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Summary

With their ability to adapt both hardware and software to the application requirements,

Reconfigurable Multi-Processor Systems (MPS) offer both high computational perfor-

mance and low power consumption at the same time. Furthermore, they also overcome

the high cost and long development time limitations of ASIC solutions. They can also

provide adequate robustness and adaptability for modern computing systems. There-

fore, they are great candidates for a wide range of applications across various indus-

try domains. However, along with above advantages, the combination of software and

hardware reconfigurability also drastically increases the complexity of the system and

imposes new challenges for the design methodologies and design automation tools. Fur-

thermore, the advancement of modern computing platforms and their emergence to all

the fields of human being put the new emphasis not only on the performance but also

robustness, reliability as well as energy and power requirements of the electronic sys-

tems. These challenges impose a large gap between the advancement of reconfigurable

hardware and the tools supporting its development process.

With the aim of making the design flow for Reconfigurable MPS more productive

and autonomous, this thesis provides algorithms and tools that accelerate the develop-

ment process in both macro level and micro level synthesis. Moreover, these tools are
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Summary

developed to cope with different design criteria (throughput, latency, energy consump-

tion, leakage power, etc.) and enable users to explore the trade-off between them. To

deal with the high complexity in macro level synthesis, a mapping algorithm is pro-

posed for efficiently assigning tasks to processing elements on heterogeneous platforms

with reconfigurable hardware. Furthermore, heuristic has been developed for scheduling

hardware tasks on reconfigurable devices to explore the trade-off between performance

and leakage power consumption. Using Machine Learning and Genetic Algorithm, an

optimization framework for priority-based scheduling and mapping heuristics has been

proposed to address the time-consuming problem of DSE process. On micro-level syn-

thesis, a framework to exploit the loop structure has been implemented to shorten the

development time with HLS tools. Finally, an accelerator auto-generation tools for op-

tion pricing applications is also implemented for further boosting the design productivity

of reconfigurable hardware.
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Chapter 1
Introduction and Background

1.1 Reconfigurable Multiprocessors Systems
1.1.1 Trend on IC Development
Since its introduction in the 1970s, the Moore‘s Law, which predicted the number of

transistors doubling every 18 months [102], has been the guiding factor of computing

performance for the semiconductor industry as shown in Fig.1.1. In the beginning, chip

manufacturers had relied on the Dennard‘s principle [50] to keep the development pace

by scaling the transistor’s size. With nearly 3 decades, every 70% scaling in the tran-

sistor’s size had doubled the number of transistor on the chip with 40% increase in

frequency while the power requirement remained unchanged [50]. However, since early

2000s, the transistor scaling was slowed down due to increasing leakage current, which

led to the era of increasing frequency to maintain the pace of computing performance.

But chip manufacturers couldn’t enjoy staying in this direction for too long because of

the exponential increase of chip power density while scaling the clock frequency. As a

result, they met the limitation of currently available cooling technology and the clock

frequency became a plateau. Once again, the industry came back to the spatial solution

by increasing the number of processing cores on a chip and providing parallel computing

solutions.

1



1.1 Reconfigurable Multiprocessors Systems

   IEEE SOLID-STATE CIRCUITS MAGAZINE WINTER 20 15  21

processor in 22-nm SOI with 64 MB 
of eDRAM L3 cache and 4-MB/core 
eDRAM L2 cache. Oracle details its 
SPARC M7 processor with 32 S4 cores, 
a 1.6-TB/s bandwidth 64-MB L3 cache, 
and a 0.5-TB/s data bandwidth on-
chip network to deliver more than 
three times the throughput compared 
to its predecessor. It also includes 280 
SerDes lanes that support up to 18-Gb/s 
line rate and 1-TB/s total bandwidth. In-
tel details its next-generation Xeon pro-
cessor, which supports 18 dual-thread-
ed 64-b Haswell cores, 45-MB L3 cache, 
4 DDR4-2133MHz memory channels, 
40 8-GT/s PCIe lanes, and 60 9.6-GT/s 
QPI lanes. It has 5.56-B transistors in In-
tel’s 22-nm trigate HKMG CMOS, achiev-
ing a 33% performance boost over pre-
vious generations.

The chip complexity chart in 
 Figure 16 shows the trend in transis-
tor integration on a single chip over 
the past two decades. While the 1 
billion transistor-integration thresh-
old was achieved some years ago, 
we now commonly see processors 
incorporating more than 5-B transis-
tors on a die.

Digital Systems—Memory

Subcommittee Chair:  
Joo Sun Choi, Samsung Electronics, 
Hwasung, Korea
Mobile products are everyone’s com-
panion and need to store and pro-
cess ever-increasing amounts of 
data. Progress is possible only by 
constant improvements in area, pow-
er, and performance of volatile and 
nonvolatile memory (NVM). FinFET 
technology is now mainstream for 
embedded SRAM and DRAM, facilitat-
ing continued scaling. Improvements 
in DRAM data rates support the in-
creasing demands of greater data 
volumes. NAND flash memories have 
moved from 2 b/cell to 3 b/cell, and 
3-D multilayer designs are now typi-
cal. Embedded flash, which is essen-
tial to IoT and wearable applications, 
has moved to 28 nm. Among emerg-
ing memories, STT-MRAM is the most 
mature, although ReRAM is quickly  
catching up.

Some outstanding state-of-the-art 
paper topics from ISSCC 2015 include

■■ two 14-nm SRAM bit cells; 0.050 µm2 
(HDC) and 0.058 µm2 (LVC) capable of 
achieving 1.5 GHz operation at 0.6V

■■ a 14-nm FinFET SOI eDRAM with a 
cell size of 0.01747 µm2 and 1-ns 
access time

■■ 128-Gb, 3 b/cell 32 stacked WL 
layer 3-D NAND flash running at 
1Gb/s I/O rate

■■ low-power 64-Gb 2b/cell NAND flash 
manufactured in 15-nm technology

■■ a 1.1-V, 10-Gb/s/pin transceiver 
for DRAM interface suitable for 
use beyond LPDDR4

■■ a high-speed 1-Mb STT-MRAM us-
ing 2T2MTJ cells achieves 3.3-ns 
access time and a sub-20-nm tech-
nology node STT-MRAM uses a 
 high-density 1T1MTJ memory cell

■■ a 28-nm embedded SG-MONOS 
FLASH developed for automotive 
applications. 

SRAM
Consumer and computing products 
in 2015, from smart watches to the 
cloud, depend on low-power and high-
performance embedded SRAM. Chal-
lenges for SRAM include VMIN, leakage, 
and dynamic power reduction. Last 

Figure 17: Bit cell and VDD scaling trend for SRAM.
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1.1.2 Trend on Multiprocessor Systems

The era of parallel computing was pioneered by the research team from IBM and Intel

with the concept of multi-core processors. These processing units contain two or more

independent processing components (such as arithmetic and logic unit - ALU) which can

read and execute multiple instructions in parallel. These multicore processors addressed

well the thermal, power and energy problems faced by frequency scaling approach. Ap-

proximately, a dual-core processor with only half of the clock speed can achieve the

same computational performance as its single-core competitor, and consumes less en-

ergy and operates at a lower temperature due to better power distribution and scatter

thermal hotspots. These advantages are a driving force for companies moving forward

in this direction and a number of multi-core and many-core have been released: 2-cores

(Intel Core2 Duo, 2006), 4-cores (Intel Core i5, 2009), 6-cores (Intel Core i7, 2010) and

8-cores (Intel Xeon 2820, 2011).

The same trend toward parallelism is observed on the system level with the growth

2



1.1 Reconfigurable Multiprocessors Systems

of Multiprocessor System (MPS). These systems combined a number of dependent pro-

cessors (single-core or multi-core) along with hardware subsystem to coordinate these

processors (memory, bus, connections) to provide further concurrent processing power

and facilitate more computational demand. The Lucent’s Daytona chip [15], introduced

in 2000, is the first known MPS, integrating multiple homogeneous processors. Fol-

lowing this breakthrough, there has been a significant drive towards MPS development

especially in the early half of 2000. Examples included Nexperia [114] from Philips

Semiconductor, OMAP [45] from Texas Instruments and Nomadik [115] from STMi-

croelectronics. Since then, the MPS technology has matured to a great extent, growing

in complexity and size. Some of the current day MPS are UniPhier [110] from Panasonic

Semiconductor and Platform 2012 aka STHORM [105] from STMicroelectronics.

1.1.3 Trend on FPGA and Reconfigurable Hardware Accelerator

Although the number of transistors still follows Moore‘s Law to double every generation

in MPS, the transistor‘s performance and energy efficiency haven‘t improved at the same

pace. This leads to a new issue called “dark silicon”, where we need to power off a part

of the chip all the time due to the limitation of chip power budget. A recent study shows

that 50% of a chip might be in the “dark” status within 3 process generations [56]. To

address this major challenge, the industry has to develop a way to use the transistor more

efficiently and extract more computing power from existing hardware. This naturally

shifts the industry to the new paradigm of adding customizable components to MPS that

can be specifically configured to fit the requirement of high-level workloads.

When it comes to custom hardware logic, there are different options available for

chip designers. Application-specific integrated circuit (ASIC) was the standard way to

implement custom logic to facilitate specific needs of an application due to its high per-

formance and power efficiency. However, the high development cost and slow time to

market make it not always a feasible option for many applications. Addressing these

3



1.1 Reconfigurable Multiprocessors Systems

problems, Field-programmable gate array (FPGA) is another way to implement hard-

ware accelerators and has gained significant attention in both academic and industrial

domain recently. Containing fine-grained computing logics with programmable inter-

connections between them, FPGAs allow designers to implement arbitrary digital com-

ponents without fabricating the customized chip. Traditionally, FPGA is known as a

way of creating a prototype for testing and verification of ASIC systems. But nowadays,

final designs and commercial products are also implemented on FPGA. New achieve-

ments in IC technology allow entire complicated computing systems to be implemented

in an FPGA board. State-of-the-art FPGA devices offer both soft-core and hard-core

processors with on-chip memory blocks, peripherals and other functional units that can

deal with a wide range of application requirements.

An MPS integrated with reconfigurable logic from FPGA is called Reconfigurable

MPS. Run-time reconfigurability is one of the unique features of Reconfigurable MPS

that allows these kinds of systems to be adapted to a specific application, providing

flexibility in the designed system. The main disadvantage when comparing a Recon-

figurable MPS with a traditional custom implementation with ASIC is the decrease in

execution time and less power efficiency. However, a Reconfigurable MPS has a number

of advantages that can outperform its ASIC competitor.

• Less time-to-market: for Reconfigurable MPS, the design procedure does not need

to take into account the manufacturing process of the IC, with a substantial de-

crease in design time.

• Flexibility and reconfiguration: reconfigurable hardware resource makes the plat-

form suitable for a wide range of applications. Further, it is possible to customize

each component independently by adding functional units to satisfy specific re-

quirements of particular applications.

• Less cost: The design process is less expensive. This is thanks to the ability of
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1.1 Reconfigurable Multiprocessors Systems

reuse common IP cores across similar products. Furthermore, the cost of mainte-

nance and repair is also considerably decreased due to the reconfigurable potential

of the system.

• Scalability: in a Reconfigurable MPS, due to the reconfigurability, a functionality

can easily be added or uninstalled through reconfiguration.

• Fault-tolerance: any detected fault in the accelerator can be repaired with the re-

configuration ability by upgrading a component or simply swapping out hardware

functionality without redesigning the physical board.

Taking into account these advantages, the works in this dissertation focus on Recon-

figurable MPS as the targeted computing platform.

1.1.4 Classification of Reconfigurable MPS

Because of the heterogeneity of the system itself, there are a number of different ways to

classify Reconfigurable MPS on various aspect: the architecture of the General Purpose

Processors (GPP), the role and architecture of the reconfigurable hardware unit, the in-

terconnection and cooperation between them, etc. The authors in [40] have done a great

job to put together a comprehensive classification of Reconfigurable MPS. This Section

just limits the categorization to the main aspects that are related to the applicability of

our contributions on these platforms. In other words, these classifications help to dif-

ferentiate between Reconfigurable MPS that can benefit from our contributions and the

ones where our contributions cannot be applied.

Tightly Coupled and Loosely Coupled

The first way to classify Reconfigurable MPS is based on the role and location of the

reconfigurable resources in the top level system and the way they cooperate with general

purpose processors.
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• The tightly coupled architectures offer implementation of a single instruction

stream. In this class of Reconfigurable MPS, the reconfigurable hardware is usu-

ally placed as a part of the CPU or as a segment inside the Data and Control Path

(DCP) of GPP to extend the instruction set of GPP with reconfigurability. As a

result, both the fixed hardware and reconfigurable parts are executed under the

same instruction stream. Two sample implementations of this class are presented

in Figure 1.2. In Fig.1.2a, the Reconfigurable hardware is placed inside the CPU

and can be either DCP Segment or Reconfigurable Unit (RFU). In Fig.1.2b, the

Reconfigurable hardware stays outside of the CPU but still under control of the

CPU and executes extended instruction set of the CPU.

Because of the tightly coupling characteristic these architectures are usually im-

plemented on the same chip and the communication cost between the fixed and

reconfigurable parts are relatively small. Generally, the tightly coupled systems

are efficiently used to exploit the instruction level and loop level parallelism. The

main disadvantage of these systems is the limitation on the amount of reconfig-

urable hardware that can be integrated with GPP. Furthermore, this type of systems

requires a custom design for the GPP, hence requires large development effort both

from the hardware design and the compilation toolset.

• In the loosely coupled systems, multiple instruction streams are possible to be

executed and reconfigurable hardware is usually implemented independently as

co-processor of GPPs with its own memory and interconnection fabric. Hence,

in loosely coupled architectures, multi-tasks can work simultaneously on GPPs

and reconfigurable resources and they are better suited to exploitation of the ap-

plication level and task level parallelism. However, these kinds of systems often

experience high communication overheads between the GPPs and reconfigurable

hardware. Therefore, to benefit from these platforms, the execution speed up of

the reconfigurable hardware has to compensate for the communication overhead.
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Figure 1.2: Example of tightly-coupled architectures [77]

7



1.1 Reconfigurable Multiprocessors Systems

April 3, 2009 12:2 WSPC/123-JCSC 00503
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Figure 1.3: Example of loosely-coupled architectures

As a result, they are not the candidates for applications with small computation

tasks along with intensive communication. Despite this limitation, loosely cou-

pled systems have wider adoption and come to the mainstream computing faster

due to several advantages over their tightly coupled counterparts. First of all, the

loosely coupled architectures allow for larger reconfigurable subsystems and more

parallelism than the tightly coupled ones. Secondly, they can be built from exist-

ing commercial reconfigurable devices with matured design toolkit from manufac-

turers. Taking into account the high potential and popularity of loosely coupled

reconfigurable system, contributions from this thesis will focus on this kind of

architecture. An example of loosely coupled architecture is presented in Figure

1.3.
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1.1 Reconfigurable Multiprocessors Systems

Coarse-grained and Fine-grained

In this classification approach, the Reconfigurable MPS are grouped by the granularity

of their reconfigurable blocks. A particular reconfigurable block is a combination of

basic reconfigurable functional units, memories and interconnects. The minimum re-

configuration grain related to the size of the basic blocks defines the granularity of the

system. Based on the granularity of reconfigurable blocks, Reconfigurable MPS can be

categorized into fine-grained and coarse-grained systems.

• In the fine-grained system, the minimum level of reconfiguration is individual

bits of the reconfigurable hardware (HW) and operations for individual bits or

small groups of bits are available in the system. Examples of the fine-grained

reconfigurable system are widely available FPGA architecture from commercial

vendors and the reconfiguration units in these platforms are Look-up Table (LUT),

switching interconnection, and configurable distributed block memories. Although

the reconfiguration in the level of individual bits require much more hardware re-

sources and consumes more power, they provide a high level of flexibility. The

fine-grained blocks are very efficient when dealing with manipulation of bit-level

data such as encryption, image processing, logic and set- theoretical computations.

Besides, they have a great advantage for mixed-grain applications and designing

control, interface circuit or data-path circuits not implemented in the GPP.

• In the coarse-grained systems, the smallest reconfiguration unit is available at

the level of words and are designed with bit-parallel operations for whole words

of bits. In coarse-grained Reconfigurable MPS, the functional units of reconfig-

urable block may be an independent ALU block as shown in Figure 1.4. Since

the reconfigurable blocks are implemented with word-wide computation, the re-

configuration blocks in these systems are bigger in size but smaller in amount and

require less interconnection than the fine-grained fabric. As a result, they demand

9
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Fig. 5. Examples of a fine-grained (a) and coarse-grained (b) functional block.

of control and interface circuits, as well as of data-path circuits that are based on

the data-widths not implemented in the standard processors or coarse-grained fab-

rics. In the last case, usage of a standard processor or coarse-grained fabric results

in a wasted computation effort for operations on short words and execution of

multiple instructions for operations on long multi-word operands. Examples of the

fine-grained fabrics can be found in Refs. 21–26, and an interesting discussion of

the influence of LUT and cluster size on deep-submicron FPGA performance and

density in Ref. 81.

The coarse-grained fabrics are intended for an efficient implementation of the

word-width data-path computations. An example of a coarse-grained functional

unit is given in Fig. 5(b). The functional units of the coarse-grained fabrics repre-

sent either some kinds of ALUs or even small processors. The coarse-grained fab-

rics require less hardware resources, energy and time for reconfiguration than the

fine-grained fabrics and have more efficient interconnection routing switches. The

reduction of the configuration and routing resources is proportional to the word

size. Since their blocks are optimized for computations on words, they usually per-

form the word-wide computations faster and using less energy then the fine-grained

fabrics implemented in a comparable technology and configured for the same word-

wide computations. The coarse-grained fabrics are however much less flexible than

the fine-grained fabrics. They are unable to perform single-bit manipulations or

control related computations, and are only efficient for the data-path computations

with data width being close to their standard word size or its multiple. Examples

of the coarse-grain fabrics can be found in Refs. 27–36, 76, 90, 91, 134.

4.3. Type of resources and organization of the

reconfigurable fabric

In the CPU-centric processors both the instructions and data are located in one

central memory (or two separate central memories: one for instructions and another
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Figure 1.4: Example of fine-grained (a) and coarse-grained (b) architectures

less hardware resource, energy and time for reconfiguration. However, in return,

they offer less flexibility than the fine-grained options and are only efficient for

the data-path computations of implemented data width or its multiple.

Static and Dynamic Reconfigurable MPS

According to the reconfiguration ability of the MPS at runtime, we can refer it as a static

or a dynamic reconfigurable system.

• For Static Reconfigurable MPS, the hardware resource is configured before the

actual execution of the system and its configuration stays the same during runtime.

In static MPS, the configuration is loaded to the configurable resource at compile

time.

• For Dynamic Reconfigurable MPS, the configuration of the hardware resource

can be changed at runtime, during the real execution of platform. It can reconfig-

ure the architecture multiple times to satisfy different requirement of an applica-

tion at runtime. Therefore, they are also called run-time reconfigurable system.

Most of the available commercial reconfiguration devices provide dynamic reconfig-

urable capability because it enables a number of benefits for computing system:
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• Increasing resource sharing: large applications can be partitioned into mutually

exclusive tasks, that can be fit into smaller hardware resources. Then, the config-

uration for each task is dynamically loaded into the hardware resource at runtime

to execute the whole applications.

• Saving power and energy: the smaller hardware usage can help to reduce the

static power directly. Moreover, avoiding to keep unused parts of applications in

the hardware also can significantly reduce the power dissipation [158], [117].

• Offering adaptability for system over change in environment: the ability to change

the circuit specialization at runtime can be used to implement adaptive control,

fault-tolerance, self-diagnosis, self-repair system, etc. [76]

Since the configuration is loaded at runtime, the amount of time needed for recon-

figuration is very important in dynamic reconfigurable system. This time is proportional

to the size of the hardware resource as well as the inverse of granularity of reconfig-

urable unit. One way to reduce this overhead is preloading a configuration into on-chip

memory before actually executing it. This is known as prefetching technique and widely

used in different reconfigurable systems [67]. Another way to decrease reconfiguration

time is to divide the reconfigurable resource in different segments, and these segments

can be independently reconfigured while the other segments are executing. This feature

is called dynamic partial reconfiguration and is offered by modern commercial FPGAs

(Xilinx, Altera).

Since the main contributions of this thesis are on design automation tools and tech-

niques for Reconfigurable MPS, the main target platform will be fine-grained, loosely-

coupled and dynamically Reconfigurable MPS because of their wide adoption, popu-

larity, as well as the readiness of supporting compilation tools and availability of the

hardware.

Table 1.1 provides a number of available Reconfigurable MPS based on above crite-

ria and also specifies whether these systems can benefit from our contributions.
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Table 1.1: Existing Reconfigurable MPS platforms

Reference Coupling Granularity Reconfiguration Applicable

NAPA [134] Loosely Fine Dynamic True

Garp [68] Loosely Coarse Dynamic False

CHAMELEON [153] Loosely Fine Dynamic True

MorphoSys [150] Tightly Coarse Dynamic False

Chimaera [184] Tightly Fine Dynamic False

Experimental platform [111] Loosely Fine Dynamic True

Annabella [154] Loosely Coarse Dynamic False

Smart ChipS [143] Loosely Mixed Dynamic True

CerberO [30] Loosely Fine Dynamic True

Zedboard [8] Loosely Fine Dynamic True

Altera SoC [3] Loosely Fine Dynamic True

1.2 Design Automation for Reconfigurable MPS and Chal-

lenges

As discussed from previous Sections, with their ability to adapt both hardware and soft-

ware to the application requirements, Reconfigurable MPS offer both high computa-

tional performance and low power consumption at the same time. Furthermore, they

also overcome the high cost and long development time limitations of ASIC solutions.

They can also provide adequate robustness and adaptability for modern computing sys-

tems. Therefore, with all these potentials and capabilities, they are great candidates for

a wide range of applications across various industry domains: from embedded applica-

tions (multimedia applications, communications, etc.) to high performance computing

(data analytics, financial computing, etc.), from consumer software (image, video pro-

cessing, etc.) to scientific workload (cyber security, simulations, etc.).
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However, along with advantages, the combination of software and hardware recon-

figurability also drastically increases the complexity of the system and imposes new

challenges for the design methodologies and design automation tools. Although there

are increasing studies in both academia and industry to address this problem, there is still

a large gap between the advancement of reconfigurable HW and the tools supporting its

development process. In this Section, we will give an overview on the typical devel-

opment process of applications on Reconfigurable MPS, then highlight the important

characteristics of the tools required for the process. Furthermore, we will discuss the

main challenges of each components in the process, which lay the foundations for the

research targets as well as the main contributions of this thesis. A more comprehensive

review on each component and current progress in the field are provided in Chapter 2.

1.2.1 Application Level Analysis

Figure 1.5 presents a general design flow for Reconfigurable MPS and the necessary

EDA components to make the development process efficient and effective. The devel-

opment process of Reconfigurable MPS starts with the Analysis on Application Level,

where the computational characteristics of applications are extracted with Profiling tools.

Then, high level representations of applications written in high-level language (C, Mat-

lab, Java, etc.) are reconstructed to better suit the underlying hardware architecture of

reconfigurable resource with Code Restructuring tools. The application profiling and

code restructuring procedure are tightly integrated together and based on the common

techniques and theories of compiler front-end and their representations. Therefore, the

automation tools in this level can be developed by inheriting well-established techniques

in parallel compiler for multiprocessor system with significant adaption to the unique

hardware specification of reconfigurable platforms.
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Figure 1.5: Design flow for Reconfigurable MPS
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1.2.2 Macro/System Level Synthesis and Exploration

The second part of the design flow deals with exploring different combinations of hard-

ware components at system level (reconfigurable tiles and CPUs, memories and com-

munication resources, etc.) to define the most suitable architecture for applications’

requirements and constraints. Hence, this process is generally referred as Macro or

System Level Synthesis and Exploration. To fulfill above functionality, it requires the

involvement of a number of different tools: Hardware/Software (HW/SW) Partitioning,

Mapping and Scheduling, Design Space Exploration tools and Modeling techniques.

Main Components

The main process of System Level Synthesis starts with HW/SW Partitioning, where the

analysis result from Application level is considered to decide which part of the appli-

cation should be executed on which components of the system (CPU or reconfigurable

hardware). After that the Mapping process is executed to derive the spatial allocation

and binding of computational processes in the application onto physical hardware units

on the Reconfigurable MPS platform. Thereafter, Scheduling tool provides execution

order of these computation processes either in system level or in device level where

multiple tasks of the applications are allocated to the same hardware component.

HW/SW Partitioning, Mapping and Scheduling are the three main subproblems of

System Level Synthesis and inherently dependent on each others.They are usually bound

together in an integrated process that requires iterative exploration and refinements.

Therefore, they should be automated to a high degree.

Supporting Tools

Because of their complexity the solutions for above subproblems are exponentially in-

creasing with the number of operations in the computational processes under consid-

eration. Therefore, the exploration in system level usually deals with a coarse-grained
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abstract model of the application. A list of widely used application models is presented

in Chapter 2 along with the description of two modeling tools adopted in our works:

Task Graph and Synchronous Data Flow Graph.

To facilitate the multi-objective requirements of System Level Synthesis problems,

Design Space Exploration (DSE) tools provide systematic mechanism for constructions,

evaluations and comparisons between different combinations of the design parameters.

Because of the high dimensions of the design space, the main challenge for DSE tools

is the long execution time and exponential increase of complexity with the number of

parameters under consideration. Applying Genetic Algorithm and Machine Learning

techniques to mitigate this challenge is one of the targets in this thesis.

Main Challenges

The main challenge of the components in System Level Synthesis and Exploration is that

they belong to the class of NP-complete problem so strictly optimal solutions are fea-

sible only for a constrained version of the problems that are applied to simple platform

architecture or narrow application domains. For complex and heterogeneous platforms,

different heuristics approaches need to be explored for efficient and effective solutions.

Therefore, developing these heuristics are inherently important for System Level Syn-

thesis and is one of the purposes of this thesis.

The second challenge for Reconfigurable MPS’ designers come both from the ad-

vancement of hardware technology as well as from the application requirements. In-

creasing mobility and autonomous requirement of devices put a new emphasis on the

importance of power and energy consumption for electronic design. Furthermore, the

growing complexity of system integrating both hardware and software components and

the shrinking size of transistor make electronic systems become less reliable and more

sensitive to interference from the environment. However, the emergence of embedded
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systems into critical applications in all fields of human being (implantable devices, mis-

sion critical system, security applications, etc.) demand extremely high requirement in

reliability and robustness. Therefore, the development of electronic systems in general,

and reconfigurable MPS in particular, should present itself as a multi-objective opti-

mization problem, which has to take into account not only the performance but also the

robustness, reliability as well as the energy and power requirements of the applications.

In this thesis, we focus on two of the most important objectives: performance and energy

consumption. Let’s examine a practical usecase to see why they are so important to be

tackled first.

Multimedia applications on mobile devices

Nowadays, multimedia applications running on mobile devices is quite a popular use-

case. With the ever increase in quality standard: color depth (8 bit to 16 bit), spatial

resolution (HD1080p to QuadHD 4Kx2K pixels), frame rate ( 30fps to 60fps to 120fps),

a mobile device might need to process billion of pixels per second (4Kx2Kx120) to

meet the quality of services of modern multimedia application. That puts a tremendous

pressure on the computing power of the mobile devices and imposes high throughput re-

quirement on the implementation of the whole system. On the other hand, because of the

battery constraints of mobile devices, the runtime of multimedia application on these de-

vices does usually not meet the expectation of users [179]. As shown on Fig.1.6, experts

on the field also predict that there will be a huge gap between the power requirement

and the real capacity of the mobile devices. Therefore, an emphasis on energy-efficient

design is critical for those applications. We have successfully applied our contribu-

tions proposed on System Level Synthesis to several real-life multimedia applications in

Chapter 3-5 to address both performance and energy consumption objectives.
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Figure 1.6: Power requirement gap of mobile devices [12]

1.2.3 Micro/Device level synthesis and exploration

Micro-architecture exploration and synthesis is the process of generating executable im-

plementation of computational processes on each hardware device. For GPPs, it is the

compilation of high-level languages to binary or machine code. For the reconfigurable

unit, the process of translating from high-level description to RTL implementation needs

special support from High Level Synthesis (HLS) tools. Despite tremendous research

and development in HLS domain recently, the tools are not mature enough to be com-

parable with the manual hardware design. Further, because of the new emergence of

the field, there is a lack of efficient Design Space Exploration tools specific to the char-

acteristics of HLS component. Addressing these challenges will not only improve the

performance of HLS tools but also widen the usability of reconfigurable hardware in

general.

The second set of tools that are widely used to generate the RTL implementation

on reconfigurable platform is hardware acceleration generator or core generator. Al-

though it’s usually developed to support only specific type of applications, the generated

accelerators from these tools can achieve competitive performance and energy.

The final component in the design flow is the Logic Synthesis and Implementation

tools provided by the FPGA vendors, these tools take RTL implementation as input and

produce the bitstream implementation specific to the FPGA architecture of each vendor.
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1.3 Research Objectives and Contributions

1.3.1 Research Objectives

With the aim of making the design flow for Reconfigurable MPS more productive and

autonomous, this thesis provides algorithms and tools that accelerate the development

process in both macro level and micro level synthesis. Moreover, these tools are de-

veloped with consideration on multiple design criteria (throughput, latency, energy con-

sumption, leakage power, etc.) to enable user to explore the trade-off between them.

To achieve that purpose, we have implemented our contributions as the components of

a general EDA flow for Reconfigurable MPS while addressing above-mentioned chal-

lenges. Figure 1.7 visually summarizes our main contributions as well as the structure

of this thesis. A brief introduction on each component is given in the next Section.

1.3.2 Contributions

Throughput and Energy-aware Mapping

To deal with the high complexity in macro level synthesis, a mapping algorithm is

proposed for efficiently assigning tasks to processing elements on heterogeneous plat-

forms with reconfigurable hardware. This mapping approach computes multiple energy-

throughput trade-off points (mappings) at design-time and uses one of these points at

run-time based on desired throughput and current resource availability while optimiz-

ing for the overall energy consumption. A throughput and energy-aware design space

exploration (DSE) strategy has been proposed to derive the trade-off points. While sig-

nificantly reducing the complexity of the DSE, the proposed strategy still evaluates map-

pings for all the resource combinations of the platform, providing optimal mapping solu-

tions for all the scenarios of system architecture at run-time. Moreover, an energy-aware

runtime mapping technique has been proposed that utilizes the DSE results to perform
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Figure 1.7: Contributions in the thesis
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efficient mapping. Experimental results show that proposed strategy achieves better

energy-throughput tradeoff points, covers all the resource combinations and reduces en-

ergy consumption up to 25% at design-time and additionally 17.8% at run-time when

compared to state-of-the-art techniques [148, 159]. This work is published in [122].

Leakage-aware Scheduling

To mitigate the NP-hard problem related to scheduling hardware tasks on reconfigurable

devices with dynamic Partial Reconfiguration, heuristic approaches are used to explore

the trade-off between performance and leakage power consumption. As a result, a

resource management approach containing scheduling, placement and post-placement

stages has been proposed to address the leakage issue. In scheduling stage, a leakage-

aware cost function is derived to cope with the leakage power. The placement stage

uses a cost function that allows designers to decide a trade-off between performance

and leakage-saving. The post-placement stage employs a heuristic approach and shows

further improvements. Experiments show that our approach can achieve large leakage

savings for both synthetic and real life applications with acceptable extended deadline.

Furthermore, different variants of the proposed approach can reduce leakage power by

40-65% when compared to a performance-driven approach and by 15-43% when com-

pared to existing works [21, 72, 188]. Our work in this chapter is presented in [123].

ML and GA for Multi-objective DSE

In above-mentioned System Level Synthesis tools, we extensively applied list-based

heuristics to solve mapping and scheduling problems due to its simplicity and efficiency.

In our list-based heuristics, a cost/priority function is used to compute the priority of

tasks/jobs and put them in an ordered list. The cost function has been developed to

be complex enough to cover increasing number of constraints in the system design.

Moreover, to enable system designers to examine the trade-off between a number of
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design requirements (performance, power, energy, reliability . . . ), we propose a frame-

work to utilize the Genetic Algorithm (GA) for exploring the design space and obtaining

Pareto-optimal design points. Furthermore, to address the time consuming issue of DSE

process, multiple Machine Learning techniques are used to build predictive models for

the Pareto fronts. The models are built using training task graph datasets and applied on

incoming task graphs. Our framework has been verified with both mapping and schedul-

ing heuristics. For scheduling problem, the Pareto fronts for incoming task graphs are

produced in time 2 orders of magnitude faster than the traditional GA, with only 4%

degradation in the quality. For Mapping problem, our framework can boost the perfor-

mance 25x faster while sacrificing less than 5% quality of the Pareto front [121].

DSE for HLS

On micro-level synthesis, a framework to exploit the loop structure has been imple-

mented to shorten the development time with HLS tools. Due to the high level of abstrac-

tion, HLS tools can easily provide multiple hardware designs from the same behavioral

description. Therefore, they allow designers to explore various architectural options

for different design objectives. However, such exploration has exponential complexity,

making it practically impossible to explore the entire design space. The conventional

approaches to reduce the design space exploration (DSE) complexity do not analyze the

structure of the design space to limit the number of design points. To fill such a gap, we

explore the structure of the design space by analyzing the dependencies between loops

and arrays. We represent these dependencies as a graph that is used to reduce the dimen-

sions of the design space. Moreover, we also examine the access pattern of the array and

utilize it to find the efficient partition of arrays for each loop optimization parameter set.

The experimental results show that our approach provides almost the same quality of

result as the exhaustive DSE approach while significantly reducing the exploration time

with an average of speed-up of 14x [124].
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Option pricing hardware generator

Finally, an accelerator auto-generation tools for option pricing applications is also im-

plemented for further boosting the design productivity of reconfigurable hardware. Al-

though a number of different FPGA-based option pricing accelerators have been imple-

mented, none of the existing works cover more than one models or different types of

options, which yields problem of productivity of implementing several hardware accel-

erators for the different models. To fill in the gap, we propose a design flow for generat-

ing efficient hardware accelerators for option pricing applications with different models

and option types. The framework boosts the designers productivity and enables quick

prototyping on FPGA platform by providing general template architecture for option

pricing applications. The architecture comes along with a prebuilt design library, which

covers a wide range of popular financial models. Experimental results for four models

show that the accelerators generated from our design flow outperform their counterpart

software implementation with two order of magnitude speedup. While comparing with

existing hardware designs for the same models, our framework can produce the acceler-

ators that overcome most of manual designed engines.

1.3.3 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents detail discussion on

design flow and automation tools for Reconfigurable MPS. Chapter 3 provides details

on the throughput, energy aware mapping approach for heterogeneous platform with

reconfigurable hardware. The leakage aware scheduling algorithm is presented in Chap-

ter 4. Chapter 5 wraps the contributions on System Level Synthesis with the Machine

Learning and Genetic algorithm optimization framework. DSE approach for HLS us-

ing loop array dependencies is introduced in Chapter 6. The auto-generation framework

for option pricing hardware accelerators is presented in Chapter 7. Finally, Chapter 8

concludes this thesis with an overview of the future research directions.
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Chapter 2
Design Automation Tools for

Reconfigurable MPS

As mentioned in the previous chapter, in a typical design flow for Reconfigurable sys-

tem, the first task of designers is to analyze the computational characteristics of appli-

cation with profiling tools. Then, a partitioning process is involved in deciding which

parts of the applications are suitable for being processed on the reconfigurable hardware

resource. Thereafter, the hardware designer needs to implement the RTL-description of

those parts using a Hardware Description Language. Subsequently, the real hardware

implementation is generated using the logic synthesis tools that are usually provided by

the reconfigurable hardware vendor. Obviously, the above process requires the skills

of both software and hardware designers and has many steps that need to be manually

implemented.

To significantly boost the development productivity and reduce the inefficiency of

this error-prone and time-consuming procedure, a uniform design flow should be de-

veloped. Such a design flow needs to include EDA components that allow automating

the compilation from application‘s high-level description into its architecture optimized

representation, as well as the synthesis process to hardware level implementation. More-

over, this design flow needs to provide designers the ability to automatically explore

25



2.1 Application Level

different implementation options for the architecture in both system (macro) level and

device (micro) level. In previous chapter, a brief overview of such a design flow for

Reconfigurable MPS and its main challenges are presented. This chapter devotes for

detailing the components of the design flow and reviewing the current progress and ex-

isting toolsets available for each stage in the development cycle of Reconfigurable MPS.

The remainder of this chapter is structured as follows. Section 2.1 summarizes the

main tasks in Application Level: Application Profiling and Code Restructuring as well

as the existing techniques in this domain. Section 2.2 provides details on each sub-

problems of the System Level Synthesis and Exploration stage (HW/SW Partitioning,

Mapping, Scheduling) along with the supporting tools: Design Space Exploration and

Modeling tools. Moving toward Micro Level Synthesis and Exploration, Section 2.3

reviews the current progress of High Level Synthesis area and Hardware Accelerator

Auto-generation tools. Finally, Section 2.4 concludes this chapter.

2.1 Application Level

In this early stage of the design process, the application is analyzed to extract its compu-

tational characteristics and bottlenecks. The result of this analysis is then used to decide

which parts of the application should be assigned to the reconfigurable hardware. Since

the initial description of the application is usually written in high-level languages (C,

Matlab, Java, etc.) with the main purpose of describing its behavioral functionality, part

of it needs to be reconstructed to better suit the underlying hardware architecture of re-

configurable resource. Therefore, two main categories of tools needed at this stage are

application profiling tools and code optimization tools as shown in Fig.2.1.
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Figure 2.1: Automation tools for Application Level

2.1.1 Application Profiling

Two major approaches for application analysis are static and dynamic. Static analysis

methods use compiler techniques to discover essential information on the computational

metrics of an application such as average frequency or execution count of particular in-

structions, groups of instructions or functions, the ratio of data-processing instructions to

control instructions, data types and data access methods, etc. Dynamic analysis methods

extract these metrics by executing the application on the real hardware or the platform‘s

emulation or its simulation model. One of the main purposes of this analysis process is

to provide necessary information for restructuring and optimizing the application algo-

rithms or high-level codes for the execution on reconfigurable hardware.

2.1.2 Code Restructuring

Since the reconfigurable hardware‘s parallel executing model is inherently different from

the sequential execution model of the GPP, the processes of transforming and optimiz-

ing the application algorithm and code are very important. While the Reconfigurable

hardware offers massively parallel, systolic and pipelined computing paradigm with

distributed data structures, the CPU-centric programming model follows a sequential

approach with random-access and pointer-based data structure. As a result, a directly

27



2.1 Application Level

translated version of algorithms or code written for CPU-centric programs cannot ex-

ploit the advantages of underlying reconfigurable hardware architecture. Therefore, the

application should be significantly rewritten to achieve expected acceleration or energy

savings.

One of the primary tasks of code restructuring is to automatically transform a se-

quential code portion to its parallelized version. This is well-known as automatic par-

allelization technique and required to address a number of challenges related to loop

restructuring, control restructuring, data reorganization, or reuse, etc. However, because

of the major attribution of loops in the computational effort and time in regular applica-

tions, intensive researches have been focused on loop optimization.

2.1.3 Loop Optimization Details

Loop optimization is usually a combination of two processes: loop analysis and loop

transformation. Loop analysis mainly answers the questions if a transformation is safe

and worthy. To answer the first question, a number of dependence analyses need to be

performed (data, pointer, recursion, indirect access, indirect calls) to determine if differ-

ent iterations of a loop can be executed in parallel. For answering the second question,

estimation and comparison of execution time and resource are required between sequen-

tial and parallel options. Loop transformation is a huge topic in the domain of parallel

computing. Its ultimate purpose is to reconstruct the loop implementation such that

as many iterations can be executed safely and efficiently as possible in parallel. Loop

transformations usually involve loop splitting, loop unrolling, loop tiling, loop fusion,

etc. More details on loop transformation can be found in [23], [22], [116].

Another popular way to extract more parallelism from sequential applications is con-

trol restructuring which involves combining control nodes to increase the potential of

executing the operations related to these nodes in parallel. One example is transforming

serial nested if-then-else structure into a parallel multi-branch structure with switch and
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case. A more general approach is combining together frequently executed sequences

of basic operation blocks to increase instruction level parallelism. The trace scheduling

method [57], superblock [66] and hyper-block formation [95] are representative exam-

ples of this approach.

There are several highlights on the main features of the tools in Application Stage.

Firstly, the processes of application analysis and code restructure are tightly integrated

together because of common requirements and toolsets. Generally, these steps are based

on the knowledge and techniques of compiler front-ends and their intermediate represen-

tations. As a result, the development of the tools at this level requires more knowledge

on the software development domain and can be inherited from well-established tech-

niques in parallel computing for multiprocessors. However, signification effort needs to

be derived to adapt with the unique hardware specifications of reconfigurable platforms.

2.2 Macro/System Level Synthesis and Exploration

On the hardware side of the design flow, a process of exploring different sets of possi-

ble compositions of hardware components, defining the most suitable one and creating

their real implementations are coined as architecture exploration and synthesis. The

selected architecture needs to support the application behaviors, satisfy the different de-

sign constraints and objectives on performance/throughput, energy consumption, area,

reliability, etc.

The procedure and components of architecture exploration and synthesis might be

different depending on the nature and essence of the applications domain and the pro-

vided hardware platform. For our targeted Reconfigurable MPS platform, which is de-

fined previously in above Section, this process will involve system (macro) level synthe-

sis and device (micro) level synthesis.

Macro-architecture synthesis and exploration deals with architectural resources at
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Figure 2.2: Design automation tools in Macro/System Level

the system level (reconfigurable tiles and control processing units, memories and com-

munication resources, etc.). The decisions made at this level might be the number of

reconfigurable or fixed processing elements in use, the memories and communication

resources of each type that need to be instantiated on the platform as well as specific

instantiation of processors, memories and communication resource. Moreover, the map-

ping of different computation processes on specific processing elements and the coarse

schedule of these computation processes also belong to this level. The main components

in Macro-architecture synthesis and exploration stage are presented in Fig.2.2: Model-

ing Tools, HW/SW partitioning, Mapping, Scheduling and Design Space Exploration

(DSE) tools. The details of these components are presented as follows.

2.2.1 Modelling Tools

Since all the sub-problems in this stage such as HW/SW partitioning, mapping and

scheduling are known to be NP-complete, the combination of them is also NP-complete
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[59]. As a result, the solution space of System Level Synthesis and exploration is ex-

ponentially increasing with the number of operations under consideration. Therefore, to

reduce the problem into one with manageable difficulty and reasonable execution time,

the elementary operations have to be joined together to form larger macro-operations

(task or job) and the sub-problems in this stage usually work with a coarse-grained ab-

stract model of the applications. There are numerous ways to describe the behavioral

model of an application such as: Data Flow Graph (DFG), Control Data Flow Graph

(CDFG) [69], Communicating Sequential Processes (CSP) [70], Petri nets [63] or Kahn

Processing Networks [61]. Each of these application models has different features and

support different kinds of applications, computations, with different level of abstrac-

tions. However, Directed Asynchronous Graph (Task graph) [54] and Synchronous

Dataflow Graph [160] are widely used for the sub-problems in System Level Synthesis

stage. They are compact and easy enough to process for efficient mapping and schedul-

ing solutions while still ensuring that adequate information can be captured in the model

for highly effective decision making.

In Task Graph model, an application is represented as a graph where nodes are the

computational units and edges represent the dependency between them. Nodes are col-

lections of smaller operations which form a task in the Task Graph and are usually

featured with some characteristics: execution time, deadline, period, memory size, etc.

The edges might present different types of dependencies between tasks such as com-

munication dependency, data dependency or time dependency. The features of the task

and the dependencies of edges are problem specific. In general, the graph is acyclic -

the dependencies between tasks are one way - meaning that tasks cannot impose further

dependencies on their antecedents.

Synchronous Data Flow Graphs (SDFGs) are often used for modeling modern DSP

applications and for designing concurrent multimedia applications implemented on mul-

tiprocessor systems. Both pipelined streaming and cyclic dependencies between tasks
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can be easily modeled in SDFGs. SDFGs allow analysis of a system in terms of through-

put and other performance properties e.g., latency and buffer requirements. The nodes

of an SDFG are called actors; they represent functions that are computed by reading

tokens (data items) from their input ports and writing the results of the computation as

tokens on the output ports. The number of tokens produced or consumed in one execu-

tion of an actor is called port rate and remains constant. The rates are visualized as port

annotations. Actor execution is also called firing, and requires a fixed amount of time,

denoted by a number in the actors. The edges in the graph, called channels, represent

dependencies among different actors.

In subsequent Sections, we refer to the computational units under consideration (the

tasks in Task Graph or actors in SDF) as computational processes and the representation

of the applications (the graph in Task Graph and SDF) as the network of computational

processes.

2.2.2 HW/SW Partitioning

As the interface between the application analysis and System Level Synthesis, the HW/SW

partitioning steps involve the analysis result from high-level description of the applica-

tion and try to decide which part of the application should be executed on which com-

ponents of the system and automatically generate the corresponding implementation

from the original high level descriptions. Since both of the partitioning and coordinat-

ing (mapping and scheduling) of different computational parts are NP-complete [59],

the existing strictly optimal solution is proposed only for constrained version of the

problem (where system included only a single programmable processor and single ac-

celerator [83], [39]). A formal way to solve this problem for heterogeneous systems

is to model it as an integer programming problem. Following this approach, the ac-

tual HW/SW partitioning is performed when estimating the timing of each processing
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element while observing the timing constraints; thereafter, the actual scheduling is per-

formed for each partition block. Authors in [26, 109] have implemented this method to

solve various versions of the HW/SW partitioning problem.

For more general and larger heterogeneous systems, heuristic approaches are effec-

tively used. For example in [119], based on Petri-net behavior specification, the authors

have modeled the application as a weighted graph of computational processes and their

communication. For partitioning the graph into sub-graphs corresponding to different

processing elements, they used simulated annealing heuristic to ensure the sum of the

weights of all the cut edges (communication overhead between processing elements) are

minimized and the total weights of the subgraphs are balanced (load balancing between

processing elements). After this work, a number of other heuristics have been applied

to solve this problem: iterative improvement in [113, 180], constructive heuristic algo-

rithm [47, 156] or ant colony optimization [175, 176].

Recently, constraint programming and evolutionary algorithm are promising meth-

ods for efficiently tackling this problem with multiobjective requirements. They are

reported to generate high quality solutions for complex architecture with heterogeneous

components [138], [52], [53], [146].

2.2.3 Mapping and Scheduling

The spatial allocation and binding of components in application model (computational

processes and interaction between them) into the physical unit of the platform (process-

ing elements, network medium, memory devices, etc.) is coined as the mapping process.

The result of this process is the assignments that need to satisfy the specific design con-

straints (structural or physical) and optimize the objectives of the quality model in the

context of specific trade-off priority between these objectives.

Another important resource management task is scheduling. While mapping pro-

vides spatial assignment for computational processes into components of the hardware
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platform, scheduling provides the execution order of these computational processes ei-

ther in system levels or in the devices level where multiple computational processes

are allocated to the same hardware components. As a result, scheduling process of-

ten happens after mapping when the computational processes are already bound to a

specific hardware component. Similar to the mapping process, scheduling also needs to

take into account the design constraints and the trade-off preferences between objectives

while optimizing these objectives.

There are several common characteristics among the sub-problems in System Level

Synthesis:

• There are inherent dependencies between them so that they are usually closely

bound together in an integrated process that requires iterative exploration and re-

finements. Therefore, they should be automated to a high degree.

• All of them belong to the class of NP-complete problem so strictly optimal solu-

tions are feasible only for a constrained version of the problems that are applied

to simple platform architecture or narrow application domains. For complex and

heterogeneous platform, different heuristic approaches need to be explored for

efficient and effective solutions.

Since mapping and scheduling are extremely important in the System Level Syn-

thesis stage, they are two of the main targets in this thesis. The next two subsections

summarize the state-of-the- art related works in the field and the unique features of our

contributions.

Throughput and Energy-Aware Mapping approach

Earliest DSE strategies that generate multiple mapping have been reported in [62,93,

96,159]. By generating various mapping solutions at design-time, they can provide sup-

porting information to handle the dynamism in application throughput requirement and
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resource availability at run-time. However, they suffer from several shortcomings. They

target only fixed architecture platform, do not scale well with the number of tiles, and

perform duplicate (similar tasks to tiles allocations at different locations in the platform

(mapping)) evaluations for large-size platforms. The duplications increase the number

of evaluated mappings significantly and thus the overall evaluation time. In order to

overcome the aforementioned limitations, our DSE strategy considers a generic hetero-

geneous platform to provide mapping solutions that are applicable to a variety of target

platforms, which is not possible while considering a fixed platform. The generic plat-

form contains tiles depending upon the number of tasks in the application. A tile includes

a processing unit and other elements like memory or network interface (NI). Processing

Unit may have different hardware realization such as general purpose processor (GPP),

Graphics Processing Unit (GPU), digital signal processor (DSP), reconfigurable hard-

ware (RH) , etc. and it determines the tile type. The results of our DSE analysis for

a platform can be reused for multiple target platforms as long as the tile types and the

maximum distance between tiles of the target platform are subset of those considered

during DSE analysis. Therefore, the analysis results are applicable to variety of target

platforms and repeated evaluations can be avoided. Furthermore, duplications during

the analysis are avoided by not considering a bigger platform than required.

For run-time mapping, a large body of literature exists [38, 104, 112, 186]. These

early studies generate the mapping solution on-line at the arrival of applications without

any prior analysis. Therefore, the result is usually not optimal due to the limited com-

putation resources at run-time. Recently, mapping strategies have changed their focus

to hybrid approaches, which use the prior evaluation (done at design-time) to support

the mapping decision at run-time [97, 142, 185, 187]. Most of these works perform the

optimization for only one performance metric like energy consumption, throughput or

resource usage. The method in [142] provides the optimal mapping in term of aver-

age power consumption only; therefore, it cannot guarantee the throughput constraint

35



2.2 Macro/System Level Synthesis and Exploration

of applications. In [97] and [187], the DSE strategies take into account multiple quality

parameters at design-time, but leave the resource constraint problem for a controller at

run-time. On the other hand, our strategy produces mappings for all the possible re-

source combinations, where the mappings at each resource combination represent trade-

off between energy and throughput. Therefore, it provides better mapping solutions for

several performance metrics. The strategies in [97,142,185,187] target a fixed platform,

whereas our method is applicable to generic platform. In [147], a general approach is

considered but it is applicable only to homogeneous platforms. In [148], the authors tar-

get a generic heterogeneous platform, but the DSE is conducted in terms of throughput

optimization only. In contrast, our design-time analysis takes both throughput and en-

ergy consumption into account. Further, DSE in [148] reduces the number of mappings

significantly while focusing on the high-quality (throughput) mapping solutions. How-

ever, evaluation of mappings at a number of resource combinations is discarded during

the DSE process. Therefore, the analysis results might not contain mapping solutions

for all the different resource combinations available at run-time. Our proposed strat-

egy addresses this problem and reduces the energy consumption by mapping the highly

communicating tasks onto the available closest tiles.

Multistage Leakage-aware Scheduling Technique

Task graph scheduling for FPGA is an extensively studied topic [17, 21, 151, 157].

In [151], an efficient technique to schedule real-life applications on FPGA is proposed,

but partial reconfiguration and resource constraint has not been considered. Most of

the scheduling methods for FPGA focus on specific problems related to reconfigura-

tion overhead and defragmentation. Ahmadinia et al. [17] combined scheduling and

placement method for 2D FPGA architecture using cluster-based method to improve the

performance by 20% and task rejection by 16.2%. Christoph at el. [157] integrated an
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on-line placement into a scheduling algorithm using small tasks first and earliest dead-

line first techniques. However, they do not take into account prefetching technique and

resource constraint due to single reconfiguration controller pertaining to PR FPGA. The

first work that considered both prefetching technique and resource constraint was intro-

duced by Banerjee at el. [21]. The scheduling and placement models are included with

the partitioning stage to form a complete HW-SW co-design approach for PR systems.

The linear placement model in this work is later adopted by Yuh et al. [188] and Hsieh

et al. [72] to address the leakage power issues.

Yuh et al. [188] first introduced the idea of using scheduling approach to mitigate the

leakage issue. The authors utilized the scheduling and placement results from [21] and

on top of that they developed a post-placement heuristic to reduce the delays between ex-

ecution and reconfiguration parts. They also proposed an exact ILP solution to perform

the post-placement in order to verify the effectiveness of the heuristic. Since their work

tackles the leakage optimization after the tasks are already allocated onto the FPGA,

the existing placement results may not allow their approach to significantly eliminate

the leakage power. To achieve maximal leakage saving, our work addresses the leakage

problem in all phases of the resource management process: scheduling stage, placement

stage and post-placement stage.

With the same model and target, Hsieh et al. [72] introduced another approach to

reduce the leakage waste. Their method consists of 3 phases: binding, priority dispatch-

ing and split-aware placing. First, the reconfiguration and execution parts of all tasks

are combined together in the binding phase so that the leakage power is minimal. Then,

each task is assigned a priority value based on the position of the task in the task graph.

Finally, while placing the tasks into FPGA architecture, the split-aware placer checks

for the deadline. If the deadline is violated, the placer splits the reconfiguration and the

execution phase of the task. While the work in [72] tried to solve the leakage problem in

the placement phase only, we propose a more complete solution having multiple stages.
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Table 2.1: Comparison of various approaches

Features Ref. [21] Ref. [188] Ref. [72] Our work

Scheduling Performance No Performance Leakage

driven driven aware

Placement Performance No Leakage Leakage

driven aware aware

Post No Leakage No Leakage

placement aware aware

Priority Dynamic No Static Dynamic

of tasks

Furthermore, the scheduling algorithms in [72] used static priority, which is computed

before the actual scheduling process takes place. The static priority is computed based

on the characteristic of the task graph and remains unchanged during the scheduling pro-

cess. In contrast, our algorithm dynamically recalculates the priorities of all available

tasks every time a task is allocated onto the FPGA. Therefore, our algorithm updates the

current available resource of the FPGA, leading to a better scheduling decision.

Table 2.1 summarizes the distinction of our work in comparison to the closely related

works reported in the literature. As can be seen, existing works perform leakage aware

optimization in scheduling, placement, or post-placement stages, whereas our approach

performs optimization in all the stages. Further, unlike most of the approaches that

consider static priorities of tasks, our approach considers dynamic priorities.

2.2.4 Design Space Exploration Tools

To cope with multi-objective requirements and abovementioned high complexity of

system-level synthesis problem, efficient and effective ways for exploring design space
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need to be developed. They are generally referred as design space exploration tools. Ba-

sically, they are implemented as mechanisms that allow systematic construction, evalu-

ation and comparison between different combinations of the design parameters. In this

process, they must consider all the system parameters related to system synthesis prob-

lems while specifying the preferences of the solutions through constraints, objectives

and trade-off priority. An essential part of the DSE tool is the decision-making scheme

that intelligently guides the exploration process toward “optimal”solutions in the con-

text of specified constraints, objectives and trade-off priority. Ideally, these DSE tools

should adequately exploit trade-offs between important system characteristics and result

in more coherent, compact, comprehensive, reliable, robust and lower-cost solutions.

Because of its characteristics, multi-objective optimization tools like evolutionary

algorithm and particle swarm optimization are widely adopted to implement DSE tools

[39], [81], [80], [137]. Although providing acceptable solutions, these methods require

a long execution time and their complexity increases exponentially with the dimensions

of the parameters under consideration.

Machine Learning framework for DSE

Genetic algorithm approaches have been used intensively for DSE, especially in

cloud computing systems [65]. However, when it comes to multiprocessor systems

(MPS) with tight timing requirements, the applications of GA are quite limited be-

cause of its time-consuming behavior. Sutar et al. proposed memetic algorithm that

combines GA with simulated annealing to solve the DSE for scheduling problem of

precedence constrains tasks [163]. Towards using GA-based scheduling algorithm with

primary-backup scheme to improve the fault-tolerance of real-time MPS, Zarinzad et

al. and Samal et al. proposed their frameworks in [189] and [136] respectively. Obvi-

ously, none of above-mentioned studies incorporates ML techniques to solve the time-

consuming problem of GA methods in DSE domain. That unique point makes our work

39



2.3 Micro/Device Level Synthesis and Exploration

stand out from previous studies, which also try to apply GA approaches for solving DSE

problems.

A comprehensive survey on existing learning-based approaches for the same prob-

lems on cloud computing systems has been conducted by Hormozi et al. [71]. More spe-

cific overview on the direction of energy minimization is presented by Berral et al. [27].

As summarized from these works, the main application of ML techniques in scheduling

problem is performance modeling and Quality of Service (QoS) modeling. For perfor-

mance modeling purpose, the historical data on execution trace of previous applications

are used to build predictive models to forecast the performance of new coming appli-

cations [79]. In the other hand, the models for QoS are usually built based on the

dependency with available resource (CPU, memory, bandwidth . . . ) and application

requirements [28]. These models are then used to assist the scheduler at runtime to ef-

ficiently allocate the resources. Second approach to apply ML techniques in resource

management is to classify applications and make decision based-on the classification

results [55]. Using unsupervised learning techniques such as Reinforcement Learning

to build autonomic self-management schedulers is another trend not only in cloud com-

puting [120] but also in digital system design [46]. Our framework belongs to the first

application of ML in resource management domain. However, the differences in purpose

and the interaction between DSE algorithms and ML techniques make our framework

unique and novel. While the existing works try to assist the schedulers by predicting the

performance or QoS of new applications, our framework tries to model the behavior of

schedulers during GA optimization process and build predictive model for the result of

that procedure (i.e. Pareto front).

2.3 Micro/Device Level Synthesis and Exploration

After being assigned in System Level Synthesis stage, the tasks are transferred to ap-

propriate processing elements, where their executable implementations on these devices
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HLS

Accelerator  
Generation

RTL

High Level Description
(C, Java, Matlab …)

Figure 2.3: Design automation tools in Micro/Device Level

are generated. The process of generating the detailed implementations on each device is

coined as micro-architecture exploration and synthesis. For GPPs, this is the straightfor-

ward process of compiling the high-level description of the tasks to binary or machinery

code. However, for the reconfigurable devices (FPGA), the process of translating from

high-level description to RTL implementation requires special treatments and dedicated

tools as shown in Fig.2.3.

The RTL-level implementation requires the creation of data-path components and

control-path components. Data-path components perform most of the computation, data

transmission and storage, and can be further divided into computational components

(arithmetic and logic units, multipliers, etc.), memory components (registers, embedded

memory units, etc.) and interconnection components (point-to-point interconnections,

buses, multiplexers, etc.). Whereas, control-path components manage the cooperation

between data-path components and generate command signals to select and perform

appropriate data-path components at runtime.

The methods and tools adopted in micro-architecture synthesis are dependent on

the underlying reconfigurable architectures and domain of applications. As discussed
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in the previous chapter, the reconfigurable platform can be classified into tightly cou-

pled and loosely coupled architectures. For tightly coupled reconfigurable systems, the

representative candidate is extensible or reconfigurable application-specific instruction

set processors (ASIPs). For this type of reconfigurable devices, the final result in micro-

architecture synthesis is the hardware implementation of the extended instruction set that

satisfies the application‘s requirements. Whereas, for loosely coupled architectures like

reconfigurable coprocessors or hardware accelerators, the result of micro-architecture

synthesis is the RTL-hardware implementation of data-path and control path as dis-

cussed above. As mentioned earlier, the scope of this thesis is limited to loosely coupled

reconfigurable architecture due to the wide availability of supporting tools. A compre-

hensive survey on micro-architecture synthesis for ASIPs can be found in [78].

The area of research that lays the foundation for micro-architecture synthesis of hard-

ware accelerator is High Level Synthesis (HLS) tools. With the aim of automatically

generating the RTL-implementation (VHDL, Verilog) from high-level descriptions (C,

C++, Java, Matlab, etc.), an HLS tool has to perform three main tasks: resource al-

location, operation binding and operation scheduling. Based on the result of applica-

tion analysis, resource allocation decides the amount and types of hardware resources

needed. Operation binding process defines mapping and assigns the high-level opera-

tions on specifically allocated hardware instances. The decisions on sharing and reusing

hardware instances are also taken in this step. Operation scheduling involves decisions

on the temporal execution order of operations sharing the same hardware instances. As

in the System Level Synthesis, all steps of resource allocation, operation binding and

operation scheduling should be performed in a coherent and iterative manner while tak-

ing into account the design constraints on area, power consumptions and maximizing

the design objectives of performance, reliability, robustness in a context of trade-off

preference between these objectives.
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With the advance of reconfigurable technology and increase in popularity of recon-

figurable devices, there has been tremendous research and development of HLS tools

in the past few years from both academic and industrial institutes. There are a num-

ber of commercially available HLS tools such as: Impulse C [11] from Impulse Ac-

celerated Technologies, Catapult C [29] from Calypto Design Systems, DK Suite and

Handel-C [10] from Agility (now part of Mentor Graphics), Cynthesizer [100] from

Forte Design Systems, Vivado HLS [4] from Xilinx, PICO Extreme FPGA [16] from

Synfora (now part of Synopsys), C-to-Silicon Compiler [5] from Cadence, Altera SDK

for OpenCL [2], etc. From academic side, prominent HLS tools include xPilot [41]

(acquired by Xilinx to form Vivado HLS), CHiMPS [130] developed by Xilinx and the

University of Washington, Trident from Los Alamos National Labs [171], Bambu [125]

and DWARV [106] and open source HLS tool Leg-up [36].

2.3.1 DSE for HLS

The optimization and exploration activities are very common in digital system de-

velopment and may happen in different levels of the design process. With regards to

HLS, the DSE procedure can be roughly divided into two classes as follows:

DSE inside HLS

Existing works in this class focus on the DSE procedure for the internal tasks of the HLS

tools themselves. As described in [128], the main components in the HLS flow are allo-

cation, scheduling and binding. Each of these steps can be controlled by different factors

which have a great impact on the performance and hardware usage of the resulting cir-

cuit implementation. Therefore, they are perfect candidates for applying different DSE

approaches and a large body of works has been proposed to apply the DSE for different

transformations in these steps to find the optimal hardware implementation generated by

the HLS tools [132, 144]. Due to its inherence, most of the works in this class require
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full access to the HLS tool and their result may be applicable for only a specific HLS

flow. In contrast, our framework targets the DSE flow in a higher level so that it is more

general and can be utilized with various HLS flows. This advantage is also the common

characteristic of the works in the second class.

DSE with HLS

Studies in this category are orthogonal to the works in the previous class since they are

applied in a higher abstraction level and both techniques can be utilized at the same

time without any conflict. Works classified in this category consider the HLS tools as a

black-box and explore the design space of parameters that are provided to manage the

available optimization techniques offered by the HLS tools. These works have appeared

quite recently in comparison to the previous class since the HLS tools have only recently

sufficiently matured. The earliest works in this direction tried to address the time con-

suming limitation of DSE by applying a heuristic algorithm called adaptive simulated

annealing to prune the suboptimal design points [139]. In [140, 141], Carrion et. al.

tried to reduce the complexity of the DSE problem by grouping the components (array,

loop, functions) of original source code into smaller clusters and then running the DSE

for each cluster. Although the evaluation time is reduced, the quality of the solutions is

significantly affected. Trying to mitigate the effect of local optimization in the previous

works, the authors applied the genetic algorithm to solve the DSE problem [35]. To

further reduce the exploration time, the next generation of the works in this direction

tried to apply Machine Learning (ML) techniques to build the predictive model for the

HLS tool [35, 92]. In these works, several initial design points are generated by HLS

tools to get learning database for the ML tools. Based on these initial data, different

learning techniques are applied to get a predictive model that can simulate the behavior

of the HLS tool as close as possible. After that, the subsequent evaluations are computed

using the predictive model instead of calling the HLS tool.
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Although the learning based methods can significantly reduce the evaluation time,

the accuracy of the predictive models is usually not comparable to the real execution

of the HLS tools. The main limitation of previous approaches is that they traverse the

design space without any in-depth analysis of the structure of the space it-self or without

considering the relationship between parameters of the DSE process. In contrast, our

work analyzes the most important dependencies between loop and array, extracts and

presents them as a graph. Thereafter, we utilize these correlations to derive the optimal

parameters for the array according to the given parameters of the loops. Hence, we

limit the dimensions of the DSE process for the loop only and exponentially shorten the

evaluation time, without sacrificing the quality of the result.

Memory Optimization for HLS

With regards to memory optimization techniques for HLS, there are several works that

aim to optimize the array partition for loop pipelining in HLS [91, 177, 192]. How-

ever, the authors in these works tried to improve the array partitioning process for loop

pipelining only, whereas our work proposes a method to obtain the optimal array parti-

tion factor for loop unrolling techniques. Furthermore, the main target of earlier works

is to develop code transformation tools to provide better input for HLS tools. In contrast,

our work focuses on reducing the DSE time when using HLS tools.

2.3.2 Auto-generation tools

Despite rapid advancements recently, the RTL-implementation generated from HLS

tools are still far from behind when compared with manual custom hardware imple-

mentation in terms of speed and energy-efficiency (e.g. [191], [94], [42]). Therefore, the

second body of works in micro-architecture synthesis focuses on automatic generators

for reconfigurable hardware accelerators. These tools are more applications oriented and

usually developed as a template implementation with can be tuned by a set of parameters
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that are specific to the application domain. Available tools in this area include different

accelerator core generators and libraries of accelerators such as: SPIRAL project for

signal processing applications [129], Core Generator from Xilinx [6] and MegaCore

from Altera [7]. Despite their narrow application support, accelerator core generators

are reported to significantly boost the design productivity while ensuring competitive

performance and power savings ( [165], [75]).

For option pricing applications, the closest work to our contribution is the one pro-

posed by Thomas et al. in [165]. The authors have proposed a methodology to au-

tomatically generate reconfigurable hardware for Monte Carlo simulation in financial

applications. The hardware accelerators from the design flow can achieve an average

of 87 times speedup compared with software implementation on 2.66GHz Pentium IV.

Our framework fundamentally differentiates from previous one in 2 ways. First, we fo-

cus closely on the option pricing applications; hence, our proposed generic hardware

architecture are carefully customized to the computational characteristics of the pricing

problem. This customization brings advantages in both the development time as well

as the performance of the generated accelerators. Second, we integrate an optimization

process to derive the most efficient design parameters for the hardware accelerators.

2.4 Summary

This chapter has wrapped the background and introduction part of the thesis by provid-

ing in-depth review of the functionality of the components in design flow for Recon-

figurable MPS. State-of-the-art studies and research related to a number of components

are also presented. To keep the discussion in each chapter coherent and comprehensive,

more thorough research on the existing works close to our main contributions are given

in subsequent chapters.
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Chapter 3
Throughput and Energy-Aware Mapping

Approach

This chapter opens our contributions on System Level Synthesis with Throughput and

Energy-Aware Mapping approach. As discussed in previous chapters, mapping is the

process of assigning different computational parts of applications onto computing hard-

ware unit, so that all the requirements of applications and platform constraints are

satisfied. There are mainly two kinds of mapping approaches: design-time and run-

time. The design-time strategies [18, 82, 88, 103] consider static workloads (predefined

applications) and thus cannot handle dynamic workload scenarios such as insertion

of a new application into the system at run-time. On the other hand, run-time map-

ping [38, 104, 112, 186] may not provide a mapping solution that can guarantee the

throughput requirement of applications due to limited time and available computation

power at run-time. To address shortcomings of design-time and run-time approaches,

hybrid mapping strategies that use design-time analysis results to support run-time de-

cisions have been reported [142, 183, 185]. The heterogeneity in the architecture of

Reconfigurable MPS introduces new challenges for these mapping strategies. For ex-

ample, the number of mappings that need to be evaluated increases exponentially with
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the number of Processing Elements (PEs) types, i.e, the design space becomes multi-

dimensional, whereas it is linear for the homogeneous case [148]. To overcome these

issues, some heuristic approaches have been proposed to prune the mapping space and

thus reduce evaluation effort [148]. However, while pruning the design space, the ex-

isting approaches discard evaluation of mappings for a significant number of resource

combinations. Consequently, the run-time mapping process needs to find a mapping

solution dynamically in case of missing resource combinations during DSE. For such

situations, the run-time mapping process may take a long time to find a mapping, which

may violate the strict timing deadlines imposed on the mapping time. This chapter

presents a mapping strategy that addresses shortcomings of existing strategies by pro-

viding following contributions:

• A design-time DSE technique that provide energy-throughput trade-off points for

all the possible heterogeneous resource combinations.

• A run-time mapping technique that chooses best trade-off points from the design-

time analysis results and considers different mapping options on the fly to optimize

the energy consumption.

Most existing works usually consider only one performance metric like energy or

throughput when performing optimization in DSE process [142, 148]. Hence, the best

mapping for each resource combination (generated by DSE) may excel for one perfor-

mance metric and show very bad result for the other. In our strategy, both throughput

and energy have been used in optimization process to achieve a balanced mapping so-

lution for the system. Moreover, our approach considers energy optimization both at

design-time and run-time to achieving maximum energy savings.
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3.1 Preliminaries

3.1.1 Application Model

To developed the mapping strategy, we have used Modeling tools for both the applica-

tions and the hardware platform. The Modeling tool for applications is Synchronous

Dataflow Graphs (SDFGs) [89]. SDFGs facilitate for easier modeling of streaming mul-

timedia applications with timing constraints. A SDFG model of H.263 decoder is shown

in Fig. 3.1. The nodes (VLD, IQ, IDCT, & MC) and edges (e1, e2, e3, & e4) model tasks

and dependencies, respectively. The nodes have been referred to as actors that com-

municate with tokens sent from one actor to another through the edges. Each actor is

associated with its attributes: execution time and memory requirement when mapped on

a tile. If the actor has many implementation alternatives (e.g., GPP, DSP, RH) then it’s

attributes are listed for each implementation alternative. Implementation alternatives of

actor refer to different types of processing tiles on which the actor can be implemented.

Each edge has following attributes: size of a token, memory needed on the tile when

connected actors are allocated to the same tile, memory needed in source and destina-

tion tiles when connected actors are allocated to different tiles and respective bandwidth

requirements between the tiles. An actor fires (executes) when there are sufficient input

tokens on all of its input edges and sufficient buffer space on all of its output connec-

tions. In each firing, the actor consumes a fixed amount of tokens from the input edges

(input tokens) and produces a fixed amount of tokens on the output edges (output tokens).

These token amounts are referred to as rates. An edge may contain initial tokens.

Throughput of an application is determined as the inverse of the long term period,

which is calculated as the average time needed for one iteration of the application. An

iteration is defined as the minimum non-zero execution such that the original state of the

SDFG is acquired. For the example H.263 decoder, period is equal to the summation of

ExecTime(VLD), 2376×ExecTime(IQ), 2376×ExecTime(IDCT) and ExecTime(MC),
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Figure 3.1: SDFG model of an H.263 Decoder

where ExecTime is the execution time of respective actors. It should be noted that actors

IQ and IDCT have to execute 2376 times in one iteration and the number of executions

is referred to as repetition vector of the actor. The calculated period does not include

network and memory access delays. An SDFG with a throughput of 1000 Hz takes 1

millisecond (ms) to complete one iteration, i.e., its period is 1 ms.

3.1.2 Heterogeneous Reconfigurable MPS Model

Heterogeneous Reconfigurable MPS is an extension of Reconfigurable MPS with one

or more type of processing elements (Digital Signal Processing or GPU). The multipro-

cessor platform used in this chapter is a tile-based architecture as shown in Fig. 3.2.

The platform contains three types of tiles, which are connected by an interconnection

network in order to facilitate communication amongst the tiles. Each tile contains a

processor (e.g., general purpose processor (GPP), digital signal processor (DSP) or re-

configurable hardware (RH) as shown in Fig. 3.2), a local memory (M) and a network

interface (NI) containing set of communication buffers that are accessed both by the

interconnect and the local processor. The interconnection network provides end-to-end

connections between the tiles. However, the latencies of connections can be modeled

for different network-on-chips (NoCs).
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Figure 3.2: An example multiprocessor platform

3.2 Proposed Mapping Strategy

This section describes our mapping strategy. In contrast to conventional existing map-

ping strategies, our strategy differs in following aspects: 1) performs both energy and

throughput aware design-time DSE, 2) the DSE results contain mapping solutions for

all the possible resource combinations to cater for different run-time resource availabil-

ity aspects, and 3) performs throughput and energy optimization during the run-time

process as well.

An overview of our mapping flow is presented in Fig. 3.3. The overall flow has two

main steps: 1) DSE phase at design-time (Design-time DSE) to analyze the applications,

and 2) run-time mapping of required applications by utilizing the DSE results (Optimal

Mapping Database) with the help of a platform manager (Run-time Platform Controller

(RTPC)). In the DSE phase, multiple mapping solutions are generated for each applica-

tion to be supported onto a hardware platform. The run-time phase takes the required

applications, their throughput requirements, DSE results and the current platform status

(available resources) as input and provides an energy optimized mapping.

3.2.1 Design-time DSE

The design-time DSE step takes the applications one after another and evaluates a num-

ber of mapping solutions for each of them. The evaluation finds different mappings
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along with their throughput & energy consumption. For each mapping, the platform re-

sources are allocated to the application: actors are bound to tiles while edges are bound

to connections between tiles or local memory of tiles. Based on the resource allocations,

the throughput and energy consumption of the mapping are then computed.

Throughput Computation: For the mapping, first, static-order schedule that or-

ders the execution of bound actors on each tile is constructed. Then, all the binding

and scheduling decisions are modeled in a graph called binding-aware SDFG. There-

after, throughput is computed by self-timed state-space exploration of the binding-aware

SDFG [60].

Energy Consumption Computation: The total energy consumption for a mapping

is computed as the sum of communication and computation energy for one iteration of

the application. Communication energy is required to transfer data (tokens) from source

tile to destination tile and computation energy is required to process the transferred to-

ken on the destination tile. The communication energy for each edge (e) mapped to a

connection (c) is estimated as product of the number of tokens (in bits) to be transferred

through c, delay (D) and power consumption (Pbit) for transferring one bit through c.

Total communication energy for all the edges is estimated from equation 3.2. The num-

ber of tokens for an edge is computed as the product of repetition vector (repV) of source

(or destination) actor and source (or destination) port rate (equation 3.1). The power re-

quired to transfer one bit is denoted as Pbit [73]. Computation energy for each actor (a)

mapped to tile (t) is estimated as product of the number of executions of a (repV [a]),

execution time (ET [a]) and power consumption (pow) on t. ET and pow could be dif-

ferent for different types of tiles. Total computation energy for all actors is estimated

from equation 3.3. Power consumption on a tile is estimated as C × v2 × f , where C, v

and f denote average load capacitance, supply voltage and operating frequency, respec-

tively. In our approach, we focus on mapping of applications on the architecture after it

is designed. Therefore, we cannot optimize static energy consumption and restrict our
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Figure 3.3: Overall flow of proposed mapping strategy

focus on optimizing only dynamic energy consumption (Ecomm + Ecomp).

nrTokens[e] = repV [e→ srcActor]× (e→ srcPortRate) (3.1)

Ecomm =
∑

[{nrTokens[e]× tokenSize[e]} ×D × Pbit] (3.2)

Ecomp =
∑

[repV [a]× (ET [a]→ t)× (pow → t)] (3.3)

The proposed DSE flow takes an application & a generic platform model as input and

performs exploration to evaluate mappings while optimizing for both throughput and en-

ergy consumption (Fig. 3.3). A heterogeneous platform that contains tiles depending on
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the number of actors (n) and their implementation alternatives provided in the appli-

cation is considered. To cover all potential mappings for different possible resource

combinations, a platform with n tiles of each implementation alternative is considered.

Since the chosen platform can exploit all the parallelism present in the application, con-

sidering a bigger platform would not be necessary. On the other hand, a smaller platform

might not exploit all the parallelism as concurrent executing tasks may get mapped on

the same tile.

The considered platform contains tiles that are separated by a fixed distance from

each other, referred to as hop distance in this work. Initially, the hop distance is con-

sidered as one. However, at run-time, a real-life platform might have available tiles at

varying hop distances, for example, a 2×2 grid (mesh) of tiles platform may have few

available tiles separated by a hop distance of 1 while others at a hop distance of 2. To

cope with the distance variation between available tiles at run-time, our DSE flow is

repeated for all possible hop distances in the expected target hardware platform at run-

time. For example, two available tiles of a 4×4 mesh platform may have the hop distance

varying from 1 to 6, so our DSE is repeated 6 times (while considering hop distance 1 to

6) to account for varying resource availability scenarios that might incur at run-time. By

performing the DSE with higher hop distances, the applicability of the DSE results in-

creases even for bigger platforms, but the evaluation time increases. For example, DSE

results (evaluated mappings) with hop distance value of 8 are applicable to any platform

where maximum separation between the tiles is less than or equal to 8 hops such as mesh

of 2×2, 3×3, 4×4, and 5×5 tiles platforms. The main steps of the DSE flow (projected

in Fig. 3.3) are described subsequently.

Single Tile-type Evaluation

The mappings using the single tile type (homogeneous tiles) are generated by using

the DSE strategy proposed in [147] as it discards evaluation of inefficient mappings

(providing less throughput) and performs faster evaluation without missing the efficient
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mappings. First, 1 actor-to-1 tile mapping is evaluated, where n actors of the application

are mapped onto n homogeneous tiles so that each tile contains exactly one actor and

the edges are mapped onto connections. Then, mappings using reduced number of tiles

(p = n − 1) are evaluated by taking the best mapping using (p + 1) tiles as input. For

each pair of (p + 1) tiles, all the actors from one tile are moved to another to generate

a new mapping. A total of (p + 1)-choose-2, i.e., (p+1)C2 unique pairs are found for

p + 1 tiles and the same number of mapping using p tiles are evaluated. Out of all the

evaluated mappings using p tiles, the best mapping is chosen to evaluate mappings at

further reduced tile count, i.e. mappings using p− 1 tiles by following the similar steps.

The same process is repeated until the mapping using one tile gets evaluated. Thus,

all the mappings using different number of tiles are evaluated. The strategy in [147]

chooses the maximum throughput mapping as the best one as their optimization goal is

only throughput. In contrast, we choose the best mapping as the one having maximum

throughput/energy in order to perform throughput and energy aware exploration. Similar

exploration process is applied by considering different types of tiles one after another to

get the homogeneous tiles mappings for each tile type.

Multiple Tile-type Evaluation

Our strategy finds the most efficient mappings for all heterogeneous resource combi-

nations by using the homogeneous tiles mappings calculated in the earlier step. In a

general platform architecture (A) with m tile-types, all the resource combinations are

represented by m-dimensional array A(t1, t2, · · · , tm), where ti is the number of used

tiles of tile-type ith. If we call p(k,n) as the number of ways to partition n balls into k

slots; then the number of resource combination in our generic platform with m tile-types

that can cover n-actors applications is
n∑

k=1

P (k, n). For example, Table 3.1 presents all

the possible resource combinations when a 5-actors application and 3 tile-types (GPP,

DSP,RH) are considered.
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Table 3.1: Example of 5 actors and 3 tile-types

GPP DSP RH GPP+DSP DSP+RH GPP+RH GPP+DSP+RH

A(5,0,0) A(0,5,0) A(0,0,5) A(4,1,0) A(0,4,1) A(1,0,4) A(3,1,1)

A(3,2,0) A(0,3,2) A(2,0,3) A(2,2,1)

A(2,3,0) A(0,2,3) A(3,0,2) A(2,1,2)

A(1,4,0) A(0,1,4) A(4,0,1) A(1,1,3)

A(1,2,2)

A(1,3,1)

A(4,0,0) A(0,4,0) A(0,0,4) A(3,1,0) A(0,3,1) A(1,0,3) A(2,1,1)

A(2,2,0) A(0,2,2) A(2,0,2) A(1,1,2)

A(1,3,0) A(0,1,3) A(3,0,1) A(1,2,1)

A(3,0,0) A(0,3,0) A(0,0,3) A(2,1,0) A(0,2,1) A(1,0,2) A(1,1,1)

A(1,2,0) A(0,1,2) A(2,0,1)

A(2,0,0) A(0,2,0) A(0,0,2) A(1,1,0) A(0,1,1) A(1,0,1)

A(1,0,0) A(0,1,0) A(0,0,1)

To analyze the heterogeneous tiles mappings, we introduce a heuristic approach to

find the most efficient mapping for all resource combinations while evaluating a manage-

able number of mappings. The essence of our heuristic is the generation step denoted

by procedure Generate[A(..., ti, ..., tj, ...)− > A(..., ti − 1, ..., tj + 1, ...)], which is

presented in Algorithm 1. This procedure takes the best mapping of the previous re-

source combination A(..., ti, ..., tj, ...) as input and construct the best mapping for the

later resource combination A(..., ti − 1, ..., tj + 1, ...)]. In each execution of generation

procedure, there will be a tile-type with incremented number of used tiles (destination

tile-type jth) while another tile-type have its used tile-number decremented (source tile-

type ith).

Given the best mapping for a resource combination, the algorithm will find the first

empty tile p of destination tile-type. Thereafter, mappings for new resource combination

56



3.2 Proposed Mapping Strategy

Algorithm 1 Procedure Generate[A(..., ti, ..., tj, ...)− > A(..., ti − 1, ..., tj + 1, ...)]

Input: best mapping for A(..., ti, ..., tj, ...)

Output: best mapping for A(..., ti − 1, ..., tj + 1, ...)

bestMapping = 0, max = 0 ;

Find free tile p ∈ jth tile-type

for u = 1 to ti do

Move all actors from tile u to tile p to generate new mapping b

Compute throughput and energy for b

Compute metric µ = throughput
energy

if µ > max then

max = µ

bestMapping = b

end if

end for

Store bestMapping as optimal solution for A(..., ti − 1, ..., tj + 1, ...)

are generated by moving all actors from each tile of source tile-type to the destination

tile p. The throughput, energy and metric µ for each mapping is computed, stored into

our mapping database and compared with the current best mapping solution (bestMap-

ping). If the current mapping has better result than bestMapping, it will become the

bestMapping and is used to compare with subsequent mapping options. At the end of

the generation procedure, the most efficient mapping for new resource combination will

be bestMapping and is stored in the Optimal Mapping Database. By selecting the map-

ping having maximum µ ( throughput
energy

) at different stages, our heuristic can avoid eval-

uating a large number of inefficient mappings. Hence, the evaluation time is reduced

significantly.
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Our strategy to evaluate mappings using different type of tiles is presented in Algo-

rithm 2. First, the heuristic iterate through all resource combinations with different num-

ber of tile-types m′ and total number of used tiles, referred to as tile count. tile count

varies from number of actors in application n down to number of used tile-typem′. Then

we consider all the resource combinations that use m′ tile-types from given m tile-types.

The amount of such combinations will be mCm′ . Thereafter, the algorithm will conduct

the generation procedure for tile-type i1 and tile-type im′ . We define q as the total num-

ber of tiles used in i1 tile-type and im′ tile-type; hence tile count − q is the number of

tiles available for the rest (m′−2) tile-types. To cover all the resource combinations, the

main generation procedure (explained previously) Generate[A(..., ti1 , ..., tim′ , ...)− >

A(..., ti1 − 1, ..., tim′ + 1, ...)] should be repeated for all partitions of (tile count − q)

tiles into (m′ − 2) tile-types that do not participate into the generation step. In case of

m′ = 2, partition P (m′ − 2, tile count − q) is not available, so the generation step is

done outside the loop ( if m′ = 2). Algorithm 2 ensures that all the input mappings for

generation steps are available in the optimal mapping database before used.

DSE Complexity

The complexity of our algorithm depends on the number of actors n, the number of

tile-types m, and maximum hop distance h considered for the DSE. Table 3.2 introduces

the notations to be used for complexity calculation. The complexity has been calcu-

lated in terms of the number of evaluated mappings during the DSE. The number of

homogeneous tiles mappings is calculated by Equation 3.4. In heterogeneous case, the

number of mappings is computed based on the observation that in each generation step,

the number of evaluated mappings is the same as the number of used tiles of source tile-

type. The number of heterogeneous mappings for 2 tile-types combination is calculated

by Equation 3.5. Generally, number of mappings is calculated by Equation 3.6, where

P (m′ − 2, tile count− q) is the number of ways to partition (tile count− q) tiles into
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Table 3.2: Notations to be used

Notation Meaning

m total number of tile-types in platform

n total number of tile-types in platform

m′ number of used tile-types

tc number of used tiles in platform

ti1 number of used tiles of i1 − th tile-type

q number of used tiles of i1-th tile-type

and im-th tile-type

(m′ − 2) tile-types if (m′ > 3); otherwise, P (m′ − 2, tile count − q) = 1. The total

number of mapping is calculated as the sum of all homogeneous and heterogeneous tiles

mappings by Equation 3.7.

C(1,m, n) = m ∗ [1 +
n−1∑
p=1

(p+1C2)] = m ∗ [1 +
n3 − n

6
] (3.4)

C(2,m, n) =

(
m

2

) n∑
tc=2

tc∑
ti1=2

ti1 =
m2 −m

2
∗ n

3 + 3n2 − 4n

6
(3.5)

C(m′,m, n) =

(
m

m′

) n∑
tc=2

tc−m′+2∑
q=2

P (m′ − 2, tc− q) ∗ q
2 + q − 2

2
(3.6)

M(m,n) =
m∑

m′=1

C(m′,m, n) (3.7)

It can be seen from Equation 3.6 that the total number of mappings is related to

the partition problem solution. Therefore, the general expression for M(m,n) can be

derived if the analytical formula of P (k, n) is available. Based on formulas of P (k, n)

reported in [19], Table 3.3 presents the complexity of our algorithm for m = 1 to 7,
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Algorithm 2 Algorithm for multiple tile-type combination
Input: best GPP tile mapping from database

Output: most efficient mapping for multiple tile-type

for m′ = 2 to m do

for tile count = n downto m′ do

for all combination of m′ used tile-type from m tile-types do

if m′ = 2 then

for ti1 = tile count downto 2 do

tim′ = tile count− ti1
Generate[A(..., ti1 , ..., tim′ , ...) −→ A(..., ti1 − 1, ..., tim′ + 1, ...)]

end for

else

for q = tile count−m′ + 2 downto 2 do

for all partition ways of (tile count− q) tiles into (m− 2) tile-types do

for ti1 = q downto 2 do

tim′ = q − ti1
Generate[A(..., ti1 , ..., tim′ , ...) −→ A(..., ti1 −1, ..., tim′ + 1, ...)]

end for

end for

end for

end if

end for

end for

end for
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Table 3.3: Complexity

m P (m− 2, n) Ref. [19] Θ(P (m− 2, n)) M(m,n) Θ(M(m,n))

1 na 0 M(1, n) = n3−n+6
6 n3

2 na 0 M(2, n) = n3+n2−2n+4
2 n3

3 1 c M(3, n) = n4+26n3+23n2−50n+72
24 n4

4 bn2 c+ 1 n M(4, n) n5

5 { (n+3)2

12 } n2 M(5, n) n6

6 {(n+ 5)(n2 + n+ 22 + 18bn2 c)/144} n3 M(6, n) n7

7 {(n+ 8)(n3 + 22n2 + 44n+ 248 + 180bn2 c)/2880} n4 M(7, n) n8

where Θ(M(m,n)) and Θ(P (m−2, n)) presents the complexity of the whole algorithm

and the partition problem respectively.

3.2.2 Run-time Mapping

Run-time mapping of applications onto a platform is handled by the Run-time Platform

Controller (RTPC) (Fig. 3.3). In the platform, one processor is used as the RTPC (man-

ager) that is responsible for actor mapping, actor scheduling, platform resource control

and configuration control. The resources’ status is updated at run-time when an actor is

loaded in the platform. The RTPC maps the applications on the platform one after an-

other till all the applications are mapped. The sequential mapping is scalable as it avoids

the overhead for considering large number of scenarios containing different simultane-

ously active applications. For each application, the RTPC takes its desired throughput,

platform with updated resources’ status and the optimal mapping database (OMDb) as

input (Fig. 3.3) and selects the best mapping satisfying the desired throughput by fol-

lowing Algorithm 3.

The algorithm selects a mapping having minimum energyConsumption from the

OMDb by iterating from tile count one to Max Used T iles. The provided mapping

by this kind of iteration uses minimum possible number of tiles, resulting in improved
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resource utilization. Max Used T iles is considered as min(number of actors in the

application, number of available tiles) to restrict unnecessary search in OMDb. The

existing approaches allocate actors to tiles based on a selected mapping but do not con-

sider relative position of actors, which might require a large amount of communication

energy to facilitate communication amongst them through the edges. In our approach,

we allocate highly communicating actors in close proximity by following the Algorithm

3 in order to save the communication energy. If a throughput satisfying mapping is not

found then the application cannot be supported with available platform resources. In

general, throughput computation for a mapping is a time consuming process. Our ap-

proach just selects the best mapping without involving throughput computation at run-

time and thus accelerates the overall run-time mapping process. Further, our approach

uses minimum possible number of tiles and performs energy aware allocation towards

facilitating efficient mapping.

Fig. 3.4 demonstrates an example of run-time mapping of H.263 decoder on a plat-

form when employing existing and our approach. Although the communication over-

head (in bits) of e3 (between RH (containing MC) and GPP (containing IDCT)) is greater

than the communication overhead (in bits) of e4 (between DSP (containing IQ, VLD and

RH (containing MC)), the existing work assigns the connected actors onto two tiles with

hop distance=2. In contrast, our strategy considers communication overhead between

actors and tries to map highly communicating actors (on RH and GPP) close to each

other, so that energy consumption can be further reduced.

3.3 Performance Evaluation

Our strategy has been implemented as an extension of the tool set SDF3, which is pub-

licly available [162]. The experiments are conducted on a Core i5 processor running at

2.4 GHz. As a benchmark, models of real-life multimedia applications H.263 decoder
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Algorithm 3 Run-time Mapping
Input: optimal mapping database for single tile-type combination

Output: optimal mapping database for multiple tile-type combination

for tile count = 1 to Max Used T iles do

for each mapping µ using tile count tiles in OMDb do

Select closest available tile count tiles used by µ in the platform;

max hop = findMaximumHop(selected tiles);

Mapping list = Find all throughput satisfying mappings that use tile count

tiles separated by max hop and have the same resource combination as µ;

if Mapping list! = NULL then

Select the mapping having minimum energyConsumption;

Edge list = Find edges mapped to connections in mapping;

Sort Edge list in descending order of number of transferred bits;

for each edge e in Edge list do

Allocate connected actors of e on tiles in close proximity based on the

allocations in mapping;

end for

Terminate algorithm;

end if

end for

end for
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Figure 3.4: Example of Run-time Mapping

(4 actors), H.263 encoder (5 actors), MPEG-4 decoder (5 actors), JPEG decoder (6 ac-

tors) and sample rate converter (6 actors) have been considered to examine the efficiency

of proposed strategy. MPEG-4 decoder, JPEG decoder, and sample rate converter will

also be referred to as MPEG, JPEG, and samplerate respectively. All the applications

are considered to be mapped onto a generic platform with 3 tile-types: GPP, DSP and

RH. Larger number of tile-types can also be considered as explained earlier. We assume

that all actors of applications can be implemented in these tile-types and their execution

times on different tile-types are known a priori. Since we consider a generic platform

as mentioned in Section IV, the maximum number of processing elements in the plat-

form depends on the number of actors in evaluated applications. In the experiments, we

compare our approach with the flows reported in [159] and in [148]. Since the strategy

in [159] considers mapping for scenario, we applied it to a single scenario, i.e., a single
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version of the application that has always the same behavior. The approach in [148] per-

forms optimization similar to that of ours, thus has been considered for the comparison.

Therefore, we have fair comparison for all approaches. Several experiments have been

performed to evaluate these strategies in term of throughput, energy consumption and

execution time.

The throughput and energy of mappings produced by different DSE flows are cal-

culated by the SDF3 tool set [162], which is modified according to evaluated mapping

algorithms. The results for MPEG-decoder at different possible resource combinations

are illustrated in Fig.3.5. In this experiment and later in 3.7, P0, P1, P2 represent 3 types

of Processing Element (PE): GPP, DSP and RH; while each resource combination is re-

ferred as ”iP0+jP1+kP2”, where i, j, k are the number of PEs of each type. Our strategy

provides throughput and energy values at all the resource combinations, which has been

shown by two continuous lines. In contrast, other flows cannot cover all the resource

combinations so they provide discrete points of throughput and energy values, and there

are no values at uncovered resource combinations. It can be seen that mappings from

our strategy have lower energy consumption while maintaining the throughput almost at

the same level as that of other flows. Moreover, we have computed the energy saving

of our DSE over the DSE strategy in [148] to illustrate the improvements. The results

have shown that our DSE strategy reduces the energy consumption of H263 Decoder,

H263 Encoder, JPEG, MPEG, and Samplerate by 11.32%, 12.63%, 8.26%, 24.93%, and

14.45%, respectively.

For different multimedia applications, Table 3.4 shows the number of resource com-

binations covered by different DSE flows. The number of resource combinations de-

pends on the number of actors in applications. The strategy in [159] missed a large

number of resource combinations since they look only load balanced mappings and

there are a lot of duplications generated by their flow. The strategy in [148] has bet-

ter result but still missing about 40% and 50% resource combinations in case of 5 actors
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Figure 3.5: Throughput and energy of MPEG
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Table 3.4: Covered resource combinations

Applications Our Flow Flow in [148] Flow in [159]

H263 Decoder 34 24 10

H263 Encoder 55 34 10

MPEG 55 34 11

JPEG 83 44 11

Samplerate 83 42 10

(H263 Encoder, MPEG) and 6 actors (JPEG, Samplerate) respectively. In contrast, our

approach is designed to cover all the resource combinations for all the applications. The

number of covered resource combinations is important for hybrid mapping strategy since

it decides the flexibility for Platform Manager at run-time under the resource constraint.

Since our flow provides more mapping options for run-time, the RTPC can be better

supported.

One of the most important features that define the efficiency of a DSE strategy is

the number of evaluations performed by the strategy. A DSE with exhaustive search

analyzes all the possible mappings for each resource combination. Therefore, it cannot

scale well with the number of actors in application or the number of tile types in plat-

form. Moreover, large number of evaluations require more computation power, evalua-

tion time at design time, and more storage memory, more searching time in the memory

at run-time. On the other hand, heuristic DSE approaches significantly reduce the num-

ber of evaluated mappings but might not provide an optimal mapping for run-time [159]

or might discard mappings at several resource combinations [148]. Table 3.5 shows the

number of mappings evaluated by different DSE strategies when three types of tile are

considered.

It can be seen from Table 3.5 that the number of mappings evaluated by exhaustive
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Table 3.5: Number of mappings with three tile-types

Number EDSE Strategy Strategy Our

of Actors in [159] in [148] strategy

1 3 3 3 3

2 12 42 10 12

3 57 180 25 38

4 309 372 51 90

5 1,866 615 91 178

6 12,351 918 148 313

7 88,563 1281 225 507

8 681,870 1704 325 773

9 5,597,643 2187 451 1125

10 48,718,569 2730 606 1578

14 461,101,962,108 5502 1576 4735

DSE (EDSE) increases exponentially with the number of actors. Therefore, when num-

ber of actors is large (greater than 10), the exhaustive flow cannot be executed within a

reasonable time. The flow in [159] significantly reduces the number of mappings when

compared to EDSE. However, they still perform a large number of mappings in com-

parison with our strategy and strategy in [148]. Although strategy in [148] is better flow

in term of number of mappings, it does not cover all the resource combinations. The

number of mappings by our strategy is in between that of flow [159] and flow [148], but

our flow provides mappings with better quality as demonstrated previously. The number

of mappings is closely related to the execution time of the strategies. Fig. 3.6 shows ex-

ecution time of different DSE strategies for different applications. Our strategy provides

speed up over the strategy in [159], but spends more time to analyze mappings for all

the resource combinations when compared with strategy in [148].
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Figure 3.6: Execution time of different DSE strategies

To show the improvement of our flow in term of energy consumption, we com-

pare our results with existing hybrid approach of [148]. Our design-time DSE approach

shows significant energy savings for all the considered applications when compared to

existing approaches as mentioned earlier. Table 3.6 presents the energy saving at run-

time obtained by our flow for mapping different applications when compared with the

flow in [148]. At run-time, the main goal of our technique is to reduce the commu-

nication energy by allocating highly-communicating actors close to each other. Our

technique provides energy savings over existing techniques when at least 3 tiles are used

in the mapping. If less than 3 tiles are used, there is no edge for which communica-

tion overhead can be reduced and our approach provides similar results as that of [148].

Especially, in applications (H263 Encoder, JPEG, Samplerate) where the communica-

tion overhead is high, our technique has better improvement on energy savings (up to

17.8%). Similar improvements are obtained for other applications (Table 3.6).

We also have evaluated the efficiency of choosing parameter µ( throughput
energy

) in the op-

timization process. We evaluated our strategy with three different optimization criteria:

throughput, energy, and µ. Fig. 3.7 shows throughput and energy for the best map-

pings at different resource combinations for H263 decoder when different parameters

are chosen. The DSE optimized by energy always provides better results than DSE with

Throughput Optimization in term of energy consumption. Similarly, reverse implication
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Figure 3.7: Throughput and energy consumption for H263 Decoder at different resource

combinations for different optimization criteria

can be made when throughput is chosen as the optimization criteria. When we choose

the optimization criteria µ, for energy, the results lie between the Throughput and En-

ergy Optimization and almost overlap the result of Energy Optimization. If we consider

throughput as the guideline of optimization process, the µ option sometimes obtain bet-

ter results over the Throughput Optimization approach. Due to the heuristic behavior

of our approach, the Throughput Optimization might drop several mapping options and

miss some optimal points which can be found by the µ-Optimization. As a result, us-

ing µ as the guideline for optimization process generates the design points with better

trade-off between throughput and energy.

3.4 Summary

This chapter presents an efficient mapping strategy for heterogeneous Reconfigurable

MPS platform. Since the Reconfigurable fabric significantly increases the heterogeneity

of the platform, it poses a serious challenge for finding all available resource combina-

tions. However, our mapping approach covers all the resource combinations at design-

time within a small evaluation time. The qualities of the mappings in term of throughput

and energy are proven by experiments on a series of real-life streaming applications.

Especially, our DSE takes the trade-off between throughput and energy as the optimized
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Table 3.6: Energy saving using our runtime technique

Application Number Energy consumption (mJ) Percent of

of tiles Strategy Our improvement

in [148] Strategy (%)

H263 Decoder 4 tiles 2.909 2.872 2.82

3 tiles 2.827 2.786 1.45

H263 Encoder 5 tiles 6.072 5.038 17.03

4 tiles 5.814 4.779 17.80

3 tiles 5.038 4.521 10.26

JPEG 6 tiles 0.365 0.334 8.56

5 tiles 0.360 0.328 8.89

4 tiles 0.354 0.323 8.76

3 tiles 0.344 0.318 7.56

MPEG 5 tiles 8.131 7.86 3.33

4 tiles 8.053 7.821 2.88

3 tiles 8.015 7.783 2.89

Samplerate 6 tiles 5.857 5.323 9.12

5 tiles 5.768 5.234 9.26

4 tiles 5.590 5.145 7.960

3 tiles 5.501 5.056 8.09

criteria; so that the mapping results can achieve more balance performance. Moreover,

our run-time mapping technique further improves the energy consumption of the sys-

tem by considering communication overhead in real time. The experimental results

show that our approach provides better energy savings and performance in comparison

to existing approaches. Experimental results show that proposed strategy achieves bet-

ter energy-throughput trade-off points, covers all the resource combinations and reduces

energy consumption up to 24.93% at design-time and additionally 17.8% at run-time

when compared to state-of-the-art techniques [122].
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Chapter 4
Multistage Leakage-aware Scheduling

Technique

As mentioned in Chapter 1, we focus on two important optimization objectives and

mainly explore the trade-off between performance and energy consumption. In Chapter

3 where the mapping algorithm is used for resource allocation on platform level, those

objectives are represented by throughput and dynamic energy consumption. After the

mapping process, a number of tasks may be assigned to physical hardware units, where

scheduling mechanism is required to define the execution orders of those tasks on each

computing unit. In this Chapter, we propose a scheduling technique to further reduce the

total energy by targeting the static or leakage energy on finer grain level of reconfig-

urable device, while still maintaining the performance requirement of schedule length.

As defined in Chapter 1, our Reconfigurable MPS includes dynamic partially reconfig-

urable FPGA devices, i.e., a configuration can be loaded into part of the device while the

rest of the system continues operating. This feature obviously provides greater flexibility

and more powerful computing ability. However, these advantages come with additional

problems related to reconfiguration time and power dissipation. A drawback of FPGA

due to its hardware redundancy is its inefficiency in term of power consumption when
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compared to ASIC components [86] [145]. In practice, an FPGA circuit implementation

may use only a fraction of the hardware resource but the power is dissipated in both the

used and the unused components. The total power consumption includes static (leak-

age) and dynamic power [149], and their contribution into the total power consumption

heavily depends on the circuit technology. Beyond 65 nm technology, leakage power

becomes an increasingly dominant component of total power dissipation [9]. This has

motivated us to focus our work on reducing the leakage power dissipation.

Configuration prefetching [67] is a widely adopted technique for reducing the recon-

figuration delay in Partially Reconfigurable (PR) FPGA. In prefetching, a task is loaded

into the FPGA as soon as possible and this may result in overlap between the configura-

tion part of the waiting task (to be executed) with the execution part of operating tasks,

facilitating for reduced reconfiguration overhead (time). However, even after the task is

loaded (prefetched), it may not execute and wait until few other tasks complete due to

involved dependencies. Such waiting introduces delays between the configuration and

execution part of the same task. During the delay interval, the SRAM-cells of the FPGA

(containing bits of the waiting task to be executed) cannot be powered down to avoid

the loss of configuration data from the cells. Therefore, the cells dissipate a significant

amount of power.

Motivational Example: Fig. 4.1 presents an example to demonstrate aforemen-

tioned issues. In this example, the task graph on the left-hand side is scheduled on an

FPGA platform with prefetching technique. During the interval between R3 and E3,

the logic blocks of columns 1 and 2 can be powered down to remove leakage wastes.

However, since the SRAM-cells of these columns cannot be powered down as the con-

figuration data will be lost, they consume a considerable amount of power. As SRAM

cells leakage contributes ≈ 38% to FPGA leakage [173] (up to 44% for Spartan-3 fam-

ily [174]), reducing FPGA SRAM leakage is of paramount importance.

In order to reduce leakage, a scheduling approach needs to be developed aiming at
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Figure 4.1: Example of Leakage Waste caused by Prefetching Technique

allocating reconfiguration and execution parts as close as possible while keeping task

dependencies, timing and architecture constraints into account. Several works have

been proposed to solve this problem [188], [72]. However, these works attempt to ad-

dress the leakage problem in a single phase of the resource management process (details

in later sections). As a result, the leakage power cannot be significantly reduced. It

has also been observed that there exists a trade-off between leakage savings and perfor-

mance [188]. However, the trade-off analysis by employing the existing approaches is

not efficient. A high degradation in performance is noticed in order to achieve small

amount of leakage savings. To tackle the problem in a comprehensive perspective to-

wards achieving high leakage reductions, we propose a multi-stage resource manage-

ment approach consisting of three stages. Our main contributions to each stage are as

follows:

• Scheduling: A list-scheduling algorithm has been developed with a specific pri-

ority function that is customized for addressing the leakage power reduction.

• Placement: A cost function has been derived for the placement stage to further
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reduce the leakage power. This function provides designers a flexibility to manage

the trade-off between performance and leakage savings.

• Post-placement: A post-placement heuristic has been proposed to improve the

scheduling results (leakage savings) from previous stages.

4.1 System Model and Problem Definition

The targeted architecture used in this work is 1 dimensional (1D) FPGA, where the

configurable logic blocks (CLBs) are arranged in fixed vertical columns, and a task oc-

cupies an integral number of columns. Moreover, the device supports dynamic partial

reconfiguration: a part of the platform can be configured while other parts operate with-

out interruption. The basic configuration unit is a column. A task can be deployed on

an adjacent set of columns, and the reconfiguration time of the task is proportional to

the number of columns. Such an architecture is similar to Xilinx FPGA Virtex fam-

ily [182]. The device can be configured by a bitstream through configuration ports like

JTAG or ICAP. However, both configuration ports are managed by only one configura-

tion controller. Therefore, two different tasks cannot be reconfigured at the same time.

Such architectural constraint plays a critical role in the process of scheduling and place-

ment. Another key element realizing the benefits of scheduling algorithm on FPGA are

sleep transistors. It is assumed that unused CLBs can be totally powered off by the

sleep transistors integrated in the device. Based on this assumption, each column can be

independently controlled by a sleep transistor [188].

Task model: We consider only hardware tasks, i.e., a task can be synthesized and

implemented on the FPGA platform. In comparison to software tasks, hardware tasks

have some additional parameters related to the required hardware area and configuration

time. Directed acyclic graph (DAG) is used to represent the task set of an application.

An example of the task graph model is presented in Fig. 4.1. In the DAG, each node u
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represents a task, while an edge e(u; v) indicates the dependency between tasks u and v.

A task has two components: reconfiguration and execution. Reconfiguration part is

scheduled under the architectural constraint (only one reconfiguration controller) while

scheduling of execution part depends on the data dependencies, where a linear task

placement model as that of [21] has been adopted. In the scheduling process, the com-

munication overhead between tasks is ignored due to two reasons: 1) tasks communicate

with each other through a shared memory with the same latency and cost; and 2) this

latency is negligible in comparison to runtime reconfiguration overhead (time) and exe-

cution time. As a result, all task graphs are computation intensive.

Scheduling Problem

The problem targeted in this contribution considers following set of input, constraints

and objective.

• Input: The application task graph and FPGA architecture (number of columns, 1

reconfiguration controller and 1D architecture).

• Constraints: Task graph dependency for execution parts, reconfiguration con-

troller constraint for reconfiguration part and sequential relation between the re-

configuration and execution parts of the same task.

• Objective: Minimize leakage power dissipation because of the delays between

the reconfiguration and execution parts, minimize schedule length.

4.2 Proposed Multi-stage Resource Management Approach

An overview of the proposed resource management approach is provided in Fig.4.2.

The approach has 3 stages: Scheduling, Placement and Post-placement. At first, the

application task graph is processed iteratively in the first two stages (Scheduling and

Placement). In each iteration, the Scheduler will define the next task coming to the
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Figure 4.2: Multi-stage Scheduling Scheme

Placer by a dynamic priority scheme, which means that the priorities of all the schedula-

ble tasks are changed after each iteration. The Placer then decides the column where the

task should be mapped and update the current status of the platform for the Scheduler.

After all the tasks in task graph are allocated into the platform, the refinement heuristic

in Post-Placement Stage will further improve the result from previous stages.

4.2.1 Scheduling Stage

Algorithm 4 presents our algorithm for the scheduling phase. At each step, all schedu-

lable tasks whose parents have been scheduled are stored in a set of ready task − S.

Then, the scheduler calculates the dynamic priorities of all tasks in set S according to

a priority function defined by Equation 4.1. Thereafter, it chooses the task with highest
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4.2 Proposed Multi-stage Resource Management Approach

priority to pass to the placer. As mentioned in Section 2.2.3, we use a dynamic priority

function so that the scheduling process can adapt with the current status of the FPGA.

Since the priority function has a strong impact on the schedule quality, it is carefully

designed to address both leakage saving and performance requirement. The function in-

cludes different components that reflect the affection of constraints (FPGA architecture

and task graph dependency) as well as optimization targets (leakage saving and schedule

length) on scheduling decision. Our priority function is described as follows:

F = αBT + σC − βEET − γERT − µLK (4.1)

LK = C ∗ (EET − (RT + ERT )) (4.2)

where,

BT : bottom level of the task that represents the length of the longest path in task graph

starting from this task;

EET : earliest execution time of the task;

ERT : earliest reconfiguration time of the task;

C : number of columns required by the task;

RT : the reconfiguration time of the task;

LK : leakage waste caused by scheduling the task. The leakage waste is the product

of the used columns and the delay between reconfiguration and execution parts.

EET,ERT and LK are dynamic factors and are computed in scheduling process based

on the current status of the partial schedule. Since these variables are fundamentals

for scheduling problem, the details of their calculation can be found in basic textbook

about task scheduling, such as [152]. α, β, γ, σ, µ are coefficients related to each factor

and used to determine the intensity of their impact on the cost function. The signs of

elements in the function are given based on their impact on the schedule: tasks requiring
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Algorithm 4 Leakage Aware Task Scheduling Algorithm
Input: Task graph G=(U,V)

Output: Schedule with minimal LK

1: Put source tasks {ti ∈ U : pred(ti) = ∅} into set S

2: // S − Set of schedulable tasks

3: while S 6= ∅ do

4: Calculate priorities of unscheduled tasks in S (by Equation 4.1)

5: Choose the task t with maximum priority

6: Choose the best column C for task t (by Algorithm 5)

7: Schedule task t starting from column C

8: if child tasks of t are not already added to S then

9: Add new available tasks to S

10: end if

11: Remove task t from S

12: end while

larger columns should be placed earlier to increase the space for other tasks; tasks with

higher bottom level (close to leaf tasks) should be scheduled first because they strongly

affect the schedule length. Additionally, tasks with minimalEET ,ERT andLK should

be chosen for the desired optimization objective. As shown in Fig.4.2 the output of the

scheduling stage is a set of schedulable tasks with the task of the highest priority in

the front of the set. This highest priority task is then transferred to Placement Stage to

be allocated onto the FPGA. Since we are using a dynamic priority scheme, both the

schedulable task set and the priorities of tasks in the set are changed every time a task is

placed in FPGA.

4.2.2 Placement Stage

After getting the task with highest priority, the placer applies the steps in Algorithm

5 to allocate the task into physical column(s) of FPGA. When a task comes to this

stage, the algorithm scans all the columns to find available positions for the task and
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Algorithm 5 Leakage Aware Placement Algorithm
Input: Task t, set of columns P

Output: column C- with minimal LK

1: for each column ci ∈ P do

2: Schedule task t starting from column ci

3: Calculate cost of placing t on ci (by Equation 4.3)

4: end for

5: Choose the column C with minimal cost function

for each available position, the cost function is computed. Then, the task is placed into

the position with minimal cost value. Here, also the cost function is also designed to

optimize for both performance and leakage waste, which is presented as follows:

G =
a

10
∗ LK + (1− a

10
) ∗ EST (4.3)

where, LK andEST represent leakage power and earliest start time for a placement;

a is the leakage-schedule length trade-off coefficients, which can be used to provide a

balance between the two optimization goals. Therefore, the cost function not only facil-

itates to reduce the leakage dissipation but also provides designer the ability to manage

the trade-off between performance (schedule length) and leakage saving. The trade-off

values can be achieved by adjusting the value of a in Equation 4.3. By increasing the

value of a, designer can save more leakage power with a longer schedule length.

Fig. 4.2 demonstrates the placement results from the first 2 stages of our approach.

It is expected to have small leakage power as a result of above optimization techniques

as shown in the figures.

4.2.3 Post-placement Heuristic

Our post-placement heuristic is presented in Algorithm 6. The heuristic takes task graph

& tasks’ placement as input and provides optimized placement of tasks so that leakage
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Algorithm 6 Leakage Aware Post-placement Algorithm
Input: Task graph G=(U,V), Tasks’ placement after placement stage

Output: Optimized placement of tasks

1: for each leaf task ti ∈ U do

2: Schedule configuration and execution of task ti by considering architectural constraint

3: while parents of ti 6= ∅ do

4: Find reconfiguration costs for parent tasks of ti by Equation 4.4

5: Sort reconfigurations in descending order based on cost

6: Schedule reconfigurations considering architectural constraints

7: Select parents one by one from maximum to minimum cost as ti

8: end while

9: Move executions close to reconfigurations if dependencies do not violate

10: end for

power due to delays between reconfigurations and executions is further minimized. The

heuristic first schedules leaf tasks to maintain the same finish time towards meeting the

timing deadline. For each leaf task, it’s parent tasks are evaluated for their reconfigu-

ration costs and scheduled by taking architectural constraints into account. The cost is

computed as follows

C = lw ∗NC − sw ∗ SP (4.4)

where, NC and SP are the number of occupied columns and range of reconfigu-

ration space, respectively. The lw and sw are the weights to be given to NC and SP

respectively, which determine the leakage power dissipation.

After all the tasks are scheduled, the executions are tried to place close to the respec-

tive reconfigurations if dependencies are not violated. This helps us to achieve placement

that contains reconfigurations and executions close to each other as shown in Fig. 4.2,

leading to reduced leakage power.
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Figure 4.3: Leakage and Schedule Length when employing Different Approaches

4.3 Experimental Results

A series of experiments are conducted to demonstrate the performance of our resource

management approach. Three versions of our scheduling and placement approach with

different value of constant a in Equation 4.3 (a=1, a=2, a=10) are compared with fol-

lowing existing approaches: performance-driven algorithm (PDA) proposed in [21], En-

hanced Leakage Aware Algorithm (ELAA) employed in [72], the ILP and Iterative Re-

finement (ITE) heuristic approach proposed in [188]. The PDA does not consider the

leakage waste in the scheduling process, and has been used as the baseline approach

for comparisons. ELAA demonstrates high performance when dealing with the leakage

problem [72]. One important target in this work is to examine the trade-off between

leakage saving and the schedule length, so no deadline (in terms of schedule length) is

set for the trade-off analysis. The results from our post-placement approach are com-

pared to that of [188].

Our algorithm is implemented in Java language and experiments are performed on an

Intel Core i7 2.26GHz CPU with 4 GB RAM. The experiments are performed with real-

life task graphs and synthetic task sets generated by the TGFF tool [54]. For the synthetic
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Table 4.1: Leakage waste and algorithm runtime of post-placement methods

Number of tasks in task graphs

Algorithms 10 20 30 40 50

Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s)

PDA+ILP 0 2.278 40 12.451 60 25.812 0 50.24 60 199.24

PDA+ITE 20 2.46E-04 80 4.32E-04 180 8.17E-04 80 1.14E-03 80 3.69E-03

PDA + 20 2.15E-04 80 4.36E-04 100 3.66E-04 80 4.32E-04 80 5.02E-04

Our heuristic

case, five task sets are considered. Each task set contains 10 task graphs with different

level of parallelism; and each task in the task graph requires 10 to 50 columns and has

the execution time from 1 to 9 time units. The FPGA platform is considered to have

a fixed number of columns as 100. For real-life task graphs, JPEG encoder [21], MP3

decoder [85] and MPEG4 decoder [43] are considered with their specifications provided

in respective references in order to demonstrate the applicability of our approach for

real-life scenarios.

The criteria of the comparison are schedule length, leakage waste, and the runtime

of the algorithms. The schedule length is measured in time unit, while the leakage waste

is measured in energy unit, which is the power dissipation of one column during 1 time

unit. The leakage waste of a particular task is computed by Eqn. 4.2. The leakage waste

of the TG after scheduling is the sum of leakage waste of all its tasks. For leakage waste

of a task set, leakage values of all the contained task graphs are added. Further, as sleep

transistors are used to stitch-off the unused SRAM cells for each column, the leakage

waste for a task before its configuration and after the execution is considered as zero.

4.3.1 Leakage Waste and Schedule Length

Fig. 4.3 presents the leakage waste and schedule length (in terms of time extension over

baseline approach PDA) of all the approaches over the five task sets. The whole bars

present the leakage waste obtained after Scheduling and Placement (S&P) stage, while
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the lower parts of the bars describe the leakage waste after applying Post-Placement (PP)

methods. Therefore, for existing approaches, the whole bars describe the leakage waste

of PDA methods, and the lower part of each bar is the leakage after post-placement

refinement (PDA+ITE or PDA+ILP). The time extension is the extended deadline re-

quired for leakage reduction. It is computed by subtracting the schedule length of each

approach to the schedule length of the baseline (PDA) and these values are presented

by columns with reversed direction (up to down). The horizontal axis declares notations

for different approaches. For example, the first two notations PDA+ILP and PDA+ITE

denote two approaches used in [188], where PDA is used in Scheduling and Placement

(S&P) phase and either ILP or ITE is used in Post Placement phase.

It can be seen from Fig. 4.3 that all versions of our approach achieve better leak-

age saving when compared with the two approaches in [188]. Furthermore, when the

number of tasks is large (greater than 10), our approach with a = 10 can reach the opti-

mal leakage saving (leakage waste = 0) with smaller extension in time when compared

to ELAA. On an average, our approach adopted with the parameter a = 1 and a = 2

shows leakage power savings of 40% and 65% respectively when compared to PDA.

Furthermore, when compared with existing approach PDA+ITE, our approach achieves

15% and 43% more leakage savings with parameter a = 1 and a = 2, respectively. The

reason behind superior results by our approach over other approaches is that we consider

leakage optimization first in scheduling and placement stages and then in post-placement

stage as well. The optimization in scheduling and placement stages results in minimize

delays between configurations and executions, and the post-placement stage try to fur-

ther minimize the left delays in order to reduce the leakage dissipation. However, other

approaches tackle the leakage optimization in only one stage (e.g., in placement stage in

ELAA [72] and in post-placement stage in [188]).

85



4.3 Experimental Results

4.3.2 Post-placement Leakage Waste and Algorithm Runtime

In this experiment, we examine the leakage saving and runtime of 3 post-placement

methods ILP, ITE in [188], and our proposed heuristic. The methods are executed with

the same inputs, which are the placement results from PDA. The deadline of all the task

graphs are set to the schedule length of our approach when achieving optimal value of

leakage saving (i.e., a = 10).

Table 4.1 shows leakage waste and algorithm runtime for various post-placement

methods. As can be seen from Table 4.1, in many cases, all the post-placement methods

are unable to totally eliminate the leakage dissipation over the PDA placement. How-

ever, for the same deadline, our multi-stage approach can achieve the optimal solution

(leakage waste = 0) as described earlier. This signifies the advantages of our comprehen-

sive strategy that addresses the leakage problem throughout the resource management

process. Although our scheduling and placement stages achieve high leakage savings,

they still can leave spaces between reconfiguration and execution parts of many tasks.

Our post-placement stage tries to reallocate reconfigurations and executions so that the

spaces between them are minimized in order to achieve further leakage savings. Table

4.1 shows that our post-placement heuristic can produce better leakage results than ITE.

Additionally, our heuristic obtains the results in a smaller runtime.

4.3.3 Case-study: Real-life Applications

We applied different scheduling approaches on real-life applications: JPEG encoder

[21], MP3 decoder [85] and MPEG4 decoder [43] as mentioned earlier. Table 4.2 shows

leakage waste and schedule length for real-life applications. The notations used in this

experiment are the same as those in previous experiments. The ELAA and our approach

with a = 10 always achieve the optimal value of leakage waste (zero) with some exten-

sion in schedule length. Therefore, leakage in these cases does not need any improve-

ment by Post-placement methods and not applicable (NA) has been mentioned for the
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Table 4.2: Leakage waste and schedule length for real-life applications

PDA+ITE a=1 a=10 ELAA

MPEG Schedule length 44 44 53 57

(9 tasks) Leakage S&P 140 80 0 0

Leakage PP 0 0 NA NA

JPEG Schedule length 22 23 24 29

(6 tasks) Leakage S&P 60 20 0 0

Leakage PP 20 20 NA NA

MP3 decoder Schedule length 50 57 61 63

(14 tasks) Leakage S&P 270 30 0 0

Leakage PP 270 30 NA NA

same. As can be seen from the table, for MPEG and JPEG, our approach with a = 1 can

obtain the same results as that of approach PDA+ITE. However, when it comes to MP3

decoder, the advantage of our comprehensive strategy becomes obvious. Due to low

quality solution in the first two phases, the ITE approach cannot remove all the leakage

from initial placement of previous phases. In contrast, all stages of our approach still

work well to get maximum leakage saving.

4.4 Summary

To tackle the high complexity of scheduling problem, we present a multi-stage re-

source management approach with a focus on leakage power savings in Partially Recon-

figurable FPGAs. Our multi-stage approach employs leakage-aware priority function

in scheduling stage, leakage-performance trade-off function in placement stage and a

heuristic in post-placement stage. A series of experiments are performed to highlight

the advantages of the proposed approach over existing works. The results demonstrate

that the proposed approach dominates the existing approaches when the application task
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graph contains a large number of tasks. Additionally, experiments show that our ap-

proach can always achieve the optimal value as a comprehensive strategy is adopted,

whereas other single-stage methods may not achieve the optimal value. Furthermore,

our approach also provides the flexibility to the designers to achieve trade-off values be-

tween leakage saving and performance. Specifically, different variants of the proposed

approach can reduce leakage power by 40-65% when compared to a performance-driven

approach and by 15-43% when compared to state-of-the-art works [123].
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Chapter 5
Machine Learning and Genetic Algorithm

for Multi-objective DSE

Our contributions in System Level Synthesis so far have been extensively using list-

based heuristics to solve mapping and scheduling problems. In the previous chapter,

we have designed the cost functions in these heuristics to cope with different design

requirements: schedule length, leakage savings, throughput and energy consumption.

However, the main limitation of previously proposed list-based schedulers is their abil-

ity to produce only one scheduling result for each application; therefore, the trade-offs

between different design objectives cannot be examined. To address this problem, in

this chapter we have applied multi-objective Genetic Algorithm (GA) to explore the

design space of our list-based heuristics. Following GA approach, the components in

the cost functions are parameterized; hence, with the same task graph, different param-

eter sets give different scheduling results. Each combination of different choices for

these parameters provides a single option in terms of design objectives (performance,

energy) and forms a specific design point in the design space. Thereafter, the designers

can efficiently traverse the design space and generate a set of points that are superior

in one of the objective dimensions. These points form the Pareto front, which is the
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Holy Grail for system designers since it not only provides the insight into the trade-off

between different objectives but also allows them to choose the most efficient design for

different purposes. However, the process of traversing the design space in GA method

is usually very time-consuming due to the exponential increase in the number of design

points to the dimension of the space, which are the number of coefficients in the priority

functions. The problem is much worse for Reconfigurable MPS since the flexibility of

reconfigurable hardware has tremendously widened the design space of the whole plat-

form. The reconfigurable hardware also introduces new components to the list-based

priority function, making it more complex and taking longer time for each evaluation of

design point

To shorten the time of generating Pareto front during GA optimization, we developed

a multi-level Machine Learning framework that utilizes Spline Regression and Linear

Regression to build predictive models for Pareto fronts from a training set of task graphs

(TG) and applies these predictive models to accurately estimate the Pareto fronts of new

incoming tasks in a fraction of time when compared to GA approach. Following are our

main contributions in this work:

• Developing a comprehensive multistage framework for integrating GA and ML

techniques to optimize existing list-based heuristics: from generating data to build-

ing predictive models and predicting Pareto fronts for new TGs;

• Building a systematic representation of Pareto front curves with Spline regression

models;

• Applying the Linear Regression techniques to model the dependency between

Spline model of Pareto front and TG’s features;

• Applying Density-base Clustering Algorithm to generate near-Pareto-optimal de-

sign points.
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Figure 5.1: Proposed framework

• Validating the capability of our framework by applying for both mapping and

scheduling problem.

5.1 Overall Framework

In this section, we provide an overview of the working flow and the general functionality

of the components in our framework. Basically, we explain how the Genetic Algorithm

(GA) and Machine Learning (ML) techniques are utilized to optimize the list-based

heuristics. As can be seen from Fig.5.1, our framework has 3 main phases, 2 of them

execute at training time: Generating Pareto front and Model Building Phase, while the

other Prediction Phase runs at execution time.
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5.1 Overall Framework

5.1.1 Phase 1: Generating the Training Database

In the first phase, the original List-based heuristic is wrapped by the GA optimization

process, which takes a bunch of previously generated task graphs (TG) as the input,

iterates through their design spaces and generates the optimal Pareto front for each TG.

The generated Pareto fronts are stored in a database to feed to the Model Building Phase

after being processed by the Normalizing block. The implementation details of this

phase are discussed in Section 5.2.

5.1.2 Phase 2: Building the Predictive Models

The Model Building phase contains main contributions and most of the novelties of our

work. The procedure in this phase starts from Spline Regression block, which takes

the normalized Pareto front curves from Phase 1 as input and builds Spline Regression

models that fit the Pareto curve with acceptably small error. Thereafter, it filters out

the most Volatile Coefficients of generated Spline models and sends them to Linear

Regression block, which is the second most important ML block. This module receives

historical data, which are Volatile Coefficients from Spline Regression block and range

of Pareto front from Phase 1, as well as the Features of respective TGs in the TG dataset.

From these inputs, it builds Linear Regression models that characterize the dependences

of Spline Coefficients and Pareto range on the TG features. The Predictive models output

from this module are sent to Phase 3 for use at execution time. The last component of

Model Building Phase is Feature Extraction block, which computes the most important

metrics of TG and creates new concise and systematic representation for TG. In the

training phase, this block processes the TG from historical Dataset and sends the features

to Linear Regression block; while in Prediction Phase, it computes features for new TGs

and feed them to the Applying Model block. The components of Model Building Phase

are further presented in Section 5.3.
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5.2 Phase 1: Generating the Training Database

5.1.3 Phase 3: Prediction at Execution Time

The last phase in our framework utilizes the results from previous stages to generate the

Pareto front for a new TG at execution time. The first building block in this phase is

Applying Model component, which takes the Linear Regression models and features of

the new TG to build the estimated Pareto curve. The Trace back block produces the real

design points on Pareto front from previously estimated curves.

5.1.4 Advantages

Our framework is developed with a fashion of modular approach so that the designers

can freely customize by plugging in new schedulers, new multi-objective optimization

approaches or new ML techniques. At the same time, the framework is also uniformly

practical in the sense that the designer can quickly apply for a new scheduling algorithm

just with the built-in components. The only part that might need to be customized is

the Feature Extraction block, which needs to be adapted for the application models (i.e.

Task Graph, SDF, or Kahn Processing Network (KPN). . . ).

5.2 Phase 1: Generating the Training Database

During the design process, system designers need to explore the design space to find

the solutions that satisfy the trade-offs between often conflicting criteria such as: per-

formance (throughput, latency), hardware usage, energy consumption and reliability.

The commonly-used tools to facilitate this exploration process are multi-objective opti-

mization algorithms such as: Evolutionary Algorithm and Particle Swarm Optimization

(PSO). The result of these optimizations is the Pareto front on the objective space that

contains non-dominated design points, which have no other design points that better

than themselves in all dimensions of the objective space. This Section explains how we

apply the GA to generate the Pareto fronts for Mapping and Scheduling process, then
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5.2 Phase 1: Generating the Training Database

use these Pareto fronts as the training data for the ML procedure. To showcase the appli-

cability and potential of our proposed framework, we have developed our approach for

both Mapping and Scheduling problem. The Mapping algorithm is presented in [161] to

allocate actors of SDF graph to a Multiprocessor System while optimizing the trade-off

between Throughput and Energy Consumption. Whereas, the energy-conscious schedul-

ing (ECS) heuristic is proposed in [90] to schedule tasks in Task Graph to grid computer

system while considering both the Schedule Length and Energy consumption.

5.2.1 Generating the Pareto Fronts with Genetic Algorithm

TG-Scheduling

To apply the GA for scheduler ECS, we first need to parameterize the cost function

from [90]. The original cost function given by Eqn.5.1 provides only one scheduling

result for each TG, while the parameterized version in Eqn.5.2 offers various scheduling

solutions with different set of parameters (α, β, γ, δ, η).

RS(ni, pj , vj,k, p
′, v′) =

E(ni, pj , vj,k)− E(ni, p
′, v′)

E(ni, pj , vj,k)

+
EFT (ni, pj , vj,k)− EFT (ni, p

′, v′)

E(ni, pj , vj,k)−min(EFT (ni, pj , vj,k), EFT (ni, p′, v′))
(5.1)

RS(ni, pj , vj,k, p
′, v′) =

α ∗ E(ni, pj , vj,k)− β ∗ E(ni, p
′, v′)

E(ni, pj , vj,k)

+
γ ∗ EFT (ni, pj , vj,k)− δ ∗ EFT (ni, p

′, v′)

E(ni, pj , vj,k)− η ∗min(EFT (ni, pj , vj,k), EFT (ni, p′, v′))
(5.2)

Where E(ni, pj, vj,k) and E(ni, p
′, v′) are the energy consumption of task ni on pro-

cessor pj with operating voltage vj,k and that of task ni on p′ with v′, respectively, and

similarly the earliest finish times of the two task-processor allocations are denoted as

EFT (ni, pj, vj,k) and EFT (ni, p
′, v′). The relative superiority RS(ni, pj, vj,k, p

′, v′) is
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Figure 5.2: Original Pareto front of 5 task graphs

the objective function that balances both performance considerations. More details on

ECS can be found in [90]. The parameters (α, β, γ, δ, η) are chosen to capture all the

important factors that might affect the result of objective function.

Thereafter, the GA is used to explore the space of these parameter set to find the

Pareto front in the objectives space. In general, the GA encodes the parameters in the

form of chromosome and uses the objectives as criteria to heuristically search for better

parameters by iterating from generation to generation. The good parameter sets are

transferred through generations by inheritance while the new potential parameter sets

are explored through mutation. There are quite a number of different implementations

of GA but we use the NSGA II algorithm because of its proven efficiency and popularity

[155]. The choice of GA depends on the designers’ taste and by no means limits the

generalization capability of our framework.

SDF-mapping

Unlike the Scheduling heuristic in previous Subsection, the list-based Mapping algo-

rithm proposed in [161] already comes with parameterized cost function, which is given

as follows:
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5.2 Phase 1: Generating the Training Database

cost(t, a) = c1.lp(t) + c2.lm(t) + c3.lc(t) + c4.ll(t) (5.3)

Where: cost(t, a) is the cost for binding an actor a to a processor t. lp(t), lm(t), lc(t),

ll(t) denote processing load, memory load, communication load and latency load of tile

t if actor a is assigned to it. The detailed computation of these components are given

in [161]. c1, c2, c3, c4 are parameters of the cost function that can be adjusted to control

the trade-off between Throughput and Energy consumption. Since the original Mapping

heuristic is already parameterized, the GA process can be applied directly to generate

the Pareto front for training SDF graphs in a similar way as in the previous Subsection.

For the ease of representation and reducing the level of abstraction, the detailed

implementation of the components in the following Sections will be presented with ex-

amples, which show how to apply our framework to the Scheduling heuristic ECS [90].

The process of applying our framework for the Mapping heuristic is implemented with

the similar manner and only the final results are reported in Experimental Section 5.5.

5.2.2 Normalizing the Pareto Fronts to Uniform Curves

Fig.5.2 shows an example of Pareto fronts of 5 TGs, which are the outcome from GA

block. As can be observed, the general shapes of the Pareto curves are somehow similar

while the range and the scale of these curves have major differences. To overcome

this problem and make the Pareto fronts easier to interpret and more uniformly across

the TG dataset, we normalize the curves so that all the Pareto fronts fit in the range

of [0, 1] for all dimensions of objectives (Schedule length and Energy). The formulas

used in the normalization process are given in Eqn.5.4 - Eqn.5.5. The Pareto fronts after

normalizing step are presented in Fig.5.3. As can be seen, the common pattern of Pareto

curves becomes more apparent when they are nicely fitted in the range of [0, 1].

Ti = (Ti − Tmin)/(Tmax − Tmin) (5.4)
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Figure 5.3: Normalized Pareto fronts and their Spline Models

Ei = (Ei − Emin)/(Emax − Emin) (5.5)

Where Ti and Ei denote the Schedule length and Energy consumption of the i-th

point on the Pareto front. Tmax, Tmin and Emax, Emin represent the range of Pareto

curve in two objective dimensions.

5.3 Phase 2: Building the Predictive Models

As discussed earlier, the Model Building phase contains two main blocks that integrate

Spline Regression and Linear Regression techniques into our framework.

5.3.1 Build Spline Regression for Pareto Curves

After observing the similar pattern in normalized Pareto curves, we try to quantify the

similarity by transforming the curves into a more systematic representation, which is a

function describing the relationship between Energy and Schedule Length of the points

on Pareto curve. Based on the continuity and the curvy shape of the Pareto front, a
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5.3 Phase 2: Building the Predictive Models

number of different regression models have been tested to find appropriate function such

as: piece-wise polynomial regression, smoothing spline, local regression [58]. Amongst

them Cubic Spline Regression is nicely fitted into our framework due to the balanced

trade-off between accuracy and computational complexity [58].

In general, Spline Regression partitions the whole range of predictor (Schedule

Length) into K distinct intervals. Then, in each interval, it tries to fit a polynomial

function to the data. For the Cubic Splines case, 3-degree polynomials are used. Unlike

normal Piecewise Polynomial Regression, a set of constraints on continuity are applied

to ensure smooth transformation between intervals. The division points are called knots

and the choices of their number and values are very important factors in Spline Regres-

sion. K = 3 has been found empirically to provide the best curve fitting vs. computation

trade-off. The general formulation of Cubic Spline model is given in Eqn.5.6:

yi = β0 + β1b1(xi) + β2b2(xi) + . . .+ βK+3bK+3(xi) + εi

b1(xi) = xi

b2(xi) = x2i

b3(xi) = x3i

bk+3(xi) = (xi − ξk)3+, k = 1, . . . , K

where

(xi − ξk)3+ =

(xi − ξk)3, if xi > ξk

0 otherwise
(5.6)

Where yi is the response and xi is the predictor. In our case yi and xi is the Energy

and Schedule Length of the i-th point in Pareto front; β0 − βK+3 are the coefficients of

the models. They are different from TG to TG and each coefficient set characterize the

Pareto curve of a specific TG. b1 − bK+3 are the basic functions of the models. ξk are

the knots; the basic functions relative to the knots b4 − bK+3 imply the constraints that

the curve will be continuous up to 2-orders of derivatives at each knot; hence, ensure the
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Figure 5.4: Details of Model Building and Prediction Phases

smoothness of the curve. From the Eqn.5.6, we need (K + 4) Coefficients to define a

unique Cubic Spline or Pareto curve of a specific TG.

Fig.5.4 presents more details on the functionality of blocks and process in Phase 2

and Phase 3. After generated in Spline Regression block, the Spline Coefficients are

classified into Volatile and Consistent Coefficients. The Consistent Coefficients have a

small variance compared with their average (≤ 10%) and they do not vary much across

different TGs. So, we can use their mean for the new coming Task graphs. Therefore,
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they are transferred directly to Predict Normalized Pareto block. In contrast, the coef-

ficients with large variance, i.e. more than 10% of their mean, are defined as Volatile

Coefficients. These coefficients change values from TGs to TGs and are dependent on

the TG features. Therefore, we need the Linear Regression model in Subsection V-

B to characterize this dependency and they are sent to Linear Regression block. The

threshold of 10% is derived empirically and might be tuned for different Regression

techniques. Generally, for majority of the regression techniques, the threshold of 10%

gives a good trade-off between computational effort and accuracy of final results. For

example, Fig.5.5 shows Boxplot graph of 3 − knots Cubic Splines coefficients from

dataset of 40 TGs. It is obvious that only 5 out of 7 coefficients vary across the TGs;

hence, they are potential candidates of Volatile Coefficients.

5.3.2 Build Linear Regression for Spline’s Volatile Coefficients and

Pareto’s Range

From the above discussion, the real Pareto front of a TG can be rebuilt based on 3 types

of parameters: the range of Pareto curve, the Volatile Coefficients and the Consistent
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5.3 Phase 2: Building the Predictive Models

Coefficients of the Spline Model. Amongst them, only the Consistent Coefficients are

unchanged across the TGs while the others are dependent on the features of TG. There-

fore, we need to build predictive models to capture the dependencies of the range of

Pareto curve and the Volatile Coefficients on the TG’s features. That also describes the

role of Linear Regression (LR) block in our framework. As can be seen from Fig.5.4,

there are 2 sub-modules in this block: Linear Regression for Pareto’s range and Linear

Regression for Volatile Coefficients. The former sub-module takes input from training

Pareto curves and associate TG features to generate the LR models for predicting the

min, max of Pareto curves. The later sub-module uses training Volatile Coefficients

generated from Spline Regression block to build the model for predicting normalized

Pareto curve in Prediction Phase. The general formulation of LR model is given in

Eqn.5.7:

Yi = β0 + β1X1 + β2X2 + . . .+ βnXn + εi (5.7)

Where Yi is the outcome. In our framework it will be the min, max of Sched-

ule Length and Energy of points on Pareto curve or the Volatile Coefficients of Spline

Model. βi is the coefficients of LR model. In our example, there will be 9 models and

coefficient sets in total, 5 for predicting the Volatile Coefficients and 4 for estimating

the range of Pareto front. Xi refers to the features extracted from TGs such as: number

of tasks, number of edges, maximum bottom level, maximum top level, mean of task

size, variance of task size, mean of edge length, variance of edge length. These features

are selected from popular metrics of a TG [87] and its statistics. The reason behind the

choices of TG’s features and LR is once again the trade-off between accuracy and com-

putational complexity. In fact, the simple LR model can well describe the dependency

between the TG’s features and the outcomes since it can explain more than 95% of the

variation in the dataset (R2 >= 0.95). As mentioned above, the features selection de-

pends on the application model used by original list-based heuristics. For the Mapping
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Figure 5.6: Details of Trace back module

algorithm, the features extracted from one input SDF graph are the number of actors,

number of channels, number of actors and channels in the corresponding HDSF, the av-

erage rate of ports, the average execution time of actors, the average state Size of actors

and average token Size of channels. More details on these features are provided in [161].

5.4 Phase 3: Applying the ML Models for Prediction at

Runtime

Fig.5.6 presents the execution procedure in the third phase of our framework. When a

new TG comes, its features are extracted and sent to Applying Model block to generate

102



5.4 Phase 3: Applying the ML Models for Prediction at Runtime

an estimated Pareto curve, which is denoted as curve (C). The Trace back module is

introduced to obtain real Pareto points on the curve. The detailed steps of Trace back are

presented in the dotted rectangle. First, the targeted point (unfilled-point) and estimated

curve (curve (C)) are put on the same normalized objective space with the Pareto fronts

of training TGs. Then, k-nearest neighbors (k-NN) of the targeted point are extracted.

Subsequently, the parameter space of these k-NN points are fed from historical data and

merged together to form a potential parameter space. Thereafter, a clustering algorithm

called Ordering points to identify the clustering structure (OPTICS) [20] is applied to

potential parameter space to filter out m potential parameter sets, which have the largest

local density factor. Finally, the scheduling algorithm is called for these m potential

parameter sets to generate the desired points on objective space that are closest to the

targeted point. The rationale behind the k-NN and OPTICS steps is to extract the most

potential parameter sets from the historical parameters space.

The detailed implementation of Trace Back block is given in Algorithm 7. The first

input of this procedure is the Objective Space SO of all normalized Pareto front Paretoi

of TG i-th in the training set TrainSet. The second input is the Parameter Space SP

containing all the Parameter sets Pi associated with Pareto front Paretoi. Another input

is the predicted Pareto range Tmin, Tmax of the new coming TG, which is generated

by Applying Model block. The hyper-parameter n, k,m are respectively the number

of knots in interval [Tmin, Tmax], the number of selected nearest neighbors in kNN

step and the number of selected potential parameter sets from density filtering step.

Especially, the two hyper-parameters n,m have huge decision role on the complexity

and performance of the whole framework. Therefore, their impact is examined more

thoroughly in the experimental Section. The expected output of this Block is the Pareto

front Paretonew of the new TG. The main part of the Algorithm (the For Loop from

Line 2-25) is described above and illustrated in the dotted rectangle (Trace back) of

Fig.5.6.
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Algorithm 7 Trace back procedure
Input: Normalized Pareto sets on Objective Space: SO = {Paretoi, i ∈ TrainSet} ,

1: Parameter sets associated with Pareto points on Parameter Spaces: SP = {Pi, i ∈ TrainSet},

2: Predicted Pareto Range of new TG: Tmin, Tmax ,

3: Hyper-parameter: n, k,m .

Output: Pareto set of new TG: Paretonew

4: for each knot l-th (l = 1, n) in interval [Tmin, Tmax] do

5: Tl = Tmin + l ∗ (Tmax − Tmin)/N

6: tl = (Tl − Tmin)/(Tmax − Tmin)

7: /* find k- nearest neighbours points from training set */

8: for each TG i-th in training set TrainSet do

9: for each point j-th Paretoij = (Tij , Eij) on Normalized Pareto front of TG i-th do

10: Compute distance: dij = Tij − tl
11: end for

12: end for

13: Sort distance array d

14: Add k points with smallest distance to kNN set

15: /* find the potential parameter space for Pareto front of new TG */

16: for each points k-th in kNN set do

17: extract the parameter space Pk of point k-th

18: Pnew = Pnew ∪ Pk

19: end for

20: reach dist = OPTICS(Pnew)

21: Sort reach dist and extract m parameter set with smallest reachability distance to potential pa-

rameter space Ppotential

22: for each parameter set m-th in Ppotential do

23: Otemp = Original Mapping/Scheduling Heuristics(parameter set m-th)

24: Onew = Onew∪ Otemp

25: end for

26: end for

27: Extract the Pareto set Paretonew of new TG from its Objective Space Onew
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There are 2 obvious use cases, where our framework can be applied efficiently.

• Generating the most efficient design points that satisfy predefined constraints

on objectives: this use case is similar to the procedure described above where the tar-

geted point is defined by the objective’s constraints. Our approach provide a huge ad-

vantage over the Multi-objective Algorithms (MOAs) in term of execution time since we

just need to evaluate several points on the objective space while the traditional MOAs

need to generate the whole Pareto fronts before obtaining the design points satisfied the

constraints. The difference is especially significant when the bottleneck is usually at-

tributed to the scheduling procedure which is called to generate a design point on the

objective space.

• Generating the whole Pareto front of a new TG: in this scenario, the designer

can divide the estimated Pareto curve in n- intervals and run Trace back procedure for

each point of these intervals. The results are combined to form the Pareto front for

the new TG. The traditional alternatives for this use case are existing Multi-objective

Algorithms and GA is one of the most prominent candidate.

Although our framework is presented with an example of 2 dimensional objective

space, applying our framework to multi dimensional space is straight forward. The only

major change is in the Spline model for Pareto fronts (Subsection 5.3.1). The steps to

modify our framework for multi-dimensional objective space are described below:

• Choose one of the objectives as the response (yi);

• Consider the remaining objectives as the predictors (xi , zi , ui . . . ) ;

•Build the Spline model for the response based on the polynomial of predictors.

Eqn.5.6 will now include the components of (zi, ui . . .) similar to the ones for (xi).

• Apply the rest of the framework as described above.

The consequence of multi-dimensional design space is that the number of Volatile

Coefficients might be increased and the execution time of the whole framework might

be longer. However, the same implication exists for GA methods as well. Therefore, we
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expect the speedup of our framework to remain the same or even improve further.

5.5 Experimental Results

A number of experiments are conducted to evaluate the performance and efficiency of

our framework. Because of the limited space, in this section we report only the result

of experiments conducted for the second use case, where the designer wants to generate

the whole Pareto front. This also allows comparison of our framework directly with the

GA method. The GA optimization is implemented with the NSGA II algorithm from

NGPM package [155] in Matlab 2013 and run with a configuration of 50 population

size and 100 generations. The ML techniques are developed with R 3.2 and Splines

package [131]. All experiments are performed on an Intel Core i7 2.26GHz CPU with 8

GB RAM.

5.5.1 Results for Scheduling Heuristic

We have applied our framework to a list-based scheduler named ECS [90]. The platform

under scheduling has 4 heterogeneous processors that can operate in different levels of

Supply Voltage as in the original platform model [90]. The Energy and Schedule Length

are obtained with the energy model and execution model used in the original Scheduler

ECS [90]. The criteria for comparison in our experiments are quality of generated Pareto

fronts and the execution time of all methods.

GA Method over Original Scheduler

In the first experiment, we examine the efficiency of GA methods and the accuracy of

our Pareto front estimation, which is the result of our ML framework prior to applying

the Trace back module. This experiment is performed with 3 synthesized groups of

TGs, each with 50 TGs, which are generated from TGFF tool [51] with different levels
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Figure 5.7: Result for single TG from fat group

of parallelism: fat, medium, slim. Out of 50 TGs in each group, 40 TGs are used as

training set in Phase 1 and Phase 2 of our framework. The predictive models are built

with 10-fold Leave One Out Cross Validation process [58] to assure the generalization

capability of the models. The other 10 TGs are used as new TGs to test the accuracy of

the ML techniques. All the results shown in this Section are from the test set.

Fig.5.7 shows the design space for 1 TG in the fat type. The red plus sign presents

the scheduling result from original ECS, while the real Pareto front from GA method is

marked with blue circle points and the estimated Pareto curve by ML techniques is pre-

sented as continuous green line. It is obvious that the GA algorithm provides far better

results in all objective dimensions when compared with original scheduler. It is easy to

understand since the GA has to pay a huge trade-off in running time to achieve such a

superior result as can be seen later in the runtime analysis part. The more interesting

observation is that the Pareto curve estimated by our 2 levels ML techniques is very

close to the real Pareto front generated by GA. This result proves that both the Spline

Regression and Linear Regression have done a good job in modeling the dependency

between TG’s features and Pareto front curve.

Fig.5.8 combines all the results from 10 TGs in the test set into one plot. As can be
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Figure 5.8: Combined result of all TGs in test set
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seen from these figures, the superiority of GA over original schedulers and the accuracy

of our estimated Pareto curve hold true for all the TGs in the test set across 3 different

TG types. Another interesting phenomenon is that the shape of Pareto fronts becomes

more homogeneous when moving from fat to slim group; the results of GAs also become

less dominating over the results of original scheduler. This can be explained by the fact

that the TGs with higher parallelism will have more different ways to be placed on the

computational platform; hence, their design spaces are bigger and more heterogeneous.

The chance that original scheduler produces a result in suboptimal region of the design

space is also higher.

Our Framework over GA Method

While previous experiment has shown that the estimated Pareto curves are very close to

the GA Pareto front, they are just intermediate result and need to be processed by Trace

back module to generate real design points on objective space. In this experiment, we

examine the ultimate result of our framework which are generated after Trace back

module. These results are compared directly with the Pareto fronts from GA method.

Fig.5.9a and Fig.5.9b show the result for 1 TG in the fat type and medium type. The red

points are the Pareto front generated by GA, the green line is the estimated Pareto curve

from the beginning of the Trace back procedure. All the points generated from Trace

back step are marked with blue color, where the plus signs and square signs represent

the result when m = 1 and m = 10 respectively. As can be seen, the Pareto fronts

generated by our framework are very close to the ones from GA method. The figure also

shows how the quality of our Pareto fronts improve with the increase in m.

Since the most time consuming process in both GA and our framework is executing

the scheduler to get the design point on objective space, we designed this experiments

around two hyper-parameters: n-interval and m-potential candidates, which directly de-

cide on the number of evaluation points in our framework. After varying the value of
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(a) Fat group

(b) Medium group

(c) Sparse Matrix Solver

Figure 5.9: Pareto fronts generated from GA and our framework
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m and n, we quantify the quality of the Pareto fronts using popular metric in the MOA

domain: R2-indicator (R2I) [32], where the reference set is the origin of the objective

space. The quality degradation of the results generated by our framework when com-

pared with GA’s Pareto fronts are measure relatively by the Quality Trade-off (QT) in

percentage of the GA’s R2-indicator. The measurements are averaged over all the 10

TGs of the test set and reported a long with the execution time in Table 5.1. As can be

observed from both the Table and the Figure, the quality of our framework is approached

to the one generated by the GA method when increasing the number of evaluations (by

increasing m or n) and the pay-off for that improvement is the nearly linear increase

in execution time. However, to achieve the comparable quality to the result from GA

we need only a fraction of time. With m = 1 and n = 20, we can achieve 2 orders

of speed-up over the GA with less than 1% deficiency in the quality of the Pareto front

for all types of task graph. Such an achievement is due to the fact that all the heavy

computation is moved to the training phase and take advantage of the ML models built

upon the historical data. As discussed in subsection 5.4, the runtime overhead of ML

method can be broken down to 4 main components: Feature Extraction, applying Linear

Regression model, applying Cubic Spline model and Denormalizing. While the Feature

Extraction part has more or less the same complexity as the original scheduler, the other

components are very simple computations: vector multiplications for applying Linear

Regression and Denormalizing blocks, 3-degree polynomial computation for Applying

Cubic Spline.

Real-life Applications

In this experiment, we used the predictive model built from fat group to apply for task

graphs of realistic applications: MP3 decoder [84], robot control, sparse matrix solver

and fpppp from the benchmark [169]. The choice of the model from fat training set

is explained by the fact that fat type has the largest variance in parallelism from the 3
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Table 5.1: Execution time and quality comparison

Our approach GA

TGs m 1 5 10 5 5 50

n 20 20 20 40 80 100

R2I 0.4201 0.4198 0.4196 0.4195 0.4195 0.4194

Fat QT (%) 0.17 0.10 0.06 0.04 0.03 0

Time 24 68 124 132 261 2654

R2I 0.4179 0.4172 0.4167 0.4166 0.4165 0.4164

Medium QT (%) 0.34 0.16 0.06 0.03 0.01 0

Time 21 59 105 112 222 2564

R2I 0.4202 0.4186 0.4183 0.4180 0.4179 0.4178

Slim QT (%) 0.59 0.20 0.12 0.07 0.02 0

Time 19 57 106 115 221 2542

R2I 0.4209 0.4202 0.4199 0.4196 0.4195 0.4185

MP3 QT (%) 0.58 0.41 0.35 0.27 0.24 0

Time 16 31 48 58 115 2348

R2I 0.4316 0.4208 0.4189 0.4193 0.4189 0.4164

robot QT (%) 3.64 1.04 0.59 0.68 0.58 0

Time 21 52 92 101 198 2554

R2I 0.4228 0.4188 0.4185 0.4187 0.4186 0.4169

sparse QT (%) 1.41 0.44 0.36 0.42 0.39 0

Time 20 52 93 101 200 2833

R2I 0.4250 0.4206 0.4164 0.4205 0.4161 0.4143

fpppp QT (%) 2.57 1.52 0.49 1.48 0.42 0

Time 30 89 155 215 425 6632
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groups; hence, model built on these TGs is the most flexible and generalizable. Fig.5.9c

presents the qualitative results from the sparse task graph. The figure again demon-

strates the capability of our ML methods to accurately generate the Pareto fronts of new

TGs just based on their features (without any prior information about TG). The quanti-

tative result is shown in the second half of Table 5.1 with the same metrics as in the 1st

experiment. The same 2 orders of magnitude speed-up can be achieved for the simplest

configuration (m=1, n=20) with small degradation in the Quality (the trade-off is still

less than 4%).

5.5.2 Result for Mapping Heuristic

To validate the capability of our framework for Mapping problem, we have applied the

framework to a list-based mapping algorithm reported in [161]. In contrast to the ECS,

the mapping algorithm operates on the SDF graph as application model. The original

mapping takes into account only throughput objective, we have applied the estimation

model reported in Chapter 3 to compute the energy consumption as the second objective

in the design space. The computing platform under mapping is a tile-based platform

with a mesh of 4x4 tiles as described in Chapter 3. The criteria for comparison in our

experiments are quality of generated Pareto fronts and the execution time of all methods.

The experiments are designed with both synthetic SDF graphs as well as the SDF models

of real life applications.

Synthetic Graphs

Similar to the previous experiments, we have generated 50 synthetic SDF graphs by the

tool SDF3 [160]. Then, we used 40 SDF graphs as training set in Phase 1 and Phase 2

of our framework. The predictive models are built with 10-fold Leave One Out Cross

Validation process [58] to assure the generalization capability of the models. The other

10 SDF graphs are used as new SDF graphs to test the accuracy of the ML techniques.
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Figure 5.10: Pareto fronts generated for Mapping Heuristic

All the results shown in this Section are from the test set.

Varying the same hyper-parameters m and n as in previous Experiments for ECS,

we run our framework with different settings and compare the results with the outcome

from GA method. An example of the result for one of the Synthetic SDF from test set is

presented in Fig.5.10a: the red circle represented Pareto front from GA method, results

from our framework denoted with blue color, where a simple setting (m = 5, n = 20) is

presented with plus sign and most complex setting (m = 10, n = 80) is presented with

square sign. As can be seen, the Pareto front generated from the most simple setting

(m = 5, n = 20) follows quite closely with the result from GA method. Furthermore,

there are points generated from most complex setting that surpass the quality of GA’s

Pareto front. The quantitative result is reported in the first group of Table 5.2. With the

most simple setting (m = 1, n = 20), our method can generate the Pareto front with

200x faster then the GA while sacrificing only 7.5% in quality of the result. With the

most complex configuration (m = 10, n = 80), we are approaching the result of GA

method with only 2.5% trade-off in quality but still shortening the execution time by 7

times.

Comparing to the result from Scheduling Heuristic, our framework becomes less ef-

ficient when applying to Mapping Heuristic. This phenomenon might be explained with

two factors. First of all, the cost function of the Mapping heuristic required much more
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complicated computational process than the cost function of ECS. Therefore, the pre-

dictive models (linear regression model and spline regression model), which work well

in modeling the behavior of ECS, cannot describe all the characteristics of the Mapping

Heuristic. Possible solution for this issue is to apply more sophisticated ML techniques

such as Artificial Neural Network or Random Forest, which operate as ”black box” mod-

els that can capture more complex behavior of the Mapping Heuristic. The second factor

influencing the result of our framework is the complexity of the computational platform

under consideration. In case of Mapping Heuristic, the platform includes 4x4 tiles of

heterogeneous processing elements, whereas, the platform used in ECS experiment con-

tains only 4 processors. The large number of processing elements significantly increase

the design space and make the behavior of the mapping process is more unpredictable.

Real-life Applications

In this experiment, we used the predictive model built from synthetic SDF graphs to

apply for SDF graphs of real-life multimedia applications: H.263 encoder (5 actors),

MPEG-4 decoder (5 actors), JPEG decoder (6 actors) and sample rate converter (6 ac-

tors) as in Chapter 3. The qualitative results of 2 applications MPEG4 and JPEG decoder

are presented in Fig.5.10b and Fig.5.10c respectively. As can be seen, the result from a

simple setting (m = 5, n = 20) of our framework is not so close to the GA Pareto front.

However, with the more complex configuration (m = 10, n = 80), the proposed frame-

work can deliver comparable result as GA method (or sometimes better as in JPEG’s

example). The detailed results are presented in Table 5.2. The table shows that for a

medium configuration (m = 10, n = 20), our framework just needs to trade-off less

than 5% in quality of Pareto front while enjoying more than 25x speedup for all the real

life applications.
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Table 5.2: Results for Mapping Heuristic

Our approach GA

SDFs m 1 5 10 10 10 50

n 20 20 20 40 80 100

R2I 0.1607 0.1572 0.1560 0.1537 0.1532 0.1495

Synthetic QT (%) 7.50 5.20 4.37 2.82 2.48 0

SDFs Time 46 181 339 701 1357 9245

Speedup 201 51 27 13 7 1

R2I 0.5035 0.5035 0.5035 0.5035 0.5035 0.4954

H263 QT (%) 1.63 1.63 1.63 1.63 1.63 0

Encoder Time 59 238 464 994 1997 11558

Speedup 194 48 25 11 6 1

R2I 0.0478 0.0454 0.0430 0.0409 0.0409 0.0410

JPEG QT (%) 16.36 10.72 4.70 -0.35 -0.35 0

Time 18 40 71 185 424 2658

Speedup 144 66 37 14 6 1

R2I 0.8748 0.8746 0.7865 0.7849 0.7849 0.7777

MPEG4 QT (%) 12.48 12.46 1.13 0.92 0.92 0

Time 96 469 949 2293 4441 25545

Speedup 265 54 27 11 6 1

R2I 0.6623 0.5243 0.5243 0.5222 0.5222 0.5210

samplerate QT (%) 27.13 0.63 0.63 0.24 0.24 0

Time 144 618 1230 2696 5086 32666

Speedup 225 52 26 12 6 1
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5.6 Summary

This chapter presents a generic framework that utilizes Genetic Algorithm and Machine

Learning techniques to predict the Pareto front of multi-objective list-based heuristics in

System Level Synthesis. While the GA optimization provides Pareto front that are far

better than original schedulers with huge trade-off in execution time, our multilevel ML

techniques with Spline Regression and Linear Regression can accurately generate the

Pareto curve with a much lower execution time and small degradation in quality of the

Pareto front. Moreover, the framework has been tested with both Mapping and Schedul-

ing, which are most important tasks in System Level Synthesis of digital systems. Al-

though the efficiency and effectiveness of our framework vary for different problems,

all the experimental results show promising potentials for applying ML techniques to

improve the performance of list-based System Level Synthesis tasks. The optimization

framework in this chapter also wraps our contributions on System Level Synthesis.
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Chapter 6
Exploiting Loop-Array Dependencies for

Design Space Exploration with High

Level Synthesis

In this chapter we move to the contributions on Micro or Device Level Synthesis and

Exploration, where High Level Synthesis (HLS) plays an indispensable role. Recently,

HLS tools that can automatically and quickly generate the RTL design from high level

abstraction languages have emerged as the next mainstream in the world of electronic

system design with the appearance of a lot of commercial products and academic re-

search [37, 44]. With the ability to generate hardware designs in a fast and easy way,

HLS tools allow the designers to easily evaluate different architectural implementation

alternatives for the same high level behavioral description in order to satisfy different

performance requirements and design constraints. To generate a new architectural im-

plementation, the designers need to adjust a set of parameters that control the RTL gener-

ation process, such as: number of execution units, amount of resources to share, memo-

ries to allocate, data types and sizes, algorithm choice, pipeline stages, unrolling factors,

etc. Each combination of different choices for these parameters provides a single option
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Loop-array dependency for HLS DSE 

• No works examine the structure of the Design Space 

Loop 1:     for (i=0; i<N; i++) 
                     a[i]= b[i]+ c[i]; 

Unroll  
factor U1 

Partition 
 factor Pa 

Partition  
factor Pb 

Partition 
 factor Pc 

• The DS of previous works: 
U1*Pa*Pb*Pc = N4 

• If the loop-array dependency  
explored => DS reduce to  U1 =  

Figure 6.1: Motivational example

(performance and resource usage) for the generated hardware (HW) engine and forms a

specific design point in the design space. The number of design points is exponentially

proportional to the size of the space, which is governed by the number of parameters

to be taken into account. Furthermore, the long runtime of the HLS tool itself is also a

bottleneck that makes the DSE for HLS a very time consuming process [141].

To address the time consuming problem of DSE in HLS, different approaches have

been proposed. Most of the approaches prune the design space using heuristic algo-

rithms such as: simulated annealing, genetic algorithms, etc. [132, 139]. Some ap-

proaches apply machine learning techniques by building predictive model for HLS tools

[35, 92]. Although these approaches can reduce the DSE time, they significantly sacri-

fice the quality of their solutions and can reach only to suboptimal solutions. The main

reason is that existing approaches don’t try to examine the structure of the design space

and the relationship between explorable parameters of the problems. One of the most

important relationships that has significant effect on the performance of HLS tools is the

dependency between loops and arrays [127, 192].

To illustrate the importance of loop-array dependency on the DSE of HLS, we ex-

amine a simple example. Fig.6.1 shows the pseudo code for adding two vectors b and

c, and storing the results into vector a. If the dimension of the vectors is N then we can

have N options for the unroll factor of Loop 1 and for each partition factor of arrays a,

b and c as well. This implies that if we do not consider the access pattern of the array
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and the loop-array dependency, the design space complexity will be O(N4). However,

it is easy to realize that if the partition factors of the array are greater than the unroll

factor of the loop, the HW engines cannot utilize all the access to available partitioned

memory banks. Hence, there is unnecessary wastage of resources for any array partition

factor that is greater than the unroll factor of the loop accessing the array. Moreover,

due to the simplicity of the code, we can observe that the optimal partition factor of

the arrays should be the same as the unroll factor of the loop. Therefore, it is desirable

and sufficient to traverse the design space for the loop unrolling factor only and such

consideration will reduce the size of the design space to O(N).

From the example demonstration (Fig.6.1), it is clear that the unroll factor of the

loop and partition factor of the arrays are closely interdependent on each other. Fur-

thermore, when the access pattern of the arrays is complex, it is difficult to extract the

dependency between unroll factors of the loops and partition factors of arrays, as well as

defining the optimal partition factors that fit the unroll factors. None of previous works

have exploited such dependencies to improve the DSE process of HLS tools. Towards

exploiting such dependencies, in this work, we propose a DSE framework for HLS tools

that can exploit the loop-array dependency to reduce the evaluation time while evalu-

ating optimal or near optimal solutions. Within the framework, following are the main

contributions:

• Loop-array Dependency Graph: A systematic and formal method to represent the

relationship between loops and arrays. We also developed a tool to extract the

graph from C code.

• Array Partition Factor Computation Block: A module that can generate the Pareto

optimal array partition factors according to the related loop optimization tech-

niques.

• Novel Framework for DSE in HLS: A multilevel DSE approach that efficiently

exploits the loop array-dependency to significantly reduce the DSE time.
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6.1 Proposed DSE Framework for HLS

DSE with HLS is usually a multi-objective optimization problem with regards to vari-

ous conflicting objectives such as performance (throughput, latency), hardware usage or

power consumption and reliability. In this work, we address the two main concerns of

any digital system design: performance and hardware usage. However, the framework

can be applied to include other criterion as well. Our main goal is to produce a Pareto

optimal front of the designs so that the designer can choose between different trade-off

points.

In HLS, optimization techniques related to loops and arrays have the most sig-

nificant impact on the performance and resource usage of any hardware implementa-

tion [44, 192]. In our framework, we consider two prominent optimization techniques

for loop, called Loop pipelining and Loop unrolling. Similarly, the most important array

optimization technique, called Array partitioning, is also taken into account. Another

reason for the choice of these optimization techniques is that they are commonly avail-

able in most of the HLS tools [98]. Therefore, our framework can be integrated with

a variety of different HLS tools. The proposed framework is a multi-level DSE solu-

tion: first, the normal DSE algorithm runs for the loop parameters optimization. Then,

inside each iteration of loop parameter set, another DSE process for array optimization

parameters is executed.

The overall framework of our DSE approach is presented in Fig.6.2. Three main

components of the framework are the DSE Algorithm, the Loop-Array Dependency

Extractor (LADE) and the Array Parameters Computation Block (APCB). The DSE al-

gorithm is the main block that controls the whole DSE process by generating the new

loop parameter set (loop unrolling and pipelining parameters) for each iteration of the

framework. Thereafter, the new generated loop parameter set is passed to the second

block (APCB) as a reference for the second DSE process to find the Pareto optimal Ar-

ray partitioning parameter for the corresponding input loop parameter set. The DSE
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Figure 6.2: Overall flow of proposed mapping strategy

for array level runs on a simulator that can guarantee efficient array partition parameters

according to each loop parameter set. By using a simulator the second level of DSE

takes much less time as compared to traditional approaches that need to call the HLS

for evaluating each array parameter set. The second level of DSE for array parameter is

executed in the Array Parameter Computation Block (detail in Section 6.3). To initiate

the APCB, we need the Array Access Pattern and the information from Loop-array de-

pendency (LAD) graph, which are the output from the LADE. In contrast to the iterative

execution behavior of the other blocks in the framework, the LADE is required to run

only once at the beginning of the process to extract the LAD graph and the access pattern
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of the arrays, which are the references for the APCB. The architecture and functionality

of LADE block are further discussed in Section 6.2.

After getting the result from APCB, the tool passes information about the optimiza-

tion techniques for both the loops and the arrays to the block Directive Generator to

form the Directives for the HLS tools. Basically, this block is a script that depends on

the Directive Library of different HLS tools. Finally, the HLS tools are called to generate

the new hardware implementation as well as to evaluate the performance and resource

usage of the current parameter set. The Pareto Checker will compare the results of the

current parameter set with previous ones to decide whether it belongs to the Pareto front.

Then, the control is passed to the DSE algorithm block to begin a new iteration for loop

parameter DSE. The framework is terminated when it meets the stop condition in the

DSE algorithm block.

In this framework, the two blocks LADE and APCB reflect our main contributions

that utilize the LAD to mitigate the timing issue of DSE process without affecting the

quality of the solutions. These blocks are designed in a modular approach as independent

blocks from the DSE algorithm. Therefore, our framework provides users the freedom to

utilize different DSE algorithms for the loop parameter DSE process such as exhaustive,

heuristics: hill climbing, ant colony or multi-objective algorithm like Genetic Algorithm

or Particle Swarm Optimization.

To illustrate the advantages of our approach over the traditional approaches, in this

work we use an exhaustive method for loop parameters DSE as described in Algorithm

8. We have customized the traditional exhaustive algorithm to fit with the problem of

loop parameter optimization. As mentioned above, we consider two most important and

popular loop optimization techniques: pipelining and unrolling. When pipelining is ap-

plied for an outer loop, all the loops nested in this current loop will automatically be

unrolled [1]. Therefore, the pipeline directive is more critical and needs to be traversed

first using the outer For loop (Line 2). First, the case of no pipelined loop is considered,
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where all the possible options of unrolling loops are examined using TRAVERSE() func-

tion (Line 4-7). Then, the loops are pipelined in order from inner-most to outer-most.

Whenever, one loop in the loop nest is pipelined (Line 8), the unroll factor of the other

loops under it in hierarchy will be set to the maximal value (Line 10), while the unroll

factor exploration is considered for the loops outside of the pipelined loop (Line 12).

The algorithm terminates when the outer-most loop is pipelined i.e. PL = 1. TRA-

VERSE(N,PL,U) function is a recursive function that can exploit all the unroll factors of

the loops outside loop N and store the current pipeline and unroll factors into variable

PL and U .

6.2 Loop-Array Dependency Graph

This Section discusses about the LAD graph, and its usage in the proposed framework.

As shown in Fig.6.2, the LADE block takes the C code as input and generates the Array

Access Pattern and the LAD graph. Before going to the discussion of these two forms

of representations, we need some preliminary concepts of Polyhedral Model, which is

the fundamental of these representations.

6.2.1 Polyhedral Model

Polyhedral Model is an alternative representation of programs that provides high po-

tential of analysis, expressiveness and flexible transformation for the loop nests. The

Polyhedral Model is based on three basic concepts: iteration domain, scattering func-

tion and access function. In the scope of this work, only the iteration domain and the

access function are utilized so only these two concepts are defined. Reader who are

interesting in the whole Polyhedral Model, can refer to [24] for more complete defini-

tions.

• Definition 1: Iteration Domain. Given a nest of N loops, the iteration vector I
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Algorithm 8 Exhaustive DSE algorithm for loop optimization
Input: Loop nest with N loops

Output: All possible loop optimization parameter set

int PL // variable indicating pipelining technique in which loop level

int U [N ] // array storing the unroll factors for each loop level

for i = N + 1 to 1 do

if i = N + 1 then

PL = 0

TRAVERSE (N,PL,U )

else

PL = i

for j = i+ 1 to N do

U [j] = Maxj

end for

TRAVERSE (i− 1, PL, U )

end if

end for

procedure TRAVERSE(N,PL,U )

if N = 1 then

for i = 1 to Max1 do

U [1] = i

Output(PL,U )

end for

else

for i = 1 to MaxN do

U [N ] = i

TRAVERSE(N − 1, PL, U )

end for

end if

end procedure 126



6.2 Loop-Array Dependency Graph

is defined as: I = (i1, i2, ..., iN), where ij = 1, ..,Maxj is the iterator of jth loop. All

possible values of the iteration vector forms the Iteration Domain of the given loop nest:

DI = {(i1, i2, ..., iN) ∈ ZN |0 ≤ ij ≤ Maxj, j = 1, .., N} and each iteration vector

represents one instance of loop iteration of the loop nest.

• Definition 2: Array Domain. Given an array A with M dimensions, the access

vector of array A is defined as RA = (a1, a2, ..., aM). Each particular instance of the

access vector gives access to one element of the array: A[a1][a2]...[aM ] and all possible

values of the access vector form the Array Domain: DA = {(a1, a2, ..., aM) ∈ ZM |0 ≤

aj ≤ Sizej, j = 1, ..,M}, where Sizej indicates the size of the array in jth dimension.

• Definition 3: Array Access Function. Given array domain DA and iteration

domain DI , the array access function Fk for kth array reference is defined as: Fk :

DI −→ DA. The array access function gives us the information about the element of

array A that is accessed in a particular iteration of the loop nest. Since we consider only

affine access to array, the function Fk has the following form: Fk(I) = X ∗I+Y , where

X is an M ×N matrix and Y is a constant vector of size M .

a b

c d


A

×

x1
x2


x

=

b1
b2


b

Fk


Ii1

i2

...

iN

 =


Xx11 x12 ... x1N

x21 x22 ... x2N

... ... ... ...

xM1 xM2 ... xMN




Ii1

i2

...

iN

+


Y y1

y2

...

yM

 (6.1)

6.2.2 Array Access Pattern

• Definition 4: Array Access Pattern. Given a loop nest I and array A, all existing

references to array A in the loop nest forms the access pattern of loop nest I for array

A. The access pattern for each array is a set of all references to that array and is presented

as a set of matrix M and I .
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6.2 Loop-Array Dependency Graph

Loop 1: for (i=0; i<N; i++) 
    Loop 2: for (j=0; j<N; j++) 
              { C[i][j]=0; 
    Loop 3: for (k=0; k<N; k++) 
  C[i][j]=C[i][j]+A[i][k]*B[k][j]; 
   } 

(a) Code listing

Loop‐array Dependency Extractor

3

// c=a*b 
Loop 1: for (i=0;i< N; i++)

Loop 2: for (j=0;j<N; j++)
{ c[i][j]=0;
Loop 3: for (k=0; k<N; k++)

c[i][j]=c[i][j]+a[i][k]*b[k][j];
}

L3

L2

L1

B

A

CPa1

Pa2

Pc1

Pc2

Pb1

Pb2

U1

U2

U3

(b) LAD graph

Figure 6.3: Example of matrix multiplication program

We use an example of matrix multiplication loop nest to further clarify above-defined

concepts. Fig.6.3 presents the listing of the loop nest and the corresponding parameter

values are as follows:

Iteration vector: I(i, j, k)

Iteration Domain: DI = {(0, 0, 0), (0, 0, 1), . . . , (N − 1, N − 1, N − 1)}

Access vector of array A: RA = (i, k)

Array Domain of array A: DA = {(0, 0), . . . , (N − 1, N − 1)}

Access function for array A:

FA


i

j

k

 =

XA1 0 0

0 0 1



i

j

k

+

YA0

0

 (6.2)

Access pattern for array A: matrix XA and vector YA

Similarly, access patterns of arrays B and C are given by vector YB = YC = YA and

two matrices XB and XC as follows:

XB =

(
0 1 0

0 0 1

)

(6.3a)

XC =

(
1 0 0

0 1 0

)
(6.3b)
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6.2 Loop-Array Dependency Graph

6.2.3 Loop-Array Dependency Graph

The LAD graph captures the overall relationships between different loop levels as well

as the dependencies between loops and arrays in the loop nest.

• Definition 5: LAD graph. Given a loop nest with N loops, L = {L1, L2, . . . , LN}

and all the arrays accessed by the loop nest,A = {A1, A2, . . . , AK}, then the LAD graph

is defined as a directed graph G(V,E), where V = L ∪ A and E is defined as follows:

• If the loops are arranged in order from outer-most to inner-most as: L1, L2, . . . , LN

then edge (Li, Li+1) belongs to E.

• If array Aj is accessed by the iterator of loop Li then edge (Li, Aj) belongs to E.

Fig.6.3b illustrates the LAD corresponding to the loop nest of Matrix Multiplication

given in Fig.6.3a. According to the above definition, there will be 3 nodes representing

the loops in the loop nest (L1, L2, L3) and 3 nodes for arrays representation (A,B,C).

Optimization techniques applied to L1 will affect the optimization of loop L2, array A,

and array C. Similarly, other edges in the LAD graph will indicate different dependen-

cies between loops and arrays. The LAD graph benefits the whole framework by two

folds. First, the loop dependencies are passed to the DSE algorithm to define the order

of loop pipelining. For example, when we pipeline the loop L2 then the unroll factor

of L3 should be maximal, and users do not need to consider other options for unrolling

loop L2. Secondly, the dependencies between loop and array are useful for the APCB

block to define which array parameters should be considered according to the loop pa-

rameters. For example, whenever the optimization techniques are applied to loop L1

then only partition factors of array A and C need to be examined and there is no need to

evaluate the optimization techniques for array B. These representations are customized

to the DSE HLS problem and are efficiently used in our framework.
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Figure 6.4: APCB architecture

6.3 Array Parameter Computation Block

The APCB block outputs the Pareto optimal parameters for array optimization tech-

niques corresponding to the current loop parameter set. Fig.6.4 illustrates the architec-

ture as well as all the input and output data of this block. Basically, the APCB performs

the second level of DSE process for array parameters while fixing the loop parameters.

The Partition Strategy Generator traverses all over the design space of array param-

eters and exhaustively produces new Array partition strategies for the Access Pattern

Simulator (APS). Taking all the required input of the access pattern, the current loop

optimization parameters and array partition strategy, the APS will simulate the memory

access behavior of the given hardware design and output the number of cycles needed for

memory access. After getting all memory access cycles for every partition strategies, the

results are passed through the Pareto Optimization Filter (POF) to get the final Pareto

optimal array partition strategies. The detail implementations of these sub-modules are

given in the next sections.
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6.3 Array Parameter Computation Block

6.3.1 Array Partition Strategy

Memory partitioning is a widely used technique to improve memory bandwidth without

data duplication. The original array will be placed into N non-overlapping banks, and

each bank is implemented with a separate memory block to allow simultaneous accesses

to different banks. The two most commonly used data partition schemes are block parti-

tion and cyclic partition, as shown in Fig.6.4. These schemes provide regular partitions

and thus can be easily implemented. This is desired for hardware synthesis as extra

logic required to handle irregular patterns may increase the final design area drastically.

Moreover, these schemes are widely supported by different HLS tools such as: Vivado

HLS, LegUp, etc. Therefore, the memory partition strategies in our framework cover

both cyclic and block partition schemes and are defined as follows:

• Definition 6: Array partition strategy. Given an array A with M dimension, then

an array partition strategy for A is defined as a (m + 1) tuples: PS = (p0, p1, . . . , pM),

where:

• pi is partition factor for ith dimension (i 6= 0) and

• p0 = 0 for block partition, or p0 = 1 for cyclic partition.

Mapping function for array partition strategies: Given an array partition strategy,

the mapping function defines the index of memory bank for each element in the array.

Mapping function is a function P that maps array address A = (a1, a2, . . . , aM) in array

domain to partitioned memory banks, that is, P (A) is the memory bank index that A

belongs to after partitioning: P : DA −→ Z. The detail of memory mapping functions

for block and cyclic schemes are provided in Algorithm 9.

6.3.2 Access Pattern Simulator

The APS utilizes analytical function to approximate the memory cycles instead of call-

ing the HLS tool, and thus achieves much shorter execution time. The accuracy of the
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6.3 Array Parameter Computation Block

Algorithm 9 Memory mapping function for partition strategies

Input: Array partition strategies PS = (p0, p1, . . . , pM); Array access vector A =

(a1, a2, . . . , aM)

Output: Memory bank index of element A[a1][a2] . . . [aM ]: bank number

if p0 = 0 then

// Block partition

for i = 1 to M do

tempi = bSizei ÷ pic

idi = bai ÷ tempic

end for

else

// Cyclic partition

for i = 1 to M do

idi = ai mod pi

end for

end if

bank number =
∑M

i=1 idi ∗
∏M

i+1 pj

return bank number

results generated by APS guarantees a theoretical bound for the actual results obtained

by calling HLS. The performance gains and accuracy are further examined in experi-

mental section.

The implementation details of APS are provided in Algorithm 10. First of all, the

memory bank index for each array element is computed according to the partition strat-

egy described in Algorithm 9 (Line 2). Then, the algorithm traverses through all exe-

cuting iterations of the HW engines (Line 4). In each iteration, it iterates through all the

HW instances (Line 5) (defined by the loop optimization parameters) and all memory
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6.3 Array Parameter Computation Block

references (Line 6) (defined by the access pattern of the code). For each memory refer-

ence of each HW instance, the simulator will compute the index of the accessed element

in original array using the access function matrix described in 6.3.1 (Line 7) then derive

the memory bank index of this element from the result in Line 2. All the bank indexes

accessed in current iteration are stored in a 2 dimension array R[l][k], where l indicates

the HW instances and k indicates the memory references. Thereafter, the algorithm

computes the frequency of different values appeared in array R (Line 11). The values

appeared in array R indicate the indexes of memory banks accessed in current iteration

and the frequency of each value represents the number of accesses to the corresponding

memory bank. The algorithm then identifies the memory bank with maximum num-

ber of accesses and stores its frequency into variable Max (Line 12). The final result,

which is the total number of required memory cycles, is generated by accumulating the

memory cycle of all iterations (Line 13).

An example demonstrating the mechanism of APS is presented in Fig.6.4. The

demonstration considers Denoise application with input array size of (8, 4). Loop opti-

mization parameters are unrolled 2 times for Loop 2, and no optimization is applied for

Loop 1. Hence, there are 2 HW instances working concurrently as shown in the figure.

The first HW instance operates on the left part of the original array, while the second

instance processes the right part. The current partition strategy is cyclic scheme with

partition factor P1 = 2 and P2 = 4. Following this partition strategy, the original array

is divided into 8 different memory banks with the index from 0 to 7. The number in each

memory cell represents the index of the memory bank that the cell belongs to. The red

cycle indicates the current elements that are processed by two HW instances. The sur-

rounding elements marked by the yellow square show all the required memory accesses

needed for processing current iteration. In this particular iteration, we can see that each

HW instance needs to access 1 element in bank 4, 1 element in bank 6, and 2 elements

in bank 1. Since memory access on different memory banks can happen simultaneously,
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6.3 Array Parameter Computation Block

the memory access in bank 1 will be the bottleneck with 4 elements and 8 cycles (each

access required 1 cycle for transferring address and 1 cycle for loading value).

Algorithm 10 Access Pattern Simulator implementation
Input: Array partition strategies, Array access pattern, Loop parameters

Output: Memory cycles needed

for each array element do

Compute memory bank index using Algorithm 9

end for

for each executing iteration do

for each HW instance lth do

for each memory reference kth do

Compute access vector A using Equation 6.1

R[l][k]←− memory bank number of A (from Line 2)

end for

end for

Count frequency of each element in array R

Max = maximum of frequency from Line 11

Sum = Sum+Max

end for

return Sum

6.3.3 Pareto Optimization Filter

After getting the memory cycles needed for all partition strategies, this block compares

the partition strategies based on their partition factors in all dimensions as well as their

memory cycles. Then, it keeps all the non-dominated partition strategies and output the

Pareto optimal partition strategies in term of memory cycles and partition factors. Ac-

cording to [1], the resource utilization proportionally increases with the partition factor.
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Furthermore, since the computation cycle should not change for a fixed loop optimiza-

tion parameter set, the overall performance will be characterized by the memory cycles.

Therefore, the partition strategies generated by this block will be efficient in both latency

and resource utilization. As the example demonstration, in Fig.6.4, the Pareto-optimal

partitions are marked with red cycles.

6.4 Experimental Results

The results from our framework are compared with exhaustive search and following ex-

isting approaches: an Adaptive Simulated Annealing (ASA) approach in [139] and an

approach using multi-objective Genetic Algorithm (NSGA) in [35]. The ASA approach

has been implemented in Matlab 2013 using ASAMIN package [135]. Similarly, the

evolutionary computing approach is implemented with the NSGA II algorithm from

NGPM package [155] in Matlab 2013. The LADE block of our framework is imple-

mented as an extension of the CLAN tool [24], while the DSE algorithm and the APS

are developed in Java 8.0. Vivado HLS tool is used as the High Level Synthesis Tool

with Zedboard as the synthesized platform. The experiments are performed for five

applications from the Polybench [126], a popular benchmark for testing loop and array

related problems. These applications are chosen to reflect different array access patterns:

image processing function (Denoise), matrix multiplication (Matmul), triangular solver

(Trisolve), Floyd-Warshall graph analysis algorithm (Floyd) and 2D Seidel stencil com-

putation (Seidel) [126]. The criterion of the comparison are the quality of the Pareto

fronts generated using above approaches and the effort needed by these approaches.

6.4.1 Quality of Pareto Front

The comparison on quality of the design space generated by four approaches are illus-

trated through Fig.6.5 and Fig.6.6. These figures are plotted in log scale, where the
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Figure 6.5: Results for DSE on array parameters

Latency is the number of clock cycles output from Vivado HLS and the hardware uti-

lization (HW ) is characterized by following formulas: HW = λ1∗FF+λ2∗LUT+λ3∗

BRAM + λ4 ∗DSP ; where FF,LUT,BRAM,DSP are the number of FIFO, LUT,

BRAM and DSP blocks utilized in the design. The values of λi are platform-dependent

coefficients and are inversely proportional to available resources for FIFO, LUT, BRAM

and DSP on the platform.
Fig.6.5 shows the results obtained from the second DSE level on array parameters

for Denoise application with unroll factors u1 = 2 and u2 = 4. As shown in the figure,

design points generated by our framework efficiently covers all the points on the Pareto

front generated by exhaustive approach. The NSGA algorithm also can generate Pareto-

optimal points but needs more evaluations while the ASA approach fails to do the same.

The nice covering effect of the results from our framework can be explained by the fact

that the APS provides a theoretical bound on the latency of the evaluated points. There-

fore, the points generated from our approach (which are obtained from APS) always

include all the optimal points in terms of Latency, which are part of the real Pareto front

of the design space.
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Figure 6.6: Overall DSE

Similar results are observed for the overall DSE on loop level and are presented

in Fig.6.6. In this level, our framework clearly shows its advantages over the NSGA

by covering a large fraction of the Pareto front while the NSGA can do that only with

less number of points. The quality of results is described in more details using two

concepts proposed in [141]: Hypervolume and Pareto Dominance. The Hypervolume

indicates the fraction of design space that is dominated by the points generated from

each approaches, while the Pareto Dominance counts the number of design points from

each approach that belong to the Pareto front. The left part of Table 6.1 (Quality) shows

that design points from our framework dominate the NSGA and ASA approaches for all

the evaluated applications. The advantage of our approach at this level has resulted from
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the efficient results in the array parameters DSE level. It is also observed that the Pareto

points missed by our approach mostly belong to the designs with low HW utilizations

(Fig.6.6d). It indicates that our approach does not efficiently detect the HW-optimal

designs and the reason for this limitation is the simple estimation of HW criteria using

array dimension in the Pareto Optimization Filter. This problem can be improved by

integrating more efficient HW estimator to the Pareto Filter block, which is one of our

directions for future work.

6.4.2 Execution Time and Number of Evaluations

One of the most important features that define the efficiency of a DSE strategy is the

number of evaluations performed by the strategy. The last two columns of Table 6.1

present the timing result and the percentage of number of evaluated points for all ap-

proaches. The results are normalized with respect to the exhaustive approach. As can be

seen from Table 6.1, the execution time of all approaches are proportional to the num-

ber of evaluations. The reason of this effect is that the execution time of the algorithms

themselves are not significant (ignorable) when compared with time required for each

evaluation, which are performed by executing the HLS tool. In Table 6.1, our framework

again demonstrates its advantages over NSGA and ASA approaches on both number of

evaluations and execution time. Furthermore, it also brings a huge improvement over the

exhaustive approach with an average speed-up of 14×. The efficiency of our approach

comes from the fact that in the second level of DSE for array parameters, a significant

amount of inefficient design points are eliminated by the APCB module. Hence, only

promising candidates for the Pareto front are evaluated by HLS tool in our approach.
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Table 6.1: Quality of the design space

Quality Effort

Application Approaches Hypervolume Pareto Evaluated Time

(%) Dominance Points (%) (s)

Exhaustive 100 10 100 66,484

Denoise NSGA 96.88 5 17.71 18,456

ASA 95.05 2 15.23 14,164

APS 98.32 8 13.41 10,766

Exhaustive 100 9 100 8,159

Matmul NSGA 90.89 6 17.97 922

ASA 88.41 2 16.41 679

APS 96.21 8 7.29 371

Exhaustive 100 3 100 29,134

Floyd NSGA 88.80 1 15.49 2,894

ASA 93.10 0 16.63 3,631

APS 100 3 6.90 2,247

Exhaustive 100 4 100 193,848

Trisolv NSGA 78.26 2 17.32 22,098

ASA 89.97 3 17.06 17,401

APS 100 4 16.93 11,234

Exhaustive 100 9 100 146,180

Seidel NSGA 97.09 4 16.67 18,063

ASA 96.35 2 15.63 15,244

APS 97.66 7 15.49 13,165
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6.5 Summary

This chapter presents an efficient framework for utilizing the loop-array dependencies to

solve the time-consuming problem of DSE for HLS. The proposed framework includes a

systematic and formal representation for the loop-array dependencies, a simulation block

that can efficiently compute the Pareto optimal array partition parameters for each loop

parameter set. Moreover, a multilevel DSE algorithm is also developed to exploit the

framework. The experimental results show that our framework provides better Pareto

front in term of resource utilization and latency in comparison to existing approaches

while taking less time to execute.
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Chapter 7
Auto-generating Hardware Accelerators

for Option Pricing Applications

Although it can help to reduce the development time, HLS tools usually generate hard-

ware designs that are suboptimal in performance and resource usage than manual hard-

ware implementation. To improve the performance of auto-generated RTL hardware

implementation from high level description but not sacrifice on the productivity of the

development process, dedicated hardware generator tools need to be developed. The

trade-off for this kind of tools compared with HLS is the narrow scope of usage. They

are usually developed to generate the accelerator for a specific class of applications. A

number of examples for auto-generation tools are given in Section 2.3. This chapter

presents the implementation of our hardware generator tool for option pricing applica-

tions, which has been implemented with the loop-array dependency technique proposed

in previous Chapter.

Option trading is the fundamental operation of every financial institution; therefore,

evaluating the option accurately and fairly is essential for the business of these financial

company and their customers [74]. However, the appearance of highly complex options,

which involve multiple underlying assets or contains complicated contractual features,
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makes the pricing problem a very challenge task. Besides, new underlying models for

describing the stock prices have been added more and more features to better reflect the

real behavior of the market. All of these complexities make the option pricing problems

computationally intensive.

The low latency demand is another important factor that makes the financial firms

accelerate the option pricing methods. In the era of automated trading, the prices of

the financial products change within a small fraction of second. In this competitive

environment, faster and more accurate pricing can bring a huge advantage and profit for

financial firms. Therefore, high performance computing needs to be exploited to support

real time pricing [181].

Amongst other options for high performance computing in finance like GPU or CPU

cluster, FPGA has proven itself as a promising candidate for option pricing application

due to the following features. First of all, FPGA accelerators can exploit different levels

of parallelism inherent in the pricing methods: from instruction level, thread level to data

level with pipeline parallelism [164]. Moreover, they can provide the same performance

with much less power, size and cost in comparison with commodity CPU [164]. Last but

not least, the potential on low latency network interface for updating market information

and trading decision brings the unique advantage for FPGA implementation.

Because of its high potential and advantages, FPGA has been intensively studied

over the last few years to accelerate the option pricing problem. Although a number

of hardware (HW) implementations for option pricing have been reported with huge

speedup and lots of energy saving [167], the productivity is still a challenge when it

comes to FPGA design as compared to GPU and CPU [108]. Most existing works

proposed the hardware designs for one particular pricing model only: either Black Sc-

holes [166–168] or Heston [33, 34, 48, 49]. Because the computational features/ char-

acteristics of pricing models are different in nature, when users need to switch between

different models, the designers have to restart the design process from beginning, which
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consumes lots of time and effort. To address this problem, we introduce a generic frame-

work that can help designers to generate efficient and high quality hardware accelerators,

which can facilitate different pricing models as well as various types of options. Follow-

ing are the main Contributions of our framework:

• A generic design flow that can automatically optimize and generate the hardware

accelerators from a high level description of option pricing application;

• A template of modular and parameterizable hardware architecture that covers all

different computational features of various pricing models;

• A library for the hardware implementation of most popular pricing models: Black

Scholes; Merton; Heston and Bates;

• A heuristic to find optimization parameters for above-mentioned hardware de-

signs;

7.1 Option Pricing Basics

7.1.1 Option Overview

Option is a contract between two parties that provide the buyer the right to execute a

transaction on one or several underlying assets (stock, currency, index or debt) with

a strike price K at a future moment T (maturity or expiry) under specific conditions.

An option is a Call Option if the buyer has the right to buy in the future; whereas an

Option with the right to sell is called Put Option. The profit from Option at maturity is

defined by the payoff, which depends on the exercise condition, the Strike price K and

the underlying asset price at maturity T . Our framework can be applied to a wide range

of European options, which are executed only at Expiry. Based on the definition in [74],

the following Option Type are implemented in our framework:
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• Vanilla Option: the most popular and traditional type of option, the payoff condi-

tion depends on the strike price K, and the stock price at Expiry;

• Asian Option: the Strike price is defined as the arithmetic average of the underly-

ing asset price during the contract period;

• Barrier Option: the payoff condition is defined by whether its underlying assets

price achieves specific values.

• Binary Option: Binary options are options with discontinuous payoffs. A simple

example of a binary option is a cash-or-nothing call. This pays off nothing if the

asset price ends up below the strike price at time T and pays a fixed amount, Q, if

it ends up above the strike price.

• Lookback Option: The payoffs from lookback options depend on the maximum

or minimum asset price reached during the life of the option.

7.1.2 Option Pricing Problem

Options are one of the most widely traded products in the market [74]. Therefore, finan-

cial institutions need to define the fair option price to avoid the arbitration opportunity

from their competitors. The typical option pricing procedure is illustrated in Figure 7.1.

First of all, the evolvement of the underlying asset price needs to be described

through a model. Based on the model and current assets price S0, the price at matu-

rity ST can be calculated. After that, the option price at maturity CT is computed using

payoff function. Finally, the future option price CT is discounted to get the current

option price C0. From the pricing process, we can recognize the ultimate importance

of the underlying asset price model. The most popular and widely used models are

Black-Scholes model, Merton model, Heston model and Bates model [74].
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Background: how to price option - models
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Figure 7.1: Option pricing procedure

Black-Scholes Model

Black-Scholes (BS) model has been introduced in 1973 and widely adopted by financial

institution for option pricing problem [74]. In this model, Black and Scholes use perfect

market hypothesis to assume that all the known information of market has been included

in the prices of traded asset. Therefore, the asset price follows a Brownian motion with

constant drift µ and volatility σ:

dSt
St

= µdt+ σdWt (7.1)

where Wt is the Wiener random process, which is in the order of N(0, T ), a Gaussian

distribution with T as standard deviation.

dWt = Wt −W0 ≈ N(0, T ) (7.2)
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Heston Model

One disadvantage of the BS model is the assumption that the volatility is always con-

stant. This assumption does not reflect the properties of real market and may introduce

discrepancy between computed option price and real price. Therefore, Steven L. Heston

introduced the stochastic volatility to improve the Black-Scholes model. This improve-

ment described the stock price behavior much more accurately and the model is widely

accepted in financial community [74]. The Heston model has two stochastic differential

equations which describe the randomness in both the asset price S and volatility V :

dSt
St

= µdt+
√
vtdW

1
t (7.3)

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t (7.4)

Here, W 1 and W 2 are two Brownian motions with the correlation ρ that model the

randomness of the market. t is the time, and the other parameters further specify the

specific behavior of the financial market.

Merton Model

Another way to bring the BS model closer to the real market is to include a Jump com-

ponent to the diffusion process of the stock price. That was proposed by Merton [101],

and the formula is described in Equation 7.5.

dSt
St

= µdt+ σdWt + dZt (7.5)

where dZt describes the Jump component and usually follows a Poison process.

Bates Model

Bates introduced a new model which contains both the features of stochastic volatility

and jump process in 1996 [25]. The asset price is then described in Equation 7.6 and

7.7.
dSt
St

= µdt+
√
vtdW

1
t + dZt (7.6)

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t (7.7)
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7.1.3 Pricing Methods

From these models we can have several choices to define the dependency of the Option

price on the Stock price S, the volatility V and the time T . The way that we describe this

relationship also defines the numerical method used to price the option. First of all, the

stochastic differential equations (SDE) are the most straight forward way to describe the

abovementioned dependencies. For numerical computation, there are several options to

derive the option price, namely: Monte-Carlo (MC) Simulation, Finite Different meth-

ods, Binomial tree and Quadrature Method. Among them, MC is the most widely used

methods because of its simplicity and generality: it can be applied to almost all option

types as well as underlying stock models [64]. Therefore, our framework focuses on the

hardware accelerators for the Monte-Carlo method in option pricing applications.

7.2 Design Flow and Optimization Framework

In this section, we propose a generic design flow that can generate efficient accelerators

for different types of options and all the models mentioned-above. Besides, a frame-

work that can be used to optimize the engine parameters according to different design

constraints is also developed to shorten the process of FPGA development. Our pro-

posed design is illustrated in Figure 7.2. The input of the design flow is a specification

of an option pricing query which includes all the information needed for generating the

HW accelerator and obtaining the option price. The specification is written in XML file

and contains following details about the pricing request:

• Option Type Parameters: Vanilla, Asian, Barrier, Binary or Lookback;

• Model Parameters: Black Scholes, Merton, Heston or Bates;

• Option Parameters (general variables for all types of option): Strike price K, cur-

rent stock value S0, volatility σ, mean of expected return µ, number of time steps,
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number of paths, maturity T;

• Jump Parameters: jump rate λ, jump mean α, jump deviation β ;

• Stochastic Volatility (SV) Parameters: reversion rate κ, Variance of volatility ξ,

long term variance θ, correlation coefficient ρ ;

• User constraints: timing constraint, precision constraint or HW resource con-

straint.

The first main block of the framework is the Analysis and Optimization Module

(AOM). Basically, this module considers the Option Type and Option Model, analyzes

the Design Constraints and generates the optimal Engine Parameters for the next block.

The essence of AOM is an optimization algorithm which is a heuristic search algorithm

that intelligently traverses the design space to find the most efficient design point. The

design space is given by all the available set of Engine Parameters such as: number of

bits for exponential (e) and mantissa (m) of floating point representation; number of

hardware instances pipes and the frequency of the Hardware F . The procedure is de-

scribed in Algorithm 11. The input of the Algorithm is the design constraints given

by the designer in the Specification of pricing request. The constraints might contain

requirement of the error ε, the available hardware resource HW , and the timing condi-

tion, which is translated to throughput requirement tp. Taking into account the input,

the heuristic produces the most efficient engine Eopt configuration, which is represented

as a tuple of number representation (m, e), number of HW instances pipes, and the op-

erating frequency F . Using profiling method, the Algorithm first defines the number

representation (m0 = 41, e0 = 7), which satisfied the error requirement ε = 5% . Then,

it synthesizes the smallest configuration E0 = {(m0, e0), pipes = 1, F = 100} to ob-

tain the HW usage of 1 instance with standard frequency F = 100MHz. The flag of

successfully finding the optimal configuration is set to False in line 3. The maximal fre-

quency that makes the minimal configuration with 1 HW instance satisfy the throughput
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requirement is assigned in line 4. The upper bound of the number of HW instance im-

plemented is set in line 5. The next FOR loop iterates through possible number of HW

instances (Line 6), computes the minimal operating frequency (Line 7), and checks if

the minimum configuration for that number of HW instance is feasible to implement on

FPGA (line 8). If the minimal configuration is not feasible, the loop moves to next num-

ber of HW instances (Line 21). Otherwise, it indicates that an available configuration

found (Line 11) and continues searching for the maximal frequency using binary search

(the While loop).

The output of the AOM is the most efficient value of Engine Parameters which are

passed to the Automatic HW Generation (AHG) block. The main feature of this block

is using the Engine Parameters to configure the available HW modules in the HW li-

brary, combine these modules into a complete engine and generate the VHDL file for

the engine.

To better understand the mechanism of the framework and the functionality of each

module we will provide an overview of the general architecture of the pricing engines.

As presented in Figure 7.2, the HW library contains the architecture of 4 pricing engines

associated with abovementioned 4 pricing models. Each pricing engine has two main

parts: control path and data path. The data paths mainly contain arithmetic operations

and will dominate the HW consumption as well as the latency of each engine. The con-

trol paths are used to manage the data transfer and synchronization between data path

modules. Both the control paths and data paths are designed with a focus on flexibility

and modularization, that means these modules contain some features that can be param-

eterized with the Engine Parameters. In the data paths, these features will be the constant

and the user defined type, while in the control path the I/O enable signals and the routing

signals between blocks are customizable.
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Algorithm 11 Finding the most efficient Engine Parameters
Input: Design constraint: HW, tp, ε

Output: Most efficient Engine Parameters : E = {(m, e), pipes, F}

1: Profiling to get the number representation (m0, e0) satisfied the accuracy ε

2: Synthesize the minimal HW configuration with: E0 = {(m0, e0), pipes = 1, F =

100} to get the results HW0

3: available = FALSE

4: Fmax = tp

5: max pipes = HW/HW0

6: for i = max pipes to 1 do

7: Fmin = tp/i

8: if synthesize(Ei = {(m0, e0), pipes = i, F = Fmin}) = feasible then

9: pipesopt = i

10: Fopt = Fmin

11: available = TRUE

12: while (Fmax > Fmin + 1) do

13: if synthesize(Ei = {(m0, e0), pipes = i, F = Fmax}) = feasible then

14: Fopt = Fmax

15: Break

16: else

17: Fmax = (Fmax + Fmin)/2

18: end if

19: end while

20: else

21: Next

22: end if

23: end for

24: if available=TRUE then

25: Return E = {(m, e), pipesopt, Fopt}

26: else

27: Print(”there is no configuration satisfied the constraint”)

28: end if

151



7.3 Pricing Engine Architecture

7.3 Pricing Engine Architecture

This section provides the implementation details and architecture of the generic pricing

engine mentioned above. First we review the procedure of MC simulation applied to

pricing problem with different models; then architecture of the HW accelerator for MC

pricing method is developed with the parameterizable functionality in mind.

7.3.1 MC Method Overview

MC method is a numerical method that is widely used to simulate stochastic processes.

The essence of the method is based on the procedure of sampling underlying random

variables, then computing the outcome of the process and setting the average of all

simulated outcomes as the required value. The MC simulation method is intensively

used for option pricing problems because it is robust and stable; it can be used to de-

rive options without closed form formula and the complexity of the method does not

increase exponentially with the dimension of underlying assets. Therefore, this method

is a promising candidate for high performance computing accelerator. Moreover, the

independence between simulated paths makes it more attractive for parallel computing

systems like FPGAs and GPUs.

The procedure of MC method can be described as follows: firstly, the pricing pe-

riod is discretized into small time steps δt; then, the continuous stochastics differential

equations (SDE) of the pricing model is translated into discrete version to describe the

change of the asset price and volatility in one time step. After that, all the random move-

ments of price and volatility within period [0, T ] are accumulated to get the asset price

for one simulation path. The option price for each path at time T is computed using

payoff function. Then, the expected option price at time T is defined as the average of

all simulated option prices. Finally, the current price for the option is discounted from

its price in time T .
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7.3.2 HW Design of MC Engine

The HW architecture of the MC engine is presented in Figure 7.3 and closely follows

the procedure described in the previous Section. The blocks inside the dotted rectangle

Point are responsible for computing the movement of stock price for each time step,

while the Payoff Core is only executed at the last time step to compute the final price of

a Path (outer dotted rectangle). In other words, the Point Rectangle is the inner most loop

iterating through all the time steps, while the Path Rectangle is the outer loop iterating

through all the simulated paths. The Coeff. Precomputation block is implemented in the

highest hierarchal level and executed only once at the beginning of pricing procedure.

As suggested by its name, this block precomputes all the constant parameters during the

pricing process, so that they are not redundantly recomputed in the inside process. As

can be seen in Figure 7.3, there are two types of input parameters: the Model Parameters

and Option Parameters (red color) are configuration inputs, which are used by the HW

Generator Block to define appropriate architecture that needs to be loaded. The Model

Parameters determine which HW modules from library need to be configured in the

Coeff. Precomputation block, Variance Core and Price Core. Based on the type of

underlying models, they also decide whether or not to include the Possion Generator and

Jump Generator in the design, and how many Gaussian Number Generators (GNG) need

to be implemented. Having smaller impact on the design, the Option Type Parameters

decide the configuration need to be loaded in the Existence Core and Payoff Core. In

contrast to Model Parameters and Option Parameters, the rest of the inputs (Jump Paras,

SV Paras, Option Paras) are presented in black color and affect only the execution phase

when a particular pricing engine is already loaded into the FPGA. These parameters

are fed as input data to relevant modules of the configured pricing engine to produce

appropriate output results during execution.

As can be observed from Figure 7.3, the overall architecture of the pricing engine

is developed in a highly modular fashion so that it can accommodate various types of
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option and underlying models. The functionality of each block is described in detail as

follows:

The Poisson Generator block generates a series of numbers following Poisson dis-

tribution for the next block; the mean θ of the Poisson distribution are set from Jump

Paras input. The HW implementation of the Poisson Generator is presented in Figure

7.4, following the algorithm in Figure 3.9 of [64].

Taking into account the Jump Paras and Possion numberNt from previous block, the

Jump Generator computes the sudden change in stock price and passes the result to the

Price Core Module. These 2 blocks are available in the pricing engine of Merton and

Bates models only.
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The GNGs block is used to generate a series of numbers following Gaussian distri-

bution. Firstly, the uniform random number are generated using Min-Twister methods

(block UNG). Then they are converted to Gaussian random number using Box-Muller

method. This block is designed with the algorithms given in [99] and [190] .The con-

figuration factor of this block, which is controlled by Model Paras, is the number of

GNG instances. For models with constant Volatility (Black Scholes and Merton), there

is only 1 instance implemented, while SV models (Heston, Bates) require two instances

per time step. Moreover, the Gaussian numbers generated for SV models are correlated

to each others with correlation coefficient ρ. The functional scheme of GNGs block for

SV models are presented in Figure 7.5.

The Variance Core is included in the pricing engine by Models Paras when working

with Stochastic Volatility models. Its function is to compute the volatility of the next

time step. The discretization formula of this block is given in Equation 7.8 [133] and the

optimized version with precomputed parameters is given in Equation 7.9.
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Table 7.1: Implementation for different Option Types

Option Type Carry Value Carry Core Payoff Core

Vanilla NA NA C = max(ST −K; 0)

Asian Sum of previous prices Ssum = Ssum + St C = max(
Ssum

n
−K; 0)

Barrier Existence E = E&(St < H) C = (E)?max(ST −K; 0) : 0

Binary NA NA C = (ST > K)?Q : 0

Lookback Min of previous prices Smin = min(Smin, St) C = max(Smin −K; 0)

V (t+ dt) = V (t) + κ(θ − V ∗(t))dt+ σ
√
V ∗(t)

√
dtZv (7.8)

V (t+ dt) = V (t) + kpd− V ∗(t) ∗ kd+ sd ∗
√
V ∗(t)Zv (7.9)

where kpd = κ ∗ θ ∗ dt; kd = κ ∗ dt; and sd = σ ∗
√
dt do not change over iterations

and are precomputed in the Coeff. Precomputation block.

The Price Core computes the movement of the price for the next time step and has

two different implementation versions for SV models (Heston, Bates) and non-SV mod-

els (BS and Merton). Moreover, the discretization formula of this block is also differen-

tiated by the Jump component. Therefore, the discretization formulas of Black Scholes

and Heston model are given as in Equation 7.10, 7.11 [133]. While considering the Jump

component, the coefficient r is adjusted as in Equation 7.12 [31] and the discretization

scheme for Merton and Bates are described in Equation 7.13, 7.14. The decision on

configuring the appropriate version for this block again depends on the Model Paras

input.

S(t+ dt) = S(t) ∗ exp((r − 0.5 ∗ σ2)dt+ σ
√
dtZs) (7.10)
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S(t+ dt) = S(t) ∗ exp((r − 0.5 ∗ V (t))dt+
√
dtV (t)Zs) (7.11)

radj = r − λ ∗ (exp(a+ 0.5 ∗ b2)− 1) (7.12)

S(t+ dt) = S(t) ∗ exp((radj − 0.5 ∗ σ2)dt+ σ
√
dtZs + J) (7.13)

S(t+ dt) = S(t) ∗ exp((radj − 0.5 ∗ V (t))dt+
√
dtV (t)Zs + J) (7.14)

The Carry Core, which computes the additional value needed to be carried during the

pricing path to define special execution condition. The Carried Value and their imple-

mentation for specific type of options such as Asian Option, Barrier Option and Look-

back Option are presented in Table 7.1.

The Payoff Core is computed only once per simulated path at maturity T and its

configuration depends on the value of Option Type Parameters. The implementations for

different option types are given in Table 7.1. For the sake of brevity, only the formula for

Call options are presented. Finally, the price of all the simulated paths are accumulated

to form the final accumulated price.

As can be seen from the implementation of Variance Core, Price Core and Exis-

tence Core modules, the result values of these blocks are dependent on the values from

previous time steps which are stored and transfered to them by the Loop back Block.

7.4 Experimental Results

A series of experiments are conducted to evaluate the efficiency and performance of

the hardware accelerators generated from our framework. In our implementation, the

option pricing request is described in XML format, the proposed design flow and opti-

mization framework in Section 7.2 are developed using Python and Maxeler IDE [118].
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Figure 7.6: Comparison with other SW implementations

The generic Pricing Engine in Section 7.3 is developed by Maxj data flow language,

the Java High Level Synthesis language developed by Maxeler [118]. All 4 pricing en-

gines are developed with C-slow optimization techniques [178]. The experiment results

are obtained by implementing and running the engines on Maxeler Workstation model

MAX3424A [118], which features with a Xilinx Virtex-6 SX475T FPGA device and

Intel Core i7 870 2.93 GHz with 16GB RAM.

7.4.1 Comparison with SW Implementations

In the first experiment, we compare the throughput of our FPGA accelerators with the

software implementation for CPU. The competitor in this experiment is the online option

pricing service Premia provided by INRIA (the French national institute for research in

computer science and control) [14]. For all the models, we choose to price European

Vanilla Option with 1 million paths and 100 time steps. The throughput of both imple-

mentations and the speedup of our pricing engines over the CPU implementation are

reported in Figure 7.6. As can be observed from the Figure, all the pricing engines from

our framework achieve two orders of magnitudes higher throughput over the SW imple-

mentations. The speedup is more significant for complex models since each simulated
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path of these models requires much more computation effort and execution time for SW

implementation. On the other hand, for highly pipelined hardware accelerators with one

output per clock cycle, the complex data path of these models do not significantly affect

the throughput of the engine.

7.4.2 Comparison with other HW Accelerators

To further examine the performance of our HW accelerators, we compare the through-

put, hardware usage and energy of our pricing engine with other available engines in

literature. Since there is no work covering all the pricing models as ours, we have com-

pared our engines with different competitors: for the Black Scholes engine the most

recent work is reported by [170], while the most efficient manual design is proposed

in [172]; for Heston pricing engine, [48] is the work using the same Monte Carlo method;

for Bates models, the only available work reported is from Maxeler [13]. Table 7.2 sum-

marizes the comparison results. Since the results from above-mentioned works were

reported with different pricing set-up (option type, number of simulated paths, number

of time steps), we used throughput (number of computed time steps per second) as the

performance metrics to put all the results in the same perspective. As can be seen from

the table, our engine for Black Scholes model has around 2.25 times better performance

over the design in [170] and achieves about 45% performance of the highly customized

design in [172]. For the Heston models, the accelerators from our framework have clear

advantage over previous works. Part of the reasons for this improvement comes from

the technology of the devices, but the main explanation comes from our highly pipelined

architecture. For the Bates model, we use the same technology as Maxeler implemen-

tation but can achieve around 5% improvement in throughput by using more efficient

discretization scheme and simpler methods of generating volatility.

Although the main advantage of our proposed framework is the productivity and re-

duction on development time, it is hard to quantify and compare with previous work in
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Table 7.2: Comparison with other HW implementations

Throughput

Work FPGA Frequency BS Merton Heston Bates

[172] Virtex 5 200 3200 NA NA NA

[170] Virtex 5 80 640 NA NA NA

[48] Virtex 5 100 NA NA 142.7 NA

[33] Zynq 100 NA NA 459 NA

[13] Virtex 6 175 NA NA NA 700

Ours Virtex 6 115-140 1680 920 1080 738

this aspect. From authors’ experience, following the framework and modular architec-

ture, a designer with little knowledge about option pricing applications can develop a

new engine for new models or new option types in less than a week.

7.5 Summary

In this chapter, a framework for generating option pricing hardware accelerators has

been proposed. The framework is combined with a highly modular architecture design

that can cover four popular pricing models and numerous type of options. Moreover,

a heuristic for finding local optimal parameter set for the pricing engines is developed

to further improve the performance of generated accelerators. As a result, the engines

developed from our framework can achieve a speedup of 2 orders of magnitude com-

pared to SW implementations. While comparing with existing hardware designs for

the same models, our framework can produce the accelerators that overcome most of

manual designed engines.
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Chapter 8
Conclusions and Future Directions

8.1 Conclusions

Reconfigurable MPS provides huge potential and functionalities for digital system de-

signers by combining the power of both hardware and software components. However,

the complexity of the systems also dramastically increases and imposes new challenges

for the development process of Reconfigurable MPS. This thesis aims to address those

challenges by developing a number of automation tools and techniques to make the

design flow of Reconfigurable MPS more effective and efficient. Chapter 1 provides a

detailed classification on different types of Reconfigurable MPS. Following on, the main

challenges for the development process of Reconfigurable MPS are highlighted. Chapter

2 presents a uniform design flow and detailed description on each component of design

flow: Application Analysis Level, Macro/System Level Synthesis and Exploration and

Micro/Device Level Synthesis and Exploration. After laying the foundation and back-

ground in the first two chapters, the main contributions are presented in the remaining

chapters of the thesis.

In Chapter 3, the first contributions on System Level Synthesis have been presented.

A hybrid mapping strategy has been proposed to address both throughput and energy
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requirement of the application. A DSE technique has been developed to provide all

energy-throughput trade-off points for all possible heterogeneous resource combinations

at compile time. The strategy is further improved by a runtime decision scheme that

chooses best trade-off points from the design time analysis and considers the system

context on the fly to optimize the energy consumption. As a result, our mapping ap-

proach provides better energy-throughput trade-off points, covers all the resource com-

binations and reduces energy consumption up to 25% at design-time and additionally

17.8% at run-time when compared to state-of-the-art techniques [122].

Chapter 4 presents our contribution to solve Scheduling problem on System Level

Synthesis. A multi-stage resource management approach has been developed to address

the leakage energy problem caused by the prefetching technique while scheduling tasks

in Reconfigurable devices. The proposed approach tries to allocate reconfiguration and

execution parts of tasks as close as possible while taking task dependencies, timing and

architecture constraints into account. A list-scheduling algorithm has been developed

with a specific priority function that is customized for addressing the leakage power

reduction. Moreover, a cost function has been derived for the placement stage to further

reduce the leakage power. This function provides designers a flexibility to manage the

trade-off between performance and leakage savings. Finally, a post-placement heuristic

has been proposed to improve the scheduling results (leakage savings) from previous

stages. From experimental results, the advantages of proposed multi-stage scheduling

technique have been proven. Specifically, different variants of the proposed approach

can reduce leakage power by 40-65% when compared to a performance-driven approach

and by 15-43% when compared to state-of-the-art works [123].

Chapter 5 wrapped up our contributions on System Level Synthesis by describing

an DSE framework for list-based mapping and scheduling heuristics. A comprehensive

multistage framework has been developed to integrate GA and ML techniques to opti-

mize existing list-based schedulers: from generating data to building predictive models
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and predicting Pareto fronts for new TGs. In the first stage of the framework, after gen-

erating the Pareto front with Genetic Algorithm, a systematic representation of Pareto

front curves is built with Spline regression models. Thereafter, Linear Regression tech-

niques has been applied to model the dependency between Spline model of Pareto front

and TG’s features. During the Prediction Stage, Density-base Clustering Algorithm is

used to generate near-Pareto-optimal design points. As a result, our ML approach can

achieve 2 orders of magnitude speed-up with only 4% trade-off in the Quality when

applied to scheduling heuristic. For mapping problem, our framework can boost the

performance 25x faster while sacrificing less than 5% quality of the Pareto front.

Chapter 6 presents our first contribution on Micro Level Synthesis with a DSE frame-

work for HLS design. The proposed DSE framework facilitates designers to exploit the

loop-array dependency to reduce the time consumption of DSE process while maintain-

ing the quality of Pareto front results. To achieve that purpose, Loop-array Dependency

Graph, a systematic and formal method to represent the relationship between loops and

arrays, has been proposed. We also developed a tool to extract the graph from C code.

Moreover, a module called Array Partition Factor Computation Block is developed to

generate the Pareto optimal array partition factors according to the related loop opti-

mization techniques. Finally, a multilevel DSE heuristic has been developed on top of

above modules to efficiently exploit the loop array-dependency and significantly reduce

the DSE time. Consequently, our DSE approach can achieve 14 times speedup when

compared with exhaustive approach while providing Pareto front with nearly the same

quality. In comparison with existing works, our DSE excels on both quality of the results

and execution time.

Continuing our contributions on Micro Level Synthesis, Chapter 7 presents a hard-

ware generator tool for option pricing applications. The tool helps hardware design-

ers become more productive in the development process by automatically generating

efficient and high quality hardware accelerators, which can facilitate different pricing
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models as well as various types of options. First of all, a template of modular and pa-

rameterizable hardware architecture that covers all different computational features of

various pricing models has been implemented. Thereafter, a library for the hardware

implementation of most popular pricing models: Black Scholes; Merton; Heston and

Bates is prebuilt. To further alleviate the job of developer, a heuristic to find optimiza-

tion parameters for above-mentioned hardware designs are also developed. Combining

all abovementioned components, a generic design flow has been proposed to automati-

cally optimize and generate the hardware accelerators from a high level description of

option pricing application. Experiments demonstrate that the hardware engines gener-

ated by our tool can achieve 2 orders of magnitude speed-up when compared with SW

implementations and have superior results in terms of throughput and hardware usage in

comparison with existing HW implementations.

8.2 Future Directions

Although the contributions in this thesis have made the development process of Re-

configurable MPS more efficient and productive, there are a number of ways to further

improve these tools and techniques in both stages: System Level Synthesis and Micro

Level Synthesis.

8.2.1 System Level Synthesis

Increasing Heterogeneity of Platform

Nowadays, more and more different types processing elements are added to modern

computing platform to further improve the computing efficiency at the circuit level.

However, the increase in heterogeneity of processing elements also significantly surges

up the complexity of the system since it adds a new dimension to mapping and schedul-

ing problems. The design space expands exponentially and gradually becomes unman-

ageable to be explored with current heuristics. Further, not every task can be executed on
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every type of processing elements so a new set of constraints needs to be formulated to

reflect the limitation. For the contributions on System Level Synthesis, the Mapping ap-

proach in Chapter 3 has addressed the heterogeneous platform but the Scheduling tech-

niques in 4 need to modify the cost functions in list-based heuristics to cover more type

of processing elements in the devices. Our ML and GA framework for multi-objective

DSE is robust and expected to function well while increasing the heterogeneity of the

platform.

3D Architecture

Recently, the rapid advancement of 3D architecture multiprocessor systems create a

great attraction of research on System Level Synthesis and Exploration for 3D system.

With the ability of packing more computing power on a chip, the 3D architecture pro-

vides more performance and energy advantages over 2D architecture. However, new

concerns are emphasized on the thermal and reliability aspects of the 3D systems. In

general, the approaches applied in the System Level contributions of this thesis can be

adapted to address mapping and scheduling problem for 3D system but adequate adjust-

ment need to be derived for new architectural model and underlying thermal characteri-

zation of 3D systems.

Reliability and Fault-tolerance Metrics

With the advance of multiprocessor architecture to deep sub-micron technology, com-

puting systems are more and more sensitive with faults and errors since escalating

power density and temperature variation accelerates wear-out and leading to a grow-

ing prominence of device defects. Therefore, reliability and fault-tolerance are rising

as the most important concerns for multiprocessor system. Although the reliability and

fault-tolerance are not directly addressed in our System Level Synthesis contributions,

they can be incorporated to proposed mapping and scheduling algorithms by adjust-

ing the cost/priority functions with additional components related to system’s reliability.
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However, to achieve higher level of fault-tolerance and robustness, thorough research

needs to be done on the impact of faults as well as error correction methods on each

component of the Reconfigurable MPS.

8.2.2 Micro Level Synthesis
Hardware Resource Modelling

In both of our contributions on Micro Level Synthesis, although efficient heuristics for

traversing the design space have been proposed, the execution of optimization frame-

works are still time consuming due to the long runtime of HLS tools for each design

point evaluation. Therefore, an analytical approach for estimating the hardware resource

usage from the high level description of application and HLS parameters (loop unroll,

loop pipeline, etc.) will significantly reduce the time consumption of the tools. In the

case of loop-array dependency DSE framework in Chapter 6, an accurate HW estimator

can also improve the quality of generated Pareto front by covering more design points

with lower HW usage. For the option pricing hardware generator in Chapter 7, shorter

time for estimating hardware usage create the room for applying more sophisticated

optimization techniques during design space exploration.

Platform-independent Implementation

Currently, our contributions on Micro Level Synthesis are implemented on vendor spe-

cific platforms. In particular, the option pricing hardware generator in Chapter 7 is

developed with Maxj data flow language, the Java High Level Synthesis language de-

veloped by Maxeler [118] and Maxeler devices. However, the Loop-Array dependency

DSE framework in Chapter 6 is dependent on Vivado HLS of Xilinx. To make our contri-

butions more flexible and platform-independent, another direction that we would like to

consider is to extend and verify our contributions with open HW description languages

(VHDL or Verilog) and open source HLS tool (Leg-up [36]).
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