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SUMMARY 

In the simulation of fluid flows, various mathematical models and the corresponding 

numerical approaches have been developed based on different scales and regimes. For 

simulating continuum flows, the well-established and dominant approaches are the 

Navier-Stokes (N-S) solvers and the Boltzmann-type solvers, which are respectively 

based on the macroscopic conservation laws and mesoscopic kinetic theory. In fact, 

there are some intrinsic connections between these two types of solvers because the 

N-S equations can be derived from the Boltzmann equation using the Chapman-

Enskog (C-E) expansion analysis. An N-S solver can be theoretically obtained by 

solving the Boltzmann equation with Bhatnagar-Gross-Krook (BGK) approximation. 

Moreover, different from N-S solvers, Boltzmann-type solvers can compute the 

inviscid and viscous fluxes simultaneously. Generally, there are mainly three 

categories of Boltzmann-type solvers, i.e., the lattice Boltzmann method (LBM), 

kinetic flux vector scheme (KFVS) and gas kinetic BGK scheme. Among them, the 

gas kinetic BGK scheme performs much more consistently in the simulation of both 

incompressible and compressible flows, inviscid and viscous flows. However, the 

complexity and inefficiency of gas kinetic BGK scheme put a brake on its 

development and practical applications. As a result, this thesis is devoted to 

developing a series of novel gas kinetic flux solvers (GKFSs) and their applications 

for a variety of flow problems. 

 

Firstly, two types of GKFSs have been successfully proposed for both inviscid and 

viscous flow simulations. The GKFSs are finite volume based schemes which directly 

solve the conservative governing equations recovered by Boltzmann equations with 

C-E theory. The macroscopic variables, which are defined at cell centers, are directly 



x 

updated by marching in time with fluxes calculated at cell interfaces. The fluxes of 

the GKFSs are modeled at each interface by local reconstruction of Boltzmann 

solutions with the connection between the macroscopic fluxes and the mesoscopic 

particle distribution function. The developed solvers have been validated in a variety 

of 1D to 3D flow simulations. Numerical results demonstrate that the present GKFSs 

not only keep the intrinsic advantages of the gas kinetic scheme but also remove the 

drawbacks, such as the complexity and inefficiency. 

 

Subsequently, the extensions of the GKFSs to study complex and moving boundary 

problems have also been built. A GKFS-based solver combined with the immersed 

boundary method (IBM) has been proposed for incompressible flows. In this solver, a 

fractional step technique is applied to simplify the solution process. Numerical 

experiments demonstrate that the present method can accurately satisfy both the 

governing equations and boundary conditions. In addition, a diffuse interface IBM is 

further developed for the simulation of compressible moving boundary flows. A 

simple and flexible way to correct all the flow variables is introduced. This is the first 

time that the diffuse interface IBM is successfully applied to simulate compressible 

moving boundary flows. 
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Chapter 1  

Introduction 

 

1.1 Background 

As a branch of fluid dynamics, Computational fluid dynamics (CFD) is developed to 

investigate the mechanism and behavior of fluid flows. With the great strides made in 

computers, CFD has become an efficient and powerful tool in both academic research 

and industrial applications, such as aerodynamics, industrial manufacturing, civil and 

environmental engineering. 

 

In the analysis of fluid flows, different mathematical models have been developed 

based on different scales and regimes, i.e., macroscopic level, mesoscopic level and 

microscopic level. At the macroscopic level, the fundamental physical principles are 

the conservation of mass, momentum and energy. Based on these principles, the 

mathematical statement can be made with a set of partial differential equations 

(PDEs), namely, the Navier-Stokes (N-S) equations. In the evolution of N-S equations, 

three important assumptions are made, which are (i) continuum hypothesis, (ii) linear 

constitutive relationship, and (iii) Fourier’s law for heat conduction. When the flow is 

inviscid, in which the dissipation, mass diffusion, thermal conductivity and transport 

phenomena of viscosity can be neglected, the PDEs can be simplified to the Euler 

equations. The numerical approaches to solve the macroscopic governing equations 

can be termed as the N-S solvers. 

 



 

2 

Different from the macroscopic view, the other ways to describe the fluid behavior are 

in the framework of mesoscopic or microscopic levels. If a relative large framework is 

chosen, the fluid can be viewed as a set of particles. The particle distribution function 

is introduced to describe fluid behavior and the governing equations become the 

Boltzmann equation or the Newton’s equation of motion. The representative 

numerical approaches in this category are the gas kinetic scheme (GKS), lattice 

Boltzmann method (LBM), dissipative particle dynamics (DPD) and smoothed 

particle hydrodynamics (SPH). On the other hand, in the relatively small framework 

of microscopic level, the behavior of fluid molecules is investigated by using the 

Newtonian law of the classical mechanics. The numerical methods in this category 

solve the Boltzmann equations directly with the discretization of velocity space of 

molecules. Among the microscopic methods, the molecular dynamics (MD) method 

and direct simulation Monte Carlo (DSMC) method are the ones which are the most 

well-known. These methods can be applied to solve fluid problems in all flow regimes, 

ranging from continuum regime to highly-rarefied regime. However, it should be 

noted that these methods are seldom implemented in continuum flow simulations due 

to enormous computational resources required. 

 

In the remaining parts of this chapter, a brief introduction and literature review of 

several popular methods on both macroscopic and mesoscopic levels will be 

presented. 
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1.2 Navier-Stokes solvers 

The N-S and Euler equations are the basic macroscopic governing equations for 

viscous and inviscid fluid flows, respectively. Owning to the constraint of 

nonlinearity of the governing equations, they cannot be solved directly except for very 

few cases. Instead, the approximate numerical solutions of the governing equations 

can be obtained by applying discretization methods. By using discretization methods, 

the governing equations can be written as a set of algebraic equations or difference 

equations, which can be solved on a computer. Traditionally, the finite difference 

method (FDM), the finite volume method (FVM) and the finite element method (FEM) 

are the most popular numerical discretization methods. Detailed information about 

these numerical methods for macroscopic governing equations has been accumulated 

in the literature (Roache, 1972; LeVeque, 1992; Anderson and Wendt, 1995; Versteeg 

and Malalasekera, 2007; Donea and Huerta, 2003). 

 

In the past several decades, a large number of prominent numerical algorithms for 

hyperbolic conservation laws, e.g. the Euler equations, have been developed. The 

pioneer work in this category can be referred to the Godunov method (1959), which 

laid a foundation for the development of modern upwind schemes. After that, a 

number of upwind schemes have been proposed, including Roe’s method (Roe, 1981), 

Osher’s method (Engquist and Osher, 1981), flux vector splitting (FVS) method 

(Steger and Warming, 1981) and TVD (Total Variation Diminishing) (Harten, 1983). 

In recent years, high-order numerical algorithms for hyperbolic conservation laws 

have attracted great attention in the simulation of complex flow structures, such as 

Essential Non-Oscillatory (ENO) (Harten et al., 1987; Shu and Osher, 1988), 

Weighted Essential Non-Oscillatory (WENO) (Liu et al. 1994; Jiang and Shu, 1996), 
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discontinuous Galerkin (DG) method (Cockburn and Shu, 1989; Bassi and Rebay, 

1997), spectral volume (SV) (Wang, 2002; Liu et al., 2006b), spectral difference (SD) 

(Liu et al., 2006a) methods and so on.  

 

Although the above solvers can well simulate inviscid flows, it is another story for 

viscous flows. As the Riemann solvers for N-S equations are not available, they 

cannot be directly used for viscous flows. One of the popular ways is to treat the 

convective terms and dissipative terms separately. Take the FVM as an example, the 

inviscid flux of the N-S equations is evaluated by the approximate Riemann solvers 

and the viscous flux is calculated by the smooth function approximation due to the 

elliptical characteristic of the viscous flux. Although this treatment works well in 

many applications, it is not a consistent way and sometimes creates ambiguity from 

both physical and mathematical views (Liu, 2007). 

 

1.3 Boltzmann-type solvers 

In the past few years, the Boltzmann-type solvers for the simulation of both 

incompressible and compressible fluid flows have attracted much attention. In general, 

this type of solvers is constructed based on the Boltzmann equation, as opposed to N-

S solvers based on discretization of the macroscopic governing equations. In fact, 

there are some intrinsic connections between the Boltzmann-type solvers and N-S 

solvers. To be specific, by applying the Chapman-Enskog (C-E) expansion analysis, 

the N-S and Euler equations can be recovered from the Boltzmann equation with the 

zeroth and first order of collision time, respectively. 
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Among the Boltzmann-type solvers, the lattice Boltzmann method (LBM), kinetic 

flux vector scheme (KFVS) and gas kinetic Bhatnagar-Gross-Krook (BGK) scheme 

have been extensively studied and significant progress has been made in the 

development. 

 

1.3.1 Lattice Boltzmann method 

In recent decades, the LBM has emerged as a promising and competent numerical 

algorithm for simulating incompressible fluid flows and modeling physics of fluids 

(Chen and Doolen, 1998). This method is based on mesoscopic kinetic equation (the 

lattice Boltzmann equation) and microscopic particle model. The macroscopic 

dynamics of a fluid are evaluated by the collective behavior of microscopic particle 

distributions in the simplified particle-velocity space. 

 

The LBM is originated from the lattice gas automation (LGA) (Hardy et al., 1973), 

which is constructed as a simplified, fictitious molecular dynamic model. The LGA 

suffers from some essential drawbacks, such as non-Galilean invariance, dependence 

of pressure on velocity and large numerical dissipation. These drawbacks hampered 

its development in the practical application. To overcome these drawbacks, LBM was 

first developed by McNamara and Zanetti (1988). In their work, the single-particle 

distribution function was introduced to replace the Boolean variables and thus the 

statistical noise was eliminated. In 1989, Higuera and Jimenez (1989) further 

simplified this method by introducing a linearized collision operator. The 

computational efficiency was effectively enhanced as compared with the previous 

work. By introducing the BGK relaxation approximation into the collision operator, 

the LBM simplified by Qian et al. (1992) completely eliminates the drawbacks of 
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LGA. Since then, the LBM has been widely employed for the simulation of complex 

fluid flows in a variety of areas. Recently, a lattice Boltzmann flux solver (LBFS) 

(Shu et al., 2014; Wang et al., 2014) was proposed based on the local reconstruction 

of lattice Boltzmann equation. The LBFS removes the major drawbacks of the 

conventional LBM, such as uniform mesh, tie-up of mesh spacing and time interval. 

However, one fundamental flaw for both LBM and LBFS is that they are only valid 

for near incompressible flows. 

 

1.3.2 Kinetic flux vector splitting method 

The KFVS method, which is also referred as equilibrium-flux method (EFM), is based 

on the collisionless Boltzmann equation. There are two stages in KFVS method: free 

transport and collision. Firstly, in the free transport stage, the collisionless Boltzmann 

equation is solved for the flux evaluation. Then, in the collision stage, the artificial 

collision is implicitly implemented in the calculation of initial Maxwellian 

distribution at the beginning of the next time step.  

 

The KFVS method was first developed for the solution of Euler equations governing 

inviscid compressible flows. The early work of KFVS method can be referred to the 

EFM (Pullin, 1980), which was the first to split the Maxwellian distribution into two 

parts. Elizarova and Chetverushkin (1985) later presented a kinetic-consistent finite 

scheme, which was quite similar in principle with EFM. Macrossan (1989) proved 

that the EFM was a natural upwind scheme and could be applied to calculate a 

chemically reacting gas mixture problem. Deshpande (1986) and Mandal and 

Deshpande (1994) successfully proposed the KFVS method based on finite volume 

discretization with the Maxwell-Boltzmann distribution function on each side of a cell 
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interface. By using the half Maxwellian distribution, the interface flux could be 

computed by taking the appropriate moments with the complete error function. 

Perthame (1992) further developed this scheme by replacing the real Maxwellian 

function with the characteristic function. The entropy and positivity properties of the 

developed scheme were also proven. Moschetta and Pullin (1997) combined the 

robustness of KFVS method for strong shocks with the accuracy of flux difference 

splitting (FDS) schemes for contact discontinuities. Recently, Yang et al. (2013) 

proposed a circular function-based KFVS method, where the Maxwellian function 

was simplified to a circular function so that the error and exponential functions were 

avoided. 

 

There are also some attempts to apply the KFVS scheme for the viscous flows. Chou 

and Baganoff (1997) applied the KFVS method to solve the N-S equations by using 

the C-E approximation to the Boltzmann equation with the BGK model. It was 

claimed that the positivity property of the first-order KFVS was rigorously kept for 

the simulation of compressible viscous flows. However, it was demonstrated that the 

KFVS scheme usually gave more diffusive results than the Godunov or FDS scheme 

(Xu, 2001). This is because the numerical dissipation of the KFVS scheme is 

proportional to the mesh size (Xu, 1998). Owing to the large dissipation introduced, 

the KFVS scheme is not able to give accurate N-S solutions except for some cases in 

which the physical viscosity is much larger than the numerical viscosity. As a result, 

the KFVS scheme is usually limited to approximate the Euler equations. 
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1.3.3 Gas kinetic BGK scheme 

The gas kinetic BGK scheme was firstly proposed by Prendergast and Xu (1993) and 

then developed gradually afterwards (Xu et al., 1995; Chae et al., 2000; Xu, 2001). In 

this method, the BGK collision model is adopted in the gas evaluation stage to obtain 

the numerical fluxes across the interface. As a consequence, the dissipation in the 

transport can be controlled by a real collision time, which is a function of dynamic 

viscosity and pressure. In contrast to conventional upwind schemes, the gas kinetic 

BGK scheme computes the inviscid and viscous fluxes simultaneously from the 

solution of the Boltzmann equation with BGK approximation. In the work of Xu 

(2001), it has been shown that this scheme is able to generate a stable and crisp shock 

transition in the discontinuous region with a delicate dissipative mechanism. At the 

same time, an accurate N-S solution can be obtained in the smooth region. Moreover, 

it is demonstrated that the entropy condition is always fulfilled in the gas kinetic BGK 

scheme and the “carbuncle phenomenon” is avoided for hypersonic flow simulations 

(Xu et al., 2010). Owing to its distinctive features, the gas kinetic BGK scheme has 

attracted more and more attention and has been applied to various flow problems, 

including low speed flow, all Knudsen number flow, three-dimensional (3D) flow, 

multi-material flow. A brief review of these applications will be given next. 

 

Low speed flow 

The gas kinetic BGK scheme is originally targeted to simulate compressible flows. 

The extension of the gas kinetic BGK scheme to low speed flow was first carried out 

by Su et al. (1999). They showed that the gas kinetic BGK scheme could faithfully 

model low Mach number flows. In contrast to N-S solvers, the Poisson equation is not 

involved in the gas kinetic BGK scheme. Later, Xu and He (2003) compared the LBM 
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and gas kinetic BGK scheme by simulating isothermal low speed flow. The 

similarities between the LBM and gas kinetic BGK scheme were introduced and the 

accuracy of both methods was examined. Based on the work of Xu and He (2003), 

Guo et al. (2008) further compared the numerical stability and computational 

efficiency of the LBM and gas kinetic BGK scheme. They demonstrated that the gas 

kinetic BGK scheme was far more robust than the LBM, while on the other hand, the 

LBM had a dominant computational efficiency in the computation of low speed flows. 

Chen et al. (2011) adopted discontinuous derivatives for the initial reconstruction of 

flow variables around a cell interface. They claimed that the accuracy and robustness 

of the gas kinetic BGK scheme were improved with this weak discontinuity. Yuan et 

al. (2015) combined the gas kinetic BGK scheme and the immersed boundary method 

(IBM) for the simulation of incompressible viscous flows. In their method, the 

external force involved in the gas distribution function was calculated by an iterative 

procedure to guarantee the no-slip boundary condition. The results showed that the 

flow penetration was eliminated in the simulation of incompressible flows with 

complex and moving objects. 

 

All Knudsen number flows 

The work of exploring the capability of the gas kinetic scheme for all Knudsen 

number flows has attracted a lot of attention in recent years. Xu and Huang (2010) 

proposed a unified gas kinetic scheme (UGKS) which could perform simulations in 

both continuum and rarefied flow regimes with discretized particle velocity space. As 

an aggressive extension of the gas kinetic BGK scheme, the UGKS couples the effects 

of the particle transport and collision effects when updating the distribution function. 

Chen et al. (2012) extended the UGKS to an adaptive quadtree version in the particle 
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velocity space in order to improve the efficiency of the UGKS. Moreover, in their 

work, a moving mesh technique was implemented to enable the UGKS to compute 

moving solid-gas interactions. Guo et al. (2013, 2015) recently proposed an 

alternative unified kinetic method for low-speed isothermal and compressible thermal 

flows, which is called discrete unified gas kinetic scheme (DUGKS). The DUGKS 

has the same modeling mechanism and shares some common features with the UGKS 

method, such as asymptotic preserving (AP) properties. The main difference between 

the UGKS and DUGKS lies in the evolution of numerical flux for the discrete 

distribution function. Different form the UGKS, a modified distribution function is 

introduced in DUGKS to remove the implicit treatment of the collision term. 

Furthermore, the updating rule is much simpler for the DUGKS as the evolution of 

macroscopic variables is avoided. Yang et al. (2016) adopted the idea of streaming 

and collision processes of UGKS and proposed a discrete velocity method (DVM) for 

simulation of flows from the free molecular regime to the continuum regime. With the 

integration of kinetic equation for each discrete velocity, the algebraic formulation 

can be simply obtained. 

 

Three-dimensional flow 

The simulation of 3D high-speed viscous flows is one of the most popular research 

topics in aerodynamics. It is still a challenging issue today to accurately capture the 

complex flow physics under 3D high Mach number conditions. Many numerical 

methods suffer from the instability and inconsistency of the physical viscosity and the 

artificial one. As an alternative approach, the gas kinetic BGK scheme was first 

applied to simulate 3D compressible flow by Ruan and Jameson (2002). They showed 

that with the help of the convergence acceleration methods such as local time stepping 



 

11 

and multi-grid technique, the gas kinetic BGK scheme could calculate the 3D 

subsonic and supersonic flows accurately. May et al. (2007) proposed a modification 

to the data reconstruction procedure and extended the modified scheme to 3D 

complex geometries with unstructured meshes. Tian et al. (2007) then broadened the 

application of gas kinetic BGK scheme to multi-dimensional gas dynamics equations 

under gravitational fields. Later, the hypersonic flow around a blunt body was 

investigated by Li and Fu (2011). The consistency in the wall heat flux and flow 

pattern with the experimental data showed the accuracy and stability of gas kinetic 

BGK scheme to the application of 3D hypersonic flows. Based on WENO 

reconstruction, Pan and Xu (2015) proposed a high-order gas kinetic scheme for 3D 

Euler and N-S solutions. 

 

Multi-material flow 

The compressible multi-material flows associated with discontinuities and shock 

waves arise in academic research and technological applications. As an alternative 

approach, the gas kinetic BGK scheme can be extended to solve multi-material flows 

with the incorporation of appropriate multifluid flow models. Jiang and Ni (2004, 

2007) proposed a conservative - model scheme in the gas kinetic BGK scheme. In 

this model, the specific heat ratio   is considered as a contact discontinuity for two 

different materials. Li et al. (2005) proposed an easy and efficient scheme by directly 

coupling the scalar function with the gas distribution function. As a result, the scalar 

function, more or less like a color function, was involved and updated together with 

other conservative flow variables. Ni et al. (2012) presented an arbitrary Lagrangian-

Eulerian (ALE)-based adaptive moving mesh technique to keep the sharpness of 

material interfaces. Pan et al. (2012) developed a new gas kinetic scheme combined 
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with the Baer-Nunziato two-phase flow model containing non-conservative terms. In 

their method, the non-conservative terms are explicitly calculated during the 

construction of numerical fluxes by the gas kinetic theory. 

 

From the above review, it is clear that the gas kinetic BGK scheme is developed to be 

a powerful numerical algorithm and has been successfully applied to simulate a 

variety of flow problems. The distinct features of the gas kinetic BGK scheme can be 

summarized as: First, based on the kinetic theory, the gas kinetic BGK scheme has an 

intrinsic kinetic nature and can include extended hydrodynamics or aerodynamics 

beyond the regime of N-S equations. For this reason, the gas kinetic BGK scheme is 

particularly appealing in the modeling of non-linear physics of complex fluids. 

Second, the introduction of a real collision time by the BGK model provides the gas 

kinetic BGK scheme with a delicate dissipative mechanism. Therefore, the gas kinetic 

BGK scheme is able to generate a stable and crisp shock transition in the 

discontinuous region. At the same time, accurate N-S solutions can be obtained in the 

smooth region.  

 

In spite of these advantages, the gas kinetic BGK scheme also suffers from some 

drawbacks. Firstly, it is usually more complicated and inefficient than conventional 

N-S solvers. This is because at each interface and each time step, numerous terms and 

coefficients associated with non-equilibrium distribution functions have to be 

calculated and stored to yield the numerical fluxes. Guo et al. (2008) claimed that for 

two-dimensional (2D) problems, the gas kinetic BGK scheme is about 10 and 3 times 

slower than LBM for steady and unsteady flow calculations, respectively. Secondly, it 

is an arduous task to obtain explicit formulations for the numerical flux. Tang (2012) 
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pointed out that the explicit expressions for the numerical flux in terms of the 

macroscopic variables in gas kinetic BGK scheme took more than eight pages after 

weeks of tedious derivation. The work of Tang (2012) was only limited to 2D cases 

and it can be imagined that it will be much more difficult to obtain the explicit 

expressions for the numerical flux in 3D cases. These drawbacks motivate the work 

on developing a new solver. 

 

1.4 Motivations and objectives of the thesis 

From the above review, we can see that, the gas kinetic BGK scheme has some 

remarkable advantages. On the other hand, the complexity and inefficiency of this 

method put a brake on its development and practical applications. In the literature, 

several works have been done to simplify this method. Chae et al. (2000) abandoned a 

time evolution term in the integral solution of BGK model and they claimed that the 

computational efficiency and convergence were improved. May et al. (2007) proposed 

two modifications to the conventional gas kinetic BGK scheme. First, they proposed a 

new formulation to the calculation of the initial non-equilibrium terms in the 

consideration of the relaxation state. A new time derivative was also introduced to 

reduce the CPU time. In the work of Tang (2012), the spatial derivative of the 

equilibrium distribution function across the interface was assumed to be continuous 

rather than piecewise linear in the conventional scheme. All the time-related terms 

were not considered in the calculation of flux. Most of the above modifications are to 

improve the original gas kinetic BGK scheme, where the non-equilibrium distribution 

function is approximated by a low order polynomial in terms of time, physical space 

and phase velocity space. In this way, many terms associated with phase velocity, 
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space coordinate and time should still be considered. The simplification in these terms 

may add more uncertainty to the derivation of the gas kinetic BGK scheme. 

 

In view of these features, it is natural to ask whether we can develop a simplified gas 

kinetic scheme which keeps the intrinsic advantages of the original gas kinetic BGK 

scheme and removes the drawbacks at the same time. Motivated by this, we aim to 

develop a series of new solvers in a completely new framework for a variety of flow 

problems. Hence, the main objectives of this study are: 

 To develop a switch function-based gas kinetic scheme (SF-GKS) for inviscid 

and viscous compressible flows; 

 To develop a gas kinetic flux solver (GKFS) for 2D incompressible and 

compressible viscous flows; 

 To develop a truly 3D GKFS for simulation of incompressible and 

compressible viscous flows; 

 To develop an immersed boundary-gas kinetic flux solver (IB-GKFS) for 

incompressible stationary and moving boundary problems, 

 To develop a novel diffuse interface IBM in the fixed Eulerian coordinates for 

solving compressible viscous flow problems. 

 

1.5 Organization of the thesis 

The rest of this thesis is organized as follows: 

 

In Chapter 2, the SF-GKS will be proposed for inviscid and viscous compressible 

flows. Firstly, the KFVS method, which is based on the collisionless Boltzmann 

equation, is introduced. Thereafter, in order to remove the drawback of the KFVS that 
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numerous numerical dissipation is introduced in the scheme, the SF-GKS, in which a 

switch function is brought in to control the numerical dissipation, will be developed. 

The accuracy and capability of the SF-GKS for both inviscid and viscous flows will 

be validated by simulating several 1D and 2D problems. 

 

In Chapter 3, development of the GKFS for 2D incompressible and compressible 

viscous flows will be presented. First, the conventional gas kinetic BGK scheme will 

be described. After that, the GKFS, which is a finite volume solver that reconstructs 

the viscous and inviscid fluxes from the continuous Boltzmann equation, will be 

developed. The accuracy and high efficiency of the GKFS will be validated by 

simulating the decaying vortex flows and shock wave-boundary layer interaction. The 

capability of the GKFS for 2D incompressible and compressible flows including 

hypersonic flow problems will be demonstrated by simulating a few benchmark test 

cases. 

 

In Chapter 4, to extend the GKFS to solve 3D flows, a truly 3D GKFS for simulation 

of incompressible and compressible viscous flows will be proposed. In the 

development, a local coordinate transformation will be introduced to transform the 

velocities in the Cartesian coordinate system to the local normal and tangential 

directions at each cell interface. For the first time, the explicit formulations for 

evaluating the conservative flow variables and numerical fluxes for the 3D viscous 

flow problems will be given. The proposed solver will be validated through various 

3D numerical examples, including 3D lid-driven cavity flow, incompressible flow 

past a stationary sphere, flow around an ONERA M6 wing, turbulent flow over the 

DPW III wing and DLR-F6 wing-body configuration. 
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In Chapter 5, to extend the GKFS for complex moving boundary flows, the IB-GKFS 

will be proposed using fixed Eulerian coordinates. To begin with, the basic idea of 

conventional IBM and two different ways to compute the force density will be 

introduced. After that, the development of IB-GKFS, which introduces the boundary 

condition-enforced IBM to the GKFS by applying the fractional-step approach, will 

be presented. The proposed IB-GKFS will be validated through numerical simulation 

of a variety of 2D and 3D stationary and moving boundary flow problems. The 

numerical examples include: flows past a stationary cylinder and a NACA0012 airfoil, 

flows past a moving cylinder and a NACA0015 airfoil with fixed body trajectory and 

one particle sedimentation in a rectangular box. 

 

In Chapter 6, a novel diffuse interface IBM in the fixed Eulerian coordinates will be 

proposed for solving compressible viscous flows. The mechanism to correct the 

density, velocity, pressure and temperature fields for stationary and moving boundary 

problems will be presented, respectively. In the validation, the proposed solver will be 

first tested by simulating several stationary boundary problems. Thereafter, numerical 

experiments of three moving boundary problems will be carried out to validate the 

flexibility and capability of the present method for solving moving boundary 

problems. 

 

In the last chapter, a conclusion of the thesis will be summarized and 

recommendations for future research will also be addressed. 
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Chapter 2  

Development of a Switch Function-based Gas Kinetic 

Scheme for Simulation of Inviscid and Viscous Compressible 

Flows 

 

This chapter first introduces the basic theory of kinetic flux vector splitting (KFVS) 

method. This method is based on the Boltzmann equation with vanishing collision 

term. In this situation, the distribution function f  is equal to the Maxwellian 

distribution function g . The Euler solutions can be derived from the collisionless 

Boltzmann equation with the numerical dissipation added in the projection stage. 

However, the KFVS usually produces a large numerical dissipation and heat 

conduction because the numerical dissipation of KFVS is proportional to the mesh 

size. Thus, the KFVS is not able to give accurate N-S solutions except for cases in 

which the physical viscosity is much larger than the numerical viscosity. To remove 

this drawback, a switch function-based gas kinetic scheme (SF-GKS) is proposed in 

this chapter. A switch function is brought in to control the numerical dissipation. In 

this way, the present SF-GKS can well capture strong shock waves and thin boundary 

layers simultaneously. Another advantage of SF-GKS is that the value of the switch 

function can be easily determined, which makes this method efficient and easy to be 

implemented. To validate the present scheme, some inviscid flows such as 1-D Euler 

shock tube, regular shock reflection and double Mach reflection are first examined. 

Then, the SF-GKS is further extended to simulate viscous flows, including 
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compressible turbulent flows around a RAE2822 airfoil and hypersonic flow over one 

half of a cylinder. 

 

2.1 Kinetic Flux Vector Splitting (KFVS) Method 

Without the external forcing term, the standard 2D Boltzmann equation can be written 

as 

 ,
f f f

u v Q f f
t x y

  
  

  
 (2.1) 

where f  is the particle distribution function,  x, y  and  u,v  are the particle space 

and velocity, and  ,Q f f  is the collision operator. With the physical constraints of 

conservation of mass, momentum and energy during collisions, the compatibility 

condition should be satisfied: 

 , 0Q f f d    (2.2) 

Here d dudvd   is the volume element in the phase space with 1 2 Kd d d d    , 

where K  is the internal degree of freedom.   are the moments given as 

 2 2 21
1, , ,

2

T

u v u v 
 

   
 

 (2.3) 

where   is the internal energy with the notation 2 2 2 2

1 2 K       . From the 

Boltzmann equation, the N-S and Euler equations can be obtained from Eq. (2.1) by 

using the C-E expansions analysis (Chapman and Cowling, 1970). 

 

In KFVS, the collision term  ,Q f f  goes to zero, which means that the distribution 

function f  is equal to the Maxwellian distribution g  for an equilibrium state. As a 

result, the Boltzmann equation becomes 
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0
f f f

u v
t x y

  
  

  
 (2.4) 

which is called the collisionless Boltzmann equation. With the initial condition of the 

gas distribution function  0 , ,0f x y  at time 0t  , the exact solution of the 

collisionless Boltzmann equation is  

   0, , , ,0f x y t f x ut y vt    (2.5) 

For simulation of inviscid flows, 0f  can be taken as a piecewise constant function 

around the cell interface 0x  , i.e., 

    

0

, 0

, 0
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l

r

l r

g x
f

g x

g H x g H x
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 


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 (2.6) 

where  H x  is the Heaviside function,   1H x   for 0x   and   0H x   for 0x  . 

lg  and  stand for the equilibrium distribution function at the left and right sides of 

cell interface with 

    2 2 2

2

2

K
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g e
 






     
  

 
 (2.7) 

Here 
1

2RT
  , where R  is the gas constant and T  is the temperature. 

 

From the distribution function in Eq. (2.6), the numerical fluxes for the mass, 

momentum and energy across the cell interface can be constructed by 

, ,
0 0

l l r r
u u

u fd u g d u g d    
 

       F  (2.8) 

In the above Eq. (2.8), “ l ” and “ r ” (“ ” stands for any variables) can be 

constructed from conservative flow variables at the left and right sides of cell 

interface, respectively. As soon as the fluxes at each cell interface are calculated via 
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Eq. (2.8), the conservative flow variables on each cell center can be updated by 

solving the governing equations with finite volume discretization.  

 

The KFVS has been demonstrated with good positivity property for simulation of 

flows with strong shock waves (Yang et al., 2014b). However, the KFVS suffers from 

its intrinsic drawback. The KFVS usually gives more diffusive results than the 

Godunov or Flux Difference Splitting (FDS) scheme because the numerical 

dissipation in KFVS is proportional to the mesh size (Xu, 1998). As a result, the 

results might be contaminated in smooth regions, such as laminar boundary layer. 

Thus, the KFVS is not able to give accurate N-S solutions except for cases in which 

the physical viscosity is much larger than the numerical viscosity. To eliminate this 

drawback, the following novel method is proposed, which can well capture both 

strong shock waves and thin boundary layers simultaneously. 

 

2.2 A Switch Function-based Gas Kinetic Scheme (SF-GKS) 

In this section, SF-GKS is proposed for the simulation of inviscid and viscous 

compressible flows by solving the governing equations with finite volume 

discretization. The inviscid flux is calculated by the SF-GKS and the viscous flux is 

obtained by smooth function approximation. 

 

2.2.1 Governing equations and finite volume discretization 

For an inviscid flow, Euler equations are commonly used in conventional 

computational fluid dynamics. On the other hand, N-S equations are usually used to 

simulate viscous flows. Generally, with the finite volume discretization, the 

discretized form of 2D N-S equations can be written as 
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where,   and N  are the volume and number of interfaces of the control volume and 

iS  is the length of interface i . The conservative flow variables W , convective flux 

cF  and viscous flux vF  are given by 
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n

n x

c

n y

n

U

UU n p

VU n p

E p U









 
 


 
 
 

 

F ,  

0

x xx y xy

v

x yx y yy

x x y y

n n

n n

n n

 

 

 
 


 
 
 

    

F  (2.10) 

In the above equation,  , U , V  and p  are the density, velocities and pressure of the 

mean flow. E  is the total energy defined as  

 
 2 21

1 2

p
E U V

 
  


 (2.11) 

where   is the specific heat ratio  ,x yn n  is the unit normal vector of the control 

surface and nU  is the normal velocity of the cell interface. In the viscous flux vF , ij  

denotes the components of viscous stress tensor and i  is energy flux contributed by 

the viscous stress and the heat transfer.  

 

As shown in Eq. (2.9), with the conservative flow variables at the cell center, we need 

to evaluate numerical fluxes at cell interfaces. For inviscid flow problems, the viscous 

flux vF  is abandoned and only the inviscid flux cF  is to be evaluated. Therefore, the 

governing equations become the Euler equations 

 
1

1
0

N

c ii
i

d
S

dt 

 



W
F  (2.12) 
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For viscous flow problems, the viscous flux vF  is usually approximated by a smooth 

function, such as polynomial approximation. Therefore, for both inviscid and viscous 

flows, the remaining problem is the evaluation of inviscid flux cF  at cell interface, 

which is computed by the gas kinetic scheme in this work. As shown in Figure 2.1, 

the relationship between velocities in the normal and tangential directions  ,nU U
 

and velocities in the Cartesian coordinate system  ,U V  are 

n x y

x y

U U n V n

U V n U n

   

   
 (2.13) 

In the application of gas kinetic scheme, the flux cF  at cell interface is calculated by 

the local application of the Boltzmann equation, which can be expressed as 

c nu fd F  (2.14) 

where nu  is the phase velocity in the normal direction of the interface. 

 

Similar to Eq. (2.13), the relationship between the phase velocities in the normal and 

tangential directions  ,nu u  and the phase velocities in the Cartesian coordinate 

system  ,u v  are 

,n x y x yu u n v n u v n u n         (2.15) 

and 

,n x y x n yu u n u n v u n u n          (2.16) 

Substituting Eq. (2.16) into Eq. (2.3), we have 

 2 2 21
1, , ,

2

T

n x y x n y nu n u n u n u n u u    
 

         
 

 (2.17) 

With the definition of a new moment 



 

23 

 * 2 2 21
1, , ,

2

T

n nu u u u   
 

   
 

 (2.18) 

and its corresponding convective flux vector, 

 * * * * * *

1 2 3 4, , ,
T

c nu fd F F F F  F  (2.19) 

the real convective flux vector cF  can be obtained by substituting Eq. (2.17) into Eq. 

(2.14) and using Eq. (2.19) 

 * * * * * *

1 2 3 3 2 4, , ,
T

c n x y x yu fd F F n F n F n F n F    F  (2.20) 

From Eq. (2.20), it is clear that the calculation of cF  is equivalent to the evaluation of 

*

cF  and the key issue is to obtain the gas distribution function f . In the next part, the 

evolution of the gas distribution function f  by the SF-GKS will be introduced. 

 

2.2.2 Evaluation of inviscid flux by switch function-based gas kinetic scheme 

With the Maxwellian distribution function in Eq. (2.7), to recover Euler equations by 

Eq. (2.1) through C-E expansion analysis, the following 5 conservation forms of 

moments should be satisfied, 

gd    (2.21) 

gu d U    (2.22) 

 2

1

K

j

j

g u u d U U bRT    


 
    

 
  (2.23) 

gu u d U U p         (2.24) 

 2

1

2
K

j

j

g u u u d U U b RT U      


 
        

 
  (2.25) 
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where u , u  and U , U   are the phase velocity and macroscopic flow velocity in 

  and   directions. b K D   represents the total degree of freedom of molecules, 

where D  is the abbreviation of the dimension. The integral domains in all the above 

equations are from   to  . In the above 5 equations, Eqs. (2.21)-(2.23) are 

applied to recover fluid density, momentum and energy, respectively. In addition, Eqs. 

(2.24) and (2.25) are to recover the convective flux of momentum equations and 

energy equation. 

 

As the convective flux is evaluated at the local interface, a local coordinate system is 

used in the following derivation of the distribution function f . Based on the C-E 

expansion analysis (Ohwada and Xu, 2004), the non-equilibrium distribution function 

can be approximated as 

neq eqf f
t


 

    
 

u  (2.26) 

where the equilibrium distribution function is 

eqf g  (2.27) 

Therefore, the real distribution function in the local Boltzmann equation becomes 

eq neq

n

g g g
f f f g u u

t n



   
      

   
 (2.28) 

By applying the Taylor series expansion in time and physical space, the above 

equation can be simplified to 

     2(0,0, ) (0,0, ) 0,0, , ,nf t t g t t g t t g u t u t t O t
t




     


            (2.29) 

where (0,0, )f t t  is the gas distribution function at the interface, and  0,0,g t t  

and  , ,ng u t u t t    are the equilibrium distribution functions at cell interface and 
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its surrounding points, respectively. t  is the streaming time step. Here, 
t




 can be 

viewed as the dimensionless collision time. Similar to Eq. (2.6),  , ,ng u t u t t    

can be taken as a piecewise constant function around the cell interface 

 
, 0

, ,
, 0

l n

n

r n

g u
g u t u t t

g u
 


   


 (2.30) 

 

According to the C-E analysis, the equilibrium part 
eqf  of the distribution function in 

Eq. (2.29) contributes to the inviscid flux. On the other hand, the non-equilibrium part 

neqf  contributes to the viscous flux. As the SF-GKS is merely used to evaluate the 

inviscid flux, only the equilibrium part is needed: 

(0,0, ) (0,0, )f t t g t t     (2.31) 

In Eq. (2.31), no numerical dissipation is introduced. Therefore, this scheme can 

capture the thin boundary layer accurately. However, in the region of discontinuity, 

such as around strong shock waves, this scheme will be unstable and sometimes 

diverges because of the lack of numerical dissipation. 

 

Another approach is to include the non-equilibrium part 
neqf  in the distribution 

function to introduce the numerical dissipation. By setting 1
t




 , Eq. (2.29) becomes 

 (0,0, ) , ,nf t t g u t u t t       (2.32) 

In fact, the above method is the KFVS as Eq. (2.32) is equivalent to Eq. (2.5). It has 

been discussed in Section 2.1 that a large numerical dissipation is introduced in this 

scheme because the numerical dissipation is proportional to the mesh size. Therefore, 
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the results will easily get smeared in the smooth region, such as in thin boundary 

layers.  

 

In the conventional gas kinetic scheme (Xu, 1998), the distribution function is 

   

   

(0,0, ) (0,0, ) 0,0, , ,

1 (0,0, ) , ,

n

n

f t t g t t g t t g u t u t t

g t t g u t u t t





     

    

         

       
 (2.33) 

where   is a constant with  0,1 . Obviously, Eq. (2.33) is exactly the same as Eq. 

(2.29) if we denote 
t





 . In Eq. (2.33), the constant   controls the numerical 

dissipation. To be more specific, when 0  , Eq. (2.33) is the same as Eq. (2.31), in 

which there is no numerical dissipation. When 1  , the distribution function 

becomes Eq. (2.32), where a large numerical dissipation is introduced. In the practical 

application,   is usually taken as a constant in the whole domain, such as 0.5  . 

However, the introduction of constant   in Eq. (2.33) means that the numerical 

dissipation is added uniformly in the regions of strong shock waves and thin boundary 

layers, which is not reasonable. The above problem motivates the current work by 

introducing a switch function to control the numerical dissipation. That is, in the 

region of thin boundary layers, the numerical dissipation should not be introduced and 

  should be close to 0, while in the region of a discontinuity, large dissipation should 

be introduced to ensure the stable solution with   as 1. In order to distinguish it from 

the constant  , the switch function is denoted as  
 with the definition of 

tanh
L R

L R

p p
C

p p


  
  

 
 (2.34) 
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where  tanh x  is the hyperbolic tangent function; C  is the amplification factor and 

10C   is used in the present work; Lp  and Rp  are the pressure at the left and right 

sides of cell interface. Therefore, the distribution function becomes 

   (0,0, ) 1 (0,0, ) , ,nf t t g t t g u t u t t                (2.35) 

From the characteristics of the hyperbolic tangent function, it can be seen that  
 

ranges from 0 to 1. In the smooth region, the switch function  
 is close to 0 due to 

the small pressure difference at two sides of cell interface and Eq. (2.35) approaches 

Eq. (2.31). In the region of a discontinuity, there will be a large difference of pressure 

at the two sides of the interface and Eq. (2.35) approaches Eq. (2.32). 

 

From the above distribution function in Eq. (2.35), the numerical fluxes for the mass, 

momentum and energy across the cell interface can be calculated by 

   

* *

* *1 (0,0, ) , ,

c n

n n n

u fd

u g t t d u g u t u t t d



  



       

 

         



 

F
 (2.36) 

In the above equation, the convective flux *

cF  can be separated into two parts: the 

flux contributed by (0,0, )g t t  which is denoted as *

,0cF  and the flux contributed by 

 , ,ng u t u t t    which is denoted as *

,1cF . As a result, the total inviscid flux across 

the cell interface can be written as 

 * * *

,0 ,11c c c      F F F  (2.37) 

In Eq. (2.12), the governing equations are solved by the finite volume method, and 

conservative flow variables are defined at cell centers. With the conservative flow 

variables at the cell center, the conservative flow variables at the left and right sides of 

the cell interface can be obtained by interpolation. Then, the velocities in the 
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Cartesian coordinate system should be transferred to the velocities in the normal and 

tangential directions of the interface by Eq. (2.13). In order to evaluate the flux *

,0cF  

contributed by (0,0, )g t t , the conservative flow variables at the cell interface 

should be first computed. By applying the compatibility condition   * 0g f d   , 

the conservative flow variables at cell interface can be computed as 

   * * *

0 0,0, 0,0,f t t d g t t d          W  (2.38) 

where *

0W  is the vector of conservative flow variables at cell interface. By 

substituting Eq. (2.35) into Eq. (2.38), we have 

 

 

   

* *

0

*

* *

0,0,

0,0,

0,0, , ,n

f t t d

g t t d

g t t d g u t u t t d





  

 

 

     

  

  

       
 





 

W

 (2.39) 

Using Eq. (2.38), we can find the relation in Eq. (2.39) that  

   * *0,0, , ,ng t t d g u t u t t d              (2.40) 

By substituting Eq. (2.30) and Eq. (2.40) into Eq. (2.38), we have 

 * * * *

0
0 0

, ,
n n

n l r
u u

g u t u t t d g d g d       
 

          W  (2.41) 

Eq. (2.41) shows that the conservative flow variables on the interface can be 

constructed by the flow variables at its left and right sides. In the above equation, the 

integral domains for normal velocity nu  and tangential velocity u  are different with 

consideration of a discontinuity around the interface. In the tangential direction, the 

integral domain is always from   to  . However, in the normal direction, the 

integral domain is from   to 0 on the right side and 0 to   on the left side. The 

explicit expressions of *

0W  can be given as 

l l r ra a       (2.42) 
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n l l r rU b b       (2.43) 

, ,l l l r r rU U a U a         (2.44) 

     2 2

, ,

1 1
1 1

2 2
l l l l l r r r r rE c U b RT a c U b RT a               
   

  (2.45) 

where 

 ,

1

2
l l n la erfc U  ,        ,

1

2
r r n ra erfc U  (2.46) 

2
,

,

1

2

l n lU

l n l l

l

e
b U a







   ,      

2
,

,

1

2

r n rU

r n r r

r

e
b U a







    (2.47) 

,

1

2
l n l l l

l

c U b a


    ,        
,

1

2
r n r r r

r

c U b a


     (2.48) 

 

Once *

0W  is obtained, the equilibrium distribution function  0,0,g t t  can be 

constructed by Eq. (2.7) and correspondingly, the flux 
*

,0cF  can be evaluated as 

2

* *

,0 (0,0, )

( )

n

n

c n

n

n

U

U p
u g t t d

U U

E p U








 





 
 


    
 
 

 

F  (2.49) 

After the evaluation of flux *

,0cF  , the flux *

,1cF  contributed by  , ,ng u t u t t    is 

calculated as 

 * * * *

,1
0 0

, ,
n n

c n n n l n r
u u

u g u t u t t d u g d u g d       
 

          F  (2.50) 

Similarly, the explicit formulations of *

,1cF  can also be given as 

*

,1(1)c l l r rF b b       (2.51) 

*

,1(2)c l l r rF c c      (2.52) 

*

,1 , ,(3)c l l l r r rF U b U b       (2.53) 
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     * 2 2

,1 , ,(4) 1 1c l l l l l r r r r rF d U b RT b d U b RT b              
   

 (2.54) 

where , , , , ,l r l r l ra a b b c c  have been defined in Eqs. (2.46)-(2.48) and ,l rd d  are 

,

1
l n l l l

l

d U c b


    ,        
,

1
r n r r r

r

d U c b


     (2.55) 

Note that in the expressions (2.51) - (2.54), *

,1( )cF m  means the mth component of the 

vector 
*

,1cF . 

 

2.2.3 Evaluation of viscous flux by smooth function approximation 

The convective flux cF  in Eq. (2.9) has been obtained by the above SF-GKS and the 

Euler equations can be solved correspondingly. Nevertheless, when solving viscous 

flow problems, the evaluation of the viscous flux is also necessary. As has been 

presented in Eq. (2.10), the viscous flux can be written as 

0

x xx y xy

x yx y yyv

x xx xy y yx yy

n n

n n

T T
n u v n u v

x y

 

 

     

 
 


 
 
 

                

F   (2.56) 

Here, ij  is the stress 
2

3

ji k
ij ij

j i k

uu u

x x x
  

  
       

 and   is the dynamic viscosity. 

pc

Pr Re


   is the thermal conductivity, where pc  is the heat capacity, Pr and Re  are 

the Prandtl and Reynolds numbers. 

 

Owing to the elliptic nature of the viscous flux, the viscous flux vF  can be 

approximated by a smooth function. In FVM, all the flow variables are defined at the 
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cell center. At the cell interface, the values of the velocity components  ,u v , the 

dynamic viscosity   and the thermal conductivity   can be calculated by simple 

averaging technique, i.e., 

 1 2, , 1,

1

2
i j i j i j      (2.57) 

where,   stands for any of the above flow variables. Next, we need to compute the 

derivatives of the velocity and temperature in Eq. (2.56). In FVM, the derivatives   

at the cell interface ( 1 2,i j ) can be approximated by the finite volume method with 

application of Gauss theorem, 

1 2,
1 2,

1 2,

1

i j
i j

i j

ds 







 
  n  (2.58) 

 

2.2.4 Computational sequence 

Overall, the basic solution procedure of SF-GKS can be summarized below: 

(1) With the flow variables at cell centers, the first order derivatives of conservative 

flow variables are calculated and the initial reconstructions are conducted at two 

sides of cell interface. 

(2) Convert the velocity components in the Cartesian coordinate system  ,U V  to 

the normal and tangential directions  ,x yn n  of the cell interface via Eq. (2.13). 

(3) Calculate the conservative flow variables at cell interface *

0W  by using Eqs. (2.42)

-(2.45). 

(4) Use Eq. (2.49) to compute the flux *

,0cF . 

(5) Calculate the flux *

,1cF  via Eqs. (2.51)-(2.54). 
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(6) Compute the value of switch function  
 via Eq. (2.34) and then the inviscid flux 

across cell interface *

cF  can be obtained by using Eq. (2.37). 

(7) Convert the inviscid flux *

cF  to cF  via Eq. (2.20). 

(8) When solving viscous flow problems, the viscous flux vF  should also be 

computed. By approximating the flow variables and their first order derivatives 

via Eq. (2.57) and Eq. (2.58), the viscous flux vF  can be computed by Eq. (2.56). 

(9) Once fluxes at all cell interfaces are obtained, solve ordinary differential equation 

(2.9) by using 4-stage Runge-Kutta scheme unless otherwise stated. 

 

2.3 Numerical Results and Discussion 

In this section, the developed SF-GKS is validated by applying it to simulate some 

test problems. First, the standard case of 1D Euler shock tube is simulated to test the 

ability of SF-GKS for 1D problems with shock waves. After that, the regular shock 

reflection is simulated to compare the performance of KFVS and SF-GKS in inviscid 

flow problems. Another inviscid flow case is the double Mach reflection. We will 

demonstrate that SF-GKS has the ability to capture the complex flow structures. 

Furthermore, SF-GKS is extended to solve viscous compressible flow problems. The 

turbulent flow around a RAE2822 airfoil is simulated. On one hand, we will use this 

example to test the ability of SF-GKS for problems with curved boundaries. On the 

other hand, through this example, we will demonstrate that SF-GKS has the capability 

to accurately simulate viscous flows. The last problem is hypersonic flow around one 

half of a cylinder. This problem is studied to examine the capability of SF-GKS in 

solving hypersonic flow problems. 
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2.3.1 1D Euler shock tube 

The 1D Euler shock tube is a standard Riemann problem. In the tube, there are two 

different initial constant states in the left and right parts. Three waves emerge from 

the initial discontinuity, which are rarefaction wave, contact discontinuity and shock 

wave. Two different Riemann problems are selected to test the performance of the 

current SF-GKS. For both two cases, the mesh size is chosen as 1 250x /   and the 

time step size is taken as 0 001t .  . The reference density and reference length are 

set as 0 1   and 0 1L  , respectively. The initial conditions of first test case are 

1.0, 0.0, 1.0L L Lu p     

0.125, 0.0, 0.1R R Ru p     

This is a mild test and the solution consists of a left rarefaction, a contact 

discontinuity and a right shock wave (Toro, 2009). Figure 2.2 shows the solution 

profiles at time 0.25t  , in which the results of density, velocity, pressure and 

internal energy are presented and well compared with exact solutions.  

 

The other test is  

5.99924, 19.5975, 460.894L L Lu p     

5.99242, -6.19633, 46.095R R Ru p     

The solution from the above initial condition consists of a left facing shock, a right 

travelling contact discontinuity and a right travelling shock wave (Toro, 2009). This 

test case is made up of two emerging shocks from the right and left sides. Similar to 

the first test case, the results of density, velocity, pressure and internal energy at time 

0.035t   are shown in Figure 2.3. The exact solution is also included for comparison.  
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The above two tests demonstrate that the results of SF-GKS match well with the exact 

solutions and show stable performance for the 1D shock tube problem.  

 

2.3.2 Regular shock reflection 

To further validate the present scheme, the 2D regular shock reflection is tested. The 

compuational domain is a rectangle of length 4 and height 1. A uniform mesh of 

120 40  is used. The Dirichlet conditions are imposed on the left and top boundaries, 

which are 

1.0, 2.9, 0.0, 1 1.4L L L Lu v p      

1.69997, 2.61934, 0.50633, 1.52819T T T Tu v p       

In this case, reference density and reference length are set as 0 1   and 0 1L  , 

respectively. The right boundary condition is supersonic outflow where extrapolation 

is applied. A reflecting condition is applied along the bottom boundary. Figure 2.4 

shows the pressure contour in which the shock wave is well captured. Figure 2.5 

presents the density profile at the position of 0.5y  . The exact solution (Mittal and 

Tezduyar, 1998) and the result obtained by KFVS are also included for comparison 

and good agreeement can be found in these results. Furthermore, it can be seen that 

the present result is slightly better than that of KFVS because of less numerical 

dissipation introduced. 

 

2.3.3 Double Mach reflection 

The test case of double Mach reflection is a hypersonic flow problem with a pressure 

ratio of 116.5. Initially, a strong normal shock wave with Mach number 10 passes 

through a 30  wedge. The computational domain is chosen to be a rectangle of 4 1  
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with a uniform mesh of 480 120 . The detailed information about the boundary 

conditions of this test can be found in Woodward and Colella (1984). Figure 2.6 and 

Figure 2.7 show the density and pressure contours at 0.2t  . using the present scheme. 

The complex flow structures such as the main shock, the oblique wave and the three-

shock intersection are all well captured. As seen from the figures, the present results 

are in good agreement with those of Woodward and Colella (1984). 

 

2.3.4 Compressible turbulent flow around a RAE2822 airfoil 

The above three test cases are all inviscid flow problems and only the convective flux 

is evaluated. This test case involves the transonic flow around a RAE2822 airfoil and 

the viscous flux should also be calculated via the smooth function approximation. For 

this case, the free-stream conditions are set according to the experimental Case 9 in 

Cook et al. (1979), with Mach number 0.73M  , Reynolds number 66 5 10Re .   

and angle of attack 2.79  . A 369 65  C-type grid is adopted in this test case. To 

take turbulent effects (Lee and Wang, 1995; Lee et al., 2000; Lee and Wu, 2008) into 

consideration, the Spalart-Allmaras turbulence model is applied. Figure 2.8 shows the 

Mach number contour obtained using the present scheme and the switch function 

contour around the airfoil. It can be seen from the figure that the switch function 

supplies sufficient dissipation around the strong shock waves and approaches 0 in the 

smooth region, which matches well with the theory. The pressure coefficient and skin 

friction distributions along the airfoil surface obtained using the present scheme is 

compared with the experimental data (Cook et al., 1979) and numerical results (Kim 

et al., 2002, Turkel et al., 1997) in Figure 2.9. These numerical results are close to 

each other and both of them match well with the experimental data (Cook et al., 1979).  
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2.3.5 Hypersonic flow around one half of a cylinder 

To investigate the capability of the present scheme for the simulation of hypersonic 

flows with strong shock waves, the hypersonic flow around one half of a cylinder is 

simulated. The inflow condition for this case is (Wieting and Holden, 1988) 

8.03M  ,  
51 835 10Re .  ,  124.94T K  ,  294.44wT K  

In the current simulation, the computational mesh is 160 160 , in which the cell 

Reynolds number is 1 835cellRe U r .      , where r  is the mesh spacing of 

the first cell in the normal direction adjacent to the cylinder surface. To accelerate the 

convergence, the LU-SGS scheme (Yoon and Jameson, 1988) is applied to solve the 

governing equations.  

 

Firstly, when the switch function is chosen following the approach in Eq. (2.34), the 

heat flux exhibits oscillations in the vicinity of the stagnation point. This is probably 

because the numerical dissipation introduced by the switch function in Eq. (2.34) is 

not sufficient in hypersonic flows. It can be verified with Figure 2.10 that the switch 

function values did not approach 1 in the region around strong shock waves. In fact, 

the maximum value of the switch function is around 0.84. To overcome this 

deficiency, a minor revision is made to Eq. (2.34) for this hypersonic case. The new 

values of the switch function are defined as 

 max ,L R      (2.59) 

where L
  and R

  are the maximum values of the switch function in the left and right 

control cells, respectively. Accordingly, the inviscid flux in Eq. (2.34) should be 

changed to 

 * * *

,0 ,11c c c      F F F  (2.60) 
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The contour of modified switch function is also displayed in Figure 2.10. It is clear 

that the modified switch function values are larger than the original ones in the 

vicinity of strong shock waves. 

 

The current results of pressure and temperature contours around the cylinder are 

presented in Figure 2.11. It is clear that the “carbuncle phenomenon” and post-shock 

oscillations do not appear in the present results. Figure 2.12 presents the normalized 

pressure and heat flux distribution along half of the cylinder surface, where the 

pressure 0p  has the value 0.9209 and heat flux 0q  is equal to 0.003655 at the 

stagnation point. The experimental results (Wieting and Holden, 1988) and numerical 

results of Xu et al. (2005) are also displayed in the figure for comparison. Good 

agreements can be found in Figure 2.12, which verifies the capability of the current 

SF-GKS in solving hypersonic flow problems. 

 

2.4 Concluding Remarks 

In this chapter, the basic theory of KFVS was first introduced. Based on the 

collisionless Boltzmann equation, KFVS lacks particle collisions in the gas evolution 

stage. The artificial particle collisions are added in the calculation of initial 

Maxwellian distribution at the beginning of the next time step. As a result, a large 

numerical dissipation is introduced in KFVS. On one hand, KFVS has the good 

positivity property for simulation of flows with strong shock waves with the 

numerical dissipation. On the other hand, KFVS usually gives more diffusive results 

than the Godunov or FDS scheme because the numerical dissipation in KFVS is 

proportional to the mesh size. Therefore, KFVS is not able to yield accurate N-S 
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solutions except for cases in which the physical viscosity is much larger than the 

numerical viscosity.  

 

In order to overcome the drawback of KFVS and present an effective numerical 

algorithm, the SF-GKS was proposed based on the C-E analysis. SF-GKS is a finite 

volume solver for evaluating the convective flux across the cell interface. By 

introducing a simple switch function, the numerical dissipation could be well 

controlled. Thus, SF-GKS could capture strong shock waves and thin boundary layers 

simultaneously. For viscous flow problems, the viscous flux was evaluated by the 

smooth function approximation. Compared with KFVS, SF-GKS not only inherits the 

advantages of KFVS, but also provides accurate N-S solutions. Furthermore, the value 

of the switch function can be easily determined, which makes this method efficient 

and easy to implement. The proposed SF-GKS was validated by simulating 1D Euler 

shock tube, regular shock reflection, double Mach reflection, compressible turbulent 

flow around a RAE2822 airfoil and hypersonic flow around one half of a cylinder. 

Numerical results showed that SF-GKS could be applied to both compressible 

inviscid and viscous flow problems. The results were stable and accurate, even in the 

simulation of hypersonic flows. Numerical results also showed that SF-GKS 

performed slightly better than KFVS for inviscid flow problems. 

 

However, it should be noted that the different treatments of inviscid and viscous parts 

in the current SF-GKS might introduce numerical errors in the computation with 

strong coupling of the inviscid and viscous flow interaction. In the next chapter, a gas 

kinetic flux solver (GKFS) will be proposed, in which both inviscid and viscous parts 

are recovered in a single gas distribution function f . In GKFS, real particle collisions 
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will be introduced in the gas evolution stage. As a consequence, the dissipation in the 

transport can be controlled by a real collision time. A simple way to evaluate the non-

equilibrium distribution function will be presented. 
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Figure 2.1 Schematic of velocity transformation at cell interface 

 

  

  

Figure 2.2 Comparison of density, velocity, pressure and internal energy with the 

exact solution at time 0.25t   of Test Case 1 

 

u 
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Figure 2.3 Comparison of density, velocity, pressure and internal energy with the 

exact solution at time 0.035t   of Test Case 2 

 

 

Figure 2.4 Pressure contour of the shock reflection 
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Figure 2.5 Comparison of density profile for the shock reflection along the line 

0.5y   

 

 

 

Figure 2.6 Density contours of the double Mach reflection obtained from present 

scheme (Upper) and Woodward and Colella (1984) (Lower) 
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(upper: Present; lower: Woodward and Colella (1984)) 

 

 

Figure 2.7 Pressure contours of the double Mach reflection obtained from present 

scheme (Upper) and Woodward and Colella (1984) (Lower) 

 

  

Figure 2.8 Contours of Mach number (Left) and switch function (Right) around the 

RAE2822 airfoil 
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Figure 2.9 Comparisons of pressure coefficient (Left) and skin friction (Right) 

distributions on the RAE2822 airfoil surface 

 

   

Figure 2.10 Contours of original switch function (Left) and modified switch function 

(Right) for hypersonic flow around one half of a circular cylinder 
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Figure 2.11 Pressure (Left) and temperature (Right) contours of hypersonic flow  
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Figure 2.12 Pressure (Upper) and heat flux (Lower) distribution along the cylinderical 

surface 
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Chapter 3  

Development of Gas Kinetic Flux Solver for Two-

dimensional Incompressible and Compressible Viscous 

Flows 

 

The switch function-based gas kinetic scheme (SF-GKS) has been developed in the 

previous chapter and successfully applied to simulate inviscid and viscous 

compressible flows. In this chapter, a brief introduction of the gas kinetic BGK 

scheme for N-S equations is given first. In this method, the BGK collision model is 

adopted in the gas evolution stage to obtain the numerical fluxes at the cell interface. 

As a consequence, the dissipation in the transport can be controlled by a real collision 

time. According to the C-E expansion analysis of the BGK model, the gas kinetic 

BGK scheme provides accurate N-S solutions in the continuum regime. At the same 

time, a stable and crisp shock transition can be generated with a delicate dissipative 

mechanism. However, the gas kinetic BGK scheme suffers from some drawbacks 

such as complexity and low computational efficiency compared with conventional 

CFD schemes. In order to simplify the original gas kinetic BGK scheme while 

keeping its intrinsic advantages, a gas kinetic flux solver (GKFS) is proposed in this 

chapter. In this solver, the finite volume method is applied to discretize the governing 

equations. The fluxes at the cell interface are evaluated by locally reconstructing the 

solutions for the continuous Boltzmann equation. Different from the conventional gas 

kinetic BGK scheme, a simple way is presented to evaluate the non-equilibrium 

distribution function, which is calculated by the difference of equilibrium distribution 

functions at the cell interface and its surrounding points. In particular, three specific 
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schemes are proposed. The accuracy and efficiency of the proposed GKFS are 

examined through numerical simulations of several incompressible and compressible 

flows, such as decaying vortex flows, 2D lid-driven cavity flows, viscous flows past a 

circular cylinder, Couette flow with a temperature gradient, Shock wave-boundary 

layer interaction, transonic laminar flows over a NACA0012 airfoil and hypersonic 

flow around a circular cylinder. 

 

3.1 Relationships between Particle Distribution Function in 

Boltzmann Equations and Conservative Flow Variables and Fluxes in 

Navier-Stokes Equations 

 

3.1.1 Boltzmann equations and 7 conservation forms of moments. 

In the gas kinetic scheme, the BGK model (Bhatnagar et al., 1954) is widely used as 

approximation of the complicated collision term in the Boltzmann equation. Without 

the external forcing term, the Boltzmann equation with BGK model (or BGK equation) 

in two dimensions can be written as 

f f f f g
u v

t x y 

   
   

  
 (3.1) 

where f  is the real particle distribution function and g  is the equilibrium particle 

distribution function.   is the collision time, which is determined by dynamic 

viscosity and pressure. The right side of the equation is the collision term which alters 

the distribution function from f  to g  within a collision time scale  . Both f  and g  

are functions of space  ,x y , time  t , particle velocity  ,u v  and internal energy  . 

The internal degree of freedom K  in   is determined by the space dimension and the 
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ratio of specific heats with the relation  2 1K D     (Chae et al., 2000), where 

D  is the abbreviation of the dimension. The equilibrium state g  of Maxwellian 

distribution is 

    2 2 2

2

2

K

u U v V

g e
 






     
  

 
 (3.2) 

Here,   is the density,  ,U VU  are the macroscopic velocity in the x  and y

directions. 
1

2 2

m

kT RT
   , where m  is the molecular mass, k  is the Boltzmann 

constant, R  is the gas constant and T  is the temperature. In the equilibrium state, the 

internal energy is 2 2 2 2

1 2 K       . 

 

With the above Maxwellian distribution function, to recover N-S equations by Eq. 

(3.1) through C-E expansion analysis, the following 7 conservation forms of moments 

should be satisfied, 

gd    (3.3) 

gu d U    (3.4) 

 2

1

K

j

j

g u u d U U bRT    


 
    

 
  (3.5) 

gu u d U U p         (3.6) 

 2

1

2
K

j

j

g u u u d U U b RT U      


 
        

 
  (3.7) 

 gu u u d p U U U U U U                    (3.8) 
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    

2

1

2 24 2

K

j

j

g u u u u d

U U U U b U U U U RT b R T

   

         



  



 
  

 

       


 (3.9) 

where u , u , u  and U , U  , U   are the phase velocity and macroscopic flow 

velocity in the  ,   and   direction. p  is the pressure and b K D   represents the 

total degree of freedoms of molecules. 1 2 Kd du du du d d d        is the volume 

element in the phase space. The integral domains in all the above equations are from 

  to  . Eqs. (3.3)-(3.5) are applied to recover the fluid density, momentum and 

energy, respectively. Eqs. (3.6) and (3.7) are used to recover convective fluxes of 

momentum equations and energy equation. Eqs. (3.8) and (3.9) are used to recover 

diffusive fluxes of momentum equations and energy equation. 

 

3.1.2 Relationships of conservative flow variables and fluxes in Navier-Stokes 

equations with distribution function in Boltzmann equation 

For the gas kinetic scheme, the inviscid and viscous terms are computed 

simultaneously (Xu, 2001). With the finite volume discretization, the discretized form 

of 2D N-S equations are written as 

1

1
0

N

i i

i

d
S

dt 

 



W
F  (3.10) 

where W  is the vector of conservative flow variables,   and N  are the volume and 

number of interfaces of the control volume respectively, iF  and iS  are the flux vector 

and length of interface i . In the gas kinetic scheme, the connection between 

distribution function f  and conservative flow variables is 

 , , ,
T

U V E f d      W  (3.11) 
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where  2 21

2
E U V bRT    and   is the moment given by 

 2 2 21
1, , ,

2
u v u v 

 
   
 

 (3.12) 

The volume element is d dudvd   for two dimensional problems. With the 

compatibility condition 

0
g f

d



   (3.13) 

Eq. (3.11) is equivalent to  

 , , ,
T

U V E g d      W  (3.14) 

The above equation shows that the conservative flow variables at the interface can be 

obtained directly from the equilibrium distribution function. 

 

As has been discussed above, the non-equilibrium distribution function has no 

contribution to the conservative flow variables, but it affects the fluxes across the 

interface. The flux vector in the x  direction is  

 1 2 3 4, , ,
T

x x x x xF F F F f u d  F  (3.15) 

and similarly, the flux vector in the y  direction is  

 1 2 3 4, , ,
T

y y y y yF F F F f v d  F  (3.16) 

 

3.2 Gas kinetic BGK scheme 

The general solution f  of the BGK model in Eq. (3.1) at a cell interface  1 2 ,i jx y  

and time t  is 

       1 2 0 1 2
0

1
, , , , , , , , , , ,

t t t t

i j i jf x y t u v g x y t u v e dt e f x ut y vt
  



  

 
       (3.17) 
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where  1 2ix x u t t
    ,  jy y v t t     are the trajectory of a particle motion 

and 0f  is the initial gas distribution function f  at the beginning of each time step 

 0t  . In order to obtain the solution f , the distribution functions g  and 0f  have to 

be specified. To simplify the notation,  1 2 0, 0i jx y    will be used in the following 

text. 

 

In the gas kinetic scheme, with the initial discontinuous macroscopic variables at the 

left and right sides of a cell interface, the initial gas distribution function 0f  has the 

form 

  

  
0

1 , 0,

1 , 0,

l l l l l l

r r r r r r

g a x b y a u b v A x
f

g a x b y a u b v A x





      


 
     



  (3.18) 

and the equilibrium state g  around cell interface is constructed as 

     0 1 1 l rg g H x a x H x a x by At        (3.19) 

where  H x  is the Heaviside function defined as 

 
0 0

=
1, 0

x
H x

x






，
  (3.20) 

Here, lg , rg , 0g  are local Maxwellian distribution functions located to the left, to the 

right, and at the cell interface, respectively. In both 0f  and g , la , lb , lA , ra , rb , 

rA , 
la , ra , b  and A  are related to the derivatives of a Maxwellian distribution 

function in space and time. The dependence of , , ...,l la b A  on the particle velocities 

can be obtained by a Taylor series expansion of a Maxwellian distribution function, 
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 

 

 

2 2 2

1 2 3 4

2 2 2

1 2 3 4

2 2 2

1 2 3 4

1

2

1

2

1

2

l l l l l l

l l l l l l

a a a u a v a u v a

b b b u b v b u v b

A A A u A v A u v A

 

 

 

 

 

 

      

      

      

K

  (3.21) 

where 1 2 4, ,...,l la a A  are local constants to be determined. Substituting Eq. (3.18) and 

Eq. (3.19) into Eq. (3.17), the gas distribution function f  at a cell interface can be 

expressed as 

 

          

       

            

1 2

0 0

0

, , , , ,

1 1 1

1 1

1 1 + 1

i j

t t t l r

t t l l l

r r r l l r r

f x y t u v

e g e te a H u a H u bv ug

t e Ag e t ua vb H u g

t ua vb H u g A H u g A H u g

  

 





  

  



  

 

        

      


       


 (3.22) 

The above equation (3.22) is the gas distribution function in the gas kinetic BGK 

scheme. It is shown that a number of coefficients related to the physical space and 

phase space, such as la , lb ,…, A , have to be determined first. 

 

To calculate these constants, the conservative flow variables at cell centers and their 

first-order derivatives could be used. With the initial reconstruction, the macroscopic 

status at the left and right side of the interface  1 2 ,i i jx yW  and  1 1 2 ,i i jx y W  can 

be obtained by interpolation. By using the relation between the gas distribution 

function and the macroscopic variables, we get 

 1 2 , ;l l l l

i i jg d x y g a d       W n W  (3.23) 

 1 1 2 , ;r r r r

i i jg d x y g a d        W n W  (3.24) 
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where lW  and rW  are the gradients of macroscopic variables on the left and 

right sides of a cell interface, and n  is the unit normal direction. From Eqs. (3.23) and 

(3.24), the parameters lg , rg , la  and ra  can be uniquely determined. Similarly, in 

the tangential direction lb  and rb  can be obtained from 

;l l l r r rg b d g b d        t W t W  (3.25) 

where t  is the unit vector in the tangential direction along the cell interface. After 

determining the terms , ,l l ra b a  and rb , lA  and rA  in 0f  can be calculated by 

 

 

;l l l l l

r r r r r

M A a u b v g d

M A a u b v g d

  

  





   

   




 (3.26) 

where 
l lM g d      and 

r rM g d     .  

 

For the equilibrium state g  in Eq. (3.19), the conservative flow variables at the cell 

interface 0W  should be determined first. Taking the limit 0t   in Eq. (3.17) and 

substituting its solution into Eq. (3.13), the conservation constraint at the cell interface 

gives 

0 0
0 0

l r

u u
g d g d g d    

 
         W  (3.27) 

Since 
lg  and 

rg  have been obtained earlier, the above moments can be evaluated 

explicitly. Therefore, 0g  can be uniquely determined. Then, la  and ra  of g  in Eq. 

(3.19) can be obtained through the relation of 

   0 1 1 00 0
, ,

;
i i j i i jl r

x y x y
M a M a

x x
   

 

 

 
 

 

W W W W
 (3.28) 
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where x  and x  are the distances from the cell interface to cell centers. Since the 

matrix 
0

0M g d      is known, la  and ra  can be evaluated accordingly. The 

term b  is evaluated from  

0 0

l r

u u
b d b d b d    

 
        (3.29) 

Up to this point, all the parameters in the initial gas distribution function 0f  and the 

equilibrium state g  at the beginning of each time step 0t   have been determined. 

The only unknown left in Eq. (3.22) is A . Since f  and g  contain A , the integration 

of the conservation constraint at the cell interface over the whole time step t  gives 

 
0

0
t

g f dtd


     (3.30) 

which can be used to get A  uniquely. 

 

The above derivation process clearly shows that the evaluation of numerical fluxes by 

the gas kinetic BGK scheme is relatively complex and expansive because numerous 

coefficients related to the physical space and phase space have to be calculated at 

every cell interface and each time step. Moreover, it is an arduous task to derive 

explicit expressions for the numerical fluxes, which are lacking in literature so far. To 

eliminate these drawbacks, the following solver is proposed. 

 

3.3 Gas kinetic Flux Solver (GKFS) 

In this section, GKFS is proposed for simulation of incompressible and compressible 

viscous flows. Different from the above gas kinetic BGK scheme, a simple way is 

introduced to evaluate the non-equilibrium distribution function. To the order of N-S 

equations, the distribution function can be approximated as  
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 t x yf g g ug vg     (3.31) 

By applying the Taylor series expansion in time and physical space, the above 

equation can be simplified to 

   (0,0, ) (0,0, ) 0,0, , ,f t t g t t g t t g u t v t t
t


    


           (3.32) 

where t  is the streaming time step. (0,0, )f t t  is the gas distribution function at 

the interface ( 0, 0)x y  , while  0,0,g t t  and  , ,g u t v t t    are the 

equilibrium distribution functions at the interface and its surrounding points, 

respectively. From Eq. (3.32), it can be seen that the distribution function at the 

interface (0,0, )f t t  can be separated into two parts. The first one is the 

equilibrium distribution function at the interface, (0,0, )g t t . The other one is the 

difference of equilibrium distribution functions at the interface and its surrounding 

points,    0,0, , ,g t t g u t v t t
t


  


       , which is the non-equilibrium part. 

 

Suppose that we know the conservative flow variables and their first order derivatives 

at the left and right sides of the interface (they can be easily given by interpolation 

from those at cell centers). With Eq. (3.2), the corresponding equilibrium distribution 

function and its first order derivatives at left and right sides of the interface can also 

be given. Then the second order approximation of  , ,g u t v t t  
 
at a time level t 

can be written as 

 

, 0

, ,

, 0

l l
l

r r
r

g g
g u t v t u

x y
g u t v t t

g g
g u t v t u

x y

 

 

 

 
    

   
    

  

 (3.33) 
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where lg  and rg  are the equilibrium distribution function at left and right side of the 

interface, respectively. By substituting Eq. (3.33) into Eq. (3.32), we have 

   

  

      

    

(0,0, )

(0,0, ) 0,0,

1

(0,0, ) 0,0, 1

1

l l
l

r r
r

l r

l l r r

f t t

g g
g t t g t t g u t v t H u

t x y

g g
g u t v t H u

x y

g t t g t t g H u g H u
t

g g g g
u v H u u v H u

x y x y




   



 


 







  
            

  
        

          

       
          

       

 (3.34) 

where  H u  is the Heaviside function defined in Eq. (3.20). The above equation 

shows that once we have the equilibrium distribution functions at the cell interface 

and its surrounding points, the full information of distribution function at the interface 

can be obtained. 

 

3.3.1 Basic formulations for evaluation of conservative flow variables 

It is known that the non-equilibrium part has no effect on the calculation of 

conservative flow variables. As a result, the conservative flow variables at the cell 

interface can be computed by Eq. (3.14) 

 0,0,g t t d   W  

Substituting Eqs. (3.32) and (3.33) into Eq. (3.14), we have 

 

0

0

, ,

    l l
l

u

r r
r

u

g u t v t t d

g g
g u t v t d

x y

g g
g u t v t d

x y







  

  

  





   

  
    

  

  
    

  



 

 

W

 (3.35) 
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The above Eq. (3.35) shows that conservative flow variables at the cell interface can 

be calculated by equilibrium distribution function of the surrounding points. 

 

Having considered that the interface may have a discontinuity in the x-direction (u 

direction), the integral domains for u  and v  in Eq. (3.35) are different. In the v  

direction, the integral domain is always from   to  , while in the u  direction, the 

integral domain is from   to 0 on the right side and 0 to   on the left side. This is 

clearly shown in Eq. (3.35). With parameters defined in Appendix A, the conservative 

flow variables at the interface W  are given by 

 
   l l r r l l l r r r

l l r r

b b V a V a
a a t

x y

   
   

        
      

  
 (3.36) 

 
   l l r r l l l r r r

l l r r

c c V b V b
U b b t

x y

   
   

        
      

  
  (3.37) 

 

     2 2

l l l r r r

l l l l r r r rl l l r r r

V V a V a

V p a V p aV b V b
t

x y

  

  


   

              
   
 

 (3.38) 

     

      

      

2 2

2 2

2 2

1 1
1 1

2 2

1
1 1

2

1 1

l l l l l r r r r r

l l l l l r r r r r

l l l l l l r r r r r r

E c V b RT a c V b RT a

d V b RT b d V b RT b
x

V c V b RT a V c V b RT a t
y

  

 

  

            
   

                 


                 

  (3.39) 

where “ l ” and “ r ” (“ ” stands for any variable) denote the variable at the left and 

right side of interface, respectively. 
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3.3.2 Basic formulations for evaluation of flux at cell interface 

Once the conservative flow variables at the cell interface W  are obtained, the 

equilibrium distribution function (0,0, )g t t  can be calculated via Eq. (3.2). Then 

the flux across the interface can be calculated via Eq. (3.34). Take x
F  as an example 

to illustrate the process.  

   

0 0

2 2

0 0 0 0

(0,0, )

(0,0, ) (0,0, )

x

l r
u u

l r l r
u u u u

u f t t d

u g t t d u g t t d
t

u g d u g d

u g u g d uv g uv g d
x y



 

 

   

 


   



 

    

 

   

  

     


   


 
       



 

   

     

F

 (3.40) 

In the above Eq. (3.40), the flux across the interface can be categorized into two parts. 

The first part is the flux contributed by equilibrium distribution function at the 

interface, which is denoted as 
 0x

F : 

 
2

0
(0,0, )

( )

x

U

U p
u g t t d

UV

E p U






 





 
 


    
 
 

 

F  (3.41) 

where  , U , V  and p  are the density, velocities and pressure at the cell interface 

given above. 

 

The other part is the flux contributed by non-equilibrium distribution function, which 

is calculated by the difference of equilibrium distribution functions at the interface 

and its surrounding points, which is denoted as 
 1x

F : 



 

60 

   

   

1

0 0

2 2

0 0 0 0

(0,0, ) , ,

(0,0, )

x

l r
u u

l r l r
u u u u

u g t t d u g u t v t t d
t

u g t t d u g d u g d
t

u g u g d uv g uv g d
x y

 

  

   


    




   



    

 

   

        
 

       
 

 
       

 

    

     

F

(3.42) 

Refer to Eqs. (A.14) – (A.23) in Appendix A, the explicit expressions of 
 1x

F  are 

 

   

(1)

1

x

l l r r

l l r r l l l r r r

F U b b
t

c c V b V b

x y


  



   


     

        
  

  

 (3.43) 

 

   

(1) 2

2

x

l l r r

l l r r l l l r r r

F U p c c
t

d d V c V c

x y


  



   


       
 

        
  

  

 (3.44) 

 

     

(1)

3

2 2

x

l l l r r r

l l l l r r r rl l l r r r

F UV V b V b
t

V p b V p bV c V c

x y


  



  


     

              
  

 

 (3.45) 

   

      

      

      

(1) 2 2

4

2 2

2 2

2 2

1
2

2

1 1

1
1 1

2

1 1

x

l l l l l r r r r r

l l l l l r r r r r

l l l l l l r r r r r r

F U V b RT U
t

d V b RT b d V b RT b

e V b RT c e V b RT c
x

V d V b RT b V d V b RT b
y






 

  

 

     
 

            
   

                 


                 

 (3.46) 

Therefore, the final flux 
x

F  can be calculated by, 

   0 1
 

x xx  F F F  (3.47) 
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3.3.3 Three schemes for evaluation of conservative flow variables and fluxes at 

cell interface 

As shown in the above section, the calculation of conservative flow variables and 

numerical fluxes at cell interface involves the streaming time step t . The principle 

for evaluation of t  is that the location of the equilibrium distribution function around 

the interface  , ,g u t v t t    in Eq. (3.32) must be within either the left cell or the 

right cell of the interface. In other words, the transport distance of particle should be 

smaller than half of the cell size, i.e., 

1

2

1

2

u t x

v t y





 

 

 (3.48) 

However, in the current gas kinetic schemes, the velocities of particles in the phase 

space range from -∞ to +∞. Therefore, the streaming time step t  cannot be simply 

determined. In order to resolve this problem, three schemes will be introduced and 

their performance will be tested in the numerical examples. 

 

Scheme I 

Figure 3.1 shows the particle distribution function at the interface (Xu, 1998). As 

shown, the distribution function decreases to zero when u  is increased to infinity. 

Therefore, a finite domain in the velocity space is adopted,  max max,u U U  , where 

maxU  is the maximum velocity of particles in the streaming process. The particles 

beyond this region are neglected. This idea has been applied in the unified gas kinetic 

scheme (Xu and Huang, 2010). Thus, the streaming time step can be calculated via 
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Eq.(3.48) when u  and v  take the extreme case of maxU . Mathematically, t  can be 

chosen by  

max

 ( , )

2

Minimum x y
t

U


 
  

Note that as local solution of the BGK equation is reconstructed at each cell interface, 

t  is locally determined at different interfaces. After streaming time step t  is 

determined, the conservative flow variables at the interface are calculated via Eqs. 

(3.36)-(3.39), and the numerical fluxes across the interface are computed via Eqs. 

(3.41), (3.43)-(3.46), (3.47). 

 

Scheme II 

In the gas kinetic BGK scheme (Xu, 2001), the conservative flow variables at the 

interface are calculated by Eq. (3.27) 

0
0 0

l r

u u
g d g d g d    

 
         W  

The above equation is equivalent to Eq. (3.35) when streaming time step t  is set to 

zero. In Scheme II, Eq. (3.27) is adopted to calculate the conservative flow variables 

at the interface. In this way, the conservative flow variables at the interface can be 

simply computed by the reconstructed variables of left and right sides without 

involving their derivatives, that is, 

 l l r ra a       (3.49) 

 l l r rU b b       (3.50) 

 l l l r r rV V a V a       (3.51) 

     2 21 1
1 1

2 2
l l l l l r r r r rE c V b RT a c V b RT a              
     (3.52) 
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Once the conservative flow variables are computed by the above equations, the flux 

 0x
F  can be calculated by Eq. (3.41) without influence of streaming time step. 

However, it was found that this treatment will introduce inconsistency for evaluation 

of fluxes U  in the mass conservation equation. As shown above, U  can be given 

from Eq. (3.50), which has nothing to do with the collision time . On the other hand, 

by taking 1   in Eq. (3.40), the flux of mass conservation equation becomes 

   2 2

1
0 0 0 0

x

l r l r
u u u u

F U u g u g d uvg uvg d
x y

 
   

  
       

  
       (3.53) 

In the above equation, the term proportional to   is the viscous flux as   is 

proportional to the dynamic viscosity. It is unphysical because there is no viscous 

term in the mass conservation equation. To remove this contradiction, the flux 1

xF  in 

the mass conservation equation is computed by Eq. (3.50) rather than by Eq. (3.53) in 

this work, that is, 

1

xF U  (3.54) 

Other fluxes in the momentum equations and energy equation are computed by using 

the same formulations as in Scheme I. Note that the streaming time step has effect on 

the flux vector 
 1x

F , which is determined by the same equations (3.44)-(3.46) as in 

Scheme I. 

 

Scheme III 

In the above two schemes, the determination of streaming time step is necessary to 

evaluate the fluxes. However, in the present work, the streaming time step cannot be 

determined precisely and it is approximated by the finite domain in the phase velocity 

space. This will probably bring numerical errors and instability into the schemes, 
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especially in the case of compressible flows. This motivates the development of 

Scheme III, in which the effect of streaming time step is eliminated.  

 

In Scheme III, the way to calculate the conservative flow variables at the interface are 

the same as in Scheme II, which has been given in Eqs. (3.49)-(3.52). For the 

calculation of flux, it is obvious that only the middle term on the right side in Eq. 

(3.40) involves the streaming time step t . Note that (0,0, )g t t  is the equilibrium 

distribution function at the interface and time level t t , and lg , rg  are the 

distribution functions at the left and right sides of the interface and the time level t . In 

fact, the middle term of Eq. (3.40) can be approximated by  

0 0
(0,0, )

(0,0, )

l r
u u

u g t t d u g d u g d
t

g t t
u d

t

  




   




 

 

       
 

 
  



  



 (3.55) 

According to the work of Xu (2001), /g t   can be approximated by 

 1 2 3 4

(0,0, )
(0,0, )

g t t
g t t A A u A v A

t


 

 
    


 (3.56) 

where 1A , 2A , 3A  and 4A  are the derivatives of macroscopic variables with respect to 

time, which will be determined from the compatibility condition,  2 2 21

2
u v    . 

Thus, the flux expression in Eq. (3.40) can be written as 

 

   

1 2 3 4

2 2

0 0 0 0

(0,0, ) (0,0, )x

l r l r
u u u u

u g t t d u g t t A A u A v A d

u g u g d uv g uv g d
x y

 

   

     

    
   

        

  
      

  

 

     

F

 (3.57) 

In the above equation, the effect of streaming time step is eliminated. The only 

undetermined variables in this scheme are the coefficients 1A , 2A , 3A  and 4A . 
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From Eq. (3.35), we have 

 

0 0

0,0,

l l r r
l r

u u

g t t d

g g g g
g u t v t d g u t v t d

x y x y



 

 

     
 

  

      
          

      



   

W

 (3.58) 

The above equation can be rewritten as 

 
0 0

0 0

0,0, l r
u u

l l r r

u u

g t t g g d

g g g g
u v d u v d t

x y x y



 

 

  

 

 

    
 

       
         

       

   

   
 (3.59) 

Using Eqs. (3.55) and (3.56), the above equation can be rewritten as 

   

   

1 2 3 4

0 0 0 0

0,0,

l r l r
u u u u

g t t A A u A v A d

u g u g d v g v g d
x y



   

  

   
   

     

  
       

  



     
 (3.60) 

 

Defining 

   
1

2

0 0 0 0
3

4

l r l r
u u u u

G

G
u g u g d v g v g d

Gx y

G

      
   

 
 

        
  
  
 

       (3.61) 

Then Eq. (3.60) can be written as 

1

112

2
22

2 3 3
3

4 4

1 2 3 4

1

1

2
0

1

2

U V

GA
U U UV

GA

A G
V UV V

A G






 
    
     
          
           
     

 (3.62) 

where  , U , V  and   are macroscopic flow variables at the interface and  

2 2

1

1 2

2 2

K
U V



 
    

 
 (3.63) 
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2 2

2

1 4

2 2

K
U U V



 
    

 
 (3.64) 

2 2

3

1 4

2 2

K
V U V



 
    

 
 (3.65) 

   
2

2
2 2 2 2

4 2

1 4 6 8

4 4

K K K
U V U V

 

   
      

 
 (3.66) 

 

From Eq. (3.62), the coefficients 1A , 2A , 3A  and 4A  are determined as 

 
 

 

2
2 2

4 4 2 3 1 1

2
2 2

4 2 3 1

8

2

8 1 2

2 2 2

A G UG VG U V G
K

K
G UG VG U V G

K







 

        
 

   
        

   

 (3.67) 

 3 3 1 4

2
A G VG VA




     (3.68) 

 2 2 1 4

2
A G UG UA




     (3.69) 

1 1 2 3 1 4

1
A G UA VA A


      (3.70) 

 

Once the coefficients are obtained, the fluxes across the interface can be calculated 

via Eq. (3.57). 

 

Similar to Schemes I and II, the explicit expressions for conservative flow variables 

and fluxes in Scheme III can also be given. As has been introduced above, the 

conservative flow variables at the interface are calculated via Eq. (3.27) and the 

explicit expressions are given in Eqs. (3.49)-(3.52). The explicit expression for 
 0x

F  

is the same as Eq. (3.41), that is, 
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 
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
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
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 

F  

For 
 1x

F , the explicit expressions are different from those in Scheme I and Scheme II, 

which are given in Eqs. (3.43)-(3.46). Using the definition in Appendix A and 

coefficients 1A , 2A , 3A  and 4A , the explicit expressions for 
 1x

F  in Scheme III 

become 

 

   

(1) 1 2 1 1 3 1 2 1 2
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

 
       

 

        
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 (3.71) 
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

 
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        
  
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 (3.72) 
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

   
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  
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 (3.73) 
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(3.74) 
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Correspondingly, the total flux x
F  can be calculated by    0 1x xx  F F F . The 

explicit expressions for evaluation of conservative flow variables and fluxes in the y  

direction are given in Appendix B. 

 

3.3.4 Collision time and Prandtl number fix 

Theoretically, the collision time in the gas kinetic scheme is determined by the 

relationship of  

p    (3.75) 

where   is the dynamical viscosity and p  is the pressure. For an incompressible 

flow,   is usually treated as a constant. For a compressible flow or an incompressible 

flow with heat transfer, such as hypersonic flow around a circular cylinder, the 

Sutherland’s law is adopted 

3 2

T T S

T T S
  





  
  

 
 (3.76) 

where 285T K   is the reference temperature and S  is the Sutherland temperature 

chosen as 110.4K .   is the viscosity at the reference temperature.  

 

When there is a shock wave with a thickness in the order of the cell size, the 

numerical viscosity should be combined with the physical viscosity to take the 

pressure jump into account. Xu (2001) presented a simple and effective treatment to 

introduce the numerical dissipation into their gas kinetic BGK scheme, which is also 

adopted in the present work: 

L R

L R

p p
t

p p p





  


 (3.77) 
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where t  is the time step in the solution of N-S equations, Lp  and Rp  are the 

pressure at the left and right sides of the cell interface, respectively. The second part 

of the above equation corresponds to numerical viscosity, which is applied to capture 

the shock wave and increase the robustness of the scheme. 

 

As shown in the work of Xu (1998), the Prandtl number in the gas kinetic scheme 

corresponds to unity. In order to adjust the Prandtl number for the present scheme to 

any realistic value, one of the convenient approaches is to modify the heat flux with a 

variable Prandtl number (Xu, 2001) 

1
1new

E EF F q
Pr

 
   

 
 (3.78) 

where EF  is the energy flux. q  is the heat flux evaluated from 

      2 2 21

2
q u U u U v V fd         (3.79) 

The explicit expression of q  is given in Appendix C.  

 

3.3.5 Computational sequence 

In the proposed GKFS, the computational procedure of the first two schemes is 

similar to each other, which is summarized below: 

(1) Firstly, the maximum velocity of particles in the phase velocity space, maxU , is 

chosen properly. Then, we need to specify the streaming time step t  at each 

interface. The principle for the choice of t  is that the location of the 

equilibrium distribution function around the interface  , ,g u t v t t    in Eq. 

(3.32) should be within either the left or right cell of the interface. 
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(2) The first order derivatives of conservative flow variables are calculated and the 

initial reconstructions are conducted at two sides of the cell interface. 

(3) Calculate the conservative flow variables at the cell interface W  by using Eqs. 

(3.36)-(3.39) for Scheme I or Eqs. (3.49)-(3.52) for Scheme II. After that, flux 

 0x
F  can be calculated by Eq. (3.41). 

(4) Compute the flux 
 1x

F  by using Eqs. (3.43)-(3.46). 

(5) Calculate the total flux across the cell interface x
F  by using Eq. (3.47). For 

Scheme II, the flux of mass conservation equation is directly obtained by 

conservative flow variables by using Eq. (3.54). 

(6) Calculate the heat flux q  via Eq. (3.79), and make correction for energy flux by 

using Eq. (3.78). 

(7) The total flux across the cell interface in the y  direction 
y

F  can be calculated in 

the similar way. The flux expressions are given in Appendix B. Once the fluxes 

at all cell interfaces are obtained, solve ordinary differential equation (Eq. (3.10)) 

by using 4-stage Runge-Kutta scheme. 

(8) Repeat steps (1) - (7) until convergence criterion is satisfied. 

 

For Scheme III, the solution procedure is a little different from the one above because 

the calculation of streaming time step is not necessary and some additional 

coefficients should be computed. The basic solution procedure is: 

(1) Firstly, the first order derivatives of conservative flow variables are calculated 

and the initial reconstructions are conducted at two sides of cell interface. 

(2) Calculate the conservative flow variables at the cell interface W  by using Eqs. 

(3.49)-(3.52) and then the flux of 
 0x

F  can be obtained by Eq. (3.41). 
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(3) Calculate the vector  1 2 3 4, , ,
T

G G G G  by using Eq. (3.61) and further compute 

coefficients 1 2 3 4, , ,A A A A  by Eqs. (3.67)-(3.70). 

(4) Calculate the flux of 
 1x

F  by Eqs. (3.71)-(3.74). 

(5) Calculate the total flux across the cell interface x
F  by Eq. (3.47). 

(6) Calculate the heat flux q  via Eq. (3.79), and make correction for energy flux by 

using Eq. (3.78). 

(7) The total flux across the cell interface in the y  direction y
F  can be calculated in 

the similar way. The flux expressions are given in Appendix B. Once the fluxes 

at all cell interfaces are obtained, solve ordinary differential equation (Eq. (3.10)) 

by using 4-stage Runge-Kutta scheme. 

(8) Repeat steps (1) - (7) until convergence criterion is satisfied. 

 

3.4 Numerical Results and Discussion 

In this section, the developed GKFS is validated by applying it to simulate test 

problems of both incompressible and compressible viscous flows. First, the decaying 

vortex problem is solved on a uniform mesh to study the order of solution accuracy. 

Subsequently, the 2D driven cavity flow is simulated by using non-uniform grids. The 

comparison of solution accuracy and computational time required by three schemes is 

shown. Viscous flow past a circular cylinder is also simulated to examine the 

capability of the present GKFS for problems with curved boundaries. The simulations 

of Couette flow with a temperature gradient are carried out to further investigate the 

validity of the present solver for variable Prandtl number. To determine the streaming 

time step t , the finite domain in the phase velocity space is set as 5 , 5ref refU U 
 

 

for Scheme I and Scheme II, where refU  is usually selected as the free stream velocity. 



 

72 

 

Apart from incompressible flows, GKFS can also be applied to solve compressible 

flow problems. However, when compressible flows with shock waves are solved, on 

one hand, the mesh spacing should be chosen to be very small to capture the thin 

boundary layers and thus the streaming time step will be very small. On the other 

hand, the conservative flow variables on the left and right sizes of the interface may 

differ a lot from the value at the interface. As a consequence, the term divided by t  

in Eq. (3.42) might be very large, which brings numerical instability into the 

computation when Scheme I and Scheme II are applied. In contrast, the performance 

of Scheme III is much more consistent for simulation of both incompressible and 

compressible flows. Therefore, in the following discussion, only the results of Scheme 

III will be presented for compressible flows. Numerical simulations of shock wave-

boundary layer interaction, flow over airfoils and hypersonic flow past a circular 

cylinder are carried out by using Scheme III. Except for the case of hypersonic flow 

around a circular cylinder, the Venkatakrishnan’s limiter (Venkatakrishnan, 1995) is 

used to calculate the conservative flow variables at the two sides of cell interface in 

the reconstruction stage. For temporal discretization, four-stage Runge-Kutta method 

is used and the CFL number is set as 1 unless otherwise stated. 

 

3.4.1 Decaying vortex flow 

The numerical accuracy of three schemes of GKFS is examined by simulating the 

decaying vortex flow, which has an analytical solution 

       2
2

4 Re0
0 2

, , cos 2 sin 2
4

Ut L

s

U
x y t x L y L e

c


   


      (3.80) 

       22 Re
, , cos sin

Ut L
u x y t U x L y L e


 


   (3.81) 



 

73 

       22 Re
, , sin cos

Ut L
v x y t U x L y L e


 


  (3.82) 

where U  is the characteristic velocity. In the present test, the Reynolds number is 

selected as 0 10Re UL   . The computational domain is    , ,L L L L    and 

five different uniform grids ( N N , 41, 61, 81,101,161N  ) are used. The solution 

at time level 1t   is selected and the relative error of velocity u  is quantified by 2L  

norm which is defined as 

2

2

numerical exact

N N

u u

U
L

N N



 
 
 





 (3.83) 

where 
numericalu  and 

exactu  are the numerical and exact results, respectively. The 

numerical error versus mesh spacing in log scale is presented in Figure 3.2. As shown 

in the figure, the overall accuracy of the numerical results for the three schemes is 

slightly less than second order as the slopes of the lines are about 1.90 to 1.91. 

 

3.4.2 2D lid-driven flow in a square cavity 

A non-uniform mesh is used to simulate the lid-driven cavity flow at various 

Reynolds numbers. The mesh points are generated according to the following 

equations: 

 
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max
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  
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where ,i j  are the mesh point indices, ,i jx y  are the coordinates in the x  and y  

directions, respectively; maxi  and maxj  are the maximum numbers of mesh points in 

the x and y directions. In this kind of mesh, the mesh spacing near the wall will be 
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very small to capture the boundary layers and in the middle region, the mesh spacing 

is relatively large. This characteristic can be used to reduce the total number of mesh 

points, especially for high Reynolds number cases. Non-uniform grids of 61 61  for 

100Re  , 81 81  for 400Re  , 101 101  for 1000Re  , 121 121  for 5000Re   

and 10000  are applied. As this is a steady flow problem, the local time-stepping 

method is applied to accelerate the convergence, in which the largest time step is 

chosen for each control volume. In the present simulations, the density   and the lid 

velocity U  are set as 1.0  and 0.1 , respectively. Initially, the density is constant and 

the velocity is zero all over the flow domain. The boundary conditions are 

implemented by introducing ghost cells.  

 

Table 3.1 compares the locations of the primary vortex centers at different Reynolds 

numbers obtained using the present three schemes of gas kinetic flux solver with 

those obtained by Ghia et al. (1982). As shown in the table, the vortex center moves 

towards the cavity center when the Reynolds number is increased. The maximum 

relative error between the present solutions and those of Ghia et al. (1982) is less than 

1.0%. Figure 3.3 presents velocity u  along the horizontal central line and v  along the 

vertical central line for a lid-driven cavity flow at various Reynolds numbers. The 

results given by the three schemes are almost the same, and they are in good 

agreement with those of Ghia et al. (1982), which show the feasibility and accuracy of 

the current schemes. Table 3.2 compares the computational times for the three 

schemes. It can be seen from the table that, the computational efficiency of Scheme I 

and Scheme III is similar. This is because all terms which need to be calculated and 

stored are almost the same except for the coefficients 1 2 3 4, , ,A A A A  used in Scheme 
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III. The computational time for Scheme II is about 55% and 65% of that in Scheme I 

and Scheme III.  

 

The pure stability of GKFS is examined without considering the accuracy. Uniform 

grids are applied for simulating lid-driven cavity flow at 10000Re  . The numerical 

results show that all three schemes can obtain converged results even when the mesh 

is reduced to 5 points in one direction. This test demonstrates the good stability 

performance of GKFS as it requires a small number of grid points to yield stable 

solution. 

 

3.4.3 Viscous flow past a circular cylinder 

Although the complex lid-driven cavity flows have been tested to validate the present 

schemes, the geometry of the cavity which only involves straight boundaries is 

nevertheless simple. To further illustrate the capability of the present GKFS for 

problems with a curved boundary, the flow past a circular cylinder is simulated. This 

is an attractive test problem, which has been investigated extensively. 

 

Different kinds of flow behaviors for this flow are characterized by the Reynolds 

number which can be defined as  

U D
Re




   (3.84) 

where   is the free stream density, U  is the free stream velocity, D  is the 

diameter of the cylinder and   is the dynamic viscosity of the fluid. The drag 

coefficient dC  and lift coefficient LC  are commonly used to verify the accuracy of 

the numerical results, which are defined as 



 

76 

21 2

D
d

F
C

U D 

  (3.85) 

21 2

L
L

F
C

U D 

  (3.86) 

where DF  and LF  are drag and lift forces, respectively. For unsteady flows, another 

important parameter to examine the vortex shedding frequency is the Strouhal number: 

fD
St

U

  (3.87) 

where f  is the vortex shedding frequency. 

 

The typical O-type structured grid, where the outer boundary is taken as a circle, is 

used in the present study. For the steady flow, the outer boundary is 25.5 diameters 

away from the center of the circular cylinder, and a non-uniform mesh of 240 160  is 

applied. For the unsteady case, the outer boundary is 55.5 diameters away from the 

center of cylinder, and a non-uniform mesh of 480 320  is used. The no-slip 

boundary condition is imposed on the circular cylinder and far field boundary 

condition is used on the outer boundary. 

 

When 20Re   and 40, the flow past a circular cylinder finally reaches a steady state. 

To examine the accuracy of the present three schemes, a detailed comparison of three 

parameters, including recirculation length sL , separation angle s  and drag 

coefficient dC , is made with previous studies in Table 3.3. Obviously, the results of 

all the three schemes agree well with the results in the literature. Figure 3.4 shows the 

streamlines for the two steady cases. For simplicity, only the results of Scheme I are 

illustrated since all the three schemes give almost the same results. As shown in the 
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figure, a pair of stationary recirculating vortices forms behind the cylinder and the 

length of the vortices increases when the Reynolds number increases. To further 

demonstrate the performance of the present solver, the pressure coefficient 

distribution around the cylinder surface at 40Re   is depicted in Figure 3.5. The 

experimental data from Park et al. (1998) and the numerical solutions obtained by Shu 

et al. (2014) are also included in this figure. The orientation angle   is measured in 

degree from the leading stagnation point to the trailing stagnation point. Since the 

flow is symmetric about x-axis in this steady case, only the pressure coefficient 

distribution on the upper surface of the cylinder is presented. 

 

For 100Re   and 200, the flow is unsteady and eventually reaches a periodic state. 

Table 3.4 shows the quantitative comparison of the lift and drag coefficients and the 

Strouhal numbers for the three schemes. It can be seen that the results of all three 

schemes compare well with those in literature (Braza et al., 1986; Liu et al., 1998; 

Ding et al., 2004; Shu et al., 2014). Figure 3.6 shows the temporal evolution of the lift 

and drag coefficients on the cylinder, in which the periodic behavior of flow pattern is 

shown clearly and the period of the lift coefficient is twice of the drag coefficient for 

the two cases. Figure 3.7 and Figure 3.8 show the streamlines and vorticity contours 

for the two unsteady cases, from which the famous Karman vortex street can be 

clearly seen. 

 

3.4.4 Couette flow with a temperature gradient 

Couette flow with a temperature gradient is a standard heat-transfer case which can 

provide a good test to show the viscous heat conduction. The schematic of this 

problem is shown in Figure 3.9. The bottom wall is fixed at a temperature 0T . The top 
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plate is moving at a speed u  and the temperature of the top wall is 1T . The distance 

between these two infinite parallel flat plates is H . When the flow reaches a steady 

state, the temperature distribution can be obtained under the assumption of constant 

viscosity and heat conduction coefficients, which can be written as 

2

0 1 0 1
2 p

u y y
T T , T T Pr

c H H

 
    

 
 (3.88) 

0
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T T ,

T T H H H

   
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  
 (3.89) 

where pc  is the specific heat capacity at constant pressure, Pr  is the Prandtl number, 

 2

1 0pEc u c T T   is the Eckert number. The distance between the two plates H  is 

set as 1 in this case and a mesh size of 20 40  is used in the simulation. The Mach 

number is chosen as 0.2 for all the test cases. At the inlet and outlet, a periodic 

boundary condition is applied. Along the top and bottom walls, the isothermal no-slip 

boundary condition is imposed. This test problem can be viewed as a 1D problem in 

the y  direction.  

 

Firstly, the condition of 1 0T T  is considered. The test cases with different Prandtl 

numbers of 0 7 1 0Pr . , .  and 2.0 are solved. Figure 3.10 shows the temperature 

profiles along the vertical central line obtained by three schemes and analytical 

solutions under different Prandtl numbers. It can be observed that all the present 

results match well with analytical solutions. In addition, the condition of 1 0T T  is 

also considered. Figure 3.11 presents the solutions of Eckert number 40.0Ec   with 

different Prandtl numbers, in which the results also agree well with analytical 

solutions. It can be concluded that the technique of Prandtl number fix used in the 

present work can correctly consider the heat conduction term. 
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3.4.5 Shock wave-boundary layer interaction 

We will use this case and the following two cases to test the performance of Scheme 

III. As mentioned above, Schemes I and II encounter numerical instability for the 

simulation of compressible flows. So, in this work, we will only use Scheme III to 

solve compressible flows. In this test case, an oblique shock wave at an angle of 32.6  

interacts with a laminar boundary layer. The incident Mach number ahead of the 

shock wave is equal to 2 and the Reynolds number for the upstream flow is 52.96 10 . 

The dynamic viscosity is computed via Sutherland’s law with 1.4   and 0 72Pr . . 

Thus, the Prandtl number fix process should be used which has been described in the 

previous section. A non-uniform mesh of 100 100  is used and it is shown in Figure 

3.12. The mesh spacing varies from 43.2 10  around 0y   to 21.8 10  at the upper 

boundary in the y  direction and it is uniform in the x  direction. The oblique shock 

hits the boundary layer on the wall at 1x  . The pressure contours obtained from the 

current scheme and gas kinetic BGK scheme (Xu, 2001) in the whole computational 

domain are presented in Figure 3.13. The complex features are well captured in the 

separation zone. Figure 3.14 shows the pressure and skin friction coefficient 

distributions along the plate surface, where the experimental data (Hakkinen et al., 

1959) and results of Xu (2001) are also included for comparison. For comparison of 

pressure distribution, the averaged value of difference between the results of present 

solver and those of Xu (2001) is 0.52% and the maximum difference is around 3%. 

On the other hand, for the comparison of skin friction, the present results match well 

with reference data (Xu, 2001) in the region of expansion waves and reattachment 

shock ( 1x  ). However, in the region of compression waves ( 1x  ), there are some 

small deviations with those of Xu (2001). 
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To compare the computational efficiency of the current GKFS with gas kinetic BGK 

scheme (Xu, 2001), the above non-uniform grid is used for both two schemes. 

Numerical simulations are carried out on a Dell Desktop (Intel Core i5 with 3.10GHz 

and 8 GB RAM). The CPU time versus iterative steps are depicted in Figure 3.15. In 

this figure, it shows that the current GKFS takes about 91.75 seconds while the gas 

kinetic BGK scheme needs about 160.63 seconds for 10000 time steps. The present 

scheme only takes about 57.1% of the CPU time of gas kinetic BGK scheme for this 

case, which shows the high efficiency of the present scheme. 

 

3.4.6 Transonic laminar flows over a NACA0012 airfoil 

In this case, transonic laminar flows over a NACA0012 airfoil are simulated. For the 

problem, the chord length of the airfoil is taken as 1, and the distance between the 

leading edge and the free stream boundary is chosen as 15 chord lengths. The outer 

boundary is located 21 chord lengths away from the leading edge. The far field 

boundary condition is imposed at the outer boundary, except for the cut-line, where a 

periodic boundary condition is applied. On the airfoil surface, the adiabatic no-slip 

wall condition is imposed. A 396 80  C-type grid is used for all simulations. There 

are 239 grid points on the airfoil surface and 80 grid points on the cut-line. The 

minimum mesh spacing normal to the wall boundary is chosen as 31.0 10  in units of 

chord length. 

 

The pressure coefficient pC  and skin friction coefficient fC  along the wall will be 

computed to compare with the reference data. These two coefficients are defined as 
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Here,   is the fluid density, U  is the free-stream velocity and w  is the local wall 

shear stress defined as  
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 (3.92) 

where u  is the tangential velocity and 
n




 is the derivative in the normal direction on 

the wall surface. 

 

The case of Mach number 0.8M   and attack angle of 10   is considered. The 

Reynolds number based on the chord length and the free-stream conditions is 

500Re  . This is the test case A3 of GAMM workshop in 1985 (Bristeau et al., 1987). 

Figure 3.16 shows the streamlines around the airfoil. There is a large separation 

region on the upper surface of the airfoil and the present scheme accurately resolves 

this complex flow feature. The comparisons of pressure coefficient and skin friction 

coefficient distributions on the airfoil surface are shown in Figure 3.17. Also included 

in the figure are the data given in literature (Jawahar and Kamath, 2000; Katz, 2009). 

Both the pressure coefficient pC  and the skin friction fC  agree well with the 

reference data. 

 

3.4.7 Hypersonic flow around a circular cylinder 

Numerical simulation of hypersonic flow, which is a big concern in the design of 

aerospace vehicles, is still a challenging problem in computational fluid dynamics. To 
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investigate the capability of the current flux solver for simulation of hypersonic flows 

with strong shock waves, the hypersonic flow around one half of a cylinder is 

simulated. The inflow condition for the air is taken from the experiment done by 

Wieting and Holden (1988), in which the free-stream Mach number is 8.03M  , the 

Reynolds number is 51 835 10Re .  , the free-stream temperature is 124.94T K   

and wall temperature is 294.44wT K . A computational mesh of 160 160  is used in 

the current simulations. The cell Reynolds number is chosen as 

1 835cellRe U r .      , where r  is the mesh spacing of the first cell in the 

normal direction next to the cylinder surface. The LU-SGS scheme (Yoon and 

Jameson, 1988) is applied to solve the resultant algebraic equations. 

 

Figure 3.18 shows the pressure and temperature contours around the cylinder. It can 

be seen that there are no oscillations or “carbuncle phenomenon” in the present 

simulation. Figure 3.19 presents the pressure and heat flux distributions along the 

cylinder surface, which have been normalized by the pressure 0 0.9209p   and heat 

flux 0 0.003655q   at the stagnation point (Xu et al., 2005). The experimental data 

(Wieting and Holden, 1988) and results given by the multi-dimensional gas kinetic 

BGK scheme (Xu et al., 2005) are also included for comparison. It can be found that 

the pressure and heat flux distributions match well with those obtained from Xu et al. 

(2005). There is a slight deviation in the heat flux distribution at the stagnation point 

and this may be caused by different mesh sizes used in the respective simulations.  
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3.5 Concluding Remarks 

In this chapter, the gas kinetic BGK scheme for N-S equations was first introduced. In 

this method, the BGK collision model is adopted in the gas evolution stage to obtain 

the numerical fluxes at the cell interface. As a consequence, the dissipation in the 

transport can be controlled by a real collision time. In contrast to conventional upwind 

schemes, the inviscid and viscous fluxes can be computed simultaneously from the 

solution of the Boltzmann equation with BGK approximation in the gas kinetic BGK 

scheme. According to the C-E expansion analysis of the BGK collision model, the gas 

kinetic BGK scheme provides an accurate N-S solution in the smooth region. At the 

same time, a stable and crisp shock transition can be generated with a delicate 

dissipative mechanism. However, the gas kinetic BGK scheme also suffers from 

several drawbacks such as complexity and low computational efficiency. A number of 

coefficients related to the physical space and phase space have to be calculated at 

every cell interface and each time step. This causes the evaluation of numerical flux 

using the gas kinetic BGK scheme be expansive. Moreover, it is an arduous task to 

derive the explicit expressions for the numerical fluxes. 

 

In order to overcome these drawbacks of the gas kinetic BGK scheme and present an 

effective numerical algorithm, GKFS was proposed based on the C-E expansion 

analysis. GKFS is a finite volume solver and directly solves the governing equations 

reproduced by C-E theory. The conservative flow variables at the cell centers are 

updated by marching in time with fluxes at the cell interfaces. The key issue in GKFS 

is to evaluate the flux at the cell interface by local reconstruction of the Boltzmann 

solutions. A simple method was proposed to evaluate the gas distribution function at 

the cell interface and thus the numerical fluxes can be derived easily. GKFS removes 
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the drawbacks of the gas kinetic BGK scheme, such as complexity and inefficiency. 

In addition, the formulations of conservative flow variables and numerical fluxes at 

cell interfaces were explicitly given, which were the first published in the literature as 

far as we know. Three specific schemes of GKFS were proposed and validated by 

simulating both incompressible and compressible viscous flows. Firstly, the three 

schemes were applied to simulate incompressible flows, including decaying vortex 

flow, lid-driven cavity flow, flow over a cylinder and Couette flow with a temperature 

gradient. Numerical results showed that all the three schemes roughly have second 

order of accuracy in space. Among them, Scheme II was more attractive due to its 

high efficiency. For simulation of compressible flows such as shock-boundary layer 

interaction, laminar flow over a NACA0012 airfoil and hypersonic flow over a 

cylinder, Schemes I and II encountered numerical instability. In contrast, Scheme III 

performed equally well for simulation of both incompressible and compressible flows. 

The reason could be that the streaming time step t  is not involved in Scheme III. 

Numerical results also showed that GKFS only takes about 57.1% of the CPU time of 

gas kinetic BGK scheme for shock boundary layer interaction on the same non-

uniform grids. It can be seen from these simulations that GKFS can be effectively 

applied for simulation of both incompressible and compressible viscous flows. 

 

In the next chapter, we will further extend the GKFS to simulate three-dimensional 

(3D) viscous flows. A truly 3D gas kinetic flux solver will be proposed for simulation 

of incompressible and compressible flows. 
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Table 3.1 Locations of primary vortex centers at different Reynolds numbers 

Re 

Ghia et al. 

(1982) 

Scheme I Scheme II Scheme III 

100 (0.6172, 0.7344) (0.6182, 0.7425) (0.6160, 0.7393) (0.6199, 0.7480) 

400 (0.5547, 0.6055) (0.5568, 0.6066) (0.5573, 0.6072) (0.5568, 0.6066) 

1000 (0.5313, 0.5625) (0.5349, 0.5675) (0.5336, 0.5677) (0.5336, 0.5675) 

5000 (0.5117, 0.5352) (0.5176, 0.5361) (0.5168, 0.5365) (0.5168, 0.5365) 

10000 (0.5117, 0.5333) (0.5150, 0.5371) (0.5145, 0.5321) (0.5145, 0.5321) 

 

 

Table 3.2 Comparison of computational time (seconds) 

Re Scheme I Scheme II Scheme III 

100 33.48 21.42 34.97 

400 83.55 54.02 89.92 

1000 397.24 229.13 436.15 

5000 4651.73 2570.69 4732.84 

10000 7720.24 3913.15 7040.23 
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Table 3.3 Comparison of drag coefficient, recirculation lengths and separation angles 

for a steady flow past a circular cylinder at different Reynolds numbers 

Re References Cd L/D s
θ  

20 

Dennis and Chang (1970) 2.05 0.94 43.7 

Shukla et al. (2007) 2.07 0.92 43.3 

Ding et al. (2007) 2.14 0.94 43.8 

Shu et al. (2014) 2.062 0.935 42.94 

Scheme I 2.064 0.927 42.94 

Scheme II 2.063 0.927 43.09 

Scheme III 2.065 0.933 43.33 

     

40 

Dennis and Chang (1970) 1.52 2.35 53.8 

Shukla et al. (2007) 1.55 2.34 52.7 

Ding et al. (2007) 1.58 2.32 52.8 

Shu et al. (2014) 1.53 2.240 52.69 

Scheme I 1.544 2.225 52.77 

Scheme II 1.544 2.235 52.95 

Scheme III 1.546 2.252 53.33 
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Table 3.4 Comparison of dynamic parameters for an unsteady flow past a circular 

cylinder at different Reynolds numbers 

Re References Cl Cd St 

100 

Braza et al. (1986) ±0.30 1.28±0.02 0.16 

Liu et al. (1998) ±0.339 1.350±0.012 0.164 

Ding et al. (2004) ±0.28 1.325±0.008 0.164 

Shu et al. (2014) ±0.33 1.334±0.009 0.164 

Scheme I ±0.328 1.326±0.009 0.164 

Scheme II ±0.330 1.329±0.009 0.164 

Scheme III ±0.333 1.333±0.0093 0.166 

     

200 

Braza et al. (1986) ±0.78 1.38±0.07 0.19 

Liu et al. (1998) ±0.69 1.31±0.049 0.192 

Ding et al. (2004) ±0.60 1.327±0.045 0.196 

Shu et al. (2014) ±0.69 1.338±0.045 0.197 

Scheme I ±0.682 1.323±0.044 0.194 

Scheme II ±0.687 1.331±0.044 0.196 

Scheme III ±0.693 1.335±0.045 0.196 

 

  



 

88 

 

Figure 3.1 Schematic diagram of initial distribution function at the interface 

 

 

 

Figure 3.2 2L  norm of relative error of u  versus h  for the decaying vortex flow 
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100 61 61Re ,   

  

400 61 61Re ,   

  

1000 81 81Re ,   
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5000 121 121Re ,   

  

10000 121 121Re ,   

Figure 3.3 U and V velocity profiles along horizontal and vertical central lines for a 

lid-driven cavity flow at various Reynolds numbers 
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Figure 3.4 Streamlines for a steady flow past a circular cylinder of two steady cases 

 

 

Figure 3.5 Pressure coefficient distribution along the cylinder surface at Re=40 
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Figure 3.6 Evolution of the lift and drag coefficients for a flow past a circular cylinder 

 

 

 

Figure 3.7 Streamlines for flow past a circular cylinder of two unsteady cases 
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Figure 3.8 Vorticity contours for a flow past a circular cylinder of two unsteady cases 

 

 

Figure 3.9 Schematic of Couette flow with a temperature gradient 

 

 

Figure 3.10 Comparison of temperature profile for various Prandtl numbers when 

1 0T T  
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Figure 3.11 Comparison of temperature profile for various Prandtl numbers when 

1 0T T  

 

 

Figure 3.12 Computational mesh for shock-boundary layer interaction 
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Figure 3.13 Pressure contours of shock-boundary layer interaction given from present 

scheme (Upper) and gas kinetic BGK scheme (Xu, 2001) (Lower) 

 

 

 



 

96 

 

Figure 3.14 Pressure (Upper) and skin friction (Lower) distributions along the flat 

plate of shock-boundary layer interaction 

 

 

Figure 3.15 Comparison of CPU time between GKFS and gas kinetic BGK scheme 
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Figure 3.16 Streamlines of transonic laminar flow over a NACA0012 airfoil 

 

 

  

Figure 3.17 Comparison of pressure coefficient (Left) and skin friction (Right) 

distributions on the airfoil surface 
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Figure 3.18 Pressure (Left) and temperature (Right) contours of hypersonic flows over 

one half of a cylinder 

 

 

 

Figure 3.19 Pressure (Upper) and heat flux (Lower) along the cylindrical surface for 

hypersonic flow around one half of a cylinder 
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Chapter 4  

Development of a Three-dimensional Gas kinetic Flux 

Solver for Simulation of Viscous Flows with Explicit 

formulations of Conservative Flow Variables and Numerical 

Fluxes 

 

In the previous chapter, the gas kinetic flux solver (GKFS) has been successfully 

developed and applied to simulate 2D incompressible and compressible flows. The 

novel solver not only keeps the intrinsic advantages of gas kinetic scheme but also 

effectively eliminates its drawbacks. In this chapter, we will extend the GKFS to 

solve three-dimensional (3D) flows. A truly 3D GKFS for simulation of 

incompressible and compressible viscous flows will be presented. The 3D GKFS is a 

finite volume solver for the direct update of the macroscopic variables at cell centers. 

The fluxes of the 3D GKFS are evaluated at each cell interface by local reconstruction 

of the 3D Boltzmann equation with BGK approximation. In the development, a local 

coordinate transformation is introduced to transform the velocities in the Cartesian 

coordinate system to the local normal and tangential directions at each cell interface. 

In this way, all the interfaces can be treated in the same manner. Different from the 

conventional gas kinetic scheme, the non-equilibrium distribution function is 

calculated by the difference of equilibrium distribution functions between the cell 

interface and its surrounding points. As a result, the distribution function at the cell 

interface can be computed in a simple way. It is indicated that the present work is the 

first time to give explicit formulations for evaluating the conservative flow variables 
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and numerical fluxes for 3D viscous flow problems. To validate the developed 

scheme, both incompressible and compressible viscous test cases will be solved, 

including 3D driven cavity flow, incompressible flow past a stationary sphere, flow 

around an ONERA M6 wing, turbulent flow over the DPW III wing and DLR-F6 

wing-body configuration.  

 

4.1 Boltzmann Equation, Maxwellian Distribution Function and 

Navier-Stokes Equations 

4.1.1 Boltzmann equation and conservative forms of moments for Maxwellian 

distribution function 

With Bhatnagar-Gross-Krook (BGK) collision model (Bhatnagar et al., 1954), the 

continuum Boltzmann equation in the 3D Cartesian coordinate system can be written 

as 

f f f f g f
u v w

t x y z 

    
   

   
 (4.1) 

where f  is the real particle distribution function and g  is the equilibrium particle 

distribution function.   is the collision time, which is determined by dynamic 

viscosity and pressure. The right side of the equation is the collision term which alters 

the distribution function from f  to g  within a collision time scale  . Both f  and g  

are functions of space  , ,x y z , time  t , particle velocity  , ,u v w  and internal 

energy  . The internal degree of freedom K  in   is determined by the space 

dimension and the ratio of specific heats with the relation  2 1K D    , where 

D  is the abbreviation of the dimension ( 3D   in three dimension) and   is the 

specific heat ratio. The equilibrium state g  of Maxwellian distribution is 
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      2 2 2 2

3

2

K

u U v V w W

g e
 






       
  

 
 (4.2) 

where   is the density of mean flow;  , ,U V WU  are the macroscopic velocity in 

the x -, y - and z -directions, respectively;    2 1 2m kT RT   , where m  is the 

molecular mass, k  is the Boltzmann constant, R  is the gas constant and T  is the 

temperature. In the equilibrium state, the internal energy 2  is the abbreviation of 

2 2 2 2

1 2 K       . 

 

With the Maxwellian distribution function in Eq. (4.2), the following 7 conservation 

forms of moments should be satisfied, which are used to recover N-S equations by Eq. 

(4.1) through C-E expansion analysis: 

gd    (4.3) 

gu d U    (4.4) 

 2

1

K

j

j

g u u d U U bRT    


 
    

 
  (4.5) 

gu u d U U p         (4.6) 

 2

1

2
K

j

j

g u u u d U U b RT U      


 
        

 
  (4.7) 

 gu u u d p U U U U U U                    (4.8) 

    

2

1

2 24 2

K

j

j

g u u u u d

U U U U b U U U U RT b R T

   

         



  



 
  

 

       


 (4.9) 
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where u , u , u  and U , U  , U   are the phase velocity and macroscopic flow 

velocity in the   ,    and    direction. p  is the pressure and b K D 

represents the total degree of freedoms of molecules. 1 2 Kd du du du d d d        is 

the volume element in the phase space. The integral domain for 

1 2, , , , , ..., Ku u u       is from   to  . Eqs. (4.3)-(4.5) are applied to recover 

the fluid density, momentum and energy, respectively. Eqs. (4.6) and (4.7) are used to 

recover convective fluxes of momentum equations and energy equation. Eqs. (4.8) 

and (4.9) are to recover diffusive fluxes of momentum equations and energy equation. 

 

4.1.2 Macroscopic governing equations discretized by finite volume method 

In this chapter, the 3D N-S equations are solved using the finite volume discretization 

with the conservative flow variables defined at cell centers, which can be written as 

1

1
0

N

i i

i

d
S

dt 

 



W
F  (4.10) 

where W  is the vector of conservative flow variables,   and N  are the volume and 

number of interfaces of the control volume, respectively, iF  and iS  are the flux vector 

and length of interface i . It should be noted that the numerical flux iF  are 

reconstructed locally at cell interfaces from the conservative flow variables W  at the 

cell centers. In the gas kinetic scheme, the connection between the distribution 

function f  and the conservative flow variables is 

 , , , ,
T

U V W E f d       W  (4.11) 

where  2 2 21

2
E U V W bRT     and d dudvdwd   is the volume element for 

3D computations.   is the moment given by 



 

103 

 2 2 2 21
1, , , ,

2

T

u v w u v w 
 

    
 

 (4.12) 

With the compatibility condition, 

0
g f

d



   (4.13) 

Eq. (4.11) is equivalent to 

 , , , ,
T

U V W E g d       W  (4.14) 

The above equation shows that the non-equilibrium distribution function has no 

contribution to the calculation of conservative flow variables. 

 

After evaluation of conservative flow variables, the flux vector F  can also be 

obtained from the distribution function 

uf d F  (4.15) 

It should be noted that Eq. (4.15) is the flux vector of x -direction in the Cartesian 

coordinate system. In the practical application such as curved boundary problems, we 

need to calculate the numerical flux in the normal direction of the interface nF  

 1 2 3 4 5, , , ,
T

n F F F F F u f d  F  (4.16) 

where u  is the phase velocity in the normal direction of the interface. Suppose that 

1 1 1 1, ,x y zn n nn  is the unit vector in the normal direction of the interface and 

2 2 2 2, ,x y zn n nn , 3 3 3 3, ,x y zn n nn  are the unit vectors in the tangential directions. 

Then, the relationship between the phase velocities in the normal and tangential 

directions  , ,u v w    and the phase velocities in the Cartesian coordinate system 

 , ,u v w  are 
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1 1 1 2 2 2 3 3 3, ,x y z x y z x y zu un vn wn v un vn wn w un vn wn  (4.17) 

and similarly 

1 2 3 1 2 3 1 2 3, ,x x x y y y z z zu u n v n w n v u n v n w n w u n v n w n  (4.18) 

Substituting Eq. (4.18) into Eq. (4.12), we have 

 
1 2 3

2 2 2 2

1 2 3

1 2 3

1 0 0 0 0

0 0
1

1, , , ,0 0
2

0 0

0 0 0 0 1

Tx x x

y y y

z z z

n n n

u v w u v wn n n

n n n

 

 
 
 

 
           
  
 
 
 

 (4.19) 

With the definition of a new moment 

 * 2 2 2 21
1, , , ,

2

T

u v w u v w 
 

         
 

 (4.20) 

and its corresponding flux vector 

 * * * * * * *

1 2 3 4 5, , , ,
T

n F F F F F u f d  F  (4.21) 

the real flux vector nF  can be obtained by substituting Eq. (4.19) into Eq. (4.16) and 

using Eq. (4.21) 

1 2 3

*

1 2 3

1 2 3

1 0 0 0 0

0 0

0 0

0 0

0 0 0 0 1

x x x

n ny y y

z z z

n n n

u f d n n n

n n n



 
 
 
   
 
 
 
 

F F  (4.22) 

The above equation (4.22) shows that the calculation of nF  is equivalent to the 

evaluation of *

nF  and the key issue is to obtain the gas distribution function f . In the 

next subsection, a 3D GKFS will be introduced to evaluate the gas distribution 

function f . 
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4.2 Three-dimensional Gas kinetic Flux Solver 

As the flux vector *

nF  is evaluated at local interfaces, a local coordinate system is 

applied in the derivation of distribution function f . It is known that the distribution 

function f  can be separated into two parts, the equilibrium part 
eqf  and the non-

equilibrium part 
neqf  with the relationship of 

eq neqf f f   (4.23) 

Here, the equilibrium part 
eqf  equals to 

eqf g  (4.24) 

With the C-E analysis, the non-equilibrium distribution function can be approximated 

as 

neq eqf f g
t t

 
    

          
    

u u  (4.25) 

Therefore, the gas distribution function in the local BGK equation becomes 

1 2 3

eq neq g g g g
f f f g u v w

t n n n

    

         
    

 (4.26) 

By applying the Taylor series expansion in time and physical space, the above 

equation can be simplified to 

   ( , ) ( , ) , ,f t t g t t g t t g t t
t


   


        0 0 0 u  (4.27) 

where ( , )f t t0  is the gas distribution function at local interface;  ,g t t0
 
and 

 ,g t tu  are the equilibrium distribution functions at local interface and its 

surrounding points, respectively. t  is the streaming time step. From Eq. (4.27), it 

can be seen that the non-equilibrium distribution 
neqf  is calculated by the difference 
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of equilibrium distribution functions between the interface and its surrounding points, 

which makes the current GKFS be much more straightforward. 

 

In the present work, the conservative flow variables 
W  in Eq. (4.10) are defined at 

cell centers. With the conservative flow variables, the numerical flux in the normal 

direction of each cell interface *

nF  should be evaluated first in order to solve Eq. 

(4.10) by marching in time. Suppose that the conservative flow variables at cell 

centers and their first order derivatives are already known, the conservative flow 

variables at left and right sides of an interface can be easily given by interpolation. 

Then, the equilibrium distribution functions at these two sides of the interface can be 

given via Eq. (4.2). After that, the second order approximation of  ,g t tu  at a 

time level t  can be written as 

  1 2 3

1 2 3

, 0

, ,

, 0

l l l
l

r r r
r

g g g
g u t v t w t u

n n n
g t t

g g g
g u t v t w t u

n n n

  



  

  
         

  
         

   

u  (4.28) 

where lg  and rg  are the equilibrium distribution functions at left and right sides of 

the interface, respectively. Note that in Eq. (4.28), the equilibrium distribution 

functions at two sides of the interface are not necessarily the same, which means that 

a possible discontinuity has been taken into account in the form. By substituting Eq. 

(4.28) into Eq. (4.27), we have 
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 

 

     

1 2 3

1 2 3

1 2 3

( , ) ( , ) ,

( , ) ,

l l l
l

r r r
r

l r

l r l r l r

f t t g t t g t t
t

g g g
g u t v t w t

n n n

g g g
g u t v t w t

n n n

g t t g t t g g
t

u g g v g g w g g
n n n


  



  

  


 





    

   
      

   

   
       

   

       

   
        
   

0 0 0

0 0

 (4.29) 

The above equation shows that the full information of distribution function at the 

interface can be decided once we have the equilibrium distribution function at the cell 

interface and its surrounding points. 

 

4.2.1 Evaluation of conservative flow variables 
W  at cell interface 

It is known that the non-equilibrium distribution has no influence on the computation 

of conservative flow variables, and thus Eq. (4.14) can be adopted to calculate the 

conservative flow variables 
W  at local interface 

 , , , ,
T

U V W E g d          W  (4.30) 

Substituting Eq. (4.27) and Eq. (4.28) into Eq. (4.30), we have 

   

0
1 2 3

0
1 2 3

, ,

    l l l
l

u

r r r
r

u

g t t d g t t d

g g g
g u t v t w t d

n n n

g g g
g u t v t w t d

n n n

 





   

   

   

  









     

   
       

   

   
       

   

 

 

 

W 0 u

 (4.31) 

The above equation shows that the conservative flow variables at cell interface can be 

obtained by equilibrium distribution function of the surrounding points. However, it 

should be noted that the streaming time t  cannot be simply determined because the 
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velocities of particles in the phase space range from -∞ to +∞. In the work of Xu 

(2001), the conservative flow variables at cell interface are calculated by taking the 

limit 0t   

0 0
l r

u u
g d g d    

  
      W  (4.32) 

The above equation means that the conservative flow variables at cell interface are 

simply computed by the reconstructed variables of left and right sides. Eq. (4.32) is 

adopted for the calculation of conservative flow variables on cell interface in this 

work. With parameters defined in Appendix A, the conservative flow variables 
W  at 

cell interface are given by 

 l l r ra a        (4.33) 

 l l r rU b b         (4.34) 

 l l l r r rV V a V a          (4.35) 

 l l l r r rW W a W a          (4.36) 

  

  

2 2

2 2

1
1

2

1
1

2

l l l l l l

r r r r r r

E c V W b RT a

c V W b RT a

 



         
 

         
 

 (4.37) 

where “ l ” and “ r ” (“ ” stands for any variable) denote the variables at the left and 

right side of interface, respectively. 

 

4.2.2 Evaluation of numerical fluxes *

nF  at cell interface 

As soon as the conservative flow variables at local interface 
W  are obtained, the 

equilibrium distribution function ( , )g t t0  can be known by Eq. (4.2). Then the 

numerical flux across the cell interface can be calculated via Eq. (4.29) 
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 

 

*

* *

* *

0 0

2 * 2 *

0 0
1

* *

0 0
2

* *

0
3

( , )

( , ) ( , )

n

l r
u u

l r
u u

l r
u u

l r
u

u f t t d

u g t t d u g t t d
t

u g d u g d

u g u g d
n

u v g u v g d
n

u w g u w g
n



 

 

 

 

 

 


   



 

  

 

 



  

  

 



  

      


    


 
   




     




    





 

   

  

  



F 0

0 0

 
0u

d






 

 (4.38) 

As has been discussed above, the streaming time t  in the right side of Eq. (4.38) 

cannot be simply determined. Therefore, the above equation cannot be used to 

calculate the numerical flux at cell interface directly. Note that ( , )g t t0  is the 

equilibrium distribution function at the interface and time level t t , and lg , rg  are 

the distribution functions at the left and right sides of the interface and the time level t . 

In fact, the middle term of Eq. (4.38) can be approximated by 

* * *

0 0
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u g t t d u g d u g d
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u d
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 (4.39) 

According to the work of Xu (2001), /g t   can be approximated by 

 1 2 3 4 5

( , )
( , )

g t t
g t t A A u A v A w A

t


 

 
       



0
0  (4.40) 

where 1A , 2A , 3A , 4A  and 5A  are the derivatives of macroscopic variables with 

respect to time, which will be determined from the compatibility condition, 

 2 2 2 21

2
u v w       . Thus, the flux expression in Eq. (4.38) can be written as 
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 (4.41) 

In the above equations, the effect of streaming time step is eliminated. The only 

undetermined variables in this scheme are the coefficients 1A , 2A , 3A , 4A  and 5A . 

 

According to Eq. (4.31), we have 
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The above equation can be rewritten as 
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 (4.42) 

Using Eqs. (4.39) and (4.40), the above equation can be written as 
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 (4.43) 



 

111 

Defining 
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 (4.44) 

Then Eq. (4.43) can be written as 
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 (4.45) 

where  , U  , V  , W   and   are the macroscopic flow variables at the interface and  
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From Eq. (4.45), the coefficients 1A , 2A , 3A , 4A  and 5A  can be determined as 
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Once the above coefficients are obtained, the numerical flux n


F  across the interface 

can be calculated via Eq. (4.41). Similar to conservative flow variables 
W , the 

explicit expressions for numerical flux n


F  can also be given as 

,1nF U   (4.56) 
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4.2.3 Collision time and Prandtl number fix 

As has been discussed in the last chapter, the collision time   is proportional to the 

physical viscosity  
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p   (4.61) 

where   is the dynamic viscosity and p  is the pressure. Theoretically, the collision 

time   should be determined by Eq. (4.61). One the hand, numerical solution of N-S 

equations may encounter instability for some cases such as strong shock waves. 

Therefore, the effective viscosity should be a combination of both physical and 

numerical ones. A simple but effective way to incorporate numerical dissipation into 

the gas kinetic BGK scheme was presented by Xu (2001), and this way is also 

adopted in the present work 

L R

L R

p p
t

p p p





  


 (4.62) 

where t  is the time step in the solution of N-S equations, Lp
 
and Rp  are the 

pressure at the left and right sides of the cell interface, respectively. The second part 

corresponds to the numerical viscosity. 

 

It is well known that the Prandtl number in the gas kinetic BGK scheme corresponds 

to unity (Xu, 2001). Several approaches are available to make the Prandtl number be 

consistent with the real problem. BGK-Shakhov model (Shakhov, 1968) is one of 

these attempts, which adjusts the heat flux in the relaxation term. In the Shakhov 

model, the Shakhov equilibrium distribution function is given by 

   
2

1 1 5 5s c
g g Pr pRT

RT

  
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c q  (4.63) 

where Pr  is the Prandtl number,  c u U  is the peculiar velocity, R  is the gas 

constant and q  is the heat flux 

        2 2 2 21

2
u U v V w W fd        q u U  (4.64) 
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It can be seen from Eq. (4.63) that the Prandtl number can be changed to any realistic 

value easily. However, considerable work has to be devoted to extend the current 

GKFS to the above Shakhov model.  

 

Another alternative approach is to make correction for heat flux, which has been 

presented in Xu (2001) 

1
1new

E EF F q
Pr

 
   

 
 (4.65) 

where EF  is the energy flux and q  is the heat flux defined in Eq. (4.64). Since almost 

all momentums in Eq. (4.65) have been obtained in the evaluation of energy flux EF , 

there will not be much additional work in the above Prandtl number fix. Therefore, Eq. 

(4.65) is employed to adjust the Prandtl number in the present work. 

 

4.2.4 Computational sequence  

Overall, the basic solution procedure of the current 3D gas kinetic flux solver is 

summarized as follows: 

(1) At first, we need to calculate the derivatives of conservative flow variables and 

reconstruct the initial conservative flow variables at two sides of cell interface. 

(2) Compute the unit vector in the normal direction 1n  and in the tangential 

directions 2n  and 3n  of the cell interface. Convert the velocities in the Cartesian 

coordinate system into the local coordinate system via Eq. (4.17). 

(3) Calculate the conservative flow variables at the cell interface 
W  by using Eqs. 

(4.33)-(4.37). 
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(4) Calculate the vector  1 2 3 4 5, , , ,
T

G G G G G  by using Eq. (4.44) and further 

compute coefficients 1 2 3 4 5, , , ,A A A A A  by Eqs. (4.51)-(4.55). 

(5) Calculate the numerical flux n


F  by Eqs. (4.56)-(4.60). 

(6) Compute the heat flux q  via Eq. (4.64), and make correction for energy flux by 

using Eq. (4.65). 

(7) Convert the numerical flux in the local coordinate system n


F  to the global 

Cartesian coordinate system nF  by using Eq. (4.22). 

(8) Once the fluxes at all cell interfaces are obtained, solve ordinary differential 

equation (Eq. (4.10)) by using time marching method. This step gives the 

conservative flow variables at cell centers at new time step. 

(9) Repeat steps (1) to (8) until convergence criterion is satisfied. 

 

4.3 Numerical Results and Discussions 

In this section, the present 3D GKFS is validated through simulations of several 3D 

flow problems. First, the benchmark problem of 3D lid-driven cavity flow at two 

different Reynolds numbers are simulated. Another incompressible flow case of flow 

past a stationary sphere is also simulated to examine the capability of the present 

solver in solving curved boundary problems. Subsequently, simulations of 3D 

compressible flows are conducted. The first two cases are transonic flow past two 

different wings, which are ONERA M6 and DPW III. The turbulent effects in both 

two cases are taken into consideration by using the Spalart-Allmaras turbulence 

model (Spalart and Allmaras, 1992). The shock waves can be clearly observed at the 

wing surfaces. The last test case is the DLR-F6 wing-Body configuration, which is 

much more challenging because of its complicated geometry. The pressure coefficient 
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distributions and the force coefficients are compared with available data in literature 

to examine the proposed solver for 3D compressible turbulent flows. For temporal 

discretization to the governing equation (4.10), four-stages Runge-Kutta method is 

applied in the cases of 3D lid-driven cavity flow and flow past a stationary sphere. In 

compressible cases, the LU-SGS scheme (Yoon and Jameson, 1988) is adopted to 

accelerate the convergence and the Venkatakrishnan’s limiter (Venkatakrishnan, 1995) 

is used to calculate the conservative flow variables at two sides of cell interface in the 

reconstruction process. 

 

4.3.1 3D lid-driven cavity flow 

The 3D lid-driven cavity flows in a cube are simulated to test the capability of the 

proposed explicit gas kinetic flux solver for simulating 3D incompressible viscous 

flows. The non-uniform mesh of 81 81 81   is used for the cases of 100Re    and 

400. The mesh point in the x-direction is generated by 

       1

max 1

0.5 1 tan 1 tan 1 max 1 2

1.0

i i

i i i

x i i

x x else

  

 

     

 
 (4.66) 

where     1 max 1 2i i i    , i  and maxi  are the mesh point index and total 

number of mesh points in the x direction;   is the parameter to control the mesh 

stretching and is selected as 1.1 in this study. Similarly, the mesh point in the y- and z-

directions is generated in the same way. 

 

In the current simulation, the fluid density is taken as 1.0   and the lid velocity is 

chosen as 0.1u  . Initially, the density inside the cavity is constant and the flow is 

static. The lid on the top boundary moves along the x-direction. The no-slip wall 

condition is imposed at all boundaries. To quantitatively examine the performance of 



 

118 

3D GKFS, the velocity profiles of x-direction component u along the vertical 

centerline and y-direction component v along the horizontal centerline for Re=100 and 

400 are plotted in Figure 4.1. For comparison, the results of Shu et al. (2003) and Wu 

and Shu (2010) are also included in the figure. It can be found that all the velocity 

profiles by the current 3D GKFS agree very well with those of Shu et al. (2003) and 

Wu and Shu (2010), which demonstrates the capability of the present solver for the 

simulation of 3D incompressible flows on non-uniform grids. To further show the 

flow patterns of 3D lid-driven cavity flow, the streamlines for 100Re   and 400 at 

three orthogonal mid-planes located at x=0.5, y=0.5 and z=0.5 are displayed in Figure 

4.2. The flow patterns along the mid-plane of z=0.5 in Figure 4.2 demonstrate that the 

primary vortices gradually shift toward the center position and the second vortices 

gradually moves to the lower bottom wall when the Reynolds number is increased. In 

this process, the strength of these vortices is also enhanced, which can also be proven 

by the flow patterns along other two mid-planes. All these observations match well 

with those in Shu et al. (2003). 

 

4.3.2 Incompressible flow past a stationary sphere 

The incompressible flow past a stationary sphere, which involves curved boundary, is 

a good benchmark problem for validating new numerical scheme. In this case, the 

flow is characterized by the Reynolds number defined by Re U D  , where   

and   are the fluid density and dynamic viscosity, respectively. U  is the free stream 

velocity and D  is the sphere diameter. To simulate this test case with a simple 

Cartesian mesh, the implicit boundary condition-enforced immersed boundary method 

(Wu and Shu, 2009; Wang et al., 2015) is coupled with the present 3D GKFS. The 

computational domain is selected as a rectangular box of 30 20 20D D D   in the x -, 
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y - and z - directions. The sphere is initially placed at  10 ,10 ,10D D D , which is 

discretized by triangular elements with 1195 vertices. A non-uniform Cartesian mesh 

with mesh size of 137 122 122   is used, in which a uniform mesh spacing of 0.02D  

is applied around the sphere. Here, laminar flows at low Reynolds numbers of 50, 100, 

150, 200 and 250 are considered. 

 

Firstly, the drag coefficients at 100Re  , 200 and 250 are computed and compared 

quantitatively in Table 4.1 to verify the accuracy of the present solver. The numerical 

results of previous studies (Johnson and Patel, 1999; Wu and Shu, 2010; Kim et al., 

2001; Wang et al., 2008) are also included in the table for comparison. It can be 

clearly observed that the present results match well with those in the literature. 

 

Then, for the steady axisymmetric flow, the streamlines of flow past a sphere at 

200Re   are depicted in Figure 4.3. Since the flow is axisymmetric, only the 

streamlines on the x - y  plane of symmetry are given. From the figure, a recirculation 

region is appeared behind the sphere and its length sL  increases with Reynolds 

number. Quantitative comparison between the present results of sL  and those of 

Johnson and Patel (1999) and Gilmanov et al. (2003) is made in Figure 4.4. Good 

agreement can be found in the figure. When the Reynolds number is increased to 250, 

the phenomenon of steady non-axisymmetric pattern shows up, which can be seen in 

Figure 4.5. In the figure, the streamlines on the x - z  plane remains symmetric. 

However, there are two asymmetric vortices on the x - y  plane, which implies that the 

symmetry is lost in this plane. These results are in good agreement with previous 

investigations (Johnson and Patel, 1999; Gilmanov et al., 2003). 
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4.3.3 Flow around an ONERA M6 wing 

The ONERA M6 test case is chosen to validate the present solver for the simulation 

of compressible viscous flows with complex geometry. For numerical simulation, the 

free-stream Mach number is taken as 0.8395M , the mean-chord based Reynolds 

number is chosen as 611 72 10Re .  and the angle of attack is 3.06 . The 

computational mesh in the NASA website (Slater, 2002) is adopted in this work, 

which has 4 blocks and 316932 grid points. The mesh spacing of the first mesh point 

adjacent to the wing surface is 54.5 10 . Figure 4.6 shows the pressure contours at 

the wing surface obtained from the present solver, in which the “ ” shape shock 

wave on the upper surface is clearly presented. The above phenomenon matches well 

with the result from sphere function-based gas kinetic scheme (Yang et al., 2015). To 

further validate the present results, the pressure coefficient distributions at selected 

span-wise locations obtained from the present solver are displayed in Figure 4.7. The 

numerical results of WIND scheme (Slater, 2002) and Newton-Krylov algorithm 

(Wong and Zingg, 2008) as well as the experimental results (Schmitt and Charpin, 

1979) are also included for comparison. As can be seen from the figure, the present 

results are much closer to the experimental data (Schmitt and Charpin, 1979) 

compared with the results of Wong and Zingg (2008). As a comparison with the 

WIND scheme (Slater, 2002), the current results show a good agreement and both of 

them compared well with the experimental data (Schmitt and Charpin, 1979). What is 

more, the pressure coefficient distributions at 65%  and 80%  spans show that the 

present results fit the experimental results (Schmitt and Charpin, 1979) better. It 

demonstrates that the present solver captures the shock wave more precisely and 

controls the numerical dissipation well. 
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4.3.4 Turbulent flow over the DPW Wings W1 

In this case study, the baseline wing geometry (DPW-W1) from the third AIAA CFD 

drag prediction workshop (Vassberg et al., 2007) is considered. The flow over the 

DPW-W1 with turbulent boundary layers at transonic condition is tested to further 

validate the present solver. First, the free stream conditions of the present simulation 

are taken as: Reynolds number (Base on the reference chord) 65 10crefRe   , Mach 

number 0.76M   and angle of attack 0.5   . The wing geometry, which is 

illustrated in Figure 4.8 with pressure contours, is a simple trapezoidal planform 

within modern supercritical airfoil. The reference values of the wing are that the 

planform area 
2290322refS mm  and chord length 197.556refc mm . The adiabatic 

no-slip boundary condition is imposed on the wing and the symmetry and free 

boundary conditions are applied at the wing root and the far field, respectively. The 

mesh consists of about 1511424 cell points and is provided by the DPW committee. 

The pressure contour at the wing surface is presented in Figure 4.8, from which a 

shock wave can be clearly observed. The surface pressure coefficient pC  distributions 

at eight different span locations are given in Figure 4.9. The results of Vassberg et al. 

(2007) are also included in the figure for comparison. It is clear that the present results 

are in good agreement with the reference data.  

 

4.3.5 DLR-F6 wing-body configuration 

The DLR-F6 wing-body configuration is a generic transport aircraft model from the 

second AIAA CFD drag prediction workshop (DPW II) (Laflin et al., 2005). Firstly, 

numerical simulations are conducted at a free-stream Mach number of 0.75M  , a 

mean-chord based Reynolds number of 63 10Re    and an angle of attack 0.49  o . 
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For this selected free-stream condition, the corresponding experiment has been 

conducted in the S2MA wind tunnel facility of ONERA in France in 1990s and the 

experimental data are provided by the DPW-II organizing committee (Laflin et al., 

2005). The geometry and computational mesh from the NASA website are utilized in 

the current work. Owing to the limitation of the computer’s memory, only the coarse 

mesh with 26 blocks and 2298880 cells is used. Figure 4.10 is the pressure contour of 

DLR-F6 wing-body obtained by the present 3D GKFS. The separation bubble at the 

intersection of wing and body is clearly recognized in Figure 4.11, which is in line 

with the observations of Vassberg et al. (2007). To make a quantitative comparison, 

the pressure coefficient distributions at selected span-wise locations obtained by the 

present 3D GKFS are compared with the experimental results (Laflin et al., 2005) and 

numerical results of Vassberg et al. (2007) and Yang et al. (2014a) in Figure 4.12. It 

can be observed that the current results are close to the reference data (Vassberg et al., 

2007; Yang et al., 2014a) and all of them basically agree well with the experimental 

measurement (Laflin et al., 2005). 

 

To further verify the force coefficients of the current solver for the DLR-F6 wing-

body, another test case is simulated with the free stream condition of Mach number 

0.75M  , Reynolds number 65 10Re    and angle of attack 0  o . Table 4.2 

shows the present results of force coefficients, including lift coefficient lC , pressure 

drag coefficient ,d pC , friction drag coefficient ,d fC , total drag coefficient dC  and 

moment coefficient MC . The results of the present solver are close to the results of 

LBFS (Yang et al., 2014a) and can essentially match well with the reference data of 

Vassberg et al. (2007). 
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4.4 Concluding Remarks 

In this chapter, a truly three-dimensional gas kinetic flux solver (3D GKFS) was 

presented for effective simulation of incompressible and compressible 3D flows. The 

3D GKFS applied the finite volume method to solve the 3D N-S equations. Both the 

viscous and inviscid fluxes were evaluated in a simple and easy way at the cell 

interface by the local reconstruction of the continuous Boltzmann solutions. In the 

development, a local coordinate transformation was introduced to transform the 

velocities in the Cartesian coordinate system to the local normal and tangential 

directions at each cell interface. In this way, all the interfaces can be treated in the 

same manner. As an extension of two-dimensional work (Sun et al., 2015), the non-

equilibrium function was evaluated by the difference of equilibrium distribution 

functions at the cell interface and its surrounding points. As a result, the full 

information of distribution function at the cell interface could be simply derived. The 

explicit formulations of the conservative flow variables and numerical fluxes at the 

cell interface were explicitly given, which was the first time in literature. 

 

The 3D GKFS has been validated by simulating various 3D incompressible and 

compressible flows, such as 3D lid-driven cavity flow, incompressible flow past a 

stationary sphere, flow around an ONERA M6 wing, turbulent flow over the DPW-

W1 and DLR-F6 wing-body configuration. Good agreements were achieved between 

the 3D GKFS solutions and those published in the literature. These good agreements 

successfully verified the reliabiltiy of the 3D GKFS for simulation of 3D flow with 

complex geometries and flow conditions. In the next chapter, the GKFS will be 

further extended to study flows with complex moving boundaries.  
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Table 4.1 Comparison of drag coefficient for flow past a stationary sphere 

Re References d
C  

100 

Johnson and Patel (1999) 1.112 

Wu and Shu (2010) 1.128 

Present 1.116 

   

200 

Johnson and Patel (1999) 0.79 

Wu and Shu (2010) 0.8 

Present 0.791 

   

250 

Kim et al. (2001) 0.706 

Wang et al. (2008) 0.746 

Present 0.720 

 

 

Table 4.2 Comparison of force coefficients for DLR-F6 wing-body configuration 

Reference lC  d, p
C  d, f

C  
d

C  MC  

Vassberg et al. 

(2007) 
0.51600 0.01502 0.01229 0.02731 -0.15280 

Yang et al. 

(2014a) 
0.52312 0.01554 0.00979 0.02533 -0.14988 

Present 0.52470 0.01549 0.00947 0.02496 -0.16230 
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(a) 100Re   

   

(b) 400Re   

Figure 4.1 u and v velocity profiles on the plane of z=0.5 of cubic cavity for 3D lid-

driven cavity flow at Reynolds numbers of 100 and 400 
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(a) mid-plane of 0.5z  

   

(b) mid-plane of 0.5y  
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(c) mid-plane of 0.5x  

Figure 4.2 Streamlines on three mid-planes for 3D lid-driven cavity flow at Reynolds 

numbers of 100 (left) 400 (right) 

 

 

 

Figure 4.3 Streamlines at four different Reynolds numbers of 50, 100, 150 and 200 in 

the steady axisymmetric regime 

 

 

Figure 4.4 Comparison of recirculation length sL  at different Reynolds numbers 
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Figure 4.5 Streamlines for flow past a stationary sphere at Re=250 in the steady non-

axisymmetric regime 

 

 

 

Figure 4.6 Pressure contour of flow around an ONERA M6 wing 
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Figure 4.7 Comparison of pressure coefficient distribution at selected positions for 

ONERA M6 Wing 
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Figure 4.8 The DPW-W1 geometry with pressure contours 
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Figure 4.9 The Pressure Coefficient distribution along the DPW-W1 

 

 

Figure 4.10 Pressure contours of DLR-F6 wing/body 
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Figure 4.11 Separation bubble on the intersection of wing and body obtained from 

Vassberg et al. (2007) (Left) and present scheme (Right) 
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Figure 4.12 Comparison of pressure coefficient distribution of DLR-F6 wing/body at 

different locations 
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Chapter 5  

Boundary condition-enforced Immersed Boundary-Gas 

Kinetic Flux Solver and its applications for Moving 

Boundary Flows 

 

In the previous chapters, the gas kinetic flux solvers have been constructed for 

simulation of two- and three-dimensional viscous flows. These solvers not only 

inherit the intrinsic advantages of conventional gas kinetic scheme, such as robustness 

and applicability, but also effectively eliminate the drawbacks of GKS, including 

complexity and inefficiency. In this chapter, we further extend the GKFS to solve 

moving boundary flows, which are of great interest in both academic research and 

engineering applications. In the study of such flows, the immersed boundary method 

(IBM) is an efficient approach and has been popularly used. This chapter will first 

introduce the basic idea of conventional IBM and two different ways to compute the 

force density in conventional IBM. Since the force is usually pre-calculated, the no-

slip boundary condition is approximately satisfied in conventional IBM. To eliminate 

this drawback, the boundary condition-enforced immersed boundary-gas kinetic flux 

solver (IB-GKFS) is proposed. By applying the fractional step technique, the solution 

process of the IB-GKFS can be separated into two steps, the predictor step and the 

velocity correction step. In the predictor step, the intermediate flow field is obtained 

by applying the GKFS. As the solid boundary is not considered in this step, there is no 

external force added in the gas distribution function during the evaluation of 

numerical flux at each cell interface. In the velocity correction step, no-slip boundary 

condition is imposed implicitly at all boundary points to make velocity correction on 
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the surrounding Eulerian points. In the current IB-GKFS, the no-slip boundary 

condition is accurately fulfilled and flow penetration is entirely avoided. With simple 

Cartesian mesh and flexible boundary condition treatment, the IB-GKFS can be 

conveniently applied to solve complex and moving boundary problems. The proposed 

IB-GKFS will be validated through numerical simulation of a variety of stationary 

and moving boundary flows.  

 

5.1 Conventional immersed boundary method (IBM) 

IBM is an efficient and flexible tool for solving stationary and moving boundary flow 

problems with complex geometries. In the method, the immersed body is represented 

in the form of a closed curve   in the computational domain  . There are two types 

of points, the Eulerian points x  to discretize the governing equations and the 

Lagrangian points X  to represent the immersed boundary. The essence of this 

approach is that the effects of the physical boundary are considered as forces acting 

on the fluid. These forces are distributed to the Eulerian points and then the governing 

equations with the distributed forcing terms can be solved in the whole computational 

domain. As a consequence, the overall governing equations (N-S equations) for the 

incompressible flow can be written as 

  0
t





  


u  (5.1) 

     Tp
t
  


         
 

u uu u u f  (5.2) 

      , , ,r t s t s t ds


 f F r X   (5.3) 
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where  , u , p  and   are the density, velocities, pressure and dynamic viscosity, 

respectively. f  and F  are the restoring force acting on the Eulerian points r  and 

Lagrangian points X , respectively.   ,s t r X  is a delta function. 

 

In order to solve the governing equations (5.1)-(5.3), the key issue is to evaluate the 

force density F  on Lagrangian points X . After the evaluation of the force density 

F , the forcing terms on the Eulerian points f  can be computed via delta function. 

The penalty force and direct forcing methods are two common methods to evaluate 

F  in conventional IBM. The penalty force model was first proposed by Peskin 

(1977). The basic idea of this method is the application of Hook’s law. By taking the 

immersed boundary as an elastic fiber with stiffness, and then the boundary point BX  

will undergo a force density F  after a relative motion 

 o

B Bk  F X X  (5.4) 

where k  represents the spring constant and o

BX  is the original position of the 

boundary point. It should be noted that the spring constant is a user-defined parameter. 

As a result, the accuracy of solution depends so much on the selection of the 

parameter. 

 

To remove this restriction, the direct forcing method was proposed by Fadlun et al. 

(2000). As the Lagrangian points on the immersed boundary are also part of flow field, 

the momentum equation (5.2) can be applied to compute the force density f  

 
   + Tp

t


 


      
 

u
f uu u u  (5.5) 
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Applying the flow field condition at the time level nt t  and the boundary condition 

at 1nt t  , the force density at the Lagrangian points and 1nt t   can be given as 

follows 

 
   

1

1 ,+

n n

Bn n n n n n Tp
t


 








      
 

U u
f u u u u  (5.6) 

The above equation is the direct forcing method, where no user-defined parameters 

are introduced. As compared with the penalty force method, both the efficiency and 

accuracy are improved in the direct forcing method. However, there is a major 

problem in the direct forcing method. Due to the pre-calculation of the force density, 

the no-slip boundary condition is approximately satisfied in the direct forcing method. 

Due to the approximate satisfaction, the flow penetration to the immersed boundary 

can be clearly observed. To overcome this drawback, a more accurately IBM together 

with the powerful GKFS can be combined for moving boundary problems. The 

development of GKFS-based IBM will be presented in the next section. 

 

5.2 Boundary condition-enforced immersed boundary-gas kinetic 

flux solver (IB-GKFS) 

In this section, the IB-GKFS is proposed for simulation of moving boundary flows 

with complex geometry. Firstly, the concept of a fractional step method is adopted to 

solve the governing equations (5.1) and (5.2). By using the fractional step method, the 

solution process of the governing equations can be divided into two steps: predictor 

step and corrector step. The resultant equations for two steps can be respectively 

written as: 

Step 1 (predictor step): Solve the N-S equations without forcing term 
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  0
t





  


u  (5.7) 

     Tp
t
  


        
 

u uu u u  (5.8) 

and obtain the density 
1n 
 and intermediate velocity *

u  at next time step. 

Step 2 (corrector step): Correct the velocity field through 

 1 1 *n n

t

   




u u
f  (5.9) 

As shown above, the flow field is firstly predicted by GKFS via the finite volume 

discretization without consideration of the immersed boundary. After that, the 

boundary condition-enforced immersed boundary method (Wu and Shu, 2009) is 

applied to make corrections of the flow field to satisfy the no-slip boundary condition. 

Both of the two procedures will be introduced in detail in the following sections.  

 

5.2.1 Gas kinetic flux solver for prediction of the flow field 
*

u  

To evaluate the intermediate flow field *
u  and 1n  , GKFS is applied to solve the N-

S equations without the forcing term in Eqs. (5.7)-(5.8). In Chapter 3, three schemes 

are proposed in the GKFS and Scheme II is more attractive in incompressible flows 

due to its high efficiency. As only the incompressible flows are considered in this 

chapter, Scheme II is adopted here. 

 

By applying the finite volume method, Eqs. (5.7)-(5.8) can be rewritten over a control 

cell i , 

*

1

1
0

n N

i i

ii

S
t V 


 

 


W W
F  (5.10) 
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where  * 1 1 *,
T

n n  W u  is the vector of intermediate conservative flow variables, 

iV  and N  are the volume and number of interfaces of the control volume, 

respectively. iF  and iS  are the flux vector and length of interface i . From Eq. (5.10), 

it can be observed that with the conservative flow variables defined at cell centers, we 

need to evaluate the numerical flux at all cell interfaces. In the gas kinetic scheme, the 

connection between the distribution function f  and flux vector is  

f d F u  (5.11) 

where d dudvd   is the volume element and   is the moment given by 

 2 21
1, ,

2
 

 
  
 

u u  (5.12) 

To evaluate the flux vector of N-S equations by Eq. (5.11), the distribution function 

f  at the cell interface must be determined first. As is well known, the distribution 

function f  consists of two parts: the equilibrium part and non-equilibrium part, 

which can be written as 

eq neqf f f   (5.13) 

In another word, to calculate the fluxes iF , 
eqf  and 

neqf  should be approximated at 

the interface between two adjacent control volumes. 

 

Consider 
eqf  first. The equilibrium distribution function ( , )eq

tf t r  is determined 

by flow variables at the cell interface, which is locally reconstructed by the 

Boltzmann solution 

0 0
( , ) ( , )eq

t t l rt f t d g d g d      
   

           u n u n
W r r  (5.14) 
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where lg  and rg  are the equilibrium distribution functions at left and right sides of 

the interface; n  is the unit outer normal vector of the cell interface. Once the flow 

variables are reconstructed by Eq. (5.14), ( , )eq

tf t r  can be determined by using 

the Maxwellian distribution function. 

 

For the non-equilibrium distribution function, 
neqf  is related to the equilibrium 

distribution functions at the cell interface and its surrounding points. To the order of 

N-S equations, 
neqf  can be written as (Xu and He, 2003) 

neq eqf f
t


 

    
 

u  (5.15) 

A second order approximation of 
neqf  by using Taylor series expansion in time and 

physical space gives 

     , , ,neq eq eq

t t t

t

f t f t f t


  

       r r r u  (5.16) 

where the equilibrium distribution function  ,eq

tf tr u  can be computed by the 

properties of flow variables at the corresponding position. For the second order 

interpolation, the equilibrium distribution function can be expressed as 

 
 

 

, 0
,

, 0

l t leq

t

r t r

g g
f t

g g






    
  

    

r u u n
r u

r u u n
 (5.17) 

By substituting Eqs. (5.16) and (5.17) into Eq. (5.13), the distribution function can be 

given as 

      

    

( , ) ( , ) , 1

1

t t t l r

t

l r

f t g t g t g H g H

g H g H


  





            

        

r r r u n u n

u u n u n

 (5.18) 
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As the Cartesian mesh is used in the present IBM, the velocity vector u  becomes to 

u  or v  in the local interface, which greatly simplifies the scheme. Since the 

distribution function has been given in Eq. (5.18), the numerical fluxes across the 

interface can be computed by Eq. (5.11). The explicit formulations of the conservative 

variables and numerical fluxes at the cell interface can be referred to Chapter 3 and 

Appendix B. 

 

5.2.2 Boundary condition-enforced IBM for velocity correction 

After the evaluation of intermediate velocity *
u , the boundary condition-enforced 

IBM (Wu and Shu, 2009; Wang et al., 2015) is applied to perform the velocity 

correction. From Eq. (5.9), the corrected velocity in the next time step can be 

expressed as 

1 *n   u u u  (5.19) 

where the velocity correction u  is 

1

1
n

t 
 

u f  (5.20) 

In the conventional IBM, such as penalty force and direct forcing methods, f  is 

computed in advance. In these methods, the no-slip boundary condition is 

approximately satisfied and there might be penetration near the boundary. To 

overcome this drawback, the restoring force f  and correspondingly the velocity 

correction u  should be treated as unknown. As shown by Wu and Shu (2009), the 

velocity correction u  is obtained in an implicit way by accurately enforcing the no-

slip boundary condition at the Lagrangian points.  
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In IBM, the boundary of immersed body is represented by a set of Lagrangian points 

l

BX . To guarantee the no-slip boundary condition, the velocity on the Lagrangian 

point  1n l

B


U X  should be identical to the fluid velocity  1n

ij


u x  at the same 

position, 

       1 1 2 1,2,..., ; 1,2,...,n l n l

B ij ij ij B

ij

D h l m ij n    U X u r r X  (5.21) 

where m  is the number of Lagrangian points and n  is the number of surrounding 

Eulerian points used in the delta function interpolation. h  is the grid size of Eulerian 

mesh, ijD  is a continuous kernel distribution 

     l x l y l

ij ij B ij B ij BD r X r Y    r X  (5.22) 

where  r  was proposed by Peskin (2002) 

 

1
1 cos , 2

4 2

0 , 2

r
r

r

r





   
         




 (5.23) 

In addition, by setting an unknown velocity correction vector 
l

Bu  at every boundary 

point, the Eulerian velocity correction u  can be interpolated via the Dirac delta 

function 

     1,2,...,l l l

ij B ij B

l

s D l m    u r u r X  (5.24) 

Substituting Eq. (5.19) and Eq. (5.24) into Eq. (5.21), the following relationship can 

be obtained 

         1 * 2 2n l l l l l l

B ij ij ij B B ij B ij B

ij ij l

D h s D D h       U X u r r X u r X r X  (5.25) 

The above Eq. (5.25) can be written as the following matrix form 

AX B  (5.26) 
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where 

 1 1 2 2, , ...,
T

m m

B B Bs s s     X u u u  (5.27) 

11 12 1 11 12 1

21 22 2 21 22 22

1 2 1 2

n m
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D D D D D D
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    

uU

uU
B

uU

 (5.29) 

It should be noted that the number of unknowns in Eq. (5.26) is the same as the 

number of Lagrangian points. By solving the equation system (5.26) with a direct 

method or iterative method, the unknown velocity correction 
l l

B s u  at all 

Lagrangian points can be obtained simultaneously. Then, the velocity correction u  

and corrected velocity 
1n

u  at the Eulerian points can be calculated by Eq. (5.24) and 

Eq. (5.19), respectively. 

 

5.2.3 Computational sequence and force calculation 

The basic solution procedure of the present boundary condition-enforced immersed 

boundary-gas kinetic flux solver can be summarized as follows: 

(1) Initially, the derivatives of conservative flow variables are calculated at each cell 

center and the initial reconstructions are conducted at two sides of cell interface. 

(2) The maximum velocity of particles in the phase velocity space maxU  is chosen 

properly. Then, the streaming time step t  is specified at each interface. The 

constraint for choosing t  is that the location of  ,tg tr u  should be within 
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either the left or right cell of the interface. 

(3) Apply the Maxwellian distribution function to calculate lg  and rg  at the left and 

right sides of the cell interface. 

(4) Calculate the conservative flow variables at the cell interface W  by Eq. (5.14), 

and then ( , )eq

tf t r  can be determined. 

(5) Compute ( , )neq

tf t r  by using Eq. (5.16). 

(6) Compute the distribution function ( , )tf t r  by Eq. (5.18), and further compute 

the fluxes at each cell interface F  by Eq. (5.11). 

(7) Once the fluxes at all cell interfaces are computed, predict the intermediate 

velocity *
u  by solving Eq. (5.10). 

(8) Solve linear system (5.26) to get the velocity correction at all Lagrangian points. 

(9) Use Eq. (5.19) and Eq. (5.24) to perform velocity correction. After this process, 

the flow variables in the next time step 
1n 
, 1n

u , 
1np 
 are obtained. 

(10) Repeat steps (1)-(9) until convergence criterion is satisfied. 

 

It should be highlighted that the calculation of boundary force on the immersed 

boundary is quite convenient in the current method. According to Eq. (5.20), the force 

acting on the immersed boundary can be computed from velocity correction 

l l

f B

l

s

t

  
 




u
F  (5.30) 

where f  is the mean density of the fluid, 
l l

B s u  is the velocity correction obtained 

from Eq. (5.26). However, the above equation for calculation of force is not accurate 

for accelerating object. When the object undergoes an accelerating motion, additional 

terms related to the inertial effects or the internal mass effects of the moving object 
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should be taken into consideration (Suzuki and Inamuro, 2011). A more accurate 

expression to calculate the boundary force are given as 

l l

f B

f f B B

l

s
V

t

 



  




u
F a  (5.31) 

where BV  and Ba  are the area and the acceleration of the object, respectively. The 

second part of force in Eq. (5.31) is the internal mass effects caused by the fluid inside 

the object. It is set to zero in the stationary boundary problem. 

 

5.3 Numerical example and discussion 

In this section, the reliability and accuracy of the proposed IB-GKFS are tested by 

simulating several stationary and moving boundary flows. First, flows past stationary 

boundary problems are simulated, including flows over a circular cylinder and a 

NACA0012 airfoil. After that, more complex moving boundary problems, such as 

flows past a moving cylinder and a NACA0015 airfoil with fixed body trajectory, are 

solved. Then, a typical fluid-structure interaction (FSI) test case of one particle 

sedimentation in a rectangular box is simulated. 

 

5.3.1 Flow past a stationary circular cylinder 

The flow past a stationary circular cylinder is first chosen to validate the proposed 

method. As a benchmark case, this problem has been widely studied and there are 

plenty of numerical and experimental results available. The flow behaviors can be 

characterized by the Reynolds number, which is defined as Re U D  , where   

is the free stream density, U  is the free stream velocity, D  is the diameter of the 

cylinder and   is the dynamic viscosity of the fluid. In the present simulation, these 
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variables are set as 1.0  , 0.1U   
and 1.0D  . The circular cylinder is 

represented by 150 Lagrangian points with a uniform distribution. Free stream flow 

properties are applied at the left boundary and natural boundary conditions are used 

on upper, lower and right boundaries. To obtain the high resolution near the boundary 

and save the computational effort in the meantime, a non-uniform mesh is adopted in 

the current work, in which a fine mesh is applied around the cylinder and a coarse 

mesh is used near the far field boundaries. The computational domain is 

   20 , 30 20 , 20D D D D    with the whole mesh size of 261 236 . The region 

around the cylinder is 1.2 1.2D D  with a uniform mesh size of 97 97 . 

 

Firstly, the steady state ( 20Re   and 40 ) is considered. When the flow reaches 

steady state, a pair of stationary recirculation vortices is developed behind the 

cylinder. Figure 5.1 shows the streamlines when the flow reaches the final steady state 

with 20Re   and 40 . It can be clearly seen that there is no penetration near the 

boundary surface, which indicates that the no-slip boundary condition is accurately 

satisfied in the present method. The drag coefficient and the vortex length obtained by 

the present method are compared with previous computational results (Dennis and 

Chang, 1970; Shukla et al., 2007; Wu and Shu, 2009; Yuan et al., 2015) in Table 5.1. 

From the table, it shows that the present results agree well with those in the literature. 

When Reynolds number is increased to 100  and 200 , unsteady periodic flow occurs. 

The time evolutions of drag and lift coefficients on the cylinder for two cases are 

plotted in Figure 5.2. Table 5.2 quantitatively compares the lift and drag coefficients 

and the Strouhal number for two cases with those in the literature (Braza et al., 1986; 

Benson et al., 1989; Ding et al., 2004; Wang et al., 2015). Once again, good 

agreement can be found in the table.  
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To investigate the computational efficiency of the proposed IB-GKFS, an additional 

numerical test is carried out for flow past a stationary circular cylinder at 20Re  . 

The current results are compared with those of Wang et al. (2015), in which the flow 

field is obtained by a lattice Boltzmann flux solver (LBFS). The same computational 

mesh and Lagrangian points are adopted in both simulations. To compare the 

computational efficiency of two solvers, the CPU times required to get the same 

converged state are tested. The results show that the current IB-GKFS takes about 

938.92 s with 47000 iteration numbers while the IB-LBFS takes about 775.47 s with 

46200 iteration numbers. The present solver takes about 1.21 times of CPU time of 

IB-LBFS for the considered case. However, it should be noted that the IB-LBFS 

(Wang et al., 2015) is applicable only to incompressible flows due to incompressible 

limit of lattice Boltzmann method. In contrast, the current GKFS has a potential for a 

wide range of applications, including incompressible and compressible flows. 

 

5.3.2 Flow over a NACA0012 airfoil 

Apart from the cylinder, the present scheme can also be applied to more complicated 

geometries, such as airfoils. Here, incompressible flow over a NACA0012 airfoil is 

selected to further validate the present scheme. In this problem, the Reynolds number 

is taken as 500Re   and the angle of attack is chosen as 0   . The free stream 

condition is given by fluid density 1.0   and velocity 0.1U  . The airfoil surface 

is represented by 160 Lagrangian points in a uniform distribution. Initially, the flow 

field is given by the free-stream density and velocity.  
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Figure 5.3 shows the pressure contours together with the streamlines around the 

airfoil, which shows that the no-slip boundary condition is accurately satisfied. Figure 

5.4 indicates the velocity profiles of the boundary layer at 0.00x  , 0.25 , 0.50 , 0.75  

and 1.00  of the chord length, respectively. The results obtained by GILBM (Imamura 

et al., 2004) are also included for comparison and good agreement can be found 

between these two numerical results. Moreover, the drag and lift coefficients are also 

compared. In the current simulation, the drag coefficient is 0.17442dC   and lift 

coefficient is 
100.766 10lC   . They are close to the results of Lockard et al. (2002), 

in which the coefficients are 0.17618dC   and 
60.115 10lC   .  

 

5.3.3 Flow past an in-line oscillating cylinder 

The case of an in-line oscillating cylinder in a fluid at rest is one of the benchmark 

cases in the moving boundary problem and has been investigated both experimentally 

(DÜTsch et al., 1998) and numerically (Wang et al., 2009; DÜTsch et al., 1998; Yang 

and Balaras, 2006; Zhong et al., 2013) in many studies. Two key parameters 

describing this problem are the Reynolds number 

maxU D
Re




  (5.32) 

and the Keulegan-Carpenter number 

maxU
KC

f D



 (5.33) 

where maxU  is the maximum velocity of the oscillating cylinder, D  is the diameter of 

the cylinder and f  is the characteristic frequency of the oscillation. The above two 

parameters are set to 100Re   and 5KC   respectively, which correspond to the 
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LDA experiments and numerical simulations in the study of DÜTsch et al. (1998). 

The cylinder’s translational motion is given by a simple harmonic oscillation 

   sin 2x t A ft   (5.34) 

where A  is the amplitude of the oscillation. The computational domain is set as 

50 30D D  and the total computational mesh size is 600 420 . The cylinder 

represented by 150 Lagrangian points with a uniform distribution is located at the 

center in the beginning. Natural boundary conditions are applied at all far-field 

boundaries. 

 

Figure 5.5 shows the vorticity contours at four different phase angles 

 0 , 96 , 192 , 288    . When the phase angle is 0 , the cylinder moves to the left 

and a pair of counter-rotating vortices are formed. After the cylinder reaches the 

extreme left location, the vortex generation procedure stops. The same periodic vortex 

shedding process can be found on its right side. The above observations correspond to 

the studies of DÜTsch et al. (1998) and Yang and Balaras (2006). To make the 

quantitative comparison, the computed velocity profiles at four different x  locations 

and three different phase angles are displayed in Figure 5.6. The experimental results 

of DÜTsch et al. (1998) and numerical results of Wang et al. (2009) are also 

displayed for comparison and good agreement can be found between them. Figure 5.7 

depicts dimensionless in-line force  xF t  variation with time acting on the cylinder in 

a period of the oscillation. The good agreement between the present results and the 

reference data (DÜTsch et al., 1998, Wang et al., 2009) indicates that the present 

scheme can accurately predict the forces acting on the solid boundaries. 
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5.3.4 Flow past a transverse oscillating cylinder 

To further validate the present scheme for moving boundary flows, the problem of 

flow past a transverse oscillating cylinder is considered. The transverse motion of the 

cylinder center is a harmonic oscillation given as 

   sin 2 ey t A f t  (5.35) 

where 0.2A   is the oscillating amplitude and ef  is the oscillating frequency. In this 

study, five different oscillating frequencies are considered, which are 0.8e of f  , 0.9, 

1.0, 1.1 and 1.2, respectively. Here, of  is the natural vortex shedding frequency for 

flow past a stationary cylinder at 185Re  . The other parameters are chosen as: 

Reynolds number 185Re  , density of the fluid 1.0   and the diameter of the 

cylinder 1.0D  . Similar to the previous section, the flow domain is chosen as 

   20 , 30 20 , 20D D D D    with the whole mesh size of 493 460 . The cylinder is 

initially located at  0, 0x y   surrounded by a sub-domain of 

   0.8 , 0.8 0.8 , 0.8D D D D    with a uniform mesh size of 161 161 . 

 

Figure 5.8 shows the time evolution of drag and lift coefficients of the present five 

different cases. It can be noted that drag and lift coefficients behave a simple 

harmonic oscillation once vortex shedding is established when e of f  is equal to or 

less than 1.0. As the values of e of f  increases, the magnitudes of force coefficients 

are enlarged. For values of e of f  greater than 1.0, both the drag and lift coefficients 

exhibit modulation phenomenon. Figure 5.9 depicts the time-averaged drag 

coefficient 
dC , the root-mean-square values of the drag coefficient ,d rmsC  and lift 

coefficient ,l rmsC . The results of Guilmineau and Queutey (2002) and Wang et al. 
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(2015) are also displayed for comparison. Good agreement can be found between the 

present results and the reference data. The instantaneous streamlines when the 

oscillating cylinder is at the extreme upper position are shown in Figure 5.10. From 

the figure, no penetration is found around the cylinder, which shows the excellent 

satisfaction of the no-slip boundary condition. Furthermore, it is found that the 

streamline topologies are similar to each other when 1.0e of f   and the saddle points 

will appear in the form of intersecting streamlines when 1.0e of f  . The above 

phenomenon is in correspondence with the observation in literature (Guilmineau and 

Queutey, 2002). 

 

5.3.5 Laminar flow around a rapid pitching NACA0015 airfoil 

Next, a more complex moving boundary problem of laminar flow around a rapidly 

pitching NACA0015 airfoil is simulated. In this case, the Reynolds number based on 

chord length and freestream velocity is 10 000Re ,  and Mach number 0 2M .  . 

The pitch rate is  

    0 01 4 6t exp . t t rad s     (5.36) 

with 0 0 6c u .   and 0 1t u c  , where c  and u  are the chord length of airfoil and 

the freestream velocity, respectively. The pitch axis is located at the quarter chord. 

The flow field computed at zero-degree angle of attack is used as initial condition. As 

time goes on, the pitch rate will increase and reach 99% of its final rate 0  at 0t t  

and thereafter the pitch rate is nearly constant. 

 

The computational domain is selected as 50 30c c  with a non-uniform mesh. A 

uniform mesh with mesh spacing 0 001h . c  is applied near the airfoil. 800 
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Lagrangian points are adopted to represent the airfoil surface. Figure 5.11 shows the 

present results of time-dependent lift and drag coefficients versus the angle of attack. 

The results of Visbal and Shang (1989) and Lomtev et al. (1999) are also included for 

comparison, both of which used a boundary-conforming mesh in their simulations. 

The present results are in good agreement with the reference data at angle of attack

40   . At 40   , there is some deviation between the present lift coefficient and 

the reference data. This can be explained by the strong dependence of the computed 

forces on the resolution of small flow structures at higher angles of attack. Figure 5.12 

presents a description of the most crucial features of the flow past a pitching airfoil. 

At the initial condition ( 0  ), the flow is symmetric and displays a small trailing-

edge separation region. As the pitching motion begins, the flow becomes fully 

attached along the lower surface of the airfoil. Counterclockwise vortices are formed 

and shed from the trailing-edge of lower surface into the wake, resulting in the 

increase of lift. On the other hand, on the upper surface of the airfoil, the near-wake 

experiences significant curvature due to the counterclockwise vortices ( 22   ). 

With the increase of airfoil incidence, the separation point on the upper surface moves 

upstream and eventually reaches the leading-edge area ( 32   ). There are two 

distinguishable vortical structures on the upper surface, e.g. the leading-edge vortex 

and the shear layer vortex ( 32   ). The leading-edge vortex grows in size and its 

center moves downstream ( 44   ). The shear layer vortex impinges on the airfoil 

surface due to the mutual influence of leading-edge and trailing-edge vortices 

( 44   ). The leading-edge vortex detaches with the continuous increase in airfoil 

incidence ( 52   ). The basic flow structure is in qualitative agreement with 

experimental (Helin and Walker, 1985) and numerical (Visbal and Shang, 1989) 

observations. 
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5.3.6 One particle sedimentation in a rectangular domain 

Another problem we select to further test the capability of the present method in 

solving moving boundary problems is the one particle sedimentation in a rectangular 

domain. This problem is a typical fluid-structure interaction problem (Zhong et al., 

2013; Lee et al., 2013) and has been extensively studied (Feng and Michaelides, 2004; 

Wan and Turek, 2006; Wu and Shu, 2010; Ren et al., 2012; Wang et al., 2015). In the 

present simulation, the rectangular domain with 2 cm  width and 6 cm  height is 

selected. Inside the domain, the viscosity   and density f  of fluid are chosen as 

 0.1 g cm s    and 31.0f g cm  , respectively. The density of the rigid particle 

is 31.25p g cm   and its radius is 0.125pr cm . Initially, the particle is placed at 

the location of  1 , 4cm cm  and both the fluid and particle are at the static state. A 

uniform grid of 201 601  is adopted in this simulation.  

 

Once the particle is released, it will fall down due to the gravity force. Figure 5.13 

displays the time evolutions of longitudinal coordinate of particle center py , 

longitudinal velocity of particle center pv , Reynolds number of particle pRe  and 

translational kinetic energy tE . Here, the Reynolds number pRe  and kinetic energy 

tE  are defined as 

2 22 p p p p

p

r u v
Re






  (5.37) 

 2 2 20.5t p p p pE r u v    (5.38) 
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where pu  and pv  are velocity components of particle center. Also included in the 

figure are the results of Wan and Turek (2006) and Wang et al. (2015), which used the 

finite element method and lattice Boltzmann flux solver, respectively. It is clear that 

good agreement can be found between the present results and the benchmark solutions. 

Figure 5.14 illustrates the time evolution of instantaneous vorticity contour around the 

falling particle. The temporal evolution of the particle and the vortex can be clearly 

seen. The above results show that the present solver can be effectively used to 

simulate moving boundary flow problems. 

 

5.4 Concluding remarks 

In this chapter, the boundary condition-enforced immersed boundary-gas kinetic flux 

solver (IB-GKFS) was proposed for the simulation of both stationary and moving 

boundary flows. In IB-GKFS, by applying the fractional-step technique, the solution 

process was decoupled into two steps: the predictor step and corrector step. Firstly, in 

the predictor step, the intermediate flow field was predicted by applying the GKFS, 

which reconstructs the fluxes using the continuous Boltzmann solutions. As the solid 

boundary was not taken into account in this step, the external forcing term was 

avoided during the evaluation of numerical flux at each cell interface, which greatly 

simplifies the implementation. Subsequently, to guarantee the no-slip boundary 

condition, the intermediate velocity field was corrected by using the implicit boundary 

condition-enforced immersed boundary method. The above procedure avoids the 

iterative process in the work of Yuan et al. (2015) when implementing the no-slip 

boundary condition and thus the numerical flux across the cell interface only needs to 

be calculated once at each time step. This makes the current scheme be 

straightforward and easy to be implemented. With simple Cartesian mesh and flexible 
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boundary condition treatment, the IB-GKFS can be conveniently applied to solve 

complex and moving boundary problems. Several numerical cases were simulated to 

validate the present scheme, including the flow past a stationary circular cylinder and 

a NACA0012 airfoil, flow past an in-line and transverse oscillating cylinder with a 

prescribed motion, laminar flow around a rapid pitching NACA0015 airfoil and one 

particle sedimentation in a rectangular domain. The present numerical results are in 

good agreement with available data in the literature, which demonstrates the good 

capability of the present scheme in simulating flows with both stationary and moving 

boundaries. 

 

In the next chapter, the extension of IBM in the framework of GKFS to simulate 

compressible flows will be presented. The mechanisms to correct all the flow 

variables for the compressible flows will be introduced in detail. 
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Table 5.1 Comparison of drag coefficients, recirculation lengths and separation angles 

for steady flow past a circular cylinder at Re=20 and 40 

Re Authors d
C  L/D 

20 

Dennis and Chang (1970) 2.05 0.94 

Shukla et al. (2007) 2.07 0.92 

Wu and Shu (2009) 2.05 0.94 

Yuan et al. (2015) 2.071 0.937 

Present 2.07 0.94 

    

40 

Dennis and Chang (1970) 1.52 2.35 

Shukla et al. (2007) 1.55 2.34 

Wu and Shu (2009) 1.554 2.31 

Yuan et al. (2015) 1.548 2.286 

Present 1.546 2.36 
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Table 5.2 Comparison of dynamic parameters for unsteady flow past a circular 

cylinder at Re=100 and 200  

Re Authors lC  d
C  St 

100 

Braza et al. (1986) ±0.30 1.28±0.02 0.16 

Benson et al. (1989) ±0.38 1.46±0.01 0.17 

Ding et al. (2004) ±0.28 1.325±0.008 0.164 

Wang et al. (2015) ±0.37 1.334±0.012 0.163 

Present ±0.348 1.367±0.01 0.164 

     

200 

Braza et al. (1986) ±0.78 1.38±0.07 0.19 

Benson et al. (1989) ±0.65 1.45±0.04 0.193 

Ding et al. (2004) ±0.60 1.327±0.045 0.196 

Wang et al. (2015) ±0.75 1.43±0.051 0.195 

Present ±0.714 1.370±0.049 0.195 
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Figure 5.1 Streamlines for the flow over a circular cylinder at Re=20 and 40 

 

   

Figure 5.2 Evolution of drag and lift coefficients for flow over a cylinder at Re=100 

and 200 
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Figure 5.3 Pressure contours and streamlines for flow over a NACA0012 airfoil at 

Re=500 and AoA= 0 . 

 

   
         Cross sections     x=0.00 

   
    x=0.25     x=0.50 
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    x=0.75     x=1.00 

Figure 5.4 Velocity profiles at five cross sections of NACA0012 airfoil 

 

  
 (a)          (b) 

  
 (c)         (d) 

Figure 5.5 Vorticity contours at four different phase-angles for in-line oscillating 

cylinder in a fluid at rest. (a) 0 ; (b) 96 ; (c) 192 ; (d) 288  
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  2 180a ft     

   

  2 210b ft     

   
  2 330c ft     

Figure 5.6 Comparison of velocity profiles (u-component in the left column, v-

component in the right column) at four different x locations and three different phase 

angles. (Lines are the present results, filled symbols are the experimental results of 

DÜTsch et al. (1998), and empty symbols represent numerical results of Wang et al. 

(2009)) 
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Figure 5.7 Comparison of time evolution of in-line force xF  in a period time T  for 

flow past an in-line oscillating cylinder at Re=100 and KC=5. 
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Figure 5.8 Lift and drag coefficients for flow past an oscillating cylinder at Re=185 

 

.  

Figure 5.9 Comparison of Cd , RMSCl  and RMSCd  for flow past a transverse oscillating 

cylinder at Re=185 
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Figure 5.10 Streamlines and vorticity contours for flow past a transverse oscillating 

cylinder at Re=185 
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Figure 5.11 Lift (Upper curve) and drag (Lower curve) coefficients versus angle of 

attack in degrees. 
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Figure 5.12 Evolution of vorticity field for flow around a rapid pitching NACA0015 

airfoil 

 

    

 (a) (b) 

   

 (c) (d) 

Figure 5.13 Comparison of time evolution of four representative quantities for freely 

falling particle in a rectangular domain. (a) Longitudinal coordinate. (b) Longitudinal 

velocity. (c) Particle Reynolds number. (d) Translational kinetic energy. 
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Figure 5.14 Instantaneous vorticity contours for the freely falling particle in a 

rectangular domain at different times 
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Chapter 6  

A diffuse interface immersed boundary method for 

simulation of compressible viscous flows around stationary 

and moving boundaries 

 

In the previous chapter, the boundary condition-enforced immersed boundary-gas 

kinetic flux solver (IB-GKFS) has been developed and successfully applied for 

simulating incompressible moving boundary flows. In IB-GKFS, no-slip boundary 

condition is implicitly imposed and the velocity field can be accurately corrected. As 

a result, the flow penetration, which is a drawback of conventional immersed 

boundary method (IBM), is entirely avoided. In IB-GKFS, only the velocity field is 

corrected because the immersed boundary has negligible effect on the density and 

pressure fields for incompressible flows. However, this method cannot be directly 

applied to simulate compressible flows. The reason is that for compressible flows, the 

immersed boundary exerts huge influence not only on velocity field but also on 

density, pressure and temperature fields. However, the mechanisms to correct the 

density, pressure and temperature fields are deficient in previous work. To overcome 

this difficulty, a diffuse interface IBM for compressible viscous flows around 

stationary and moving boundaries is developed in this chapter. Two specific schemes 

are proposed for stationary and moving boundaries, respectively. For stationary 

boundaries, the momentum field is firstly corrected by converting the no-slip velocity 

condition to the momentum condition. After that, the density correction can be made 

from the momentum correction by applying the continuity equation. While for 

moving boundaries, the momentum condition on the boundaries is unknown. 
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Therefore, the density field has to be corrected by an iterative process rather than by 

using the momentum correction. To validate the proposed method, several 

compressible stationary and moving boundary problems are simulated. The obtained 

results are examined by comparing with reference data published in the literature. 

 

6.1 Governing equations and GKFS for prediction of intermediate 

flow field 

Similar to the work of incompressible IBM in Chapter 5, the effect of the immersed 

boundary can be considered as a source term added in the governing equation for the 

compressible flows. To introduce the present scheme, the N-S equations with source 

term is discretized by finite volume method firstly. Then, a fractional step technique is 

adopted to solve these equations in two steps: the predictor step and the corrector step. 

The GKFS, which has been introduced in previous chapters, will be presented briefly 

in the predictor step. In the corrector step, a novel diffuse interface IBM for 

compressible viscous flows will be presented in detail in next sections. 

 

6.1.1 Governing equations and fractional step method 

After including the source term generated by the immersed boundary, the governing 

equations for two-dimensional case can be written as 

1

1 N

i i s

ii

d
S

dt V 

  



W
F Q   (6.1) 

where  , , ,
T

U V E   W  is the vector of conservative flow variables, V  and 

N  are the volume and number of interfaces of the control volume, iF  and iS  are the 
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flux vector and length of interface i , sQ  is the source term to reflect the effect of 

immersed boundary. 

 

Similar to the procedure for incompressible flow problems, introducing the source 

term sQ  into the governing equations is equivalent to making corrections to the flow 

field. The main difference compared with the incompressible IBM is that in the 

current scheme, all the flow fields, including density, velocity, temperature and 

pressure, have to be corrected. By applying the fractional step method, the solution 

process of governing equations (6.1) can be separated as the following two steps: 

(1) Predictor step for *
W   

In this step, the governing equations without source term sQ  is solved: 

1

1
0

n N

i i

ii

S
t V






 

 


W W
F  (6.2) 

where 
W  is the intermediate conservative flow variables at the time step 1n . As 

shown in Eq. (6.2), the flow field is firstly predicted by GKFS without consideration 

of the immersed boundary. After the predictor step, the flow field is rectified by the 

corrector step. 

 

(2) Corrector step by the novel IBM for W  

1

0
n

s
t

 
 



W W
Q  (6.3) 

In this step, the corrections of the flow field are conducted in such a way that the 

physical boundary conditions are accurately satisfied. In the following, details of 

these two procedures will be introduced. 
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6.1.2 GKFS for prediction of intermediate flow variables 

To evaluate the intermediate flow field *
W , the GKFS is applied. By applying a cell-

cantered finite volume method to solve Eq. (6.2) over a control cell i , the main task 

is to evaluate the numerical flux F  at all cell interfaces. Unlike the traditional N-S 

solver, in GKFS, a gas distribution function is used to describe the dynamics of the 

particles, which are regarded as the carriers of mass, momentum and energy. The 

numerical flux at the cell interface F  can be calculated by the integration of the 

distribution function f . Let the subscript 1 2,i j  denote the cell interface, the 

relation between the interface flux vector 1 2,i jF  and the distribution function f  is 

 1 2, 1 2, , , , ,i j n i ju f u v t d   F x   (6.4) 

where   is the vector of moments 

 2 2 21
1, , ,

2
u v u v 

 
   
 

 (6.5) 

d dudvd   is the volume element in the phase space,  ,u v  is the particle velocity 

and nu  is its normal component to the interface,   is the internal energy with the 

degree of freedom K , which is equal to    4 2 1    in 2D flows. 

 

From Eq. (6.4), to obtain the numerical flux 1 2,i jF , the main issue is to calculate the 

gas distribution function f  at the cell interface. Here, the scheme III of GKFS, which 

has been presented in Chapter 3, is utilized. The time-dependent gas distribution 

function at the cell interface can be written as 
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 

 

    

1 2,

0 0 1 2 3 4

, , , ,

+ + + 1

i j

n

n l l n r r
n n

f u v t t

g g A A u A u A

u g u g u g u g
H u H u

n n



 

 

 


 

 

    

        
     

       

x

 (6.6) 

where  nH u  is the Heaviside function defined as  

 
0 0

=
1, 0

n

n

n

u
H u

u






，
 (6.7) 

In Eq. (6.6), 0g  is the Maxwellian distribution function at the local interface and lg , 

rg  are the Maxwellian distribution function at left and right sides of the interface, 

respectively. These equilibrium distribution functions can be determined from the 

conservative flow variables and their slopes. 1 2 3 4, , ,A A A A  are the coefficients, which 

can be calculated explicitly. The details of the calculation of these coefficients can be 

referred to Chapter 3. Since the gas distribution function f  at the interface has been 

obtained, the numerical flux across the interface can be computed by Eq. (6.4). After 

the flux at the interface is determined, at the projection stage, the intermediate 

macroscopic variables in all cells can be updated through Eq. (6.2). 

 

6.2 Diffuse interface IBM for compressible flow around stationary 

boundaries 

After solving Eq. (6.2) to get the predicted flow variables 


W  without considering the 

immersed boundary, we have to perform the corrector step to impose the boundary 

conditions. In the corrector step, the ordinary differential equations have been shown 

in Eq. (6.3) 
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1

0
n

s
t

 
 



W W
Q  

As has been discussed in the work of Shu et al. (2007), in the incompressible flows, 

the effect of the source term in the governing equations is equivalent to making 

velocity corrections in the flow field. This idea can also be extended to compressible 

flows. That is, introducing the source term sQ  is equivalent to correcting the 

conservative flow variables W . This can be seen clearly in Eq. (6.3). The requirement 

for this correction is that the modified conservative flow variables have to satisfy the 

physical conditions on the immersed boundary. As a result, in this work, the 

conservative flow variables are corrected not by Eq. (6.3) but by physical conditions 

directly. For two-dimensional compressible viscous flows, the physical boundary 

conditions at the immersed boundary are usually the given velocity and temperature 

or heat flux. In this work, both the stationary and moving boundary problems are 

investigated. For the temperature field, only the isothermal boundary condition is 

considered. Following the idea of Wu and Shu (2009), the velocity and temperature 

field can be accurately corrected by applying the implicit boundary condition-

enforced IBM. However, there is no mechanism to correct the density and pressure 

field in the work of Wu and Shu (2009). To overcome this difficulty, a novel method 

to correct the density field is proposed by employing the continuity equation in this 

work. As the ways to handle the density correction in stationary and moving boundary 

problems are different, they will be introduced separately hereinafter. Finally, the 

pressure can be calculated by the equation of state by the corrected temperature and 

density. In this way, all the flow variables are corrected to accurately satisfy the 

physical boundary conditions. Details of the corrections for density, velocity, 
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temperature and pressure will be shown below. The overall computational sequence 

will also be outlined. 

 

6.2.1 For stationary boundary problems 

The continuity equation for 2D compressible flows can be written as 

   
0

U V

t x y

   
  

  
  (6.8) 

From Eq. (6.8), it can be seen that the time derivative of density depends on the 

spatial gradients of momentum components U  and V . This connection provides 

the important insight that the density field might be corrected by the momentum 

correction. For the stationary boundary problems, the no-slip boundary condition can 

be easily converted to the momentum condition. The details of correction processes 

are shown below. 

 

Correction of momentum field 

After solving the governing equation (6.2), the intermediate momentum on Eulerian 

point is given as  


U . We will perform the momentum correction to obtain 

 
1n




U  by applying the diffuse interface IBM. Suppose that corrected momentum on 

the Eulerian point is   U , therefore, the final momentum on the Eulerian point can 

be given as  

     
1
= +

n
  

 
U U U  (6.9) 

At the immersed boundary points, the physical condition for momentums is  
1n

B



U , 

where B  represents the immersed boundary. To guarantee physical boundary 

condition, the momentums  
1n

B



U  on the Lagrangian points l

BX  must be identical 
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to those fluid momentums at the same positions, which is equivalent to imposing the 

boundary condition. Mathematically, the fluid momentums can be interpolated from 

the corrected momentums  
1n




U  at the Eulerian points by using a discrete delta 

function 

     1 1 2( ) ( )l l

B ij ij ij B

ij

n n

B D h  
  UX x x XU ,   1,2, ,l m , 1,2, ,j n ， (6.10) 

where h  is the grid size of Eulerian mesh, m  and n  are the numbers of Lagrangian 

and Eulerian points. ijD  is the discrete delta function given by 

 
l l

ij B ij Bl

ij ij B
h h

x X y Y
D  

    
        

   

x X  (6.11) 

 

 

 

2

2

1
3 2 1 4 4 1

8

1
5 2 7 12 4 1 2

8

0 2

r r r r

r
r r r r

r




    




        


 

 (6.12) 

Substituting Eq. (6.9) into Eq. (6.10) and using the relation 

     ( ) ( )l l l l

ij B B ij ij B

l

D s     U x U X x X ,   1,2, ,l m  (6.13) 

we have 

     

     

1 2

,

2

*( ) ( )

        ( )

n l l

B B ij ij ij B

i j

l l l l l

B B ij ij B ij ij B

ij l

D h

D s D h

 

 

  

 
    

 



 

U X U x x X

U X x X x X

 (6.14) 

The above equation can be further written as a matrix form 

AX = B   (6.15) 

where 

      1 21 2, ,,
T

m

B

m

B B
s s s        X U U U  (6.16) 
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11 12 1 11 12 1

21 22 2 21 22 22

1 2 1 2mn n

n m

n m

mm m n n

D D D D D D

D D D D D
h

D D D D D

D

D

  
  

   
  
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  

A  (6.17) 
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 

 
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D D D

D D D

D D D
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
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   
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 
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 

    
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UU

UU
B

UU

 (6.18) 

It should be noted that in Eq. (6.18), the momentum on the Lagrangian points 

 
1n

B



U  are unknown in most cases. This is because the no-slip boundary condition 

cannot be directly converted to momentum boundary condition as the density on the 

Lagrangian points is unknown. Therefore, linear system of Eq. (6.15) cannot be 

solved directly in moving boundary problems. One the other hand, for stationary 

boundary problems, the velocity on the Lagrangian points 0B U . As a result, the 

momentum value   0
B

 U  in this special case. By solving linear system of Eq. 

(6.15), the unknown  
l l

B
s  U  at all Lagrangian points can be obtained 

simultaneously. After that, the momentum correction on Lagrangian points are 

distributed to surrounding Eulerian points by using Eq. (6.13). Finally, the corrected 

momentum on Eulerian points can be obtained by Eq. (6.9). 

 

Correction of density field 

As has been introduced before, the density correction is conducted by using the 

continuity equation with the momentum correction values. Firstly, the continuity 

equation for compressible flow can be written as (Eq. (6.8)) 
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   
0

U V

t x y

   
  

  
 

Setting 

     ,     U U U  


  ,     V V V  


    (6.19) 

As the intermediate values 
,  U


 and  V


 also satisfy the continuity equation, 

by substituting Eq. (6.19) into Eq. (6.8), we can get the following formulation

   
0

U V

t x y

   
  

  
 (6.20) 

In this work, the simple Cartesian mesh is adopted for the flow field. As a result, the 

spatial derivatives of the corrected momentum components  U  and  V , 

which have been obtained in the previous section, can be simply approximated by a 

central difference method. Therefore, the discretization of Eq. (6.20) at a mesh point 

 ,i j  can be written as 

 
       

1 1 1 1

2 2

i , j i , j i , j i , j

i , j

U U V V
t

h h

   


   
    

    
   

 (6.21) 

From the above equation, it can be clearly seen that the momentum correction can be 

directly used to modify the density field. This is the main reason why the no-slip 

boundary condition is converted to momentum condition in the previous section. By 

using Eq. (6.21), the density correction can be easily obtained. And then, the corrected 

density can be obtained by Eq. (6.19). 

 

Correction of temperature and calculation of pressure 

In this work, only the isothermal boundary condition is considered. For simplicity, the 

temperature on the boundary point is denoted as BT . After the predictor step, the 
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intermediate value of temperature on Eulerian point can be given as T  . In this 

corrector step, suppose that the corrected temperature is T . Therefore, the corrected 

temperature can be written as  

T T T    (6.22) 

Similar to the requirement in the momentum correction, the temperature on the 

Lagrangian point BT  has to be identical to the fluid temperature at the same positions. 

This requirement can be expressed as 

      2l l

B ij ij ij B

ij

B D hT T X x x X  (6.23) 

Substituting Eq. (6.22) into Eq. (6.23) and using the relation that the temperature 

correction T  is distributed from the temperature correction BT  at the Lagrangian 

points 

     l l l

ij B B ij ij B

l

T T D s   x X x X  (6.24) 

we have 

     
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T D s D h
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 
    

 



 

X x x X

X x X x X

 (6.25) 

Take k k

BT s   as unknowns, the above equation systems can be rewritten in a matrix 

form 

T T
AX = B  (6.26) 

where the matrix 

 1 21 2, , ,
T

m m

B B BT T s sTs    
T

X  (6.27) 
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

    
    

      
    
       

    

T
B  (6.28) 

Note that the matrix A  in Eq. (6.26) is the same as that in Eq. (6.17). By solving the 

linear system of Eq. (6.26), the unknowns k k

BT s   can be obtained. After that, the 

temperature correction on Eulerian points can be re-distributed by Eq. (6.24). 

Consequently, the corrected temperature on the Eulerian points can be obtained by 

using Eq. (6.22). 

 

Once the density and temperature fields are modified, the pressure on each Eulerian 

point can be simply computed by using the equation of state, 

     ij ij ijp RTx x x  (6.29) 

 

6.2.2 For moving boundary problems 

The above section presents the correction procedures for stationary boundary 

problems. This method is straightforward and efficient because the no-slip boundary 

condition can be easily transferred to momentum condition in stationary boundary 

problems. However, for moving boundary problems, this transformation is not 

feasible because the density on the Lagrangian points is not given. As a result, a new 

correction method should be proposed for moving boundary problems. In the 

following, the velocity field is firstly corrected by using the no-slip boundary 

condition. Then, an iterative method is adopted to correct the density field by using 

the continuity equation. The ways to correct the temperature and pressure fields are 

identical with those in the previous section. 
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Correction of velocity field 

Following the idea of Wu and Shu (2009), the velocity field is corrected by using the 

boundary condition-enforced IBM. Suppose that the velocity correction is U , the 

corrected velocity can be expressed as, 

1 *n  U U U   (6.30) 

To guarantee the no-slip boundary condition, the velocity on the Lagrangian point 

 1n l

B B


U X  should be identical to the fluid velocity  1n

ij


U x  at the same position, 

       1 1 2 1,2,..., ; 1,2,...,n l n l

B B ij ij ij B

ij

D h l m ij n    U X U r r X   (6.31) 

By substituting Eq. (6.30) into Eq. (6.31) and using the relation that the Eulerian 

velocity correction U  can be interpolated via the Dirac delta function from the 

velocity correction vector l

BU  at the boundary point, which is 

     1,2,...,l l l

ij B ij B

l

s D l m    U r U r X  (6.32) 

we can obtain 

         1 * 2 2n l l l l l l

B B ij ij ij B B ij B ij B

ij ij l

D h s D D h       U X U r r X U r X r X  (6.33) 

The above Eq. (6.33) can be written as the following matrix form 

AX B  (6.34) 

where  

 1 1 2 2, , ...,
T

m m

B B Bs s s     X U U U  (6.35) 

11 12 1 11 12 1

21 22 2 21 22 22

1 2 1 2

n m

n m

m m mn n n nm

D D D D D D

D D D D D D
h

D D D D D D

  
  
  
  
  
  

A  (6.36) 
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 (6.37) 

By solving the equation system (6.34) with a direct method, the velocity correction on 

the Lagrangian points l l

B s U  can be calculated. After that, the velocity correction 

U  and the corrected velocity 1n
U  on all Eulerian points can be obtained by Eq. 

(6.32) and Eq. (6.30), respectively.  

 

Correction of density field 

In moving boundary problems, the momentum correction cannot be calculated As a 

result, the correction of density field cannot be made by Eq. (6.21). For fractional step 

method, the density and velocity on Eulerian points can be written as 

     , U U U  , V V V   (6.38) 

Substituting Eq. (6.38) into continuity equation, 

   
0

U V

t x y

   
  

  
 

we have 

       

   

   

+ + + + +
0

+ +

+ +
0

U U V V

t x y

U V

t x y

U U U V V V

t x y

     

 

     

    

   

   

       
  

  

 


  

           
   

  

 (6.39) 

As the intermediate values  , U  , V   also satisfy the continuity equation, the above 

equation can be simplified as 
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   + +
0

U U U V V V

t x y

     
            

  
  

 (6.40) 

In Eq. (6.40), all the values except for the density correction   are known. 

Therefore, the above equation can be written as 

   
+ 0

U V
S

t x y

     
  

  
 (6.41) 

where 
   

=
U V

S
x y

     


 
 can be viewed as the source term. Applying the 

central difference discretization to Eq. (6.41), 

 
       

1 1 1 1
+

2 2

i , j i , j i , j i , j
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h h
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   
      

    
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 (6.42) 

where 
       

1 1 1 1
=

2 2

i , j i , j i , j i , j

i , j

U U V V
S

h h

      

   
     


 

 

Eq. (6.42) shows that the calculation of  
i , j

  needs the information of adjacent 

density correction, which is unknown. To solve Eq. (6.42), an iterative procedure is 

required. At time level n , it is known that after the predictor step and velocity 

correction, the intermediate density  , the velocity correction U  and the 

corresponding corrected velocity U  at all Eulerian points are already obtained. Then, 

the following iteration procedure is conducted for NF  times 

       
1 1 1 11 +
2 2

NF NF NF NF

i , j i , j i , j i , jNF

i , j

U U V V
t S

h h

   


   

      
    
  
 

 (6.43) 

until the following convergence criterion is satisfied 

1

7

1

10

NF NF

i , j

NF

i , j

 









 








 (6.44) 
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After the iteration procedure, the density correction at time level n  can be derived. 

Finally, the accurate density can be calculated by the sum of intermediate value and 

correction value.  

 

Correction of temperature and calculation of pressure 

As only the Dirichlet boundary condition is considered here, the way to correct the 

temperature field is the same as that in previous section. By solving the linear system 

of Eq. (6.26), the temperature correction at all Eulerian points can be computed 

simultaneously and the accurate temperature field is obtained afterwards. Once all the 

corrections are made, we can simply compute the pressure by using the equation of 

state in Eq. (6.29). 

 

6.2.3 Force calculation and solution procedure 

It is worth mentioning that in the above processes, the correction of flow variables is 

based on the physical boundary conditions, rather than by using explicit form of 

source term sQ . Following the governing equation (6.3) in the corrector step, the 

explicit expression of sQ  can be given as 

( ) ( ) ( )
, , ,

T

s

U V E

t t t t

      

   

 
  
 

Q  (6.45) 

Following the idea of boundary condition-enforced IBM (Wu and Shu, 2009), the 

momentum change on fluid is due to the force exerted by solid boundary. Therefore, 

by using Newton’s third law, the force on the rigid body generated by the surrounding 

fluid flow can be simply calculated as 

 
,

,

i j

i j t


 




U
F  (6.46) 
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In the present scheme, the ways to deal with stationary and moving boundaries are 

different. The computational sequence of the current diffuse interface IBM for 

stationary boundary problems can be summarized as follows: 

(1) Use Eq. (6.6) and Eq. (6.4) to calculate the flux vector F  on all cell interfaces. 

(2) Predict the intermediate flow field 
W  by solving Eq. (6.2). 

(3) Solve the linear system of Eq. (6.15) to obtain the momentum force density 

 
k k

B
s  U  at all Lagrangian points. 

(4) Apply Eq. (6.9) and Eq. (6.13) to perform momentum corrections and get 

 
1n




U . 

(5) Compute the density correction   by using Eq. (6.21) and get 
1n 
 by Eq. 

(6.19). 

(6) Solve the linear system of Eq. (6.26) to obtain the temperature correction on 

Lagrangian points k k

B sT  . 

(7) Calculate the temperature correction T  by Eq. (6.24) and update the 

temperature field by using Eq. (6.22). 

(8) Apply the equation of state (6.29) to calculate the pressure. 

(9) Repeat steps (1) - (8) until final solutions are obtained. 

 

For moving boundary problems, the solution procedure is slightly different from the 

above one because the boundary condition for momentum on the immersed boundary 

points is unpredictable. The basic solution procedure is: 

(1) Use Eq. (6.6) and Eq. (6.4) to calculate the flux vector F  on all cell interfaces. 
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(2) Predict the intermediate flow field 
W  by solving Eq. (6.2). 

(3) Solve the linear system of Eq. (6.34) to obtain the force density k k

B s U  at all 

Lagrangian points. 

(4) Apply Eq. (6.32) and Eq. (6.30) to perform velocity corrections and get 1n
U . 

(5) Calculate the density correction   for NF  times by Eq. (6.43) until the 

convergence of Eq. (6.44) is satisfied. 

(6) Get the corrected density 
1n 
 by Eq. (6.38). 

(7) Solve the linear system of Eq. (6.26) to obtain the temperature correction on 

Lagrangian points k k

B sT  . 

(8) Calculate the temperature correction T  by Eq. (6.24) and update the 

temperature field by using Eq. (6.22). 

(9) Apply the equation of state (6.29) to calculate the pressure. 

(10) Repeat steps (1) - (9) until final solutions are obtained. 

 

6.3 Numerical validation and discussion 

In this section, the present diffuse interface IBM is validated through simulations of 

compressible flows over both stationary and moving boundary problems. First, 

compressible flow around a circular cylinder is simulated to validate the two methods. 

Here, the stationary test case can be viewed as a special case to validate the method 

for moving boundaries. The obtained numerical results are compared with the 

reference data in literature. Subsequently, the method for stationary boundaries is 

further verified by simulating more complex supersonic flows over a NACA0012 

airfoil with two different free stream conditions. After that, numerical experiments of 



 

186 

three moving boundary problems are carried out to validate the flexibility and 

capability of the present method for moving boundaries. 

 

6.3.1 Flow around a circular cylinder 

The flow around a circular cylinder, which is a good benchmark problem, is simulated 

to validate the current compressible IBM. In the present simulation, the computational 

domain is selected as 40 30D D , where D  is the diameter of the cylinder. The 

circular cylinder discretized by 400 Lagrangian points is placed at  15 ,15D D . A 

non-uniform mesh of 504 500  points is adopted in the computational domain and a 

uniform mesh with the mesh spacing of 0.005D  is applied around the circular 

cylinder. Dirichlet conditions are imposed on all flow variables at the inflow 

boundary and natural boundary condition is imposed at the outflow boundary. The 

Reynolds number based on the diameter of the cylinder is 300 for all cases. Two 

difference Mach numbers of 1.2 and 2.0 are considered in the present simulation. 

 

Figure 6.1 and Figure 6.2 show the density, pressure and velocity contours in the near 

field of the cylinder at Mach number 1.2M   and 2.0. In these figures, the solid 

lines are the results of the present method for stationary boundary and the contours 

and dash lines represent the results obtained by DVM (Yang et al., 2016), which uses 

a body-fitted grid. The results of the method for moving boundaries are not included 

because they are almost identical to those from the method for stationary boundaries. 

From the results, the flow fields are symmetric with a bow shock before the circular 

cylinder. It can be clearly seen that excellent agreements are found between the two 

results in both two figures. Figure 6.3 displays the pressure coefficient distributions 

on the cylinder surface computed by two methods. Also included in this figure are the 
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numerical data of Takahashi et al. (2014) for comparison. As can been seen, good 

agreement has been achieved. The comparison of drag coefficients of the present 

results with those of Takahashi et al. (2014) is provided in Table 6.1. From the table, 

the present results are close to those in reference and the maximum relative error is 

below 3.8%. In both two cases, the lift coefficients are equal to zero. It should also be 

noted that for the method of moving boundary, it only takes 4 iterative steps to meet 

convergence criterion in Eq. (6.44) at each time step. The above observations show 

that both two methods give almost the same results in the present test case and the 

accuracy and capability of these methods are fully validated. 

 

6.3.2 Compressible flow over a NACA0012 airfoil 

In this simulation, a compressible laminar flow over a NACA0012 airfoil is tested. 

The schematic of the current problem is depicted in Figure 6.4. As can be seen, the 

distance between the leading edge and the free stream boundary is around 11 chord 

lengths and the distance between the trailing edge and the outflow boundary is around 

16 chord lengths. The total grid size for the whole non-uniform mesh is 918 454 . 

There are 1000 Lagrangian points on the airfoil and the mesh spacing around the 

airfoil is 0.002 c , where 1c   is the chord length of the airfoil. Two different cases 

are selected for study here, which are: (1) 0 5 0 5000M . , , Re      and (2) 

2 0 10 1000M . , , Re     . 

 

Firstly, the subsonic case of 0 5M .   is tested. In this case, the Reynolds number is 

near the upper limit for steady laminar flow. In Figure 6.5, the results of solid lines 

show the density, pressure and velocity contours around the NACA0012 airfoil for the 

present simulation. Also included in this figure are the body-fitted results obtained by 
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GKFS, which are represented by flood and dashed lines. Excellent agreement is found 

in Figure 6.5. Figure 6.6 shows the streamlines around the airfoil. We can see that no 

penetration is found on the airfoil surface and a pair of vortices appear near the 

trailing edge. This observation is similar to those in literature (Bassi and Rebay, 1997; 

Ivan and Groth, 2014). In addition, Figure 6.7 shows the present results of pressure 

coefficient distribution along the airfoil surface. It compares well with those obtained 

by Bassi and Rebay (1997) and Jawahar and Kamath (2000). 

 

In order to examine the capability of proposed methodology in solving supersonic 

flow problems with complex geometry, the laminar supersonic flow over a 

NACA0012 airfoil is further tested. The free stream condition is Mach number 

2 0M .  , angle of attack 10    and Reynolds number based on the chord length 

1000Re  . The contours of flow variables, including density, pressure and velocities, 

are plotted in Figure 6.8. Also included in this figure are the results of body-fitted grid. 

Once again, excellent agreement is obtained. Moreover, the pressure contour shows 

that the shock is computed monotonically. The pressure coefficient distribution along 

the airfoil surface is plotted in Figure 6.9. It compares well with that obtained by De 

Palma et al. (2006). To further test the capability and accuracy of the present scheme 

in calculating the forces, the lift and drag coefficients for both two cases are shown in 

Table 6.2. It can be seen that the drag coefficients are close to those in the literature 

(Mavriplis and Jamesone, 1990; Crumpton et al., 1993; Jawahar and Kamath, 2000; 

Bristeau, 2013; De Palma et al., 2006). Meanwhile, the lift coefficient in the second 

case is slightly different from those in literature (Bristeau, 2013; De Palma et al., 

2006). A possible reason could be that at the trailing edge, there are overlapping 

Eulerian points for a few of upper and lower Lagrangian points. As a result, the flow 
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variables in these Eulerian points will be corrected twice and thus bring error to the 

calculation of forces. 

 

6.3.3 Flow over a high-frequency plunging SD7003 airfoil 

Flows over SD7003 airfoil with different motions have been experimentally studied 

by McGowan et al. (2008, 2011) and numerically studied by Visbal et al. (2009). In 

this case, the detail of the flow field around the airfoil is investigated with a 

prescribed motion at low-Reynolds number condition. The Reynolds number based on 

the chord length of the airfoil is 10,000. For this low Reynolds number, transition 

does not occur over the airfoil at moderate angles of attack prior to stall. The SD7003 

airfoil is set at a static angle of attack 0 4   . The plunging motion is given as 

   0 2h t h sin kU t c  (6.47) 

where non-dimensional amplitude 0 0 05h . ; reduced frequency 3 93k . ; U  is the 

freestream velocity which is parallel to x- axis; 1c   is the chord length of the airfoil. 

Here, the Mach number is set as 0 2M .   with specific heat ratio 5 3  . The 

computational domain is    20 30 20 20c, c c, c    with the grid size of 942 520 . 

The number of Lagrangian points on the airfoil is 667. A uniform mesh with mesh 

spacing 0 002h .   is selected near the airfoil. The flow field computed at 0 0h .  is 

used as initial condition. 

 

Figure 6.10 shows the time evolution of lift and drag coefficients. It shows that the 

present results match well with the results of Visbal et al. (2009). Figure 6.11 shows 

the instantaneous flow structure at selected phases of the plunging motion. It is worth 

noting that the selected phases correspond to positions of maximum upward velocity 
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( 0t T ), maximum upward displacement ( 1 4t T ), maximum downward velocity 

( 1 2t T ) and maximum downward displacement ( 3 4t T ). At the maximum 

downward displacement, two visible vortices at the leading edge are formed (Figure 

6.11(d)). These two vortices propagate at the vicinity of the airfoil surface during the 

upstroke (Figure 6.11(a)) until reaching the airfoil trailing edge. During the 

downstroke, a single dynamic-stall vortex is also observed at the lower surface of the 

airfoil because of the large negative angle of attack (Figure 6.11(b) and Figure 

6.11(c)). The present results show reasonable agreement with the observations in 

Visbal et al. (2009). 

 

6.3.4 Compressible flow over a rotating cylinder 

Flow past moving bluff bodies, especially in high speed flows, is an interesting topic 

in aeronautics. Due to the complexity and deficiency in generating body-fitted grids, 

this flow problem is a great challenge for the traditional body-fitted numerical 

methods. Fortunately, this difficulty can be effectively resolved since no grid 

transformation or regeneration is involved in IBM. In this section, we will 

demonstrate the capability of the present diffuse interface IBM by solving the 

compressible flow over a rotating cylinder. 

 

In this problem, a rotating cylinder with the normalized angular velocity 

 2D U   in the clockwise direction is placed in a free stream of velocity U , 

where D  is the diameter of the cylinder. The free-stream conditions for this test case 

are: Mach number 2 0M .  , Reynolds number 1000Re  , angle of attack 0   . 

In the present simulation, the computational domain is selected as 40 40D D . The 
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circular cylinder, which is discretized by 400 Lagrangian points, is placed at 

 15 ,15D D . A uniform mesh with the mesh spacing of 0.004D  is applied around the 

circular cylinder. The flow field computed around the stationary cylinder is used as 

initial condition. 

 

Figure 6.12 shows the streamlines and pressure contours around the rotating cylinder. 

Also included are the results obtained by DVM (Yang et al., 2016) using a body-fitted 

grids. In both simulations, the no-slip and isothermal boundary conditions are 

imposed on the cylinder surfaces. It can be seen from the figure that due to the 

cylinder rotation, the fluid passing over the upper side of the cylinder continues to 

move downward and then enters the wake. Figure 6.13 shows the density, pressure 

and velocity contours in the near field of the cylinder. In this figure, the solid lines are 

the results of the present method and the contours and floods and dash lines represent 

the results obtained from DVM (Yang et al., 2016). Similar to the stationary problem, 

a bow shock is found in front of the circular cylinder. However, the contours behind 

the cylinder are quite different from those of stationary problem. Figure 6.14 displays 

the pressure coefficient distributions along the cylinder surface. The numerical results 

of body-fitted grids obtained by DVM (Yang et al., 2016) are also included in this 

figure for comparison. As can been seen, good agreement has been achieved. 

 

6.3.5 Laminar flow over a harmonic oscillating NACA0012 airfoil 

In this test case, the flow around a harmonic oscillating NACA0012 airfoil at laminar 

flow conditions are numerically investigated. The schematic diagram of this problem 

is depicted in Figure 6.15. The airfoil pitching center locates at the quarter-chord axis, 
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i.e., 4c  behind the leading edge, where c  is the chord length of the airfoil. The time-

dependent angle between the airfoil and the horizontal axis is given by  

   10 1 cost t       (6.48) 

The reduced frequency of the oscillation, which is usually used to characterize the 

unsteady motion, is defined by 

2
s

c
K

U





  (6.49) 

where U  is the free-stream velocity. In the present simulation, the Reynolds number 

Re U c   is 5000 and the freestream Mach number is 0.4. The reduced frequency 

of oscillation is 0.5. The computational domain is a rectangle with the size of 

40 30c c  in the x - and y - directions, respectively. A grid size of 743 500  is 

applied to discretize the domain. The steady flow at 0    is chosen as the initial 

condition. 

 

Figure 6.16 shows the density contours in the second cycle of motion for the case of 

5000 0 4 0 5sRe , M . , K .   . The results of Guo et al. (1994) are also included for 

comparison in this figure. From Figure 6.16(a) and Figure 6.16(i) or any other pairs of 

figures with the same angle of attack, it is observed that the flow structures vary 

dramatically in the upstroke and downstroke processes. During the upstroke process 

(Figure 6.16(a)-(c)), the trailing edge vortices are first formed at a lower angle of 

attack. After that, a leading-edge vortex appears at a higher angle of attack, which is 

between 16  (Figure 6.16(d)) and 20  (Figure 6.16(e)). During the downstroke 

process (Figure 6.16(f)-(g)), this leading-edge vortex grows very quickly. In addition, 

a second counterclockwise vortex is formed at the upper airfoil surface, which might 
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be caused by the combined effect of adverse gradient and the leading-edge vortex. It 

is worth noting that in contrast with high-Reynolds-number turbulence flows, even a 

small adverse gradient in laminar flows can produce a recirculation region which 

affects the local flow field. With the movement of the airfoil downstroke, these 

vortices still exist and grow in size at the upper surface of the airfoil even through the 

local angle of attack reaches the minimum. The above observations are in line with 

those in the work of Guo et al. (1994). The present computation is limited to low-

Reynolds-number laminar flows, but is of value since they can illustrate important 

dynamic stall features and trends. 

 

6.4 Concluding remarks 

In this chapter, a diffuse interface IBM was proposed for simulation of compressible 

stationary and moving boundary flows. In the method, the solution of the flow field 

and implementation of boundary condition were decoupled into two steps by applying 

the fractional step technique. The intermediate flow field was first predicted by 

implementing the developed GKFS and the correction of flow variables was 

conducted subsequently by using the current diffuse interface IBM. Two different 

schemes were proposed for stationary and moving boundaries, respectively. For 

stationary boundary, the momentum field was firstly corrected by converting the no-

slip velocity condition to the momentum condition. After that, the density correction 

was made from the momentum correction by using the continuity equation, while for 

the moving boundary, the momentum condition on the boundary is unknown. As a 

result, the density field has to be corrected by an iterative process rather than by using 

the momentum correction. It showed that only a small number of iterations were 

needed to get the correct density in each time step. The present diffuse interface IBM 
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was validated to be a much simpler and more flexible way to simulate the 

compressible moving boundary problems. Moreover, the proposed correction 

procedure makes the hydrodynamic forces calculation on the immersed boundary 

quite convenient and accurate.  

 

The proposed two methods of diffuse interface IBM were firstly validated by 

simulating flow around a stationary circular cylinder. The obtained results of two 

methods were almost identical with each other and achieved good agreements with 

the data available in the literature. After that, several stationary and moving boundary 

flow problems were simulated, such as compressible flow over a NACA0012 airfoil, 

flow over a high-frequency plunging SD7003 airfoil, compressible flow over a 

rotating cylinder and laminar flow over a harmonic oscillating NACA0012 airfoil. 

Once again, good agreements between the present results and the published/computed 

data were achieved, which validated the capability of the present diffuse interface 

IBM for simulation of complex compressible moving boundary flows. 
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Table 6.1 Comparison of drag coefficient for supersonic flow around a circular 

cylinder 

Cases Reference d
C  

1 2 300M . , Re    

Takahashi et al. (2014) 1.6221 

Present1 1.6831 

Present2 1.6805 

   

2 0 300M . , Re    

Takahashi et al. (2014) 1.5480 

Present1 1.5880 

Present2 1.5905 

Present1: Method for stationary boundary 

Present2: Method for moving boundary 

 

Table 6.2 Lift and drag coefficients for viscous flow over a NACA0012 airfoil 

Cases References d
C  lC  

0.5M   

5000Re   

0    

Mavriplis and Jameson (1990) 0.05610 -- 

Crumpton et al. (1993) 0.05610 -- 

Jawahar and Kamath (2000) 0.05557 0.00 

Present 0.05813 0.00 

    

2.0M   

1000Re   

10    

GAMM workshop 

(Bristeau, 2013) 
0.2515-0.2535 0.3388-0.3427 

De Palma et al. (2006) 0.2515 0.3400 

Present 0.25317 0.30319 
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(a) Density          (b) Pressure 

  

(c) U-velocity          (d) V-velocity 

Figure 6.1 Comparison of contours for flow over cylinder at 1.2M  , 300Re   

obtained from present scheme (Solid lines) and DVM (Flood and dashed lines) 
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(a) Density          (b) Pressure 

  

(c) U-velocity          (d) V-velocity 

Figure 6.2 Comparison of contours for flow over cylinder at 2.0M  , 300Re   

obtained from present scheme (Solid lines) and DVM (Flood and dashed lines) 

 



 

198 

  

Figure 6.3 Pressure coefficient distribution on the cylinder surface 

 

 

Figure 6.4 Schematic diagram for flow over a NACA0012 airfoil 
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(a) Density         (b) Pressure 

  

(c) U-velocity         (d) V-velocity 

Figure 6.5 Comparison of contours for NACA0012 airfoil at 0 5M .  , 0   , 

5000Re   obtained from present scheme (Solid lines) and body-fitted grids (Flood 

and dashed lines) 

 

  

Figure 6.6 Streamlines for flow over a NACA0012 airfoil at 0 5M .  , 0   , 

5000Re   
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Figure 6.7 Pressure coefficient distribution for NACA0012 airfoil at 0 5M .  , 

0   , 5000Re   

 

  

(a) Density          (b) Pressure 
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(c) U-velocity          (d) V-velocity 

Figure 6.8 Comparison of contours for NACA0012 airfoil at 2 0M .  , 10   , 

1000Re   obtained from present scheme (Solid lines) and body-fitted grids (Flood 

and dashed lines) 

 

 

Figure 6.9 Pressure coefficient distribution for NACA0012 airfoil at 2 0M .  , 

10   , 1000Re   
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Figure 6.10 Lift and drag coefficients versus normalized time t/T 

 

  

(a) 0t T   

  

(b) 0 25t . T  

  

(c) 0 5t . T  
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(d) 0 75t . T  

Figure 6.11 Comparison of the vorticities of present results (Left) and Visbal et al. 

(2009) (Right) 

 

  

Figure 6.12 The streamlines near the cylinder with pressure contours obtained from 

present scheme (Left) and DVM (Right) 

 

  

(a) Density          (b) Pressure 
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(c) U-velocity          (d) V-velocity 

Figure 6.13 Comparison of contours for flow past a rotational cylinder obtained from 

present scheme (Solid lines) and DVM (Flood and dashed lines) 

 

 

Figure 6.14 Pressure coefficient distributions along the y-direction 
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Figure 6.15 Schematic diagram for flow over a harmonic oscillating cylinder 

 

 

(a) up 4    

 

(b) up 8    
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(c) up 12    

 

(d) up 16    

 

(e) up 20    

 

(f) down 16    

 

(g) down 12    
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(h) down 8    

 

(i) down 4    

 

(j) down 0    

Figure 6.16 Instantaneous density contours for the flow around an oscillating 

NACA0012 airfoil at 0 4M .  , 5000Re  , 0 5sK .  of Guo et al. (1994) (Left) and 

present results (Right) 

 



 

208 

Chapter 7  

Conclusions and Recommendations 

 

7.1 Conclusions 

In this thesis, a series of efficient and consistent gas kinetic flux solvers (GKFSs) 

have been proposed for simulating a variety of 1D to 3D flow problems, including 

incompressible and compressible flows, inviscid and viscous flows, and complex 

moving boundary problems. Compared with conventional kinetic flux vector scheme 

(KFVS) or gas kinetic BGK scheme, the proposed GKFSs have been shown to be 

versatile and enjoy many attractive advantages, i.e., (1) good control of the numerical 

dissipation, (2) eliminating the drawbacks of gas kinetic scheme, such as improving 

the computational efficiency and reducing the complexity by using fewer coefficients, 

(3) capable of providing explicit formulations for conservative flow variables and 

numerical fluxes, (4) effectiveness in solving complex moving boundary problems 

involving incompressible and compressible flows. A detailed summary of the GKFSs 

will be provided next. 

 

As a type of gas kinetic schemes, the KFVS is only applicable to inviscid flows 

because of its defect in controlling the numerical dissipation. To remove this 

drawback, a switch function-based gas kinetic scheme (SF-GKS) was proposed. An 

easy and efficient way was developed to control the numerical dissipation by 

introducing a switch function. As a result, the proposed method can not only well 

capture the strong shock waves but also resolve thin boundary layers. The proposed 

SF-GKS was firstly validated by simulating inviscid flows, including 1D Euler shock 
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tube, regular shock reflection and double Mach reflection. It showed that the results of 

SF-GKS were slightly better than those of KFVS probably because of less numerical 

dissipation introduced. In addition, the capability of SF-GKS was further extended 

from simulating inviscid flows to viscous flows. Numerical experiments, including 

compressible turbulent flow around a RAE2822 airfoil and hypersonic flow around 

one half of a cylinder, showed that the compressible viscous flows can be well 

simulated by the developed SF-GKS. Moreover, the computational accuracy and 

numerical stability were also verified. It is worth mentioning that the SA turbulence 

model applied in the Reynolds-averaged Navier-Stokes equations performs stably and 

accurately in the above turbulence flow simulations. 

 

To develop a more general and efficient flux solver based on another type of gas 

kinetic schemes, a gas kinetic flux solver was proposed. In this solver, the governing 

differential equations were discretized by the finite volume method and the 

macroscopic flow variables were directly updated at cell centers. Through the local 

reconstruction of the Boltzmann equation with BGK approximation, the inviscid and 

viscous fluxes at cell interface were computed simultaneously by using the gas 

distribution function, which is evaluated by a much simpler and efficient way in this 

work. Moreover, the explicit formulations of conservative flow variables and 

numerical fluxes at cell interface can be explicitly given. Similar to conventional gas 

kinetic BGK scheme, the BGK collision model was adopted to control the numerical 

dissipation by a real collision time. The proposed GKFS was successfully validated 

by simulating several 2D numerical examples. Firstly, three specific schemes of 

GKFS proposed in this work were applied to simulate incompressible flows, including 

decaying vortex flow, lid-driven cavity flow, flow over a circular cylinder and 
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Couette flow with a temperature gradient. Numerical results of decaying vortex flow 

showed that all three schemes roughly had the second order of accuracy in space. 

Among them, Scheme II was more attractive due to its high efficiency from the 

results of lid-driven cavity flow. However, for simulation of compressible flows, 

Scheme I and Scheme II encountered numerical instability. In contrast, Scheme III 

performed equally well for simulation of both incompressible and compressible flows. 

Several numerical examples of compressible flows, such as shock-boundary layer 

interaction, laminar flow over a NACA0012 airfoil and hypersonic flow over a 

cylinder, were simulated to verify the capability of GKFS. It showed that GKFS only 

takes about 57.1% of the CPU time of gas kinetic BGK scheme for shock-boundary 

layer interaction on the same non-uniform grids. Numerical results also showed the 

good agreements with the published data in the literature. 

 

To extend the GKFS to solve 3D flows, a truly 3D flux solver was presented for 

effective simulation of incompressible and compressible 3D flows. The 3D GKFS 

applied the finite volume method to solve three-dimensional N-S equations. The 

viscous and inviscid fluxes were evaluated in a simple and easy way at the cell 

interface by the local reconstruction of the continuous Boltzmann solutions. In the 

development, a local coordinate transformation was introduced to transform the 

velocities in the Cartesian coordinate system to the local normal and tangential 

directions at each cell interface. In this way, all the interfaces can be treated in the 

same manner. The 3D GKFS has been validated by simulating several 3D 

incompressible and compressible flows, such as 3D lid-driven cavity flow, 

incompressible flow past a stationary sphere, flow around an ONERA M6 wing, 

turbulent flow over the DPW-W1 and DLR-F6 wing-body configuration. The 
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obtained numerical results compared well with the experimental and/or numerical 

data in the literature. Through numerical validation, it is verified that the proposed 

GKFS is capable of simulating challenging flow problems with complex geometries. 

 

Another important contribution of this thesis was the extension of immersed boundary 

method (IBM) in the framework of GKFS for the simulation of stationary and moving 

boundary problems. The IBM may be the simplest and efficient way to deal with 

complex as well as moving solid boundaries. Firstly, the boundary condition-enforced 

immersed boundary-gas kinetic flux solver (IB-GKFS) was proposed for simulating 

incompressible flows. In IB-GKFS, a fractional step approach was applied to split the 

overall solution process into two steps: the predictor step and the corrector step. In the 

predictor step, the intermediate flow field was predicted by applying the GKFS, which 

reconstructs the fluxes using the continuous Boltzmann solutions. As the solid 

boundary was not taken into account in this step, the external forcing term was 

avoided during the evaluation of numerical flux at each cell interface, which greatly 

simplifies the implementation. Subsequently, to guarantee the no-slip boundary 

condition, the intermediate velocity field was corrected by using the implicit boundary 

condition-enforced immersed boundary method. The proposed IB-GKFS was 

successfully validated by various stationary and moving boundary flows, such as flow 

past a stationary circular cylinder and the NACA0012 airfoil, flow past an in-line and 

transverse oscillating cylinder with a prescribed motion, laminar flow around a rapid 

pitching NACA0015 airfoil and one particle sedimentation in a rectangular domain. 

The obtained results achieved good agreements with available data in the literature. 

Through numerical simulation, it was successfully verified that the proposed IB-

GKFS could be effectively applied for complex and moving boundary problems  
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Although the proposed IB-GKFS was successfully developed for simulating 

incompressible moving boundary problems, it is not applicable for compressible 

flows. This is because in IB-GKFS, only the velocity field is corrected and the 

influence of the immersed boundary on the density, pressure and temperature fields is 

neglected. There is no mechanism to correct these flow variables in IB-GKFS. To 

overcome this difficulty, a diffuse interface immersed boundary method was further 

developed for the simulation of compressible viscous flows around stationary and 

moving boundaries. In this method, the solution of the flow field and implementation 

of boundary condition were decoupled into two steps by applying the fractional step 

technique. The intermediate flow field was first predicted by implementing the 

proposed GKFS and the correction of flow variables was conducted subsequently by 

using the current diffuse interface IBM. Two different schemes were proposed for 

stationary and moving boundaries, respectively. The proposed two methods of diffuse 

interface IBM were firstly validated by simulating flow around a stationary circular 

cylinder. The obtained results of two methods were identical with each other and 

achieved good agreements with the data available in the literature. After that, several 

stationary and moving boundary flow cases were tested, such as compressible flow 

over a NACA0012 airfoil, flow over a high-frequency plunging SD7003 airfoil, 

compressible flow over a rotating cylinder and laminar flow over a harmonic 

oscillating NACA0012 airfoil. Once again, good agreements between the present 

results and the published/computed data were achieved, which validated the capability 

of the present diffuse interface IBM for simulation of complex compressible moving 

boundary flows. The present diffuse interface IBM was proven to be a much simpler 

and more flexible way to simulate the compressible moving boundary problems. 
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Moreover, the proposed correction procedure makes the calculation of hydrodynamic 

forces on the immersed boundary quite convenient and accurate. 

 

7.2 Recommendations 

In the above section, the distinctive features and excellent performance of the present 

GKFSs have been summarized. In the following, the limitations of the GKFSs will be 

presented and the corresponding recommendations will be addressed. Firstly, 

although the explicit formulations of numerical flux can be given in GKFS, it is still 

not easy to be implemented directly. In this regard, simplification of these 

formulations should be considered in the future, especially for the incompressible 

flows. By applying the continuity assumption for flow variable distributions at a cell 

interface, it is believed that simplification can be made to improve the numerical 

efficiency. Secondly, only the isothermal boundary condition, which is subject to 

Dirichlet-type boundary condition, is considered in the current compressible IBM. In 

the aspect of broader range of application, there is a need to extend this method to 

Neumann-type boundary condition, such as adiabatic wall. Another possible avenue 

of future work is to extend the current methods from the second-order to high-order 

schemes by using high-order schemes to discretize the N-S equations and adding high 

order derivatives in approximation of distribution functions. 
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Appendix 

 

Appendix A: Moments of Maxwellian Distribution Function 

In this thesis, some notations are taken to simplify the formulations. In this appendix, 

the notations for the moments of Maxwellian distribution function are introduced. 

Firstly, the Maxwellian distribution function for 2D flows is given as 

    2 2 2

2

2

K

u U v V

g e
 






     
  

 
 (A.1) 

For 3D flows, the Maxwellian distribution function becomes 

      2 2 2 2

3

2

K

u U v V w W

g e
 






       
  

 
 (A.2) 

Following the idea of Xu (2001), the notation for the moments of g  is defined as: 

  gdudvdwd    (A.3) 

Then the general moment formulation becomes 

n m l p n m l pu v w u v w   (A.4) 

In general, the phase velocities  , ,u v w  are based on the Cartesian coordinate system. 

As a result, in a local cell interface, the phase velocities  , ,u v w  are not necessarily in 

the normal or tangential directions of the interface and a local coordinate 

transformation might be needed. Here, to make the notations general, only the 

moments of u  are presented for phase velocities. When the integral of velocity is 

from   to  , the moments of 
nu  and n  are 

0 1u   (A.5) 
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1u U  (A.6) 
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and  

0 1   (A.11) 
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When the moments for 
nu  are calculated in the half space, the error function and the 

complementary error function appear in the formulation. Take notation of the integral 

from 0 to   as 
0

...


 and integral from   to 0 as 
0

...


, the moments become 
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and 
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The same formulation can be obtained for mv  and lw  by changing U  to V  and W  

in the above moments of nu . 

 

 

Appendix B: Expressions of Conservative Flow Variables and Fluxes 

in y  Direction 

In Chapter 3, the detailed derivation of conservative flow variables and fluxes at the 

interface in the x  direction is presented. When evaluating conservative flow variables 

and fluxes in the y  direction, the integral domain of velocity v  is separated to 

 , 0  and  0,  . Therefore, the moments in Appendix A should be changed to  
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and similarly 
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The values of moments whose integrals are from -  to +  are the same as those in 

Appendix A. 

 

With parameters defined above, the conservative flow variables W  at the interface in 

the y  direction are given by 

 
   v v v v
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 (B.14) 

Eqs. (B.11)-(B.14) are the explicit expressions of conservative flow variables for 

Scheme I. For Scheme II and Scheme III, the expressions are simplified as 

 v v

l l r ra a       (B.15) 

 v v

l l l r r rU U a U a       (B.16) 

 v v

l l r rV b b       (B.17) 
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   

 (B.18) 

 

After the evaluation of conservative flow variables, the explicit expressions for 

numerical fluxes are given by 

   0 1y yy  F F F  (B.19) 

where  
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and 
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 (B.24) 

Eqs. (B.21)-(B.24) are for Scheme I and Scheme II, in which the streaming time step 

t  is involved in the expressions. For Scheme III,  1y
F  should be changed to 
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Appendix C: Expression for heat flux q  

As is well known, when the Maxwellian distribution function is adopted as the 

equilibrium state, the Prandtl number is fixed to unity. In order to adjust the Prandtl 

number to any realistic value, the modification of the heat flux with a variable Prandtl 

number can be selected (Eq. (3. 80)). The heat flux q  is evaluated by Eq. (3.81), 

which is expressed in the integral form 

      2 2 21

2
q u U u U v V fd        (C.1) 
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In this appendix, the expression for the heat flux q  is presented. The above equation 

can be expanded to 
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 (C.2) 

As uf d U f d    , Eq. (C.1) can be rewritten as 
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 (C.3) 

It can be found that the numerical fluxes for momentum and energy equations in the 

x  direction are 

x

UF uvf d    (C.4) 

2x

VF u f d    (C.5) 

 2 2 21

2

x

EF u u v f d      (C.6) 

where 
x

UF  and 
x

VF  are the fluxes of momentum equations and 
x

EF  is the flux of 

energy equation. On the other hand, the conservative flow variables can be expressed 

as 

U uf d    (C.7) 

V vf d    (C.8) 

 2 2 21

2
E u v f d      (C.9) 

where , , ,U V E  are the flow variables on the interface. 
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Substituting Eqs. (C.3)-(C.9) into Eq. (C.2), the heat flux q  can be expressed as 

 2 2x x x

E U Vq F U F V F U E U V              (C.10) 

The above Eq. (C.10) means that the heat flux q  can be obtained after the evaluation 

of the conservative flow variables and numerical fluxes at the cell interface. Not much 

additional computational effort is required by taking this modification. In addition, for 

three-dimensional theory, the heat flux q  can be written similarly 

 2 2 2x x x x

E U V Wq F U F V F W F U E U V W                   (C.11) 
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