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Summary 

HIV-Tat-interacting protein of 60 KDa (TIP60) is a lysine 

acetyltransferase implicated in transcription, DNA damage response and 

apoptosis. It is known to be downregulated in multiple cancers. TIP60 is 

shown to act as a haploinsufficient tumour suppressor in MYC-induced 

lymphomagenesis. Additionally, downregulation of TIP60 is shown to be a 

potential marker for cancer malignancy and poor Overall Survival (OS). 

In cervical cancers, Human Papillomavirus (HPV) E6 oncogene targets 

cellular p53, BAK and some of the PDZ domain containing proteins for 

proteasome mediated degradation through E6AP ligase. Other than this, E6 

oncoprotein from both high-risk and low-risk HPVs were shown to target 

TIP60. However, the destabilization of TIP60 mediated by E6 was E6AP 

independent suggesting a novel mechanism yet to be identified. Additionally, 

whether destabilization of TIP60 contributes to HPV E6 mediated tumour 

transformation remains unclear. A proteomic analyses revealed that 

EDD1/UBR5, an E3 ubiquitin ligase overexpressed in cancers, is a binding 

partner of TIP60. Cycloheximide treatment and ubiquitination assay reveal 

that EDD1 negatively regulates TIP60’s protein stability through 

ubiquitination dependent proteasome degradation. More importantly, HPV E6 

utilizes EDD1 to mediate TIP60 destabilization. Colony formation assays 

show that gain-of-function either by overexpressing TIP60 or by depleting 

EDD1 in HPV positive cervical cancer cells significantly inhibits colony 

formation in vitro. This is strongly supported by the in vivo studies where re-

activation of TIP60 in cervical cancer cells dramatically reduces tumour 

formation. In summary, a novel ligase through which E6 destabilizes TIP60 
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was identified. More interestingly, this study implying a distinct tumour 

suppressor role for TIP60 in cervical cancers shows that reactivation of TIP60 

through inhibiting EDD1 could be of therapeutic value.  

Other than tumour growth, metastasis is an important feature of cancer. 

Among various signalling pathways, TIP60 is implicated in regulating 

epithelial-mesenchymal transition (EMT), an essential process of cancer 

metastasis. In my attempt to identify the role of TIP60 in inhibiting cancer 

metastasis, I have used in vitro and in vivo models to show that TIP60 

expression abrogates cell migration and metastatic potential of breast cancer 

cells. Mechanistically, this was through TIP60’s ability to destabilize DNMT1 

and inhibit SNAIL2’s function (SNAIL2 mediated EMT/cell migration). 

Depletion of TIP60 stabilizes DNMT1 and increase SNAIL2 levels, resulting 

in EMT. Recruitment of DNMT1 to SNAIL2 targets in the absence of TIP60 

increases DNA methylation on their promoter region and further represses 

expression of epithelial markers. In pathophysiological scenario, TIP60 is 

significantly down-regulated in breast cancer patients with poor Overall 

Survival (OS) and Disease-Free Survival (DFS) prognoses. These data suggest 

that levels of TIP60 can be a prognostic marker of breast cancer progression 

and stabilization of TIP60 could be a promising strategy to treat cancers. 

Taken together, my study reveals the mechanism of TIP60’s tumour 

suppressor function including inhibition of both tumour growth and 

metastasis. I have summarised my work into five categories (introduction, 

objective, materials and methods, results and discussion), which are divided 

into nine chapters.   
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Chapter 1: Introduction 

In 1996, by using Yeast Two Hybrid assay, G. Chinnadurai et al identified 

a protein specifically interacting with HIV Tat transactivator through the N-

terminal 31 amino acids which contains the essential cysteine rich portion of 

Tat activation domain (Kamine et al., 1996). They named this protein TIP60 – 

Tat interactive protein 60 kDa. In their study, they also found that 

overexpression of TIP60 results in an increase of Tat transactivation of HIV-1 

promoter without changing the basal activity of HIV-1 promoter or the 

heterologous RSV promoter, suggesting that TIP60 is a cofactor of HIV Tat 

protein in activating HIV expression.  

Since then multiple groups including ours have identified role of TIP60 

and have demonstrated its importance in regulating cellular pathways (Chen et 

al., 2015; Du et al., 2010b; Jha et al., 2010; Tang et al., 2013) (Figure 1).  TIP60 

has been implicated in multiple cellular pathways such as DNA damage 

response, apoptosis, chromatin remodelling and transcriptional regulation (Jha 

and Dutta, 2009; Sapountzi et al., 2006; Squatrito et al., 2006). This is through 

its ability to acetylate both histone and non-histone proteins, and by doing so it 

acts as a regulator of these proteins, for example p53 and Ataxia 

Telangiectasia Mutated (ATM) kinase (Sun et al., 2005; Sun et al., 2007; 

Sykes et al., 2006; Tang et al., 2006). These studies suggest that TIP60 

modulate function of a wide range of cellular proteins that are essential in 

multiple cellular pathways.  

As an important regulator in cell, dysregulation of TIP60 correlates with 

multiple diseases including cancers. In 2007, Gorrini et al. identified TIP60 as 
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a haplo-insufficient tumour suppressor using E(mu)-MYC transgenic mice that 

are heterozygous for TIP60 gene (Gorrini et al., 2007). Further research also 

found that down-regulation of TIP60 highly correlates with cancer progression 

and could be a prognostic marker for cancer progression (Sakuraba et al., 

2009).  

  

 

Figure 1 TIP60 is involved in multiple cellular pathways.  

Adapted from (Chen et al., 2015; Du et al., 2010b; Jha et al., 2010; Tang et al., 2013).  
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1.1 TIP60 is a lysine acetyltransferase 

1.1.1 Structural characteristics of TIP60 

TIP60 is encoded by HTATIP gene located at 11q13.1 and consists of 14 

exons (Sapountzi et al., 2006). There are at four different splice variants of 

TIP60 due to alternative splicing (Figure 2). Isoform 2 is most studies form of 

TIP60. Isoform 1 results from an additional translation of intron 1 which 

might have regulatory function (Legube and Trouche, 2003). Isoform 3 results 

from an exclusive translation of exon 5 that encodes a proline rich region and 

appears to function similar to isoform 1 (Ran and Pereira-Smith, 2000). 

Isoform 4 results from an additional translation of intron 1 and an exclusive 

translation of exon 5. 

TIP60 was first identified as a histone lysine acetyltransferase in 1997 by 

Yamamoto and Horikoshi (Yamamoto and Horikoshi, 1997). In their study, 

TIP60 was identified as a nuclear protein with a conserved region named 

MYST domain (Figure 3) which is also found in other acetyltransferase such 

as MOZ (Borrow et al., 1996), MOF (Hilfiker et al., 1997), YBF2/SAS3 

(Reifsnyder et al., 1996) and SAS2 (Ehrenhofer-Murray et al., 1997; 

Reifsnyder et al., 1996), indicating a acetyltransferase function of TIP60. The 

group of acetyltransferases that contain MYST domain are categorized under 

MYST family of acetyltransferase. The common feature of this family is 

transfers acetyl group from Acetyl-CoA to lysine residues of target protein. 

The structure of human TIP60 and yeast Esa1 are similar (Figure 3). The 

catalytic domain of TIP60 includes a region that mediates Acetyl-CoA binding 

and a C2H2-type zinc finger, which might be involved in substrate 

recognition. Within the MYST family, TIP60 is closely related to MOF as 
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both contain a chromodomain N-terminal of MYST domain and they are 

known to acetylate common substrates such as histone H4 and p53 (Sykes et 

al., 2006; Taipale et al., 2005). 

 

 

Figure 2 Schematic of TIP60 isoforms. 
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Figure 3 Diagram highlighting functional domains of human TIP60 and yeast Esa1. 

Numbers indicate the amino acids of TIP60 proteins. 
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1.1.2 Histone targets of TIP60 

In 1998, Kimura and Horikoshi identified six lysines in core histones that 

are acetylated by TIP60; lys-5 of histone H2A, lys-14 of histone H3 and lys-5, 

lys-8, lys-12, lys-16 of histone H4. Further, it is reported that TIP60 is usually 

a part of a histone remodeller complex – NuA4 – where it functions as a 

histone acetyltransferase. NuA4 complex, also known as TIP60 complex in 

human, is a multiprotein complex consist of at least 16 subunits (Figure 4) 

(Doyon and Cote, 2004). TIP60 is the catalytic subunit of human NuA4 

complex and plays a central role in the function of the complex. This complex 

is capable of at least three interrelated enzymatic activities: histone H2A/H4 

acetylation, ATP-dependent histone H2AZ/H2B dimer exchange and DNA 

helicase (Auger et al., 2008). Studies have implicated that it involved in 

multiple cellular pathways that correlates with TIP60 regulated pathways.  

TIP60 is recruited to the chromatin and mediates histone acetylation as a 

complex. For example, TIP60 is recruited to the chromatin by c-MYC with 

four other components of the NuA4 complex: TRRAP, p400, TIP48 and 

TIP49 (Frank et al., 2003). This is essential for c-MYC induced histone H4 

acetylation, as overexpression of catalytic inactive of TIP60 decrease the level 

of c-MYC induced histone acetylation (Frank et al., 2003).  

1.1.3 Non-histone targets of TIP60 

TIP60 not only acetylates histones but also non-histone proteins. TIP60 

usually acetylates non-histone proteins independently instead of forming 

TIP60 complex. Till now, several non-histone proteins, including post-

translational modifier and transcription factors, are identified as TIP60’s 

targets. TIP60 mediated acetylation on these non-histone targets usually 
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regulate their activity which might lead to tumour suppression, for example, 

ATM (Sun et al., 2005; Sun et al., 2007), p53 (Sykes et al., 2006; Tang et al., 

2006) and p21 (Lee et al., 2013). However, further research also identified that 

TIP60 acetylates c-MYC (Patel et al., 2004) and cancer metastasis inducer 

TWIST1 (Shi et al., 2014), and this is important for their oncogenic function, 

indicating a bivalent role of TIP60 in carcinogenesis.  

 

Figure 4 Schematic representation of human NuA4 complex. 

 Adapted from (Doyon and Cote, 2004).  

  



8 
 

1.2 TIP60 in regulating DNA damage response 

DNA damage arises from the error of replication and/or exposure of 

exogenous reagent. There are different kinds of DNA damage and DNA 

double stand break (DSB) is one kind, which is difficult for cell to repair. 

TIP60 is essential for DSB repairing. DSB is repaired in two ways: 

homologous recombination (HR) and non-homologous end joining (NHEJ). 

NHEJ is generally considered to be error-prone, whereas HR is generally 

considered to be error-free (Sun et al., 2010). TIP60 has been implicated in 

response to homologous recombination repair pathway. This is through two 

roles of TIP60 in DSB: chromatin remodelling by human NuA4 complex at 

DSB sites and activation of ATM signalling pathway. By activating the DNA 

damage response (DDR), TIP60 protects cells from genome instability caused 

by DSB and supresses the transforming events that might lead to cancer. 

1.2.1 TIP60 activation during DNA damage response 

TIP60 is activated during DSB by interacting with H3K9Me3 through its 

chromodomain (Sun et al., 2009). H3K9Me3 is known to predominantly 

locate in heterochromatin (Barski et al., 2007; Regha et al., 2007). For DSB 

localized around heterochromatin, the original H3K9Me3 could play a role in 

recruiting TIP60. However, majority of cellular H3K9Me3 is bound by 

heterochromatin protein 1 (HP1) (Jacobs and Khorasanizadeh, 2002; Nielsen 

et al., 2002), which questions how H3K9Me3 could be available to TIP60? 

Recent studies found the involvement of casein kinase 2 (CK2) (Ayoub et al., 

2008; Sun et al., 2009) in regulating binding of HP1 to H3K9Me3. 

Phosphorylation of HP1 by CK2 results in release of HP1 bounded to 

H3K9Me3, which creates unoccupied domains of H3K9Me3 for interacting 
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with TIP60 chromodomain (Ayoub et al., 2008; Sun et al., 2009). However, 

released HP1 remains chromatin bound via its chromoshadow domain instead 

of re-localizing to nucleoplasm (Luijsterburg et al., 2009). Further release of 

HP1 from chromatin requires phosphorylation on KAP-1 by active ATM. This 

would further release HP1/KAP-1 complex from chromatin and generate a 

relaxation region to facilitate DNA repairing (Ziv et al., 2006). 

However, this does not explain how TIP60 is activated on open chromatin 

region that lacks H3K9Me3. Recent studies found that a complex containing 

HP1, KAP-1 and a H3K9 methyltransferase SUV39H1 are rapidly enriched on 

the chromatin at DSB sites (Ayrapetov et al., 2014). SUV39H1 catalyses 

H3K9Me3 and facilitates additional HP1/KAP-1/SUV39H1 enrichment 

around DSB sites through interaction between HP1 and nascent H3K9Me3. 

This would result in spreading of H3K9Me3 and recruiting TIP60 to DSB sites, 

providing a mechanism of TIP60 activation around euchromatin region that 

lack H3K9Me3. 

1.2.2 Histone acetylation by TIP60 at DNA damage sites 

Acetylation, among all the other modifications, has a role to change the 

surface charge distribution of the targeted proteins and further change the 

accessibility of the genome or other proteins. Acetylation of histones by TIP60 

(NuA4) complex is also very important for DNA damage response pathway. 

When there are DNA double strand breaks, TIP60 mediated acetylation on 

histone H4 lysine 16 (H4K16Ac) acts as a switch of homologous 

recombination (HR) repair pathway and non-homologous end joining (NHEJ) 

repair pathway (Tang et al., 2013). Mechanistically, H4K16Ac promotes 

homologous recombination by promoting BRCA1 recruitment to DSB sites 
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and inhibits non-homologous end joining by inhibiting H4K20Me2 mediated 

53BP1 recruitment (Tang et al., 2013). In addition to this, Jacquet et al 

recently demonstrated that TIP60 is involved in promoting HR pathway by 

competing with RNF168 (Jacquet et al., 2016). 53BP1 recruitment to DSB 

sites not only involves H4K20Me2 but also H2AK15Ub. TIP60 acetylation on 

H2AK15 inhibits RNF168 ubiquitination on the same sites, thereby inhibiting 

53BP1 recruitment at DNA damage sites. 

Taken together, TIP60 promotes HR and ablate NHEJ by inhibiting both 

H4K20Me2 and H2AK15Ub mediated recruitment of 53BP1. 

1.2.3 TIP60 and ATM activation 

ATM activation initiates the signalling pathways that would recruit DNA 

damage repair molecules and activate cell cycle checkpoints. ATM 

phosphorylation on H2AX provides a platform for the recruitment of DNA 

repair complex including 53BP1, BRCA2 and NBS1 (Stucki et al., 2005). 

ATM phosphorylation on p53 and CHK2 plays a crucial role in cell cycle 

arrest. Thus activation of ATM is a crucial step in DNA damage response. 

Recent studies reveal TIP60’s catalytic activity is crucial for ATM 

activation. TIP60 interacts with the FATC domain of ATM, and acetylates 

K3016 of ATM (Sun et al., 2007). Mutation of lysine 3016 of ATM results in 

defective ATM dependent activation of DDR, suggesting an important role of 

TIP60 acetylation in ATM activation. Inactivation of MRN complex (also 

reported be involved in ATM activation (Sun et al., 2009)), ablates acetylation 

and activation of ATM by TIP60. Interestingly, loss of functional MRN 

complex delays both recruitment of TIP60 to DSB sites and activation of 



11 
 

TIP60, suggesting that MRN complex might be involved in recruitment of 

TIP60-ATM to DSB sites, which would lead to the activation of TIP60 by 

H3K9Me3 and acetylation of ATM by TIP60.  

1.3 TIP60 as a regulator of transcription factors 

1.3.1 TIP60 acetylates transcription factors which function as 

tumour suppressor 

TIP60 is reported to mediate acetylation on several transcription factors 

and this would lead to tumour suppression. The most well-known transcription 

factor acetylated by TIP60 is p53. Acetylation of p53 on lysine 120 by TIP60 

modulates the decision between cell cycle arrest and apoptosis, which is 

crucial for p53 dependent apoptosis but not p53 induced cell cycle arrest 

(Sykes et al., 2006; Tang et al., 2006). The K120R mutation results in mis-

regulation of p53 pro-apoptotic targets such as BAX and PUMA, however the 

non-apoptotic targets such as p21 and hMDM2 remain unaffected.  

Another transcription factor known to be acetylated by TIP60 is p21. 

Acetylation of p21 on lysine 161 and 163 by TIP60 is required for 

stabilization of p21 and this is necessary for p21 induced cell cycle arrest 

during DNA damage response (Lee et al., 2013). Acetylation mimetic 

mutations K161Q and K163Q decrease the polyubiquitination of p21 in 

H1299 cells and further enhance p21 mediated cell cycle arrest. Lee et al. also 

found these mutations to delay growth of p21 null MEFs.  

1.3.2 TIP60 acetylates oncogenic transcription factor 

 It is also reported that TIP60 could mediate acetylation of oncogenic 

transcription factors that is essential for their oncogenic activity. Among them, 
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the most well-known is c-MYC. TIP60 mediated acetylation on oncoprotein c-

MYC (Patel et al., 2004) increase its stability. However, the acetylation site on 

c-MYC by TIP60 is yet to be identified. Additionally, not only TIP60 but also 

GCN5 acetylates c-MYC, and GCN5 seems occupy the predominant role in 

acetylating c-MYC. Therefore, role of TIP60 in c-MYC acetylation and 

functional regulation need further investigation.   

Another oncogenic transcription factor acetylated by TIP60 reported 

recently is TWIST1 (Shi et al., 2014). TIP60 mediates TWIST1 di-acetylation 

on K73 and K76, which is required for TWIST1 and BRD4 interaction. 

Furthermore, the interaction between TWIST1 and BRD4 is essential for 

WNT5A expression and important for breast cancer progression. However, 

this study only identified TIP60-TWIST1-BRD4 axis in WNT5A expression 

cancer cells, whether TIP60-TWIST1-BRD4 axis is essential to WNT5A non-

expression cancer cells need to be further investigated. Additionally, TIP60 

has been implicated as a tumour suppressor in many cellular pathways, 

however this study found that TIP60 could facilitate the progression of 

WNT5A driven breast cancer. This bivalent role of TIP60 needs further 

investigation.  
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1.4 TIP60 in transcriptional regulation  

1.4.1 TIP60 as a co-activator of transcription 

It is believable that TIP60 could also interact with several transcription 

factors and further assist the regulation of the downstream of these 

transcription factors (Figure 5A). For example, TIP60 complex is recruited to 

MYC target gene through interacting with c-MYC. This would result in an 

increased acetylation of histone H4 and further activation of target genes 

(Frank et al., 2003). Overexpression of catalytic inactive TIP60 delays the 

acetylation on histone H4 induced by c-MYC, and also reduced recruitment of 

c-MYC to chromatin. 

TIP60 is also known to be a co-activator of NF-ᴋB (nuclear factor kappa 

light chain gene enhancer in B cells) in the regulation of its target genes, for 

example, KAI1, a metastasis suppresser gene. TIP60 is recruited to KAI1 

promoter by NF-ᴋB p50. This would activate the transcription of KAI1 gene 

and inhibit cancer metastasis (Kim et al., 2005). However, β-catenin could 

replace TIP60 on KAI1 promoter when it is overexpressed or TIP60 is 

depleted. This would further repress KAI1 expression that results in promoting 

cancer metastasis. Therefore, the balance between TIP60 and β-catenin 

determine the expression level of KAI1 and further determine the metastatic 

status of cancer.  

Other than these, TIP60 is important in E2F1 target gene transcription as 

well. It is reported that E2F1 recruits TIP60 complex to target promoter in late 

G1 phase and results in histone H4 hyper-acetylation on target promoter which 

would activate target gene (Taubert et al., 2004). Additionally, TIP60 complex 

interacts with myeloid transcription factor C/EBPα (CCAAT/enhancer binding 
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proteins), resulting in an enhancement of acetylation on histone H3 and H4 

and activates downstream targets including C/EBPα itself (Bararia et al., 

2008). 

1.4.2 TIP60 as co-repressor of transcription 

In most cases, TIP60 is reported to co-activate expression of genes. 

However, TIP60 can also act as a co-repressor of certain gene expression. 

TIP60 acts as a co-repressor through either recruits repressor complex (Figure 

5B) or interacts with transcription factor with repressive function (Figure 5C). 

For example, TIP60 is reported to interact with both HDAC7 (histone 

deacetylase 7) and STAT3 (Xiao et al., 2003),  This allows TIP60 to recruit 

HDAC7 to STAT3 target sites (Figure 5B) and represses STAT3 target gene 

expression (Xiao et al., 2003). Additionally, it is reported that TIP60 represses 

transcription by associating with transcription repressor ZEB1 (zinc finger E 

box binding protein) in certain cell types (Hlubek et al., 2001).  

 

 

Figure 5 Models of TIP60 

involvement in 

transcription.  

(A) TIP60 is recruited by 

transcription factor, 

resulting in hyperacetylaiton 

on H4 and further activation 

of transcription. (B) TIP60 

recruits repress complex and 

inhibit transcription activity. 

(C) TIP60 associates with 

transcription repressor to 

repress transcription.   

C 

B 

A 



15 
 

1.5 TIP60 is regulated by post-translational modification 

TIP60 is tightly regulated in cell via various processes. Regulation of 

TIP60 by protein-protein interaction and post-translational modification is 

well documented. However, regulation of TIP60 at transcription level is not 

well studied. Interestingly, TIP60 is known to be positively regulated by 

circadian transcription factor, CLOCK and this is through binding of CLOCK 

to the E-box motif on TIP60 promoter (Miyamoto et al., 2008). 

Regulation of TIP60 by protein binding has been discussed in detail 

section 1.1.2, 1.2.2 and 1.4. Hence, in this section, regulation of TIP60 by 

post-translational modification will be discussed in detail. 

1.5.1 Acetylation on TIP60 

TIP60 can be acetylated by p300/CBP acetyltransferase on lysine 268 and 

lysine 282 of TIP60 that is located within the zinc finger domain of TIP60, 

however, the effects of these acetylation on TIP60 are yet to be explored (Col 

et al., 2005).  

TIP60 is known to be auto-acetylated in response to DNA damage. The 

auto-acetylation of TIP60 occurs on lysine 327 of TIP60 that is located within 

the active site of the MYST domain (Wang and Chen, 2010; Xiao et al., 2014; 

Yang et al., 2012a). Interestingly, acetylation upregulates TIP60’s catalytic 

activity, as mutations on K327 (K327R and K327Q) abolishes both TIP60 

auto-acetylation on wild-type TIP60 and its targets such as histone H4 (Yang 

et al., 2012a). Mechanistically, this auto-acetylation of TIP60 results in 

dissociation of TIP60 oligomer and enhances its association with substrates 

(Wang and Chen, 2010). Among deacetylases, SIRT1 has been identified to 
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deacetylate K327 of TIP60 and negatively regulates its activity (Wang and 

Chen, 2010). Moreover, p300 has been shown to interact with TIP60 and 

facilitates TIP60 auto-acetylation on K327 and shown to be involved in the 

activation of FOXP3 (Xiao et al., 2014). 

1.5.2 Phosphorylation on TIP60 

TIP60 was identified to be phosphorylated at Serine 86 (Ser86) and Serine 

90 (Ser90) when human TIP60 was overexpressed in insect cells. 

Interestingly, TIP60’s acetyltransferase activity is modulated by these 

phosphorylation (Lemercier et al., 2003). Further, Ser90 was identified to be 

phosphorylated by Cyclin B/Cdc2 (cell division cycle 2) in vitro and in vivo. 

Consistent with this, Ser90 phosphorylated TIP60 accumulates in G2/M phase 

of the cell cycle and this is abolished after treat the cell with cyclin kinase 

inhibitor, Roscovitine (Seliciclib or CYC202) (Lemercier et al., 2003). This 

suggests that TIP60 is activated in G2/M phase and important for the 

regulation of G2/M cell cycle arrest. 

Ser86 was identified to be phosphorylated by GSK3β (glycogen synthase 

kinase 3) (Charvet et al., 2011; Lin et al., 2012) and this phosphorylation of 

TIP60 is involved in p53 dependent cell apoptosis (Charvet et al., 2011). As 

discussed in section 1.3.1, TIP60 mediated acetylation on p53 K120 

determines p53 to induce cell apoptosis rather than cell cycle arrest. Charvet et 

al demonstrated that TIP60 phosphorylation resistant mutant S86A, was 

unable to acetylate p53 K120 and activate PUMA expression (Charvet et al., 

2011). In addition to this, it was also reported that Ser86 phosphorylation of 

TIP60 is involved in regulation of autophagy (Lin et al., 2012). GSK3-TIP60-

ULK1 forms a signalling pathway. GSK3 mediated Ser86 phosphorylation on 
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TIP60 stimulates TIP60 dependent acetylation on ULK1 kinase and results in 

activation of ULK1 dependent autophagy under serum deprived condition.  

Recently, a new site, tyrosine 44 (Tyr44) of TIP60 was identified to be 

phosphorylated by a tyrosine kinase named c-Abl (Kaidi and Jackson, 2013). 

This phosphorylation of TIP60 promotes its interaction with H3K9Me3 which 

is required for TIP60 mediated acetylation on ATM and activation of ATM 

dependent signalling in response to DNA damage. 

1.5.3 Ubiquitination on TIP60 

TIP60 is an unstable protein with short half-life, which ranges from 30 

minutes to 2 hour. In cell, low level of TIP60 is maintained via Proteasome. 

Degradation by Proteasome is triggered by mono- or poly-ubiquitination on 

target proteins catalysed by ubiquitin ligase. However, little is known about 

the regulation of TIP60 thorugh ubiquitin-proteasome system (UPS) and 

ubiquitin ligase involved in ubiquitination on TIP60 is under explored. TIP60 

is known to be targeted for proteasome degradation by MDM2 (mouse double 

minute 2) (Legube et al., 2002). MDM2 was demonstrated to be involved in 

targeting TIP60 to proteasome degradation. MDM2 mediates TIP60 

proteasome degradation through physically interacting with TIP60 and 

through its E3 ligases activity it poly-ubiquitinates TIP60. This helps maintain 

low level of TIP60 in normal physiological scenario. However, when cells are 

exposed to DNA damage, for example, exposure to UV irradiation this inhibits 

MDM2 mediated TIP60 proteasome degradation resulting in accumulation of 

TIP60 in response to DNA damage. However, the mechanism of the inhibition 

of MDM2 mediated TIP60 degradation is still unclear. 
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TIP60 was also known to be targeted by p300/CBP-associated E4-type 

ubiquitin ligase (Col et al., 2005). This is utilized by HIV Tat to destabilized 

TIP60 resulting in impairment of TIP60 dependent apoptotic cell response to 

DNA damage. Interestingly, p300/CBP acetyltransferase activity is not 

involved in this process. 

Since TIP60 has a high turnover, involvement of ligase(s) other than 

MDM2 and p300/CBP cannot be overruled.  

1.6 TIP60 represses viral genome transcription and is destabilized 

by viral oncoproteins through ubiquitin proteasome system 

TIP60 is destabilized by viral oncoproteins via ubiquitin-proteasome 

system (UPS), for example HIV Tat protein utilize p300/CBP-associated E4-

type ubiquitin ligase to destabilize TIP60 (Col et al., 2005). In addition to HIV 

TAT, human papillomaviruses (HPVs) also targets TIP60 to UPS. 

HPV are non-enveloped DNA viruses that infect mucosal or cutaneous 

squamous epithelium and cause hyper-proliferation (Howley and Livingston, 

2009; zur Hausen, 2002). HPV infection causes cancer mainly due to the 

destabilization of p53 and pRB by viral E6 and E7 protein respectively 

(Munger and Howley, 2002; zur Hausen, 2002). HPV E6 interacts by its N-

terminal residues with p53 and with a cellular ubiquitin ligase E6AP (E6-

associated protein), forming a complex that results in ubiquitin-mediated 

degradation of p53 by the proteasome (Cooper et al., 2003; Huibregtse et al., 

1991, 1993; Scheffner et al., 1993). 

Recently our group discovered that TIP60 was also destabilized by HPV 

E6 in cervical cancer (Jha et al., 2010). This destabilization was proteasome 
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dependent since MG132 treatment restored TIP60 level. Interestingly, deletion 

and mutational analysis of E6 reveals that this is through the N-terminal region 

of E6 and does not require interaction with E6AP suggesting a novel ligase 

might be utilized by E6 to destabilize TIP60. 

As far as biological significance is concerned, it was demonstrated that 

TIP60 could repress viral gene transcription and this was through TIP60-

dependent acetylation of H4 on HPV promoter, and recruitment of BRD4-

repressor complex (Jha et al., 2010). These data suggests that E6 destabilizes 

TIP60 to release the expression of early viral proteins, and ablation of p53 

dependent cellular pathways. These data also highlight an important role of 

TIP60 in regulating virus transcription and the reason why viral proteins such 

as HPV E6 would target TIP60 for degradation. Whether regulation is 

common to other oncoviruses or restricted to HIV and HPV needs further 

investigation. 

1.7 Down-regulation of TIP60 might be a potential marker for the 

malignancy of cancer 

TIP60 is downregulated in multiple cancers. As mentioned above, TIP60 

is downregulated in various virus-induced cancers including HPV induced 

cervical cancer. Apart from that, the TIP60 gene expression is downregulated 

in colon carcinomas and lung cancers (ME et al., 2006). Moreover, loss of 

nuclear TIP60 staining is found in mammary carcinomas (Gorrini et al., 2007). 

These studies indicate that reduced TIP60 expression correlates with tumour 

development. This is consistent with the studies identifying association 

between TIP60 expression, cancer metastasis and survival of patients. Along 

these lines, Chen et al. used tissue microarray containing a large number of 
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melanoma biopsies and evaluated the expression of TIP60 in 

pathophysiological scenario and clinical outcome (Chen et al., 2012). Their 

data demonstrated that reduced TIP60 expression is significantly associated 

with melanoma metastasis and predicts a poorer survival in melanoma 

patients. They also showed that forced TIP60 expression inhibits melanoma 

cell migration. 

Downregulation of TIP60 was also observed in colorectal cancer. TIP60 

downregulation showed significant correlation with larger tumour size, poorly 

differentiated type, peritoneal dissemination, distant metastasis, and higher 

stage of TNM classification (Sakuraba et al., 2009). These suggested that 

TIP60 was more frequently downregulated in advanced colorectal carcinoma 

and downregulation of TIP60 could be a potential marker for the malignancy 

of colorectal cancer. 

1.8 Epithelial mesenchymal transition and cancer metastasis 

Epithelial-mesenchymal transition (EMT) is a highly conserved cellular 

program that allows polarized, immotile epithelial cells to convert to motile 

mesenchymal cells (Yang and Weinberg, 2008). EMT process can be 

categorised into three major changes in cellular phenotype (Boyer and Thiery, 

1993; Hay, 1995): (1) morphological changes from a cobblestone-like 

monolayer of epithelial cells with an apical-basal polarity to dispersed, 

spindle-shaped mesenchymal cells with migratory protrusions; (2) changes of 

differentiation markers from cell-cell junction proteins and cytokeratin 

intermediate filaments to vimentin filaments and fibronectin and (3) the 

functional changes associated with the conversion of stationary cells to motile 

cells that can invade through extra cellular matrix (ECM). Although all three 
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changes are not observed during EMT; acquisition of the ability to migrate and 

invade ECM as single cells is considered a functional hallmark of the EMT 

program (Yang and Weinberg, 2008). 

EMT program has been implicated in the dissemination of single 

carcinoma cells from primary epithelial tumours (Thiery, 2002). Systemic 

spread of tumour cells has already been detected from early lesions in HER-2 

transgenic mice and in human ductal carcinoma, which suggest that metastasis 

is not necessarily a late event in tumour progression (Husemann et al., 2008). 

Additionally, morphological evidence has shown that EMT occurs at invasive 

fronts of human tumours (Prall, 2007). Similarly, in colon carcinoma, EMT 

occurs at the invasive front and produces single migratory cells that shows 

reduced E-CADHERIN expression (Thiery et al., 2009). 

Many EMT-inducing transcription factors, including SNAIL1, SNAIL2, 

dEF1, SIP1, TWIST1, FOXC2, and GOOSECOID, have been associated with 

tumour invasion and metastasis (Yang and Weinberg, 2008). The involvement 

of several EMT-inducing transcription factors has been reported in human 

carcinomas. For example, overexpression of TWIST1 was associated with 

distant metastasis and poor survival in N-MYC-amplified neuroblastomas 

(Valsesia-Wittmann et al., 2004) and in melanomas (Hoek et al., 2004). 

The main functions of these transcription factors are to bind to the 

promoter of cell adhesion molecules to inhibit their expression or binding to 

the promoter of cell migration related proteins to activate their expression. 

During the EMT process, changes in cell morphology associate with 

downregulation of cell adhesion proteins such as E-CADHERIN and EpCAM, 
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and upregulation of cell migration related proteins such as FIBRONECTIN or 

VIMENTIN.  

1.9 TIP60 antagonizes DNMT1 

There are three classes of DNA methyltransferase (DNMTs): DNMT1, 

DNMT2 and DNMT3 (DNMT3A and DNMT3B) (Bestor, 2000). De novo 

DNA methylation is catalysed by DNMT3A and DNMT3B, whereas 

maintenance of DNA methylation during cell proliferation is done by DNMT1 

(Jones and Baylin, 2007). Among all the DNMTs, DNMT1 is the most 

abundantly expressed (Espada et al., 2011). DNMTs are progressively 

upregulated in cancers including colorectal adenoma-carcinoma (Schmidt et 

al., 2007), suggesting an oncogenic function of DNMTs.  

TIP60 is known to form a complex with DNMT1 through UHRF1, 

resulting in TIP60 mediated acetylation on DNMT1 and promoting DNMT1 

ubiquitination-dependent degradation (Du et al., 2010b). This regulation of 

DNMT1 maintains the proper DNMT1 level at different stages of cell cycle i.e 

promote DNMT1 degradation at the end of S phase or the beginning of G2 

phase (Du et al., 2010b). Previous studies also reported that TIP60 mediated 

DNMT1 degradation can be facilitated by RGS6 (Regulator of G-protein 

signalling 6) to suppress Ras-induced cellular transformation (Huang et al., 

2014), suggesting a tumour suppressor function of TIP60 by targeting 

DNMT1 for degradation. 
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Chapter 2: Objectives and Significance 

2.1. The mechanism and the biological implications of E6 mediated 

TIP60 degradation 

As discussed earlier, HPV E6 mediated destabilization of TIP60 was 

independent of E6AP. When I embarked onto this project, E6AP was the only 

E6 associated ligase identified. Thus, suggesting an interesting challenge of 

identifying the molecular mechanism that is utilized by HPV E6 to destabilize 

TIP60.  

But why would these viruses destabilize TIP60, in particular high-risk 

HPVs. TIP60 has been implicated in apoptosis and cell cycle arrest through 

acetylation of p53. However, these viruses target p53 for degradation, 

suggesting a novel function of TIP60 in virus-induced cancers. Thus, I decided 

to investigate the biological implications of restoring TIP60 in virus-induced 

cancers. 

2.2. The mechanism of TIP60 mediated inhibition of cancer metastasis 

As discussed earlier, downregulation of TIP60 was correlated with cancer 

metastasis suggesting TIP60’s role in inhibiting cancer metastasis. Thus I 

focused on investigating role of TIP60 in inhibiting cancer metastasis using 

both in vitro and in vivo models. Following which, I identify the molecular 

mechanism of TIP60 mediated inhibition of cancer metastasis.  
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Chapter 3: Materials and Methods 

Cell lines: HeLa, MDA-MB-468 and HEK293T cells were cultured in 

Dulbecco's modified Eagle's medium high glucose (Sigma-Aldrich, Cat. NO. 

D5796) supplemented with 10% fetal bovine serum (Sigma-Aldrich, Cat. NO. 

F7524). Ca-SKI cells were grown in RPMI medium (HyClone, Cat. NO. 

SH30027.01) supplemented with 10% fetal bovine serum (Sigma-Aldrich, 

Cat. NO. F7524). MCF10A cells (ATCC CRL-10317TM) were cultured in 

Dulbecco’s modified eagle’s media (DMEM)/F12 (1:1) media (Gibco, Cat. 

No. 11330-032) supplemented with 5% horse serum (Gibco, Cat.No. 16050-

122), 20 ng/ml epithelial growth factor (Peprotech, Cat. No.AF-100-15), 0.5 

mg/ml hydrocortisone (Sigma-Aldrich, Cat. No. H-0888), 100 ng/ml cholera 

toxin (Sigma-Aldrich, Cat. No. C-8052) and 10 μg/ml insulin (Sigma-Aldrich, 

Cat. No. I-1882). MDA-MB-231-luc-D3H2LN (PerkinElmer, Cat. No. 

119369) cells were cultured in DMEM with high glucose (Sigma-Aldrich, Cat. 

No. D-5796), supplemented with 10% foetal bovine serum (Sigma-Aldrich, 

Cat. No. F-7524), 1 mM sodium pyruvate (Gibco, Cat.No. 11360-070) and 1% 

of 100× MEM non-essential amino acid solution (Sigma, Cat. No. M-7145). 

HCC1937 cells were cultured in DMEM with high glucose, supplemented 

with 10% fetal bovine serum and 1 mM sodium pyruvate. Cell cultures were 

incubated at 37ºC with 5% CO2. 

siRNA transfection: siRNAs target different genes were transfected  using 

Lipofectamine RNAiMax reagent from Invitrogen/Life Technologies (Cat. 

No. 56532). The siRNA mixture used contained 15 l Lipofectamine 

RNAiMax, 2 ml optimum media (Gibco, Cat. No. 31985-070) and 20 nM 

siRNA. The transfection mixture was incubated for 20 min at room 
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temperature and then 1×106 cells were seeded in a 10-cm plate together with 

the siRNA mixture. After 6 h, the transfection mixture was replaced by growth 

media. Cells were harvested 72 h after siRNA transfection. 

Plasmids transfection: HeLa cells were transfected using calcium phosphate 

precipitation method. Briefly, 7×105 cells were seeded into 10-cm dish 16 

hours before transfection. On the day of transfection, 10 g total DNA were 

mixed with 190 l TE buffer (10 mM Tris-HCL pH 8.0, 1 mM EDTA), 22 l 

2 mM CaCl2 and 200 l 2X HBS buffer (274 mM NaCl, 10 mM KCl, 1.4 mM 

Na2HPO4, 42 mM HEPES pH 7.05). After incubating in room temperature for 

20 minutes, the DNA mixtures were added into cells drop by drop. Cells were 

harvested 24 hours after transfection. HEK293T cells were transfected using 

Lipofectamine 2000 reagent from Invitrogen/Life Technologies 

(Invitrogen/Life Technologies, Cat. No. 52887) following the manufactory 

protocol. 

siRNA sequences: siControl: Forward: 5’-

CGUACGCGGAAUACUUCGAdTdT-3’; Reverse: 5’-

UCGAAGUAUUCCGCGUACGdTdT-3’. siTIP60: Forward: 5’-

UGAUCGAGUUCAGCUAUGAdTdT-3’; Reserve: 5’-

UCAUAGCUGAACUCGAUCAdTdT-3’. siEDD1: Forward: 5’-

CAACUUAGAUCUCCUGAAAdTdT-3’; Reverse: 5’-

UUUCAGGAGAUCUAAGUUGdTdT-3’. siSNAI2 (Cat. No. sc-38393), 

siDNMT1 (Cat.No.sc-35204) and siDNMT3B (Cat. No. sc-37759) were 

purchased from Santa Cruz Biotechnology. 
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Plasmids: pCDNA-β-Gal, pCDNA-16E6, shRNA constructs against control 

and EDD1 were kindly provided by Prof. Lawrence Banks (ICGEB, Trieste). 

MSCV-Flag-TIP60WT, MSCV-Flag-TIP60*WT, MSCV-Flag-TIP60*KD 

were generated in lab. *, siRNA resistant; KD, catalytic inactive form. pcDNA 

SNAIL2-MYC was purchased from Addgene. FUW-FLAG-DNMT1-E2A-

mCherry-T2A was kindly provided by Prof. Daniel G Tenen (CSI, Singapore). 

Mutagenesis: To generate siRNA-resistant wild-type or catalytically inactive 

TIP60, the siRNA binding sites were mutated by using QuikChange II XL 

Site-Directed Mutagenesis Kit (Agilent, Cat. No. 200522). The PCR primers 

used for mutagenesis: TIP60*: forward: 

reverse: 5’-

CCACTTTGGAGAGTTCgTAtgaaAAtTCaATtAGCAGCTTGCCGTAGCC-

3’. TIP60KD: forward: 5’-

CTGCCTCCCTACgAGCGCCGGGagTACGGCAAGCTG-3’; reverse: 5’-

CAGCTTGCCGTActCCCGGCGCTcGTAGGGAGGCAG-3’. 

Western analysis: Proteins were separated on SDS-PAGE gels, transferred 

onto nitrocellulose membranes (BioRad, Cat. No. 9004-70-0), and detected 

using a primary antibody against β-GAL (Promega, Cat. NO. Z37880, 

1:10000), EDD1 (SantaCruz Biotechnology, Cat. NO. sc-9562, 1:500), 

ACTININ (SantaCruz Biotechnology, Cat. NO. 166524, 1:1000). β-ACTIN 

(SantaCruz Biotechnology, Cat.No. sc-81178, 1:1000), FIBRONECTIN 
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(SantaCruz Biotechnology, Cat. No. sc-8422, 1:500), EpCAM (Cell Signaling, 

Cat. No. 2626S, 1:1000), SNAIL2 (Cell Signaling, Cat. No. 9585S, 1:1000), 

FLAG (SantaCruz Biotechnology, Cat.No. sc-807, 1:1000), E-CADHERIN 

(BD Biosciences, Cat.No. 610182), DNMT1 (Abcam, Cat. No. 92314) and 

TIP60 rabbit polyclone antibody was generated in the lab. 

Protein half-life examination:  The half-life of TIP60 and DNMT1 are 

examined by cycloheximide (Sigma Aldrich, Cat. No. C7698) treatment. 

Briefly, 3.5 ×105 cells were seeded into 6-cm dishes 16 hours before 

treatment. On the day of treatment, 100 g/ml cycloheximide were added into 

the media and cells were harvested after 0, 1 or 2 hours treatment for TIP60 

and 0, 6, 12 hours treatment for DNMT1. Protein half-life was then examined 

by western blot.  

Purification of mRNA: Total RNA was isolated using TRIZOL reagent 

(Invitrogen/Life Technologies, Cat No. 15596-026) following the 

manufacturer’s protocol. RNA was dissolved in nuclease-free water for 

reverse transcription-PCR. 

Reverse transcription and quantitative PCR: Complementary DNA 

(cDNA) was synthesised using iScript cDNA Synthesis Kit (Bio-Rad, Cat. No. 

170-8891) according to manufacturer’s protocols. Quantitative PCR (qPCR) 

was performed with primer sets corresponding to primer list table (Table 1) 

and using iTaq Universal SYBR Green Supermix (Bio-Rad, Cat. No. 172-

5125) on an Applied Biosystems 7500 Fast Real Time PCR system. Results 

were analysed and are represented as fold change. 
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Table 1 Sequences of primers used for RT-qPCR 

  Forward (5'-3') Reverse (5'-3') 

TIP60 

endogenous 

GGCTCAGACCAACTCCAAGG TCCGGATCCCTTCTCACTGT 

TIP60 AATGTGGCCTGCATCCTAAC TGTTTTCCCTTCCACTTTGG 

CDH1 TTACTGCCCCCAGAGGATGA TGCAACGTCGTTACGAGTCA 

EpCAM GCTGGCCGTAAACTGCTTTG ACATTTGGCAGCCAGCTTTG 

VIM CTGCCAACCGGAACAATGAC CATTTCACGCATCTGGCGTT 

SNAI1 TCTTTCCTCGTCAGGAAGCC GATCTCCGGAGGTGGGATGG 

SNAI2 CTCCTCATCTTTGGGGCGAG CTTCAATGGCATGGGGGTCT 

TWIST1 TCGGACAAGCTGAGCAAGATT GCAGCTTGCCATCTTGGAGT 

CDH2 CCGGTTTCATTTGAGGGCAC TCCCTCAGGAACTGTCCCAT 

FN1 AACCCTTCCACACCCCAATC ACTGGGTTGCTGACCAGAAG 

ZEB1 AGGATGACCTGCCAACAGAC CTTCAGGCCCCAGGATTTCTT 

ZEB2-1 CCCTGGCACAACAACGAGAT AATTGCGGTCTGGATCGTGG 

ZEB2-2 CCTCTGTAGATGGTCCAGTGA GCGCTGAAGGTACTCCTCG 

ACTIN CCAGATCATGTTTGAGACCTTC

AAC 

CCAGAGGCGTACAGGGATAGC 

GAPDH CAGCCTCAAGATCATCAGCA TGTGGTCATGAGTCCTTCCA 

DNMT1 TACCTGGACGACCCTGACCTC CGTTGCATCAAAGATGGACA 

DNMT3B GGCAAGTTCTCCGAGGTCTCTG TGGTACATGGCTTTTCGATAGGA 
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Stable cell lines: Virus was generated by transfecting 5×106 293T cells with 

the plasmids [MSCV construct: i.e., MSCV vector control, TIP60 wild type 

(TIP60WT), siRNA-resistant TIP60 wild type (TIP60*WT), and siRNA-

resistant catalytically inactive TIP60 (TIP60*KD); LPCX construct: i.e., 

LPCX vector control, TIP60 wild type (TIP60WT)] using Lipofectamine 2000 

(Invitrogen/Life Technologies, Cat. No. 52887), as per manufacturer’s 

protocol. Viruses were harvested after 72 h of transfection and were used to 

infect 1×106 MCF10A or HCC1937 or MDA-MB-468 or 2×106 MDA-MB-

231-luc-D3H2LN cells or HeLa cells together with polybrene (Sigma-Aldrich, 

Cat. No. 107689) reagent (4 µg/ml). After 6 h, media containing the virus was 

replaced by growth media. After 24 h, puromycin was added into the growth 

media for selection. Media with antibiotics was changed every 48 h until the 

mock-transfected cells died. The cells were continuously selected for 2 weeks 

and for the creation of stable cell lines. EDD1 stably depleted [shRNA 

constructs: i.e. shTR2 (luciferase control) and shEDD1] HeLa cells and 293T 

cells were kindly provided by Prof. Lawrence Banks (ICGEB, Trieste). The 

list for stable cell lines is indicated in Table 2. 

Table 2 List of stable cell lines generated. 

MDA-MB-231-Luc-D3H2LN-MSCV MM-Luc-MSCV 

MDA-MB-231-Luc-D3H2LN-MSCV-FLAGTIP60WT MM-Luc-FT60WT 

MDA-MB-231-Luc-D3H2LN-MSCV-FLAGTIP60KD MM-Luc-FT60KD 

MCF10A-MSCV M10MSCV 

MCF10A-MSCV-FLAGTIP60WT M10FT60WT 
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MCF10A-MSCV-FLAGTIP60*WT M10FT60*WT 

MCF10A-MSCV-FLAGTIP60*KD M10FT60*KD 

HCC1937-MSCV HCC1937-MSCV 

HCC1937-MSCV-FLAGTIP60WT HCC1937-TIP60WT 

HCC1937-MSCV-FLAGTIP60KD HCC1937-TIP60KD 

MDA-MB-468-MSCV MM468-MSCV 

MDA-MB-468-MSCV-FLAGTIP60WT MM468-TIP60WT 

MDA-MB-468-MSCV-FLAGTIP60KD MM468-TIP60KD 

HeLa-LPCX HeLa-LPCX 

HeLa-LPCX-TIP60 HeLa-TIP60 

HeLa-shControl HeLa-shControl 

HeLa-shEDD1 HeLa-shEDD1 

293T-shControl 293T-shControl 

293T-shEDD1 293T-shEDD1 

WT, wild type; KD, catalytic inactive; *, siRNA resistant 

 

Colony formation assay (CFA): 2×103 cells per well were seed in 6 well 

plates with media containing 5% FBS. After 2 weeks, the colonies were 

stained with Cristal Violet (Simga Aldrich, Cat. No. C3886) and quantified 

using Image J software (http://imagej.nih.gov/ij/).  
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Soft agar assays: 12 well plates were coated with bottom agar [2X DMEM 

supplemented with 20% FBS and 1% agar (BioRad, Cat. No. 161-3111) 1:1 

mixture]. Then 1×103 cells were mix with upper agar (2X DMEM 

supplemented with 20% FBS and 0.8% agar 1:1 mixture) and seeded onto the 

bottom agar. Plates were incubated at 37 ºC with 5% CO2 for 2 weeks. The 

colonies were stained with Giemsa stain and quantified using Image J 

software.  

In vivo mice experiment: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice 

were obtained courtesy of Chan Shing Leng (National University of 

Singapore). HeLa-LPCX or HeLa-TIP60 cells were suspended in 100 µl of 

serum-free DMEM medium at a concentration of 1 × 105 cells/ml, or 1 × 106 

cells/ml supplemented with BD Matrigel matrix (BD Biosciences, Cat. No. 

354234), and were injected subcutaneously into the right or left flank of NSG 

mice. Tumours were excised and total tumour weight recorded. All animal 

studies were done according to approved protocols by the NUS Institutional 

Animal Care and Use Committee (IACUC), Singapore. 

In vitro invasion assay: In vitro invasion assay was performed as described 

previously (Korah et al., 2000) using the BD MatrigelTM Invasion chamber 

and 24-well plate 8.0 Micron insert (BD BiocoatTM, Cat. No. 354480). Briefly, 

50,000 MM-Luc-MSCV, or MM-Luc-FT60WT cells were seeded onto the top 

layer of the chamber and mixed with serum-free media. The bottom layer was 

filled with 750 µl growth media comprising 2% foetal bovine serum. After 8 

h, cells that had invaded into the bottom layer were stained and quantitated 

using ImageJsoftware (http://imagej.nih.gov/ij/).  
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Wound-healing assay: Wound-healing assays were performed as described 

previously (Chen et al., 2012; Oxmann et al., 2008). Briefly, siRNA-

transfected (siControl, siTIP60, siDNMT1,siTIP60/siDNMT1, siSNAI2 and 

siTIP60/siSNAI2) MCF10A cells or the stable metastatic breast cancer cell line 

was seeded into the wells of 24-well plates at 100% confluence. Cells were 

then maintained in complete media for another 12 h for adhesion. Cells were 

then subjected to serum-starved conditions for next 24 h. A wound was 

created using a fine pipette tip and the detached cells were removed by gently 

washing the wells with phosphate-buffered saline. The closure of wound was 

monitored every 24 h. For MCF10A, HCC1937 and MDA-MB-468 cells, the 

area of the wound was measured at 0 h and the percentage of movement was 

calculated by using the following formula: (area of wound at 0 hours – area of 

wound at n hours) / area of wound at 0 hour × 100, where n is a specific time. 

For MDA-MB-231-luc-D3H2LN, the number of cells migrated during gap 

healing were counted. Each experimental group was repeated three times. 

Immunofluorescence: MCF10A cells were transfected with siControl and 

siTIP60 as described above and were grown on a cover slide, fixed with 3.7% 

paraformaldehyde (Sigma-Aldrich, Cat. No. P-6148), and incubated with E-

CADHERIN (BD Biosciences, Cat. No. 610182, 1:500), β-CATENIN (BD 

Biosciences, Cat. No. 610153, 1:500) or FLAG (Santa Cruz Biotechnology, 

Cat.No. sc-807, 1:500) primary antibodies. Secondary antibodies used were 

Alexa Fluor 488 donkey anti-rabbit IgG (H+L) (Invitrogen/Life Technologies, 

Cat. No. A21206, 1:500) and Alexa Fluor 594 donkey anti-mouse IgG (H+L) 

(Invitrogen/Life Technologies, Cat. No. A21203, 1:500).  
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Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR): ChIP 

was performed as described earlier (Jha et al., 2010; Karnani et al., 2007). 

Briefly, 5×106 cells were transfected with siControl or siTIP60 in a 15-cm 

plate. After 72 h of siRNA treatment, cells were cross-linked with 1% 

formaldehyde (SantaCruz Biotechnology, Cat. No. sc-203049A) for 10 min at 

room temperature, and then washed twice with ice-cold phosphate-buffered 

saline. Cells were harvested by scraping and centrifuged at 1750 g for 15 min 

to collect the cell pellet. Cells were then resuspended in SDS lysis buffer (1% 

SDS, 0.01 M EDTA and 0.05 M Tris-HCl, pH 8.0) and sonicated (ON: 15 sec 

and OFF: 45 sec at 30% amplitude for 15 cycles) to obtain DNA fragments 

ranging from 100 to 500 bp. Chromatin was isolated by centrifuging at 15300 

g for 15 min at 4ºC and the supernatant was collected for 

immunoprecipitation. 

Immunoprecipitation was performed with anti-SNAIL2 antibody (Cell 

Signaling, Cat. No. 9585) or anti-DNMT1 antibody (Abcam, Cat. No. 

ab87656) overnight at 4C, followed by incubation with protein A/G PLUS 

agarose beads (SantaCruz Biotechnology, Cat. No. sc-2003) for 3 h. Beads 

were then washed with (i) low-salt immune complex buffer (0.1% SDS, 1% 

TritonX-100, 0.002 M EDTA, 0.02 M Tris-HCl, pH 8.0, and 0.15 M NaCl), 

(ii) high-salt immune complex buffer (0.1% SDS, 1% Triton-X-100, 0.002 M 

EDTA, 0.02 M Tris-HCl, pH 8.0, and 0.5 M NaCl), (iii) LiCl buffer (0.25 M 

lithium chloride, 1% NP40, 0.001 M EDTA, 0.01 M Tris-HCl, pH 8.0, and 1% 

deoxycholate) and (iv) TE buffer (0.001 M EDTA and 0.01 M Tris-HCl, pH 

8.0). Beads were eluted in 100 µl elution buffer (1% SDS and 0.0084% 

NaHCO3) three times with agitation for 15 min each. Chromatin was reversed 
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cross-linked by adding 0.2 M NaCl and was heated at 65ºC for 4 h. The 

proteins bound to DNA were digested by adding 20 µg proteinase K 

(AppliChem, Cat. No. 39450-01-6) and incubated at 45ºC for 1 h. DNA was 

purified using a PCR purification kit (QIAGEN, Cat. No. 28106) and used as 

template for qPCR. The results were analysed and are represented as percent 

input. Table 3 shows the sequence information for the primers used for qPCR 

(Stanisavljevic et al., 2011). 

Table 3.  Sequences of primers used for ChIP-qPCR. Red are the primer sets used in 

Figure 31, Figure 32 and Figure 39. 

  Forward (5'-3') Reverse (5'-3') 

FN11 TATTTTATGGGTTTTCTTCCT AGCGGCTGGGAGGAAAGGGAG 

FN12 GGAGCCCGGGCCAATCGGCG TGTGCAGCACAGCCGGCGCGG 

FN13 TCCTTCCCCCAGAATCAATGAA GGGAAGCCGAGTGTTTCTTCC 

FN14 GTTGAGACGGTGGGGGAGAGA CCGTCCCCTTCCCCA 

EpCAM1 TTTAGTAGAGACAGGTTTTCA TTTTATGTTTTAATTGTGAAT 

EpCAM2 CGGGTGTGGTGGTGGGCGCCT CCACCACACCCGGCTGATCCA 

EpCAM3 AAGCCACAATAACCAGTTAGT GGCAACAAGAGCGAAACTCCG 

EpCAM4 TTTTATTTTTTGAGATGGAGT TGGTGAAACCCATCTCAACTA 

EpCAM5 TATGAAGTATTTATAATTATT TAGAGCCAAATACTGAGAACC 

EpCAM6 CTAATTTTGTATCTTTTAGTA TTTTCGTTTTCATAAGCATTT 

EpCAM7 GTTCTGGAAGGTTCTCTGCCT CCATGGCGGCGTTAGGGATCT 

EpCAM8 CACCAGCGGCCAGAGGTGAGC GCGCGAGGCCTGGGGCACGCG 

EpCAM 

promoter 

TGGAAGGTTCTCTGCCTGTG TCCTTTTAACCGGAGGAGCG 

EpCAM 

1st intron 

AAACGGGCATAATAGGGAGGG CGAGCAAAGCTGCGAAGTGA 
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DNA methylation analysis using bisulphite pyrosequencing: DNA 

methylation analyses were performed as described previously (Mikeska et al., 

2011). Briefly, DNA was bisulphite converted using EpiTect Fast DNA 

bisulfite kit (Qiagen) according to the manufacturer’s protocol. Prior to 

pyrosequencing, PCR reactions were carried out using PyroMark PCR kit 

(Qiagen) in a 50 µl reaction volume (PCR primers used: promoter region: 

forward: GAAGGTTTTTTGTTTGTGTTTGTAT; reverse: 

[Btn]ACCCTCTCCACAAATATAAACC. 1st intron region: forward: 

GGGTATAATAGGGAGGGGATTAAG; reverse: [Btn] 

CCAAAACCATTTCCCTACCAA; Btn, biotin). An initial polymerase 

activation step of 15 min at 95°C was followed by 40 cycles of 30 s at 94°C, 

30 s at 56°C and 30 s at 72°C, and a final step of 5 min at 72°C. The 

biotinylated PCR products were extracted with streptavidin sepharose beads 

(GE Healthcare) according to the manufacturer's instructions and released into 

a PSQ 96 Low Plate (Biotage) containing 40 µl pyrosequencing primer 

(promoter region: GAGACGAAGTATTTGGGG; 1st intron region: 

GGGAGGGGATTAAGA) which has been diluted with annealing buffer to a 

final concentration of 0.4 µM. The plate was incubated at 80°C for 2 min, 

cooled to room temperature and run on a PyroMark ID machine (Biotage) 

using PyroMark Gold reagents (Qiagen) as specified by the manufacture. 

Results were analyzed with PyroMark software for DNA methylation 

quantification. 

Co-immunoprecipitation (co-IP): 5 µg of pcDNA-SNAIL2-MYC and 5 µg 

of FUW-FLAG-DNMT1-E2A-mCherry-T2A were co-expressed in 293T 

cells. FLAG-DNMT1 was immunoprecipitated using FLAG-M2 agrose beads 
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(Sigma Aldrich, Cat. No. A2220) and associated SNAIL2-MYC was probed 

using SNAIL2 antibody indicated above. Untransfected 293T cells serves as 

transfection control and 293T cells overexpressed SNAIL2-MYC alone serves 

as IP control. 

Bioluminescence assay in mice: Tail-vein injection was performed as 

described previously (Liang et al., 2005; Yang et al., 2012b). Briefly, 6-week-

old NOD/SCID mice (Invivos, Singapore) were divided into three groups with 

four mice per group. Each mouse received a tail-vein injection of 5×105 MM-

Luc-MSCV or MM-Luc-FT60WT or MM-Luc-FT60KD cells, and images 

were taken every 7 days after injection using IVIS 200 Pre-clinical in vivo 

Imaging System. All protocols for animal studies were reviewed and approved 

by the Institutional Animal Care and Use Committee at the National 

University of Singapore. Analyses of the images were performed as described 

previously (Craft et al., 2005; Wu et al., 2001) using Living Image software 

(IVIS imaging system). 

Data preprocessing of Affymetrix microarray gene expression: Data 

processing of microarray gene expression of breast cancer samples is 

described elsewhere (Kumar et al., 2013). Briefly, 26 breast cancer cohorts on 

Affymetrix U133A or U133Plus2 were downloaded from Gene Expression 

Omnibus (GEO) and Array Express. Robust Multichip Average (RMA) 

normalisation was performed on each cohort and, the normalised data was 

standardised using ComBat (Johnson et al., 2007) to remove batch effects. The 

standardised data yielded a dataset of 3,992 breast cancer tumours, and 22 

normal breast tissue samples.  
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Identification of breast cancer subtypes: Breast cancer subtype signature 

was obtained from the study by Prat et al. (2010) (Prat et al., 2010). 

Subsequently, single sample Gene Set Enrichment Analysis (ssGSEA) 

(Verhaak et al., 2010) was performed to estimate enrichment scores for the six 

breast cancer subtype signatures (Basal, Claudin-Low, Luminal-A, Luminal-

B, ERBB2+, and Normal-like) expressed in each sample. Each sample was 

then assigned a subtype depending on the ssGSEA enrichment score. 

Statistical analysis: Statistical significance evaluations were computed by 

Mann–Whitney test, Spearman Correlation Coefficient, log-rank test of 

Graphpad Prism® ver 5.04 and two sample two tailed student t-test. Error bars 

represent the standard deviation from at least three times experiments.  
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Chapter 4 

TIP60 functions as a tumour suppressor in HPV-induced cervical cancer 

and is degraded by HPV E6 through ubiquitin proteasome system 

4.1 Overexpressing TIP60 inhibits tumour growth  

TIP60 is a tumour suppressor and is a transcriptional repressor of E6 

expression. Therefore, I reasoned that gain-of-function of TIP60 might 

antagonize E6 mediated cellular growth and thereby inhibit tumour cell 

growth in HPV-induced cervical cancer cells. To address this, I used retroviral 

system to generate HeLa cells (Figure 6A) stably overexpressing FLAG-

TIP60. I then characterized the growth ability of HeLa-TIP60 cells in vitro by 

colony formation assay. HeLa-LPCX vector control or HeLa-TIP60 

expressing cells were seeded at very low density (2×103/per well in 6 well 

plate) for colony formation assays and maintained in antibiotic selection. After 

two weeks the colonies were fixed, stained and quantified. Representative 

images in Figure 6B and the quantifications in Figure 6C show that 

overexpression of TIP60 inhibited the ability of HeLa cells to form colonies 

by over 70%. Further, I questioned whether this phenomenon is due to the 

inhibition of E6 function. To address this, I overexpressed either pcDNA 

vector alone or pcDNA HPV18 E6 in HeLa-LPCX and HeLa-TIP60 cells 

(Figure 6D). Interestingly, I found that in vector control cells, overexpressing 

TIP60 decreases E6 endogenous level, which suggests that TIP60 might 

decrease HeLa cells colony formation ability through downregulating 

expression of E6. Then I performed colony formation assay, in Figure 6B and 

Figure 6C, I observed that by overexpression of E6 in HeLa-TIP60 cells 
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significantly rescued the colony formation when compared with vector control 

and there was no change in colony formation of HeLa-LPCX cells 

overexpressing E6 compared with vector control. These data suggested that 

TIP60 inhibits colony formation in vitro through antagonizing E6.  

 

 

 

 

 

Figure 6. Overexpressing TIP60 inhibits colony formation of HeLa cells in vitro and 

HPV 18 E6 rescues the growth defect in HeLa-TIP60 cells.  

(A) Western blot analysis confirming retroviral-induced TIP60 expression in HeLa-

TIP60 cells. (B) Representative images from the CFA performed in HeLa stable cells 

indicated in D. (C) Bar graph represent the results obtained from quantifications of at 

least three independent experiments. Quantifications were performed using Image J 

software; error bars represent the standard deviation. Significance is represented as 

***p<0.001. (D) HeLa-LPCX or HeLa-TIP60 cells were transiently transfected with 

indicated plasmids and western blotted for indicated antibodies. 
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Based on the in vitro results, I wanted to investigate this strong 

phenotype of TIP60 on cellular growth in vivo. NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ (NSG) mice were subcutaneously injected with 1×106 HeLa-

LPCX cells on the left and 1×106 HeLa-TIP60 cells on the right. Tumour sizes 

were measured every week. After seven weeks, the mice were sacrificed and 

the tumours were excised. The representative images from Figure 7A, B and 

quantifications from Figure 7C shows that the tumours induced by HeLa-

LPCX cells were significantly reduced by 80% with TIP60 overexpression. I 

was then highly interested in verifying the TIP60 expression in these tumours. 

The total protein from the tumour tissue was extracted and western blotted 

with anti-FLAG antibody to detect overexpressed TIP60. As shown in Figure 

7D anti-FLAG band corresponding to TIP60 was detected only from tumours 

induced by HeLa-TIP60 cells and not in the control. Mice from all the repeats 

are shown in Figure 8. 
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Figure 7. Overexpressing TIP60 inhibits tumour growth in vivo.  

(A) Representative images of the mice subcutaneously injected with HeLa LPCX and 

HeLa LPCX-TIP60 cells on the left and the right side, respectively. (B) Images 

showing the difference in sizes of tumour obtained from HeLa LPCX and HeLa-

TIP60 cells. (C) Graph showing tumour growth monitored in six mice at indicated 

times. The graph is represented in volume (mm3) calculated using the formula: 

Volume (V)=Width (W)(2) × Length (L)/2. Error bar represented the standard 

deviation from six mice. Statistical significance was performed using student t-test 

and is represented as *, p<0.05; ***, p<0.001. (D) Protein isolated from tumours was 

analyzed by western blot using anti-FLAG antibody. 
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Figure 8. Mice (n=6) used in the in vivo experiment shown in Figure 7.  

Overexpressing TIP60 inhibit tumour growth in vivo. (A) Representative images of 

the mice subcutaneously injected with HeLa LPCX and HeLa LPCX-TIP60 cells on 

the left and the right side, respectively. (B) Images showing the difference in sizes of 

tumour obtained from HeLa LPCX and HeLa LPCX-TIP60 cells.  
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4.2 HPV E6 utilizes E3 ubiquitin ligase EDD1/UBR5 to regulate 

TIP60 protein turn over 

From mass spectrometry analyses of TIP60 interacting proteins, Dr. 

Vanitha Krishna Subbaiah identified E3 ubiquitin ligase EDD1/UBR5 as an 

interacting partner of TIP60 (data not shown). Therefore, I hypothesized that 

EDD1 might regulate the protein stability of TIP60. To investigate this, two 

stable cell lines were generated: HeLa shcontrol which served as control and 

HeLa shEDD1 which stably depleted EDD1 (Figure 9). Interestingly, 

depletion of EDD1 increased TIP60 protein level (Figure 9A) but not TIP60 

mRNA level (Figure 9B), suggesting that EDD1 might regulate TIP60 level 

through regulating its protein stability. Then HeLa shcontrol or shEDD1 cells 

were treated with cyclohexamide (CHX) for indicated time point to block 

protein synthesis. The residual levels of endogenous TIP60 were then 

determined using anti-TIP60 antibody (Figure 10A). The quantification was 

shown in Figure 10B. Within 2 hours of CHX treatment, TIP60 protein 

stability increased by 60% upon depleting endogenous EDD1.  

Based on these results, I decided to ascertain the effects of HPV E6 on 

TIP60 levels in the absence of endogenous EDD1. For this, we generated 

293T cells stably expressing shEDD1, and depletion of EDD1 was confirmed 

by western blot (Figure 11A). In these stable cells, FLAG-TIP60 was 

transfected either in combination with pcDNA vector or pcDNA-HPV18 E6 

and the total cellular lysates were analyzed by western blot (Figure 11B). 

Cyclohexamide treatments for indicated time points were performed in these 

transfected cells. Western blot was shown in Figure 10C and quantification in 

Figure 11D, E. From this experiment, I observed that depleting EDD1 



44 
 

stabilizes TIP60 also in 293T cell (Figure 11C, D). Additionally, 

overexpressing HPV18 E6 destabilized TIP60 (Figure 11C). Furthermore, the 

decreased protein stability of TIP60 caused by overexpressing E6 was rescued 

by depleting EDD1 (Figure 11C, E). These results suggest that EDD1 co-

operates with E6 in destabilizing TIP60. 

  

Figure 9. EDD1 regulates TIP60 at protein level but not at mRNA level.  

(A) HeLa cells stably overexpressing either shcontrol or shEDD1 shRNA. Western 

blot using indicated antibodies shows a depletion of EDD1 and increase of TIP60 

protein level. (B) Verification of the expression of EDD1 and TIP60 in HeLa 

shcontrol and HeLa shEDD1 cells at mRNA level using qPCR. EDD1 expression 

decreases significantly whereas expression of TIP60 does not change. Error bars 

represent standard deviation from at least three independent experiments. Statistical 

significance is represented as **, p<0.01. 
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Figure 10. EDD1 regulates the stability of endogenous TIP60 in HPV-positive cells.  

(A) HeLa-shcontrol and HeLa-shEDD1 cells were treated with 100 μg/ml of 

cycloheximide for indicated times, to inhibit RNA translation. The cellular lysates 

were probed with indicated antibodies. (B) Graph represents results from at least 

three independent cycloheximide treatment experiments performed in HeLa-shcontrol 

and HeLa-shEDD1 cells. The band intensities were quantified using Image J software. 

TIP60 levels were normalized to 100% at time zero. Error bar indicates the standard 

deviation from at least three independent experiments. Statistical significance was 

performed using student t-test and represented as *, p<0.01. 
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Figure 11. HPV 18 E6 utilized EDD1 to destabilize TIP60.  

(A) Validation of 293T shEDD1 stable cell lines. (B) Overexpression of either vector 

or HPV18 E6 in 293T shControl and shEDD1 cells. Total cell lysates were probed 

with HPV18 E6 antibody to validate the expression. (C) Transfected cells from B 

were transfected along with FLAG-TIP60. After 24 h, cells treated with 100 μg/ml of 

cycloheximide for indicates times and the cellular lysates were probed with FLAG 

antibody to examine the stability of FLAG-TIP60. (D and E) Graph represented 

results from at least three independent cycloheximide treatment experiments. The 

band intensities were quantified using Image J software. FLAG-TIP60 levels were 

normalized to 100% at time zero. Error bar represented the standard deviation. 

Significance is represented as *, p<0.05; **, p<0.01.  



48 
 

4.3 Depleting EDD1 stabilizes TIP60 and inhibit tumour growth  

As EDD1 destabilizes TIP60, I wanted to investigate whether stable 

depletion of endogenous EDD1 could result in a similar phenotype as 

observed with HeLa LPCX-TIP60 stable cells. To study this, I performed the 

in vitro and in vivo experiments as perform earlier with HeLa LPCX and HeLa 

LPCX-TIP60 cells.  

In in vitro assay, I tested the ability of HeLa shControl and shEDD1 

cells to form colonies using colony formation assay. The representative 

images in Figures 12A and quantification in Figure 12B show that loss of 

EDD1 (HeLa shEDD1) significantly inhibits the colony formation ability of 

HeLa cells similar to HeLa-TIP60 cells and this was TIP60 dependent, as 

depletion of TIP60 by shRNA rescued the inhibition on colony formation.  

In the in vivo assay, I tested the tumour growth ability of HeLa 

shControl and shEDD1 cells in mice. To do so, 1×105 cells of both HeLa 

shcontrol (on the left side) and HeLa shEDD1 (on the right side) cells were 

injected subcutaneously into the mice. The tumour size was measured at 7-day 

intervals over a period of 5 weeks. The representative images (Figure 13A 

and B) and quantifications (Figure 13C) show that the tumours induced by 

HeLa shcontrol cells were significantly reduced when stably ablating 

endogenous EDD1 expression, suggesting the biological importance of 

TIP60’s regulation by EDD1. The knockdown of EDD1 and stabilization of 

TIP60 in the tumours were verified by western blot analysis (Figure 13D). 

Mice from all repeats are shown in Figure 14. 
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Figure 12. Inhibition of colony formation in vitro by depleting EDD1 is dependent 

on TIP60.  

(A) Representative images from CFA on HeLa shControl and shEDD1 cells 

transfected with either shControl or shTIP60 construct. (B) Quantifications of at least 

three independent experiments. Quantifications were performed using Image J 

software; error bar representative the standard deviation. Significance is represented 

as ***p<0.001. 
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Figure 13. Depletion of EDD1 stabilizes TIP60 and inhibits tumour growth in vivo.  

(A) Representative images of the mice subcutaneously injected with HeLa shControl 

and HeLa shEDD1 cells on the left and the right side, respectively. (B) Images 

showing the difference in sizes of tumour obtained from HeLa shControl and HeLa 

shEDD1 cells. (C) Graph showing tumour growth monitored in six mice at indicated 

times. The graph is represented in volume (mm3) calculated using the formula: 

Volume (V)=Width (W)(2) × Length (L)/2. Error bars represent the standard 

deviation from six mice. Statistical significance was performed using student t-test 

and represented as **, p<0.01; ***, p<0.001. (D) Protein isolated from tumours 

injected with HeLa shControl and HeLa shEDD1 cells was analyzed by western blot 

using indicated antibodies. 
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Figure 14. Mice (n=6) used in the in vivo experiment shown in Figure 13.  

Depletion of EDD1 inhibits tumour growth in vivo. (A) Representative images of the 

mice subcutaneously injected with HeLa shControl and HeLa shEDD1 cells on the 

left and the right side, respectively. (B) Images showing the difference in sizes of 

tumour obtained from HeLa shControl and HeLa shEDD1 cells. 
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4.4 TIP60 acts as an inhibitor of cell migration in cervical cancer 

I have demonstrated that restoring TIP60 levels either by 

overexpressing or by depleting EDD1 results in decreased growth. In addition 

to suppression of growth, I was interested in to investigating whether TIP60 is 

capable of inhibiting cancer metastasis as ability of cells to migrate and invade 

distant organ is huge problem in treatment of cancer. In order to characterize 

this, a preliminary wound-healing assay was performed using HeLa-LPCX 

and HeLa-TIP60 cells. A 40% decrease in cell migration was observed; 

suggesting that overexpression of TIP60 inhibits cell migration in HeLa cells 

(Figure 15). 

 

 

Figure 15. TIP60 inhibits cervical cancer cell migration in vitro.  

Wound-healing assays were performed using HeLa-LPCX and HeLa-TIP60 cells. 

Representative images are shown in (A) and the quantitation in (B). ***, p< 0.001. 

 

In order to further investigate the molecular mechanism of TIP60 
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Chapter 5 

TIP60 inhibits cancer metastasis of breast cancer 

As mentioned in Chapter 1, TIP60 expression level negatively 

correlated with cancer malignancy. A more comprehensive study screening 

expression of TIP60 in several breast cancer cell lines revealed that TIP60 

level decreased in highly metastatic breast cancer cells compared to mild 

metastatic cells (Figure 16) (Pandey et al., 2015). This suggested that TIP60 

might inhibit cancer metastasis of breast cancer. 

 

Figure 16.  TIP60 protein levels in different breast cancer cell lines (Pandey et al., 

2015). 

5.1 Overexpressing TIP60 inhibits cell migration and invasion 

To identify the role of TIP60 as an inhibitor of EMT, I overexpressed 

TIP60 in a highly metastatic triple negative breast cancer cell line (MDA-MB-

231), and depleted TIP60 in non-tumourigenic breast epithelial cells 

(MCF10A). Wound-healing and Boyden chamber assays were used to score 

for migration and invasion potential in each of these two scenarios. For all the 

experiments related to the metastatic breast cancer cell line, I used a derivative 

of MDA-MB-231 cells that stably express the luciferase gene (MDA-MB-231-

Luc-D3H2LN); this enabled us to not only monitor cell migration, early 

tumour growth and metastases in vivo, but also to quantify tumour burden in 

an animal model. To test TIP60’s ability to inhibit metastasis, I modified this 
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cell line to either stably overexpressing wild-type TIP60 (MM-Luc-FT60WT) 

or its catalytically inactive form (MM-Luc-FT60KD) (Table 2). Cells stably 

expressing the vector (MM-Luc-MSCV) were used as the negative control. 

Overexpression of wild-type TIP60 inhibited cell migration in vitro by 50% 

(Figure 17A, B) and cell invasion by 20 % (Figure 17C, D). Interestingly, 

this inhibition was dependent on TIP60’s catalytic activity, as overexpression 

of its catalytically inactive form failed to inhibit cell migration (Figure 17A, 

B).  

Validation of the expression of TIP60WT and TIP60KD was 

performed by quantitative PCR and western blot (Figure 18A, B). Validation 

of the catalytic activity of TIP60WT and TIP60KD was performed by western 

based in vitro HAT assay using core histone as substrate (Figure 18C). Wild-

type TIP60 and catalytic inactive form of TIP60 were purified from MM-Luc-

FT60WT or MM-Luc-FT60KD cells. Wild-type TIP60 increased the level of 

pan acetyl H4 but catalytically inactive TIP60 could, indicating that TIP60KD 

is unable to transfer acetyl group to its substrate. 
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Figure 17. TIP60 inhibits cell migration and invasion in vitro.  

(A-B) TIP60 inhibits cell migration. Wound-healing assays were performed using 

MDA-MB-231-Luc-D3H2LN cells expressing vector (MM-Luc-MSCV), wild-type 

TIP60 (MM-Luc-FT60WT), or the catalytically inactive form of TIP60 (MM-Luc-

FT60KD) (see chapter 3). Representative images are shown in (A) and the 

quantitation in (B). ***, p< 0.001. (C-D) TIP60 inhibits cell invasion. Boyden 

chamber assays with matrigel were performed, as detailed in chapter 3. 

Representative images are shown in C and quantification in D. **, p<0.01 

 

  

A

A 

C

A 

D

A 

B

A 



56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Validating the stable cell lines that overexpress either wild-type TIP60 or 

catalytically inactive form of TIP60. 

(A) mRNA level of TIP60. (B) Protein level of TIP60. Error bars represent standard 

deviation. (C) Validation of the catalytic activity of wild-type TIP60 and catalytic 

inactive form of TIP60. Wild-type TIP60 and catalytic inactive form of TIP60 were 

purified from MM-Luc-FT60WT or MM-Luc-FT60KD cells. In vitro HAT assay 

using core histone as substrate was performed. 
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To confirm if the same phenotype could be observed in other 

metastatic breast cancer cell lines, wild-type TIP60 and catalytic inactive form 

of TIP60 were overexpressed in another two cell lines: HCC1937 (HCC1937-

MSCV, HCC1937-TIP60WT, HCC1937-TIP60KD) and MDA-MB-468 

(MM468-MSCV, MM468-TIP60WT, MM468-TIP60KD) (Table 2). Similar 

to the observation in MDA-MB-231 cells, overexpression of wild-type TIP60 

inhibited the migration of both HCC1937 and MDA-MB-468 cells, however 

catalytic inactive form of TIP60 could not (Figure 19).   
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Figure 19. Overexpression of TIP60 inhibits cell migration in HCC1937 and MDA-

MB-468 cells.  

Wound-healing assays were performed using HCC1937 or MDA-MB-468 cells 

expressing vector (MSCV), wild-type TIP60 (TIP60WT), or the catalytically inactive 

form of TIP60 (TIP60KD) (see chapter 3 for details). (A, B) Validation of the 

expression of TIP60WT and TIP60KD. (C, D) TIP60 inhibits cell migration in 

HCC1937 cells. Cell migration images are shown in (C) and the quantitation in (D). 

*** P< 0.001. (E, F). TIP60 inhibits cell migration in MDA-MB-468 cells. Cell 

migration images are shown in (E) and the quantitation in (F). *** P< 0.001.   
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To extend these studies into an animal model system, I studied the 

metastasis of MDA-MB-231 cells in 6-week-old NOD/SCID mice, comparing 

the metastatic potential of TIP60WT and TIP60KD with control cells. In this 

in vivo study, MDA-MB-231 cells expressing the luciferase reporter gene (i.e., 

MM-Luc-MSCV, MM-Luc-FT60WT and MM-Luc-FT60KD) were injected 

into mice through the tail vein, and luminescence-based non-invasive imaging 

was used to monitor the metastasis of cells (Figure 20A). The quantifications 

from four repeats show that TIP60 overexpression led to a dramatic reduction 

in the metastatic potential of these cells scored by reduced lung metastasis as 

compared with the control cells and this is dependent on TIP60’s catalytic 

activity (Figure 20B). The expression of TIP60WT and TIP60KD in both cell 

lines and tumour tissues were verified by western blot (Figure 20C). These 

data suggest an inhibitory role of TIP60 in breast cancer metastasis both in 

vitro and in vivo. 
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Figure 20. TIP60 inhibits metastasis in an in vivo animal model.  

(A) Representative images. 5×105 MDA-MB-231-Luc-D3H2LN cells expressing 

vector (MM-Luc-MSCV), wild-type TIP60 (MM-Luc-FT60WT), or the catalytically 

inactive form of TIP60 (MM-Luc-FT60KD) were injected through the tail vein and 

tumour growth and metastasis were monitored through bioluminescence imaging (see 

chapter 3 for details). (B) Quantitation of the tumour size metastasis to lung. The 

intensities were quantified using live imaging (see chapter 4 for details). (C) 

Validating the expression of TIP60 in both cell lines and tumours. Proteins isolated 

from tumours were probed with indicated antibodies.  
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5.2 Depleting TIP60 promotes cell migration and invasion  

Conversely, to test if depletion of TIP60 could increase cell migration, 

I reduced TIP60 levels in MCF10A cells using siRNA and performed wound-

healing assays. I observed that when depleting TIP60, cells loose cell-cell 

adhesion, become more elongated and mesenchymal (Figure 21). Additionally, 

TIP60 depletion enhanced cell motility by >40%, resulting in a much faster 

closure of the wound as compared to siControl-treated cells (Figure 22A, B). 

Furthermore, similar results were also observed in MCF10A overexpressing 

wild-type TIP60 (Figure 22C, D). These data suggest that in epithelial cells, 

downregulation of TIP60 could trigger cell migration and invasion. 

 

 

 

 

 

 

 

Figure 21. Morphology of MCF10A cells treated with siControl and siTIP60. 
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Figure 22. Depleting TIP60 promotes cell migration in vitro.  

(A-B) Depletion of TIP60 increases cell migration. MCF10A cells were treated with 

indicated siRNAs. Representative images are shown in A and quantitation in B. ***, 

p< 0.001. (C-D) Stable TIP60-expressing MCF10A cells show a similar phenotype as 

the parental cells. Representative images of M10FT60WT cells treated with siControl 

and siTIP60 were shown in C and quantification in D. *, p< 0.05. 
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5.3 Depleting TIP60 alters the expression and localization of EMT 

markers 

TIP60 mediated EMT phenotype was studied by screening the 

expression of EMT markers in TIP60-depleted cells. Interestingly, I found the 

transcript levels of two of the major mesenchymal markers SNAIL2 (SNAI2) 

and FIBRONECTIN (FN1) to be elevated by ~2 and ~10 fold, respectively. I 

also observed a 50% reduction in the expression of epithelial marker Epithelial 

Cell Adhesion Molecule (EpCAM) (Figure 23A); these findings were re-

capitulated at the protein level (Figure 23B) and in another breast epithelial 

cell line, MCF7 (Figure 23C). SNAIL2 is one of the master regulators of 

EMT, as its expression in epithelial cells triggers the first and necessary phase 

of the EMT process; i.e., desmosomal disruption and cell spreading (Taube et 

al., 2010; Villarejo et al., 2014). This essentially occurs because of SNAIL2’s 

functions as a transcriptional repressor of epithelial genes, such as EpCAM, 

and as an activator of the mesenchymal gene FN1. EpCAM is involved in cell-

cell recognition and adhesion, whereas FIBRONECTIN is a key component of 

the extracellular matrix promoting cell migration (Park and Schwarzbauer, 

2014; Stanisavljevic et al., 2011; Sun et al., 2014). I also found that the cells 

depleted of TIP60 undergo plasma membrane-to-cytoplasmic re-localization 

of E-CADHERIN (Figure 24A) and β-CATENIN (Figure 24B) compared to 

the control cells. 
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Figure 23. Overexpression of TIP60 alters the expression of EMT markers.  

(A) Expression analysis of the genes involved in EMT after depletion of TIP60. 

Results were analysed as fold change against siControl-treated cells. (B) Western blot 

analysis of the proteins showing changes in expression after depletion of TIP60. (C) 

Depletion of TIP60 in MCF7 cells shows similar expression patterns of EMT markers 

as in MCF10A cells, as detailed in (A).  
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Figure 24. Depletion of TIP60 results in cell membrane-to-cytoplasmic re-

localization of E-CADHERIN and β-CATENIN. 

Depletion of TIP60 results in cell membrane-to-cytoplasmic re-localization of E-

cadherin (A) and β-catenin (B). Flag-TIP60 was detected using Anti-Flag antibody. 

Decrease on the Flag signal indicates efficient depletion of TIP60. 
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5.4 Alteration of the expression of EMT markers is TIP60 specific 

and dependent on TIP60 catalytic activity 

To rule out any off-target effects of the siRNA, three cell lines using 

MCF10A cells as the parental cell line were generated: MSCV vector control 

(M10MSCV), wild-type TIP60 (M10FT60WT) and a siRNA-resistant wild-

type TIP60 (M10FT60*WT) (Table 2). The siRNA-resistant constructs were 

generated by synonymous mutations; i.e., the siRNA targeting site was 

mutated such that the nucleotide sequence was modified, but the protein 

sequence remained unchanged. To test if these cell lines behaved similar to the 

parental cell line, we depleted both the endogenous and exogenous TIP60 and 

performed wound-healing assays, mRNA quantitation, and protein expression 

assays. Figure 25 confirms that the knockdown of both exogenous and 

endogenous TIP60 produced phenotypes similar to that of the parental 

MCF10A cell line.  

 

 

 

Figure 25. Stable TIP60-expressing MCF10A cells show a similar phenotype as the 

parental cells.  

(A) Expression analysis for the EMT markers in M10FT60WT treated with siControl 

or siTIP60. (B) Western blot analysis of the proteins showing changes in expression, 

as shown in (A).   

B

A 

A

A 



67 
 

Figure 26 validates expression of TIP60 (wild-type, catalytic dead and 

siRNA resistant form) in the stable cell lines mentioned above. As shown in 

Figure 26A, treatment with siTIP60, only the endogenous, but not the siRNA 

resistant form of TIP60 was depleted, demonstrating a successful rescue of 

TIP60 level under these conditions. 

Overexpression of TIP60 resulted in a 50% reduction in FN1 

expression and a 2-fold increase in EpCAM expression (Figure 27A, B). 

Importantly, the expression of siRNA-resistant TIP60 rescued the levels of 

FN1 and EpCAM at both the RNA and protein levels, indicating this 

phenotype was TIP60-specific (Figure 27). However, SNAI2 expression could 

only be rescued partially in such a scenario (Figure 27C). Since FN1 has been 

reported to upregulate SNAI2 to promote metastasis, it is possible that the 

reduction in TIP60 provides the initial trigger to up-regulate SNAI2, but that 

FN1 maintains SNAI2’s levels during metastasis (Knowles et al., 2013). 

To gain a deeper insight into the molecular mechanism of TIP60’s 

function, whether the lysine acetyltransferase activity of TIP60 is required for 

SNAIL2-mediated regulation of EMT. Thus a cell line expressing TIP60 that 

was catalytically inactive and siRNA-resistant (M10FT60*KD) was generated. 

Intriguingly, this form of TIP60 failed to rescue the expression level of FN1 

and EpCAM (Figure 27), indicating that the catalytic activity of TIP60 is 

required to regulate the expression of these genes, both at the mRNA and 

protein levels. 
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Figure 26. Expression of TIP60 in MCF10A stable cell lines. 

Expression analysis of level of total TIP60 (A) and endogenous TIP60 (B) in different 

stable cell lines.  

B

A 

A

A 



69 
 

 

 

 

 

 

 

B

A 

A

A 

C

A 



70 
 

 

 

 

Figure 27. TIP60 mediated inhibition of Epithelial-mesenchymal transition is 

specific to TIP60 and depends on its catalytic activity.  

(A-C) Expression analysis of genes identified to change when TIP60 is depleted 

using siTIP60 in parental (MCF10A), vector control (M10MSCV), stable cells 

expressing wild-type TIP60 (M10FT60WT), siRNA-resistant wild-type TIP60 

(M10FT60*WT) and catalytically inactive and siRNA-resistant TIP60 

(M10FT60*KD). (D) Western blots for the proteins with differential expression upon 

TIP60 depletion.  

 

To further strengthen this observation is TIP60 specific and catalytic 

activity dependent, cell lysates from MDA-MB-231 cells with overexpression 

of either wild-type TIP60 or catalytic inactive form of TIP60 (MM-Luc-

MSCV, MM-Luc-FT60WT, MM-Luc-FT60KD) were examined using western 

blot. EpCAM level increased by overexpressing wild-type TIP60 compared to 

control but not catalytic inactive form of TIP60 (Figure 28). This was in 

contrast to MCF10A, where the expression of EpCAM was inversely 

modulated upon depleting TIP60 (Figure 23B). FIBRONECTIN and SNAIL2 

expression did not alter in MDA-MB-231 cells by overexpressing wild-type 

TIP60 or catalytic inactive form of TIP60 (data not shown). This could be due 

to the feedback regulation between FIBRONECTIN and SNAIL2 in highly 

metastatic cells, as discussed above. High levels of FIBRONECTIN and 
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SNAIL2 could upregulate each other and ensure maintenance of both of them 

at high level in more metastatic cells. However, restoration of EpCAM level is 

sufficient to inhibit cell migration and invasion (Tai et al., 2007), which 

explains the inhibitory function of TIP60 in MDA-MB-231 cell metastasis. 

This suggests that the regulation of EpCAM plays a predominant role in TIP60 

mediated inhibition of breast cancer metastasis. 

 

Figure 28. The expression of EpCAM in MDA-MB-231 cells overexpressing either 

wild-type TIP60 or catalytic inactive form of TIP60.  
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Chapter 6 

TIP60 regulates expression of EpCAM and FIBRONECTIN through 

regulating the expression and function of SNAIL2 

6.1 Regulation of cell migration by TIP60 is SNAIL2 dependent 

SNAIL2 belongs to the family of zinc finger transcription factors, 

which regulates the expression of EMT-related genes by interacting with the 

E-boxes in their promoter regions (Huang et al., 2012; Thiery et al., 2009; 

Villarejo et al., 2014; Yang and Weinberg, 2008). To investigate the role of 

SNAIL2 in TIP60 mediated alteration of the expression of EMT markers, both 

TIP60 and SNAIL2 were depleted and I observed that, in comparison with the 

single depletion of TIP60, the co-depletion was able to rescue both FN1 and 

EpCAM at the mRNA and protein levels (Figure 29). This suggests that TIP60 

regulation on the expression of FN1 and EpCAM was SNAIL2 dependent.  

To further investigate the biological implication, wound-healing assay 

using MCF10A cells with depleted TIP60 alone or TIP60 and SNAIL2 

together was performed. A 40% increase in cell migration was observed when 

TIP60 alone was depleted and this was further reduced nearly 30% when both 

TIP60 and SNAIL2 were depleted (Figure 30), suggesting that regulation of 

cell migration by TIP60 is SNAIL2 dependent. 
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Figure 29. TIP60 regulates Epithelial-mesenchymal transition through regulating 

SNAIL2.  

(A) Change in expression of the genes in TIP60-depleted condition is SNAIL2 

dependent. mRNA levels of genes identified to be differentially expressed when 

TIP60 is depleted either alone or in combination with SNAIL2 in MCF10A cells. (B) 

Western blot analysis of the differentially expressed genes.   

B

A 

A

A 



74 
 

 

 

 

 

Figure 30 Regulation of the cell migration by TIP60 is SNAIL2 dependent.  

Wound-healing assay was performed as described in chapter 3. The increased cell 

migration after depletion of TIP60 was restored by co-depleting TIP60 and SNAIL2. 

The representative pictures are shown in (A) and quantification in (B), **, P<0.01; 

***, P<0.001. 
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6.2 TIP60 inhibits SNAIL2 enrichment on its target promoters 

SNAIL2 has previously been implicated in the promoter-dependent 

transcriptional regulation of EMT genes. Thus, whether the TIP60-mediated 

transcriptional regulation of EpCAM and FN1 also occurred through the 

promoter regions of these genes need to be ascertained. To this end, ChIP-

qPCR (chromatin immunoprecipitation quantitative PCR) was performed 

using an anti-SNAIL2 antibody in presence or absence of TIP60. Primers were 

designed to amplify different regions of the promoters of FN1 and EpCAM 

(Figure 31A, B). Among the primers tested, two were chosen for each 

promoter, one from the distal site, which lacked E-box motif (SNAIL2 binding 

site), and the other from the proximal site, which showed enrichment for 

SNAIL2 association (Figure 31C, D and Table 3). When the occupancy of 

SNAIL2 on these promoters was tested in wild-type (MCF10A) cells, I found 

a significant increase in SNAIL2 occupancy on the FN1 and EpCAM 

promoters in the absence of TIP60 (Figure 32A). In order to test if these 

changes were TIP60 specific and if the catalytic activity of TIP60 was 

required to inhibit the binding of SNAIL2 to the promoters, SNAIL2’s 

occupancy in the three stable cell lines was checked, M10FT60WT, 

M10FT60*WT, and M10FT60*KD (Figure 32B-D). Remarkably, I found that 

the enrichment of SNAIL2 on FN1 and EpCAM promoter (Figure 32B) can be 

restored back to control level by overexpressing wild-type TIP60 (Figure 32C) 

but this was not observed when catalytically inactive form of TIP60 was 

overexpressed (Figure 32D), suggesting that the SNAIL2 promoter occupancy 

was regulated by TIP60 and was dependent on TIP60’s catalytic activity. 

Validation of the knockdown is in Figure 33. 
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Figure 31. Screening the ChIP-qPCR primers for FN1 and EpCAM promoters. 

(A, B) Schematics of the promoter and 5’ regions of the FN1 and EpCAM. The qPCR 

primer sets for chromatin immunoprecipitation (ChIP) are shown in the schematics 

and detailed in Table 3. Promoters and 5’UTR regions: FN1, GenBank: AF550582.1; 

EpCAM, GenBank: AY148099.1. (C, D) ChIP-qPCR analysis of MCF10A cells 

transfected with TIP60 siRNA. The SNAIL2-bound DNA was immunoprecipitated 

using the anti-SNAIL2 antibody. Two primer sets from each promoter—one on the 

distal site and the other on the proximal—were chosen for further analysis: FN13 and 

FN14 for FN1 promoter, and EpCAM3 and EpCAM7 for EpCAM promoter. Primer 

sets that were chosen are marked red in the figures. Results of qPCR are plotted as 

fold change against IgG control. (E) TIP60 knockdown efficiency of the ChIP 

samples in (C), and (D).  
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Figure 32. TIP60 regulates SNAIL2 enrichment on target promoters.  

(A) Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) assays were 

performed to check the enrichment of SNAIL2 on target promoters in the presence or 

absence of TIP60. Results were analysed and are represented as percentage input. 

RNA isolates from the cells of the same experiment were used to check the 

expression levels by RT-qPCR (Figure 32). (B-D). SNAIL2 binding to its target 

promoter is regulated by TIP60 and depends on its catalytic activity. ChIP-qPCR 

analysis for SNAIL2 binding was performed in the presence (siControl) or absence 

(siTIP60) of TIP60 in MCF10A cells stably expressing wild-type TIP60 

(M10FT60WT), siRNA-resistant, wild-type TIP60 (M10FT60*WT) or the 

catalytically inactive and siRNA-resistant TIP60 (M10FT60*KD). The FN1 and 

EpCAM promoters were immunoprecipitated and analysed as in (A).  
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Figure 33. TIP60 knockdown efficiency of the ChIP samples in Figure 32.  

MCF10A (A), M10FT60WT (B), M10FT60*WT (C) and M10FT60*KD (D) were 

treated with siControl and siTIP60 for 72 hours. Small aliquot were harvested for 

checking the knockdown efficiency. The rest of the cells were used for ChIP 

experiment in Figure 32. 
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Chapter 7 

Cross talk between two epigenetic regulators, TIP60 and DNMT1 

determines the metastasis potential of breast cancer 

7.1 TIP60 regulates the expression of EMT markers through 

regulating the stability of DNMT1 

DNMT1 is known to induce EMT by repressing expression of cell 

adhesion molecules (Fukagawa et al., 2015). Since DNMT1 is destabilized by 

TIP60 (Du et al., 2010b), whether SNAIL2 mediated repression of epithelial 

genes were DNMT1 dependent was tested. DNMT1 was depleted using 

siRNA either alone or in combination with TIP60. Depletion of TIP60 

stabilized DNMT1 at protein level (Figure 34A-C), suggesting that TIP60 

regulates the protein stability of DNMT1. When compared to TIP60 depletion, 

the co-depletion of TIP60 and DNMT1 rescued FN1 and EpCAM both at the 

mRNA and protein levels (Figure 34D, E). Interestingly, SNAIL2 was also 

rescued both at mRNA and protein levels when TIP60 and DNMT1 were co-

depleted (Figure 34D, E). Taken together, these data suggest that TIP60 

regulates the expression of SNAIL2 as well as FN1 and EpCAM through its 

ability to destabilize DNMT1. 
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Figure 34. Epithelial-mesenchymal transition in absence of TIP60 is DNMT1 

dependent.  

(A-C) TIP60 regulates DNMT1 protein stability. MCF10A cells transfected with 

siControl or siTIP60 were treated with 100 µg/ml cycloheximide for up to 12 hours. 

Cell lysates from indicating time points were examined by western blot (B) and 

quantified (C), **, P<0.01; ***, P<0.001. The knockdown efficiency of TIP60 was 

shown in (A). (D) Protein levels of genes identified to be differentially expressed 

when TIP60 is depleted either alone or in combination with DNMT1 in MCF10A 

cells. (E) mRNA expression analysis of the differentially expressed genes by qPCR  
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7.2 TIP60 and DNMT1 levels regulates the cell migration potential 

To have a biological readout of DNMT1 mediated activation of the 

EMT program, DNMT1’s effect on cell migration in TIP60 depleted condition 

was tested. For this, wound-healing assay was performed. I observed a 50% 

increase of cell migration when TIP60 alone was depleted and this was 

rescued to 20% when both TIP60 and DNMT1 were co-depleted (Figure 35A, 

B). These data suggests that decreased levels of TIP60 stabilizes DNMT1, 

which results in increased cell migration. 

 

 

 

Figure 35. TIP60 regulates cell migration in vitro by ablating DNMT1.  

(A) The representative pictures of wound healing assay. (B) Quantifications of wound 

healing assay from at least three independent experiments. ***, p<0.001. (C) TIP60 

and DNMT1 knockdown efficiency of the samples used in A and B. Error bars 

represent standard deviation.  
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7.3 TIP60 regulates the DNA methylation statues on EpCAM 

promoter 

In order to identify the molecular determinant of DNMT1-SNAIL2 

driven EMT program, I sought to estimate DNA methylation on SNAIL2 

regulated promoters. For this, MCF10A cells were treated with different 

siRNA combinations (siControl, siTIP60, siDNMT1, siTIP60+siDNMT1). 

Genomic DNA was isolated and the methylation specific sequencing was 

performed. A significant increase in DNA methylation on EpCAM promoter (-

51 to -32) in TIP60 depleted cells was observed, and interestingly, this was 

rescued when TIP60 was co-depleted with DNMT1 (Figure 36A, B), 

suggesting that the increased methylation observed was dependent on 

DNMT1. However, depleting DNMT1 alone did not change the DNA 

methylation in this region, this may be because the basal level of DNA 

methylation in this region is due to other DNA methyltransferases such as 

DNMT3A or DNMT3B (Figure 37). The DNA methylation in this region (-51 

to -32) was fully dependent on DNMT1 only in the absence of TIP60, as co-

depleting TIP60 and DNMT1 reduced this increased DNA methylation level 

to nearly zero (Figure 36A, B). I also noted that depleting TIP60 did not 

change DNA methylation on EpCAM 1st intron region +542 to +601 (Figure 

36C), suggesting that the intron region was not responsive to decreased levels 

of TIP60. However, depletion of DNMT1 alone showed a subtle decrease in 

DNA methylation on 1st intron region +542 to +601 (Figure 36C). In 

summary, these results suggest that DNMT1 methylate both regions on 

EpCAM promoter, but TIP60 only affects DNMT1 mediated DNA 

methylation on promoter region -51 to -32 which was next to SNAIL2 binding 
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site (E-Box binding site) and overlaps with the SNAIL2 enrichment region on 

EpCAM promoter (Figure 32). 

 

 

 

Figure 36. Recruitment of DNMT1 to EpCAM promoter results in its 

hypermethylation in the context of depleting TIP60. 

(A, B, C) TIP60 only regulates DNMT1 mediated DNA methylation on EpCAM 

promoter region -51 to -32 (A, B) but not on region +542 to +601 (C). TIP60 and 

DNMT1 were depleted in MCF10A cells either alone or in combination. DNA from 

cells was isolated and bisulphite pyrosequencing was performed as detailed in 

Methods. (D) TIP60 and DNMT1 knockdown efficiency for the samples used for 

bisulphite pyrosequencing represented above. 
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Figure 37. The basal level of DNA methylation on EpCAM promoter region (-51 to -

32) presents in siControl cells is due to DNMT3B de novo methylation.  

(A, B) Genomic DNA isolated from MCF10A cells transfected with siControl or 

siDNMT3B was used to perform bisulphite pyrosequencing. (C, D) The knockdown 

efficiency of DNMT3B in (A, B) 
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7.4 SNAIL2 recruits DNMT1 to EpCAM promoter in the absence of 

TIP60 

Next, I sought to investigate the molecular mechanism of DNMT1 

mediated repression of EpCAM expression. For this, I checked methylation 

status of EpCAM promoter on depleting SNAIL2 and TIP60. I observed that 

the increased DNA methylation on EpCAM promoter region -51 to -32 on 

depleting TIP60 was further decreased significantly on depleting both TIP60 

and SNAIL2 (Figure 38A, B), suggesting that TIP60 regulates DNMT1-

dependent DNA methylation on EpCAM promoter through SNAIL2. 

However, it did not show any changes on EpCAM 1st intron region +542 to 

+601 (Figure 38C). To further investigate the mechanism of SNAIL2 

mediated regulation of DNA methylation on EpCAM promoter, I first depleted 

SNAIL2 and observed no change in DNMT1 level (both protein and mRNA) 

(Figure 39A and data not shown). Then a ChIP-qPCR experiment using 

antibody against DNMT1 was performed, interestingly I observed an increase 

in the enrichment of DNMT1 on EpCAM promoter region (-51 to -32) upon 

depleting TIP60 (Figure 39B). This increase of DNMT1 enrichment further 

reduced to control level upon co-depleting SNAIL2 and TIP60 (Figure 39B). 

However, the enrichment of DNMT1 on EpCAM 1st intron region (+542 to 

+601) did not change upon depleting SNAIL2. These suggest that SNAIL2 

only regulates the recruitment of DNMT1 to EpCAM promoter region (-51 to -

32), which contains SNAIL2 binding site. To further investigate the 

association between DNMT1 and SNAIL2, FLAG-DNMT1 and SNAIL2-

MYC were co-expressed in 293T cell. FLAG-DNMT1 was 

immunoprecipitated and associated SNAIL2-MYC was observed by western 
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blot (Figure 39C). Taken together, these results suggest that DNMT1 catalyse 

the DNA methylation on both EpCAM promoter region -51 to -32 and region 

+542 to +601. SNAIL2recruits DNMT1 to EpCAM promoter region -51 to - 3 

2 and this is inhibited by TIP60 (Figure 39D). 

  

 

 

 

Figure 38. SNAIL2 dependent regulation of EpCAM promoter hypermethylation in 

the context of depleting TIP60.  

SNAIL2 specifically regulates methylation on EpCAM promoter region -51 to -32 (A, 

B) but not on promoter region +542 to +601 (C) in the absence of TIP60. (D) TIP60 

and SNAIL2 knockdown efficiency for the samples used for bisulphite 

pyrosequencing represented above. 
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Figure 39. SNAIL2 recruits DNMT1 to target promoter.  

(A) Depletion of SNAIL2 does not change the level of DNMT1. (B) DNMT1 was 

recruited to EpCAM promoter region (-51 to -32) by SNAIL2 in the absence of 

TIP60. ChIP-qPCR using the antibody against DNMT1 was performed. Two pairs of 

primers were designed to amplify the EpCAM promoter region (-51 to -32) and 

EpCAM 1st intron region (+542 to +601) respectively. The EpCAM promoter region 

amplified here overlaps with the region amplified by previous EpCAM proximal 

primers used in Figure 31, but more specific to CpG sites tested in this region. (C) 

DNMT1 associates with SNAIL2. FLAG-DNMT1 and SNAIL2-MYC were co-

expressed in 293T. Co-immunoprecipitation was performed as detailed in chapter 3. 

FLAG-DNMT1 was immunoprecipitated and associated SNAIL2-MYC was probed 

using western blot. (D) Model of the mechanism of the regulation of EpCAM 

promoter hypermethylation involving TIP60, DNMT1 and SNAIL2.  
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Chapter 8 

Discussion 

Changes in chromatin landscape play an important role in the process of 

carcinogenesis. DNA methylation and post-translation modification on histone 

tails are among the most investigated epigenetic alterations, and have been 

implicated in tumourigenesis. TIP60, as a histone acetyltransferase, is a 

chromatin remodeler involved in multiple cellular physiological process and 

its decreased expression has been reported in several cancers (Chen et al., 

2012; Gorrini et al., 2007; Gupta et al., 2013; Jha et al., 2010; Sakuraba et al., 

2009). Viral oncoproteins were also reported to destabilize TIP60 in viral-

induced cancers (Gupta et al., 2013; Jha et al., 2010), and restoring TIP60 

level has been shown to inhibit tumour growth (Subbaiah et al., 2015) 

suggesting a tumour suppressive function. In HPV-induced cervical cancers, 

HPV E6 destabilizes TIP60 in an E6AP independent manner (Jha et al., 2010). 

However, the mechanism of E6 mediated TIP60 degradation was not 

identified. In this study, I demonstrated that EDD1 is utilized by E6 to 

destabilize TIP60 and depleting EDD1 results in the stabilisation of TIP60 and 

further inhibits tumour growth, pheno-copying the overexpression of TIP60 

(Figure 40). Reactivation of TIP60 through the inhibition of EDD1 is a 

potential therapy to treat cervical cancer (Figure 41). 

As a tumour suppressor, TIP60 activates downstream pathways to induce 

tumour suppression. Besides the upstream regulation mechanism of TIP60 by 

HPV E6, the downstream tumour suppression pathways were not explored. 

The main role of TIP60 identified to date is the maintenance of genomic 

stability, in addition to regulating apoptosis and transcription. However, recent 
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studies indicate that TIP60 might involve in more other downstream pathways, 

for example, TIP60 downregulation correlates with metastasis in several 

cancers (Chen et al., 2012; Kim et al., 2005; Sakuraba et al., 2009). This 

leaves an interesting gap about the mechanism of TIP60 mediated inhibition 

on cancer metastasis. In this study, I identified that TIP60 inhibits EMT 

through ablating DNMT1-SNAIL2 axis as evidenced by both in vitro and in 

vivo models (Figure 42). Mechanistically, depletion of TIP60 promotes EMT 

by stabilizing DNMT1, which results in increased expression of SNAIL2. The 

upregulated SNAIL2 would then recruit DNMT1 to EpCAM promoter region 

(-51 to -32), resulting in hypermethylation of EpCAM promoter and repression 

of EpCAM expression. This study has identified the mechanism of TIP60 

mediated inhibition of EMT program and has discovered an important link 

between two epigenetic modulators – TIP60 and DNMT1. The data presented 

here imply four potential therapeutic strategies to treat SNAIL2 driven 

metastatic breast cancers: (i) Reactivation of TIP60; (ii) Restoration of TIP60 

dependent acetylation on DNMT1; (iii) Inhibition of DNMT1 activity by 

inhibitors; (iv) Synergy between DNMT1 inhibitor and histone deacetylase 

(HDAC) inhibitor.  

Taken together, I have identified TIP60 function as a tumour suppressor 

in two ways: inhibits both tumour growth and cancer metastasis. Additionally, 

I have also discovered the mechanism of E6 mediated destabilization of TIP60 

in cervical cancer and identified the mechanism of TIP60 mediated inhibition 

on breast cancer metastasis. Most importantly, this study implies potential 

therapeutic ways to treat cancer: (i) reactivating TIP60 through inhibiting 
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EDD1 and (ii) synergy between demethylating agent (DNMT1 inhibitor) and 

HDAC inhibitor.  
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Figure 40 Model for HPV E6 mediated TIP60 degradation.  

HPV E6 utilizes EDD1 to destabilize TIP60 and promotes tumour formation.  
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Figure 41. Model for the mechanism of HPV E6 mediated TIP60 degradation. 

HPV E6 utilizes EDD1 to destabilize TIP60 through ubiquitin-dependent proteasome 

degradation. Restoration of TIP60 by inhibiting the interaction between EDD1 and 

TIP60 might be a therapeutic way to treat cancer. 

 

  

E6 

EDD1 

TIP60 

 

E6 

TIP60 

 

E6 

TIP60 



93 
 

 

 

 

Figure 42. Model for TIP60-mediated inhibition of Epithelial- mesenchymal 

transition.  

TIP60 destabilizes DNMT1 and inhibits SNAIL2 driven EMT program. Decreased 

level of TIP60 increases SNAIL2 level and DNA methylation level on the EpCAM 

promoter. 
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8.1 As a tumour suppressor, TIP60 inhibits tumour growth both in 

vitro and in vivo 

TIP60 functions as a tumour suppressor in multiple ways. For example, 

TIP60 acetylation on p53 lysine 120 acts as a switch between p53 induced cell 

cycle arrest and apoptosis, pushing the cell towards apoptosis (Sykes et al., 

2006; Tang et al., 2006). Additionally, during DNA Damage Response, TIP60 

is known to be recruited to DNA damage site through histone H3 lysine 9 

trimethylation, facilitating TIP60 acetylation on Ataxia Telangiectasia 

Mutated (ATM) which would activate ATM signalling and induce cell cycle 

arrest (Sun et al., 2005). Furthermore, TIP60 dependent acetylation on p21 

(Cip1/WAF1) lysine 161 and 163 is required for the stabilization of p21 and 

facilitates p21 mediated cell cycle arrest during DNA damage response (Lee et 

al., 2013). Additionally, Gorrini et al. from Amati’s group found that the 

immunohistochemical staining of TIP60 was decreased in mammary 

carcinomas and they further identified that TIP60 as a haplo-insufficient 

tumour suppressor in MYC-induced lymphomagenesis (Gorrini et al., 2007). 

However, most of these TIP60 mediated tumour suppressor pathways are 

dependent on p53.  

In this study, I identified TIP60 as a tumour suppressor in HPV-induced 

cervical cancer. Overexpressing TIP60 inhibits colony formation of HeLa cells 

in vitro (Figure 6) and tumour growth in vivo (Figure 7, 8). HPV oncoprotein 

E6 is known to destabilize p53 through an E3 ubiquitin ligase, E6AP 

(Huibregtse et al., 1991; Scheffner et al., 1993), in HeLa cells. The fact that 

TIP60 could inhibit tumour growth in functionally p53 null cells, indicates that 

TIP60 might regulate a novel tumour suppressor pathway which is 
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independent of p53. A transcriptome analysis using RNA sequencing and a 

proteomic analysis using mass spectrometry could be done to identify the p53 

independent tumour suppression pathway mediated by TIP60. 

8.2 Reactivation of TIP60 by inhibiting EDD1 might be a potential 

cancer therapy 

EDD1 (E3 identified by Differential Display), also known as UBR5 

(Ubiquitin protein ligase E3 component n-recognin 5) is often mutated and/or 

overexpressed in cancer (Figure 43). As previously reported, in breast cancer, 

EDD1 overexpression correlates with gene copy number increase (Clancy et 

al., 2003). While in ovarian cancer, the overexpression of EDD1 associates 

with high risk of disease recurrence and death (O'Brien et al., 2008). 

Furthermore, ovarian cancer with high EDD1 expression resistant to cisplatin 

and the sensitivity to cisplatin can be restored when EDD1 was depleted, 

suggesting a new therapeutic target for chemo-resistant ovarian cancer 

(O'Brien et al., 2008). 

This study revealed the mechanism of TIP60 degradation in cervical 

cancer. In cervical cancer, TIP60 is destabilized by EDD1 (Figure 9, 10) and 

HPV E6 utilizes this mechanism to degrade TIP60 (Figure 11). Additionally, I 

identified that inhibition of EDD1 restores TIP60 level and inhibits colony 

formation in vitro (Figure 12) and tumour growth in vivo (Figure 13, 14). 

These results indicate that TIP60 is a substrate of EDD1 ubiquitin ligase. 

Therefore, for future study, it would be very interesting to map the interaction 

domain between TIP60 and EDD1 through performing co-

immunoprecipitation experiment by overexpressing different deletion 

constructs of TIP60. By mapping the interaction domain, small molecule 
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compound can be designed to ablate the interaction and restore TIP60 level in 

cervical cancers. This might possess huge therapeutic value. Furthermore, 

since EDD1 is a well-known oncogene overexpressed in multiple cancers, 

TIP60 might be destabilized in the same way by EDD1 in other cancers other 

than cervical cancers. Therefore, EDD1-TIP60 inhibitor might be a potential 

universal cancer treatment drug. 

 

Figure 43. EDD1 is overexpressed and/or mutated in multiple cancers.  

Data obtained from cBioPortal. 
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8.3 Viral oncoproteins other than HPV E6 might also destabilize 

TIP60 through the ubiquitin pathway 

Fifteen percent of human cancers worldwide maybe attributed to viruses 

(zur Hausen, 1991). Especially in cervical cancer and liver cancer, viruses are 

one of the major risk factors for cancer development. Both RNA and DNA 

viruses are shown to be capable of inducing cancer development. Human 

papilloma virus (HPV), Epstein-Barr virus (EBV), Hepatitis B virus (HBV), 

Human herpes virus 8 [(HHV-8) also known as Kaposi sarcoma-associated 

herpes virus (KSHV)] and Merkel cell polyomavirus (MCV) are the DNA 

viruses known to cause human cancers. Human T-lymphotrophic virus-1 

(HTLV-1) and Hepatitis C virus (HCV) are the oncogenic RNA virus. 

Adenovirus is not known to contribute to human cancer, but it can transform 

human cells and can also contribute to tumour development in new-born rats 

(Gupta et al., 2013).  

Till now, TIP60 has been reported to be destabilized by HPV and 

adenovirus. Adenovirus destabilizes TIP60 through its oncoproteins EIB55K 

and E4orf6, however the ligase involved in this mechanism has not been 

identified yet (Gupta et al., 2013). HPV oncoprotein E6 destabilizes TIP60 

through an E6AP independent manner (Jha et al., 2010), and this study has 

identified EDD1 to be the ligase involved in targeting TIP60 to degradation.  

These findings might suggest that other oncoviruses might also be capable 

of destabilizing TIP60. It is very interesting to investigate TIP60 stability in 

other oncovirus infected cells. Further, it would be interesting to see if the 

stability is dependent on the ubiquitin proteasome system. EDD1 might be the 

ligase utilized by other oncoviruses. If not, a ligase screen could be done to 
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identify all the ligases that regulate the stability of TIP60. Most importantly, if 

TIP60 is destabilized by all the oncoviruses, restoring TIP60 level by targeting 

the ubiquitin ligase involved might be a universal therapeutic way to treat all 

the virus induced cancers.   

8.4 EpCAM participates in inhibition of tumour invasion and is 

regulated by promoter hypermethylation 

EpCAM is one of the epithelial genes involved in inhibiting the EMT 

process. It is known that EpCAM level would increase in the initial stage of 

cancer development but decreases dramatically during malignant 

transformation and progression (Joo et al., 2005). Loss of EpCAM expression 

is associated with aggressive cancers and poor prognoses (Kim et al., 2003; 

Songun et al., 2005). Moreover, EpCAM expression level is lower in 

circulating and metastatic tumour cells than in their corresponding primary 

tumours (Rao et al., 2005; Takes et al., 2001). These imply that dynamic 

change of EpCAM expression level is a regulated event during the process of 

tumour invasion and metastasis (Jojovic et al., 1998).  

Expression of EpCAM is regulated through epigenetic regulation 

including promoter methylation and histone modification. It was shown that 

methylation on H3K9 associates with the repression of EpCAM expression 

(Margueron et al., 2005). However, DNA hypermethylation of EpCAM 

promoter is the key determinant for repression of EpCAM expression (Tai et 

al., 2007). The methylation status of EpCAM promoter anti-correlates with 

EpCAM expression (Tai et al., 2007). Additionally, DNA methyltransferase 

inhibitor (5-aza-2’-deoxycytidine) treatment reactivated the EpCAM 

expression and inhibited cancer cell invasiveness (Alberti et al., 1994; Spizzo 
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et al., 2007), suggesting a role of DNA hypermethylation in regulating 

EpCAM expression. Interestingly, HDACi (Trichostatin A) treatment has a 

less significant effect on EpCAM expression compared to DNA 

methyltransferase inhibitor (5-aza-2’-deoxycytidine) treatment, suggesting a 

dominant role of DNA methylation in regulating EpCAM expression (Tai et 

al., 2007). 

Although DNA methylation seems to have a dominant role, it is likely that 

histone modifications and DNA methylation would work together since DNA 

methyltransferase inhibitor (5-aza-2’-deoxycytidine) and HDACi (Trichostatin 

A) treatment together, synergistically resulted in a higher activation of 

EpCAM expression compared to each individual treatment. (Tai et al., 2007). 

This suggests a correlation between histone modifiers and DNA 

methyltransferase in regulating target gene expression.  

This study has identified a mechanism of regulation of DNA 

hypermethylation on EpCAM promoter, which involves TIP60, DNMT1 and 

SNAIL2 (Figure 17-39). In clinical samples, expression of EpCAM might 

inhibit the metastatic property of tumours and therefore correlates with better 

prognoses of patients (Basak et al., 2000) and loss of EpCAM expression 

might be a potential marker for the malignancy of cancer (Takes et al., 1997). 

Since the EpCAM expression is repressed by promoter DNA hypermethylation 

this finding might suggest a new strategy to reactivate EpCAM expression in 

tumour for the treatment of cancer. 
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8.5 TIP60 antagonizes DNMT1 in regulating EpCAM expression 

Aberrant DNA methylation is one of the key epigenetic mechanisms that 

contributes to the process of carcinogenesis (Robertson, 2001). DNA 

methylation catalysed by DNMTs primarily occurs on the CpG island of the 

promoter regions and results in gene repression (McCabe et al., 2009). 

DNMT1 is reported to methylate promoters of epithelial genes such as 

EpCAM and CDH1, and results in the repression of cell adhesion molecules 

and promotes EMT process (Alberti et al., 1994; Fukagawa et al., 2015; Melki 

et al., 1999; Spizzo et al., 2007; Tai et al., 2007). 

This study has reported a novel function of TIP60 to regulate DNMT1 

degradation and inhibit EMT process in a DNMT1 dependent manner (Figure 

34, 35). Additionally, TIP60 inhibits DNMT1 recruitment on EpCAM 

promoter by inhibiting SNAIL2 function (Figure 39), which results in 

hypomethylation of EpCAM promoter and further promotion of expression 

(Figure 36, 38). Taken together, TIP60 regulates DNMT1 through both 

protein stability and chromatin enrichment. More importantly, this regulation 

of DNMT1 required TIP60’s catalytic activity.  

Moving forward, one lead from this study would be to investigate whether 

the same mechanism of TIP60-DNMT1 axis is also found in other cellular 

processes. If so, the drug inhibitor targeting this mechanism might has a more 

general therapeutic value. 

8.6 SNAIL2 recruits DNMT1 to target promoter for repression 

SNAIL family proteins are known to repress expression of cell adhesion 

molecule and promote expression of mesenchymal related molecule. Previous 
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studies have indicated that SNAIL1 recruits epigenetic repressor complex such 

as HDAC1/2, PRC2, LSD1 and G9a (Lin et al., 2014) to CDH1 promoter for 

maintaining the repression. Whereas, recruitment of p65 subunit of NK-κB 

and PARP1 by SNAIL1 to FN1 promoter activates its expression 

(Stanisavljevic et al., 2011).  

However, little is known for mechanism of SNAIL2 mediated regulation. 

Previous studies investigating both SNAIL1 and SNAIL2 together, assumed 

that SNAIL2 behaves similar to SNAIL1, thus SNAIL2 was not studied in 

detail. As it has been recently reported that a non-equivalent role of SNAIL1 

and SNAIL2 in repression of E-CADHERIN expression (Villarejo et al., 

2014) (Ye et al., 2015), it would be interesting to identify the molecular 

mechanism of SNAIL2 mediated regulation.  

Here, we showed that both EpCAM and FN1 are direct targets of SNAIL2 

(Figure 31-33). More interestingly, we showed that SNAIL2 recruits DNMT1 

to EpCAM promoter region -51 to -32 for repression in the absence of TIP60 

(Figure 39). SNAIL2 utilizes this mechanism to trigger DNA 

hypermethylation on EpCAM promoter and regulates EpCAM expression 

(Figure 38). As little is known about SNAIL2 mediated regulation, this study 

reveals a novel mechanism of SNAIL2 mediated gene expression. Whether 

SNAIL2 generally utilizes this mechanism in repressing other target genes 

needs further investigation. 
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8.7 DNMT1 is recruited by certain transcription factor to specific 

site 

As a maintenance DNA methyltransferase, DNMT1 copies the pre-

existing DNA methylation onto the new DNA strand during DNA replication 

(Sharif et al., 2007). Interaction with replication component, PCNA and 

URHF1, is crucial for DNMT1 function during replication (Qin et al., 2015; 

Schermelleh et al., 2007). Previous studies based on chromatin 

immunoprecipitation revealed that DNMT1-PCNA-URHF1 complex 

methylates DNA without site specific (Hervouet et al., 2010).  

However, little is known about DNMT1 mediated site-specific DNA 

methylation. Previous reported that DNMT1 might interact with transcription 

factors such as SP1 and trigger site-specific methylation (Hervouet et al., 

2010). More studies need to be done to reveal this mechanism as DNMT1 

might also function as a site-specific DNA methyltransferase which would be 

crucial for gene expression. 

This study revealed a novel transcription factor, SNAIL2, which interacts 

with DNMT1 (Figure 39C) and recruits DNMT1 to specific site of EpCAM 

promoter (Figure 39B). This finding suggests that DNMT1/transcription 

factors interaction might be a more common mechanism of DNMT1-regulated 

gene expression.        

8.8 TIP60 inhibits SNAIL2-DNMT1 recruitment to target promoter 

and activates gene expression 

Histone acetylation is normally correlated with gene activation. The 

acetylation usually happens on the lysine residue of histone tails resulting in 
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neutralization of positive charge and reduction of histone associating affinity 

for DNA (Hong et al., 1993). As a consequence, this will alter the nucleosome 

confirmation and increase the accessibility of transcription regulator to 

chromatin (Lee et al., 1993; Norton et al., 1989; Vettese-Dadey et al., 1996). 

On the other hand, DNA methylation which occurs on CpG island of gene 

promoter results in gene repression (McCabe et al., 2009). 

DNA methylation has been found to be correlated with histone 

deacetylation (El-Osta and Wolffe, 2000). Acetylated histones are enriched in 

unmethylated DNA region but absent from methylated DNA region (Irvine et 

al., 2002). Additionally, reports showed that histone deacetylase complex is 

recruited by methylated DNA through methyl-CpG binding protein MeCP2 

(Jones et al., 1998; Kaludov and Wolffe, 2000; Nan et al., 1998). Furthermore, 

a study showed that histone H3 and H4 acetylation negatively correlated with 

DNA methylation in the regulation of death-associated protein kinase (Satoh 

et al., 2002). These suggest that histone acetylation and DNA methylation 

might work inversely to regulate gene expression. However, the mechanism 

remains unknown. This study might indicate a novel mechanism of histone 

acetylation inhibits DNA methylation. 

TIP60 is known to activate gene expression through facilitating histone 

acetylation (Frank et al., 2003; Kim et al., 2005). Additionally, this study 

showed that TIP60 induces EpCAM promoter hypomethylation through 

inhibiting SNAIL2-DNMT1 recruitment (Figure 36-39). Most importantly, 

the inhibition of SNAIL2 recruitment required TIP60 acetyltransferase activity 

(Figure 31-33). Taken together, TIP60 might inhibit SNAIL2-DNMT1 

recruitment through mediating histone acetylation. Future, chromatin 
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immunoprecipitation of TIP60 mediated histone acetylation need to be done to 

confirm this hypothesis.  
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8.9 Synergy of DNMT1 inhibitor and histone deacetylase inhibitor 

might be a therapeutic way to treat cancers 

Histone deacetylase (HDAC) and DNA methylation are two of the major 

epigenetic repression systems in cell. Additionally, both these regulatory 

mechanism are involved in cancer initiation, progression and maintenance.  

For histone deacetylase, aberrant expression has been shown in multiple 

cancers (Ozdag et al., 2006), such as breast cancer (Krusche et al., 2005), lung 

cancer (Minamiya et al., 2011), liver cancer (Rikimaru et al., 2007), prostate 

cancer (Weichert et al., 2008b), gastric cancer (Weichert et al., 2008a) and 

colorectal cancer (Weichert et al., 2008c). Additionally, HDAC has been 

shown to involve in the silencing of tumour suppressor in cancers, such as p21 

(Glozak and Seto, 2007) and BRCA1 (breast cancer 1) (Eot-Houllier et al., 

2009). Therefore, histone deacetylase inhibitors have been used in cancer 

therapy, for example vorinostat and romidepsin for T cell lymphoma (Duvic et 

al., 2007; Piekarz et al., 2009).  

For DNA methylation, its role in carcinogenesis has been discussed in 

previous section. Hypermethylation of tumour suppressor gene is often 

observed in cancers. Thus, azacitidine, a DNMT inhibitor is used to prevent 

hypermethylation and treatment of therapy (Constantinides et al., 1977). 

As discussed in above section, the link between histone deacetylase and 

DNA methylation has been identified. Additionally, histone acetylation and 

DNA methylation has been shown to work inversely in regulating gene 

expression. Therefore, targeting DNMTs and HDACs by inhibitors might be 

an efficient regime for cancer treatment (Cameron et al., 1999; Fraczek et al., 
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2012). Studies have already showed that 5-aza-2’deoxycytidine (DNMT 

inhibitor) and TSA (HDAC inhibitor) combination treatment re-expressed 

repressed gene much higher than TSA or 5-aza-2’deoxycytidine alone 

(Chiurazzi et al., 1999).  Additionally, TSA and 5-aza-2’deoxycytidine 

combination treatment has showed to robust prolong effect on cancers 

(Cameron et al., 1999). 

This study revealed a novel mechanism of TIP60 mediated ablation of 

SNAIL2-DNMT1 axis in an acetylation dependent manner and supports the 

notion that combination of HDAC inhibitor and DNMT1 inhibitor might have 

therapeutic value in treatment of SNAIL2 driven breast cancer. 

8.10 Regulation of SNAIL2 

SNAIL2 is one of the members of SNAIL family proteins. Among all the 

members, SNAIL1 is studied extensively, whereas less is known about 

SNAIL2. In most of the cases, SNAIL1/2 were considered to be involved in 

similar mechanistic pathways, however, in some cases they were demonstrated 

to have diverse functions (Ye et al., 2015). As far as SNAIL1 is concerned, it 

is regulated at different levels. For instance, at transcriptional level, SNAI1 is 

regulated by signalling pathways such as TGF-β (Peinado et al., 2003), Notch 

(Sahlgren et al., 2008; Timmerman et al., 2004), WNT (Bachelder et al., 2005; 

Zhou et al., 2004; Zhou and Hung, 2005) and HIF1-α (Imai et al., 2003). At 

post-transcriptional level, SNAIL1 is known to be regulated by several 

microRNAs such as miR-9 (Liu et al., 2012a), miR-34 (Kim et al., 2011), Let-

7d (Chang et al., 2011) and miR-30a (Kumarswamy et al., 2012). At protein 

level, SNAIL1’s stability is known to be regulated by E3 ubiquitin ligases 

such as FBXL14 (Lander et al., 2011) and β-TRCP(Zhou et al., 2004) and 
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kinases such as GSK3β (Yook et al., 2006), LATS2 (Zhang et al., 2012), 

PKD1 (Du et al., 2010a) and PAK1 (Yang et al., 2005). Whereas SNAI2 has 

been previously reported to be transcriptionally regulated by several 

transcription factors, such as ELF5 (Chakrabarti et al., 2012), FOXA1, KLF4 

(Liu et al., 2012b), SOX3 (Acloque et al., 2011) and SIM2s (Laffin et al., 

2008). At post-transcriptional level, SNAIL2 is regulated by several 

microRNAs such as miR-1/200 (Liu et al., 2013) and miR-203 (Zhang et al., 

2011), and is known to be phosphorylated by kinases such as GSK3β (Wu et 

al., 2012) and FBXL14 (Vernon and LaBonne, 2006). Interestingly, these 

phosphorylation stabilizes SNAIL2 which is similar to the effect on SNAIL1.  

In this study, we have identified expression of SNAIL2 to be regulated by 

DNMT1 (Figure 34, 39). However, I did not observe any change in DNA 

methylation on SNAI2 promoter (data not shown), suggesting an indirect role 

of DNMT1 in regulating SNAI2 transcription. Further studies investigating the 

molecular mechanism of DNMT1 dependent SNAIL2 regulation will be an 

exciting avenue to explore.  

8.11 Cancer metastasis assays 

Curing the primary tumour has high success rates, metastasis is always 

difficult to treat and is the main cause of cancer related death (McClatchey, 

1999). During the metastasis, tumour cells must migrate and invade to the 

circulating system, travel to distant organ, invade and migrate out of the 

circulating system and finally adhesion and form a new tumour at distant 

place. Thus invasion, migration and adhesion are main cellular behaviours 

related to metastasis (McClatchey, 1999). 
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To further investigate metastasis process as well as to develop drug 

targeting this process, it is necessary to have experimentally model metastasis 

both in vitro and in vivo.   

In vitro modelling systems focus on the cellular properties of metastasis: 

invasion and migration. Several models have been developed to assess the 

ability of cell migration and invasion. Wound-healing assay is commonly used 

to evaluate cell migration (Chen et al., 2012; Oxmann et al., 2008). Same as 

what has been used in this study, the ability of cells to migrate and the speed at 

which it closes the wound. In vitro invasion assay is usually performed using 

an invasion chamber with Matrigel coated (Korah et al., 2000) and is 

commercial available. These chamber with Matrigel mimic the situation of 

tumour cells passing through the barrier and invading into the circulating 

system. The invasion ability is evaluated by the number of cells invading to 

the opposite site of the chamber. Moreover, chemotactic invasion could also 

be measured by adding additional chemo-attractions into the bottom layer.  

Confocal microscopy is also commonly used in in vitro models (Kim and 

Wirtz, 2011). This technique allows researchers to visualize cell migration and 

invasion more easily. With this technique, researchers are able to target one 

single cell or a group of cells, and monitor the process of cell migration and 

adhesion on a cultured plate or cell invading through a chamber. Fluorescence 

or bioluminescent molecules are often used to label the cells in order to 

efficient visualization of the migration and invasion process (Bos et al., 2010).  

In vitro models are convenient and time saving, and can be used to define 

the function of potential metastasis regulators or targeting drugs with a short 
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turnaround time. However, metastasis is a complicated cascade with multiple 

steps and requires microenvironment. These models can only provide avenues 

to analyse limited events of metastasis cascade and its challenging to mimic 

microenvironment in vitro (Bos et al., 2010). Therefore, in vivo models could 

be more accurate systems to study metastasis.  

There are several experimental models used to model metastasis in vivo. 

Immunodeficiency mice are used as animal model in these in vivo assays. The 

classic assay is to inject cancer cells into the tail vein of the immunodeficiency 

mice and test their ability to form tumour in lung. Additionally, intra-cardiac 

injection could also be performed and the ability of cancer cells to form 

tumour in distal organs, mostly lung, is evaluated same way as tail vein 

injection. Finally, intravenous injection via mesenteric vein is also used to 

evaluate liver metastasis (Li et al., 2010). Bioluminescent labelling of injected 

cells allows them to be tracked by microscopy without sacrificing the mice. 

The advantages of these assays are the successful measurement of late stage of 

metastasis. However, they fail to measure the earlier angiogenesis and 

invasion stages of the metastasis progress. Therefore, these assays might be an 

incomplete measurement of complete metastasis (Bos et al., 2010; 

McClatchey, 1999; Mendoza et al., 2010). 

Another in vivo assay is to inject the cancer cells directly into the 

peritoneum and their ability to adhere to the surrounding mesothelium 

(McClatchey, 1999). The advantage of this assay is the successful 

measurement of the adhesion and survival of cancer cells under physiological 

relevant scenarios (McClatchey, 1999). However, this assay fails to evaluate 
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the entire migration and invasion process of metastasis and in my opinion is 

less rigorous than tail vein injection.  

Investigating the regulating gene of metastasis as well as developing drug 

targeting metastasis requires better metastasis models. A truly physiological 

model should involves subcutaneous injection, formation of primary tumour, 

angiogenesis, spontaneous invasion, entering the circulating system, 

extravasation, seeding and forming new tumour in distant sites. Additionally, 

organ specific metastasis model is also needed to study certain organ 

metastasis, such as liver metastasis or lung metastasis, as different cancers 

usually metastasis to specific organs.  

Recent studies have urged the community for a better physiological model 

for metastasis. However, this is not well-studied due to the incredible 

infrequent occurring of endogenously arising metastasis in mouse compared to 

human (McClatchey, 1999). Thus, the challenge of metastasis study in future 

is to develop better modelling system. These modelling systems would 

provide us more accurate strategies to develop rational treatment and screen 

potential drugs.   
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Appendices: 

Chapter 1 

TIP60 levels in pathophysiological scenarios 

1.1 Downregulation of TIP60 correlates with a higher grade of 

cancer and cancer metastasis in pathophysiological scenario 

Having established that TIP60 abrogates SNAIL2 function and 

maintains cells in an epithelial state, the relevance of TIP60 in breast cancers 

was analyzed. TIP60 expression levels in 3,992 breast cancer and 22 normal 

breast tissue samples was determined, and whether TIP60 expression 

correlated with the breast cancer EMT score in these samples was investigated; 

the EMT score, ϵ [-1.0, +1.0], was used to estimate the EMT phenotype of 

each sample (Tan et al., 2014). In support of the findings, TIP60 expression 

had a negative correlation with EMT score in patient samples (Spearman 

Correlation Coefficient, Rho = -0.191, p = 2.08E-34) (Figure 44A). The levels 

of TIP60 in various grades and types of breast cancer samples was also 

checked and found TIP60 to be significantly down-regulated in high-grade 

breast cancers (Mann–Whitney U-test, p = 2.56E-11) (Figure 44B). After 

further sub-classifying these tumours into the six breast cancer subtype 

signatures (Basal, Claudin-Low, Luminal-A, Luminal-B, ERBB2+, and 

Normal-like), a significantly high TIP60 expression to be associated with the 

Luminal-A subtype was observed, which has a good prognosis (Mann–

Whitney U-test, p = 7.56E-14), and significantly lower TIP60 expression in 

the molecular subtypes with poorer prognosis, Basal, Claudin-Low, and 
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ERBB2+ was also observed (Mann–Whitney U-test, p = 3.69E-16, p = 0.0169, 

and p = 1.83E-7, respectively) (Figure 44C).   
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Figure 44. TIP60 expression was negatively correlated with Epithelial-mesenchymal 

transition (EMT), and is a prognostic marker for higher grade of cancer and 

metastasis in breast cancer patients. TIP60 expression was analysed in 3,992 breast 

cancer tumours and 22 normal breast tissue samples.  

(A) TIP60 expression negatively correlated with EMT score (Spearman Correlation 

Coefficient, Rho = -0.191, p = 2.08E-34). (B) TIP60 expression decreases as breast 

cancer progresses. Samples were classified as grade 1 (G1), G2 and G3, and the p-

value was determined using the Mann–Whitney U-test (G1 vs G2, p = 9.73e-5; G1 vs 

G3, p = 2.56e-11; G2 vs G3, p = 1.28e-4). (C) TIP60 is differentially expressed in 

breast cancer subtype signatures. Relative mRNA level of TIP60 is shown for Basal, 

Claudin-Low, Luminal-A, Luminal-B, ERBB2+, and Normal-like breast cancer 

samples (Basal vs Rest, p = 3.69e-16; Claudin-Low vs Rest, p = 0.0169; Luminal-A 

vs Rest, p = 7.56e-14; Luminal-B vs Rest, p = 0.1477; ERBB2+ vs Rest, p = 1.83e-7; 

Normal-like vs Rest, p = 1.77e-5; analysis by Mann–Whitney U-test).  
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1.2 Downregulation of TIP60 correlates with low survival rate in 

pathophysiological scenarios 

In terms of a correlation between patient Overall Survival (OS)/ 

Disease Free Survival (DFS) and TIP60 expression, breast cancers with higher 

TIP60 expression to show better prognoses for OS and DFS were observed 

(log-rank test, p = 0.08 and p = 0.0017, respectively) (Figure 45A, B). 

Comparing breast cancers with the 25% highest TIP60 expression (fourth 

quartile; Q4) with those with the 25% lowest TIP60 expression (first quartile; 

Q1), even more significant differences with respect to OS and DFS were 

found (log-rank test, p = 0.0054 and p = 0.0004, respectively) (Figure 45C, 

D). These data strengthen the findings that TIP60 expression is reduced in 

more aggressive cancers, and that patients with a higher level of TIP60 have a 

better prognosis in terms of OS and DFS. 
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Figure 45. Patients with lower levels of TIP60 have higher relapse and low survival.  

(A) Survival curve of 2,333 patients with relapse. Log-rank p = 0.0017; median 

survival (month), TIP60<median = 13.62; TIP60≥median = undefined; hazard ratio = 

1.249 (1.087 - 1.436). (B) Overall survival of 974 patients with a log-rank p = 0.0882; 

median survival (months), TIP60<median =undefined,TIP60≥median = undefined; 

hazard ratio = 1.241 (0.9682 - 1.590). (C) Survival curve of 487 patients categorized 

into quartile 4 (Q4=high TIP60), or quartile 1 (Q1=low TIP60) with a log-rank p = 

0.0054; median survival (month), TIP60_Q1 = 16.47, TIP60_Q4 = 17.1; hazard ratio 

= 1.613 (1.152 - 2.258). (D) Disease-free survival curve of 1,166 patients from Q4 

and Q1. Log-rank p = 0.0004; median survival (month), TIP60_Q1 = 10.47, 

TIP60_Q4 = undefined; hazard ratio = 1.429 (1.175–1.738). 
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ORIGINAL ARTICLE

E3 ligase EDD1/UBR5 is utilized by the HPV E6 oncogene to
destabilize tumor suppressor TIP60
VK Subbaiah1,6, Y Zhang1,6, D Rajagopalan1,2, LN Abdullah1, NSL Yeo-Teh1,3, V Tomaić4, L Banks4, MP Myers4, EK Chow1,5

and S Jha1,2

Tat-interacting protein of 60 kDa (TIP60) is an essential lysine acetyltransferase implicated in transcription, DNA damage response
and apoptosis. TIP60 protein expression is reduced in cancers. In cervical cancers, human papillomavirus (HPV) E6 oncogene targets
cellular p53, Bak and some of the PDZ domain-containing proteins for proteasome-mediated degradation through E6AP ligase.
Recently, E6 oncogene from high-risk and low-risk categories was also shown to target TIP60. However, the molecular mechanisms
and whether destabilization of TIP60 contributes to HPV E6-mediated transformation remain unanswered. Our proteomic analyses
revealed EDD1 (E3 identified by differential display), an E3 ligase generally overexpressed in cancers as a novel interacting partner
of TIP60. By investigating protein turnover and ubiquitination assays, we show that EDD1 negatively regulates TIP60’s stability
through the proteasome pathway. Strikingly, HPV E6 uses this function of EDD1 to destabilize TIP60. Colony-formation assays and
soft agar assays show that gain of function of TIP60 or depletion of EDD1 in HPV-positive cervical cancer cells significantly inhibits
cell growth in vitro. This phenotype is strongly supported by the in-vivo studies where re-activation of TIP60 in cervical cancer cells
dramatically reduces tumor formation. In summary, we have discovered a novel ligase through which E6 destabilizes TIP60.
Currently, in the absence of an effective therapeutic vaccine for malignant cervical cancers, cervical cancer still remains to be a
major disease burden. Hence, our studies implying a distinct tumor suppressor role for TIP60 in cervical cancers show that
reactivation of TIP60 could be of therapeutic value.

Oncogene (2016) 35, 2062–2074; doi:10.1038/onc.2015.268; published online 3 August 2015

INTRODUCTION
HIV-1 Tat-interacting protein of 60 kDa (TIP60) is one of the well-
characterized members of the MYST family of lysine acetyltrans-
ferases (KAT).1 Initially discovered as an HIV-1 Tat transactivator,2

several groups have later reported its role as a chromatin-
modifying enzyme in transcriptional regulation, DNA repair,
apoptosis and maintenance of stem cell features.3–7 TIP60 elicits
these functions either transcriptionally by acetylation of histones
when recruited to specific promoters8–10 or non-transcriptionally
by altering the activity of non-histone proteins.11–14 Emphasizing
its major role in gene expression regulation, the homozygous
disruption of TIP60 causes embryonic lethality, implying its
importance in mammalian development.15 In addition, mice that
are haploid for TIP60 are predisposed to tumors, making TIP60 a
haploinsufficient tumor suppressor.16

Owing to TIP60’s role in diverse functions as discussed above,
the cellular levels, stability and activity of TIP60 are also tightly
regulated. In the absence of any stimuli, TIP60 is an unstable
protein with a half-life of 30–190min, maintained at low levels
by the proteasome pathway,2,17,18 and its catalytic activity is
regulated by posttranslational modifications such as phospho-
rylation.19,20

EDD1 (E3 identified by differential display) also known as UBR5
(ubiquitin protein ligase E3 component n-recognin 5) is an HECT
(homologous to E6AP C-terminus) domain-containing ligase,

which was originally isolated as a progestin-induced gene.21

Mutations in EDD1 lead to imaginal disc hyperplasia in Drosophila
and suggest a critical role for EDD1 in cellular proliferation
and differentiation.22 It is linked to DNA-damage signaling
pathway23,24 and directly regulates progestin-mediated signaling
pathway21 and mitogen-activated protein kinase pathway.25

A more direct role for EDD1 in carcinogenesis is suggested by
its overexpression in several cancers, including ovarian and breast
cancer,26,27 whereas truncating mutations have been detected in
gastric and colon cancers.28

Information regarding the functional role of TIP60 in viral-
mediated cancers has been very limited. In addition, few available
reports propose a contradictory role for TIP60 as a suppressor of
EBV and HCMV viral infection,29–31 whereas in contrast the human
T-cell lymphotropic virus type-1 p30II enhances c-Myc-transform-
ing activity by stabilizing c-Myc-TIP60-containing chromatin
remodeling complexes,32 suggesting TIP60 could promote carci-
nogenesis. In the context of human papillomavirus (HPV)-
mediated cervical cancers, TIP60 functions as a cellular repressor
of HPV E6 expression and E6 in turn destabilizes TIP60.33 This
destabilization was independent of the E6AP, an essential ligase
known to mediate E6 functions or MDM2 E3 ligases,33 and hence
information regarding the mechanisms of E6-mediated TIP60
destabilization and whether this function of E6 contributes to its
oncogenicity are currently unknown. In this study, we show that
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E3 ligase EDD1 is a novel and functionally important interacting
partner of TIP60. TIP60–EDD1 regulation is physiologically
significant as HPV E6 destabilizes TIP60 through EDD1 in cervical
cancers. Most importantly, TIP60 strongly inhibits tumor formation
in vivo, demonstrating the biological importance of cross-talk
between HPVE6, EDD1 and TIP60.

RESULTS
Proteomic analyses identifies EDD1/UBR5 as a novel interacting
partner of TIP60
To investigate the molecular mechanisms of HPV E6-mediated
TIP60 degradation, we performed a proteomic screen for TIP60-
interacting partners. HEK-293 cells were transfected with HA-TIP60
expression plasmid in the presence and the absence of HPV 16 E6.
After 24 h, the cells were treated with the proteasome inhibitor
MG132 for 4 h, to prevent the degradation of TIP60. The cellular
extracts were then immunoprecipitated with anti-hemagglutinin
(HA)-conjugated agarose beads and the complexes were sub-
jected to mass spectrometric analysis. The resulting protein
profiles were compared with those obtained from mock-
transfected cells to exclude nonspecific interactions. Several
known interacting proteins such as histone H4 and histone H2A
were identified in the screen, which are well-established
substrates for TIP60.34 Among the novel potential interacting
partners identified, we decided to further investigate a 300-kDa
protein called EDD1 or UBR5. EDD1 is the mammalian ortholog of
the Drosophila melanogaster hyperplastic disc protein and is a
member of the HECT domain family of E3 ubiquitin ligases.21

More interestingly, HPV E6 degrades TIP60 in a proteasomal-
dependent manner33 and EDD1 is a ubiquitin ligase closely
involved with the proteasomal pathway, which has been shown
previously to interact with E6 and E6AP.35 This raises the
possibility that EDD1 could mediate the E6 function in this
context. To confirm the cellular interaction between EDD1 and
TIP60, 293T cells were transfected with HA-TIP60 expression
plasmid along with Flag-EDD1 in the presence or the absence of
HPV16 E6. After 24 h, the cells were treated with MG132 for 4 h
and then the cellular extracts were immunoprecipitated using
anti-HA-conjugated agarose beads. EDD1 bound to the agarose
beads was detected by western blotting using anti-Flag antibody.
EDD1 specifically co-immunoprecipitated with TIP60 (Figure 1a).
However, this interaction seems to be HPV E6 independent, as
TIP60 co-immunoprecipitated both in the presence or the absence
of HPV16 E6. To confirm the interaction between TIP60 and EDD1
at endogenous levels, HeLa-LPCX and HeLa-TIP60 cells were
seeded in 10-cm dishes. After 24 h, the cells were collected, proteins
extracted using RIPA buffer, the lysates immunoprecipitated using
anti-Flag agarose beads and the co-immunoprecipitating EDD1
detected using anti-EDD1 antibody (Figure 1b). To further map the
binding region on TIP60, Flag-EDD1 was transfected either alone or
in combination with a series of HA-tagged deletion mutants of TIP60
(Figure 1c). The cellular extracts were immunoprecipitated using
anti-HA-conjugated agarose beads and the co-immunoprecipitating
EDD1 was detected using anti-Flag antibody. EDD1 strongly
co-immunoprecipitated with full-length wild-type (WT) TIP60
(aa 1–461) and the deletion mutant construct of TIP60 in which
the chromodomain at the N-terminus was deleted (aa 90–461)
(Figure 1d). However, this interaction was abolished on simulta-
neously deleting the chromodomain at the N-terminus and
the functional acetyl CoA domain at the C-terminus of TIP60
(aa 90–232), and this was not due to mis-localization of the
deletion mutants of TIP60 (Figure 1e). This indicates that EDD1
interacts with TIP60 specifically through the C-terminus containing
the acetyl CoA domain. To confirm this, we generated a TIP60
deletion mutant construct comprising a C-terminus with the acetyl
CoA domain (aa 232–461). The results in Figure 1d confirmed that

EDD1 recognizes and interacts with TIP60 through acetyl CoA
domain. Taken together, these results demonstrate that EDD1 is a
novel interacting partner of TIP60 in the presence and the absence
of HPV E6, and it recognizes TIP60 through the acetyl CoA domain
at the C-terminus.

Depletion of EDD1 increases TIP60 levels and regulates its
turnover
To address the physiological relevance of this novel interaction,
we tested whether modulating the endogenous cellular levels of
EDD1 could affect the endogenous TIP60 levels. We therefore
performed transient small interfering RNA (siRNA) knockdown
experiments in HPV-positive CaSki and HeLa cells. Cells were
transfected with siRNA against control, EDD1 or TIP60 for 72 h and
cellular lysates were immunoblotted for endogenous TIP60
protein using anti-TIP60 antibody. The results show that ablation
of endogenous EDD1 increases TIP60 protein levels and the
specificity of the TIP60 band was confirmed, as siRNA against
TIP60 decreased the levels of the respective band (Figures 2a and
b). We next tested whether EDD1 regulates TIP60 stability in
cervical cancer cell line lacking HPV E6 expression; for this, C33A
cells were transfected with siRNA against control, EDD1 or TIP60
for 72 h, and cellular lysates were immunoblotted for endogenous
TIP60 protein. The results show that ablation of endogenous EDD1
by siRNA does not result in increased TIP60 protein level
(Figure 2c). In order to investigate the mechanism of EDD1-
mediated decrease in TIP60 levels, we generated HeLa cells with
stable knockdown of endogenous EDD1 and confirmed the
increase in TIP60 protein levels in these cells (Figure 2d).
As EDD1 negatively regulates TIP60 protein levels, we next sought
to resolve whether this is due to EDD1 regulating TIP60
transcriptionally. For this, total RNA was isolated from HeLa cells
stably expressing short hairpin RNA against control or EDD1
sequences and was subjected to real-time PCR analysis (Figure 2e).
The TIP60 mRNA levels in the shEDD1-stable cells did not change
significantly compared with the control cells. Hence, we hypo-
thesized that EDD1 might directly increase TIP60 protein turnover.
To investigate this, HeLa-shcontrol or HeLa-shEDD1 cells were
treated with cycloheximide for various time points, to block
protein synthesis. The residual levels of endogenous TIP60 were
then determined using anti-TIP60 antibody. Under normal
circumstances, TIP60 has a half-life of o1 h, which is extended
on depleting endogenous EDD1 (Figures 2f and g). Based on these
results, we decided to ascertain the effects of HPV E6 on TIP60
protein levels in the absence of endogenous EDD1. For this,
we generated 293T cells stably expressing short hairpin RNA
against EDD1. Cells stably expressing shEDD1 were selected with
puromycin antibiotic and depletion of EDD1 was ascertained by
western blotting (Figure 2h). As shown earlier, HPV18 E6
destabilizes TIP60;33 however, this function of E6 was impaired
in EDD1-depleted cells (Figures 2i and j). To test whether this is
due to decreased half-life of TIP60, Flag-TIP60 was transfected in
the cells with decreased EDD1 levels (shEDD1) either alone or in
combination with HPV18 E6 for 24 h, then treated with
cycloheximide for indicated times and the total cellular lysates
were analyzed by western blotting. The results and quantifications
in Figures 2k and l demonstrate that ectopically expressed TIP60
has a half-life o2 h, which is further decreased in the presence of
HPV 18E6. More interestingly, this effect of E6 is abolished in
shEDD1 cells, suggesting that E6 regulates TIP60 half-life through
EDD1. In addition, the expression level of TIP60 is not significantly
altered in shEDD1 cells compared with shcontrol. In summary,
these results demonstrate the direct role for EDD1 in regulating
TIP60 protein levels in HPV-positive cells.
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EDD1 ubiquitinates and degrades TIP60 through proteasomal
pathway
EDD1 is an E3 ubiquitin ligase and is involved in ubiquitination or
ubiquitin binding.36 We aimed to explore the mechanism of
EDD1-mediated destabilization of TIP60. To do so, 293T cells were
transfected with Flag-TIP60 expression plasmid, either alone or in
combination with Flag-EDD1 expression plasmid. After 24 h, the
cells were treated with dimethyl sulfoxide vehicle control or
treated with 10 μg/ml of MG132 for 4 h. The total cellular lysates
were subjected to western blotting and the remaining TIP60 levels
were detected using anti-Flag antibody. The results in Figure 3a
show that EDD1 induces a significant decrease in TIP60 protein
levels and this is due to the enhanced proteasomal degradation of
TIP60, as treatment with MG132 for 4 h abolished the effect of
EDD1. TIP60 alone on treatment with MG132 is restored to similar
levels. Plasmid expressing β-galactosidase was used to demon-
strate the transfection efficiency and also served as a negative
control. The key feature of the HECT class of E3 ligases is their
ability to covalently bind ubiquitin through a conserved cysteine
residue located in their HECT domain.37 Furthermore, substitution
of this conserved cysteine at position 2768 to alanine abolishes
the ability to bind to the ubiquitin and degrade its substrates.21,23

We were interested in comparing the effects of the ligase-dead
mutant of EDD1 (referred to as EDD1-Mut (C2768A)) and the wild
type EDD1-WT on TIP60 levels. To do so, 293T cells were
transfected with Flag-TIP60 expression plasmid, either alone or
in combination with increasing amounts of EDD1-WT or EDD1-Mut
(C2768A). After 24 h, cellular extracts were prepared and
both TIP60 and EDD1 were detected using anti-Flag antibody.
Although both the proteins are Flag tagged, they could be
distinguished on a western blot because of the marked
differences in their molecular weights. The results in Figure 3b
show that EDD1-WT decreases TIP60 protein levels in a dose-
dependent manner and this effect is not observed in the presence
of EDD1-Mut (C2768A), suggesting that destabilization of TIP60
by EDD1 requires the ligase activity of EDD1. We then extended
our study to address the question whether EDD1 could also
polyubiquitinate TIP60 in vivo. For this, 293T cells were transfected
with Myc-TIP60 expression plasmid, either alone or co-transfected
with the Flag-EDD1-WT or EDD1-Mut (C2768A) and HA-Ubiquitin
expression plasmids in various combinations as shown in
Figure 3c. After 24 h, the cellular extracts were immuno-
precipitated using anti-HA-conjugated agarose beads and
the HA-Ubiquitin-bound TIP60 was then detected by western
blotting using anti-Myc antibody. The results from Figure 3c and
quantification from four independent experiments in Figure 3d
show that TIP60 co-immunoprecipitated with ubiquitin and this is
clearly enhanced in the presence of EDD1-WT. Interestingly, TIP60
co-immunoprecipitated less efficiently when the EDD1-Mut
(C2768A) was expressed, suggesting that destabilization of TIP60
by EDD1 is through ubiquitin-mediated proteasome degradation.
In order to investigate whether EDD1 targets the functionally
active form of TIP60, Flag-TIP60-WT or the HAT (histone
acetyltransferase) mutant of TIP60 (TIP60-KD) was transfected

alone or in combination with the EDD1-WT and analyzed by
western blotting. TIP60-WT protein levels were efficiently
downregulated by EDD1, confirming the earlier results, whereas
in sharp contrast the HAT mutant of TIP60 is resistant to
degradation by EDD1 (Figure 3e). We next investigated whether
EDD1 interacts with TIP60-KD. For this, EGFP-EDD1 was
transfected alone or in combination with Flag-TIP60-WT or
Flag-TIP60-KD and co-immunoprecipitation assay was per-
formed. Intriguingly, EDD1 interacted with TIP60-KD mutant
similar to TIP60-WT (Figure 3f), although EDD1 failed to degrade
the TIP60-KD mutant.

Overexpression of TIP60 inhibits cellular growth
TIP60 is a tumor suppressor and is a transcriptional repressor of E6
expression. Therefore, we reasoned that gain of function of TIP60
might also antagonize E6-mediated cellular growth, thereby
inhibiting tumor cell growth in cervical cancer cells. To address
this, we used retroviral system to generate HeLa cells (Figure 4a)
and CaSki cells (Figure 4b) stably expressing Flag-TIP60. TIP60
regulation by EDD1 was confirmed by transfecting HeLa-TIP60
cells individually with siRNA against control, EDD1, 18E6/E7 or
TIP60 for 72 h and cellular lysates were immunoblotted for TIP60
protein using anti-Flag antibody. The results in Figure 4c show
that transient depletion of EDD1 in HeLa-TIP60 stable cells did not
significantly change TIP60 mRNA levels compared with the control
cells, despite efficient depletion of EDD1. In addition, depletion of
endogenous EDD1 stabilizes TIP60 protein levels confirming our
earlier results. Similarly, ablation of HPV 18E6/E7 also stabilized
TIP60 levels as previously published33 (Figure 4d). Ablation of HPV
18E6/E7 was confirmed by rescue in p53 levels. In addition,
the specificity of the TIP60 band was also confirmed, as siRNA
against TIP60 showed a significant decrease in TIP60 levels
detected using the anti-Flag antibody. Similar results were
obtained in CaSki cells and off-target effect was ruled out by
using three independent siRNA targeting EDD1 (Figure 4e and
Supplementary Figure S1). Finally, transient depletion of EDD1
combined with cycloheximide treatment shows that under
normal circumstances ectopically expressed TIP60 has a half-life
of o1 h, which is extended on depleting endogenous EDD1
(Figures 4f and g). These results further confirm our previous
results at the endogenous level.
We then characterized the growth ability of HeLa-TIP60 and

CaSki-TIP60 stable cells in vitro by colony-forming assay. HeLa-
LPCX vector control or HeLa-TIP60-expressing cells were seeded at
very low density (1 × 103/9.5 cm2) for colony-formation assays
(CFAs) and maintained in antibiotic selection. After 3 weeks the
colonies were fixed, stained and quantified. Representative images
in Figures 5a (i)and (ii) and the quantifications in Figure 5b show
that expression of TIP60 compared with control inhibited the
ability of HeLa cells to form colonies by 90%. Interestingly, the
morphology of HeLa-TIP60 cells were dramatically different and
suggested that the cells undergo senescence under the reduced
serum conditions in comparison with the control cells. Similar
results were observed in CaSki cells (Figures 5c and d).

Figure 1. EDD1 interacts with TIP60. (a) TIP60 interacts with EDD1. 293T cells were transfected with plasmids as shown and treated with
MG132 for 4 h before using the lysates for co-immunoprecipitation. TIP60 and EDD1 were detected using anti-HA and anti-Flag antibodies,
respectively. (b) HeLa-LPCX or HeLa-TIP60 cells (1 × 106) were seeded in 10-cm dishes. After 24 h, total cellular lysates were subjected to Flag
immunoprecipitation and western blotted for endogenous EDD1. (c) Schematic of the different TIP60 mutant constructs used in the
experiment depicting the length of the fragments. The amino acid numbers corresponds to TIP60 isoform 3 (NP_874368). (d) EDD1 interacts
with TIP60 WT through TIP60’s C-terminal acetyl CoA domain. Co-immunoprecipitation assay performed on 293T lysates transfected with
various plasmids as shown. EDD1 was detected using anti-Flag antibody. (e) TIP60 full length and deletion proteins are localized in the
nucleus. 293T cells were transfected with plasmids expressing various TIP60 fragments. Nuclear and cytoplasmic fractionation was performed,
and TIP60 fragments were probed by immunoblotting with anti-HA antibody. Histone H3 and β-tubulin serve as a marker for nuclear and
cytoplasmic fraction, respectively.
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Furthermore, TIP60 was also able to efficiently inhibit the ability of
HeLa cells to form colonies in in vitro anchorage-independent CFA
when compared with the control (Figures 5e and f). The cellular

phenotype observed in Figure 5a (ii) suggests that stable
expression of TIP60 in HeLa cells induces cell cycle arrest and
this is due to the decreased levels of endogenous E6, as total
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cellular extracts from HeLa-TIP60 cells showed a marked down-
regulation of endogenous HPV 18 E6 levels compared with the
control cells (Figure 5g) and this is consistent with mRNA data
from previous studies.33 We next asked the question whether the
growth defects seen in HeLa-TIP60 cells could be rescued by
overexpression of HPV 18 E6. For this, HeLa-LPCX and HeLa-TIP60
cells were transiently transfected with pcDNA vector alone or
pcDNA 18 E6 expression plasmids. After 24 h, 2 × 103 number of
cells were seeded for CFAs and were maintained in antibiotic
selection. After 14 days, the colonies were fixed, stained and
quantified. Representative images in Figure 5i and the quanti-
fications in Figure 5j show that expression of HPV 18 E6 in HeLa-
TIP60 cells could significantly rescue the growth compared with
control and there was no change in growth of HeLa-LPCX cells
expressing HPV 18 E6 compared with HeLa-LPCX. The expression
of transfected HPV 18 E6 was verified by western blot analysis
(Figure 5h).
Based on promising in vitro results, we wanted to confirm this

strong phenotype of TIP60 on cellular growth in vivo. Six-week-
old NOD/SCID mice were subcutaneously injected with 1 × 106

HeLa-LPCX or HeLa-TIP60 cells. The tumor size was measured at
every 7-day interval for 7 weeks. The representative images and
quantifications from Figures 6a (i–iii) and Supplementary
Figures S2A and B show that the tumors induced by HeLa-
LPCX cells were significantly reduced with TIP60 expression. We
were then highly interested in verifying the TIP60 expression in
these tumors. The total protein from the tumor tissue was
extracted and western blotted for anti-Flag to detect TIP60. As
shown in Figure 6a (iv), anti-Flag band corresponding to TIP60
was detected only from tumors induced by HeLa-TIP60 cells and
not in the control.

Depletion of EDD1 affects cell growth
As EDD1 destabilizes TIP60, we wanted to investigate whether
stable depletion of endogenous EDD1 could result in a similar
phenotype as observed with HeLa-TIP60 stable cells. To do this,
we tested the ability of HeLa-shcontrol and shEDD1 cells to form
colonies in vitro in CFAs. The representative images and
quantifications in Figures 6b and c show that loss of EDD1
(HeLa-shEDD1) significantly inhibits the colony-forming efficiency
of HeLa cells similar to HeLa-TIP60 cells and this was TIP60
specific, as depletion of TIP60 rescued the growth inhibition
(Figures 6b and c and Supplementary Figures S3A and B). We
wanted to confirm the growth inhibition with reduced levels of
EDD1 in vivo. To do so, 1 × 105 cells of either HeLa-shcontrol or
HeLa-shEDD1 cells were injected subcutaneously into the mice.
The tumor size was measured at 7-day intervals over a period of 5
weeks. The representative images and quantifications from

Figures 6d (i–iii) and Supplementary Figures S4A and B show that
the tumors induced by HeLa-shcontrol cells were significantly
reduced on stable ablation of endogenous EDD1 expression,
suggesting the biological importance of TIP60’s regulation by
EDD1. The knockdown of EDD1 expression and stabilization
of TIP60 in the tumors were verified by western blot analysis
(Figure 6d (iv)).

DISCUSSION
The deregulation in the expression of upstream transcriptional
regulators, either at mRNA or protein levels, leading to an
abnormal activation or repression of essential cellular targets is a
prominent feature reported in various diseases and cancers. TIP60
is a transcriptional co-factor involved in several essential cellular
physiological processes and its aberrant expression has been
reported in several cancers.2,33,38,39 TIP60’s major role in main-
taining genomic stability enables the suppression of potential
transforming activities leading to cancer. These observations
hence suggest the requirement for tight regulation of TIP60
expression and function. In HPV-driven cervical cancers, HPV E6
destabilizes TIP60; however, information about molecular mechan-
isms regulating E6-mediated TIP60 destabilization and its implica-
tions in HPV-driven cervical cancers is still lacking. Our findings
demonstrate that the E3 ubiquitin ligase EDD1 is a potential
cellular-interacting partner of TIP60 in both HPV-negative
293T cells and HPV-positive cells (HeLa) (Figures 1a and b), a
negative regulator of TIP60 stability in HPV-positive cells (HeLa
and CaSki) (Figures 2a and b). On the same lines, overexpression
shows that TIP60 associates with EDD1 independent of HPV E6
(Figure 1a), suggesting that the EDD1 and TIP60 interaction is a
general phenomenon not restricted to cells derived from cervical
cancers, and factors that could increase TIP60–EDD1 interaction
would regulate EDD1-mediated destabilization of TIP60. This
finding is significant considering the inverse correlation in TIP60
and EDD1 expression reported in a variety of cancers (breast,
gastric and colon) and also the common function shared by EDD1
and TIP60 in the maintenance of genomic stability during DNA
damage. The HAT activity of TIP60 can have pleiotropic effects in
regulating cellular physiology. Our protein expression analysis
demonstrating that EDD1 cannot destabilize the HAT mutant
TIP60 (Figure 3e) demonstrates this versatility of HAT function.
However, EDD1 is able to interact with HAT mutant TIP60, as the
TIP60-KD mutant construct was made by point mutation and
hence still retains the C-terminus with acetyl CoA region, essential
for its interaction. Whether EDD1 is also affecting the HAT activity
of TIP60 needs further analysis. E6AP is critical in mediating HPV
E6 function in degradation of its substrates such as the major

Figure 2. EDD1 regulates the expression and stability of endogenous TIP60 in HPV-positive cells. (a–c) TIP60 expression is stabilized in EDD1-
depleted HPV-positive cells (CaSki and HeLa) but not in HPV-negative cells (C33A). Cells were transiently transfected with indicated siRNA and
the whole-cell lysates prepared from cells 72 h after transfection were probed for indicated proteins. Endogenous EDD1 was detected using
EDD1 antibody and endogenous TIP60 was detected using anti-TIP60 antibody. (d) Whole-cell lysates prepared from HeLa-shcontrol and
shEDD1 stable cells were probed for indicated proteins. (e) Real-time PCR analysis showing no significant change in TIP60 mRNA levels in HeLa
shEDD1 cells compared with the control. The level of a given mRNA was measured by quantitative reverse transcriptase–PCR relative to that of
actin mRNA. (f) HeLa-shcontrol and HeLa-shEDD1 cells were treated with 100 μg/ml of cycloheximide in phosphate-buffered saline (PBS) for
indicated times, to inhibit protein synthesis. The cellular lysates were probed with indicated antibodies. (g) Graph represents collated results
from three independent half-life experiments performed in HeLa-shcontrol and HeLa-shEDD1 cells. The band intensities were quantified
using Image J software. TIP60 levels were normalized to 100% at time zero and s.d. estimated. (h) Generation of 293T stable shEDD1 cell line.
Western blot analysis showing the stable knockdown of endogenous EDD1 in 293T shEDD1 cells compared with the shcontrol cells.
(j–l) HPV18 E6 destabilizes TIP60 through EDD1. 293T cells stably expressing short hairpin RNA (shRNA) against control or EDD1 were
transfected with Flag-TIP60 along with indicated plasmids. After 24 h, the cell lysates were analyzed by western blotting and probed for
indicated proteins. (k and l) 293T shcontrol and 293T shEDD1 cells were transfected with 2.5 μg of Flag-TIP60 along with 5 μg of either pcDNA
vector or pcDNA HPV 18 E6 expression plasmids. After 24 h, cells treated with 100 μg/ml of cycloheximide in PBS for indicates times and the
cellular lysates were probed with indicated antibodies. (k and l) Graph representing collated results from three independent half-life
experiments performed in 293T shcontrol and 293T shEDD1 stable cells. The band intensities were quantified using Image J software. TIP60
levels were normalized to 100% at time zero and s.d. estimated. Significance is represented as *Po0.05 and **Po0.01.
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tumor suppressor p53 and apoptosis-inducing Bak protein.40,41

However, the mutant form of HPV16 E6 was unable to bind to
E6AP, showing that E6AP is dispensable for E6-mediated TIP60
destabilization.33 Likewise MDM2, a ligase known to regulate
TIP60 turnover, was also dispensable. We provide three lines of
evidence to show that EDD1 mediates E6 function in this context:
(i) depletion of endogenous EDD1 in HeLa and CaSki cells

upregulates TIP60 protein levels (both endogenous and exogen-
ous (Figures 2 and 4)) but not the RNA (Figures 2e and 4c). (ii)
Ablation of EDD1 in HeLa cells extends the half-life of TIP60 (both
endogenous and exogenous (Figures 2 and 4)) from o1 to > 2 h,
demonstrating that EDD1 directly regulates TIP60 protein stability.
(iii) Finally, we show that 18 E6 regulates TIP60 protein stability
and this function is impaired in the absence of endogenous EDD1
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(Figures 2i–l). This mechanism is intriguing, as E6 interacts with
EDD1, which negatively regulates E6 expression and its function in
conjunction with E6AP.35 The current study highlights another
function of the E6–EDD1 interaction, independent of E6AP, which
is favorable to E6 in the context of TIP60. These observations also
suggest that EDD1 has a dual role in HPV-driven cervical cancers,
where it could function as a tumor suppressor by negatively
regulating E6 function, but in contrast also functions as a tumor
promoter by mediating TIP60 destabilization. This is reminiscent of

EDD1’s role in colon cancer where it functions as a tumor
suppressor by stabilization of adenomatous polyposis coli and
hence upregulates its function to inhibit β-catenin;42 in contrast,
EDD1 also ubiquitinates and upregulates Wnt-signaling-mediated
β-catenin, thus promoting cancer development.43 In addition to
high-risk HPV16 and 18 E6, E6 from low-risk HPV11 and 8 also
destabilizes TIP60,33 but whether EDD1 mediates E6 function of
these viruses also will be an interesting avenue to explore. HPV11
interacts with EDD1, although less efficiently when compared with
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HPV 18.35 Based on this, we speculate that EDD1 could mediate
HPV 11 E6-mediated destabilization of TIP60.
Ubiquitylation mostly targets proteins to the 26 S proteasome

for degradation, but it can also result in lysosomal targeting,
alteration in subcellular localization, regulation of transcription

and DNA repair.44 By elucidating further the molecular mechanism
through which EDD1 destabilizes TIP60, we provide evidence to
show that EDD1 uses its ligase function to polyubiquitinate TIP60
and further subjects it to proteasome-mediated degradation
(Figures 3a and c).
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In the case of cervical cancer, HPV E6 destabilizes TIP60 and TIP60
suppresses the early major promoter of E6. We now show that gain
of function of TIP60 in cervical cancers inhibits the ability of HPV-
positive cells to form colonies in vitro (Figures 5a–f) and this
strongly corresponds to inhibition of tumor growth in vivo
(Figure 6a). The molecular mechanisms governing this strong
phenotype of TIP60 needs further study. However, the CFA
(Figures 5i and j) suggests that suppression of E6 expression—
one of the major oncogenes regulating the transforming ability of
papilloma viruses and possibly its downstream effector pathways—
could mediate TIP60 function. This implies that in cervical cancers,
one of the essential mechanisms through which HPV E6 oncogene
promotes tumorigenesisis is by downregulating TIP60 protein level.
We further provide evidence showing that regulation of TIP60 by
EDD1 also contributes to TIP60-mediated phenotype both in vitro
and in vivo. This is supported by similar in-vitro phenotype observed
in HeLa-shEDD1 (Figures 6b and c) cells and HeLa-TIP60 stable cells
(Figure 5a), and in-vivo phenotype (Figures 6a and d). Based on our
studies, we propose a model (Figure 7) where in HPV-driven cervical
cancers, HPV E6 destabilizes TIP60 through EDD1 to promote
tumorgenesis and this activity is counteracted by TIP60, which
suppresses E6 expression leading to tumor suppression. In
summary, we propose that re-activation of TIP60 possibly through
the inhibition of EDD1 could be of therapeutic value in treating
HPV-driven malignant cervical cancers.

MATERIALS AND METHODS
Cells and transfection
All the cell lines used were cultured in Dulbecco’s modified Eagle’s
medium with 10% fetal bovine serum. CaSki (American Type Culture
Collection catalog number CRL-1550) was grown in RPMI medium with
10% fetal bovine serum. HeLa (American Type Culture Collection catalog
number CLL-2) and HEK 293T (American Type Culture Collection catalog
number CRL-3216) cells were transfected using calcium phosphate
precipitation method. For siRNA transfection in HeLa, CaSki and C33A
(American Type Culture Collection catalog number HTB-31) cells, transfec-
tion was carried out using 35 nM of annealed siRNA duplex (AIT) with
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA) reagent following
the manufacturer’s instruction.

Plasmids and siRNAs
All the TIP60 constructs are described elsewhere.33 pRcCMV-His-EDD1,
pCDNA-β-Gal, short hairpin RNA constructs against control and EDD1 were
kindly provided by Professor Lawrence Banks (ICGEB, Trieste, Italy). pCMV-
Tag2B EDD1 (37188), pCMV-Tag2B EDD1 C2768A (37189) and EGFP-EDD1
(37190) were purchased from Addgene (Cambridge, MA, USA) and we
thank the principal investigator Henderson MJ who deposited this plasmid
in Addgene. MSCV-Flag-TIP60WT was generated by subcloning full-length
TIP60 from pEF1α-TIP60-WT construct as described elsewhere8 and MSCV-
Flag-TIP60HAT mutant was generated by introducing point mutations4 in

TIP60-WT. siRNA sequences for sicontrol, siTIP60 and si18E6/E7
are as described elsewhere.33 siEDD1A: forward: 5′-CAACUUAGAUCUCCU
GAAAdTdT-3′, reverse: 5′-UUUCAGGAGAUCUAAGUUGdTdT-3′; siEDD1B:
forward: 5′-GAACAGCCCUUACAUGCAAdTdT-3′, reverse: 5′-UUGCAUGUAAGG
GCUGUUCdTdT-3′; and siEDD1C was purchased from Life Technologies
(Carlsbad, CA, USA; siRNA ID: s60863).

Western blotting and antibodies
Western blotting was performed as described elsewhere.45 TIP60
antibody was generated in the lab as described previously.46 Commercial
available antibodies used are follows: Anti-HA (11583816001) Roche Life
Science, Germany, anti-β-Gal (Z37880) (Promega, Madison, WI, USA), anti-
penta-His (34660) (Roche, Germany), Anti-HA (E6779) beads, and anti-
FlagM2 (A2220) beads (SIGMA, St Louis, MO, USA) all the other antibodies
were purchased from SantaCruz (Santa Cruz, CA, USA), anti-Flag (sc-807),
anti-Myc (sc-40), anti-EDD1 (H-300) (sc-367559), anti-p53 (sc-126), anti-GFP
(GFP-B2) (sc9996) and anti-actinin (B-12) (sc-166524).

Mass spectrometry analysis and co-immunoprecipitation assays
Mass spectrometry analysis and co-immunoprecipitation assays was
performed as described elsewhere.45

In vivo ubiquitination and half-life experiments
In vivo ubiquitination and half-life experiments was performed as
described elsewhere.45

Real-time PCR analysis
Real-time PCR analysis was performed as described elsewhere.33 Primers
for real-time PCR were as follows: TIP60 forward primer: 5′-AATG
TGGCCTGCATCCTAAC-3′ and reverse primer: 5′-TGTTTTCCCTTCCACTTTGG-3′;
EDD1 forward primer: 5′-GAAGAGGTTGAGGTGGTGGA-3′ and reverse primer:
5′-CAGCTCCATATCACTCCCGT-3′; and Actin forward primer: 5′-CCAGAT
CATGTTTGAGACCTTCAAC-3′ and reverse primer: 5′-CCAGAGGCGTACA
GGGATAGC-3′.

Stable cell line generation
Stable cell line generation was performed as described elsewhere.38

CFA and soft agar assays
Cells (1 × 103) either in 5% serum or 2 × Dulbecco’s modified Eagle’s
medium supplemented with 20% fetal calf serum and 0.4% agar were used
for CFA and soft agar assay, respectively. After 3 weeks, the colonies
were stained with Giemsa stain and quantified using Image J software
(http://imagej.nih.gov/ij/).

Cell fractionation assays
HEK293 cells in 10-cm dishes were transfected with 5 μg of plasmids
expressing HA-tagged deletion mutants of TIP60. Twenty-four hours post
transfection, the cells were collected and subjected to cytoplasmic and

Figure 5. TIP60 inhibits the growth of HPV-positive cells in vitro. (a) (i) Representative images from the CFA performed in HeLa stable cells (top
panel) and the magnified images (ii) from the same assay (lower panel). The assay was performed as mentioned in ‘Materials and Methods’.
The cells were fixed and stained with crystal violet after 21 days. (b) Bar graph represents the collated results obtained from quantifications of
two independent experiments (as shown in a) each in triplicates. Quantifications were performed using Image J software; s.d. is also shown.
(c) Representative images from the CFA performed in CaSki stable cells. (d) Bar graph represents the collated results obtained from
quantifications of two independent experiments (as shown in c), each in triplicates. Quantifications were performed using Image J software;
s.d. is also shown. (e) Representative images from the soft agar assay performed in HeLa stable cells. The assay was performed as mentioned in
the ‘Materials and Methods’. The colonies were fixed and stained with crystal violet after 21 days. (f) Bar graph representing the collated results
obtained from quantifications of two independent experiments, each in triplicates; s.d. is also shown. Quantifications were done using Image J
software assigning a threshold value to define a colony. (g) TIP60 inhibits the ability of HeLa cells to form colonies by downregulating HPV 18
E6 protein levels. Total cellular extracts from HeLa-LPCX and HeLa-TIP60 were probed with indicated antibodies. (h–j) HPV 18 E6 rescues the
growth defect in HeLa-TIP60 cells. HeLa-LPCX or HeLa-TIP60 cells were transiently transfected with indicated plasmids and western blotted for
indicated antibodies. (i) Representative images from the CFA performed in HeLa stable cells indicated in h. The assay was performed as
mentioned in ‘Materials and Methods’. The cells were fixed and stained with crystal violet after 14 days. (j) Bar graph represents the collated
results obtained from quantifications of four independent experiments. Quantifications were performed using Image J software; s.d. is also
shown. Significance is represented as **Po0.01 and ***Po0.001.
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nuclear fractionation using NE-PER Cytoplasmic and Nuclear Extraction
reagents (Life Technologies, catalog number 78833) following the manu-
facturer’s instructions. The different fractions were run on SDS–polyacryla-
mide gel electrophoresis and the localization of the TIP60 deletion mutants
was observed. β-Tubulin for cytoplasmic fraction and Histone H3 for
nuclear fraction were used to validate the extraction procedure.

In-vivo mice experiment
Six-week-old NOD/SCID mice obtained from Invivos (Singapore) were
randomly distributed and HeLa stable cell lines (HeLa-LPCX, HeLa-TIP60,
HeLa-shcontrol or HeLa-shEDD1) resuspended in 100 μl of serum-free
Dulbecco’s modified Eagle’s medium at a concentration of 1 × 107 cells/ml
(for HeLa-LPCX or HeLa-TIP60 cells) and 1× 106 cells/ml (for HeLa-shcontrol
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or HeLa-shEDD1) supplemented with BD Matrigel matrix (BD Biosciences,
Bedford, MA, USA; 354234) and were injected subcutaneously into the
right or the left flank of the mice. Tumors were examined at indicated
times and total tumor volume recorded. Tumor volume (mm3) was
calculated using the formula: Volume (V) =Width (W)(2) × Length (L)/2. The
National University of Singapore Institutional Animal Care and Use
Committee has approved the work done in this study, under protocol
102/12 in accordance with the National Advisory Committee for Laboratory
Animal Research Guidelines (Guidelines on the Care and Use of Animals for
Scientific Purposes) in facilities licensed by the Agri-Food and Veterinary
Authority of Singapore, the regulatory body of the Singapore Animals and
Birds Act.

Statistical analysis
For indicated experiments, an unpaired two-tailed Student’s t-test was
performed. Error bars indicate the s.d. of data collected from mentioned
experimental repeats. Significance is represented as *Po0.05, **Po0.01
and ***Po0.001.
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ABSTRACT
MicroRNAs (miRNAs) are 22- to 24-nucleotide, small, non-coding RNAs that 

bind to the 3′UTR of target genes to control gene expression. Consequently, their 
dysregulation contributes to many diseases, including diabetes and cancer. miR-22 
is up-regulated in numerous metastatic cancers and recent studies have suggested 
a role for miR-22 in promoting stemness and metastasis. TIP60 is a lysine acetyl-
transferase reported to be down-regulated in cancer but the molecular mechanism of 
this reduction is still unclear. In this study, we identify TIP60 as a target of miR-22. 
We show a negative correlation in the expression of TIP60 and miR-22 in breast 
cancer patients, and show that low levels of TIP60 and high levels of miR-22 are 
associated with poor overall survival. Furthermore, pathway analysis using high 
miR-22/low TIP60 and low miR-22/high TIP60 breast cancer patient datasets 
suggests association of TIP60/miR-22 with epithelial-mesenchymal transition (EMT), 
a key alteration in progression of cancer cells. We show that blocking endogenous 
miR-22 can restore TIP60 levels, which in turn decreases the migration and invasion 
capacity of metastatic breast cancer cell line. These results provide mechanistic 
insight into TIP60 regulation and evidence for the utility of the combination of TIP60 
and miR-22 as prognostic indicator of breast cancer progression.

INTRODUCTION

Breast cancer is one of the most common and 
significant malignant diseases in women worldwide [1]. 
Although improvements in detection and treatment have 
decreased breast cancer mortality in recent years, the stage 
of detection and ability of cancer cells to metastasize to 
distant organs have been the major challenges in the 
successful prevention of and therapy, for this deadly 
disease. Cancer metastasis is a complex, multi-step 
process and is driven, promoted, and modulated by 
aberrantly deregulated cellular signals.

MicroRNAs (miRNAs) are a family of small non-
protein-coding RNA molecules of approximately 22–24 
nucleotides (nt) that function as key regulators of gene 
expression at the post-transcriptional level [2]. Since their 
initial discovery in Caenorhabditis elegans [3], thousands  

of microRNAs have been annotated and currently 2588, 
765 and 1915 mature miRNA sequences in human, 
rat and mouse, respectively, have been catalogued in 
the microRNA registry (http://www.mirbase.org, V  
21 June, 2014). miRNA dysregulation has been shown to 
contribute to the etiology of multiple diseases, including 
cancer, where miRNAs can act as either oncogenes or 
tumor suppressors [4–8]. Indeed, emerging evidence 
demonstrates that aberrant miRNA expression is linked to 
breast cancer progression [9, 10].

TIP60 (lysine acetyl-transferase) is part of a 
conserved multisubunit complex, NuA4, which is 
recruited by many transcription factors to their target 
promoters, where it acetylates histones and is involved 
in transcriptional regulation. TIP60 has been shown 
to play an important role in many processes such as 
cellular signaling, DNA damage repair and apoptosis  
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[11, 12], as well as cell cycle and checkpoint control [13]. 
Involvement of TIP60 in these various processes implies 
that its expression, stability and localization are regulated 
in the cell by various mechanisms.

In the current study, we show the first evidence of 
a non-coding RNA as regulator of TIP60 expression. We 
find the expression of miR-22 and TIP60 to be negatively 
correlated in invasive breast cancer tissues and breast 
cancer cell lines. Furthermore, we identified TIP60 as a 
miR-22 target and show that, by targeting TIP60, miR-22 
stimulates the expression of epithelial-mesenchymal 
transition (EMT) genes. Using various cell culture models, 
we find miR-22 expression results in increased cell 
migration and invasion. Our data suggest that TIP60 and 
miR-22 could act as prognostic markers in breast cancer 
disease progression and that targeting the TIP60–miR-22 
axis could lead to an effective therapeutic strategy for 
metastatic breast cancer.

RESULTS

TIP60 is a direct target of miR-22

TIP60 is known to be down-regulated in multiple 
cancers [14, 15]. Whereas we and others have identified 
TIP60 to be destabilized by viral oncogenes [16–19], other 
potential mechanisms of its downregulation are unknown. 
In order to investigate whether TIP60 expression could be 
regulated by miRNAs, we performed an in silico analysis 
using the Targetscan database (http://www.targetscan.org/) 
to identify putative miRNA seed-matching sequences 
in TIP60. We found one putative target binding site for 
miR-22 at the position 249–255 nt in the 3′UTR of TIP60 
(Figure 1A). This identified seed sequence was also 
conserved among different species of TIP60, indicating the 
likely functional importance of this motif (Figure 1B). To 
further validate TIP60 as a target of miR-22, we cloned the 
3′UTR of TIP60 into the pmirGLO dual-luciferase vector, 
and transiently co-transfected pmirGLO-TIP60 WT 3′UTR 
into MCF7 cells along with a miRNA mimic negative 
control (that does not target any known mRNA within 
the human transcriptome) or a miR-22 mimic either alone 
or in combination with miR inhibitor negative control. 
A miR-22 hairpin inhibitor was also transfected and used 
to show specificity of miR-22 for TIP60. After 48 h of 
transfection, cells were lysed and the protein was analyzed 
for luciferase activity. We measured a 40% reduction in 
the luciferase activity of pmirGLO-TIP60 WT 3′UTR 
with miR-22 mimic overexpression (Figure 1C), and this 
reduction could be rescued upon the co-transfection with 
the miR-22 hairpin inhibitor, suggesting specificity of this 
regulation (Figure 1C). In addition, we did not observe 
any difference in luciferase activity when pmirGLO-
TIP60 WT 3′UTR was transfected with either miR mimic 
negative control or with miR inhibitor negative control 
alone, suggesting target specificity. To further demonstrate 

that the decrease in luciferase activity is due to miR-22 
binding to the seed sequence in the 3′ UTR of TIP60, 
we generated two 3′UTR mutant constructs: the first 
comprised point mutations in the miR-22 binding sites 
of TIP60 (pmirGLO-TIP60 Mut 3′UTR); in the second, 
we deleted the miR-22 seed sequence at the TIP60 3′UTR 
using site-directed mutagenesis (pmirGLO-TIP60 Del 
3′UTR). Clones were confirmed by sequencing (Figure 
1D). These mutants were then co-transfected along with 
the miR mimic negative control or miR-22 mimic. We 
observed no repression in luciferase activity after mutating 
or deleting the binding site (Figure 1E), suggesting that 
miR-22 directly interacts with the TIP60 3′UTR and 
targets TIP60.

miR-22 and TIP60 expression is negatively  
co-related

Having identified a miR-22 binding site in the 3′UTR 
of TIP60, we next sought to understand the physiological 
relevance of this regulation. We decided to focus on breast 
cancer, as a recent study by Song et al. [20] implicated the 
role of miR-22 in breast cancer. To this end, we analyzed 
the expression of TIP60 and miR-22 in a breast cancer 
dataset from The Cancer Genome Atlas (TCGA) database 
and found a small but significant negative correlation 
between TIP60 and miR-22 expression (Figure 2A). To 
investigate the potential biological significance of this 
negative correlation, we sought to identify a cell culture 
model that also showed a negative correlation between 
TIP60 and miR-22. For this, we analyzed the expression 
of miR-22 and TIP60 (mRNA and protein) in 12 breast 
cancer cell lines on the basis of their EMT score as 
described by Tan et.al. [21]. Interestingly, mesenchymal 
cell lines such as MDA-MB-231, Hs578T and MDA-
MB-468 and epithelial cell line such as MCF-7 and T47D 
showed a negative correlation between miR-22 and TIP60 
mRNA expression (Figure 2B and 2C), with high miR-
22 and low TIP60 expression in the highly metastatic 
MDA-MB-231 cell line and Hs578T cell line, but high 
TIP60 and low miR-22 expression in the MCF7, T47D 
mild metastatic cells and MDA-MB-468 basal, triple-
negative cells. A similar expression profile of TIP60 was 
also observed at the protein level (Figure 2D).

To further investigate whether miR-22 affects 
endogenous TIP60 expression, we focused on 2 of the 
12 breast cancer cell lines: MCF7, an epithelial cell 
line that is mildly metastatic and has low miR-22 and 
high TIP60 expression and MDA-MB-231 which is a 
mesenchymal cell line, highly metastatic and has high 
miR-22 and low TIP60 expression. We then transfected 
the miR‐22 mimic or miR mimic negative control and 
compared the level of TIP60 protein in MCF7 cells under 
these two conditions. Similarly, the MDA-MB-231 cell line 
was transfected with the miR-22 inhibitor or with a miR 
inhibitor negative control to examine endogenous changes 
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Figure 1: miR-22 binding site at the TIP60 3′UTR. A. Putative target binding site for miR-22 at the 3′UTR of the TIP60 gene, as 
predicted by Targetscan (http://www.targetscan.org/). B. The target site is highly conserved across the various indicated species. Highlighted 
nucleotides (in bold) indicate the putative miR-22 binding site. C. The miR-22 binding site on TIP60 3′UTR was confirmed by luciferase 
activity in MCF7 cells after co-transfection of pmirGLO-TIP60 3′-UTR plasmid with the indicated miRs (50 nM). D. Mutation of the 
miR-22 binding site in the 3′UTR of TIP60. E. MCF7 cells were co-transfected with a wild-type pmirGLO-TIP60 3′-UTR luciferase 
construct, or a construct containing a mutation in the predicted miR-22 binding site or construct having binding site deleted with either 
the miR-22 mimic or the negative control mimic. Luciferase expression was normalized to Renilla luciferase and the data is depicted as the 
mean ± SEM. The figure summarizes data from three independent experiments performed in triplicate. Analysis was performed using an 
unpaired two-tailed student’s t-test. Significance is represented as ***P < 0.001; **P < 0.01.
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Figure 2: Negative correlation of TIP60 and miR-22 mRNA and protein levels in breast cancer patients and cell lines.  
A. Negative correlation between miR-22 and TIP60 mRNA levels for each individual sample from the TCGA dataset. B, C. The expression 
of TIP60 mRNA and miR-22 mRNA was detected by QRT-PCR in a panel of 12 breast cancer cell lines. Mild metastatic and metastatic 
cell lines are shown in yellow and blue colors, respectively. D. Western blot showing the expression of TIP60 in a panel of 12 breast 
cancer cell lines E. mRNA levels of miR-22 were decreased on miR-22 inhibition in MDA-MB-231 cells when transfected with miR-22 
inhibitor for 48 h (50 nM). F–G. mRNA and protein levels of TIP60 were increased following inhibition of miR-22 in MDA-MB-231 cells 
when transfected with miR-22 inhibitor for 48 h (50 nM). H. Relative miR-22 levels were determined by QRT-PCR on miR-22 mimic 
overexpression (miR-22OE, 50 nM) in MCF7 cells. I–J. mRNA and protein levels of TIP60 were decreased following miR-22 mimic 
overexpression (50 nM) in MCF7 cells. The figure illustrates data from three independent experiments performed in triplicate. Significance 
is represented as *P < 0.05; **P < 0.01; ***P < 0.001.
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in TIP60. We found that TIP60 expression was increased 
in MDA-MB-231 cells (Figure 2F–2G) and reduced in 
MCF7 cells (Figure 2I–2J) after inhibition (Figure 2E) or 
overexpression of miR-22 mimic (Figure 2H), respectively 
both at mRNA and protein level. These data indicate that 
miR-22 down-regulates endogenous TIP60 expression.

miR-22 regulates EMT genes by repressing 
TIP60

To determine the downstream effects of TIP60 
regulation by miR-22, we performed Gene-Set Enrichment 
Analysis (GSEA) using msigdb.v4 (http://www.broad.
mit.edu/gsea/) and compared 28 TCGA samples with 
high TIP60/low miR-22 expression with 28 samples with 
low TIP60/high miR-22 expression. Our GSEA analysis 
revealed enrichment of the epithelial-mesenchymal 
transition (EMT) pathway (Figure 3A). Since EMT is 
related to cellular migration and invasion, we sought to 
determine the effect of miR-22 on various EMT markers. 
We ablated miR-22 activity by transfecting MDA-
MB-231 cells with the miR-22 inhibitor or overexpressed 
the miR-22 mimic in MCF7 cells. Aside from increased 
TIP60 levels (Figure 3B), we found that miR-22 inhibition 
in MDA-MB-231 cells resulted in increased E-cadherin 
levels, an epithelial marker that is lost upon execution 
of the EMT program (Figure 3C). Similar increase in 
E-cadherin was also found in MDA-MB-231-LPCX-
TIP60 stable cell line. In comparison, MCF7 cells showed 
decreased TIP60 (Figure 3D) and E-cadherin levels 
(Figure 3E) and increased N-cadherin (mesenchymal 
marker) levels in the presence of miR-22 mimic 
(Figure 3E) and this effect was rescued on overexpressing 
TIP60 in MCF7 cell line. Further, we did not observe any 
changes in other EMT markers. These data suggest that 
miR-22 induces EMT like phenotype and this is associated 
with a change in the expression of TIP60. The phenotypic 
alterations induced by miR-22 mimic overexpression 
in MCF7 cells is observed by immuno-fluorescence 
staining of the E-cadherin. MCF7 cells treated with miR 
mimic negative control showed expression of E-cadherin 
(Figure 4A, mimic negative control) and this was reduced 
in miR-22 mimic overexpressed MCF7 cells (Figure 4A, 
miR-22 OE). We further examined the status of F-actin in 
the cells by phalloidin staining, since actin reorganization 
occurs during the EMT process [22]. In contrast to miR 
mimic negative control treated cells (Figure 4B, mimic 
negative control), overexpression of miR-22 mimic 
significantly induced actin fiber formation, typical of EMT 
(Figure 4B, miR-22 OE). These results indicated that the 
epithelial property of the cells might be lost when miR-
22 mimic is overexpressed. We next examined whether 
miR-22 inhibition in MDA-MB-231 cell line shows the 
opposite effect. Indeed, inhibition of miR-22 activity 
in MDA-MB-231 cells showed increased E-cadherin 
expression (Figure 4C, miR-22 inhibitor) and decreased 

Vimentin expression (Figure 4D, miR-22 inhibitor), 
which suggested the reversal of the EMT process and this 
effect was also observed in TIP60-overexpression MDA-
MB-231 cell line (Figure 4C, 4D).

miR-22 inhibition suppresses cell migration and 
invasion by regulating TIP60 levels

Two key features of EMT are the ability of cells 
to migrate and invade. In order to investigate the role of 
miR-22 in these processes, we performed wound-healing 
and cell invasion assays. For this, MDA-MB-231 cells 
were transfected with miR-22 hairpin inhibitor or control 
hairpin inhibitor for 48 h and cells were serum starved for 
the next 12 h. We found that inhibiting miR-22 caused a 
significant decrease in the rate of wound closure in the 
MDA-MB-231 cell cultures at 12 h and 24 h as compared 
to that of control cells (Figure 5A). To further demonstrate 
that miR-22 increased cell migration through TIP60, we 
performed the wound-healing assay in MDA-MB-231 
cell line stably overexpressing TIP60 without miR-22 
target sequence. Interestingly, overexpression of TIP60 
decreased cell migration and we did not observe any 
effect on migration in the presence of miR-22 inhibitor 
(Figure 5B). On the other hand, when miR-22 mimic was 
overexpressed in MCF7 cells, we observed a significant 
increase in cell migration as compared to the control cells 
(transfected with miR mimic negative control; Figure 5C). 
These findings suggest that repression of TIP60 by miR-22 
increases cell migration and this can be reverted by 
ablating activity of miR-22 or through the overexpression 
of a TIP60 that lacks miR-22 binding site. Thus, miR-22 
stimulates cell migration by targeting TIP60.

To assess invasion, we transfected MDA-MB-231 
cells with or without the miR-22 inhibitor for 48 h. Cells 
were suspended in serum-free medium and loaded onto 
matrigel invasion chamber inserts. We observed that 
miR-22 inhibition reduces the invasive capacity of these 
cells (Figure 6A). To further confirm that this effect is 
mediated through TIP60, we transfected the stable TIP60-
overexpressing MDA-MB-231 cells (lacking miR-22 
binding site) with the miR-22 inhibitor, using vector-
expressing cells as a control. To confirm the expression of 
the miR-22 and TIP60 after inhibition or overexpression 
of the miRNA, we quantitated the expression of  
miR-22 and TIP60 in the MDA-MB-231 cells transfected 
with or without miR-22 inhibitor and miR-22 mimic 
by Q-PCR (Supplementary Figure S1). We found a 
decrease in cell invasion in TIP60-overexpressing cells, 
which further confirms that the effect on cell invasion 
is mediated through TIP60 (Figure 6B). We also noted 
that, upon transfection with the miR-22 inhibitor, TIP60-
overexpressing cells showed a further reduction in 
invasion. This may be due to an increase in endogenous 
TIP60 levels in these cell lines or miR-22 may target 
an additional factor involved in regulating invasion. 
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Figure 3: Expression levels of TIP60 and miR-22 suggest an epithelial-mesenchymal transition (EMT). A. Gene-Set 
Enrichment Analysis (GSEA) shows enrichment of factors linked to EMT in the samples with high miR-22 and low TIP60. B. The 
expression of TIP60 mRNA was detected by QRT-PCR in cells transfected with either miR inhibitor negative control or miR-22 inhibitor 
and also MDA-MB-231-LPCX-TIP60 stable cell line. C. QRT-PCR showing mRNA expression of EMT markers in cells transfected with 
either miR inhibitor negative control or miR-22 inhibitor and also MDA-MB-231-LPCX-TIP60 stable cell line. D. The expression of TIP60 
mRNA was detected by QRT-PCR in cells transfected with either miR mimic negative control or miR-22 mimic overexpression and also 
MCF7-MSCV-TIP60 stable cell line. E. QRT-PCR showing mRNA expression of EMT markers in cells transfected with either miR mimic 
negative control or miR-22 mimic overexpression and also MCF7-MSCV-TIP60 stable cell line. The figure represents data from three 
independent experiments performed in triplicate. Significance is represented as *P < 0.05; **P < 0.01.
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Figure 4: Immuno-fluorescence showing phenotypic alterations. A–B. Representative immuno-fluorescence images of 
E-cadherin and F-actin (red) are shown for MCF7 cells transfected with either miR mimic negative control or miR-22 mimic. Nuclei 
are stained with DAPI (blue). C–D. Representative immuno-fluorescence images of E-cadherin and Vimentin (red) are shown for MDA-
MB-231 cells transfected with either miR-22 inhibitor negative control or miR-22 inhibitor or MDA-MB-231-LPCX-TIP60 stable cell line. 
Nuclei are stained with DAPI (blue). Immuno-fluorescence images were taken at 60X magnification with a nikon confocal microscope.
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Figure 5: miR-22 increases cell migration by targeting expression of TIP60. MDA-MB-231 cells A. and MDA-MB-231-
LPCX and MDA-MB-231-LPCX-TIP60 cells B. were treated with or without the miR-22 inhibitor for 24 h and analyzed by wound-healing 
assays 48 h after transfection using live-cell imaging (Nikon). The solid white line highlights the wound edge at 0 h and 24 h. C. MCF7 
cells were transfected with miR-22 mimic and wound closure was analyzed as for (A) and (B) Data compiled from three independent 
experiments in triplicate, and images from one representative experiment are shown. Decreases in the gap area between the migrating cells 
from the opposite wound edge were quantified by measuring the distance (by scale) at three random points in the image. This quantification 
is represented in the figure. Data are the mean ± SEM with significance measured using unpaired two-tailed student’s t-test. Significance is 
represented as *P < 0.05; ** P < 0.01; ***P < 0.001.



Oncotarget41298www.impactjournals.com/oncotarget

Figure 6: miR-22 inhibition results in decreased cell invasion. A. MDA-MB-231 cells were treated with or without miR-22 
inhibitor and analyzed for their ability to invade into Matrigel transwell 48 h after transfection. B. MDA-MB-231-LPCX and MDA-MB-
231-LPCX-TIP60 cells were treated with or without miR-22 inhibitor and analyzed using an invasion assay 48 h after transfection. miR-22 
decreased MDA-MB-231-LPCX and MDA-MB-231-LPCX-TIP60 cell invasion, with a similar effect also seen in the TIP60 stable cell 
lines, as compared with vector alone. C. MCF7 cells were transfected with miR-22 mimic and wound closure was analyzed 48 h after 
transfection. miR-22 mimic overexpression increases cell invasion. Data compiled from three independent experiments in triplicate, and 
images from one representative experiment are shown. Data are the mean ± SEM and significance was determined using an unpaired two-
tailed student’s t-test. Significance is represented as *P < 0.05; **P < 0.01; ***P < 0.001.
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Since miR-22 inhibition decreased cell invasion capacity, 
we next overexpressed miR-22 mimic in MCF7 cells for 
48 h (Supplementary Figure S1). Cells were suspended 
in serum-free medium and loaded onto matrigel 
invasion chamber inserts. We found that miR-22 mimic 
overexpression increased the invasiveness of the cells 
(Figure 6C). These results suggest that miR-22 targets 
TIP60 leading to an increase in cell migration and invasion 
of breast cancer cells thereby promoting metastasis.

Levels of TIP60 and miR-22 as a predictor of 
disease progression in breast cancer

Having identified this interesting regulatory link 
between miR-22 and TIP60 in cell culture models and 
patient datasets, we sought to investigate its significance in 
a pathophysiological scenario. For this, we used available 
gene expression and survival data from the TCGA dataset 
and the GSE19783 from gene expression omnibus (GEO) 
database to compare overall survival between patient 
cohorts that exhibited high versus low TIP60 expression 
levels. We found that patients with high TIP60 and low 
miR-22 expression were associated with good survival 
prognoses (P = 0.015; Figure 7A, 7C) whereas patients 
with low TIP60 and high miR-22 levels showed poorer 
prognoses for survival (P = 0.029; Figure 7B, 7D). 
Breast cancer is classified into molecular subtypes; we 
investigated the expression of miR-22 and TIP60 in 
TCGA dataset for breast cancer and found no significant 
differences between different subtypes (Supplementary 
Figure S2). To rule out the possibility of other factors 
such as age, stage, ER status, PR status, and Her2 status 
determining the relationship between miR-22 and TIP60, 
multivariate analysis was performed. As summarized in 
Table 3, multivariate analysis linear regression elucidates 
variables significantly affecting expression level of TIP60 
in breast cancer survival. Among factors such as age, stage, 
ER, PR and Her2 status, the strongest component that 
determines expression level of TIP60 in patient samples 
was miR-22 as illustrated by high eigenvalue (data not 
shown). Similarly, TIP60 was found to be the strongest 
factor in determining miR-22 expression level in breast 
cancer patient samples. Therefore, the model remained 
essentially unchanged when other components (age, stage, 
ER, PR and Her2 status) were dropped. Besides, patients 
with high expression of miR-22 are likely to have low 
expression of TIP60 and vice versa due to the negative 
regression coefficient of miR-22 and TIP60.

DISCUSSION

Metastasis—a cessation of neoplastic progression—
is one of the main causes of death in patients with breast 
cancer. Epithelial–mesenchymal transition (EMT) is 
thought to be one of the key processes that causes benign 

tumor cells to transition into invasive and metastatic cells 
[23]. In this study, we showed that miR-22 expression 
potently activates the migration and invasive capacity of 
basal breast cancer cells. In addition, we show evidence 
to suggest that miR-22 has an oncogenic function in these 
cells. These findings are in line with the upregulation of 
miR-22 in more advanced stages of breast cancer and with 
previous reports which have also implicated miR-22 as 
an oncogene in breast cancer [24, 25]. Recently, Song et 
al. [20] showed that miR-22 antagonizes another miRNA, 
miR-200, through directly targeting of the methyl cytosine 
dioxygenase TET (ten-11 translocation) family members 
and, hence, chromatin remodeling toward miR-200 
transcriptional silencing. Further, Lee et al. demonstrate 
a central role of miR-22 in the physiological regulation of 
MDC1-dependent DDR, a molecular mechanism of Akt1 
activation and senescence leading to increased genomic 
instability, which fosters an environment that promotes 
tumorigenesis [26]. Although these studies implicate miR-
22 as an oncogene, other studies have suggested a tumor 
suppressor function of miR-22. miR-22 was identified as a 
tumor suppressor gene in human colon cancers, influencing 
p53-dependent cellular fate through the formation of the 
p53–miR-22–p21 axis [27]. Another study showed miR-
22 acts as tumor suppressor by targeting the Sp1 gene and 
inhibiting gastric cancer cell migration and invasion [28]. 
Additionally, miR-22 was also implicated in activating the 
cellular senescence program in cancer cells and acts as a 
tumor suppressor [29]. A recent study also shows miR-
22 acts as a tumor suppressor by targeting GLUT1 and 
is directly correlated with the TNM stage, local relapse, 
distant metastasis, and survival of breast cancer patients 
[30]. Further investigations along these lines will be 
needed to ascertain whether miR-22 is an oncogene or a 
tumor suppressor.

The acetyl-transferase TIP60 is a bona fide 
tumor suppressor in cancer and its expression is down-
regulated in colon carcinomas [15] and lung cancers [31]. 
Interestingly, in colon carcinoma, the ratio between TIP60 
and p400 mRNAs is important for cancer progression 
[32]. However, the molecular determinant and underlying 
mechanism is yet to be discovered. Interestingly, 
downregulation of TIP60 in colorectal cancer is correlated 
with larger tumor size, distant metastasis, and a higher 
stage of tumor node metastasis classification; yet, the 
molecular mechanism of TIP60’s downregulation is not 
known. Our study identifies a non-coding RNA that can 
regulate the expression of TIP60 in breast cancer. It would 
be interesting to investigate whether this regulation exists 
in colon cancer as well.

Pathways governed by TIP60 via its tumor suppressor 
function have yet to be identified. Gorrini et al. [33] 
showed that TIP60 is a haplo-insufficient tumor suppressor 
in Eμ-myc transgenic mice, and suggested that it is re-
quired for an oncogene-induced DNA damage response. 
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Collectively, these findings indicated that decreased TIP60 
expression correlates with tumor development; but the 
molecular mechanism of TIP60’s downregulation was 
still not clarified. We show, for the first time, that TIP60 
is a direct target of miR-22 and its downregulation by 
miR-22 subsequently results in the activation of an EMT 
program. EMT is characterized by a loss of cell adhesion 
and the suppression of epithelial genes, such as E-cadherin 
concomitant with an acquisition of mesenchymal markers 
(including N-cadherin, Vimentin, and Fibronectin) and 

increased cell motility and invasiveness. Numerous 
miRNAs have been linked to EMT pathways. For example, 
miR-9 can directly regulate E-cadherin by targeting 
its 3′UTR in human mammary epithelial cells, thereby 
promoting mesenchymal-like characteristics of the cells 
with increased motility and invasiveness [34]. miR-661 is 
shown to regulate Nectin-1 and StarD10 in the disassembly 
of epithelial cell junctions in SNAI1-expressing breast 
cancer cells [35]. Recently, the expression of miR-197 was 
found to induce EMT along with the downregulation of 

Figure 7: TIP60 and miR-22 expression in breast cancer tumors correlated with high and low survival, respectively.  
A–B. Kaplan-Meier plot, based on breast cancer data from The Cancer Genome Atlas (TCGA), illustrates the survival probability for patients 
with low or high TIP60 and miR-22 expression levels in breast cancers. High expression of TIP60 leads to higher survival probability, 
whereas high expression of miR-22 leads to lower survival probability. P < 0.015 and P < 0.029, respectively. C–D. Kaplan-Meier plot, 
based on Gene express omnibus expression dataset (GSE19783), illustrates the survival probability for patients with low or high TIP60 and 
miR-22 expression levels in breast cancers. P < 0.03 and P < 0.11, respectively.
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p120-catenin in pancreatic cancer cells [36]. In contrast, 
in hepatic cancer cells, miR-194 overexpression results 
in reduced cell invasion, migration and metastasis by 
targeting N-cadherin [37]. Thus, we also investigated the 
regulatory effect of miR-22 on E-cadherin and N-cadherin 
in vitro. MCF7 is an estrogen alpha positive (ER+) 
and also an epithelial cell line. It is known that miR-22 
regulates ER and miR-22 levels are reduced in ER+ cell 
lines [38, 39]. We showed that MCF7 cell line has reduced 
miR-22 levels and high TIP60 (tumor suppressor gene) 
levels. Overexpression of miR-22 in these cells reduced 
TIP60 levels and promotes invasion and migration. MDA-
MB-231 being triple negative cell line (ER-, PR-, and 
Her2-) and a mesenchymal cell line has elevated level of 
miR-22 and reduce level of TIP60. We have shown that 
miR-22 is required to maintain the metastasis levels of the 
MDA-MB-231 cell line by targeting TIP60. Inhibition of 
miR-22 by the miR-22 inhibitor in highly metastatic MDA-
MB-231 cells leads to a reduction of metastatic phenotypes, 
as well as an elevation of the expression of TIP60. Our data 
also showed that overexpression of miR-22 in MCF7 cells 
caused a decrease in E-cadherin levels and an increase in 
N-cadherin levels, thus promoting EMT. Alternatively, 
inhibition of miR-22 expression in MDA-MB-231 cells 
resulted in increased E-cadherin levels and suppressed 
EMT. Thus, miR-22 may promote EMT by inhibiting 
TIP60. During the initial stages of metastasis, epithelial 
cells undergo EMT, causing a loss of cell-cell contacts, 
increased motility and cell invasion. Further, in our gain- 
and loss-of-function experiments, we have demonstrated 
that miR-22 inhibition in the MDA-MB-231 metastatic cell 
line causes a decrease in cell migration as well as invasion, 
whereas its overexpression in MCF7 cells resulted in 
increased cell migration and invasion.

In conclusion, we have identified a novel link 
between miR-22 and TIP60 in breast cancer metastasis. 
miR-22 is upregulated in metastatic breast cancer cell 
lines as well as in patients with breast cancer, and causes 
the downregulation of TIP60 and modulation of the EMT 
pathway. Our study suggests that miR-22 and TIP60 levels 
could be used as a prognostic marker for breast cancer.

MATERIALS AND METHODS

Cell culture and reagents

Human breast epithelial and cancer cell lines, 
MCF10A (CRL-10317™), MCF-7, MDA-MB-231, were 
obtained from ATCC (Manassas, VA, USA). SkBR3, 
BT474, BT549, T47D, HS578T cells were generously 
provided by Prof. H. Phillip Koeffler (Cancer Science 
Institute, Singapore). MCF10A cells were cultured in 
DMEM/F12 medium supplemented with 5% horse serum 
and the medium was further supplemented with 20 ng/ml 
epithelial growth factor (EGF), 0.5 mg/ml hydrocortisone, 

100 ng/ml cholera toxin, 10 μg/ml insulin. MCF-7 and 
MDA-MB-231 were maintained in DMEM; SkBR3 in 
DMEM supplemented with L-glutamine; HS578T in 
DMEM supplemented with insulin; and T47D and BT474 
in RPMI-40 medium. All media were supplemented with 
10% FBS and 100 U of penicillin and streptomycin and 
grown at 37°C with 5% CO2. All tissue culture reagents 
were purchased from Invitrogen (Carlsbad, CA, USA) and 
Sigma-Aldrich (St. Louis, MO, USA).

Oligonucleotides, plasmids, and transfection

Lipofectamine RNAiMAX (Invitrogen) was used 
to transfect MCF7 and MDA-MB-231 cells. miR-22 
mimic, miR mimic negative control, miR-22 inhibitor, and 
miR-22 negative control miRNA inhibitor were purchased 
from Dharmacon Research Inc. (Lafayette, CO, USA). 
The pmirGLO Dual-Luciferase vector was obtained from 
Promega (E1330; Fitchburg, WI, USA). To overexpress 
TIP60, the open reading frame was cloned into LPCX 
vector.

Quantitative reverse transcription PCR

Total RNA from cell lines was extracted using 
TRIzol Reagent (Invitrogen) as per manufacturer’s 
instructions. RNA (2 μg) was reverse transcribed in a 
20-μl reaction using iScript Supermix master mix (Bio-
Rad, Hercules, CA, USA). For miRNA, cDNA was 
synthesized using a stem-loop specific primer for miR-22, 
and then subjected to real time PCR using 2 μl of a 1:5 
dilution of the reverse-transcribed cDNA and SYBR green 
in an ABI Fast Q-PCR machine (Applied Biosystems, 
Foster City, CA, USA). The cycling conditions were as 
follows: 50°C for 2 min, 95°C for 5 min, and 40 cycles 
of 95°C for 15 sec followed by 60°C for 1 min (annealing 
and extension). Primer sequences are listed in Table 1. 
Each reaction was performed in triplicate. The data were 
normalized to GAPDH and U6 expression for mRNA and 
miRNA, respectively. The relative expression of each gene 
was quantified by the ΔΔCT method.

Luciferase assays

A dual-luciferase reporter vector was used to 
generate the luciferase constructs. The TIP60 3′UTR, 
containing the predicted binding site for miR-22, was 
amplified from genomic DNA by PCR. The PCR product 
was digested by PmeI and NotI enzymes and the digested 
fragment was cloned into pmirGLO luciferase plasmid 
to obtain a wild-type luciferase construct pmirGLO-
TIP60 3′-UTR. To generate point mutant and deletion 
constructs, the putative miR-22 binding site in TIP60 
3′-UTR was mutated or deleted using Quick-change  
Site-Direct Mutagenesis Kit (200522–5; Stratagene, 
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La Jolla, CA, USA) as per manufacturer’s instructions. 
Cloning was confirmed by sequencing. Primers used for 
PCR and sequencing are listed in Table 2. For luciferase 
assays, MCF7 cells were plated in 12-well plates and 
24 h later co-transfected with 50 nM miR-22 or miR 
mimic negative control and 50 nM miR-22 inhibitor, 
100 ng pmirGLO or pmirGLO containing wild-type 
TIP60 3′-UTR or the corresponding mutant or deleted 
constructs. Forty-eight hours later, luciferase activity 
was measured using Dual-Luciferase Reporter Assay Kit 
(E1960; Promega) on a GLOmax microplate luminometer 
(Promega). Firefly luciferase signals were normalized 
using Renilla luciferase signals. All experiments were 
performed in triplicate.

Western blotting

Cells were lysed using RIPA lysis buffer [50 mM 
Tris (pH 7.5), 150 mM NaCl, 1% NP40, 0.25% sodium 
deoxycholate, 1 mM EDTA, 1 mM DTT and protease 
inhibitor cocktail]. Protein concentration was determined 
using the Bradford Protein Assay kit (500–0001; Bio-
Rad). Equal amounts of protein were separated on SDS 
polyacrylamide gels and transferred to nitrocellulose 
membranes (162–0115; Bio-Rad) using the Bio-Rad 
semi-dry transfer apparatus. Membranes were blocked for 

1 h with 5% skim milk in Tris-buffered saline containing 
0.1% Tween-20, and then incubated overnight with 
primary antibody. Blots were then washed and incubated 
with secondary antibody, washed again, and visualized 
by chemiluminescence. β-actin (sc-81178) and α-actinin 
(sc-166524) were used as loading controls. The TIP60 
serum antibody was generated in the lab. E-cadherin 
(BD-Bioscience), Vimentin (Cell Signaling), Alexa 594 
secondary antibody and Alexa 594 phalloidin staining 
was bought from Life Technologies and mounting 
medium containing DAPI was purchased from Santa Cruz 
Biotechnology Inc.

Immuno-fluorescence

MDA-MB-231 cells were transfected with either 
miR mimic negative control or miR-22 mimic. Cells 
were cultured on cover slips for 48 h and then immuno-
fluorescence assay was performed by fixing the cells for 
15 min at room temp in 3.7% paraformaldehyde. Cells 
were washed 3 times with PBS and permeabilized by 
0.5% Triton-X-100 for 5 min. Cells were then washed 
2 times with PBS and 1 time with 0.1 M glycine in PBS. 
Cells were incubated in E-cadherin (1:400) and Vimentin 
(1:100) antibodies overnight in 0.5% Triton-X-100 in PBS. 
Next day cells were washed 3 times with PBS and then 

Table 1: List of Q-PCR Primers
Serial 
No.

Name of the 
Gene

Forward primer Sequences Reverse primer Sequences

1 TIP60 AATGTGGCCTGCATCCTAAC TGTTTTCCCTTCCACTTTGG

2 miR-22 ACACTCCAGCTGGGAAGCTGCCAGTTGAAG GGTGTCGTGGAGTCGGCAA

3 U6 CTCGCTTCGGCAGCACATATACT ACGCTTCACGAATTTGCGTGTC

4 18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG

5 E-cadherin TTACTGCCCCCAGAGGATGA TGCAACGTCGTTACGAGTCA

6 Epcam GCTGGCCGTAAACTGCTTTG ACATTTGGCAGCCAGCTTTG

7 N-cadherin CCGGTTTCATTTGAGGGCAC TCCCTCAGGAACTGTCCCAT

8 Fibronectin AACCCTTCCACACCCCAATC ACTGGGTTGCTGACCAGAAG

9 Snail1 TCTTTCCTCGTCAGGAAGCC GATCTCCGGAGGTGGGATGG

10 Snail2 CTCCTCATCTTTGGGGCGAG CTTCAATGGCATGGGGGTCT

11 Zeb1 AGGATGACCTGCCAACAGAC CTTCAGGCCCCAGGATTTCTT

12
miR-22 stem 
loop primer 
for c-DNA

CTCAACTGGTGTCGTGGAGTCGG 
CAATTCAGTTGAGACAGTTCT

Table 2: List of Cloning 3′UTR Primers
Serial No. Name of the primers (Q-PCR) Sequences

1 TIP60–3′UTR- Forward primer ATATGCGGCCGCGTGACCAGACACTGCCCACT

2 TIP60–3′UTR- Reverse primer GCGCATCGATTGCATGGCTCTGGCATATAG
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incubated at 37°C for 30 min with secondary antibodies 
or with the F-actin dye. Cells were then washed 3 times 
with ultrapure water to remove the salts and were mounted 
on the slides using antifade reagent, and examined with 
confocal microscope (Nikon) at 60 X magnification. 
Similarly, MCF7 cells were transfected with either miR 
mimic negative control or miR-22 mimic for 48 h and 
immunofluorescence was performed similarly as described 
above.

Wound-healing assay

MDA-MB-231, MDA-MB-231-LPCX, MDA-
MB-231-LPCX-TIP60 and MCF7 cells were seeded in 
12-well plates and grown to 90% confluence. Cells were 
transfected with or without miR-22 inhibitor or miR-22 
mimic. After 36 h of transfection, cells were serum starved 
overnight and a linear wound was created using a pipette 
tip. Wound closure was monitored using live cell imaging 
microscopy (Nikon, Tokyo, Japan) at an interval of 30 min 
for 24–48 h. Wound size was then measured randomly at 
three sites perpendicular to the wound.

Invasion assay

For the invasion assay, Corning BioCoat Matrigel 
Invasion Chambers with 8.0-μm PET Membrane were 
used (354480; Corning, Corning, NY, USA). As per the 
protocol, inserts were rehydrated for 2 h at 37°C and then 
MDA-MB-231, MDA-MB-231-LPCX, MDA-MB-231-
LPCX-TIP60 cells transfected with or without miR-22 
inhibitor and MCF7 cells transfected with or without 
miR-22 mimic were suspended in serum-free medium 
and loaded onto the chamber inserts. The inserts were 
placed into the wells of a 24-well plate that contained 
media supplemented with 10% FBS. Cells were incubated 
at 37°C and allowed to migrate and invade through the 

Matrigel and membrane pores. The upper Matrigel layer 
and cells were removed after 24 h (for MDA-MB-231 
cells) or 72 h (for MCF7 cells) by scrubbing. The cells 
on the surface of the lower side of the membrane were 
fixed with 100% methanol and stained with Hoechst stain 
(33342; Life Technologies). Cells that migrated onto the 
lower surface were counted from representative areas 
using ImageJ software (NIH, Bethesda, MD).

Stable cell lines

Virus was generated by transfecting 5 × 106 293T 
cells with the plasmids [MSCV construct: i.e., MSCV 
vector alone (MSCV) and TIP60 overexpressing vector 
(MSCV TIP60) and LPCX construct: i.e., LPCX vector 
alone (LPCX) and TIP60 overexpressing vector (LPCX 
TIP60)], using Lipofectamine 2000, as per manufacturer’s 
protocol. Viruses were harvested after 72 h of transfection 
and were used to infect 1 × 106 MCF7 or 2 × 106 MDA-
MB-231-luc-D3H2LN cells together with polybrene 
(107689, Sigma-Aldrich) reagent (0.4 mg/ml). After 6 h, 
media containing the virus was replaced by growth media. 
After 24 h, puromycin was added into the growth media 
for selection. Media with antibiotics was changed every 
48 h until the mock-transfected cells died. The cells were 
continuously selected for 2 weeks for the generation of 
stable cell lines.

Bioinformatics analysis

For survival data analysis, raw gene expression 
data were downloaded from The Cancer Genome Atlas 
(TCGA) breast cancer database (https://tcga-data.nci.
nih.gov/tcga/) and from GEO databases, respectively. 
The downloaded TCGA breast cancer data were the 
RNA-seq dataset of level 3 and normalization of the 
data was performed based on the total mapable reads. 

Table 3: Multivariant analysis
Variable Sample number R with miR-22 P value

ER-alpha_status positive 320 0.037 0.45

negative 101

PR_status positive 289 0.094 0.054

negative 132

Her2_status positive 83 0.036 0.46

negative 338

Age < = 50 141 0.006 0.90

> 50 280

Stage I–II 321 0.030 0.54

III–X 100

TIP60 421 0.193 < 0.0001
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For microarray data (GSE19783), the Cross-Correlation 
method was used for data normalization [40]. In 
the survival analysis, the median intensity cross all 
samples was first used to classify the samples into the 
respective expression high and low groups. In order to 
minimize the false positives in classification of high 
and low expression groups, the samples with middle 
expression within the 15% range from the median 
expression value were removed. The analysis of the 
survival data was based on the Kaplan-Meier method. 
Gene-Set Enrichment Analysis (GSEA) was performed 
using msigdb.v4 (http://www.broad.mit.edu/gsea/), 
comparing 28 TCGA samples with high TIP60/low 
miR-22 expression versus 28 samples with low TIP60/
high miR-22 expression.

A correlation of TIP60 with miR-22 was obtained 
based on the normalized data cross all samples in the 
cohort. In order to ensure that this correlation is not 
independent of subtypes, the multivariate analysis was 
performed. Using 400+ TCGA breast cancer samples 
available with all these factors, we performed principal 
component analysis (PCA) to identify the contributing 
fraction of each principal component (PC), and found that 
the first PC is dominant and contributes 98.2% among 
all PCs. Multiple linear regression with miR-22 as the 
dependent variable was performed, and the exploratory 
variables for the multiple regression included not only 
TIP60 expression but also the age, stage, ER status, PR 
status, and Her2 status.
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HIV-Tat-interacting protein of 60 kDa (TIP60) is a lysine acetyltransferase and known to be downregulated in multiple cancers.

Among various signalling pathways, TIP60 is implicated in regulating epithelial-mesenchymal transition (EMT). Here, we show

that TIP60 expression abrogates cell migration and metastatic potential of breast cancer cells using in vitro and in vivo models.

Mechanistically, we show that this is through its ability to destabilize DNMT1 and inhibit SNAIL2 function (SNAIL2-mediated

EMT/cell migration). Depletion of TIP60 stabilizes DNMT1 and increases SNAIL2 levels, resulting in EMT. Recruitment of DNMT1

to the SNAIL2 targets in the absence of TIP60 increases DNA methylation on their promoter region and further represses the

expression of epithelial markers. In pathophysiological scenario, we find TIP60 to be significantly downregulated in breast cancer

patients with poor overall survival and disease-free survival prognoses. These data suggest that levels of TIP60 can be a prog-

nostic marker of breast cancer progression and stabilization of TIP60 could be a promising strategy to treat cancers.

Keywords: TIP60, SNAIL2, DNMT1, EpCAM, epithelial-mesenchymal transition, DNA methylation

Introduction

Epigenetic regulators play an important role in maintaining

chromatin state. One group of the key regulators of chromatin

organization are enzymes that are involved in modification of

histones. Among them, HIV-Tat-interacting protein 60 kDa

(TIP60) is a lysine acetyltransferase implicated in multiple cellu-

lar pathways, including transcription, DNA damage-induced

checkpoint activation, and apoptosis (Sun et al., 2005, 2007;

Sapountzi et al., 2006; Squatrito et al., 2006; Sykes et al.,

2006; Tang et al., 2006; Jha et al., 2008). This is achieved

through its ability to acetylate both histones and non-histone

proteins (Sun et al., 2005, 2007; Sykes et al., 2006; Tang et al.,

2006). TIP60 also functions as a haploinsufficient tumour sup-

pressor (Gorrini et al., 2007) and is downregulated in multiple

types of cancer, including those induced by viruses (Jha et al.,

2010; Gupta et al., 2013; Subbaiah et al., 2016).

Epithelial-mesenchymal transition (EMT) is considered as an

important step in cancer metastasis and describes the process

whereby polarized, immotile epithelial cells transform to motile,

invasive mesenchymal-like cells capable of dissemination to

multiple organs (Yang and Weinberg, 2008; Polyak and

Weinberg, 2009; Thiery et al., 2009; Huang et al., 2012; De

Craene and Berx, 2013; Tam and Weinberg, 2013). The tran-

scription factors SNAIL1, SNAIL2, TWIST, ZEB1, and ZEB2 are

among the most potent inducers of EMT in various physiological

and pathological contexts.

Aberrant DNA methylation is one of the key epigenetic

mechanisms that contributes to the process of carcinogenesis

(Robertson, 2001). There are three classes of DNA methyltrans-

ferase (DNMTs): DNMT1, DNMT2, and DNMT3 (DNMT3A and

DNMT3B) (Bestor, 2000). De novo DNA methylation is catalysed

by DNMT3A and DNMT3B, whereas maintenance of DNA

Received March 31, 2016. Revised July 17, 2016. Accepted July 20, 2016.

© The Author (2016). Published by Oxford University Press on behalf of Journal of

Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

 at N
ational U

niversity of Singapore on January 9, 2017
http://jm

cb.oxfordjournals.org/
D

ow
nloaded from

 

http://jmcb.oxfordjournals.org/


methylation during cell proliferation is by DNMT1 (Jones and

Baylin, 2007). Among all the DNMTs, DNMT1 is most abundantly

expressed (Espada et al., 2011). DNA methylation catalysed by

DNMTs primarily occurs on the CpG island of the promoter

regions and results in gene repression (McCabe et al., 2009).

DNMT1 is reported to methylate the promoter of epithelial genes

such as the epithelial cell adhesion molecule (EpCAM) and CDH1,

resulting in the repression of cell adhesion molecules and pro-

motion of EMT process (Alberti et al., 1994; Melki et al., 1999;

Spizzo et al., 2007; Tai et al., 2007; Fukagawa et al., 2015).

Recent studies have shown that TIP60 downregulation corre-

lates with node positivity, metastasis, and poor survival rates

(Kim et al., 2005; Sakuraba et al., 2009; Chen et al., 2012). In

addition, TIP60 acetylation on DNMT1 promotes its degradation

through an acetylation-driven ubiquitination mechanism (Du

et al., 2010b). In this study, we show that TIP60 is an inhibitor

of EMT. By using in vitro and in vivo models, we identify that

TIP60 regulates SNAIL2 expression and function to promote

expression of epithelial genes. Interestingly, this is through

TIP60-mediated destabilization of DNMT1 and the ability of

SNAIL2 to recruit DNMT1 to the promoter. In summary, we have

identified the molecular mechanism of TIP60 inhibiting DNMT1

−SNAIL2-driven EMT program and suggest that targeting this

axis might be of therapeutic importance.

Results

TIP60 inhibits cell migration and invasion both in vitro and

in vivo

To identify the role of TIP60 as an inhibitor of EMT, we over-

expressed TIP60 in a highly metastatic triple negative breast

cancer cell line (MDA-MB-231), and depleted TIP60 in normal

breast epithelial cells (MCF10A). Wound-healing and Boyden

chamber assays were used to score for migration and invasion

potential in each of these two scenarios. For all the experiments

related to the metastatic breast cancer cell line, we used a

derivative of MDA-MB-231 cells that stably express the lucifer-

ase gene (MDA-MB-231-Luc-D3H2LN); this enabled us not

only to monitor cell migration, early tumour growth, and metas-

tasis in vivo, but also to quantify tumour burden in an animal

model. To test the ability of TIP60 to inhibit metastasis, we

modified this cell line to stably overexpress either wild-type

TIP60 (MM-Luc-FT60WT) or its catalytically inactive form (MM-

Luc-FT60KD) (Supplementary Table S1). Cells stably expressing

the vector (MM-Luc-MSCV) were used as the negative control.

Overexpression of wild-type TIP60 inhibited cell migration and

cell invasion in vitro by 50% (Figure 1A, B and Supplementary

Figure S1A–E). Interestingly, this inhibition was dependent on

the catalytic activity of TIP60, as overexpression of its catalytic-

ally inactive form failed to inhibit cell migration (Figure 1A and

B). To confirm if the same phenotype could be observed in other

metastatic breast cancer cell lines, wild-type TIP60 and catalytic

inactive form of TIP60 were overexpressed in two other cell

lines: HCC1937 (HCC1937-MSCV, HCC1937-TIP60WT, HCC1937-

TIP60KD) and MDA-MB-468 (MM468-MSCV, MM468-TIP60WT,

MM468-TIP60KD) (Supplementary Table S1). Similar to the

observation in MDA-MB-231 cells, overexpression of wild-type

TIP60 inhibited the migration of both HCC1937 and MDA-MB-

468 cells, while catalytic inactive form of TIP60 was unable to

do so (Supplementary Figure S1G–L). Conversely, to test

whether depletion of TIP60 could increase cell migration, we

reduced TIP60 levels in MCF10A cells using siRNA and per-

formed wound-healing assays. TIP60 depletion enhanced cell

motility by >40%, resulting in a much faster closure of the

wound as compared to siControl-treated cells (Figure 1C, D and

Supplementary Figure S2A and B).

To extend these studies into an animal model system, we

studied the metastasis of MDA-MB-231 cells in 6-week-old

NOD/SCID mice, comparing the metastatic potential of TIP60

wild-type and control cells. In this in vivo study, MDA-MB-231

cells expressing the luciferase reporter gene (i.e. MM-Luc-MSCV,

MM-Luc-FT60WT, and MM-Luc-FT60KD) were injected into mice

through the tail vein, and fluorescence-based non-invasive

imaging was used to monitor the metastasis of cells (Figure 1E).

The results show that TIP60 overexpression led to a dramatic

reduction in the extravasation potential of these cells scored by

reduced lung metastasis as compared with the control cells,

which is dependent on the catalytic activity of TIP60 (Figure 1E–
G). These data suggest that TIP60 levels regulate the late pro-

cess of metastasis in vivo and cell migration in vitro.

Depletion of TIP60 decreases the expression of epithelial genes

and increases the expression of mesenchymal genes

TIP60-mediated EMT phenotype was verified by screening the

expression of EMT markers in TIP60-depleted cells.

Interestingly, we found that the transcript levels of two major

mesenchymal markers SNAI2 (SNAIL2) and FN1 (FIBRONECTIN)

were elevated by ~2 and ~10 folds, respectively. We also

observed a 50% reduction in the expression of epithelial

marker EpCAM (Figure 2A, Supplementary Figure S2C and

Table S2). These findings were re-capitulated at the protein

level (Figure 2B and Supplementary Figure S2D) and in another

epithelial cell line MCF7 (Supplementary Figure S2E). SNAIL2 is

one of the master regulators of EMT, as its expression in epithe-

lial cells triggers the first and necessary phase of the EMT pro-

cess, i.e. desmosomal disruption and cell spreading (Taube

et al., 2010; Villarejo et al., 2014). This essentially occurs

because SNAIL2 functions as a transcriptional repressor of epi-

thelial genes, such as EpCAM, and as an activator of the mesen-

chymal gene FN1. EpCAM is involved in cell−cell recognition and

adhesion, whereas FIBRONECTIN is a key component of the

extracellular matrix promoting cell migration (Stanisavljevic

et al., 2011; Park and Schwarzbauer, 2014; Sun et al., 2014).

We also found that the cells depleted of TIP60 lose cell−cell
adhesion, become more elongated and mesenchymal-like

(Figure 2C and Supplementary Figure S1F) along with plasma

membrane-to-cytoplasmic re-localization of E-CADHERIN and β-
CATENIN (Figure 2D and E) compared to the control cells.

To rule out any off-target effects of the siRNA, we generated

three cell lines using MCF10A cells as the parental cell line:

MSCV vector control (M10MSCV), wild-type TIP60 (M10FT60WT),
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and a siRNA-resistant wild-type TIP60 (M10FT60*WT)

(Supplementary Table S1). The siRNA-resistant constructs were

generated by synonymous mutations, i.e. the siRNA-targeting

site was mutated such that the protein sequence would not

change. To test whether these cell lines behaved similar to the

parental cell line, we depleted both the endogenous and

exogenous TIP60 and performed wound-healing assays, mRNA

quantitation, and protein expression assays. Figure 3A–D con-

firms that the knockdown of both exogenous and endogenous

TIP60 produced phenotypes similar to that of the parental

MCF10A cell line. Overexpression of TIP60 resulted in a 50%

reduction in FN1 expression and a 2-fold increase in EpCAM

Figure 1 TIP60 inhibits EMT. (A and B) Overexpression of TIP60 inhibits cell migration. Wound-healing assays were performed using MDA-

MB-231-Luc-D3H2LN cells expressing vector (MM-Luc-MSCV), wild-type TIP60 (MM-Luc-FT60WT), or the catalytically inactive form of TIP60

(MM-Luc-FT60KD) (see Materials and methods). Cell migration images are shown in A and the quantitation in B; ***P < 0.001. (C and D)

Depletion of TIP60 increases cell migration. MCF10A cells were treated with indicated siRNAs. Representative images are shown in C and

quantitation in D; ***P < 0.001. (E–G) TIP60 inhibits metastasis in an animal model. MDA-MB-231-Luc-D3H2LN cells (5 × 105) expressing

different proteins as indicated were injected through the tail vein and tumour growth and metastasis were monitored through biolumines-

cence imaging (see Materials and methods). Representative images are shown in E, quantitation in F, and expression of TIP60 in G.
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expression (Figure 3C and D). Importantly, the expression of

siTIP60-resistant TIP60 rescued the levels of FN1 and EpCAM at

both RNA and protein levels, indicating that this phenotype was

TIP60 specific (Figure 3A–D and F). However, SNAI2 expression

could only be rescued partially in such a scenario (Figure 3E).

Because FIBRONECTIN has been previously shown to upregulate

SNAIL2 to promote metastasis, it is plausible that the reduction

in TIP60 provides the initial trigger to upregulate SNAIL2, then

Figure 2 Reduced expression of TIP60 promotes EMT. (A) Expression analysis of the genes involved in EMT after depletion of TIP60. Results

were analysed as fold change against siControl-treated cells. (B) Western blot analysis of the proteins showing changes in expression after

depletion of TIP60. Total cell lysates were resolved on SDS-PAGE and probed with the indicated antibodies. ACTIN serves as a loading con-

trol for western blotting. (C) Morphology of MCF10A cells treated with siControl and siTIP60. (D and E) Depletion of TIP60 results in cell

membrane-to-cytoplasmic re-localization of E-CADHERIN (D) and β-CATENIN (E).
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FIBRONECTIN maintains SNAIL2 levels during metastasis

(Knowles et al., 2013).

To gain a deeper insight into the molecular mechanism of

TIP60 function, we next sought to determine whether the lysine

acetyltransferase activity of TIP60 is required for SNAIL2-

mediated regulation of EMT. We thus generated a cell line

expressing TIP60 that was catalytically inactive and siRNA-

resistant (M10FT60*KD). Intriguingly, this form of TIP60 failed to

rescue the expression level of FN1 and EpCAM (Figure 3A–F),
indicating that the catalytic activity of TIP60 is required to regu-

late the expression of these genes, at both mRNA and protein

levels.

To further strengthen that this observation is TIP60 specific

and catalytic activity dependent, cell lysates from MDA-MB-231

cells with overexpression of either wild-type TIP60 or catalytic

inactive form of TIP60 (MM-Luc-MSCV, MM-Luc-FT60WT, MM-

Figure 3 TIP60-mediated inhibition of EMT is specific to TIP60 and depends on its catalytic activity. (A–E) Expression analysis of genes iden-

tified to change when TIP60 is depleted using siTIP60 in parental (MCF10A), vector control (M10MSCV), or stable cells expressing wild-type

TIP60 (M10FT60WT), siRNA-resistant wild-type TIP60 (M10FT60*WT), and catalytically inactive and siRNA-resistant TIP60 (M10FT60*KD).

Results are represented as fold change against siControl-treated MCF10A cells. (F) Western blots for the proteins with differential expression

upon TIP60 depletion. Lysates were prepared from the indicated cell lines, and proteins were resolved on SDS-PAGE and blotted for the indi-

cated antibodies. ACTIN served as a loading control.
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Luc-FT60KD) were examined by western blotting. EpCAM level

increased by overexpressing wild-type TIP60 compared to con-

trol but not catalytic inactive form of TIP60 (Supplementary

Figure S2F). This was in contrast to MCF10A, where the expres-

sion of EpCAM was inversely modulated upon depleting TIP60

(Figure 2B). FN1 and SNAI2 expression was not altered in MDA-

MB-231 cells by overexpressing wild-type TIP60 or catalytic

inactive form of TIP60 (data not shown). This could be due to

the feedback regulation between FN1 and SNAI2 in highly

metastatic cells, as discussed earlier. High levels of FN1 and

SNAI2 could upregulate each other and ensure the maintai-

nance of both genes at high level in more metastatic cells.

However, restoration of EpCAM level is sufficient to inhibit cell

migration and invasion (Tai et al., 2007), which explains the

inhibitory function of TIP60 in MDA-MB-231 cell metastasis.

This suggests that the regulation of EpCAM plays a predomin-

ant role in TIP60-mediated inhibiton of breast cancer

metastasis.

Alteration of expression of EMT-related genes in the absence of

TIP60 is SNAIL2 dependent

SNAIL2 belongs to the family of zinc finger transcription fac-

tors, which regulates the expression of EMT-related genes by

interacting with the E-boxes in their promoter regions (Yang and

Weinberg, 2008; Thiery et al., 2009; Huang et al., 2012;

Villarejo et al., 2014). To test the role of SNAIL2 in TIP60-

mediated alteration of the expression of EMT markers, we

depleted both TIP60 and SNAIL2 and found that compared with

the depletion of TIP60 alone, the co-depletion could rescue both

FN1 and EpCAM at both mRNA and protein levels (Figure 4A and

B), suggesting that TIP60 regulation of the expression of FN1

and EpCAM is SNAIL2 dependent. To further investigate the bio-

logical implication, wound-healing assay using MCF10A cells

depleting either TIP60 alone or TIP60 and SNAIL2 together was

performed. A 40% increase in cell migration by depleting TIP60

was observed and this was further reduced by nearly 30% upon

Figure 4 TIP60 regulates EMT through regulating SNAIL2. (A) The change in gene expression under TIP60-depleted condition is SNAIL2

dependent. mRNA levels of genes identified to be differentially expressed when TIP60 is depleted either alone or in combination with

SNAIL2 in MCF10A cells. Results were analysed and are represented as fold change against siControl-treated cells. (B) Western blot analysis

of the differentially expressed genes. Lysates were prepared from MCF10A cells treated with indicated siRNAs and resolved on SDS-PAGE.

The levels of proteins were checked by probing with indicated antibodies. ACTIN served as a loading control. (C and D) The increased cell

migration after depletion of TIP60 was restored by co-depleting TIP60 and SNAIL2. Wound-healing assay was performed as described in

Materials and methods. The representative pictures are shown in C and quantification in D. **P < 0.01; ***P < 0.001.
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co-depleting TIP60 and SNAIL2 (Figure 4C and D), suggesting

that regulation of cell migration by TIP60 is SNAIL2 dependent.

TIP60 affects SNAIL2 localizing on its target promoters

SNAIL2 has previously been implicated in the promoter-

dependent transcriptional regulation of EMT genes. Thus, we

next sought to ascertain whether the TIP60-mediated transcrip-

tional regulation of EpCAM and FN1 also occurred through the

promoter regions of these genes. To this end, chromatin immu-

noprecipitation quantitative polymerase chain reaction (ChIP-

qPCR) was performed using an anti-SNAIL2 antibody in the pres-

ence or absence of TIP60. Primers were designed to amplify

different regions of the promoters of FN1 and EpCAM

(Supplementary Figure S3A and C). Among the primers tested,

two were chosen for each promoter, one from the distal site,

which lacked SNAIL2 binding, and the other from the proximal

site, which showed enrichment for SNAIL2 occupancy

(Supplementary Figure S3B, D, and E). When the occupancy of

SNAIL2 on these promoters was tested in wild-type (MCF10A)

cells, we found a significant increase in SNAIL2 binding on the

FN1 and EpCAM promoters in the absence of TIP60 (Figure 5A).

In order to test whether these changes were TIP60 specific and

whether the catalytic activity of TIP60 was required to inhibit

the binding of SNAIL2 to the promoters, we checked SNAIL2

occupancy in the three stable cell lines M10FT60WT,

M10FT60*WT, and M10FT60*KD (Figure 5B–D). Remarkably, we

found that the enrichment of SNAIL2 on FN1 and EpCAM promo-

ters (Figure 5B) can be restored back to control level by

Figure 5 TIP60 affects SNAIL2 occupancy on target promoters. (A) ChIP-qPCR assays were performed to check the occupancy of SNAIL2 in

the presence or absence of TIP60. MCF10A cells were transfected with siControl or siTIP60. Binding of SNAIL2 to the FN1 and EpCAM promo-

ters were investigated using anti-SNAIL2 antibody by qPCR analysis. Results were analysed and are represented as percent input. Aliquots

of the cells from the same experiment were used to isolate RNA to check the expression levels by RT-qPCR. The TIP60 knockdown efficiency

and levels of indicated genes are shown in Supplementary Figure S4. (B–D) SNAIL2 binding to its target promoter is regulated by TIP60 and

depends on its catalytic activity. ChIP-qPCR analysis for SNAIL2 binding was performed in the presence (siControl) or absence of TIP60

(siTIP60) in MCF10A cells stably expressing wild-type TIP60 (M10FT60WT), siRNA-resistant wild-type TIP60 (M10FT60*WT), or the catalytic-

ally inactive siRNA-resistant form of TIP60 (M10FT60*KD). The FN1 and EpCAM promoters were immunoprecipitated and analysed as in A.
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overexpressing wild-type TIP60 (Figure 5C), but this was not

observed when catalytically dead form of TIP60 was overex-

pressed (Figure 5D), suggesting that the SNAIL2 promoter occu-

pancy was regulated by TIP60 and was dependent on the

catalytic activity of TIP60. The TIP60 knockdown and the effect

on EpCAM and FN1 expression were confirmed by qPCR

(Supplementary Figure S4).

The regulation of SNAIL2 by TIP60 is DNMT1 dependent

DNMT1 is a known EMT inducer by repressing expression of

cell adhesion molecules (Fukagawa et al., 2015). Since DNMT1

is destabilized by TIP60 (Du et al., 2010b), we tested whether

SNAIL2-mediated repression of epithelial genes is DNMT1

dependent. We depleted DNMT1 using siRNA either alone or in

combination with TIP60. Depletion of TIP60 stabilized DNMT1 at

protein level (Figure 6A–C), suggesting that TIP60 regulates the

protein stability of DNMT1. When compared to TIP60 depletion

alone, the co-depletion of TIP60 and DNMT1 rescued FN1 and

EpCAM at both mRNA and protein levels (Figure 6D and E).

Interestingly, SNAI2 was also rescued at both mRNA and protein

levels when TIP60 and DNMT1 were co-depleted (Figure 6D and

E). These data suggest that TIP60 regulates the expression of

SNAI2 as well as FN1 and EpCAM through its ability to destabil-

ize DNMT1. To test the biological significance of DNMT1-

mediated activation of EMT program, we tested the effect of

DNMT1 on cell migration under TIP60-depleted condition. We

observed a 50% increase of cell migration when TIP60 was

depleted alone and this was rescued to 20% when TIP60 and

DNMT1 were co-depleted (Figure 6F, G and Supplementary

Figure S5A). These data suggest that decreased levels of TIP60

stabilize DNMT1, which results in increased cell migration.

SNAIL2 recruits DNMT1 to repress EpCAM expression in the

context of TIP60

In order to identify the molecular determinant of DNMT1

−SNAIL2-driven EMT program, we sought to estimate DNA

methylation on SNAIL2-regulated promoters. For this, MCF10A

cells were treated with different siRNA combinations (siControl,

siTIP60, siDNMT1, siTIP60+siDNMT1). Genomic DNA was iso-

lated and the methylation-specific sequencing was performed.

We observed a significant increase in DNA methylation on

EpCAM promoter (−51 to −32) in TIP60-depleted cells.

Interestingly, this was rescued when TIP60 was co-depleted

with DNMT1 (Figure 7A, Supplementary Figures S6A and S5B),

suggesting that the increased methylation observed was

dependent on DNMT1. However, depleting DNMT1 alone did not

change DNA methylation in this region. This may be because

the basel level of DNA methylation in this region is due to other

DNA methyltransferases (Supplementary Figure S6C–F). The

DNA methylation in this region (−51 to −32) was fully depend-

ent on DNMT1 only in the absence of TIP60, as co-depleting

TIP60 and DNMT1 reduced the increased DNA methylation level

to nearly zero (Figure 7A and Supplementary Figure S6A). We

also noted that depleting TIP60 did not change DNA methylation

on EpCAM 1st intron region (+542 to +601) (Figure 7B and

Supplementary Figure S5B), suggesting that this region is not

responsive to decreased levels of TIP60. However, depletion of

DNMT1 alone showed decrease in DNA methylation on 1st

intron region (+542 to +601) (Figure 7B). In summary, these

results suggest that DNMT1 methylates both regions on EpCAM

promoter, but TIP60 only affects DNMT1-mediated DNA methyla-

tion on promoter region (−51 to −32), which has SNAIL2-

binding sites and overlaps with the SNAIL2 enrichment region

on EpCAM promoter tested earlier (Figure 5).

Next, we sought to investigate the molecular mechanism of

DNMT1-mediated repression of EpCAM expression. For this, we

checked methylation status of EpCAM promoter upon depleting

SNAIL2 and TIP60. We observed that DNA methylation on

EpCAM promoter region (−51 to −32) was significantly

increased by depleting TIP60 but further decreased by depleting

both TIP60 and SNAIL2 (Figure 7C, Supplementary Figures S6B

and S5C), suggesting that TIP60 regulates DNMT1-dependent

DNA methylation on EpCAM promoter through SNAIL2. However,

this was not observed on EpCAM 1st intron region (+542 to

+601) (Figure 7D and Supplementary Figure S5C). To further

investigate the mechanism of SNAIL2-regulated DNA methyla-

tion on EpCAM promoter, we depleted SNAIL2 but did not

observe any change in DNMT1 level (both protein and mRNA)

(Figure 7E and data not shown). Following this, ChIP-qPCR

experiment using antibody against DNMT1 was performed.

Interestingly, we observed an increase in the enrichment of

DNMT1 on EpCAM promoter region (−51 to −32) upon depleting

TIP60, but the DNMT1 enrichment was similar to control level

upon co-depleting SNAIL2 and TIP60 (Figure 7F). However, the

enrichment of DNMT1 on EpCAM 1st intron region (+542 to

+601) did not change upon depleting SNAIL2. These data sug-

gests that SNAIL2 regulates the recruitment of DNMT1 to

EpCAM promoter region (−51 to −32), which contains SNAIL2-

binding site in the absence of TIP60. To further investigate the

association between DNMT1 and SNAIL2, FLAG-DNMT1 and

SNAIL2-MYC were co-expressed in 293T cells. FLAG-DNMT1 was

immunoprecipitated and association with SNAIL2-MYC was

observed by western blotting (Figure 7G). Taken together, these

results suggest that DNMT1 catalyses DNA methylation on both

EpCAM promoter region (−51 to −32) and 1st intron region

(+542 to +601) and TIP60 inhibits SNAIL2−DNMT1-dependent

methylation on EpCAM promoter region (−51 to −32)
(Figure 7H).

Lower levels of TIP60 is a poor prognosis for overall survival

and disease-free survival of breast cancer patients

Having established that TIP60 abrogates SNAIL2 function and

maintains cells in an epithelial state, we then analysed the rele-

vance of TIP60 in breast cancers. We determined TIP60 expres-

sion levels in 3992 breast cancer and 22 normal breast tissue

samples, and sought to investigate whether TIP60 expression

correlated with the breast cancer EMT score in these samples.

The EMT score, ε [−1.0, +1.0], was used to estimate the EMT

phenotype of each sample (Tan et al., 2014). In support of our

findings, TIP60 expression had a negative correlation with the
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EMT score in patient samples (Spearman Correlation Coefficient,

Rho = −0.191, P = 2.08E−34) (Figure 8A). We also checked the

levels of TIP60 in various grades and types of breast cancer

samples and found that TIP60 was significantly downregulated

in high-grade breast cancers (Mann–Whitney U-test, P = 2.56E

−11) (Figure 8B). After further sub-classifying these tumours

into the six breast cancer subtype signatures (Basal, Claudin-

Low, Luminal-A, Luminal-B, ERBB2+, and Normal-like), we

observed a significantly high TIP60 expression associated with

the Luminal-A subtype, which has a good prognosis (Mann–
Whitney U-test, P = 7.56E−14), and significantly lower TIP60

expression in the poorer-prognosed molecular subtypes,

Figure 6 EMT in the absence of TIP60 is DNMT1 dependent. (A–C) TIP60 regulates DNMT1 protein stability. MCF10A cells transfected with

siControl or siTIP60 were treated with 100 µg/ml cycloheximide for up to 12 h. Cell lysates from indicating time points were examined by

western blotting (B) and quantified (C). **P < 0.01; ***P < 0.001. The TIP60 knockdown efficiency is shown in A. (D) Protein levels of genes

identified to be differentially expressed when TIP60 is depleted either alone or in combination with DNMT1 in MCF10A cells. Cells were har-

vested after 72 h and lysates were resolved on SDS-PAGE and membrane was probed with indicated antibodies. ACTIN served as a loading

control. (E) mRNA expression analysis of the differentially expressed genes. Results were analysed and are represented as fold change

against siControl-treated cells. (F and G) The increased cell migration after depletion of TIP60 was restored by co-depleting TIP60 and

DNMT1. Wound-healing assay was performed as described in Materials and methods. The representative pictures are shown in F and quanti-

fication in G. ***P < 0.001.
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Figure 7 SNAIL2-dependent recruitment of DNMT1 to EpCAM promoter results in its hypermethylation in the context of depleting TIP60. (A

and B) TIP60 only regulates DNMT1-mediated DNA methylation on EpCAM promoter region (−51 to −32) (A) but not on region (+542 to

+601) (B). TIP60 and DNMT1 were depleted in MCF10A cells either alone or together. DNA from cells was isolated and bisulphite pyrose-

quencing was performed as mentioned in Materials and methods. (C and D) SNAIL2 recruits DNMT1 to EpCAM promoter region (−51 to −32)
(C) but not to region (+542 to +601) (D), which is required for TIP60-mediated regulation of EpCAM promoter hypermethylation. (E)

Depletion of SNAIL2 does not change the level of DNMT1. (F) DNMT1 was recruited to EpCAM promoter region (−51 to −32) by SNAIL2 in

the absence of TIP60. ChIP-qPCR using the antibody against DNMT1 was performed. Two pairs of primers were designed to amplify the

EpCAM promoter region (−51 to −32) and EpCAM 1st intron region (+542 to +601), respectively. The EpCAM promoter region amplified

here overlaps with the region amplified by the EpCAM proximal primers used in Figure 5, but more specific to CpG sites tested in this region.

(G) DNMT1 associates with SNAIL2. FLAG-DNMT1 and SNAIL2-MYC were co-expressed in 293T. Co-immunoprecipitation was performed as

indicated in Materials and methods. FLAG-DNMT1 was immunoprecipitated and associated SNAIL2-MYC was probed by western blotting. (H)

A model of the mechanism of the regulation of EpCAM promoter hypermethylation, which involves TIP60, DNMT1, and SNAIL2.
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Figure 8 TIP60 expression was negatively correlated with EMT, and is a prognostic marker for OS and DFS in breast cancer patients. TIP60

expression was analysed in 3992 breast cancer tumours and 22 normal breast tissue samples (see Materials and methods). (A) TIP60

expression negatively correlated with EMT score (Spearman Correlation Coefficient, Rho = −0.191, P = 2.08E−34). (B) TIP60 expression

decreases as breast cancer progresses. Samples were classified as grade 1 (G1), G2, and G3, and the P-value was determined using the

Mann–Whitney U-test (G1 vs. G2, P = 9.73e−5; G1 vs. G3, P = 2.56e−11; G2 vs. G3, P = 1.28e−4). (C) TIP60 is differentially expressed in

breast cancer subtype signatures. Relative mRNA level of TIP60 is shown for Basal, Claudin-Low, Luminal-A, Luminal-B, ERBB2+, and
Normal-like breast cancer samples (Basal vs. Rest, P = 3.69e−16; Claudin-Low vs. Rest, P = 0.0169; Luminal-A vs. Rest, P = 7.56e−14;
Luminal-B vs. Rest, P = 0.1477; ERBB2+ vs. Rest, P = 1.83e−7; Normal-like vs. Rest, P = 1.77e−5; Mann–Whitney U-test). (D and E) Higher

TIP60 expression associated with better prognosis in OS and DFS. (D) Survival curve of 487 patients categorized into quartile 4 (Q4 = high

TIP60) or quartile 1 (Q1 = low TIP60) with a log-rank P = 0.0054; median survival (month), TIP60_Q1 = 16.47, TIP60_Q4 = 17.1; hazard

ratio = 1.613 (1.152–2.258). (E) DFS curve of 1166 patients from Q4 and Q1. Log-rank P = 0.0004; median survival (month),

TIP60_Q1 = 10.47, TIP60_Q4 = undefined; hazard ratio = 1.429 (1.175–1.738). (F) A model for TIP60-mediated inhibition of EMT. TIP60

destabilizes DNMT1 and inhibits SNAIL2-driven EMT program. Decreased level of TIP60 increases SNAIL2 level and DNA methylation level on

EpCAM promoter.
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including Basal, Claudin-Low, and ERBB2+ (Mann–Whitney U-

test, P = 3.69E−16, P = 0.0169, and P = 1.83E−7, respectively)
(Figure 8C). In terms of a correlation between patient overall

survival (OS)/disease-free survival (DFS) and TIP60 expression,

we found breast cancers with higher TIP60 expression to show

better prognoses for OS and DFS (log-rank test, P = 0.08 and

P = 0.0017, respectively) (Supplementary Figure S7). Comparing

breast cancers with the 25% highest TIP60 expression (fourth

quartile; Q4) with those with the 25% lowest TIP60 expression

(first quartile; Q1), we found even more significant differences

in terms of OS and DFS (log-rank test, P = 0.0054 and

P = 0.0004, respectively) (Figure 8D and E). These data

strengthen our findings that TIP60 expression is reduced in

more aggressive cancers and patients with a higher level of

TIP60 have a better prognosis in terms of OS and DFS.

Discussion

Changes in chromatin landscape play an important role in the

process of carcinogenesis. DNA methylation and post-

translation modification on histone tails are among the most

investigated epigenetic alterations and have been implicated in

tumorigenesis. TIP60 is a chromatin remodeler involved in mul-

tiple cellular physiological process and its decreased expression

has been reported in several cancers (Gorrini et al., 2007;

Sakuraba et al., 2009; Jha et al., 2010; Chen et al., 2012; Gupta

et al., 2013). Viral oncoproteins were also reported to destabil-

ize TIP60 in virus-induced cancers (Jha et al., 2010; Gupta et al.,

2013), and restoring its level inhibits tumour growth (Subbaiah

et al., 2016), suggesting a tumour suppressor function.

In this study, we propose TIP60 as a potential inhibitor of

breast cancer metastasis (Figure 8F). Our data suggest that

TIP60 inhibits metastasis by inhibiting DNMT1 and SNAIL2—key

regulators of EMT program. We provide four lines of evidence to

support this mechanism: (i) TIP60 inhibits cell migration in both

in vitro models and in vivo cancer metastasis model (Figure 1).

(ii) TIP60 alters the expression of several EMT markers (SNAI2,

EpCAM, and FN1), which depends on its catalytic activity

(Figures 2 and 3). (iii) The alteration of expression of EpCAM

and FN1 by TIP60 is SNAIL2 dependent (Figures 4 and 5). (iv)

TIP60 inhibits EMT process through both destabilizing DNMT1

(Figure 6) and inhibiting SNAIL2-dependent recruitment of

DNMT1 to EpCAM promoter, resulting in promoter hypomethyla-

tion (Figure 7).

TIP60 is known to form a complex with DNMT1 through

UHRF1, resulting in TIP60-mediated acetylation on DNMT1 and

promoting DNMT1 ubiquitination-dependent degradation (Du

et al., 2010b). This regulation of DNMT1 maintains the DNMT1

level at different stages of cell cycle, which would promote

DNMT1 degradation at the end of S phase or the beginning of

G2 phase (Du et al., 2010b). Previous studies also reported that

TIP60-mediated DNMT1 degradation can be facilitated by regu-

lator of G-protein signalling 6 (RGS6) to suppress Ras-induced

cellular transformation (Huang et al., 2014), suggesting a

tumour suppressor function of TIP60 by targeting DNMT1 for

degradation. In this study, we have reported a novel function of

TIP60 to regulate DNMT1 degradation and inhibit EMT process.

Whether TIP60−DNMT1 axis is also involved in other cellular

processes needs further investigation.

SNAIL2 is one of the members of SNAIL family proteins.

Among all the members, SNAIL1 is studied extensively, while

less is known about SNAIL2. In most of the cases, SNAIL1/2

were considered to be involved in similar pathways; however,

in some cases they were demonstrated to be diverse (Ye et al.,

2015). As far as SNAIL1 is concerned, it is regulated at differ-

ent levels. For instance, at transcriptional level, SNAI1 is regu-

lated by signalling pathways such as TGF-β (Peinado et al.,

2003), NOTCH (Timmerman et al., 2004; Sahlgren et al., 2008),

WNT (Zhou et al., 2004; Bachelder et al., 2005; Zhou and

Hung, 2005), and HIF1-α (Imai et al., 2003). At post-

transcriptional level, SNAIL1 is known to be regulated by sev-

eral microRNAs such as miR-9 (Liu et al., 2012a), miR-34 (Kim

et al., 2011), Let-7d (Chang et al., 2011), and miR-30a

(Kumarswamy et al., 2012). At the protein level, SNAIL1 stabil-

ity is known to be regulated by E3 ubiquitin ligases such as

FBXL14 (Lander et al., 2011) and β-TRCP (Zhou et al., 2004)

and kinases such as GSK3β (Yook et al., 2006), LATS2 (Zhang

et al., 2012), PKD1 (Du et al., 2010a), and PAK1 (Yang et al.,

2005). SNAI2 has been previously reported to be transcription-

ally regulated by several transcription factors, such as ELF5

(Chakrabarti et al., 2012), FOXA1, KLF4 (Liu et al., 2012b),

SOX3 (Acloque et al., 2011), and SIM2s (Laffin et al., 2008). At

post-transcriptional level, SNAIL2 is regulated by several

microRNAs such as miR-1/200 (Liu et al., 2013) and miR-203

(Zhang et al., 2011), and is known to be phosphorylated by

kinases such as GSK3β (Wu et al., 2012) and FBXL14 (Vernon

and LaBonne, 2006). Interestingly, these phosphorylations sta-

bilize SNAIL2, which is similar to SNAIL1. In this study, we

have identified that the expression of SNAI2 is regulated by

DNMT1 (Figure 6D and E). However, we did not observe any

change in DNA methylation on SNAI2 promoter (data not

shown), suggesting an indirect role of DNMT1 in regulating

SNAI2 transcription. Further studies investigating the molecu-

lar mechanism of DNMT1-dependent SNAI2 regulation will be

an exciting avenue to explore.

SNAIL family proteins are known to repress expression of cell

adhesion molecule and promote expression of mesenchymal

related molecules. Previous studies have indicated that SNAIL1

recruits epigenetic repressor complex such as HDAC1/2, PRC2,

LSD1, and G9a (Lin et al., 2014) to CDH1 promoter for maintain-

ing the repression. On the other hand, recruitment of p65 sub-

unit of NK-kB and PARP1 by SNAIL1 to FN1 promoter activate its

expression (Stanisavljevic et al., 2011). However, not much is

known about the mechanism of SNAIL2-mediated regulation.

Previous studies investigating both SNAIL1 and SNAIL2 together

assumed that SNAIL2 behaves similar to SNAIL1, thus SNAIL2

was not studied in detail. A non-equivalent role of SNAIL1 and

SNAIL2 in repression of CDH1 expression has been recently

reported (Villarejo et al., 2014; Ye et al., 2015) and it would be

interesting to identify the molecular determinants involved in

regulating the mechanism of SNAIL2-mediated regulation. Here,
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we show that both EpCAM and FN1 are direct targets of SNAIL2

and SNAIL2 enrichment on target promoters was regulated by

TIP60 (Figure 5). Additionally, we show that SNAIL2 recruits

DNMT1 to EpCAM promoter region (−51 to −32), which overlaps

with SNAIL2 enrichment site, and maintains repression of

EpCAM expression through promoter hypermethylation in the

absence of TIP60 (Figure 7A–D).
EpCAM is one of the epithelial genes involved in inhibiting

EMT process. It is known that EpCAM level would decrease dra-

matically during malignant transformation and progression (Joo

et al., 2005). Mechanistically, it was shown that hypermethyla-

tion of EpCAM promoter was the key determinant for repression

of EpCAM expression (Tai et al., 2007). Interestingly, DNA

methyltransferase inhibitor (5-aza-2′-deoxycytidine) and HDACi

(Trichostatin A) treatment reactivated the EpCAM expression

and inhibited cancer cell invasiveness (Alberti et al., 1994;

Spizzo et al., 2007). Our findings indicated an upstream mech-

anism of regulation of DNA hypermethylation on EpCAM pro-

moter, which involved TIP60, DNMT1, and SNAIL2.

In summary, we show that TIP60 acts as an inhibitor of EMT

in breast cancer cells. Mechanistically, depletion of TIP60 pro-

motes EMT by stabilizing DNMT1, which results in increased

expression of SNAIL2. The excess SNAIL2 would then recruit

DNMT1 to EpCAM promoter region (−51 to −32), resulting in

hypermethylation of EpCAM promoter and repression of EpCAM

expression. This study has identified the mechanism of TIP60-

mediated inhibition of EMT program and has discovered an

important link between two epigenetic modulators—TIP60 and

DNMT1. The data presented in this study also imply that the

reactivation of TIP60 or the restoration of TIP60-dependent

acetylation on DNMT1 might be a potential therapeutic strategy

to treat SNAIL2-driven metastatic breast cancers.

Materials and methods

In vitro invasion assay

In vitro invasion assay was performed as described previously

(Korah et al., 2000) using the BD Matrigel™ Invasion chamber

and 24-well plate 8.0 Micron insert (BD Biocoat™, Cat. No.

354480). Briefly, 50000 MM-Luc-MSCV, MM-Luc-FT60WT, or

MM-Luc-FT60KD cells were seeded onto the top layer of the

chamber and mixed with serum-free media. The bottom layer

was filled with 750 µl growth media comprising 2% foetal

bovine serum. After 8 h, cells that had invaded into the bottom

layer were stained and quantitated using ImageJsoftware

(http://imagej.nih.gov/ij/).

Wound-healing assay

Wound-healing assays were performed as described previ-

ously (Oxmann et al., 2008; Chen et al., 2012). Briefly, siRNA-

transfected (siControl, siTIP60, siDNMT1, siTIP60/siDNMT1,

siSNAI2, siTIP60/siSNAI2, and siDNMT3B) MCF10A cells or the

stable metastatic breast cancer cells were seeded into the wells

of 24-well plates at 100% confluence. Cells were maintained in

complete media for 12 h for adhesion. Cells were then subjected

to serum-starved conditions for next 24 h. A wound was created

using a fine pipette tip and the detached cells were removed by

gently washing the wells with phosphate-buffered saline. The

closure of wound was monitored every 24 h. For MCF10A,

HCC1937, and MDA-MB-468 cells, the area of the wound was

measured at 0 h and the percentage of movement was calcu-

lated by using the following formula: (area of wound at 0 h −
area of wound at n h)/area of wound at 0 h × 100, where n is a

specific time. For MDA-MB-231-luc-D3H2LN, the number of cells

migrated during gap healing were counted. Each experimental

group was repeated three times.

Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR)

ChIP was performed as described earlier (Karnani et al., 2007;

Jha et al., 2010). Briefly, 5 × 106 cells were transfected with

siControl or siTIP60 in a 15-cm plate. After 72 h of siRNA treat-

ment, cells were cross-linked with 1% formaldehyde (SantaCruz

Biotechnology, Cat. No. sc-203049A) for 10 min at room tem-

perature, and then washed twice with ice-cold phosphate-buf-

fered saline. For DNMT1 ChIP, cells were treated with 0.005 µM
5-aza-2′-deoxycytidine for 10 h before harvesting, in order to

enrich chromatin bound DNMT1 (Lu et al., 2006; Patel et al.,

2010). Cells were harvested by scraping and centrifuged at

1750 g for 15 min to collect the cell pellet. Cells were then

resuspended in SDS lysis buffer (1% SDS, 0.01 M EDTA, and

0.05 M Tris-HCl, pH 8.0) and sonicated (ON: 15 sec and OFF:

45 sec at 30% amplitude for 15 cycles) to obtain DNA fragments

ranging from 100 to 500 bp. Chromatin was isolated by centrifu-

ging at 15300 g for 15 min at 4°C and the supernatant was col-

lected for immunoprecipitation.

Immunoprecipitation was performed with anti-SNAIL2 anti-

body (Cell Signaling Technology, Cat. No. 9585) or anti-DNMT1

antibody (Abcam, Cat. No. ab87656) overnight at 4°C, followed
by incubation with protein A/G PLUS agarose beads (SantaCruz

Biotechnology, Cat. No. sc-2003) for 3 h. Beads were then

washed with (i) low-salt immune complex buffer (0.1% SDS, 1%

Triton X-100, 0.002 M EDTA, 0.02 M Tris-HCl, pH 8.0, and

0.15 M NaCl), (ii) high-salt immune complex buffer (0.1% SDS,

1% Triton X-100, 0.002 M EDTA, 0.02 M Tris-HCl, pH 8.0, and

0.5 M NaCl), (iii) LiCl buffer (0.25 M lithium chloride, 1% NP40,

0.001 M EDTA, 0.01 M Tris-HCl, pH 8.0, and 1% deoxycholate),

and (iv) TE buffer (0.001 M EDTA and 0.01 M Tris-HCl, pH 8.0).

Beads were eluted in 100 µl elution buffer (1% SDS and

0.0084% NaHCO3) three times with agitation for 15 min each.

Chromatin was reversedly cross-linked by adding 0.2 M NaCl

and was heated at 65ºC for 4 h. The proteins bound to DNA

were digested by adding 20 µg proteinase K (AppliChem, Cat.

No. 39450-01-6) and incubated at 45°C for 1 h. DNA was puri-

fied using a PCR purification kit (QIAGEN, Cat. No. 28106) and

used as template for qPCR. The results were analysed and are

represented as percent input. Supplementary Table S3 shows

the sequence information for the primers used for qPCR.

DNA methylation analysis using bisulphite pyrosequencing

DNA methylation analyses were performed as described previ-

ously (Mikeska et al., 2011). Briefly, DNA was bisulphite

396 j Zhang et al.

 at N
ational U

niversity of Singapore on January 9, 2017
http://jm

cb.oxfordjournals.org/
D

ow
nloaded from

 

http://imagej.nih.gov/ij/
http://JMCBIO.oxfordjournals.org/lookup/suppl/doi:10.1093/jmcb/mjw038/-/DC1
http://jmcb.oxfordjournals.org/


converted using EpiTect Fast DNA bisulfite kit (Qiagen) accord-

ing to the manufacturer’s protocol. Prior to pyrosequencing,

PCR reactions were carried out using PyroMark PCR kit (Qiagen)

in a 50 µl reaction volume (PCR primers used: promoter region:

forward: GAAGGTTTTTTGTTTGTGTTTGTAT; reverse: [Btn]

ACCCTCTCCACAAATATAAACC. 1st intron region: forward:

GGGTATAATAGGGAGGGGATTAAG; reverse: [Btn]

CCAAAACCATTTCCCTACCAA. Btn, biotin). An initial polymerase

activation step of 15 min at 95°C was followed by 40 cycles of

30 sec at 94°C, 30 sec at 56°C, and 30 sec at 72°C, and a final

step of 5 min at 72°C. The biotinylated PCR products were

extracted with streptavidin sepharose beads (GE Healthcare)

according to the manufacturer’s instructions and released into a

PSQ 96 Low Plate (Biotage) containing 40 µl pyrosequencing

primer (promoter region: GAGACGAAGTATTTGGGG; 1st intron

region: GGGAGGGGATTAAGA), which has been diluted with

annealing buffer to a final concentration of 0.4 µM. The plate

was incubated at 80°C for 2 min, cooled to room temperature,

and run on a PyroMark ID machine (Biotage) using PyroMark

Gold reagents (Qiagen) as specified by the manufacture. Results

were analysed with PyroMark software for DNA methylation

quantification.

Bioluminescence assay in mice

Tail-vein injection was performed as described previously

(Liang et al., 2005; Yang et al., 2012). Briefly, 6-week-old NOD/

SCID mice (Invivos) were divided into three groups with four

mice per group. Each mouse received a tail-vein injection of

5×105 MM-Luc-MSCV, MM-Luc-FT60WT, or MM-Luc-FT60KD

cells, and images were taken every 7 days after injection using

IVIS 200 Pre-clinical in vivo Imaging System. All protocols for

animal studies were reviewed and approved by the Institutional

Animal Care and Use Committee at the National University of

Singapore. Analyses of the images were performed as described

previously (Wu et al., 2001; Craft et al., 2005) using Living

Image software (IVIS imaging system).

Data preprocessing of Affymetrix microarray gene expression

Data processing of microarray gene expression of breast can-

cer samples is described elsewhere (Kumar et al., 2014). Briefly,

26 breast cancer cohorts on Affymetrix U133A or U133Plus2

were downloaded from Gene Expression Omnibus (GEO) and

Array Express. Robust Multichip Average (RMA) normalisation

was performed on each cohort, and the normalised data were

standardised using ComBat (Johnson et al., 2007) to remove

batch effects. The standardised data yielded a dataset of 3992

breast cancer tumours and 22 normal breast tissue samples.

Identification of breast cancer subtypes

Breast cancer subtype signature was obtained from the study

by Prat et al. (2010). Subsequently, single sample Gene Set

Enrichment Analysis (ssGSEA) (Verhaak et al., 2010) was per-

formed to estimate enrichment scores for the six breast cancer

subtype signatures (Basal, Claudin-Low, Luminal-A, Luminal-B,

ERBB2+, and Normal-like) expressed in each sample. Each

sample was then assigned a subtype depending on the ssGSEA

enrichment score.

Statistical analysis

Statistical significance evaluations were computed by Mann–
Whitney test, Spearman Correlation Coefficient, log-rank test of

Graphpad Prism® version 5.04 and two sample two tailed stu-

dent t-test. Error bars represent the standard deviation from at

least three times of experiments.

Details for antibodies, siRNA sequences, generation of stable

cell lines, siRNA transfection, immunofluorescences, co-

immunoprecipitation, and primers for mutagenesis are in

Supplementary Materials and methods.

Supplementary material

Supplementary material is available at Journal of Molecular

Cell Biology online.
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