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Chapter 1
Introduction

Deep learning (LeCun, Bengio, and Hinton, 2015) refers to a branch of machine

learning models, which perform exceptionally well in learning rich representations

of data. A deep learning model typically consists of multiple feature transforma-

tion layers for extracting high-level features from raw input data. By tuning the

model parameters and structures (e.g. layer size and connections), the extracted

features could improve the accuracy significantly for tasks of interest.

1.1 Deep Learning and Its Applications

Deep learning is regarded as a re-branding of neural networks developed twenty

years ago, as it inherits many key neural networks techniques and algorithms.

Its recent resurgence is mainly fueled by its excellent performance for a wide

range of tasks. For example, the deep convolutional neural network (Krizhevsky,

Sutskever, and Hinton, 2012) has made break-through progress for computer

vision tasks, including image classification (Figure 1.1a) and retrieval (Wan et al.,

8           3          5          0 

The digit is 5 这个数字是5 

The digit is 5 

(a) Image classification.

8           3          5          0 

The digit is 5 这个数字是5 

The digit is 5 

(b) Speech recognition.

8           3          5          0 
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The digit is 5 

(c) Machine translation.

Figure 1.1: Sample applications of deep learning.
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Chapter 1. Introduction 2

2014). Deep learning also made big improvement in acoustic modeling (Abdel-

rahman Mohamed, Dahl, and Hinton, 2012) (Figure 1.1b) via the combination

of a deep multi-layer perceptron model and a hidden Markov model. Recently,

deep learning has become popular for textual data applications (Goldberg, 2015;

Collobert et al., 2011), e.g. machine translation (Figure 1.1c) based on recurrent

neural networks (Sutskever, Vinyals, and Le, 2014). With the ability of learning

rich representations of different types of mono-modal data, deep learning has the

potential to learn adaptive representations of multi-modal data. Multi-modal

data is emerging in online social media and e-commerce platforms, including

temporally synchronized data (e.g. video clips and audio transcripts), spatially

related data (e.g. point of interest and user travel history), or semantically

connected data (e.g. images and tags). One challenge is that different modalities

have different properties, e.g. distributions and raw representations. The deep

learning models should be able to bridge the gap between different modalities.

1.2 Challenges of Using Deep Learning

Before deploying a deep learning model in an application, we need to train

the model. The training procedure tunes parameters involved in the model to

optimize an objective function, e.g. a function that measures the error between

the prediction and the ground truth. Models with complex structures and a large

amount of parameters take a long time to train (Szegedy et al., 2014; Simonyan

and Zisserman, 2014), and are prone to local optimal solutions or overfitting1.

With the advancements of high performance computing devices such Graphic

Processing Units (GPU) and large labeled datasets like ImageNet (Deng et al.,

2009), we are able to train a big model to capture rich data semantics. However,

there are still two major challenges in training large deep learning models, namely

efficiency and usability.

1which would result in a model with good performance for the training data but poor
performance for the test data
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First, it takes long time (e.g. several weeks) to train some large models (Krizhevsky,

Sutskever, and Hinton, 2012; Szegedy et al., 2014) even using GPUs. Moreover,

the training programs for large models consume a vast amount of memory, which

restricts the model complexity and size since GPU devices have limited memory.

Optimizations in terms of memory efficiency and space efficiency are crucial. Dis-

tributed training has been introduced to accelerate the training process. However,

there are many types of overhead that may affect the system scalability, including

communication and synchronization. A flexible system architecture would be

necessary for studying the various effects to optimize the training.

Second, deep learning models have complex structures (e.g. more than 20 layers

in (Szegedy et al., 2014)), especially for models from multi-modal applications,

which makes it difficult for non-experts to implement these models. Training in

a large cluster with big datasets is more challenging. It is significant to provide

good programming models and user interfaces to let non-experts train different

models with little effort.

1.3 Goals and Contributions

The goal of this dissertation is to propose a deep learning system that is easy

to use, efficient and extensible for complex applications. In particular, the

contributions are as follows:

• We give a comprehensive investigation and analysis on the optimization

techniques for deep learning systems. Many issues will be considered,

including efficiency, memory footprint, communication, fault-tolerance,

etc. We would also discuss some optimization techniques from database

systems that could be adapted for deep learning systems including operation

scheduling and memory management.

• Following the investigation, we describe the design and implementation of

our deep learning system named SINGA for distributed training. SINGA
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provides an intuitive programming model base on the common abstraction

(i.e., layer) of deep learning models. The training is conducted over a

dataflow graph consisting of layers. Distributed training is enabled almost

transparently to users by partitioning the graph among workers and run

each worker over its own sub-graph. Flexible system architecture enables

users to exploit different distributed training frameworks to minimize the

training time. Our experience with developing and training deep learning

models using SINGA shows that the platform is both usable and scalable.

The SINGA system has been accepted as an Apache incubator project.

• Besides the system research, we also present our approaches for multi-modal

retrieval using deep learning techniques. This application would be used to

verify SINGA’s capability of handling large complex models. Multi-modal

retrieval enables users to query information from different modalities of

data. For example, it allows users to take a snap of product to search

relevant descriptions and reviews. The challenge is to learn effective map-

ping functions to extract common representations for data from different

modalities. Two approaches will be introduced: (1) an unsupervised ap-

proach that uses stacked auto-encoders (SAEs) and requires minimum prior

knowledge on the training data, and (2) a supervised approach using deep

convolutional neural network (DCNN) and neural language model (NLM).

Experimental results on three real datasets demonstrate that our methods

achieve significant improvement in search accuracy over the state-of-the-art

solutions.

1.4 Outline

The rest of this dissertation is organized as follows: Chapter 2 reviews deep

learning systems and the multi-modal retrieval application; the SINGA system is

introduced in Chapter 4; Chapter 5 describes our approaches for the multi-modal

retrieval application; This dissertation is concluded in Chapter 6.



Chapter 2
Background

This chapter will first give a brief review on the progress of deep learning

techniques, including models, training algorithms and applications. After that,

there is a discussion on the challenges and opportunities of developing deep

learning systems, which provides some guides for the development of our SINGA

system. Finally, related works on the multi-modal data retrieval problem will be

presented, which is an example application of the SINGA system.

2.1 Deep Learning

2.1.1 Historical Review

Deep learning refers to a set of machine learning models which attempt to

learn high-level abstractions of raw data through multiple feature transformation

layers. Features extracted from high-level layers typically have better performance

than hand-crafted features in many tasks, e.g. image classification and acoustic

modeling. Deep learning models with multiple layers were called artificial neural

nets (abbr. networks) in history dating back to the 1950s (Selfridge, 1958;

Rosenblatt, 1957). Modern neural net architectures were developed around

the 1980s (LeCun, 1985; Rumelhart, Hinton, and Williams, 1986), when the

back-propagation algorithm was applied to train multiple layer neural nets.

Various neural nets were then proposed for different prediction tasks, e.g. speech

recognition (Waibel et al., 1989) and document reading (LeCun et al., 1998).

5
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However, these neural nets were found to be hard to train, because it was easy

to get trapped in local optima with little training data. Moreover, it was time

consuming to train even middle sized neural nets because the hardware (CPU)

was slow.

In 2006, Hinton et al. (Hinton, Osindero, and Teh, 2006) proposed a new method

to train one type of deep neural nets, called Deep Belief Networks (DBN). This

method uses Restricted Boltzmann Machine (RBM) to initialize layers one by

one. RBM can exploit a large amount of unlabeled data to initialize the model

parameters into sensible values; therefore it helps to train a good model. RBM

and DBN are in the energy model category in Figure 2.1. DBN made a big

improvement for speech recognition (Dahl et al., 2012; Abdel-rahman Mohamed,

Dahl, and Hinton, 2012) with the help of Graphic Processing Units (GPU), which

is 10 to 20 times faster than CPU. Since then, deep learning has been referred to

as deep neural nets.

With GPUs and a large labeled training dataset, i.e. ImageNet (Deng et al.,

2009), Alex et al. (Krizhevsky, Sutskever, and Hinton, 2012) proposed a Deep

Convolutional Neural Net (DCNN) in 2012, also called AlexNet, which made

a breakthrough improvement for image classification. AlexNet shares a similar

architecture as the LeNet (LeCun et al., 1998) developed in the 1990s, but

has a deeper and larger structure, which increases its capability of capturing

richer data representations. Since then, many variants of DCNN have been

proposed (Simonyan and Zisserman, 2014; Szegedy et al., 2014) with much deeper

structures and larger sizes of model parameters. They dominate almost all

computer vision tasks. However, the training still takes a long time, e.g. several

weeks.

Another set of popular neural networks is called Recurrent Neural Networks

(RNN). Modern RNNs were developed in the 1990s for modeling sequential

data, including sentences and time series data. However, the training of RNN is

much harder than other neural nets due to the gradient vanishing and exploding
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• TBD 

Feedforward  

Models 

Energy 

Models 

Recurrent 

Neural 

Networks 

Figure 2.1: Categories of popular deep learning models.

problems (Hochreiter, 1991; Bengio, Simard, and Frasconi, 1994). Many variants

were proposed to address this issue, including LSTM (Hochreiter and Schmidhuber,

1997) and GRU (Cho et al., 2014). Together with the advancements of training

algorithms, it was shown recently that RNN is practical for a broad range of

applications such as image caption generation (Mao et al., 2014) and machine

translation (Sutskever, Vinyals, and Le, 2014).

DBN, DCNN and RNN are the three most popular deep learning models as

shown in Figure 2.1. They have achieved state-of-the-art performance for various

tasks. However, these models have different structures and training algorithms.

It is tedious and may not be even possible for a deep learning user or researcher

to implement the training and inference algorithms 2.1.2 for these models from

scratch. The case is more complex for applications with multi-modal data, where

one deep learning model is applied for one modality. It is essential to have a

training system that is efficient and extensible for wide range of applications.

2.1.2 Training and Inference

There are two tasks of a deep learning system, namely training and inference.

Before deploying a deep learning model, the model parameters involved in the

transformation layers need to be trained. The training turns out to be a numeric

optimization procedure to find parameter values that minimize the discrepancy

(loss function) between the expected output and the real output. Stochastic



Chapter 2. Background 8

Gradient Descent (SGD) is the most widely used training algorithm. As shown

in Figure 2.2, SGD initializes the parameters with random values, and then

iteratively refines them based on the computed gradients with respect to the loss

function. There are three commonly used algorithms for gradient computation

corresponding to the three model categories above: Back Propagation (BP),

Contrastive Divergence (CD) and Back Propagation Through Time (BPTT).

By regarding the layers of a neural net as nodes of a graph, these algorithms

can be evaluated by traversing the graph in certain sequences. For instance,

the BP algorithm is illustrated in Figure 2.3, where a simple feedforward model

is trained by forward propagating along the solid arrows to compute the data

(feature) of each layer, and backward propagating along the dashed arrows to

compute the gradient of each layer and each parameter. Equation 2.1-2.3 are for

the forward propagation, where x is the input feature vector and l is the squared

Euclidean loss. Equation 2.4- 2.7 are for the backward propagation, where W ′

and b′ are gradients. Equation 2.8 and 2.9 update the parameters along the

direction of decreasing the objective loss value, where α controls the updating

step. For distributed training, multiple workers (e.g., machines or GPU cards)

run SGD synchronously or asynchronously. For instance, the Hogwild!(Recht et

al., 2011) training framework uses multiple threads (on a single node with memory

shared) to compute the gradients and update the parameters independently (i.e.,

asynchronously). More details on the synchronous and asynchronous training are

discussed in Section 4.4.

Inference is the procedure of extracting representations for new data, which

propagates the raw input through all layers of a neural net without changing the

model parameters. For example, the inference procedure of the simple neural net

shown in Figure 2.3 would compute Equation 2.1-2.2 in order. Given that the

inference is much simper than training, we will focus on the training procedure

for the rest of this dissertation.
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Figure 2.2: Illustration of stochastic gradient descent (SGD).
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Figure 2.3: Data flow of Back-Propagation.

a = Wx+ b (2.1)

h = σ(a) =
1

1 + e−x
(2.2)

l = ||h− y||22 (2.3)

h′ = h− y (2.4)

a′ = h′ ∗ h ∗ (1− h) (2.5)

W ′ = a′ · xT (2.6)

b′ = a′ (2.7)

W = W − α ∗W ′ (2.8)

b = b− α ∗ b′ (2.9)
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2.1.3 Sample Models

Three specific deep learning models are introduced below, which would be used

in Chapter 5 for multi-modal retrieval.

Auto-encoder

Auto-encoder has been widely used in unsupervised feature learning and clas-

sification tasks (Rifai et al., 2011; Vincent et al., 2008; Goroshin and LeCun,

2013; Socher et al., 2011). It can be seen as a special neural network with three

layers – the input layer, the latent layer, and the reconstruction layer. As shown

in Figure 2.4, the raw input feature x0 ∈ Rd0 in the input layer is encoded into

latent feature x1 ∈ Rd1 via a deterministic mapping fe:

x1 = fe(x0) = se(W
T
1 x0 + b1) (2.10)

where se is the activation function of the encoder, W1 ∈ Rd0×d1 is a weight matrix

and b1 ∈ Rd1 is a bias vector. The latent feature x1 is then decoded back to

x2 ∈ Rd0 via another mapping function fd:

x2 = fd(x1) = sd(W
T
2 x1 + b2) (2.11)

Similarly, sd is the activation function of the decoder with parameters {W2, b2},

W2 ∈ Rd1×d0 , b2 ∈ Rd0 . Sigmoid function or Tanh function is typically used

as the activation functions se and sd. The parameters {W1,W2, b1, b2} of the

auto-encoder are learned with the objective of minimizing the difference (called

reconstruction error) between the raw input x0 and the reconstruction output

x2. Squared Euclidean distance, negative log likelihood and cross-entropy are

often used to measure the reconstruction error. By minimizing the reconstruc-

tion error, we can use the latent feature to reconstruct the original input with

minimum information loss. In this way, the latent feature preserves regularities

(or semantics) of the input data.
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Figure 2.4: Auto-encoder.

Stacked Auto-encoder

Stacked Auto-encoders (SAE) are constructed by stacking multiple (e.g., h) auto-

encoders. The input feature vector x0 is fed to the bottom auto-encoder. After

training the bottom auto-encoder, the latent representation x1 is propagated

to the higher auto-encoder. The same procedure is repeated until all the auto-

encoders are trained. The latent representation xh from the top (i.e., h-th)

auto-encoder, is the output of the stacked auto-encoders, which can be further fed

into other applications, such as SVM for classification. The stacked auto-encoders

can be fine-tuned by minimizing the reconstruction error between the input

feature x0 and the reconstruction feature x2h which is computed by forwarding

the x0 through all encoders and then through all decoders as shown in Figure 2.5.

In this way, the output feature xh can reconstruct the input feature with minimal

information loss. In other words, xh preserves regularities (or semantics) of the

input data x0.

. . .

. 
. 

.

. . .

. . .

. . .

. . .. . .

. . .

x0

x1

xh

x2h-1

x2h

. 
. 

.

Figure 2.5: Fine-tune stacked auto-encoders.
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Deep Convolutional Neural Network

Deep Convolutional Neural Network (DCNN) has shown great success in computer

vision tasks (Donahue et al., 2013; Girshick et al., 2014) since the first DCNN

(called AlexNet) was proposed by Alex (Krizhevsky, Sutskever, and Hinton,

2012). It has specialized connectivity structure, which usually consists of multiple

convolutional layers followed by fully connected layers. These layers form stacked,

multiple-staged feature extractors, with higher layers generating more abstract

features from lower ones. On top of the feature extractor layers, there is a

classification layer.

The input to DCNN contains raw image pixels such as a vector of RGB values,

which is forwarded through all feature extractor layers to generate a feature

vector that is a high-level abstraction of the input data. The training data of

DCNN consists of image-label pairs. Let x denote the image raw feature and

fI(x) the feature vector extracted from DCNN. t is the binary label vector of x.

If x is associated with the i-th label li, ti is set to 1 and all other elements are

set to 0. fI(x) is forwarded to the classification layer to predict the final output

p(x), where pi(x) is the probability of x being labeled with li. Given x and fI(x),

pi(x) is defined as:

pi(x) =
efI(x)i∑
j e

fI(x)j
(2.12)

which is a Softmax function. Based on Equation 2.12, the prediction error is

defined as the negative log likelihood:

LI(x, t) = −
∑
i

ti log pi(x) (2.13)

Neural Language Model

Neural Language Model (NLM), first introduced in (Bengio et al., 2003), learn a

dense feature vector for each word or phrase, called a distributed representation

or a word embedding. Among them, the Skip-Gram model (SGM) (Mikolov et
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al., 2013) proposed by Mikolov et al. is the state-of-the-art. Given a word a and

context b that co-occur, SGM models the conditional probability p(a|b) using

Softmax:

p(a|b) = eva·vb∑
ã e

vã·vb
(2.14)

where va and vb are vector representations of word a and context b respectively.

The denominator
∑

ã e
vã·vb is expensive to calculate given a large vocabulary,

where ã is any word in the vocabulary. Thus, approximations were proposed to

estimate it (Mikolov et al., 2013). Given a corpus of sentences, SGM is trained to

learn vector representations v by maximizing Equation 2.14 over all co-occurring

pairs.

The learned dense vectors can be used to construct a dense vector for one sentence

or document (e.g., by averaging), or to calculate the similarity of two words, e.g.,

using the cosine similarity function.

2.1.4 Existing Systems

Before we started developing our system, there were a couple of deep learning

systems, namely Caffe (Jia et al., 2014a), Torch (Collobert, Kavukcuoglu, and

Farabet, 2011), Theano (Bastien et al., 2012), Google Brain (Dean et al., 2012a)

and the Adam project (Chilimbi et al., 2014) from Microsoft. However, they were

either closed source or lack of distributed training support. Hence, we started

developing our open source system (SINGA), aiming to accelerate the training

speed via distributed computing. More systems were released recently, including

TensorFlow (Abadi et al., 2015), CNTK (Yu et al., 2014) and MxNet (Chen et

al., 2015). Table 2.1 gives a brief summary of these systems. Google Brain and

the Adam project are closed-source, rendering them unusable by common users.

Optimization techniques used in these systems would be discussed in Section 3.3.

Two major programming styles are used in the existing systems, namely im-
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Table 2.1: A brief summary of existing systems.

System Start Programming

/Library License Time Distributed Style Hardware

Theano BSD 2008 N Declarative GPU/CPU

Torch BSD 2012 N Imperative GPU/CPU

Caffe BSD 2013 N Imperative GPU/CPU

SINGA Apache V2 2014 Y Imperative GPU/CPU

MxNet Apache V2 2015 Y Mixed GPU/CPU

TensorFlow Apache V2 2015 Y Declarative GPU/CPU

Google Brain closed 2012 Y - CPU

Adam closed 2013 Y - CPU

‘L’ for Linux; ‘M’ for Mac OS; ‘W’ for Windows. ‘-’: unknown.

perative programming and declarative programming. Caffe (Jia et al., 2014a)

and Torch (Collobert, Kavukcuoglu, and Farabet, 2011) use imperative program-

ming, which is easy to get started and debug. TensorFlow (Abadi et al., 2015),

Theano (Bastien et al., 2012) and CNTK (Yu et al., 2014) follow the declarative

programming model, where users simply declare the learning objective and then

the system would create a computation graph (dataflow graph) for automatically

optimizing the learning objective. The computation graph provides opportunities

for speed and memory optimization (Chen et al., 2015), but is not easy to debug

and requires some effort to get started.

Layer is an inherent abstraction of neural networks. Almost all systems provide

the layer abstraction (may use different names). Caffe uses Layer as the lowest

computation unit, which was designed for feed-forward neural networks, and

extended to support RNN, but has no support for energy models. Other systems

provide Tensor abstractions for algebra operations, which are more flexible to

implement general machine learning algorithms.

Caffe, Torch and Theano focused on training in a single node using CPU or a

single GPU. Hence, they lack optimization for distributed training. TensorFlow,
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CNTK and MxNet have more optimization techniques for distributed training. A

couple of papers on the use of Multi-GPUs to train DCNNs have been published

(Krizhevsky, 2014; Paine et al., 2013; Yadan et al., 2013). However, these are

model specific and do not generalize well to other models. In contrast, the well-

known general data processing systems like MapReduce (Dean and Ghemawat,

2004) and Spark (Zaharia et al., 2012) lack optimizations specific to deep learning

models.

2.2 Multi-modal Applications

Multi-modal retrieval is emerging as a new search paradigm that enables seamless

information retrieval from various types of media. For example, users can simply

snap a movie poster to search for relevant reviews and trailers. We study multi-

modal applications with two motivations. Firstly, considering that deep learning

is good at feature learning for mono-modal data, e.g. image, text and audio data,

it has the potential to learn adaptive representations to bridge the gap between

different modalities. Secondly, the models for multi-modal retrieval would be

more complex than those for mono-modal data applications, and thus are good

applications for verifying the usability, efficiency and extensibility of SINGA.

The key problem of multi-modal retrieval is to find an effective mapping mecha-

nism, which maps data from different modalities onto a common latent space.

An effective mapping mechanism would preserve both intra-modal semantics and

inter-modal semantics well in the latent space, and thus generates good retrieval

performance.

2.2.1 Deep Learning Approaches

Multi-modal deep learning (Ngiam et al., 2011; Srivastava and Salakhutdinov,

2012) could be the first work of extending deep learning to multi-modal scenario.

(Srivastava and Salakhutdinov, 2012) connects two deep Boltzmann machines
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(DBM) (one for image, one for text) by a common latent layer to construct a

Multi-modal DBM. The representation of the common latent layer is a fused

feature for images and text, which can be extracted using data from either a

single modality or both modalities. Pairs of semantically relevant image and

text documents are fed into the model for training, which updates the model

parameters to maximize the probability of the training pairs. (Ngiam et al., 2011)

constructs a Bimodal deep auto-encoder with two deep auto-encoders (one for

audio, one for video). The two paths join at a hidden layer that fuses the features,

and then depart to reconstruct the input image-text pair. The objective is to

minimize the reconstruction errors to capture the regularities of the input data in

the fused feature. Both two models aim to improve the classification accuracy of

objects with features from multiple modalities. They combined different features

to learn a good (high dimensional) latent feature. In this dissertation, we will

propose approaches for learning low-dimensional latent features to enable effective

and efficient multi-modal retrieval.

DeViSE (Frome et al., 2013) from Google shares the similar idea with one of

our approach. It embeds image features into text space directly, which are then

used to retrieve similar text features for zero-shot learning. In particular, it

extracts the image feature from a pre-trained DCNN model and then transforms

the feature via linear projection into the same space as the text feature, which

is extracted from the Skip-Gram model (Mikolov et al., 2013). Our approach

embeds both image features (extractd from DCNN) and text features (extracted

from Skip-Gram model and MLP) into the same latent space. Notice that the

text features used in DeViSE to learn the embedding function are generated

from high-quality labels. However, in multi-modal retrieval, queries usually do

not come with labels and text features are generated from noisy tags. This

makes DeViSE less effective in learning robust latent features against noisy input

compare to our approach.
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2.2.2 Other Approaches

Early works like (Zhuang, Yang, and Wu, 2008) and (Rasiwasia et al., 2010) try

to exploit the correlations of data via correlation graph from different modalities

to find the latent space. Recently, linear projection has been studied to solve this

problem (Kumar and Udupa, 2011; Song et al., 2013; Zhu et al., 2013). The main

idea is to find a linear projection matrix for each modality that maps semantic

relevant data into similar latent vectors. However, when the distribution of the

original data is non-linear, it would be hard to find a set of effective projection

matrices. CVH (Kumar and Udupa, 2011) extends the Spectral Hashing (Weiss,

Torralba, and Fergus, 2008) for multi-modal data by finding a linear projection

for each modality that minimizes the Euclidean distance of relevant data in the

latent space. Similarity matrices for both inter-modal data and intra-modal

data are required to learn a set of good mapping functions. IMH (Song et al.,

2013) learns the latent features of all training data first, and then it finds a hash

function to map the input data and output latent features. It could be very

expensive in terms of memory and computation to learn the representations of

all data together. LCMH (Zhu et al., 2013) exploits the intra-modal correlations

by representing data from each modality using its distance to cluster centroids of

the training data. Projection matrices are then learned to minimize the distance

of relevant data (e.g., image and tags) from different modalities.

Besides linear projection, another kind of approach is based on Latent Dirichlet

Allocation (LDA) (Blei and Jordan, 2003; Putthividhya, Attias, and Nagarajan,

2010). They try to represent each image or text with a latent topic vector. LDA

works well for text modality, but directly applying it for image modality may not

perform very well (Wang and Grimson, 2007).

Other recent works include CMSSH (Bronstein et al., 2010), MLBE (Zhen and

Yeung, 2012) and LSCMR (Lu et al., 2013). CMSSH uses a boosting method to

learn the projection function for each dimension of the latent space. However,

it requires prior knowledge such as both semantic relevant and irrelevant pairs.
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MLBE explores correlations of data (both inter-modal and intra-modal similarity

matrices) to learn latent features of training data using a probabilistic graphic

model. Given a query, it is converted into the latent space based on its correlation

with the training data. Such correlation is decided by labels associated with the

query. However, labels of a query are usually not available in practice, which

makes it hard to obtain its correlation with the training data. LSCMR (Lu et al.,

2013) learns the mapping functions with the objective to optimize the ranking

criteria (e.g., MAP) directly. Ranking examples (a ranking example is a query

and its ranking list) are needed for training. In Chapter 5, we will present an

approach which uses simple relevant pairs (e.g., image and its tags) as training

input. No prior knowledge such as irrelevant pairs, similarity matrix, ranking

examples and labels of queries, is needed.

2.3 Summary

In this chapter, we described the progress of deep learning, which was fueled

mainly by three factors, immense computing power, big training dataset, and

advancements of neural net structures. Deep learning has become crucial for many

applications across computer vision, speech, and NLP. However, the training

programs are non-trivial to implement from scratch, and is slow and memory-

hungry. We introduced some existing deep learning systems, which would be

analyzed in Chapter 3 in terms of their optimization techniques. In addition,

related works for multi-modal applications were reviewed, for which we will

propose deep learning based approaches in Chapter 5.



Chapter 3
Analysis of Optimization Techniques for

Deep Learning Systems

This chapter discusses challenges and opportunities of optimizing the deep learning

training procedure from the system perspective. We leave the theory perspective

optimization as a future work, including convergence analysis of asynchronous

SGD like Hogwild! (Recht et al., 2011).

3.1 Optimizations for Stand-alone Training

Currently, the most effective approach for improving the training speed of deep

learning models is to use Nvidia GPU with the cuDNN library1. Researchers are

also working on other hardware, e.g. FPGA2 (Lacey, Taylor, and Areibi, 2016).

Besides exploiting advancements in hardware technology, operation scheduling

and memory management are two important components to consider.

3.1.1 Operation Scheduling

Training algorithms of deep learning models typically involve expensive linear

algebra operations as shown in Figure 3.1, where the matrixW1 andW2 could be

larger than 4096∗4096. Operation scheduling is to first detect the data dependency

1https://developer.nvidia.com/cudnn
2short for field-programmable gate array.
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Efficiency optimization 

● Improve the speed of DL on a single device (GPU or CPU device) 

○ All operations of one (BP) iteration compose a dataflow graph. 

○ Existing systems either do static (Theano[12] and TensorFlow[13]) or dynamic (MxNet[14]) 

dependency analysis to parallelize operations without data dependencies. 

 

 

 

○ Possible improvements: 

■ When there are limited resources, i.e, executors (CUDA streams), there could be 

multiple ways of placing the operations onto the executors. 

■ Runtime optimization by 1) collecting the cost (i.e., FLOPS) of each operation and the 

hardware statistics 2) estimating the total cost of all plans;  

 

a1=x*W1+b1 a2=x*W2+b2 

x=sigmoid(x) 

y=concatenate(a1, a2) 

[12] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, and Y. Bengio. Theano: new features and speed 

improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012. 

[13] M. A. et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015 

[14] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: An extensible and efficient machine learning library 

for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015 

 

Figure 3.1: Sample operations from a deep learning model.

of operations and then place the operations without dependencies onto executors,

e.g., CUDA (Compute Unified Device Architecture) streams and CPU threads.

Take the operations in Figure 3.1 as an example, a1 and a2 in Figure 3.1 could

be computed in parallel because they have no dependencies. The first step could

be done statically based on the dataflow graph or dynamically (Chen et al.,

2015) by analyzing the orders of read and write operations. Databases also have

this kind of problems in optimizing transaction execution (Yao et al., 2016) and

query plans. Those solutions should be considered for deep learning systems. For

instance, databases use cost models to estimate query plans. For deep learning,

we may also create a cost model to find an optimal operation placing strategy

for the second step of operation scheduling given a fixed computing resources

including executors and memory.

3.1.2 Memory Management

Deep learning models are becoming larger and larger, and they are already occu-

pying a huge amount of memory space. For example, the VGG model (Simonyan

and Zisserman, 2014) cannot be trained on normal GPU cards due to memory

size constraints. Many approaches have been proposed towards reducing the

memory consumption. Shorter data representation, e.g. 16-bit float (Courbariaux,

Bengio, and David, 2014) is now supported by CUDA. Memory sharing is an

effective approach for memory saving (Chen et al., 2015). Take Figure 3.1 as an

example, the input and output of the sigmoid function share the same variable
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and thus the same memory space. Such operations are called ‘in-place’ operations.

Another memory sharing case is illustrated in Figure 2.3. In each iteration,

the data variable of the inner-product layer will not be used after finishing the

forward propagation of the sigmoid layer, hence its memory space can be reused

by the gradient of the sigmoid layer afterwards. The dataflow graph is necessary

for finding such variables (Chen et al., 2015). Recently, two approaches were

proposed to trade-off computation time for memory. Swapping memory between

GPU and CPU resolves the problem of small GPU memory and large model size

by swapping variables out to CPU and then swapping back manually(Cui et al.,

2016). Another approach drops some variables to free memory and recomputes

them when necessary based on the static dataflow graph(Chen et al., 2016).

Memory management is a hot topic in the database community with extensive

research done towards in-memory databases (Tan et al., 2015; Zhang et al.,

2015), including locality, paging and cache optimization. To elaborate more,

the paging strategies could be useful for deciding when and which variable to

swap. In addition, failure recovery in databases is similar to the idea of dropping

and recomputing variables, hence the logging techniques in databases could be

considered. If all operations (and execution time) are logged, we can then do

runtime analysis without the static dataflow graph. Other techniques, including

garbage collection and memory pool, would also be useful for deep learning

systems, especially for GPU memory management.

3.2 Optimizations for Distributed Training

Distributed training is a natural solution for accelerating the training speed of

deep learning models. The parameter server architecture (Dean et al., 2012b) is

typically used, in which the workers compute parameter gradients and the servers

update the parameter values after receiving gradients from workers. There are

two basic parallelism schemes for distributed training, namely, data parallelism

and model parallelism. In data parallelism, each worker is assigned a data
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partition and a model replica; while for model parallelism, each worker is assigned

a partition of the model and the whole dataset.

We investigated some common issues of distributed computing, which are dis-

cussed below.

3.2.1 Communication and Synchronization

Given that deep learning models have a large set of parameters, the communication

overhead between workers and servers is likely to be the bottleneck of a training

system. It becomes worse when the workers are running on GPUs, which decrease

the computation time and thus increase the communication time relatively. In

addition, for large clusters, the synchronization between workers can be significant.

Consequently, it is important to investigate efficient communication protocols for

both single-node multiple GPU training and training over a large cluster. Possible

research directions include: a) compressing the parameters and gradients for

transmission (Seide et al., 2014); b) organizing servers in an optimized topology to

reduce the communication burden of each single node, e.g., tree structure (Gupta,

Zhang, and Milthorpe, 2015) and AllReduce structure (Wu et al., 2015) (all-to-all

connection); c) using more efficient networking hardware like RDMA (Coates et

al., 2013).

3.2.2 Concurrency and Consistency

Currently, both declarative programming (e.g., Theano and TenforFlow) and

imperative programming (e.g., Caffe and SINGA) have been adopted in existing

systems for concurrency implementation. Most deep learning systems use threads

and locks directly. Other concurrency implementation methods like actor model

(good at failure recovery), co-routine and communicating sequential processes

have not been explored. Co-routine would be useful for asynchronous BP and

parameter updating. To be specific, as shown in Algorithm 3.1, in Line 2, we

create a future object which serves as a channel that receives pairs of parameter
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Algorithm 3.1: Use co-routine in BP

1 · · ·
2 future=net.backward() // run in another thread

3 foreach (W,W ′) in future do

4 W =W − α ∗W ′ ; // or transfer W ′ to servers

5 end

values and gradients computed by the backward propagation procedure in another

thread. In this way, we can easily run the backward propagation and parameter

updating (in Line 4) in parallel.

Sequential consistency (from synchronous training) and eventual consistency

(from asynchronous training) are typically used for distributed deep learning.

Both approaches have scalability issues (Wang et al., 2015). Recently, there

are studies for training convex models (deep learning models are non-linear

and non-convex) using a value bounded consistency model (Wei et al., 2015).

Researchers are starting to investigate the influence of consistency models on

distributed training (Gupta, Zhang, and Milthorpe, 2015; Hadjis et al., 2016;

Chen et al., 2016). There remains much research to be done on how to provide

flexible consistency models for distributed training, and how each consistency

model affects the scalability of the system, including communication overhead.

3.2.3 Fault Tolerance and Adaptiveness

Current deep learning systems recover the training from crashes mainly based

on checkpointing files (Abadi et al., 2015). However, frequent checkpointing

would incur vast overhead. The SGD algorithm used by deep learning training

systems can tolerate a certain degree of inconsistency. The way to exploit the

SGD properties and system architectures to implement fault tolerance efficiently

remains an interesting problem. Considering that distributed training would
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replicate the model status, it is thus possible to recover from a replica instead of

checkpointing files.

There is a trend to train large deep learning models on cloud platforms due to

the high demand on hardware resources. For such cases, it is necessary to make

the system adaptive to the available resources. Existing system simply assume

that the training environment (including the number of workers and specs of each

node) would remain the same throughout the whole training procedure, which is

in fact not true for cloud platforms, e.g., Amazon EC2 Spot Instances.

3.3 Optimization Techniques Used in Existing Sys-

tems

There are some open source deep learning systems under active development.

A summary of these systems in terms of the above mentioned optimization

aspects is listed in Table 3.1. Many researchers have done ad hoc optimization

using Caffe (Jia et al., 2014a), including memory swapping and communication

optimization. However, the official version is not well optimized. Similarly,

Torch (Collobert, Kavukcuoglu, and Farabet, 2011) itself provides limited support

for distributed training. Mxnet (Chen et al., 2015) has optimization for both

memory and operations scheduling. Theano (Bastien et al., 2012) is typically

used for stand-alone training. TensorFlow (Abadi et al., 2015) has the potential

for the aforementioned static optimization based on the dataflow graph.

In this dissertation (Chapter 4), we will propose a distributed training system with

a flexible architecture for different parallelism frameworks. Other optimization

techniques will be explored as our future work.
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Table 3.1: Summary of optimization techniques used in existing systems as of
July 2016.

Caffe Mxnet TensorFlow Theano Torch SINGA

1. operation scheduling x X - - x x

2. memory management i d+s p p - p

3. parallelism d d + m d + m - d + m d+m

4. consistency s/a s+a+h s+a+h - s s+a+h

-: unknown

1. x: not available: X: available

2. d: dynamic; a: swap; p: memory pool; i: in-place operation; s: static;

3. d: data parallelism; m: model parallelism;

4. s: synchronous; a: asynchronous; h:hybrid;

3.4 Summary

In this chapter, we investigated a wide range of optimization techniques for deep

learning systems for both stand-alone training and distributed training. Some of

these techniques are exploited for developing our SINGA system (Chapter 4). The

analysis is included in the following vision paper, which discusses the challenges

and opportunities of optimizing deep learning systems from databases perspective,

and the database applications that may benefit from deep learning models.

• Wei Wang, Meihui Zhang, Gang Chen, H.V. Jagadish, Beng Chin Ooi, Kian-

Lee Tan:Database Meets Deep Learning: Challenges and Opportunities. ACM

SIGMOD Record, Volume 45 Issue 2, Pages 17-22, 2016.



Chapter 4
SINGA: A Distributed Deep Learning

System

In this chapter, we present the SINGA system for training large deep learning

models on big datasets via distributed computing.

4.1 Introduction

There are two challenges in bringing deep learning to wide adoption in real-life

applications. The first challenge is usability, meaning the implementation of

different models and training algorithms must be done by non-experts with little

effort. The user must be able to choose among many existing deep learning

models, as different multimedia applications may benefit from different models.

For instance, the deep convolutional neural network (DCNN) is suitable for image

classification (Krizhevsky, Sutskever, and Hinton, 2012), recurrent neural network

(RNN) for language modelling (Mikolov et al., 2011), and deep auto-encoders for

multi-modal data analysis (Wang et al., 2014; Feng, Wang, and Li, 2014; Zhang

et al., 2014). Furthermore, the user must not be required to implement most of

these models and training algorithms from scratch, for they are too complex and

costly. An example of complex models is the GoogleLeNet (Szegedy et al., 2014)

which comprises 22 layers of 10 different types. Training algorithms are intricate

in details. For instance the Back-Propagation (LeCun et al., 1996) algorithm is

notoriously difficult to debug.
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The second challenge is scalability, that is the deep learning system must be able

to make provision for a huge demand of computing resources for training large

models with massive datasets. As larger training datasets and bigger models are

being used to improve accuracy (Ciresan et al., 2010; Le et al., 2012; Szegedy

et al., 2014), memory requirement for training the model may easily exceed the

capacity of a single CPU or GPU. In addition, the computational cost of training

may be too high for a single commodity server, which results in unreasonably

long training time. For instance, it takes 10 days (Yadan et al., 2013; Paine et

al., 2013) to train the DCNN (Krizhevsky, Sutskever, and Hinton, 2012) with 1.2

million training images and 60 million parameters using one GPU 1.

Addressing both usability and scalability challenges requires a distributed training

platform that supports various deep learning models, that comes with an intuitive

programming model, and that is scalable. General distributed platforms such

as MapReduce and Spark achieve good scalability, but they are designed for

general data processing. As a result, they lack both the programming model and

system optimization specific to deep learning, hindering the overall usability and

scalability. There are several specialized distributed platforms (Dean et al., 2012a;

Coates et al., 2013; Chilimbi et al., 2014) that exploit deep learning specific

optimization and hence are able to achieve high training throughput. However,

they forgo usability issues: the platforms are closed-source and no details of their

programming models are given, rendering them unusable by multimedia users.

There are a couple of distributed deep learning systems under active development,

including Caffe (Jia et al., 2014a), TensorFlow (Abadi et al., 2015), CNTK (Yu

et al., 2014) and MxNet (Chen et al., 2015).

In this chapter, we present our effort in bringing deep learning to the masses

by proposing a distributed training system called SINGA. SINGA provides a

simple, intuitive programming model that makes it accessible even to non-experts.

1According to the authors, with 2 GPUs, the training still took about 6 days.
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SINGA’s simplicity is driven by the observation that both the structures and

training algorithms of deep learning models can be expressed using a simple

abstraction: the neuron layer (or layer). In SINGA, the user defines and connects

layers to form the neural network model, and the runtime transparently manages

other issues pertaining to the distributed training such as partitioning, synchro-

nization and communication. Particularly, the neural network is represented as a

dataflow computation graph with each layer being a node. During distributed

training, the graph is partitioned and each sub-graph can be trained on CPUs or

on GPUs. SINGA’s scalability comes from its flexible system architecture and

specific optimization. Both synchronous and asynchronous training frameworks

are supported with a range of built-in partitioning strategies, which enables

users to readily explore and find an optimal training configuration. Optimization

techniques, including minimizing data transferring and overlapping computation

and communication, are implemented to reduce the communication overhead

from distributed training.

In summary, this chapter makes the following contributions:

1. We present a distributed platform called SINGA which offers a simple and

intuitive programming model based on the layer abstraction.

2. We describe SINGA’s distributed architecture and optimization for reducing

the communication overhead in distributed training.

3. We evaluate SINGA’s performance by comparing it with other open-source

systems. The results show that SINGA is scalable and outperforms other

systems in terms of training time.

The rest of this chapter is organized as follows. An overview of SINGA as a

platform follows in Section 4.2. The programming model is discussed in Section 4.3.

We discuss SINGA architecture and training optimization in Section 4.4. The

experimental study is presented in Section 4.5 before we conclude in Section 4.7.
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4.2 System Overview

TrainOneBatch 

NeuralNet 

Layer 

stop 
Updater: 
Update(step, param) 

DataShard 

Worker 

Worker 

Server 

Server 
Cluster Topology 

Figure 4.1: SINGA overview.

SINGA trains deep learning models using SGD over the worker-server architecture,

as shown in Figure 4.1. Workers compute parameter gradients and servers perform

parameter updates. To start a training job, the user (or programmer) submits a

job configuration specifying the following four components:

• A NeuralNet describing the neural network (or neural net) structure with

the detailed layers and their connections. SINGA comes with many built-in

layers (Section 4.3.1), and users can also implement their own layers for

feature transforming or data reading (writing).

• A TrainOneBatch algorithm for training the model. SINGA implements

different algorithms (Section 4.3.1) for all three popular model categories.

• An Updater defining the protocol for updating parameters at the servers.

• A Cluster Topology specifying the distributed architecture of workers and

servers. SINGA’s architecture is flexible to support both different training

frameworks, including synchronous and asynchronous training (Section 4.4).

Given a job configuration, SINGA distributes the training tasks over the cluster

and coordinates the training. In each iteration, every worker calls TrainOneBatch

function to compute parameter gradients. TrainOneBatch takes a NeuralNet

object representing the neural net, and visits (part of) the model layers in an
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order specific to the model category. The computed gradients are sent to the

corresponding servers for updating. Workers then fetch the updated parameters

at the next iteration.

4.3 Programming Model

This section describes SINGA’s programming model. We use a multi-layer

perceptron (MLP) model for image classification (Figure 4.2a) as a running

example. The model consists of an input layer, a hidden feature transformation

layer and a Softmax output layer.

sub-layer 0 sub-layer 1 sub-layer 2 

W[:,0:3] b[:,0:3] W[:,0] b[:,0] W[:,1] b[:,1] W[:,2] b[:,2] 

(a) Sample MLP.

layer:  name: “softmax loss” 
            type: SoftmaxLossLayer 
            srclayer: “hidden”,       
                            “data” 
layer:  name: “hidden” 
            type: HiddenLayer 
            srclayer: “data” 
            shape: 3 
layer:  name: “data” 

       type: kInputLayer 
       path: “./train.shard” 

Blob feature = data[0], gradient=data[1]; 
Param W, b; 
 
Func  ComputeFeature(flag, srclayers) { 
      feature= logistic(dot(srclayers[0].feature, W.data) + b.data);  
} 
Func  ComputeGradient(flag, srclayers) { 
     Blob tmp = feature * (1-feature); 
     srclayers[0].gradient = tmp*dot(gradient, W.data.transpose()); 
     W.gradient = tmp*dot(src[0].data.transpose(), gradient); 
     b.gradient = tmp * gradient; 
} 
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(b) Net configuration.

layer:  name: “softmax loss” 
            type: SoftmaxLossLayer 
            srclayer: “hidden”,       
                            “data” 
layer:  name: “hidden” 
            type: HiddenLayer 
            srclayer: “data” 
            shape: 3 
layer:  name: “data” 

       type: kInputLayer 
       path: “./train.shard” 

Blob feature = data[0], gradient=data[1]; 
Param W, b; 
 
Func  ComputeFeature(flag, srclayers) { 
      feature= logistic(dot(srclayers[0].feature, W.data) + b.data);  
} 
Func  ComputeGradient(flag, srclayers) { 
     Blob tmp = feature * (1-feature); 
     srclayers[0].gradient = tmp*dot(gradient, W.data.transpose()); 
     W.gradient = tmp*dot(src[0].data.transpose(), gradient); 
     b.gradient = tmp * gradient; 
} 

  
 

𝑣 

ℎ = 𝜎(𝑣𝑊 + 𝑏) 

𝑦𝑖 =
𝑒ℎ𝑖
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(c) Hidden layer implementation.

Figure 4.2: Running example using an MLP.
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4.3.1 Programming Abstractions

NeuralNet

NeuralNet represents a neural net instance in SINGA. It comprises a set of unidi-

rectionally connected layers. Properties and connections of layers are specified

by users. The NeuralNet object is passed as an argument to the TrainOneBatch

function.

Layer connections in NeuralNet are not designed explicitly; instead each layer

records its own source layers as specified by users (Figure 4.2b). Although

different model categories have different types of layer connections, they can be

unified using directed edges as follows. For feed-forward models, nothing needs

to be done as their connections are already directed. For undirected models,

users need to replace each edge with two directed edges, as shown in Figure 4.5.

For recurrent models, users can unroll a recurrent layer into directed-connecting

sub-layers, as shown in Figure 4.6.

Layer

Layer is a core abstraction in SINGA. Different layer implementations perform

different feature transformations to extract high-level features. In every SGD

iteration, all layers in the NeuralNet are visited by the TrainOneBatch function

during the process of computing parameter gradients. From the dataflow per-

spective, we can regard the neural net as a graph where each layer is a node.

The training procedure passes data along the connections of layers and invokes

functions of layers. Distributed training can be easily conducted by assigning

sub-graphs to workers.

Figure 4.3 shows the definition of a base layer. The data field records data (blob)

associated with a layer. Some layers may require parameters (e.g., a weight

matrix) for their feature transformation functions. In this case, these parameters

are represented by Param objects, each with a data field for the parameter
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Layer: 
  vector<Blob> data 
  vector<Param> param 
  Func ComputeFeature(flag, srclayers); 
  Func ComputeGradient(flag, srclayers); 
 
Param:  
  Blob data, gradient; 

Figure 4.3: Layer abstraction.

values and a gradient field for the gradients. The ComputeFeature function

evaluates the feature blob by transforming features from the source layers. The

ComputeGradient function computes the gradients associated with this layer.

These two functions are invoked by the TrainOneBatch function during training

(Section 4.3.1).

SINGA provides a variety of built-in layers to help users build their models.

Table 4.1 lists the layer categories in SINGA. For example, the data layer loads a

mini-batch of records via the ComputeFeature function in each iteration. Users

can also define their own layers for their specific requirements. Figure 4.2c shows

an example of implementing the hidden layer h in the MLP. In this example,

besides feature blobs there are gradient blobs storing the gradients of the loss with

respect to the feature blobs. There are two Param objects: the weight matrix W

and the bias vector b. The ComputeFeature function rotates (multiply W ), shifts

(plus b) the input features and then applies non-linear (logistic) transformations.

The ComputeGradient function computes the layer’s parameter gradients, as well

as the source layer’s gradients that will be used for evaluating the source layer’s

parameter gradients.

TrainOneBatch

The TrainOneBatch function determines the sequence of invoking ComputeFeature

and ComputeGradient functions in all layers during each SGD iteration. SINGA
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Table 4.1: Layer categories.

Category Description

Input layers Load records from file, database or HDFS.

Output layers Dump records to file, database or HDFS.

Neuron layers Feature transformation, e.g., convolution.

Loss layers Compute objective loss, e.g., cross-entropy loss.

Connection layers Connect layers when neural net is partitioned.

Algorithm 4.1: BPTrainOneBatch

1 foreach layer in net.layers do

2 Collect(layer.params()) // receive parameters

3 layer.ComputeFeature() // forward prop

4 end

5 foreach layer in reverse(net.layers) do

6 layer.ComputeGradient() //backward prop

7 Update(layer.params()) // send gradients

8 end

implements two TrainOneBatch algorithms for the three model categories. For

feed-forward and recurrent models, the BP algorithm is provided. For undirected

modes (e.g., RBM), the CD algorithm is provided. Users simply select the

corresponding algorithm in the job configuration. Should there be specific

requirements for the training workflow, users can define their own TrainOneBatch

function following a template shown in Algorithm 4.1. Algorithm 4.1 implements

the BP algorithm which takes a NeuralNet object as input. The first loop visits

each layer and computes their features, and the second loop visits each layer in

the reverse order and computes parameter gradients.
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Updater

Once the parameter gradients are computed, workers send these values to servers

to update the parameters. SINGA implements several parameter updating

protocols, such as AdaGrad(Duchi, Hazan, and Singer, 2011). Users can also

define their own updating protocols by overriding the Update function.

4.3.2 Examples

This section demonstrates the use of SINGA for example applications. We discuss

the training of three deep learning models for three different applications: a

multi-modal deep neural network (MDNN) for multi-modal retrieval, a RBM for

dimensionality reduction, and a RNN for sequence modelling.

MDNN for Multi-modal Retrieval

ImageParserLayer 

PoolingLayer 

RectifierLayer 

NormalizationLayer 

Inner-ProductLayer 

SoftmaxLossLayer 

ConvolutionLayer 

Data Layer 

TextParserLayer 
bird dog ship 

Label Layer 

plan ball sky 

SoftmaxLossLayer 

Euclidean loss 

Inner-Product 

LogisticLayer 

Inner-ProductLayer 

Figure 4.4: Structure of MDNN.

Feed-forward models such as CNN and MLP are widely used to learn high-level

features in multimedia applications, especially for image classification (Krizhevsky,
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Sutskever, and Hinton, 2012). Here, we demonstrate the training of the MDNN (Wang

et al., 2015) using SINGA to extract features for the multi-modal retrieval

task (Wang et al., 2014; Feng, Wang, and Li, 2014; Shen, Ooi, and Tan, 2000)

that searches objects from different modalities. The details of MDNN will be pro-

vided in Chapter 5. Generally, in MDNN, there is a CNN (Krizhevsky, Sutskever,

and Hinton, 2012) for extracting image features, and a MLP for extracting text

features. The training objective is to minimize a weighted sum of: (1) the error

of predicting the labels of image and text documents using extracted features;

and (2) the distance between features of relevant image and text objects.

Figure 4.4 depicts the neural net of the MDNN model in SINGA. We can see

that there are two parallel paths: one for text modality and the other for image

modality. The data layer reads in records of semantically relevant image-text

pairs. The image layer, text layer and label layer parse the visual feature, text

feature (e.g., tags of the image) and labels respectively from the records. The

image path consists of layers from DCNN (Krizhevsky, Sutskever, and Hinton,

2012), e.g., the convolutional layer and pooling layer. The text path includes an

inner-product (or fully connected) layer, a logistic layer and a loss layer. The

Euclidean loss layer measures the distance of the feature vectors extracted from

these two paths. All except the parser layers, which are application specific,

are SINGA’s built-in layers. Since this model is a feed-forward model, the BP

algorithm is selected for the TrainOneBatch function.

RBM for Dimensionality Reduction

RBM is often employed to pre-train parameters for other models. In this ex-

ample application, we use RBM to pre-train deep auto-encoders (Hinton and

Salakhutdinov, 2006) for dimensionality reduction. Dimensionality reduction

techniques, such as Principal Component Analysis (PCA), are commonly applied

in the pre-processing step of data analytic applications. Deep auto-encoders are

reported (Hinton and Salakhutdinov, 2006) to have better performance than
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PCA.
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Figure 4.5: Structure of RBM and deep auto-encoders.

Generally, the deep auto-encoders are trained to reconstruct the input feature

using the feature of the top layer. Hinton et al. (Hinton and Salakhutdinov, 2006)

used RBM to pre-train the parameters for each layer, and fine-tuned them to

minimize the reconstruction error. Figure 4.5 shows the model structure (with

parser layer and data layer omitted) in SINGA. The parameters trained from

the first RBM (RBM 1) in step 1 are ported (through checkpoint) into step

2 wherein the extracted features are used to train the next model (RBM 2).

Once pre-training is finished, the deep auto-encoders are unfolded for fine-tuning.

SINGA applies the contrastive divergence (CD) algorithm for training RBM and

back-propagation (BP) algorithm for fine-tuning the deep auto-encoder.

RNN for Sequence Modelling

Recurrent neural networks (RNN) are widely used for modelling sequential data,

e.g., natural language sentences. We use SINGA to train a Char-RNN model 2

over Linux kernel source code, with each character as an input unit. The model

predicts the next character given the current character.

Figure 4.6 illustrates the net structure of the Char-RNN model. In each iteration,

the input layer reads unroll_len+1 (unroll_len is specified by users) successive

characters, e.g., “int a;” and passes the first unroll_len characters to OneHot-

Layers (one per layer), and passes the last unroll_len characters as labels to

2https://github.com/karpathy/char-rnn
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OneHotLayer 

GRULayer 

GRULayer 

InnerProductLayer 

SoftmaxLossLayer 

LabelLayer 

Figure 4.6: Structure of 2-stacked Char-RNN (left before unrolling; right after
unrolling).

the label layer. The label of the ith character is the (i+ 1)th character. In other

words, the objective is to predict the next character. The model is configured

similarly as for feed-forward models except the training algorithm is BPTT, and

unrolling length and connection types are specified for recurrent layers. Different

colors are used for illustrating the neural net partitioning which will be discussed

in Section 4.4.3.

4.4 Distributed Training

In this section, we introduce SINGA’s architecture, and discuss how it supports

a variety of distributed training frameworks.

4.4.1 System Architecture

Figure 4.7 shows the logical architecture, which consists of multiple server groups

and worker groups, and each worker group communicates with only one server

group. Each server group maintains a complete replica of the model parame-

ters, and is responsible for handling requests (e.g., get or update parameters)

from worker groups. Neighboring server groups synchronize their parameters

periodically. Typically, a server group contains a number of servers, and each

server manages a partition of the model parameters. Each worker group trains
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Figure 4.7: Logical architecture of SINGA.

a complete model replica against a partition of the training dataset (i.e. data

parallelism), and is responsible for computing parameter gradients. All worker

groups run and communicate with the corresponding server groups asynchronously.

However, inside each worker group, the workers compute parameter updates

synchronously for the model replica. There are two strategies to distribute the

training workload among workers within a group: by model or by data. More

specifically, each worker can compute a subset of parameters against all data

partitioned to the group (i.e., model parallelism), or all parameters against a

subset of data (i.e., data parallelism). SINGA also supports hybrid parallelism

(Section 4.4.3).

In SINGA, servers and workers are execution units running in separate threads.

If GPU devices are available, SINGA automatically assigns g GPU devices (g is

user specified) to the first g workers on each node. A GPU worker executes the

layer functions on GPU if they are implemented using GPU API (e.g., CUDA).

Otherwise, the layer functions execute on CPU. SINGA provides several linear

algebra functions for users to implement their own layer functions. These linear
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algebra functions have both GPU and CPU implementation and they determine

the running device of the calling thread automatically. In this way, we keep the

implementation transparent to users. Workers and servers communicate through

message passing. Every process runs the main thread as a stub that aggregates

local messages and forwards them to corresponding (remote) receivers. SINGA

uses the ZeroMQ library for message passing over the network.

4.4.2 Training Frameworks

In SINGA, worker groups run asynchronously and workers within one group run

synchronously. Users can leverage this general design to run both synchronous

and asynchronous training frameworks. Specifically, users control the training

framework by configuring the cluster topology, i.e., the number of worker (resp.

server) groups and worker (resp. server) group size. In the following, we will dis-

cuss how to realize popular distributed training frameworks in SINGA, including

Sandblaster and Downpour from Google’s DistBelief system (Dean et al., 2012a),

AllReduce from Baidu’s DeepImage system (Wu et al., 2015) and distributed

Hogwild from Caffe (Jia et al., 2014a).

Server Worker 

Node Group 

Inter-node  
Communication 

(a) Sandblaster. (b) AllReduce. (c) Downpour. (d) Distributed Hogwild. 

Figure 4.8: Training frameworks in SINGA.

Synchronous Training

A synchronous framework is realized by configuring the cluster topology with

only one worker group and one server group. The training convergence rate is

the same as that on a single node. Figure 4.8a shows the Sandblaster framework

implemented in SINGA. A single server group is configured to handle requests

from workers. A worker operates on its partition of the model, and only commu-
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nicates with servers handling the related parameters. This framework is typically

used if high performance dedicated servers with large network bandwidth are

available (Chilimbi et al., 2014). Figure 4.8b shows the AllReduce framework

in SINGA, in which we bind each worker with a server on the same node, so

that each node is responsible for maintaining a partition of parameters and

collecting updates from all other nodes. This framework is suitable for single

node multi-GPU case or small GPU clusters. For large clusters, the all-to-all

connection would incur huge amount of communication cost.

Synchronous training is typically limited to a small or medium size cluster, e.g.

fewer than 100 nodes. When the cluster size is large, the synchronization delay

and communication overhead is likely to be larger than the computation time.

Consequently, the training cannot scale well.

Asynchronous Training

An asynchronous framework is implemented by configuring the cluster topology

with more than one worker groups. The training convergence is likely to be

different from single-node training, because multiple worker groups are working

on different versions of the parameters (Zhang and Re, 2014). Figure 4.8c shows

the Downpour (Dean et al., 2012a) framework implemented in SINGA. Similar

to the synchronous Sandblaster, all workers send requests to a global server

group. We divide workers into several groups, each running independently and

working on parameters from the last update response. Like Sandblaster, this

framework also requires the servers to have large bandwidth to handle requests

for multiple worker groups. Figure 4.8d shows the distributed Hogwild framework,

in which each node contains a complete server group and a complete worker

group. Parameter updates are done locally, so that communication cost during

each training step is minimized. However, the server group must periodically

synchronize with neighboring groups to improve the training convergence. The

topology (connections) of server groups can be customized (the default topology
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is all-to-all connection). This framework is most widely used for single node Multi-

GPU environment, where server groups synchronize via shared memory. For a

large cluster, the synchronization among server groups would incur significant

overhead and delay.

Asynchronous training can improve the convergence rate to some degree. But the

improvement typically diminishes when there are more model replicas because

the delay (or staleness) of parameter updates increases. A more scalable training

framework should combine both the synchronous and asynchronous training. In

SINGA, users can run a hybrid training framework by launching multiple worker

groups that run asynchronously to improve the convergence rate. Within each

worker group, multiple workers run synchronously to accelerate one training

iteration. Given a fixed budget (e.g., number of nodes in a cluster), there are

opportunities to find one optimal hybrid training framework that trades off

between the convergence rate and efficiency in order to achieve the minimal

training time.

4.4.3 Neural Network Partitioning

In this section, we describe how SINGA partitions the neural net to support data

parallelism, model parallelism, and hybrid parallelism within one worker group.

sub-layer 0 sub-layer 1 sub-layer 2 

W[:,0:3] b[0:3] W[:,0] b[0] W[:,1] b[1] W[:,2] b[2] 

Figure 4.9: Partition the hidden layer in Figure 4.2a.

SINGA partitions a neural net at the granularity of layer. Every layer’s feature

blob is considered a matrix whose rows are feature vectors. Thus, the layer

can be split on two dimensions. Partitioning on dimension 0 (also called batch

dimension) slices the feature matrix by row. For instance, if the mini-batch size
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is 256 and the layer is partitioned into 2 sub-layers, each sub-layer would have

128 feature vectors in its feature blob. Partitioning on this dimension has no

effect on the parameters, as every Param object is replicated in the sub-layers.

Partitioning on dimension 1 (also called feature dimension) slices the feature

matrix by column. For example, suppose the original feature vector has 50 units,

after partitioning into 2 sub-layers, each sub-layer would have 25 units. This

partitioning splits Param objects, as shown in Figure 4.9. Both the bias vector

and weight matrix are partitioned into two sub-layers (workers).

Network partitioning is conducted while creating the NeuralNet instance. SINGA

extends a layer into multiple sub-layers. Each sub-layer is assigned a location ID,

based on which it is dispatched to the corresponding worker. Advanced users can

also directly specify the location ID for each layer to control the placement of

layers onto workers. For the MDNN model in Figure 4.4, users can configure the

layers in the image path with location ID 0 and the layers in the text path with

location ID 1, making the two paths run in parallel. Similarly, for the Char-RNN

model shown in Figure 4.6, we can place the layers of different colors onto different

workers. Connection layers will be automatically added to connect the sub-layers.

For instance, if two connected sub-layers are located at two different workers,

then a pair of bridge layers is inserted to transfer the feature (and gradient)

blob between them. When two layers are partitioned on different dimensions, a

concatenation layer which concatenates feature rows (or columns) and a slice

layer which slices feature rows (or columns) are inserted. Connection layers help

make the network communication and synchronization transparent to the users.

When every worker computes the gradients of the entire model parameters, we

refer this process as data parallelism. When different workers compute the

gradients of different parameters, we call this process model parallelism. In

particular, partitioning on dimension 0 of each layer results in data parallelism,

while partitioning on dimension 1 results in model parallelism. Moreover, SINGA

supports hybrid parallelism wherein some workers compute the gradients of the

same subset of model parameters while other workers compute on different model
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parameters. For example, to implement the hybrid parallelism in (Krizhevsky,

2014) for the CNN model, we set partition_dim = 0 for lower layers and parti-

tion_dim = 1 for higher layers. The following list summarizes the partitioning

strategies, their trade-off is analyzed in Section 4.4.4.

1. Partitioning all layers into different subsets → model parallelism.

2. Partitioning each single layer into sub-layers on batch dimension → data

parallelism.

3. Partitioning each single layer into sub-layers on feature dimension → model

parallelism.

4. Hybrid partitioning of strategy 1, 2 and 3 → hybrid parallelism.

4.4.4 Optimizations of Communication

Distributed training (i.e, partitioning the neural net and running workers over

different layer partitions) increases the computation power, i.e., FLOPS. However,

it introduces overhead in terms of communication and synchronization. Suppose

we have a homogeneous computation environment, that is, all workers run at the

same speed and get the same workload (e.g., same number of training samples

and same size of feature vectors). In this case, we can ignore the synchronization

overhead and analyze only the communication cost. The communication cost

is mainly attributed to the data transferred through PCIe over multiple GPUs

in a single node, or through the network in a cluster. To cut down the overall

overhead, first we try to reduce the amount of data to be transferred. Further

more, we try to parallelize the computation and communication, in order to hide

the communication time. Here we discuss synchronous training only (i.e., a single

worker group), which has the identical theoretical convergence as training in a

single worker. Optimization techniques that may affect convergence rate of SGD

are not considered, e.g., asynchronous SGD (i.e., multiple worker groups) and

parameter compression (Seide et al., 2014). The following analysis works for
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training either over multiple CPU nodes or over multiple GPU cards on a single

node.

Reducing Data Transferring

There are two types of data transferring in distributed training. First, the feature

vectors may be transferred as messages if two connected layers are located in

different workers, e.g., by model parallelism. Second, the parameter (values and

gradients) are transferred for aggregation if there are replicated due to data

parallelism. The guideline for reducing data transferring is to do data parallelism

for layers with fewer parameters and do model parallelism for layers with smaller

feature vectors. To illustrate, we use the popular benchmark model, i.e., AlexNet,

as an example. AlexNet is a feed-forward model with single path, the ith layer

depends on (i−1)th layer directly. It is not feasible to parallelize subsets of layers

as in MDNN, therefore we do not consider the first partitioning strategy. Next,

we discuss every type of layer involved in AlexNet one by one.

Convolutional layers contain 5% of the total parameters but 90-95% of the

computation, according to AlexNet (Krizhevsky, 2014). It is essential to distribute

the computation from these layers. Considering that convolutional layers have

large feature vectors and a small amount of parameters, it is natural to apply

data parallelism.
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(c) Partition on visible layer.

Figure 4.10: Distributed computing for fully connected layers.

Fully connected layers occupy 95% of the total parameters and 5-10% of computa-

tion (Krizhevsky, 2014), therefore we should avoid data parallelism and use model
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parallelism for them. Particularly, with data parallelism, the communication

overhead per worker is O(p), where p is the size of the (replicated) parameters.

Let b be the effective mini-batch size (summed over all workers), K be the number

of workers, and dv (resp. dh) be the length of the visible (resp. hidden) feature

vector. Figure 4.10b shows the case for data partitioning for the visible layer and

model partitioning for the hidden layer, the overhead is O(b ∗ dv) for exchanging

the visible features. Figure 4.10c applies model partitioning for the visible layer,

whose overhead comes from exchanging the hidden features, i.e., O(b∗dh). For the

first fully connected layer in AlexNet, p is about 177 million while dv = dh = 4096.

In other words, p > b ∗ dv and p > b ∗ dh, hence data parallelism is costlier than

model parallelism.

For pooling layers and local responsive normalization layers, each neuron depends

on many neurons from their source layers. Moreover, they are inter-leaved with

convolutional layers, thus it is cheaper to apply data parallelism than model

parallelism for them. For the remaining layers, they do not have parameters and

their neurons depend on source neurons element-wise, hence their partitioning

strategies just need to be consistent with their source layers. Consequently,

a simple hybrid partitioning strategy for AlexNet (Krizhevsky, 2014) could be

applying data parallelism for layers before (or under) the first fully connected layer,

and then apply model parallelism or no parallelism for all other layers. Currently,

we require users to configure the partitioning strategy for each layer to get the

above hybrid partitioning scheme. Automatic optimization and configuration is

left as a future work. Reducing data transferring could save power but may not

bring speed improvement if the communication cost is hidden due to overlapping

with computation as described below.

Overlapping Computation and Communication

Overlapping the computation and communication is another common technique

for system optimization. In SINGA, the communication comprises transferring
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Figure 4.11: Parallelize computation and communication for a GPU worker.

parameter gradients and values, and transferring layer data and gradients. First,

for parameter gradients/values, we can send them asynchronously while comput-

ing other layers. Take Figure 4.2 as an example, after the hidden layer finishes

ComputeFeature, we can send the gradients asynchronously to the server for

updates while the worker continues to load data for the next iteration. The

updated parameters are transferred back to the server by pushing a copy op-

eration into the Copy queue as shown in Figure 4.11, which is checked and

executed by the worker. Second, the transferring of layer data/gradients typically

comes from model partitioning as discussed in Section 4.4.4. In this case, each

worker owns a small subset of data and fetches all rest from other workers. To

overlap the computation and communication, each worker can just initiate the

communication and then compute over its own data asynchronously. Take the

Figure 4.10b as an example, to parallelize the computation and communication,

SINGA runs over the layers shown in Figure 4.11 in order. The BridgeSr-

cLayer::ComptueFeature initiates the sending operations and returns immediately.

The BridgeDestLyer::ComputeFeature waits until data arrives (by checking a

signal for the ending of data transferring). All layers are sorted in topology order

followed by communication priority.
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4.5 Experimental Study

We have developed SINGA using C++ on Linux platforms. OpenBLAS and

cuDNN are integrated for accelerating linear algebra and neural net operations.

ZeroMQ is used for message passing. This section evaluates SINGA’s usability

and efficiency. Specifically, we used SINGA to train the models discussed in

Section 4.3.2, which required little development effort since SINGA comes with

many built-in layers and algorithms. We then compared SINGA with other

open-source systems in terms of efficiency and scalability when running on CPUs

and GPUs.

4.5.1 Applications of SINGA

We trained models for the example applications in Section 4.3.2 using SINGA.

The neural nets were configured using the built-in layers as shown in Figure 4.4,

4.5, 4.6. Users can train these models following the instructions on-line3.

Multi-modal Retrieval. We trained the MDNN model for multi-modal re-

trieval application. We used NUS-WIDE dataset (Chua et al., July 8-10, 2009),

which has roughly 180,000 images after removing images without tags or from

non-popular categories. Each image is associated with several tags. We used

Word2Vec (Mikolov et al., 2013) to learn a word embedding for each tag and

aggregated the embedding of all the tags from the same image as a text feature.

Figure 4.12 shows sample search results. We first used images as queries to

retrieve similar images and text documents. It can be seen that image results

are more relevant to the queries. For instance, the first image result of the first

query is relevant because both images are about architecture, but the text results

are not very relevant. This can be attributed to the large semantic gap between

different modalities, making it difficult to locate semantically relevant objects in

the latent (representation) space.

3http://singa.apache.org/docs/examples.html

http://singa.apache.org/docs/examples.html
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Figure 4.12: Multi-Modal Retrieval. Top 5 similar text documents (one line per
document) and images are displayed.

Dimensionality Reduction. We trained RBM models to initialize the deep

auto-encoder for dimensionality reduction. We used the MNIST4 dataset con-

sisting of 70,000 images of hand-written digits. Following the configuration

used in (Hinton and Salakhutdinov, 2006), we set the size of each layer as

784→1000→500→250→2. Figure 4.13(a) visualizes sample columns of the weight

matrix of the bottom (first) RBM. We can see that Gabor-like filters are learned.

Figure 4.13(b) depicts the features extracted from the top-layer of the auto-

encoder, wherein one point represents one image. Different colors represent

different digits. We can see that most images are well clustered according to the

ground truth, except for images of digit ’4’ and ’9’ (central part) which have some

overlap (in practice, handwritten ’4’ and ’9’ digits are fairly similar in shape).

Char-RNN We used the Linux kernel source code extracted using an online

4http://yann.lecun.com/exdb/mnist/
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Figure 4.13: Visualization of the weight matrix in the bottom RBM and top layer
features in the deep auto-encoder.

script5 for this application. The dataset is about 6 MB. The RNN model is

configured similar to Figure 4.6. Since this dataset is small, we used one stack of

recurrent layers (Figure 4.6 has two stacks). The training loss and accuracy is

shown in Figure 4.14. We can see that the Char-RNN model can be trained to

predict the next character given previous characters in the source code more and

more accurately. There are some fluctuations due to the variance of data samples

in different mini-batches (the loss and accuracy are computed per mini-batch).
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(a) Training accuracy.
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(b) Training loss.

Figure 4.14: Training accuracy and loss of Char-RNN.

4.5.2 Training Performance Evaluation on CPU

We evaluated SINGA’s training efficiency and scalability for both synchronous

and asynchronous frameworks on a single multi-core node, and on a cluster of

5http://cs.stanford.edu/people/karpathy/char-rnn

http://cs.stanford.edu/people/karpathy/char-rnn
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commodity servers.

Methodologies

The deep convolution neural network6 for image classification was used as the

training model for benchmarking. The training was conducted over the CIFAR10

dataset7 which has 50,000 training images and 10,000 test images. For the

single-node setting, we used a 24-core server with 512GB memory. The 24 cores

are distributed into 4 NUMA nodes (Intel Xeon 7540). Hyper-threading is turned

on. For the multi-node setting, we used a 32-node cluster. Each cluster node

is equipped with a quad-core Intel Xeon 3.1 GHz CPU and 8GB memory. The

cluster nodes are connected by a 1Gbps switch.

Synchronous training

We compared SINGA with CXXNET8 and Caffe (Jia et al., 2014a). All three

systems use OpenBlas to accelerate matrix multiplications. Both CXXNET and

Caffe were compiled with their default optimization levels: O3 for the former

and O2 for the latter. We observed that because synchronous training has the

same convergence rate as that of sequential SGD, all systems would converge

after same number of iterations (i.e., mini-batches). This means the difference in

total training time among these systems is attributed to the efficiency of a single

iteration. Therefore, we only compared the training time for one iteration. We

ran 100 iterations for each system and averaged the result time over 50 iterations:

30th to 80th iteration, in order to avoid the effect of starting and ending phases.

On the 24-core single node, we used 256 images per mini-batch and varied the

number of OpenBlas’s threads. The result is shown in Figure 4.15(a). SINGA-dist

represents the SINGA configuration in which there are multiple workers, each

6https://code.google.com/p/cuda-convnet/
7http://www.cs.toronto.edu/ kriz/cifar.html
8https://github.com/dmlc/cxxnet
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Figure 4.15: Synchronous training.

worker has 1 OpenBlas thread9. In contrast, SINGA represents the configuration

which has only 1 worker. We configured SINGA-dist with the cluster topology

consisting of one server group with four servers and one worker group with varying

number of worker threads (Figure 4.15(a)). In other words, SINGA-dist ran as

the in-memory Sandblaster framework. We can see that SINGA-dist has the best

overall performance: it is the fastest for each number of threads, and it is also

the most scalable. Other systems using multi-threaded OpenBlas scale poorly.

This is because OpenBlas has little awareness of the application, and hence it

cannot be fully optimized. For example, it may only parallelize specific operations

such as large matrix multiplications. In contrast, in SINGA-dist partitions the

mini-batch equally between workers and achieves parallelism at the worker level.

Another limitation of OpenBlas, as shown in Figure 4.15(a), is that when there

were more than 8 threads, the overheads caused by cross-CPU memory access

(Tan et al., 2015) started to have negative effect on the overall performance.

On the 32-node cluster, we compared SINGA against another distributed machine

learning framework called Petuum (Dai et al., 2013). Petuum runs Caffe as an

application to train deep learning models. It implements a parameter server to

perform updates from workers (clients), while the workers run synchronously.

We used a larger mini-batch size (512 images) and disabled OpenBlas multi-

9OPENBLAS_NUM_THREADS=1
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Figure 4.16: Asynchronous training.

threading. We configured SINGA’s cluster topology to realize the AllReduce

framework: there is 1 worker group and 1 server group, and in each node there

are 4 workers and 1 server. We varied the size of worker group from 4 to 128, and

the server group size from 1 to 32. We note that one drawback of synchronous

distributed training is that it cannot scale to too many nodes. This is because

the BP (computing) time would be smaller than the time of synchronization

and communication, if there are too many workers. In particular, BP time

increases with larger batch-size and decreases with larger group size. However,

the batch-size are typically not large, e.g., less than 1024. Consequently, the

overhead from distributed training would easily become the bottleneck that

hurts the scalability. Figure 4.15(b) shows that SINGA achieves almost linear

scalability. In contrast, Petuum scales up to 64 workers, but becomes slower

when 128 workers are launched. It might be attributed to the communication
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overheads at the parameter server and the synchronization delays among workers.

Asynchronous training

We compared SINGA against Caffe which has support for in-memory asyn-

chronous training. On the single node, we configured Caffe to use the in-memory

Hogwild (Recht et al., 2011) framework, and SINGA to use the in-memory

Downpour framework. Their main difference is that parameter updates are done

by workers in Caffe and by a single server (thread) in SINGA. Figure 4.16(a)

and Figure 4.16(b) show the model accuracy versus training time with varying

numbers of worker groups (i.e. model replicas). Every worker processed 16 images

per iteration, for a total of 60,000 iterations. We can see that SINGA trains faster

than Caffe. Both systems scale well as the number of workers increases, both in

terms of the time to reach the same accuracy and of the final converged accuracy.

We can also observe that the training takes longer time with more workers. This is

due to the increased overhead in context-switching when there are more threads

(workers). Finally, we note from the results that the performance difference

becomes smaller when the cluster size (i.e., the number of model replicas) reaches

16. This implies that there would be little benefit in having too many model

replicas. Thus, we fixed the number of model replicas (i.e., worker groups) to 32

in the following experiments for the distributed asynchronous training.

On the 32-node cluster, we used mini-batch of 16 images per worker group and

60,000 training iterations. We varied the number of workers within one group,

and configured the distributed Downpour framework to have 32 worker groups

and 32 servers per server group (one server thread per node). We can see from

Figure 4.16(c) that with more workers, the training is faster because each worker

processes fewer images. However, the training is not as stable as in the single-node

setting. This may be caused by the delay (staleness) of parameter synchronization

between workers, which is not present in single-node training because parameter

updates are immediately visible on the shared memory. The final stage of training
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(i.e., last few points of each line) is stable because there is only one worker group

running during that time. We note that using a warm-up stage, which trains the

model using a single worker group at the beginning, may help to stabilize the

training as reported in Google’s DistBelief system (Dean et al., 2012a).

4.5.3 Training Performance Evaluation on GPU

This section presents the training performance of SINGA running on GPUs. Two

optimization techniques would be analyzed at first. After that, SINGA would be

compared with other open source systems.

Methodologies

We used the on-line benchmark model from Soumith10 as the training workload.

The model is adapted from the AlexNet (Krizhevsky, 2014) model with some

layers omitted. Two sets of hardware are used in our experiments, whose specs

and software configurations are shown in Table 4.2. Cudnn V4.0 is used for all

experiments.

Table 4.2: Specs of hardware and software.

Type CPU Memory GPU CUDA

Single node Intel i7-5820K 16 GB GTX 970 (4GB) 7.0

GPU cluster (4 nodes) Intel i7-5820K 64 GB GTX TITAN-X (12GB) 7.5

Overlapping Communication and Computation

In Section 4.4.4, we analyzed the optimization technique for hiding the commu-

nication overhead by overlapping it with the computation. Here we evaluate

the effect of this technique using the single node. Particularly, we compare the

efficiency in terms of time per iteration for three versions of SINGA. No Copy

10https://github.com/soumith/convnet-benchmarks

https://github.com/soumith/convnet-benchmarks
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Figure 4.17: Effect of optimization techniques.

version indicates that there is no communication between GPU and CPU, which

is widely used for training with a single GPU, where all operations including

parameter update are conducted on the single GPU. The other two versions

conduct BP algorithm on GPU and parameter updating on CPU, differing only

by whether data transferring is done synchronously or asynchronously.

Figure 4.17(a) shows the time per iteration with different mini-batch size. First,

we can see that No Copy is the fastest one because it has no communication

cost at all. Second, Async Copy is faster than Sync Copy, which suggests that

the asynchronous data transferring benefits from the overlapping communication

and computation. Moreover, we can see that when the mini-batch increases,

the difference between Async Copy and Sync Copy decreases. This is because

for large mini-batches, the BP algorithm spends more time doing computation,

which increases the overlap area of computation and communication, effectively

reducing the overhead. For mini-batch size = 256, Async Copy is even faster

than No Copy, this is because Async Copy does not do parameter update, which

is done by the server in parallel with BP. However, No Copy has to do BP and

parameter updating in sequential.
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Reducing Data Transferring

In Section 4.4.4, we discussed how hybrid partitioning is better than other

strategies in terms of the overheads in transferring feature vectors between layers

in different workers. To demonstrate its effectiveness, we ran SINGA on the

single node using two partitioning strategies, i.e., data partitioning and hybrid

partitioning for the first fully connected layer in AlexNet. 2 workers are launched

(one per GPU). Figure 4.17(b) shows the time per iteration with different mini-

batch sizes. We can see that hybrid partitioning has better performance over

data partitioning. For data partitioning, only parameter gradients and values

are transferred, which is independent of the mini-batch size, thus the time per

iteration does not change much when mini-batchs size increases. For hybrid

partitioning, when the mini-batch size increases, more feature vectors would be

transferred, and then the time increases.

Comparison with Other Systems

We also compared SINGA with four other state-of-the-art deep learning systems

namely, Caffe (Jia et al., 2014a), MxNet (Chen et al., 2015), Torch7 (Collobert,

Kavukcuoglu, and Farabet, 2011), and TensorFlow (Abadi et al., 2015) (TF).

The performance is measured using the throughput, i.e., number of processed

images per second. We used (or adapted) the scripts (or instructions) from each

system’s multi-GPU examples 11 12 13 14. Better performance could be achieved

with further tuning.

We first compared the throughput of training on a single node with different

number of workers (GPUs). We varied the number of workers from 1 to 3, where

11Caffe, https://github.com/BVLC/caffe/blob/master/docs/multigpu.md
12MxNet, https://mxnet.readthedocs.io/en/latest/how_to/multi_devices.html
13Torch7, https://github.com/soumith/imagenet-multiGPU.torch
14Tensorflow, https://www.tensorflow.org/versions/r0.8/tutorials/deep_cnn/index.

html and https://github.com/tensorflow/models/tree/master/inception

https://github.com/BVLC/caffe/blob/master/docs/multigpu.md
https://mxnet.readthedocs.io/en/latest/how_to/multi_devices.html
https://github.com/soumith/imagenet-multiGPU.torch
https://www.tensorflow.org/versions/r0.8/tutorials/deep_cnn/index.html
https://www.tensorflow.org/versions/r0.8/tutorials/deep_cnn/index.html
https://github.com/tensorflow/models/tree/master/inception
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Figure 4.18: Performance comparison of open source systems.

each worker ran on a GPU. Because Tensorflow ran out of memory with batch

size = 128 (the setting used by Soumith’s benchmark), we decreased the batch

size to 96 for all runnings. The results are shown in Figure 4.18(a).

Caffe has the best single worker performance. This is because there is no

parameter transferring between GPU and CPU, whereas others have parameter

transferring, e.g., SINGA has to transfer the parameter from the worker (on GPU)

to the server (on CPU). However, its performance decreases when more workers

are added. This is because 1) the parameters have to be transferred among

GPUs (via CPUs), which brings in communication cost; 2)its tree reduction

communication pattern (See the link in the footnote) incurs more cost than the

all-to-one or all-reduce communication pattern used by other systems when there

are more than 2 workers.

For other systems, they have similar performance for the single worker case, as

they all use the same cuDNN library for most of the computation. Note that their

throughput is lower than Soumith’s benchmark because the GPUs are slower

than Soumith’s and there is communication cost whereas Soumith’s benchmark

does not involve parameter transferring. Thanks to the optimization techniques

introduced in Section 4.4.4, SINGA has almost linear scalability. Tensorflow

shows the best scalability among all tested system.

Next, we ran SINGA and Tensorflow in the GPU cluster using the synchronous
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training framework. We varied the number of nodes (one GPU worker per node)

as shown in Figure 4.18(b). For Tensorflow, we launched one parameter server,

which communicates with all workers via gRPC. For SINGA, we created a single

server group with 1 server, which is in the same process as the first worker

and communicates with other workers using ZeroMQ. We reduced the size of

the first fully connected layer to 128, because this layer has a big parameter

matrix whose size exceeds the limit of the Protobuf message used by Tensorflow.

Consequently, the performance for single node (i.e., single GPU) is better than that

in Figure 4.18(a). We can see that SINGA performs much better than Tensorflow

in terms of throughput. It is likely caused by the network communication, which

is not well optimized in Tensorflow. SINGA avoids some communication cost

by running the first worker and the parameter server in the same process (they

transfer messages via sharing memory). Both systems show poor scalability

when there are more than two workers (nodes). On the one hand, node-to-

node communication cost and synchronization cost are introduced when there

are more than two workers. One the other hand, the Alexnet model has too

many parameters that makes the communication the bottleneck. To verify

this explanation, we conducted another set of experiments using the VGG

model (Simonyan and Zisserman, 2014) with fully connected layers omitted,

denoted as VGG-No-FC. This model has 10 convolutional layers and a small

amount of parameters, which make it more computation intensive than the Alexnet

model. The result in Figure 4.18(b) shows that SINGA has good scalability for

this model, which confirms our explanation. To conclude, distributed training is

more suitable for models that are computation intensive and with a small amount

of parameters.

4.6 Development Progress

The SINGA system is under active development (singa.apache.org) with 4

versions, which are described below.

singa.apache.org
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4.6.1 Version 0.1

This version was released in October 2015 with the following major features,

• Programming model based on NeuralNet and Layer abstractions.

• System architecture based on Worker, Server and Stub.

• Training models from three different model categories, namely, feed-forward

models, energy models and RNN models.

• Synchronous and asynchronous distributed training frameworks using CPU.

4.6.2 Version 0.2

This version was released in January 2016 with the following major features,

• Training complex models on a single node with multiple GPU cards.

• Hybrid neural net partitioning supports data and model parallelism at the

same time.

• Python wrapper for configuring training jobs, including the neural net and

the SGD algorithm.

• Cloud software integration includes Mesos, Docker and HDFS.

4.6.3 Version 0.3

This version was released in April 2016, with the following major features,

• Heterogeneous training using CPU and GPU devices.

• Distributed training in a GPU cluster.

• Data prefetching.
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4.6.4 Version 1

Version V0.x focused on distributed training, e.g. using multiple GPU cards

and a CPU or GPU cluster. A flexible architecture was implemented to run

different training frameworks, including synchronous, asynchronous and hybrid

training. Version V1.x would provide lower level abstractions than Layer and

NeuralNet. In particular, the Tensor and Device abstractions are proposed to

enable operation level optimizations and improve the extensibility for a wide

range of hardware devices and general machine learning models. Therefore,

they are the core components of SINGA. Other components like layers and loss

functions are built on top of Tensor and Device, which could be extended and

customized by users for specific applications.

Device(int device_id); 
void SetRandSeed(unsigned seed); 
 
Block* Malloc(size_t num); 
void Free(Block *ptr); 
 
void Exec(function<void(Context*)> func, vector<Block*> read,  vector<Block*> write); 
// CopyDirection: host2device, device2host, device2device, host2host 
void CopyDataToFrom(Block* dst,  Block* src,  size_t num,  CopyDirection direction); 
 

Figure 4.19: The Device API.

Device and Tensor

The Device abstraction represents a hardware device with multiple execution

units. SINGA provides at least three specific devices,

• CudaGPU represents an Nvidia GPU card. The execution units are the

CUDA streams.

• CppCPU represents a normal CPU. The execution units are the CPU

threads.

• OpenclGPU represents normal GPU card from both Nvidia and AMD. The



Chapter 4. SINGA: A Distributed Deep Learning System 61

execution units are the CommandQueues. Given that OpenCL is compatible

with many hardware devices, e.g. FPGA and ARM, the OpenclGPU has

the potential to be extended for other devices.

The API of Device is shown in Figure 4.19. Device would schedule all operations

and parallelize them onto different execution units. This is done in function Exec,

where func is the real function to be executed on a given executor indicated by

Context. read and write includes Blocks to be read and to be written respectively,

which would be analyzed for detecting data dependency. The Block abstraction

represents a block of device memory, which has a reference counter for garbage

collection and is triggered by Tensor. Optimizations of operation scheduling

(Section 3.1.1) could be implemented in Exec by setting the Context argument

of func. Device also manages the device memory and transferring data with

other devices. The Malloc and Free functions would do memory optimization,

including memory pool, swapping and dropping variables (Section 3.1.2).

Tensor(Shape s, Device dev, DataType dtype); 
 
// element-wise addition 
Tensor operator+(Tensor lhs, Tensor rhs); 
// element-wise multiplication 
Tensor EltMult(Tensor lhs, Tensor rhs); 
// element-wise multiplication 
Tensor operator*(Tensor t, float x); 
// matrix-vector or matrix-matrix multiplication  
Tensor operator*(Tensor lhs, Tensor rhs);  
Tensor Sigmoid*(Tensor t);  
// generate random numbers following a Gaussian distribution 
void Gaussian(Tensor* t, float mean, float std); 
... 
 

Figure 4.20: The Tensor API.

Typically, users would not call the methods of Device. Instead, they create a

device instance and pass it to a tensor instance, which would use this device

to allocate memory and execute operations. The Tensor abstract represents
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Algorithm 4.2: Train a logistic regression model using Tensor and

Device.

Input :D = {< x,y >}
Input : α // learning rate

Output :W, b // model parameters

1 CudaGPU dev(0);

2 Tensor W(Shape(m,n), dev, kFloat);

3 Gaussian(&W, 0, 0.01);

4 Tensor b(Shape(n), dev, kFloat); // default values are 0s

5 foreach < x,y > in D do

6 p = Sigmoid(x ∗W + b)

7 l = 0.5 ∗ Sum((y− p) ∗ (y− p))
8 g =EltMult(EltMult(p,1− p), p− y)
9 W ′ = x ∗ gT

10 W =W − α ∗W ′

11 b = b− α ∗ g
12 end

a multi-dimensional array. A set of linear algebra and random operations are

provided against Tensor, as shown in Figure 4.20. Tensor has another field

for data type, which could be float, int, char and float16, etc. float16 saves

the memory by half compared with float which uses 4 Bytes per number. For

each type of Device and each data type, there is a set of corresponding tensor

operations. The Tensor functions would automatically detect its device and data

type and submit the correct tensor operations to its device instance for execution.

Most machine learning algorithms could be expressed using (dense or sparse)

tensors. Therefore, with the Tensor abstraction, SINGA would be able to run

a wide range of models, including deep learning models and other traditional

machine learning models. For example, users could train a logistic regression

model as shown in Algorithm 4.2.
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Layer and NeuralNet

The implementation of Layer and NeuralNet is replaced with Tensor and Device

abstractions. The API of Layer is shown in Figure 4.21. For each of the three

popular categories of deep learning models, one specific NeuralNet subclass would

be provided. For instance, Figure 4.22 includes the functions of feed-forward

neural nets for the single input case. Algorithm 4.3 shows the logistic regression

model constructed using built-in layers and the FeedForwardNet. Users can build

other models, e.g. CNN+RNN used in image caption generation (Mao et al.,

2014), using the built-in layers or Tensor and Device directly.

// forward propagation with a single input  
Tensor Forward(int flag, Tensor x); 
// backward propagation with a single input .  
// returned tensors include the gradient of x and parameters. 
pair<Tensor, vector<Tensor>> Backward(int flag, Tensor g); 
 
// forward propagation with multiple inputs  
Tensor Forward(int flag, vector<Tensor> x); 
// backward propagation with multiple inputs  
// returned tensors include the gradient of all x and parameters. 
pair<vector<Tensor>, vector<Tensor>> Backward(int flag, vector<Tensor> g); 

Figure 4.21: The Layer API.

// constructor  
FeedForwardNet(Optimzier opt, Loss loss, Metric metric); 
// train on the given batch data <x, y> 
Tensor TrainOnBatch(Tensor x, Tensor y); 
// evaluate on the given batch data <x, y> 
Tensor EvaluateOnBatch(Tensor x, Tensor y); 
// return the output of the top layer 
Tensor Forward(Tensor x); 
// return the gradients of all parameters  
vector<Tensor> Backward(Tensor g); 

Figure 4.22: The FeedForwardNet API.
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Algorithm 4.3: Train a logistic regression model using Layer and Neu-

ralNet.

Input :D = {< x,y >}
Input : α // learning rate

Output :W, b

1 CudaGPU dev(0);

2 net=FeedForwardNet(new EuclideanLoss(), new SGD(α));

3 net.Add(InnerProductLayer(n));

4 net.Add(SigmoidLayer());

5 foreach < x,y > in D do

6 net.TrainOnBatch(x, y)

7 end

Distributed Training

SINGA V1.x would be used by users as a library for stand-alone training. For

distributed training, the training frameworks from Section 4.4.2 would still be sup-

ported using the architecture proposed in Section 4.4. In addition, optimizations

in terms of communication, fault-tolerance would be studied and implemented.

Status and Schedule of Version 1.x

SINGA V1.x is under development. The status and schedule is listed below

(updated in January 2017)15,

• V1.0 (September 2016) Added Tensor and Device abstractions and reimple-

mented the layer, neural net classes, etc.

• V1.1 (January 2017) Improved the usability with flexible installation ap-

proaches and more documentation (examples).

• V1.2 (May 2017) Migrate and improve the distributed training components

15The latest schedule is at http://singa.apache.org/en/develop/schedule.html

http://singa.apache.org/en/develop/schedule.html
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from V0.3 including communication and consistency optimization.

• V1.3 (September 2017) Optimize memory usage and operation execution.

4.7 Summary

In this chapter, we introduced a distributed deep learning platform, called

SINGA. SINGA offers a simple and intuitive programming model, making it

accessible to even non-experts. SINGA is extensible and able to support a

wide range of applications using different deep learning models. The flexible

training architecture gives the user the chance to balance the trade-off between

the training efficiency and convergence rate. We demonstrated the use of SINGA

for representative applications, and showed that the platform is both usable and

scalable. The future work includes optimization from the system perspective and

theory perspective. In particular, convergence analysis of different consistency

models is necessary to guide users choose the optimal framework from all possible

frameworks for their cluster and model. The SINGA system is published in the

following papers,

• Wei Wang, Gang Chen, Tien Tuan Anh Dinh, Jinyang Gao, Beng Chin Ooi,

Kian-Lee Tan, Sheng Wang. SINGA: Putting Deep Learning in the Hands of

Multimedia Users. ACM Multimedia, p25-34, 2015

• Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang

Chen, Jinyang Gao, Zhaojing Luo, Anthony K. H. Tung, Yuan Wang, Zhongle Xie,

Meihui Zhang, Kaiping Zheng. SINGA: A Distributed Deep Learning Platform.

ACM Multimedia, p685-688, 2015

• Wei Wang, Gang Chen, Haibo Chen, Tien Tuan Anh Dinh, Jinyang Gao,

Beng Chin Ooi, Kian-Lee Tan, Sheng Wang. Deep Learning At Scale and

At Ease. ACM Transactions on Multimedia Computing Communications and

Applications(TOMM) - Special Section on Best Papers of ACM Multimedia 2015,

Volume 12 Issue 4s, November 2016



Chapter 5
Deep Learning based Approaches for

Multi-modal Retrieval

The SINGA system introduced in Chapter 4 is general to train deep learning

models for various applications including multi-modal retrieval. This chapter

will present the multi-modal retrieval application in details and introduce our

approaches using feed-forward models.

5.1 Introduction

The prevalence of social networking has significantly increased the volume and

velocity of information shared on the Internet. A tremendous amount of data in

various media types is being generated every day in social networking systems.

These data, together with other domain specific data, such as medical data,

surveillance and sensory data, are big data that can be exploited for insights and

contextual observations. However, effective retrieval of such huge amounts of

media from heterogeneous sources remains a big challenge.

This chapter will present new approaches based on deep learning techniques

to solve the problem of large-scale information retrieval from multiple modali-

ties. Each modality represents one type of media such as text, image or video.

Depending on the heterogeneity of data sources, there are two types of searches:

1. Intra-modal search has been extensively studied and widely used in

commercial systems. Examples include web document retrieval via keyword

66
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queries and content-based image retrieval.

2. Cross-modal search enables users to explore relevant resources from

different modalities. For example, a user can use a tweet to retrieve relevant

photos and videos from other heterogeneous data sources. Meanwhile he can

search relevant textual descriptions or videos by submitting an interesting

image as a query.

There has been a long stream of research on multi-modal retrieval (Bronstein et

al., 2010; Zhu et al., 2013; Song et al., 2013; Kumar and Udupa, 2011; Zhen and

Yeung, 2012; Lu et al., 2013). These works followed the same query processing

strategy, which consists of two major steps. First, a set of mapping functions

are learned to project data from different modalities into a common latent space.

Second, a multi-dimensional index for each modality in the common space is built

for efficient similarity retrieval. Since the second step , known as the classic kNN

problem, was extensively studied (Hjaltason and Samet, 2003; Weber, Schek,

and Blott, 1998; Zhang et al., 2011), we focused on the optimization of the first

step and proposed two types of novel mapping functions based on deep learning

techniques.

We proposed a general learning objective that could effectively capture both intra-

modal and inter-modal semantic relationships of data from heterogeneous sources.

In particular, we differentiated modalities in terms of their representations’ ability

to capture semantic information and robustness in terms of noisy data. The

modalities with better representations were assigned with higher weight for the

sake of learning more effective mapping functions. Based on the objective function,

we designed an unsupervised algorithm using stacked auto-encoders (SAEs). SAE

is a deep learning model that has been widely applied in many unsupervised

feature learning and classification tasks (Rifai et al., 2011; Vincent et al., 2008;

Goroshin and LeCun, 2013; Socher et al., 2011). For media with semantic

labels, we designed a supervised algorithm to realize the learning objective. The

supervised approach uses a deep convolutional neural network (DCNN) and
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neural language model (NLM). It exploits the label information, thus can learn

robust mapping functions against noisy input data. DCNN and NLM have shown

great success in learning image features (Krizhevsky, Sutskever, and Hinton,

2012; Girshick et al., 2014; Donahue et al., 2013) and text features (Socher and

Manning, 2013; Mikolov et al., 2013) respectively.

Compared with existing solutions for multi-modal retrieval, our approaches

exhibit three major advantages. First, our mapping functions are non-linear and

are more expressive than the linear projections used in IMH (Song et al., 2013)

and CVH (Kumar and Udupa, 2011). The deep structures of our models can

capture more abstract concepts at higher layers, which is very useful in modeling

categorical information of data for effective retrieval. Second, our approaches

require minimum prior knowledge in the training. Our unsupervised approach

only needs relevant data pairs from different modalities as the training input.

The supervised approach requires additional labels for the media objects. In

contrast, MLBE (Zhen and Yeung, 2012) and IMH (Song et al., 2013) require a

big similarity matrix of intra-modal data for each modality. LSCMR (Lu et al.,

2013) uses training examples, each of which consists of a list of objects ranked

according to their relevance (based on manual labels) to the first object. Third,

our training process is memory efficient because it splits the training dataset

into mini-batches and iteratively loads and trains each mini-batch in memory.

However, many existing works (e.g., CVH, IMH) have to load the whole training

dataset into memory which is infeasible when the training dataset is too large.

In summary, the main contributions of this chapter include:

• a general learning objective for learning mapping functions to project

data from different modalities into a common latent space for multi-modal

retrieval.

• one unsupervised approach and one supervised approach to implement the

general learning objective using deep learning techniques.

• extensive experiments on three real datasets to evaluate the proposed
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mapping mechanisms. Experimental results showed that the performance

of our method was superior to state-of-the-art methods.

Using this application, we also verified that SINGA is able to handle complex

deep learning models. The remainder of the chapter is organized as follows. The

problem statement is provided in Section 5.2, followed by the general training

objective in Section 5.3. After that, Section 5.4 and Section 5.5 describe the un-

supervised and supervised approaches respectively. Query processing is presented

in Section 5.6 followed by the experimental study in Section 5.7. Section 5.8

concludes this chapter.

5.2 Preliminary

In our data model, the database D consists of objects from multiple modalities.

For ease of presentation, we use images and text as two sample modalities to

explain our idea. In other words, we assume that D = DI
⋃
DT . To conduct multi-

modal retrieval, we need a relevance measurement for the query and the database

object. However, the database consists of objects from different modalities, there

is no such widely accepted measurement. A common approach is to learn a set of

mapping functions that project the original feature vectors into a common latent

space such that semantically relevant objects (e.g., image and its tags) are located

close. Consequently, our problem includes the following two sub-problems.

Definition 1. Common Latent Space Mapping

Given an image x ∈ DI and a text document y ∈ DT , find two mapping functions

fI : DI → Z and fT : DT → Z such that if x and y are semantically relevant,

the distance between fI(x) and fT (y) in the common latent space Z, denoted by

distZ(fI(x), fT (y)), is small.

The common latent space mapping provides a unified approach to measuring

distance of objects from different modalities. As long as all objects can be mapped

into the same latent space, they become comparable. Once the mapping functions
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fI and fT have been determined, the multi-modal search can then be transformed

into the classic kNN problem, defined as following:

Definition 2. Multi-Modal Search

Given a query object Q ∈ Dq and a target domain Dt (q, t ∈ {I, T}), find a set

O ⊂ Dt with k objects such that ∀o ∈ O and o′ ∈ Dt/O, distZ(fq(Q), ft(o′)) ≥

distZ(fq(Q), ft(o)).

Since both q and t have two choices, four types of queries can be derived, namely

Qq→t and q, t ∈ {I, T}. For instance, QI→T searches relevant text in DT given an

image from DI . By mapping objects from different high-dimensional feature spaces

into a low-dimensional latent space, queries could be efficiently processed using

existing multi-dimensional indexes (Hjaltason and Samet, 2003; Weber, Schek,

and Blott, 1998). Our goal is then to learn a set of effective mapping functions

which preserve well both intra-modal semantics (i.e., semantic relationships

within each modality) and inter-modal semantics (i.e., semantic relationships

across modalities) in the latent space. The effectiveness of mapping functions is

measured by the accuracy of multi-modal retrieval using latent features.

5.3 General Training Objective

The flowchart of our multi-modal retrieval framework is illustrated in Figure 5.1.

It consists of three main steps: 1) offline model training 2) offline indexing 3)

online kNN query processing. In step 1, relevant image-text pairs are used as

input training data to learn the mapping functions. For example, image-text

pairs can be collected from Flickr where the text features are extracted from tags

and descriptions for images. If they are associated with additional semantic labels

(e.g., categories), a supervised training algorithm would be applied. Otherwise, an

unsupervised training approach would be used. After step 1, we would obtain a

mapping function fm : Dm → Z for each modality m ∈ {I, T}. In step 2, objects

from different modalities are first mapped into the common space Z by function

fm. With such unified representation, the latent features from the same modality
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Figure 5.1: Flowchart of multi-modal retrieval framework. Step 1 is offline model
training that learns mapping functions. Step 2 is offline indexing that maps
source objects into latent features and creates proper indexes. Step 3 is online
multi-modal kNN query processing.

are then inserted into a high dimensional index for kNN query processing. When

a query Q ∈ Dm comes, it is first mapped into Z using its modal-specific mapping

function fm. Based on the query type, k nearest neighbors are retrieved from the

index built for the target modality and returned to the user. For example, image

index is used for queries of type QI→I and QT→I against the image database.

General learning objective A good objective function plays a crucial role in

learning effective mapping functions. In our multi-modal search framework, we

designed a general learning objective function L. By taking into account the

image and text modalities, our objective function is defined as follows:

L = βILI + βTLT + LI,T + ξ(θ) (5.1)

where Lm, m ∈ {I, T} is called the intra-modal loss to reflect how well the intra-

modal semantics are captured by the latent features. The smaller the loss, the

more effective the learned mapping functions are. LI,T is called the inter-modal

loss which is designed to capture inter-modal semantics. The last term is used

as regularization to prevent over-fitting (Hinton, 2010) (L2 Norm is used in our

experiment). θ denotes all parameters involved in the mapping functions. βm,
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Figure 5.2: Flowchart of training. Relevant images (or text) are associated with
the same shape (e.g., �). In single-modal training, objects of same shape and
modality are moving close to each other. In multi-modal training, objects of
same shape from all modalities are moving close to each other.

m ∈ {I, T} denotes the weight of the loss for modality m in the objective function.

We observed in our training process that assigning different weights to different

modalities according to the nature of its data offers better performance than

treating them equally. For the modality with lower quality input feature (due to

noisy data or poor data representation), we would assign smaller weight for its

intra-modal loss in the objective function. The intuition of setting βI and βT in

this way is that, by relaxing the constraints on intra-modal loss, we would enforce

the inter-modal constraints. Consequently, the intra-modal semantics of the

modality with lower quality input feature could be preserved or even enhanced

through their inter-modal relationships with high-quality modalities. Details of

setting βI and βT is discussed in Section 5.4.2 and Section 5.5.2.

Training Training is to find the optimal parameters involved in the mapping

functions that minimizes L. Two types of mapping functions are proposed in

this chapter. One is trained by an unsupervised algorithm, which uses simple

image-text pairs for training. No other prior knowledge is required. The other one

is trained by a supervised algorithm which exploits additional label information

to learn robust mapping functions against noisy training data. For both mapping

functions, we designed a two-stage training procedure to find the optimal param-
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Figure 5.3: Model of MSAE, which consists of one SAE for each modality. The
trained SAE maps input data into latent features.

eters. A complete training process is illustrated in Figure 5.2. In stage I, one

mapping function is trained independently for each modality with the objective

to map similar features in one modality close to each other in the latent space.

This training stage serves as the pre-training of stage II by providing a good

initialization for the parameters. stage II optimizes Equation 5.1 to capture

both intra-modal semantics and inter-modal semantics. The learned mapping

functions project semantically relevant objects close to each other in the latent

space as shown in the figure.

5.4 Unsupervised Approach – MSAE

This section presents an unsupervised learning algorithm called MSAE (Multi-

modal Stacked Auto-Encoders) for learning the mapping function fI and fT . The

model is shown in Figure 5.3 and would be explained in the following sections.

5.4.1 Realization of the Learning Objective

Modeling Intra-modal Semantics of Data

We extended SAEs (Section 2.1.3) to model intra-modal losses in the general

learning objective (Equation 5.1). Specifically, LI and LT were modeled as the

reconstruction errors for the image SAE and the text SAE respectively. Intuitively,
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Figure 5.4: Distribution of image (5.4a) and text (5.4b) features extracted from
NUS-WIDE training dataset (See Section 5.7). Each figure is generated by
averaging the units for each feature vector, and then plot the histogram for all
data.

if the two reconstruction errors are small, the latent features generated by the

top auto-encoder would be able to reconstruct the original input well, and

consequently, capture the regularities of the input data well. This implies that,

with small reconstruction error, two objects from the same modality that are

similar in the original space would also be close in the latent space. In this way,

we could capture the intra-modal semantics of data by minimizing LI and LT
respectively. But to use SAEs, the decoders of the bottom auto-encoders should

be designed carefully to handle different input features.

The raw (input) feature of an image is a high-dimensional real-valued vector (e.g.,

color histogram or bag-of-visual-words). In the encoder, each input image feature

is mapped to a latent vector using Sigmoid function as the activation function se

(Equation 2.10). However, in the decoder, the Sigmoid activation function, whose

range is [0,1], performs poorly on reconstruction because the raw input unit

(referring to one dimension) is not necessarily within [0,1]. To solve this issue,

we followed Hinton (Hinton, 2010) and modeled the raw input unit as a linear

unit with independent Gaussian noise. As shown in Figure 5.4a, the average

unit value of image feature typically follows Gaussian distribution. When the

input data is normalized with zero mean and unit variance, the Gaussian noise

term can be omitted. In this case, we used an identity function for the activation
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function sd in the bottom decoder. Let x0 denote the input image feature vector,

x2h denote the feature vector reconstructed from the top latent feature xh (h is

the depth of the stacked auto-encoders). Using Euclidean distance to measure

the reconstruction error, we defined LI for x0 as:

LI(x0) = ||x0 − x2h||22 (5.2)

The raw (input) feature of text is a word count vector or tag occurrence vector 1.

We adopted the Rate Adapting Poisson model (Salakhutdinov and Hinton, 2009)

for reconstruction because the histogram for the average value of text input unit

generally follows Poisson distribution (Figure 5.4b). In this model, the activation

function in the bottom decoder is

x2h = sd(z2h) = l
ez2h∑
j e

z2hj
(5.3)

where l =
∑

j x0j is the number of words in the input text, and z2h =W T
2hx2h−1+

b2h. The probability of a reconstruction unit x2hi being the same as the input

unit x0i is:

p(x2hi = x0i) = Pois(x0i , x2hi) (5.4)

where Pois(n, λ) = e−λλn

n! . Based on Equation 5.4, we defined LT using negative

log likelihood:

LT (x0) = −log
∏
i

p(x2hi = x0i) (5.5)

By minimizing LT , x2h would be trained to be similar as x0. In other words,

the latent feature xh is trained to reconstruct the input feature well, and thus

preserves the regularities of the input data well.

1The binary value for each dimension indicates whether the corresponding tag appears or
not.
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Modeling Inter-modal Semantics of Data

Each relevant image-text pair (x0, y0) would be forwarded through the encoders

of their stacked auto-encoders to generate latent feature vectors (xh, yh) (h is the

height of the SAE). The inter-modal loss is then defined as,

LI,T (x0, y0) = dist(xh, yh) = ||xh − yh||22 (5.6)

By minimizing LI,T , the learned features would capture the inter-modal semantics

of data. The intuition is quite straightforward: if two objects x0 and y0 are

relevant, the distance between their latent features xh and yh shall be small.

5.4.2 Training

Following the training flow shown in Figure 5.2, in stage I, a SAE for the

image modality and a SAE for the text modality are trained separately. Back-

Propagation (LeCun et al., 1998) is used to calculate the gradients of the objective

loss, i.e., LI or LT , w.r.t., the parameters. Then the parameters are updated

according to mini-batch Stochastic Gradient Descent (SGD), which averages

the gradients contributed by a mini-batch of training records (images or text

documents) and then adjusts the parameters. The learned image and text SAEs

are fine-tuned in stage II by Back-Propagation and mini-batch SGD with the

objective to find the optimal parameters that minimize the learning objective

(Equation 5.1). In our experiment, we observed that the training would be more

stable if we alternatively adjust one SAE with the other SAE fixed.

Setting βI & βT βI and βT are the weights of the reconstruction error of

image and text SAEs respectively in the objective function (Equation 5.1). As

mentioned in Section 5.3, they are set based on the quality of each modality’s

raw (input) feature. We use an example to illustrate the intuition. Consider

a relevant object pair (x0, y0) from modality x and y. Assume x’s feature is

of low quality in capturing semantics (e.g., due to noise) while y’s feature is of
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Figure 5.5: Model of MDNN, which consists of one DCNN for image modality,
and one Skip-Gram + MLP for text modality. The trained DCNN (or Skip-Gram
+ MLP) maps input data into latent features.

high quality. If xh and yh are the latent features generated by minimizing the

reconstruction error, then yh can preserve the semantics well while xh is not as

meaningful due to the low quality of x0. To solve this problem, we combine

the inter-modal distance between xh and yh in the learning objective function

and assign smaller weight to the reconstruction error of x0. This is the same as

increasing the weight of the inter-modal distance from xh to yh. As a result, the

training algorithm would move xh towards yh to make their distance smaller. In

this way, the semantics of low quality xh could be enhanced by the high quality

feature yh.

In the experiment, we evaluated the quality of each modality’s raw feature on a

validation dataset by performing intra-modal search against the latent features

learned in single-modal training. Modality with worse search performance is

assigned a smaller weight. Notice that, because the dimensions of the latent

space and the original space are usually of different orders of magnitude, the

scale of LI , LT and LI,T are different. In the experiment, we also scaled βI and

βT to make the losses comparable, i.e., within an order of magnitude.
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5.5 Supervised Approach–MDNN

This section presents a supervised learning algorithm calledMDNN (Multi-modal

Deep Neural Network) based on a deep convolutional neural network (DCNN,

Section 2.1.3) model and a neural language model (NLM, Section 2.1.3) to learn

mapping functions for the image modality and the text modality respectively. The

model is shown in Figure 5.5 and would be explained in the following sections.

5.5.1 Realization of the Learning Objective

Modeling Intra-modal Semantics of Data

Considering the outstanding performance of DCNNs in learning features for

visual data (Donahue et al., 2013; Girshick et al., 2014), and NLMs in learning

features for text data (Socher and Manning, 2013), we extended one instance of

DCNN – AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) and one instance of

NLM – Skip-Gram model (SGM) (Mikolov et al., 2013) to model the intra-modal

semantics of images and text respectively.

Image AlexNet is employed to serve as the mapping function fI for image

modality. An image x is represented by an RGB vector. The feature vector fI(x)

learned by AlexNet is used to predict the associated labels of x. However, the

objective of the original AlexNet is to predict single label of an image while in

our case images are annotated with multiple labels. We thus followed (Gong et

al., 2013a) to extend the softmax loss (Equation 2.13) to handle multiple labels

as follows:

LI(x, t) = −
1∑
i ti

∑
i

ti log pi(x) (5.7)

where pi(x) is defined in Equation 2.12. Different from SAE, which models

reconstruction error to preserve intra-modal semantics, the extended AlexNet

tries to minimize the prediction error LI shown in Equation 5.7. By minimizing
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prediction error, the learned high-level feature vectors fI(x) are trained to be

discriminative in predicting labels. Images with similar labels shall have similar

feature vectors. In this way, the intra-modal semantics are preserved.

Text We extended SGM to learn the mapping function fT for text modality.

Due to the noisy nature of text (e.g., tags) associated with images (Liu et al.,

2009), directly training the SGM over the tags would carry noise into the learned

features. However, labels associated with images are carefully annotated and

are more accurate. Hence, we adapted the SGM to integrate label information

in order to learn robust features against noisy text (tags). To be specific, a

SGM (Mikolov et al., 2013) is train with all tags associated with one image as an

input sentence. After training, we would obtain one word embedding for each

tag. By averaging word embeddings of all tags of one image, one text feature

vector could be generated for those tags. Next, a Multi-Layer Perceptron (MLP)

with two hidden layers is built on top of the SGM. The text feature vectors are

fed into the MLP to predict image labels. Let y denote the input text (e.g., a set

of image tags), ỹ denote the averaged word embedding generated by SGM for

tags in y. MLP together with SGM serves as the mapping function fT for the

text modality,

fT (y) = W2 · s(W1ỹ + b1) + b2 (5.8)

s(v) = max(0, v) (5.9)

where W1 and W2 are weight matrices, b1 and b2 are bias vectors, and s() is

the ReLU activation function (Krizhevsky, Sutskever, and Hinton, 2012)2. The

loss function of MLP is similar to that of the extended AlexNet for image label

2We tried both the Sigmoid function and ReLU activation function for s(). ReLU offers
better performance
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prediction:

LT (y, t) = − 1∑
i ti

∑
i

log qi(y) (5.10)

qi(y) =
efT (y)i∑
j e

fT (y)j
(5.11)

By requiring the learned text latent features fT (y) to be discriminative for pre-

dicting labels, we could model the intra-modal semantics for the text modality 3.

Modeling Inter-modal Semantics of Data

The general learning objective in Equation 5.1 is realized using Equation 5.7

and 5.10 respectively. Euclidean distance is used to measure the difference of

the latent features for an image-text pair, i.e., LI,T is defined similarly as in

Equation 5.6. By minimizing the distance of latent features for an image-text

pair, their latent features would be trained to be closer in the latent space. In

this way, the inter-modal semantics are preserved.

5.5.2 Training

Similar to the training of MSAE, the training of MDNN consists of two steps. The

first step trains the extended AlexNet and the extended NLM (i.e., MLP+Skip-

Gram) separately4. The learned parameters are used to initialize the joint model.

All training is conducted by Back-Propagation using mini-batch SGD to minimize

the objective loss (Equation 5.1).

Setting βI & βT In the unsupervised training, we assigned larger βI to make

the training prone to preserve the intra-modal semantics of images if the input

image feature is of higher quality than the text input feature, and vice versa.

3Notice that in our model, we fixed the word vectors learned by SGM. It can also be fine-tuned
by integrating the objective of SGM (Equation 2.14) into Equation 5.10

4In our experiment, we used the parameters trained by Caffe (Jia et al., 2014b) to initialize
the AlexNet to accelerate the training. We use Gensim (http://radimrehurek.com/gensim/)
to pre-train the Skip-Gram model with the dimension of word vectors being 100

http://radimrehurek.com/gensim/
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Figure 5.6: Illustration of query processing.

For supervised training, since the intra-modal semantics are preserved based on

reliable labels, we did not distinguish the image modality from the text one in

the joint training. In the experiment, we set βI = βT = 1. To make the three

losses within one order of magnitude, we scaled the inter-modal distance by 0.01.

5.6 Query Processing

After the unsupervised (or supervised) training, each modality has a mapping

function. Given a set of heterogeneous data sources, high-dimensional raw features

(e.g., bag-of-visual-words or RGB feature for images) are extracted from each

source and mapped into a common latent space using the learned mapping

functions. MSAE uses the image (resp. text) SAE to project image (resp. text)

input features into the latent space. MDNN uses the extended DCNN (resp.

extended NLM) to map the image (resp. text) input feature into the common

latent space.

After the mapping, we created VA-Files (Weber, Schek, and Blott, 1998) over the

latent features (one per modality). VA-File is a classic index that can overcome

the curse of dimensionality when answering nearest neighbor queries. It encodes
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each data point into a bitmap and the whole bitmap file is loaded into memory

for efficient scanning and filtering. Only a few data points will be loaded into

memory for verification. Given a query input, the search algorithm would check

its media type and map it into the latent space through its modal-specific mapping

function. Next, intra-modal and inter-modal searches are conducted against the

corresponding index (i.e., the VA-File) shown in Figure 5.6. For example, the

task of searching relevant tags of one image, i.e., QI→T , is processed by the index

for the text latent vectors.

To further improve the search efficiency, the real-valued latent features are

converted into binary features, whose distance are calculated using Hamming

distance. The conversion is conducted using existing hash methods that preserve

the neighborhood relationship. For example, in our experiment (Section 5.7.2),

we used Spectral Hashing (Weiss, Torralba, and Fergus, 2008) , which converts

real-valued vectors (data points) into binary codes with the objective to minimize

the Hamming distance of data points that are close in the original Euclidean

space. Other hashing approaches like (Song et al., 2011; Gong et al., 2013b) are

also applicable.

The conversion from real-valued features to binary features trades off effectiveness

for efficiency. Since there is information loss when real-valued data is converted

to binaries, it affects the retrieval performance. The experiment section would

present the trade-off between efficiency and effectiveness on binary features and

real-valued features.

5.7 Experimental Study

This section provides an extensive performance study of our solution in comparison

with the state-of-the-art methods. We examined both efficiency and effectiveness

of our method including training overhead, query processing time and accuracy.

Visualization of the training process is also provided to help understand the



Chapter 5. Deep Learning based Approaches for Multi-modal
Retrieval 83

algorithms. In the rest of this section, we first introduce our evaluation metrics,

and then present the performance of unsupervised approach and supervised

approach respectively.

5.7.1 Evaluation Metrics

We evaluated the effectiveness of the mapping mechanism by measuring the

accuracy of the multi-modal search, i.e., Qq→t(q, t ∈ {T, I}), using the mapped

latent features. Without specifications, searches were conducted against real-

valued latent features using Euclidean distance. We used Mean Average Precision

(MAP) (Manning, Raghavan, and Schütze, 2008), one of the standard information

retrieval metrics, as the major evaluation metric. Given a set of queries, the

Average Precision (AP) for each query q is calculated as,

AP (q) =

∑R
k=1 P (k)δ(k)∑R

j=1 δ(j)
(5.12)

where R is the size of the test dataset; δ(k) = 1 if the k-th result is relevant,

otherwise δ(k) = 0; P (k) is the precision of the result ranked at position k, which

is the fraction of true relevant documents in the top k results. By averaging AP

for all queries, we can get the MAP score. The larger the MAP score, the better

the search performance. In addition to MAP, we measured the precision and

recall of search tasks. Given a query, the ground truth is defined as: if a result

shares at least one common label (or category) with the query, it is considered as

a relevant result; otherwise it is irrelevant.

Besides effectiveness, we also evaluated the training overhead in terms of time

cost and memory consumption. Query processing time would be reported at last.

5.7.2 Experimental Study of MSAE

First, we describe the datasets used for unsupervised training. Second, an analysis

of the training process by visualization is presented. Last, comparison with
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Table 5.1: Statistics of Datasets for Unsupervised Training.

Dataset NUS-WIDE Wiki Flickr1M

Total size 190,421 2,866 1,000,000

Training set 60,000 2,000 975,000

Validation set 10,000 366 6,000

Test set 120,421 500 6,000

Average Text Length 6 131 5

previous works, including CVH (Kumar and Udupa, 2011), CMSSH (Bronstein

et al., 2010) and LCMH (Zhu et al., 2013) are provided. 5 All experiments were

conducted on CentOS 6.4 using CUDA 5.5 with NVIDIA GPU (GeForce GTX

TITAN). The size of main memory is 64GB and the size GPU memory is 6GB.

The original code and hyper-parameter settings are available online 6.

Datasets

Unsupervised training uses relevant image text pairs as training data, which

are easy to collect. Three datasets were selected to evaluate the performance—

NUS-WIDE (Chua et al., July 8-10, 2009), Wiki (Rasiwasia et al., 2010) and

Flickr1M (Huiskes and Lew, 2008).

NUS-WIDE The dataset contains 269,648 images from Flickr, with each image

associated with 6 tags on average. We refer to the image and its tags as an image-

text pair. There are 81 ground truth labels manually annotated for evaluation.

Following previous works (Liu et al., 2011; Zhu et al., 2013), we extracted 190,421

image-text pairs annotated with the most frequent 21 labels and split them into

three subsets for training, validation and test respectively. The size of each

5The code and parameter configurations for CVH and CMSSH are available online at http:
//www.cse.ust.hk/~dyyeung/code/mlbe.zip; The code for LCMH is provided by the authors.
Parameters are set according to the suggestions provided in the paper.

6http://www.comp.nus.edu.sg/~wangwei/code

http://www.cse.ust.hk/~dyyeung/code/mlbe.zip
http://www.cse.ust.hk/~dyyeung/code/mlbe.zip
http://www.comp.nus.edu.sg/~wangwei/code
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subset is shown in Table 5.1. 100 (resp. 1000) queries were randomly selected

from the validation (resp. test) dataset. Image and text features are provided

in the dataset (Chua et al., July 8-10, 2009). An image is represented by a 500

dimensional bag-of-visual-words (SIFT) vector. Image tags are represented by a

1, 000 dimensional tag occurrence vector.

Wiki This dataset contains 2,866 image-text pairs from the Wikipedia’s featured

articles. An article in Wikipedia contains multiple sections. The text and its

associated image in one section is considered as an image-text pair. Every image-

text pair has a label inherited from the article’s category (there are 10 categories

in total). We randomly split the dataset into three subsets as shown in Table 5.1.

For validation (resp. test), we randomly selected 50 (resp. 100) pairs from the

validation (resp. test) set as the query set. Images were represented by 128

dimensional bag-of-visual-words vectors based on SIFT feature. For text, we

constructed a vocabulary with the most frequent 1,000 words excluding stop

words, and represented one text section by 1,000 dimensional word count vector

like (Lu et al., 2013). The average number of words in one section was 131 (much

larger than that in NUS-WIDE). To avoid overflow in Equation 5.4 and smooth

the text input, we normalized each unit x as log(x + 1) (Salakhutdinov and

Hinton, 2009).

Flickr1M This dataset contains 1 million images associated with tags from

Flickr. 25,000 of them are annotated with labels (there are 38 labels in total).

The image feature is a 3,857 dimensional vector concatenated by SIFT feature,

color histogram, etc (Srivastava and Salakhutdinov, 2012). Like NUS-WIDE, the

text feature is represented by a tag occurrence vector with 2,000 dimensions. All

the image-text pairs without annotations were used for training. For validation

and test, we randomly selected 6,000 pairs with annotations respectively, among

which 1,000 pairs were used as queries.

Before training, we used ZCA whitening (Krizhevsky, 2009) to normalize each

dimension of image feature to have zero mean and unit variance.
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Baseline Approaches

We compare our approach against the following baseline methods,

• LCMH (Zhu et al., 2013) exploits the intra-modal correlations by represent-

ing data from each modality using its distance to cluster centroids of the

training data.

• CMSSH (Bronstein et al., 2010) uses a boosting method to learn the

projection function for each dimension of the latent space.

• CVH (Kumar and Udupa, 2011) extends the Spectral Hashing (Weiss,

Torralba, and Fergus, 2008) to learn a linear projection for each modality

that minimizes the Euclidean distance of relevant data in the latent space.

Training Visualization

In this section, we present the visualization of the training process of MSAE

using the NUS-WIDE dataset as an example to help understand the intuition

of the training algorithm and the setting of the weight parameters, i.e., βI and

βT . The training goal is to learn a set of effective mapping functions such that

the mapped latent features capture both intra-modal semantics and inter-modal

semantics well. Generally, the inter-modal semantics is preserved by minimizing

the distance of the latent features of relevant inter-modal pairs. The intra-modal

semantics is preserved by minimizing the reconstruction error of each SAE and

through inter-modal semantics (see Section 5.4 for details).

First, following the training procedure in Section 5.4, we trained a 4-layer image

SAE with the dimension of each layer as 500 → 128 → 16 → 2. Similarly, a

4-layer text SAE (the structure is 1000→ 128→ 16→ 2) was trained7. There is

no standard guideline for setting the number of latent layers and units in each

latent layer for deep learning (Bengio, 2012). In all our experiments, we adopted

7The last layer with two units is for visualization purpose, such that the latent features could
be showed in a 2D space
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(a) 300 random image-text pairs. (b) 25 image-text pairs.

Figure 5.7: Visualization of latent features after projecting them into 2D space
(Blue points are image latent features; White points are text latent features.
Relevant image-tex pairs are connected using red lines).

the widely used pyramid-like structure (Hinton and Salakhutdinov, 2006; Ciresan

et al., 2012), i.e. decreasing layer size from the bottom (or first hidden) layer to

the top layer. In our experiment, we observed that 2 latent layers perform better

than a single latent layer. But there was no significant improvement from 2

latent layers to 3 latent layers. Latent features of sampled image-text pairs from

the validation set are plotted in Figure 5.7a. The pre-training stage initializes

SAEs to capture regularities of the original features of each modality in the

latent features. On the one hand, the original features may be of low quality

to capture intra-modal semantics. In such a case, the latent features would

also fail to capture the intra-modal semantics. We evaluated the quality of the

mapped latent features from each SAE by intra-modal search on the validation

dataset. The MAP of the image intra-modal search is about 0.37, while that of

the text intra-modal search is around 0.51. On the other hand, as the SAEs were

trained separately, inter-modal semantics were not considered. We randomly

picked 25 relevant image-text pairs and connected them with red lines as shown

in Figure 5.7b. We can see the latent features of most pairs are far away from

each other, which indicates that the inter-modal semantics are not captured by

these latent features. To solve the above problems, we integrated the inter-modal

loss in the learning objective as Equation 5.1. In the following figures, we only

plot the distribution of these 25 pairs for ease of illustration.
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(a) βI = 0, epoch 1 (b) βI = 0, epoch 30

(c) βI = 0.01, epoch 1 (d) βI = 0.01, epoch 30

(e) βI = 0 (f) βI = 0.01

Figure 5.8: Adjusting image SAE with different βI and text SAE fixed (a-d show
the positions of features of image-text pairs in 2D space).
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Second, we adjusted the image SAE with the text SAE fixed from epoch 1 to

epoch 30. One epoch means one pass of the whole training dataset. Since the

MAP of the image intra-modal search is worse than that of the text intra-modal

search, according to the intuition in Section 5.3, we should use a small βI to

decrease the weight of image reconstruction error LI in the objective function,

i.e., Equation 5.1. To verify this, we compared the performance of two choices of

βI , namely βI = 0 and βI = 0.01. The first two rows of Figure 5.8 show the latent

features generated by the image SAE after epoch 1 and epoch 30. Comparing

image-text pairs in Figure 5.8b and 5.8d, we can see that with smaller βI , the

image latent features move closer to their relevant text latent features. This

is in accordance with Equation 5.1, where smaller βI relaxes the restriction on

the image reconstruction error, and in turn increases the weight for inter-modal

distance LI,T . By moving close to relevant text latent features, the image latent

features gain more semantics. As shown in Figure 5.8e, the MAPs increase as

training goes on. MAP of QT→T does not change because the text SAE is fixed.

When βI = 0.01, the MAPs do not increase in Figure 5.8f. This is because image

latent features hardly move close to the relevant text latent features as shown in

Figure 5.8c and 5.8d. We can see that the text modality is of better quality for

this dataset. Hence, it should be assigned a larger weight. However, we cannot

set a too large weight for it as explained in the following paragraph.

Third, we adjusted the text SAE with the image SAE fixed from epoch 31 to

epoch 60. We also compared two choices of βT , namely 0.01 and 0.1. βI is set to

0. Figure 5.9 shows the snapshots of latent features and the MAP curves of each

setting. From Figure 5.8b to 5.9a, which are two consecutive snapshots taken

from epoch 30 and 31 respectively, we can see that the text latent features move

much closer to the relevant image latent features. It leads to the big changes

of MAPs at epoch 31 in Figure 5.9e. For example, QT→T substantially drops

from 0.5 to 0.46. This is because the sudden moves towards images change the

intra-modal relationships of text latent features. Another big change happens

on QI→T , whose MAP increases dramatically. The reason is that when we fix
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(a) βT = 0.01,epoch 31 (b) βT = 0.01,epoch 60

(c) βT = 0.1,epoch 31 (d) βT = 0.1,epoch 60

(e) βT = 0.01 (f) βT = 0.1

Figure 5.9: Adjusting text SAE with different βT and image SAE fixed (a-d show
the positions of features of image-text pairs in 2D space).
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the text features from epoch 1 to 30, an image feature I is pulled to be close

to (or nearest neighbor of) its relevant text feature T . However, T may not be

the reverse nearest neighbor of I. In epoch 31, T is moved towards I such that

T is more likely to be the reverse nearest neighbor of I. Hence, the MAP of

query QI→T is greatly improved. On the contrary, QT→I decreases. From epoch

32 to epoch 60, the text latent features on the one hand move close to relevant

image latent features slowly, and on the other hand rebuild their intra-modal

relationships. The latter is achieved by minimizing the reconstruction error LT
to capture the semantics of the original features. Therefore, both QT→T and

QI→T grows gradually. Comparing Figure 5.9a and 5.9c, we can see the distance

of relevant latent features in Figure 5.9c is larger than that in Figure 5.9a. The

reason is that when βT is larger, the objective function in Equation 5.1 pays more

effort to minimize the reconstruction error LT . Consequently, less effort is paid

to minimize the inter-modal distance LI,T . Hence, relevant inter-modal pairs

cannot move closer. This effect is reflected as minor changes of MAPs at epoch

31 in Figure 5.9f in contrast with that in Figure 5.9e. Similarly, small changes

happen between Figure 5.9c and 5.9d, which leads to minor MAP changes from

epoch 32 to 60 in Figure 5.9f.

Evaluation of Model Effectiveness on NUS_WIDE Dataset

We first report the mean average precision (MAP) of our method using Euclidean

distance against real-valued features. Let L be the dimension of the latent space.

Our MSAE was configured with 3 layers, where the image features were mapped

from 500 dimensions to 128, and finally to L. Similarly, the dimension of text

features were reduced from 1000→ 128→ L by the text SAE. βI and βT were set

to 0 and 0.01 respectively according to Section 5.7.2. We tested L with values 16,

24 and 32. The results compared with other methods are reported in Table 5.2,

which shows that MSAE achieves the best performance for all four search tasks

with an average improvement of 17%, 27%, 21%, and 26% for QI→I , QT→T ,QI→T ,

and QT→I respectively. CVH and CMSSH prefer smaller L in queries QI→T and
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QT→I . The reason is that it needs to train far more parameters with Larger L

and the learned models will be farther from the optimal solutions. Our method

is less sensitive to the value of L. This is probably because with multiple layers,

MSAE has stronger representation power and thus is more robust under different

L.

Figure 5.10 shows the precision-recall curves, and the recall-candidates ratio

curves (used by (Zhen and Yeung, 2012; Zhu et al., 2013)) which show the change

of recall when inspecting more results on the returned rank list. We omit the

figures for QT→T and QI→I as they show similar trends as QT→I and QI→T . Our

method achieves the best accuracy except when recall = 0 8, where precision p

implies that the nearest neighbor of the query appears in the 1
p -th returned result.

This indicates that our method performs the best for general top-k similarity

retrieval except k=1. For the recall-candidates ratio, the curve of MSAE is

always above those of other methods. It shows that MSAE has better recall when

inspecting the same number of objects. In other words, our method ranks more

relevant objects at higher (front) positions.

Besides real-valued features, we also conducted experiments against binary latent

features for which Hamming distance is used as the distance function. In our

implementation, we used Spectral Hashing (Weiss, Torralba, and Fergus, 2008)

to convert real-valued latent feature vectors into binary codes. Other comparison

algorithms used their own conversion mechanisms. The MAP scores are reported

in Table 5.3. We can see that 1) MSAE performs better than other methods. 2)

The MAP scores using Hamming distance is not as good as that of Euclidean

distance. This is due to the possible information loss by converting real-valued

features into binary features.
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(a) QI→T , L = 16 (b) QI→T , L = 24 (c) QI→T , L = 32

(d) QT→I , L = 16 (e) QT→I , L = 24 (f) QT→I , L = 32

(g) QI→T , L = 16 (h) QI→T , L = 24 (i) QI→T , L = 32

(j) QT→I , L = 16 (k) QT→I , L = 24 (l) QT→I , L = 32

Figure 5.10: Precision-Recall (P-R) and Recall-Candidates ratio on NUS-WIDE
dataset.
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Evaluation of Model Effectiveness on Wiki Dataset

We conducted similar evaluations on Wiki dataset as on NUS-WIDE. For MSAE

with latent feature of dimension L, the structure of its image SAE was 128→

128→ L, and the structure of its text SAE was 1000→ 128→ L. Similar to the

settings on NUS-WIDE, βI was set to 0 and βT was set to 0.01.

The performance is reported in Table 5.4. MAPs on Wiki dataset are much

smaller than those on NUS-WIDE except for QT→T . This is because the images

of Wiki are of much lower quality. It contains only 2, 000 images that are highly

diversified, making it difficult to capture the semantic relationships within images,

and between images and text. Query task QT→T is not affected as Wkipedia’s

featured articles are well edited and rich in text information. In general, our

method achieved an average improvement of 8.1%, 30.4%, 32.8%, 26.8% for

QI→I , QT→T ,QI→T , and QT→I respectively. We do not plot the precision-recall

curves and recall-candidates ratio curves as they showed similar trends to those

of NUS-WIDE.

Evaluation of Model Effectiveness on Flickr1M Dataset

We configured a 4-layer image SAE as 3857→ 1000→ 128→ L, and a 4-layer

text SAE as 2000→ 1000→ 128→ L for this dataset. Different from the other

two datasets, the original image feature of Flickr1M are of higher quality as it

consists of both local and global features. For intra-modal search, the image

latent feature performed equally well as the text latent feature. Therefore, we set

both βI and βT to 0.01.

The MAP performances of MSAE and CVH are compared in Table 5.5. MSAE

outperforms CVH in most of the search tasks. LCMH and CMSSH ran out of

memory in the training stage, hence we do not report them.

8Here, recall r = 1
#all relevant results

≈ 0.
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Table 5.5: Mean average precision on Flickr1M dataset.

Task QI→I QT→T QI→T QT→I

Algorithm CVH MSAE CVH MSAE CVH MSAE CVH MSAE

16 0.622 0.621 0.610 0.624 0.610 0.632 0.616 0.608

L 24 0.616 0.619 0.604 0.629 0.605 0.628 0.612 0.612

32 0.603 0.622 0.587 0.630 0.588 0.632 0.598 0.614

Evaluation of Training Cost

We used the largest dataset Flickr1M to evaluate the training cost of time and

memory consumption. The results are reported in Figure 5.11. The training cost

of LCMH and CMSSH are not reported because they ran out of memory on this

dataset. We can see that the training time of MSAE and CVH increases linearly

with respect to the size of the training dataset. Due to the stacked structure

and multiple iterations of passing the dataset, MSAE is not as efficient as CVH.

Roughly, the overhead is proportional to the number of training iterations times

the height of MSAE.

Figure 5.11b shows the memory usage of the training process. Given a training

dataset, MSAE splits them into mini-batches and conducts the training batch by

batch. It stores the model parameters and one mini-batch in memory, both of

which are independent of the training dataset size. Hence, the memory usage stays

constant when the size of the training dataset increases. The actual minimum

memory usage for MSAE could be smaller than 10GB. In our experiments, we

allocated more space to load multiple mini-batches into memory to save disk

reading cost. CVH has to load all training data into memory for matrix operations.

Therefore, its memory usage increases with respect to the size of the training

dataset.
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(a) (b)

Figure 5.11: Training cost comparison on Flickr1M dataset.

Evaluation of Query Processing Efficiency

We compared the efficiency of query processing using binary latent features and

real-valued latent features. Notice that all methods (i.e., MSAE, CVH, CMSSH

and LCMH) performed similarly in query processing after mapping the original

data into latent features of same dimension. Data from the Flickr1M training

dataset was mapped into a 32 dimensional latent space to form a large dataset

for searching. To speed up the query processing of real-valued latent features,

we created an index (i.e., VA-File (Weber, Schek, and Blott, 1998)) for each

modality. For binary latent features, we did not create any indexes, as linear

scan offered decent performance as shown in Figure 5.12. It shows the time

of searching 50 nearest neighbors (averaged over 100 random queries) against

datasets represented using binary latent features (based on Hamming distance)

and real-valued features (based on Euclidean distance) respectively. We can see

that the querying time increases linearly with respect to the dataset size for

both binary and real-valued latent features. But, the searching against binary

latent features is 10× faster than that against real-valued latent features. This

is because the computation of Hamming distance is more efficient than that of

Euclidean distance.

By taking into account the results from effectiveness evaluations, we can see that

there is a trade-off between efficiency and effectiveness in feature representation.
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Figure 5.12: Querying time comparison using real-valued and binary latent
features.

The binary encoding greatly improves the efficiency in the expense of accuracy

degradation.

5.7.3 Experimental Study of MDNN

Datasets

Supervised training requires the input image-text pairs to be associated with

additional semantic labels. Since Flickr1M does not have labels and Wiki dataset

has too few labels that are not discriminative enough, we used NUS-WIDE

dataset to evaluate the performance of supervised training. We extracted 203, 400

labeled pairs, among which 150, 000 were used for training. The remaining pairs

were evenly partitioned into two sets for validation and testing. From both

sets, we randomly selected 2000 pairs as queries. This labeled dataset is named

NUS-WIDE-a.

We further extracted another dataset from NUS-WIDE-a by filtering those pairs

with more than one label. This dataset, denoted as NUS-WIDE-b, was used

to compare with DeViSE (Frome et al., 2013), which was designed for training

against images annotated with single label. In total, we obtained 76, 000 pairs.
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Table 5.6: Statistics of datasets for supervised training.

Dataset NUS-WIDE-a NUS-WIDE-b

Total size 203, 400 76,000

Training set 150,000 60,000

Validation set 26,700 80,000

Test set 26,700 80,000
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Figure 5.13: Visualization of training on NUS-WIDE-a.

Among them, we randomly selected 60, 000 pairs for training and the rest were

evenly partitioned for validation and testing. 1000 queries were randomly selected

from the two datasets respectively.

Training Analysis

NUS-WIDE-a In Figure 5.13a, we plot the total training loss L and its com-

ponents (LI , LT and LI,T ) in the first 50, 000 iterations (one iteration for one

mini-batch) against the NUS-WIDE-a dataset. We can see that the training con-

verges rather quickly. The training loss drops dramatically at the very beginning

and then decreased slowly. This is because initially the learning rate is large

and the parameters approaches quickly towards the optimal values. Another

observation is that the intra-modal loss LI for the image modality is smaller than

LT for the text modality. This is because some tags may be noisy or not very

relevant to the associated labels for the main visual content in the images. It is
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difficult to learn a set of parameters to map noisy tags into the latent space and

well predict the ground truth labels. The inter-model training loss was calculated

at a different scale and was normalized to be within one order of magnitude as

LI and LT .

The MAPs for all types of searches using supervised training model are shown

in Figure 5.13b. As can be seen, the MAPs first gradually increases and then

becomes stable in the last few iterations. It is worth noting that the MAPs are

much higher than the results of unsupervised training (MSAE) in Figure 5.9.

There are two reasons for the superiority. First, the supervised training algorithm

(MDNN) exploits DCNN and NLM to learn better visual and text features

respectively. Second, labels bring in more semantics and enable latent features

learn more robust to noises in input data (e.g., visual irrelevant tags).

Besides MAP, we also evaluated MDNN for multi-label prediction based on

precision and recall. For each image (or text), we looked at its labels with the

largest k probabilities based on Equation 2.12 (or 5.11). For the i-th image (or

text), let Ni denote the number of labels out of k that belong to its ground truth

label set, and Ti the size of its ground truth label set. The precision and recall

are defined according to (Gong et al., 2013a) as follows:

precison =

∑n
i=1Ni

k ∗ n , recall =

∑n
i=1Ni∑n
i=1 Ti

(5.13)

where n is the test set size. As shown in Figure 5.13c (k = 3), the performance

decreases at the early stage and then goes up. This is because at the early stage,

in order to minimize the inter-modal loss, the training may disturb the pre-trained

parameters fiercely, which affects the intra-modal search performance. Once the

inter-modal loss is reduced to a certain level, it starts to adjust the parameters

to minimize both inter-modal loss and intra-modal loss. Correspondingly, the

classification performance starts to increase. We can also see that the performance

of latent text features is not as good as that of latent image features due to the

noises in tags. We used the same experiment setting as that in (Gong et al.,
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Figure 5.14: Visualization of training on NUS-WIDE-b.

Table 5.7: Mean average precision using real-valued latent feature.

Task QI→I QT→T QI→T QT→I

Algorithm MDNN DeViSE-L DeViSE-T MDNN DeViSE-L DeViSE-T MDNN DeViSE-L DeViSE-T MDNN DeViSE-L DeViSE-T

Dataset NUS-WIDE-a 0.669 0.5619 0.5399 0.541 0.468 0.464 0.587 0.483 0.517 0.612 0.502 0.515

NUS-WIDE-b 0.556 0.432 0.419 0.466 0.367 0.385 0.497 0.270 0.399 0.495 0.222 0.406

2013a), the (over all) precision and recall was 7% and 7.5% higher than that in

(Gong et al., 2013a) respectively.

NUS-WIDE-b Figure 5.14 shows the training results against the NUS-WIDE-

b dataset. The results demonstrate similar patterns to those in Figure 5.13.

However, MAPs becomes lower, possibly due to smaller training dataset size and

fewer number of associated labels. In Figure 5.14c, the precision and recall for

classification using image (or text) latent features are the same. This is because

each image-text pair has only one label and Ti = 1. When we set k = 1, the

denominator k ∗ n in precision is equal to
∑n

i=1 Ti in recall.

2D Visualization To demonstrate that the learned mapping functions can

generate semantic discriminative latent features, we extracted top-8 most popular

labels and for each label, we randomly sampled 300 image-text pairs from the

test dataset of NUS-WIDE-b. Their latent features were projected into a 2-

dimensional space by t-SNE (van der Maaten, 2014). Figure 5.15a shows the

2-dimensional image latent features where one point represents one image feature

and Figure 5.15b shows the 2-dimensional text features. Labels are distinguished

using different shapes. We can see that the features are well clustered according
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(a) Image Latent Feature (b) Text Latent Feature

Figure 5.15: Visualization of latent features learned by MDNN for the test
dataset of NUSWDIE-a (features represented by the same shapes and colors are
annotated with the same label).

to their labels. Further, the image features and text features semantically relevant

to the same labels are projected to similar positions in the 2D space. For example,

in both figures, the red circles are at the left side, and the blue right triangles are

in the top area. The two figures together confirm that our supervised training is

very effective in capturing semantic information for multi-modal data.

Evaluation of Model Effectiveness on NUS-WIDE Dataset

We compared MDNN with DeViSE (Frome et al., 2013) in terms of effectiveness

of multi-modal retrieval. DeViSE maps image features into text feature space.

The learning objective is to minimize the rank hinge loss based on the latent

features of an image and its labels. We implemented this algorithm and extended

it to handle multiple labels by averaging their word vector features. We denote

this algorithm as DeViSE-L. Besides, we also implemented a variant of DeViSE

denoted as DeViSE-T, whose learning objective is to minimize the rank hinge

loss based on the latent features of an image and its tag(s). Similarly, if there

were multiple tags, we averaged their word vectors. The results are shown in

Table 5.7. The retrieval was conducted using real-valued latent feature and cosine

similarity as the distance function. We can see that MDNN performs much

better than both DeViSE-L and DeViSE-T for all four types of searches on both
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Figure 5.16: Training cost comparison on NUSWIDE-a dataset.

NUS-WIDE-a and NUS-WIDE-b. The main reason is that the image tags are

not all visually relevant, which prevents the text (tag) feature from capturing the

visual semantics in DeViSE. MDNN exploits the label information in the training,

which helps to train a model that can generate more robust feature against noisy

input tags. Hence, the performance of MDNN is better.

Evaluation of Training Cost

We report the training cost in terms of training time (Fig. 5.16a) and memory

consumption (Fig. 5.16b) on NUS-WIDE-a dataset. Training time includes the

pre-training for each single modality and the joint multi-modal training. MDNN

and DeViSE-L take longer time to train than MSAE, because the convolution

operations in them are time consuming. Further, MDNN has pre-training stages

for the image modality and text modality, and thus incurs longer training time

than DeViSE-L. The memory footprint of MDNN is similar to that of DeViSE-L,

as the two methods both rely on DCNN, which consumes most of the memory.

DeViSE-L used features of higher dimension (100 dimension) than MDNN (81

dimension), which resulted in about 100 MegaBytes difference as shown in

Fig. 5.16b.
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Comparison with Unsupervised Approach

By comparing Table 5.7 and Table 5.2, we can see that the supervised approach–

MDNN performs better than the unsupervised approach–MSAE. This is not

surprising because MDNN consumes more information than MSAE. Although the

two methods share the same general training objective, the exploitation of label

semantics helps MDNN learn better features in capturing the semantic relevance

of the data from different modalities. For memory consumption, MDNN and

MSAE perform similarly (Fig. 5.16b).

5.8 Summary

In this chapter, we presented an application on top of SINGA using feed-forward

neural networks. Particularly, we proposed a general framework (objective) for

learning mapping functions for effective multi-modal retrieval. Both intra-modal

and inter-modal semantic relationships of data from heterogeneous sources are

captured in the general learning objective function. Given this general objective,

we have implemented one unsupervised training algorithm and one supervised

training algorithm separately to learn the mapping functions based on deep

learning techniques. The unsupervised algorithm uses stacked auto-encoders as

the mapping functions for the image modality and the text modality. It only

requires simple image-text pairs for training. The supervised algorithm uses

an extended DCNN as the mapping function for images and an extended NLM

as the mapping function for text data. Label information is integrated in the

training to learn robust mapping functions against noisy input data. The results

of experiment confirmed the improvements of our method over previous works in

search accuracy. The approaches presented in this chapter are published in the

following papers.

• Wei Wang, Beng Chin Ooi, Xiaoyan Yang, Dongxiang Zhang, and Yueting

Zhuang. Effective multi-modal retrieval based on stacked auto-encoders. PVLDB,
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7(8):649-660, 2014

• Wei Wang, Xiaoyan Yang, Beng Chin Ooi, Dongxiang Zhang, and Yueting

Zhuang. Effective deep learning-based multi-modal retrieval. VLDB Journal,

Special issue of VLDB’14 best papers, 25(1):79-101, 2016



Chapter 6
Conclusion and Future Work

6.1 Summary

In this dissertation, we conducted thorough study on improving the usability of

deep learning from the system and application perspective.

We first investigated and analyzed the challenges of using deep learning models

from the training system perspective, including stand-alone training and dis-

tributed training. For stand-alone training, operation scheduling and memory

management would be significant for improving the usability and efficiency. We

discussed some possible optimization techniques such as cost model for optimal

operation scheduling and swapping data between CPU and GPU for reducing

memory footprint. For distributed training, communication, consistency and

fault-tolerance are major issues that restrict the scalability of the training sys-

tem. Existing solutions and possible optimization approaches were highlighted,

including bounded-asynchronous training and parameter compression.

Next, based on the analysis, we proposed a distributed system for improving the

training efficiency. The system, called SINGA, was designed to be a general system

to support various deep learning models, and as a scalable system that could

effectively reduce the training time with more computing resources. The first

design goal was achieved through the layer and neural net abstraction which are

intrinsic data structures of deep learning models. We proposed a flexible system

architecture towards the second goal, which could be customized to optimize

108
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different distributed training frameworks. We demonstrated the usability of

SINGA by training three representative models with different structures on it. By

comparing with other open source systems, SINGA was verified to be scalable.

Lastly, we applied SINGA to train deep learning models for the multi-modal

retrieval application. We aimed at exploiting the excellent performance of deep

learning models in feature extraction to improve the search accuracy. Our first

model consisted of two simple auto-encoder models for extracting features for

images and text documents respectively. In comparison, with existing works, the

experiments showed that our proposed model could learn effective features for

multi-modal retrieval. The accuracy was increased significantly on benchmark

datasets. Our second model combined the advantages of the convolutional neural

network (CNN) model and the word vector model. CNN is the state-of-the-art

model for extracting image features, and the word vector model is a simple and

effective approach for extracting features for text documents. The experimental

results confirmed that the new model can further improve against the first model

for multi-modal retrieval. Our models were important in the light of applying

deep learning techniques for retrieval problems.

6.2 Future Work

I would like to extend the current works in the following two aspects.

6.2.1 Deep learning system optimization

The goal is to make deep learning systems easy to use, efficient, scalable and

extensible.

• Deep learning is being adopted in many applications using different devices.

It is desirable to provide a simple, flexible and extensible system in terms of

installation, programming interface and result analysis (e.g., visualization).
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• Efficiency is vital for a deep learning system due to the high computation

cost and memory requirement from the training and prediction procedures.

Runtime analysis has the potential to outperform the static or manual

analysis for optimizing memory and execution scheduling. Hardware level

optimization is also under intensive research, e.g., using FPGA and designing

deep learning chips.

• Communication and consistency overheads are the major challenges for

good scalability of distributed training. Cluster topology optimization could

be an effective approach for reducing the communication cost. Theoretical

analysis of different consistency models are essential to guide the consistency

model selection and implementation.

In Chapter 3, we presented a couple of challenges and possible solutions for

optimizing deep learning systems. SINGA (Version 0.x) was proposed with

special focus on the architecture, which is just one of many issues. We would

like to study these issues in details and implement them in SINGA Version

1.x, including memory management, operation scheduling, communication and

concurrency.

6.2.2 Multi-modal data analysis with deep learning

A huge amount of multimedia data is being generated every day, e.g. social media

data and e-commerce data. There are many opportunities of multi-modal data

analysis with deep learning. I am keen to extend the techniques of multi-modal

retrieval to multi-modal recommendation and classification. One approach is to

fuse the features from different domains to generate a better representation for

the object. Another approach is to exploit the data (e.g., text) from one domain

to assist the analysis (e.g., feature extraction) of the other domain (e.g., images).

The challenges lie in the designing of the fusion (or interaction) layer to capture

the shared semantics among different domains.
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