
MULTIMEDIA USER PROFILING IN ONLINE
SOCIAL NETWORKS

GENG XUE

B.S., Northeastern University of China, 2012

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2017



c©2016

GENG Xue

All Rights Reserved



Declaration

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly acknowledged all

the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

GENG Xue

February 15, 2017

i



ii



Publications

• One of a Kind: User Profiling by Social Curation. Xue Geng, Hanwang

Zhang, Zheng Song, Yang Yang, Huanbo Luan, Tat-Seng Chua, ACM

Multimedia 2014: 567-576.

• Learning Image and User Features for Recommendation in Social

Networks. Xue Geng, Hangwang Zhang, Jingwen Bian, Tat-Seng Chua,

IEEE ICCV 2015: 4274-4282.

iii



iv



Abstract

Online Social Network Services (OSNs) have been evolving continuously while

revolutionizing our lives over the past decade. They provide popular platforms

to build social networks and enhance social relationships among people who

share common interests, activities, backgrounds and real-life connections. Over

the years, many types of OSNs have emerged, many of which are multimedia-

based sites such as Pinterest, Flickr and Youtube. Furthermore, people have

been sharing more and more multimedia contents over the years. However,

the exponentially increasing media contents will make it difficult for service

providers to tailor media contents to accommodate specific individuals.

To address the above issue, this thesis attempts to undertake the task of user

profiling which is one of the fundamental tasks of personalization in OSNs.

To the best of our knowledge, most existing approaches only focus on mining

textual information to construct user profiles, while overlook the abundant

shared media contents. Unfortunately, textual information may not provide

complete and easy-to-grasp information to generate user profiles. Hence, this

thesis, taking Pinterest as an example, focuses on developing effective and

efficient approaches to model user profiles, by exploring rich user-generated

multimedia contents including images, texts, together with domain knowledge.

The task of profiling users based on their rich media interactions in OSNs

poses several great challenges. First, how to mine the extremely heterogenous

and noisy media contents for user profiling; second, how to use domain

knowledge to guide the media feature learning for human-understandable user

profiles; third, how to use user-media interactions in OSNs to advance the task

of modeling users; and fourth how to integrate domain knowledge and social

collective intelligence together to obtain efficient and effective user profiles

for personalized services. To address the above challenges, this thesis first

introduces a data-driven user profile ontology and exploits the relationships

v



between concepts in the ontology to enhance media understanding for user

profiling. The outcome is a human understandable user profile for efficient

personalized services. The second part of this thesis presents a deep learning

model to reveal the weak correlations of user-media connections for learning

representative features of images and users simultaneously. The final part of

this thesis describes a co-factorization approach to integrate the above multi-

modal contents, domain knowledge and social user-media connections together

into a framework to profile users in OSNs.

Extensive experiments conducted on large-scale real-world datasets demon-

strated that our proposed models could yield significant gains in constructing

effective user profiles based on the multimedia contents shared by users in online

social networks.
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Chapter 1

Introduction

This chapter first introduces the background of user profiling in OSNs with

their distinguishable characteristics, and then highlights the motivation of user

profiling in OSNs, followed by the challenges and solutions. Finally, the

contributions of this thesis are briefly summarized.

1.1 Background

Online Social Network Services (OSNs), through which people can create,

disseminate, and consume information, have evolved themselves while revo-

lutionizing our lives over the past 15 years1. To date, a large variety of OSNs

have thrived on the Internet, focusing on retail market (e.g., Amazon), friendship

(e.g., Facebook), movie review (e.g.,IMDb), photo sharing (e.g., Flickr), and so

on. It is widely acknowledged that social media offers us valuable opportunities

in both academia and industry [27].

Among them, many are multimedia-based sites, such as Pinterest2 and Flickr.

As this thesis take Pinterest as an example to verify the effectiveness of the

proposed models, we introduce the Pinterest site in detail. Pinterest, which is

1The first online social network, FriendsReunited was launched in 1999, founded in Great
Britain to reunite past school pals.

2http://www.pinterest.com
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pin to
Cookies Hair

Outdoors Pools
An image from another user

board

pinned image

board name

Figure 1.1: An example of “pin” in Pinterest. A user can curate image bundles called
“boards”. The curation is done by “pinning” images from other users. Here, the user
pins a hairstyle image from another user into her own board named “hair”.

the most popular SCS(Social Curation Service) registered by over 170 million 3

users, is a new emerging photo sharing social networking site that allows users

to select, organize and keep track of images they like. Pinterest is a “pinboard-

style” image sharing social network. The main innovation of it is to encourage

users to collect and share interesting things in a categorized way. As illustrated

in Figure 1.1, Pinterest innovates a notion called “Pin to Board”, where users

can ‘pin’ or ‘repin’ items they like into their own “boards”. The key operation

“pin” is to select a photo or video from external websites or another users’

pin boards. The boards are bundles of pinned multimedia contents of various

interest such as “Animals”, “Arts”, “Education” and “Fashion”. For example, a

user can have many bundles named “Cookies”, “Outdoors”, and “Pools” shown

in Figure 1.1. In this way, social connections are encoded by pins, e.g., users

cannot directly send private or public messages to each other and the only social

activity is to like a pin, comment on a pin or repin someone’s pin into her own

boards. Today, many conventional OSNs are inspired by this interesting feature

of social curation, such as Flickr’s “add-to-gallery”.

Furthermore, more and more multi-modal data streams (e.g., text, image,

3http://expandedramblings.com/index.php/pinterest-stats/
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audio, video, etc) are generated as byproducts of people’s everyday online

activities in the digital world over the years. However, the exponentially

growing media contents will make it difficult for service providers to offer

interesting products to specific consumers. An effective and efficient user

profile consisting of users’ preferences on products will help to boost the

performance of personalized services. Hence, it is essential to construct a

comprehensive user profile in OSNs based on user media interactions. An

effective and comprehensive user profile can advance many applications such

as advertisement targeting, personalized recommendation, community detection

and personalized web searching.

User profiling aims to establish user profiles by obtaining, extracting and rep-

resenting the preferences of users [149]. User profiles can include demographic

information, e.g., name, age, country and education level [45]. A typical user

profiling system comprises three intrinsic components: information resources,

user profiling and personalized services. Figure 1.2 illustrates the framework of

a typical user profiling system.

Information resources

User behaviors
Social 

networks

User generated 

contents

Domain 

knowledge

User profiling
Personalized services, 

e.g., recomemndation

Figure 1.2: The flowchart of a typical user profiling system. This system starts from
rich information resources mainly including behaviors, social networks, user generated
contents and domain knowledge; the construction of user profiles is performed by user
profiling based on the rich user data distributed in OSNs by which each user in the
system is expressed as a representative profile. Finally, the learnt user profiles are
applied to different personalized services, such as personalized recommendation.

1.1.1 Information Resources

User profile can be extracted from explicit or implicit sources. The explicit

user profile is provided by users during the registration to some services, and

3



it is often incomplete and inaccurate. Implicit profiling is generally content-

based, which has been shown to be a useful enhancement based on user

relations (e.g., followers or friends) and user-generated contents (e.g., reviews

and uploaded/shared photos, videos), which are often multimedia in nature [2].

Generally speaking, data resources that are used to construct user profiles are

mainly split into four aspects: a) user demographic information; b) social

networks; c) user generated contents (UGCs); and d) domain knowledge.

• User behaviors User behaviors such as browsing history [120] and query

history [125] form as user implicit feedback to profile user preferences.

For example, Sugiyama et.al [120] constructed user profiles based on

modified collaborative filtering with detailed analysis of users browsing

history in one day for personalized web search.

• Social networks To date, the information of social networks [91; 140] has

been explored for modeling users based on the theory of homophily which

states that people with similar interest tend to connect with each other and

people of similar interest are more likely to be friends.

• User generated contents User generated contents can be Keywords (e.g.,

tags), Free Text (e.g., posts on Weibo, or tweets on Twitter), Images (e.g.,

a user takes a snapshot and shares the photos on own social nets), Videos,

and Composite of the above.

• Domain knowledge Domain knowledge is the information with a degree

of certainty or community agreement. It provides a human-understandable,

but machine-readable vocabulary describing a rich conceptualization

of specific domain. Domain knowledge is an important element in

understanding human behaviours. The No Free Lunch theorem [136] has

implied that in order to gain in performance, a specialized algorithm that

includes some prior human knowledge about the issue at hand must be

used. The previous approaches [2; 147], however, only offer a general

framework which is not perfect for a specific domain.

4



1.1.2 User Profiling

An efficient and effective user modeling approach in OSNs is required to

handle the aforementioned different types of data resources. Traditional user

profiling methods either employ feature engineers to generate hand-crafted

meta-descriptors like fingerprint for a user or draw a set of latent features from

a user’s registered profile data, for example, through sparse coding [140]. Some

approaches also use collaborative filtering techniques [5; 147] to infer user

interests via collaboratively analysing group user behaviors, where the users are

assumed to be independent with each other. However, most existing approaches

only consider the textual information to profile users and ignore the user rich

media interactions.

Furthermore, a comprehensive user profile often requires two important

components: a latent-based user profile and a semantic-based user profile. The

latent-based profile [5] is extracted by data-driven approaches such as the matrix

factorization techniques that are able to somehow uncover the complex and

unexpected patterns behind mass data. In contrast, the semantic-based user

profile interprets the users in an understandable manner [2].

This thesis focuses on addressing the issue of user profiling based on their

rich media interactions. To achieve this goal, we take into account several

aspects including users, rich media, textual information and domain knowledge

to model user preferences.

1.2 Motivation

With the tremendous development of OSNs, more and more multimedia data

streams (e.g., image, audio, video, etc) are generated as byproducts of people’s

everyday online activities in OSNs. For example, it has been reported that

between April 2015 and November 2015, the amount of average daily video

5



“Spring Outfits & Trends 2016” “Amazing Creativity With Nature - Amazing World”

(a) (b)

Figure 1.3: An illustrative example of the role of rich media vs textual information.
(a) the comments only indicates that the image is one piece of outfit without showing
the contents such as “dress” and “bags”; and (b) the comments just tell us the picture
is one piece of nature, overlooking the contents such as “sea” and specific designed
“mountain”.

views on Facebook doubled from 4 billion video views per day to 8 billion 4.

Recently visual contents have been considered very important in product

marketing in almost every major social network, including Facebook, Twitter,

Instagram and Pinterest 4. Besides, many emerging multimedia-based sites such

as Flickr, Pinterest and Snapchat have drawn more and more attentions. Hence,

investigating user behaviors to infer users’ diverse interests in these multimedia-

based sites is urgently needed. However, to the best of our knowledge, most

existing user modeling approaches only focus on mining the textual information

in constructing user profiles [127; 2]. Unfortunately, textual information may

not provide sufficiently complete and easy-to-grasp information to infer user

profiles. Figure 1.3 shows two illustrative examples of the role of rich media

vs textual information. We can observe that the comments of the images

have not summarized the image contents accurately. Clearly, it will be much

better if there are comprehensive analysis of rich media. Hence, this thesis

focuses on modeling users based on user-media interactions and proposes to

enhance media understanding and user interest understanding by incorporating

multimedia content analysis, user-media connections and domain knowledge.

4http://blog.hubspot.com/marketing/visual-content-marketing-
strategy
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1.3 Challenges

It is worth mentioning that there exist several efforts dedicated to research on

profiling users from rich media data. For example, [129] embedded deep content

features into their model for music recommendation and Zhong [147] et.al

have brought forward item features into their latent model for user profiling.

However, they have not considered other important aspects such as domain

knowledge, multi-modal contents and social connections in OSNs. To date,

profiling uses based on rich media interactions is still an open issue in OSNs.

There are mainly several challenges as follows:

• Diverse and noisy media contents To date, existing algorithms on media

analysis is still limited 5. When applied to OSNs, they may fail due to

the diversity of OSNs, namely, extremely diverse and noisy multimedia

contents. For examples, as shown in Figure 1.4(b), the contents of images

in the same category are quite diverse. What’s more, the noisy media

contents comprise a large proportion. The extremely diverse and noisy

multimedia would affect both the accuracy and efficiency of multimedia

analysis for user profiling.

• Heterogenous multi-modal contents Moreover, online social networks

(OSNs) are heterogeneous in nature where consumers share multi-modal

contents with different modality expressing partial view of users inter-

est [8]. For example, a user may share an image of an iphone with the

comment of “Excellent phone with nice design!” to show his interest

on the phone. This is another distinguishable feature of social media,

namely multi-modality. Most existing approaches that analyze only one

modality (e.g., texts) will fail. Even some approaches [24] that attempt to

mine multi-modality might fail since they purely analyze the multi-modal

contents without considering the homogenous users.

5https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_
computers_to_understand_pictures/transcript
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(a)

Sports 

Travel 

Animals 

(b)

Figure 1.4: Illustrations of extremely sparse user-content connections and diverse
multimedia contents. (a) The power-law distribution of the number of images pinned
by users. It means that the user-image connections are long-tailed and very sparse. (b)
Some exemplar images of three interest categories. The contents of images in the same
category are very diverse.

• Sparse and noisy social connections OSNs generally have two types of

networks: friendship network among users and interest network between

users and service items [140]. One of the fundamental mechanism that

drives the dynamics of networks is the underlying social phenomenon of

homophily [85]: people with similar interest tend to connect with each

other and people of similar interest are likely to be friends. Modeling

friendship network and interest network are equally challenging. This is

because of the extreme sparsity of network structure in most OSNs [95].

Take Pinterest as an example, as shown in Figure 1.4(a), the frequency

distributions of users and images follow the power-law distribution. In

Pinterest, an ordinary user often curates around one hundred images

which is only one in a million as compared to the whole Pinterest image

collection. A social network is a large and sparse graph, involving

hundreds of millions of users with each being connected to an extremely

tiny proportion of the whole virtual world. Some traditional graph

minging approaches may not be efficient to handle large scale and sparse

friendship graph and interest-centric graph as well as reliably learning

from rare, noisy and largely missing observations. This inspires us to
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develop advanced approaches to combine the extremely sparse, and noisy

social connections with content analysis to infer user preferences.

• Machine understandable knowledge The No Free Lunch theorem [136]

has implied that in order to gain in performance, a specialized algorithm

that includes some prior human knowledge about the issue at hand must

be used. Knowledge is indispensable to understanding. An important

question is, what is the meaning of the word “understanding”? Consider

the following example. For human beings, when we see “24 Feb 1955”,

we recognize it as a date, although most of us do not know what it is

about. Furthermore, if we are provided with a little more context, say

“Steve Jobs, 24 Feb 1955, American”, most of us would have guessed

(correctly) the date represents Steve Jobs’ birthday. We are able to do

this because we possess certain knowledge, and in this case, “a date

associated with a person might be his/her birthday”. It turns out that

what takes a human to understand the above example is nothing more

than the knowledge about concepts (e.g., persons, animals, etc.) and

the intrinsic ability of relationships between different entities [138]. As

introduced by Berners-Lee et at. [16] that the computer does not truly

“understand” anything, but computers can manipulate content in ways

that are useful and meaningful to the human consumers. This is the key

point for knowledge understanding - we should not only let the machines

provide the best answers but also understand them with explanation of

how the answers were delivered. This triggers us to develop knowledge-

guided approaches to enhance media understanding and user interest

understanding.

9



1.4 Strategies

To bridge the aforementioned research gaps, the aim of this study is to design

and develop a framework to infer multimedia user profiles based on user

generated multimedia contents, user-media connections and domain knowledge.

First, we propose to exploit human prior knowledge to guide the rich media

understanding for user profiling. Second, we explore the information of

extremely sparse social connections to learn a latent space for users and

media simultaneously. Finally, we attempt to integrate the knowledge, social

connections, rich media and textual information together to profile users.

1.4.1 User Profiling by Knowledge-based Multi-task Media

Learning

At the beginning, we propose to exploit human prior knowledge to improve

rich media understanding for user modeling since the knowledge can provide

insight of domain concepts and relationships between them [127]. We first

propose to automatically construct a data-driven profile ontology by pruning the

Wikipedia ontology. Based on the fact that many visual cues are shared among

sibling concepts in the ontology, we introduce a multi-task media learning

approach [39] to advance media understanding for user profiles. Furthermore,

we propose a low-rank algorithm to refine the user profiles by exploiting the

various types of social cues including user-level, bundle-level and content-

level. By conducting the above steps, we hope to learn the ontology-based

user profiles that can be efficiently and effectively applied to the personalized

recommendation application.
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1.4.2 User Profiling by Deep Learning of User-Media Inter-

actions

In this component, we exploit user-item connections in OSNs to enhance media

understanding since user-item connections can reflect the valuable collective

intelligence of user preferences on specific items. For example, if two images

are shared by the same user, we may infer that the two images share some

common visual properties. Meanwhile if two users share the same image, they

may have some common interest. In this part, aside from rich media, we also

aim to mine the heterogenous connections between users and images for user

profiling. We present a novel deep learning framework that breaks down a

large and sparse network topology into a tree-structured deep hierarchy. This

deep model can compactly and efficiently learn representative features of users

and images in a common low-dimensional space to reveal the weak correlations

between images and users in the condition of the extremely sparse connections

and extremely diverse images due to its deep structure. Besides, we propose a

fast optimization algorithm that deploys an asynchronously parallel stochastic

descent method based on the pow-law observation between users and items.

This optimization algorithm can significantly reduce the time for the training of

different user-image pairs.

1.4.3 User Profiling by Integrating Domain Knowledge, User-

Media Interactions and Multi-modal Contents

In this component, we will integrate rich media, texts, user-media interactions

and domain knowledge together in a framework to profile users. In particular,

we attempt to learn the embedding of users, images and knowledge respec-

tively by mining the heterogenous user-media associations and human prior

knowledge i.e., color harmony and clothing ontology. Furthermore, the role

of different data resources in the process of user profiling will be evaluated.
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1.5 Research Contributions

This thesis mainly addresses the problem of profiling users based on rich

media interactions in OSNs. Through exploring domain knowledge and social

user-media connections, we propose to enhance media understanding and

user interest understanding. Our main contributions stem from the proposed

strategies of specific research problems. We summarize them as follows:

• We present a multi-task learning approach to build an ontology-based user

profile. Different from the conventional semantic-based user profiling

approaches, this framework is fully automatic and can be extended to

general visual-oriented domain. Moreover, we explore the diverse multi-

level social connections to refine the learned user profiles.

• We present a novel deep learning approach to learn the users and images

into a low-dimensional space for fast and effective recommendation. Be-

sides, based on the power law distribution between users and images, fast

optimization algorithm that deploys an asynchronously parallel stochastic

descent method is presented.

• We propose a framework to learn and integrate different aspects of

social media contents including users, rich media, textual information and

social connections into a common low-dimensional space. The learnt

representations are able to support interpretable user profiles and fast

image recommendation.

1.6 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we offer a

brief literature review of the broad domain of multimedia user profiling in social

media. Chapter 3 discusses the technical details of the proposed ontology-based

user profiling approach. In Chapter 4, we present a novel deep learning approach

that maps the extreme user-image connections into a hierarchy. Chapter 5
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focuses on a co-factorization approach based on rich media, textual information,

user and domain knowledge. Chapter 6 concludes the thesis, highlights the

limitations, and points to the future potential research directions.
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Chapter 2

Literature Review

In this section, we will give a detailed survey on previous work which is related

to our current and future work.

2.1 Multimedia Content Analysis

Currently, huge volumes of multimedia - images, videos, audio and texts are

being generated and consumed in our daily life. Obviously, multimedia data is

“big data” which offers us good chances to extract valuable information. It tells

us about things happening in the world, topics of interest and gives clues about

individual preferences [113].

However, different from previous research on structured and unstructured

data, more effective algorithms for multimedia analysis are needed, which drives

large amounts of research on “bridging the semantic gap” to enable large scale

valuable information extraction [54].

2.1.1 Text Mining

Text mining deals with machine supported analysis of text [42]. It mainly uses

the techniques from information retrieval (IR), information extraction (IE) as

well as natural language processing (NLP). Current research tackles problems
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of text representation [14], categorization [117], information extraction [104]

and modeling of hidden patterns. The commonly used text features are strings

(current commercial systems), single words (current statistical IR), named

entities (IE systems) and linguistic units (NLP).

Text categorization The goal of text categorization is to classify documents

into a fixed number of predefined categories [63]. Each document either

belongs to exactly one or multiple categories. It has many applications to

date, e.g., assigning subject categories to documents to support text retrieval,

routing and filtering. Many statistical and machine learning methods have been

proposed including bayes probabilistic models [80; 66], factor analysis, nearest

neighbor classification, decision tree [75], neural network [144], support vector

machines [63] and combination of these with knowledge engineering. The main

challenge of text categorization is the curse of dimensionality [61], since text

features mostly use single word or some incorporate relations between words,

e.g., word-co-occurrence statistics, context information etc. Typical systems

deal with 10 of thousands of terms. The “curse of dimensionality” obviously

leads to more training data for most learning techniques.

Information extraction (IE) The goal of an information extraction system is

to extract specific kind of information from a document [103], e.g., web pages,

medical notes, and news articles. For example, in the domain of terrorism, an IE

system may extract the names of all physical targets, victims, and weapons in a

terrorist attack. Since more and more text becomes available on-line, there is an

urgent need for systems that extract information automatically from text data,

especially free text. Besides, IE systems have been developed from structured

text with tabular information to free text such as micro-blogs. The key point of

IE systems is the text extraction rules that identify valuable information [114]

which is different from the practical full-blown NLP systems which requires a

complete analysis of document, IE system is a more focused and well-defined

task.
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Information retrieval (IR) The target of information retrieval (IR) of text is

to find material (usually documents) of an unstructured nature (usually text)

that satisfies an information need from large collections (usually stored in

computers). In general, it often includes two stages: a) term selection and

weighting for documents and queries; b) applying similarity measure to return

top documents that satisfy users’ needs. The IR techniques have been widely

used to internet search engines, e.g., Google, Bing and Baidu. Different search

engines use various approaches to improve accuracies, such as Google uses the

structures of links and Yahoo uses domain concepts. Current IR systems are still

term-based. Further, Salton et. al. [105] have proposed a vector space model to

represent query and documents.

Currently, free texts which are unstructured sequences of text with un-

controlled set of vocabulary has developed into the mainstream of real life

communication and user generated short messages have been an important

type of free texts. Many researchers have engaged themselves into free text

processing. For example, classification of short text messages integrating

other information sources such as Wikipedia [10] and WordNet [58]. Bharath

Sriram et. al [117] proposed to use author information and features within

tweets to classifies incoming tweets. Miles Efron et. al [37] proposed to use

aggressive document expansion to improve information retrieval for short texts.

2.1.2 Image Content Analysis

The fact that large volume and variety of digital images currently acquired in

different application domains has given rise to the requirement for efficient

image management and retrieval techniques. Particularly, there is an increasing

need for automated image content analysis and description techniques in order

to retrieve images efficiently and effectively from large collections based on

visual contents [141]. The extraction of image features is one of the fundamental

techniques in image content analysis.
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Feature Extraction

To date, there have been several kinds of features to represent the images: low-

level, mid-level and high-level features which will be illustrated as follows.

• low-level features The low-level features [6; 29] is effective at capturing

low-level image structure. It includes color, texture and shape features.

(b) Edge detection (c) Corner extraction 

(d) Patch analysis (e) Texture feature 

(a) Color histogram 

(f) High-level feature 

Figure 2.1: Image feature detection. (a) to (e) are low-level features while (f) is high-
level features.

– Color features Since color is quite intuitive, and simple, it’s natural

to identify an image using the color features. Color histogram [53]

is the most commonly used approach to express the color features

shown in Figure 2.1 (a). However, the main problem associated

with the color feature is that the representation only relies on the

the color of the objects appearing in the image, ignoring the shape

and structure. Therefore, similar objects with different colors might

be seen as different objects.

– Shape features Depending on the applications, some require the

shape representations to be invariant to translation, rotation, or

scaling. The shape features of an object mainly include several

approaches: 1) edge detection which aims to produce a line drawing,

like the face in Figure 2.1 (b), something akin to a caricaturist’s

sketch; 2) corner detection which can be seen as detecting points

where lines bend very sharply with high curvature, as shown in

Figure 2.1 (c); 3) patched/region analysis which are the more
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modern approaches to detect the localized patches of interest. For

example, the more modern approach SIFT features [78] which

transforms the images into scale-invariant coordinates relative to

local features as shown in Figure 2.1 (d).

– Texture features The texture refers to the visual patterns that have

properties of homogeneity, showing the innate property of virtually

surfaces, such as clouds, tress and bricks. An image can be seen as

a mosaic of different texture regions. To date, the texture analysis

ranges from using random field models to multi-resolution filtering

techniques such as the wavelet transform [79]. Here is an example

of texture feature extraction shown in Figure 2.1 (e).

– Others. Some researchers have engaged themselves into combining

those features to improve the distinct representation of images.

For example, Pass et.al [97] proposed a histogram-based method

color coherence vector (CCV) incorporating spatial information.

Gevers et.al [47] proposed to combine the color and shape invariants

into a unified high-dimensional invariant feature set for object

retrieval.

• Mid-level features The mid-level features are structured image descrip-

tions [21]. Popular examples include spatial pyramids [71], bags of

features [112] and higher-layer activations of convolutional neural net-

works [69]. The process of extracting mid-level features involves several

modules such as coding, spatial pooling, normalization and nonlinear

transformations.

• High-level features. The high-level features are class-specific feature

detectors [72]. For example, Quoc V. Le et. al [72] proposed a deep

structure using unlabeled images to extract high-level features to detect

objects directly.
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Applications of Image Analysis

Content-based image retrieval Content-based image retrieval (CBIR) is the

application of computer vision techniques analysing the contents of images

to the image retrieval problem. Many content-based image retrieval systems

can be described by the framework shown in Figure 2.2. The process includes

extracting distinct features of images, building index, matching and visualizing

result images.

feature 
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structure
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Figure 2.2: Content-based image retrieval framework.

2.1.3 Video Content Analysis

The advanced techniques in data capturing, storage, and communication have

made large amounts of video data available to consumers. However, currently,

we still have limited tools to describe, organize and manage video data. It is

quite time consuming - and thus more costly - to generate content description.

The core research in video content analysis is to automatically parse video,

audio, and text to identify meaningful structures and extract, represent content

attributes of video sources [34]. Different applications of video content

analysis include event detection, motion detection, shape recognition, object
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detection, video tracking etc. A typical scheme of video content analysis and

Feature 

extraction
Features Abstraction

Summary/

skimmed 

video

Structure analysis

Clustering & 

indexing
Metadata

Retrieval & 

browsing

Video streams

Figure 2.3: The primary analysis in video content analysis.

indexing involves four primary processes: feature extraction, structure analysis,

abstraction and indexing as shown in Figure 2.3. Each process poses many

challenging research problems.

• Feature extraction There are mainly two kinds of low-level visual fea-

tures: a) static features such as GIST [96], SIFT, and colorSIFT [128]; b)

dynamic motion features such as Space-Time Interest Points (STIP) [70],

dense trajectory features (DTF) [134] and MoSIFT [25].

• Video structure analysis Video structure analysis lets us to manage video

data according to temporal structures and relations and thus build table of

contents. Many effective and robust algorithms for video parsing have

been proposed for dividing videos into individual scenes [142].

• Video abstraction Video abstraction is the process of creating a brief

representation of visual information about the structure of a video, which

is much shorter than the original video. In this process, we need to

extract a subset of video data from the original video such as key frames

as entries for shots and scenes. Moreover, key frames which are still

images extracted from original videos, play a significant role in the video

abstraction process.

• Indexing for retrieval and browsing. Based on the above process whose

results are often referred as the meta data of videos, we need schemes and

tools to exploit these content meta data to query, search and browse large

21



scale video datasets.

2.1.4 Multimedia Content Analysis

Over the past decade, there have been an explosive growth in the amount of

available multimedia information in our daily lives as shown in Figure 2.4.

The internet is giving a vast mass of multimedia information repository. At the

same time, digital cameras and recorders are becoming more and more popular

with the result that the content of multimedia are expanding at an exponential

speed. Almost all the personal computers and digital terminals store digital

images and video content, and more new content is being created in every

second. The demands from people for visual media content (image and video)

is becoming more varied and broad. A wide range of digital devices including

personal computers, digital televisions, cell phones and tablets will be able to

access to images, video and other information plays an important role for the

enrichment of people’s life, work, education, entertainment and so on. People

need much wider range of multimedia content. This trend necessitates the

research and development of content-based multimedia analysis, understanding,

filtering, monitoring and surveillance techniques. The ability to analyse, index

and retrieve such multimedia contents, especially as they are being produced in

real-time, will be of paramount importance.

Internet 

Text 

Audio 

Video Image 

users 

Understand 

Filter 

Figure 2.4: An exponential multimedia growth.

However, with a huge volume of online shared multimedia contents, how

to mine the multimedia contents and further combine multi-modal contents in
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different applications still remain an open issue. During the past several years, a

large and growing body of literature has investigated feature learning of different

modalities, especially the smart Convolutional Neural Network (CNN) [69] in

the deep learning community which significantly improves the performance of

image feature extraction. Additionally, Tang et.al [123] have proposed a semi-

supervised representation learning method for text data. The above methods,

however, focus only on uni-modality cases, which may not accomplish the task

in a comprehensive way. To address this issue, different approaches [24] that

aim to learn multi-modal representation have been proposed. For instance,

Chang [24] et.al developed a multi-resolution deep embedding approach to learn

a network of scalable, dynamic and heterogeneous data into a low-dimensional

feature space.

2.1.5 Multimedia Data Analysis in OSNs

Social media services such as Facebook, Youtube, and Flickr and other web sites

provide opportunities for people to share multimedia contents in an immense

scale. For instance, Flickr users have shared over 4 billion images and videos

on the site as of November 2009 [1] and Facebook users share a similar number

of photos per month [3]. In 2015, Youtube users upload 400 new hours of

video content per minute1. Such multimedia information might include many

aspects: textual descriptors, location information of the content captured, the

camera meta data, user information and social network context. The extra meta

data from social network itself can advance and augment multimedia content

analysis. Moreover, explicit user input tags and comments [30] as well as

implicit references from users such as click streams can also be used to support

multimedia content analysis in online social networks.

Multimedia content analysis is still a quite difficult problem as mentioned

above. Meanwhile, the characteristics of online social networks make it

1http://tubularinsights.com/hours-minute-uploaded-youtube/
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more difficult to analyse multimedia contents considering its own limits and

challenges. For instance, the aforementioned contextual data and available meta

data are noisy and inaccurate, sometimes misleading which leads to very little

“ground truth” for online social network applications. Besides, the noisy and

lack of semantics make the user provided meta data such as tags difficult to use.

For example, an image tagged by “The King of Cat” may appear to be a lion,

cat or Elvis Presley (a singer).

Most importantly, there is a shift focus of social multimedia analysis from

that in traditional multimedia applications. First, it does not require general

detection or classification tasks, e.g., recognizing a “tiger” or a “cat”. In

contrast, tasks are narrower and more complex, e.g., identifying a concert of

a certain singer launched in last month. Second, it focuses more on precision,

diversity and effective presentation instead of retrieving all relevant social media

resources [94]. Third, the scale of social multimedia data is evolving all the

time. In particular, the visual nature of the web has increased exponentially

in recent years2 while previous data gathering mainly comes from text or

social connections. This phenomenon may require the development of more

efficient and effective algorithms to integrate multiple media streams data and

characteristics of online social networks to better support social multimedia

applications.

Moreover, for personalized social multimedia applications, we need to link

the diverse users with these shared multimedia contents. The heterogenous

networks of users and contents would make the task of personalized services

more difficult. Recently, many studies inspired from the notion of collective

intelligence have been introduced [111; 146]. One of the most popular

approaches, collective matrix factorization [111], has been widely employed to

simultaneously factor several matrices, sharing parameters among factors when

an entity participates in multiple relations.

2http://www.kpcb.com/insights/2013-internet-trends
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2.2 Deep Feature Learning for Media

The performance of machine learning methods heavily depends on data repre-

sentation (or features) to which they are applied. For this reason, a large amount

of effort goes into the design of the data preprocessing and transforming which

results in a distinct representation of data that supports effective and efficient

machine learning methods [13]. Good representations are expressive, namely,

a reasonable representation would capture a huge number of possible input

configurations. A simple approach to evaluate the expressiveness of a model

generating representations is on how many parameters this model requires as

compared to the number of configurations it is able to distinguish. Traditional

representation learning methods such as traditional clustering approaches,

Gaussian Mixtures [46], Nearest neighbourhood algorithms, Decision trees, or

SVMs, all require O (N) parameters to distinguish O (N) input configurations.

However, modern deep learning methods such as restricted boltzman machine

(RBM) [56], auto-encoders, can represent up to O
(
2k
)

input configurations

using onlyO (N) parameters. These are all distributed or sparse representations.

The rapid increase in scientific activities has been nourished by a series of

successes both in academia and industry. Here, we show several significant

models in deep learning in detail.

2.2.1 Restricted Boltzman Machines

Restricted Blotzman Machines (RBMs) have been used as generative models

for many different types of data including labeled or unlabeled images [56], bag

of words representing documents [118] etc. The RBMs is a two-layer neural

network which can model a training set of binary vectors. A graphical depiction

of an RBM is shown in Figure 2.5. The energy function E (v, h) of an RBM is

defined as:

E (v, h) = −b′v − c′h− h′Wv (2.1)
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Figure 2.5: Restricted boltzman machine.

where W represents the weights connecting the hidden and visible units and

b, c are the offsets of the visible and hidden layers respectively. This translates

directly to the following free energy formula:

F (v) = −b′v −
∑
i

log
∑
hi

ehi(ci+Wiv) (2.2)

which can be used to represent the likelihood based on the following formula:

P (x) =
e−F (x)

Z
,Z =

∑
x

e−F (x). (2.3)

In the end, maximum likelihood are applied to this to update the parameter

b, c,W .
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Figure 2.6: A simple example of autoencoder.
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2.2.2 Sparse Autoencoder

Given a set of unlabeled training examples set, an autoencoder neural network

is to extract distinct features to achieve the target that the last activation value

is equal to the inputs via forward propagation and back propagation in an

unsupervised way. Figure 2.6 shows a simple example of autoencoder aiming

to learn a function that makes the output x′ equal to the input x. Meanwhile,

a sparsity constraint has been imposed on the hidden units in general case to

discover interesting structures in the data since it is sufficient to obtain good

generalization when the total number of bits to encode the whole training set is

small as compared with the size of training set [12].

2.2.3 Convolutional Neural Network

The convolutional neural network architecture [55; 69; 110; 121] has been

widely used in different kinds of applications. Specially, it has quite good

performance in computer vision area. For example, Krizhevsky et. al [69]

using the convolutional neural network has achieved the ImageNet classification

benchmark. Table 2.2 summarizes the literatures on image feature extraction

including several benchmark convolutional neural network models.

The very important part of convolutional neural network is convolution.

Convolution of a N × N image using a K × K kernel can be understood as

sliding a K ×K window over the input image iteratively. For each position of

the next layer, the value is equal to the dot product (sum of the multiplication of

the corresponding pixels) of the kernel with the input pixels lying in the previous

layer. In Figure 2.7, we have shown the calculation of the first two values of the

second layers, where the convolution is implemented by a 6 × 6 image with a

2× 2 kernel W .

The convolutional neural network integrate three architectural ideas ensuring

shift and distortion invariance to some degree: local receptive fields, shared

weights, and sometimes, spatial or temporal sub-sampling [73]. The local
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Figure 2.7: Description of 2D convolution.

receptive fields shared the weight (kernel W in Figure 2.7) at different places

of images to extract elementary features such as oriented edges and corners.

Then those output features are combined by the high layers. Besides, each

convolutional layer often has several feature maps (with different weight

vectors), so that multiple distinct features can be extracted at each location.

Figure 2.8 is a typical convolutional neural network architecture proposed by

Krizhevsky et. al [69]. From the figure, we can easily see that the input of this

architecture is the raw RGB pixel intensity values of a 224× 224 image. These

values are forward propagated through 5 convolutional layers with pooling and

non-linearities along the way and three fully connected layers to determine its

final neuron activation: a distribution of over 1000 object categories.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

Figure 2.8: A typical convolutional network structure in training Imagenet [69].

There are also other state-of-the-art deep neural network, such as deep belief

network [56] where RBMs are stacked and trained in a greedy manner, de-

noising autoencoders and recurrent neural networks [14].
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2.2.4 Recurrent Neural Networks

Figure 2.9: LSTM: the memory block contains a cell c which is controlled by three
gates. In blue we show the recurrent connections the output m at time t− 1 is fed back
to the memory at time t via the three gates; the cell value is fed back via the forget gate;
the predicted word at time t− 1 is fed back in addition to the memory output m at time
t into the Softmax for word prediction [131].

The Recurrent Neural Network (RNN) is neural sequence model that achieves

state of the art performance on many tasks that include language modeling [89],

speech recognition [50], and machine translation [64].

Figure 2.9 shows a particular form of recurrent neural nets, LSTM. LSTM

is introduced to to deal with vanishing and exploding gradients [57], the most

common challenge in designing and training RNNs.

2.2.5 Challenges of Deep Architectures

Table 2.1 concludes the characteristics of different deep learning architec-

tures. Deep architectures have not been discussed much because of its poor

training and generalization errors using standard random initializations of

parameters [12]. Many experimental results have shown that gradient-based

training of deep supervised multi-layer neural networks often get stuck in

“local minima”. Besides, when the architecture becomes deeper, it becomes

more difficult to obtain good representations. Moreover, insufficient depth
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Table 2.1: The summarization of classical deep learning architectures.

Methods Type Ideas Applications

Convolutional neural net-
work [69] Supervised

Instead of learning single global weight matrix be-
tween two consecutive layers, it aims to find a set of
locally connected neurons.

Image
recognition

Recurrent Neural
Network [57] Supervised

It performs the same task for every element of a
sequence, with the output being depended on the
previous computations.

Language
modeling, speech
recognition
and machine
translation

Sparse Autoencoder [130] Unsupervised

When you pass data through such a network, it first
compresses (encodes) input vector to ”fit” in a smaller
representation, and then tries to reconstruct (decode)
it back. The task of training is to minimize an error or
reconstruction

Dimensionality
reduction.

Restricted Boltzman Ma-
chines [56] Unsupervised

It shares similar idea with auto-encoder approaches.
However, instead of deterministic (e.g. logistic or
ReLU) it uses stochastic units with particular (usually
binary of Gaussian) distribution.

Dimensionality
reduction,
classification

Table 2.2: The summarization of related works on image feature extraction.

Related Works Methods Type ILSVRC-2012 Top-5 Error
[Lowe 2004] SIFT Hand-crafted feature

26.7%[Dalal 2005] HOG Hand-crafted feature
[Ahonen 2006] LBP Hand-crafted feature
[Krizhevsky 2012] AlexNet CNN Neural network feature 15.3%
[Simonyan 2014] VGGNet CNN Neural network feature 7.32%
[Szegedy.C 2014] GoogleNet CNN Neural network feature 6.66%
[He 2016] ResNet CNN Neural network feature 3.57%

of architectures can hurt. However, many applications can be represented

efficiently with deep architectures and cannot be represented efficiently with

shallow architectures [12]. This indicates that the design of deep architecture

plays an important role to good generalization.

2.3 User Profiling

The emergence of Word Wide Web, smart mobile devices and online social

networks have revolutionized the way we communicate, create, disseminate, and

consume information. However, such large scale of the web is limiting its use

since there is a sea of internet information, the consumers have to do all the work

to use the web. For example, search engines often provide the same results for

different preferences, intentions and contexts without considering the specific

needs of users; they expect users to spend additional efforts to accomplish their

searches. Therefore, personalization can be the solution that customizes web

contents to the needs of specific users, taking advantage of the information
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from the analysis of the user’s behaviours [38]. In particular, one of the basic

components of personalization is user profiling.

User profiling aims to establish user profiles by obtaining, extracting and

representing the preferences of users [149]. A user profile might include

demographic information [40; 115] such as name, age, country and education

level. Sometimes it can also represents the interests or preferences of either

a community of users or an individual [45]. As shown in Figure 1.2, in

general, the user profiling process mainly includes three main phases [45]: a) an

information data collection process which gathers rich data; b) a user modeling

approach to mine useful information from rich data resources to construct and

express user profiles; and c) a personalized service that integrates the learnt user

profiles in OSNs. Table 2.3 has summarized recent literatures on user profiling.

2.3.1 Information Resources

Generally speaking, the data resources that are used to model users are split

into four aspects: a) user demographic information; b) social networks; c) user

generated contents (UGC); and d) domain knowledge.

• User behaviors User behaviors such as browsing history [120] and query

history [125] form as user implicit feedback to profile user preferences.

For example, Sugiyama et.al [120] constructed user profiles based on

modified collaborative filtering with detailed analysis of users browsing

history in one day for personalized web search.

• Social networks To date, the information of social networks [101; 102]

has been explored for modeling users due to the theory of homophily

that people with similar interest tend to connect with each other and

people of similar interest are more likely to be friends. For instance,

Mislove et.al [91] use friendships to infer Facebook users’ attributes.

They developed a clustering algorithm to find communities in the network

and then assigned an identical attribute value to users in the same
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community. Yang et.al [140] presented a model to propagate interests

of an item among users via their friendships.

• User generated contents (UGCs) From the perspective of user shared

contents, user generated contents can be Keywords (e.g., tags), Free Text

(e.g., posts on Weibo, or tweets on Twitter), Image (e.g., a user takes a

snapshot and shares the photos on own social nets), Video, and Composite

of the above. To date, a large number of studies have been conducted to

understand the contents and then obtain what the consumers are interested

in [2; 5; 147]. For example, Abel et.al [2] have studied how to leverage

Twitter messages posed by users for user modeling and evaluate the

quality of user models in the context of recommending news articles.

• Domain knowledge Domain knowledge is the information with a degree

of certainty or community agreement. It provides a human-understandable,

but machine-readable vocabulary describing a rich conceptualization of

specific domain. Hence, many researchers have conducted studies to

construct knowledge-based user profiles for both good interpretation and

efficient personalized services [44; 23; 127; 109; 86]. For instance, Tra-

jkova et.al [127] used the Open Directory Project concept hierarchy (ODP,

2012) as their reference ontology to train different concept classifiers for

constructing user profiles applied to web search. Sieg et.al [109] proposed

to maintain and update user profiles as annotated specializations of a pre-

existing reference domain ontology and presented a spreading activation

algorithm for maintaining the interest scores in the user profile based on

the user’s ongoing behavior.

2.3.2 User Profiling

Traditional user profiling methods either employ feature engineers to generate

hand-crafted meta-descriptors like fingerprint for a user or draw a set of

latent features from a user’s registered profile data, for example, through
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Table 2.3: The summarization of related works on user profiling.

Related
Works Profiles Information

resources Data sources Data scale

[Sugiyama
2004]

search
preferences

browsing
history

Google search
engine 50 query topics

[Teevan
2005] user interests

queries,
browsing
history

MSN Search

15 participants evaluate the top
50 Web search results for approx-
imately 10 self selected queries
each.

[Middleton
2014]

research paper
topics

Text, ontol-
ogy Research papers 260 subjects over an academic year

[Rao 2010]
age, gender, re-
gional origin, po-
litical views

Text, Behav-
ior, Relation Twitter

1,000 users for gender, 2,000 users
for age, 1,000 users for regional
origin, 400 users for political views

[Bi 2013]
gender, age,
religion, political
views

Text Facebook 457,000 users’ Facebook data and
3.3 million users’ search logs

[Querica
2012] personality Relation Twitter 335 users

[Markoviki
2013] personality Text Facebook 250 users (10,000 status)

[Bazelli
2013] personality Text StackOverFlow total posts on StackOverflow be-

tween Aug. 2008 - Aug. 2012

sparse coding [140]. Moreover, some approaches use collaborative filtering

techniques [5; 147] to infer user interests via collaboratively analysing user

behaviors, where the users are assumed to be independent with each other.

However, most existing approaches only consider the textual information [81;

11; 19] to profile users and also have not taken the connections among users or

user behavior information into consideration.

According to different user modeling approaches, the resultant user profiles

usually are split into either latent-based user profiles [5; 147] or semantic-

based user profiles [2; 52]. Seen from the angle of latent-based user profiles,

Zhong et.al [147] have put forward a latent factor model purely on implicit

negative and positive user feedback to infer user interest vectors. While from

the point of view of semantic-based user profiles, Abel et.al [2] have built three

types of profiles that differ with respect to the type of concepts: entity-, topic-

and hashtag-based profiles for personalized news recommendations in Twitter.

Moreover, Guy et.al [52] introduced a user vector of related people and tags

for recommending social media items. However, to our best knowledge, very

little research up to now considers both semantic-based profiles and latent-based

profiles simultaneously.
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2.4 Personalized Recommendation

Personalized recommendations involves a process of gathering and storing

information about web site consumers, analysing current and past user in-

teractive behaviors, and, based on the comprehensive analysis, delivering the

user interested content to each consumer [26]. Traditional recommendations

include three approaches: a) content-based recommendation method: this is

the traditional content-based recommendation method [98], where users are

recommended items similar to those they preferred in the past; b) collaborative

filtering recommendation method: the user is recommended items that people

with similar tastes and interests preferred in the past; c) hybrid recommendation

method: these methods combine collaborative and content-based methods.

Let d be the function that measures the interestingness of item i to user u, i.e.,

d : I × U → R, where R is a totally ordered set. Then for each user u ∈ U , we

want to choose such items i ∈ I that maximize the user’s utility [4].

∀u ∈ U, i′u = arg max
u∈U

d(i, u) (2.4)

Each element of the user space U can be defined with a profile that includes

various user characteristics, such as age, gender, income, etc. Similarly, each

element of the item space I can represent a set of characteristics of the item.

For example, in a movie recommendation application, each movie can be

represented by its title, director, leading actors, etc.

2.4.1 Content-based Methods

Content-based filtering approaches recommend images based on a comparison

between the contents of the images and a user profile [9; 107]. User profiles

can be identified by the users themselves, or learned from the content of the

images that users have rated. In CBF, the utility d(i, u) of the item i for the

user u is estimated based on the utilities u(u, i′) assigned by user u to items
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i′ ∈ I that are “similar” to the item i. For instance, in a movie recommendation

application, the content-based recommendation system attempt to explore the

commonalities (e.g., directors, specific actors, etc.) among the movies that the

user u has rated highly in the past.

In content-based systems, the utility function d(u, i) is usually defined as:

d(u, i) = score(ContentBasedProfile(u), Content(i)) (2.5)

where ContentBasedProfile(u) represents a vector of weights where each

weight denotes the importance of a keyword to the user u and can be computed

individually using a variety of approaches. And Content(i) can be an item

profile, which may includes a set of distinct attributes of item i.

However, content-based recommendation systems often have some limita-

tions as follows:

• Limited content analysis. Content-based are often limited by the

features with the automatically extracted feature techniques which might

works well in text documents but not in other domains.

• Over specialization. Such content-based system only recommend users

the items which are most similar to the items that users preferred in the

past. However, in certain conditions, items should not be recommended if

they are too similar [4].

• Cold start. For the user who have rated very few items will not have

accurate recommendation results. That is, when a user only rates a limited

number of images, the limited content information cannot be generalized

to discover the user’s broader interest.

2.4.2 Collaborative-based Methods

Different from content-based recommendation approaches, collaborative-based

filtering (CBF) methods try to predict the utility of items for a specific user based
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on the items preferred by other similar users [119]. The similarity between users

are often computed based on the overlap of shared images. That is, the utility

d(i, u) is estimated using the utility d(i, u′) assigned to i by those users u′ who

are “similar” to the user u. Commonly, the value of the unknown rating ri,u for

user u and the item i is usually computed as an aggregation of ratings from other

similar (usually top N most similar) users for the same item i:

ri,u′ =
∑
u′∈ U ′

ri,u′ (2.6)

where U ′ is the top N user.

However, collaborative recommendation approaches also have several limita-

tions as follows:

• Cold start problem. This is the same as with the content-based methods.

• New item problem. New items often be added regularly to the rec-

ommendation systems. Until the new item is rated by many users, the

recommendation systems can be able to recommend it.

• Sparsity problem. In any recommendation system, the number of ratings

is usually quite small compared with the number of ratings that need to be

predicted.

To alleviate the sparsity problem, matrix factorization based CF models have

been proposed, such as the singular value decomposition (SVD) [106], weighted

matrix factorization (WMF) [59], and the combination of probabilistic matrix

factorization (PMF) [92] and topic models [132]. These models assume that the

user-image matrix has a low-rank reconstruction by low-dimensional user and

image features. We argue that such methods are essentially “shallow” models

since they directly seek the resultant high-level features from user-image matrix.

When the matrix is very sparse, these methods will fail to find meaningful latent

factors.
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2.4.3 Hybrid Methods

Several recommendation systems attempt to use the hybrid approaches which

integrate the content-based recommendation systems and collaborative filtering

recommendation systems together. And it has different ways to combine the

above two recommendation methods: a) implementing content-based and col-

laboratively filtering methods separately and combing their recommendations

together; b) incorporating the content-based approaches into a collaborative

approaches; c) incorporating the collaborative filtering methods into the content-

based approaches; d) developing a unified model which can integrate the

characteristics of the content-based and collaborative filtering methods.

2.5 Summary

As mentioned above, it is easily seen that it is still quite difficult to conduct

multimedia content analysis, and the characteristics of the online social service

(e.g., sparse social connections, complex user behaviours) by no means makes

it more difficult to analyse multimedia contents. Even we have more efficient

state-of-the-art methods (e.g., deep learning), we can not directly adapt those

methods to such complex research problems. In addition, our target of mining

effective and efficient user profiles in social media services, makes it essential

that we should incorporate all facets of knowledge, range from individual infor-

mation and expert knowledge (e.g., Wikipedia), to extract valuable and machine

understandable information which can be widely used to many applications such

as personalized recommendation.
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Chapter 3

User Profiling by Knowledge-based

Multi-task Media Learning

In this chapter, we target at proposing a multi-task media learning approach for

user profiling where relationships of siblings will be involved. In particular,

we apply the proposed approach to infer users’ interests for personalized

recommendation. Extensive experiments have demonstrated the effectiveness

of the proposed approach.

3.1 Introduction

As mentioned in 1.1.1, user profile can be extracted from the implicit resources

such as user generated contents including images, videos and composite of

them. It has been reported that the major interest of OSNs is rapidly shifting

from text-based contents to multimedia1. Hence we propose to exploit user

generated multimedia data to profile users.

Motivated by the promising outlook of social curation, we attempt to establish

high-quality user profiles based on such new social media platforms, i.e.,

SCSs (Social curation services), with the aim of advancing fundamental social

applications such as recommendation. SCS is a new type of emerging social

1http://www.kpcb.com/insights/2013-internet-trends
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Social Network Service Social Curation Service

Figure 3.1: The illustration of the user-centric OSNs and the content-centric SCS.
Although OSN contains user-generated content, the philosophy behind it is limited to
user-user interactions. Alternatively, SCS encourages user interactions on the content
level.

media platform, where users can select, organize andkeep track of multimedia

contents they like. Specifically, our user profiling approach is superior by

exploiting the distinguishable features of SCSs as compared to the traditional

social network services for two key reasons:

Organized vs. Unorganized Contents. Unorganized multimedia contents in

conventional OSNs are visually and semantically noisy and diverse, and thus

are hard to be analyzed and exploited even with the state-of-the-art multimedia

annotation techniques [60]. In contrast, SCSs contain a considerable amount of

manually collected and maintained contents. For example, images in a curated

bundle (e.g., the board in Pinterest or the gallery in Flickr) are very focused on

the same semantics as shown in Figure 1.1. Such organized multimedia contents

offer us high-quality human labeled training data for multimedia modeling.

Moreover, we are able to mine a large amount of curated bundles of user interest

to build an content-based ontology to further structuralize the data, resulting in

more personalized and accurate user profiles.

Content-centric vs. User-centric Network. As aforementioned, conventional

user-centric OSNs are not optimized to create comprehensive user profiles based

on user-generated contents. Alternatively, as illustrated in Figure 3.1, content-

centric SCSs are advantageous in reliable social cues on user preferences. In

particular, user curation through multimedia contents helps to encode multi-

level content-content connections, which are expected to pinpoint the user pref-

erence in terms of the contents generated by the user. Such connections between
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Figure 3.2: The overview of the proposed user profiling by social curation.

two images include: a) user-level connection, where the strength indicates how

many users have pinned the two images, b) bundle-level connection, where the

strength indicates how many bundles share the two images and c) content-level

connection, where the strength suggests the similarities between the two images.

In particular, the first two connections are expected to unravel the diverse user

interest hidden in the contents. For example, if two images are only shared by

few users (or bundles), the connection between them rarely suggests similar user

interest. However, if they are shared by many users (or bundles), they tend to be

very likely referring to the same interest. Our user profiling method can leverage

rich information to refine the imperfect content-based profile models.

The overview of the proposed user profiling approach based on an example

of SCSs, Pinterest, is illustrated in Figure 3.2. First, we collect multimedia

contents curated by users, i.e., the images in bundles as well as the associated

user interest description like bundle names and tags. Due to user curation, the

collected data are of high-quality and focused according to the user interest.

Second, we propose an automatic ontology construction method to structuralize

the curated images onto an ontology. The construction is done by pruning

an expert ontology, i.e., Wikipedia Category, to the desired user interest, e.g.,

the fashion domain. Third, based on the constructed ontology, we are able
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to learn content-based models to generate ontological user profiles, which are

more comprehensive and personalized than the traditional text-based profiles.

In particular, we propose a novel multi-task convolutional neural network

(mtCNN) in order to leverage both the relatedness of sibling user-interest items

and the cutting-edge advances in high-performance visual modeling. Forth, we

further propose a low-rank recovery framework to further refine the generated

user profiles by the ontological profile models, exploiting the rich user-level,

bundle-level and content-level social relations offered by social curations.

Therefore, the resultant user profiles are expected to retain: a) the interest

of user, b) the interest of user-curated bundles and c) the semantic affinities

with respect to the ontology, supporting effective fundamental social media

applications such as recommendation. Experimental results on 1,239 users and

1.5 million images collected from Pinterest in fashion domain demonstrate that

the proposed user profiling method is more effective than other state-of-the-art

methods in terms of recommendation.

Our research is a pioneering work on content-based social curation analysis,

with the following contributions:

• We propose a novel content-based user profiling method using social

curation. Our work concentrates on exploring how social curation can

help in content-based social multimedia analysis

• We present a user profiling framework on how to exploit the rich social

information in SCS. This framework is fully automatic and can be

extended to general visual-oriented domain. In this work, we use the

fashion domain as an example.

The rest of the work is organized as follows. Section 3.2 describes the

user profile learning process. Section 3.3 illustrates the process of user profile

refinement. Experimental results and analysis are reported in Section 3.4,

followed by conclusions in Section 3.5.
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Figure 3.3: (a) The automatic constructed profile ontology in the fashion domain. The
dashed boxes denote the automatically augmented items. (b) The ontology statistics
based on user-generated contents collected from Pinterest.

3.2 User Profile Learning

Social curation service (SCS), by nature, contains high-quality images in

bundles curated by users. Here, “high-quality” means the semantics of images

are highly constrained and relevant by the user-provided tags. This gives us a

great opportunity to develop well-generalized content-based models to predict

the semantics of images, in our case, the user interest items.

3.2.1 Profile Ontology Construction

We use an ontology to organize the user interest items and their relationships in

a domain from general to specific, as it has been widely shown to be effective in

integrating human knowledge of the domain and data distributions to improve

the modeling of visual semantics [143]. We propose to build an interest ontology

to describe user profiles, for example, in the fashion domain.

After harvesting the user-curated interest items for pinned images such as

comments and bundle names, we want to automatically generate a profile
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ontology O = (V , E), where V = {v} is a set of items such as “leopard”,

“dresses” and an edge in E is an ordered pair of items in V × V . Now, we

introduce how to automatically construct the ontologyO by mining the contents

in Pinterest. First, we exploit Wikipedia Categories to build a preliminary

ontology based on pre-defined general user interest. This ontology is rooted

from three general nodes: “color”, “garment” and “pattern”, voted by the

most general WordNet items which are hypernyms of the user provided fashion

words. However, it is hard to adapt to the real user interest distribution of the

user-curated data, since a) some items are outdated such as “polonaise”, which

are missing from the user-curated data and b) high-frequency items such as “V-

dresses”, “sleeveless dresses”, on the other hand, are missing from this ontology.

Therefore, we should prune the Wikipedia ontology to the user interest on

demand.

Specifically, to remove the outdated items, we consider the items with low

term frequency (e.g., less than 100 times) derived from around 800,000 user-

generated items as the outdated ones. Also, we need to add high-frequency items

into this ontology. Note that this is not a trivial task since it is challenging to find

which item node in the ontology is most semantically related to a given high-

frequency item. Here, we propose a novel method for augmenting the ontology

with out-of-vocabulary items. Suppose we want to add a high-frequency item h

onto the existing ontology O, the key is to find the most possible semantic path

from top to bottom and then add h as a sibling of an item node v if v is most

semantically similar to h among others along the path. In order to numerically

calculate the most possible semantic path, we need to transform item words into

numeric vectors. Here, we use Word2Vec [87] to transform an item into a 300-

D vector, retaining its semantic meanings. Then, we use all the items in V to

sparsely represent the h as

arg min
a
‖h−Va‖22 + λ‖a‖1, (3.1)

where h is the 300-D vector of item h, V is a dictionary matrix which is arranged
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by putting vectors of V column-wisely, a is a sparse coefficient vector and λ

is a trade-off parameter. By doing this, each item node of the ontology O is

assigned a value according to the sparse codes of h. Therefore, we can find the

most possible semantic path whose nodes have the largest sum of sparse codes.

Finally, we can find the target item node v along the path which has the largest

sparse code value. As a result, we obtain a comprehensive user profile ontology

as shown in Figure 3.3.

3.2.2 Profile Ontology Learning

Content-centric SCSs offer well-organized contents which closely relate to user

interest. In other words, we are able to collect high-quality training images

for every node in the constructed profile ontology. For learning the profile

ontology, we want to map the images curated by users onto this profile. For

example, given an image of “cargo pants”, we expect to visually reason like:

garment → trousers → pants → cargopants. Compared to the flat “bag-

of-bundles” image organizations in Pinterest, this hierarchical reasoning gives

richer semantic interpretations of user interest. In order to achieve this, for each

node v in the profile ontology O, we need to learn a classification model that

predicts whether an image belongs to v. Let us start with looking for the training

samples of v. Trivially, the images of the node itself will be the positive samples.

Moreover, we consider positive samples of v’s siblings as negative samples of

v. This myopia way of training is shown to be effective in hierarchical visual

task [82]. However, this training strategy suffers from the “error propagation”

problem, i.e., the models of v and its siblings are incapable of rejecting the

classification errors propagated from higher-level unseen nodes.

In order to alleviate such propagated errors, we expect the model of every

node in the ontology to be as accurate in prediction as possible. To achieve this,

we propose to adopt the Multi-task Learning (MTL) framework [39] for jointly

learning the models of a node and its siblings. It has been shown that MTL
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Figure 3.4: The illustration of the proposed mtCNN. There are M independent CNN
pathways for the M tasks. These CNNs share a common parameter w0 when they
eventually feed-forward into the softmax classification layer.

improves the prediction performance on multiple, different but related, learning

problems through shared parameters or representations. In our case, the tasks

of learning a node and its siblings are related. For example, “V-dresses” and

“strapless dresses” under “dresses” share similar visual cues. Formally, without

loss of generality, we only consider a set of sibling nodes {v1, ..., vM}, which

share the same parent. Given training images {(xi, yi)}, where xi and yi are the

feature and label of the i-th image in any vm, respectively. The objective of the

MTL is

min
w0,...,wM

F (w0, ...,wM ) =

−
M∑
m=1

∑
i∈Im

logP (yi = m|xi;w0,wm) + λ

M∑
m=0

R(wm)

(3.2)

where w0, ...,wM are the trainable parameters for M tasks, Im is the set of

training image indices of vm, P (yi = m|xi) is a softmax function against other

labels yi 6= m and λ is the trade-off parameter of the regularizer R(·), e.g.,

`2-norm regularizer. Particularly, w0 is the shared parameters of the M tasks.

Recent advances in computer vision have shown that deep Convolutional

Neural Network (CNN) can learn useful features that outperform the hand-

crafted ones [69]. Therefore, we propose a novel multi-task CNN (mtCNN)

deep architecture that jointly learns the features and parameters for the tasks.
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As illustrated in Figure 3.4, we have M CNNs for each task to learn the

feature xi ← φ(xi; w̃m), where φ(xi; w̃m) is the output of the m-th CNN

(cf. Section 3.4.2 for the details of the mtCNN architecture) and w̃m is

the trainable parameters. Denoting the the overall parameters of mtCNN as

W = {w0,wm, w̃m}Mm=1, then the stochastic gradient descent update rule ofW

in the k-th iteration of for solving mtCNN is ∆k+1 = 0.9 ·∆k − 1.5e−4 · η · Wk − η · ∂F
∂Wk

,

Wk+1 = ∆k+1 +Wk,
(3.3)

where ∆ is the momentum variable [100], η is the learning rate which is adaptive

to the objective function value.

Now we can represent any image in the user-curated bundles as p, where the

i-th value pi is the model output of item node vi in ontologyO. By averaging the

p of all the images, we can eventually obtain the user profiles in a hierarchical

representation in which the value of each node shows the user’s interest.

3.3 User Profiles Refinement by Social Curation

So far, the above user profiles are only based on visual models, which are

insufficient to accurately predict user interest in terms of items in the ontology.

In this section, we propose to refine the user profiles by exploiting multi-level

social cues.

3.3.1 Formulation

We use graph links to model the various types of relations evident from rich

social information of curated images. We observe that there are three levels of

key relations in the content-centric social curation network. As we will detail

soon, these levels of connections play an important role in regularizing the user

interest depicted in images.

User-level. This level’s connection origins from the fact that “Great minds think
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alike”. For example, if user A,B and C share images i and j simulataneously,

then images i and j might be similar. Therefore, images are connected if two or

more users have curated them. Formally, we have

Suij =

 n, if n users share images i and j,

0, no users share them.
(3.4)

The strength of user-level link Suij indicates how many users consider images i

and j belong to the same interest.

Bundle-level. This level’s connection is similar to the user-level connection

since each bundle often represent one kind of a user’s interest. Therefore, at this

level, images are connected if two or more bundles include them,

Sbij =

 n, if n bundles include images i and j,

0, no bundles share them.
(3.5)

The strength of bundle-level link Sbij suggests how many bundles would be

curated by users to pin images i and j to the same interest.

Content-level. This level includes two types of image content links: visual

link and semantic link. The visual link is based on the visual similarities while

the semantic link is based on the hierarchical semantic similarities between two

images. Formally, we have

Svij = exp

(
−‖xi − xj‖2

2

ρ2

)
, Shij = pTi Hpj =

∑
k,l

pkiHklp
l
j, (3.6)

where ρ is a predefined radius set to the standard variance of the feature norms,

x and p are the visual and hierarchical semantic representations of images,

respectively. The matrix H can be derived by measuring the closeness of item

relations to the ontology. For instance, let Hkl = ξ(π(k, l)), where π(k, l) is

the lowest common ancestor of items k and l and ξ(·) is some real function that

is non-decreasing going down the hierarchy, i.e., the lower shared ancestor, the
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more similar items k and l are.

Now, we can combine the above links in order to refine the existing

hierarchical representations of images, which are the basis to establish user

profiles. Denote the hierarchical representations of all the training images before

refinement as P and those after refinement as R, which is the goal we are

pursuing. In particular, we assume that the original P is noisy and the desired

R is a low-rank recovered noise-free matrix. Intuitively, each column vector

of the low-rank matrix R denotes the hierarchical representation of an item.

Intuitively, due to the relations of items in the ontology, the item “cargo pants”

should imply that items “pants” and “trousers” are along the semantic path.

This indicates, from the viewpoint of linear algebra, that “cargo pants” could

be located in a subspace spanned by those items along the path, imposing a

low-rank nature of the matrix P.

Therefore, by jointly considering the aforementioned multi-level social rela-

tions and the low-rank prior, the formulation of the proposed profile refinement

objective is

min
R

J(R) = ‖P−R‖2F + α‖R‖∗ + βtrace
{
RT

(
Lu + Lb + Lv + Lh

)
R
}

(3.7)

where α and β are trade-off parameters, Lu, Lb, Lv, and Lh are the graph

Laplacians of the corresponding graphs in Eq. (4.3) to (4.4). For example, Lu =

Du − Su, where Du is a diagonal matrix with the i-th entry as
∑

j S
u
ij . Such

graph regularized terms impose the low-rank pursuit of R to be consistent with

the multi-level social connections. The nuclear norm ‖R‖∗ is a convex surrogate

for matrix rank [137], whose convexity allows an effective optimization for its

solution. Next, we show how to solve the formulation in Eq 3.7.

3.3.2 Solution

When we investigate the formulation in Eq 3.7, we find that the profile

refinement problem is a convex optimization problem. Therefore, there is a
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(a) Original User Profiles (b) Refined User Profiles

Figure 3.5: Illustration of the effectiveness of the proposed profile refinement method.
The gray blue points are images represented by user profiles, and the red ones
correspond to “bag” images. All these points are visualized by using PCA mapped
into a 2-D space. (a) Before refinement, images of the same interest are scattered. (b)
After refinement, images of the same interest are clustered.

guarantee to obtain a global minimum. However, it does not have a closed-form

solution. Fortunately, this problem can be solved by the Proximal Gradient

method [126], which uses a sequence of quadratic approximations of the

objective function J(R) in order to derive the optimal solution.

We define H(R) = ‖P−R‖2
F +βtrace(RTLR), where L = Lu+Lb+Lv +

Lh, and then the objective function can be re-written as J(R) = H(R)+α‖R‖∗.

Suppose Rk−1 is the solution at the (k − 1)-th step, we can update to Rk by

solving the following optimization problem which quadratically approximates

J(R) by the second-order Taylor expansion of H(R) at Rk−1:

Rk = arg min
R

H(Rk−1)+ < ∇H(Rk−1),R−Rk−1 >

+
δ

2
‖R−Rk−1‖2F + α‖R‖∗

= arg min
R

δ

2
‖R−Gk‖2F + α‖R‖∗,

(3.8)

where the values of Gk and δ are defined as

Gk = Rk−1 −
2

δ
(Rk−1 −P + αLRk−1) ,

δ = 2σmax (I + αL) ,

(3.9)

where δ satisfies the Lipschitz condition and σmax(·) denotes the largest singular

values. Note that the solution of Eq. 4.5 is Rk = Udiagbσ − α
δ
c+VT , where

Udiag(σ − α
δ
)VT is the singular value of Gk [137]. Also, note that even
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with a large amount of images, the above optimization for profile refinement

is tractable. To see this, for solving the singular values of Gk, we can apply

the trick to solve it by obtaining the singular values of GT
k , which can be much

smaller. Meanwhile, for solving the largest singular values of I + αL, we can

adopt the efficient power method in matrix analysis.

After the above low-rank approximation, the average value of hierarchical

representations of all the images after refinement R is regarded as the user

profile. The effectiveness of this profile refinement algorithm is illustrated in

Figure 3.5. It shows that the proposed methods can refine the user profiles with

the same user interest (i.e., “bag” in this example) close to each other so that they

have consistent user profile representations. It gives an intuitive interpretation

of the expected better recommendation performance of the proposed profile

refinement since it is often much more accurate to calculate the user similarities,

which are crucial in collaborative filtering approaches.

3.4 Experiments

In this section, we systematically evaluate the effectiveness of our proposed

profile learning, profile refinement algorithm and image recommendation using

the profiles.

3.4.1 Experimental Setup

DataSet

We crawled the Pinterest data based on HTTP requests as there is no open API

of Pinterest. We followed traditional crawling protocol. We assume that popular

pins represent the preferences of most active users on most popular topics. First,

we started from 50 popular pins from seed data in fashion domain. Next, for

each pinned image, we used a breadth-first search (BFS) strategy to crawl the

boards which have pined or re-pined the image. The overall crawling process
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took a month. As a result, the dataset consists of 1,239 users and 1,538,658

images.

In order to populate images into the constructed ontology in Section 3.2,

we matched the user interest items (e.g., bundle names, tags) with entries in

our constructed ontology to annotate the images of the corresponding items.

Besides, the time when the user pinned the images can be obtained, therefore,

we divide the images based on the pinning time for image recommendation. In

order to train the profile ontology model, we split the dataset into training/testing

sets in half. Note that the testing set is used for testing ontology profile

models, profile refinement algorithms and image recommendation. For profile

refinement, the groundtruths are the as same as the profile models. For

recommendation, the average number of images per user are 433. In order to

simulate real-world recommender system, we added half noisy data (i.e., around

200) that are not in fashion domain, to simulate the real recommendation system.

Compared Methods and Evaluation Metric

To evaluate the effectiveness of the proposed multi-task CNN (mtCNN), we

compared it with state-of-art convolutional neural network [69]. For the model

of each node in the ontology, we used the average precision (AP) as the

evaluation metric.

To study the performance of our proposed profile refinement algorithm

(Ours), two algorithms were employed as the baselines: a) TRVSC [76]: tag re-

finement algorithm based on visual and semantic consistency, b) LR ES CC TC

[148]: tag refinement algorithm low-rank, error sparsity, content consistency

and tag correlation. For evaluation metric, we used the widely used F-score.

To evaluate the effectiveness of user profiling methods, we proposed to use

image recommendation based on user profiling. As mentioned in [4], current

recommender systems generally fall into the following two categories: a)

content-based recommendations, where users are recommended items similar
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to those they preferred in the past; and b) collaborative recommendations where

users are recommended items that people with similar tastes and preferences

liked in the past. Here, we extend the traditional recommendation methods

using our proposed visual-based ontology profile. We used the content-based

ontology profile vector to represent a user to calculate the user-item and user-

user similarity. To evaluate the performance of visual-based profile in image

recommendation, we compared it with state-of-art methods: a) CB: this is the

traditional content-based recommendation method [98], where users are recom-

mended items similar to those they preferred in the past; b) CF WNMF [51]:

This method makes the use of non-negative matrix factorization on user and

item graphs for collaborating Filtering. c) CF LDA [132]: This method

combines traditional collaborating methods with probabilistic topic modeling

to provide an interpretable latent structure for users and items. d) CB UP: this

method extends the traditional content-based methods through representing the

users with our profile ontology, e) CF UP: this method extends the traditional

collaborating method by computing users’ similarities using our proposed

profile ontology. We used mean AP (mAP) of the recommendation results as

the evaluation metric.

3.4.2 Implementation Details

The underlying deep architecture we adopted in Section 3.2 is the deep

convolutional neural network architecture proposed by Krizhevsky et. al [69].

Its inputs were the raw RGB pixel intensity values of a 224× 224 image. Those

values were forwarded through 5 convolutional neural layers (with pooling and

ReLU non-linearities activation function along the way) and 3 fully-connected

layers to determine its final neuron activities, namely, a distribution over the

sibling user interest items. As a result, neurons of the network in each layer were

respectively 150,528-D, 290,400-D, 186,624-D, 47,996-D, 47,996-D, 43,264-

D, 4,096-D, 4,096-D, and M -D, where M is the number of sibling items. We
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used the ImageNet pre-trained model, namely DeCAF [35], as the pre-trained

network to initialize CNN and the proposed mtCNN. For visual features of the

images used in Eq. (4.4) and other content-based baseline methods, we also

adopted the 6-th layer output of DeCAF, which is a 4096-D feature vector.

For the sparse coding in section 3.1, we empirically initialized λ as 0.1.

For multi-task convolutional neural network, we empirically set λ as 0.0001.

For the profile refinement algorithm, we set α ∈ {0.0001, 0.01, 0.1..., 10},

β ∈ {0.00001, 0.01, 0.1, ...., 10}, various pairs of (α, β) values were tried and

the one with the best performance was chosen.

For all the experiments, we used an NVIDIA 780X GPU with 2304 cores,

3GB memory, and i7-2600 CPU with 3.40 GHz and 16G memory.

3.4.3 Experimental Results

Evaluations of Profile Ontology Learning

Figure 3.6 illustrates the average precision values of different item classifiers in

the hierarchy. From this result, we can see that the multi-task convolutional

neural network (mtCNN) at most levels achieves a mean average precision

about 0.50, which is superior to traditional neural networks. These results

demonstrate the effectiveness of mtCNN that makes use of hierarchical visual

tasks. However, it can be seen that our proposed method has comparatively

low performance on some items such as “zipper front dresses” and “skinny

pants”. The reason for the low performance could be (a) the distinctive attribute

of those items is too fine-grained, e.g. “zipper front”, to differentiate those

items correctly; and (b) these items tend to co-occur frequently with common

items in an image. For example, the item “skinny pants” often co-occur with

the item “high heels” in an image, then our method would recognize the “high

heels” with “skinny pants” as “skinny pants”. On the other hand, our method has

quite good performance on other items such as “bamboo bag” and “goalkeeper

glove”. The reason for this is that those items have comparatively clean image
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Figure 3.6: Performance of the 464 user profile models trained by CNN and the
proposed mtCNN. mAPs are shown in brackets. Representative user interest and its
two most confident images are shown.
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Figure 3.7: Performance of the three profile refinement methods. Mean F-Scores are
shown in brackets. The profile contains 464 user interests. Representative user interest
in the profile and its two most confident images are shown.

samples.

Evaluations Of Profile Refinement

Figure 3.8 shows some tag refinement results for some sample images produced

by our approach. We can see that our approach can effectively correct and

enrich the imprecise and incomplete image tags. For example, in Figure 3.8(c),

our approach removes the irrelevant tags “dresses” and adds the more detailed

tags “tote bag” and some other related tags such as “pink skirt” through social

curation. Moreover, the enrichment capability of our proposed approaches can

be seen in Figure 3.8(e) and (f), where there is only one irrelevant tag that
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yellow shorts
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yellow shorts
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Figure 3.8: Illustrative profile refinement results by the proposed method.

shows people’s intentions such as “comfy” and “outfit” and after refining the

incomplete tags by our approaches, the images are associated with reasonable

tags. However, some case fail because of lack of sibling samples. For example,

the “bow tie” and “ascot tie” under “tie” has fewer samples than other concepts

on the ontology.

Figure 3.7 shows the detailed performance of image refinement for individual

tags between our proposed approach and the baselines. From these results,

we can see that the proposed method making use of social curation achieves

an average F1-score of 0.48, much higher than the other two methods. The

superiority of our proposed profile refinement algorithms arises from two

aspects:a) low rank; and b) multi-level social relations from social curations.

Thanks to the content-centric network, multi-level content-content connections

are encoded to refine the user profiles. The experiment results explicitly

illustrate that social curation services provide more structured and accurate

information to infer user’s preferences.

From Figure 3.7, we can observe that some classes may have comparatively

lower F1-score. For example, the F-score of the item “mini skirts” is about 0.25.

It may be due to the noisy content-level connection since “mini skirts” and “mini

dress” are often pinned into the same boards. Moreover, some cases fail because

of some image samples may not be that popular and therefore there exist sparse

and noisy content-level connections. In contrast, we observe that items tend to

have higher F-score performances that are popular in SCSs.
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Evaluation of Image Recommendation

Figure 3.9(a) shows the performance comparison between the proposed image

recommendation methods and the other four state-of-the-art recommendation

methods. We can observe that our proposed recommendation methods based

on the visual-based ontology profile achieve the best performance in terms of

MAP at all the top K results as compared to the other methods. For example,

our method improves the performance by 13.3%, 22.6%, 48.0%, 54.2% in terms

of MAP at the top 20 results as compared to the CB, CF WNMF, CF LDA and

CB UP respectively. This verifies the effectiveness of our proposed ontology

profile in recommendation systems. Figure 3.9(b) plots the user distribution

under the five recommendation methods with mAP@10. We can see that our

method can recommend the best images to most of the users. However, if

the user’s interest is too general, the framework does not work well since

our recommender system will recommend all the images. Some illustrative

examples are shown in Figure 3.10.
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Figure 3.9: (a) Performance (mAP@K) of the five recommendation methods.
mAP@10 are shown in brackets. (b) The user distribution under the five recommen-
dation methods with mAP@10

The superiority of our proposed ontology profile arises from the following

points: a) This ontology profile models the user with a semantic hierarchy

consisting of users’ interest; such hierarchy profile provides a more compre-

hensive interpretation of images of interest of users; and b) through computing

the users’ similarities based on this hierarchy profile, implicit similar users

can be obtained which alleviates the sharing sparsity problem in traditional
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collaborative methods (e.g., there may exist many images that are rarely shared

and would not be recommended). Besides, since our ontology construction does

not totally rely on Wikipedia, but also the user comments which cover the real

interest even if it falls into the long tail. Once a general domain is selected, our

ontology can adapt to the true distribution of user interest.

Kim Harris Nelson

Samut Nomiah Makayla

Monyelle

Figure 3.10: Illustrative recommendation results from the proposed collaborative
filtering based on our user profiles (CF UP). Top nine recommended images for six
users are shown.

3.5 Summary

In this work, we targeted at content-based user profiling on the emerging social

curation service (SCS). Compared to the conventional online social network

service (OSNs), which focuses on user-user connections, SCS is based on the

content-content connections curated by users. This is a unique characteristic

of SCS, which inspires the idea of our profiling method. In particular, we

investigated the fashion domain in the most popular SCS, namely Pinterest,

on how social curation can help us tackle the existing difficulties in social

media analysis. Specifically, we proposed to automatically construct a content-

based user preference ontology and learn the ontological models to generate

comprehensive user profiles. Then, we proposed to model the multi-level social

relations offered by SCS to refine the user profiles in a low-rank recovery

framework. Extensive experiments on 1,239 users and 1.5 million images
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collected from Pinterest in fashion domain demonstrated the effectiveness of

the proposed user profiling method, which outperforms the other state-of-the-

art methods.

However, this work focused on profiling users in fashion domain. Next, we

would like to introduce advanced methods to profile users in various domains

based on the finding that the social connections between users and images play

an import role in profiling users.
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Chapter 4

User Profiling by Deep Learning of

User-Media Interactions

In this chapter, we aim to propose a deep learning approach of breaking the

user-media interactions into a deep hierarchy tree for learning user profiles.

Furthermore, we exploit the observation of power-law user-media distributions

to develop a synchronized optimization approach to improve the optimize speed

of the proposed framework. Extensive experiments have demonstrated the

effectiveness of the proposed approach.

4.1 Introduction

As mentioned in 1.1, the exponentially growing media contents will make it

difficult for service providers to offer interesting products to specific consumers.

This requires effective recommender systems to satisfy customers’ needs.

However, the traditional recommender systems are not designed to function

effectively in this new era of social curation marketing due to the following

challenges: 1) The extreme sparsity of network structure (cf. Figure 1.4(a)).

For instance, in Pinterest, an ordinary user often curates around 100 images

which is only one in a million as compared to the whole Pinterest image

collection. That is to say, it is hardly possible to infer the similarity between
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Figure 4.1: Our goal is to transform the users and images in a social curation network
into a compact, low-dimensional feature space. Our approach takes user-image pairs in
the social curation network (a) as input to the proposed deep architecture (b) which is
built based on frequencies of user-image interactions. It then learns the user and image
feature representations (c) as the output. Here is a simple illustration of our proposed
method on a toy image-centric network: blue ones are users and red ones are images.
We can see that the learned features can capture the pairwise user-image similarity.

users based on the shared images. Clearly, this will render collaborative

filtering ineffective. 2) The extreme diversity of the multimedia contents (cf.

Figure 1.4(b)). Different from products that can be easily categorized (such as

those in Amazon), the categories of multimedia contents are usually hard to

be identified automatically, causing difficulties for content-based recommender

systems to infer accurate user interest from the curated contents, with the

problem of over-specification [4].

In this work, we introduce a novel feature learning approach for recommen-

dation that aims to tackle the above two extreme challenges in social curation.

Different from conventional recommenders that indirectly rank images for users,

we directly measure the similarity between users and images through a compact,

low-dimensional vector space, spanned by “interest”, which is the core motive

of any social curation network. Our algorithm takes a social curation network

with user-image links as input and produces latent representations of users and

images as output. As illustrated by a toy network with 5 users and 6 images in

Figure 4.1, we expect the vectors of linked users and images to be closer than

other non-linked ones. The closer the pair of vectors, the higher the possibility

that the user-image pair belongs to the same interest, and hence the rank of the

image with respect to the user is higher.

Our model is a novel deep learning framework that breaks down a large

and sparse network topology into a tree-structured deep hierarchy, where the
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leafs are users and images (Figure 4.1). Each non-leaf feature encodes the

information about the social interactions (i.e., user-image, user-user, and image-

image) and each resultant leaf embeds the “interest” of a user or an image into

a vector. Note that our deep model is used as an “end-to-end” fashion, that

is, we start from the most basic curation behavior “a user likes or dislikes an

image” as the “low-level end”, and the latent features forwardly propagate the

curation belief into the resultant user-image features as the “high-level end”.

Different from shallow methods that attempts to learn user and image features

directly [49; 68], our deep model can compactly [12] and efficiently learned

representative features to reveal the weak correlations between images and users

at the scene of the extreme sparse connections and extreme diverse images due

to its deep structure.

In our proposed deep model, the input of user-image pairs could be over

billions. Thus, how to efficiently optimize such a deep model becomes a big

challenge. Fortunately, we observe that the user-image connections are long-

tailed and very sparse, and hence there should be very limited shared parameters

for different user-image pairs in the proposed deep tree structure. Therefore, we

proposed a fast optimization algorithm that deploys an asynchronously parallel

stochastic gradient descent method that can significantly reduce the time for the

training of different user-image pairs.

We conduct extensive experiments on a representative subset of Pinter-

est, which is the most popular social curation network. In particular, the

subset covers 468 popular interests on Pinterest with 1,456,540 images and

1,000,000 users who have interactions with these images. Through image

recommendations, we demonstrate that the proposed deep model significantly

outperforms the other state-of-the-art recommender systems. Our contributions

are summarized as follows:

• We propose a deep learning framework for learning compact user and

image features in a unified space from large, sparse and diverse social
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curation networks. The learnt user and image features support effective

recommendation by directly computing the similarity between the user

vector and image vector.

• We develop a fast on-line algorithm to train the proposed deep learning

framework. To our best knowledge, this is the first work on developing

deep learning methods on content-centric networks.

The rest of the work is organized as follows. Section 4.2 describes the

problem statement. Section 4.3 illustrates the proposed approach of deep

learning structure. Experimental results and analysis are reported in Section 4.4,

followed by summary in Section 4.5.

4.2 Problem Statement

4.2.1 Recommendation by Similarity

We consider the problem of recommending images denoted as I or users

denoted as U to users in a social curation network denoted as G = {U , I, E},

where E is the set of edges that connect users and images. Although real-world

social curation networks allow users to connect to other users1, without loss of

generality, we only assume that connections exist between users and images, i.e.,

E ⊆ U × I. We are interested in the following user-image similarity measure:

sui = xTuxi (4.1)

where sui ∈ R is the rating score of image i being recommended to user u,

xu ∈ Rd and xi ∈ Rd are the latent feature representations for users and images.

In order to make a valid recommendation score by Eq. 4.1, we require xu and xi

to encode interests. For example, if user u likes traveling and image i is about

traveling, we expect the values of xu and xi to be consistently small.

1This rarely happens because most users only enjoy the curation function and ignore the
social function.
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In general, we seek a transformation g : G 7→ Rd, where Rd is the unified

space for users and images and thus facilitates direct user-image similarity

measure in Eq. 4.1. Note that the transformation is generic since content-based

filtering and collaborative filtering can be viewed in this form. For content-

based filtering, it considers xu as a content feature generated from the user’s

favored images. On the other hand, collaborative filtering treats xi as the vector

consisting of ratings ru′i, where u′ is a friend of u, and xu is a vector of the

similarities between the friends of u. As discussed in Section 4.1, the extreme

connection sparsity and content diversity will make these traditional methods

ineffective. For example, in content-based filtering, even if a user only likes a

single interest “travel”, it is difficult to generate xu that is consistently similar

to diverse images about traveling; in collaborative filtering, as the user-image

connections are very sparse, it is impossible to infer accurate user similarities

based on the shared images between users.

4.2.2 Modularity

Due to the sparsity of social networks, we wish to seek low-dimensional

features for items (i.e.,, images) and users, through an objective that represents

the interest communities of social networks. Modularity is a widely-used

community partition measure that the larger the value, the better the partition

of the network [28]. The underlying principle of using modularity is that

the power-law distribution of connections between users and items is very

significant in social curation network2. Consider the partitioning network G

of n vertices (e.g., n = |U| + |I|) and m edges into k non-overlapping interest

communities. Let di represents the degree of vertex i. Modularity penalizes

the situations when the number of within-group connections is smaller than the

number of uniformly random connections, whose expected number is didj/2m.

2The fraction of nodes in the network have k connections to other nodes is proportional to
k−γ .
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Therefore, the modularity is formulated as:

J =
1

2m

∑
ij

(
Gij −

didj
2m

)
δ (i, j) , (4.2)

where Gij = 1 if i and j is connected and 0 otherwise, δ(i, j) = 1 if i and j

belong to the same membership and 0 otherwise. Note that 0 ≤ didj/2m ≤ 1,

so the penalty comes in if
(
Gij − didj

2m

)
< 0. One aims to find a community

partition over the network G when J is maximized. Note that we make no

difference between users and items since our goal is to learn a unified space.

Although maximizing the modularity J over hard partition (i.e., σ(i, j) = 1

or 0) is NP-hard [28], a relaxed approximation of the problem can be solved

efficiently [124] when we relax the membership indicator σ(i, j) = p (i|j) =

exp
(
xTi xj

)
/
∑

i′ exp
(
xTi′xj

)
as a valid probability: where xi ∈ Rd is a latent

membership feature vector and the probability function is known as the softmax

function. One can easily derive that this relaxed formulation is strongly related

to the formulation of matrix factorization for recommendation [49; 68], which

usually fails in sparse social network as we argued in Section 4.1.

4.3 Deep Learning Features for Social Networks

4.3.1 Architecture

In general, the latent interests encoded in the topology is difficult to be revealed

by using these shallow methods when we directly solving Eq. 4.2. This is

analogous to the situation in image classification, which suffers from the gap

between noisy visual cues and the target labels. For this task, it is well-known

that DCNN performs the best because they learn hierarchical features which are

beneficial for the ultimate classification [12; 69]. Inherited from this core spirit

of deep learning, we propose to solve Eq. 4.2 by a hierarchical deep model,

which can learn useful intermediate features.

We start from introducing an approximation of p(i|j) called “Hierarchical
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Softmax”, which is widely used in neural computation [93]. It approximates

p (i|j) by a series of binomial distributions along a tree-structured hierarchy.

Specifically, we assign the vertices to the leafs of a binary tree (see Figure 4.1).

For computation efficiency, the tree is a Huffman tree [88] according to the

frequency of user-image interactions. Let ni(m) be the m-th node on the path

from root to i, and let Li be the length of this path. In particular, we have

ni(1) as root and ni(Li) as i. In addition, we denote lc(ni(m)) as the left child

of node ni(m) and let I(ni(m)) be an indicator function such that it is 1 if

ni(m + 1) = lc(ni(m)), and −1 otherwise. Then, the hierarchical softmax

version of p (i|j) is defined as

p (i|j) =

Li−1∏
m=1

σ
(
I[ni(m)] · xTni(m)xj

)
(4.3)

where σ(x) = 1/(1+exp(−x)) is the sigmoid function, which is widely-used to

model the binary-valued binomial probability and xni(m) is the representations

of inner node ni(m). In terms of computation complexity, Eq. 4.3 can reduce

the computation complexity of n sums (whereO(n) can be millions in our case)

with normalization in Eq. 4.1 to O(log2 n), which is significant.

Here, we show that the hierarchical softmax as formulated in Eq. 4.3 can be

viewed as a deep architecture that represents the network topology. First, we can

view the binary tree as a coding structure for each vertex in the network because

each vertex i is assigned to a path from root to leaf. Then, the series of binary

decisions from root to bottom mimic the route in the network from a common

virtual root to vertex i. As shown in Figure 4.2(a), the route to the vertex i is by

way of vertex j. The shared nodes along the path of j to i encode this routing

information. So, we can view the nodes in the hierarchy encoding the topology

of the entire network. Finally, we illustrate that Eq. 4.3 is in fact a forward

propagation in the deep model. As illustrated in Figure 4.2(b), the difference

between a traditional deep neural network and our network is that the proposed

deep model is forwarded by using both the output features (i.e., the leaf vectors)

and the hidden units, while traditional neural network is forwarded by using
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Figure 4.2: Illustrations of the proposed deep architecture. (a) The node parameters
of two paths in the deep hierarchy encode the topology information of a random walk
from a virtual root to vertices. For example, the shared parameters correspond to the
overlaps of the two routes (in dashed region). (b) Traditional deep architecture (bottom)
feeds a fixed input into a forward network, while the proposed model (top) feeds both
the output image and user features as input to every forwarding layer.

only the hidden units. Detailed information can be seen in Equation 4.5.

4.3.2 Formulation

We are interested in recommending image i to user u (or user u to image i).

Intuitively, our learning objective seeks for feature representations xu and xi as
max
xu,xi

p(u|i) or p(i|u), if u likes i,

min
xu,xi

p(u|i) or p(i|u), if u dislikes i.

(4.4)

Note that the above objective is consistent with the modularity maximization in

Eq. 4.2. Moreover, we deploy a DCNN to transform images into the desired

feature space: xi = CNN(i), in order to generalize for new images. In this

work, we adopt the AlexNet [69] where the softmax layer is removed but an

additional fully-connected layer is added (i.e.,, from 4,096 to d neurons).

By incorporating the p(u|i) formulated as in Eq. 4.3 into Eq. 4.2, the overall

objective function becomes

max
xnu(m),xni(m),xu,CNN(·)

J =
∑
ui

Aui

Lu−1∑
m=1

log σ
(
I[nu(m)] · xTnu(m)CNN(i)

)
+
∑
iu

Aiu

Li−1∑
m=1

log σ
(
I[ni(m)] · xTni(m)xu

)
(4.5)

where Aui = (Gui − dudi/2m). Note that the above formulation allows us to

encourage p(u|i) to be larger if Aui ≥ 0 and smaller if Aui < 0. Recall that
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0 ≤ didj/2m ≤ 1, so Aui ≥ 0 indicates user u likes image i and vice versa.

Also, Aui assigns a weight to encourage the connection Gui if the expected

connection dudi/2m is small. For example, if user u is only linked to few images

(i.e., small du) and image i is only linked to few users (i.e., small di), then an

observation of u linked to i is informative. Therefore, the likelihood for p(u|i)

or p(i|u) should be emphasized in optimization. For Aui < 0, we only compute

the pairs with the smallest 20 values for efficiency. Note that one can try more

advanced negative sampling tricks [129], however, we found that there is no

significant improvement.

4.3.3 Algorithm

For a typical social curation network, the number of user-image pair could be

over billions. Therefore, it is impractical to optimize Eq. 4.5 even if we use

the popular online stochastic gradient descent method for deep learning [12].

Here, we design a fast algorithm for tackling the large-scale networks. The main

idea of our algorithm is that we deploy an asynchronously paralleled stochastic

gradient descent method that can significantly reduce the time of scanning the

user-image pairs.

The parallelization is made possible by the two observations from the

structure of the topology parameters xnu(m) and xni(m). First, as shown in

Figure 3.5(a), the frequency distributions of users and images follow the power-

law distribution. This observation is generally true in most social networks [95].

It means that we have a very long tail of infrequent pairs and thus the chance of

two computing threads conflict when scanning the same pair is rare. Second,

thanks to the binary tree structure of the parameters, the number of shared

parameters between two leafs are limited. To see this, suppose that u and i

correspond to sibling leafs, which is the worst case. The number of shared

parameters is only log2 n− 1, where n is the total number of users and images.

When n = 107, the fraction of affected parameters is only around 0.00002%,
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which is negligible.

However, the parameters of CNN is shared by all the pairs. Therefore, jointly

optimizing all the parameters in Eq. 4.5 will harm parallelization. To tackle

this, we propose an alternative updating algorithm as shown in Algorithm 1.

Specifically, we first fix the features of users X and CNN, and only update the

topology parameters (i.e., the inner node features) T as in Algorithm 2. Note

that Steps 2-11 can be run asynchronously with multiple threads. In general,

Algorithm 2 requires about 100 iterations for convergence. Next, as shown

in Algorithm 3, we solve for X and CNN with fixed T . It should be noted

that X and CNN in Eq. 4.5 can be updated independently. In particular, they

can be trained by asynchronous stochastic gradient descent on a distributed

computing platform as described in [31]. We employ the momentum-based

gradient descent as Steps 6-7 in Algorithm 2 and Steps 5-6 in Algorithm 3. This

method has been shown to result in faster learning paces [100].

Algorithm 1: Deep Feature Learning for Images and Users
Input: Social curation network G, feature dimension d
Output: User features xu and image visual feature transformation CNN

1 Initialization: Build a binary tree for the users and images in G; randomly set
topology parameters xnu(m) or xni(m) ∈ T (0), and user feature xu ∈ X (0),
initialize CNN with ImageNet pretrained model; randomly initialize the last
layer of CNN, t← 0

2 repeat
3 T (t+1) ← UpdateTopology

(
T (t),X (t),W(t)

)
4 X (t+1),CNN(t+1) ← UpdateFeature

(
T (t+1)

)
5 t← t+ 1

6 until converges;

4.4 Experiments

In this section, we conduct extensive recommendation experiments to evaluate

the effectiveness of the learnt user and image features from the proposed model.
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Algorithm 2: UpdateTopology
(
T (0),X ,CNN

)
1 Initialization: t← 0, momentum ∆(0) ← 0, weight-decay factor α, learning

rate η
2 repeat
3 Online gradient descent:
4 foreach pair of u and i do
5 foreach x ∈ T do
6 ∆(t+1) = 0.9∆(t) − α · η · x(t) − η∇xJ(T (t)),
7 x(t+1) = ∆(t+1) + x(t),
8 end
9 end

10 t← t+ 1

11 until converges;
12 return T (t)

Algorithm 3: UpdateFeature (T )

1 Initialization: t← 0, momentum ∆(0) ← 0, weight-decay factor α, learning
rate η

2 repeat
3 Stochastic Gradient descent:
4 foreach randomly selected mini-batch of user-image pairs do
5 ∆(t+1) = 0.9∆(t)−α·η·

(
X (t),CNN(t)

)
−η∇(X ,CNN)J

(
X (t),CNN(t)

)
,

6
(
X (t+1),CNN(t+1)

)
= ∆(t+1) +

(
X (t),CNN(t)

)
,

7 end
8 t← t+ 1

9 until converges;

10 return
(
X (t),CNN(t)

)
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Figure 4.3: Pinterest dataset statistics. (a) This shows the number of users’ interests;
and (b) this shows the distribution of the times an image has been pinned.

4.4.1 Experimental Setup

Dataset

We used Pinterest, which is one of the largest social curation networks, as the

source of the content-centric network for evaluating our proposed methods. To

be noted that, the target of this Chapter is to exploit user-image connections

for user profiling in general domain without domain knowledge. Hence, we

collect a fresh representative data to validate our proposed method. In particular,

given a user and his/her pinned images, we first found the category labels of

these images and used these labels as the interests of this user. Specifically,

the category labels come from Pinterest category site (e.g., https://www.

pinterest.com/categories/food_drink/). We crawled the profiles

of 1 million users together with their pinned images from Pinterest. The users

were randomly sampled from the users communities found in the 468 categories

we analyzed. For the pinned images, we removed images without category

labels, resulting in 686,457 images. The remained user-image distribution is

quite different from the dataset in Chapter 3. This is because that most images

have comments which can help to annotate themselves in Chapter 3 while the

dataset in this experiment only have rare labels annotated by Pinterest. We

named this set of images Iu, those that actually pinned by users. In order to test

the ability of recommending new images not pinned by users, we also crawled
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additional 770,083 images which belong to the 468 interest categories but not

pinned by any of the crawled users. The new image set is named as Inew. In

the process, we also removed duplicated images which may impact the final

evaluation results. These images were used to evaluate the performance of new

image recommendation.

Figure 4.3 and Figure 3.5(a) show three distributions of our dataset: the

distribution of the number of users’ interests, the distribution of the times an

image has been pinned, and the distribution of the number of users’ pinned

images. These distributions are power-law, where most users pin only a small

number of images and have only a few interests; similarly, the images are only

pinned by a very small number of users as compared to the total number of users.

These distributions showed the sparsity and diversity of a typical social curation

network. In order to demonstrate that our method can perform consistently well

on different network topology, we randomly divided our dataset into 10 groups,

each of which contains 100, 000 users and around 1, 000, 000 images. The set of

images includes those images pinned by the users in the group, with remaining

randomly sampled from Inew set. The experiments were conducted on all the

10 groups. We reported averaged results with significance tests (applying t-test)

and published the dataset 1.

Evaluation Metrics

We evaluated our method and other compared ones on image recommendation.

We adopted the widely-used Normalized Discounted Cumulative Gain (NDCG)

as the evaluation metric for both tasks. NDCG is defined as:

NDCGk =
1

IDCGk

×
k∑
i=1

2ri−1

log2(i+ 1)
(4.6)

where IDCGk is the maximum NDCGk that corresponds to the optimal

ranking list so that the perfect NDCGk is 1, and ri is the degree of relevance

1https://sites.google.com/site/xueatalphabeta/academic-projects
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Figure 4.4: Interest categories in Pinterest are organized as a forest.

of the image in position i. We adopted a 3-scale r ∈ {0, 1, 2} relevance score,

representing irrelevant, relevant, and highly relevant, respectively. For image

recommendation, we defined a recommended image to be: (a) highly relevant if

the interest category of the image falls within the groundtruth interests of users;

(b) relevant if the interest category of the image maps to sibling interests of

users’ groundtruth interests (Figure 4.4 illustrates a part of the interest category

forest collected from Pinterest); and (c) irrelevant if none of the above.

In addition to NDCG which measures the relevance of the recommended

images, users may also prefer the recommended images to be more diverse,

i.e., if a user has many interests, results that cover more interests are preferred.

Therefore, we used entropy Hk = −∑R
i=1 pi ln pi to measure the diversity of

the recommendation results, where Sk is the set of successfully recommended

(highly relevant and relevant) images up to position k, R is the total number of

types of interests in Sk, and pi is the proportion of images belonging to the ith

type of interest in Sk. Here, a larger Hk represents more diverse results.

Comparing Methods

We compared the performance of our proposed Deep User-Image Feature

(DUIF) with the following five baseline methods: a) Content-based filtering

(CBF) [98; 119]: It generates a user feature vector by averaging all the image

features (we used the state-of-the-art 4,096-d DeCAF [36] feature) pinned by

the user and then recommend images based on the similarity between the

image features and the user features. b) User-based collaborative filtering

(UCF) [145]: It analyzes the user-image matrix to compute the similarities
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between users and then recommends images to people with similar tastes and

preference. c) Item-based collaborative filtering (ICF) [32]: This technique

first analyzes the user-image matrix to identify relationships between different

images, and uses these relationships to indirectly compute recommendations

for users. d) Weighted Matrix Factorization (WMF) [129]: It decomposes the

user-image matrix into latent user and image features by the weighted matrix

factorization [59] and uses CNN to regress images to the image vectors. e)

Deep Walk (DW) [99]: It learns the user and image latent representations of

vertices in a social network by applying a language model. Then, images

are recommended by the similarity between the user features and the image

features. We empirically tested different configurations of baseline methods

and employed the best ones as baselines.

4.4.2 Implementation Details

For deep CNN, we depoyed Caffe framework [62] for CNN implementation

on a NVIDIA Titan Z GPU. In particular, we used the well-known AlexNet

architecture [69], which consists of 5 convolutional layers with max-pooling

and 2 fully connected layers before the loss layer. Our CNN added an additional

fully connected layer for the resultant d-dimensional feature space. We used the

author provided ImageNet pretrained model (in Caffe format) as initializations.

The initial learning rate was set to 1e−4 with dynamic momentum. The size

of the batch was 128 and it took 20 epochs to converge using Algorithm 3.

Each epoch took about 40 mins. For Algorithm 2, we randomly initialized

all the parameters, and the starting learning rate was set to 1e−5 with dynamic

momentum. We used 8 computing threads on a 8-core machine. It took around

100 epochs to converge with each epoch taking about 10 mins. For the above

algorithms, we used `2-norm weight decay with 5e−5 coefficient. For Algorithm

1, we found that 2 iterations were sufficient for a good solution. The choice of

feature dimension is crucial. We tuned the values within {100, 200, ..., 1, 000}
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Figure 4.5: Performances (NDCGk) of various methods on recommending new
images to users based on (a) existing pinned set (Iu) and (b) new image set Inew.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
@

K

K

 

 
CBF

DUIF

 

 

ICF
UCF

 

 

WMF
DW

(a)

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
@

K

K

 

 

CBF WMF

 

 

DUIF

(b)

Figure 4.6: Performances of diversity (Hk) of various methods on recommending new
images to users based on (a) existing pinned set (Iu) and (b) new image set (Inew).

and found that 300 was the best choice.

4.4.3 Experimental Results

For our evaluation, we want to test the effectiveness of the recommendation

methods to recommend new images based on those pinned by existing user

community Iu and those unseen images Inew not pinned by existing user

community. We note that among the five baseline methods, CBF is based on

the contents of the images, UCF and ICF are traditional collaborative filtering

methods, while WMF and DW are based on latent factors. We note that UCF,

ICF and DW cannot be used to recommend new images, which are unseen in

existing networks. Hence for testing recommending new unpinned images from
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Table 4.1: Detailed recommendation performance (NDCGk) on recommending new
images to users based on existing pinned set (Iu) and new image set (Inew) with
significance test. Results labeled with ‡ are highly significant (p<0.01), and † indicates
significant (p<0.05), against the best comparing method.

Existing Image Recommendation
NDCG5 NDCG10 NDCG20 NDCG50 NDCG100

CBF 0.098 0.099 0.100 0.122 0.139
UCF 0.308 0.290 0.226 0.129 0.081
ICF 0.338 0.338 0.314 0.244 0.165

WMF 0.356 0.354 0.352 0.346 0.334
DW 0.457 0.451 0.443 0.416 0.342

DUIF 0.550‡ 0.537‡ 0.519‡ 0.472‡ 0.368†

New Image Recommendation
NDCG5 NDCG10 NDCG20 NDCG50 NDCG100

CBF 0.079 0.080 0.081 0.080 0.081
WMF 0.103 0.110 0.108 0.111 0.110
DUIF 0.304‡ 0.298‡ 0.289‡ 0.276‡ 0.265‡

Table 4.2: Detailed recommendation performance (Hk) on recommending new images
to users based on existing pinned set (Iu) and new image set (Inew) with significance
test. Results labeled with ‡ are highly significant (p<0.01), and † indicates significant
(p<0.05), against the best comparing method.

Existing Image Recommendation
H5 H10 H20 H50 H100

CBF 0.000 0.000 0.002 0.027 0.071
UCF 0.034 0.035 0.035 0.035 0.035
ICF 0.147 0.243 0.335 0.430 0.465

WMF 0.025 0.052 0.095 0.169 0.230
DW 0.082 0.117 0.152 0.201 0.233

DUIF 0.194‡ 0.350‡ 0.481‡ 0.581‡ 0.589†

New Image Recommendation
H5 H10 H20 H50 H100

CBF 0.002 0.005 0.010 0.020 0.037
WMF 0.005 0.025 0.078 0.312 0.551
DUIF 0.022‡ 0.071‡ 0.180‡ 0.354‡ 0.470
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Figure 4.7: Illustrative examples of recommending new images to users using different
methods (b) based on users’ pinning profiles (a).

set Inew, we only compare our proposed method with CBF and WMF.

Figure 4.5 and 4.6 compare the performance of recommendation methods

to recommend relevant images to users based on existing pinned set Iu and

new image set Inew. Figure 4.5 presents the performance in terms of relevance

based on NDCG@K; while Figure 4.6 presents the performance in terms of

diversity based onH@K. In addition, Table 4.1 and Table 4.2 separately lists the

respective results with significant test on image recommendation at the top 5, 10,

20, 50 and 100 positions. Some illustrative examples are shown in Figure 4.7.

As can be seen from the results, the proposed DUIF significantly outperforms

the other methods for image recommendation. The comparatively good

performance of DUIF mainly comes from the following aspects. As previously

introduced, the multimedia contents are very diverse, even for the same interest

topic, hence methods (e.g., CBF) that only consider image contents would have

poor performance. Moreover, each user often has many different interests. Such

diverse images and varying users would result in a more sparse and complex
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user-item matrix, which renders those matrix decomposition based methods

such as UCF and WMF ineffective in revealing the underlying user interests.

Further, we observe that the latent factor based models such as WMF often

outperforms the traditional collaborative filtering methods such as UCF and

ICF. The findings verified that methods that attempt to discover compact latent

vectors for users and images tend to perform better than those that directly

apply the user-image matrix. Finally, although DW which is similar to DUIF,

it does not consider the contents of images and the intrinsic property of social

curation network, namely modularity. Hence it performs worse than DUIF on

the recommendation task. Overall, DUIF differs from the baseline methods

in that it jointly considers image content analysis and social curation network

topology. Experimental results have shown that it can effectively map images

and users into a unified space for effective image recommendation.

4.5 Summary

We proposed a novel deep learning framework for learning the representations

for topological user nodes and visual images in large, very sparse and diverse

social curation network and applied the resulting model to recommender

system. Experimental results on a representative subset of Pinterest with about

1.4 million images and 1 million users have demonstrated that the proposed

approach can significantly outperform other methods. Exploiting social media

data to generate features could be a promising research direction in computer

vision community. Furthermore, in the proposed deep architecture, the rich

textual information which can provide important semantic meanings for images

has not been exploited. In the future, we can further investigate the case

of mining the multi-modal contents of texts and images for the task of user

profiling.
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Chapter 5

User Profiling by Integrating

Knowledge, User-Media

Interactions and Multi-modal

Contents

Until now, we have conducted research on exploring domain knowledge and

user-media interactions to construct user profiles, respectively. Further, this

chapter aims at integrating knowledge, user-media interactions and multi-modal

contents together to infer user profiles for personalized services. In particular,

the proposed approach incorporates both user-media interactions and media-text

associations to learn compact representations guided by the domain knowledge

for users, rich media, textual information simultaneously.

5.1 Introduction

To now, we have addressed the problem of user profiling using multimedia

contents generated by users and content-centric network. However, the task

of user profiling still faces several challenges as below:
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UserID: XXXX 

Semantic Interest: Chanel,  

Fosil, watch, high-heel, etc 

Visual-based Factors:  

[0.21, 0.14, …, 0.08, 0.01] 

A User Recommended Fashion Products Learned User Representation 

Figure 5.1: We wish to learn out a latent visual-based and semantic-based user profile.
For instance, given the fashion products shared by a specific user, our proposed model
extracts the user’s semantic interest such as “Chanel”, “Fosiil” and “dress”, and a visual
latent-based vector that shows the user’s preferences. Based on such learnt profile, we
can conduct image recommendation effectively and efficiently.

• Representation of User Profiles Chapter 3 and Chapter 4 concentrate

on construct semantic-based user profiles and latent-based user profiles

separately without a composite of them. In this work, we attempt to

combine the user generated multi-modal contents to infer a semantic-

based and latent-based user profile.

• Analysis of Heterogenous Data Online social networks (OSNs) are

heterogenous in nature where consumers share multi-modal contents

with each modality expresses partial view of users’ interest [8]. Most

existing studies [69; 123; 24] learn features of contents by harvesting

uni-modal and multi-modal information without incorporating users, little

efforts have been made on jointly embedding of users and multi-modal

contents. Luckily, the remarkable collective intelligence [111] can help

us tackle this problem. For example, if many users share the same image

“Steve Jobs”, they may have the same interest of admiring “Steve Jobs”.

Therefore, how to effectively learn the jointly embedding of users and

multi-modal contents using collective intelligence remains a challenge.

• Utilization of Human Prior Knowledge As mentioned by 1.1.1, human

prior knowledge plays an important role in the user profiling process and

has been proved its importance in Chapter 3. Hence, this work go deeper
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to explore what kind of human prior knowledge can be exploited and how

to incorporate the knowledge into our model.

We tackle the above issues by developing a novel model, named, the

Embedded Learning of Users, Contents and Knowledge (EmLUCK), to profile

users in a latent-based and semantic-based way. An example is shown in

Figure 5.1. Based on users’ shared contents, the proposed model will learn

a semantic-based profile including concepts like “Chanel”, “Fosil” and “watch”

and a visual latent-based user profile showing the user’s visual latent preferences

that can be used to directly and efficiently support product recommendation.

Note that we take apparel domain as an example. One of the most basic

principles of fashion design and styling is color [18], especially the theory

of color harmony. Putting together a set of harmonious colors can produce

a pleasing affective response to users [22]. Color harmony is nothing more

than time-tested recipes, as they were, for colors that work well together, they

tend to be related or contrasting [41]. It has been widely employed recently

in fashion industry. For instance, stylists from Vogue have advocated to apply

color harmony in their portraits 1 while Chanel has employed the color harmony

into their eyeshadow products 2. Indeed, understanding color harmony would

lead to a well-thought mix of outfit. For instance, the blue T-shirt goes well

with an orange tie as shown in Figure 5.4(a), as blue and orange colors are

in the complementary scheme. Such time-tested principle of color harmony

which is different from traditional color histogram representation, is hardly

understandable by machines. Additionally, we need a semantic-based user

profile to support reasoning [2]; such profile also cannot be figured out by

machines. Luckily, we can incorporate the clothing ontology that structures

these semantic information [133] to achieve the goal.

Driven by collective intelligence, we propose a matrix factorization approach,

EmLUCK, that explores the heterogenous networks of contents and users,

1
http://www.vogue.it/en/talents/talents-shooting/2012/11/colors-in-harmony#ad-image235356

2
http://les4ombres.chanel.com/en_SG/harmonies
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guided by the human prior knowledge. EmLUCK is able to map users and

the multimedia contents they shared into a common low-dimensional space.

Consequently, the recommendation of images to users can be conducted

by directly measuring the similarity between users and images; and friend

recommendation can also be done in a similar way. Moreover, by measuring

the similarity between users and texts, a semantic-based user profile can also be

constructed.

We conduct extensive experiments on the Amazon apparel dataset and a

representative subset of Pinterest, which is the most popular social curation

network. Through image-based fashion product recommendation, we demon-

strate that the proposed method significantly outperforms existing state-of-the-

art recommenders. The contributions of this study are:

• We develop a novel method that integrates multi-modal contents shared

by users to build a visual-based and semantic-based user profile.

• We explore collective intelligence existed in the heterogenous networks

of users and contents, and integrate color harmony from visual Art and

clothing ontology into the proposed model to improve the recommenda-

tion performance. To our best knowledge, this is the first work to employ

color theory from visual Art for user profiling in apparel domain.

The remainder of the chapter is structured as follows. Section 5.2 details

the issue we attempt to solve while Section 5.3 introduces our model. The

experiment is detailed in Section 5.4.

5.2 Problem Statement

Let U = {u1, u2, ..., uNu} be a set of users, V = {v1, v2, ..., vNv} be the set of

their shared images and T = {t1, t2, ..., tNt} be the set of keywords extracted

from comments or source links where Nu, Nv and Nt are the numbers of users,

images and keywords, respectively. A user ui can share/buy an fashion-related
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product image vj from the source link and attach a comment. We use the matrix

M ∈ RNv×Nu to denote the image-user association matrix where M(i, j) = 1

if image vi is shared by user uj , otherwise zero. Q ∈ RNv×Nt is the image-

keyword matrix where Q(j, k) = 1 if image vi is associated with keyword tk

and Q(j, k) = 0 otherwise. Moreover, X ∈ RNv×D is the content features of V .

Additionally, note that this work takes apparel domain as an example. We denote

human prior knowledge as Ω. Since we propose to map users, images and

texts in a common-low dimensional space, we denote the learnt latent vectors of

users, images and keywords as R, I and H. The involved notations of this work

are summarized in Table 5.1.

User Profile: A user profile is formally defined as two vectors in this work.

One weighted vector f1 shows the semantic interest while another vector f2

shows the latent visual-based preferences of the user.

With the aforementioned defined notations and definitions, the problem of

user profiling can be stated below:

Given Nu users, image-user association matrix M and image-keyword

matrix Q as well as domain knowledge Ω, we aim to develop a method

f , which can generate a semantic interest vector f1 and a latent factor on

visual preferences f2 for user ui for recommendation by learning a latent

low-dimensional common space R, I and H of users, images and keywords

separately.

f : {f ; M,Q,Ω} R,H,I−−−→ {f1, f2}ui (5.1)

5.3 Embedding of Heterogenous Networks

As shown in Figure 5.2, we attempt to learn the embedding of users, images

and knowledge respectively by mining the heterogenous associations of user-

content and human prior knowledge i.e., color harmony and clothing ontol-

ogy. Such learnt embedding can be deployed in many applications such as
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Table 5.1: Definition of notations

Notations Descriptions
U , V , T set of users, images and keywords, respectively
Nu, Nv, Nt number of users, images and keywords, respectively
M ∈ RNv×Nu

Q ∈ RNv×Nt
image-user matrix and image-keyword matrix, respectively

D dimension of image content features
l dimension of learnt latent feature space for users, images and keywords
X ∈ RNv×D content features of images
R ∈ RNu×L

I ∈ RNv×L

H ∈ RNt×L
latent factor matrix of users, images and keywords, respectively

W ∈ RD×L matrix correlated image content features with latent factors
Γ a set of similar or matchable pairwise images
Λ clothing ontology
O a set of harmony color schemes
S a set represents a specified color scheme
α, β, γ weights of different components
λ regularizer penalty coefficients

recommendation, community detection and topic detection. In the following

subsections, we will illustrate the key steps in building the proposed model in

terms of heterogenous networks of user-contents and prior knowledge, followed

by detailed optimization.

5.3.1 Collective Representation Learning

One of the most popular approaches to model such associations between

different modalities is matrix factorization by characterizing both users and

items into vectors of latent factors. The goal of matrix factorization is to

map images and users into a latent space of dimension l in which image-user

interactions are modeled as inner products in the latent space as:

M ≈ IRT (5.2)

where R ∈ RNu×l and I ∈ RNv×l are latent representations of users U and

images I separately. Each row Ii represents a community of users that are

interested in such latent space of image vi; while each row Rj shows a set of

images that expresses the preference of user uj in the latent space.
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image 

Knowledge 

Color Harmony 

Clothing Ontology 

Embedding of Users, Contents and Knowledge 

user keyword 

User-Content  

Associations 

Image-User 

Image-Keyword 

User Profile Construction 

Image Recommendation 

Community Detection 

Topic Detection 

... 

Figure 5.2: A framework for collective representation learning with prior knowledge.

For each image, in addition to representing an image as a hidden community

of users in Eq. 5.2, we also think of embedding the image in terms of the hidden

topics derived from the image’s text reviews, descriptions or source link. Then

we have:

Q ≈ IHT (5.3)

where H ∈ RNt×l is the representation of keywords. Each row Ii serves as a set

of keywords denoting the contents of image vi in the latent space; while each

row Hj expresses the semantic meaning of a keyword tj using a set of images

in the latent space.

The key assumption in our formulation is that we have a common decompo-

sition matrix I for both Eq. 5.2 and Eq. 5.3. The I matrix acts as a bridge to

connect the two disparate components. This assumption comes from the notion

of collective intelligence, generally referred as collective factorization [65; 111],

and usually encloses a common variable over different modalities. Such notion

of collective intelligence has been employed in many applications such as link

prediction [111]. It can be explained in this way that a particular set of users will

be dedicated to a particular topic via an image. Therefore, we can decompose

an image in terms of its topics or its communities in the same manner. For

example, an image about “Steve Jobs” can be considered as 50% for famous

people “Steve”, 30% for “Apple” related company and 20% for spreading across

other relevant topics. Another facet is that different communities of users may

have different aspects of interest in “Steve”. Accordingly, the same image can
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be equivalently broken down as 40% for community interested in the brilliant

“Steve”, 40% for community interested in the product of “Apple”, and 20%

disseminated to other communities. Eq. 5.2 and Eq. 5.3 figure out the two

distinctive components to our objective function.

Another common issue in social recommendation is the cold-start prob-

lem [147], in which the recommendation performance suffers for items with

few or no prior ratings/views. Approaches that do not consider content features

of items will fail. Inspired by the work of [129] which embeds deep content

feature into music recommendation and [147] which brings content items into

their latent model for user profiling, we tie in the content feature of images X

to address this issue. Hence, the objective function can be concluded by the

following equation:

min
W,H,R

J =
1

2
‖M−XWRT ‖2F +

α

2
‖ Q−XWHT ‖2F

+
λ

2
(‖W ‖2F + ‖ R ‖2F + ‖ H ‖2F )

(5.4)

where ‖ · ‖F is the Frobenius norm of a matrix and each row Xi is the content

feature of an image vi; while W ∈ RD×L is a matching matrix that correlates the

content features of images with users U and keywords T . Obviously, the latent

features of images I in Eq. 5.2 and Eq. 5.3 is replaced by a multiplication of the

image content features X and the transformation matrix W. α is introduced to

leverage the contribution of image-keyword matrix. In practice, it is common to

put regularization penalties on W,R and H to avoid over-fitting.

5.3.2 Utilization of Prior Knowledge

There are evidences that human knowledge can be used to improve the

performance of many applications [133]. Since the final consumer is human,

human interpretations of recommendation are important and shall be utilized in

the proposed model. Taking the apparel domain as an example, we exploit the

color harmony and clothing ontology to improve the user profiling performance.
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Monochromatic Analogous Complementary

Split 

Complementary
Triadic Achromatic

Figure 5.3: Clothing examples of different color schemes.

Color Harmony

Color harmony occurs when two or more different colors are sensed together

as a single, pleasing, collective impression [22]. A harmonious piece of outfit

shall have pleasing visual effect as compared to one that has not been so

carefully put together. For example, a blue T-shirt goes well with an orange

tie as shown in Figure 5.4(a). Such color harmony is usually achieved by

various color schemes in terms of logical combinations of colors on a color

wheel. In this work, we include six color schemes as shown in Figure 5.3:

achromatic scheme, monochromatic scheme, analogous scheme, complementary

scheme, split complementary scheme and triadic scheme [41; 135]. These color

schemes, establishing the rules of color combinations, help us to identify similar

or matchable pieces of clothing.

We combine 10 colors from clothing consultants industry [116] and 12 colors

from the classical Prang color wheel [17] 3 in visual Art, to form a total of 14

colors. The 14 colors are: red, blue, yellow, green, orange, violet, black, white,

yellow-orange, red-orange, red-violet, blue-violet, blue-green and yellow-green.

Among these colors, white and black are achromatic colors. In particular, black

and white have not only been known for a long time to combine well with almost

any other colors; they have also been widely seen as a pair of complementary

3
https://cs.nyu.edu/courses/fall02/V22.0380-001/color_theory.htm
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Complementary Color Scheme

(a) Collocation examples

clothing

trousers underwear skirts

full bottomtop

bodysuit playsuit teddy

(b) Clothing ontology

Figure 5.4: (a) Collocation examples: blue dress shirt goes great with orange tie, as
they are complementary colors. (b) An illustrative clothing ontology.

colors. To represent harmonious colors, different from the traditional color

histogram representation, we adopt the color naming model of Liu et.al [77]

by proposing a similar color naming model. The model uses Hue-Saturation-

Value(HSV) to map the colors of an image vi into pi = [ci,1, ..., ci,14], where

ci,j (j = 1, ..., 14) corresponds to the j-th color of the above 14 ones. The

extraction of color features is detailed in Section 5.4.1.

To measure similarity between two images pi and pj , we employ dice

(Sorenson’s) coefficient [33] as:

dsim(pi,pj) =
2 | pi ∩ qj |
| pi | + | qi |

(5.5)

where | · | means the sum of each element in the vector and ∩ means the

intersection of two vectors.

If two images are matchable, the colors from separate images, but in the

same color scheme would match in a high probability. For example, as shown

in Figure 5.4(a) 4, blue t-shirt and orange tie are greatly matchable with high

consistent probability of blue (0.8) and orange (0.7) in the same color scheme.

Triggered by this, we measure the collocation between pairwise images as:

dscheme(pi,pj) =
∑
S∈O

m,n∈S m 6=n

ci,m ∗ cj,n (5.6)

whereO is the set of harmony color schemes shown in Figure 5.3 while S refers

to a color scheme set.
4
http://attireclub.org/2014/05/05/coordinating-the-colors-of-your-clothes/
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Note that we have the above two types of distance metrics to measure the

degree of matching between two images. We normalize dscheme and dsim into

the range of [0, 1]. Since this is the first study of applying such color theory to

clothing recommendation, we simply measure the matching value dij of a pair

of images as:

dij =
1

2
(dscheme(pi,pj) + dsim(pi,pj)) (5.7)

If two images are matchable, their distance in the latent space should be

small; and vice vera otherwise. We deploy the following function to measure

the weight value zij between a pair of images based on dij:

Zij =


f(dij) + 1, if f(dij) > 0

f(dij)− 1, otherwise.
(5.8)

where f(dij) = 1/(1 + e−(dij−0.5)∗6) − 0.5 is a sigmoid function. This enables

the corresponding component of Z in Eq. 5.13 to penalize the distance between

matched image pair; and vice vera.

However, such large scale pairwise distance computation among images,

would be very insufficient since the item-item matrix would be very large.

To speed up the computation, we only consider pairwise images that are very

similar or dissimilar in terms of color harmony. We formalize the idea by

incorporating only image pair (vi, vj) that satisfies the following conditions:

max
i,j

(dscheme(pi,pj), dsim(pi,pj)) < ρ1 (5.9)

max
i,j

(dscheme(pi,pj), dsim(pi,pj)) > ρ2 (5.10)

Following this constraint, we can control the computation speed by setting

parameter ρ1 and ρ2. In our experiment, we set ρ1 = 0.2 and ρ2 = 0.9, which

work well for the experimental datasets.

From color harmony analysis, we finally arrive at a set Γ of image pairs
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which includes the set of most likely similar image pairs and dissimilar image

pairs. In our work, we separately maintain about 1.0% of similar and dissimilar

images with respect to each image for evaluation. This has been found to work

well in our experiments.

Clothing Ontology

The hierarchical clothing ontology Λ provides the relationship between different

concepts in apparel domain. Human often agrees on the relative relatedness of

concepts [90]. For example, most people would agree that bird is more related

to feather than it is to fork or car. Integrating such semantic relatedness of

concepts would faciliate the task of user profiling. Indeed, the concepts in the

clothing hierarchy is a subset of keywords T extracted from images’ associated

comments and source links. In this work, we employ the idea that the more

information two concepts share, the more similar they are in a hierarchy [139],

and apply the depth-based similarity measure as follows:

Oij =
2 ∗ depth(LCS(ci, cj))

depth(ci) + depth(cj)
(5.11)

where ci and cj are the concepts in the hierarchy; LCS(ci, cj) is the lowest

super-ordinate of ci and cj; function depth is the depth of a concept in a

hierarchy. If two concepts are semantically similar, they would be closer in the

learnt latent space. Hence, we penalize the distance between a pair of similar

concepts as

Oij ‖ Hci −Hcj ‖2

2
(5.12)

we employ the clothing ontology from Wikipedia’s template such as clothing

template 5 and footwear template 6 shown in Figure 5.4(b). The number of

concepts and the depth in this hierarchy are 144 and 4 respectively. The

extraction of clothing ontology will be detailed in the experiment section 5.4.1.

5
https://en.wikipedia.org/wiki/Template:Clothing

6
https://en.wikipedia.org/wiki/Template:Footwear
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5.3.3 Unified Model

Model Descriptions

In our unified model, we utilize the aforementioned collective co-factorization

with domain knowledge and formalize it as the following objective:

min
W,H,R

J =
1

2
‖M−XWRT ‖2F +

α

2
‖ Q−XWHT ‖2F

+
β

2

∑
(vi,vj)∈Γ

Zij ‖ XiW −XjW ‖22

+
γ

2

∑
(ci,cj)∈Λ

Oij ‖ Hci −Hcj ‖22

+
λ

2
(‖W ‖2F + ‖ R ‖2F + ‖ H ‖2F )

(5.13)

where α, β, γ and λ are weights to control the tradeoff between different

components.

Optimization

The objective function defined in Eq. 5.13 is not convex with respect to the

three variables W, H and R together. There is no closed-form solution for

the problem. Motivated by the multiplicative and alternating updating rules

discussed in [74], we now introduce an alternative algorithm to find optimal

solutions for the three variables W, H and R, separately. In particular,

we optimize one variable while fixing the others in each iteration. Now we

introduce the updating rules in detail.

First we compute R with W and H fixed. When W and H are fixed, the

corresponding derivative of R is as follows,

∂J

∂R
= −MTXW + RWTXTXW + λR (5.14)

Second, we compute H with W and R fixed. When W and R are fixed, we

compute the derivative of H as follows,

∂J

∂H
= α(−QTXW + HWTXTXW)

+ γ
∑

(ci,cj)∈Λ

Oij
∂ ‖ Hi −Hj ‖2

∂H
+ λH

(5.15)
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where ∂‖Hi−Hj‖2
∂H

=
( ···
Hci−Hcj
···

Hcj−Hci

)
. Which means, the ci row of H according to

Hci − Hcj while the cj row of H according to Hcj − Hci for each pair of

concepts (ci, cj).

Finally, we compute W with H and R fixed. Taking the derivative of J with

respect to W, we have,

∂J

∂W
= (−XTMR + XTXWRTR)

+ α(−XTQH + XTXWHTH)

+ β
∑

(vi,vj)∈Γ

Zij (Xi −Xj)
T (Xi −Xj)W + λW

(5.16)

The widely used mini-batch stochastic gradient descent (SGD) is adopted to

optimize each variable. The main process of mini-batch SGD on alternative

optimization is that when updating each variable, a) the training dataset is

randomly shuffled into batches in each iteration; b) based on each batch’s

training samples, the variable is updated according to the above equations; c)

for each iteration, if it converges, then we update next variable. We keep this

procedure until the training objective function converges. In our experiment, we

stop the iterations either when the improvement in training error is smaller than

some threshold (0.001) or when we reach the maximum number of iterations.

5.4 Experiments

In this section, we introduce experimental details to validate the effectiveness

of the proposed method. We first introduce our experimental setup. We then

provide the parameter analysis followed by comparative performances with

variants of the proposed model and existing state-of-the-art approaches. Finally,

we provide an extension study to show the scalability of the proposed model.
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Table 5.2: Statistics of Pinterest dataset

Number of users 12,809
Number of boards 13,397
Number of pins 2,275,712
Number of images 956,278
Number of source links from images 864,725
Number of descriptions from pins 2,023,845
Sharing Duration Aug, 2014 - July, 2015
Sparsity 99.98%

Table 5.3: Statistics of Amazon dataset

Number of users 1,334
Number of images 52,845
Number of reviews 62,014
Purchasing Duration Aug, 2010 - July, 2014
Sparsity 99.92%

5.4.1 Experimental Setup

Datasets

Recall that our proposed model is general and can be utilized for different

scenarios. Hence, in this paper, we evaluate our methods on two datasets: one

is from content-centric network, Pinterest 7 ; and the other from Amazon 8.

Overall, the data acquisition contains the following steps. First, we browsed

the category of women-fashion 9 in Pinterest to crawl a set of fashion related

pins; and manually selected a set of seeds from these pins. Second, we crawled

the boards that own these pins from the seed. Simultaneously, we crawled the

boards that repin these pins from the seed.

The second dataset we employed for evaluation comes from Amazon [84].

This dataset consists of product images, product categories, product co-purchase

information and product reviews information. Note that while the dataset

contains products from diverse categories, we only consider the “Clothing,

Shoes and Jewelry” category and its subcategories since this work takes apparel

domain as an example.

7
https://www.pinterest.com/

8
http://www.amazon.com/

9
https://www.pinterest.com/categories/womens_fashion/
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Ground Truths

We preprocessed the datasets from Pinterest and Amazon to obtain ground truths

for evaluation.

For Pinterest, we first removed boards that have less than 10 pins or more than

800 pins according to the power law pin-board distribution. Second, we selected

one year of user data for evaluation: we used data from August of 2014 to May

of 2015 as training; and data in the following two months as testing. In this

process, we involved only users who have more than 10 pins in the training set

and removed those users who do not have any sharing in the testing set. Finally,

we obtained a large scale dataset as shown in Table 5.2.

To prepare the Amazon dataset, we selected 4 years of users’ purchase

history: we used data from August of 2010 to January of 2014 as training;

and data in the remaining half-a-year as testing. In this process, we involved

only users who have more than twenty purchasing records in the training set

and removed users who do not have any purchases in the testing set. Table 5.3

shows the statistics of the final Amazon dataset.

During training, the training set is used to train the user profile model.

During testing, we generate a ranked list of images from the testing set for

each user based on his/her profile, and measure the image recommendation

performance. Our proposed model can be used for both in-matrix and out-matrix

recommendation tasks. As discussed in [132], in-matrix recommendation refers

to the case where the user has not rated an item but that item has been rated by at

least one other user; while out-matrix recommendation refers to the case where

none of the users have rated a particular item, i.e. the item has no rating records.

We conducted these two types of evaluation in our experiments.

Feature Extraction

Image Content Feature Extraction To remove background noise and to focus

on the clothing parts of images, we adopted the state-of-the-art Fast R-CNN [48]
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model on PASCAL VOC 2007 to detect person. We set the default detection

threshold as 0.8 [48] and selected the most probable box containing person

to crop images. We then deployed the 22-layer deep convolutional network

GoogLeNet [122], a top-performing entry of the ILSVRC-2014 classification

task, to extract 1, 024-D deep features for images on a NVIDIA Titian Z GPU

in the 64G memory machine.

Keyword Extraction Images on Pinterest have comments, descriptions and

source links. For image source web pages, we need to extract textual contents

that are relevant to an image while removing irrelevant information. There are

several places where relevant text may be found, namely, (a) external source url;

(b) page title; and (c) page description in the header of source html [43] that tend

to provide the most accurate description of the embedded image. Our keyword

set comes from two components. One is from Wikipedia clothing ontology.

Through conducting template mapping of associated texts to the concepts of

Wikipedia clothing ontology, useful concepts occurred in associated texts were

extracted. Another is from the frequently occuring unigrams and bigrams in

image associated texts. After conducting stemming and stopwords removing,

we selected NLTK [20] as chunk parsing tools to extract noun phrases and

selected the most frequent unigrams and bigrams from these extracted noun

phrases. Lastly, we obtained 2, 858 keywords for Pinterest and 1, 269 keywords

for Amazon separately.

Color Harmony Feature Extraction For color histograms based on color

harmony, we uniformly quantize the Hue value to determine 12 base colors

from Prang color wheel. For black and white colors, when saturation < 0.1

and value > 0.8, we get the “white” color and when value < 0.1, we always

get the “black” color [77].
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Comparison Methods

To investigate the effectiveness and the efficiency of the proposed approach on

image recommendation, we selected several recent representative methods for

comparison:

• Random(Rand): Candidate images are randomly selected from in-matrix

image set and out-matrix image set.

• Most Popular(MP): This method presents a non-personalized ranked

item list based on the popularity of items among all users.

• MBCF: This memory-based approach [7; 15] deploys an asymmetric

similarity measure between user-based collaborative filtering and item-

based collaborative filtering to mine users’ positive binary feedback for

recommendation.

• CLiMF: This method [108] presents a collaborative-filtering algorithm

able to directly maximize the mean reciprocal rank (MRR) of relevant

items instead of trying to predict ratings.

• CTR: This approach [132] combines the traditional collaborative filtering

with probabilistic topic modeling, that results in latent features for users

and items. Then, items are recommended by the similarity between the

user features and the item features.

• LCE: This method [107] exploits user-item matrix and item-feature

matrix from past user behaviors and items’ properties while enforces the

manifold structure exhibited by the collective embedding, that are the

learnt user and item features.

We denote our solution as EmLUCK. We are also interested in the effec-

tiveness of different components in our proposed model. In particular, we

compared the performance of incorporating image-keyword associations(K),

color harmony(C) and clothing ontology(O) separately. We hence conducted

experiments to comparatively validate the experimental settings as shown in

Table 5.4.
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Table 5.4: Proposed approach and its variants

Approaches
image-user image-keyword color clothing

matrix matrix harmony ontology
(U) (K) (C) (O)

EmLUCK-KCO X - - -
EmLUCK-CO X X - -
EmLUCK-KO X - X -
EmLUCK-C X X - X
EmLUCK X X X X

In our experiments, we compare our model with the comparing methods

on in-matrix image recommendation and out-matrix image recommendation

separately. As far as we know, except for Random, LCE and CTR, all the other

comparing methods are only able to conduct in-matrix image recommendation.

For all the baselines, we tuned their parameters involved based on the methods

provided in the respective papers and selected the best values.

Evaluation Metrics

In this work, we adopted three popular metrics of Recall@k, Precision@k and

Normalized Discounted Cumulative Gain (NDCG), to measure the effectiveness

of the proposed approach.

Given a set of recommended relations of a given type rec, and a set of known-

relevant products rel, the precision is defined as

precision = |rel ∩ rec|/|rec| (5.17)

i.e., the fraction of recommended items that are relevant. While recall is defined

as

recall = |rel ∩ rec|/|rel| (5.18)

The Precision@k and Recall@k is then the precision obtained given a fixed

budget, i.e., when |rec| = k.

Normalized Discounted Cumulative Gain (NDCG) measures the recommen-

dation performance of a recommendation system based on the graded relevance
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Table 5.5: Performance comparisons of variants of the proposed model for existing
image recommendation on Amazon and Pinterest datasets.

Methods
Amazon Pinterest

R@10 P@10 NDCG R@10 P@10 NDCG

EmLUCK-KCO 0.71% 0.19% 0.49% 0.31% 0.12% 0.23%
EmLUCK-KO 0.80% 0.24% 0.59% 0.38% 0.17% 0.29%
EmLUCK-CO 0.95% 0.27% 0.67% 0.43% 0.21% 0.31%
EmLUCK-C 0.98% 0.29% 0.71% 0.47% 0.24% 0.35%
EmLUCK 1.12% 0.31% 0.78% 0.55% 0.26% 0.43%

Table 5.6: Performance comparisons of variants of the proposed model for cold-start
image recommendation on Amazon and Pinterest datasets.

Methods
Amazon Pinterest

R@10 P@10 NDCG R@10 P@10 NDCG

EmLUCK-KCO 1.97% 2.11% 2.67% 0.72% 0.34% 0.61%
EmLUCK-KO 2.01% 2.22% 2.84% 0.73% 0.36% 0.65%
EmLUCK-CO 2.03% 2.35% 2.91% 0.72% 0.35% 0.63%
EmLUCK-C 2.02% 2.31% 2.92% 0.72% 0.35% 0.64%
EmLUCK 2.26% 2.51% 3.14% 0.75% 0.39% 0.67%

of the recommended entities.

NDCGk =
1

IDCGk
×

k∑
i=1

2ri−1

log2(i+ 1)
(5.19)

where IDCGk is the maximum possible(ideal) NDCGk and ri is the degree

of relevance of the image in position i. In our experiment, we deployed Re-

call@10(R@10), Precision@10(P@10) and NDCG@10(NDCG) as evaluation

metrics.

We have tried different configurations and finally set the batch size of mini-

SGD to be 10, 000. The final parameter settings we used are: α = 0.01, β =

0.001, γ = 0.01, λ = 1.0, learning rate lr = 0.0001, and latent dimension

l = 600. Besides, we empirically set ρ1 = 0.9 and ρ2 = 0.2 in Eq. 5.9 and

Eq. 5.10, respectively.

5.4.2 Effects of Components

Table 5.5 and Table 5.6 respectively present the results of in-matrix rec-

ommendation and out-matrix recommendation for different variants of our

proposed model on the Amazon and Pinterest datasets in terms of Recall@10,
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Precision@10 and NDCG@10. The tables shows that the more components

we incorporate, the better the performance can be achieved. This indicates

the comparatively complementary relationships instead of mutual conflicting

relationships among the different components in recommendation.

From Table 5.5, we noted that the performance improvements obtained

from different components are not the same. Interestingly, we noted that

EmLUCK-CO achieves a better performance as compared to EmLUCK-KCO,

which does not use ontology. This may be due to the existence of a

high proportion of image-keyword associations in the datasets and that most

keywords have good semantic meanings in the apparel domain and hence

the effects of noisy keywords are reduced. Therefore, the co-factorization of

image-keyword associations and image-user associations can help to improve

the performance. Second, the combination of image-user associations and

color harmony (EmLUCK-KO) has achieved 12.68% improvement in terms

of Recall@10 as compared to the single image-user association (EmLUCK-

KCO). This is a very promising result as it indicates that the color harmony can

bring in useful similar and dissimilar image pairs to improve the performance

of the proposed model. This can also be observed from the comparison

between method EmLUCK-C and EmLUCK. Third, EmLUCK-C improved the

performance by 9.30% as compared to EmLUCK-CO on Pinterest dataset while

only 3.16% on Amazon dataset. The result indicates the importance of ontology

and the relatedness between concepts, which is higher on Pinterest dataset. This

is because Pinterest has more text meta-data from images’ descriptions and

source links and these texts also have a higher ratio of clothing concepts as

compared to that in Amazon. Such a higher ratio of clothing concepts also

highlights the role of ontology and helps in achieving better performance.

Although we can also see that the combination of all components performs

the best in Table 5.6, however, as compared to Table 5.5, each component plays

comparatively less role in out-matrix image recommendation. This is attributed
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Table 5.7: Performance comparisons of baselines for existing image recommendation
on Amazon and Pinterest datasets.

Methods
Amazon Pinterest

R@10 P@10 NDCG R@10 P@10 NDCG

Rand 0.01% 0.01% 0.01% 0.004% 0.016% 0.012%
MP 0.64% 0.28% 0.24% 0.14% 0.26% 0.30%
MBCF 0.23% 0.15% 0.19% 0.09% 0.05% 0.10%
CLiMF 0.76% 0.23% 0.69% 0.17% 0.12% 0.19%
LCE 0.16% 0.11% 0.14% 0.07% 0.05% 0.08%
CTR 0.50% 0.23% 0.67% 0.21% 0.15% 0.24%
EmLUCK 1.12% 0.31% 0.78% 0.55% 0.26% 0.43%

Table 5.8: Performance comparisons of baselines for cold-start image recommendation
on Amazon and Pinterest datasets.

Methods
Amazon Pinterest

R@10 P@10 NDCG R@10 P@10 NDCG

Rand 0.05% 0.02% 0.02% 0.028% 0.091% 0.011%
LCE 0.48% 0.25% 0.32% 0.11% 0.07% 0.14%
CTR 1.16% 1.31% 1.54% 0.54% 0.30% 0.19%
EmLUCK 2.26% 2.51% 3.14% 0.75% 0.39% 0.67%

to the fact that cold-start images contain no associated texts, and have no pre-

computed similar/dissimilar images according to color harmony. However, we

can see that the absolute performance of out-matrix recommendation is higher

than that of in-matrix recommendation. This is misleading because the number

of relevant images in the dataset for the out-matrix cases is much lower than

that for the in-matrix cases and hence the chances of recommending the correct

images for each user is higher. Note that in our evaluation, we considered all

relevant images selected by all users during the testing phase to be relevant and

used that to evaluate a user’s actual selection. This evaluation is very strict and

tends to give very low value when the number of relevant images is very high.

5.4.3 Performance Comparisons with State-of-the-Art Ap-

proaches

We now compare the performance of our approach with the baselines as listed

in Section 5.4.1. Table 5.7 shows the comparative performance of in-matrix

recommendation; while Table 5.8 details that of the out-matrix recommendation
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on the two datasets. From the results, we can see that our approach shows

significant improvements as compared to the other baseline algorithms on

both in-matrix and out-matrix recommendation. First, the results show a

powerful capacity of EmLUCK on recommendation performance as compared

to other matrix factorization approaches i.e., MBCF and CLiMF. This is due to

EmLUCK’s ability to in handle data sparsity and the use of content features. It

is noted that the user-image associations are highly sparse and such sparsity

can affect the performance of different approaches. As can be seen from

Table 5.2 and Table 5.3, Pinterest is much sparser than the Amazon dataset.

As a result, we can see that MBCF and CLiMF have much lower performance

on Pinterest dataset as compared to Amazon dataset; whereas that for EmLUCK

are less but with much higher absolute performance. Besides, both MBCF and

CLiMF do not incorporate items’ contents which further limit their performance.

Second, when comparing to LCE and CTR, that consider only items’ contents,

EmLUCK also displays its superiority on image recommendation due to the use

of additional image-keyword associations. The co-factorization of image-user

associations and image-keyword associations could lead to better performance

as also can be seen from the performance of EmLUCK-CO as compared to

the other baselines. This result is consistent with the observation in [111] that

mixing information from multiple relations leads to better performance. Third,

we also observed that the use of two kinds of human prior knowledge, namely,

color harmony and clothing ontology, lead to improved performance. Finally,

our experiments found that the simple approach MP shows a comparatively good

performance as compared to other baselines. One explanation could be that

many commercial sites conduct recommendation to users based partially on the

popularity of products.
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Amazon
jewelry sunglasses watches bras pants
silver glass watch bra pant

jewelry stone sunglass movement cup tight
sterling frame date breast coverage leg

sparkle gift eye wrist shape stretch hip
shine len bezel cup size thigh

diamond earring sun invicta band woman jean
delicate shade swiss sexy cut

tiny protection citizen seiko hook denim
earring nose great watch sports bra fitting length

affordable cloth quartz cleavage low waist
Pinterest

dress bags street style shoes makeup
wedding dress handbag summer street heel nail design

dress bag chanel street fashion sandal eye makeup
wedding gown bucket outfit naked nail art

sleeveless clutch casual style perfect shoes wedding hairstyle
sheath dress handbag style trend zipper haircut inspiration

pink kor bag spring flat sandal lips makeup
party leather bag fashion week pump Necklace
red lv fashion ankle strap eyeshadow

woman dress shoulder fall outfit lattice haircolor
maxi messenger street chic louboutin pink lips

Table 5.9: Top ten keywords from selected topics discovered in Amazon and Pinterest.
Each column is labeled with an “interpretation” of that topic.
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5.4.4 Extension Study

Interestingly, our model is able to learn the latent vectors of keywords. We

conduct topic detections in Amazon and Pinterest separately by clustering

the learnt topics. Some of the topics discovered by our model are shown in

Table 5.9. For example, our model has the ability to detect some brands such

as “seiko” and “swiss” of “watches”. This result is consistent with previous

study [83] on topic modeling. This demonstrates that the proposed model not

only can learn the latent space of users and images for recommendation, but also

latent topics in semantic space.

In addition to topic modeling, our model can be used in different applications

such as friend recommendation and community detection by measuring the

similarity among users. Moreover, by clustering the learnt embedding of users,

images and contents, a comprehensive user profile can be constructed from a

latent-based and interpretable way as shown in Figure 5.1. What’s more, the

feature obtained from color harmony of visual Art plays an important role in

our recommendation task. Such feature can be seen as a new kind of feature to

measure the similarity between different pieces of clothing. It is reasonable that

many users may like certain specific combinations of colorful clothes. Since

traditional approaches only consider the content similarity without matchable

measurement, such an approach would help to identify more meaningful pieces

of clothes as shown in Figure 5.3.

It is worth noting that the incorporation of prior knowledge is not restricted to

apparel domain. Such knowledge-guided embedding approach with heteroge-

nous networks of users and contents can be generalized to other domains if the

corresponding domain knowledge exist.
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5.5 Summary

Recommendation has become an important element in almost all kinds of online

commercial sites. The distinct characteristics of social media such as diverse

multimedia contents and sparse user-item associations present new challenges

for recommendation in social media. Driven by the desire to obtain semantic

and efficient user profiles, in this paper, we emphasized the heterogenous

information of users and contents to learn a latent space. Additionally, we

utilized two kinds of human prior knowledge, namely, color harmony and

clothing ontology, to guide the representation learning. Experimental results

on two real-world datasets demonstrate the importance of color harmony and

heterogenous user-content connections. Based on the learnt embedding, we can

easily infer the semantic and visual aspects of users’ interests, leading to many

applications such as advertisement targeting and commercial recommendation.

Moreover, the learnt embedding of users, images and texts are also useful in

different applications such as topic detection and community detection.

106



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis focuses on the task of user profiling based on rich media interactions

in OSNs. Considering that user profiling can be inferred from the rich

media content analysis, this thesis proposed two approaches: user profiling by

knowledge-based multi-task learning, and user profiling by deep learning of

user-media interactions, respectively. Moreover, this thesis practically applied

the proposed approaches to personalized recommendation.

The first approach performs the knowledge-based multi-task learning to

enhance media understanding by exploiting the intuition that sibling nodes

share common visual attributes in a hierarchical ontology while are exclusive

in the fine-grained detailed visual information. The proposed approach is able

to automatically construct profile ontology and then jointly learn features of a

node concept and its siblings. To improve the profiling results, it also proposed

a low-rank recovery framework to further refine the generated user profiles

by the ontological profile models, exploiting the rich user-level, bundle-level

and content-level social relations offered by social curation. The experimental

results enable us to draw the following conclusions. First, the rich media content

analysis does improve the user profiling performance. This demonstrates that for
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multimedia-based OSNs, it is essential to incorporate user-media interactions

aside from purely textual information. Second, utilizing knowledge to guide

the media feature learning arguments the performance of user profiling. This

demonstrates that human knowledge can improve the performance of state-of-

the-art media understanding approaches. Third, the rich social connections, as

one kind of social collective intelligence in OSNs, can help to boost the user

profiling performance.

The second approach performs deep learning of user-media interactions to

mine the rich user-media connections to enhance feature learning of media

and users simultaneously. The proposed approach breaks a large and sparse

network topology into a tree-structured deep hierarchy, where the leafs are

users and images. The model can compactly and efficiently learn representative

features to reveal the weak correlations between images and users at the scene

of the extremely sparse connections and extremely diverse images due to its

deep structure. Specifically, we made use of the specific observation in social

media that the connections between users and contents are very sparse and

then introduced a synchronization optimization algorithm to ensure a fast and

accurate learning process. The learnt representative low-dimensional vectors

of users and images can be directly applied to many applications such as

personalized recommendation and community detection. The experimental

results show that as compared with state-of-the-art content-based user profiling

or collaborative filtering user profiling approaches, jointly analyzing image

contents and social curation network topology can boost the performance of

image understanding and user profiling significantly.

The third approach performs a matrix co-factorization on the heterogenous

networks of contents and users, guided by the human prior knowledge. Specif-

ically, it is able to map users and the multimedia contents they shared into

a compact common space. Consequently, the recommendation of images to

users can be conducted by directly measuring the similarity between users
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and images; and friend recommendation can also be done in a similar way.

Moreover, by measuring the similarity between users and texts, a semantic-

based user profile can also be constructed. The experimental results show that

as compared with state-of-the-art recommendation approaches, collaboratively

learning features for images, users and texts in the heterogenous network can

improve the performance for user profiling and recommendation significantly.

Besides, domain knowledge such as clothing ontology and color harmony can

help to guide the feature learning in the above process.

6.2 Future Directions

There are a few interesting extensions towards more accurate and comprehen-

sive multimedia user profiling in social media.

First, in the current work, we have not considered integrating the domain

knowledge directly into the rich media feature extraction. This could advance

the performance of feature learning in different multimedia applications. Note

that this is challenging since different domains have their own intrinsic knowl-

edge. Furthermore, with the diverse characteristics of different domains, how

to develop a user profiling approach that performs universally well in all image

domains is also quite challenging.

Second, user preferences are often time-sensitive. For example, the emer-

gence of new products or services often changes the focus of customers. Related

to this are seasonal changes, or specific holidays, which lead to characteristic

shopping patterns. Due to various reasons, users’ interest often change suddenly

or smoothly. This process is highly complex, since for different customers,

different types of concept drifts may exist and each concept drift may occur at

a distinct time frame and is driven towards a different direction [67]. Therefore,

it is essential to find an alternative way to learn user preferences by taking

into account the temporal information. In the future, it would be a quite
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interesting direction to combine the temporal sequential information with rich

media analysis to extract user interests.

Third, in the era of Web 2.0, users are often active in a number of social

networks for different purposes. For example, users may connect with their

business partners via LinkedIn while they may connect with their family

members and friends in Facebook to update their personal experience. It could

be an interesting research direction to develop strategies to bring the multimedia

contents distributed in different social networks towards more comprehensive

and accurate user profiling for many personalized services.

This thesis focuses more on the effective multimedia user profiles in OSNs

and hence the proposed approaches have limitations on text-based sites such

as Twitter. As this thesis aims to address the issue of the fundamental task

of personalization, i.e., user profiling, we believe that our approaches are not

limited to image recommendation, but can be applied to other applications

such as community detection, image annotation and topic detection. Moreover,

even though this work is carried out based on the recommendation in Pinterest,

we believe that our proposed methods can be robustly extended to other

multimedia-based OSNs.
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[14] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain. Neural

probabilistic language models. In Innovations in Machine Learning. Springer,

2006.

[15] D. Bernardes, M. Diaby, R. Fournier, F. FogelmanSoulié, and E. Viennet.
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