means that forecasts are only produced for the

noon and afternoon parts of the day (latest 80% of the data). For each forecasting

case, data from the previous day are not included in the learning period especially

since the wind direction, which affects the movement of cloud or other particles in

the sky, may be different from one day to the other. It brings a disadvantage since

the ”morning” part of the day cannot be forecast, and thus some days in Wellby

and Engerer (2016) whose collective ramp events occur early in the morning, such

as those triggered by fog phenomena, are excluded here. This problem may be im-

proved in the future using technologies which enable the tracking of cloud or other

particles at night until early in the morning before the sunrise.

We note that our data filtering and limited forecasting time period does not

critically impact the value of the proposed power forecasting application: the bulk

of PV power generation still falls within the forecast period. We also note that the

data selected represent extreme events which can be the most difficult to forecast

but which are of particular interest to grid operators.

Prior to the forecasting process, we normalize our data against the clear sky

power output in order to remove any diurnal or seasonal tendency, and we transform

the data back to un-normalized power output before the forecast accuracies are

computed. The normalization process is done according to the method of Engerer
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and Mills (2014).

Since we are particularly interested in the critical collective ramp events, two

types of ARIMA and lasso methods are used to perform the accumulated power

forecasting job (Hyndman et al., 2011). The first types are called independent

ARIMA and lasso (ARIMA.IND and lasso.IND), where the collective power output

values are forecast independently. The second types are called bottom-up ARIMA

and lasso (ARIMA.BU and lasso.BU), where the forecast values of the individual PV

system are taken as the forecast values of the collective one. Here the lasso method

is implemented using the R package lars (Hastie and Efron, 2013) while the R

package forecast (Hyndman, 2016; Hyndman and Khandakar, 2008) is adopted

to realize the ARIMA method.
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The accuracies of all forecasts are then measured using forecast skill (FS)

FS = 1− RMSEf

RMSEbenchmark

(3.1)

Table 3.1 shows the forecast accuracies for collective outputs with smart persistence

method (Pers) becoming the benchmark for FS calculation. It can be seen that the

lasso.BU method is the overall best method, and it is noted that lasso.BU method

works particularly better than the others during northwest cloud band phenomena.

Extremely inaccurate forecast results are obtained for 20 February 2013 due to

the limited available data. Plots of the observed and forecast time series of the

collective power outputs are available in appendix A.

Fig. 3.1 shows the FS of lasso and Pers of individual systems for all the days

listed in Table 3.1. For completeness, Fig. 3.2 visualizes the comparison of lasso

and ARIMA methods. In line with Table 3.1, Fig. 3.1 indicates that lasso method

is able to do forecasts of individual systems power outputs more accurately when

northwest cloud band phenomena occur. In contrast, during cold front phenomena,

the forecast accuracies degrade. It is not reflected in Fig. 3.2 since the ARIMA

method seems to be worst than the Pers method.
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3.3 Conclusion

Five-minute-ahead forecasts of collective power outputs of a network of PV systems

in the ACT, Australia, have been performed on days with critical collective ramp

events. The results show that generally the bottom-up lasso method, where the

power outputs of the individual systems are first forecast using lasso parameter

selection, and then the individual forecast values are summed up as the forecast

collective output, performs the best. This method performs particularly well on

days with northwest cloud band phenomena. We further observe that the applied

forecasting methods improve upon persistence and in all cases but one give forecast

skill results comparable to other statistical methods of short time forecasting.

The particular significance of this result is that it has been demonstrated

that acceptable forecasting can be performed using the output from PV power

generation systems rather than relying upon an expensive network of irradiance

monitoring stations. This advantage is of particular significance in situations where

a relatively sudden increase in the number of small scale domestic PV systems

occurs, potentially impacting grid operation. A suitably modified version of the

forecasting technique demonstrated in this chapter offers the propsect of a low-

cost, operational forecasting system, which may be deployed by as grid operator to

facilitate short term grid stability.
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Chapter 4

Very short-term forecasting using

spatio-temporal kriging

4.1 Introduction

This chapter presents work on irradiance forecasting with forecast horizons ≤ 5

minutes, which we refer to as very short term forecasting. One potential appli-

cation of such short-term forecasts is to anticipate extreme ramp events in large

(MW-scale) utility PV systems (Engerer and Mills, 2014; Gould, 2013). Ancillary

generators may be deployed if near–future negative ramp events are able to be fore-

cast. Another potential application, as mentioned by Achleitner et al. (2014), is

This chapter is based on:

• A. W. Aryaputera, D. Yang, L. Zhao, and W. M. Walsh, ”Very short-term irradiance
forecasting at unobserved locations using spatio-temporal kriging,” Solar Energy, 122:1266-
1278, 2015. doi: http://doi.org/10.1016/j.solener.2015.10.023

• A. W. Aryaputera, D. Yang, L. Zhao, and W. M. Walsh, ”Very short-term irradiance fore-
casting at unobserved locations using spatio-temporal kriging with polynomial anisotropy
fitting,” 25th International Photovoltaic Science and Engineering Conference, Busan, Ko-
rea, 2015 (oral presentation)

http://doi.org/10.1016/j.solener.2015.10.023
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smoothing using ultra–capacitors.

There have been many previous approaches to very short term irradiance

forecasting reported in the literature. Yang et al. (2014c) utilized a sky imager

in San Diego, California for a forecasting system with forecast horizon up to 15

minutes. Although sky cameras provide detailed information about cloud position

and movement, significant difficulties arise in creating a accurate models to fore-

cast from them. Forecasting errors may be caused by inaccurate cloud base height

approximation and assumptions of uniform cloud motion which do not always hold.

In addition, occurrences of haze, which is often detected as thin clouds, leads to

additional forecasting errors. For nowcasting, the relative root mean square er-

ror (rRMSE) is found to be 17.7%. The error increases quasi–linearly as forecast

horizon gets longer.

Dambreville et al. (2014) used ground measurements and satellite–based

HelioClim–3 data to forecast irradiance 15–minute to 1–hour ahead. Satellite im-

ages enable the use of spatio–temporal correlations. Their proposed method has

forecast skill (FS) of 20.2%, 26.3%, 27.7%, and 29.3% for forecast horizons of 15, 30,

45, and 60 minutes respectively. Here, FS is defined as in Eq. (1.3) with persistence

as the benchmarking method. Chu et al. (2015a) applied a multi–layer perceptron

(MLP) approach and a genetic algorithm (GA) method to forecast solar irradiance

ramps (with 1–minute resolution) 10 minutes in advance in San Diego and Folsom,

California. The FS achieved are 10.1% and 6.2% for 10–minute horizons in San

Diego and Folsom respectively. Chu et al. (2015b) tried to improve three exist-

ing forecast methods (cloud tracking (Chow et al., 2011), autoregressive integrated

moving average (ARIMA) (Box et al., 2011), and k–nearest neighbour (Pedro and

Coimbra, 2012) models) using GA. After GA had been implemented, for cloud

tracking models (which improve results the most), the FS values increase from

−71.3%, −30.7%, and −18.9% to 15.1%, 21.8%, and 26.2% for forecast horizons of

5, 10, and 15 minutes respectively.



50

Recently, investigating spatio–temporal correlations between measurements

of solar irradiance sensors has become a research trend in the solar irradiance

resource field. As an example, Yang et al. (2015b) performed very short–term

forecasting by exploiting the spatio–temporal correlations in a dense network of

irradiance sensors of Oahu, Hawaii for days dominated by broken clouds which

had previously been investigated by Hinkelman (2013). In spatio–temporal–based

forecasting, the irradiance value for the next time step is predicted based on the

past and current irradiance values of the corresponding and neighbouring stations.

The particular method used is the least absolute shrinkage and selection operator

(lasso) (Efron et al., 2004; Tibshirani, 2011) which was shown to reach FS (aver-

aged over all stations) of 19% in the case of 10–second ahead forecasting. This

method is more accurate when compared with the standard ordinary least square

(OLS) whose FS value is, for the same forecast horizon, 8% (in the case when wind

direction is known). As the name suggests, the main difference between the lasso

and OLS lies on the ability of lasso to eliminate insignificant predictors in order to

diminish forecasting noise.

Similarly, Achleitner et al. (2014) designed solar power prediction system

using a network of sensors built with the knowledge of dominant wind direction.

The so-called Peak Matching Algorithm (PMA) implemented in this system is able

to reach 97.24% accuracy for 6 testing days. Higher accuracy may be achieved

compared to that of Yang et al. (2015b) owing to the fact that power output

collected from a large solar field is temporally smoother than irradiance recording

from a point sensor due to geographic smoothing effects (Lave et al., 2013).

Although lasso and PMA seem to be the state–of–the–art for very short–term

irradiance forecasting using spatio–temporal correlations, they have a disadvantage

since there is no way to predict irradiance at unobserved locations (where no his-

torical data are available for these particular sites). In order to resolve this issue,

this chapter presents a spatio–temporal forecasting using the kriging method which
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includes a fitting of spatio–temporal correlation matrix (Cressie and Wikle, 2011;

Gneiting et al., 2007b). Fitting is the key to enable prediction of solar irradiance

at unobserved locations.

In this chapter, several spatio–temporal–based methods for very short–term

surface irradiance forecasting (forecast horizons ≤ 5 minutes) are investigated. The

forecast horizons are chosen in accordance with the size of the sensor network

available. Once a network with larger area and higher density is available, there is

a possibility to extend the forecast horizons (Engerer and Mills, 2014; Gould, 2013)

and thus widen the usage of the forecasting results presented here.

This chapter is organized as follows. Section 4.2 explains the irradiance

data from a station network on Oahu Island, Hawaii, provided by the National

Renewable Energy Laboratory (NREL). Section 4.3 describes the kriging method.

Section 4.4 displays the exploratory analyses and forecasting results. Section 4.5

presents the discussion based on the forecasting results. Finally, section 4.6 presents

the conclusion of this chapter.

4.2 Irradiance data

As mentioned in section 4.1, the irradiance data used in this chapter is taken

from the NREL station network in Oahu, Hawaii (Sengupta and Andreas, 2010).

The layout of the network is shown in Fig. 1.6. For most of the stations, the

global horizontal irradiance (GHI) data (with 1–second resolution) is available for

18 March 2010 to 31 November 2011. Dominant wind during this period, especially

during 13 days mentioned by Hinkelman (2013), blows towards 60◦ West from

South. In this chapter, since we are interested in integration of wind information

into the forecasting system, only data from these 13 days, during which irradiance

is also heavily influenced by broken clouds, is used. These days have also become

the research subjects of Hinkelman (2013), Arias-Castro et al. (2014), and Yang
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et al. (2015b).

As in the work of Yang et al. (2015b), the GHI datasets are averaged over

intervals (t̄), namely 10, 20, 30, 40, 50, 60, 120, 180, 240, and 300 seconds, to facili-

tate the forecasting with different forecast horizons. The smallest time aggregation

(10–second) is chosen since the smallest along–wind distance for wind–parallel sta-

tion pairs is 89 m (for AP1 and DH3) while the average wind speed during these

13 days is ≈ 10 m/s (Hinkelman, 2013). Thus, the average time needed for clouds

to move from AP1 to DH3 is around 8.9 seconds.

In order to eliminate seasonal patterns in the GHI time series, the data are

transformed into clear sky index (kT) by dividing the data by calculated/modeled

clear sky irradiance (Iclr). Then, to obtain zero mean values, the indices are sub-

tracted by the mean of indices of each corresponding station. In the following

sections, only such data with solar zenith angle smaller than 80◦ are utilized.

4.3 Kriging and spatio–temporal function fitting

Kriging is a method to predict the value of a certain variable in an unobserved lo-

cation, given some point observation data distributed in a geographical space. This

method was developed in 1950s by D. G. Krige, a mining engineer from South Africa

(Krige, 1951; Matheron, 1963; Cressie, 1993). In the next step, this method was ex-

tended for spatio–temporal applications (Gneiting et al., 2007b; Cressie and Wikle,

2011), for example time–forward kriging (Yang et al., 2013), and thus making it

as one of forecasting methods. The method used especially for cases which involve

spatial processes with time series.
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4.3.1 The kriging formulation

Consider a spatio–temporal process {z(s; t) : s ∈ Ds ⊂ Rd, t ∈ Dt ⊂ R1} evolves

through the spatio–temporal index set Ds ×Dt. Given observations:

Z ≡
(
z(s1; t1), · · · , z(sp; tp)

)>
(4.1)

at p space–time coordinates where > stands for matrix transpose operation, predic-

tions at unobserved coordinates (s0; t0) can be obtained using the simple kriging

predictor:

z∗(s0; t0) = µ(s0; t0) + c(s0; t0)>S−1(Z − µ) (4.2)

where S ≡ cor(Z), c(s0; t0) ≡ cor(z(s0; t0),Z), cor (·) is the Pearson’s (empirical)

correlation function, and µ ≡ E(Z) (Cressie and Huang, 1999). When the number

of temporal indices at each station is identical, we can decompose Z such that:

Z =
(
z(1)>, z(2)>, · · · , z(mlag)>)> (4.3)

and

z(k) =
(
z(s1; tk), z(s2; tk), · · · , z(sn; tk)

)>
, k = 1, · · · ,mlag (4.4)

where n and mlag are numbers of spatial and temporal indices, nmlag = p. In

other words, mlag also represents the maximum time lag which is considered in the

forecasting algorithm. For example, if mlag is equal to three, observation values of

the three newest time steps are considered in order to forecast observation value of

the next time step.

The S in Eq. (4.2) is:

S =


S0 S>1 · · · S>mlag−1

S1 S0 · · · S>mlag−2

...
...

. . .
...

Smlag−1 Smlag−2 · · · S0

 , ∈ Rnmlag×nmlag (4.5)
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and

Su =


S11,u S12,u · · · S1n,u

S21,u S22,u · · · S2n,u

...
...

. . .
...

SN1,u SN2,u · · · Snn,u

 , ∈ Rn×n (4.6)

where u = 0, · · · ,mlag − 1 and

Sij,u = Sij,k−l

= cor(z(si; tk), z(sj; tl))

= cor(z(si; tk), z(sj; tk − u)), ∀k > l (4.7)

For one time step ahead prediction, the c in Eq. (4.2) can be expanded as:

c =
(
c>mlag

· · · c>2 c>1

)>
, ∈ Rnmlag×1 (4.8)

and

cu =
(
c01,u c02,u · · · c0n,u

)>
, ∈ Rn×1 (4.9)

where u = mlag, · · · , 1 and

c0j,u = cor(z(s0; tk), z(sj; tk − u)) (4.10)

Suppose there is a time series (which can be considered as a collection of

sequential samples) at each spatio–temporal index, the empirical estimates of the

correlations in Eqs. (4.7) and (4.10) can be calculated. However, when the goal

is to estimate the irradiance at an unobserved location, correlations in Eq. (4.10)

cannot be estimated directly due to the absence of data at the forecast location.

In this case, fitted correlation functions are needed to estimate c in Eq. (4.8). A

fitted correlation function is defined as:

C(h;u) ≡ ρ (z(s; t), z(r; q)) (4.11)
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where spatial difference h = s − r and temporal difference u = t − q, and ρ (·)

symbolizes a fitted correlation function between two time series. It should be noted

that in this chapter, the value of u is always related to t̄. For example, u =

0, 1, · · · , 5 refer to time lags of 0, 50, · · · , 250 seconds respectively for t̄ = 50 seconds.

4.3.2 Spatio–temporal function fitting

Besides the empirical one (EMP), four classes of fitted correlation functions are

considered in this chapter, namely, separable (SEP), fully symmetric (F.SYM), gen-

eral stationary (STAT), and polynomial (POLY). We say a correlation function is

separable if:

CSEP (h;u) = CS (h) CT (u) (4.12)

where CS (h) is a purely spatial correlation function, and CT (u) is a purely tem-

poral correlation function. CS (h) and CT (u) are shown in Eqs. (4.13) and (4.14)

respectively

CS (h) = (1− η) exp (−c||h||) + ηδh=0 (4.13)

CT (u) =
(
1 + a|u|2ϑ

)−1
(4.14)

where η, c, a, and ϑ are fitted parameters. Specifically, variable η is called the

nugget effect. Eqs. (4.13) and (4.14) are monotone functions. Eq. (4.13) is a convex

combination between an exponential function and a nugget effect. The nugget

effect occurs due to variability in small spatial scale and/or measurement error.

It causes discontinuities at zero distance. Eq. (4.14) is a Cauchy type correlation

function with limited smoothness at small time lag which suits typical correlation–

time lag relationship. The absence of the nugget effect is assumed since temporal

aggregation, mentioned in section 4.2, tends to smooth out discontinuities.

Fully symmetric fitting is a fitting technique where spatial and temporal cor-

relation functions are fitted simultaneously. Thus, the resulting function is generally
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not separable. This function is shown in Eq. (4.15):

CF.SYM (h;u) =
1− η

1 + a|u|2ϑ

×

[
exp

(
− c||h||

(1 + a|u|2ϑ)
%
2

)
+

η

1− η
δh=0

]
(4.15)

where % is the fitted space–time interaction. As mentioned by Gneiting et al.

(2007b), there is a restriction of % ∈ [0, 1]. The function will turn to be separable

when % = 0. Eq. (4.15) is a fully symmetric correlation function since it satisfies

Eq. (4.16).

C (h;u) = C (h;−u) = C (−h;u) = C (−h;−u) (4.16)

General stationary fitting is similar with the symmetric fitting, except that

it considers anisotropy. In the field of solar resource, anisotropy is typically caused

by wind. General stationary correlation function can thus be formulated as:

CSTAT (h;u) = (1− λ) CF.SYM (h;u) + λCLGR (h;u) (4.17)

where λ is a fitted parameter and CLGR (h;u) is a function describing the anisotropy

in the along wind direction. An example of CLGR (h;u), as proposed by Gneiting

et al. (2007b) is:

CLGR (h;u) =

(
1− 1

2v
|h1 − vu|

)
+

(4.18)

where v is a fitted parameter and h1 is the along wind component of h.

Finally, anisotropic correlations can also be fitted using polynomials. In this

manner, the correlation function can be formulated as:

CPOLY (h;u) = CF.SYM (h;u) + λCWIND.POLY (h;u) (4.19)

where λ is a fitted parameter and CWIND.POLY (h;u) has similar role with that of

CLGR (h;u). The difference between CWIND.POLY (h;u) and CLGR (h;u) will be appar-

ent in section 4.4.1.1.
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4.4 Exploratory analyses and results

4.4.1 Exploratory analyses

Before extensive forecasting is performed, some exploratory analyses are conducted

to examine the empirical spatio–temporal correlation matrix. Data from a single

day, namely 5 August 2010, is used in section 4.4.1.1 to demonstrate the forecasting

at observed locations. For section 4.4.1.2 which validates forecasting at an unob-

served location, the whole 13 days are tested. As an illustration, mlag is taken to

be 1 (mlag is the maximum time lag considered in the forecasting calculation, as

mentioned in section 4.3.1), t̄ is taken to be 50 seconds (the 1–second data are

averaged into 50–second data), and only 50% of the data of each day are pre-

dicted (since in the forecasting process we need to split the data into training and

testing parts). These 50% data correspond to those of the later half of each day.

In order to get a more detailed understanding of the performance of the spatio–

temporal models, sections 4.4.2 and 4.4.3 present the FS values for various forecast

horizons/temporal aggregations, maximum time lag mlag values, and learning data

lengths for the whole 13 days.

As mentioned in section 4.2 and following Eq. (4.2), in the very first step,

the irradiance values are first divided by the corresponding clear sky irradiance and

then subtracted by the mean value of the corresponding station kT. The adopted

clear sky irradiance model was proposed by Perez et al. (2002). The Linke turbidity

used in the model was formulated by Ineichen (2008).

4.4.1.1 Observed locations

In this section, forecasting at observed locations is demonstrated, meaning histor-

ical data from all stations are included in the learning process. Fig. 4.1 shows the

purely spatial correlation plot of the observation values. After the points in Fig. 4.1
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are fitted to CS (h) in Eq. (4.13), it is estimated that η̂ = 0 and ĉ = 0.822. All the

fittings in this chapter, except for those of STAT correlation functions, are done

using limited–memory Broyden–Fletcher–Goldfarb–Shanno algorithm with bound-

ary conditions (L-BFGS-B) (Byrd et al., 1995) integrated in the function optim of

the R statistical software (R Core Team, 2015). The fitting of STAT correlation

function will be explained later.
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Fig. 4.1: Empirical and fitted purely spatial correlation of 50% learning data on 5 August 2010
for t̄ = 50 seconds (50–second average).

Similarly, fitting can be done on CT (u) as shown in Fig. 4.2. It is esti-

mated that â = 0.325 and ϑ̂ = 0.754 after fitting is done according to Eq. (4.14).

Simple multiplication between CS (h) and CT (u) results in SEP correlation func-

tion (Eq. (4.12)). For F.SYM correlation function, fitting can be done based on

Eq. (4.15). In this way, it is estimated that %̂ = 1 given that the values of η̂, ĉ,

â, and ϑ̂ from the SEP correlation function fitting are retained, following Gneiting

et al. (2007b).

The next step is to investigate the asymmetry with respect with along and

cross wind displacement vectors. As mentioned, in section 4.2, the wind direction

is taken to be 60◦ West from South owing to the prior knowledge of the domi-

nant wind direction in this area. In the future, wind direction forecast may be

included, for example, by making use of intra–day weather forecasting model, such
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Fig. 4.2: Empirical purely temporal correlation of 50% learning data on 5 August 2010 for t̄ =
50 seconds and maximum time lag mlag = 10. Inset: Fitted temporal correlations with maximum
time lag mlag = 1.

as Global Forecasting System (GFS) (NOAA, 2015a), North American Mesoscale

Model (NAM) (NOAA, 2015b), or European Centre for Medium–Range Weather

Forecasts (ECMWF) (ECMWF, 2015).

First, the modeling of POLY correlation function is described here. As an

illustration, asymmetry between stations DH8 and AP1 for lag u is computed as the

difference between cor(z(sDH8; tk), z(sAP1; tk−u)) and cor(z(sAP1; tk), z(sDH8; tk−

u)). Two asymmetry models are visualized in Fig. 4.3. They are polynomial line

and polynomial surface fitted models. Surface fitting is made possible by including

the information of cross wind distance. From this points onwards, POLY correlation

function which utilizes polynomial line fitting will be called POLY.A while the other

will be called POLY.B. Referring to Eq. (4.19), we are able to put the ‘asymmetry’

information into CWIND.POLY (h, u) as stated in Eqs. (4.20) and (4.21) for POLY.A

and POLY.B respectively

CWIND.POLY,A (h, u) = H [u]H [h1] {KA,u (h1)4 + LA,u (h1)3

+MA,u (h1)2 +NA,u (h1)} (4.20)
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Fig. 4.3: (top) Empirical and fitted asymmetry in correlation with respect to along wind distance
of 50% learning data on 5 August 2010 for t̄ = 50 seconds and maximum time lag mlag = 1.
(bottom) Empirical and fitted asymmetry in correlation with respect to along and cross wind
distances.
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CWIND.POLY,B (h, u) = H [u]H [h1] {KB,u (h1)2 + LB,u (h2)2

+MB,u (h1) (h2) +NB,u (h1)

+OB,u (h2) + PB,u} (4.21)

where h2 is the cross wind component of h, K, L, M , N , O, and P are coefficients

which are fitted separately for different u, and H [·] is the Heaviside step function

as defined in Eq. (4.22)

H [x] =

1 if x ≥ 0

0 if x < 0

(4.22)

As mentioned in section 4.2, the dominant wind direction is taken to be 60◦

West from South following Hinkelman (2013). The fitting coefficients are found

to be as follows: K̂A,1 = −0.850, L̂A,1 = 1.727, M̂A,1 = −1.643, N̂A,1 = 1.030,

K̂B,1 = −0.837, L̂B,1 = −0.003, M̂B,1 = −0.330, N̂B,1 = 1.155, ÔB,1 = −0.238, and

P̂B,1 = 0.049. Regarding the along wind component h1 mentioned previously, as an

illustration, referring to the network layout in Fig. 1.6, cor(z(sDH8; tk), z(sAP1; tk−

u)) has positive h1 while cor(z(sAP1; tk), z(sDH8; tk − u)) has negative h1.

By utilizing Eqs. (4.20) and (4.21), the suitable values of λ̂ for two of them

are found to be 0.955 (for POLY.A) and 0.797 (for POLY.B). Those λ̂ values are

chosen in such a way that the forecast of the learning data gives the smallest RMSE.

In addition, here, the values of η̂, ĉ, â, ϑ̂, and %̂ from the fittings of SEP and F.SYM

correlation functions are retained.

For STAT correlation function (refer to Eqs. 4.17 and 4.18), the fittings of

parameters η, c, a, ϑ, %, v, and λ are done simultaneously using the function GenSA

(Xiang et al., 2013). This correlation function is treated differently since utilization

of function optim does not lead to good results.

After all correlation matrices have been obtained, forecasting can be per-

formed. Fig. 4.4 shows the rRMSE for GHI forecasting (of 50% testing data) of
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each station and forecasting method on 5 August 2010 with t̄ = 50 seconds and

maximum time lag mlag = 1. The results in Fig. 4.4 are obtained by fitting param-

eters η, c, a, ϑ, %, K, L, M , N , O, P , and λ separately for each time step (learning

data become like a moving window with fixed length) since this way yields slightly

better results compared to those when the coefficients are fitted only once per day.

Exception is applied for STAT correlation function since the function GenSA typic-

ally takes longer time (∼ 1.5 minute) for fitting. Thus, fitting is only done once for

each day for this particular correlation function. The stations in Fig. 4.4 are sorted

according to the dominant wind direction. Besides kriging with the five spatio–

temporal correlation functions mentioned previously (EMP, SEP, F.SYM, STAT,

and POLY), three univariate models are used for benchmarking purpose, namely

persistence (Pers), ARIMA model (ARIMA) (Yang et al., 2012), and exponential

smoothing (ETS) (Yang et al., 2015a). The Pers method (Inman et al., 2013) is

performed following Eq. (4.23)

Îtk+1 = kT,tk
× Iclr,tk+1 =

Itk
Iclr,tk

× Iclr,tk+1 (4.23)

where Îtk+1 is the estimated irradiance at one time step ahead, Iclr,tk and Iclr,tk+1 are

computed/modeled clear sky irradiance at current time and one time step ahead

respectively, Itk is the measured current irradiance, and kT,tk
is the current clear

sky index. The rRMSE is computed according to Eq. (1.2).

Fig. 4.4 reveals that, in this case, EMP kriging is able to produce the best

forecasting result in terms of median rRMSE. In this criterion, the second and third

best results are achieved by POLY.B and POLY.A kriging respectively. However,

STAT kriging has smaller 75% quantile than that of POLY.A kriging. Another

feature noted in the figure is that stations which are preceded by other stations in

the upwind direction (for example station DH10 is preceded by stations DH3 and

AP1, while station DH1 is not preceded by any station in the upwind direction)

tend to have lower rRMSE, especially for EMP and POLY kriging.
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Fig. 4.4: Box plot of irradiance forecasting rRMSE at observed locations (5 August 2010, t̄ =
50 seconds, 50% learning data, maximum time lag mlag = 1). The ends of the whiskers refer to
the highest and lowest data within 1.5× inter-quantile-range.

4.4.1.2 Unobserved locations

In order to validate irradiance forecast at an unobserved location, one station is not

included when correlation matrices are constructed. In this case, station DH10 is

chosen as the testing station. Obviously, EMP kriging cannot be done for prediction

at an unobserved location since it is assumed that we do not have any historical data

at those points. Thus, only SEP, F.SYM, STAT, and POLY kriging are applicable.

By referring to section 4.2 and Eq. (4.2), after calculating c(sDH10; tk +

1)>S−1(Z − µ), we need to add back the mean of kT at station DH10 before

multiplying the result with the appropriate Iclr,tk+1 to get the predicted irradiance

on location sDH10 at time tk + 1. Since it is assumed that we do not have any data

on the location of station DH10, the mean of kT of all learning stations is added to

c(sDH10; tk + 1)>S−1(Z − µ) instead.
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by broken clouds in 2010, t̄ = 50 seconds, 50% learning data, maximum time lag mlag = 1).

For benchmarking purposes, the mean values of univariate forecasting re-

sults (derived by Pers, ARIMA, and ETS methods) of learning stations are adopted.

Fig. 4.5 shows the rRMSE of one time step ahead irradiance prediction on station

AP3 on all the 13 days dominated by broken clouds (mentioned in section 4.2)

with t̄ = 50 seconds, 50% learning data, and maximum time lag mlag = 1. The

figure shows that on most days, POLY.B kriging is able to predict irradiance at AP3

with highest accuracy in terms of median rRMSE. According to this criterion, the

performances of STAT and POLY.A kriging are comparable.

4.4.2 Forecasting with various forecast horizons

In this section, the accuracy of the proposed models are tested for various forecast

horizons. In addition, for forecasting at observed locations, various maximum time

lag mlag values are tested. The mlag value with the smallest RMSE is chosen for
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Fig. 4.6: (left) rRMSE of irradiance prediction at observed locations (averaged over all stations
and the 13 days dominated by broken clouds in 2010) of POLY.B kriging for various forecast
horizons and maximum time lag mlag values (50% learning data). (right) As the left one but for
FS.

more detailed evaluation including forecasting at unobserved locations. It should

be noted that the meaning of mlag here depends on the forecast horizon since the

irradiance data are aggregated according to it (as mentioned in section 4.2). For

example, when the forecast horizon is 120 seconds andmlag = 3, it means aggregated

data at 120, 240, and 360 seconds (corresponding to time step t/now, t − 1, and

t− 2 respectively) before time t+ 1 are included in the forecasting calculation.

4.4.2.1 Observed locations

Fig. 4.6 shows the effect of maximum time lag mlag values and forecast horizon on

rRMSE and FS (averaged over all stations and the 13 days dominated by broken

clouds in 2010) of POLY.B kriging. The length of the learning data is 50%. The

reason of focusing on POLY.B kriging here is because, as mentioned in section 4.1,

ultimately we would like to find the most suitable fitted spatio–temporal correlation

function as a first step to do forecasting at unobserved locations. Fig. 4.6 reveals

that as the forecast horizon gets longer, as expected, the rRMSE becomes worse.

In terms of mlag, it seems that as mlag gets larger, the learning data introduce more
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error. For FS, it is observed that FS generally decreases as mlag increases. In terms

of forecast horizon, FS has its peak at forecast horizon near 60 seconds. Similar

trends occur for POLY.A kriging (not shown here). Thus, in the next part, including

forecasting at unobserved locations, mlag = 1 is chosen to inspect the accuracy of

each method.

Fig. 4.7 displays the FS of several models with various forecast horizons,

averaged over 13 days dominated by broken clouds in 2010 (maximum time lag

mlag = 1, 50% learning data). It seems that EMP kriging, in general, performs the

best among different methods for sub–100–second forecast horizons. However, as

the forecast horizon increases, the accuracy of EMP kriging degrades. For forecast

horizons longer than 100 seconds, POLY.A and POLY.B kriging perform the best in

overall. The second model outperforms the first one for forecast horizons smaller

than 100 seconds. STAT kriging also shows better accuracies than most of the

methods, but it is generally less accurate than POLY.A and POLY.B kriging.

The FS of different stations follow the trend spotted in Fig. 4.4, namely

stations which are preceded by other stations in the upwind direction tend to have

higher FS. The other interesting feature observed in Fig. 4.7 is different ”peaks” of

EMP kriging FS lines are located at different forecast horizons for different stations.

For example, for station AP3, the peak resides at forecast horizon of 50 second, but

that of station DH3 is located at forecast horizon of 20-30 second. Intuitively, it

happens due to the distance of each station to the preceding stations in the upwind

direction. In this case, the distance of station AP3 to AP7 is longer than those

of station DH3 to AP1. Larger distance implies more suitability for prediction at

longer forecast horizon. This observation is consistent, especially with Hinkelman

(2013) and Lonij et al. (2013).

Similar plots with different maximum time lag mlag are also investigated.

However, here, only such plot of stations AP7, AP1, and DH8 for mlag = 4 is

displayed (in Fig. 4.8). No other plots are shown since similar trend is observed
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in every station and other mlag values. Degradation in FS when mlag increases is

very obvious, especially for EMP kriging. The performances of POLY.A and POLY.B

kriging seem to diminish as well, but overall they still outperform the other methods

(except for sub–60–second forecast horizons in some stations where EMP kriging

has the highest accuracy).

4.4.2.2 Unobserved locations

Fig. 4.9 shows the FS for irradiance forecasting at unobserved locations, averaged

over the 13 days dominated by broken clouds in 2010 (maximum time lag mlag = 1,

50% learning data). For this case, forecasting at each location is done separately.

Each time, 16 stations are used as learning stations, leaving one out as a testing

station.

Fig. 4.9 reveals that the accuracies of POLY.A and POLY.B kriging generally

outperform those of the other algorithms. POLY.B kriging is sligthly more accu-

rate compared to POLY.A kriging for forecast horizons shorter than 100 seconds.

The accuracies of all methods become comparable again as the forecast horizon

approaches 300 seconds. There is some degradation of FS at t̄ = 50 or 60 seconds

at some ”downwind” stations, such as stations DH6 and DH8. It can be explained

using Fig. 4.10. Fig. 4.10 shows the accuracy of two type of Pers forecasting: ob-

served (section 4.4.1.1) and unobserved (section 4.4.1.2). The second type of Pers

forecasting may reach low rRMSE for certain forecast horizon at stations located

at a downwind zone (for example at station DH8 for forecast horizon of 50 second).

It is justifiable since indeed past clear sky indeces of stations in the upwind zone

have high correlation with current clear sky indeces of downwind zone.
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4.4.3 Forecasting with various training data lengths

Fig. 4.11 shows the comparison of FS for irradiance prediction at observed locations

between EMP, POLY.A, and POLY.B kriging for various amounts of learning data

and forecast horizons. The figure reveals that the accuracy of EMP kriging is very

sensitive to the amounts of learning data. As fewer learning data are available, the

FS of EMP kriging drops significantly, especially for longer forecast horizons. In

contrast, this is not the case for POLY kriging.

Fig. 4.12 illustrates the FS for irradiance prediction at unobserved locations

of POLY.A and POLY.B kriging for various amounts of learning data and forecast

horizons. The figure shows that learning data percentage, in general, does not affect

much the forecasting accuracies of these two kriging methods: a condition which is

also observed in Fig. 4.11.

4.5 Discussion

Forecasting on observed and unobserved locations have been performed with the

kriging methods with asymmetric correlation functions to show that good perfor-

mances can be achieved compared with simpler, non-spatial forecasting methods.

For example, for station AP3, the FS for irradiance prediction reaches 0.37 (as

shown in Fig. 4.9) even when historical data of the corresponding station is not in-

cluded in the forecasting algorithm. The fact that the proposed anisotropic methods

do not have equal performance for all stations reemphasizes the importance of sen-

sor network design plannning, especially if the network is going to be utilized for

forecasting purposes (Lonij et al., 2013). Forecasting can indeed be performed on

locations without historical data, but the accuracy is constrained by the locations

of neighbouring stations.

Another important point is regarding the presence of asymmetry in the
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spatio–temporal correlations between stations clear sky indexes as visualized in

Fig. 4.3. Asymmetry is a key element in order for POLY.A and POLY.B kriging

to outperform SEP and F.SYM kriging methods for forecasting at unobserved lo-

cations. As pointed out by Yang et al. (2015b) and shown in Fig. 4.5, POLY.A

and POLY.B kriging do not outperform simpler kriging methods for the 7 Septem-

ber 2010 case due to the lack of anisotropy in the spatio–temporal correlations on

that day. Thus, this method is suitable for areas where persistent wind in one

direction takes place most of the time such as Oahu Island. Changes of wind direc-

tion for certain periods may not be an issue given that accurate wind forecasting

system exists. Thus, integration with numerical weather model may be an option

for development of these methods.

Lastly, as expressed in section 4.1, this chapter only performs irradiance

forecasting for sub–5–minute forecast horizons. Principally, it is due to the size of

the network. Larger network (with high density) is necessary in order to accomplish

accurate forecasting at longer forecast horizons.

4.6 Conclusion

This chapter has exhibited very short–term (less than 5–minute–ahead) irradiance

forecasting using spatio–temporal kriging for a dense solar network in days domi-

nated by broken clouds. Forecasting is also done at unobserved locations, namely

where irradiance sensors are not installed. The result shows that a forecasting tech-

nique which makes use of spatio–temporal correlation, given that spatio–temporal

correlations between sensors in a network are high, is able to outperform conven-

tional univariate model (which mainly relies on temporal autocorrelations), such as

persistence, ARIMA, and ETS, both for observed and unobserved locations.

Forecasting at unobserved locations is made possible by fittings on empiri-

cal correlation matrix. Fittings are done using various functions, namely spatio–
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temporally separable, fully symmetric, and anisotropic fitting. Anisotropic fitting

with polynomial, which makes use of the knowledge of dominant wind direction, has

been proven to produce the best forecast for observed (beyond 100–second forecast

horizon) and unobserved (sub–5–minute forecast horizons) locations. The highest

FS achieved by the polynomial fit kriging are 0.43 and 0.37 (both for forecast hori-

zon of 50 seconds) for prediction at observed and unobserved locations respectively

on days dominated by broken clouds.
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data)



72

AP7

AP1

DH8

0.00

0.25

0.50

0.00

0.25

0.50

0.00

0.25

0.50

0 100 200 300
Forecast horizon (sec)

F
S

 (
di

m
en

si
on

le
ss

)

EMP
SEP
F.SYM
POLY.A
POLY.B

Fig. 4.8: FS for irradiance prediction at observed locations for various forecast horizons (averaged
over the 13 days dominated by broken clouds in 2010, maximum time lag mlag = 4, 50% learning
data)



73

AP7 AP4 AP3

AP6 DH5 AP1

AP5 DH2 DH3

DH4 DH1 DH7

DH10 DH11 DH9

DH6 DH8

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

0 100 200 300 0 100 200 300
Forecast horizon (sec)

F
S

 (
di

m
en

si
on

le
ss

)

ARIMA
ETS

SEP
F.SYM

STAT
POLY.A

POLY.B

Fig. 4.9: FS for irradiance prediction at unobserved locations for various forecast horizons (av-
eraged over the 13 days dominated by broken clouds in 2010, maximum time lag mlag = 1, 50%
learning data)



74

AP7

AP1

DH8

15
20
25
30
35
40
45

15
20
25
30
35
40
45

15
20
25
30
35
40
45

0 100 200 300
Forecast horizon (sec)

rR
M

S
E

 (
%

)

Unobserved

Observed

Fig. 4.10: rRMSE of persistence of observed and unobserved locations (averaged over the 13 days
dominated by broken clouds in 2010, 50% learning data)



75

AP7 AP1 DH8

0.00

0.25

0.50

0.00

0.25

0.50

0.00

0.25

0.50

E
M

P
P

O
LY.A

P
O

LY.B

0 100 200 300 0 100 200 300 0 100 200 300
Forecast horizon (sec)

F
S

 (
di

m
en

si
on

le
ss

)

Learning data percentage 20% 30% 40% 50%
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Chapter 5

Modeling variability and

geographic smoothing

5.1 Introduction

The undesirable variability of solar irradiance, especially in the case of electricity

grids with a high penetration of PV generation, has been addressed in chapters 2 and

4. In addition, chapter 4 offers a possible solution using very-short-term irradiance

forecasting. Another consideration which must be taken into account, especially

in the framework of resource assessment, is the geographic smoothing effect, which

is assessed empirically in chapter 2. Knowledge of this effect helps, for example,

system planners to decide the requirements of reserve capacity to lessen the worst

case of extreme ramp events (Hoff and Perez, 2012).

Lave et al. (2013) designed a wavelet-based variability model (WVM) to

simulate the variability of a large solar power plant using inputs of irradiance data

This chapter is based on: L. Zhao, A. W. Aryaputera, D. Yang, and W. M. Walsh, ”Modeling
of solar variability and geographic smoothing effect,” PV Asia Scientific Conference, Singapore,
2015 (oral presentation).
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from several sensors. This method requires a function which describes correlations

between ramp events in terms of pair-station distances and time resolutions. Lave

et al. (2013) constructed this function empirically using data from 6 irradiance

sensors. Arias-Castro et al. (2014) made an attempt to design the same type of

correlation function, called the Anisotropic Correlation Model (ACM), using merely

along- and cross-wind distances of pair stations, estimated cloud diameter, cloud

speed, and time resolutions. Thus, the method enables the simulation of solar

power plant ramp events using irradiance data from only one sensor. Earlier, Perez

et al. (2011) had proposed similar correlation model, which depends on pair-station

distances, cloud speed, and time resolutions.

Monger et al. (2016) proposed a completely different approach which involves

the modeling of irradiance correlations (rather than those of ramp events) using

data from a sensor network. Irradiance values at unobserved locations are then

predicted using the kriging method. The aggregated simulated (and measured)

irradiance values can then be utilized to estimate the distribution of ramp events

over an area, on which a solar power plant is going to be built.

This chapter presents simulations of geographic smoothing using the geosta-

tistical space-time models of Gneiting et al. (2007b). These methods have been

used for irradiance forecasting at unobserved locations in chapter 4 while here they

are utilized to simulate the irradiance ramp event. These methods are more similar

to that of Monger et al. (2016) than WVM (Lave et al., 2013) since they attempt

to model the spatio-temporal process of irradiance values rather than that of ramp

events. In this chapter, almost-exactly-the-same methods as those in chapter 4

are employed to simulate the ramp events. The results are then compared with

those of several existing methods (Lave et al., 2013; Arias-Castro et al., 2014; Perez

et al., 2011; Monger et al., 2016). The difference between the space-time models

of Gneiting et al. (2007b) with that of Monger et al. (2016) is the former ones are

able to use the historical observation data for prediction while the latter is not.
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This chapter is structured as follows. Section 5.1 presents the short intro-

duction and literature reviews. Section 5.2 mentions briefly the data used in this

chapter. Sections 5.3 and 5.4 describe the methods used and results achieved in

this chapter. Finally, the conclusion is written in section 5.5.

5.2 Irradiance data

The irradiance data used in this chapter are the same as those employed in chap-

ter 4, namely the irradiance data of the National Renewable Energy Laboratory

(NREL) network in Oahu, Hawaii (Sengupta and Andreas, 2010). These data have

been described in sections 1.5.1.4 and 4.2, and the map of the sensor network is

visualized in Fig. 1.6. The 13 days referred by Hinkelman (2013) are used due to

the existence of wind with persistent direction towards 60◦ West from South and

broken (cumulus) clouds.

5.3 Methods

The kriging method has been described in chapter 4. However, in this chapter,

it is used only for spatial prediction (without time-forward processes) since no

forecasting is performed here.

5.3.1 The kriging formulation

The kriging formulation used in this chapter is similar to that of section 4.3.1,

specifically Eq. (4.2), with some exceptions, since data with time lag/u = 0 can be

used for spatial-prediction here. Thus, instead of following Eq. (4.3), Z is expressed

as:

Z =
(
z(0)>, z(1)>, · · · , z(m)>)> (5.1)
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and consequently, instead of complying with Eq. (4.5), the S is formularized as:

S =


S0 S>1 · · · S>m

S1 S0 · · · S>m−1

...
...

. . .
...

Sm Sm−1 · · · S0

 , ∈ Rn(m+1)×n(m+1) (5.2)

and similarly the c in Eq. (4.2) can be expanded as:

c =
(
c>m · · · c>1 c>0

)>
, ∈ Rn(m+1)×1 (5.3)

with cu and c0j,u remain as in Eqs. (4.9) and (4.10) respectively. Fitting of cor-

relation function, which is notated in Eq. (4.11), is indispensable here due to the

nature of the problem, which is spatial prediction.

As mentioned in section 5.1, the main difference of the kriging methods

employed in this chapter with that of Monger et al. (2016) is the formers are able

to use of historical values for spatial prediction, as shown in Eq. (4.2), while the

latter is not. Historical values may increase the spatial prediction accuracy due to

the persistent wind direction and cumulus clouds, mentioned in section 5.2. The

other differences will be addressed in section 5.3.2 since they are related to the

modeling of spatio-temporal correlation functions.

5.3.2 Classes of fitted spatio-temporal function and ramp

events simulation process

There are three classes of fitted correlation functions used in this chapter, namely

separable (SEP), fully symmetric (F.SYM), and general stationary (STAT). Their

functions have been listed in Eqs. (4.12), (4.15), and (4.17). The fitting of the

parameters are done simultaneously for each class using the function GenSA (Xiang

et al., 2013).
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Eqs. (4.12), (4.15), and (4.17) show that the three correlation functions con-

tain the information regarding the relation between present observation values with

those in the past. This is not the case for the variogram model of Monger et al.

(2016). On top of that, STAT correlation function covers the asymmetry in the

spatio-temporal correlation, which arises, for example, due to wind with prominent

direction.

In order to simulate the ramp events, the observations of five stations are

chosen as the learning data on which the spatio-temporal correlation functions are

built. These stations are AP3, AP1, DH10, AP5, and DH2. Then, based on the

correlation functions, similar with the method of Monger et al. (2016), irradiance

values at the locations of the remaining stations are predicted using the kriging

method. Subsequently, the spatially-averaged simulated (and measured) irradiance

values are used to approximate the ramp events distribution of aggregated observed

irradiance values.

Intuitively, the kriging method should underestimate the irradiance ramp

rate distribution on any single spot since this method exercises prediction based

on weighted average of observed values, as shown mathematically in Eq. (4.2).

However, kriging turns out to give relatively good results for the case of aggregated

irradiance ramp events, as will be shown in section 5.4.

5.3.3 Benchmarking methods

As mentioned in section 5.1, to benchmark the performances of SEP, F.SYM, and

STAT kriging methods, several models from literatures are adopted. They are

Lave.WVM (Lave et al., 2013), ACM.WVM (Arias-Castro et al., 2014), Perez.WVM

(Perez et al., 2011), and Monger (Monger et al., 2016). It should be noted that

among these four methods, only Lave.WVM and Monger require irradiance data

from multiple learning stations, which are used to compute the correlations of
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ramp events of some station pairs. The same five learning stations mentioned in

section 5.3.2 are used for both methods. In contrast, ACM.WVM and Perez.WVM

only require irradiance data from one station, provided that the distances between

unknown stations, timescale, and cloud speed are available. Here, the same pa-

rameters for ACM.WVM and Perez.WVM are taken from Arias-Castro et al. (2014)

since the same set of irradiance data is used.

A more straightforward benchmarking method is also employed. It is derived

by taking the spatial average of irradiance data of the five learning stations (AGG.L).

5.4 Results and discussion

There are two types of simulations performed in this chapter. The first one (cat-

egory I) estimates the spatially-aggregated irradiance ramp events distributions of

all stations. In this case, the observed ramp events of learning stations are included

in the spatial aggregation. However, since ACM.WVM and Perez.WVM take irradi-

ance data from only one station, to make the comparison as fair as possible, the

second type of simulation (category II) is adopted. It approximates the same thing

as in category I, but only for the testing stations.

The differences between cumulative density functions (CDFs) of the simu-

lated ramp events and those of the simulated ones are visualized in Figs. 5.1 - 5.4,

following Arias-Castro et al. (2014). Perfect simulations will result in horizontal

lines (zero difference between the simulated and measured CDFs). For the easiness

of visualization, Figs. 5.1 and 5.3 show the performances of kriging method with the

three classes of spatio-temporal functions (mentioned in section 5.3.2) and AGG.L,

while Figs. 5.2 and 5.4 exhibit the performances of STAT kriging of Gneiting et al.

(2007b) and other methods available in the literatures. Furthermore, Figs. 5.1 and

5.2 display the results for category I simulation while the other two figures display

the results for category II simulation.
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Fig. 5.1: Difference between the simulated and measured ramps of the category I simulation
at various timescales. The simulation methods are SEP, F.SYM, and STAT (Gneiting et al.,
2007b). For benchmarking purpose, the result of a simple spatial aggregation of irradiance values
of learning stations (AGG.L) is also included.
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Fig. 5.2: As in Fig. 5.1, but the simulation methods are STAT (Gneiting et al., 2007b), Lave.WVM
(Lave et al., 2013), ACM.WVM (Arias-Castro et al., 2014), Perez.WVM (Perez et al., 2011), and
Monger (Monger et al., 2016).
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Fig. 5.3: As in Fig. 5.1, but of the category II simulation.
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Fig. 5.4: As in Fig. 5.2, but of the category II simulation.
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On the other hand, Fig. 5.5 visualizes the comparison of D values of the

two-sample Kolmogorov-Smirnov (KS) tests, whose formula is written in Eq. (1.4),

of all the methods in various temporal aggregations. Smaller D value signifies that

the simulated CDF is more similar to the observed one.

As can be seen from Figs. 5.1 - 5.5, SEP, F.SYM, and STAT kriging methods

typically produce ramp events distributions which are the closest to those of the

reality. Fig. 5.5 shows that STAT kriging achieves the best results among the

three for both aggregated all and testing stations ramp events simulations in some

timescales: 20s, 30s, 40s, 60s, and 120s. As the timescale gets longer, the D values

of all the methods (except those of ACM.WVM) tend to be similar to each other.

The benchmark method AGG.L appears to perform relatively well, indicating

that the geographic smoothing effect caused by aggregating the measurements of all

stations are similar with that caused by aggregating only the five learning stations.

5.5 Conclusion

The geographic smoothing effect in a site in Oahu, Hawaii, has been modeled using

various methods available in the literature. Days dominated by cumulus clouds

are chosen since they possess the most extreme ramp events. Different correlation

functions, which are fed into the kriging method, have been shown to give similar

results. However, the simulated irradiance time series which are the closest to

reality are produced by the model which includes information of dominant wind

direction.
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Chapter 6

Optimizing solar PV system

orientations

6.1 Introduction and literature review

The annual average solar irradiance received on a photovoltaic (PV) panel is af-

fected by its orientation, namely tilt and azimuth angle. In the absence of clouds,

the optimum orientation can be derived from astronomical considerations. Local

atmospheric tendencies complicate matters, so an orientation derived from astron-

omy alone will rarely be optimal, although panel tilt and azimuth angles at any

site remain strong functions of the site latitude (Lave and Kleissl, 2011). In the

continental United States (US), a panel receives the most irradiance when it is

tilted southward (Lubitz, 2011) while in Australia, a north-facing panel receives

the most (Yan et al., 2013). The optimum tilt increases as the latitude increases.

However, this rule does not strictly hold, especially if the solar irradiance in an

area is strongly affected by local earth terrain features and in special cases like near

the equator. It may happen, for instance, that a high mountain lies at the west of

a site which blocks the sun in the afternoon (Lubitz, 2011) or where cloud cover

is typically more prominent at a certain time of day due to local meteorological
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conditions (Khoo et al., 2014).

Predictions of optimum orientation are usually done using a solar transpo-

sition model which predicts the received solar irradiance on tilted angle (It) from

global horizontal irradiance (GHI) and diffuse horizontal irradiance (DHI) observa-

tional data. The optimum panel tilt and azimuth angles are chosen based on the

configuration which yields maximum solar radiation over one year. For the diffuse

irradiance component, numerous models have been proposed. The Perez model

(Perez et al., 1987, 1988, 1990a), adopted in this work, is one such model which has

been widely used. Noorian et al. (2008) shows that, in general, this model predicts

It more accurately than other models.

Lave and Kleissl (2011) produced a PV panel optimization map for the US

using the satellite-based spatially-continuous solar radiation data from the National

Renewable Energy Laboratory (NREL). These data had been obtained by process-

ing the US Geostationary Operational Environmental Satellites (GOES) imagery

using the State University of New York (SUNY) - Albany model. Improvements of

the map are possible as uncertainties emerge from modelling process which range

from 8 to 25% (Lave and Kleissl, 2011; Wilcox, 2012). More precise ground mea-

surement data, such as NREL’s typical meteorological year (TMY) data, can be

utilized to generate a more accurate solar radiation and PV panel optimization

map. The main challenge is how to integrate spatially-discrete data into spatially-

continuous maps.

Previous works attempt to solve similar problems. Zhang et al. (2013) im-

plemented a similar method in a completely different application: to create a more

refined surface potential image with submicrometer resolution using a high resolu-

tion topography image. Earlier, Qian and Wu (2008) showed integration of high-

and low-accuracy experimental data: integration was done in order to improve the

crude–but–fast computer simulation results using data derived from more accurate
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but computationally intensive models.

By adopting the approach of Qian and Wu (2008) and Zhang et al. (2013) to

solve our problem, we can consider satellite images as high-resolution, low-accuracy

data and ground measurement results as low-resolution, high-accuracy data. Inte-

gration of both data will result in new high resolution data with better accuracy.

The actual steps are described below. Optimum PV panel orientation can be cal-

culated for each point in SUNY and TMY data using transposition model. After

optimum tilt and azimuth angles of those points have been derived, a universal

kriging interpolation can be implemented on TMY data results by incorporating

those of SUNY data using ordinary least squares fits. With these steps, we can

expect a spatially-continuous map with higher accuracy compared to those derived

from solely satellite image.

This chapter is organized as follows. Section 6.2 describes briefly the data

used in this chapter. Section 6.3 explains the method used to produce the refined

solar and optimum PV orientation maps. Section 6.4 shows the calculation of

optimum PV orientation, map generation, and map validation. Sections 6.5 and

6.6 present the transposition model verification and simulation results respectively.

The chapter presents a conclusion in section 6.7. Solar transposition and Perez

diffuse irradiance model are explained in appendix B.

6.2 Data

As mentioned in section 6.1, the SUNY and TMY data are used in this chapter. The

data are obtained from the National Solar Radiation Database (NSRDB) managed

by NREL. The details of these data are mentioned in sections 1.5.1.6 and 1.5.1.7.

Since SUNY data only cover continental US, in this work, only 925 stations are

used. These stations are located within 124oW to 67oW and 24oN to 48oN. This area

covers four time zones, namely Pacific Time Zone, Mountain Time Zone, Central



91

●

●

●

●

●● ●

●●
●

●●

●
● ●

●
●

●●

● ●
●

●
●●●

●

●
●

●
●

●●

●
●
● ●

●
●●

●

●

●

●

●●

●
●●
●

●
●

●●
●●●

●

●●●●
●

●●

●
●

●

●

●
●

●● ●
●

●

●

●●

●

●

●

●
●

●

●

●● ●

●
●

●

●●
●●

●

●

●● ●●● ●

●●

●
●●

●●●●●

●

●
●

●● ●●

●●
●

● ●

●●
●●●●

●

●

●●●●●● ●
●

●●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●●

●●
●
●●●

●

● ●●
●●●

●

●

●

●●●●

●●
●

●●●●●

●

●●
●

●●
●

●●
●

●

●●●
●●

●●●

●
●

●

●●
●

● ●
●

●

●
●

●

●
●●

●

●●●

●

●●

●

●
●

●

●●

●
●

● ●
●

●
●

●

●

●●
●

● ●

●

●

●●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●

●

●● ●●●●

●

●●
●●

●
●

●
● ●●

●

●

●
●

●

●
●

●

●
●

●●
● ●

●
● ●

●
●

●

●
●●

●
●●●

●

●

●

●
●

●

●

●●

●●

●

●●

●

●

●
●

●
●

●
●

●

●●●

●
● ●

●

●

●

●● ●●●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●●
●●●

●

●●●
●

●
●

●●

●

●
● ●●

●

●●

●

● ●

●
●

● ●
●

●

● ●

●
●

●

●
●
●

●

●
●●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●●
●

●

●● ●

●●

●
●●●●

●
●

●

●
●

●●

●

●● ●

●

●
●

●● ●

●

●
●

●

●
●

●
●●
●

●

●

●
●

●
●● ●

●●●● ●

●
●

●●
●

●●
●

●●

●

●

●

●
● ●

●●

●

●

●●

●
●

●
●

●

●● ●

●●

●

●
●

●

●

●
●

●

●

●

● ●

●

●● ●●
●●
●●

●●●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●
●

●

●

●●

● ●

● ●

●
● ●

●

●

●●

●

●

●●

●● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●●

● ●
●

●

● ● ●
●

●

●
●

●

● ●
●

●
●

●

● ●

●
●

● ●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●●
● ●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

● ● ●

●●

●
●

●

●

●
●
●

●●

●

●
●

●
●●● ●

●

●
●

●

●
●

●● ●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●
●●● ●

●

●
●

●

●
●

●

●

● ● ●●

●

●

●
● ●

●●
●

●

●

●

●●

●
●

●●●
●
●

●

●

●

●●

●

● ●

●

●

●● ●

●

●●

●

●

●

● ●

●
●

●

●
●

●

●●

●

● ●

●

●

●●
●

●

●

●

●

●
●●

●

Fig. 6.1: Locations of TMY stations used in this work

Time Zone, and Eastern Time Zone. The locations of these 925 stations are shown

in Fig. 6.1.

6.3 Methods

In this section, we explain the methods used to generate refined solar radation

and optimum PV orientation maps after individual optimum orientation in each

SUNY and TMY location has been computed. Calculation of individual optimum

orientation is presented in section 6.4.1.

The maps are generated based on kriging which is a method to interpolate

certain spatially-discrete variable based on random spatial processes (Cressie, 1990;

Christou, 2014). This method was proposed empirically by a South African mining

engineer, D. G. Krige (Krige, 1951), and developed further by some authors, espe-

cially Matheron (1963) and Cressie (1993). There are some variations of kriging,
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for instance simple kriging, ordinary kriging, and universal kriging.

In this chapter, we use ordinary kriging and universal kriging since these two

methods consider spatial trend in data. It should be noted that the two kriging

methods are different from the one in chapters 4 and 5 since, here, we are not

dealing with time series data.

6.3.1 Ordinary kriging

Suppose we have Z = (Z(s1), Z(s2), ..., Z(sn))>, which is a set of observed data in

spatial locations s1, s2, ..., sn, kriging helps us to estimate the value of Z(s0) at s0.

The data may be represented in Eq. (6.1).

Z(si) = µ+ d(si) (6.1)

where µ is the mean of Z and d(si) is a zero-mean error process with a determined

covariance function.

Kriging interpolation is done using weighted average of observed data. The

predictor assumption is written in Eq. (6.2) with Eq. (6.3) as a requirement:

Ẑ(s0) = µ+

{
n∑
i=1

λi

(
Z(si)− µ

)}
(6.2)

n∑
i=1

λi = 1 (6.3)

where Ẑ(s0) is the predicted value of an unobserved value Z(s0) at spatial location

s0 and λi is the weight for Z(si) in Z(s0) prediction case.

The optimum set of weights λ∗ is chosen in such a way that it minimizes

the mean square prediction error written in Eq. (6.4). In order to satisfy Eq. (6.3),

another term is added, and the optimization problem becomes that in Eq. (6.5)

with m as a Lagrange multiplier and n is the number of observed points.

λ∗ = argmin
λ
F (λ) = argmin

λ
E
[
Z(s0)− Ẑ(s0)

]2

(6.4)
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(λ∗,m∗) = argmin
λ,m

F (λ,m) = argmin
λ,m

[
E
[
Z(s0)− Ẑ(s0)

]2

− 2m

(
n∑
i=1

λi − 1

)]
(6.5)

The objective function of Eq. (6.5) could be further expressed as Eq. (6.6)

assuming that γ (·) or variogram is expressed as in Eq. (6.7). Here it is assumed

that the variogram only depends on the distance between two observation locations

(i.e. data are isotropic).

2
n∑
i=1

λiγ(s0 − si)−
n∑
i=1

n∑
j=1

λiλjγ(si − sj)− 2m

(
n∑
i=1

λi − 1

)
(6.6)

2γ [(si + h)− si] = 2γ (h) = var [Z(si + h)− Z(si)] (6.7)

In order to obtain the values of γ(·), empirical variogram γ̂(·) needs to be

calculated. As indicated in Pebesma (2001), it can be calculated based on Eq. (6.8)

γ̂
[
h̄j
]

=
1

2n(Nj)

∑
(j1,j2)∈Nj

{d(sj1)− d(sj2)}
2 (6.8)

where h̄j is the average of all distances (h) of pairs in set Nj and n(·) is the number

of ordered pairs inside the set Nj. Set Nj contains ordered pairs (j1, j2) whose h

values fall within the same region of distance tolerance. This averaging process is

usually called variogram binning. Binning is required in order to discover a clear

trend in a variogram.

The values of γ(·) are derived by fitting γ̂(·) using an isotropic variogram

model. Some examples of these models are linear, exponential, rational quadratic,

wave, and power semivariograms (Cressie, 1993). After the function of γ(·) has

been obtained, the optimum set of weights (λ∗) can be calculated. In the next

step, Eq. (6.6) is differentiated with respect to λ1, λ2, . . . , λn and then set to zero

(see Eq. (6.9)). Finally, the optimum set of weights could be calculated based on
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Eq. (6.10)

γ(s0 − si)−
n∑
j=1

λjγ(si − sj)−m = 0 (6.9)

ΛO = Γ−1
O γO (6.10)

where

ΛO = (λ∗1, . . . , λ
∗
n,m

∗)> (6.11)

γO = (γ(s0 − s1), . . . , γ(s0 − sn), 1)> (6.12)

ΓO =



γ(s1 − s1) γ(s1 − s2) . . . γ(s1 − sn) 1

γ(s2 − s1) γ(s2 − s2) . . . γ(s2 − sn) 1
...

...
. . .

...
...

γ(sn − s1) γ(sn − s2) . . . γ(sn − sn) 1

1 1 . . . 1 0


(6.13)

6.3.2 Universal kriging

Most of the time, µ in Eq. (6.1) is not constant but built of a function which

depends on s. In this case, the spatial data are written as in Eq. (6.14):

Z(si) =

p+1∑
j=1

fj−1(si)υj−1 + d(si) (6.14)

where f(si) is a set of determined functions {f0(si), . . . , fp(si)} and f0(si) usually has

a value of 1 to accomodate bias term. This explains the upper value of j in the

summation in Eq. (6.14) which is set to p+ 1 instead of p. The values of the series

υ are obtained using ordinary least squares fit.

In order to create an unbiased estimation (i.e. expectation of the estimate

is the true parameter) (Christou, 2014), apart from Eq. (6.3), Eq. (6.15) must be
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satisfied
n∑
i=1

λifj(si) = E {fj(s0)} (6.15)

The minimization problem and optimum set of weights calculation are pre-

sented in Eqs. (6.16) and (6.17) respectively:

(λ∗,m∗) = argmin
λ,m

F (λ,m) = argmin
λ,m

[
2

n∑
i

λiγ(s0 − si)−
n∑
i=1

n∑
j=1

λiλjγ(si − sj)

−2

p+1∑
j=1

mj−1

[
n∑
i=1

λifj−1(si)− fj−1(s0)

]]
(6.16)

ΛU = F−1
U γU (6.17)

where

ΛU = (λ∗1, . . . , λ
∗
n,m

∗
0, . . . ,m

∗
p)
> (6.18)

γU = (γ(s0 − s1), . . . , γ(s0 − sn), f0(s0), . . . , fp(s0))> (6.19)

and FU is a symmetric matrix with dimension (n+ p+ 1) × (n+ p+ 1) as repre-

sented in Eq. (6.20):

FU =

 A B

B> 0

 (6.20)

where

A =


γ(s1 − s1) γ(s1 − s2) γ(s1 − s3) . . . γ(s1 − sn)

γ(s2 − s1) γ(s2 − s2) γ(s2 − s3) . . . γ(s2 − sn)
...

...
...

. . .
...

γ(sn − s1) γ(sn − s2) γ(sn − s3) . . . γ(sn − sn)

 (6.21)
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B =


f0(s1) f1(s1) . . . fp(s1)

f0(s2) f1(s2) . . . fp(s2)
...

...
. . .

...

f0(sn) f1(sn) . . . fp(sn)

 (6.22)

The empirical variogram for universal kriging is the same as the one in

Eq. (6.8), except that d(si) follows Eq. (6.14).

6.4 Optimum PV orientation, map generation,

and map validation

6.4.1 Computation of optimum panel orientation

Optimum panel orientation, consisting of optimum panel tilt (ωopt) and azimuth

angles (βopt), was calculated for each point in SUNY and TMY data by utilizing

optim command in the R statistical software (The R Core Team, 2014). The

objective of the optimization is to maximize the value of annual solar radiation

(Et.opt), which is the summation of It for a period of one year. The calculation

of It is presented in appendix B. The adopted optimization method is limited-

memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) with box constraints (Byrd

et al., 1995; Nocedal and Wright, 1999).

6.4.2 Map generation and validation

In this work, three kinds of map are generated, namely ωopt, βopt, and Et.opt maps.

For each kind, there are four maps produced. The first maps were generated using

solely SUNY data results. The second and third maps were derived from ordinary

kriging (OK) and universal kriging (UK) of TMY data results. The fourth maps are

similar as the third ones, except for the SUNY data results which were incorporated
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as part of the features (f(si) in Eq. (6.14)) of the universal kriging (UK.SUNY). From

this point onwards, based on the derivation method, the first, second, third, and

fourth maps are referred as SUNY, OK, UK, and UK.SUNY maps respectively.

The R package automap (Hiemstra et al., 2008) is adopted for kriging oper-

ations. This package makes use of gstat package (Pebesma, 2001, 2004). The fea-

tures used in UK maps are chosen from geographical information (longitude and lat-

itude) based on Akaike information criterion (AIC). This feature selection method

is explained in detail in Akaike (1974) and Venables and Ripley (2002). In R, model

selection using AIC can be performed using step command (The R Core Team,

2014). As mentioned, for UK.SUNY maps, besides geographical information, SUNY

data results (ωopt, βopt, and Et.opt) are also taken into account.

In these simulations, as stated previously, there are only 925 out of 1,020

TMY stations that can be used since the rests are located outside the SUNY map

area. The accuracy of each map is measured using mean bias error (MBE), relative

mean bias error (rMBE), root mean square error (RMSE), and relative root mean

square error (rRMSE). For OK, UK, and UK.SUNY maps, the errors are computed

using cross validation, namely kriging are done 925 times where each time 924

stations are used as learning data, leaving one station for validation.

6.5 Validation of transposition model

6.5.1 Validation using SRRL observation data

The accuracy of irradiance transposition model (which includes the Perez diffuse

irradiance model) is verified using measurement data provided by NREL which were

taken at the Solar Radiation Research Laboratory (SRRL) in Golden, Colorado

(39.74◦N, 105.18◦W) (NREL, 2014a). It consists of hourly-averaged GHI, DHI, It

on a 40◦tilted panel facing southward, and It on a 2-axis tracking panel. Here, the
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Fig. 6.2: Scatter plots of estimation and measurement values of It

data used are the ones of 13 October 2013 until 12 October 2014. The measurement

devices are as follows. Kipp & Zonen CM 22 pyranometers measured the GHI and

DHI values. Eppley PSP pyranometer measured the tilted global irradiance. Kipp

& Zonen CM21 pyranometer which was attached on Licor LI-2020 solar tracker

measured the global irradiance of tracking panel (Lave and Kleissl, 2011; NREL,

2014a).

Verification was done only on data with solar zenith angle (θz) smaller than

80◦. Following Gueymard (2009), the albedo is fixed at 0.2. This assumption is

applied since individual instantenous albedo is not provided in each SUNY and

TMY data location. The plots of the measured and calculated It on the fixed and

tracking panel are shown in Fig. 6.2. The rRMSE values of the fixed tilted and

2-axis tracking configurations are found as 5.68% and 8.17% respectively. These

errors are found to be comparable with the ones in Gueymard (2009) and Lave and

Kleissl (2011) and thus we note it is justifiable to proceed with this tranposition

method.
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6.5.2 Validation using PVWatts calculator

The PVWatts Calculator (NREL, 2014b) is a web application developed by NREL

to produce quick computation about solar energy potential in some areas world-

wide. It adopts the NREL TMY and SolarAnywhere data for continental US. In

other parts of the world, the following databases are used: Solar and Wind Energy

Resource Assessment Programme (SWERA), The ASHRAE International Weather

for Energy Calculations Version 1.1 (IWEC), and Canadian Weather for Energy

Calculations (CWEC).

Here, PVWatts Calculator is used to benchmark the transposition model

in five points in the US, namely: Barstow-Daggett Airport (California/CA), Quil-

layute State Airport (Washington/WA), Denver International Airport (Colorado/CO),

Madison Dane County Regional Airport (Wisconsin/WI), and Jacksonville Inter-

national Airport (Florida/FL). These sites are chosen based on the variations in

terms of climates and geographical conditions (Lubitz, 2011). Moreover, the TMY3

data of these sites are available in the web application. The annual solar irradiance

on panel with optimum fixed orientation and 2-axis tracking system according to

PVWatts Calculator and our calculation are shown in Table 6.1. The optimum

fixed orientation are chosen based on the algorithm explained in Section 6.4.1. The

2-axis tracking system is simulated by assuming the panel is always perpendicular

to the sun. In Table 6.1 and the rests of the chapter, panel azimuth angles (β) are

stated in degrees where 0◦ and 90◦ refer to the north and east direction respectively.

The obtained rMBE values are within 1.6% and shows that the implemented

model is consistent with the established one.
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6.6 Simulation results

Figs. 6.3 – 6.5 show the maps of ωopt, βopt, and Et.opt respectively which are obtained

using SUNY and TMY data. The OK, UK, and UK.SUNY maps in those figures

are generated using the 925 TMY stations shown in Fig. 6.1. The SUNY results

seem identical with those obtained by Lave and Kleissl (2011). As mentioned

there, SUNY map of Fig. 6.4 shows discontinuity in four states, namely Montana,

Wyoming, Colorado, and New Mexico. Possibly, it occurs due to time shift errors

for evening irradiance values of SUNY satellite (Nottrott and Kleissl, 2010).

Fig. 6.3: ωopt maps: OK map is derived from TMY data using ordinary kriging; UK map is derived
from TMY data using universal kriging, SUNY map is derived from SUNY data, and UK.SUNY
map is derived from TMY and SUNY data using universal kriging.

The error values of each map, obtained from cross validation mentioned in

section 6.4.2, are shown in Tables 6.2 – 6.4. The tables show that maps which

utilize ground measurement data possess lower bias error than those of purely
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Table 6.2: Validation of ωopt maps

Map
MBE
(◦)

rMBE
(%)

RMSE
(◦)

rRMSE
(%)

SUNY 0.569 1.714 1.240 3.737
OK -0.001 -0.002 1.221 3.679
UK 0.003 0.008 1.157 3.485

UK.SUNY 0.003 0.009 1.060 3.193

Fig. 6.4: Same as Fig. 6.3, but for βopt maps

SUNY results. In terms of RMSE, UK.SUNY maps consistently reach the lowest

errors among the four methods although there are only small error differences.

The difference of absolute error values of SUNY and UK.SUNY maps are

compared in Figs. 6.6 – 6.8. Figs. 6.6 and 6.8 show that corrections for ωopt and

Et.opt mainly occur in the northeastern US while there is not so much changing at

the west part of the country in terms of these two parameters. Fig. 6.8 shows that

the proposed method is able to correct some Et.opt values in the Florida state. In

Fig. 6.7, obvious improvements of βopt occur in the coastline of the Oregon state

and the west part of the Pennsylvania state.
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Table 6.3: Validation of βopt maps

Map
MBE
(◦)

rMBE
(%)

RMSE
(◦)

rRMSE
(%)

SUNY -0.160 -0.089 2.096 1.159
OK 0.006 0.003 2.383 1.318
UK 0.006 0.003 2.383 1.318

UK.SUNY 0.007 0.004 2.063 1.141

Fig. 6.5: Same as Fig. 6.3, but for Et.opt maps

6.7 Conclusion

A method to integrate satellite-derived SUNY data and ground-based TMY data to

produce more accurate US solar radiation and optimum photovoltaic panel orien-

tation maps have been proposed. The method is able to eliminate bias error of the

same kinds of map derived using solely SUNY data. Furthermore, maps produced

by the proposed method consistently have less RMSE compared to purely satellite-

based and ground-measurement-based maps. The error differences, however, are

not huge.
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Table 6.4: Validation of Et.opt maps

Map
MBE

(Wh/m2)
rMBE
(%)

RMSE
(Wh/m2)

rRMSE
(%)

SUNY 32,369.284 1.824 82,186.966 4.632
OK -98.625 -0.006 81,124.407 4.572
UK -226.607 -0.013 79,709.121 4.493

UK.SUNY 11.465 0.001 72,002.220 4.058

Fig. 6.6: Absolute error difference between SUNY and UK.SUNY ωopt maps

Fig. 6.7: Same as Fig. 6.6, but for βopt maps
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Fig. 6.8: Same as Fig. 6.6, but for Et.opt maps
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Chapter 7

Numerical weather prediction

applied to Singapore irradiance

forecasts

7.1 Introduction

As previously stated in this thesis, electric power grid operators need quantitative

meteorological forecasts to mitigate the impact of the variability of energy gener-

ated by variable renewable sources, solar in particular, on a variety of timescales

(Pelland et al., 2013b). Previous chapters of this thesis have considered short

and very-short-term forecasts. Grid management forecasting on such timescales is

presently only possible using statistical methods of the type applied in this the-

sis. For longer forecasting horizons, however, it is possible to formulate physical

models of the atmosphere, and to evolve them according to the relevant physical

This chapter is based on: A. W. Aryaputera, D. Yang, and W. M. Walsh, ”Day-ahead
solar irradiance forecasting in a tropical environment,” Journal of Solar Energy Engineering,
137(5):051009, 2015. doi: http://doi.org/10.1115/1.4030231.

http://doi.org/10.1115/1.4030231
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models (Inman et al., 2013). Such numerical weather prediction (NWP) methods

are generally adopted for that beyond ∼1 hour (Diagne et al., 2013) and indeed

typically are updated every 6, 12 or 24 hours. In this chapter, day–ahead solar

irradiance forecasting in a tropical environment, namely, Singapore, is investigated

in the context of currently available NWP models.

While short-term statistical forecasts are required in the process of instanta-

neous balancing of supply and demand of the electricity grid, longer-term forecasts

are required for generation and transmission planning, and by electricity futures

markets. Singapore does not share in the need for long distance transmission plan-

ning, but as the amount of local PV increases, generation balance between the

competing companies will require management. Similarly the forthcoming futures

market will look towards forecasting for both demand and supply forecasts. Such

considerations often take place on a 24 hour cycle.

For day–ahead solar irradiance forecasting, NWP models have already been

shown as the most promising approaches to be viable for operational deployment

(Lara-Fanego et al., 2012). NWP models build and evolve physical models of the

atmosphere on selected sub-regions (Bjerknes, 1904). The success of an NWP model

relies on the knowledge about the initial state of the atmosphere and the physical

laws which govern the evolution of the atmosphere. Input data may be derived

from a combination of global models and observational data.

There is a rich literature on NWP–based irradiance forecasting with many

studies conducted using different NWP models and over a variety of locations.

Zamora et al. (2005) compared the outputs of the Fifth-Generation Penn State/National

Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) with observa-

tional data from the United States. Similar studies have been conducted in Spain

using both the MM5 and the Weather Research and Forecasting (WRF) model

(Ruiz-Arias et al., 2008; Lara-Fanego et al., 2012). Lorenz et al. (2009) considered
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the European centre for medium–range weather forecasts (ECMWF) model while

Mathiesen and Kleissl (2011) compared the North American model (NAM), the

global forecast system (GFS), and the ECMWF model.

The state of the art of NWP-based solar irradiance forecasting appears to

be based on statistical correction (Lorenz et al., 2009; Diagne et al., 2014; Pelland

et al., 2013a) or machine learning (Cornaro et al., 2015) on multiple instances of a

single model or on an ensemble of different models. For WRF NWP models, con-

cerns remain about the best physical assumptions and atmospheric modeling made

within the models, particularly in regard to solar irradiance forecasting, for which

the models have generally not been specifically designed or optimized. Local geo-

graphical conditions can significantly impact the forecasting skill of NWP models

(Inman et al., 2013). Most works in this field have considered mid–latitude sites,

particularly Germany, Spain, and the United States (US) due to the concentration

of renewable energy facilities there. Although it is still limited, there is also an

example of such work for a sub-tropical location (Diagne et al., 2014).

In a tropical environment such as Southeast Asia, there are some reports

on the performance of NWP (He et al., 2013; Tursilowati et al., 2011; Vaid, 2013;

Li et al., 2013; Laux et al., 2013; Chotamonsak et al., 2011), but none of these

specifically addressed the forecasting of global horizontal irradiance (GHI), which

is required for PV power generation purposes. To address the issue of how well

NWP performs in the tropics, this chapter tests the reliability of the Advanced

Research WRF (ARW) model (Skamarock et al., 2008) to forecast day–ahead GHI

in Singapore.

In solar engineering, the physical laws of motion and thermodynamics that

characterize the atmosphere are rarely scrutinized in detail. As NWP models output

hundreds of parameters in each run, including irradiance, researchers simply run

NWP models and study their outputs (Lorenz et al., 2009; Mathiesen and Kleissl,
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2011; Perez et al., 2013). However, the forecast errors of the NWP models are often

compared only to the persistence model (persistence forecasts assume tomorrow’s

irradiance is identical to today’s (Lara-Fanego et al., 2012)) due to the lack of

other benchmarking models. We therefore consider seasonal stochastic models in

this chapter. More specifically, exponential smoothing (ETS) models and seasonal

autoregressive integrated moving average (seasonal ARIMA) models are used to

perform day–ahead solar irradiance forecasting.

Stochastic methods are frequently used for intra–hour irradiance forecast-

ing (Yang et al., 2012; Dong et al., 2013; Yang et al., 2014a; Dong et al., 2014).

However, seasonal models have rarely been considered. If we consider an hourly

irradiance time series {yt}, the diurnal cycle due to the Earth’s rotation can be

modeled accurately using seasonal stochastic models. As statistical models possess

significant advantage in computational speed as compared to the NWP models, the

performance of such models is therefore worth investigating.

305

500

1

2

3
4

Fig. 7.1: (left) Map of Singapore. Stations 305 and 500 are the same as stations 5 and 2 respectively
in Fig. 1.3. (right) WRF simulation domain. Map data source: Google Maps.

Before we discuss the WRF forecasts and the stochastic models in sections 7.2
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and 7.3 respectively, the ground measurement data used in this chapter is described.

7.1.1 Observation data

GHI data from two stations, namely, S305 (1.353◦N, 103.965◦E) and S500 (1.301◦N,

103.771◦E), maintained by the Solar Energy Research Institute of Singapore (SERIS)

are used as the “true” GHI for performance evaluation of various forecasting models.

The locations of the stations are shown in Fig. 7.1 (left). An industrial standard

pyranometer CMP11 from Kipp & Zonen is installed horizontally at each site.

The experiment is performed on data from four different periods in the year

2013, namely, 24 January to 7 February (period I), 24 April to 8 May (period

II), 24 July to 7 August (period III), and 24 October to 7 November (period

IV). The choices of day fit the seasonal phases in Singapore, which are northeast

monsoon season (December-early March), inter-monsoon period (late March-May),

southwest monsoon season (June-September), and inter-monsoon period (October-

November) (National Environment Agency, 2009). Apart from that, only hourly–

averaged data from 8AM to 6PM Singapore time (SGT) are considered in the data

analysis, so as to exclude periods of greatest solar zenith angle.

7.2 Numerical weather prediction method

7.2.1 WRF model

The WRF mesoscale NWP models have been developed since the late 1990s by the

NCAR, National Oceanic and Atmospheric Administration (NOAA), and other in-

stitutes in the US. WRF has been used widely for real–time forecasting and analysis

of historical weather phenomena. Currently, there are two types of WRF dynami-

cal cores, which are developed separately, namely the ARW model by the NCAR,

and Nonhydrostatic Mesoscale Model (NMM) by NOAA and National Centers for
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Environmental Prediction (NCEP).

Fig. 7.2: Interactions of WRF parameterizations (adopted from Dudhia (2014))

7.2.2 Simulation setup

The simulations are conducted using the ARW model version 3.5.1 (Skamarock

et al., 2008). The Global Forecast System (GFS) model from NCEP is utilized

as the simulation boundary condition. The temporal and spatial resolutions are 3

hours and 0.5◦× 0.5◦ respectively. The GFS data used are the ones of 12 PM UTC

(or 8 PM SGT) on the previous day. The simulation spin up time is 11.5 hours.

Spin up is necessary for the calculation of the microphysics (He et al., 2013).

The domain selection is shown in Fig. 7.1 (right). The geographical data

resolutions for the domains are 10 minutes, 5 minutes, 2 minutes, and 30 seconds

from the largest to the smallest domain. In the same sequence, the grid resolutions

are 27, 9, 3, and 1 km. Two way nesting is adopted in order to enable exchange of

information between domains during simulation. The physics configuration setup

is shown in Table 7.1.

The WRF schemes are related with each other as depicted in Dudhia (2014)

and Fig. 7.2. The cumulus physics determines the cloud detrainment which affects
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Table 7.1: Physics configuration setup

Parameter Scheme Selection
Microphysics WRF Single–Moment 6–class (Hong and Lim, 2006)

Longwave Radiation Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997)
Shortwave Radiation Dudhia (Dudhia, 1989)

Surface Layer MM5 Similarity (Paulson, 1970)
Land Surfaces Noah Land Surface Model (Chen, 2007)

Planetary Boundary Layer Yonsei University (Hong et al., 2006)

Cumulus Parameterization
Grell–Freitas scheme (Grell and Freitas, 2013) (except for domain 4

which does not use any scheme)

the microphysics scheme. Cumulus and microphysics are responsible for convective

and non convective rain respectively. Besides, the microsphysics scheme is respon-

sible in the formation of the clouds and thus influences the longwave (LW) and

shortwave (SW) radiation schemes. The solar radiation affects the surface layer

physics. The surface layer scheme controls the surface radiation emission phenom-

ena, which in turn affects the radiation scheme, and the heat exchange between

the earth surface and the atmosphere, which influences the planetary boundary

layer (PBL) physics. Heat exchange consists of sensible and latent heat (SH and

LH). PBL itself determines the temperature (T) and moisture (Qv) in the lower

troposphere, which is located in the lowermost part of the earth atmosphere. In the

tropics, the troposhere may reach a thickness of 16 km. In this layer, most weather

phenomena occur (Gregory et al., 2009).

The physics configurations, in particular the radiation, land surfaces, and

PBL, are chosen according to He et al. (2013), since it utilized the WRF model

for Singapore rain forecast. Dudhia’s model is chosen as the shortwave scheme

due to its efficiency in the computation of radiation absorption and scattering in

cloudy and clear sky conditions (Hummon, 2014). Rapid Radiative Transfer Model

(RRTM) is implemented as the longwave scheme since it generates detailed absorp-

tion spectrum by considering water vapour, carbon dioxide, methane, nitrous oxide,

and ozone (Ruiz-Arias et al., 2008). However, since this work focuses on solar en-
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ergy, the shortwave scheme is more important (Ruiz-Arias et al., 2008). The choice

of PBL scheme is critical since, as mentioned, it determines the properties of the

lower troposhere (He et al., 2013). For simulation which requires high resolution

as in the case of Singapore, the Yonsei University scheme (YSU) is considered to

be efficient (He et al., 2013). YSU is a revised algorithm of vertical diffusion which

was developed from Medium-Range Forecast (MRF) PBL by Hong and Pan in 1996

(Hong and Pan, 1996; Hong et al., 2006). The problem of the old model is it often

overestimates the mixing when the wind is strong (Hong et al., 2006).

The Grell–Freitas (GF) scheme is adopted as the cumulus/convection scheme

of this work since it has been tested on the tropics (Grell and Freitas, 2013; Grell

et al., 2013). This scheme was new in WRF version 3.5. It was developed from the

Grell and Devenyi’s model (Grell and Freitas, 2013) which implemented stochastic

approach. Aerosols effect is included by incorporating cloud condensation nuclei

dependent cloud water to rain conversion and cloud drop evaporation (Grell and

Freitas, 2013).

The WRF Single–Moment 6–class is implemented as the microphysics scheme

instead of the Thompson scheme used by He et al. (2013) since the latter one

sometimes overestimates cloud cover. The former one has been made in operation

by the NCAR (Wang et al., 2008).

7.3 Stochastic processes

As alternatives to the WRF model, two stochastic methods are introduced in this

section to perform day–ahead forecasting, namely, the ETS model and the seasonal

ARIMA model. Unlike the WRF model, stochastic methods consider the irradiance

from a statistical point of view. More specifically, these methods aim at identifying

the properties and the stochastic nature of an irradiance time series.
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7.3.1 Exponential smoothing

ETS considers time series as a combination of various components, namely, the

trend (T ), seasonal (S) and error (E) components. Furthermore, the trend com-

ponent can be further separated into the level (`) and growth (b) components.

The state space formulation is constructed using different combinations of these

components.

The seasonal component can be either additive (T + S) or multiplicative

(T × S) to the trend component. As the irradiance transient fluctuates about a

well–known clear sky model, the additive formulation is more appropriate than the

multiplicative one. T is modeled using the level and growth components, following

Hyndman et al. (2002):

None : Th = `

Additive : Th = `+ bh

Additive damped : Th = `+ (φ+ φ2 + · · ·+ φh)b

Multiplicative : Th = `bh

Multiplicative damped : Th = `b(φ+φ2+···+φh)

where Th is forecast trend over the next h time steps, 0 < φ < 1 is a damping

parameter. Based on these five models, the formulae for ETS is given in Table 7.2.

In each case, ŷt+h|t denotes an h–steps–ahead forecast using information up to time

t; `t denotes the level; bt denotes the slope; st denotes the seasonal components

and m denotes the number of seasons in the data. α∗, β∗, γ and φ are coefficients;

φh = φ+ φ2 + · · ·φh and h+
m = [(h− 1) mod m] + 1.

For each case shown in Table 7.2, the error component can be either additive,

(T +S) +E , or multiplicative, (T +S)×E . This leads to 10 different ETS models.

Their state space formulation can be found in Hyndman et al. (2008).
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Table 7.2: Formulae for recursive calculations and point forecasts.

N
`t = α∗(yt − st−m) + (1− α∗)`t−1

st = γ(yt − `t−1) + (1− γ)st−m
ŷt+h|t = `t + s

t−m+h+
m

A

`t = α∗(yt − st−m) + (1− α∗)(`t−1 + bt−1)
bt = β∗(`t − `t−1) + (1− β∗)bt−1

st = γ(yt − `t−1 − bt−1) + (1− γ)st−m
ŷt+h|t = `t + hbt + s

t−m+h+
m

Ad

`t = α∗(yt − st−m) + (1− α∗)(`t−1 + φbt−1)
bt = β∗(`t − `t−1) + (1− β∗)φbt−1

st = γ(yt − `t−1 − φbt−1) + (1− γ)st−m
ŷt+h|t = `t + φhbt + s

t−m+h+
m

M

`t = α∗(yt − st−m) + (1− α∗)`t−1bt−1

bt = β∗(`t/`t−1) + (1− β∗)bt−1

st = γ(yt − `t−1bt−1) + (1− γ)st−m
ŷt+h|t = `tbht + s

t−m+h+
m

Md

`t = α∗(yt − st−m) + (1− α∗)`t−1b
φ
t−1

bt = β∗(`t/`t−1) + (1− β∗)bφt−1

st = γ(yt − `t−1b
φ
t−1) + (1− γ)st−m

ŷt+h|t = `tb
φh
t + s

t−m+h+
m

7.3.2 Seasonal ARIMA

We introduce the Box and Jenkins method (Box et al., 2011) by considering the

ARMA(p, q) model:

yt = φ1yt−1 + · · ·+ φpyt−p + at − θ1at−1 − · · · − θqat−q (7.1)

where φ1 · · ·φp are the autoregressive parameters to be estimated and θ1 · · · θq are

the moving average parameters to be estimated. The random process {at} de-

scribers the random shocks from each time step t, it has zero mean and constant

variance. The ARMA model has process order (p, q), which indicates that the fore-

cast is a linear combination of observations from p previous steps and the errors

from q previous steps.

If we define a backshift operator B so that Byt = yt−1 and more generally

Bjyt = yt−j, Eq. (7.1) can be written as:

(1− φ1B − · · · − φpBp)yt = (1− θ1B − · · · − θqBq)at (7.2)

This may be abbreviated even further by writing:

φ(B)yt = θ(B)at (7.3)
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where

φ(B) = 1− φ1B − φ2B2 − · · · − φpBp (7.4)

θ(B) = 1− θ1B − θ2B2 − · · · − θqBq (7.5)

To extend the stationary ARMA model to the ARIMA model which can

handle non–stationary time series, we define the difference operator ∇ = 1−B or,

more generally, ∇d = (1− B)d. We also find the first differences of the series, i.e.,

zt = yt − yt−1. This can be re–written as:

zt = (1− B)yt = ∇yt (7.6)

If an ARMA model is constructed using the differenced time series {zt}, i.e, φ(B)zt =

θ(B)at, it is equivalent to the ARIMA(p, 1, q) model constructed using the original

time series yt, i.e., φ(B)∇yt = θ(B)at. Generalization of the equation gives the

ARIMA(p, d, q) model:

φ(B)∇dyt = θ(B)at (7.7)

where p, d and q are process orders.

The non–seasonal model in Eq. (7.7) can be extended to a seasonal model.

Suppose the time series {yt} has s time periods in a cycle, we can define Bsyt = yt−s.

Thus, a seasonal ARIMA model with process order (p, d, q)× (P,D,Q)s is:

φ(B)Φ(Bs)∇d∇D
s yt = θ(B)Θ(Bs)at (7.8)

For example, seasonal ARIMA(0, 1, 0)× (1, 0, 1)s model is:

Φ(Bs)∇dyt = Θ(Bs)at

(1− Φ1Bs)(yt − yt−1) = (1−Θ1Bs)at

yt − yt−1 − Φ1yt−s + Φ1yt−s−1 = at −Θ1at−s

In other words, the forecast at time t, ŷt, is found via:

yt = yt−1 + Φ1yt−s − Φ1yt−s−1 + at −Θ1at−s (7.9)
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7.3.3 Model selection and parameter estimation

To forecast the irradiance on a particular day, we need to select one model from

Table 7.2 which best describes the historical data. Similarly model selection is

required for seasonal ARIMA implementation. There are many ways to perform a

model selection using the given data. As our forecasting application is operational,

automatic model identification and parameter estimation is essential. We use the

Akaike information criterion (AIC) (Ricci, 2005) for model selection:

AIC = −2 lnL+ 2k (7.10)

where L is the likelihood function for the model and k is the number of parameters

in the model. For a detailed description on the likelihood calculation, we refer the

readers to Hyndman et al. (2008). The idea of AIC is to maximize the likelihood

and penalize the model complexity. Therefore, the model with the smallest AIC

should be chosen. After a particular model is selected based on the AIC, maximum

likelihood estimation is used to obtain the model parameters.

7.4 Results and discussions

In order to validate the performance of WRF, the observational data are categorized

according to daily clear sky index. The indices are calculated by following Perez

et al. (1990b) as shown in Eq. (7.11):

kT.daily =

∫ 18h

8h

Idt∫ 18h

8h

Iodt

≈

18h∑
8h

I

18h∑
8h

Io

(7.11)

where kT.daily is the daily clear sky index, I is the hourly–averaged GHI, and Io

is the extraterrestrial irradiance. Furthermore, as proposed in Lara-Fanego et al.
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(2012), when kT.daily is less than 0.4, a particular day is marked as overcast; when

kT.daily is in between 0.4 and 0.65, a day is considered as cloudy; finally, clear sky

condition is indicated by index greater than 0.65. The extraterrestrial irradiance is

given by:

Io = Isc

(
1 + 0.033 cos

360dn

365

)
cos θz (7.12)

where Isc is the solar constant (1367 W/m2), dn is the day sequence in the year,

and θz is the solar zenith angle.

Forecast performance is evaluated by calculating the root mean square error

(RMSE) and relative root mean square error (rRMSE) according to Eqs. (1.1) and

(1.2) respectively.

For persistence forecasting, rather than adopting the previous day hourly

irradiance values, we follow the method proposed in Perez et al. (2013); Beyer

et al. (2009) in which daily clear sky index of the previous day multiplied by the

forecast day Io is taken to predict the forecast day irradiance. The latter method

has been proven to have higher accuracy compared to the earlier one.

In order to compare different forecasting results from various locations (which

indeed have different persistence forecasting accuracy), forecast skill (FS) parameter

(Eq. (1.3)) is considered.

7.4.1 Relation between WRF simulation grid resolution and

accuracy

As illustrated in Fig. 7.1, the simulation has four domains with different resolutions.

Since the Singapore area is covered by all these domains in the simulation, the GHI

forecasting result from each domain could be compared. The plots of the RMSE

from different domains are visualized in Fig. 7.3. The results show that as the

resolution becomes more refined, the accuracy of the WRF gets higher. Thus, from

this point onwards, the result of domain 4, which has the highest resolution, will
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Fig. 7.3: Comparison between rRMSE and simulation grid resolutions

be used to represent the WRF performance.

7.4.2 Evaluation of WRF simulation results

Tables 7.3 and 7.4 show the persistence method, seasonal ARIMA, ETS, WRF, and

average of ETS and WRF output errors for all the stations as a function of sky

condition and time of the year. Overall, it is shown that seasonal ARIMA produces

the worst forecast. Meanwhile, the performances of persistence, ETS, and WRF

forecasts are comparable. Averaging the forecasting result of ETS and WRF yields

the lowest error. The overall RMSE of this method in the two stations is 49%.

There is a correlation between the accuracy of persistence method with those

of the other methods. In period I and IV, the overall RMSE values of persistence

method are lower than those in the other two periods. This indicates larger variance

between one day to the next one in period I and IV. This pattern also occurs in

the RMSE of the other methods.

In order to compare different forecasting result in different places with dif-

ferent persistence accuracy, as mentioned in the beginning of section 7.4, FS can be
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Table 7.3: GHI forecast errors for station 305

Sky
Condition

(No of
Days)

Pers.
RMSE

Seasonal
ARIMA
RMSE

ETS
RMSE

WRF
RMSE

mean
(ETS,
WRF)
RMSE

Period I
CS (5) 128 (21) 210 (35) 124 (21) 228 (38) 163 (27)
CL (6) 211 (40) 220 (42) 175 (34) 260 (50) 192 (37)
OC (4) 277 (111) 353 (142) 330 (133) 212 (85) 249 (100)
OA (15) 209 (44) 260 (55) 215 (45) 237 (50) 200 (42)

Period II
CS (1) 151 (24) 468 (76) 419 (68) 209 (34) 313 (51)
CL (4) 322 (70) 330 (72) 277 (60) 163 (35) 209 (45)
OC (10) 222 (86) 173 (67) 199 (77) 242 (94) 199 (77)
OA (15) 249 (74) 252 (75) 242 (72) 222 (66) 211 (63)

Period III
CS (1) 484 (86) 514 (91) 258 (46) 158 (28) 203 (36)
CL (8) 202 (45) 273 (60) 151 (33) 192 (42) 159 (35)
OC (6) 230 (89) 231 (89) 258 (99) 206 (79) 211 (81)
OA (15) 242 (63) 280 (73) 208 (54) 196 (51) 185 (48)

Period IV
CS (0) NA NA NA NA NA
CL (11) 191 (46) 211 (50) 196 (47) 207 (50) 183 (44)
OC (4) 182 (59) 167 (55) 196 (64) 201 (65) 188 (61)
OA (15) 189 (49) 200 (51) 196 (50) 206 (53) 184 (47)

Annual
CS (7) 220 (37) 317 (53) 213 (36) 217 (36) 197 (33)
CL (29) 221 (48) 250 (55) 194 (43) 210 (46) 183 (40)
OC (24) 228 (86) 226 (85) 240 (91) 222 (84) 210 (79)
OA (60) 224 (57) 250 (63) 216 (55) 216 (55) 195 (49)
CS = Clear Sky, CL = Cloudy, OC = Overcast, OA = Overall
RMSE values are stated in absolute values (W/m2) and relative values (in
the brackets, in percentage). The lowest RMSE for each category is in bold.

utilized. Comparison is done with those results of Perez et al. (2013) since it used

the same persistence forecasting method as the one applied in this chapter (refer

to the beginning section 7.4). The comparison of FS (mean of WRF and ETS) of

station 305 and 500 of this chapter and those of WRF models from various locations

in the world are shown in Table 7.5. The table shows that FS values for cities in

Spain are relatively higher than the rests indicating better forecast in those loca-

tions. The lower FS values for Singapore can be explained as follows. Although the

extraterrestrial solar irradiance is fairly constant troughout the year in the tropics,

rapid cloud transformations cause the solar irradiance to vary considerably from
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Table 7.4: GHI forecast errors for station 500

Sky
Condition

(No of
Days)

Pers.
RMSE

Seasonal
ARIMA
RMSE

ETS
RMSE

WRF
RMSE

mean
(ETS,
WRF)
RMSE

Period I
CS (1) 188 (33) 313 (53) 198 (35) 135 (24) 162 (29)
CL (9) 150 (31) 279 (59) 149 (31) 140 (29) 117 (25)
OC (5) 238 (96) 262 (106) 248 (100) 198 (80) 194 (79)
OA (15) 186 (46) 276 (68) 191 (47) 161 (40) 150 (37)

Period II
CS (0) NA NA NA NA NA
CL (6) 283 (60) 361 (77) 252 (54) 158 (34) 175 (37)
OC (9) 220 (85) 195 (75) 230 (89) 324 (125) 256 (98)
OA (15) 247 (72) 273 (79) 239 (69) 270 (79) 227 (66)

Period III
CS (1) 204 (37) 387 (70) 180 (33) 344 (63) 251 (46)
CL (9) 237 (54) 238 (54) 174 (39) 160 (36) 151 (34)
OC (5) 249 (93) 219 (82) 258 (96) 271 (101) 243 (91)
OA (15) 239 (61) 245 (63) 206 (53) 219 (56) 194 (50)

Period IV
CS (1) 237 (41) 328 (57) 263 (46) 238 (41) 230 (40)
CL (9) 172 (43) 226 (56) 185 (46) 219 (55) 179 (44)
OC (5) 179 (59) 289 (95) 205 (68) 148 (49) 143 (47)
OA (15) 179 (47) 256 (67) 198 (52) 200 (53) 172 (45)

Annual
CS (3) 211 (37) 344 (61) 217 (38) 254 (45) 218 (39)
CL (33) 210 (47) 272 (61) 188 (42) 173 (39) 156 (35)
OC (24) 223 (83) 236 (88) 235 (88) 260 (97) 221 (83)
OA (60) 215 (57) 263 (69) 209 (55) 216 (57) 188 (49)
CS = Clear Sky, CL = Cloudy, OC = Overcast, OA = Overall
RMSE values are stated in absolute values (W/m2) and relative values (in
the brackets, in percentage). The lowest RMSE for each category is in bold.

one day to the other (Ye et al., 2013). This is expected from a tropical climate (ac-

cording to Köppen-Geiger classification). As a consequence, of the WRF-modeled

regions, Singapore is the cloudiest (Rubel and Kottek, 2010) and the most difficult

to model. In addition, tropical area is dominated by the occurences of local and

mesoscale weather phenomena (Laing and Evans, 2011). Another challenge comes

from the sparse weather sensor network in this area (Laing and Evans, 2011) which

affects the initial input parameters/boundary conditions of NWP model.
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Table 7.5: FS comparison of various locations in the world

Location FS
Station 305, Singapore 0.14
Station 500, Singapore 0.14
Córdoba, Spain 0.18
Granada, Spain 0.25
Huelva, Spain 0.27
Desert Rock, US 0.14
Goodwin Creek, US 0.12
Penn State, US 0.17
Fürstenzell, Germany 0.27
Stuttgart, Germany 0.19
Würzburg, Germany 0.07
Linz, Austria 0.10
Vienna, Austria 0.18
The forecast results of Spain, US, Germany,
and Austria are taken from Perez et al. (2013). For
Singapore, the results are obtained from the mean
of WRF and ETS forecasting results.

7.5 Conclusion

This chapter has evaluated the performance of day-ahead GHI forecasting using the

WRF model in Singapore. Observational data obtained from ground sensors at two

stations are used as references. Persistence forecasting is adopted as a benchmark.

In general the WRF model performs better than the seasonal ARIMA, but

does not outperform persistence and ETS methods. Averaging the forecast result of

ETS and WRF yields the lowest annual rRMSE which is 49% in both meteorological

stations.

The limitations of the forecasting methods described in this chapter point

to the need for at least two main improvements in NWP forecasts in Singapore

(and presumably similar tropical climate zones). One need is for greatly enhanced

observational data to inform the models so that appropriate initial and boundary

conditions can be selected. Singapore, being surrounded by ocean and developing

countries with low density meteorological networks, is simply not able to inform the

NWP with the level of detail available from the thousands of observational stations

present in Europe and North America, where the NWP techniques originate and
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are most effectively applied. This observation points to the need for novel data

acquisition and data processing techniques to be developed if Singapore and other

tropical sites are to have state-of-the-art NWP forecasts available operationally.

The second identified need is that the NWP models themselves are most

likely not optimized for the - challenging - task of small scale cloud formation and

hence irradiance forecasting. Nevertheless the work presented here is a step towards

the optimal deployment of NWP for irradiance forecasting given the current state

of meteorological networks and NWP algorithms.
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Chapter 8

Ensemble techniques for

probabilistic forecasts

8.1 Introduction

In this thesis, various methods of solar energy forecasting have been proposed and

each method is suitable for a particular range of forecast horizons. Numerical

weather prediction (NWP) is generally adopted for that beyond ∼1 hour (Diagne

et al., 2013). In operational forecasting, it has become customary to derive prob-

abilistic forecasts from NWP results since predicted ranges of a meteorological

variable are typically more useful than just point forecasts (Sloughter et al., 2010).

To achieve this, there are at least two categories of probabilisitic forecasting meth-

ods, namely those which blend NWP outputs from a number of different models

(Raftery et al., 2005; Sloughter et al., 2010; Gneiting et al., 2005) and those which

employ forecasting results from one model (Alessandrini et al., 2015) which may

This chapter is partly based on: A. W. Aryaputera, H. Verbois, and W. M. Walsh, ”Proba-
bilistic accumulated solar irradiance forecast for Singapore using ensemble techniques,” 43rd IEEE
Photovoltaic Specialists Conference, Portland, Oregon, US, 2016 (oral presentation).
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be evolved with different initial and/or boundary conditions. Blending several out-

puts of numerical models, whether from single or multiple NWPs (for single NWP,

ensemble members can be gathered by utilizing past forecasts), has been observed

to produce better probabilistic forecasts due to spread-skill relationships (Whitaker

and Loughe, 1998) although this statement is not universally acknowledged (Zamo

et al., 2014).

The work in this chapter attempts to evaluate intra-day probabilistic fore-

casts of accumulated solar irradiance in Singapore using several ensemble meth-

ods: Bayesian model averaging (BMA) (Raftery et al., 2005), ensemble model

output statistics (EMOS) (Gneiting et al., 2005), and analog ensemble (AnEn)

(Delle Monache et al., 2013). Originally, besides historical observation data, the

inputs of the first two methods are forecast outputs from several NWP models

while the latest one only requires those from single NWP model although in this

chapter, outputs from several NWPs are also fed into the AnEn algorithm, as men-

tioned by Delle Monache et al. (2013). In line with Sloughter et al. (2010, 2007),

for the BMA and EMOS methods, the effect of the selection of predictive prob-

ability density function (PDF), normal and skew-normal, on the forecasting results

is investigated. The skew-normal PDF is chosen since it suits the PDF of the

observation data.

The performance of the ensemble methods are compared with less sophisti-

cated models, such as climatology (CLIM) (Gneiting et al., 2005), autoregressive

integrated moving average (ARIMA) (Hyndman, 2016; Hyndman and Khandakar,

2008), exponential smoothing (ETS) (Hyndman, 2016; Hyndman and Khandakar,

2008), and bias-corrected ensemble (BCE) (Veenhuis, 2013).

The chapter is structured as follows. Section 8.1 provides a short introduc-

tion on the motivations and literature reviews. Section 8.2 describes the observation

data, including their distribution, the NWP outputs used as inputs to the ensemble
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methods, and the BMA, EMOS, and AnEn algorithms. Section 8.3 explains the

list of methods tested in this work, choice on the ensemble size (for AnEn) and

training period length (for the rests of the methods), and the assessment on the

forecasting results. Finally, this chapter is closed with a conclusion in section 8.4.

8.2 Data and methods

8.2.1 Data

To validate the forecasting results, measurement data from an island-wide network

of 22 silicon irradiance sensors (section 1.5.1.1; Fig. 1.3) is utilized. Stations 17 and

22 are excluded due to insufficient data during the chosen period. The data used

in this chapter span from 27 February 2014 to 23 January 2016.

The GHI data of the 22 stations are spatially averaged and temporally ac-

cumulated for 0800-1400 and 0800-1800 Singapore time (SGT) for each day. In the

latter parts of this chapter, the two types of accumulated data are called half- and

full-day accumulated irradiance respectively. The spatial averaging of the 1-minute

data is done only when at least 20 stations have available data in a particular time

step, while the temporal accumulation is done only when there is 100% availability

of spatially-averaged 1-minute data within the respective time range (0800-1400 or

0800-1800 SGT). This procedure results in 696 useable days.

As mentioned in section 1.5.2, The Observing System Research and Pre-

dictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE)

is the source of the NWP outputs fed into the ensemble methods. The Euro-

pean Centre for Medium-Range Weather Forecast (ECMWF), Japan Meteorologi-

cal Agency (JMA), and Korea Meteorological Administration (KMA) are selected

based on the data availability and literature review on their deterministic forecast

accuracies (Thorey et al., 2015). The numbers of the perturbed members of these
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global models are 50, 26, and 23 for ECMWF, JMA, and KMA respectively. The

particular NWP outputs which are used in this chapter are released every day at

0000 Coordinated Universal Time/UTC (0800 SGT) and have spatial resolution of

0.25◦× 0.25◦. Among some other meteorological parameters, the outputs comprise

of accumulated irradiance within 0000-0600 and 0000-1200 UTC. In this work, these

serve as the inputs for half- and full-day accumulated irradiance forecasting respec-

tively. These raw forecast values are derived from weighted-average of forecast

outputs from pixels containing the observation site. The weights are comparable

with the number of sites lying on each of those pixels.

It is assumed here that the low spatial resolution of the NWP outputs will

be compensated by the low temporal resolution of the forecasting products, which

are half- and full-day accumulated irradiance.

8.2.2 Skew-normal distribution

In this section, the observation data PDF is investigated following Sloughter et al.

(2010) as an effort to achieve probabilistic forecasts which are better calibrated.

Four quarters of the observation data estimated kernel densities are shown in

Fig. 8.1. Those are obtained using the function density of the R statistical software

(R Core Team, 2015). The PDFs appear to be tilted although the tilts are less vi-

sually obvious for those of the full-day accumulated irradiance. Hence, as stated in

section 8.1, it is decided to investigate the performances of BMA and EMOS with

skew-normal PDF as their basis in addition to those of BMA and EMOS which

adopt normal PDF. In this chapter, the first two methods are notated as BMA.s

and EMOS.s, while the last two methods are notated as BMA.n and EMOS.n.

The PDF, mean (µ), and standard deviation (σ) of skew-normal PDF SN (ξ,w2, α)

can be expressed as

f (x) =
2

w
ϕ

(
x− ξ
w

)
Φ

(
α
x− ξ
w

)
(8.1)



128

27 Feb 2014 to 20 Aug 2014 21 Aug 2014 to 09 Feb 2015

10 Feb 2015 to 02 Aug 2015 03 Aug 2015 to 23 Jan 2016
0

2 × 10−4
4 × 10−4
6 × 10−4

0
2 × 10−4
4 × 10−4
6 × 10−4

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Observed accumulated solar irradiance (Wh m2)

R
el

at
iv

e 
fr

eq
ue

nc
y

(d
im

en
si

on
le

ss
)

category
Full−day
Half−day

Fig. 8.1: Estimated kernel density of four quarters of the half-day and full-day accumulated solar
irradiance derived from the SERIS sensor network data.

µ = ξ + wf
√

2/π (8.2)

σ =
√

w2 (1− 2f2/π) (8.3)

f = α/
√

1 + α2 (8.4)

where α, w, and ξ signify the slant, scale, and location parameters respectively,

while Φ (·) and ϕ (·) denote the cumulative density function (CDF) and PDF of

normal distribution N (0, 1) respectively (Azzalini, 2014, 2015).

8.2.3 BMA

The BMA.s algorithm is explained as follows. Like in BMA.n (Raftery et al., 2005),

a conditional PDF gk (y|ζk) is assigned to each member forecast ζk. Thus, the BMA

predictive PDF can be expressed as

p (y|ζ1, · · · , ζK) =
K∑
k=1

wBMA kgk (y|ζk) (8.5)

where gk (y|ζk) is the variable y conditional PDF given forecast ζk when ζk is the

best forecast in the ensemble, wBMA k is the weight for member forecast ζk, and K is

the number of member forecasts (Sloughter et al., 2010). For BMA.s, skew-normal

PDF is adopted for each conditional PDF whose mean is at the bias-corrected
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forecast, aBMA k + bBMA kζk:

y|ζk ∼ SN
(
ξk,w

2, α
)

(8.6)

ξk = −wf
√

2/π + (aBMA k + bBMA kζk) (8.7)

where variables aBMA k and bBMA k are estimated by fitting forecast values on the

corresponding observation values in the learning data. Meanwhile, the slant variable

α is chosen based on the fitting of skew-normal PDF on the estimated kernel density

of the learning data, mentioned in section 8.2.2. The conditional PDF σ is optimized

using the expectation-maximization (EM) algorithm as in Raftery et al. (2005) with

some modifications in order to accomodate variables w and ξ.

The E step of the EM algorithm is

ẑ
(j)
kt =

w
(j−1)
BMA kg

(
yt|ζkt, ξ(j−1)

kt ,w2(j−1), α
)

∑K
i=1 w

(j−1)
BMA ig

(
yt|ζit, ξ(j−1)

it ,w2(j−1), α
) (8.8)

where z
(j)
kt is the introduced unobserved quantity, j indicates the jth iteration in the

EM algorithm, and g
(
yt|ζkt, ξ(j−1)

kt ,w2(j−1), α
)

is a skew-normal PDF with mean

aBMA k + bBMA kζkt, scale parameter w(j−1), location parameter ξ
(j−1)
kt , and slant

parameter α, evaluated at yt. Variable t represents the time index. Estimation of

the wBMA k and σ are performed in the M step as follows

w
(j)
BMA k =

1

n

∑
t

ẑ
(j)
kt (8.9)

σ2(j) =
1

n

∑
t

K∑
k=1

ẑ
(j)
kt

{
yt − (aBMA k + bBMA kζkt)

}2
(8.10)

where n is the length of the learning data. Finally, the slant and location parameters

are adjusted as follows

w2(j) = σ2(j) +
1

nK

∑
t

K∑
k=1

{
(aBMA k + bBMA ktζk)− ξ(j−1)

kt

}2
(8.11)
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ξ
(j)
kt = (aBMA k + bBMA kζkt)−w(j)f

√
2/π (8.12)

The EM algorithm is iterated to convergence, namely when there is little

change in the log likelihood (Raftery et al., 2005) as follows

`
(
wBMA 1, · · · , wBMA K , σ

2
)

=
∑
t

log

(
K∑
k=1

wBMA kgk
(
yt|ζkt, ξkt,w2, α

))
(8.13)

A moving training window is implemented to fit all the parameters: aBMA 1,

· · · , aBMA K , bBMA 1, · · · , bBMA K , α, w, and ξ1, · · · , ξK . In the case that perturbed

forecast members (mentioned in section 8.2.1) are fed into the ensemble model,

exchangeability (Fraley et al., 2010) is applied, that is to say members from the

same global model are forced to have the same weights (wBMA k). In addition, the

fitting of variables aBMA k and bBMA k are executed only on the means of each global

model to preserve the ensemble spread (Glahn et al., 2009).

To perform the BMA.n method, the code from Fraley et al. (2015) is adopted.

Detailed description on this algorithm is documented by Raftery et al. (2005); Fraley

et al. (2010).

8.2.4 EMOS

The EMOS.s algorithm is the same as that of EMOS.n (Gneiting et al., 2005),

except that skew-normal PDF is implemented here. The details are as follows.

Firstly, the biases of the forecasts are removed using linear regression as in the first

step of the BMA method. Besides, in the case that perturbed forecasts members

are fed in as inputs to the model, the fitting is done only to the means of each

global model. In other words, all members from the same global model have the

same aEMOS k and bEMOS k parameters (in Eq. (8.14)). Then, another regression is

done in order to optimize

λ = γ + θ1(aEMOS 1 + bEMOS 1ζ1) + · · ·+ θK(aEMOS K + bEMOS KζK) + ε (8.14)
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Var (ε) = c+ dS2, c ≥ 0, d ≥ 0 (8.15)

y|ζ1, · · · , ζK ∼ SN
(
ξ,w2, α

)
(8.16)

ξ = −wf
√

2/π + λ (8.17)

where λ is a univariate weather observation, γ, θ1, · · · , θK , c, and d are fitted

parameters, ε represents the error with zero mean, and S2 is the variance of the fed-

in ensemble members. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

in the function optim of the R software (R Core Team, 2015) is implemented to

find the optimum fitted parameters which minimize the fitting continuous ranked

probability score (CRPS) of the learning data (Gneiting et al., 2005). The choice

of the starting values fed into the optimization algorithm are made based on past

experiences (Gneiting et al., 2005). In each iteration, ξ is adjusted to ensure that

λ is always the mean of the predictive PDF (Eq. (8.17)). In order to guarantee

that c, d ≥ 0, k2 = c and ∆2 = d are set, then k and ∆ are optimized. In addition,

all perturbed forecast members coming from the same global model are guaranteed

to have the same θk, in line with the principle of exchangeability mentioned in

section 8.2.3. Besides, α is selected based on the fitting of skew-normal PDF on the

estimated kernel density of the learning data. The CRPS, used in the optimization

algorithm and the verification process (in section 8.3.3), is calculated as in Eq. (1.5).

Like in section 8.2.3, a moving training window is implemented to adjust all the

parameters: γ, θ1, · · · , θK , aEMOS 1, · · · , aEMOS K , bEMOS 1, · · · , bEMOS K , c, and d.

The code from Yuen et al. (2013) is implemented to perform the EMOS.n

method with the additional linear regression step in the very beginning where the

biases of the learning data are removed as in the EMOS.s algorithm. It is done

especially since the KMA global models give forecast outputs differently compared

to those of ECMWF and JMA (Thorey et al., 2015). The detail of the EMOS.n

algorithm is reported in Gneiting et al. (2005).
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8.2.5 AnEn

The AnEn method is a probabilistic forecasting method which originally intended

to take in outputs from single NWP model (Delle Monache et al., 2013). This

method derives the predictive PDF from past forecasting attempts whose NWP

outputs are similar to those of the current one. It assumes that the NWP model

is a frozen model. Otherwise, it may be difficult to find good analogs from past

forecasts (Delle Monache et al., 2013). The degree of similarities can be computed

as follows

||Ft, At′|| =
Nv∑
i=1

wAnEn i

σAnEn i

√√√√√ t̃∑
j=−t̃

(Fi,t+j − Ai,t′+j)2 (8.18)

where Fi,t represents the current forecasting output of physical variable i for future

time t, Ai,t′ symbolizes that for time t′ which has already passed, t̃ is the time win-

dow half-width in which the function is computed, σAnEn i signifies the standard

deviation of the past forecast time series of physical variable i, wAnEn i is the weight

of each physical variable, and Nv is the number of the physical variables consid-

ered in the model. In this chapter, instead of various meteorological parameters,

accumulated irradiance from various NWPs are utilized as inputs. Thus, Nv here

signifies the number of NWP models. Apart from that, only t̃ = 0 is considered in

this chapter.

Following Junk et al. (2015), brute-force is implemented in order to opti-

mize wAnEn i. This way is chosen since it is difficult to solve the problem using

optimization algorithms. To facilitate this, the weights wAnEn i are limited by

Nv∑
i=1

wAnEn i = 1 and wAnEn i ∈ {0, 0.1, 0.2, · · · , 1} (8.19)
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Table 8.1: List of Methods

Method NWP Inputs Abbreviation
Climatology - CLIM
Autoregressive integrated
moving average

- ARIMA

Exponential smoothing - ETS
Bias-corrected ensemble All perturbed forecasts BCE.ALL
Bias-corrected ensemble ECMWF perturbed forecasts BCE.E
Bias-corrected ensemble JMA perturbed forecasts BCE.J
Bias-corrected ensemble KMA perturbed forecasts BCE.K
Normal BMA All control forecasts BMA.n.c
Normal BMA All perturbed forecasts BMA.n.p
Normal BMA ECMWF perturbed forecasts BMA.n.E.p
Skew-normal BMA All control forecasts BMA.s.c
Skew-normal BMA All perturbed forecasts BMA.s.p
Skew-normal BMA ECMWF perturbed forecasts BMA.s.E.p
Normal EMOS All control forecasts EMOS.n.c
Normal EMOS All perturbed forecasts EMOS.n.p
Normal EMOS ECMWF perturbed forecasts EMOS.n.E.p
Skew-normal EMOS All control forecasts EMOS.s.c
Skew-normal EMOS ECMWF control forecasts EMOS.s.E.c
Skew-normal EMOS All perturbed forecasts EMOS.s.p
Skew-normal EMOS ECMWF perturbed forecasts EMOS.s.E.p
AnEn All control forecasts AnEn.c
AnEn with
weight optimization

All control forecasts AnEn.c.opt

AnEn ECMWF control forecasts AnEn.E.c

8.3 Exploratory analysis, results, and discussion

8.3.1 List of methods

Several forecasting models are tested in this work and they are listed in Table 8.1.

Besides various combinations of BMA, EMOS, and AnEn, as mentioned in sec-

tion 8.1, some more basic models are tested for benchmarking purpose, namely

CLIM (Gneiting et al., 2005), ARIMA (Hyndman, 2016; Hyndman and Khan-

dakar, 2008), ETS (Hyndman, 2016; Hyndman and Khandakar, 2008), and BCE.

The CLIM method is done by fitting an estimated kernel density on the historical

observations and applying it as the predictive PDF. The BCE algorithm applies

linear regression on the means of each global model in order to preserve the ensem-

ble spread, as implemented in the BMA (section 8.2.3) and EMOS (section 8.2.4)

algorithms. A moving training window is implemented in all of the forecasting

methods.
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For EMOS.s.E.c, the value of S in Eq. (8.15) is set as 0. Method AnEn.E.c

has Nv (Eq. (8.18)) value of 1 since both methods only consider one type of me-

teorological parameter (accumulated irradiance) from single NWP. Methods which

use solely JMA and KMA members, apart from BCE.J and BCE.K, are not in-

cluded since typically ECMWF members give better results compared to those

of the other two global models, as will be reflected in the BCE performances in

Table 8.2, described in section 8.3.3.

8.3.2 Length of training period and AnEn ensemble size

As in Raftery et al. (2005); Gneiting et al. (2005), the optimum length of train-

ing period (τopt) needs to be chosen for each forecasting method other than the

AnEn methods so that the probabilistic forecasts are well-calibrated. For the AnEn

methods, the optimum ensemble size (ESopt) needs to be chosen for each method

instead. A way to evaluate the probabilistic forecasts calibratedness is by utilizing

the probability integral transform (PIT) histogram whose squared bias (SB) can

be calculated based on Eq. (1.6). The description of PIT has been written in sec-

tion 1.6. In this chapter, the number of bins in PIT histograms is set as 20 and it

is deemed to be sufficient (Gneiting et al., 2007a).

The selection of τopt for non-AnEn methods is done as follows. Proper fore-

casts are done to days ranging from 17 June 2014 to 23 January 2015 using moving

training windows with the lengths of 20, 25, · · · , 110 days. This span of dates

will be subsequently called period I. Here, the number of forecast days is always

221 days regardless of the length of the moving training window. For each forecast-

ing method, the length of training days with the minimum SB in period I is chosen

as the corresponding τopt. This criterion may be improved in the future in order to

achieve better results.

The selection of ESopt for the AnEn methods is done as follows. Proper
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forecasts are done to days in period I using ensemble sizes of 10, 15, · · · , 110 days.

Exception is applied for the AnEn.c.opt method since the first 60 days of period I

(17 June 2014 to 15 August 2014) are used to optimize wAnEn i in Eq. (8.18). The

learning data, in which the ensemble can be constructed, are accumulative, namely

they span from the very first date (27 February 2014) to the last available day before

the forecasting day. For each forecasting method, the ensemble size with the mini-

mum SB in period I (or in the last 161 days of period I for the AnEn.c.opt method)

is chosen as the corresponding ESopt. This criterion also subjects to limitations as

that of τopt.
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8.3.3 Accumulated solar irradiance forecasting results

The forecasting results of period II with τopt for each non-AnEn method and with

ESopt for each AnEn method are shown in Table 8.2. Period II spans from 24 Jan-

uary 2015 to 23 January 2016, and contains 365 days. Here, the deterministic

forecasting values, used to compute the relative root mean square error (rRMSE),

r, and p (r and p will be explained later), are taken from the expected values of the

corresponding predictive PDFs. The lowest CRPS for half- and full-day accumu-

lated irradiance forecasting are reached by the EMOS.s.E.p and BMA.s.p methods

respectively. However, the BMA.s.p method also obtains the third lowest CRPS

for the first forecast category.

Further investigation, nevertheless, shows that none of the methods is su-

perior among the others in terms of CRPS. Tables 8.3 and 8.4 show the results of

paired t tests for CRPS (Glahn et al., 2009) of half- and full-day accumulated irradi-

ance forecasting results respectively. In both tables, method I column shows the

best three methods for each forecasting category in terms of CRPS. The CRPS val-

ues of these methods are compared against those of the other methods. The CLIM

method is excluded since it has very high CRPS. Furthermore, BCE.E, BCE.J, and

BCE.K are excluded as well since their CRPS values are consistently worse than
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those of BCE.ALL method. The tests are conducted using the function t.test

(R Core Team, 2015). p value shows the statistical significance of the null hy-

pothesis, namely that the corresponding pair of method I and method II have the

same CRPS. Thus, smaller p value indicates more assurance that the corresponding

method I has smaller CRPS compared to that of the corresponding method II. L99

and H99 show the low and high 99% confidence interval respectively of the differ-

ence between CRPS of the corresponding method I and that of the corresponding

method II. Therefore, in this case, L99 and H99 are negatively-oriented.

Quantities r and p are computed following Veenhuis (2013) and describe the

spread-skill relationships. Quantity r is the Pearson product-moment correlation

coefficient between the series of square root of the absolute errors of deterministic

forecast and the series of square root of the predictive PDFs standard deviations.

The square root values are taken in order to diminish heteroscedasticity (Veenhuis,

2013). Higher r value indicates that the corresponding method is able to estimate

its own error. Quantity p represents how probable the corresponding r value is

obtained by chance given that the null hypothesis is true. p values in Table 8.2

which are smaller than 0.010 is printed in bold.

The r and p quantities in Table 8.2 shows that there is almost no spread-

skill relationship in the ensemble forecasts. The highest r values are 0.299 and

0.207 for half- and full-day accumulated irradiance forecasting respectively. Higher

r values are typically obtained for non-AnEn methods which utilize perturbed fore-

cast members. The relatively small r values indicate that, in this case, spread-skill

relationship does not help to construct sharper forecasts.

Fig. 8.2 depicts the PIT histograms of the best-three methods as in Tables 8.3

and 8.4, for half- and full-day accumulated irradiance forecasting. In addition, those

of the CLIM and BCE.ALL methods are included as well. In general, the forecast-

ing methods turn out to be better calibrated in the second forecasting category

(Fig. 8.2 (bottom)) than in the first one (Fig. 8.2 (top)). Furthermore, consistent
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with Raftery et al. (2005), the CLIM method appears to be well calibrated. How-

ever, it is not competitive enough in terms of CRPS due to its wide predictive

PDFs. The predictive PDFs of BCE (represented by BCE.ALL in Fig. 8.2) are

found to be underdispersive as many of the PITs fall in the first and last bins.

CLIM
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Fig. 8.2: PIT histograms of various methods for half- (top) and full-day (bottom) accumulated
solar irradiance forecasting. The SB values are the same as those in Table 8.2 and included here
for convenience of the readers.

Due to the limitations in the selection method of τopt and ESopt, mentioned

in section 8.3.2, Tables 8.5 - 8.7 are included for verification purpose. In Table 8.5,

the τ and ES values which give the smallest CRPS in period II are chosen. Thus,

these are just pseudo-forecasts. The results in Tables 8.2 - 8.7 and Fig. 8.2 show

that, overall, BMA.s.p seems to be the most decent method although it is not

significantly better than the rests.

Fig. 8.3 shows the BMA.s.p weights of the three global models over period

II for half- and full-day accumulated irradiance forecasting. Those weights are

the total weights of the perturbed members of each global model where members

from the same global model are always assigned the same wBMA k (section 8.2.3;

Eq. (8.5)). The figure shows that none of the models constantly has low weights,

indicating the importance of each model in these forecasting cases. The ECMWF
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Fig. 8.3: BMA.s.p weights for the three global models over period II for half- (top) and full-day
(bottom) accumulated irradiance forecasting.

model seems dominating the ensemble forecasts, in line with the BCE.E accuracies

compared to those of the BCE.J and BCE.K methods stated in Table 8.2.
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8.4 Conclusion

Probabilistic forecasting on half- and full-day accumulated irradiance in Singapore

have been performed by utilizing global model NWP outputs. The results show

that the BMA method which is based on skew-normal PDF and takes in perturbed

forecast members is, overall, the most accurate ensemble method, but it is not

very significantly better than the others considered. Moreoever, small spread-skill

relationships are found among various models of ensemble forecasts, and they do

not convincingly help to construct sharper probabilistic forecasts. Inclusion of

perturbed forecast members results in better spread-skill relationships for methods

other than analog ensemble.

It is also noted that the usage of the global model with low temporal reso-

lution is able to produce acceptable deterministic forecasts which are better than

climatological results. In the future, similar work may be executed on more-refined

mesoscale NWP outputs, especially in order to increase the temporal resolutions.
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Chapter 9

Summary and future work

9.1 Thesis summary

This thesis has presented several methods to forecast and model solar irradiance

which may be implemented as part of operational procedures to design, implement

and manage solar PV power. The work can be categorized into two categories:

solar forecasting and solar resource assessment. The forecasting work can be further

divided into point and spatial forecasts over differing timescales. The forecasting

work presented here represents the state–of–the–art in irradiance forecasting for

Singapore and comparable regions, and as such is indicative of what operational

forecasting has to work with at the present time. The modeling work, on the other

hand, corresponds to the quantification of the geographical smoothing effect which

is useful in the planning stage of the building of solar power systems.

At present, the Solar Energy Research Institute of Singapore (SERIS) pro-

vides the Energy Market Authority (Singapore’s national grid operator) with sin-

gle point forecasts for 15-minute-ahead timescale computed using the the Auto-

Regressive Integrated Moving Average (ARIMA) algorithm. Such forecasts are

considered sufficient in 2016 when total PV generation capacity remains less than

60MW, compared with over 13 000MW of capacity registered in the National Elec-
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tricity Market of Singapore. In the future, when the total photovoltaic (PV) gen-

eration in Singapore is expected to grow to become an appreciable fraction of the

total, there shall be need to have high spatial resolution forecasts with various

timescales.

The chapters entitled Short-term forecasts using a network of PV systems,

Very short-term forecasting using spatio-temporal kriging, and Modeling variabil-

ity and geographic smoothing represent the most directly applicable results of this

thesis for grid operation today. The chapters Ensemble techniques for probabilistic

forecasts and Numerical weather prediction applied to Singapore irradiance fore-

casts represent state-of-the-art research on NWP in Singapore, but it is very likely

that this work will be superceded in the future, as new codes are developed, new

datasets are assimilated into tropical NWP, and once the new Singapore National

Supercomputing Centre capacity comes online, allowing much larger ensembles to

be processed.

The chapter Short-term forecasts using a network of PV systems is significant

as it offers the prospect of applying the forecasting method in places where there

is no network of irradiance sensors present. Indeed such sensor networks are the

exception rather than the rule, and this is likely to remain the case in developing

cities. By using the output of PV systems themselves in forecasting, this chapter

presents a method applicable anywhere that a large number of PV systems occur.

The method employed is the least absolute shrinkage and selection operator (lasso)

which enables the usage of the neighbouring stations historical data to forecast the

output of a particular system. In this chapter, the lasso method appears to be the

best for forecasting tasks of individual and total power output of the PV systems.

The chapter Very short-term forecasting using spatio-temporal kriging is one

of the most important results of this thesis as it shows, for the first time, how kriging

can be used to make forecasts at arbitrary locations within a region of interest. This



147

AP7 AP4 AP3

AP6 DH5 AP1

AP5 DH2 DH3

DH4 DH1 DH7

DH10 DH11 DH9

DH6 DH8

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

−0.4
−0.2

0.0
0.2
0.4

0 100 200 300 0 100 200 300
Forecast horizon (sec)

F
S

 (
di

m
en

si
on

le
ss

)

ARIMA
ETS

SEP
F.SYM

STAT
POLY.A

POLY.B

Fig. 9.1: FS for irradiance prediction at unobserved locations in Oahu, Hawaii, for various forecast
horizons (averaged over the 13 days dominated by broken clouds in 2010)



148

ability was lacking, for example, in Yang (2014), who was the first to apply kriging to

irradiance forecasts. The method presented in this chapter requires an appropriate

design of the sensor network according to the dominant wind direction and speed.

Fig. 9.1 shows the forecast skill (FS) of the various forecasting methods tested in

this chapter. Forecasts are performed based on the measurement data of a sensor

network in Oahu, Hawaii, maintained by the USA’s National Renewable Energy

Laboratory (NREL). This network has irradiance characteristics comparable with

Singapore. The smart persistence method of the average measurement of all sensors

is taken as the benchmark. The figure shows that it is possible to even reach an FS

value of 0.4 when wind direction is included in the kriging model (for station AP3,

using method POLY.B).

In the chapter Modeling variability and geographic smoothing, the kriging

method is utilized to model the geographic smoothing effect of irradiance over an

area, by making use of measurement data from irradiance sensors. This is par-

ticularly useful for resource assessment prior to the building of a large solar power

plant. By integrating the information of wind direction for days with significant

wind, the kriging method is able to estimate the geographic smoothing effect better

than the existing methods in the literatures, at least for timescale of 20-120 seconds.

However, deployment of more sensors is the price to get more accurate estimation.

The chapter Numerical weather prediction applied to Singapore irradiance

forecasts presents work on the day-ahead irradiance forecast in Singapore using the

Weather Research and Forecasting (WRF) model for Singapore. The result shows

that combining the WRF and exponential smoothing (ETS) forecasts is able to

produce day-ahead predictions with rRMSE of 49%. This level of forecast skill is

not likely to be of use for operational purposes, a fact which motivates the following

chapter.

In the chapter Ensemble techniques for probabilistic forecasts, the results of 6-
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and 12-hour-ahead probabilistic accumulated irradiance forecast for Singapore are

reported. The procedure to use multiple NWP runs (an “ensemble”) is introduced

as a method to obtain an improved forecast. The ensemble global numerical weather

prediction (NWP) data are utilized. Here, the Bayesian model averaging (BMA),

ensemble model output statistics (EMOS), and analog ensemble methods are shown

to produce probabilistic forecasts which are more competitive than climatology and

have better coverages than simple bias-corrected ensemble. However, among many

variants of BMA, EMOS, and analog ensemble, there is no significantly superior

method. Futhermore, the spread-skill relationships observed in the results are very

weak and do not help in increasing the competitiveness of probabilistic forecasts.

Nevertheless, it is noted that the bias-corrected global NWP outputs, despite the

low spatial resolution, are good enough to reduce the relative root mean square error

(rRMSE) of deterministic forecasts from ∼ 26 to 20% for 6-hour-ahead forecasts

and from ∼ 25 to 19% for 12-hour-ahead forecasts.

9.2 Proposed future work

Future work on the geographic smoothing effect in Singapore (as discussed in the

chapter Singapore irradiance characteristics) may be conducted by utilizing solar

power plant data. Such data will give useful results since when a power plant (or a

collection of plants) covers a large enough area, the output power will be smoother

than the irradiance measurement of a single sensor. The work in chapter Modeling

variability and geographic smoothing can also be repeated by using real data of one

or more solar power plants and irradiance sensors on the same area, following Lave

et al. (2013). This work can readily be applied to other cities and regions, and be

used to facilitate PV power generation forecasting in those places.

The work in the chapters Short-term forecasts using a network of PV systems,

Very short-term forecasting using spatio-temporal kriging, and Ensemble techniques
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for probabilistic forecasts can be extended by way of simulations of PV and battery

system (Hanna et al., 2014), and for grid integration, and/or for hybrid systems

with other renewable energy sources. Financial impacts due to the implementation

of solar forecasting can also be investigated (Martinez-Anido et al., 2016). In order

to achieve this, the temporal resolution of the probabilistic forecasts in chapter En-

semble techniques for probabilistic forecasts need to be increased, to match the local

electricity trading system. Sky camera and satellite images may also be explored

in the future to improve sensor-based short-term forecasts.

The irradiance forecasts using the WRF model in the chapter Numerical

weather prediction applied to Singapore irradiance forecasts can be improved in the

future using data assimilation techniques. These techniques attempt to provide

much more accurate boundary conditions for numerical weather prediction (NWP)

models. Assimilable data can be taken from ground measurements or satellite im-

ages. It has been proposed that GPS data can be used to estimate atmospheric

precipitable water vapour content. The datasets used for assimilation should, per-

haps, cover areas inside and around the Singapore island so that the dynamic of

the weather can be properly modeled. Finally, the ensemble work should be ex-

tended to include a range of physically meaningful initial and boundary conditions

motivated by meteorological observations and theory. Larger and more frequent

ensembles should be created, and their results processed as described in this thesis

in order to obtain the best possible, and most rapidly-updated irradiance forecasts.
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Appendix A

Detailed forecast results of

chapter 3

This chapter displays graphically the results of the power output forecasts of the

Australian Capital Territory (ACT) photovoltaic (PV) network of chapter 3. Figs. A.1

- A.13 are the plots of the forecast and observed collective power output time se-

ries for the days listed in Table 3.1. Five forecasting methods used are persistence

(Pers), independent ARIMA and lasso (ARIMA.IND and lasso.IND), and bottom-up

ARIMA and lasso (ARIMA.BU and lasso.BU). The forecast variable is the power

output (in kW/kWp). The clear sky power output time series are modeled based

on Engerer and Mills (2014).
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Fig. A.1: Plot of forecast and observed collective power output time series of the ACT PV network
of 9 February 2013 (20% learning data). The time is stated in the Universal Coordinated Time
(UTC).
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Fig. A.2: As in Fig. A.1, but for 20 February 2013.
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Fig. A.3: As in Fig. A.1, but for 31 March 2013.
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Fig. A.4: As in Fig. A.1, but for 29 April 2013.
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Fig. A.5: As in Fig. A.1, but for 22 June 2013.
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Fig. A.6: As in Fig. A.1, but for 31 August 2013.
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Fig. A.7: As in Fig. A.1, but for 13 October 2013.
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Fig. A.8: As in Fig. A.1, but for 28 November 2013.
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Fig. A.9: As in Fig. A.1, but for 9 December 2013.
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Fig. A.10: As in Fig. A.1, but for 19 February 2014.
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Fig. A.11: As in Fig. A.1, but for 5 March 2014.
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Fig. A.12: As in Fig. A.1, but for 30 March 2014.
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Fig. A.13: As in Fig. A.1, but for 28 June 2014.
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Appendix B

Transposition model

This chapter presents the irradiance transposition model that is used in chapter 6

of this thesis.

B.1 Modeling global solar irradiance on a tilted

plane

It on a tilted plane could be defined in Eq. (B.1):

It = IDir cos θinc + IDifRd + PIGloRr (B.1)

where IDir represents the direct normal irradiance (DNI), θinc symbolizes the in-

cidence angle of sun rays on the tilted plane, IDif is the diffuse horizontal irradi-

ance (DHI), Rd represents the diffuse transposition factor, P is the albedo of the

foreground, IGlo symbolizes the global horizontal irradiance (GHI), and Rr is the

transposition factor for ground reflection (Gueymard, 2009).

θinc could be computed using purely geometrical relations. In chapter 6,

θinc values are computed using insol package (Corripio, 2014) in the R statistical

software (The R Core Team, 2014) . The value of P is assumed to be 0.2 for the

whole year (Gueymard, 2009) due to absence of albedo measurement data. Based
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on Yang et al. (2013), Rr is considered to be isotropic as shown in Eq. (B.2):

Rr =
(1− cosω)

2
(B.2)

where ω is plane tilt angle.

To calculate Rd, Perez model (Perez et al., 1990a) is adopted. Perez model

is an anisotropic model. Anisotropic model tends to allocate more diffuse radiation

on a tilted plane facing the sun than that of the opposite direction (Yang et al.,

2013).

B.2 Perez diffuse irradiance model

In order to calculate Rd according to Perez model, firstly extraterrestrial direct

normal irradiance (Io) needs to be calculated. The formula is shown in Eq. (B.3):

Io = Isc × re (B.3)

where re is the earth eccentricity correction factor, calculated according to Eq. (2.5),

and Isc is the solar constant (= 1362 W/m2).

The next step is to calculate the sky clearness index (e), sky brightness (κ),

and air mass (mair) as shown in Eqs. (B.4) - (B.6) respectively:

e =

[
IDif + IDir

IDif

+ 1.041

(
π × θz

180

)3
]
÷

[
1 + 1.041

(
π × θz

180

)3
]

(B.4)

κ = IDif ×
mair

Io

(B.5)

mair =
1

cos
[
θz×π
180

+ 0.15 (90− θz + 3.885)−1.235] (B.6)

where θz is solar zenith angle in degree. The detailed calculation of mair can be

found in Kasten (1965).
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Finally, the circumsolar brightening coefficient (F1), horizon brightening co-

efficient (F2), and Rd can be computed according to Eqs. (B.7) - (B.9) respectively.

F1 = max

{
0, F11 + F12 × κ+ F13 ×

(
π × θz

180

)}
(B.7)

F2 = F21 + F22 × κ+ F23 ×
(
π × θz

180

)
(B.8)

Rd = (1− F1)× 1 + cosω

2
+ F1 ×

a

b
+ F2 × sinω (B.9)

where F11, F12, F13, F21, F22, and F23 are determined according to Table B.1. The

value of a is max(0, cos θinc) while that of b is max(0.087, cos θz).

Table B.1: Perez Coefficients

e F11 F12 F13 F21 F22 F23

[1, 1.065) −0.0083 0.5877 −0.0621 −0.0596 0.0721 −0.022
[1.065, 1.23) 0.1299 0.6826 −0.1514 −0.0189 0.066 −0.0289
[1.23, 1.5) 0.3297 0.4869 −0.2211 0.0554 −0.064 −0.0261
[1.5, 1.95) 0.5682 0.1875 −0.2951 0.1089 −0.1519 −0.014
[1.95, 2.8) 0.873 −0.392 −0.3616 0.2256 −0.462 0.0012
[2.8, 4.5) 1.1326 −1.2367 −0.4118 0.2878 −0.823 0.0559
[4.5, 6.2) 1.0602 −1.5999 −0.3589 0.2642 −1.1272 0.1311
[6.2,+∞) 0.6777 −0.3273 −0.2504 0.1516 −1.3765 0.2506
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