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ABSTRACT

Due to the surging volume of Big Data, data-driven approaches are playing an

ever-increasing role in nowadays knowledge discoveries and decision makings.

Though cheap raw data from various sources are produced everywhere, most

of them cannot be directly used as training data and benefit analytics tasks.

This is mainly because the size of raw data is usually too large to be directly

processed, and the informative value in raw data is not as high as that col-

lected from deliberately designed experiments. To fulfill the use of Big Data,

there is an increasing need to establish an infrastructure for training data man-

agement, transforming raw data to processable informative data, by leveraging

both human effort and computational resources.

In this thesis, we aim to develop effective and efficient solutions to trans-

form the Big Data into a processable and informative form. Two challenging

problems are discussed and addressed. The first challenge is to increase the

information value in Big Data, mainly by acquiring extra supervised infor-

mation from data annotation. We propose a preference quantified model to

annotate complex tasks where the supervised information is difficult to be rep-

resent by simple labels, and adapt an active learning approach to reduce the

cost of human efforts. To further reduce the cost of data annotation by us-

ing crowdsourcing, we develop a cost-sensitive method for crowdsourced data

quality management. The second challenge is to squeeze and reorganize the

data to a processable form without losing much information inside the original

data, which typically includes representing, compressing, indexing and sam-

pling the data to increase the computational efficiency. We propose a hashing

ix



CONTENTS

method to transform the training data into better compact representation, while

preserving both internal information in each instances and external relations

among those instances. Moreover, we index the data which are usually high-

dimensional to support similarity queries based on the distance independent

k-nearest neighbor measure. Finally, we study the effect of data sampling pat-

tern on the efficiency of analytics model training, aiming to provide the most

informative data in a processable size to the analytics model to speed up the

model training procedure.
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CHAPTER 1

INTRODUCTION

1.1 Big Data Analytics

With the rapid growth of the Internet and production informatization, in every-

day life, terabytes or even petabytes of data are generated from Internet users,

collected from sensors or recorded in digital logs. In general, the quantity of

data influences the quality of data-driven analytics. Decisions that are pre-

viously based on experiences or deliberately designed models, would be made

based on the study of data itself. The prevalence of complex analytics mod-

els are growing at a fast rate, ranging from million-dimensional linear models

to complex models like Deep Neural Networks or topic models. These models

are playing increasingly important roles in various application domains such as

healthcare, advertising, education and consulting. Through better analysis of

the massive volumes of data that are becoming available, we increase the po-

tential for making faster scientific advances, expediting enterprise development

and conferring social benefits.

While the promise of Big Data is coming real, there is still an unnegligible

gap between its potential and usability in practice. Big Data itself is not cheap

to acquire and process. First, though cheap raw data from various sources are

produced everywhere, without supervised information much of them are of no

value. So as human cannot learn a new language without a dictionary, ma-

chine cannot decipher information in Big Data without labeled data as corpus.

1
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Figure 1.1: Thesis Focus: From Raw Data to Processable Informative Data

However, the acquisition of supervised information requires human annotation,

resulting in a costlier exploitation of data. Second, Big Data also raises the com-

putational complexity of data processing. Due to the increasing volume of Big

Data, analytics models usually cannot afford to process all the data together.

As a result, individual data instances are selected, located and processed at

each time. Finding such needles from the Big Data haystack is imposing great

challenges to the data processing technology. To summarize, simply developing

more and more sophisticated analytics models is not sufficient to fully realize

the potential of Big Data. Just as making bricks without straw is impossible,

managing the training data properly is the prerequisite of the development of

analytics models. Thereby, to support those analytics models at affordable cost,

there is an increasing need to establish a cost-sensitive infrastructure for train-

ing data management, which prepares informative training data with human

annotation and is able to quickly respond to various data access operations.

Figure 1.1 describes the pipeline of typical big data analytics. Though af-

ter the data integration and data cleaning stage we do acquire lots of cleaned

structured data, such kind of data is still far from the expectation from an-

alytics models, where the data should be informative and processable. For

instances, the data may lack supervised information, live in inadequate format

for analytics, need to be storage efficiently and build inter-instance relations,

and valuable data instances may be hided by massive trite data. Therefore, we

aim to conduct a systematic study of the training data management infrastruc-

ture for data transformation, from structured but still raw data to processable

2



CHAPTER 1. INTRODUCTION

informative data, by leveraging affordable human effort and computational re-

sources. The main focus of this thesis is to build a prototype of training data

management system and address the main challenges during its realization.

1.2 Research Challenges in Training Data Man-

agement

Generally, to get processable informative data, there are two main tasks in the

training data management. One is to increase the information value in the

data, mainly by obtaining extra supervised information from data annotation.

The other one is to compress and reorganize the data to a processable form

without losing much information inside the original data, which typically in-

cludes representing, compressing, indexing and sampling the data to increase

the computational efficiency. Among these two tasks, two costs are entailed,

namely human effort and computational resources. The main research chal-

lenge is to reduce the cost to complete the training data management tasks to

an affordable level.

1.2.1 Cost-sensitive Human Annotation

To reduce the cost involved in human annotation, voluminous research works

have been conducted. In general, there are mainly two categories of methods.

One is active learning, which aims to only annotate those important data in-

stances and thereby the total number of annotated data required by the model

to reach a certain performance level is significantly reduced. The other category

of methods is crowdsourcing, which aims to reduce the cost per annotated data

instance by getting the annotated data from the crowd rather than employed

experts. These two categories of methods emphasize on different aspects, and

are orthogonal to each other. In fact, the combination of them is a natural

trend in the era of Big Data – using active learning to select the data to be

annotated, and crowdsourcing the annotation task. However, in current status

these two methods have limitations in real applications.

First, from the view of active learning, the supervised information in some

complex Big Data analytics tasks may be hard to be quantified by human. Most

easy annotating tasks can usually be well recognized by simply using machine

3
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efforts. The required tasks for human annotation are usually complex jobs such

as describing a look or an emotion,, which often involve relative comparison or

deep understanding. The results of such tasks usually can only be represented

in the forms of ranking or relatively comparison among examples rather than

a quantified label for every example. All these categories of supervised infor-

mation can hardly be transformed to quantified labeled data and integrated to

the existing active learning framework.

Second, the quality of crowdsourcing results is far from that of data labeled

by domain experts. Naturally, human workers in crowdsourcing solve problems

based on their knowledge, experience and perception, and may fail to give

correct answers to complex problems. However, most analytics models are

not robust to contaminated data, and hence directly using crowdsourced result

is inadequate. It is still not clear how to detect and manage the quality of

crowdsourced data and fuse them to get trustable results for further use or

exploitation in Big Data analytics.

1.2.2 Computational Efficient Data Processing

There are also lots of works focusing on making the training data to be more pro-

cessable, and hence reduce the computational cost during training data process-

ing. The most common data structure in Big Data analytics is high-dimensional

numerical data. Most other forms of data are transformed to high-dimensional

numerical (or its simplest form – binary) data or its sparse representation for

storage and model learning. Training data needs to be stored, indexed and

automatically sampled to a processable form to support various data access

operations from analytics model efficiently.

The storage of training data usually involves data representation, for the

purpose of reducing data volume and selecting the most valuable features for

analytics tasks. Hashing and compressing are two of the most popular schemes

for data representation. Most existing methods focus on preserving internal

information inside each high-dimensional data. However, there exist relations

among data instances, which form a manifold space where the data instances

reside. Such information is reflected in the similarity relations, and is valu-

able for data clustering, data sampling, casual discovery and various analytics

models. Therefore, during data representation, not only the internal informa-
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tion inside each data instance, but also the external similarity relations among

instances, are needed to be preserved.

The index of training data is also critical to support similarity search queries,

where we are confronting the curse of dimensionality. Most of the access meth-

ods in the multi-dimensional space demonstrate poor performance when the

number of dimensions is high. Locality Sensitive Hashing (LSH) and its vari-

ants, are generally believed to be the most effective search methods in high-

dimensional spaces. However, LSH is designed to find points within a specified

radius (i.e., to perform a radius search). In many cases, we are more interested

in the relative similarity measure, i.e., the k-nearest neighbor relations, while

the density of data at different locations may differ greatly and there is no

specific fixed radius which can reflect such similarity relations. In short, there

is still a gap between efficient k-NN search and the fixed radius search.

Moreover, most popular algorithms for model training are performed itera-

tively. Due to the humongous volume of the data, we typically can only process

a fraction of the training data in each iteration because of the computational

cost and the memory/cache usage. Therefore, sampling is also a critical op-

eration that needs to be carefully designed in training data processing. The

principle of sampling is to reflect the reality of the data without any bias, and

expand the coverage and deliver more valuable samples. Currently, data are

either uniformly sampled or sequentially accessed. However, it is still unknown

how the data access pattern can affect model training.

1.3 Thesis Objectives and Contributions

To address all the challenges described in the previous subsection, it is im-

portant to conduct a comprehensive study on the cost-sensitive strategies of

managing and transforming training data. In order to reduce the cost to sup-

port various analytics applications, there are five main issues to be addressed:

• Adapt the active learning based label selection methods to the scenario

where supervised information is difficult to be directly quantified, and design

interactive methods for more complex label format.

• Measure the quality of crowdsourced results, and design a cost-sensitive

method to make the right trade-off between the quality of result and the

expenses for human efforts.
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• Transform the training data into better compact representation, while pre-

serving both internal information in each instances and external relations

among those instances.

• Index high-dimensional data to support similarity queries based on the dis-

tance independent k-nearest neighbor measure.

• Study the effect of data sampling pattern on the efficiency of analytics model

training, and design suitable sampling operator to process the training data

during model learning.

This thesis aims to solve the above five challenging issues in training data

management. The main contributions of this thesis will be presented in the

following subsections.

1.3.1 Preference Quantified Active Learning for Com-

plex Human Annotation

The supervised information in some complex Big Data analytics tasks may

be hard to be quantified via simply labeling. The typical required tasks for

human annotation are usually complex jobs such as describing beautifulness or

emotion, which may require relative comparison or deep understanding. The

results collected from such tasks are usually in forms of rank or similarity

comparison among examples rather than a quantified label for every example.

All these categories of supervised information can hardly be transformed into

quantified labeled data and integrated to the existing active learning framework.

We quantify these categories of information as a relative preference (i.e. a

latent preference vector) learned by only pairwise comparisons on a set of enti-

ties with multiple attributes. We formalize the problem into two subproblems,

namely preference estimation and comparison selection. We propose a novel

approach to estimate the preference and introduce a binary search strategy

to adaptively select the comparisons. We integrate these components into a

system for inferring the preference using adaptive pairwise comparisons. The

experiments on user preference demonstrate that our adaptive system signifi-

cantly outperforms the naive random selection system on both real data and

synthetic data.
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1.3.2 Online Bayesian Model for Crowdsourcing Quality

Management

Crowdsourcing has provided a means for solving many challenging problems

by leveraging human intelligence. For example, applications such as image

tagging, natural language processing, and semantic-based information retrieval

can exploit crowd-based human computation to supplement existing computa-

tional algorithms. Since human workers in crowdsourcing solve problems based

on their knowledge, experience, and perception, it is not clear which problems

can be better solved by crowdsourcing than solving solely using traditional

machine-based methods. In order to apply crowdsourcing as the data annota-

tion methods and leverage crowdsourced results to generate more informative

data, there is a great demand for measuring the quality of crowdsourced results,

and designing a cost-sensitive method to make the right trade-off between the

quality of result and the expenses for human efforts.

We design and implement a cost-sensitive method for crowdsourcing. We

dynamically estimate the profit of the crowdsourcing job so that those ques-

tions with no future profit from crowdsourcing can be terminated. Two models

are proposed to estimate the profit of crowdsourcing job, namely the linear

value model and the generalized non-linear model. Based on these models, the

expected profit of obtaining new answers for a specific question is computed

based on the answers already received. A question is terminated in real time

if the marginal expected profit of obtaining more answers is not positive. We

extend the method to publish questions in a batch manner. We evaluate the

effectiveness of our proposed method using two real world jobs on the Amazon

Mechanical Turk (AMT) crowdsourcing platform. The experimental results

show that our proposed method outperforms all the state-of-art methods.

1.3.3 Similarity Preserved Hashing for Data Represen-

tation

To reduce the data volume and selecting most important features, training data

are usually represented by hash or quantization codes. Most existing methods

focus on preserving internal information inside each high-dimensional data.

However, the similarity relations between data instances also play an important

role in lots of analytics tasks such as data clustering, data sampling, casual
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discovery and etc. Therefore, during data representation, similarity relations

are expected to be preserved, and similarity search in the data representation

should be accurate and efficient.

Locality Sensitive Hashing (LSH) has been widely accepted as an effective

hash method for high-dimensional similarity search. However, data are typically

not distributed uniformly over the space, and as a result, the buckets of LSH are

unbalanced, causing the performance of LSH to degrade. We propose a new and

efficient method called Data Sensitive Hashing (DSH) to address this drawback.

DSH improves the hashing functions and hashing family by creating a set of

hash codes via boosting. DSH leverages data distributions and is capable of

directly preserving the nearest neighbor relations. We provide the theoretical

guarantee of DSH, and demonstrate its efficiency experimentally.

1.3.4 Distance Independent Approach for Similarity In-

dex

Many applications involve locating the k nearest neighbors (k-NN) of a given

query point in a multi-dimensional space. The k-NN distance of different query

points may differ greatly, especially in skewed datasets, which may lead to poor

performance for LSH. Several learning-based methods are proposed to improve

the performance of LSH by leveraging the knowledge of data distribution in the

whole dataset. However, since the k-NN distance of a certain point is a local

feature, the benefit of optimizing global hashing function is limited. In short,

there is still a gap between efficient k-NN search and fixed radius search.

To close this gap, we propose a novel indexing scheme called Selective Hash-

ing. In selective hashing, we aim to find the best index structure for each data

point locally. The main idea is to create a disjoint set of indices with different

granularities, and to store each point only in the most effective index. Intu-

itively, the index of each point is selected based on its local density, and the

search range of query is automatically tuned based on its k-NN distance. The-

oretically, we show that k-NN search using selective hashing can achieve the

same quality as a fixed radius LSH search, using a radius equal to the distance

of the c1kth nearest neighbor, with at most c2 times overhead, where c1 and c2

are small constants. Selective hashing is also easy to build and update, and

outperforms all the state-of-the-art algorithms.
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1.3.5 Learning-value based Sampling for Effective Data

Access

Recent years have witnessed amazing outcomes from “Big Models” trained

using “Big Data”. Most model trainings are performed iteratively. Due to

the huge volume of data, we usually can only afford to process a fraction of

the training data in each iteration. Typically, the data are either uniformly

sampled or sequentially accessed.

As in other data processing problems, data access pattern affects model

training. Therefore, based on the stochastic gradient descent (SGD) frame-

work, we propose a novel approach called ActiveSampler, where training

data with more “learning value” to the model are sampled more frequently.

The goal is to focus training effort on valuable instances near the classification

boundaries, rather than evident cases, noisy data or outliers. We formalize

the information gain of each training instance and develop a light-weight vec-

torized algorithm to accelerate the training process. Extensive experimental

evaluations demonstrate that ActiveSampler can speed up the training pro-

cedure of SVM, feature selection and deep learning by 1.8-2.3x, for comparable

training quality.

1.4 Synopsis

The remainder of this thesis is organized as follows. In Chapter 2, we first re-

view existing techniques that are related to training data management. Then we

present our approach about preference quantified active learning for complex

human annotation task in Chapter 3, and online Bayesian model for crowd-

sourcing quality management task in Chapter 4. Chapter 5 and Chapter 6 dis-

cuss the data representation and similarity indexing. In Chapter 7, we study

the effect of data access pattern to the efficiency of analytics model training.

Finally, we conclude this thesis in Chapter 8.
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CHAPTER 2

LITERATURE REVIEW

Various techniques have been proposed to address the challenges in training

data management. In this chapter, we review the techniques that are closely

related to this thesis. In particular, we first introduce the existing methods

in cost-sensitive human annotation: data annotation for complex tasks and

quality management for crowdsourcing are specific discussed under this theme.

We then report the advances in computational efficient data processing: hashing

methods to preserve similarity relations, indexing methods for similarity search

and sampling methods for model training are specific discussed.

2.1 Data Annotation for Complex Tasks

The supervised information in some complex Big Data analytics tasks may

be hard to be quantified via simply labeling. We quantify these categories of

information as a relative preference (i.e. a latent preference vector) learned by

only pairwise comparisons on a set of entities with multiple attributes. In this

subsection, we review the literatures about annotating a preference vector.

Preference quantified data annotation is closely related to the general con-

cept of active learning [91] in the machine learning community, where train-

ing points are actively selected by the training algorithm. The key idea of

active learning is that learning algorithms can achieve greater accuracy with

fewer training labels if it can choose the data from which it learns. The gen-
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eral solutions of active learning include reducing the uncertainty in training

model [57], differentiating hypotheses which are consistent with the current

learning set [94, 73, 103] (i.e. Query-By-Committee), maximizing the expected

model change after receiving a new sample [93], minimizing the expectation [84]

or variance [20] of the empirical loss, maximizing the information density among

the whole query space [93] and etc.

Compare with active learning, preference ranking also asks comparisons

as training instances. Most of the solutions in active learning area can be

adapted into preference ranking. However, their training targets are differ-

ent. Most active learning algorithms focus on detecting the exact border (i.e.

hyperplane/hyper-surface) for classification purpose, while preference ranking

aiming to find the most sensitive direction (i.e. a vector) for a user. In this

thesis, we mainly focus on adapting the query-by-committee framework in ac-

tive learning to solve the preference ranking problem. There is also a large

amount of literature on learning to rank, which trains statistical models for

ranking tasks [59, 58]. Recent approaches for learning to rank with pairwise

comparisons include Active Ranking [45, 118, 29], RankNet [14], IR SVM [16]

and LambdaRank [15]. Active Ranking also models the entities as vectors in

R
d, but the ranking is defined on the relative difference between these enti-

ties and a common reference point in R
d. In contrast, preference quantified

data annotation is learned by examining the comparison vector and pruning

the possible preference hyperplane. In addition, active ranking only considers

ambiguous comparisons and proposes an approach to learn the ranking from

these comparisons. However, the work neither guarantees the quality of the

selected comparison nor illustrates how to select them. Using active learning

to annotate preference vector, we need to design specific algorithms to select

the next comparison that is guaranteed to cut the remaining sphere as equally

as possible.

Collaborative filtering [100] is also popular for learning preference, espe-

cially user preferences. Collaborative filtering assumes that similar users have

similar preferences and similar items have similar ratings [100]. It can thus

use other similar users’ preferences to estimate a given user’s preference, or use

the ratings of the observed items to predict the unobserved ratings. Specifi-

cally, several algorithms were proposed to predict items preferred by individual

users with a set of pairwise comparisons. Preference quantified data annota-
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tion assumes no prior knowledge from other users, as the preference here is only

a general abstraction for those features that can be learned via comparisons.

Therefore, the usage of collaborative filtering methods on preference quantified

data annotation is limited.

There is also a recent trend for crowdsourced ranking [19, 116, 74, 101].

However, most of them focus on learning a single ranking function across the

population, while preference quantified data annotation assumes different pref-

erences among individuals. Yi et al. studies crowdsourced ranking where a

different ranking list is learnt for an individual user [116]. However, it assumes

no explicit feature representation of items with a small number of underlying

intrinsic ranking functions. Preference quantified data annotation should also

leverage crowdsourcing to complete comparison tasks, and the quality of crowd-

sourced data should be managed by crowdsourcing component in this thesis.

2.2 Quality Management for Crowdsourcing

Crowdsourcing has been widely used to solve challenging problems by human

intelligence in comprehensive areas. In crowdsourcing systems, complex and

difficult problems are partitioned to simple tasks. These tasks are assigned to

several workers. The crowdsourcing system collects and integrates the answers

from the workers as the results of the crowdsourcing jobs. Kitter et al. [52]

studied the user behaviour in micro-task markets to show that user performs

different behaviours.

Recently, crowdsourcing has been adopted and applied in several research

areas such as database researches, machine learning and information retrieval.

CrowdDB [26, 27], Qurk [68, 69] and TurkDB [78] designed three databases

that are incorporated with crowdsourcing systems. These three databases al-

low queries to be partially answered through the AMT system. Selke et al.

[90] expanded database schemas with additional attributes through querying

the crowdsourcing systems. CrowdER [106] applied crowdsourcing to find the

matching entities. CDAS [64] proposed a quality-sensitive answering model to

manage the crowdsourcing tasks. In [64], a quality sensitive answering model

for CDAS is proposed to manage the crowdsourcing tasks. In [82], Raykar et al.

discussed the method of applying crowdsourcing in supervised learning without

absolute golden standard. In [33], Guo et al. proposed a method to find the
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maximum element in a crowdsourcing database. Alonso et al. [2] developed

a crowdsourcing based relevance evaluation method for information retrieval

while Kazai et al. [50] proposed a crowdsourcing based book search evaluation

method. Ipeirotis et al. [43] designed an approach to rank the workers by

quality. Welinder et al. [112] proposed a crowdsourcing based online algorithm

to find the ground truth. Crowdsourcing techniques has also been applied on

other database based applications, such as graph search [79].

CrowdScreen [80] is designed to improve the accuracy and reduce the cost

of binary choice problems in crowdsourcing systems by using a probabilistic

method. Three facts limit the usability of CrowdScreen in real crowdsourc-

ing data quality management: (1) the actual profit of the crowdsourcing job

should be affected by three factors, namely the value of the questions, the risk

of obtaining an incorrect answer and the cost of assigning questions to workers;

the profit can be a linear or non-linear function given the accuracy of result;

(2) different questions can different difficulties; the accuracy of each individual

answer of a question is actually a random variable instead of a fixed value; (3)

the quality management algorithm should be robust to the given crowdsourc-

ing tasks and give accurate estimation of the quality of results in any cases.

Therefore, there is a critical demand to build a quality management strategy

for crowdsourcing to address the above issues.

2.3 Hashing Methods to Preserve Similarity

Relations

There are lots of data representation [62, 85, 8, 76, 36] methods that focus on

optimizing the hashing function to give a short but informative quantification

for each data point. However, most existing methods only focus on preserving

internal information inside each high-dimensional data. During data represen-

tation, similarity relations are expected to be preserved, and similarity search

in the data representation should be accurate and efficient. Locality Sensitive

Hashing [32, 21] (LSH) has been widely accepted as an effective hash method

to preserve similarity relations in high-dimensional space. Here we review the

LSH detailedly and analyze its insights and limitations.

LSH is an efficient approximate hashing method to preserve similarity rela-
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tions in high-dimensional space. It is efficient and provides a rigorous quality

guarantee for using the hash code to find similar points within a distance r.

LSH leverages a family of functions where each function hashes the points in

such a way that the possibility of collision is higher for similar points than for

dissimilar points. Formally, an LSH family can be defined as follows [21]:

Definition 2.1. (LSH Family, H) A family H = {h : Rd → U} of functions
is called (r, cr, p1, p2)-sensitive if for any p, q ∈ Rd

• if p ∈ B(q, r), then PrH(h(p) = h(q)) ≥ p1;

• if p /∈ B(q, cr), then PrH(h(p) = h(q)) ≤ p2;

The family of hash functions are generated through the use of random pro-

jections – the intuition is that points that are nearby in the space will also be

nearby in all projections. While two distance points can also be close in all

projections, the possibility is extremely small if enough number of projections

is taken. Usually, the difference between p1 and p2 is not enough to be used

directly. To enlarge the difference, a concatenation of LSH functions is applied

to generate a hash key for each point in Rd.

Definition 2.2. (Concatenation LSH Functions, G) A set of concatenation

LSH functions G = {g : Rd → Um}. Each gi ∈ G consists of a sequence of m

hash functions randomly extracted from H. Formally,

gi(p) = (hi1(p), ..., him(p)),

where m is the number of hash functions in each concatenation and hi1 , ..., him

are randomly selected from the LSH Family H.

LSH applies these concatenation LSH functions to construct the hash tables.

As a result,

• ∀p ∈ B(q, r), Pr(g(p) = g(q)) ≥ pm1

• ∀p ∈ RdnB(q, cr), Pr(g(p) = g(q)) ≤ pm2

Further, the expected number of points in O that collide with q but are

outside the ball B(q, cr) is less than pm2 ∗ |O|. However, the recall for one hash
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table, pm1 , is not large. To raise the overall recall, LSH typically applies l con-

catenation LSH functions and constructs l hash tables. Each concatenation

LSH function randomly chooses m functions in H. When the number of func-

tions in H is large enough, the hash results of different concatenation functions

can be regarded as independent. Thus, for any o ∈ B(q, r), the possibility that

o collides with q in at least one hash table is at least 1 − (1 − pm1 )l, which is

very close to 1. To summarize, LSH answers c-approximate r-NN problem as

follows:

1. Pre-processing: LSH maintains l hash tables, and each hash table is

attached with a concatenation hash function. Each hash table applies its

concatenation hash function to hash the points in O, where each concate-

nation hash function consists of m hash functions randomly selected from

the hashing family H;

2. Query processing: Given a query object q, LSH finds c-approximate r-

NN by examining points that collide with q in each of the l hash tables. In

particular, the expected number of objects outside the B(q, cr) is limited

by l ∗ pm2 ∗ |O|. This property guarantees its query efficiency.

While LSH has been shown to be very effective and with good theoretical

guarantee in preserving similarity relations high-dimensional space, using LSH

as the hashing methods to preserve K-NN relations, however, is not suitable.

We should note that the similarity relation defined in LSH is related to a spec-

ified radius r, and an approximation allowance factor c. For a k-NN relation,

the corresponding radius for different query points may vary by orders of mag-

nitude. In such a case, LSH has to either (i) be run repeatedly with different

values of r, cr,c2r ... which leads to substantial increase in the query time and

index storage cost, or (ii) use an ad-hoc r which leads to low quality guarantee.

Further, LSH implicitly splits the whole space into lattices so that points in the

same lattice cells are hashed into the same bucket. As a result, for real data dis-

tributions that are non-uniform, the hashing results are often unbalanced. We

find that an unbalanced hashing leads to performance degradation of LSH. The

reasons are two-fold. First, for the case that the number of points in one bucket

is too small, LSH cannot find c-approximate r-NN and a further examination

on a larger r is required; second, for the case that too many points collide in

one bucket, LSH needs to examine each of these and so its performance suffers.

16



CHAPTER 2. LITERATURE REVIEW

To preserve K-NN relations in the hashing codes, the requirements in the

definition of LSH Family should be modified to reflect K-NN relations rather

than a fixed radius. the definition of the hashing family and how it should be

realized, remains a research gap.

2.4 Indexing Methods for Similarity Search

There is extensive work on high-dimensional indexes for k-NN queries, and there

are surveys [18, 37] that provide good literature on the indexes. Access methods

based on R-tree [34], K-d tree [9], and SR-tree [49] work nicely when the

number of dimensions does not exceed 10 [110]. iDistance [117, 44] based onB+-

tree shows its superior performance when the number of dimensions does not

exceed 30. However, they all suffer from the so-called curse of dimensionality

and are eventually outperformed by a simple sequential scan when the number

of dimensions is high. VA-file [110] designs an approximation-based indexing

data structure and applies it to compress the input dataset. Based on this

index, VA-file can answer k-NN queries by reducing the I/O cost to 1/8 to

1/4 time smaller than the input file. However, the computation cost of VA-file

still grows linearly with the cardinality of the dataset since it is imperative to

compute the distance between the approximation of each point and that of the

query point. A more detailed survey about finding exact k-NN can be found

in [18, 37]. To the best of our knowledge, the cost for existing approaches to

finding exact k-NN grows at least linearly with the cardinality of the dataset

when the number of dimensions is high.

Since we are concerned with a specific well known indexing mechanism,

namely LSH, we focus on work related to it (the comparison among LSH-based

indexes and other indexes, such as iDistance [117], can be found in [102]).

Approximate k-NN provides approximate answers with acceptable error while

constraining the growth of the cost sub-linearly with respect to the cardinal-

ity of the dataset. Locality sensitive hashing (LSH) methods [32, 21] are the

best known approaches for approximate nearest neighbor search. The Bayesian

LSH [86] improve the performance of LSH by using some novel query strate-

gies. There are also lots of methods [66, 48, 77, 46] focusing on exploiting

more buckets in a table to search far away k-NNs. However, radius is the

decisive parameter in LSH, and those points far away from the radius can
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hardly be retrieved [21]. So far, there has been increasing attention focused

on proposing data-sensitive hashing structures to solve k-NN search problems.

The LSB-tree [102] leverages the intrinsic features of the B-tree to give a data-

sensitive solution, with an approximation factor of only 2. In the design of

hashing families, query-sensitive embeddings(QSE)[6, 5] and distance-based

hashing(DBH)[7] have been proposed as the hash family for embedding and

non-metric space, and [95, 55] were proposed for distance measure in the man-

ifold. These works illustrate the potential for hashing family improvement.

There are also other learning-based methods [62, 41, 72, 107, 36] aim to op-

timize the hashing functions. Although these methods are effective to catch

most global distribution trends, they fail to catch specific local patterns such

as dense groups or sparse hulls. Thus, there is no theoretical guarantee about

their performance (neither efficiency or accuracy). There are also some data

representation [85, 8, 76] methods that focus on optimizing the hashing func-

tion based on the data distribution. They significantly outperform LSH-based

methods on precision. However, for the similarity search problem, we place

much more emphasis on recall. This is because the recall affects the quality of

the final result, while precision only affects performance by determining how

many points have to be checked.

Partial indexing [98] in Postgres [99] considers the effectiveness of the index

for each data object. In partial indexing, the index method chosen to be used

is still based on the query. Thus, its starting point is to build a set of small

but effective partial index to facilitate a wider range of query tasks. However,

to use such idea to prune those indexes with inadequate granularities is not

possible. This is because the k-NN query does not indicate what the search

distance and there is no way to pick the most effective index based on query

point. Therefore, to reduce the storage cost of a set of indexes for similarity

search, the index to be accessed for a certain data object should depends on

the data point itself, but not the query.

2.5 Sampling Methods for Model Training

Complex machine learning models, such as large-scale linear methods[96], fea-

ture selection [63] or deep learning [22], are widely adopted in Big Data ana-

lytics. Due to the huge size of both model and data, how to train these model

18



CHAPTER 2. LITERATURE REVIEW

Algorithm fw(x) L(fw(x), y) ρf (w)

Linear Regression wTx (y − fw(x))2 0 or λ‖w‖22
Hinge-loss SVM wTx max(0, 1− fw(x) ∗ y) 0 or λ‖w‖22

Logistic Regression wTx log(1 + exp (−fw(x) ∗ y)) 0 or λ‖w‖22
Feature Selection wTx log(1 + exp (−fw(x) ∗ y)) λ‖w‖1
Neural Network complex log(1 + exp (−fw(x) ∗ y)) 0 or λ‖w‖22

PCA wwTx - x ‖fw(x)‖22 0

Table 2.1: Examples of ERM Applications

efficiently is a challenging topic, and the solution requires efforts from learning,

database, and system communities. Many optimizations have been proposed

from a system’s perspective for specific classes of models [119, 120, 56, 114,

22, 25]. Most of these algorithms (and many others) can fit into an Empirical

Risk Minimization [104] (ERM) framework, for which we aim to develop a more

general accelerator.

Empirical Risk Minimization (ERM) is a principle in the statistical learning

theory which forms the basis for defining a family of analytics models. From

the view of ERM, the central idea in machine learning is to learn a model and

use it to approximate the data. The difference between the approximation and

the real data is then measured by a loss function, which should be minimized by

tuning the parameters of the model. Without loss of generality, in this work we

formalize ERM from the supervised learning perspective, where each training

instance is a pair 〈x, y〉 consisting of content x and label y. For unsupervised

problems, label y is a null term ∅, and data can be represented as 〈x, ∅〉.

Definition 1 (Loss Function). Given a data instance represented as 〈x, y〉,
and a model hypothesis fw (i.e. a model f with parameter w), the loss function

L(fw(x), y) is a disagreement measure function between the model approxima-

tion (i.e. prediction) fw(x) and the actual label y.

After defining the measure of disagreement between the model output and

the actual label, the ultimate goal is naturally to minimize the total disagree-

ment by tuning the model parameters. This is called Risk Minimization [104],

which is defined as follows:

Definition 2 (Risk Minimization). Let P〈x,y〉 be the distribution of data, the

risk associated with model hypothesis fw is defined as the expectation of the loss
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for the potential data distribution:

R(fw) = E[L(fw(x), y)] =
∫

L(fw(x), y) dP〈x,y〉 (2.1)

The goal of learning algorithms is to find the parameter w that minimizes the

risk:

argmin
w

R(fw) (2.2)

However, in general, R(fw) cannot be directly minimized since the exact

latent data distribution P〈x,y〉 is unknown. Instead, the common way is to use

the distribution of training data to approximate P〈x,y〉. Therefore, the Empirical

Risk [104] is used as the optimization target.

Definition 3 (Empirical Risk). The empirical risk is defined as the average of

loss on the training set D with n instances.

Remp(fw) =
1

n

∑

i

L(fw(xi), yi) (2.3)

To simplify the notation, we use L(w) to denote Remp(fw).

According to the VC-dimension theory [104], the difference between real risk

and empirical risk may be large when the model hypothesis fw is too complex

while the size n of training data is not large enough. To prevent such over-fitting

problem, the empirical risk is often regularized to penalize the complexity of

model fw.

Definition 4 (ERM with Regularization). The empirical risk with regulariza-

tion is defined as the average of loss function on the training set, plus a penalty

regularization term ρf (w) based on the complexity of the model fw.

Rreg−emp(fw) = L(w) + ρf(w) (2.4)

In ERM with regularization, the goal of learning algorithm is to minimize the

empirical risk with regularization, i.e.,

argmin
w

Rreg−emp(fw) (2.5)

We list some examples of analytics models from ERM family in Table 2.1,

and show their connections. For most classification problems, we use log-logistic
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loss function log(1 + exp (−fw(x) ∗ y)) or other alternatives to approximate

the exact 0-1 loss. For most applications, we use the l2-norm of parameter

λ‖w‖22 as the regularization function. This is actually a Gaussian prior over the

parameter distribution from the Bayesian view. For feature selection methods

such as Lasso [63], the l1-norm regularization λ‖w‖1 is used to select those

sparse features.

The optimization of the general ERM is widely studied in machine learn-

ing community [104]. Generally, there are two classes of methods: first-order

algorithms such as gradient descent [11], and second-order algorithms such as

Newton method [23]. Although second-order algorithms typically have a much

faster convergence rate, they require the Hessian matrix [13] of parameters,

making them not practical for large-scale models where the number of pa-

rameter is huge. For similar reasons, batch gradient methods [113] are very

expensive for large training datasets. Therefore, stochastic methods [83] are

the most favored algorithm in recent large-scale machine learning applications.

Stochastic Gradient Descent [83] (SGD) is one of the most popular stocha-

stic optimization methods, and the theoretical results are well studied in [75].

However, [105] has shown that the variance in stochastic gradient is the key

factor limiting the convergence rate of SGD. Consequently, many SGD variants

such as SAG [88], SVRG [47], S3DG [71] have been developed to reduce the

variance in the stochastic gradient. The convergence rate of these variants has

been greatly improved in both theory and practice in terms of the number of

iterations required to reach a certain accuracy. However, the optimization cost

of these methods are not negligible, causing the training cost per iteration to

increase substantially.

To optimize the ERM problem described in Equation 2.5, batch gradient

descent method is used to iteratively alter the parameter towards the fastest

direction to minimize the objective function. By defining the step size using

the learning rate η, batch gradient descent method uses the following updating

rule to optimize the parameter:

wnew = w − η∇w(L(w) + ρf (w))

= w − η∇wρf (w)− η

n

∑

i

∇wL(fw(xi), yi) (2.6)

As can be observed from Equation 2.6, we need to evaluate the gradients
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Notation Meaning

〈x, y〉 training instance
w model parameters

fw(x) model prediction for data x
L(fw(x), y) loss on instance 〈x, y〉

L(w) empirical risk
ρf (w) regularization term
∇w gradient operator

∇wL(w) batch gradient
gi(w) stochastic gradient
pi sampling probability for 〈xi, yi〉

Table 2.2: Common Notations

∇wL(fw(xi), yi) for all training instances at each step, making the computation

cost of ∇wL(w) extremely expensive. To avoid this cost, stochastic gradient

methods use an inexact gradient which is estimated from random samples.

Definition 5 (Stochastic Gradient Descent). In stochastic gradient descent,

the true gradient ∇wL(w) is approximated by a stochastic gradient gi(w).

wnew = w − η∇wρf (w)− ηgi(w) (2.7)

Taking gi(w) as a random variable, the expectation of gi(w) should equal to the

gradient of L(w), i.e.

Ei[gi(w)] = ∇wL(w) (2.8)

In the standard SGD algorithm, gi(w) is obtained by simply evaluating the

gradient at a random single instance 〈xi, yi〉:

gi(w) = ∇wL(fw(xi), yi) (2.9)

where i is randomly drawn from {1, ..., n}, and the sampling probability pi for

each instance 〈xi, yi〉 is 1/n.

Intuitively, the requirement Ei[gi(w)] = ∇wL(w) is to guarantee that the

SGD algorithms will converge at the optimal point [75], as the expectation of

update in SGD will be a zero vector at the point where batch gradient descent
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algorithm converges.

Ei[gi(w)] =
∑

i

pigi(w)

=
∑

i

1

n
∇wL(fw(xi), yi)

= ∇w

1

n

∑

i

L(fw(xi), yi)

= ∇wL(w) (2.10)

Although the training cost per iteration for SGD is extremely light-weight

compared to the batch gradient algorithm, the main drawback of SGD is that

gi(w) is not the exact ∇wL(w). Therefore, the direction of the stochastic

gradient gi(w) differs from the optimal direction ∇wL(w). This phenomenon

causes SGD algorithm to be less efficient and take more iterations to converge

or reach a certain accuracy. In essence, there is a trade-off between the number

of iterations required to reach a certain accuracy and the computational cost

per iteration. Therefore, the main goal of optimizing SGD algorithm is to

making gi(w) close to∇wL(w) at each iteration, while keeping the computation

of gi(w) light-weight. Table 2.2 lists most of the important notations used

throughout this chapter.

Active learning [92, 81] is originally proposed to select a set of labeled train-

ing data to maximize the accuracy of model. [65] uses the idea of weighted

sampling to maximize the information gain of active learning. However, it is

still not clear how the learning value of samples affects the training efficiency.

Compare with active learning, in the training of model optimization, all train-

ing data are already labeled, and the selection should aim to maximize the

learning speed of a passive learning model. Therefore, the optimization target

should be the number of visit times rather than the number of visit points. SGD

with weighted sampling is also recently studied in [121] which uses importance

sampling for variance reduction.

Training data sampling is also related to feature selection [35]. Both meth-

ods focus on finding the most improtant part from the training data. How-

ever, feature selection algorithms are working on selecting those most important

columns (i.e. features), while training data sampling is working on selecting

those most important rows (i.e. data tuples).
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CHAPTER 3

PREFERENCE QUANTIFIED

ACTIVE COMPLEX HUMAN

ANNOTATION

The supervised information in some complex Big Data analytics tasks may

be hard to be quantified via simply labeling. The typical required tasks for

human annotation are usually complex jobs such as describing beautifulness or

emotion, which may require relative comparison or deep understanding. The

results collected from such tasks are usually in forms of rank or similarity

comparison among examples rather than a quantified label for every example.

All these categories of supervised information can hardly be transformed into

quantified labeled data and integrated to the existing active learning framework.

In this chapter, we quantify these categories of information as a relative

preference (i.e. a latent preference vector) learned by only pairwise compar-

isons on a set of entities with multiple attributes. We formalize the problem

into two subproblems, namely preference estimation and comparison selection.

We propose an innovative approach to estimate the preference and introduce a

binary search strategy to adaptively select the comparisons. We integrate these

components into a system for inferring the preference using adaptive pairwise

comparisons. The experiments on user preference demonstrate that our adap-

tive system significantly outperforms the naive random selection system on both
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real data and synthetic data.

3.1 Introduction

The supervised information in some complex Big Data analytics tasks may be

hard to be given label by using human efforts. Most easy annotating tasks can

usually be well recognized by simply using machine efforts. The required tasks

for human annotation are usually complex jobs such as describing beautifulness

or emotion, which often involve relative comparison or deep understanding. The

results of such tasks usually can only be represented in the forms of ranking

or relatively comparison among examples rather than a quantified label for

every example. All these categories of supervised information can hardly be

transformed to quantified labeled data and integrated to the existing active

learning framework.

We quantify these categories of information as a relative preference (i.e. a

latent preference function), which is an ideal abstraction for ranking or relative

comparison. All ranking or relative comparison meanings, can now be trans-

formed to the comparison of the value of each entity under the specific latent

preference function. The task of annotation is to acquire such preference from

users of the annotating system. Annotators (i.e. user of the annotating system)

often have to choose entities of interest from a large multi-attribute set. While

most systems allow users to specify selection conditions on individual attributes

to reduce the size of the set, users may not always be good at tightly specifying

such conditions. Furthermore, even within acceptable ranges of values for each

individual attribute, there may still be too many entities for users to examine

individually to choose the ones that they prefer.

In cognitive psychology, the Thurstone’s Law of Comparative Judgement

indicates that pairwise comparison is a more effective way to learn a preference

function than directly choosing the set of preferred entities or deriving the

overall ranking, In fact, there is considerable literature on learning and ranking

by pairwise comparison in the machine learning community [59]. Recent works

in crowdsourced ranking [19, 116] also leverage pairwise comparisons.

In this chapter, we study the problem of preference learning by pairwise

comparison on structured entities. Specifically, given a set of entities with

associated attributes, we choose a set of entity pairs and ask the user which
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entity is more preferable in each pair. Based on the feedback we estimate the

overall user preference function. Once a system learns a preference function

for a user, it can use it in many ways. For example, imagine a travel site that

knows your preferences and automatically ranks hotels in your preferred order;

or a shopping site that sends you an email when a promotion on a particular

camera makes it likely to be your top choice. It is easy to come up with many

such uses, and developing these is outside the scope of this chapter, which is

focused on preference learning.

For such a preference learning scheme to be practical, it must meet three

conditions. First, pairwise comparisons should be easy to answer. Second, one

should be able to learn at least an approximation of the preference function

with only a few comparisons. And third, the system must be able to pose such

comparison questions at interactive speed. The first condition is immediately

satisfied in most applications of interest: given two object instances, a user is

quickly able to determine which one is preferred. The remaining two conditions

are challenging, and addressing them constitutes the bulk of the technical work

that follows.

To summarize, this chapter has the following contributions:

• We formalize the problem of preference learning by pairwise comparison

on structured data, and define two subproblems, preference estimation and

comparison selection (Section 3.2.).

• We study the problem of preference estimation based on pairwise compari-

son feedback and propose a solution minimizing the maximum of potential

error. Then we find the optimization problem can be easily solved by typical

SVM by doing reductions (Section 3.3).

• We develop a theoretical analysis of the comparison selection problem and

introduce adaptive comparison selection, with effectiveness comparable to a

theoretical optimum (Section 3.4).

• We implement a system integrating all these parts. We show that our system

significantly outperforms the näıve system on both synthetic and real data,

with either simulated or real user feedback. (Section 3.5).
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3.2 Problem Formalization

We denote an entity by e and the set of all entities by E. Without loss of

generality, we define the preference to be a function O : E → R. Intuitively,

we say e is preferable to e′ if O(e) > O(e′), and vice versa. We assume no ties,

and we assume transitivity. Given N input entities, our task is to learn the

user preference function O, which is not directly observable.

Definition 6 (Pairwise Comparison and Its Feedback). Given an entity set E

and a preference O, a pairwise comparison is an ordered pair 〈e, e′〉 ∈ E × E.

Its feedback is a function C : E×E→ {−1, 1}, such that:

C(〈e, e′〉) =






1 if O(e) > O(e′)
−1 otherwise

(3.1)

D ⊆ E× E is a set of pairwise comparisons, with feedback

C(D) = {C(〈e, e′〉)|〈e, e′〉 ∈ D} (3.2)

Since C(〈e, e′〉) = −C(〈e′, e〉), we only need to consider one of the two. We

define the candidate comparisons of E to be D(E) = {〈ei, ej〉|ei, ej ∈ E; i < j}.

Definition 7 (Preference Learning by Pairwise Comparison). Given a set of

entities E, an unobservable preference O, choose a set of pairwise comparisons

D ⊆ D(E), and derive O based on C(D).

While this problem definition is general, it can be impractical if the number

of comparisons needed (|D|) is large. Clearly, pairwise comparison of each pair

is enough, requiring that the user labels N(N−1)/2 pairs. We can improve this

quite a bit if we follow a standard sorting algorithm, in the worst case we need

the user to label N · log(N) comparisons to derive the complete preference O.
Even in the best case, we need N − 1 comparisons to derive O. Unfortunately,
N can often be large in real scenarios. For instance, there may be hundreds

of potential hotels and thousands of potential movies to consider. It is not

reasonable to expect the user to label N pairs. In fact, one major motivation

to learn a preference function is so that we can determine a user’s preference

for an item with only limited prior user input.

We model each entity as a structured tuple. Specifically, we assume the

set of attributes is universal across the entity set, and denote it by A =
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{A1,A2, ...,Ak}. We use e[Ai] to denote the value on attribute Ai of entity

e. For convenience, we further assume all these attribute values are numeric.

(Categorical attributes can be mapped to numeric preference values, if need

be). For a given e, we represent the entity by a k dimensional vector e, where

e = (e[A1], e[A2], ..., e[Ak])
T (3.3)

Furthermore, for each e, we assume O(e) to be a linear combination of these

attribute values. Specifically:

O(e) = w · e (3.4)

where w is a k dimensional weight vector. Here we omit the constant offset

since it has no impact on comparisons. Similarly, because the comparisons are

independent of the magnitude of w, we assume ‖w‖ = 1. Note that, under

these assumption, w uniquely characterizes O. For this reason, we call w the

preference vector.

In practice, we do not know that the preference function is linear. However,

it is commonplace to build linear models as approximations of reality, and they

often turn out to be good enough. If need be, individual attribute values can

be scaled non-linearly, for example, through the use of a logarithm or some

kernel function. Thus, linear regression is used widely, as are linear models in

machine learning.

Having these assumptions, we now refine our preference learning problem.

Definition 8 (Preference Vector Learning by Pairwise Comparison). Given a

set of entities E, where each entity e is a k-dimensional vector, and a preference

function O(e) = w ·e where w is a normalized k-dimensional vector not directly

observable, select a set of pairwise comparisons D ⊆ D(E), and estimate w

based on C(D).

Definition 8 comprises two subproblems: 1) select a subset of the candidate

pairwise comparisons to ask the user for feedback and 2) estimate the preference

vector w based on the feedback. We name the first subproblem pairwise

comparison selection and the second preference estimation. We first

discuss the preference estimation problem in Section 3.3, and then study the

pairwise comparison selection problem in Section 3.4.
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3.3 Preference Estimation

Suppose we have already selected a set of pairwise comparisons D, in this sec-

tion we focus on estimating the weight vector w based on the user feedback

C(D). We first describe some intuitions about the preference estimation prob-

lem under the linear preference model, and then formalize the problem and

propose an algorithm to estimate w. We denote our estimate of w by ŵ and

the true value of w by w0. To give a more intuitive geometric interpretation

of this problem ,we begin with an assumption that the user makes no error

in reporting pairwise comparisons. In other words, for every pair 〈e, e′〉 ∈ D,

C(〈e, e′〉) = 1 if and only if (e− e′) ·w0 > 0. We will relax this assumption at

the end of this section.

Recall that w is a k-dimensional vector and ‖w‖ = 1, all w form a hyper-

sphere S
k = {w|‖w‖ = 1} in the k-dimensional space. Now, imagine we assign

a pairwise comparison 〈e, e′〉 to the user. The user returns 1 if e is preferable

to e′, and -1 if e is less preferred than e′. In other words, we have:

C(〈e, e′〉) =






1 if O(e)−O(e′) > 0

−1 if O(e)−O(e′) < 0
(3.5)

Which can be rewritten as1:

C(〈e, e′〉) · (O(e)−O(e′)) > 0 (3.6)

By substituting Equation 3.4, we obtain:

C(〈e, e′〉) · (e− e′) ·w0 > 0 (3.7)

This implies the following geometric intuition. A pairwise comparison 〈e, e′〉
and its feedback C(〈e, e′〉) uniquely identify a hyperplane with normal vector

C(〈e, e′〉) · (e − e′) in the k-dimensional vector space of w. The hyperplane

cuts S
k into two symmetric hemispheres, and w0 must be on the hemisphere

{w | w ∈ S
k, C(〈e, e′〉) · (e− e′) ·w > 0}. In other words, each such hyperplane

prunes half of Sk on which w0 could reside. For this reason, we call such a

hyperplane the pruning plane and denote it by P〈e,e′〉. Since the pruning is

independent of the magnitude of the normal vector, we normalize it and define

1We use the dot operator to represent both scalar multiplication and vector inner product
when the context is clear.
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ŵ

Pe1,e′1
Pe2,e′2

Figure 3.1: A Simple Preference Estimation in 2-D.

n〈e,e′〉 = C(〈e, e′〉) · (e− e′)/‖e− e′‖. We further denote the hemisphere on the

same side of n〈e,e′〉 by S
k
〈e,e′〉, and call it the remaining hemisphere. Formally,

S
k
〈e,e′〉 = {w|n〈e,e′〉 ·w > 0,w ∈ S

k}.
Intuitively, the more pairwise comparisons feedback we obtain, the fewer

possible values remain for w. Specifically, given a set of pairwise comparisons

D, the remaining possible values for w can be characterized by the intersection

of all the remaining hemispheres
⋃

〈e,e′〉∈D S
k
〈e,e′〉, which forms a spherical polygon

in k dimensions. We denote this spherical polygon by S
k
D
and simply call it the

remaining sphere.

Under our error-free assumption, w0 must exist in the remaining sphere Sk
D
.

Therefore, we should estimate w within S
k
D
. The following example illustrates

the intuition in two dimensions.2

Example 1 (Simple 2-D Estimation). Suppose our entities have only two at-

tributes, A1 and A2. Furthermore, we assume an extreme case, where the pref-

erence is only determined by A2. In other words, w0 = (0, 1). Suppose we have

two comparisons, 〈e1, e′1〉 and 〈e2, e′2〉, where e1 − e1
′ = (2, 1) and e2 − e2

′ =

(−2, 1). Under the error-free assumption, C(〈e1, e′1〉) = C(〈e2, e′2〉) = 1. As a

2Hereafter, we will omit the subscript 〈e, e′〉 of n〈e,e′〉 for readibility when the context is
clear.
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result, n1 = (2, 1)/
√
5 and n2 = (−2, 1)/

√
5. In 2-dimensional space, the two

pruning planes corresponding to n1 and n2 degrade to two lines shown in Fig-

ure 3.1. The remaining sphere S
2
D

degrades to the bold arc on the unit circle.

In this case, a reasonable estimate of ŵ lies in the middle of n1 and n2, which

overlaps w0.

The above example indicates that the estimate in the “middle” of the normal

vectors of all pruning planes may be a “good” estimate. In order to formalize

this intuition, we need to first define such “goodness”.

Let us first examine the simple case, where the user submits a feedback

C(〈e, e′〉) to a pairwise comparison 〈e, e′〉. To recall, this creates a pruning

plane P〈e,e′〉 with normal vector n〈e,e′〉 = C(〈e, e′〉) · (e− e′). On one extreme, if

w0 is orthogonal to P (parallel to n), we can tell this is a very straightforward

comparison. Because, the difference between e and e′ is maximized by w0.

Thus the user should have little difficulty in answering the comparison. On the

other extreme, if w0 is almost parallel to P (orthogonal to n), the comparison

would be very difficult. Because the difference between e and e′ is only slightly

reflected by the projection on w0. Intuitively, we prefer estimate w to be

parallel to n, since it tends to render the comparison more confident for the

user. The notion of confidence is formalized below:

Definition 9 (Confidence). Given a pairwise comparison 〈e, e′〉 and an esti-

mated weight vector ŵ, the confidence of this estimate is Cŵ

〈e,e′〉 = n〈e,e′〉 · ŵ.

Note that, the confidence must be positive according to the error-free assump-

tion.

Informally, our goal is to maximize this confidence for all comparisons. If

there is only one comparison, the estimate parallel to n is the optimal solution.

In case of multiple comparisons, there are various ways to define the overall

confidence. For example, we could define the overall confidence to be the sum

of all individual confidences, which leads to the following problem definition:

Definition 10 (Preference Estimation by Total Confidence). Given a set of

pairwise comparison D and the user feedback C(D), find a preference vector

estimate ŵ, such that
∑

〈e,e′〉∈D Cŵ

〈e,e′〉 is maximized.

We note that ŵ may not always have Cŵ

〈e,e′〉 > 0. For instance, in Example 1,

if we continue to receive dozens of comparison feedbacks with normal vectors

around n2, ŵ will be pulled to n2 and fall out of S2
D
, as shown in Figure 3.1.
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We prefer a metric such that repetitive comparisons with same or similar

normal vectors do not shift our final estimate. In the previous example, ideally,

no matter how many comparisons overlap n1 or n2, a fair estimate of w should

always point to the middle, the same as w0 in Figure 3.1.

In fact, if we have various additional comparisons with normal vectors be-

tween n1 and n2, they should contribute little to the estimate, because their

ability to constrain S
2
D

is dominated by n1 and n2. In other words, the only

comparisons that matter are those whose normal vectors are most orthogonal

to w0. And according to our definition of confidence, these are exactly the

comparisons the user is least confident about, which matches our intuition. In

this case, our goal is to maximize those confidence values, which is formalized

by the following revised problem statement:

Definition 11 (Preference Estimation by Maximal Least Confidence). Given

a set of pairwise comparison D and the user feedback C(D), find a preference

vector estimate ŵ, such that min〈e,e′〉∈D Cŵ

〈e,e′〉 is maximized. Or formally, ob-

tain:

argmax
w

min
〈e,e′〉∈D

Cw

〈e,e′〉

subject to: ‖w‖ = 1
(3.8)

Since the magnitude of w does not matter and only direction is the one

we trying to solve, the above problem can be transformed into the following

standard maximum margin optimization problem:

argmin
w

‖w‖ subject to:

∀〈e, e′〉 ∈ D,n〈e,e′〉 ·w ≥ 1
(3.9)

In this revised problem, the margin to be maximized is our minimal confi-

dence value. Therefore, we can use a linear SVM to solve it efficiently. Specif-

ically, for each comparison the user made, we create a positive example (n, 1)

and a negative example (−n,−1) and call SVM to train all the support vectors.

We then use the sum of these support vectors weighted on α as our estimate

ŵ.

In case the user feedback is error-prone, no w will yield a positive confidence
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margin. To solve this, we adopt the typical slack variant methods commonly

used in SVM to enable error-tolerance. The problem is then revised as follows.

Definition 12 (Noise-tolerance Preference Estimation by Maximal Least Con-

fidence). Given a set of pairwise comparison D and the user feedback C(D),

find a preference vector estimate ŵ, such that:

argmin
w

‖w‖+ C
∑

ξ〈e,e′〉 subject to:

∀〈e, e′〉 ∈ D,n〈e,e′〉 ·w ≥ 1− ξ〈e,e′〉
(3.10)

where C is the slack variant indicates the tolerance level to user feedback error.

3.4 Comparison Selection

So far we have discussed how to estimate the weight vector w given a set of

pairwise comparisons D. We now consider how these pairwise comparisons are

selected. Admittedly, a randomly selected set of comparisons could still lead to

a reasonably good estimate. The question is, can we do better?

To give a clear geometry interpretation, we keep the assumption that the

user makes no error in answering the comparisons. Later, we will illustrate how

errors are fixed when Noise-tolerance Preference Estimation are applied. To

recall, each comparison 〈e, e′〉 with its feedback C(〈e, e′〉) uniquely identifies a

pruning plane P
k
〈e,e′〉, which prunes half of the k-dimensional sphere S

k. These

planes keep cutting and pruning, and finally restrict w to a spherical polygon

S
k
D
, which we call the remaining sphere.

Both w0 and our estimate ŵ lie on this remaining sphere. Obviously, the

best estimate is the one that is close to w0. We define the precision of an esti-

mate ŵ to be the inner product ŵ ·w0. Intuitively, the higher the precision is,

the better the estimate ŵ is. Given this definition, the worst precision we could

have given S
k
D
and w0 is minŵ∈Sk

D

ŵ ·w0. Considering the fact that w0 can be

anywhere inside S
k
D
, the worst precision given only S

k
D

is minw1,w2∈SkD
w1 ·w2.

We define the precision of Sk
D

by this worst precision and denote it by P(Sk
D
).

We also define the angle between such w1 and w2 on which the worst precision

is achieved to be the diameter of Sk
D
and denote it by D(Sk

D
). Since ‖w‖ = 1,

P(Sk
D
) = cos(D(Sk

D
)).
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In other words, the diameter of the remaining sphere determines its preci-

sion. Intuitively, the more user comparisons we have, the smaller the remaining

sphere is, and thus higher the precision we obtain. However, because each com-

parison places a user burden, the total number of cuts is limited in practice. As

a result, we cannot indefinitely refine the remaining sphere to achieve arbitrar-

ily high precision. Based on these observations, we formalize the comparison

selection problem:

Definition 13 (Pairwise Comparison Selection). Given a set of entities E and

an integerM , find a sequence of pairwise comparisonsD = {〈e1, e′1〉, ..., 〈eM , e′M〉},
where 〈ei, e′i〉 ∈ D(E), i ∈ 1..M , such that P(Sk

D
) is maximized.

In the remainder of this section, we start with a näıve approach with ran-

dom selection, and theoretically analyze it. We then propose a novel selection

strategy that is theoretically optimal.

3.4.1 A Näıve Approach

To recall, each comparison identifies a pruning plane that cuts the k-sphere S
k

across origin into two equal halves and prunes one of them according to the

user feedback. Consequently, all the N comparisons will cut Sk into many small

pieces, each of which is a spherical polygon. Under the error-free assumption,

exactly one of these spherical polygons forms the remaining sphere S
k
D
.

Here we analyze the best case average precision one can obtain after M

randomly chosen cuts. Since w0 can fall into any of the remaining sphere, the

best case is achieved when the sphere Sk is uniformly cut. Using V(·) to denote

volume, the best case average volume of the remaining sphere can be estimated

as:

V(Sk
D
) =

V(Sk)

Mk(M)
(3.11)

whereMk(M) is the number of spherical polygons cut by M pruning planes in

the k-dimensional space. According to the literature [38]:

Mk(M) = 2 ·
[(

M − 1

0

)

+

(

M − 1

1

)

+ ...+

(

M − 1

k − 1

)]

(3.12)
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Also, the volume of a k-sphere3 with radius R is:

Vk = 2 · π
k/2Rk−1

Γ(k
2
)

(3.13)

Since S
k has radius one, its volume is:

V(Sk) = 2 · π
k/2

Γ(k
2
)

(3.14)

By substituting Equation 3.14 into Equation 3.11, we have:

V(Sk
D
) =

2

Mk(N)
· π

k/2

Γ(k
2
)

(3.15)

On the other hand, given the remaining sphere with volume V(Sk
D
), the

best precision is achieved when the remaining sphere is as evenly distributed as

possible. When the remaining sphere is small enough, this can be approximated

as a ball in the k − 1 dimension. According to the literature, the volume of a

k-ball with radius R is:

Uk =
πk/2Rk

Γ(1 + k
2
)

(3.16)

Therefore, we have:

V(Sk
D
) = Uk−1 =

π
k−1
2 Rk−1

Γ(k+1
2
)

(3.17)

By substituting Equation 3.17 into Equation 3.15 and solving R, we have:

R =

(

2
√
π

Mk(M)
· Γ(

k+1
2
)

Γ(k
2
)

) 1
k−1

(3.18)

For a small remaining sphere Sk
D
shaped like a ball in the (k-1)-dimensional

space, its diameter D(Sk
D
) can be estimated by 2R. Therefore, its precision can

be obtained by:

P(Sk
D
) = cos(2R) (3.19)

3We define the k-sphere in the k-dimensional space instead of the (k − 1)-dimensional
space.
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Substituting Equation 3.18 into Equation 3.19 results in:

P(Sk
D
) = cos

Ñ
2 ·
(

2
√
π

Mk(M)
· Γ(

k+1
2
)

Γ(k
2
)

) 1
k−1

é
(3.20)

As a final note for this section, sinceMk(M) is upper bounded by 2 · (M −
1)k−1 for M > 1, we have:

V(Sk
D
) ≥ V(Sk)

2 · (M − 1)k−1
=

1

(M − 1)k−1
· π

k/2

Γ(k
2
)

(3.21)

for M > 1. That is to say, for any given dimension k, one cannot reduce the

volume of the remaining sphere more than polynomially with respect to the

number of comparisons using a random cutting strategy. And the volume is

closely related to the precision of estimate. If we want to break this limit, a

new cutting strategy has to be innovated.

3.4.2 Binary Cutting Strategy

In this section, we consider if we can perform any better than a random cutting

strategy. Without loss of generality, we assume that given an arbitrary hyper-

plane, there always exists in the candidates a comparison whose pruning plane

overlaps the given hyperplane. We will remove this assumption in Section 3.4.3.

If we have only one comparison to prepare, the problem is straightforward.

Indeed, a random cut of the initial sphere S
k is the optimal choice. This is

because, no matter what the user feedback is, the corresponding pruning plane

will prune half of the sphere, or reduce half of the volume. However, if we

continue to perform more cuts, their positions matter.

Example 2 (Cutting Strategy). We continue to illustrate the simple case in

two-dimension, where S2 degrades to a unit circle, as shown in Figure 3.2. Sup-

pose we first ask the user to compare entity e1 and e
′
1. This comparison identifies

a pruning plane P〈e1,e′1〉
with normal vector e1 − e1

′, as shown in Figure 3.2.

We further assume the user feedback C(〈e1, e′1〉) equals 1. Consequently, the

plane prunes the bottom left half of the unit circle, leaving a remaining sphere

highlighted by the bold arc Q̄T .

Now consider the next comparison. Assume there are two candidates: 〈e2, e′2〉
and 〈e3, e′3〉. The corresponding pruning planes with their normal vectors are
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Figure 3.2: Binary Cutting Example in 2-Dimensions. (See Example 2.)

illustrated in Figure 3.2. If we choose 〈e2, e′2〉 as the next comparison, the prun-

ing effect will depend on the user feedback. Specifically, if C(〈e2, e′2〉) = 1, the

top-left side of P〈e2,e′2〉
will be pruned, leaving arc R̄T . If C(〈e2, e′2〉) = −1, the

bottom-right part of P〈e2,e′2〉
will be pruned and arc Q̄R will remain.

This is not a very good choice, because in the worst case, only a small

portion of the remaining sphere (Q̄R) will be pruned. Overall, it will result in a

worse average precision because our precision function is concave with respect to

volume. In contrast, if we choose 〈e3, e′3〉 as the next comparison, regardless of

the user feedback, half of the remaining sphere (either Q̄S or S̃T ) is guaranteed

to be pruned.

Example 2 elicits the following theory:

Theory 1 (Binary Cutting Strategy). In order to maximize the best case av-

erage precision, each comparison should cut the current remaining sphere into

two equal halves.

The intuition behind the theory is similar to the traditional binary search. We

omit the proof due to space.

If we manage to choose a sequence of comparisons strictly satisfying the

condition in Theorem 1, after M comparisons, the volume of the remaining
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sphere is:

V(Sk
D
) =
V(Sk)

2M
(3.22)

Compared with Equation 3.15 for random cut, this is much better because

we can reduce the volume of the remaining sphere exponentially with respect

to the number of comparisons.

By substituting Equation 3.14 into Equation 3.22, we obtain:

V(Sk
D
) =

1

2M−1
· π

k/2

Γ(k
2
)

(3.23)

Following analysis similar to Section 3.4.1, we can obtain the theoretical upper

bound of the precision we can achieve after M comparison:

P(Sk
D
) = cos

Ñ
2 ·
( √

π

2M−1
· Γ(

k+1
2
)

Γ(k
2
)

) 1
k−1

é
(3.24)

By fixing P(Sk
D
) and solvingM in the above equation, we obtain the number

of optimal cuts to achieve a certain precision:

Moptimal =
log2 π

2
+ log2

Γ(k+1
2
)

Γ(k
2
)

+ (k − 1) · log2
2

arccos(P(Sk
D
))

(3.25)

On the other hand, we have:

lim
k→+∞

log2
Γ(k+1

2
)

Γ(k
2
)

=
ψ{0}(k

2
)

2
=

log(k
2
)

2
(3.26)

Thus, the first term in Equation 3.25 is a constant, the second term converges

to (log2 k − 1)/2, and the third term is the product of k − 1 and To give an

intuition, setting the precision to 0.95 results in an increase of 2.65 optimal cut

needed per additional dimension.

3.4.3 Adaptive Comparison Selection

In the previous section we presented a theoretical analysis of the optimal com-

parison sequence. To recall, each time we desire the next comparison to cut

the remaining sphere into two equal halves. Unfortunately, such an optimal
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comparison rarely exists in practice, because we have a limited number of com-

parison candidates. In this section, we instead examine the problem of finding

adaptively the next comparison that cuts the remaining sphere as equally as

possible. Moreover, we show how this strategy can deal with noise answers.

We start by following the two-dimensional scenario in Example 2. After

the initial cut, the remaining sphere degrades to arc QT . Since the center

of QT is S, one should select a comparison whose pruning plane is as close

to the center S as possible. This is trivial in 2-d, because the pruning plane

degrades to a line passing through the origin. Consequently, we only need to

find the comparison whose decision plane (line) has the smallest angle with the

line passing through the origin and the “center” of the remaining sphere (arc),

which can be accomplished by a simple binary search. However, the following

example demonstrates its complexity in higher dimensions.

x
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z
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y

z

x

y

z

ŵ

x

y

z

ŵ

x

y

z

ŵ

n1

x
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z

ŵ

n1

n2

Figure 3.3: Two Pairwise Comparison Candidates in 3-Dimension

Example 3 (Comparison Selection in 3D). For simplicity, assume the remain-

ing sphere S
k
D

is uniformly distributed around center ŵ on the unit 3-sphere,

as shown in Figure 3.3. Suppose we have two candidate comparisons: one with

pruning plane identified by normal vector n1 and the other with pruning plane

identified by n2. Intuitively, the plane with n1 is the better pick because it cuts
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the remaining sphere more evenly.

This examples indicates the following two points. First, the problem is non-

trivial in higher dimension, because there is no static ordering of the candidate

comparisons. Indeed, the order of candidates are dependent on the current

estimate ŵ. Therefore, the simple binary search strategy in 2-d no longer

applies. As a result, the näıve approach requires a scan of all the candidate

comparisons, whose number is square of the total number of entities.

Second, the notion of “closeness” between the pruning plane and ŵ is no

longer effective, because the pruning plane is a hyperplane in general. This

leads us to think about the relationship between ŵ and the the normal vector

n, which is a better characteristic of the pruning plane. In fact, given a pruning

plane with normal vector n and a remaining sphere with estimated center ŵ,

we notice that the more orthogonal n is with respect to ŵ, the more evenly the

plane cuts the remaining sphere. To quantify this, we have:

Definition 14 (Orthogonality). Given two unit vectors u and v, the orthog-

onality between u and v is 1 − |u · v|. Given a remaining sphere with center

estimate ŵ and a candidate pruning plane with normal vector n, we also say the

orthogonality between the pruning plane and the remaining sphere is 1−|n · ŵ|.

Since both vectors are normalized, their orthogonality ranges from zero to

one. It achieves its maximum when n·ŵ equals zero, or when the pruning plane

passes through ŵ. For simplicity, hereafter we will use the normal vector, the

pruning plane and the corresponding comparison interchangeably, if the context

is clear.

We also note, even a comparison with orthogonality one may not cut the re-

maining sphere into exactly equal halves. This is because the remaining sphere

in practice has a very complex geometry. To distinguish such comparison from

the optimal comparison we discussed in Section 3.4.2 , we call such comparison

the best next comparison and have the following problem definition.

Definition 15 (Adaptive Best Next Comparison Selection). Given an estimate ŵ,

find among all the remaining pairwise comparisons D(E)\D the best compari-

son, such that the orthogonality between the comparison and ŵ is maximized.

Formally, obtain:

argmin
〈e,e′〉∈D(E)\D

∣
∣
∣n〈e,e′〉 · ŵ

∣
∣
∣ (3.27)
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This problem can be generalized as to find the vector that is most orthogonal

to a given vector. This is very different from the traditional geographic queries

which mostly focus on the nearest neighbors. To distinguish, we name this type

of query orthogonal query.

Further, we give an intuition why this method will be noise-tolerance. Recall

that the maximum margin optimization with slack variant relaxes the condition

for those answers which is too hard to be satisfied. That is to say, when noise

occurs, it will usually not used as the pruning plane since its condition is not

satisfied. In the query selection phase, suppose one question is answered incor-

rectly, then the preference estimation will fall into another remaining sphere.

However, as more and more questions are asked in the orthogonal plane of the

estimation, the optimization function will choose to relax the condition of the

noise comparison. Intuitively, the false plane are finally removed and the new

estimation will live in the correct remaining sphere.

3.5 Experiment

In this section we describe our evaluation of our system. The most important

question is whether the correct preference function was learned. We measure

this correctness in terms of precision : the fraction of test (pairwise) compar-

isons correctly labeled by the system. We do so on both real and synthetic data.

We also report results on additional experiments to evaluate the performance

of the S-tree index structure.

As a baseline, we compare our adaptive algorithm against an algorithm

that randomly chooses comparison pairs for training. This random algorithm

still performs cuts in space and correctly computes the preference function

based on observed preferences. Therefore, the superior results obtained by our

algorithm can then all be attributed to its adaptive binary selection.

The algorithms were implemented in C++ referencing LIBSVM [17]. All

experiments were run on an Unix machine with a 2.7 GHz Intel Core i7 processor

and 8GB 1600 MHz DDR3 memory. The user study was built with a web user

interface referencing the system via CGI.
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Figure 3.4: Number of Comparisons Required to Achieve a Target Precision of
0.95 for the Näıve System, the Theoretical Optimum, and Our System, with
100 Entities of 3 dimension

3.5.1 Experiment With Synthetic Data

The synthetic experiment is set up as follows. For each dimension, we randomly

generated ten sets of one hundred entities. For each entity set, we randomly

generated ten w0. And for each w0, we repeated the experiment ten times.

We averaged the number of comparisons needed over all these variables. We

randomly generated the source of truth w0, used Equation 3.1 to simulate the

user feedback, estimated ŵ according to the discussion in Section 3.3, and

calculated the precision as w0 · ŵ.

We first measured the average number of pairwise comparisons needed to

achieve a target precision of 0.95. The result is shown in Figure 3.4.

According to the result, our system dramatically outperforms the naive

system, which randomly selects the next candidate comparison. On average,

our system requires 70% less comparisons to achieve the same precision. This

is because, the random strategy does not guarantee the quality of the next cut.

As the remaining sphere shrinks, it is increasingly hard for a random cut to

pass through the remaining sphere. Even for the cuts that do pass through,

they are likely to be imbalanced. In consequence, random requires a much

larger number of total comparisons.
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Figure 3.5: Precision Achieved by Our System and the Theoretical Optimum,
w.r.t. the Number of Comparisons Performed and Dimension from 2 to 10

We also plot the theoretical optimum, assuming that perfect binary cutting

is possible, as described in Section 3.4.2, and results in a number of comparisons

according to Equation 3.25 and a worst case precision defined in Equation 3.24.

This is an analytically computed worst case number. Our adaptive algorithm

actually performs similar to and slightly better than this theoretical optimum.

Note that this is not a contradiction. The theoretical optimum is defined with

worst case precision, while in our system the precision is the observed average,

which is better than the worst case.

To better understand the behavior beyond the target precision, we con-

ducted a second experiment examining the precision change with respect the

the number of comparisons performed. We kept the same experiment settings

except we did not terminate the process when a target precision is reached. In-

stead, for each run, we performed one hundred comparisons, and recorded the

average precision achieved after each comparison. We repeated the experiment

for each dimension from 2 to 10. The result, as well as the theoretical optimal

precision values (derived from Equation 3.24) are shown in Figure 3.5.

In general, the precision increases with the number of comparisons per-

formed. It also decreases with dimension, because the higher the dimension is,

the relatively larger radius the remaining sphere will have (see Equation 3.18).

44



CHAPTER 3. PREFERENCE QUANTIFIED ACTIVE COMPLEX

HUMAN ANNOTATION

1-10−8

1-10−6

0.9999

0.99

10 20 30 40 50 60 70 80 90 100

P
re
ci
si
on

Number of Entities

opt2
opt3
opt4
opt5
opt6
opt7
opt8
opt9
opt10

naive2
naive3
naive4
naive5
naive6
naive7
naive8
naive9
naive10

Figure 3.6: Precision Achieved by the Näıve System and the Theoretical Opti-
mum, w.r.t. the Number of Comparisons Performed and Dimension from 2 to
10

We also notice that, below 1-10−5, the precision obtained from our system is

very close to the theoretical optimum. Our system outperforms the optimum

for small number of comparisons because the approximation we used for the

theoretical bound is only valid for larger number of comparisons.

For comparison purposes, we performed the same experiment on the näıve

system with random selection and the result is shown in Figure 3.6. The result

shows that the precision for the näıve system is significantly less than the

optimum. By comparing this result with Figure 3.5, we see the error rate

for our system (1 − p) is three orders of magnitude less than the näıve

system.

In Figure 3.5, we also notice that, our precision reaches an upper bound

after a certain number of comparisons. This is due to the limited number of

entities in practice. In theory, we can cut the remaining sphere infinitely, thus

achieving arbitrarily high precision. Unfortunately, in practice, once we arrive

at a remaining sphere such that no candidate comparison further cuts it, we

cannot improve our estimate anymore. And the average precision we can obtain

on such a finest remaining sphere is determined by the number of entities.

In practice, the precision is upper bounded by the distribution of the candi-
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Figure 3.7: Practical Precision Upper Bound in Our System w.r.t. the Number
of Entities, Compared with the Theoretical Values on Dimension 2 to 10

date comparisons. For instance, if at certain stage we derive a remaining sphere

such that no candidate comparison further cuts it, we obviously cannot further

improve our estimate.

We conducted a third experiment to provide more insights into this prac-

tical precision upper bound. We used the same experiment settings, except

we continued to perform comparisons until our estimate did not change any

more. (In fact, in these cases, the next best comparison we obtained from the

orthogonal query must have been performed before.) For each dimension from

2 to 10 and the number of entities from 10 to 100, we recorded the average

maximum precision achieved. The result is shown in Figure 3.7, together with

the theoretical upper bound derived from Equation 3.20.

The result shows the best precision obtained by our system is not far from

the theoretical upper bound (with one order of magnitude difference in error

rate). We also note the precision upper bound increases with respect to the

number of entities. This is because, the more entities we have, the more can-

didate comparisons we have, and the smaller the finest remaining spheres will

be.
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Figure 3.8: Precision Achieved by Our Adaptive System and the Näıve Random
System, w.r.t. the Number of Simulated of Pairwise Comparisons on Yahoo
Used Cars

3.5.2 Experiment with Real Data

To further demonstrate the improvement introduced by our adaptive compar-

ison selection, we conducted a second experiment on real data. We used the

Yahoo Used Car Dataset and randomly picked one thousand cars (one million

comparisons). For each car, we represented it using nine dimensions including

price, mileage, year etc., and normalized the data.

We measured the precision change with respect to the number of compar-

isons made, with the same settings as the previous experiment, expect that we

replaced the synthetic data with the real used car dataset. The result is shown

in Figure 3.8.

Overall, we observe a drop in precision for both our adaptive system and the

näıve system, compared to the previous experiment with synthetic data. This

is because, the real data cannot guarantee uniform distribution, for several

reasons. For instance, the distributions of some attributes are quite skewed by

themselves (e.g., price and mileage). Furthermore, certain categorical attributes

are split, causing the comparison vectors to have very few values on certain

dimensions.
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Despite the overall drop, our adaptive system still significantly outperforms

the näıve system. After 40 comparisons, the adaptive precision is 10% higher.

We also notice that the adaptive precision is capped after around 60 compar-

isons, while the random system is catching up. Intuitively, this cap is introduced

by the uneven distribution of real data. The random system will eventually

reach the cap but with a much slower convergence rate.

3.5.3 User Study

Since real users may not have linear preference and may make mistakes in

providing feedback, we conducted a user study to further analyze our system

in real scenarios. We recruited ten subjects and asked them to complete an

online survey. The survey consisted of one hundred pairwise comparisons of

used cars. The cars are from the same set of one thousand cars used in the

previous experiment.

We separated the one hundred comparisons into three buckets: An adaptive

training bucket with thirty adaptively selected comparisons, a random train-

ing bucket with thirty randomly selected comparisons, and a testing bucket

with forty random comparisons. We randomized the order of these buckets to

counterbalance the learning effect.

We respectively trained the user preference on the adaptive training bucket

and random training bucket, and tested the preference on the testing bucket.

The result is illustrated in Figure 3.9.

According to the result, our adaptive system is slightly worse than the ran-

dom system before 15 comparisons. This is because our adaptive algorithm

is much more sensitive to user errors in early stages. After 20 comparisons,

our adaptive system significantly outperforms the random system. Further-

more, after 20 comparisons, the precision obtained with real user responses

(Figure 3.9) is almost as good as the precision with simulated responses (Fig-

ure 3.8). For example, at 30 comparisons, the precision with real user feedback

is 83% and 75% for adaptive and random respectively, while it is 87% and

76% with simulated (ideal) feedback. This demonstrates that the linear pref-

erence assumption is reasonable and our system is error-tolerant in practice.

Finally, we conducted an experiment to determine the importance of com-

puting individual preferences. For this purpose, we trained a baseline general
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Figure 3.9: Precision Achieved by Our Adaptive System and the Näıve Random
System, w.r.t. the Number of Comparisons Performed by Real Users on Yahoo
Used Cars

preference from the union of all training data from all users, and tested this

preference function on each user’s individual testing bucket. The resulting pre-

cision averaged over users is also displayed in Figure 3.9. This precision is

significantly lower than both the adaptive and the random precisions. This in-

dicates that real users do exhibit very heterogenous preference in the used car

scenario and there is not a universal preference that can satisfy all the users.

3.6 Summary

To address this need of supporting complex annotation problems which can

not be directly labeled, we have developed a system for preference learning

on structured entities from adaptively selected pairwise comparisons. Under

a linear preference assumption, we formalized the preference learning problem

and divided it into two subproblems, namely preference estimation and adaptive

comparison selection.

For preference estimation, we derived the mathematical foundation of the

problem and solved it using an innovative application of SVM on the normal
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vectors of the comparisons’ pruning planes. For adaptive comparison selection,

we theoretically analyzed a näıve random selection approach and an optimal

binary selection strategy, and proposed our adaptive selection approach. We

abstracted the adaptive selection into an innovative orthogonal query, and pro-

posed a new type of high-dimensional index S-tree to answer it.

We described our algorithms for various parts and integrated them into a

preference learning system. We further implemented the system and evaluated

its effectiveness and performance. Our experiment with synthetic data showed

that our system is able to achieve a high precision with just a few comparisons,

coming close to the theoretical binary selection optimum. Both our experiment

and user study with real data demonstrated that our system significantly out-

performs the näıve random selection system. We also showed that our S-tree

index can be built efficiently and serve orthogonal query in interactive speed

with a reasonable entity size.

Finally, we experimentally demonstrated that our linear preference assump-

tion is reasonable in practice, and furthermore that our method is able to tol-

erate naturally occurring user inconsistencies in pairwise preference reporting.
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Crowdsourcing has created a variety of opportunities for many challenging prob-

lems by leveraging human intelligence. For example, applications such as image

tagging, natural language processing, and semantic-based information retrieval

can exploit crowd-based human computation to supplement existing computa-

tional algorithms. Naturally, human workers in crowdsourcing solve problems

based on their knowledge, experience, and perception. It is therefore not clear

which problems can be better solved by crowdsourcing than solving solely us-

ing traditional machine-based methods. In order to apply crowdsourcing as

the data annotation methods and leverage crowdsourced results to generate

more informative data, there is a great demand for measuring the quality of

crowdsourced results, and designing a cost-sensitive method to make the right

trade-off between the quality of result and the expenses for human efforts.

In this chapter, we design and implement a cost-sensitive method for crowd-

sourcing. We online estimate the profit of the crowdsourcing job so that those

questions with no future profit from crowdsourcing can be terminated. Two

models are proposed to estimate the profit of crowdsourcing job, namely the

linear value model and the generalized non-linear model. Based on these mod-
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els, the expected profit of obtaining new answers for a specific question is com-

puted based on the answers already received. A question is terminated in real

time if the marginal expected profit of obtaining more answers is not posi-

tive. We extend the method to publish questions in a batch manner. We

evaluate the effectiveness of our proposed method using two real world jobs

on the AMT crowdsourcing platform. The experimental results show that our

proposed method outperforms all the state-of-art methods.

4.1 Introduction

Crowdsourcing has attracted a great deal of interest as a platform for leveraging

crowd-based human computation and intelligence. It is to some extent inspired

by the vast amount of collaboration in Web 2.0 communities, where users share

not only information, but also their knowledge and intelligence. Platforms

such as, for example, the Amazon Mechanical Turk (AMT) [1], facilitate the

refinement of data and reduction of noise by passing complex jobs to human

workers. These complex jobs include image tagging, semantic-based informa-

tion retrieval, and natural language processing, which are hard for computers,

but relatively easy for human workers. Instead of designing sophisticated al-

gorithms or spending a lot of money to consult experts, many of these jobs

can be solved by human workers on a crowdsourcing platform at a much lower

cost. Some successful crowdsourcing applications that appear recently include

CrowdDB [27], CrowdSearch [115], and HumanGS [79].

Despite the success of crowdsourcing systems, employing crowdsourcing ef-

fectively remains challenging for three reasons. First, for most crowdsourcing

jobs, we need to obtain multiple answers to guarantee their quality. Thus, we

have to decide when to stop obtaining new results provided by human workers.

Most existing work uses the accuracy or the cost as the optimization objec-

tive. These turn out to be too rigid in practice. However, the trade-off is not

trivial. Typically crowdsourcing jobs may have different level of difficulty (e.g.

homework of kids vs. research problems), risks (e.g. Flickr image tagging vs.

cancer diagnosing), and profits (e.g. survey for personal interest vs. design

for investment model). Therefore, it is important to have an online economic

model that considers all these factors of crowdsourcing jobs.

Second, none of the current research focuses on whether a problem is suit-
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Figure 4.1: The Architecture of Cost Sensitive Decision Making System

able for crowdsourcing or not. Intuitively, crowdsourcing based techniques are

more fitting for problems that require semantic processing. For example, sen-

timent analysis, image tagging, and information retrieval are good problems

for crowdsourcing while large scale numerical analytics are better handled by

machines.

Finally, the estimation of crowdsourcing quality is still primitive. Low qual-

ity answers may sharply reduce the quality of crowdsourcing, and introduce

noises. To resolve the quality issue, several methods have been proposed, such

as Crowdscreen [80] and CDAS [64]. Both proposals only consider the accu-

racy of the answers provided by the workers, without taking into account the

difficulty of the tasks. However, it is very challenging to predict the difficulty

of the tasks, and a robust algorithm that can handle problems of varied levels

of difficulty and answers of varied levels of quality is needed.

In this chapter, we propose a novel online cost sensitive decision-making

model to address the above three challenges. Our contributions include:

• We propose an online, cost sensitive decision-making model to analyze

and decide whether to stop the question in its current status, given the

value of the question, the risk of getting incorrect answers, and the cost of

workers in the crowdsourcing system. To the best of our knowledge, our

model is the first that provides an online quantitative profit analysis of

crowdsourcing jobs. We further extend our algorithm to support online

cost sensitive decision-making with constraints, such as limited budgets
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etc.

• An application or task may contain questions of diverse difficulty levels.

We propose a model for measuring the difficulty of a question and We

design and implement a robust algorithm that handles such questions.

• We propose a novel algorithm called Accuracy-Cost to perform the marginal

analysis of the accuracy and the cost in crowdsourcing. The algorithm cal-

culates the incremental pro- fit when the number of workers is increased.

• We conduct extensive experimental studies on two real data-

sets obtained from the answers of workers in AMT to evaluate the ef-

fectiveness of our proposed method. The results show that our method

obtains precise results while keeping the cost low. We also develop an

automatic question dispatching method that assigns multiple questions

in a HIT while each question can be terminated at any time.

The rest of this chapter is organized as follows. Section 4.2 gives an overview

of our method. Section 4.3 explains the preliminaries. Section 4.4 presents our

proposed linear model to get real time decisions and analyse the profit. Section

4.5 extends our linear model to the non-linear model, which demonstrates the

relationship between cost and accuracy and gives our model widespread appli-

cability. Section 4.6 discusses the experimental studies. Finally, we conclude in

Section 4.7.

4.2 Overview

In this section, we give an overview of our cost sensitive decision-making method

for crowdsourcing.

Figure 4.1 shows the architecture of our proposed method. The core part

is the decision-making system (the dashed box), which consists of five com-

ponents, namely the job manager, the question dispatcher, the accuracy-cost

predictor, the strategy maker, and the termination strategy manager. The job

manager passes the questions from the crowdsourcing customer to the question

dispatcher. It keeps collecting the answers of the workers and reporting the

updated question status to the termination strategy manager. After receiv-

ing the questions, the question dispatcher allocates these questions to several

54



CHAPTER 4. ONLINE BAYESIAN MODEL FOR CROWDSOURCING

QUALITY MANAGEMENT

workers using a question dispatching algorithm (will be discussed in Subsection

4.5.2). The termination strategy manager determines whether we should stop

getting more answers for a question and return the results to the customer

based on the status of the question. These termination strategies are generated

by the strategy maker according to user’s requirements, namely the error loss

function, the accuracy/cost expectation, the budget, or other constraints. The

strategy maker employs a linear model we propose in Section 4.4. Note that

the generated strategies are stored in the termination strategy manger so that

our decision-making system is able to decide if we should terminate a question

in real-time. The accuracy-cost predictor provides two major functionalities.

First, it predicts the results as well as the accuracy/cost ratio. Second, it gen-

erates the termination strategies using a generalized non-linear model together

with the strategy maker. The details of the non-linear model is discussed in

Section 4.5.

In summary, our proposed decision-making system automatically dispatches

questions to the workers. It terminates the questions and returns the answers

in real-time according to the generated termination strategies. This decision-

making system also provides an early prediction of the results before running

a real crowdsourcing job in order to help the customer set proper user re-

quirements. In the following sections, we present the idea and the method of

implementing this decision making system.

4.3 Preliminaries

Before describing our method in Section 4.4 and 4.5, we discuss the required

prior knowledge to understand the problem.

For the sake of brevity, in our model we assume the questions are two-choice

problems. We can think of the two choices as binary values 0 and 1. However,

we can easily extend our method to problems that have more than two choices.

Question status: We model the status of a question by a pair (m, l) that

represents the numbers of the two different answers received from the workers.

Since the values 0 and 1 are just two symbols to represent both choices, the 0s

and 1s in the answers can be exchanged. As a result, the following two cases:

(1) m 0s and l 1s; (2) m 1s and l 0s can be viewed as identical to represent

the agreement of the workers on the two choices. Without loss of generality, in
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the remainder of this chapter, we use (m, l) (m > l) to represent the above two

cases.

Intuitively, the question status indicates the difficulty of the question. When

m is far larger than l, most of the workers agree on one choice. It could be that

this question is easy. On the other hand, when m is close to l, it is likely that

the question is too difficult so that the workers are just making guesses.

Question run: A question run r is a sequence of question statuses as we

get answers from workers for this question, i.e.,

r = {(m0, l0), (m1, l1), · · · , (mn, ln)}

where (m0, l0) = (0, 0) is the initial status. Every non-initial status (mi, li) has

exactly one more answer than its previous status (mi−1, li−1), i.e., (mi, li) =

(mi−1, li−1 + 1) or (mi−1 + 1, li−1). In the above question run r, the question

is terminated at question status (mn, ln), after which it will not accept more

answers. For example, {(0, 0), (1, 0), (2, 0), (2, 1)} is a valid question run that

stops after getting three answers but {(0, 0), (1, 0), (2, 1), (2, 0)} is not a valid

question run.

Accuracy of question answer: We use AQ to denote the accuracy of an

answer to question Q, i.e. the probability that a worker provides the correct

answer. Most of existing works considering the accuracy of answers assume that

the accuracy is a fixed value that can be computed from sampled answers, e.g.

[64][80]. The major drawback of these models is that they do not take the dif-

ficulty of questions into consideration. Using these models, for a single worker,

his answers to different questions would have the same quality. However, this

observation contradicts the intuition that the answers of a hard question might

be poor.

In this work, instead of modelling the accuracy as a single fixed value and

employing sampling based methods to estimate this value, we represent the

accuracy as a probability distribution. The probability distribution provides

the ability of modelling answer quality based on the observed question status.

We model the accuracy AQ as a random variable and we estimate the value

of AQ by the observation of the question status (m, l). Specifically, we assume

that AQ obeys the Beta distribution:

Assumption 4.1. Given a question Q, the probability density function of AQ
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is:

f(AQ = µ) = µa−1(1− µ)b−1/Beta(a, b)

We thus have E[AQ] = a/(a + b). a and b are parameters of the Beta

distribution, representing the prior prediction of the random variable. The

Beta distribution is actually a two-dimensional Dirichlet distribution 1. We

can replace the Beta distribution by the more general Dirichlet distribution for

multiple choice questions.

If the prior distribution is B(µ|1, 1), i.e., the uniform distribution, then the

estimation of AQ is only determined by the observation of the question status.

In other words, our method is a generalized form of both the traditional fixed

accuracy model and the uniform distribution. It takes both the prior knowledge

and the question status observation into consideration to adapt the estimated

distribution of the difficulty of problems. Ideally the estimated distribution

performs best when it is the same as the empirical distribution of problem

difficulty. However, the empirical distribution is always difficult to obtain.

Moreover, it is not feasible to compute Bayesian inference based on the empirical

distribution. The Beta distribution is used to simplify the computation, as it is

the conjugate prior distribution of Binomial and Bernoulli distribution. While

on the other hand, Beta distribution with proper parameters fits the accuracy

distribution well.

We have observed that our model is robust since using different prior pre-

diction parameters a, b almost does not change the results. This is because our

model is based on a probability distribution and it can be adaptively adjusted

to be applied on questions with diversified difficulties. Moreover, we observed

that the empirical distribution of AQ in several real question sets, including

the tweet sentiment analysis questions and common sense questions used in

our experiments, is similar to the B(µ|6, 2) distribution. On the other hand,

our experiments also show that when distribution changes, this estimation still

works well. In Section 4.4, we explain the reason that the probability distribu-

tion based accuracy model outperforms the fixed value based accuracy models.

In the experiment section, we use empirical data to support the above two

observations.

Accuracy of question result: We use AR to represent the accuracy of

the result based on a majority voting on the current question status (m, l).

1http://en.wikipedia.org/wiki/Dirichlet distribution
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Q a question in a crowdsourcing job
VQ the value of a crowdsourcing question Q
LQ the loss of getting a wrong answer for Q
CQ the cost of assigning a question to a worker

(m, l) the status of the crowdsourcing question Q

AR
the probability that the voting result of Q
is correct

AQ
the probability that a worker provides the
correct answer to the question Q

MI(m, l)
the marginal income of the question accuracy
AR in status (m, l)

P (m, l)
the expected economic profit of the question
in status (m, l)

PS(m, l)
the expected economic profit of stopping the
question in status (m, l)

PC(m, l)
the expected economic profit of continuing the
question in status (m, l)

B(µ|a, b) PDF of Beta distribution
Γ(n) Gamma function

Beta(a, b) Beta function

Table 4.1: Notations

We always choose the answer represented by the majority m. As a result,

AR is the probability that the majorities m choose the correct answer. We

define 〈x, y〉 as the status having x correct answers and y incorrect answers. As

the status (m, l) represents either m correct answers or m incorrect answers,

(m, l) = 〈m, l〉 ∪ 〈l,m〉. By Bayesian analysis, the conditional probability, AR

given AQ and observation (m, l) is:

AR =
Pr(〈m, l〉)

Pr(〈m, l〉) + Pr(〈l,m〉) =
AQ

m−l

AQ
m−l + (1−AQ)

m−l

Note that AR is also a random variable as AQ is a random variable.

The notations used in the following sections of this chapter are listed in

Table 4.1.
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4.4 Linear Decision-Making

In this section, we introduce a linear model for online decision making. We

first estimate the accuracy of the answers according to the question status and

prior distribution. Based on the estimation of the answer accuracy, we obtain

the marginal income and the profit of each status. This enables us to make

decisions at each status according to the economic profit. In this chapter, we

employ a dynamic programming algorithm to calculate the profit and generate

the strategy for each question status. We prove that the time complexity of

our strategy generating algorithm is O(n2) (n is the maximum possible number

of answers for a single question, i.e. the search space), which is a significant

improvement compared with existing methods such as CrowdScreen’s O(n4)

linear programming. In this section, we also discuss the techniques of extend-

ing our method to solve a more complex problem, namely linear model with

constraints of accuracy and cost.

4.4.1 Linear model

For a question Q, the linear model has three variables: the question value VQ,

the error loss LQ, and the question cost per worker CQ. As discussed in Section

4.2, these values are preset by the crowdsourcing customer. VQ is the value of

this question given an answer (not necessarily a correct one). The error loss

LQ is the penalty of obtaining a wrong answer for Q. CQ represents the cost

of hiring a worker for Q. According to the definition of VQ, LQ and CQ, we

propose the following linear model:

Definition 4.1 (Profit of a question). Suppose a question Q ends after it re-

ceives k answers, and the result is ans. The profit P of Q is:

(1) ans is correct: P = VQ − kCQ.

(2) ans is incorrect: P = VQ − LQ − kCQ.

However, in practice we do not know whether the answer ans is correct or

not. Thus, we compute the expected value E[P ] of the profit to estimate the

average profit of question Q. The expected profit is computed by:

E[P ] = (VQ − kCQ)E[AR] + (VQ − LQ − kCQ)(1− E[AR])

= LQE[AR] + VQ − LQ − kCQ
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❤
❤
❤
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❤
❤

❤
❤
❤
❤
❤
❤
❤❤

Prior Distribution

Question Status

(1,0) (3,3) (4,0) (8,2) (100,100) (101,100) (110, 100)

AQ

Fixed accuracy 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
B(µ|6, 2) 0.75 0.643 0.821 0.762 0.51 0.51 0.513

Fixed accuracy 0.80 0.8 0.8 0.8 0.8 0.8 0.8 0.8
B(µ|8, 2) 0.8 0.687 0.853 0.79 0.514 0.514 0.52

AR

Fixed accuracy 0.75 0.75 0.5 0.988 0.999 0.5 0.75 1
B(µ|6, 2) 0.75 0.5 0.962 0.953 0.5 0.51 0.591

Fixed accuracy 0.80 0.8 0.5 0.996 1 0.5 0.8 1
B(µ|8, 2) 0.8 0.5 0.985 0.983 0.5 0.514 0.634

Table 4.2: Trends of AQ and AR

where AR is the probability that ans is correct. Note that AR is a random

variable, we thus use the expected E[P ] with respect to all possible worlds of

AR.

We use two functions, namely the value function fV (E[AR]) and the cost

function fC(E[AR]), to describe the expected profit function E[P ](E[AR]). fV (E[AR])

is the expected gain from the job, while fC(E[AR]) is the cost of crowdsourcing.

In this model, obviously fV (E[AR]) (i.e. LQE[AR]+VQ−LQ) is a linear function

of accuracy E[AR]. It is remarkable that the expected profit function is not

a linear function for E[AR], since larger E[AR] requires more answers (larger

number of k). We will discuss the non-linear fV (E[AR]) in next section for

some special needs in multi-question situation.

In Subsection 4.4.2, we describe the method to estimate E[AR] based on the

prior distribution B(µ|a, b) of the difficulty AQ and the observations on the final

status (m, l) of Q.

We formally define the decision-making problem based on the linear model.

Definition 4.2. Given VQ, LQ and CQ of a question Q, find the decision-

making algorithm to maximize E[P ] among all possible runs of Q on any answer

sequence provided by the workers.

We next show the method of deriving E[AQ], E[AR] etc. in Subsection 4.4.2

and we discuss the algorithm of finding the question run that maximizes E[P ]

in Subsection 4.4.3.

4.4.2 Accuracy Estimation

Suppose the observation of the final status is (m, l), we can derive the E[AQ]

based on the prior distribution B(µ|a, b) using Bayesian Analysis. The posterior

result is our estimation of E[AQ].
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Theorem 4.1.

E[AQ] =
Γ(a+m+ 1)Γ(b + l) + Γ(a+ l + 1)Γ(b+m)

(a+ b+m+ l)(Γ(a+m)Γ(b+ l) + Γ(a+ l)Γ(b+m))

where Γ(n) is the Gamma function such that Γ(n) = (n − 1)! for any positive

integer n.

Proof. We prove the theorem using Bayesian Theorem. The conditional proba-

bility density function of the observation O = (m, l) given the condition AQ = x

(x ∼ B(µ|a, b)) is

fO(m, l|AQ = x) =

Ç
m+ l

m

å
(xm(1− x)l + xl(1− x)m)

Note that the probability density function contains two cases: (1) m correct

answers, l incorrect answers and (2) m incorrect answers, l correct answers.

Using Bayesian Theorem, we have:

fAQ
(AQ = x|m, l) =

fO(m, l|AQ = x)fAQ
(AQ = x)

fO(m, l)

=
(xm(1− x)l + xl(1− x)m)xa−1(1− x)b−1

∫ 1
0 (x

m(1− x)l + xl(1− x)m)xa−1(1− x)b−1dx

=
xa+m−1(1− x)b+l−1 + xa+l−1(1− x)b+m−1

∫ 1
0 xa+m−1(1− x)b+l−1 + xa+l−1(1− x)b+m−1dx

Therefore, the expected value of AQ is:

E[AQ] =

∫ 1

0
xfAQ

(AQ = x|m, l)dx

=

∫ 1

0

xa+m(1− x)b+l−1 + xa+l(1− x)b+m−1

∫ 1
0 (x

a+m−1(1− x)b+l−1 + xa+l−1(1− x)b+m−1)dx
dx

=

∫ 1
0 xa+m(1− x)b+l−1dx+

∫ 1
0 xa+l(1− x)b+m−1dx

∫ 1
0 (x

a+m−1(1− x)b+l−1dx+
∫ 1
0 xa+l−1(1− x)b+m−1)dx

=
Beta(a+m+ 1, b+ l) +Beta(a+ l + 1, b+m)

Beta(a+m, b+ l) +Beta(a+ l, b+m)

=
Γ(a+m+ 1)Γ(b+ l) + Γ(a+ l + 1)Γ(b+m)

(a+ b+m+ l)(Γ(a+m)Γ(b+ l) + Γ(a+ l)Γ(b+m))

Theorem 4.1 gives the average accuracy of the answers. Based on this

theorem, we can further derive the expectation of the accuracy of the results
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AR using Bayesian Analysis. We have the following theorem:

Theorem 4.2. Given observations on the final status (m, l) of a question, the

expected accuracy of the results E[AR] is:

E[AR] =
Γ(a+m)Γ(b+ l)

Γ(a+m)Γ(b+ l) + Γ(a+ l)Γ(b+m)

Proof. Note that AR is a function of AQ. Thus, the expected value of AR is:

E[AR] =

∫ 1

0
ARfAQ

(AQ = x|m, l)dx

=

∫ 1

0

xm(1− x)l

xm(1− x)l + xl(1− x)m

× xa+m−1(1− x)b+l−1 + xa+l−1(1− x)b+m−1

∫ 1
0 xa+m−1(1− x)b+l−1 + xa+l−1(1− x)b+m−1dx

dx

=

∫ 1
0 xa+m−1(1− x)b+l−1dx

∫ 1
0 xa+m−1(1− x)b+l−1 + xa+l−1(1− x)b+m−1dx

=
Beta(a+m, b+ l)

Beta(a+m, b+ l) +Beta(a+ l, b+m)

=
Γ(a+m)Γ(b+ l)

Γ(a+m)Γ(b+ l) + Γ(a+ l)Γ(b+m)

Theorem 4.1 and 4.2 show that the expected values of AQ and AR only

depend on the status (m, l) and the prior parameters a, b.

To illustrate Theorem 4.1 and 4.2, we show several examples of trends of AQ

andAR on different question status given specified prior distribution of difficulty

of questions in Table 4.2. We compare the two Beta distributions B(µ|6, 2) and
B(µ|8, 2) with two fixed value based models with accuracy 0.75 and 0.8, which

are the expected values of the two Beta distributions respectively. We obtain

the following facts from Table 4.2: in status (3, 3), the predicted value of AQ of

the B(µ|8, 2) distribution model (0.687) is smaller than that of fixed value model

(0.75); in status (4, 0), the predicted value of AQ of the B(µ|6, 2) distribution
model (0.821) is larger than that of fixed value model (0.8). These two facts

show that the Beta distribution model provides a better prediction than the

fixed value based models, since the predicted values of AQ according to the fixed

value based models are always the same no matter what the current question

status is.
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Moreover, the predicted values of different distribution models converge

while the number of answers goes up. Therefore, the choice of prior parameters

in the distribution model is not important, because the distribution model can

adaptively adjust the predicted values according to the observation of question

status Consider the status (8, 2), the two fixed value models (0.75 and 0.8) pro-

vide very aggressive predictions on AR, i.e. 0.999 and 1 respectively. However,

in practice, 8 of 10 workers agree may not always guarantee the correctness of

the results.

When the status is (100, 100), we intuitively believe AQ is likely to be close

to 0.5 rather than 0.75 or 0.8. Based on the status (100, 100), we consider the

case of accepting one more answer, i.e. question status (101, 100). Obviously AR

should still be close to 0.5 as the votes of both choices are very close. However,

the two fixed value based models provide the prediction of AR as 0.75 and

0.8 respectively, which are the same as the predicted values in question status

(1, 0). This example shows that the Beta distribution model outperforms the

fixed value based models by considering the question status.

According to Theorem 4.1 and 4.2, we can predict the possible future an-

swers based on E[AQ], E[AR] and the current status (m, l). We define two

transitive probabilities:

(1) Pr(+1|m, l): probability from status (m, l) to (m+ 1, l).

(2) Pr(−1|m, l): probability from status (m, l) to (m, l + 1).

Intuitively Pr(+1|m, l) and Pr(−1|m, l) represent the probability that the next

answer is the same value as the value voted by m and l answers respectively.

Obviously Pr(+1|m, l) + Pr(−1|m, l) = 1. We have the following theorem:

Theorem 4.3.

E[Pr(+1|m, l)]

=
Γ(a+m+ 1)Γ(b+ l) + Γ(b+m+ 1)Γ(a + l)

(a+ b+m+ l)(Γ(a+m)Γ(b+ l) + Γ(a+ l)Γ(b+m))

The proof is analogous to Theorem 4.1. Based on these above theorems, we

can quantitatively derive the decision-making strategies.
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4.4.3 Decision Making

We consider the marginal income of accuracy at each status (m, l). Then we

derive the profit according to the marginal income of accuracy. We define

the marginal income of accuracy at status (m, l) as the expected increase of

the E[AR] after obtaining a new answer. We denote the marginal income of

accuracy at status (m, l) as MI(m, l).

Definition 4.3.

MI(m, l) = E ′[AR|m, l]− E[AR|m, l]

where E ′[AR|m, l] is the expected accuracy of the results after getting one more

answer, i.e. E ′[AR|m, l] =

if m¿l: E[E[AR|m+ 1, l]Pr(+1|m, l) + E[AR|m, l + 1]Pr(−1|m, l)], i.e. E[AR|m+

1, l]E[Pr(+1|m, l)] + E[AR|m, l + 1]E[Pr(−1|m, l)]

if m=l: E[E[AR|m+1, l]Pr(+1|m, l) +E[AR|l+ 1,m]Pr(−1|m, l)], i.e. E[AR|m+

1, l]E[Pr(+1|m, l)] + E[AR|l + 1,m]E[Pr(−1|m, l)]

By simplifying the equations in Definition 4.3, we have the following theo-

rem:

Theorem 4.4. The marginal income of accuracy MI(m, l) satisfies:

(1) MI(m, l) = 0 when m > l.

(2) MI(m,m) =
a− b

2(a+ b+ 2m)
.

Proof. We prove the theorem by calculating MI(m, l). When m > l, getting

an extra answer cannot change the result of the majority voting. Therefore,

the marginal income of accuracy is 0. As a result, MI(m, l) = 0 when m > l.
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When m = l,

MI(m,m) = E[AR|(m+ 1,m)]− E[AR|(m,m)]

=
Γ(a+m+ 1)Γ(b+m)

Γ(a+m+ 1)Γ(b+m) + Γ(a+m)Γ(b+m+ 1)

− Γ(a+m)Γ(b+m)

Γ(a+m)Γ(b+m) + Γ(a+m)Γ(b+m)

=
(a+m)Γ(a+m)Γ(b+m)

((a+m) + (b+m))Γ(a+m)Γ(b+m)
− 1

2

=
a+m

a+ b+ 2m
− 1

2

=
a− b

2(a + b+ 2m)

Note that a > b is guaranteed by the prior distribution. Therefore,MI(m,m)

decreases while m increases.

Based on the marginal income of the accuracy, we can further derive the

profit P (m, l) of a question in status (m, l). The profit is defined as the max-

imum economic profit at status (m, l) given the linear model in Subsection

4.4.1. We introduce two more profit functions before formally defining P (m, l),

namely the profit PS(m, l) of stopping the question at status (m, l) and the

profit PC(m, l) of continuing the question at status (m, l). Since a question has

only two choices (stopping and continuing) at any status, we therefore formally

define the profit at status (m, l) as:

Definition 4.4.

P (m, l) = max{PS(m, l), PC(m, l)}

Intuitively, we should stop the question when PS(m, l) >= PC(m, l) because

we cannot benefit from this question any more by waiting for more answers.

Now we consider the two profit functions PS(m, l) and PC(m, l). Given the

accuracy E[AR], we know that the result is incorrect with probability 1−E[AR].

Therefore, according to the linear model, the profit PS(m, l) satisfies:

PS(m, l) = VQ − (1− E[AR])LQ − (m+ l)CQ

When we continue a question, we will pay one more CQ and get a new answer

from a new worker. Meanwhile, the status is also changed to a new status. It is
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Algorithm 1: Generate Linear Strategy Algorithm
Input: Parameter a, b of prior distribution, Error Loss LQ, question cost CQ

Output: Strategy S for each status (m, l)

1 M ← ⌈12(
LQ(a−b)

6CQ
− (a+ b))⌉;

2 S.M ←M ;
3 for i from M to 0 do

4 S.(M, i)← stopping;
5 S.PS(M, i)← VQ − (1− E[AR|M, i])LQ − (M + i)CQ;
6 S.P (M, i)← S.PS(M, i);

7 for i from M − 1 to 0 do

8 for j from i to 0 do

9 S.PS(i, j)← VQ − (1− E[AR|i, j])LQ − (i+ j)CQ;
10 S.PC(i, j) ←

E[Pr(+1|i, j)]S.P (i + 1, j) + E[Pr(−1|i, j)]S.P (i, j + 1)− CQ;
11 S.P (i, j)← max{S.PS(i, j),S.PC (i, j)};
12 if S.PS(i, j) >= S.PC(i, j) then
13 S.(i, j) ← stopping;

14 else

15 S.(i, j) ← continuing;

16 return S

easy to find that the next status is (m+1, l) with probability Pr(+1|m, l) and
(m, l+1) with probability Pr(−1|m, l). Thus, the profit PC(m, l) is recursively

defined as following:

PC(m, l) = E[Pr(+1|m, l)]P (m+ 1, l)

+E[Pr(−1|m, l)]P (m, l + 1)− CQ

Given the recursive definition, it is difficult to calculate them directly. Now

we discuss the condition to guarantee the strategy of one status (m, l) stopping,

i.e.

PS(m, l) > PC(m, l)

m that satisfies MI(m,m)LQ < CQ is obvious a lower bound, as we will

not get a positive profit in each future step. Moreover, we have found a looser

lower bound of m. We have the following theorem:

Theorem 4.5 (Termination Theorem). A sufficient condition of PS(m, l) >
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PC(m, l) is

m >
1

2
(
LQ(a− b)

6CQ
− (a + b))

and l < m.

Proof. We define P ′(m, l) = P (m, l) − PS(m, l). Based on this definition, we

can rewrite the Definition 4.4 by

P ′(m, l) = max{0,MI(m, l)LQ + E[Pr(+1|m, l)]P ′(m+ 1, l)

+ E[Pr(−1|m, l)]P ′(m, l + 1)−CQ}

We have the observations P ′(m, l) > P ′(m, l − 1) and P ′(m, l) > P ′(m + 1, l)

for all m > l. For a large enough number m, we have MI(m,m) < CQ/LQ since

limm→+∞MI(m,m) = 0. Based on MI(m,m)LQ < CQ, there exist some m such

that P ′(m+ 1,m) = 0. We can prove the following Lemma:

Lemma 4.1. P ′(m,m−1) = 0 if P ′(m+1, m) = 0 and m >
1

2
(
LQ(a−b)

6CQ
−(a+b))

Based on Lemma 4.1, we therefore state that P ′(m,m) = 0 when m >
1

2
(
LQ(a−b)

6CQ
− (a+ b)).

Proof of Lemma 4.1. We prove the lemma by contradiction. If P ′(m,m−1) >
0, we have the following inequality: MI(m,m− 1)LQ+E[P (+1|m,m− 1)]P ′(m+

1,m − 1) + E[P (−1|m,m − 1)]P ′(m,m) − CQ > 0 where MI(m,m − 1) = 0.

Meanwhile, we have

P ′(m+ 1,m− 1) <= P ′(m+ 1,m)

As a result, P ′(m+1,m−1) = 0. Obviously, E[P (−1|m,m−1)] < 1/2. Therefore,

we have P ′(m,m) > 2CQ.

Note that

P ′(m,m) = MI(m,m)LQ + P ′(m+ 1,m)− CQ

According to the fact that P ′(m+ 1,m) = 0, we have

P ′(m,m) = MI(m,m)LQ −CQ

Therefore,

MI(m,m)LQ − CQ > 2CQ
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Moreover, MI(m,m) = (a − b)/(2(a + b + 2m)). As a result, we have m <
1
2(

LQ(a−b)
6CQ

−(a+b)) , which contradicts with m > 1
2(

LQ(a−b)
6CQ

−(a+b)).

We have designed the linear model based algorithm (Algorithm 1) to gener-

ate the strategy deciding whether the question should stop at each status (m, l).

The search space bound M is the upper-bound of m in all possible continuing

status (m, l) in Theorem 4.5:

M = ⌈1
2
(
LQ(a− b)

6CQ
− (a + b))⌉ (4.1)

We apply dynamic programming to iteratively compute the decision of the gen-

erated strategy S from the upper-bound back to 0. For each status (m, l), we

compute PS(m, l) and PC(m, l) based on P (m+1, l) and P (m, l+1). In strategy S,
the decision is made for each status (m, l) by comparing PS(m, l) and PC(m, l).

As a result, the question run that maximizes P (m, l) is found by stopping the

question at the first status (m∗, l∗) such that PS(m
∗, l∗) > PC(m

∗, l∗). Algorithm

1 can be applied to find the question run that maximize P (m, l) for all input

0-1 sequences. Obviously, the time complexity of Algorithm 1 is O(M2) where

M is computed in Equation 4.1. Note that Algorithm pre-computes all possi-

ble decisions offline and it only takes O(M) time to make decisions online by

querying S.(m, l) in O(1) time for each status (m, l).

4.4.4 Model with Constraints

In this subsection, we discuss the decision-making problem with constraints on

the accuracy and cost of the result of the question. Suppose the constraints

are represented by cost 6 Budget. We solve this problem by simply adapting

Algorithm 1. We mark the status (m, l) as stopping when (m+l+1)CQ > Budget.

This adapted algorithm is outlined in Algorithm 2. We can extend algorithm

2 to support other constraints such as accuracy etc.

In Algorithm 2, the upper bound of search space M is computed in line 1.

Line 3-6 pre-computes the strategy for status (M, i). All statuses (M, i) are set

to be stopping. Line 7-20 the strategy of each status (i, j) is computed. When

status (i, j) does not satisfy the constraints, it is set to be stopping in line

10-12. Otherwise, PS(i, j) and PC(i, j) are computed respectively in line 14-15.

The decision of status (i, j) is decided by comparing PS(i, j) with PC(i, j) in line
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Algorithm 2: Generate Linear Strategy Algorithm with Constraints
Input: Parameter a, b of prior distribution, Error Loss LQ, question cost CQ,

Budget constraint θ
Output: Strategy S for each status (m, l)

1 M ← ⌈12(
LQ(a−b)

6CQ
− (a+ b))⌉;

2 S.M ←M ;
3 for i from M to 0 do

4 S.(M, i)← stopping;
5 S.PS(M, i)← VQ − (1− E[AR|M, i])LQ − (M + i)CQ;
6 S.P (M, i)← S.PS(M, i);

7 for i from M − 1 to 0 do

8 for j from i to 0 do

9 if (i+ j + 1)CQ > θ then

10 S.PS(i, j)← VQ − (1− E[AR|i, j])LQ − (i+ j)CQ;
11 S.P (i, j) ← S.PS(i, j);
12 S.(i, j) ← stopping;

13 else

14 S.PS(i, j)← VQ − (1− E[AR|i, j])LQ − (i+ j)CQ;
15 S.PC(i, j)←

E[Pr(+1|i, j)]S.P (i + 1, j) + E[Pr(−1|i, j)]S.P (i, j + 1)− CQ;
16 S.P (i, j) ← max{S.PS(i, j),S.PC (i, j)};
17 if S.PS(i, j) >= S.PC(i, j) then
18 S.(i, j)← stopping;

19 else

20 S.(i, j)← continuing;

21 return S

17-20. The computed strategy S is returned as the result of Algorithm 2 (line

21).

4.5 Non-linear Decision-Making

In this section, we discuss a non-linear model based approach to predict the

relationship between the accuracy and the cost of the question without prior

knowing LQ. We have presented the decision making algorithm in Section 4.4

for a single question, where the job value is a linear function of the accuracy.

However, considering the case of making decisions on a batch of questions, the

value function might be more complicated than a linear function. For example,
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Algorithm 3: Accuracy-Cost Algorithm
Input: Parameter a, b of prior distribution, question cost CQ

Output: List of tuples of accuracy, cost and error loss {〈accu, cost, LQ〉}
1 result ← ∅;
2 LQ ← 1000CQ;
3 while LQ > 0 do

4 S ← GenerateLinearStrategy(a, b, LQ , CQ);
5 accu ← ComputeAccuracy(S);
6 cost ← ComputeCost(S);
7 result ← result ∪〈accu[0][0], cost[0][0], LQ〉;
8 max← 0;
9 foreach Non-stop status (m, l) in S.status do

10 c← cost[m][l];
11 lQ ← cLQ/(PC(m, l)− PS(m, l) + c);
12 if lQ > max then max← lQ ;
13 ;

14 LQ ← max;

15 return result;

we list three non-linear functions in Figure 4.2, representing the cases that we

have constraints on the quality of the data and we use the information entropy

to measure the informativeness of the data. Therefore, the value functions are

not linear. Moreover, the non-linear model based method is also driven by

situations where the customers are not able to estimate the error loss function

LQ of some problems. The method we have discussed in Section 4.4 cannot be

simply applied to make decisions for the question in the above situations. Since

the quality of data can be well estimated by the accuracy when the number

of questions is large enough, we propose Algorithm 3 to find the relationship

between accuracy and cost (shown in the bottom of Figure 4.2) in Subsection

4.5.1. Algorithm 3 calculates the difference between the value function and

the cost function as the profit function (as illustrated on the right hand side

of Figure 4.2). Thus, the maximum point of the profit function (star point in

Figure 4.2) is the trade-off point to maximize the profit. We extend our method

to solve the problem of decision making for multiple questions in Subsection

4.5.2.
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Figure 4.2: Examples of non-linear decision making

4.5.1 Accuracy-Cost Relationship

To obtain the cost function of accuracy, we propose the non-linear model based

algorithm (Algorithm 3) by iteratively applying Algorithm 1. According to

the Algorithm 1, we know that given fixed a, b, LQ/CQ, we have a determined

strategy to find the question run that maximizes the profit.

The basic idea of this non-linear model based algorithm is to:
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Step 1. initialize LQ to be a sufficiently large value (i.e. 1000CQ) and compute

the accuracy and cost based on LQ.

Step 2. iteratively adjust the value of LQ by reducing LQ such that the decision

of only one status (m, l) changes from continuing to stopping.

Step 3. compute accuracy and cost and go back to Step 2.

This method is to enumerate the accuracy and cost pairs by gradually reduc-

ing the value of LQ. We show the detailed method in Algorithm 3. In Algorithm

3, we record the expected accuracy and cost for each status (m, l) using the

strategy generated from LQ. Algorithm 3 iteratively reduces LQ by selecting

the maximum lQ that can change exactly one continuing status to stopping. lQ

is computed in line 11. The correctness is guaranteed by the following lemma:

Lemma 4.2. Given a continuing status (m, l), we reduce LQ to be cost[m][l]

LQ/(PC(m, l) − PS(m, l) + cost[m][l]). If the stopping/continuing status of all

status (m′, l′) other than (m, l) are not changing, we have PC(m, l) = PS(m, l).

Proof of Lemma 4.2. By the definition of the two profits, i.e. PS(m, l) and

PC(m, l):

PS(m, l) = VQ − LQ + E[AR|m, l]LQ − (m+ l)CQ

PC(m, l) = VQ − LQ + accu[m][l]LQ − (m+ l)CQ

−cost[m][l]

We therefore have

PS(m, l)− PC(m, l) = LQ∆accu− cost[m][l]

where ∆accu = accu[m][l] −E[AR|m, l]. We assume that lQ∆accu

− cost[m][l] = 0. Thus,

lQ =
cost[m][l]

∆accu
=

cost[m][l]LQ

PC(m, l)− PS(m, l) + cost[m][l]
�

The strategy is generated according to the newly updated LQ. We employ

dynamic programming method to compute the accuracy and cost in Algorithm

4 and 5. These two algorithms compute the accuracy and cost respectively for

each status (m, l) from (M,M) (stopping) back to (0, 0).

We formally define the non-linear value function problem as:
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Algorithm 4: Compute Accuracy
Input: Strategy S
Output: Expected accuracy accu of the problem in every status (m, l) using

Strategy S
1 M ← S.M ;
2 for i from M to 0 do

3 for j from i to 0 do

4 if (i, j) is stopped then

5 accu[i][j]← E[AR|i, j];
6 else

7 accu[i][j]← Pr(+1|i, j)accu[i+ 1][j] + Pr(−1|i, j)accu[i][j − 1];

8 return accu

Algorithm 5: Compute Cost
Input: Strategy S
Output: Expected accuracy cost of the problem in every status (m, l) using

Strategy S
1 M ← S.M ;
2 for i from M to 0 do

3 for j from i to 0 do

4 if (i, j) is stopped then

5 cost[i][j]← (i+ j)CQ;

6 else

7 cost[i][j]← Pr(+1|i, j)cost[i+1][j] +Pr(−1|i, j)cost[i][j − 1] +CQ;

8 return cost

Definition 4.5. Given the functions of the value of question quality fV (accu)

and cost fC(accu) with respect to the accuracy of the result, find the strategy to

maximize fP (accu) = fV (accu) − fC(accu) on each possible question run.

Algorithm 3 provides the accuracy-cost relationship fC(accu), which makes

it possible to find a trade-off point when user requirements fV (accu) is clear.

Moreover, this can be used to give customer the accuracy and cost predictions

early and help the user to choose suitable requirements like fV (accu) or special

point of 〈accu, cost, LQ〉 .
The solution of those non-linear fV (accu) requirements can be done as fol-

lows:

1. Compute result = {〈accu, cost, LQ〉} by calling Algorithm 3.
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2. Find maxaccu∈result{fV (accu)−fC(accu)} by computing the difference between

the non-linear value and cost for each accu in the result. Generate the

strategy using the corresponding LQ of accu as parameter of Algorithm 2.

Notice that in general case the fP (accu) is not convex (e.g. the profit func-

tion for stage value). As a result, we have to calculate every point for computing

fP (accu).

This method can also be applied to solve the problem with constraints on

the expectation of accuracy or cost. We only need to modify the non-linear

functions fV (accu) to present the constraints (e.g.stage value function gives a

strict constraint of accuracy).

4.5.2 Decision-Making for Multiple Questions

We discuss the question dispatching algorithm (Algorithm 6) in this subsection.

This algorithm aims to build a question dispatcher that assigns HITs containing

a batch of questions to the workers. Batching questions in a HIT is an effective

approach to reduce the average cost of each question. However, our proposed

algorithm only generates strategies for a single question. Questions may be

included multiple times in different HITs and their decisions are made in real-

time. The numbers of required workers are different among the questions.

Therefore, we need to design an algorithm to dynamicly batch non-stopped

questions in a HIT. The question dispatching algorithm is designed in order to

reduce the rate of already stopped questions in the HITs.

The key idea of our question dispatching algorithm is to manage all the

questions to be finished at almost the same time. We store all the unfinished

questions in a question pool and maintain the number of questions included

in the HITs. Attributed to the fact that the randomness of receiving order of

the answers, it is difficult to design a deterministic method to find the best

assignment of questions. Instead, we maintain the expected number of asking

questions from current status such that these numbers are synchronously de-

creased. As a result, we put questions with the largest expected number of

asking questions into a HIT.

We outline the function of dispatcher and updater in Algorithm 6. For the

question, the number of expected asking questions Ci at status (Qi.m,Qi.l) is

retrieved from cost[Qi.m][Qi.l] computed by Algorithm 5. Meanwhile, there
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Algorithm 6: Question Dispatching Algorithm

1 Dispatcher:

2 Initialize min-heap heap to be empty;
3 foreach non-stop question Qi do

4 Ci ← cost[0][0];
5 Pi ← 0;
6 Ei ← Ci − Pi;
7 if heap.size()¡k then

8 heap.push(Qi);

9 while not all questions are stopped and a new worker comes do

10 foreach question Qi in heap do

11 Assign Qi to the HIT; Pi ← Pi + 1;
12 Ei ← Ci − Pi;

13 foreach non-stop question Qi in heap do

14 Maintain heap using Ei;

15

16 Updater:

17 while any question Qi gets into a stopping status (Qi.m,Qi.l) do
18 Mark Qi as a stopped question.

19 while any question Qi gets a new answer to the status (Qi.m,Qi.l) do
20 Pi ← Pi − 1;
21 Ci ← cost[Qi.m][Qi.l];
22 Ei ← Ci − Pi;
23 Maintain heap using Ei;

are some HITs on the worker’s hand. We record the number of HITs that are

posted but have not yet received answers of each question Qi as Pi. We use

Ei = Ci − Pi as the estimation of expected asking questions. When a HIT

is posted or its answer is received, the expectations of effected questions are

updated and the questions with the largest expected numbers are maintained

with a min heap.

4.6 Experimental Studies

This section will discuss the experiment results of our methods. To evaluate

the performance of our proposed methods, we have conducted extensive experi-

ments on two real-world datasets on the AMT. Besides, various robustness tests

and theoretical results are studied using synthetic datasets. We show that our
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Figure 4.3: Distribution of the difficulty of problems vs. B(µ|6, 2) distribution

proposed method: (1) works better than any other existing method in terms of

both the accuracy and the cost; (2) is robust to handle questions with diver-

sified difficulty distribution and unexpected data quality; (3) is scalable when

the maximum number of workers is increased; (4) works well on various kinds

of crowdsourcing questions.

4.6.1 Experiment Setup

We use the following two datasets for our performance studies, namely tweet

sentiment analysis (TSA) dataset and common sense question (CSQ) dataset.

Humans are good at comprehension and perform well on problems requiring

background knowledge. These two datasets focus on the two main advantages

of crowdsourcing respectively.

TSA dataset: A real-world tweets dataset containing 400 comments of 20

movies is crawled from Twitter. We generate a sentiment analysis question

(positive, negative) for each of the comments as a candidate crowdsourcing

task. We assign each of the 400 questions to up to 50 workers using the ques-

tion dispatching algorithm (Algorithm 6). We repeat the question dispatching
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Figure 4.6: Expected accuracy given the number of workers

algorithm 10 times to get 10 different question runs for each question. In total,

we get 200,000 answers from the workers as the TSA dataset.

CSQ dataset: We crawl 400 common sense problems from the Internet as

the candidate crowdsourcing tasks. We also assign each of the 400 questions to

up to 50 workers by repeatedly using Algorithm 6 10 times. In total, we also

get 200,000 answers from the workers as the CSQ dataset.

Figure 4.3 compares the distribution of the difficulty of the questions with

B(µ|6, 2) distribution. The average accuracy of results AR is tested on more

than 200 answers. This figure indicates that B(µ|6, 2) distribution can be well

used to model the distribution of the difficulty of the Tweet sentiment analysis

questions. Moreover, the results also show that about 6.8% of questions have

an average AR smaller than 0.5, which fits the prediction well. The predicted

value of the proportion is 6.25% based on B(µ|6, 2) distribution. The accuracy

of these questions become even worse when more workers answer them. As a

result, the overall accuracy of results on all questions can only achieve 93%-

94% rather than very close to 100%. We also observe that the questions in

both datasets are a bit more difficult than the expectation based on the prior
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Figure 4.7: Empirical number of workers given required accuracy on TSA
dataset

B(µ|6, 2) distribution.
To compare the performance of proposed algorithm with other existing al-

gorithms, we implement four algorithms, i.e. Accuracy-Cost (Algorithm 3),

Crowdscreen [80], Majority Voting and Naive Majority Voting Algorithm. In

the majority voting algorithm, when the number of providers of a value is more

than a half of the maximum number of workers, the online majority voting

algorithm outputs this value and stops, whereas in the offline naive majority

voting algorithm, all the values from all workers are collected and output the

majority results.

4.6.2 Problem-Crowdsourcing Fitness

In this subsection we give the analysis on whether a job is appropriate for

crowdsourcing or not. We use CQ as the unit. The results in Figure 4.4 show

that the lower bound of VQ to get benefit from crowdsourcing job in various

LQ. The loss and cost VQ−P (0, 0) means the total cost of solving a question by

crowdsourcing (notice that P (0, 0) contains VQ in it, this measure only contains
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Figure 4.8: Empirical accuracy given the number of workers on TSA dataset

the error loss expectation and questions cost and is irrelevant to VQ). For those

jobs where LQ is too high or VQ is not enough, crowdsourcing is not a cost-

effective way. We compare the loss and cost on two set of questions, namely

the questions obeying B(µ|6, 2) distribution and the questions having the ideal

same AQ = 0.75.

4.6.3 Performance of Accuracy-Cost Algorithm

We test the performance of our Accuracy-Cost Algorithm by investigating the

accuracy-cost relationship on both datasets TSA and CSQ. The results of the

number of workers given required accuracy and the accuracy given the num-

ber of workers are showed here. We compare the four algorithms, namely

Accuracy-Cost, CrowdScreen, Majority Voting and Naive Majority Voting. All

four algorithms make the trade-off according to their strategy.

Figure 4.5 and Figure 4.6 present the theoretical predictions of the number

of workers given a required accuracy and the accuracy given the number of

workers respectively based on the B(µ|6, 2) distribution model.
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Figure 4.9: Empirical number of workers given required accuracy on CSQ
dataset

Experimental results on the TSA dataset: Figure 4.7 shows the em-

pirical number of workers hired in the crowdsourcing system. In Figure 4.7, the

results show that our Accuracy-Cost Algorithm needs the smallest number of

workers and Naive Majority Voting needs the largest number. Meanwhile, com-

paring Figure 4.7 with Figure 4.5, the empirical results validate the theoretical

predictions. Figure 4.8 shows the empirical accuracy of the crowdsourcing tasks

on the TSA dataset. The results in Figure 4.8 show that our Accuracy-Cost

Algorithm has the highest accuracy while Naive Majority Voting has the low-

est. The empirical results also fit the theoretical predictions well by comparing

Figure 4.8 with Figure 4.6. Our Accuracy-Cost Algorithm outperforms other

algorithms because our Accuracy-Cost Algorithm computes the maximum ac-

curacy for each possible cost and the smallest cost for each possible accuracy

(in Algorithm 3).

Experimental results on the CSQ dataset: Figure 4.9 shows the empir-

ical number of workers hired in the crowdsourcing system. We observe similar

trends in Figure 4.9, i.e. the number of workers of Accuracy-Cost Algorithm is
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Figure 4.10: Empirical accuracy given the number of workers on CSQ dataset
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the smallest. The empirical results in Figure 4.9 also fit the theoretical predic-

tion of the results in Figure 4.5 well. Figure 4.10 shows the empirical accuracy

of the crowdsourcing tasks on the CSQ dataset. The results in Figure 4.10 are

similar to the results in Figure 4.6.

The experimental results on these two datasets show that our method can

be applied on various crowdsourcing questions and yield good accuracy while

requiring the least number of workers.

4.6.4 Robustness

We study the robustness of our algorithm by varying the distribution of ques-

tion difficulty. We vary variance and expectation of the difficulty distribution

of questions such that the distribution is different from our prior B(µ|6, 2) dis-
tribution. The robustness of obtaining satisfied results on unexpected hard

questions (or low quality users) is another key requirement, since low data

quality without expectation is usually unacceptable.

Figure 4.11 demonstrates the empirical accuracy of our Accuracy-Cost Al-
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gorithm, CrowdScreen and Majority Voting working on unexpected low quality

answers with an average 65% accuracy. Note that these four algorithms expect

the difficulty of questions to be 75% based on the prior B(µ|6, 2) distribution.
Figure 4.11 shows that our algorithm still produces results with accuracy very

close to the accuracy required by the customer while the other two algorithms

fail to obtain results with high accuracy. This phenomenon is due to the fact

that our algorithm models the probability of a worker providing an answer as

a random variable. This property provides the ability to detect the decrease

of accuracy and guarantee high quality results by asking more questions au-

tomatically. We can see that with the growth of the number of workers(i.e.

the increase of accuracy requirement), our method obtains more answers and

produces more precise estimation, which results in stronger resistance.

Figure 4.12 and Figure 4.13 show the performance when we vary the diffi-

culty distribution of questions. In both experiments algorithm with B(µ|6, 2)
distribution and CrowdScreen algorithm are compared to the algorithm using

the exact prior distribution (our algorithm outputs the best strategy when data

exactly match the prior distribution). In our experiments, we use the accuracy

that the exact prior distribution algorithm using 10 workers can achieve as the

accuracy requirements. We report the number of needed workers to achieve

the accuracy requirements for both algorithms. Figure 4.12 reports the results

of varying the variance of the distribution and Figure 4.13 reports the results

of varying the expectation of the distribution. The results in these two figures

indicate that our Accuracy-Cost algorithm needs almost the same number (less

than 2% increment) of workers as the exact prior distribution algorithm when

we vary the difficulty distribution of the questions, while Crowdscreen algorithm

needs more workers when the variance of the distribution is increased.

Instead of using a fixed value, this random variable based probability model

is more robust.This implies that our algorithm can by applied to solve unex-

pected hard questions or working on data sources with unpredictable quality

in real crowdsourcing applications.

4.6.5 Scalability and Question Dispatching

In this subsection, we discuss the scalability of our algorithm when the number

of workers and the number of questions increases.
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# of questions in a HIT 400 200 100 50 20 10
Effective questions rate using question dispatcher 48.20% 88.40% 94.60% 98.40% 99.50% 99.80%

Effective questions rate by randomly assigning questions 48.20% 77.50% 87.30% 93.60% 96.70% 98.40%
Average HIT finish time (s) 2850 1472 765 393 189 113

Average cost per question (0.01 USD) 0.396 0.409 0.425 0.437 0.526 0.627
Average cost per effective question (0.01 USD) 0.822 0.463 0.449 0.444 0.529 0.628

Table 4.3: Performance of Question dispatching algorithm (2 USD per hour per
worker on average)

We first report the results on the running time of our algorithms with respect

to the number of workers in Figure 4.14. We compare both our linear and non-

linear algorithms with the CrowdScreen’s linear and ladder algorithms. Note

that the time reported is the offline strategy generating time. The results

show that our algorithms are scalable when the number of workers is increased.

The linear strategy generating algorithm takes 1.29 milliseconds and non-linear

algorithm takes 80.06 milliseconds when there are 40 workers. The results also

show that the two CrowdScreen algorithms need to take a lot more time to

generate the strategy.

We report the performance of the question dispatching algorithm in Table

4.3. In this experiment, the maximum number of questions in a HIT is varied

from 400 to 10. The measurements contain the average percentage of valid

questions in each HIT, average finishing time, average cost per question and

average cost per effective question. The valid question refers to the not yet

stopped questions in the HIT. We compare the average percentage of valid

questions of our question dispatching algorithm to that of randomly assigning

questions. The results show that our question dispatching algorithm assigns up

to 10.9% and on average 4.53% more valid questions in each HIT than randomly

assigning algorithm.

4.7 Summary

Crowdsourcing has attracted a great deal of interest in solving challenging

problems by integrating human intelligence with algorithms. However, the

system cannot be applied with unreliable data quality. Moreover, it is even

harder to decide whether a problem is suitable to be solved by crowdsourcing.

In this chapter, we propose an online cost sensitive decision making method

with novel data quality estimation. To show the effectiveness and efficiency of

our method, we conduct extensive experiments over two real datasets on the
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Amazon Mechanical Turk. The experimental results show that our proposed

method achieves a better accuracy-cost performance than all the existing meth-

ods. Moreover, our method is both scalable and robust such that it outputs

reliable answers with diversified crowdsourcing data quality.
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CHAPTER 5

SIMILARITY PRESERVED

HASHING REPRESENTATION

To reduce the data volume and selecting most important features, training data

are usually represented by hashing or quantization codes. Most existing meth-

ods are focusing on preserving internal information inside each high-dimensional

data. However, the similarity relations between data instances also play an im-

portant role in lots of analytics tasks such as data clustering, data sampling,

casual discovery and etc. Therefore, during data representation, similarity re-

lations are expected to be preserved, and similarity search in the data represen-

tation should be accurate and efficient. Locality Sensitive Hashing (LSH) has

been widely accepted as an effective hash method for high-dimensional similar-

ity search. However, data are typically not distributed uniformly over the space,

and as a result, the buckets of LSH are unbalanced, causing the performance

of LSH to degrade.

In this chapter, we propose a new and efficient method called Data Sensitive

Hashing (DSH) to address this drawback. DSH improves the hashing functions

and hashing family by creating a set of hash codes via boosting. DSH leverages

data distributions and is capable of directly preserving the nearest neighbor

relations. We provide the theoretical guarantee of DSH, and demonstrate its

efficiency experimentally.
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(a) LSH (b) DSH

Figure 5.1: Motivation

5.1 Introduction

In a wide range of applications, data can be represented as points in a multi-

dimensional space. For example, feature vectors are often used to represent

multi-media data such as images and music. Similarly, a company may use a

number of attributes for profiling each customer, or for each product. Each

attribute, or each element of a feature vector, can be considered as a dimen-

sion in a multi-dimensional space in which each object is a point. Similarity

search consequently is transformed to finding points in this multi-dimensional

space that are close to a given query point. In many applications, we may

be interested in data points that are within some distance of a query point.

However, we may not have a meaningful way of setting a distance threshold,

and instead we seek the k-nearest points (e.g. the results displayed in the first

page of search engine). Therefore, it is essential to support efficient k-nearest

neighbor (k-NN) search.

Access methods in the multi-dimensional space, including the k-NN prob-

lem, have been studied extensively. However, most of them suffer from the

so-called curse of dimensionality and demonstrate poor performance when the

number of dimensions is high [110]. One technique that shows promise in high-

dimensional spaces is locality sensitive hashing (LSH) [32]. LSH relaxes the

k-NN problem to a c-approximate k-NN problem that aims to find k points
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within distance c × R where R is the maximum distance between the query

point and its k-nearest neighbors. In essence, LSH solves k-NN problem by

first obtaining a set of similar points to q and then extracting the k-nearest

points from these similar points. For this purpose, LSH designs a novel scheme

to hash the points so that the possibility of collision is much higher for sim-

ilar points than for dissimilar points. Similar objects are then identified by

examining a certain number of points that collide with the query point. How-

ever, defining similar points is challenging, and as such LSH simply adopts a

constant value r to define two points as similar if their distance is no greater

than r. In essence, LSH searches for near neighbors within a radius r. For k-

NN search, LSH performs well in a uniform data distribution setting in which a

good-quality r can be derived. When the data are skewed, the distance between

k-NN pairs can vary greatly, using a consistent r to define all similar points

is inadequate. It is for this reason that LSH performance suffers. Figure 5.1a

shows an example of the hashing results of LSH. On the indexing level, we

see that the hashing is unbalanced, where some buckets are empty while a few

buckets contain too many points. From the k-NN perspective, as the distance

between k-nearest neighbor pairs can vary greatly, LSH solutions either have

to maintain a huge set of indexes for different values r, or use one (or a few

fixed) r which may lead to arbitrary bad results. More discussion will be given

in Section 5.2.

Recently, there has been increasing attention focused on designing new in-

dexes [102] or query strategies [66, 30] to alleviate the limitations of LSH.

However, to the best of our knowledge, all of them are still based on locality-

sensitive hashing families, i.e. random projections, which cannot adapt based

on data distributions. Real data distributions are often non-uniform and fre-

quently very skewed. Consequently, these methods still suffer from poor hash-

ing effectiveness. In this chapter, instead of trying to enhance LSH with the

use of more efficient structures or processing strategies, we seek to address a

more fundamental question: are there methods that can provide consistently

effective hashing results regardless of the data distribution. To this end, we

propose the concept of data-sensitive hashing (DSH) as an efficient mechanism

for addressing the k-NN problem.

DSH directly deals with the k-NN problem instead of finding neighbors

within a distance r. Hence, DSH avoids the issue of selecting the distance r
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that is required in LSH. DSH designs a novel scheme to facilitate the retrieval

of a set of k-nearest neighbors with respect to a query point. Figure 5.1b

shows the intuition of DSH. Since each bucket has a similar number of objects,

its radius is adapted to the distance of k-NN. The basic idea of DSH is to

hash the points such that the possibility of collision is much higher for k-NN

pairs(unidirectional or bidirectional) than for non-k-NN pairs. It follows the

same procedure as LSH for similarity search, the key difference being within the

corresponding hashing families. Compared with random projections which have

a large probability to hash the objects within a distance r together, our hashing

family needs to have a large probability to hash the k-NN pairs together.

To find such hashing families, we learn from the data. Since we expect

each k-NN pair to collide in most of the hashing functions, the requirement

for hashing family can be represented as a strong classifier. Obviously, a single

hashing function cannot protect all the k-NN pairs while separating all the non-

k-NN pairs. Using spectral techniques, we can do an optimization on preserving

the k-NN pairs while cutting the others. It is well known that adaptive boosting

[28] is an efficient algorithm to generate a strong classifier using a set of weak

classifiers. Therefore, we treat the hashing family as the strong classifier, and

each hashing function in the family as a weak classifier. We adopt the adaptive

boosting technique to ensure that the k-NN relations are theoretically protected

by most of the hashing functions.

We summarize the contributions of the chapter as follows.

• We propose a novel access method called Data Sensitive Hashing (DSH)

to answer the k-nearest neighbor queries. Compared with LSH, DSH is

able to capture the data distribution more effectively. Equipped with the

distribution knowledge, DSH is able to deal with the k-NN problem in

a more direct and efficient manner. DSH focuses on the hashing family,

and thus most LSH extensions designed to enhance LSH are orthogonal

to our proposal, and can be applied to DSH easily. (Section 5.3).

• We design an efficient algorithm to generate the data-sensitive hashing

family – the key challenge for DSH. The algorithm combines adaptive

boosting and spectral techniques, resulting in a good theoretical guaran-

tee. The indexing time is also comparable with LSH. (Section 5.4).

• We experimentally verify the effectiveness and efficiency of our proposed
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DSH using three real datasets. Compared with LSH, our hashing results

are much more balanced. Consequently, DSH is three times more efficient

than LSH in query response time and index size in order to achieve the

same quality of search results. (Section 5.5).

5.2 Preliminaries

In this section, we provide the problem definition followed by a brief introduc-

tion and analysis of LSH. In the end, we review related work.

5.2.1 Problem Definition

In this chapter, we consider data objects represented as points in a d-dimensional

vector space Rd. Let ‖p, q‖ be the distance measure between two points p and

q in Rd. The k-nearest neighbor(k-NN) problem is defined as follows:

Definition 5.1. (k-nearest neighbor problem) Given a set O of n data

points, a point q ∈ Rd and an integer k, we aim to find the k data points

that are nearest to q in O. We denote this answer set by NN(q, k). Formally,

|NN(q, k)| = k, ∀o ∈ NN(q, k), o′ ∈ OnNN(q, k), ‖q, o‖ ≤ ‖q, o′‖.

Typically, finding exact k-NN potentially results in a sequential scan of the

entire dataset O, and its cost grows linearly with the cardinality of O. For this

reason, approximate k-nearest neighbor problem is accepted as a compromise

since the cost of the solution grows sub-linearly with the cardinality of O while

the quality is within an acceptable level. We define the approximate k-nearest

neighbor problem as follows:

Definition 5.2. (δ-recall k-NN problem) Given a set O of n data points, a

point q ∈ Rd and an integer k, the δ-recall k-NN problem aims to find a set of k

points δNN(q, k), such that |δNN(q, k)| = k, |δNN(q, k)∩NN(q, k)| ≥ δ× k.

The definition provides a lower bound of the recall that at least k×δ points
of exact k-NN are returned. δ-recall k-NN problem is indeed compatible with

c-approximate k-NN problem discussed in Section 5.1. In c-approximate k-

NN problem, it provides the upper bound of the distance for the points to be

returned. To achieve a similar upper bound in the δ-recall k-NN problem, we
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can relax k to a larger k′ (k′ = k/δ), and select k points from δNN(q, k′) with

the smallest distances. As a result, we can guarantee that the farthest distance

of these k points to q is within R′ where R′ is the maximum distance between

q and the k′th-NN.

5.2.2 Locality Sensitive Hashing

Locality Sensitive Hashing is an efficient approximate algorithm for high dimen-

sional similarity search. It is efficient and provides a rigorous quality guarantee

for finding similar points within a distance r, i.e. the r-NN problem.

Definition 5.3. (r-NN problem) Given a set O of n data points, a point

q ∈ Rd and a distance r, we aim to find the data points that are within a

distance r to q in O. We denote the sphere centered at point q by B(q, r).

Formally, B(q, r) = {p|p ∈ Rd, ‖p, q‖ ≤ r}. The r-NN problem aims to find

{o|o ∈ O and o ∈ B(q, r)}.
LSH leverages a family of functions where each function hashes the points

in such a way that the possibility of collision is higher for similar points than

for dissimilar points. Formally, an LSH family can be defined as follows [21]:

Definition 5.4. (LSH Family, H) A family H = {h : Rd → U} of functions
is called (r, cr, p1, p2)-sensitive if for any p, q ∈ Rd

• if p ∈ B(q, r), then PrH(h(p) = h(q)) ≥ p1;

• if p /∈ B(q, cr), then PrH(h(p) = h(q)) ≤ p2;

The family of hash functions are generated through the use of random pro-

jections – the intuition is that points that are nearby in the space will also be

nearby in all projections. While two distance points can also be close in all

projections, the possibility is extremely small if enough number of projections

is taken. Usually, the difference between p1 and p2 is not enough to be used

directly. To enlarge the difference, a concatenation of LSH functions is applied

to generate a hash key for each point in Rd.

Definition 5.5. (Concatenation LSH Functions, G) A set of concatenation

LSH functions G = {g : Rd → Um}. Each gi ∈ G consists of a sequence of m

hash functions randomly extracted from H. Formally,

gi(p) = (hi1(p), ..., him(p)),
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where m is the number of hash functions in each concatenation and hi1 , ..., him

are randomly selected from the LSH Family H.

LSH applies these concatenation LSH functions to construct the hash tables.

As a result,

• ∀p ∈ B(q, r), Pr(g(p) = g(q)) ≥ pm1

• ∀p ∈ RdnB(q, cr), Pr(g(p) = g(q)) ≤ pm2

Further, the expected number of points in O that collide with q but are

outside the ball B(q, cr) is less than pm2 ∗ |O|. However, the recall for one hash

table, pm1 , is not large. To raise the overall recall, LSH typically applies l con-

catenation LSH functions and constructs l hash tables. Each concatenation

LSH function randomly chooses m functions in H. When the number of func-

tions in H is large enough, the hash results of different concatenation functions

can be regarded as independent. Thus, for any o ∈ B(q, r), the possibility that

o collides with q in at least one hash table is at least 1 − (1 − pm1 )l, which is

very close to 1. To summarize, LSH answers c-approximate r-NN problem as

follows:

1. Pre-processing: LSH maintains l hash tables, and each hash table is

attached with a concatenation hash function. Each hash table applies its

concatenation hash function to hash the points in O, where each concate-

nation hash function consists of m hash functions randomly selected from

the hashing family H;

2. Query processing: Given a query object q, LSH finds c-approximate r-

NN by examining points that collide with q in each of the l hash tables. In

particular, the expected number of objects outside the B(q, cr) is limited

by l ∗ pm2 ∗ |O|. This property guarantees its query efficiency.

While LSH has been shown to be very effective in finding nearby points in

high-dimensional space, we should note that this is accomplished with respect

to a specified radius r, and an approximation allowance factor c. For a k-

NN problem, the corresponding radius for different query points may vary by

orders of magnitude. In such a case, LSH has to either (i) be run repeatedly

with different values of r, cr,c2r ... which leads to substantial increase in the
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query time and index storage cost, or (ii) use an ad-hoc r which leads to low

quality guarantee.

Further, LSH implicitly splits the whole space into lattices so that points in

the same lattice cells are hashed into the same bucket. As a result, for real data

distributions that are non-uniform, the hashing results are often unbalanced.

We find that an unbalanced hashing leads to performance degradation of LSH.

The reasons are two-fold. First, for the case that the number of points in

one bucket is too small, LSH cannot find c-approximate r-NN and a further

examination on a larger r is required; second, for the case that too many points

collide in one bucket, LSH needs to examine each of these and so its performance

suffers.

5.3 Data Sensitive Hashing

In this section, we introduce the basic concepts and principles of Data Sensitive

Hashing (DSH), and propose two variants of DSH hashing families, DSH-basic

and DSH-relaxed. The associated algorithms are presented in Section 5.4.

Intuitively, the problem we wish to solve is to directly search for the k-

NN, whereas LSH is designed to find the r-NN. Therefore, we seek to define a

new hashing family DSH. We begin with a DSH hashing family definition that

migrates all the properties from LSH hashing family, called the DSH-utopia

family. Here, the basic binary hashing Rd → {0, 1} is employed for DSH.

Definition 5.6. (DSH-utopia Family) A family H = {h : Rd → {0, 1}} is
called (k, ck, p1, p2)-sensitive if for any q ∈ Rd and o ∈ O

• if o ∈ NN(q, k), then PrH(h(o) = h(q)) ≥ p1;

• if o /∈ NN(q, ck), then PrH(h(o) = h(q)) ≤ p2;

Unfortunately, while the above definition allows us to express what we de-

sire, it has no known efficient implementation. Therefore, we fall back on the

intrinsic properties that affect the effectiveness of a hashing-based approach.

We define the following properties that should be satisfied in our DSH concate-

nation functions.

Definition 5.7. (Effectiveness for k-NN) For two probability values Pa and

Pb, s.t. Pa ≫ Pb,
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• (Recall) for any query point q ∈ Rd, and o ∈ NN(q, k),

∀gi ∈ G, Pr(gi(q) = gi(o)) ≥ Pa;

• (Efficiency) for any query point q ∈ Rd, ∀gi ∈ G,
|{o|o ∈ OnNN(q, ck), gi(q) = gi(o)}| ≤ Pb × |O|.

This definition provides two conditions to qualify a DSH concatenation func-

tion. The first condition provides a lower bound of recall and the second con-

dition gives an upper bound (i.e., ck + Pb × |O|) of the number of points in

each bucket. By applying multiple hash tables to raise the recall, high quality

results can be achieved, and the algorithm is still efficient. In addition, the

results of different hash tables should be independent. If each concatenation

function randomly chooses some functions from a large enough hashing family

H, this condition is always satisfied. The following theorem shows the relation

between the quality and efficiency under such concatenation functions.

Theorem 5.1. If the concatenation functions satisfy the properties in Defini-

tion 5.7, to achieve an expected recall δ, the number of points to be checked is

at most :

¢
log(1− δ)
log(1− Pa)

•
× (ck + Pb × |O|)

Proof. Considering that l hash tables are used, we have:

(1− δ) = (1− Pa)
l

To achieve an expected recall δ, the number of hash tables required is:

l =

¢
log(1− δ)
log(1− Pa)

•

On the other hand, the number of points in each bucket is at most ck+Pb×|O|.
Thus, the number of points to be checked is at most:

⌈
log(1−δ)
log(1−Pa)

⌉

× (ck + Pb × |O|)

The quality of results is decided by δ, while c is only an efficiency factor. c

and Pb decide the total number of points to be checked, and there is a trade-off
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between them. Obviously, the pairs with a longer distance are easier to be

hashed to different values, and choosing a higher c often results in a smaller Pb.

To devise an effective hashing-based approach, according to the above guid-

ing principles in Definition 7, there is no need that each individual hash

function h ∈ H has a large probability to hash a pair correctly. Instead, we

only need to design a hash family H such that most of the hash functions

hash data correctly. As a concatenation LSH function is obtained by randomly

picking m hash functions from H, such a family can produce a good set of

effective gi ∈ G that satisfies the properties of recall and efficiency. Intuitively,

based on following definition, we may design a set of hash functions each of

which complements the others.

Definition 5.8. (DSH-basic Family) A family H = {h : Rd → {0, 1}} is

called (k, ck, p1, p2)-sensitive if for any query point q ∈ Rd and o ∈ O

• if o ∈ NN(q, k), then |{h|h(o)=h(q),h∈H}|
|H|

≥ p1;

• if o /∈ NN(q, ck), then |{h|h(o)=h(q),h∈H}|
|H|

≤ p2;

Theorem 5.2. The concatenation functions generated using DSH-basic family

are effective, i.e. they have the properties given in Definition 5.7.

Proof. Using m randomly chosen hash functions in the DSH-basic family, set-

ting Pa = p1
m and Pb = p2

m, we have:

Recall: ∀q ∈ Rd, o ∈ NN(q, k), gi ∈ G,

Pr(gi(q) = gi(o))

=
m∏

j=1

Pr(hij(q) = hij(o))

= {|{h|h(o) = h(q), h ∈ H}|
|H| }

m

≥ p1
m

Efficiency: Likewise, ∀q ∈ Rd, o ∈ OnNN(q, ck), gi ∈ G,

Pr(gi(q) = gi(o)) ≤ p2
m. Thus,

∑

o∈OnNN(q,ck)Pr(gi(q) = gi(o)) ≤ |O| × p2m
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We further note that the purpose of the second condition in the Effec-

tiveness is to prevent too many false hits. In the DSH-basic family, this is

accomplished by keeping the probability of inclusion low for each non-ck-NN.

However, we do not really care what the probability of inclusion is for any in-

dividual non-answer point: all we wish to do is to limit the total number

of false positives. Accordingly, we can relax the second condition:

Definition 5.9. (DSH-relaxed Family) A family H = {h : Rd → {0, 1}} is
called (k, ck, p1, p2)-sensitive if for any query point q ∈ Rd

• for all o ∈ NN(q, k), |{h|h(o)=h(q),h∈H}|
|H|

≥ p1;

• ∑o/∈NN(q,ck)(
|{h|h(o)=h(q),h∈H}|

|H|
)m ≤ p2

m ∗ |O|;

Similar to Theorem 5.2, the concatenation functions generated using the

DSH-relaxed family still have the Effectiveness properties given in Defini-

tion 5.7.

5.4 DSH Family Generation

After having specified the properties of data sensitive hash functions, we now

show how we can find such functions. For LSH, there is a straightforward geo-

metric interpretation, so random projection turns out to work well. For DSH,

there is no such easy geometric interpretation. Instead, the hash function must

adapt based on the data distribution. We borrow and adapt machine learn-

ing techniques for this purpose. In particular, we first learn good atomic hash

functions, and then use boosting to get even better results with an ensemble of

hash functions, as we describe in this section.

5.4.1 Overview

Given an query-object pair 〈qi, oj〉, let

ϕh(〈qi, oj〉) = (h(qi)− h(oj))2. (5.1)

In particular, if qi collides with oj according to hash function h, then ϕh(〈qi, oj〉)
equals to 0; otherwise, it becomes 1. For DSH-basic family, based on Definition
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8, the requirements for each hash function can be rewritten as:

For every pair qi and oj ,







∑

h∈H ϕh(〈qi, oj〉) ≤ (1− p1)|H|, if oj is a k-NN of qi;
∑

h∈H ϕh(〈qi, oj〉) ≥ (1− p2)|H|, if oj is a non-ck-NN of qi;
(5.2)

Through this expression, we observe that the hashing family is actually

required to be a strong classifier for the pairs, i.e. if we combine all the hash

function in H together and use Equation 5.2 to classify the pairs, every k-NN

pair and non-ck-NN pair can be well classified. [We can also obtain similar

requirements for DSH-relaxed family. The difference here is that DSH-relaxed

only requires all the k-NN pairs to be well classified. For those non-ck-NN

pairs, DSH-relaxed limits the total number of false-positives for each query q.]

Adaptive boosting [28] is an efficient meta-algorithm to generate a strong

classifier. Given an algorithm that can generate a weak classifier, adaptive

boosting can generate a set of weak classifiers by tweaking the weight of training

instances, such that their combination constitutes a strong classifier. In our

problem, we do not really combine them to generate a strong classifier. Instead,

each weak classifier is used as a hash function h in the familyH, while the family

H has the above desirable properties. Therefore, we have to adapt standard

adaptive boosting.

We divide the problem into two parts: (1) computing the optimal weak

classifier, and (2) applying appropriate adaptive boosting algorithm to tune

the input weights of the weak classifier. In both parts, we use a weight matrix

W to represent the k-NN and non-ck-NN relations. For the reason that non-ck-

NN relations are much more than k-NN relations, we only sample parts of them

to reduce the computation cost, and make the number of samples comparable

with the number of k-NN relations. Thus, W is a sparse matrix, as it only

contains some sampled query-object pairs (O(k) non-zero elements per query,

and O(qk) non-zero elements in total). Using i ∈ [1, m] to denote those queries,

and j ∈ [1, n] to denote those data points, we have:

Wij =







1, if oj is a k-NN of qi ;

−1, if oj is a sampled non-ck-NN of qi ;

0, else.

(5.3)
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Each hash function h hashes the points. On the other hand, we regard

it as a weak classifier ϕh for the pairs. Therefore, we expect it to optimize

the resultant pairs based on the weight matrix. The weight of the matrix will

be tuned by the adaptive boosting procedure. And the optimization for each

function is defined as follows.

Figure 5.2 outlines how we generate DSH family. Given some sampled

queries based on the query distribution, we get a series of query-object pairs.

The k-NN pairs are expected to collide more in DSH family and vice versa. We

represent this optimization target in a weight matrix form. And based on the

weight matrix, we compute the optimal hash function and put it into hashing

family. We then hash the points based on the hash function and check if it

performs well on each pair. After that, we run the adaptive boosting procedure:

for the pairs that are hashed correctly (k-NN pairs collide and vice versa), we

reduce their weight in the matrix; for the pairs that are hashed mistakenly,

we increase their weight in the matrix. Then we get a new weight matrix and

compute a new optimal hash function. As shown in [28], after repeating this

procedure multiple times, the weight of every pair becomes smaller than the

original one, and a smaller weight means the pair has a larger probability to be

hashed correctly.

Dataset

Weight Matrix Hashing Function

Sampling

Boosting

Learning

Hashing Family

Appending

Figure 5.2: Overview of DSH Family Generation

The formal optimization problem set up requires specification of the data

points, the query points, and the parameter k for k-NN. However, the principle

of DSH is to leverage the distribution knowledge, but not tune the hash function

based on specific points. We only seek to obtain the properties of DSH family
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for sampled queries based on the query distributions. Every sampled query

should achieve high recall and be efficient. When the query distribution is

hard to estimate, we can still use the uniform query distribution to cover all

the potential queries. In the experimental section we show that the results

obtained are not very sensitive to the query distribution or to the value of k.

However, they do depend strongly on the data distribution.

Definition 5.10. (Hash Function Optimization)

Given the dataset O, the sampled queries Q and the weight matrix W , we

aim to find the best hash function such that

argmin
h

∑

ij

ϕh(〈qi, oj〉)Wij (5.4)

s.t. qi ∈ Q, oj ∈ O, ∀p ∈ Rd, h(p) ∈ {0, 1}.

5.4.2 Single Hash Function Optimization

We would like to solve the optimization problem defined in Definition 5.10.

However, finding the exact optimal hash function is an NP-hard problem.

Theorem 5.3. Hash Function Optimization (HFO) is an NP-hard problem.

Proof. We can reduce a well-known NP-hard problem, Minimum Graph Bisec-

tion (MGB) [4] to the hash function optimization (HFO) problem. To make

this reduction, we construct a mapping in the following way: let the n × n

weight matrix in MGB be W and the largest weight in W be wmax. For each

vertex vi in MGB, we create oi and qi in HFO. We begin with the initial weight

matrix W in MGB. Then, we ensure that oi and qi must be assigned to the

same value by setting W ′
ii = n4×wmax. Finally, we set W

′
ij = Wij −n2×wmax.

The intuition here is that if a large penalty is added for every pair that is not

separated, then HFO will absolutely choose a balanced partition(the minimal

penalty) while doing the optimization in MGB.

To tackle this problem efficiently, we consider the hash function in a linear

form, i.e. separating the space by a hyperplane. This has been widely adopted,

and shown to be effective [76]. Moreover, it has been shown in [87] that linear

classifiers fit well with boosting algorithms.
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Algorithm 7: Hash Function Optimization

Input: Weight matrix Wq×n, data point matrix Xd×n, query point
matrix Qd×q.

Output: Hash Function h.
1 Compute the eigenvector a with the minimal eigenvalue in Theorem 5.4 ;
2 h← aTX ;
3 Generate h′ based on Equation 5.10;
4 return h′

That is, h(oj),h(qi) can be represented as aTXj,a
TQi, where a is the projec-

tion vector and Xj ,Qi is the d dimension vector presentation of oj, qi(suppose

it has been regularized to Xj = 0).

However, the range of aTXj is R instead of {0, 1}. The mean of h(oj) is

always 0, as h(oj) = aTXj = aTXj = 0. To protect the result from being

affected by the scaling of a, we give a constraint aTXXTa = 1 to fix the

variance of h(oj). We transform the problem of hash function generation as

follows:

argmin
a

∑

ij

(aTQi − aTXj)
2Wij (5.5)

subject to aTXXTa = 1.

Theorem 5.4. The vector in Equation 5.5 is equal to the minimal general

eigenvector of

((XD −QW )XT + (QD′ −XW T )QT )a = λXXTa (5.6)

where Dn×n and D′
q×q are two diagonal matrices defined as follows:

Djj =
∑

i

Wij D′
ii =

∑

j

Wij (5.7)

Proof.

∑

ij

(aTQi − aTXj)
2Wij

=
∑

j

aTXjDjjX
T
j a− 2

∑

ij

aTQiWijX
T
j a+

∑

i

aTQiD
′
iiQ

T
i a

= aT ((XD −QW )XT + (QD′ −XW T )QT )a
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Therefore, the vector in Equation 5.5 is equal to

argmin
a

aT ((XD −QW )XT + (QD′ −XW T )QT )a (5.8)

subject to aTXXTa = 1. All the two matrices are symmetric. Therefore, a is

equal to the eigenvector with the minimal eigenvalue in the following generalized

eigenvector problem:

((XD −QW )XT + (QD′ −XW T )QT )a = λXXTa (5.9)

The computational complexity of solving the eigenvector problem is O(nd2+

qkd+d3), where n is the number of objects plus sampled queries, d is the number

of dimensions and q is the number of sampled queries. The main cost here is to

compute ((XD − QW )XT + (QD′ −XW T )QT ). Here D only has n non-zero

values, D′ has q non-zero values, and W has O(qk) non-zero values. And for

the general eigenvector problem, the computation cost is O(d3). Noted that

the size of dataset is nd, our algorithm runs in time that is at most linear with

the size of dataset.

After computing the hashing function h : Rd → R, we convert it to the

desired binary hash function h′ : Rd → {0, 1} as:

h′(o) =







0, if h(o) ≤ 0

1, else
(5.10)

5.4.3 Adaptive Boosting for DSH-basic

Adaptive boosting [28] is a meta-algorithm for building a strong classifier us-

ing a set of weak classifiers, and can be used in conjunction with many other

learning algorithms. Theoretical results that adaptive boosting always obtains

a strong classifier can be found in [28]. Here we only show the intuitions. The

weight for each instance depends on its results (well classified or not) on the

weak classifiers, and thus represents if it is well classified using their combina-

tion. If its weight is smaller than the original, then it is well classified using

the linear combination. On the other hand, in each step, the weak classifier

performs better than random so that the weight of well classified instances is
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larger than the weight of misclassified instances. Therefore, the total weight of

all instances is always reduced by the weak classifier. As the weight is tuned

exponentially, the total weight also reduces exponentially. After logarithmic

number of steps, the total weight is reduced to be less than the original weight

for a single instance, and by then, every instance has a weight less than its

initial weight and is therefore well classified.

For our specific problem, not only a strong classifier is needed, but also

the difference between p1 and p2 is expected to be large. Obviously we can-

not expect the boosting algorithm to achieve p1 = 1 and p2 = 0. However,

the boosting algorithm optimizes to enlarge the difference [87]. Therefore, we

choose some appropriate p1 and p2 and iterate based on the following weight

updating function in which α is a weight tuning parameter of boosting:

For k-NN pairs, we have:

W
(t+1)
ij =W

(t)
ij ∗ α(p1−1+ϕht

(〈qi,oj〉)) (5.11)

For non-ck-NN pairs, we have:

W
(t+1)
ij =W

(t)
ij ∗ α−(p2−1+ϕht

(〈qi,oj〉)) (5.12)

Algorithm 8 describes our boosting procedure in which itrCounter is the

number of hash functions that we aim to obtain. We next prove that if every

instance has a weight smaller than its initial, then H conforms to DSH-basic

family defined in Definition 5.8 for the sampled data when the updating function

is based on Equation 5.11 and 5.12.

Theorem 5.5. ∀〈qi, oj〉, if |w(t)
ij | ≤ |w(0)

ij |, H conforms to Definition 5.8 for all

sampled pairs.

Proof. Let Tij be |{h|h(qi) = h(oj), h ∈ H}|, and Sij be |{h|h(qi) 6= h(oj), h ∈
H}|. Obviously, Sij = |H| − Tij . Hence, for every k-NN pair 〈qi, oj〉,
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w
(0)
ij ≥ w

(t)
ij

=⇒w(0)
ij ≥ w

(0)
ij × α(p1−1)|H|+Sij

=⇒α(p1−1)|H|+Sij ≤ 1

=⇒(p1 − 1)|H|+ Sij ≤ 0

=⇒p1|H| − Tij ≤ 0

=⇒|{h|h(oi) = h(oj), h ∈ H}|
|H| ≥ p1

For every non-ck-NN pair 〈qi, oj〉, it is analogous to prove that |{h|h(qi)=h(oj),h∈H}|

|H|
≤

p2.

5.4.4 Adaptive Boosting for DSH-relaxed

Now we give the adaptive boosting solution for DSH-relaxed. The procedure

is similar to that for DSH-basic except one major difference, i.e., we only limit

the total number of points in each bucket. Therefore, for every query, the

non-ck-NN relations now construct one big instance. For ease of presentation,

we assume that all the pairs are sampled and the size of the current H is

large enough. However, as only a small number of pairs are sampled and the

algorithm begins with empty H , some trivial regularization should be applied

in the implementation. We use the expected number of points that collide with

qi to measure the efficiency of query qi, which is defined as:

Collisioni =
∑

j

(1−
∑

h∈H(ϕh(〈qi, oj〉)
|H| )m (5.13)

Note that if the collision rate bound is p2, then the upper bound of the

false-positives is n ∗ p2m. Thus, (Collisioni

|O|
)

1
m is the equivalent collision rate to

get the same upper bound of the false positives. After being regularized, the

weight for each query is:

weight
(t)
i = αt∗(p2−(

Collisioni
|O|

)
1
m ) (5.14)

For k-NN pairs, we tune their weight as usual. On the other hand, we tune

the weight for each query qi based on Collisioni. However, our hash function
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method recall query error # hash
time ratio tables

LSH
0.94

18.6 1.012 100
DSH-basic 12.8 1.012 80
DSH-relaxed 6.2 1.013 30
LSH

0.9
12.1 1.024 50

DSH-basic 6.8 1.027 32
DSH-relaxed 3.8 1.025 14
LSH

0.86
8.2 1.036 25

DSH-basic 4.4 1.036 16
DSH-relaxed 2.4 1.038 8

(a) Forest

method recall query error # hash
time ratio tables

LSH
0.96

40.8 1.004 90
DSH-basic 28.6 1.004 72
DSH-relaxed 16.0 1.004 36
LSH

0.92
26.0 1.008 40

DSH-basic 17.2 1.009 36
DSH-relaxed 9.8 1.010 16
LSH

0.88
19.2 1.013 25

DSH-basic 12.0 1.014 20
DSH-relaxed 8.0 1.014 10

(b) Flickr

method recall query error # hash
time ratio tables

LSH
0.95

/ / /
DSH-basic 25.6 1.002 64
DSH-relaxed 15.6 1.002 32
LSH

0.91
38.8 1.006 75

DSH-basic 14.4 1.006 28
DSH-relaxed 9.4 1.006 16
LSH

0.87
24.8 1.018 35

DSH-basic 11.6 1.017 20
DSH-relaxed 7.6 1.021 10

(c) DBPedia

Table 5.1: Overall comparative study: DSH-relaxed is the most efficient in
terms of query time and space usage
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Algorithm 8: Adaptive Boosting Procedure

1 initializet← 0; H ← ∅ ;
2 initialize W (0) =W given in Equation 5.3;

3 while t < itrCounter —— ∃w(t)
ij , w

(0)
ij , |w(t)

ij | > |w(0)
ij | do

4 compute h(t) based on Algorithm 7 using W (t) as input;

5 H ← H∪ {h(t)};
6 updating W (t+1);

7 return H;

optimization algorithm is based on the weight for every query-object pair. For

this reason, we have to assign the weight of each query qi to its related pairs.

Here, we still expect the hash function to minimize the total weight of training

instances. Thus, we study the “gradient” vector of Collisioni, i.e. how much

it will be changed when a new hash function hashes each point o1...on together

with qi or not. We then adjust the weight for each related pair based on its

”partial derivative”. Formally, the “partial derivative” is defined as:

∆Collisionij =
m

|H| × (1−
∑

h∈H(ϕh(〈qi, oj〉)
|H| )m−1 (5.15)

Intuitively, if an object has a larger probability to collide with the query,

it will have a larger weight. For those objects that are almost impossible to

collide, there is little benefit to separate them with the query in the new hash

function, and the weight for them is close to zero.

Now we define the weight updating function for those non-ck-NN pairs:

W
(t)
ij = weight

(t)
i ∆Collisionij (5.16)

The weight updating function for k-NN pairs remains the same.

5.4.5 Difference with other learning based methods

So far, all the discussion is based on the similarity search prospective. There

are many other learning based hashing or embedding methods such as [111,

6, 5, 85, 8, 76]. Now we will discuss our difference with them. Compared

with these methods, DSH is distinctive in the optimization target. Traditional

learning based methods mostly focus on the high precision end, and evaluate

their performance using PR-value, F1-measure or MAP. However, this may not
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be appropriate for our similarity search problem. As we have a validation step,

the precision itself is not a crucial measure. We aim to achieve a high recall

with acceptable candidate size. For example, to solve a 20-NN search problem

in 1M points, we expect the algorithm to return 2000 points that contain all

the positives, but not to return 20 points that contain 12 of them. We can

validate those 2000 points one by one and obtain the exact answer. However,

for the 20 points set, we cannot expand it to obtain a higher recall. Although

the algorithm that outputs 2000 points has a 1% precision, the check rate is

only 0.2%. For this reason, we focus on the relatively lower precision area, and

optimize our algorithm to yield a higher recall. Distinguished with traditional

methods, DSH does not pay much to filter every false positive, but to ensure

every true answer is in the result, while most other methods pay equal emphasis

to these two targets.

Following this guideline, in the design of DSH-relaxed, we provide zero tol-

erance to the false negatives, and a much higher tolerance to the false positives.

For the false negatives, we use boosting techniques to ensure all the positives

are well classified. And for the false positives, we only give a very weak limita-

tion on the total numbers, and do our best for each individual. By using this

heterogeneous solution, our optimization target is realized.

5.4.6 Incremental Maintenance

DSH is sensitive to data distribution, unlike LSH. Indeed, that is the whole

point. This raises the question of what to do if the data distribution changes

over time in a dynamic setting. Fortunately, incremental update of DSH hash-

ing family is straightforward: simply replace any hash function that has a

negative effect on the weight of boosting by a newly computed one since the

boosting procedure aims at reducing the total weight of the weight matrix.

The cost of such updates can be limited by changing at most one hash function

each time. In practice, it turns out to be enough to make one such incremental

update after 1-5% of the data has changed.
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Figure 5.3: Average running time executed using different access methods to
achieve a certain query quality: DSH-relaxed achieves the highest recall in the
same running time, followed by DSH-basic and LSH.
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5.5 Experiments

5.5.1 Experimental Setup

We evaluate the performance using three real datasets: scientific data, images

and text. Properties of these three datasets are summarized in Table 5.2 and

described in detail below:

• Forest1 dataset is provided by the US Forest Service. We observe that

some attributes are strongly correlated since they describe related in-

formation. For example, there are some attributes describing Hillshade

Index at different times of a day. For this reason, Forest dataset is ideal to

study the performance of indexing methods with respect to data skew;

• Flickr2 is an image hosting website in which members can upload their

images. Over this dataset, we do similarity search based on the feature

space of images instead of pixel space. Following common practice, we

use the PCA technique to pre-process the images and keep 80 feature

dimensions. In contrast to the Forest dataset, the PCA feature space is

orthogonal;

• DBPedia3 is a project aiming to extract structured content from the

Wikipedia database. We utilize LDA to pre-process the dataset, and

keep 150 topic dimensions. The data points after employing LDA topic

model transformation lie in the probability distribution space, and hence

we use KL-divergence as the distance measure since it is widely used in

this space. We use DBPedia dataset to study the effectiveness of DSH

when a non-Euclidean distance measure is used.

We evaluate the following methods in the experiments:

• LSH. E2LSH[21] is a recent state-of-the-art implementation for LSH.

• DSH-basic. Our method proposed in Section 5.4.3.

• DSH-relaxed. Our method proposed in Section 5.4.4.

1http://archive.ics.uci.edu/ml/datasets/Covertype
2http://www.flickr.com/
3http://wiki.dbpedia.org
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Dataset # Objects # Dimension Property

Forest 580K 54 skewness

Flickr 1M 80 orthogonal

DBPedia 1M 150 non-Euclidean

Table 5.2: Dataset properties

• Query-Sensitive Embedding[6] is one efficient embedding hashing method

that also applies boosting to guarantee the performance of similarity

search.

• Spectral Hashing[111] is a state-of-the-art learning based hashing meth-

ods.

We randomly remove 1000 points from each dataset and use them as query

points in our performance study. The ground-truth for each query point is

obtained by a linear scan of the entire dataset. The sampled queries used in

DSH are generated via random selection that is independent of the query set.

Unless otherwise specified, the sample rate is 0.5%, k is set to 20 and c is set

to 5 throughout the experiments. For all algorithms, each hash table contains

2000 buckets(i.e. m is set to 11). To avoid duplicating the points, entries in the

table are in form of point IDs instead of the points. For this reason, the storage

cost can be reduced by about 100 times. Besides, all these methods keep the

entire indexes as well as the original dataset in main memory.

We evaluate the performance in terms of the following three aspects:

• Query Quality is measured by recall and error ratio. Let ¤�NN(q, k)[i]

(resp. NN(q, k)[i]) be the point in ¤�NN(q, k) (resp. NN(q, k)) with the

ith smallest distance to q. The error ratio [66] is to measure how close

are the distances between points in¤�NN(q, k) and points in NN(q, k):

error ratio =
1

|Q| × k
∑

q∈Q

k∑

i=1

|¤�NN(q, k)[i], q|
|NN(q, k)[i], q| (5.17)

• Query Efficiency is measured by the running time to answer k-NN

queries. The precision in those learning based methods can also be viewed

as a measurement of efficiency, since recall×k
precision

is the number of points to

be checked.
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• Space Requirement is measured by the number of hash tables being

used. The space cost for one hash table is about the same for each method,

and is a good surrogate for index size.

5.5.2 Comparison with LSH

In this study, we compare our proposed methods, namely DSH-basic and DSH-

relaxed, with LSH. We choose the best width parameter W for LSH, and the

parameters for DSH tuned as discussed in Section 5.5.5.

Table 5.1 summarizes the average results over all the datasets. In each

table, we report the query time, the error ratio and the number of hash tables

required per query to achieve three different query quality levels (in terms of

recall). First, we observe that DSH-relaxed is significantly more space and time

efficient than DSH-basic and LSH. It is worth mentioning that for the DBPedia

dataset, LSH cannot find approximate k-nearest neighbors to achieve recall 0.94

within acceptable time. Further, we note that all three methods provide almost

the same error ratio across all the datasets and each error ratio is close to 1, in

which the exact k-NN are identified.

Typically, a larger δ will result in a higher query cost. We therefore study

the relationship between recall δ and query performance in detail for all three

access methods. Figure 5.3 summarizes the results. First, we observe that the

query time increases super-linearly to achieve a higher recall. Second, both

DSH-relaxed and DSH-basic perform better than LSH by a wide margin and

there is an obvious trend of increasing time to achieve a higher recall. Finally, we

observe that DSH-relaxed and DSH-basic outperform LSH by a wider margin

over the DBPedia dataset than the other two datasets. The reason will be

provided when we discuss the relationship between the recall and the space

usage.

Regarding the comparative methods, the query performance basically de-

pends on the number of candidates to be probed in the same buckets that collide

with the query points. Hence, we report the distribution of bucket size of hash

tables and discuss how this affects the query performance. Figure 5.4 shows

the distribution of bucket size of hash tables. The points are distributed more

unevenly in hash tables of LSH than those of DSH-basic and DSH-relaxed. In

particular, for hash tables in LSH, the top 1% buckets take 21%, 13%, 13%
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Query Dense Sparse Original

LSH
query time 581 42 130
recall 0.99 0.803 0.916

DSH-basic
query time 161 58 98
recall 0.978 0.893 0.932

DSH-relaxed
query time 150 59 90
recall 0.984 0.922 0.962

Table 5.3: Query time and recall for various distributions

points of the Forest, Flickr and DBPedia datasets, respectively. Obviously, the

query performance suffers when the query points are hashed to these buckets.

Typically, the query distribution follows the data distribution, and in this case,

the query points are often hashed to the buckets with a large number of points.

Consequently, the number of candidates in LSH is larger on average than that

in DSH methods, and incurs a higher query cost.

We proceed to study the relationship between the recall and the space usage,

and report the results in Figure 5.5. To achieve a higher recall, a larger number

of hash tables is typically required. In particular, DSH-relaxed outperforms

DSH-basic and LSH by a wide margin. The trends are fairly similar to Fig-

ure 5.3. However, there exists a slight difference between them. We note that

using similar number of hash tables, LSH incurs about 25% longer query time

than DSH methods. The reasons are two-fold. First, due to the unbalanced

hashing in LSH, the number of points to be checked in each table is about 3

times larger than that in DSH. Second, there exist many more duplicates from

different tables in LSH than those in DSH where each point will be checked

at most once. As a result, DSH methods still benefit from its balanced hash

tables.

In addition, DSH-relaxed and DSH-basic outperform LSH by a wider margin

on the DBPedia dataset than the other two datasets. Due to the difference

between Euclidean distance and KL-divergence, the recall of LSH is limited

at 94%. Although DSH methods are not specially designed for KL-divergence

measurement, they achieve a recall of 96%, which can be improved further by

using a larger number of hash tables.

We also investigate the performance of each method under different query

distributions. Besides the original queries that are randomly extracted from
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Dataset Forest Flickr DBPedia
Size 1× 10× 1× 10× 1× 10×
LSH 57 502 92 875 105 1001
DSH-basic 37 331 148 1350 84 798
DSH-relaxed 32 286 109 980 77 719

Table 5.4: Indexing time (s)

each dataset, we generate two additional query sets for each dataset and each set

consists of 100 queries. Queries in the first set (labeled as dense) are randomly

selected and the distances between each query and its k-NNs are small. Queries

in the second set (labeled as sparse) are randomly selected as well and the

distances between each query and its k-NNs are large. The results (dense,

sparse and the original) of using l = 40 on Flickr dataset are shown in Table 5.3.

Due to the space constraint, in what follows, we only report the results on the

Flickr dataset whenever the results on the other two datasets exhibit similar

trend. From the result we can see that the performance for DSH is generally

consistent in all cases. However, the recall of LSH drops greatly in the sparse

area, and the query time increases significantly in the dense area.

5.5.3 Scalability

Table 5.4 summarizes the indexing time for the comparative methods. To test

the scalability of our indexing method, we also conduct an experiment where

all the data points are duplicated for 10 times. Notice that both DSH and LSH

treat those duplicated points as new points, thus indicating the expected per-

formance with a larger data set. First we can see that both LSH and DSH take

9-10 times longer in the 10 times larger dataset, suggesting that the indexing

time grows linearly with size of data set for all methods.

We also note that neither DSH methods nor LSH takes the minimum index-

ing time across all three datasets, and the indexing time over different datasets

for all methods varies slightly. Specifically, DSH-relaxed and DSH-basic are

more efficient than LSH on Forest and DBPedia datasets while we get a reverse

result on Flickr dataset. Note that in all comparative methods, the indexing

time consists two components: (1) the time to obtain the hash functions; (2) the

cost of hashing points to the hash tables. LSH uses the random projection to
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Precision 0.1 0.03 0.01 0.003 0.001
C/N(%) 0.01 0.03 0.1 0.3 1

LSH 0.551 0.704 0.8 0.852 0.916
DSH-basic 0.684 0.816 0.869 0.904 0.932
DSH-relaxed 0.652 0.812 0.894 0.936 0.962
[111] 0.738 0.808 0.864 0.888 0.919
[6] 0.677 0.794 0.864 0.897 0.925

Table 5.5: Precision-recall comparison with learning methods

generate hash functions and hence it performs much better than DSH-relaxed

and DSH-basic in obtaining the hash functions. However, DSH-relaxed and

DSH-basic require fewer hash tables, and incur less cost to hash points. By

considering both factors, the overall indexing time for DSH is comparable with

LSH.

5.5.4 Comparison with Learning Based Methods

We now compare DSH with other learning based methods. As discussed in

Section 5.4.5, the optimization target of DSH is different from that of other

learning based methods. Table 5.5 gives the comparison with query-sensitive

embedding and spectral hashing. In this table, we use the precision-recall trade-

off to show the basic difference illustrated in Section 5.4.5. We give each method

equal space limitation l = 40, and evaluate their precision and recall when m

is varied.

DSH-relaxed performs worse than the others in the high precision end, as

it allows too many false positives into the results. But as a payback, it wins

the highest recall in the relative lower precision area. On the other hand,

spectral hashing performs the best in the high precision area. However, in the

low precision area, its performance is the worst (similar with the performance

of LSH) since it does not make any guarantee for each individual and some

positive objects are totally lost. DSH-basic and Query Sensitive Hashing lie in

the middle, as they both enforce a strict constraint on both false positives and

false negatives. And DSH-basic outperforms query-sensitive hashing about 1%

for the reason that it preserves the collision probability for each k-NN point,

while query-sensitive hashing only guarantees that the probability is larger
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than those non-k-NNs. When the precision is 1%, the check rate(candidate

size/datasize) is only 0.1%. Thus, we focus more on the performance in the

relatively lower precision area and DSH-relaxed outperforms other algorithms.

For embedding or data representation applications, there is a need to com-

pute the similarity in the transformation space. Thus, the precision itself is

very important. However, to answer the similarity search, the validation is

conducted in the original space. For this reason, all those false-positives can

be pruned. From this experiment we see that the most suitable algorithms for

these two scenarios are different.

5.5.5 Parameter Studies

In this study, we investigate the parameters that potentially affect the perfor-

mance of DSH, and suggest guidelines for parameter setting.

We first study the effect of sample rate by varying from 0.1%(1K queries)

to 5%(50K). We evaluate the recall property Pa DSH can achieve when the

efficiency property is guaranteed by is Pb = 0.005. Figure 5.6a shows the

results. By enlarging the sample size, a more accurate model can be trained

to capture the distribution of the whole dataset. The value in the training set

shows that the upper bond of Pa is less than 0.282. On the other hand, the real

performance becomes very close to that value when sample rate is larger than

0.5%(5K). Therefore, we set the sample rate to 0.5%. Also, for each query, we

only acquire 10 k-NN relations and 10 non-ck-NN relations. The recall needed

here is only 50%. Thus, we can process the sampling process efficiently by

some approximate search algorithm. Figure 5.6b shows the indexing time when

different sample size are used.

We next study the effect of k by varying k from 5 to 80. Figure 5.6c shows

the results. In general, the recall drops slightly when k increases. It turns out

to be increasingly insensitive to k by using a larger number of hash tables.

We also study the relationship between c and query efficiency, and report

the query time in Figure 5.7a using different k. In general, the optimal c that

achieves the minimal query time differs when k varies. However, we can see

that for every k, the value ck that achieves the minimal query time always falls

in the range from 100 to 200. As shown in Theorem 5.1, the efficiency is decided

by both Pb×N and ck. Thus, the best ck value depends on the bucket size. In
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Method
# table Query time

original multi-probe original multi-probe

LSH 90 9 40.8 44.2
DSH-basic 72 7 28.6 29.4
DSH-relaxed 36 4 16 17.2

Table 5.6: Augmentation with multi-probe proposed for LSH

our experiments, the bucket size is about 500 points, and the ck that achieves

the best query performance lies in the range from 100 to 200.

Besides, there is a need to generate a DSH family for various k. Thus, we

study the performance using different k in both the learning and query phase.

Using l = 40, the result in Figure 5.7b shows a larger k in the learning phase

performs well over various query k in the query phase. For DSH, using k = 80

only introduces a cost of checking 80 points for each bucket at most. Meanwhile,

when a larger k is applied in the learning phase, the query quality performance

for those smaller k will also be guaranteed. Thus, we can use a larger k to learn

DSH in the various query k scenario.

Finally, we study the space-efficiency trade-off of DSH. Typically, to achieve

the same level of recall, using larger m and l will reduce the query time, while

leading to additional storage cost. Thus, we study the relationship between

query time and storage cost when the recall requirement is fixed to 0.96, and

the results are shown in Figure 5.7c. We can observe that by increasing the

number of hash tables, the query time drops and the performance gain becomes

smaller.

5.5.6 Extensibility

DSH is orthogonal to most of the research works that use LSH family as a

foundation and improve on LSH. Therefore, the results from most of these

works can be applied to DSH as an alternative to LSH. As an example, we

adapt Multi-probe LSH [66] into DSH. The results to obtain 0.96 recall are

given in Table 5.6. We can see that the combination further reduces the number

of tables needed while requiring almost the same query time.
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5.6 Summary

In this chapter, we propose an efficient hashing method called Data Sensitive

Hashing (DSH) for high-dimensional approximate k-NN search problem. The

hashing family is directly designed for preserving k-NN relation. By lever-

aging knowledge from the sampled data, DSH balances its buckets even in

non-uniform data distributions, and aims to preserve most k-NN relations in

its hashing. We conducted extensive experiments using three real datasets, and

the results confirm the efficiency and robustness of the DSH. The DSH-relaxed

variant is the most efficient, which requires only 1/3 of the hash tables and

query time of the LSH. Furthermore, existing LSH extensions can easily be

applied to the DSH.
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Figure 5.4: Distribution of Bucket Size
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Figure 5.5: Number of hash tables that are required by different access methods
to achieve a certain query quality: DSH-relaxed achieves the highest recall by
using the same number of hash tables, followed by DSH-basic and LSH.
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CHAPTER 6

DISTANCE INDEPENDENT

APPROACH FOR SIMILARITY

INDEX

Many applications involve locating the k nearest neighbors (k-NN) of a given

query point in a multi-dimensional space. Locality Sensitive Hashing (LSH)

and its variants, are generally believed to be the most effective search methods

in high-dimensional spaces. However, LSH is designed to find points within

a specified radius (i.e., to perform a radius search). In many applications the

k-NN distance of different query points may differ greatly, especially in skewed

datasets, which may lead to poor performance for LSH. Several learning-based

methods are proposed to improve the performance of LSH by leveraging the

knowledge of data distribution in the whole dataset. However, since the k-NN

distance of a certain point is a local feature, the benefit of optimizing global

hashing function is limited. In short, there is still a gap between efficient k-NN

search and fixed radius search.

To close this gap, we propose a novel indexing scheme called Selective Hash-

ing. In selective hashing, we aim to find the best index structure for each data

point locally. The main idea is to create a disjoint set of indices with different

granularities, and to store each point only in the most effective index. Intu-

itively, the index of each point is selected based on its local density, and the
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search range of query is automatically tuned based on its k-NN distance. The-

oretically, we show that k-NN search using selective hashing can achieve the

same quality as a fixed radius LSH search, using a radius equal to the distance

of the c1kth nearest neighbor, with at most c2 times overhead, where c1 and c2

are small constants. Selective hashing is also easy to build and update, and

outperforms all the state-of-the-art algorithms.

6.1 Introduction

Efficient k-nearest neighbor (k-NN) search is essential for a wide range of ap-

plications in the areas such as information retrieval, data mining and ma-

chine learning. Objects are frequently characterized as feature vectors, and

represented as points in a multi-dimensional space. Access methods in multi-

dimensional space, including the k-NN problem, have been studied extensively.

However, most of them suffer from the so-called curse of dimensionality and

demonstrate poor performance when the number of dimensions is high [110].

One technique that shows promise in high-dimensional spaces is locality sensi-

tive hashing (LSH) [32]. LSH is designed for finding points within a fixed radius

of the query point, i.e., radius search. For a k-NN problem (e.g., the first page

results of search engine), the corresponding radii for different query points may

vary by orders of magnitude, depending on how densely the region around the

query point is populated. To consider a human analogy: in a crowded city, we

may be able to find the k-NN even within our own building, whereas in the

middle of the desert, we may have to go many miles even to find the k-NN. In

such a case, LSH has to either (i) build index for different radii R, cR, c2R, . . . ,

which increases the query time and index storage cost, or (ii) use an ad-hoc

radius, which voids any quality guarantee.

Recently, there has been increasing interest in designing learning-based

hashing functions [5, 111, 31] to alleviate the limitations of LSH. If the data

distributions only have global density patterns, good choices of hashing func-

tions may be possible. However, it is not possible to construct global hashing

functions capturing diverse local patterns. Actually, k-NN distance (i.e., the

desired search range) depends on the local density [108] around the query, e.g.,

a local feature such as a dense group or sparse hull. Since every global function

is used for all the data points, when it is learnt to adjust to one local pattern,
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it will also cause lots of side-effects for other areas. In such cases, no global

choice can be good.

We propose the concept of Selective Hashing to give a locally optimized

index option for every data point. It is a meta-algorithm for k-NN search

which works on the top of radius search algorithms such as LSH. Our main

innovation is to create multiple LSH indices with different granularities (i.e.,

radii). Then, every data object is only stored in one selected index, with certain

granularity that is especially effective for k-NN searches near it. Using this idea,

our method achieves good quality for k-NN search regardless what the distance

is, while avoiding having to maintain a huge set of complete indices for various

distance radii (and additional query cost to visit multiple indices).

Within the framework of selective hashing, we further study what kind of

granularity is most effective for a data point. A main insight here is that

selecting the granularity has the equal effect of setting a guard range for every

data object, i.e., when a query point falls into that range, this data object will

be checked. Although k-NN is not a symmetric relation, the inverse relation

can be satisfied with high confidence for only a small constant overhead. For

example, a 20-NN of a point will have 99% probability to be a reverse 100-NN of

that point as well. Thus, for every data object, we estimate its density, decide

the guard range with certain confidence, and select the index with corresponding

granularity.

Comparing k-NN search with radius search, the only difference is that k-

NN search does not provide the radius in the query. Thus, it is a strictly

harder problem than the radius search where the radius equals to the distance

of kth-NN. As LSH has been refined as a technique, it is now near-optimal for

high-dimensional radius search, and the gap between the current solution [3]

and the lower bound [70] is almost closed. However, no such good results exist

for the k-NN problem and there remains a gap between efficient k-NN search

and fixed radius search. Theoretically, we show that k-NN search using selective

hashing can achieve the same recall as fixed c1kth-NN radius LSH search with

at most c2 times overhead, where c1 and c2 are small constants. If the density

does not change dramatically from one object to its nearest neighbors, we can

show that c1 is less than 5 and c2 is less than 1.3. Experimentally, the observed

overheads is under a factor of two in all the cases.

We propose an efficient algorithm to build the selective hashing index, as
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well as to handle updates. Unlike most learning-based approaches, selective

hashing only needs to maintain the local density for each area, and re-select

the radius when necessary. The amortized update cost is independent of the

data size, and only depends linearly on the number of indices. We also consider

write-intensive applications, for which we propose a lazy updating strategy to

re-select the radius when the check-rate (i.e., the proportion of data to be

accessed) for a certain object is high in the past queries.

We summarize the contributions of this chapter as follows.

• We propose a novel meta-method for indexing, called Selective Hashing,

which combines multiple index instances together and is especially suitable for

k-NN queries. Compared with previous works, selective hashing is the first to

optimize the index structure locally for every data point. Further, it provides

good quality results regardless of the distance of k-NN and does not incur extra

storage cost in consuming multiple indices (Section 6.3).

• We develop an effective index-selection scheme under the selective hash-

ing framework. Our scheme guarantees high recall while achieving check-rate

complexity comparable to a fixed radius search. In addition, this index is easy

to construct and maintain with a cost that is comparable to the conventional

LSH (Section 6.4).

• Experimental results show that selective hashing is effective for k-NN

queries: producing high recall results while incurring low query time (i.e., low

check-rate), compared to several leading alternative strategies. It is also small

in size and fast to update incrementally (Section 6.4.4).

6.2 Preliminaries

In this chapter, we consider data objects represented as points in a d-dimensional

metric space Rd. We use ‖p, q‖ to denote the distance between two points p and

q. Given a dataset, a point q ∈ Rd and an integer k, the k-NN of the query q is

the k data points that are nearest to q in the dataset. In the high-dimensional

case, for the reason that the cost of exact k-NN problem usually grows linearly

with the size of dataset, approximate k-nearest neighbor problem is accepted

as a compromise.

Locality Sensitive Hashing [32] (LSH) is an efficient approximate algorithm

for high-dimensional similarity search. It is efficient and provides a rigorous
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(a) Indexing

(b) Querying

Figure 6.1: Overview Intuition of Selective Hashing.

quality guarantee for finding similar points within a radius r. We denote the

sphere centered at point q by B(q, r). Formally, B(q, r) = {p|p ∈ Rd, ‖p, q‖ ≤
r}. The general idea of LSH is that objects that are within a given distance

will be hashed to the same value with high probability, where the set of hash

functions called LSH family:

Definition 6.1. (LSH Family, H) A family H = {h : Rd → U} of functions
is called (r, cr, p1, p2)-sensitive if ∀p, q ∈ Rd:

• if p ∈ B(q, r), then PrH(h(p) = h(q)) ≥ p1;

• if p /∈ B(q, cr), then PrH(h(p) = h(q)) ≤ p2;

LSH family for Euclidean distance is accomplished by random Gaussian

projection. There are also various versions of LSH family for Jaccard similarity,

cosine distance, Hamming distance etc.

LSH usually applies a concatenation of m hashing functions randomly se-

lected from the hashing family to build the hash table(reducing check-rate), and

builds l independent hash tables and takes the union of results (raising recall).

m and l are parameters of LSH and the best value is related to the data size. In

querying phase, all points collide with the query point in any of the hash tables

will be considered as candidates. The exact distances between the query and

all the candidates will be validated. For k-NN query, the top-k in candidates
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will be returned and for radius query, those satisfy the radius threshold will be

returned. Consider a group of LSH tables as a whole, it provides the following

properties:

Lemma 6.1. Given a group of LSH tables denoted as G, ∀p, q ∈ Rd, G(p, q) is
true iff p and q collide in at least one of the hash tables. Then:

• if p ∈ B(q, r), then Pr(G(p, q)) ≥ Pa;

• if p /∈ B(q, cr), then Pr(G(p, q)) ≤ Pb;

• Pa = 1− (1− pm1 )l, Pb = 1− (1− pm2 )l, Pb ≪ Pa.

In subsequent sections, we will consider a group of LSH hash tables G as a

black-boxed index, offering a radius search with some recall guarantee. Taking

p1, p2 and m as inner parameters optimized based on a certain approximation

ratio c, and tuning l to adjust the recall requirement, we have:

Lemma 6.2. To get a recall Pa = 1 − δ, the check-rate Pb for points outside

B(q, cr) for G is bounded by log δ ∗ φ, where φ is an inner property of G.
Proof. δ = (1− pm1 )l

⇒l = log δ/ log (1− pm1 )

⇒Pb = 1− (1− pm2 )l

⇒Pb ≤ l ∗ pm2
⇒Pb ≤ log δ ∗ pm2 / log (1− pm1 )

Here, φ = pm2 / log (1− pm1 ) is an inner property of G.

The number of tables (i.e., index size) is also proportional to log δ (it is

also relevant to the data size in a theoretically optimized solution). Note that

achieving a high recall typically does not lead to a significant increase in query

complexity (or the number of tables), as it only affects the term log δ.

To simplify the analysis here we use Euclidean Selective Hashing and Eu-

clidean LSH (i.e., E2LSH) as a running example throughout the rest of dis-

cussion. The Euclidean requirement is not compulsory, since we only need a

black-boxed radius search index that can offer arbitrary high recall as required.

In our subsequent analysis, we also only need the properties of a metric space.

Given a radius search algorithm for any metric space with such recall and check-

rate guarantee, selective hashing can support k-NN search for such space by

using it as a black box.

130



CHAPTER 6. DISTANCE INDEPENDENT APPROACH FOR

SIMILARITY INDEX

The theoretical bound of Euclidean LSH can be presented in two ways

depending on the problem requirement. If the checking procedure is termi-

nated when sufficient number of points in B(q, cr) is found, then it returns a

c-approximate r-NN solution, and its query time is O(dn1/c). If all the buckets

are fully checked and only those points within B(q, r) are returned, then the

results are exact r-NN with a constant recall δ. Usually there is no theoretical

bound on the check rate for such an exact solution, since LSH cannot distin-

guish the points in B(q, cr) - B(q, r) from those in B(q, r). However, in practice,

the worst case seldom happens. In this thesis, we only focus on the overhead

using LSH to solve k-NN problem, and the main result can be achieved by using

both versions of theoretical analysis. Since most LSH implementations, such as

E2LSH [21], choose to do exact search, and recall is the most common measure

for the k-NN problem, we adopt the exact search LSH as the base algorithm

for the rest of our analysis.

6.3 Selective Hashing Framework

Selective hashing is a meta-method for indexing. It combines multiple index

instances together, e.g., black-boxed LSHs, and produces a more efficient index

without extra storage or query cost. Considering that we have multiple index

choices for data objects, a traditional approach usually includes all the objects

in every index. At query time, there is only one index or a few indices to

be consulted. In contrast, selective hashing builds multiple indices, with each

object in the dataset being placed in only one index. At query time, all the

indices have to be consulted to locate the objects of interest. Thus, selective

hashing works in a “select one, query all” manner. It is easy to see that this

scheme can provide correct and complete results: each object exists in exactly

one of those indices, each of which will be accessed for any single query. The

check rate of each object only depends on the index in which it is stored. Each

index only contains a disjoint fraction of objects, and hence selective hashing

will not bring in any additional cost (especially for hash-based methods with

O(1) lookup cost). Moreover, there is almost no extra storage overhead as well.

In contrast, traditional methods usually need to build multiple complete index

instances with all the data objects stored, which may lead to a huge index size

and limit the possibility of combining more indices.
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We create multiple indices with different radii R, cR, c2R, . . . , and adopt

selective hashing on the top of these indices. Figure 6.1 gives an example of

our workflow. In the indexing phase, for each data object, we select one index

unit to use. The index selection is based on the local density around that data

point. Finally, we will have a group of indices, and each data object is stored

in only the most suitable one. In Figure 6.1a we see how each data point is

mapped to one of three indices (with c=1.5). Data points in dense regions are

stored in the right (small granularity) index, while data points in sparse regions

are stored in the left (large granularity) index. In the querying phase, we push

down the query to all the indices and collect the results. Then we aggregate

the results and return the top k. In Figure 6.1b all the indices are used to

retrieve the nearest neighbors of the given query. The search range in each

index is indicated by the shaded cell. The nearest neighbors are found in the

left two indices, with no nearby neighbors at all in the right index. In the dense

area, most of the data points tend to be in indices with small granularities.

When a query falls into such areas, although indices with large granularity

are also checked, the data points are only stored and accessed in indices with

small granularities. Thus, the actual search range is small accordingly to avoid

unnecessary checking but large enough to get accurate results. In the sparse

area, however, the query needs a larger search range. Data points are stored in

indices with larger granularities to ensure recall. In short, the search range for

a query is automatically tuned so that only the potential k-NN candidates will

be checked.

From the perspective of data objects (or points), we can also see that every

data object has chosen its best local structure for k-NN search. For a k-NN

search problem, the best local structure for a query is to only store k-NN while

leaving other data objects outside. Note that only query-object relations are

considered and queries are pushed to all the indices, so similar objects can

choose different radius and be placed in different indices. Thus, the radius

selected by each object is determined independently. Although all the hash

functions are defined globally, only those with suitable radius are used for each

object. Essentially, we use the global hash tables to offer locally optimized

index structure. While there are learning-based methods, such as DSH [31],

that attempt to optimize hash functions based on the data, they are much

harder to tune, since every hash function affects all objects. Now the only
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problem is that we can only select the index for each data point, not each

query. Notice that data p is a k-NN of query q equals with q is a reverse k-NN

of p. We need to choose the radius that is similar to the range that contains

all the reverse k-NN (i.e., potential queries) of the data point. k-NN is not a

symmetric relation, however, we will build a connection between them in the

next section.

6.4 Algorithm and Analysis

6.4.1 Density Estimation

As mentioned before, our radius selection is based on the local density near

each object. Many methods have been proposed for density estimation on

multi-dimensional data [89, 108]. We shall first define density to serve the need

in radius selection, in a manner inspired by these previous methods. Then

we propose a simple density estimation algorithm based on collisions in LSH

tables.

Density Definition

Definition 6.2. (Data Density Observation Do(p, r))

We define the density observation of one point p within radius r as the number

of points in the area B(p, r). For a given dataset O, the density observation

can be represented as Do(p, r) = |{o|o ∈ O, o ∈ B(p, r)}|.

This definition makes all the following analysis independent of the properties

of space: all we need is a distance measure. Note also that LSH is considered

as a black box with only radius r and recall δ as parameters. Henceforth, we

only need to consider the k-NN problem in a metric space.

Further, we consider the generation model behind density observation. Points

appearing in a certain area can be formally defined as a spatial Point Pro-

cess [51]. Although the density of different areas may be different, by looking

into two disjoint areas, the counts of points are independent of each other but

only depend on their own densities. Thus, this point process can be described as

a spatial Poisson process [51] where the number of points in a certain area (e.g.,

density observation) follows Poisson distribution. We define the expectation of

Do(p, r) as actual data density Da(p, r).
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Definition 6.3. (Actual Data Density Da(p, r))

We consider data objects that are generated from spatial Poisson process. The

number of points in a certain area B(p, r) is a random variable following Pois-

son process, and its expectation value is defined as the actual density Da(p, r).

Do(p, r) is the observation of Poisson(Da(p, r)).

The above two definitions emphasize two different aspects of the density con-

cept respectively. From the original physical perspective, density is described

as the mass divided by a unit volume, which is an observation. And from the

statistical view point, density refers to the probability density function (PDF)

of a certain random variable, which is the hidden parameter behind the obser-

vation. Therefore, we use two terms, density observation Do and actual density

Da, to eliminate this ambiguity. For a Poisson distribution FPoisson(x;λ), when

λ is more than 10, its cumulative distribution function (CDF) can be well ap-

proximated by the CDF of Gaussian distribution [51] 1:

CDFPoisson(λ)(x) ≈ CDFGaussian(µ=λ;σ2=λ)(x) = Φ(
x− λ√

λ
)

In most of the density estimation works [89, 108], there is one common

but indispensable assumption: regardless of the randomness of observation,

the actual density should be a continuous and smooth enough function over its

domain space. Only with this assumption, can we recover the actual density

from a set of isolated points. In our work, we also make a similar assumption

about the continuity of actual density — λ-continuity for actual data density. It

assumes that for two points within a k-NN distance, the actual density changes

at most λ times.

Definition 6.4. (λ-Continuity for Actual Data Density)

Given a dataset O, the λ-continuity for data density is satisfied iff: ∀p, let

R be its kth-NN distance, i.e., Da(p, R) = k, then ∀o ∈ B(p, R) and r ≤ R,

Da(o, r) ≤ λDa(p, r).

λ-continuity for data density assumes that the actual density should not

change dramatically (i.e., λ times) among the nearest neighbor pairs. For most

1In this chapter, the main bulk of analysis are from the perspective of the CDF of Gaussian.
Note that we can also analyze from the CDF of Poisson and similar results can be derived.
However, the CDF form of standard Gaussian Φ is more intuitive and commonly used.
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typical real datasets, even with high skew, λ is no more than 1.5-3. It is

interesting that even when outlier clusters exist, λ will still be relatively low

(e.g., 3), since the actual density is much smoother than the observation.

Observation Estimation

After having provided a formal definition of density, we are now ready to discuss

the estimation algorithm. Specifically, we aim to get the observation Do(p, r).

Indeed, the exact value of Do(p, r) can be directly counted by enumerating the

whole dataset. However, the computation cost is usually not affordable — the

complexity of computing the observations for all N data points is O(N2). In

the following analysis, we are only concerned with the lower and upper bounds

of such observations. It is therefore sufficient for us to estimate these bounds

for Do(p, r) effectively.

A natural idea here is that the estimation can be directly obtained from LSH

tables via collision counting. Collisions indicate how many points are within

the radius. Combining the counts from a group of tables, the estimation can

be quite accurate.

Theorem 6.1 (Lower Bound for Do(p, r)). Given an LSH index G with radius

r/c and properties Pa and Pb described in Lemma 6.1, using #Collision(p, r)

to denote the number of points collides with p (i.e., G(p, q) is true), then with

a probability of ζ, Do(p, r) will be large than LB(p, r), where:

LB(p, r) = #Collision(p, r)− Pb ∗N − Φ−1(1− ζ) ∗
»
Pb ∗N

Proof. Recall that from an LSH group with a radius r′ = r/c and approximate

ratio c: for all collided points of p, the expected number of points outside

B(p, cr′) (i.e., B(p, r)) is at most Pb ∗ N . Besides, the collision of one data

point is independent with the others. Thus, the count of such collisions follows

a Poisson distribution with a λ (i.e., expectation) less than Pb ∗ N . Using

Gaussian to approximate Poisson, it follows Gaussian(Pb∗N,Pb∗N). The PDF

of Gaussian (or Poisson) drops exponentially in the tail (3 standard variances

or more), we can compute an upper bound UB(p, r) for such a random variable
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with confidence 1− ζ :

x ∼ Poisson(Pb ∗N)

Pr(x < UB(p, r)) = 1− ζ

⇒UB(p, r) = CDFPoisson(Pb∗N)
−1(1− ζ)

⇒UB(p, r) = Pb ∗N +Φ−1(1− ζ) ∗
√

Pb ∗N

Φ is the CDF of the standard Gaussian. The collisions consist of two parts:

one part is from points outside B(p, r) which has an upper bound derived

above, the other part is from points within B(p, r). Thus, we have the lower

bound for Do(p, r) denoted as LB(p, r), where LB(p, r) = #Collision(p, r) −
UB(p, r).

Although this bound is not tight, it tells us that we can obtain a similar

estimation in a range that is c times larger since Do(p, r/c) ∗ Pa points will

appear in #Collision(p, r). Note that in the radius selection, the step size of

choosing the next radius is also c times. Therefore at the worst case we select

the next larger radius than the most suitable one. In real applications, this

estimation works well that the lower bound is about a half of the actual value.

The upper bound for Do(p, r) can be derived analogously. In what follows,

we will directly use the value Do(p, r) without considering how it is estimated

(or simply counted). Giving a more accurate (or even faster) estimation is not

the main focus of this chapter and we deal it only briefly here.

6.4.2 Radius Selection

Armed with the power of λ-continuity for data density and density observation

of data points, we are ready to solve the core radius selection problem. We first

present the selection algorithm that satisfies the quality guarantee, and then

analyze the cost of query.

Selection Algorithm

The key problem of selective hashing is to choose an index with suitable radius

for each data point. A main insight here is that by selecting a radius for a data

point, we are in fact setting a guard range for this point, i.e., when a query

point falls into that range, this point will be checked. We use the term target
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queries of data p to denote those potential queries which contain p in their k-NN

results. Obviously, k-NN is not a symmetric relation and we cannot guarantee

that all target queries will fall into the guard range (unless we set the guard

range to be the full space). However, the confidence of target queries falling

into the guard range could be arbitrary high by the following detailed analysis.

Thus, to ensure a recall of 1 − δ, we allocate the allowed error rate δ into two

parts: (1) δ/3 for cases where LSH fails to get k-NN when target queries fall

into guard range; and (2) 2δ/3 for cases where the target queries fall outside

the guard range. The split parameter (1/3, 2/3) here is optional, since we only

aim to build a linear connection between radius search and k-NN search while

the constant does not matter at the theoretical level.

To match the first part, we will build our LSH table groups using δ′ = δ/3.

Then we consider how to find the guard range (i.e., radius to be selected) so

that the overall probability of target queries falling outside the guard range of

their k-NN is bounded by 2δ/3.

Theorem 6.2 (Radius Selection). Given a dataset under λ-continuity assump-

tion, and using φ to denote Φ−1(1 − δ/3), let Bk = λk′ + Φ−1(1 − δ/3)
√
λk′,

where k′ = k+φ(
√
φ2 + 4k+φ). Given a data point o, the confidence 2 of target

queries falling into r where Do(o, r) ≥ Bk is larger than or equal to 1− 2δ/3.

Proof. For a k-NN query q, we denote the distance between the query and its

kth-NN point as r′, and we have Do(q, r
′) = k. As Do(q, r

′) is an observation of

Poisson(Da(q, r
′)), we know that with a confidence of 1− δ/3:

Da(q, r
′)− φ

»
Da(q, r′) ≤ k

⇒Da(q, r) ≤ k + φ(
»
φ2 + 4k + φ)

We denote this upper bound of confidence interval as k′.

Now we consider k-NN of q and we want to determine the guard range.

First we analyze Do(o, r
′) for o ∈ B(q, r′) (i.e., o is a k-NN of q). According

to λ-density continuity, we have Da(o, r
′) ≤ λDa(q, r

′). Besides, we also know

Do(o, r
′) ∼ Poisson(Da(o, r

′)). Thus with probability 1 − δ/3 (splitting the

2There is a slight difference between probability and confidence, since the parameter being
estimated is not a random variable but a fixed value. The confidence 1− δ here means that
with probability 1−δ, the confidence interval based on the observation will contain the actual
parameter.
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error 2δ/3 again into two halves):

Do(o, r
′) ≤ Da(o, r

′) + φ
»
Da(o, r′)

≤ λDa(q, r
′) + φ

»
λDa(q, r′)

Since Da(q, r
′) ≤ k′ with confidence 1−δ/3, the following statement is satisfied

with the probability larger than 1− 2δ/3:

Do(o, r
′) ≤ λk′ + φ

√
λk′

We denote this upper bound of confidence interval for Do(o, r
′) as Bk. Up

to now, we know that with confidence larger than 1 − 2δ/3, Do(o, r) will not

exceed Bk. Therefore, if we set the guard range of the data object to be r,

where Do(o, r) ≥ Bk, with confidence larger than 1 − 2δ/3 we have r′ ≤ r,

which means the query falls into its guard range.

If this guard range assignment strategy is applied to all the data points, for

every <query, k-NN> pair, the guard range of k-NN will cover the query with

a confidence larger than 1 − 2δ/3. Combined with the failure probability of

LSH which is smaller than 1− δ/3, the overall recall is larger than 1− δ.
In summary, for each data point o, we can select the radius r from candidate

set {R, cR, c2R, . . . } where r is the smallest value that satisfies Do(o, r) ≥ Bk.
Then for any query, the probability its k-NN to be returned is larger than 1−δ.
The algorithm for the overall radius selection and index process is described in

Algorithm 9.

Here we give a complexity analysis for the indexing cost of Selective Hashing

compared with E2LSH. E2LSH involves 3 steps: 1) Get the inner products

between data points and projection vectors in hashing family (using F to denote

the size of hashing family). O(FDN). 2) Get the integer codes based on the

product, bias and projection width. O(FN). 3) Compute the buckets for

points based on universal hashing. Insert the points into their corresponding

buckets. O(MLN). Hence, the complexity of E2LSH is O(FDN + MLN).

Selective Hashing involves 3 major steps: 1) step 1 in E2LSH. O(FDN). 2)

For H radii: follow step 2 and 3 in E2LSH to build LSH, O(MLN); collision

counting, O(LN); radius selection by comparing LB(p, r) and threshold Bk,

O(N). O(HMLN) in total. 3) follow step 2 and 3 in E2LSH to insert points

into the selective hashing index. O(MLN). Hence, the complexity of Selective
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Algorithm 9: INDEX

Input: Dataset: List〈Point〉 O
/* smallest radius is R, increment ratio is c, and number of

indices is SH.size */

Output: Index: List〈LSH〉 SH
1 foreach p in O do

/* observation estimation */

2 find r where Do(p, r) = Bk;
/* insert into only one index. */

3 integer i = ⌊logc (r/R)⌋;
4 if i < 0 then i = 0;
5 ;
6 if i ≥ SH.size then i = SH.size− 1;
7 ;
8 SH[i].insert(p);

9 return SH

Hashing is O(FDN + HMLN). Typically, M , L and H are about 20, D is

more than 100, F is around 100. Since HML is usually smaller than FD,

step 1 is the dominant cost in Selective Hashing, which is consumed in all the

hashing indexes. That is why Selective Hashing does not involve H times of

cost compared with E2LSH.

Cost Analysis

We first introduce an optimal solution for k-NN using radius search, which

cannot be achieved in reality. After that, we discuss the overhead of selective

hashing compared to the optimal one.

Using radius search to solve a k-NN problem, the best result it can achieve

is to foresee distances of k-NN and to index/query with the kth-NN distance as

the radius. Obviously, the k-NN distances of different queries differ greatly, and

for different queries the whole dataset needs to be indexed with different radii.

Thus, this approach cannot be realized in practice. However, it represents the

best we can achieve with the idea of radius search algorithm for k-NN search.

Its cost is just the same as conducting a simple radius search. We define this

optimal solution as optimal k-NN. When the radius search algorithm is LSH,

we call it optimal LSH.

Now we analyze the overhead of selective hashing compared to the optimal

k-NN (e.g., optimal LSH). We start by comparing the number of returned points
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in a radius, and the additional cost of checking outside points will be discussed

later. For optimal k-NN, the number of points in the radius is exactly k, since

the radius is set as kth-NN distance. For selective hashing, some more points

will also be checked. The exact number equals to the count of data points

whose guard ranges cover the query. According to Section 6.4.2, we know that

all the reverse Bk-NN points have a guard range which covers the query point.

Thus, all the reverse Bk-NN of this query need to be checked.

Unfortunately, we cannot tell how many reverse Bk-NN a given query has.

Intuitively, the average should be Bk, but the actual number depends on the

specific query. An adversary could deliberately choose points with large number

of reverse Bk-NN. However, if the query distribution is expected to be “well-

behaved”, this is an upper bound for the expectation number. Similar to data

distribution previously described, we define the query density asQa, and assume

λ′-continuity for query density, which limits the rate of change for Qa/Da.

Definition 6.5. (λ′-Continuity for Query Density)

Using S to denote the whole space, Da to denote the data distribution, and

Qa to denote the query distribution, where Da and Qa are the density function

over the whole space, giving some area A, the expectation of the number of

data points can be expressed as the integration of Da on A:
∫

p∈ADa(p) dp.
3

And it is analogous for Qa. Using D
−1
a (p, k) to denote the inverse function for

Da(p, r), which returns a radius r such that Da(p, r) = k, the λ′-continuity for

query density is satisfied iff:

∀p ∈ S, ∀o ∈ B(p,D−1
a (p,Bk)), Qa(o)/Da(o) ≤ λQa(p)/Da(p).

Note that we do not require the query distribution to follow the data distri-

bution, but the ratio should be a continuous function. Under this assumption,

we have the following theorem.

Theorem 6.3 (Expectation of reverse Bk-NN). When the query distribution

follows λ′-continuity for query density, the expectation of reverse Bk-NN is at

most λ′Bk per query.

Proof. For any point p ∈ S (e.g., Rd for a multi-dimensional space), its guard

range is B(p,D−1
a (p, k)), and its expectation number of reverse Bk-NN can be

3This definition is also consistent with the previous one Da(p, r), which can be represented
as
∫

p∈B(p,r)
Da(p) dp.
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defined as E(p):

E(p) =

∫

q∈B(p,D−1
a (p,k))

Qa(q) dq

Using t(p) to denote the ratio Qa(p)/Da(p), due to the λ′-continuity for query

density, we have Qa(q) ≤ λ′t(p)Da(q) for any q ∈ B(p,D−1
a (p, k)). On the other

hand, Da(p,D
−1
a (p,Bk)) is just Bk. Consequently, we have an upper bound for

E(p):

E(p) ≤
∫

q∈B(p,D−1
a (p,k))

λ′t(p)Da(q) dq

= λ′t(p)

∫

q∈B(p,D−1
a (p,k))

Da(q) dq

= λ′Bkt(p)

Thus, the expectation of <object, reverse Bk-NN query> pairs for the whole

space is
∫

p∈S Da(p)E(p) dp. And on the other hand, we know the total number

of query is the integration of Qa on S, i.e., ∫p∈S Qa(p) dp. Therefore, the upper

bound of the expectation of reverse Bk-NN per query is:

∫

p∈S Da(p)E(p) dp
∫

p∈S Qa(p) dp
≤
∫

p∈S Da(p)λ
′Bkt(p) dp

∫

p∈S Qa(p) dp

= λ′Bk
∫

p∈S Da(p)
Qa(p)
Da(p)

dp
∫

p∈S Qa(p) dp

= λ′Bk

Based on the above analysis, the search range of selective hashing is smaller

than the distance of λ′Bk-NN of the query. Thus, the check rate is smaller

than the cost of searching for λ′Bkth-NN distance in radius search. In general,

the cost of searching λ′Bk-NN will be smaller than λ′Bk/k times the cost of

searching k-NN, since we can always search k objects each time and repeat

λ′Bk/k times, in the absence of ties. However, there exist some query cases

that other nearest neighbor points are much more difficult to find than the

k-NN (e.g., k points collide with the query, while all other points in the dataset

have almost the same distance to the query point).

Recall that the LSH in selective hashing requires a recall of 1− δ/3, and it

will lead to additional (log δ − log 3)/ log δ times overhead. When k increases,

λ′Bk/k decreases, and when δ increases, (log δ − log 3)/ log δ also decreases.
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Algorithm 10: QUERY

Input: Query: Point q, Index: List〈LSH〉 SH
Output: KNN result: List〈Point〉 KNNcurrent

1 KNNcurrent = {};
2 List〈Point〉 pts;
/* search indices begining from the smallest radius one */

3 for i = 0 to SH.size-1 do

4 pts = SH[i].search(q);
5 foreach p in pts do

6 KNN.checkAndUpdate(KNNcurrent, p);

/* density-based pruning */

7 dis = maxp∈KNNcurrent ‖p, q‖;
8 if dis < µ · SH[i].radius then break;

9 return KNNcurrent

Thus, λ′Bk/k and (log δ − log 3)/ log δ can be bounded by some constants.

Theorem 6.4 (Effectiveness of Selective Hashing).

Selective hashing achieves the same quality for k-NN search as the fixed radius

LSH search, with radius equals the distance to the c1kth-NN, with as most c2

times overhead, where c1 = λ′Bk/k and c2 = (log δ− log 3)/ log δ. c1 and c2 are

bounded by constant.

Theorem 6.4 is just a theoretical bound with several relaxations made during

its derivation. For typical datasets and query requirements, c1 is bounded by

4-5 and c2 is around 1.3. The real performance is much better as we will see in

the experimental study.

6.4.3 Density-based Pruning

In the query scheme discussed above, the query is pushed to all the index

instances. In this subsection, we discuss how to further reduce the check rate

by not checking some index instances while still obtaining correct results.

We observe that indices with larger radii have the highest check rate. Intu-

itively, the guard ranges for points in those indices are very large, potentially

including many irrelevant areas (e.g., a small dense area nearby). In our exper-

iments on real datasets, we found that points in the top 20% indices with the

largest radius typically have 2-5x the average check rate. Thus, we would like

to avoid checking those indices if at all possible.
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In selective hashing, usually none of the indices can be skipped, as every

point only exists in one index. However, if a query has already found enough

points within a very small radius, then all its k-NN should fall in a high density

area and therefore would not have been placed in a large radius index. Thus, we

can search the applicable indices from the smallest radius to the largest radius

one by one, and stop searching when all the remaining indices will not contain

any potential k-NN. The following theorem gives a proof for the correctness of

this pruning.

Theorem 6.5 (Correctness of density-based pruning). For a query q, ifDo(q, r) ≥
k and Do(q, r

′) ≥ Bk, all the indices with a radius larger than c(r+ r′) will not

contain k-NN of q.

Proof. Let kNN(q) to be the k-NN points of a query q. Since Do(q, r) ≥ k,

∀o ∈ kNN(q), ||o, q|| ≤ r. Due to the triangle inequality, ∀p ∈ B(q, r′),

||o, p|| ≤ r + r′. For this reason, we have: Do(o, r + r′) ≥ Do(q, r
′) ≥ Bk.

On the other hand, the indexing algorithm will select the smallest radius

r that satisfies Do(o, r) ≥ Bk. And the radius increases c times each time.

Thus, there will be a radius R ∈ [r+ r′, c(r+ r′)) used in our selective hashing

index. ∀o ∈ kNN(q), o should be indexed in a radius equal to or smaller than

R < c(r + r′).

Using this pruning, r is the bound of k-NN and is naturally updated all the

time. We may build another heap to maintain the Bkth-NN distance r′, or sim-

ply use a ratio µr to approximate c(r+r′) for better performance. Algorithm 10

outlines our querying strategy.

6.4.4 Incremental Maintenance

Efficient update is an essential requirement for dynamic index structures. Se-

lective hashing can support efficient updates as well. Inserting or removing an

individual point from a hash table is straightforward. The challenge is that

updates can change the density of points in some regions, and therefore impact

the choices made in constructing the index.

In the framework of selective hashing, the update process not only has to

consider the insertion or deletion for the point to be processed, but also the

impact on nearby points. For example, if there are many insertions in a sparse
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method OPT SH MLSH SLSH LLSH DSH ISO

query
time(ms)

recall = 0.99 5.5 8.8 27.9 / / / /
recall = 0.96 4.2 5.5 19.5 / 52.3 14.5 28.5
recall = 0.90 3.1 3.7 14.5 11.4 21.5 7.9 6.9

check
rate(%)

recall = 0.99 0.61 0.97 2.33 / / / /
recall = 0.96 0.47 0.61 1.62 / 5.82 1.45 3.15
recall = 0.90 0.37 0.40 1.23 1.26 2.35 0.88 0.79

index
size(M)

recall = 0.99 283 3485 / / / /
recall = 0.96 170 1765 / 405 349 520
recall = 0.90 105 827 264 124 152 145

(a) Flickr1M

method OPT SH MLSH SLSH LLSH DSH ISO

query
time(ms)

recall = 0.99 5.3 9.8 26.3 / / 34.8 /
recall = 0.96 4.1 5.9 20.2 / 47.6 13.7 21.5
recall = 0.90 3.1 3.9 15.1 13.1 24.4 6.8 5.75

check
rate(%)

recall = 0.99 0.57 1.08 2.99 / / 3.62 /
recall = 0.96 0.44 0.66 2.31 / 5.28 1.43 2.24
recall = 0.90 0.33 0.42 1.71 1.46 2.71 0.71 0.64

index
size(M)

recall = 0.99 148 1770 / / 347 /
recall = 0.96 101 832 / 207 137 160
recall = 0.90 66 441 113 70 90 80

(b) MillionSong

Table 6.1: Overall Comparison

area, then the area becomes denser and all the points in this area should be

moved to a smaller radius in order to reduce the check rate. Therefore, we

need to make sure that the radius selection is based on the correct density

observation. Thus, we need to maintain the density information for each data

point, and re-select the radius when necessary.

First, we observe that the radius selection for each point is performed in-

dependently. That is, the choice of radius depends only on the existence of

nearby points and not on the radius choice for these points. Therefore, when

an update is applied, we only need to re-compute the density observation of

points that may be affected. The number of affected points depends on the

applied algorithm that estimates the density observation. For example, if it is

estimated based on collisions in LSH, all the points that collide with the up-

144



CHAPTER 6. DISTANCE INDEPENDENT APPROACH FOR

SIMILARITY INDEX

dated point should update their count of collisions and move to a new radius

R where R is the smallest one satisfying LB(p, R) ≥ Bk. The number of points

being affected is around Bk + Pb ∗ N and such cost will not be high in most

cases.

In write-intensive applications such as social networks and sensory obser-

vations, data points arrive as a stream. Most updates are new insertions and

sub-optimal query performance may be acceptable in return for faster updates.

To address this scenario, we propose a lazy updating strategy to postpone the

radius re-selection to the moment when the check rate for an object becomes

unacceptably high. For new insertions, the radius is only reduced and never

increased. Thus, using the original radius will only affect the check rate, while

the recall is still guaranteed. Instead of monitoring the density observation,

lazy updating maintains the check rate information for each point, re-computes

its density observation and re-selects its radius when its check rate is higher

than some threshold. When a new point comes, we simply insert it into se-

lective hashing index. Such updating strategy slight increases the query time

while achieving an update speed as fast as the naive LSH.

6.5 Experiments

6.5.1 Experimental Setup

Datasets. We evaluate the performance using two real datasets: an image

dataset Flickr1M and an audio recording dataset MillionSong, both of them

represented as high-dimensional feature vectors. Flickr1M [97] contains ex-

tracted features of 1 million images from Flickr. Each image is represented as

a 3,857-dimensional feature vector comprising a concatenation of SIFT feature,

color histogram, etc. MillionSong [10] is a collection of audio features and meta

data for a million contemporary popular music tracks. We split the audio into

sections such that each contains 50 continuous small voice segments. Each seg-

ment is described using 12 MFCC features. We get 2 million sections and each

section is a 600-dimensional vector. For whitening, normalization and dimen-

sion reduction purposes, following common practice, we use PCA to pre-process

these two datasets and keep 200 and 100 dimensions respectively.

Methods and implementations. We have implemented the following meth-
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Figure 6.2: Comparison of Methods with Strict Query Guarantee

ods for comparison.

• Selective hashing (SH). Our algorithm presented in Section 6.4. The default

setting is with density-based pruning and normal updating.

• Fixed radius LSH. E2LSH [21] is the most common LSH implementation for

exact Euclidean search. For each dataset, one small radius is selected for a more

efficient solution small radius LSH (SLSH), and one larger radius is selected

for a more accurate solution large radius LSH (LLSH). In general, the small

radius one is more effective when recall is low. However, its recall cannot be

further improved as there are many k-NN outside its radius. On the other

hand, the larger radius one can offer higher recall, but is more likely to have

too many collisions and hence requires a higher check rate.

•Multi-radius LSH (MLSH).We build |G| E2LSHs using radii {R, cR, c2R, . . . }.
When a query is issued, we search the indices from the smallest radius E2LSH

to those with larger radii. When there are at least k points in current radius

R, all the k-NN are within radius R; the recall guarantee holds and search

procedure is stopped. Its index size is |G| times that of the fixed radius LSH.
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Figure 6.3: Comparison of Ad-hoc and Learning-based Methods

MLSH provides a strict theoretical guarantee for the recall.

• Optimal LSH (OPT). We have presented an Optimal LSH in Section 9. It

gives a lower bound for the cost of k-NN search. We test its performance using

multi-radius LSH, while only searching the LSH which has the same radius as

the distance of kth-NN (pre-calculated and given as input).

• IsoHashing (ISO). ISO [53] is a learning-based hashing method trying to give

equal variance for all dimensions where quantizers are applied.

• Data sensitive hashing (DSH). DSH [31] is a learning-based high-dimensional

data-sensitive hashing which is directly designed for k-NN search and especially

targeted to give high recall guarantee.

For all these hash-based indices, we follow the typical index and query strat-

egy used in E2LSH which is described in Section 6.2. For DSH and ISO, all

the hashing functions are used to build the hashing family. In table construc-

tion, universal hashing is applied to all the hash tables and the total number

of buckets per table is 9973 (the closest prime to 10000). For SH, MLSH and

OPT, the number of radii |G| is set to 20, and the approximation ratio c is set
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to 1.2. The largest radius can be 30x larger than the smallest one. Finally, the

memory is large enough for all the methods to keep the original dataset and all

the indices in memory. Parameters for all methods are optimized to offer the

best performance. All the experiments were performed on a Ubuntu system

equipped with one Intel 3.4GHz processor, 16GB of memory.

Measurements. We evaluate the performance using the following measures:

Recall is used to measure the quality of query result. Check Rate and Query

Time are used to measure the efficiency of algorithm. Precision or MAP is

not used as measurement since all the algorithms are used to generate a set

of candidates. The exact distances are calculated for the candidates, and the

top-k are used as k-NN result. As an example, to solve a 20-NN search problem

in 1M points, we expect the algorithm to return 2000 points that contain all the

k-NN (1% precision 100% recall), but not to return 20 points that contain 12 of

them (60% precision & recall). We can validate those 2000 points and obtain

the exact answer. However, we cannot expand the 12 points to obtain a higher

recall. For this reason, we only focus on the query performance under high

recall (90% - 99%) requirements. We also compare Index Size, Construction

Time and Update Cost. 1000 points are randomly removed from each dataset

and used as query points. Unless specified otherwise, k is set to 20 except in

the experiment comparing the performance of different methods under various

k.

6.5.2 Query Performance

Query performance is the principal criterion for indexing. Table 6.1 summarizes

the performance of the methods that are required to reach a specified recall on

the two datasets. Only SH and MLSH (and the unrealizable OPT) can reach

99% recall on both datasets, and can be considered as having strict quality

guarantee. Although DSH ensures the recall of the results on its training sets

and performs much better than the other methods (ISO, SLSH and LLSH),

there are still more than 1% missing results. In what follows, we first present

the comparison results for the methods with strict quality guarantee, and then

show the comparison results for ad-hoc and learning-based methods which are

faster but achieve lower quality. After that, we study how different values of

k will affect the performance for those methods, and also the effect of density-
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based pruning on SH.

Methods with strict quality guarantee. We first present comparison re-

sult for SH, MLSH and OPT. Figure 6.2 shows their performance on check rate

and query time to reach a certain recall. The trends in two datasets are sim-

ilar. Furthermore, the trends of check rate are consistent with those of query

time since most query time is spent in computing the exact distances for the

candidates. Specifically, all the algorithms take about 9ms to scan 1% of data

(about 8MB data). From the figure, we can see that SH almost reaches the

lower bound — OPT, when the recall is around 90%. When recall increases, δ

becomes smaller and Φ(1−δ/3) will be slightly larger. For this reason, SH uses

1.5x-2x time than OPT when recall is 99%. However, the effect of δ is bounded,

since Gaussian CDF decays fast to zero in its tail. Compared to MLSH, both

query time and check rate of SH are only about one third. The query time

of MLSH is about 5x larger than OPT. From the result we can see, even if

multiple indices for different radii have been built, the overhead of attempting

a suitable radius is still very high. If the distance of k-NN varies W times,

the overhead of query time can only be bounded by O(logcW ), and index size

is also O(logcW ) times the fixed radius one. Moreover, SH also benefits from

density-based pruning, while MLSH does not.

Ad-hoc and learning-based methods. From Table 6.1, it is clear that the

index size of MLSH is huge and may not be acceptable in lots of real scenarios.

Here we give a comparison for the methods using only one group of hash tables,

including SLSH, LLSH, ISO, DSH and SH. Figure 6.3 shows their check rate

and query time as a function of recall. SH performs more than 1.75x faster

than DSH. This is because although DSH also aims to offer a better structure

to maintain the k-NN relations, it is based on the optimization of global hash

functions, whereas SH offers a more fine-grained local optimization for every

data point. LLSH and SLSH give the worst performance, due to the fact that

they do not have any optimization on k-NN at all. Since SLSH cannot provide

high recall, say 96%, we shall use LLSH as the representative of the fixed radius

LSH in subsequent comparisons.

Sensitivity to k. In most real-life applications (e.g., displaying the first page

of results, k-NN joins, k-NN classifier), k is typically pre-defined throughout all

the queries. However, it is important for an index to be insensitive to the value

of k so that we only need to maintain one k-NN index to serve most potential
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Figure 6.4: Sensitivity to k

applications. Here we study the query performance when k of the query varies

while keeping k = 20 in index construction. Figure 6.4 shows the query time

for achieving 96% recall for queries with different values of k. Obviously, the

query with a larger k is harder to compute and needs longer query time. MLSH

is the only method that does not use k for index construction and hence is not

sensitive to k. For LSH-based methods SH and LLSH, their relative query time

performance compared with MLSH increase around 25% for k = 1, 20% for

k = 100 and 90% for k = 500. This increase can be viewed as the overhead due

to using an incorrect k during index construction. For all the cases, SH is 2-5x

faster than all the other methods. This is because the segment width of LSH

may be effective for an interval of radius like [r, 1.2r], with the performance

dropping significantly outside the interval [21], while the distances of 100th-NN

(or 1-NN) and 20th-NN usually do not have a significant difference. Therefore

a single index (e.g., k = 20) can serve a moderate range of k values (e.g., 1 to

100), which serves the need of most applications and searches.

Density-based pruning. Here we study the effect of density-based pruning
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Figure 6.5: Density-based Pruning

on selective hashing. The distribution of data among different radii is more

balanced in the Flickr1M dataset and therefore we use it to show how the

check rate is changed. The distribution of data among all the 20 indices is

shown in Figure 6.5a, where the first bar represents the index with the smallest

radius. Figure 6.5b reports the check rate to reach 96% recall before and after

the density-based pruning is adopted. Although the proportion of points in

4 indices with largest radii are only 10%, they contribute about 40% of the

check rate. By using the density pruning strategy, their check rate is reduced

by almost a half.
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Flickr1M MillionSong
Methods #table 1x 10x #table 1x 10x

SH 15 112 1020 17 86 800
MLSH 11 205 1922 10 143 1346
LLSH 40 112 1098 44 85 833
DSH 34 135 1215 26 122 1188
ISO 30 120 1140 24 90 880

Table 6.2: Index Construction Time(s)

6.5.3 Index Construction

The index size of each method has already been described in Table 6.1, and SH

requires the least storage space to reach a given recall. Compared with MLSH,

the index size of SH is only 7% - 10%. Compared with the other methods, the

hash tables of SH are also the most space efficient. It will be fairer to compare

the index size, construction time and update cost of each method to reach a

given recall. For this reason, the cost of the fixed radius LSH can be higher

than the other methods where fewer tables are constructed.

Efficient construction is also an essential requirement for indexing, since

periodical index reconstruction is commonly adopted as a way to improve the

query efficiency. Table 6.2 summarizes the index construction time for all the

methods. We also conduct a scalability test where all the data points are

duplicated 10 times. All the methods take about 9x-10x longer time in the 10x

dataset, suggesting that the construction time is linear with respect to the size of

the dataset. SH and LLSH incur the least time to construct the tables, followed

by ISO and DSH. The construction time typically consists of four components:

training hashing functions (or estimating density for SH); computing the inner

product between data points and projection vectors; getting the key for each

hash table; and inserting points into hash tables. Most approaches have the

same inner product computation step and have the same cost if their hashing

families have the same size. The major differences of construction time happen

in the last two components, i.e., table construction. For SH, its hash tables are

very efficient, thus fewer tables are built and the cost of insertions is therefore

lower.
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Flickr1M MillionSong
Methods insertion throughput insertion throughput

SH 196 2.14 301 2.79
SH-Lazy 97 4.33 165 5.09
MLSH 236 1.78 329 2.55
LLSH 146 2.88 221 3.80
DSH 310 1.36 448 1.86

Table 6.3: Update Cost

Ratio Method Update(ms) Query(ms) Total(ms)

1:1
SH 3.0 97.7 100.7

SH-Lazy 1.7 104.2 105.9

1:10
SH 30.2 97.7 127.9

SH-Lazy 16.8 112.8 129.6

1:100
SH 301.6 97.7 399.3

SH-Lazy 166.3 119.1 285.4

1:1000
SH 3015.3 97.7 3113.0

SH-Lazy 1650.7 126.3 1777.0

Table 6.4: Lazy Updating

6.5.4 Update

We also evaluate the update cost, measured by the average processing time per

thousand insertions, and the throughput, measured by the amount (MB) of

data processed per second. Table 6.3 summarizes the results. Lazy updating

version of SH, named SH-Lazy, is the fastest, reaching a throughput of 5MB

per second which is usually sufficient to handle sensor data. This is because

the update cost per table for lazy updating is very close to LLSH, while fewer

tables are maintained to get the same quality of results. The update for DSH is

relatively slow since it involves re-training a fraction of hashing functions. ISO

does not support update, limiting its applicability as an indexing structure for

dynamic databases.

We also study the effect of lazy updating in different scenarios. Table 6.4

shows the performance under different update/query ratios. In this experiment,

the query and insertion of points are processed at the same time. Half of the

points are selected as original points in the dataset and the other half are
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used as points for updating. Thus, the average density changes 2x during

update when all the update points are processed. For lazy updating, the query

performance degrades about 5% to 30%, whereas the update cost is reduced

by half. Interestingly, query performance converges to the density monitoring

approach when more queries are issued. This is because more queries may

lead to more frequent updates, and therefore the estimation is more accurate.

In general, when the update/query ratio is larger than 100, lazy updating is

definitely a better choice.

6.6 Summary

The LSH family of algorithms is considered to be very good at similarity search

in high-dimensional space. However, it has been designed to address the prob-

lem of fixed radius search, rather than the k-NN problem. In this chapter, we

introduced Selective Hashing (SH) as a meta-technique for k-NN search, con-

structed on top of any fixed radius search techniques, such as LSH. The key

innovation in SH is the ability of choosing the index independently for each

point, and then consulting multiple disjoint indexes for each query. The effec-

tiveness of the proposed technique was established theoretically through careful

analysis and demonstrated experimentally through performance studies using

real datasets.
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LEARNING-VALUE BASED

SAMPLING FOR EFFECTIVE DATA

ACCESS

Recent years have witnessed amazing outcomes from “Big Models” trained

by “Big Data”. Most popular algorithms for model training are performed

iteratively. Due to the surging volumes of data, we usually can only afford to

process a fraction of the training data in each iteration. Typically, the data are

either uniformly sampled or sequentially accessed.

We study how the data access pattern can affect model training. Based on

the stochastic gradient descent (SGD) framework, we propose a novel approach

called ActiveSampler, where training data with more “learning value” to

the model are sampled more frequently. The goal is to focus training effort

on valuable instances near the classification boundaries, rather than evident

cases, noisy data or outliers. We formalize the information gain of each train-

ing instance and develop a light-weight vectorized algorithm to accelerate the

training process. Extensive experimental evaluations demonstrate that Ac-

tiveSampler can speed up the training procedure of SVM, feature selection

and deep learning by 1.8-2.3x, for comparable training quality.
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(a) Easy (b) Hard

Figure 7.1: Information Gain from Training Data

7.1 Introduction

We live in the era of ever-increasing size and complexity of “Big Data”. To

understand the data and decipher the information that truly counts, many

advanced large-scale machine learning models have been devised, from million-

dimension linear models (e.g. Logistic Regression [40], Support Vector Ma-

chine [96], feature selection [63, 119], Principal Component Analysis [42]) to

complex models like Deep Neural Networks [22] or topic models [39]. While

these models have demonstrated value for a wide spectrum of applications [67,

63, 54], their complexity causes the training cost to increase dramatically with

the surging volume of data. This difficulty with scale severely affects the via-

bility of many advanced models on industry-scale applications. Consequently,

accelerating the training procedure of those “Big Models” on “Big Data” has

attracted a great deal of interest.

Model training can usually be formulated as minimizing a specific objective

function based on a set of data observations, i.e. the Empirical Risk Minimiza-

tion [104] (ERM) problem. Even though batch gradient descent [113, 13, 11]

has been widely used for decades, evaluating the full gradient over all the train-

ing samples is extremely expensive in the prevailing scale of millions of training

samples. To reduce the computational cost at every iteration, Stochastic Gra-
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dient Descent (SGD) [83, 12] optimizes the objective function based on a single

random sample at each iteration. Thereby, the computation cost per iteration

is reduced greatly, but now many more iterations are required to reach a cer-

tain degree of accuracy or finally converge [75]. This is because the stochastic

gradient used in each iteration is highly sensitive to the specific random sample

chosen. Although the expectation of stochastic gradient is exactly the full gra-

dient, the large variance causes the direction of stochastic gradient to deviate

from that of the full gradient, which is the optimal direction to minimize the

objective function. Some samples may even direct the model to the opposite of

the correct direction. It is a trade-off between the quality of gradient and the

computational cost per iteration. A commonly used scheme called Mini-batch

SGD [61] is developed for this purpose: by averaging the gradient from a mini-

batch of samples, the variance of gradient is significantly reduced, at the cost

of some increased computation per iteration.

In this chapter, we seek to further optimize the stochastic gradient by not

merely averaging gradients from more random samples but rather improving the

quality of data samples. To this end, we propose a light-weight SGD accelerator

called ActiveSampler inspired by active learning [92, 81]. In active learning,

training data are selected to maximize the “learning value”. For example,

to train a classification model, training data points near class boundaries are

more valuable than points in the interior of a class. We adapt the idea of

active learning to the SGD optimization context by choosing samples from not

a uniform distribution over the training data but rather a biased distribution

from which we expect to learn more.

Figure 7.1 gives an example of how different samples can affect the training

efficiency. The left side contains some images of written digits that are very

easy to classify. For these “easy-to-classify” images, most models can classify

them correctly even after a handful of steps. In subsequent thousands of itera-

tions or even more, these easy-to-classify images will be sampled and correctly

classified with high confidence, contributing almost zero gradient to the model.

Consequently, the training time consumed by those easy-to-classify images is

largely wasted. In contrast, the right side of Figure 7.1 contains some images

that are hard to classify. By putting more effort on those “hard-to-classify”

images, the accuracy of model may improve at a faster rate.

Based on the above intuition, we define the information gain from each sam-
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ple for the model training, and aim to maximize it. We find that to maximize

the information gain in each iteration, the sample frequency for each training

sample should be proportional to the expectation of its gradient magnitude.

Notwithstanding the sampler itself is biased, we show that the original ob-

jective function based on uniform weight can still be correctly minimized by

re-weighting the gradient of each sample. Our algorithm shares lots of common

features with importance sampling [121], which provides minimal variance of

stochastic gradient, but the sampling frequency in ActiveSampler is inde-

pendent of the label of each data instance. Therefore, ActiveSampler may

be more robust to contaminated data instances. The net result is a system that

requires far fewer iterations for model convergence.

Although optimization methods can reduce the number of iterations, it

should also be noted that they may introduce additional computation cost in

each iteration. There have been a great amount of research works [88, 47, 71]

focusing on accelerating SGD. Theoretically, these methods have significantly

faster convergence rate. While Momentum and AdaGrad [24] methods have

shown their effectiveness and have been integrated into practical SGD solver,

most methods are far from being used in practice due to their significant addi-

tional computation cost. For example, the cost of SVRG per iteration [47] is at

least three times the cost of standard SGD per iteration. As noted in [71], mini-

batch SGD still dominates in most cases, due to its light-weight computation

and good vectorization.

To make ActiveSampler as efficient as possible in practice, in the actual

implementation, we use existing knowledge to approximate the information

that needs additional computation cost, and the sampling distribution is de-

cided by the gradient magnitude in previous iterations and an entropy function.

To evaluating the gradient magnitude for each sample, an effective scheme is

applied to avoid the explicit calculation of the gradient of each sample. This

scheme makes it possible that the computation for multiple samples can still

be efficiently vectorized. Moreover, the computation cost is only O(m+ l) for

a m × l parameter matrix. Therefore, for ActiveSampler, the computation

overhead introduced in each iteration is light-weight, considering its significant

contribution in reducing the number of total iterations.

To summarize, the contributions of this chapter are the following.

• We propose a general SGD accelerator, called ActiveSampler, where
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more informative training data is sampled more frequently for model train-

ing.

• We develop a light-weight and fully vectorized algorithm for ActiveSam-

pler, making its computation cost in each iteration comparable to the näıve

mini-batch SGD.

7.2 ActiveSampler

7.2.1 Overview

In this chapter, we revisit the SGD algorithm from a brand new angle – the

information gain of the model at each iteration. Specifically, we regard the SGD

algorithm as an active learning procedure which sequentially takes samples from

the dataset and learn the model. Naturally, training model using samples with

more information would facilitate faster improvement of the model. We term

our weighted sampling strategy as ActiveSampler. The intuition here is that

a large number of training samples are not helpful for refining the model (or

at least not helpful at a certain training stage), including data that are too

evident to predict, data that are noisy, and data that have just been visited.

By simply skipping these samples, we can save a significant amount of training

time. In contrast, the samples that are close to the border of class may be

very helpful to refine the model (or even define the model in some cases such as

SVM). This idea is very similar to active learning but with a major difference

– the objective of active learning is to reduce the number of training samples,

while the objective of ActiveSampler is to reduce the number of training

iterations.

To exploit information gain as a means to speed up SGD training, three

issues have to be addressed: (1) define what is the information gain for model

training from each training sample; (2) adapt the ActiveSampler to the SGD

framework and study how information gain can help speeding up SGD; (3)

design a light-weight implementation of ActiveSampler that can be applied

to real systems. We shall address these three issues in the following subsections.
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7.2.2 Information Gain

We define the information gain following the basic intuition from the training

of typical soft margin classifiers. In soft margin classifiers, instead of giving a

single label as the prediction, the classifier outputs a probabilistic distribution

over latent labels. Many recently proposed classification algorithms (e.g. Lasso,

Neural Network and Soft SVM) are typically trained as soft margin classifiers,

since the optimization over a continuous loss functional space is more efficient

than the discrete optimization, which is a NP-Hard problem.

Definition 16 (Soft Margin Classifier). Given a predictor fw, the soft prob-

abilistic classifier is defined by using log logistic function as the loss function,

i.e.

L(fw(x), y) = log(1 + exp (−fw(x) ∗ y)) (7.1)

Obviously, all algorithms in Table 2.1 using the logistic loss function are soft

margin classifiers. The rationale is that the logistic function is used to transfer

the prediction fw ∈ R to a classification probability, i.e.

Pr(y|fw(x)) = 1/(1 + exp (−fw(x) ∗ y)) (7.2)

Then the log-likelihood logPr(y|fw(x)) is maximized, i.e. the loss is log(1 +

exp (−fw(x) ∗ y)).

Now, let us analyze the possible factors that may affect the information gain

of a model from each training sample. First, from the view of active learning,

the information gain by revealing a label which can be easily predicted is very

limited. This is also true for the SGD algorithm – visiting a sample that the

model can always classify correctly is not helpful, as the loss cannot be further

reduced if the loss is already close to 0. A model can only learn from samples

which are uncertain in prediction. Figure 7.2 shows an example to illustrate

why uncertainty helps the model to improve: the images on the left are very

easy to predict, and therefore Pr(y|fw(x)) is close to 1. As a result, the loss

L(fw(x), y) for each of those images is nearly zero and has little room for further

optimization. In contrast, the images on the right is much harder to predict.

By selecting them as samples for optimization purpose, the loss L(fw(x), y) on

those samples could be significantly reduced and the average performance of
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Figure 7.2: Uncertainty

model is hence improved. In information theory [104], the information gain by

revealing a random variable is usually defined as the entropy of that random

variable:

Definition 17 (Uncertainty). The uncertainty of a training instance xi for a

model fw is defined as the entropy of the fw(xi), i.e.

U(w,xi) = −
∑

y

Pr(y|fw(xi)) logPr(y|fw(xi)) (7.3)

Second, not all the uncertain training instances contribute equally to the

model performance. For example, though the model may always be uncertain

about the label for noisy data, this does not mean that noisy data are more

helpful to improve the model performance. This is because the uncertainty

measure only evaluates the information inside the label, but not its contribution

to the model. Therefore, we introduce another measure called significance to

evaluate the effectiveness of information transfer from the data to the model

(i.e. conversion rate). Intuitively, the output of a noisy instance is not sensitive

to the change of the parameter. When the output of a data instance is sensitive

to the change of parameter, its loss will be significantly reduced even with tiny

changes of the parameter, which provides a clear instruction on how to reduce

the loss by tuning the parameter. The right hand side of Figure 7.3 shows the

images that are noisy and with little significance.

Definition 18 (Significance). The significance of a training instance xi for a
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Figure 7.3: Significance

model fw is defined as its sensitivity to parameter change:

S(w,xi) = ‖∇wfw(xi)‖2 (7.4)

‖∇wfw(xi)‖2 is the maximal change of fw(xi) when the parameter w changes

an unit distance.

Here, we give a comparison between uncertainty and significance: uncer-

tainty measures the expectation of accuracy on the current model, while signif-

icance measures the potential improvement of accuracy by tuning the model.

Therefore, instances that are easy to classify usually have low uncertainty but

high significance; noisy instances usually have high uncertainty but low signifi-

cance, while valuable border instances that have not been well learned usually

have both high uncertainty and high significance.

Third, the information gain in one iteration may overlap with the infor-

mation obtained in earlier training steps. For example, visiting the training

instance that has just been trained usually does not provide extra information

than what has been derived in the previous visit. Moreover, for a completely

new instance that has not been trained, there is no overlap between the infor-

mation gain and information in previous steps. Therefore, we use the visiting

interval to measure the effect of information overlap:

Definition 19 (Interval). The visiting interval I(w,xi) of a training instance

xi for a model fw is defined as the number of iterations since the last time xi
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was used in training. A larger interval provides less information overlap and

more pure information gain.

Combining all the three factors together, we define the information gain of

model fw from training instance xi as IG(w,xi):

IG(w,xi) = U(w,xi) ∗ S(w,xi) ∗ I(w,xi) (7.5)

The objective of our ActiveSampler is to choose the training instance xi

with the largest IG(w,xi).

7.2.3 Weighted SGD and Analysis

We now present how to adapt ActiveSampler to the SGD framework in

detail.

Theorem 7.1 (Information Gain Maximization). By choosing the largest IG(w,xi)

in each iteration, the sampling probability pi of each training instance xi should

be proportional to its expectation of the gradient magnitude, i.e.

pi =
Ey[‖∇wL(fw(xi), y)‖2]

∑

iEy[‖∇wL(fw(xi), y)‖2]
(7.6)

Proof Sketch: At each iteration, IG(w,xi) for each instance will increase

U(w,xi) * S(w,xi), and the instance with the largest IG(w,xi) will be selected

as sample. After an instance is sampled, its IG(w,xi) will be set to zero as

its I(w,xi) becomes zero. Therefore, as the number of iterations grows, the

sampling frequency for each instance should be proportional to its U(w,xi)

* S(w,xi), considering that the largest IG(w,xi) selected in each iteration

should has a similar value. Meanwhile,

Ey[‖∇wL(fw(xi), y)‖2]
=

∑

y Pr(y|fw(xi))‖∇wL(fw(xi), y)‖2
=

∑

y Pr(y|fw(xi))
∂

∂fw(xi)
L(fw(xi), y)‖∇wfw(xi)‖2

=
∑

y(Pr(y|fw(xi)) ∗ logPr(y|fw(xi)))‖∇wfw(xi)‖2
= U(w,xi) ∗ S(w,xi) (7.7)
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While the result in Theorem 7.1 is similar to the result in importance sam-

pling SGD [121], but there is one major difference between them. In important

sampling, the sampling frequency is proportional to the exact gradient magni-

tude where the label is known. However, in ActiveSampler, the sampling

frequency is proportional to the expectation of gradient magnitude where the

label is unknown. This is because from the prospective of active learning,

the information from one instance is independent of the actual value of la-

bel. Therefore, a wrongly classified instance with high confidence will have

higher frequency in importance sampling than that in ActiveSampler. In

such cases, ActiveSampler may be more robust to contaminated data or

outliers. However, there is no direct way to evaluate which method is better

from theoretical angle. We compare importance sampling with our basic ap-

proach experimentally, showing that we have comparable results in general and

sometimes better results; we also show that the practical model we present in

the next section which focuses more on the accuracy in practical approximation

obtains considerably better results.

While the above intuition suggests that different training instances should

be sampled at different frequencies, directly changing the sampling frequency

will result in a bias in the target of an optimization.

Ei[gi(w)] =
∑

i

pigi(w)

= ∇w

∑

i

piL(fw(xi), yi) (7.8)

The loss function to be minimized is
∑

i piL(fw(xi), yi) instead of
∑

i
1
n
L(fw(xi), yi).

The weight for each training instance is unequal, which may affect the accuracy

of the model. For this reason, using ∇wL(fw(xi), yi) directly as gi(w) is in-

appropriate. Instead, we should guarantee that Ei[gi(w)] is ∇wL(w) by doing

the following adjustment.

Theorem 7.2 (Weighted SGD). Given any sampling distribution {p1, ..., pi,
..., pn}, to get a SGD algorithm that optimizes L(w), gi(w) should be re-

weighted to ∇wL(fw(xi),yi)
n∗pi

.

Proof. To get a SGD algorithm that optimizes L(w), we need Ei[gi(w)] to be
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Reinforcement stage for 

Sample from whole dataset: 

Interval is proportional to the size of dataset

Sample from partial dataset at each stage:  

Interval is proportional to the size of partial dataset 

: Samples with more accurate predictionReinforcement stage for 

Figure 7.4: History Reinforcement

∇wL(w). By scaling gi(w) wi times and solve Ei[gi(w)] = ∇wL(w), we have:

Ei[gi(w)] = ∇wL(w)

⇒
∑

i

piwi∇wL(fw(xi), yi) =
∑

i

1

n
∇wL(fw(xi), yi)

⇒ piwi = 1/n (7.9)

Therefore, wi = 1/(n ∗ pi).

7.2.4 Practical Implementation Issues

As discussed in Chapter 2, the main goal of optimizing the SGD algorithm

is to reduce the variance of gi(w), while keeping the computation cost per

iteration light-weight. We have already shown how to minimize the variance

of gi(w) by using ActiveSampler. In this subsection, we will discuss some

practical issues in implementing ActiveSampler onto real systems, which

may significantly affect the computation time in each iteration.

Sampling based on History

According to Theorem 7.1, the ideal goal of ActiveSampler is to sample each

instance 〈xi, yi〉 with Pr(xi) which is proportional to Ey[‖∇wL(fw(xi), y)‖2].
For each instance 〈xi, yi〉, Ey[‖∇wL(fw(xi), y)‖2] can be represented as:

∑

y Pr(y|fw(xi)) logPr(y|fw(xi))

logPr(yi|fw(xi))
‖∇wL(fw(xi), yi)‖2 (7.10)

However, use of the exact distribution, which requires all n gradients to be

evaluated at each step, is obviously not practical. Instead, we can predict
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Algorithm 11: ASSGD (ActiveSampler SGD)

Input: Initial w0, T , β, EGrad[], SumEGrad =
∑

iEGrad[i]
Output: Final wT

1 for t = 1, ..., T do
2 sample i from {1, ..., n} based on distribution {p1, ..., pn} where

pi = β/n+ (1− β)EGrad[i]/SumEGrad;
3 gi(w) = ∇wL(fw(xi), yi)/npi;
4 wt = wt−1 − η∇wρf(w)− ηgi(w);
5 SumEGrad = SumEGrad−EGrad[i];
6 EGrad[i] =

∑

y
Pr(y|fw(xi)) logPr(y|fw(xi))

logPr(yi|fw(xi))
‖∇wL(fw(xi), yi)‖2;

7 SumEGrad = SumEGrad+ EGrad[i];

the gradient magnitude for each training instance using historical data. A

straightforward approach to the problem is to remember the latest expectation

Ey[‖∇wL(fw(xi), y)‖2] of each instance and use it as an approximation. Con-

sidering that the actual expectation may change and the historical data is only

an approximation, a smoothing term is required. For example, if one instance

contributes a zero expectation of gradient at any iteration of the model training

when it is sampled, that sample will never be visited afterward if there is no

smoothing, notwithstanding this instance may become valuable for refinement

of the model at later stages.

Definition 20 (History Approximation). Let ti be the latest step where training

instance 〈xi, yi〉 is visited and let wti
denote the parameter value at step ti. The

sampling probability for each sample 〈xi, yi〉 in a practical ActiveSampler

with smoothing is defined as:

pi = (1− β)
Ey[‖∇wti

L(fwti
(xi), yi)‖2]

∑

iEy[‖∇wti
L(fwti

(xi), yi)‖2]
+
β

n
(7.11)

The scheme ensures that every training instance has at least β times the

average sampling probability (i.e. 1/n) being sampled. Algorithm 11 describes

the ActiveSampler using the history approximation. In each iteration, only

its gradient magnitude needs to be updated.

We observe that by using the history length to denote the number of it-

erations since the last step an instance is sampled, its history approximation

becomes less accurate with the increase of the history length. Meanwhile, the
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expectation of history length for one instance is 1/pi, and the average of pi is

1/n. Consequently, the history approximation will become less accurate when

data size becomes larger. To address this issue, we propose History Rein-

forcement, whose key idea is illustrated in Figure 7.4. History Reinforcement

algorithm trains the model using a set of stages, each of which contains a large

amount of SGD iterations. Within a stage, it first samples a subset of training

data which consists of m instances, and then uses them as the training set in

its SGD iterations. During the training of each stage, the sampling probability

for the instances is n/m times larger than that for training all the instances

together. Therefore, the approximation will be much more accurate except the

first time in a stage when one instance is sampled. The only drawback of His-

tory Reinforcement is that it may lead to a bias in the training of a stage, as

only partial data are sampled for training. However, [61] presents an effective

scheme in an analogous context to reduce this bias by adding a regularizer to

limit the change of parameter in every stage. Below, we formally define the

concept of History Reinforcement.

Definition 21 (History Reinforcement). History Reinforcement algorithm con-

sists of multiple stages. In each stage s, it draws a subset Is of training in-

stances, which contains m random instances from the whole dataset, and trains

the parameter ws using g SGD iterations. The loss function used in each stage

s is:

L(wt) =
∑

〈xi,yi〉∈Is

L(fwti
(xi), yi)

m
+
γs
2
‖ws−1 −ws‖22 (7.12)

where γs is a parameter in [61] calculated based on m, s and V ar(gi(w)).

The correctness and effectiveness of this batch training is given in Theorem 1

of [61] (by considering each stage as a batch step). The expected number of

visits for one instance in a stage is g/m. Therefore, 1−m/g proportion of the

iterations in a training stage will benefit from a more accurate approximation.

In essence, there is a trade-off between the bias involved by using partial data

and the accuracy gain in gradient approximation. For larger datasets, the bias

becomes less significant and the accuracy gain by using History Reinforcement

becomes more valuable. On the contrary, the approximation of gradient in

small datasets is fairly accurate, and therefore, directly sampling from the whole
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Algorithm 12: ASSGD with History Reinforcement

Input: Initial w0, S, m, g
Output: Final wS

1 for s = 1, ..., S do
2 Is = ∅;
3 for i = 1, ..., m do
4 sample si uniformly from {1, ..., n} − Is;
5 Is = Is ∪ {si};
6 Compute γs based on [61];
7 Train ws using Algorithm 11 for g iterations, using ws−1 as initial

w0, using Is as the training set and using ρf (w) + γs
2
‖ws−1 −w‖22 as

the regularization term;

dataset is advantageous.

Efficient Vectorized Computation

To reduce the variance of the stochastic gradient, a widely adopted solution

for most large-scale optimization problems is to employ mini-batch training,

which averages the stochastic gradients of multiple training samples. Thanks

to the effect of vectorized computation and the constant communication cost

when the computations are parallelized, the training time per iteration for mini-

batch SGD is much smaller than b times the training time per iteration for the

standard SGD. ActiveSampler is orthogonal to mini-batch SGD, so we could

use both techniques simultaneously. However, to integrate them together, we

need to compute the average of gi(w) for b training samples in an efficient

vectorized way, as well as to obtain the gradient magnitude for each training

instance.

Definition 22 (Mini-batch SGD / ActiveSampler).

At each iteration t, mini-batch SGD uniformly draws b samples It = {t1, ..., tb}
from n training instances, and uses the averaged gradient as the stochastic gra-

dient.

gt(w) =
∑

i∈It

∇wL(fw(xi), yi)

b
(7.13)

At each iteration t, mini-batch ActiveSampler repeats the sample selection

in Theorem 7.1 for b times and get b samples It = {t1, ..., tb}, and uses the
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averaged gradient as the stochastic gradient.

gt(w) =
∑

i∈It

∇wL(fw(xi), yi)

bnpi
(7.14)

Similar to mini-batch SGD, the variance of gt(w) in mini-batch ActiveSam-

pler is reduced by b times.

In mini-batch SGD, the main advantage stemmed from vectorized computa-

tion is that the actual gradients from all samples do not need to be calculated

individually and then aggregated. Here we use a multi-layer perceptron [22]

(MLP) model to illustrate how the stochastic gradient of mini-batch SGD is

computed, and how mini-batch ActiveSampler can be computed in a similar

light-weight manner. Note that general linear models (fw(x) = wTx) are usu-

ally generalized as a multi-class classification problem, and their parameter w

is also a matrix, which is similar to the hidden layer in MLP. Therefore, general

linear models can be viewed as a single layer perceptron with a small difference

in the loss function and hence all the optimization techniques discussed below

can be applied to these models as well.

Definition 23 (Multi-Layer Perceptron (MLP)). Multi-Layer Perceptron [22]

is a feed forward neural network. It consists of one input layer H(0), h hidden

layers (H(k), k = 1..., h ) and a loss layer to compute the loss L(fw(xi), yi)

based on the prediction H(h) for xi. Each hidden layer k is a vector of units,

and the calculation is formalized as follows:

Z(k+1) = W (k)H(k) +B(k) (7.15)

H(k+1) = σ(Z(k+1)) (7.16)

where σ(·) is the activation function. The gradient is computed via back-

propagation:

∂L(fw(xi), yi)

∂W (k)
=
∂L(fw(xi), yi)

∂Z
(k+1)
i

×H(k)
i

T
(7.17)

∂L(fw(xi), yi)

∂H(k)
=
∂L(fw(xi), yi)

∂Z
(k+1)
i

×W (k) (7.18)

∂L(fw(xi), yi)

∂Z
(k)
p

= σ′(Z(k)
p )

∂L(fw(xi), yi)

∂H
(k)
p

(7.19)
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Algorithm 13: Batch Computation for ActiveSampler

Input: H
(k)
b×l, Z

(k+1)
b×m , W

(k)
m×l, ∇H(k+1)

b×m

Output: ∇H(k)
b×l, ∇W (k)

m×l, ‖∇W (k)L(fw(xi), yi)‖2
1 foreach i ∈ {0, ..., b− 1} do
2 foreach p ∈ {0, ..., m− 1} do
3 ∇Z(k+1)[i][p] = σ′(Z(k+1)[i][p])∇H(k+1)[i][p];

4 ∇H(k)
b×l = ∇Z(k+1)

b×m ×W (k)
m×l;

5 ∇W (k)
m×l =

1
b
(∇Z(k+1))

T

m×b ×H
(k)
b×l;

6 // line 1-5 : compute stochastic gradient O(bml)
7 foreach i ∈ {0, ..., b− 1} do
8 SumGZ = 0, SumH = 0;
9 foreach p ∈ {0, ..., m− 1} do

10 SumGZ = SumGZ + (∇Z(k+1)[i][p])
2
;

11 foreach q ∈ {0, ..., l− 1} do
12 SumH = SumH + (H(k)[i][q])

2
;

13 ‖∇W (k)L(fw(xi), yi)‖2 =
√
SumGZ ∗ SumH

14 // line 7-13 : compute gradient magnitude O(b(m+ l))

We now analyze the computation of gradient for one layer k in mini-batch

SGD. Using m to denote the number of units in H(k+1), and l to denote the

number of units in H(k), the parameter W (k) is an m× l matrix, and gt(W
(k))

is also an m× l matrix.

gt(W
(k)) =

∑

i∈It

∇W (k)L(fw(xi), yi)

b

=
1

b

∑

i∈It

∂L(fw(xi), yi)

∂Z
(k+1)
i

×H(k)
i

T
(7.20)

However, directly computing the b gradients ∂L(fw(xi),yi)

∂Z
(k+1)
i

×H(k)
i

T
one by one is

not efficient, as each gradient is an m× l matrix. Instead, using H(k) to denote

the b × l lower layer feature matrix [H
(k)
1 , ..., H

(k)
b ]T , and using ∂L(fw(x),y)

∂Z(k+1) to

denote the b×m higher layer gradient matrix [∂L(fw(xi),yi)

∂Z
(k+1)
1

, ..., ∂L(fw(xi),yi)

∂Z
(k+1)
b

]T , we
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have:

gt(W
(k)
pq ) =

1

b

∑

i∈It

∂L(fw(xi), yi)

∂Z
(k+1)
ip

×H(k)
iq

⇒ gt(W
(k)) =

1

b
(
∂L(fw(x), y)

∂Z(k+1)
)
T

×H(k) (7.21)

Therefore, it is computed by performing matrix multiplication for an m × b

matrix and a b × l matrix. Obviously, this is more efficient than the previous

method, which computes multiple vector-vector multiplications. It also reduces

the memory cost from b ×m × l to m × l. The computation for ∂L(fw(xi),yi)

∂H(k) is

analogous.

In mini-batch ActiveSampler, there are two differences compared to

mini-batch SGD. First, ActiveSampler needs to provide each instance a

weight based on 1/npi. Second, ActiveSampler needs to compute the gradi-

ent magnitude for every training instance. For the first problem, the solution

is quite straightforward – putting the weight in the loss function by scaling the

value of loss by 1/npi times before calculating its gradient for the parameters.

For the calculation of the gradient magnitude, we exploit the following equa-

tion to avoid explicitly calculating the gradient of each training instance:

‖∇W (k)L(fw(xi), yi)‖22
=

∑

p∈m
∑

q∈l (
∂L(fw(xi),yi)

∂W
(k)
pq

)
2

=
∑

p∈m
∑

q∈l (
∂L(fw(xi),yi)

∂Z
(k+1)
ip

H
(k)
iq )

2

= (
∑

p∈m
∂L(fw(xi),yi)

∂Z
(k+1)
ip

2
)(
∑

q∈lH
(k)
iq

2
) (7.22)

Therefore, we just need to compute the product of the square sum of ∂L(fw(xi),yi)

∂Z
(k+1)
i

and H
(k)
i , which are all from intermediate results during the computation of

mini-batch SGD. Its computation complexity is just O(b(m+ l)), which is ex-

tremely light-weight considering that the cost for calculating the gradient is

O(bml). Algorithm 13 shows the vectorized computation of ActiveSampler

in each layer of MLP. For deep models which contain multiple layers, the square

of the gradient magnitude with respect to parameters from whole layers can be

computed by summing the square of gradient magnitude with respect to pa-
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Figure 7.5: Overall Training Time

rameters from each layer, i.e.

‖∇wL(fw(xi), yi)‖22 =
∑

k

‖∇W (k)L(fw(xi), yi)‖22 (7.23)

7.3 Experimental Study

7.3.1 Experiment Setup

We evaluate the speedup of ActiveSampler using a set of popular benchmark

tasks, namely the hand-written digit classification on MNIST dataset using

SVM [96], malicious URL detection on URL dataset using feature selection [63],

and image classification on CIFAR10 dataset using CNN [54]. Furthermore, we

also test the scalability of ActiveSampler using the CIFAR10 dataset with

data augmentation, where the size of the training data is increased by 128x.

Table 7.1 summarizes the datasets and models used in our experimental study.
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Dataset # Examples Size Model Test Error

MNIST 60K 57MB kernel SVM 0.6%
URL 2.4M 950MB Lasso 2.5%

CIFAR10 60K 161MB DCNN 18%
CIFAR-DA 7.6M 14.8GB DCNN 11.5%

Table 7.1: Datasets and Models

• MNIST: MNIST is a benchmark dataset of handwritten digits classifica-

tion, consisting of a training set of 60000 images and a test set of 10000

images. Each image contains 28*28 gray pixels. Pegasos [96] is a mini-

batch SGD solver for kernel SVM model. The test error of kernel SVM in

MNIST dataset is 0.60% [96].

• URL: URL [67] is a dataset for malicious URL detection. It consists of 2.4

million URLs and 3.2 million features. Each URL contains around 100 non-

zero features and hence its features are quite sparse. Lasso regression [63]

is a popular feature selection model as described in Table 2.1. Its test error

in the URL dataset is around 2.5%.

• CIFAR10: CIFAR10 is a dataset for image classification, consisting of

a training set of 60000 images and a test set of 10000 images. It is the

benchmark dataset commonly used for the evaluation of deep convolutional

neural network (DCNN) [54] models. Each image contains 32*32 colored

pixels. Its test error without data augmentation is 18%.

• CIFAR-DA: Data augmentation is a standard technique to increase the

size of training data. It generates additional images by slightly translating

the original images. We use the data augmentation version of the CIFAR10

dataset (CIFAR-DA) to study the scalability of ActiveSampler. It con-

tains 128x images compared with CIFAR10. Its test error for DCNN model

is 11.5%. However, as the number of training images increases, DCNN

model takes significantly longer time to achieve its best performance.

All the models are trained under the SGD framework. The standard mini-

batch SGD (MBSGD) algorithm is used as the baseline. We also implement

the mini-batch ActiveSampler for comparison, with the same size of mini-

batch. Unless otherwise specified, the size of mini-batch is set to 128. The

validation accuracy is tested per 100 mini-batch iterations. To study the effect

of History Reinforcement strategy described in Section 7.2.4, we have imple-
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mented two versions of ActiveSampler, with and without History Reinforce-

ment. ASSGD, the version without History Reinforcement, is expected to to

perform well for moderate size of training examples, while ASHR, the version

with History Reinforcement, is expected to yield better performance for large-

scale training sets. In ASHR, the whole dataset is randomly split into 16 large

batches, and examples are trained 16 times on average at each stage. We also

compare our algorithm with a recently proposed state-of-the-art weighted SGD

algorithm called SGD with importance sampling (ISSGD) [121]. For the fair of

comparison, we implement ISSGD as a mini-batch version using the technique

proposed in Section 7.

All of the algorithms are implemented in C++, compiled using GCC O2,

and OpenBlas is adopted to accelerate linear algebra operations. Experiments

for MNIST, URL and CIFAR10 datasets are carried on an Intel Xeon 24-core

server with 500GB memory.

Distributed Environment and Scalability Test:

SGD training algorithms can be easily distributed to clusters via the parameter

server [60] architecture. We conduct our scalability study using CIFAR-DA

dataset on the Apache SINGA system [109], which is a general distributed deep

learning platform. We follow all the default distributed settings of CIFAR on

SINGA, where the mini-batch size is set to be 512. The distributed environment

is a 32-node cluster, where each machine is equipped with an Intel Xeon 4-core

CPU and 8GB memory.

7.3.2 Overall Performance

Figure 7.5 shows the training time to reach a certain accuracy for MBSGD,

ISSGD, ASSGD and ASHR. 99.4%, 82%, 97.5% and 88.5% are the best ac-

curacies achieved in these four tasks respectively. Generally, the convergence

rates of ASSGD and ASHR are significantly faster than MBSGD, and are 15%-

25% faster than ISSGD. To reach the optimal test error, ASSGD and ASHR

save about 40% to 60% of the training time. The speedup is especially great in

the latter stages of training, as evidenced by the bigger difference in the slope

between the algorithms in the right hand portion of each graph. A possible ex-

planation to this phenomenon is that the models typically have smaller changes

in the end stage of training. As a result, the larger variance in MBSGD would
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have more serious negative effect, while ASSGD and ASHR algorithm would

get even better approximation of the scale of gradient. There are also some no-

table differences between the performance of ASSGD and ASHR. First, ASHR

converges much faster than ASSGD in the two large datasets (URL and CIFAR-

DA), demonstrating that ASHR provides more accurate approximation of the

scale of gradient in large-scale datasets. Meanwhile, the speedup of ASHR is

smaller than that of ASSGD in the two small datasets (MNIST and CIFAR10),

probably due to the small training dataset used by ASHR which only contains

about 3000 training examples. Second, ASHR converges slightly faster at the

beginning, and a bit slower towards the end. This is because ASSGD needs

to visit the whole dataset at least once before enjoying the benefit of smaller

variance, while ASHR only needs to visit a subset of the dataset.

For the scalability test on CIFAR-DA, the training time of all the approaches

are significantly smaller than that on CIFAR10 due to distributed training.

ActiveSampler still works as expected: ASHR speeds up the training process

by 1.9x, and ASSGD speeds up the process by 1.6x. This is because the benefit

of ActiveSampler is derived from the total number of iterations used to

achieve a certain accuracy, instead of the improvement of training time per

iteration. Since the total number of iterations is not affected by the training

architecture, the speedup of ActiveSampler is applicable to all kinds of SGD

frameworks as long as its overhead in the training time per iteration is small.

Conversely, the number of training examples does affect the performance of

ASSGD, since its approximation becomes less accurate when the number of

training examples increases. However, ASHR scales well in all cases.

7.3.3 Variance of Stochastic Gradients

From the stochastic optimization view point, the benefit of using ActiveSam-

pler is derived mainly from the reduction of the variance of stochastic gradient.

We therefore evaluate the average variance of MBSGD, ISSGD, ASSGD and

ASHR and summarize the results in Figure 7.6. Since the absolute value of

variance may change dramatically during the training process, we use the vari-

ance of MBSGD as the baseline and report the relative ratio of the variance of

ISSGD, ASSGD and ASHR compared to the baseline. The results show that

ASHR has the smallest variance, less than 40% of the variance of MBSGD on
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Figure 7.6: Variance at Different Training Stages

average. ISSGD, which supposes to have the smallest variance, has no signifi-

cant advantage, probably because its approximation on gradient magnitude is

less accurate than ASHR. The variance of ASSGD is slightly larger than that

of ASHR, especially in the two large datasets, URL and CIFAR10, mainly be-

cause its gradient approximation is less accurate in larger datasets. However,

the variance of ASSGD is still smaller than half of the variance of MBSGD with

the same min-batch size. Another observable trend is that the variance ratio

of ISSGD, ASSGD and ASHR are getting smaller with the increase of training

time, suggesting that the history gradient approximation is getting more and

more accurate when the training proceeds.

We note that in MBSGD, the variance is proportional to the reverse of the

size of mini-batch. Therefore, to get the same level of variance in the stochastic

gradient as ActiveSampler, MBSGD needs to increase its min-batch size by

2-3x. From this angle, ActiveSampler is a much more efficient method to

reduce the variance of stochastic gradient, instead of relying on the use of a
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Dataset MBSGD ASSGD ASHR ISSGD

MNIST 0.179s 0.208s 0.205s 0.205s
URL 0.080s 0.092s 0.092s 0.091s

CIFAR10 0.245s 0.308s 0.311s 0.309s
CIFAR-DA 0.110s 0.129s 0.129s 0.128s

Table 7.2: Training Time per Iteration

larger mini-batch.

7.3.4 Training Time Analysis

The overall training time is determined by the product of the training time

per iteration and the number of iterations to reach a certain accuracy. Here

we present a detailed study of how ActiveSampler performs from these two

aspects.

Table 7.2 shows the training time per iteration of MBSGD, ISSGD, ASSGD

and ASHR. Obviously, MBSGD is the fastest one since ISSGD, ASSGD and

ASHR entail additional computations. However, the difference is not signif-

icant. ISSGD, ASSGD and ASHR only require 10%-25% more time than

MBSGD, while providing the stochastic gradient with much smaller variance.

There are no major differences among ISSGD, ASSGD and ASHR, since they

have almost the same vectorized computation logics inside each iteration.

Figure 7.7 shows the number of iterations to reach a certain accuracy. The

number of iterations required by ISSGD, ASSGD and ASHR is around 40%

to 60% of the number of iterations required by MBSGD. ASSGD and ASHR

outperforms ISSGD by reducing 10%-25% of the number of iterations. The

reduced proportion of iterations varies with different datasets. More iterations

can be saved when the contribution from training examples are highly biased.

7.4 Summary

SGD algorithms are playing a central role in the model training of complex

data analytics, where sampled training data are used at each training itera-

tion. Uniform sampling and sequential access have been commonly used due

to their simplicity. In this chapter, we study how the sampling method can

affect the training speed as a means to facilitate analytics at scale. Based on
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Figure 7.7: Number of Iterations with respect to Accuracy

the inspiration from active learning, we propose ActiveSampler which for

each training point the sampling frequency is proportional to its expectation of

gradient magnitude. We also develop a set of schemes to make the algorithm

light-weight and fully vectorized. Experiments show thatActiveSampler can

accelerate the training procedure of SVM, feature selection and deep learning

by 1.8-2.3x, compared with the uniform sampling. Results also demonstrate

that ActiveSampler has a significant effect on reducing the variance of the

stochastic gradient, making the training process more stable.
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CONCLUSION

The aim of this thesis is to conduct a systematic study of the training data

management infrastructure for data transformation, from structured but still

raw data to processable informative data, by leveraging affordable human ef-

fort and computational resources. Two challenging problems are discussed and

addressed. The first challenge is to increase the information value in Big Data,

mainly by acquiring extra supervised information from data annotation. The

second challenge is to squeeze and reorganize the data to a processable form

without losing much information inside the original data, which typically in-

cludes representing, compressing, indexing and sampling the data to increase

the computational efficiency.

To achieve this goal, we develop effective and efficient solutions to transform

the Big Data into a processable and informative form. We propose a preference

quantified model to annotate complex tasks where the supervised information is

difficult to be represent by simple labels, and adapt an active learning approach

to reduce the cost of human efforts. To further reduce the cost of data anno-

tation by using crowdsourcing, we develop a cost-sensitive method for crowd-

sourced data quality management. We propose a hashing method to transform

the training data into better compact representation, while preserving both

internal information in each instances and external relations among those in-

stances. Moreover, we index the data which are usually high-dimensional to

support similarity queries based on the distance independent k-nearest neigh-
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bor measure. Finally, we study the effect of data sampling pattern on the

efficiency of analytics model training, aiming to provide the most informative

data in a processable size to the analytics model to speed up the model training

procedure. All the methods are effective experimentally. The future works in

this area may include establishing a automatic cost-sensitive infrastructure for

training data management to address these challenges in an integrated man-

ner, supporting multiple training tasks and acquiring suitable data annotations

to benefit most tasks economically, discovering the most applicable similarity

measure based on analytics tasks and adapting the hashing codes and index,

providing diversified data in a processable volume to offer better coverage.
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