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SUMMARY

This thesis attempts to provide an accurate description of the energetics of large

water clusters. In particular, we seek to reduce the computational cost, prefer-

ably achieving linear scaling with system size. Firstly, the many-body expan-

sion (MBE) was employed to decompose the total energy of the system up to

four-body contributions. Secondly, perturbation theory is then used to select

the important many-body contributions. The methods employed in this thesis

can be extended to many other large chemical systems and we have included

examples of polypeptides in the penultimate chapter.

The first chapter of the thesis provides a succinct review of the status of

water modelling. From this mini-review, we identified several ideal properties of

water models. Chapter two then highlights some of the theoretical background

of quantum chemistry that is relevant to this thesis. The information is presented

in an unconventional manner where we proposed and answered five questions

pertaining to electronic structure methods and basis sets.

In Chapter three, we found that the MBE exhibits poor convergence with

respect to the number of bodies in certain cases. This was attributed to the basis

set superposition effect (BSSE) from diffuse basis functions. To restore the rapid

MBE convergence, one can either omit the diffuse functions or employ larger

basis sets. Alternatively, the electronic structure calculations can be performed

using the same set of basis functions centred on the cluster, i.e., the cluster basis.
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We further investigated this many-body BBSE using our proposed many-

ghost many-body expansion (MGMBE) in Chapter four. The MGMBE sepa-

rates the many-body BSSE into two components. Firstly, there is an undesirable

basis set imbalance error due to a different number of basis functions across

different total energy calculations. The second component, named the basis set

extension effects, involves the borrowing of basis functions from the cluster ba-

sis to improve the description of many-body effects. With the MGMBE, we

identified that the poor MBE convergence reported earlier is primarily due to

extension effects in the one-body energy.

In Chapter five, we proceeded to utilise perturbation theory to screen for

significant many-body interactions. We derived the leading three-body and four-

body terms in many-body induction and used these leading terms to estimate the

maximum possible many-body effects in a given arrangement. This was then

used to identify the significant many-body effects. Consequently, we success-

fully reproduced the total three-body and four-body interaction energies using

a tiny fraction of the individual interactions. More importantly, we identified

that extended linear arrangements are favoured to give significant many-body

effects. This allows many-body effects to be extended over large distances but

only in a directional manner.

The final chapter concludes our findings and suggests some potential fu-

ture work. This is followed by the Appendices which included tedious mathe-

matical derivations. Other supporting information such as the Cartesian Coor-

dinates of the clusters can be founded in an accompanying CD.
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1 | MODELLING WATER: A
LIFETIME ENIGMA

The first attempt to describe water dates back to 1933 with the Bernal–Fowler

model and it would take another forty years before the first computer simulation

of liquid water in 1969. Since then, over a hundred different water models have

been proposed. Despite being widely studied, water remains poorly understood.

Examining the evolution of water models, we identified three distinct philoso-

phies in water modelling, namely (i) the employment of effective point charges

in pioneering empirical models, (ii) the incorporation of polarization to describe

many-body inductive effects and (iii) the extensive use of ab initio calculations

to describe short-range effects. In doing so, we can appraise the current under-

standing of water and identify attributes that a water model should possess to

capture the intricate interactions between water molecules.

1.1 Why Study Water?

Considering the rich history of water modelling, it would be prudent to ask

why scientists across different disciplines are enthralled by water. An obvi-

ous motivation would be its abundance which suggests that water is undeni-

ably important in the grand scheme of nature. The strange properties associated

with water also spur academic curiosity to unravel the mysteries behind this

small molecule. Most importantly, deciphering the interactions between water
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molecules would lead to the basic understanding of intermolecular forces, which

govern many dynamic processes in nature.

Given its ubiquity in nature, water has been the subject of extensive re-

search. On Earth, water is the central solvent for naturally occurring chemi-

cal processes. In particular, water is the medium for biochemical interactions,

widely recognized as the “matrix of life”.1 Its place in biology goes beyond

a passive solvent, having many active roles in molecular biology.2–4 Water-

mediated hydrogen bonding provides exchangeable and extensible linkages to

manoeuvre the peptide backbone during protein folding, allowing proteins to

achieve their active conformation rapidly.5 Hydration changes can induce mod-

ification in DNA conformation and interfacial water possess unique sequence-

dependent hydration structure, acting as a “hydration fingerprint” for the recog-

nition of the DNA sequence.6 On a cosmic scale, detection of water vapour

in the atmosphere of an extrasolar gas-giant planet suggest that the presence of

water is common in gas-giants.7 Closer to home, studies on the isotopic com-

position of water in meteorites help us gain insights about the origins of the

early solar system.8, 9 Interestingly, most water in the universe exist as different

forms of amorphous ice and their transitions in cold dense interstellar molecular

clouds causes radical recombination, resulting in the synthesis of complex or-

ganic molecules.10 The role of water in many chemical and biological processes

that are responsible for sustaining life, is the driving force behind understanding

its behaviour under different conditions, and in various environments.

Being one of the most studied substances, many physical properties of

water are accepted as international standards such as its triple point and den-

sity.11 Even so, many of these physical properties are considered anomalous

as they contradict the general theories of the liquid state of matter. The most-

widely known property would be the maximum density of water at 4◦C, making

water the only liquid to expand upon cooling. Other anomalies include the non-

monotonic behaviour of its isothermal compressibility and specific heat.12, 13
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Furthermore, water exhibits a very high boiling point and dielectric constant

for a simple liquid. Although the aforementioned anomalies were known for

some time, new anomalous behaviours are constantly uncovered. It was found

that supercooled water becomes more diffusive as pressure is increased to about

200 MPa at room temperature.14 Also, the discovery of another supercooled liq-

uid water state at 150 K challenges the notion of a single supercooled regime at

ambient pressure15 and this newly discovered supercooled state may lead to the

identification of a possible second critical point in supercooled confined water.16

If the liquid state is strange, the solid state would be bizarre with water having

fifteen known forms of ice, many of which were only discovered recently.17, 18

It is ironic that while better technology has allowed us to probe the properties

of water further, these observed phenomena can exacerbate confusion as they

remain unexplained.

The wealth of knowledge on water, many of which deemed anomalous,

imposes severe tests on any newly proposed water model. Despite being a chem-

ically simple molecule, water is notoriously hard to model. Firstly, water can

give rise to extensive hydrogen bonding networks.19 As early as 1920, hydrogen

bond is first suggested to occur in water20 and it is commonly agreed that these

fleeting hydrogen bonds makes water unique from most other liquids. Dimer

interactions are dominated by a deep minimum at the hydrogen bonded config-

uration,21–23 implying that certain configurations are preferred in water clusters

and bulk water. The strong directionality of hydrogen bonding is the reason

for the inclusion of explicit water molecules in simulating water-mediated pro-

cesses such as protein folding.3 However, the hydrogen bond minima is not

overly stabilising, making dynamic hydrogen bonding rearrangements possible

in bulk water.19 Secondly, the description of water is complicated by strong

non-additive inductive effects that manifest in water due to the large dipole and

polarizability of water. Such inductive effects can enhance the dipole moment

of water molecules by more than 60% in the condensed phase.24 This is further
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complicated by the fact that the introduction of polarizability can be deceptive,25

compounded by reasons which will be covered in Section 1.3. All in all, water is

especially sensitive to the desctiption of the forces between molecules and thus

demand a thorough and basic understanding of intermolecular forces.

1.2 Water Models

The Bernal–Fowler (BF) model can be considered the first realistic water model,

describing water as a collection of point charges and a repulsion-dispersion

term.26 A similar representation would be used later in the first Monte Carlo

simulation of water by Barker and Watts27 and the first Molecular Dynamics

(MD) simulation of water by Rahman and Stillinger.28 Since the first computer

simulation of water, a myriad of water models, exceeding a hundred to date,

have been proposed. While there already exist several excellent reviews on the

progress of modelling water,25, 29–32 we still wish to survey the water modelling

scene with the aim of highlighting the qualities of a good water model.

In the aforementioned reviews, water models are categorized based on

(i) the interaction between water monomers and (ii) the treatment of water

monomers. Polarizable models treat many-body inductive effects explicitly us-

ing point polarizabilities whereas non-polarizable models describe this polar-

ization in an averaged manner in the pairwise interactions. Rigid water models

constraint the intramolecular degrees of freedom, typically to that of the vi-

brational averaged geometry while flexible counterparts relaxes all degrees of

freedom. Due to ab initio calculations approaching experimental accuracy, wa-

ter models can also be classified based on the nature of the data (ab initio or

experimental or both) used to parametrise the model.

Instead of following these traditional and possibly restricting classifica-

tions, we analysed the evolution of water models and broadly identified three

distinct philosophies in the saga of water modelling, namely (i) the employment

of enhanced point charges in pioneering models to effectively describe induc-
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tion in a pairwise potential, (ii) the incorporation of polarization in later models

to describe explicitly the many-body inductive effects and (iii) the extensive use

of ab initio data in state-of-the-art models to accurately describe water-water

interaction at all ranges (Figure 1.1). Water models are not necessarily grouped

based on chronological order as our demarcations represent distinct principles

of water modelling rather than actual time periods. In doing so, we have alluded

to the long history of water modelling and its coming of age.

1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
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Figure 1.1: Timeline showing the year of implementation of various water models
reviewed in this chapter. Water models are grouped (using di�erent colour schemes)
according to the three distinct philosophies of modelling water. Within each class
of water models, the models are further subdivided into di�erent families of water
model that share similar traits.

1.2.1 Pioneering Empirical Water Models

This class of water models has its origins in legacy water models, aimed at

describing water with a low computational cost and thus often utilise a rigid

water monomer. Similar to the BF model, these models are empirical and non-

polarizable, using point charges to represent electrostatics and a Lennard-Jones

term for dispersion and repulsion. Induction effects are effectively described

by increasing the point charges to simulate an enhanced dipole moment found

in the condensed phase. Parameters are fitted to reproduce macroscopic exper-

imental data such as the liquid density and heat of vaporization. The reliance

on experimental data can be reconciled by noting that these models flourished
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in the 1980s while highly accurate ab initio tools such as the Coupled Clus-

ter Single and Double excitations with perturbative Triples [CCSD(T)] level of

theory33 and Dunning correlation consistent basis sets34 were only developed

in 1989 and became computationally feasible many years later. Consequently,

these models only work well at reproducing macroscopic properties of the con-

densed phase near the conditions under which they are parameterized, typically

ambient pressure and temperature, and are targeted towards applications such as

biomolecular simulations rather than basic scientific enquiry about the anoma-

lous properties of water. The low computational cost associated with these mod-

els would make them remain the preferred choice for the most computationally

demanding applications. For example, the TIP3P model is the default water

model used in the CHARMM force field for biomolecular simulations. One of

the earliest water models in this class is the MCY model,35 well-known for be-

ing constructed entirely from ab initio Hartree–Fock (HF) calculations. We will

also look further into two families of these pioneering water models, namely the

TIPnP and SPC water models.

TIPnP Family. First developed by Jorgensen in 1981 as the transferable

intermolecular potential functions (TIPS),36 it is later refined into the TIP3P

and TIP4P model37 which most water scientists are familiar with. Here, the

nP refers to the number of point sites in the model where point charges and/or

Lennard-Jones terms are placed. In the simplest case, the atomic sites were

used as seen in TIP3P. An additional M-site along the H–O–H angle bisector

is introduced in TIP4P to displace the negative charge towards the hydrogens

as placing the negative charge on the oxygen would lead to an excessively high

dipole moment.27 In an attempt to describe inductive effects, TIP4P-FQ (FQ

for fluctuating charge) was introduced where the point charges fluctuates in

response to the environment to equalize the electronegativities of the sites.38

Later, Mahoney and Jorgensen would introduce more TIPnP variants, namely

TIP5P39 and TIP4PF.40 TIP5P replaced the M-site with two tetrahedral negative
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charges to mimic the lone pairs on water but this resulted in a overly structured

water in simulations. TIP4PF is a flexible version of TIP4P where intramolecu-

lar stretching and bending are described by quadratic terms and the same study

showed that the inclusion of quantum effects improve the predictions made by

this flexible water model.

Surprisingly, the models mentioned thus far truncate long-range electro-

statics at a certain cut-off distance. The TIP4P-Ew model is designed for use

with Ewald techniques to account for long-range electrostatics, commonly em-

ployed in biomolecular simulations.41 Numerous other parameterization at-

tempts were made such as TIP4P/200542 and q-TIP4P/F43 which are optimised

to better reproduce the thermodynamic properties of water and to account for

quantum effects respectively.

SPC Family. Apart from the TIPnP family, another family of water mod-

els is the Single Point Charge (SPC) model, which only uses the three atomic

sites to place point charges and/or Lennard-Jones terms.44 Simple values were

used for its parameters such as 1.0 Å for the O–H bond length and an ideal

tetrahedral angle of 109.5◦ instead of the experimental gas-phase values used in

TIP4P. Shortly, the improved SPC/E model was proposed to account for polar-

ization self-energy.45 Similar to TIP4P-FQ, SPC-FQ was introduced to incorpo-

rate induction effects.38 Likewise, flexible monomer versions such as SPC/Fw46

and variants parameterized to account for quantum effects such q-SPC/Fw47

model have been introduced.

1.2.2 Integrating Polarization into Water Models

The increase in computational power saw a transition towards increasingly com-

plicated water models with an emphasis on the non-additivity of water-water

interactions, in particular induction/polarization effects. Polarization is often

incorporated explicitly via central or distributed point dipole-dipole polarizabil-

ities, derived from the use of perturbation theory to treat intermolecular forces.48
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Despite the rigorous theoretical background, such an implementation may lead

to deceptive results as we shall see in Section 1.3. Furthermore, higher-rank

multipoles, typically up to quadrupoles, are employed to represent electrostatics

instead of point charges in recognition of the anisotropic nature of the electron

distribution. This led to more elaborate analytic potentials that required more

parameters that would come from a mix of ab initio and experimental spectro-

scopic data. This class of water models flourished in the 1990s and 2000s when

accurate ab initio second-order Møller–Plesset perturbation theory (MP2) and

later CCSD(T) calculations become amendable. As the majority of the parame-

ters are essentially monomer properties such as the dipole moment and polariz-

ability, highly accurate ab initio calculations can be performed on the small wa-

ter monomer system. In some cases, the Vibration-Rotation-Tunnelling (VRT)

spectroscopic data was used in the parameterization as they represent informa-

tion at the atomistic level as opposed to bulk water properties. Using these water

models, there would be more studies devoted towards water clusters, underscor-

ing the importance of microscopic understanding of water. As the functional

form of these water models grew more complex, it would naturally encompass a

larger variety of models and some of the notable water models include the ASP,

SAPT and TTM family of water models.

ASP Family. The Anisotropic Site Potential with Wormer’s dispersion

(ASP-W) model is one of the earliest rigid water models to adopt higher-rank

multipoles.49 For electrostatics, distributed multipoles are present on both the

Oxygen and Hydrogen atomic sites, up to quadrupole and dipole respectively

whereas induction is computed at first order (instead of full iterative) using

point polarizabilites on Oxygen up to quadrupole. Site anisotropy was like-

wise incorporated into the dispersion and repulsion terms. Further refinements

by the same group led to the inclusion of a new charge transfer term, creating

the ASP-W2 and ASP-W4 models, used to study the stationary structures of the

water dimer.50 The difference between both models lies in the order of mul-
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tipoles used with the original multipoles being retained in ASP-W2 and up to

hexadecapole present on each atom in ASP-W4.

The ASP-W functional form was also fitted to the (D2O)2 VRT spectra,

giving rise to the VRT(ASP-W) model.51 VRT(ASP-W) is the first water model

to achieve spectroscopic accuracy, able to reproduce most of the tunnelling bar-

riers in the water dimer. While this is not surprising given the use of same

experimental data in constructing the model, it is worthwhile to note that the

use of the rigid monomer approximation can still lead to accurate predictions at

the atomistic level. Later improvements would give rise to the VRT(ASP-W)II

and VRT(ASP-W)III model, where induction is full iterative.52

SAPT Family. Both the SAPT-ss and SAPT-pp water models,53 employ-

ing rigid water monomers, were developed based on Symmetry-Adapted Per-

turbation Theory (SAPT).54 SAPT-ss comprises a site-site form, with a similar

placement of sites as TIP4P but instead uses the functional form of the MCY

model. Point charges and exponential terms are fitted to 1056 SAPT energies.

The SAPT-pp is more complicated, describing the intermolecular interactions

using expansions of functions in interatomic vectors and euler angles, again fit-

ted to the same 1056 SAPT energies.

Due to its complexity, SAPT-pp would fall into disuse and the site-site

form is evolved to the SAPT-5s model.55 To reflect the anisotropy of elec-

tron distribution, two new symmetry distinct sites, representing lone pairs and

out-of-plane charges, were added, giving a total of five symmetry distinct sites

(eight different sites in total). An elaborate function form was adopted using

a polynomial-exponential terms to represent exchange-repulsion and an inverse

power (6-8-10) series to describe induction and dispersion. Consequently, no

iteration of the induced dipole is required in calculating the induction energy as

it is represented by fitted coefficients. Later, the exchange-repulsion parameters

were tuned to better reproduce the water dimer’s acceptor tunnelling splitting,

giving the revised SAPT-5st.56
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All the SAPT models mentioned above only contains a pair potential.

Thus, the three-body SAPT(HF) energies were incorporated into SAPT-5s, giv-

ing the SAPT-5s+3B model.57 This new three-body potential is the first to in-

clude functional forms to model three-body exchange effects using a combi-

nation of exponential and Legendre polynomial terms. Long-range effects are

described using a damped induced dipole model. Later, the SAPT-5s functional

form is refitted using SAPT(DFT) energies and this new SDFT-5s model58 gives

more accurate results, attributed to the faster basis set convergence with DFT.

TTM Family. TTM-R,59 the first of Thole-Type Model (TTM) water

models, is based on Thole’s idea of using smeared out multipoles to mirror

the diffuse picture of electron distribution.60 TTM-R utilises TIP4P-style point

charges for electrostatic interactions and an inverse power (6-10-12) series to

represent dispersion and repulsion. Smeared charges and dipole are present on

all atomic sites so that induction and intramolecular polarization can occur, ac-

counting for charge transfer. As the TTM-R model consistently over-binds small

water clusters, the TTM2-R model was proposed by refitting the inverse power

(6-10-12) series to minimum energy pathways connecting the global minimum

and other stationary points of the water dimer.61

Monomer flexibility is then incorporated using the Partridge–Schwenke

intramolecular Potential Energy Surface (PES) and Dipole Moment Surface

(DMS)62 resulting in the TTM2-F model, the first water model to properly re-

produce an increase in the monomer bending angle in water clusters.63 A revised

TTM2.1-F model,64 intended for simulations, was proposed by modifying the

inverse power (6-10-12) series that decreases unphysically below 2.5 Å as such

repulsive regions may be sampled during condensed-phase simulations.

Two unrelated updates, the TTM3-F65 and TTM4-F model66 were also

reported. Aimed at describing the vibrational spectra of water clusters and bulk

water, TTM3-F has modified partial charges to reflect the behaviour that water

dissociates to H+/OH– in liquid as opposed to radical formation in the gas phase.
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On the other hand, TTM4-F is reparameterized to better reproduce the polariz-

ability surface. Notably, the popular AMOEBA water model uses a Thole-type

induction model.67

1.2.3 Extensive Use of ab initio Data in Water Models

As ab initio methods mature into reliable tools rivalling experimental accuracy,

we ushered in an era of water models empowered by ab initio data. This class

of water models relies on high-quality large datasets (in the order of 105 data

points) of CCSD(T) energies, the gold standard of quantum chemistry. The wa-

ter models are deeply rooted in the many-body expansion (MBE) where the total

energy of a system can be decomposed into one-body (monomer contribution),

two-body (pairwise interactions), three-body contributions and so on. Sepa-

rate PES are constructed for each of these k-body terms, fitted to large datasets

which sample the important configuration space encountered in water clusters

and during condensed phase simulations. The extensive amount of high-quality

data required can only be fulfilled by large volumes of accurate ab initio calcu-

lations which only became amendable recently. The shift towards large datasets

and complicated PES construction techniques stems from the realization that

short-range effects such as charge transfer and exchange cannot be accurately

described by simple analytic forms. Thus, sufficiently flexible functional forms

are required to map the accurate ab initio dataset into high-quality PES for on-

the-fly evaluation of energies. Water monomer flexibility is a another common

feature in these models although a rigid monomer constraint is often imposed

in the most demanding calculations such as condensed phase simulations and

VRT spectra prediction. As a result, these models are mainly focussed water

clusters with only a few examples of condensed phase simulations. As the con-

struction of these water models is laborious, there were only three families of

such ab initio water models, namely the HBB, CC-pol and MB-pol family of

water models.
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HBB Family. The HBB water models describe each of the k-body PES

using permutationally invariant polynomials involving inter-atomic distances,

incorporating the permutation symmetry of identical atoms. This alleviates the

steep computational cost in evaluating high-dimensional PES and reduces the

number of data points required for fitting. The first HBB0 model uses poly-

nomials of Morse-type exponential functions, fitted to 19805 CCSD(T)/AVTZ

energies.68 Like all HBB models, all
(N

2

)
interatomic distances were used to

preserve the permutational symmetry, which is more than the actual 3N − 6

degrees-of-freedom present in the system. In the next revision HBB1, the same

functional form is refitted to an additional 10227 CCSD(T)/AVTZ energies to

better describe the low-energy configuration space below 10000 cm−1.69 This

refitting led to the RMS fitting error to drop by a factor by two, suggesting that

the quality of the functional form is previously not maximized in HBB0.

A hybrid pair potential was developed in the new HBB2 model, compris-

ing long-range and short-range components.70 The short-range component re-

mains to be described by permutationally invariant polynomials while the long-

range component is described using the cheaper TTM3-F model. The HBBn

models only contain a pair potential and cannot be used to describe water clus-

ters where higher-body effects have to be considered. Thus, the WHBB model is

introduced where a three-body potential is constructed using permutationally in-

variant polynomials, fitted to 40000 MP2/AVTZ energies.71 Interestingly, it was

mentioned that the three-body potential is shorter in range than the two-body

counterpart and a cutoff was implemented when the maximum O–O distance is

greater than 8 Å. Four-and-higher-body effects are described by induction using

the TTM3-F model. For all the water models in the HBB family, the one-body

potential is provided by the Partridge–Schwenke intramolecular PES.62

CC-pol Family. The CC-pol family of water models is the successor of

the SAPT family, utilising ab initio energies computed at CCSD(T) instead of

SAPT energies. The first CC-pol model is similar to the SAPT-5s model except
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that the induction is now explicitly iterated instead of a fitted inverse power

series.72 CC-pol is able to reproduce the water dimer VRT spectra except for the

interchange splitting transition, attributed to the rigid monomer approximation.

The CC-pol-8s model increased the number of interaction sites to eight

symmetry distinct sites (25 different sites).73 The three-dimensional Cartesian

space was scanned in regular intervals, followed by finer subgrids to ensure that

the most optimal positions were chosen. As only point charges were used (as

opposed to higher-rank multipoles), the presence of more interaction sites bet-

ter represents the anisotropy of the electron distribution and led to a four-fold

decrease in the fitting errors. A flexible variant, CC-pol-8sf,74 was developed

where monomer contribution to the interaction energy is obtained from an ear-

lier flexible SAPT-5s’fIR water model.75

Feeling that the order of 105 data points is inadequate to build an accurate

full 21-dimensional flexible-monomer three-body PES, the authors reverted to

a rigid monomer model, consisting of the pair potential CCpol2 and three-body

potential CCpol3.76 CCpol2 is essentially the same as CC-pol-8s, except that

short-range damping is included to improve the description at very small inter-

molecular distances as these regions may be sampled during condensed phase

simulations. The CCpol3 model, fitted to 71456 CCSD(T) energies, gives im-

proved polarization from the use of three atomic polarization centres, instead

of one. Four-and-higher-body interactions are described using a simple polar-

ization model. Surprisingly, the polarization model gives accurate four-body

energies to within a few percent, whereas such models are known to have sig-

nificant errors for three-body interactions.

MB-pol Family. The MB-pol family incorporates many features from the

HBB family of ab initio based water models. The prototype HBB2-pol model

borrows from the HBB2 model using a hybrid pair potential and the Partridge–

Schwenke intramolecular PES.77 The same HBB2 PES was used for the short-

range component of the pair potential while the long-range component was re-
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placed with the TTM4-F model. Furthermore, a three-body hybrid potential

is included where the short-range component again incorporates the permuta-

tional symmetry, fitted to 8019 CCSD(T) trimer energies, while the long-range

counterpart, as well as four-and-higher-body effects, are described by induc-

tion in the TTM4-F model. The TTM4-F component greatly reduced the order

of the permutationally invariant polynomials and the associated computational

cost, making HBB2-pol amendable to condensed phase simulations. TTM4-F

was chosen after careful comparison with two other polarizable flexible water

models, namely TTM3-F and AMOEBA.

The eventual MB-pol model is described in two papers, detailing the hy-

brid pair potential78 and higher-body effects separately.79 The hybrid pair po-

tential MB pol(2B) was improved with the addition of two new sites to represent

the lone pairs of water, which greatly improved the flexibility of the functional

form in the short-range component. Thus, the permutationally invariant polyno-

mials now involves intersite distances between the atomic sites and/or the lone

pair sites, fitted to 42508 CCSD(T) dimer energies. The three-body potential

MB pol(3B) is described in a similar fashion as in HBB2-pol but fitted to a

larger dataset of 12347 energies. All long range effects are handled by induc-

tion using the TTM4-F model. It was noted that short-range corrections are not

required at the four-and-higher-body level, in agreement with CCpol3 authors’

observation that a simple polarization model is sufficient.

On a final note, both the HBB2-pol and MB-pol are the first few water

models constructed from extensive CCSD(T) energies dataset to be employed

in classical and quantum simulations of liquid water.80, 81 In both instances,

many structural and dynamic properties of liquid water under ambient condi-

tions were reproduced, such as the radial distribution functions, density and

diffusion coefficient.

14



1.3 QUALITIES OF A GOOD WATER MODEL

1.3 Qualities of a Good Water Model

After reviewing the plethora of water models shaped by different philosophies,

we identified several key features for the proper description of water. They are

namely (i) the inclusion of polarizability to account for non-additive effects, (ii)

fitting or interpolating energies to account for short-range effects, (iii) incorpo-

ration of monomer flexibility, (iv) accounting for quantum effects in simulations

and (v) transferability and dissociable water model.

1.3.1 Inclusion of Polarizability

From Section 1.2.2, we witness that the inclusion of polarizability is crucial in

describing the significant many-body inductive effects in water. Neglecting po-

larization effects in empirical point charge water models (Section 1.2.1) prevents

an accurate description of virial coefficients, vapour pressures, critical pressure

and dielectric constant.82 The first three quantities involve gas phase properties

which are very sensitive to changes in the environment. Clearly, the degree of

polarization in the gas phase would differ greatly from that in the condensed

phase for which the empirical models are calibrated for. Likewise, polarization

is required to reproduce the enhanced dipole moment in condensed phase to

properly reproduce the dielectric constant.

There are several excellent reviews29, 83–85 on the implementation of po-

larization as it found importance not only in water models but also in ion sol-

vation, other small molecules and protein simulations. Three methods for in-

corporating polarization exist, namely fluctuating charge, Drude oscillator and

induced point dipole models. While the first two methods have been imple-

mented in water models, (eg. TIP4P-FQ, SPC-FQ38 for fluctuating charge and

SWM4-DP86 for Drude oscillator) the induced point dipole model remains the

most-implemented for water models. In fact, the ASP, SAPT and TTM fami-

lies of water models in Section 1.2.2 all uses some kind of induced point dipole
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model. In principle, higher-rank multipoles such as the quadrupole can also be

induced as seen in the ASP water models but they see little action elsewhere

(SAPT and TTM families only involve inducible dipole) perhaps due to the la-

borious theoretical expressions involved. While the introduction of inducible

dipole models is increasingly prevalent, Guillot cautions that poor implementa-

tion can lead to deceptive results.25 The induced dipole is given as the product

of the polarizability with the electric field. The electric field is often represented

by the point charges/multipoles present in the model and this may be inade-

quate if higher-rank multipoles are not considered.87 Furthermore, there is also

dipole-quadrupole and quadrupole-quadrupole polarizabilities which are often

neglected and these inductive effects can be significant given that water has a

strong quadrupole.

Finally, Thole60 and Applequist et al.88 have pointed out that the point

induced dipole may become infinite at small distances, which is commonly

known as the “polarization catastrophe”. This can be avoided by screening

the dipole-dipole interaction at short distances, either using a Tang–Toennies

damping function89 as seen in the ASP and SAPT models or using smeared

out charges and dipoles in TTM models. This screening is an indication that

point multipoles cannot properly describe the electronic distribution at small

distances, underscoring the importance of accounting for short-range effects.

1.3.2 Short Range Effects

At short intermolecular distances R, the R−n power series which define the point

multipole diverges, causing the failure of point multipoles at short-range. Fur-

thermore, there is a charge penetration effect as the electrons are “not fully felt”

within the electron cloud. Physically, this can be interpreted as the unrealistic

representation of the electronic distribution as if it was concentrated at a point.

Possible remedies include the use of damping functions smeared out multipoles

as seen in Section 1.2.2 as well as partitioning the electronic distribution us-
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ing distributed multipoles.48 Despite these corrections, other short-range in-

teractions such as exchange-repulsion and charge transfer have to be explicitly

accounted for. The distinction between short-range and long-range interactions

(electrostatic, induction and dispersion) is rooted in their different physical char-

acter where short-range effects vary exponentially with intermolecular distance

while long-range effects behave as some inverse power of intermolecular dis-

tance.48 Thus, it would be prudent to separate the total interaction energy into

short-range and long-range components due to their intrinsically different nature

as seen in the HBB2, WHBB, HBB2-pol and MB-pol water models.

Unfortunately, unlike long-range interactions which can be described us-

ing perturbation theory, no exact analytic form exists for short-range interac-

tions. Otherwise, high quality ab initio methods which can describe these sub-

tle short-range effects up to any desired numerical precision would have been

developed in vain. For the ASP, SAPT and TTM families of models, short-

range exchange-repulsion effects were modelled by simple exponential and/or

polynomial-exponential terms. As these approaches proved inadequate, large

ab initio data sets are fitted to more complicated functional forms to accurately

describe these exchange-repulsion effects (Section 1.2.3). Currently, two such

functional forms have been implemented. The permutationally invariant poly-

nomials in HBB and MB-pol families of models incorporate the permutational

symmetry of identical nuclei into exponential terms involving interatomic dis-

tances. On the other hand, CC-pol models uses simple polynomial-exponential

terms but applied between a large number of symmetry-distinct sites, greatly

increasing the flexibility of the functional form. Inevitably, both methods in-

corporate some form of symmetry which serves to alleviate the high computa-

tional cost. Furthermore, both methods involve fitting of the coefficients of the

terms from ab initio data. An alternative to fitting methods would be interpola-

tion methods. Examples include the Shepard interpolation90 as well as simpler

methods such as cubic splines. While interpolation methods ensure that the PES
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passes exactly through the dataset, care has to be taken that the asymptotic be-

haviour of the PES is enforced which are otherwise naturally incorporated into

the functional forms used in fitting models. Nonetheless, it would be interest-

ing to see new ab initio based water model based on interpolation methods and

compare their accuracy with existing ones.

An essential formalism employed to describe short-range effects would be

the MBE. Without the use of MBE, the dimensionality of the system would be

too large for any fitting or interpolation method to be feasible. Using the MBE,

large water clusters or even bulk water can be decomposed into many-body

contributions, truncated at the four-body level. However, basis set superposition

effects causes poor convergence of the MBE when diffuse basis functions are

involved91 and these diffuse functions are crucial in accurately describing the

hydrogen bonding between water molecules.

1.3.3 Monomer Flexibility

In the MBE formalism, the one-body contribution corresponds to intramolecular

distortions of the water monomer. Due to computational limitations, pioneer-

ing empirical water models often employ rigid monomers. While later models

would incorporate flexible monomers, a rigid monomer approximation is still

preferred for computationally demanding calculations. Also, a large dataset is

required to fit flexible monomer potentials which can disfavour their use as seen

in the CCpol2 and CCpol3 water models. If a rigid monomer approximation

is employed, it is recommended that the vibrational averaged geometry be used

over the equilibrium geometry.

The first water models to include flexible monomers use quadratic terms to

describe the stretching and bending motions, modelling the vibrational modes as

harmonic oscillators. This is overly simplistic in dealing with the quantum me-

chanical effects that arises when the electron clouds of the two hydrogens over-

lap during the bending motion. Thus, more sophisticated intramolecular PES
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were constructed, the most popular being the Partridge–Schwenke intramolec-

ular PES, which is used in the TTM, HBB and MB-pol families of water mod-

els. This PES is also accompanied with an intramolecular DMS which supplies

the dipole moment required in the calculation of long-range interactions. This

could be the reason why higher-rank multipoles are not involved in the long-

range components of these models as there is no accurate quadrupole moment

surface in the literature.

It is important to realize that these intramolecular vibrations are quantum

mechanical in nature and their treatment within classical simulations may not

yield satisfactory results.92–94 The representative example would be the har-

monic oscillator where the classical probability would be greatest away from

the equilibrium while the quantum counterpart has the maximum probability at

the equilibrium position. Thus, flexible water models should be simulated using

methods that incorporate quantum effects.

1.3.4 Quantum Effects

Nuclear quantum effects and monomer flexibility are intertwined since nuclei

motions obey the laws of quantum mechanics rather than the classical counter-

part. This is especially so for water due to the presence of the light hydrogen

nuclei and extensive hydrogen bonding, both of which exhibits strong nuclear

quantum effects. Thus, processes involving the hydrogen nuclei such as Grot-

thuss proton shuttling95 require nuclear quantum effects to be accounted for.96

Furthermore, disregarding nuclear quantum effects can lead to a poor de-

scription of the heat capacity of the condensed phase97, 98 and low-temperature

properties such as the densities of ice polymorphs.92 In addition, when nuclear

quantum effects are neglected, isotopic effects cannot be probed which can have

a significant influence on bulk properties. For example, the enthalpy of vapor-

ization is a measure of the strength of the hydrogen bonding within liquid water.

Classically, there should be no isotopic effects present. However, it has been
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shown experimentally that the isotopic effects on the vaporization enthalpy is

important, increasing by 0.4 kcal mol−1 from water to tritiated water.82

A variety of quantum simulation methods exist and some of the compu-

tational methodologies have been reviewed.99 The most commonly employed

method would be Path Integral Molecular Dynamics (PIMD),100–102 which ex-

ploits the isomorphism between the quantum partition function expressed in

path integral formalism and the classical partition function of a ring-polymer.

This isomorphism provides a way to sample the quantum nuclear configuration

through modifications of the classical MD technique. Other quantum simulation

methods would include Path Integral Monte Carlo (PIMC), Path Integral Hybrid

Monte Carlo (PIHMC), Centroid Molecular Dynamics (CMD) and Ring Poly-

mer Molecular Dynamics (RPMD).

While PIMD simulations have been performed for the HBB2-pol and

MB-pol ab initio based models at ambient conditions,80, 81 extreme conditions

(low temperatures, critical point) have not been explored to elucidate the anoma-

lous behaviour of water. On a side note, studies on the quantum effects of water

performed on empirical water models such as TIP4P should be interpreted with

caution. As such water models are parametrized to reproduce experimental val-

ues using classical simulations, quantum effects are included in these models

in an effective manner. Thus, performing quantum simulations on these wa-

ter models to investigate quantum effects seems counter-productive unless the

model has been re-parametrized for such purposes.

1.3.5 Transferability and Ability to Dissociate

While less discussed in literature, it is ideal to develop a water model to be

used outside pure water systems for applications such as explicit solvation of

proteins. The empirical and polarizable models (Section 1.2.1 and 1.2.2) are

highly transferable due to the use of point multipoles which share the same

functional form regardless of the molecular species. This is not the case for ab
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initio based water models (Section 1.2.3) that rely on the MBE and new PES

have to be constructed for new combinations of k-body interactions.

Finally, very few models in literature are able to dissociate into H+/OH–

ions. Water dissociation is difficult to handle as the products (charged ions)

are very different from the reactant (neutral molecules). This is complicated

by the fact that water dissociates homolytically into radicals in the gas phase.

It would be optimal to use on-the-fly ab initio simulation techniques such as

Car-Parrinello Molecular Dynamics (CPMD)103 to study water dissociation as

these ab initio methods do not make any distinction between H+/OH– ions and

neutral water molecules.

1.4 Future Outlook for Water Modelling

The scene of water modelling remains a vibrant one where countless water mod-

els of distinct modelling philosophies were developed with the sole aim of un-

derstanding this mysterious liquid. The strengths and (more often) inadequacies

of these water models have provided useful information on the essential ingre-

dients of a universal water model.

It is only very recently, with the extensive use of ab initio data and avail-

ability of quantum simulations, that water models possess the right qualities to

accurately describe water at both the microscopic and macroscopic level. Yet,

there still leaves room for development, in seeking new ways to describe short-

range effects using interpolation techniques and employing higher-rank multi-

poles in long-range interactions.

Nonetheless, it is due time to put these state-of-the-art water models to

more rigorous tests to reproduce experimental results at extreme conditions. If

these water models succeed at these trials, then perhaps it is ready to explain the

many anomalies of water, fulfilling the role of computations in assisting experi-

ments to dispel confusion and eventually pushing the boundaries of science.
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2 | FIVE PIECES OF QUANTUM

CHEMISTRY

All self-respecting PhD theses in quantum chemistry ought to describe the the-

ory behind the quantum chemical methods employed. Doing away with the typ-

ical textbook-styled format, we suggested five questions pertaining to electronic

structure methods and basis sets. The questions entail (i) the Hartree–Fock the-

ory being the core of electronic structure methods, (ii) the construction of basis

sets, (iii) the link between Møller–Plesset perturbation theory and Coupled Clus-

ter theory, (iv) the poor basis set convergence of electron correlation methods

and (v) the deficiency of Density Functional Theory in describing dispersion. In

doing so, we hope to provide an unconventional viewpoint and focus on some

of the subtleties within the theories.

2.1 The Evolution of Quantum Chemistry

Quantum chemistry is the application of quantum mechanics to study chemical

systems. The development of both branches of science are often intertwined

especially in the early days of quantum mechanics. One of the important results

shaping quantum mechanics would be the Planck’s law,104 proposed in 1900 to

explain the black-body radiation. Planck introduced the concept that the total

energy is restricted to integer multiples of some definite unit of energy. This

concept of quantization would resurface in 1905 when Einstein explained the
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photoelectric effect by postulating that all electromagnetic radiation consists of

discrete quantized packets, i.e., photons.105 Quantization would be a central

theme in quantum mechanics. Fast forward another twenty years, 1925 marks

the beginning of modern quantum mechanics with the development of Heisen-

berg’s matrix mechanics106 and Schröndinger’s wave mechanics.107 Wave me-

chanics would give rise to the time-independent Schröndinger equation

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian operator, which acts on the wavefunction of the

system, Ψ, to give the energy of the system, E, multiplied by the wavefunction

itself. In fact, there is a third formalism of quantum mechanics attributed to

Dirac, involving the use of the bra-ket notation.108

It did not take long before quantum mechanics was applied onto chemi-

cal systems. In 1927, Heitler and London studied the dihydrogen system using

quantum mechanics.109 They found that bonding only occurs between the hy-

drogen atoms when the spins of the electron were anti-parallel to each other.

This seminal work provided a quantum mechanical understanding of the co-

valent bond, which lies at the heart of chemistry. Indeed, quantum mechanics

would be the de facto choice for elucidating enigmatic problems in chemistry.

By 1929, Dirac even declared that the theory of quantum mechanics is almost

complete and “the whole of chemistry are thus completely known”.110 From

there, he stressed the importance of finding practical methods to apply quantum

mechanics to chemical systems. Despite so, quantum chemistry would be re-

stricted to systems with a few atoms and electrons until the prevalence of digital

computers in the 1970s.

In the 1970s, much would be devoted towards the efficient implementation

of electronic structure methods with the emergence of many ab initio computer

programs. A prominent figure in this era is John Pople, who developed new and
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faster algorithms for the Hartree–Fock method and beyond.111 Pople also popu-

larized the use of the mathematically efficient gaussian-type orbitals112, 113 over

the more physical Slater-type orbitals although the idea was first proposed by

Boys in 1950.114 The 1990s would see another boom in computational chem-

istry due to the emergence of personal computers. Electronic structure methods

have matured to rival or even challenge the accuracy of experiments with the

implementation of the Coupled Cluster Singles Doubles excitation with per-

turbative Triples [CCSD(T)] method33 and the development of the correlation-

consistent basis sets.34

Apart from performing calculations, computers have taken up the impor-

tant role of chemical visualization in recent years. Such visualization allows

us to animate the evolution of chemical systems over time and render the pre-

cise geometry of enzyme-ligand binding sites. Furthermore, hardware-driven

techniques flourished, exploiting the untapped computational power in graph-

ical processing units (GPU), which can perform 100− 1000× more computa-

tions per second than traditional central processing units (CPU).115 We also see

the interdisciplinary integration of techniques and algorithms. One such exam-

ple is the use of machine learning in data science to handle large volumes of

chemical data.116 Giving the rapid development of computer technology which

drives chemical computation, this is an exciting time to be a quantum chemist.

Most, if not all, self-respecting PhD theses in quantum chemistry include a

textbook-styled chapter outlining the various common electronic structure meth-

ods and basis sets. Instead of the usual textbook-styled chapter, we came up with

five questions pertaining to electronic structure methods and basis sets, which

would cover much of the theoretical background that most quantum chemists are

familiar with. In answering the questions, we aim to provide a more focussed

writing, addressing some of the subtleties within the theories that might have

been glossed over otherwise. Inspired by Feynman’s book “Six Easy Pieces”,117

this chapter is titled the “Five Pieces of Quantum Chemistry”.
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2.2 Five Essential Pieces

2.2.1 Why is Hartree–Fock the basis of most electronic struc-

ture methods?

The Hartree–Fock (HF) theory lies at the core of quantum chemistry, often serv-

ing as a starting point for other quantum chemical methods. Additional approx-

imations can be introduced to achieve speed-ups in computation, resulting in

semi-empirical methods while post-HF corrections can be applied to correct for

the mean field approximation (which will be elaborated on later), creating the

electron correlation methods. Thus, the natural question is: “Why is the HF

method the basis of most electronic structure methods?”.

To address this question, we need to ask another question: “Why are there

so many electronic structure methods?”. The goal of all electronic structure

methods is to solve the Schröndinger equation in eq (2.1) to obtain the elec-

tronic energy of the chemical system, Eel. In particular, we wish to solve for

the electronic part of the wavefunction, Ψel(R,r), which depends on both the

nuclear coordinates, R, and electron coordinates, r. This leads to the electronic

Schröndinger equation

ĤelΨel(R,r) = EelΨel(R,r) (2.2)

where the electronic Hamiltonian, Ĥel, can be further broken down into

Ĥel = T̂e +V̂ne +V̂ee +V̂nn

=−1
2 ∑

i
∇

2
i −∑

A,i

ZA

rAi
+∑

i> j

1
ri j

+ ∑
A>B

ZAZB

rAB

(2.3)

the kinetic energy operator, T̂e, the nuclear-electron attraction operator, V̂ne,

the electron-electron repulsion operator, V̂ee, and the nuclear-nuclear repulsion
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operator, V̂nn. Under the Born-Oppenheimer approximation, the nuclear coor-

dinates becomes parameters and the V̂nn part simply follows Coloumb’s law.

The T̂e and V̂ne acts on only one electron and these one-electron operators can

be easily handled through the separation of variables in the wavefunction. The

problem lies with V̂ee, which acts on two electrons simultaneously. Currently,

there exist no mathematical treatment that allows us to handle such two-electron

operators. This is why the Schröndinger equation has no analytical solutions for

systems with more than one electron. To solve the Schröndinger equation ap-

proximately, we can either modify the Hamiltonian or rewrite the wavefunction

in a special form. An example of the former approach would be to ignore the

V̂ee completely, making the Hamiltonian separable. Obviously, this is not a good

idea as electrons do interact strongly with each other. Instead, the HF method

does the latter by rewriting the wavefunction in a special form.

Hartree tackled the insolubility of the Schröndinger equation by writing

the wavefunction as a product of one-electron wavefunctions

ΨHP(r1,r2, · · ·rN) = φ1(r1)φ2(r2) · · ·φN(rN) (2.4)

known as the Hartree Product.118 However, Slater and Fock independently

pointed out that eq (2.4) does not satisfy the antisymmetric nature of the wave-

function when two electrons are exchanged.119 Interestingly, a determinant sat-

isfies this antisymmetric property. Thus, we can write a Slater determinant120

Ψ =
1√
Nel!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN(r1)

φ1(r2) φ2(r2) · · · φN(r2)

...
... . . . ...

φ1(rN) φ2(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.5)
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that assumes that the electrons are independent of each other and satisfy the

antisymmetry principle. By minimizing the energy of the Slater determinant in

eq (2.5) with respect to the one-electron wavefunctions (an application of the

variational principle), we arrive at the canonical Hartree–Fock equations

F̂iφi(r1) = εiφi(r1) (2.6)

where εi is the energy of orbital φi and F̂i is the Fock operator comprising

F̂i = ĥi +
N

∑
j=1

(
Ĵi− K̂i

)
(2.7a)

ĥi =−
1
2

∇
2
i −∑

A

ZA

|RA− ri|
(2.7b)

Ĵiφ j(r2) =

[∫
φ
∗
i (r1)

1
|r1− r2|

φi(r1)dr1

]
φ j(r2) (2.7c)

K̂iφ j(r2) =

[∫
φ
∗
i (r1)

1
|r1− r2|

φ j(r1)dr1

]
φi(r2) (2.7d)

the one-electron operator, ĥi, the coulomb operator, Ĵi, and the exchange opera-

tor, K̂i. Note that the V̂nn contribution is not shown as it can be trivially added to

the total energy. The Fock operator is an effective one-electron operator with the

ĥi part containing the kinetic energy of an electron and the attraction of the elec-

tron with all the nuclei while both Ĵi and K̂i describe the repulsion of the electron

with all the other electrons. Clearly, both Ĵi and K̂i depend on the one electron

wavefunctions, φ j(r2), which are the solutions to the Fock operator itself. Thus,

the Hartree–Fock equations have to be solved iteratively. The Hartree–Fock

equations can be solved numerically on a set of grid points representing the

wavefunction. Alternatively, a basis set can be used to express the wavefunction

and the Hartree–Fock equations are transformed into the Roothaan–Hall equa-

tions.121, 122 The iterative procedure to solve the Roothaan–Hall equations is

known as the self-consistent field (SCF) procedure.
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Throughout the derivation of the HF method, there is only one assump-

tion: writing down the total wavefunction as a Hartree Product. Consequently,

this leads to a mean-field approximation where each electron behaves indepen-

dently of all the other electrons and experiences an averaged interaction with

the other electrons through the Coulomb and exchange operator. It should be

emphasized that no modifications were made to the Hamiltonian although the

description of the mean-field approximation seems to suggest otherwise. In re-

ality, individual electrons are affected by each other and such interactions cannot

be described in an averaged manner. Thus, the HF method can be improved via

corrections to account for the correlated motions of electrons.

The reason behind the HF method being the basis for other electronic

structure methods probably lies in the elegance of the theory. Other than the

Born–Oppenheimer approximation that is common to all electronic structure

methods, there is only a single approximation in the HF method, making it eas-

ier to propose corrections. Furthermore, the HF method provides a well-defined

energy and wavefunction. The HF energy can be converged to the complete

basis set (CBS) limit and the difference between the HF-CBS energy and true

energy clearly defines the electron correlation energy. The HF wavefunction

is obtained after the SCF procedure and often served as a reference wavefunc-

tion in post-HF methods. Thus, such independent particle models are easily

understood, which may explain why the Kohn–Sham approach123 in Density

Functional Theory (DFT) bears much resemblance to the HF method.

2.2.2 How are basis sets being constructed?

The basis set is a set of mathematical functions used to describe the wavefunc-

tion. Wavefunctions in electronic structure methods are commonly described

using molecular orbitals built from the linear combination of atomic orbitals,

i.e., the LCAO-MO approach. The atomic orbitals are typically atom-centred

one-electron functions. Since the Schröndinger equation cannot be solved an-
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alytically for systems with more than two electrons, the functional form of the

atomic orbitals are not known except for hydrogenic atoms, i.e., systems with

one electron. Then, how do we choose the functional form for these atomic

orbitals and optimise the associated parameters?

From the solutions of hydrogenic atoms, atomic orbitals take the form of

a slater-type orbital (STO)

φ
STO
ζ ,n,l,m(r,ϑ ,ϕ) = NYl,m(ϑ ,ϕ)rn−1e−ζ r (2.8)

where N is the normalization constant and Yl,m are the spherical harmonics.

The integers l and m control the angular momentum while ζ is the exponent,

which determines the spread of the orbital. Despite having the correct exponen-

tial decay behaviour with increasing r, these STO are rarely used in quantum

chemistry as it is difficult to numerically evaluate the associated two-electron

integrals. Instead, gaussian-type orbitals (GTO) are frequently employed

φ
GTO
ζ ,n,l,m(r,ϑ ,ϕ) = NYl,m(ϑ ,ϕ)r2n−2−le−ζ r2

(2.9)

as the product of two Gaussian functions of different exponents at different

centres can be expressed as a single Gaussian located at an intermediate location

GA(r) =
(

2α

π

)3/4

e−α(r+RA)
2

(2.10a)

GB(r) =
(

2β

π

)3/4

e−β (r+RB)
2

(2.10b)

GA(r)GB(r) =
(

2
π

)2

(αβ )3/4e
αβ

α+β
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2
e−(α+β )(r+αRA+βRB

α+β
)2

(2.10c)

This Gaussian product theorem allows the two-electron integrals to be evaluated

efficiently. A Gaussian function, with its r2 exponent, decays more rapidly than

an exponential function. To remedy this, we can take linear combinations of
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GTO to mimic a STO. Some of the linear combinations are predetermined to

reduce the computational cost. For example, one can fix the linear combination

of GTO describing core electrons as we expect these core electron orbitals to

be hardly changed during chemical bonding. This process is known as basis set

contraction and the resulting functions are termed contracted GTO. In essence,

more GTO are required to achieve a certain accuracy as compared to STO but

the former is still preferred due to computational efficiency.

After choosing GTO as the functions, we need to decide on the number

and types of GTO to be included in a basis set. By the type of the function,

we are referring to its angular momentum. For example, for an Oxygen atom,

we would require two s-type and three p-type functions to describe the 1s, 2s,

2px, 2py and 2pz core-valence orbitals. Apart from this minimal basis, we can

have additional sets of basis functions to better describe the valence orbitals,

giving rise to split valence basis sets. Furthermore, basis functions of higher

angular momentum (polarization functions) can be included to allow the orbitals

to change shape and basis functions with small ζ (diffuse functions) can be

added to account for electrons that are relatively far from the nuclei.

Next, we need to understand the notion of basis set balance. Let us con-

sider a minimal basis augmented with many sets of polarization functions. Due

to the insufficient number of sp-type functions, the valence orbitals will be in-

adequately described. The many sets of polarization functions may then be in-

cluded to compensate for this inadequacy albeit in an inefficient manner. The in-

clusion of polarization functions to describe the valence space necessarily places

small amounts of electron density at undesirable locations, resulting in artefacts.

Similarly, a split valence basis set with little or no polarization functions cannot

capture changes in orbital shapes during chemical bonding. Thus, the num-

ber of valence and polarization functions should complement each other. A

rough guide is that the number of sets of basis functions of a particular angular

momentum, nl , should be one less than that of one lower angular momentum,
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nl−1, i.e., nl = nl−1−1. For example, a triply-split valence basis set should be

accompanied by two sets of d-type functions and one set of f-type functions,

which can be denoted as a 4s3p2d1f basis for an Oxygen atom. Note that de-

spite being triply split valence, we have “4s” due to an additional set of s-type

functions describing the core orbitals. The Dunning correlation-consistent ba-

sis sets, labelled cc-pVnZ, follow this recipe and the user only needs to specify

the cardinal number, n, which determines the number of sets of split valence

functions.34 The cc-pVnZ basis sets were targeted towards reproducing the cor-

relation energy of the valence electrons, which contribute most significantly to

chemical bonding. The cc-pVnZ basis sets can also be augmented with diffuse

functions, giving the augmented form, labelled aug-cc-pVnZ.124 Table 2.1 gives

the composition of the cc-pVnZ and aug-cc-pVnZ basis sets and the correspond-

ing number of basis functions, M, in a water molecule. Interestingly, M depends

on the cardinal number n as such

Mcc−pVnZ =
1
3
(n+1)(n+

3
2
)(n+2) (2.11a)

Maug−cc−pVnZ = Mcc−pVnZ +(n+1)2 (2.11b)

As we increase the cardinal number in the cc-pVnZ and aug-cc-pVnZ series, M

approximately doubles, limiting the use of the largest basis sets to the smallest

systems. The DZ and TZ basis sets are routinely used while the larger QZ and

5Z basis sets are usually employed in benchmark calculations.

With the number and types of basis functions determined, we need to

specify the exponents for the basis functions for the basis set to be well de-

fined. To this end, we shall discuss how Dunning arrived at the exponents for

the cc-pVnZ basis sets.34 The s-type and p-type functions were taken from a

previous optimization using atomic HF calculations. The exponents of these

functions were re-optimized but had little effect on the energy. Thus, Dunning
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Table 2.1: Composition of the standard Dunning correlation consistent cc-pVnZ
basis sets and the augmented form aug-cc-pVnZ, as well as the corresponding number
of basis functions, M.

Basis Contraction M

Hydrogen First row elements H O H2O

cc-pVDZ 2s1p 3s2p1d 5 14 24

cc-pVTZ 3s2p1d 4s3p2d1f 14 30 58

cc-pVQZ 4s3p2d1f 5s4p3d2f1g 30 55 115

cc-pV5Z 5s4p3d2f1g 6s5p4d3f2g1h 55 91 201

cc-pV6Z 6s5p4d3f2g1h 7s6p5d4f3g2h1i 91 140 322

aug-cc-pVDZ 3s2p 4s3p2d 9 23 41

aug-cc-pVTZ 4s3p2d 5s4p3d2f 23 46 92

aug-cc-pVQZ 5s4p3d2f 6s5p4d3f2g 46 80 172

aug-cc-pV5Z 6s5p4d3f2g 7s6p5d4f3g2h 80 127 287

aug-cc-pV6Z 7s6p5d4f3g2h 8s7p6d5f4g3h2i 127 189 443

focussed on the polarization functions. Using the aforementioned (sp) functions

as a starting point, sets of d-type functions were added incrementally until there

is little change in the calculated configuration interaction (CI) correlation en-

ergy. Sets of f-type orbitals are then added to the “d-orbital saturated” basis set

until the correlation energy has stabilised and this is repeated for the g-type or-

bitals. The exponents of the basis functions for each angular momentum follows

an even-tempered expansion

ζi = αβ
i (2.12)

where α and β are parameters that were optimised to achieve the maximum

lowering of the correlation energy. With this, Dunning found that the polar-

ization functions can be grouped according to the extent of energy lowering

from the addition of new functions. The grouping of the polarization functions

follows the rough guide mentioned in the previous paragraph where the polar-
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ization functions should be added in sets of (1d), (2d1f), (3d2f1g) and so on.

This laborious optimization process would give rise to the cc-pVnZ basis sets.

Since the polarization functions are grouped according to the extent of lowering

of correlation energy, an increase in the cardinal number leads to a systematic

convergence of the total energy towards the CBS limit.

2.2.3 What is the relationship between MP and CC methods?

Electron correlation methods are post-HF methods used to correct for the mean-

field approximation in the HF method. Two common classes of electron corre-

lation methods include the Møller–Plesset perturbation theory to the n-th order

(MPn) and the Coupled Cluster (CC) method. The MPn method is based on

many-body perturbation theory and treat the difference between twice the true

electron-electron repulsion and electron-electron repulsion of the Fock operator

as a perturbation. The CC theory introduces corrections in an exponential man-

ner so that corrections of a given type is treated to infinite order. Both the MPn

and CC methods are very different approaches to solve the correlation problem

and they possess distinct implementations, with the former being perturbative in

nature while the latter is iterative. To compare the accuracy between MPn and

CC methods, it is important to find the relationship between the two methods.

To establish the connection between MPn and CC methods, we need to

look at the Configuration Interaction (CI) method. Let us assume that we per-

formed a restricted HF calculation, with all the electrons paired in the MOs, on

a system containing Nel electrons using a basis set containing M basis functions.

We obtained the solutions of the corresponding Roothaan–Hall equations which

contain Nel/2 occupied MOs and (M−Nel/2) unoccupied virtual MOs. With

that, we can write down a series of excited Slater determinants by taking elec-

trons from occupied MOs and placing these electrons into virtual MOs. This

excitation process recovers electron correlation and the CI method variationally

optimize the contribution of each excited determinant. If we include all possible
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excited determinants, we recover the full electron correlation and this is known

as the Full CI method. It seems counter-intuitive that exciting electrons lowers

the total energy. However, recall that the HF energy only depends on the occu-

pied MOs. Thus, the only way to improve the wavefunction within the limits

of the basis set is to use the virtual MOs. The electron excitation process al-

lows the system to relax itself to a lower energy as the electrons can better avoid

each other. Physically, this correspond to the correlated motion of electrons, i.e.,

electron correlation! Thus, we can use the number of electron excitations as a

measure of the amount of electron correlation.

Let us quickly revisit the MPn methods.125 In the MPn methods, we in-

troduce a perturbation V̂ to the sum over Fock operators, previously defined in

eq (2.7), which serves as the reference Hamiltonian, Ĥ0

Ĥel = Ĥ0 +V̂ =
Nel

∑
i=1

F̂i +V̂ (2.13)

At zero-order, we get the sum of the orbital energies, ∑
Nel
i=1 εi, by solving the

Hartree–Fock equations in eq (2.6). At first-order perturbation, we obtain the

Hartree–Fock energy, which accounts for double counting the electron-electron

repulsion in the sum of the orbital energies. Thus, electron correlation is first

recovered at the second-order perturbation. The energy expressions for the

second-order through fifth-order perturbation126 are

E2 =
D

∑
s

V̂0sa1
s (2.14a)

E3 =
D

∑
st

a1
sV̄sta1

t (2.14b)

E4 =
D

∑
s

SDTQ

∑
t

a1
sV̄sta2

t −E2
D

∑
s
|a1

s |2 (2.14c)

E5 =
SDTQ

∑
st

a2
sV̄sta2

t −2E2
D

∑
s

a1
s a2

s −E3
D

∑
s
|a1

s |2 (2.14d)
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where ai
s is the amplitude associated with the s excitation (which can be S, D, T

or Q denoting Singles, Doubles, Triples or Quadruples respectively) in the i-th

order perturbed wavefunction and V̄ is a shorthand for the difference between

the perturbation and Hartree–Fock energy, V̄ = V̂ −E1. We can then partition

the energies according to the excitations involved as follows

E2 = E2
D (2.15a)

E3 = E3
D (2.15b)

E4 = E4
S +E4

D +E4
T +E4

Q (2.15c)

E5 =
(

E5
SS +E5

SD +E5
DD

)
+
(

E5
ST +E5

DT +E5
DQ

)
+
(

E5
TT +E5

TQ +E5
QQ

)
(2.15d)

Only the double excitations (D subscript) are present in the E2 and E3. The E4

involves the S, D, T and Q excitations, evident from the summation in the first

term in eq (2.14c). The second term in E4 in eq (2.14c), a re-normalization term,

is included into E4
Q due to partial cancellation of terms. The double summations

in the first term in E5 in eq (2.14d) can be partitioned in a similar manner.

Similarly, due to partial cancellation of terms, we have included the second and

third term in E5 in eq (2.14d) into E5
DQ and E5

QQ respectively. Note that we have

grouped the terms into terms not containing T or Q, terms that are linear in T or

Q and terms that are quadratic in T or Q. These energy partitions will be used

later to discuss the similarities of the MPn and CC methods.

The MPn methods add electron correlation from different excitations (S,

D, T, Q and so on) up to a particular order (in E2, E3, E4, E5 and so on). Instead,

the CC methods include all the electron correlation from a given excitation to

infinite order.127, 128 This is achieved by applying the exponential operator, eT,

to the excitations

36



2.2 FIVE ESSENTIAL PIECES

ΨCC = eT
Ψ0 (2.16a)

T = T1 +T2 + · · ·+TNel (2.16b)

eT = 1+T+
1
2

T2 +
1
6

T3 + · · ·=
∞

∑
k=0

1
k!

Tk (2.16c)

where Ti is an excitation operator that generates all Slater determinants with

i excited electrons. Here, ΨCC and Ψ0 are the CC correlated wavefunction and

HF reference wavefunctions respectively. Due to the exponential operator, we

can obtain products of excitation operators, which represents disconnected exci-

tations. For example, a T2
2 operator corresponds to exciting two non-interacting

pairs of interacting electrons. Notably, when we include all the excitations up to

Nel electrons in eq (2.16b), we obtain the Full CI method. However, this is com-

putationally infeasible in practice. Thus, we truncate eq (2.16b) by the second

term to get the Coupled Cluster Single and Double excitation (CCSD) method.

Truncation by the third term yield the CCSDT method and so on. Due to the

Brillouin’s theorem, the single excitations do not contribute directly to the cor-

relation energy. Thus, a CCS method does not recover any electron correlation

and is equivalent to the HF method. However, the single excitations do con-

tribute indirectly via coupling with the double excitations in the CCSD method.

Sometimes, a perturbative treatment of higher excitations can be augmented.

One example is the CCSD with perturbative Triples [CCSD(T)],33 which is the

gold standard of quantum chemistry. Table 2.2 summarizes the list of electron

correlation methods covered and their computational cost.129

So far, we established that the number of excited Slater determinants in-

cluded gives a measure of electron correlation and also provided a brief outline

of the MPn and CC theories. Furthermore, we partitioned the MPn correlation

energy according to the excitations involved and these energetic components

will serve as the basis of comparison between the MPn and CC methods. In
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Table 2.2: Computational scaling in terms of the number of basis functions, M,
for the MPn and CC methods. Hybrid CC methods involve performing an itera-
tive CC procedure, followed by a perturbative treatment of higher excitations. The
computational cost of HF and Full CI (FCI) is also included for completeness.

Scaling MPn methods CC methods Hybrid CC HF and FCI

M4 MP1=HF CCS=HF HF

M5 MP2

M6 MP3, MP4(SDQ) CCSD

M7 MP4 CCSD(T)

M8 MP5 CCSDT CCSDT(Q)

M9 MP6

M10 MP7 CCSDTQ

M! FCI

Table 2.3, we compared MPn methods up to the fourth order with some of the

commonly used CC methods. The excitations included in the MPn methods

are listed exhaustively while there are higher-order terms included in the CC

methods that are not shown here. The comparison table tells us the correlation

energies that we obtain “for free” from a particular calculation. For example,

performing a CCSD calculation also gives the MP2, MP3 and MP4(SDQ) cor-

relation energy. The astute reader would have realized that the CCSD method

includes the E4
Q energy which corresponds to a quadruple excitation. This is

because the MP4 quadruples contributions originate from the disconnected T2
2

excitations. The exponential nature of the CC methods ensure that all discon-

nected Tn
2 excitations for n = 1,2, · · · ,∞ are included in the CCSD method.

From the order of appearance of excitations in the MPn methods (Table

2.3), we can deduce the importance of different excitations. As mentioned ear-

lier, the effect of T1 is small, originating indirectly from the coupling with dou-

ble excitations. Thus, the most important contribution to the correlation energy

comes from T2. This is echoed by the observation that only double excitations

are present in the E2 and E3. The connected T3 and disconnected T2
2 excitations
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Table 2.3: Comparison of MPn and CC methods up to the fourth-order perturbation
theory. Xindicates that the term is included completely.

Method E2
D E3

D E4
S E4

D +E4
Q E4

T

MP2 X

MP3 X X

MP4(SDQ) X X X X

MP4 X X X X X

CCSD X X X X

CCSD(T) X X X X X

are probably the next most important contribution to the correlation energy, ap-

pearing in the E4
T and E4

Q energy respectively. This explains the need for at least

a perturbative treatment of the triple excitations in the CCSD(T) method. From

Table 2.3, we can clearly see that the most important double excitations and

associated higher order terms, T2 and T2
2, are accounted for in the CCSD part.

The perturbative treatment of triple excitations is then required to account for

effects of T3. Notably, the MP4 method also accounts for the aforementioned

excitations. To further our analysis, we compared CCSD(T) with other MPn and

CC methods of similar accuracy (Table 2.4). Comparing CCSD(T) and MP4,

the former contains fifth-order correlation energy terms that are absent in the

latter. Thus, the CCSD(T) method is preferred over the MP4 method since both

methods have an identical M7 scaling (Table 2.2). We also arrive at a similar

conclusion when comparing the CCSD and MP4(SDQ) methods, both of which

have a M6 scaling. That said, the MP2 method is also frequently used in the

literature, being the cheapest electron correlation method. Through the com-

parison of the MPn and CC methods, we realized that the CC methods recover

more electron correlation than the MPn methods with similar costs. Together

with the importance of triple excitations, the CCSD(T) method represents the

most effective method to recover all the important electron correlation effects.

Thus, the CCSD(T) method is the gold standard of quantum chemistry.
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Table 2.4: Comparison of MPn and CC methods in the �fth-order perturbation
theory. The methods are accurate up to fourth-order perturbation theory, containing
all the contributions up to E4, with the exception of the CCSD method which does
not include the E4

T energy. Xindicates that the term is included completely while
≈ denotes that the term is included partially. Note that none of the �fth-order
perturbation theory terms are included at MP4 and that row is supposed to be
empty.

Method E5
SS +E5

SD +E5
DD E5

ST E5
DT E5

DQ E5
TT E5

TQ E5
QQ

MP4

MP5 X X X X X X X

CCSD X ≈ X ≈ ≈
CCSD(T) X X X X ≈ ≈
CCSDT X X X X X ≈ ≈

2.2.4 How do we tackle the slow basis set convergence in post-

HF methods?

The CCSD(T) method is able to yield highly accurate results for many molecular

properties and reproduce energies to chemical accuracy. However, the method—

and electron correlation methods in general—suffers from two major limita-

tions. Firstly, the CCSD(T) method has a very steep M7 scaling, a consequence

of the summations over the various included excitations. Secondly, the corre-

lation energy converges very slowly with respect to the basis set size. We will

discuss the various strategies employ to accelerate this basis set convergence.

Before discussing the strategies, we need to understand the cause of the

slow basis set convergence in electron correlation methods. As mentioned in

Section 2.2.3, we can recover the effects of correlation by exciting electrons

from the occupied MOs to the virtual MOs. Since the occupied MOs represent

the best linear combination of basis functions that minimizes the HF energy,

the virtual MOs are more sensitive to the quality of the basis sets. Physically,

the electrons move in correlated manner to minimize electron-electron repulsion

and this would demand greater flexibility of the wavefunction.
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Mathematically, this is due to the electron-electron repulsion operator

V̂ee = ∑
i> j

1
ri j

(2.17)

since the electron-electron repulsion drives the correlated motion of electrons.

Note that there are two forms of electron correlation, namely the Fermi and

Coulomb correlation, arising from electron pairs of parallel and anti-parallel

spins respectively. The former is accounted for in the antisymmetrization of

the wavefunction using Slater determinants while electron correlation methods

seek to recover the latter. The electron-electron repulsion operator, V̂ee, has a

singularity when any of the inter-electronic distance, say r12, becomes zero.

Kato showed that this results in the exact wavefunction containing a cusp, i.e., a

discontinuous derivative130 and the discontinuity can be expressed as

(
∂Ψ(r12)

∂ r12

)
r12=0

=
1
2

Ψ(r12) (2.18)

The slow basis set convergence is attributed to the fact that the product of one

electron functions is incompatible with this cusp requirement. The product of

orbitals remains smooth when two electrons are close, i.e., small r12, which

is undesirable.131, 132 Thus, a lot of basis functions are required to mimic the

cusps in the wavefunction. It should be emphasized that this cusp behaviour

is essentially a two-electron effect and thus is absent in the HF method which

assumes that the particles are independent of each other.

One possible strategy to avoid the slow convergence problem is to perform

an extrapolation to the CBS limit. Since there are no modifications made to the

theory or wavefunction, this can be easily performed by applying some for-

mula to energies calculated using different basis sets. Obviously, the basis sets

should exhibit a systematic convergence and the Dunning cc-pVnZ basis sets

(and their augmented counterparts) make excellent choices. This is because the
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polarization functions are grouped according to their contribution to the corre-

lation energy, allowing for a balanced treatment of electron correlation (Section

2.2.2). Furthermore, we need to know how the correlation energy changes with

the quality of the basis set to derive an extrapolation formula. Schwartz found

that the MP2 correlation energy for the Helium atom converges asymptotically

as (l + 1
2)
−4 where l is the highest angular momentum quantum number of the

atomic orbitals employed.133 In Schwartz’s work, the radial part of the basis

functions were saturated while limiting the highest angular momentum of the

functions to l. Thus, the trend may not apply directly to the cc-pVnZ basis sets.

Nonetheless, this suggests that the correlation energy has an inverse power re-

lationship with the highest angular momentum function in the basis set. Indeed,

Helgaker et al. found that the the correlation energy can be expressed as

Ecorr,n = Ecorr,∞ +An−3 (2.19)

where Ecorr,n is the correlation energy in the cc-pVnZ basis set, Ecorr,∞ is the

correlation at the CBS limit and A is a parameter to be determined.134 Since

there are two unknowns, namely Ecorr,∞ and A, two correlation energies calcu-

lated at different n are required. We can solve eq (2.19) in terms of Ecorr,∞ and

obtain a CBS extrapolation formula

Ecorr,∞ =
x3Ecorr,x− y3Ecorr,y

x3− y3 (2.20)

Another approach would be to modify the wavefunction such that it bet-

ter satisfies the cusp condition. Notably, the cusp condition given in eq (2.18)

implies that the exact wavefunction depends linearly with r12 when r12 is small

Ψ(r12) = k+
1
2

r12 + · · · (2.21)

This suggest that the electron correlation methods can benefit from the inclusion
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of interelectronic distance dependence in the wavefunction. Based on this idea,

Kutzelnigg and Klopper developed the R12 methods135 where HF determinants

multiplied with the interelectronic distance, r12ΨHF, are included in the wave-

function. However, this leads to computational difficulties from the introduction

of integrals varying with three and four electron coordinates. Fortunately, these

integrals can be avoided through the use of the Resolution of the Identity tech-

nique with an auxiliary basis set. With that, the R12 methods can be calculated

with reasonable cost and the correlation energy converges rapidly as (l +1)−7.

Other than the R12 methods, Ten-no proposed that the r12 factor is replaced with

a Slater-type function F12 = e−γr12 as the linear r12 factor is unphysical at large

distances.136 These F12 methods are more numerically stable and provided bet-

ter convergence of the correlation energy with respect to the basis set.

2.2.5 Why can’t DFT describe dispersion?

Electron correlation methods provide a systematic way to approach the exact

Schröndinger equation. However, these methods are limited by their poor com-

putational scaling and slow basis set convergence. Fundamentally, this is due to

the high dimensionality of these wavefunction-based methods where there are

four degrees of freedom (three spatial and one spin) associated with each elec-

tron. Density functional theory (DFT) offers an attractive alternative, based on

the Hohenberg–Kohn theorem that the ground state electronic energy depends

solely on the electron density, ρ , a three-dimensional quantity.137 However,

early applications of DFT to study intermolecular interactions were unsatisfac-

tory.138–140 It was then identified that common DFT functionals, such as B3LYP,

cannot describe the dispersion interaction. Here, we shall attempt to unravel the

reason and discuss possible remedies to this DFT dispersion problem.

Often described as a “instantaneous dipole-induced dipole” effect in high-

school textbooks, dispersion is a quantum mechanical effect where the corre-

lated motions of electrons in two molecules lowers the interaction energy. An
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electron correlation effect, dispersion is clearly missing in the HF method. Fur-

thermore, dispersion can be derived from the second order perturbation theory

where the two interacting molecules are excited.48 Thus, we can establish that

dispersion is an electron correlation effect and occurs at long-range due to the

fluctuation of two well separated charge densities.

The inability of DFT in reproducing the dispersion interaction stems from

the choice of functionals.141 Common DFT functionals employ either the lo-

cal density approximation (LDA) or some form of the generalized gradient ap-

proximations (GGA). The exchange-correlation functional only depends on the

electron density under the LDA and contributions from the gradient of the den-

sity are incorporated in the GGA functionals. Thus, the exchange-correlation

energies for both LDA and GGA can be written as

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ(r))dr (2.22a)

EGGA
xc [ρ] =

∫
ρ(r)εxc(ρ(r),∇ρ(r))dr (2.22b)

where εxc is the exchange-correlation energy. Higher derivatives, ∇2ρ(r), can

be included to give the meta-GGA methods. The GGA (and meta-GGA) func-

tionals are often described as “non-local” due to the inclusion of the derivatives

of the charge density. However, the derivatives can only describe the immediate

vicinity of a particular point, making the description of exchange-correlation ef-

fects localized, i.e., semi-local. This is clearly incompatible with the dispersion

interactions which depend on the fluctuation of charge densities at two well-

separated points. Thus, only a truly non-local functional that depends on the

density at two different points, say r and r′, can describe dispersion properly

Enonlocal
xc [ρ] =

∫ ∫
ρ(r)ρ(r′)εxc(ρ(r),∇ρ(r),ρ(r′),∇ρ(r′))drdr′ (2.23)
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It should be emphasized that DFT itself is capable of approaching the exact

Schröndinger equation provided that the universal exchange-correlation func-

tional is known. Unfortunately, this is not the case at present, which explains

the plethora of functionals in the literature. Nonetheless, it is clear that the uni-

versal functional should be truly non-local but this would likely increase the

computational cost due to the extra degrees of freedom involved.

There are several approaches to correct for the lack of dispersion interac-

tions in DFT, which have been reviewed extensively elsewhere.142, 143 We shall

discuss four different approaches according to the ease of implementation. The

simplest way to incorporate dispersion into DFT is to add a dispersion energy

correction, Edisp to the DFT energy, EDFT, as follows

Etot = EDFT +Edisp (2.24)

Interestingly, this type of corrections has been applied even earlier to treat the

similar lack of dispersion in the HF method. The correction is motivated by

the initial observations that DFT functionals are unable to reproduce the R−6

distance dependence that is characteristic of dispersion. Thus, the dispersion

correction term often bears the form

Edisp =−
C6

R6 −
C8

R8 −
C10

R10 (2.25)

where R denotes an interatomic distance and Cn are the dispersion coefficients.

The Cn coefficients are usually related to the static polarizability derived from

the DFT density. However, the effects of dispersion are often not included in the

optimization of the density, making the treatment not self-consistent. Note that

the inverse-distance expansion in eq (2.25) diverges rapidly and gives unphysi-

cal values at short-range. To resolve this, one can multiply damping functions89

onto the dispersion terms to gradually remove the dispersion contributions with

45



FIVE PIECES OF QUANTUM CHEMISTRY

decreasing R. The DFT-D3 method144, 145 and Tkatchenko–Scheffler model146

are some examples of methods that employ a dispersion correction term.

Secondly, current functionals can be re-parametrized to better describe

dispersion interactions. Most of the earlier and commonly used functionals,

such as B3LYP, were focussed on chemical bonding and thus not designed for

noncovalent interactions. While these LDA- or GGA-based functionals are in-

trinsically local or semi-local, the functionals can be tuned to produce additional

attraction at an intermediate range where molecules are in close contact. This

can be achieved by fitting elaborate reference data from experiments or highly-

accurate quantum chemical calculations. One example is the M06 suite of func-

tionals,147 which comprises four different functionals (M06-L, M06, M06-2X

and M06-HF) calibrated for different types of calculations and molecules. A

third approach would be to employ double hybrid functionals. Hybrid func-

tionals include a part of exact exchange from the HF theory. On top of that,

double hybrid functionals introduce an additional portion of correlation energy,

typically from an MP2-type calculation. However, this would increase the com-

putational cost to that of MP2 calculations, which goes against our initial mo-

tivation of the low computational cost of DFT. Some examples of double hy-

brid functionals are the B2PLYP148 and mPW2PLYP.149 Finally, truly non-local

functionals can be developed. The first truly non-local functional, vdW-DF,150

contains a non-local correlation term, expressed as a density-density interac-

tion, following the form of eq (2.23). The εxc is based on a analytically derived

frequency-dependent response function and depends on both the density and its

gradient. This non-local term is then combined with an LDA correlation func-

tional to recover the total functional. One important feature of the vdW-DF is

the seamless integration of the LDA and non-local terms as the latter term does

not have a local contribution.

The lack of dispersion in many DFT functionals can be traced to a big-

ger problem plaguing the DFT theory—the universal exchange-correlation func-
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tional is unknown. This leads to a variety of functionals parametrized for differ-

ent applications. Despite this, DFT methods still have a large appeal due to their

low computational cost. This allows for the study of larger chemical systems,

expanding the chemical space that can be studied theoretically.

2.3 Remarks on Computations and Experiments

By answering the five questions, we covered a substantial part of the theoretical

background of quantum chemistry. The creativity and dedication of generations

of quantum chemists have led to the constant development of new theories and

methodologies. Coupled with the advancement of computer hardware, quantum

chemistry has matured to a stage where the accuracy of computational stud-

ies rival that of experiment. Thus, experiment and computation have become

inextricably intertwined, akin to the relationship between sword and shield. Ex-

periments are likened to swords, providing the most definitive understanding of

the nature itself. Yet, these swords can get dull with repeated use and require

tremendous resources for maintenance. This is where computations serve as the

shield, guiding experiments by predicting the most likely outcomes, reducing

unnecessary experiments. Similar to how shields cannot win the battle alone,

computations cannot stand on their own. This is because the observational qual-

ity of science demands real-life, physical experiments to uncover the different

mysteries of nature. Therefore, the marriage of experiments and computations

would be the most optimal way to approach science for many years to come.
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3 | TROUBLE WITH THE

MANY-BODY EXPANSION

Longstanding conventional wisdom dictates that the widely-used many-body

expansion (MBE) converges rapidly by the four-body term when applied to large

chemical systems. We have found, however, that this is not true for calculations

using many common, moderate-sized basis sets such as 6-311++G** and aug-

cc-pVDZ. Energy calculations performed on water clusters using these basis

sets showed a deceptively small error when the MBE was truncated at the three-

body level, while inclusion of four- and five-body contributions drastically in-

creased the error. Moreover, the error per monomer increases with system size,

showing that the MBE is unsuitable to apply to large chemical systems when

using these basis sets. Through a systematic study, we identified the cause of

the poor MBE convergence to be a many-body basis set superposition effect

exacerbated by diffuse functions. This was verified by analysis of MO coeffi-

cients and the behavior of the MBE with increasing monomer-monomer sepa-

ration. We also found poor convergence of the MBE when applied to valence-

bonded systems, which has implications for molecular fragmentation methods.

The findings in this chapter suggests that calculations involving the MBE must

be performed using the full-cluster basis set, using basis sets without diffuse

functions, or using a basis set of at least aug-cc-pVTZ quality.
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3.1 Introduction

The many-body expansion (MBE) is a useful and ubiquitous formalism in the

theoretical study of large chemical systems.151–162 The MBE expresses the total

energy, Etot, of an n-body system as the sum of one-body, two-body, etc., up

to n-body energy contributions (Section 3.2). Calculating Etot directly for large

systems is often computationally unaffordable. The benefit of the MBE is that

for many systems Etot can be well approximated by truncating the expansion

to just the first few terms. Truncated MBEs have found especially widespread

use in the study of water clusters, in which most intermolecular interactions are

assumed to be pairwise additive (i.e. completely captured in an MBE truncated

after the two-body term). The remaining (mostly inductive) interaction energy

is accounted for by the rest of the terms in the MBE.

A longstanding and crucial question in modeling aqueous systems is how

many terms of the MBE are necessary to adequately approximate the total en-

ergy. The earliest studies addressing this question were performed on water

dimers, trimers, and tetramers. They found that three-body effects accounted for

about 10% of the interaction energy, and that four- and higher-body effects were

negligible.163, 164 Subsequent work on slightly larger clusters agreed that four-

and higher-body energy contributions were minute.165–170 The most thorough

examination of many-body effects was performed on water hexamers by Xanth-

eas in 1994, in which he found “the contribution from four-body and higher

terms to be negligible for these systems.”171

The results from these studies eventually coalesced into an oft-cited piece

of conventional wisdom: that the many-body expansion for water converges

rapidly by the four-body term and in a well behaved manner.31, 172, 173 Indeed,

most current ab-initio-based simulation models use MBEs truncated at three or

occasionally four bodies.71, 77, 174, 175

Despite this, we decided to verify the rapid convergence of the MBE for
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a few water clusters. We calculated all the terms in the MBEs of four (H2O)16

clusters with HF/6-31++G**, expecting, per conventional wisdom, to observe

convergence to the true cluster energy by at most the five-body term (conver-

gence herein defined as consistently having an error less than 1 m-Eh). Instead,

not only did these MBEs not converge by anywhere near the five-body term,

the convergence was notably erratic (Figure 3.1). Particularly worrying was that

while truncating the many-body expansion at the four-body term led to a decent

result (3.2–4.2 m-Eh error for 4444-a,c1b,cie), inclusion of the five-body term

increased the error (4.6–4.7 m-Eh error for 4444-a,c1b,cie), rather than further

converging the MBE towards the true cluster energy.
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Figure 3.1: Slow, erratic convergence of the MBE towards the full-cluster energy for
four (H

2
O)

16
clusters calculated at HF/6-31++G**. The linear fused cube 4444-a

(a) was obtained from Xantheas176 while the fused pentameric structures c1b (b)
and cie (c) were obtained from Collins and Gordon.177 The TIP4P MC structure
(d) was obtained by taking a random fragment of 16 water molecules from a TIP4P
Monte Carlo simulation of 400 water molecules.

We are by no means the first to observe problems with the MBE.169, 178, 179

To our knowledge, however, there has been no thorough examination of under
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what circumstances the MBE fails to converge rapidly. In the following sections

we will demonstrate the wide extent of the MBE convergence problem and show

that a many-body Basis Set Superposition Effect (BSSE) is its cause. We stress

that we do not question the accuracy or validity of the many methods that use the

MBE, or question previous studies of many-body effects in water. Our purpose

in this chapter is simply to refine the conventional wisdom about the MBE.

3.2 Computational Details

For a chemical system comprising n monomers, the MBE of the total energy of

the system, Etot, is the finite sum

Etot =
n

∑
k=1

ε
(n,k) (3.1)

where ε(n,k) is the total k-body energy of the system. The total k-body energy

of the system is the component of the total energy due to all k-body effects, so

ε(n,1) is the sum of the energies of all isolated monomers; ε(n,2) is the sum of the

energies of all dimers minus the energies of the monomers they comprise, i.e.,

it is the sum of all the pairwise interaction energies. Thus the binding energy of

the system is given by

εtot = Etot− ε
(n,1) (3.2)

ε(n,k) can be expressed recursively in terms of the total energy and lower-body

energies180

ε
(n,k) = ∑

α

Eα −
k−1

∑
i=1

[
(n− i)!

(n− k)!(k− i)!

]
ε
(n,i) (3.3)

where Eα is the total energy of the k-mer sub-system α of which there are
(n

k

)
.

We also wish to clarify our use of the term Basis Set Superposition Effect.

When small basis sets are used in ab initio calculations of molecular clusters,
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basis functions from one molecule can be utilized by other molecules to com-

pensate for the incompleteness of their basis set. This improves the description

of the wavefunction of all molecules in the cluster, which leads to a lowering of

the total energy known as the BSSE. One way of quantifying the BSSE is the

counterpoise (CP) method.181 In the CP method, the familiar expression for the

BSSE in the interaction energy of two molecules, A and B, is given as

EBSSE = (EA(ab)−EA(a))+(EB(ab)−EB(b)) (3.4)

where a, b and ab are the basis sets of molecule A, molecule B, and the cluster

AB, respectively. Applying the CP method to the interaction energy of A and

B, the BSSE-free interaction energy is

ε
CP
tot = εtot−EBSSE

= EAB(ab)− (EA(a)+EB(b))−EBSSE

= EAB(ab)− (EA(ab)+EB(ab))

(3.5)

Now, all the quantities are calculated consistently in the same basis, namely

the basis set of the cluster AB. The brilliance of the CP method lies in that it

does not try to remove the lowering of energy in the total energy of the cluster

AB due to sharing of basis functions which is a natural consequence of the

variational principle. Instead, it does the opposite where the constituents A and

B are calculated in the basis set of the cluster AB so as to achieve a similar

lowering of energy.

In the spirit of the CP method, we define the BSSE for the sum of the total

energies of all
(n

k

)
k-mers in the cluster containing n monomers as

E(n,k)
BSSE = E(n,k)(n-mer)−E(n,k)(k-mer) (3.6)
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TROUBLE WITH THE MANY-BODY EXPANSION

where n-mer and k-mer are the basis set of the full molecular cluster (cluster

basis) and the basis set of the k monomers considered (nuclei-centered basis)

respectively. Using our definition, the removal of the BSSE in the total energies

when performing a many-body energy decomposition will result in all the quan-

tities being calculated consistently in the cluster basis, ensuring that the MBE

remains formally exact. Indeed, the use of a consistent cluster basis has been

employed previously171, 182, 183 to obtain BSSE-free many-body energies. From

eq (3.6), BSSE can be seen as a lowering of the total energy of the k-mer in the

cluster due to the sharing of basis functions from the remaining n−k monomers.

Thus, when k = n, there is no BSSE, i.e. E(n,n)
BSSE = 0. Notably, this definition of

BSSE reduces to familiar expression in eq (3.4) in the context of the interaction

energy of a cluster where EBSSE = E(n,1)
BSSE.

All quantum chemical calculations were performed using the Gaussian

09 package184 or the MOLPRO suite of programs185 at the Hartree-Fock (HF)

or second-order Møller-Plesset perturbation (MP2) level of theory. A variety

of Pople split-valence basis sets were used, along with the series of Dunning

correlation-consistent cc-pVXZ basis sets, X = 2− 4, labeled VDZ, VTZ, and

VQZ. An “A” or “dA” prepended to these basis sets indicate they are augmented

or doubly-augmented, respectively, with diffuse functions.

3.3 Results and Discussion

3.3.1 Extent of the Poor Convergence of the MBE

Prompted by our initial results (Figure 3.1), we attempted to ascertain the extent

of the MBE convergence problem. We calculated the MBE up to the five-body

term for a variety of (H2O)n, n = 6− 57, clusters (Table 3.1). Some geome-

tries are optimized structures from the literature, others were taken from TIP4P

Monte Carlo simulations. These latter structures were included as they are rep-

resentative of geometries encountered in simulations using MBE-based water

54



3.3 RESULTS AND DISCUSSION

models. All calculations were performed using the AVDZ basis set, which is

a better yet computationally manageable basis set compared to the 6-31++G**

basis used in Figure 3.1. The MBE in Table 3.1 were only calculated to at most

the five-body term due to the steep computational cost of calculating high-body

terms for large clusters: the number of additional calculations required to obtain

the k-body energy of an n-body system is n!
k!(n−k)! . Table 3.1 shows that the MBE

of small clusters (n = 6− 8) do converge by the three-body term, as shown in

previous studies.171 But for larger clusters, while MBEs truncated at the three-

body term appear converged, inclusion of four- and five-body energies increases

the error in the MBE. A notable oscillatory behavior also occurs wherein the er-

ror changes sign when three-and-higher-body energies are included.

More alarmingly, Figure 3.2 shows that for the clusters studied in Table

3.1, the four-body and five-body MBE truncation errors per monomer increase

with system size. Note that this was also noticed previously in a smaller sample

of water clusters by Gadre, who called for further examination.169 This is con-

cerning as the error-per-monomer should be an intensive, not extensive, prop-

erty. Otherwise, the scalability of MBE-based computational methods, such as

fragmentation methods and bulk material simulations, becomes questionable.
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Table 3.1: Error (m-Eh) in the total energy of water clusters (H
2
O)

n
, n = 6− 57,

as approximated by an MBE truncated after the 2- through 5-body term.

(H2O)n 2-body 3-body 4-body 5-body

6a -9.769 -0.488 -0.006 0.017

8a -16.905 -0.426 0.491 -0.518

10a -23.227 -1.444 1.092 -1.099

12a -26.745 -0.399 1.519 -2.541

14a -27.613 -1.302 2.478 -3.563

16a -37.045 -0.631 2.940 -5.200

18a -37.060 -0.563 3.227 -5.848

20a -46.844 -0.741 4.219 -8.101

24b -106.289 -10.762 3.252

32c -130.794 -6.612 16.895

57d -97.126 -5.401 27.334

6e -1.674 -0.024 0.022 -0.009

8e -2.591 -0.072 0.072 -0.023

10e -1.704 0.041 0.157 -0.098

12e 0.189 0.266 0.274 -0.344

14e -6.870 -0.003 0.391 -0.495

16e -11.364 -0.378 1.153 -1.555

18e -6.524 -0.191 1.382 -2.009

20e -14.251 -0.721 1.692 -2.910

45e -36.931 -2.117 8.373

All calculations done at HF/AVDZ level of theory. Optimized water clusters obtained from
aGadre,186 bSzalewicz,173 cCollins and Gordon,177 and dHerbert.187 eDisordered random
fragments of (H2O)n obtained from a TIP4P Monte Carlo simulations. For these disordered
fragments, the MBE truncation errors were averaged over four different random fragments for
n = 6−20.
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3.3.2 Cause of the Poor Convergence of the MBE

Having found the MBE convergence problem to be widespread, we sought to

determine its cause. Initially, we thought the poor convergence was due to the

MBE not properly capturing the many-body induction energy. Since induction

energy is closely related to the polarizability of the bodies, we performed MBE

calculations for the optimized clusters studied in Table 3.1 using a series of

basis sets of increasing polarizability (Table 3.2). If the poor MBE convergence

were due to induction, the error for truncating the MBE should worsen with

increasing polarizability. It is clear from Table 3.2 that this is not the case.

Table 3.2: Error in approximating the total energy of optimized water clusters
(H

2
O)

n
, n = 8− 20, with an MBE truncated at the four-body and �ve-body term

(given in order, separated by a comma) using basis sets of increasing isotropic dipole-
dipole polarizability ᾱ .

Basis Set

P2a P3a Db Tb

ᾱ (a.u.) 4.87 6.50 7.97 8.23

(H2O)n Error (m-Eh)

8 0.07 , 0.01 1.24 , -0.67 0.49 , -0.52 0.05 , -0.04

10 -0.01 , 0.01 0.91 , -0.65 1.09 , -1.10 0.04 , -0.09

12 0.21 , -0.02 1.13 , -0.55 1.52 , -2.54 0.01 , -0.36

14 0.25 , 0.02 1.57 , -1.12 2.48 , -3.56 0.19 , -0.47

16 0.32 , 0.02 2.82 , -1.75 2.94 , -5.20 0.00 , -0.66

18 0.38 , -0.02 1.32 , -0.66 3.23 , -5.85

20 0.48 , -0.04 2.00 , -1.15 4.22 , -8.10

All calculations performed at HF level. Water geometries are from Gadre186 (the same
geometries as used in Table 3.1). Pople basis set P2: 6-31G** and P3: 6-311+G(2d,p);
bDunning basis set AVXZ where X= D or T.

Instead, poor MBE convergence only occurred when using small, incom-

plete basis sets augmented with diffuse functions, namely 6-311++G** (P3)

and AVDZ (D). This led us to suspect that the convergence problem was due to
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BSSE. As a preliminary test of this, the MBEs in Table 3.2 were recalculated us-

ing the cluster basis, as opposed to the usual nuclei-centered basis, in all k-mer

calculations. This eliminated the BSSE in the MBE calculations as explained

in Section 3.2. As shown in Table 3.3, the poor MBE convergence observed in

Table 3.2 disappeared when BSSE was removed. Note that not all terms were

recalculated due to the computational cost of using the full-cluster basis. In

fact, the BSSE present in the many-body energies can be easily computed as the

difference between the errors in both tables.

Table 3.3: Error for truncating the MBE at the four-body and �ve-body term (given
in order, separated by a comma) using the cluster basis, as opposed to the nuclei-
centered basis used in Table 3.2, in all k-body calculations. Results shown for a series
of optimized water clusters (H

2
O)

n
, n = 8− 16, at HF level using various basis set

of increasing isotropic dipole-dipole polarizability ᾱ .

Basis Set

P2a P3a Db Tb

ᾱ (a.u.) 4.87 6.50 7.97 8.23

(H2O)n Error (m-Eh)

8 -0.02 , 0.01 0.01 , 0.00 0.04 , 0.00 0.04 , 0.00

10 -0.03 , 0.00 -0.02 , -0.01 -0.02 , -0.01 -0.01 , -0.01

12 0.00 , -0.01 -0.01 , -0.02 0.00 , -0.03

14 0.02 , 0.00 0.03 , -0.01 0.05 , -0.01

16 -0.05 , 0.02 -0.02 , 0.00 0.02 , -0.01

aPople basis P2: 6-31G** and P3: 6-311+G(2d,p); bDunning basis AVXZ where X= D or T.

To verify that BSSE was the cause of the poor MBE convergence, we

calculated the full MBEs for two (H2O)10 clusters, 10PP and 10OB (Figure

3.3), using basis sets of increasing quality and diffusiveness and using both the

nuclei-centred and cluster bases. MP2 calculations were also performed for the

6-31G** and the 6-311G** series to investigate the effects of electron correla-

tion on the MBE convergence. As the results were similar for both 10PP and

10OB clusters, only the errors of the MBE for 10PP are presented in Figure 3.4.
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Results for 10OB are in the Appendix.

Pentagonal Prism
10PP

Open Box
10OB

Figure 3.3: (H
2
O)

10
clusters chosen for a more detailed study on the cause of poor

MBE convergence. Both the pentagonal prism (10PP) and open box (10OB) were
obtained from Gadre.186

It is clear from Figure 3.4 that when the nuclei-centered basis is used (solid

lines), the more diffuse functions are present the worse the MBE convergence

(red and orange solid lines), with the exception of AVTZ and AVQZ. This is

all precisely what one would expect if BSSE were the cause of the poor MBE

convergence: more diffuse functions lead to more overlap of basis functions

between water molecules, increasing BSSE, except for basis sets like AVTZ

and AVQZ which are so complete that water monomers need not rely on diffuse

functions from their neighbors to describe their wavefunctions. Indeed, Truhlar

and co-workers have made a similar observation by examining the effects of

increasing augmentation in the Dunning basis sets.188–190 It should be noted that

there are still tiny oscillations in the MBE truncation errors for AVTZ and AVQZ

in the range of 10–50 µ-Eh, which are hard to see in the Figure. Moreover,

when the cluster basis is used (dashed lines) and BSSE is eliminated, the MBE

converges by the four-body term regardless of the presence of diffuse functions.

Figure 3.4c-f further show that when electron correlation is included, the MBE

errors are amplified. This can be attributed to additional BSSE associated with

electron correlation—it is known that correlation energy converges more slowly

towards the complete basis set limit than the SCF energy.191
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Figure 3.4: Convergence of the MBE for 10PP using various basis sets: (a) STO-3G
series, (b) 3-21G series, (c) HF/6-31G** series, (d) MP2/6-31G** series, (e) HF/6-
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Solid lines represent MBE calculated using the nuclei-centered basis while dashed
lines represent MBEs calculated using the cluster basis. It should be noted that the
di�use functions of the 6-31++G** basis set were used as the di�use functions for the
STO-3G and 3-21G basis sets, as these basis sets have no de�ned di�use functions.
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We also examined the MO coefficients in these calculations to specifically

check whether the BSSE originated from the diffuse functions. HF calculations

were performed using VDZ, AVDZ, and AVTZ basis sets on an arbitrarily cho-

sen monomer from 10PP with the ghost basis functions of all other waters in the

cluster present. The choice of monomer does not significantly affect the results

due to the symmetry of the cluster. The distribution of MO coefficients for the

occupied MOs are shown in Figure 3.5. By performing calculations on a single

monomer in the cluster basis, all observations are solely due to BSSE and not

physical interaction between molecules. If the diffuse functions were causing

the BSSE—that is, if water molecules were using diffuse basis functions cen-

tered on other molecules to improve the description of their own wavefunction—

then there should be significant MO coefficients for basis functions centered on

the ghost molecules. Similarly, a many-body BSSE effect can be inferred if

there are significant non-zero MO coefficients arising from many of these ghost

molecules simultaneously.

For VDZ (Figure 3.5a), significant non-zero MO coefficients, represented

by red or blue colored regions, are only found for a few water molecules’ basis

functions. In contrast, the AVDZ basis set (Figure 3.5b) has significant non-

zero MO coefficients on all the water molecules’ basis functions. As the ghost

water molecules in Figure 3.5 are ordered by their proximity to the monomer

under study, the colored regions become fainter across the horizontal axis due

to decreasing overlap of the basis functions from more distant ghosts. Nonethe-

less, the non-zero coefficients imply that the BSSE is many-body in nature, with

contributions from all monomers in the system. The contributions come pri-

marily from the diffuse functions (denoted D in the figure) of both oxygen and

hydrogen, again implicating diffuse functions in causing the BSSE. The MO

coefficient distribution for AVTZ (Figure 3.5c) also shows contributions from

diffuse functions, but less so than those for AVDZ. Again, this is due to AVTZ

being a more complete basis set: the wavefunction of the monomer can be de-
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scribed using its own core, valence, and diffuse basis functions without the need

for the basis functions of its neighbors. In fact, AVTZ’s BSSE contribution to

the total energy of the monomer is low at 2.7 ppm of the total energy of the

monomer (-0.2 m-Eh) in contrast to the higher contribution from both VDZ

(68 ppm, -5.2 m-Eh) and AVDZ (10 ppm, -0.8 m-Eh).

As a final test of our hypothesis, we investigated how MBE convergence

is affected by the average nearest-neighbor distances of water molecules in a

cluster. HF/AVDZ MBE calculations using the nuclei-centered basis were per-

formed on a series of progressively expanded structures derived from 10PP

(Figure 3.6). The expanded structures were constructed by scaling the distance

between the center-of-mass of each water and the center-of-mass of the entire

10PP cluster. This ensures the nearest-neighbor distance of all water molecules

are increased by the same factor. As the mean nearest-neighbor distance in-

creases, the oscillations in the MBE error gradually disappear. This is because

when the waters are farther apart the overlap between diffuse functions on dif-

ferent waters decreases exponentially and so does the BSSE. This can be seen

explicitly in Figure 3.7 where an exponential fit captures the decay of BSSE

with increasing inter-water distance.

The curious reader may wonder why the error oscillates from positive to

negative in nearly all the poorly convergent MBEs we have shown. Our best

explanation is that this behavior is related to the inclusion/exclusion principle

inherent in the MBE. To obtain a system’s k-body energy, the total energy of

each k-mer in the system has the total energy of all its constituent (k−1)-mers

subtracted from it. But this results in over-subtraction of (k− 2)-body ener-

gies, so the (k−2)-mer total energies have to be added back, and so on. When

subsequently obtaining the (k + 1)-body energy, the signs of the terms in the

expression switch: k-body energies are subtracted where they were previously

added, etc. (in addition to there being many more terms in the calculation). So

if a particular k-body energy is underestimated—perhaps due to an inadequate
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3.3 RESULTS AND DISCUSSION

basis set—it will contribute to the overestimation of the (k + 1)-body energy,

and then the underestimation of the (k+ 2)-body energy, and so on, leading to

oscillation in the error. Of course, the MBE by definition converges by the fi-

nal term. And each subsequent term in the MBE contains less BSSE-derived

error, E(n,k+1)
BSSE < E(n,k)

BSSE , since the more waters monomers are in a calculation

the closer the basis set is to the correct, full-cluster basis. But in the early MBE

terms there is much utilization of neighboring waters’ diffuse basis functions,

and more error in each calculated energy, and thus oscillations which diminish

as more terms are added.

3.3.3 Methods to Improve MBE Convergence

We have shown that rapid convergence of the MBE can be guaranteed by per-

forming calculations in the cluster basis or with a high-quality basis set. These

are, of course, fairly dispiriting solutions as they greatly increase computational

cost, so we have examined several alternatives.

Since basis function overlap is distance-dependent, we tested a distance-

cutoff basis (d-c basis) which includes ghost functions only from waters within

a specified cutoff distance of the water molecules in a calculation. Testing this

d-c basis on the (H2O)16 4444-a cluster using various cutoff distances gave poor

results (Table 3.4), however. This is likely due to the small MBE truncation

errors involved in the m-Eh range. With slight changes in cutoff distances, one

more or one fewer water’s ghost functions might be included in a calculation,

which could lead to significant changes in calculated energies, drastically af-

fecting the MBE truncation errors. That said, we think the distance-cutoff basis

might work with a larger cutoff distance, but in those cases it would be more

economical to use a high-quality basis set instead.

Another workaround that has been proposed, albeit for a different prob-

lem, is the k-mer-centerd basis set (kCBS) approach of Szalewicz.173 The kCBS

approach attempts to remove BSSE in an MBE calculation by calculating each
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TROUBLE WITH THE MANY-BODY EXPANSION

Table 3.4: Error for truncating the MBE up to the �ve-body term, performed
using various methods to improve MBE convergence. Calculations were performed at
HF/6-31++G** on the (H

2
O)

16
4444-a cluster shown in Figure 3.1. Nuclei-centred

basis and cluster basis are shown for reference.

Error (m-Eh)

Method 2-body 3-body 4-body 5-body

nuclei-centred basis -42.418 -4.763 4.588 -5.563

cluster basis -56.170 -1.217 -0.043 -0.056

d-c basis, 3 Å -35.325 -28.202 10.527 9.549

d-c basis, 4 Å -41.468 -46.804 85.769 -108.259

d-c basis, 5 Å -48.275 -34.555 87.929 -161.926

kCBS -50.464 4.779 6.268 6.279

Charge Field -12.466 -0.449 2.073 -2.054

k-mer and all its sub-calculations using the k-mer’s basis set. That is, a dimer’s

two-body contribution would be computed as total energy of the dimer minus

the total energy of its constituent monomers, all calculated with the dimer basis

set. This results in substantially more calculations to compute the MBE since

calculations from previous terms cannot be reused, but it does mean each cal-

culation has no BSSE. We applied the kCBS approach to the (H2O)16 4444-a

cluster. From Table 3.4, we see that the MBE does converge rapidly, but to an

incorrect value. This is likely because the kCBS approximation is not formally

exact: the terms in the MBE do not cancel due to the different numbers of basis

functions used in each term’s calculations. The kCBS approach certainly does

converge correctly when a high-quality basis set is used, as has been demon-

strated in the literature, but this seems to be due to the high quality of the basis

set, not the kCBS method.

Strategies unrelated to BSSE for improving MBE convergence are widely

used. Many MBE-based computational methods incorporate a charge field to

approximate higher-body effects by interacting the one-body or two-body frag-

ments with a charge field mimicing the rest of the system.152–154, 156, 160, 192, 193
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While we have not done a thorough analysis, preliminary results using embed-

ded charges from Stone’s distributed multipole analysis194 indicate that embed-

ded charges dampen, but do not remove, the oscillatory MBE behaviour (Table

3.4). This is not surprising as the embedded charges only serve to approximate

the physical higher-body effects arising from induction and thus do not remove

the many-body BSSE.

Other methods incorporate higher-body effects by performing a low-level

ab initio calculation on the full system.153, 154, 195, 196 Such methods capture

many-body effects far better than methods using only a truncated MBE.197 The

full-system calculations in these methods are not susceptible to BSSE-based

MBE convergence issues since they use full-system basis, but lower-body cal-

culations performed using only the nuclei-centred basis are still susceptible.

Thus, unhappily, we have found no alternative for avoiding poor MBE

convergence that is more efficient than using the full-cluster basis or a high-

quality basis set. As the use of the cluster basis is computationally prohibitive,

our recommendation is to use a high-quality basis set for MBE calculations; our

results indicate that at least AVTZ-quality is prudent.

3.3.4 Extension to Valence-bonded Systems

So far we have only presented data for noncovalent water clusters, but MBE

convergence problems also arise in valence-bonded systems. This has great

implications for fragmentation methods, which in most cases use a truncated

MBE, or something analogous to it, to approximate the total energies of large

chemical systems.187, 198–200

In fragmentation methods, small groups of adjacent atoms are treated

as bodies. Using our CFM algorithm161 to define groups/bodies, we calcu-

lated the MBEs for a C22H24 conjugated alkene and α-cyclodextrin (Figure

3.8). Slow MBE convergence is observed in both systems when incomplete

basis sets with diffuse functions are used, as seen in the case of AVDZ for
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C22H24 and 6-31++G** for α-cyclodextrin. This is no surprise as the same

borrowing of basis functions from adjacent groups that causes poor conver-

gence in water clusters occurs in these valence-bonded systems. The errors

in the C22H24 MBE are small (even negligible) because the molecule’s linear

shape minimizes basis function overlap. Compare this to the MBE of the more

compact α-cyclodextrin, where the errors are beyond chemical accuracy until

the inclusion of the 9-body term. Since fragmentation methods rarely include

5-or-higher-body effects, it seems likely that fragmentation calculations using

BSSE-prone basis sets are liable to, and have in the past been afflicted by, pre-

ventable, BSSE-based errors. On an interesting related point, due to the above

mentioned affects, we expect that any calculation that is performed in order to

predict bond-breaking energies would be overestimated.

It should be noted, though, that poor MBE convergence in a valence-

bonded system depends on the definition of “body”. Another type of MBE that

our group has examined is to treat distortions in the internal degrees-of-freedom

of a molecule as bodies. Using the equilibrium geometry as a reference, an MBE

can be used to calculate the distortion energy of a molecule. We demonstrate

a proof-of-concept using the methanol molecule (Figure 3.9). We distorted the

molecule randomly in all twelve degrees of freedom, yielding a total distor-

tion energy of about 140 m-Eh. The degree-of-freedom MBE converges by the

four-body term, even when a BSSE-prone basis set is used. This is expected as a

consistent basis set is used in all calculations, essentially equivalent to the use of

a full-cluster basis. Apart from intramolecular degrees-of-freedom, intermolec-

ular degrees-of-freedom or a combination of both could be treated in the same

manner. The utility of such an approach is obvious. A high-dimensional sys-

tem is broken down into to numerous, completely independent (and thus highly

parallelizable) much lower-dimensional function evaluations. Future work will

explore how degree-of-freedom MBEs can be used to construct accurate, high-

dimensional potential energy surfaces from many lower-dimensional surfaces.
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3.4 Summary

There is no question that the many-body expansion is a theoretically sound and

extremely useful formalism in the study of large molecular systems. But it is

likewise clear from our observations that care must be taken in its implementa-

tion. Rapid convergence at the four-body term of the MBE cannot be assumed,

even when convergence appears to have occurred. Incautious use of MBEs with

systems and levels of theory susceptible to BSSE is liable to yield errors well be-

yond chemical accuracy. Moreover, the error-per-monomer worsens extensively

with system size. Such concerns are relevant in valence-bonded and noncova-

lent systems alike. We conclude that the use of a consistent basis set, either

in the form of the full-cluster basis or a high-quality basis set (at least AVTZ

quality), is necessary to avoid poor MBE convergence due to BSSE.
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4 | MANY-BODY BASIS SET

SUPERPOSITION EFFECT

The basis set superposition effect (BSSE) arises in electronic structure calcu-

lations of molecular clusters when questions relating to interactions between

monomers within the larger cluster are asked. The binding energy, or total en-

ergy, of the cluster may be broken down into many smaller subcluster calcu-

lations and the energies of these subsystems linearly combined to, hopefully,

produce the desired quantity of interest. Unfortunately BSSE can plague these

smaller fragment calculations. In this chapter we carefully examine the major

sources of error associated with reproducing the binding energy and total en-

ergy of a molecular cluster. In order to do so we decompose these energies

in terms of a many-body expansion (MBE), where a “body” here refers to the

monomers that make up the cluster. In our analysis we found it necessary to

introduce something we designate here as a many-ghost many-body expansion

(MGMBE). The chapter presented here produces some surprising results, but

perhaps the most significant of all is that BSSE effects up to the order of trun-

cation in a MBE of the total energy cancel exactly. In the case of the binding

energy the only BSSE correction terms remaining arise from the removal of

the one-body monomer total energies. Nevertheless, our earlier chapter indi-

cated that BSSE effects continued to remain in the total energy of the cluster

up to very high truncation order in the MBE. We show in this chapter that the
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MANY-BODY BASIS SET SUPERPOSITION EFFECT

vast majority of these high-order many-body effects arise from BSSE associ-

ated with the one-body monomer total energies. Also we found that remarkably

the complete basis set limit values for the three-body and four-body interactions

differed very little from that at the MP2/aug-cc-pVDZ level for the respective

subclusters embedded within a larger cluster.

4.1 Introduction

A major barrier to the theoretical study of large chemical systems is the fact

that the computational effort of electronic structure methods increases drasti-

cally with system size (Section 2.2.3). To circumvent this, one can look to frag-

mentation methods187, 201–203 where a large chemical system is broken up into

numerous small subsystems. From there, only certain important interactions be-

tween these subsystems are considered for electronic structure calculations so as

to recover the total energy of the system. Fundamentally, fragmentation meth-

ods are rooted in the many-body expansion (MBE), which have been discussed

in some detail in Chapter 3.

The basis set superposition effect204 (BSSE) comes into play as energy

differences are involved in computing the many-body interactions. BSSE arises

when monomers within a molecular cluster borrow basis functions from other

monomers to compensate for their basis set incompleteness. The same applies

to any subcluster within the molecular cluster. Thus, when the total energies

of interacting monomers and their isolated counterparts are compared, there is

an imbalance in the computed many-body interactions. To eliminate this basis

set imbalance error (BSIE) for a dimer system, Boys and Bernardi proposed the

counterpoise (CP) method to compute the binding energy where the monomer

energies are calculated in the dimer basis.181 To clarify our use of terminol-

ogy, we use the term “location basis” to describe the placement of basis func-

tions at the specified location in the cluster. The CP method was extended for

many-monomer molecular clusters to give the Site-Site Function Counterpoise
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(SSFC) method by calculating the monomer energies in the cluster basis.205 The

many-body counterpoise (MBCP) method196, 206 was proposed later to approx-

imate the expensive calculation of the monomer energies in the cluster basis

by performing a MBE-like decomposition of the effects of the ghost functions

present. Nonetheless, the consistent use of the cluster basis in the SSFC method

allows for a meaningful decomposition of the binding energy into its many-

body contributions. The SSFC method is not a unique extension of the CP

method.205, 207 Valiron and Mayer proposed that the many-body interaction of

a subcluster can be instead computed using the set of basis functions centred

on the subcluster of interest, i.e., the subcluster basis.182 These many-body

interactions can then be summed to give the Valiron–Mayer Function Coun-

terpoise (VMFC) corrected binding energy. While both the SSFC and VMFC

methods eliminate BSIE through the use of a consistent basis, the use of the

cluster basis in the former incorporates an additional basis set extension effect

(BSEE) where the monomers surrounding the subcluster of interest can extend

their basis functions—functions present in the cluster basis but not the subclus-

ter basis—to improve the quality of the computed many-body interactions.

The crucial point from the aforementioned counterpoise methods is that,

many-body BSSE can be divided into two components, namely the BSIE and

BSEE (See Section 4.2.2 for a detailed description). The BSIE (where the E

stands for error) is undesirable, causing pairwise interactions and consequently

the binding energy of large clusters to be over-stabilizing. On the other hand,

the BSEE (where the E stands for effect) is necessary to reproduce the bind-

ing energy and total energy of molecular clusters because all the monomers

are better electronically described with the additional external basis functions.

In Chapter 3, we showed that the use of the cluster basis leads to rapid con-

vergence of the MBE,91 indicating that the BSEE is indeed present in the total

energy. When the subcluster basis is used, we observed that the MBE converged

rapidly, but to an “incorrect value” (Section 3.3.3). There is a significant differ-
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ence between this “incorrect value” and the total energy, which is essentially

the BSEE. More importantly, the rapid convergence associated with the sub-

cluster basis suggested that the BSEE diminishes as rapidly as the many-body

interactions. This is of relevance as we noticed that the many-body interactions

computed using the subcluster basis are commonly employed in the construction

of ab initio based potential energy surface (PES) in the literature.71, 76, 77, 79

In this chapter we examine the amount of BSSE, in particular BSEE,

present in many-body interactions to identify the major sources of error as-

sociated with reproducing the binding energy and total energy of a molecular

cluster via an MBE. Firstly, we investigate whether the BSEE is significant

in the many-body interactions up to the four-body level. Secondly, we intro-

duce the many-ghost many-body expansion (MGMBE) to precisely and quan-

titatively account for both the BSIE and BSEE. Remarkably we found that the

oscillatory behaviour of the MBE when diffuse functions are involved can be

traced to the BSEE in the one-body interactions, i.e., the monomer total ener-

gies. Thirdly, with the removal of the monomer total energies and associated

BSEE, the MGMBE is able to accurately reproduce the binding energies of

molecular clusters using the energies of numerous subclusters that are no larger

than four monomers. Notably the utilization of embedded charges, or a coulomb

field, is entirely unnecessary to accomplish this.

4.2 Theory

Before discussing the theory behind the MBE, many-body BSSE and MGMBE,

we need to define the following terms and quantities which will be constantly

used throughout this chapter. From here on, we denote the molecular cluster

of interest simply as the “cluster” while a “subcluster” refers to a collection of

monomers taken from the cluster. In the counterpoise methods, additional basis

functions are placed on the locations of nuclei in the cluster, but without the

nuclei being present in the electronic structure calculation and these functions
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are called “ghost functions”. We also use the term “location basis” to describe

the location at which basis functions are placed in the calculation. For example,

the cluster basis refers to the placement of basis functions at the locations of all

nuclei present in the cluster. Each of the “bodies” in the many-body interactions

refers to a monomer from the cluster, which is taken to be an individual water

molecule in this chapter. When discussing the BSEE, we denote a “ghost-body”

as the set of ghost functions centred on a monomer surrounding the subcluster of

interest. Table 4.1 summarises the relevant quantities described in this chapter.

Table 4.1: List of important quantities presented in this chapter, followed by a brief
de�nition and the equation in which it �rst appeared.

Quantity Definition Eq

Etot Total energy of a cluster. (4.1)

EA···KL···M Total energy of k-mer subcluster A · · ·K calculated in
the presence of ghost functions centred on L · · ·M

(4.4)a

εC
tot Binding energy computed using the cluster basis (4.7)

E(k)
ext. Basis set extension effect (BSEE) in the total k-body

interaction
(4.8)

ξA···KL···M BSEE from m-ghost-body L · · ·M in the k-body inter-
action of A · · ·K

(4.9)

εA···KL···M k-body interaction of A · · ·K computed using total
energies calculated with basis functions centred on
A · · ·KL · · ·M

(4.10)b

a EA···KL···M is mentioned much earlier in text at the beginning of Section 4.2.2. b εA···KL···M is
defined and explained much earlier in text at the second paragraph of Section 4.2.3.

4.2.1 Many-body Expansion

For a cluster containing n monomers, the MBE allows us to decompose the total

energy of the cluster, Etot, into its many-body contributions

Etot =
(n

1)

∑
A

ε
′
A +

(n
2)

∑
A<B

ε
′
AB +

(n
3)

∑
A<B<C

ε
′
ABC +

(n
4)

∑
A<B<C<D

ε
′
ABCD + · · ·+ ε

′
A···N (4.1)
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where ε ′A···K is the k-body interaction of the k-mer subcluster A · · ·K, of which

there are
(n

k

)
of such terms (Figure 4.1). Eq (4.1) is the expanded form of

eq (3.1) expect that there is a prime symbol in ε ′A···K, which indicates that the

basis functions are placed exclusively at the location of the nuclei, i.e., no ghost

functions are involved. In this chapter, we truncate the MBE at the four-body

level and thus only provide the relevant equations up to the four-body level.
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Figure 4.1: The MBE allows us to easily identify the numerous interactions between
monomers that is encompassed within the total energy of the cluster. The MBE is
illustrated here for a tetramer ABCD (n = 4) where the total energy, Etot, is decom-
posed into the total k-body interactions, k = 1− 4, which comprises

(n
k

)
individual

terms. The explicit formulae for calculating each individual k-body interaction is
given in eq (4.2a�d) in the text.

ε ′A···K cannot be obtained directly from electronic structure calculations,

which only gives the total energy, EA···K, of the k-mer subcluster of interest.

Thus, we need to write the many-body interactions in terms of the total energies.

ε ′A···K is defined recursively using lower-body interactions,171, 178, 180, 187 and can

be expressed in terms of total energies
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ε
′
A = EA (4.2a)

ε
′
AB = EAB− (EA +EB) (4.2b)

ε
′
ABC = EABC− (EAB +EAC +EBC)

+(EA +EB +EC) (4.2c)

ε
′
ABCD = EABCD− (EABC +EABD +EACD +EBCD)

+(EAB +EAC +EAD +EBC +EBD +ECD)

− (EA +EB +EC +ED) (4.2d)

The one-body interaction, ε ′A, is the total energy of isolated monomer A while

the two-body interaction, ε ′AB, gives the pairwise interaction between monomers

A and B. The three-body interaction, ε ′ABC, can be understood as the effect of

a third monomer C on the interaction between the other two monomers A and

B, and the higher-body interactions can be interpreted similarly. In order to

employ the MBE, the k-body interaction of individual subclusters computed

using eq (4.2a–d) have to be collected to give the total k-body interaction. Many

total energy terms are repeated during this collection process and a compact

expression of the total k-body interaction can be found in eq (3.3).

Other than expressing the total energy of the cluster using the MBE, an-

other quantity of interest is the binding energy of the cluster

εtot = Etot−
(n

1)

∑
A

EA

=
(n

2)

∑
A<B

ε
′
AB +

(n
3)

∑
A<B<C

ε
′
ABC +

(n
4)

∑
A<B<C<D

ε
′
ABCD + · · ·+ ε

′
A···N (4.3)

Note that this is an expanded form of eq (3.2) and the expansion is neccesary

for later discussion.
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4.2.2 Many-body Basis Set Superposition Effect

In many-body systems, BSSE can be divided into two components, namely the

basis set imbalance error (BSIE) and basis set extension effect (BSEE). The

distinction between these two components becomes clear when we compare the

various placement of basis functions, i.e., the location basis, in computing the

many-body interactions (Table 4.2).

Table 4.2: Comparison of the choice of basis in computing the many-body inter-
actions and binding energy, together with the name of the method reported in the
literature. Furthermore, the absence of the BSIE and presence of BSEE in the many-
body interactions are compared with their e�ects on the convergence of the MBE of
the total energy.

Location basis Nuclei-centred Subcluster Cluster

Many-body interactions ε ′A···K εA···K εA···KL···N

Eq (4.2) Eq (4.4) Eq (4.6)

Binding energy εtot εS
tot εC

tot

Eq (4.3) Eq (4.5) Eq (4.7)

Name in literature Uncorrecteda VMFC/kCBS SSFC/CP

Absence of BSIE?b No Yes Yes

Presence of BSEE?b No No Yes

MBE converge to Etot? Yes No Yes

MBE convergence Slow, oscillatory Rapid Rapid

Further remarks Default basis Agree with PT Expensive

a There is no formal name for the nuclei-centred basis as it is the default basis in electronic
structure calculations. b As summarised towards the end of Section 4.2.2, the absence of BSIE
and the presence of BSEE is desirable, as in the case of the cluster basis.

So far, the total energy, EA···K, is written such that it is determined by the

identity of the k-mer subcluster or more specifically, the location of the nuclei

constituting the subcluster. In the context of molecular orbital based electronic

structure calculations, the total energy also depends on the placement of basis

functions. For example, the total energy of monomer A calculated in the nuclei-

centred basis centred on A alone would be different from that using the set of
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basis functions centred on the cluster A · · ·N. From here on, we use the more

general notation, EA···KL···M. The overline in the subscript indicates the presence

of ghost functions centred on L · · ·M in the electronic structure calculations.

The most straightforward method to compute the many-body interactions

is to place basis functions exclusively at the locations of nuclei in the electronic

structure calculations. This is the usual way of calculating an electronic en-

ergy of a molecule and the k-body interaction follows eq (4.2a–d) presented

earlier. We emphasize again that the prime symbol in the k-body interaction,

ε ′A···K, indicates the nuclei-centred basis where the number of basis functions

are different across the different total energy terms. This is in contrast to the

“consistent” subcluster and cluster basis which will be introduced shortly. Sim-

ilarly, the binding energy computed using the nuclei-centred basis, εtot, follows

eq (4.3). The εtot is often called the uncorrected binding energy for reasons that

will be obvious in the following discussion. In computing ε ′AB using eq (4.2b),

it is clear that EAB is calculated using more basis functions as compared to EA

and EB. In calculating EAB, monomer A can utilize basis functions centred on

monomer B to improve the description of its wave function and vice versa. This

is obviously absent in the calculation of EA and EB. This imbalance in the num-

ber of basis functions used in the three different calculations of the total energy

is the origin of the BSIE. The same BSIE manifests in higher-body interactions

in eq (4.2c–d) and the binding energy in eq (4.3). For the two-body interac-

tions the BSIE leads to the interactions being over-stabilizing. In Chapter 3,

we also found that MBEs using ε ′A···K exhibit slow and oscillatory convergence

especially when diffuse basis functions are present.91

To remove the BSIE in many-body interactions, we need to ensure that

there is a common set of basis functions employed in each of the total energy

calculation. The smallest common set is one that is centred on the subcluster for

which the many-body interaction is computed. We denote this as the subcluster

basis and the k-body interaction can be written as
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εA = EA (4.4a)

εAB = EAB−
(
EAB +EBA

)
(4.4b)

εABC = EABC−
(
EABC +EACB +EBCA

)
+
(
EABC +EBAC +ECAB

)
(4.4c)

εABCD = EABCD−
(
EABCD +EABDC +EACDB +EBCDA

)
+
(
EABCD +EACBD +EADBC +EBCAD +EBDAC +ECDAB

)
−
(
EABCD +EBACD +ECABD +EDABC

)
(4.4d)

For each of the many-body interactions, the same set of basis functions centred

on the subcluster of interest is employed for all the total energy calculations and

this introduces ghost functions, denoted by the overline in the subscript of total

energy terms. Note that, unlike the nuclei-centred basis, the prime symbol is

absent here. The binding energy computed using the subcluster basis is

ε
S
tot =

(n
2)

∑
A<B

εAB +
(n

3)

∑
A<B<C

εABC +
(n

4)

∑
A<B<C<D

εABCD + · · ·+ εA···N (4.5)

The εS
tot is known as the Valiron–Mayer function counterpoise (VMFC) cor-

rected binding energy.182 In Section 3.3.3, we referred to the subcluster basis as

the kCBS method. The subcluster basis is the standard way of predicting many-

body interactions in ab intito based PES as it is free of BSIE.31, 71, 76, 77, 79 Fur-

thermore, these many-body interactions are reproduced with high accuracy us-

ing multipoles and perturbation theory48—which are BSSE-free by definition—

at intermediate to long intermolecular separations. Unlike the εtot in eq (4.3), we

cannot express εS
tot as the difference between the total energy and the monomer

total energies. This is because the sum of the εA···K does not add up to the Etot,

i.e. eq (4.1) does not hold true. This is due to the incompatibility of the to-

80



4.2 THEORY

tal energies between different εA···K. For example, the different EA and EAB

are involved in computing εA and εAB respectively whereas the nuclei-centred

counterpart would only require the same EA in both cases. Thus, when the εA···K

are summed in a MBE according to eq (4.1), the total energy terms do not cancel

to give the exact total energy eventually. This implies that there are some effects

present in the total energy that are not accounted for in the subcluster basis. In

fact, this is due to the second component of BSSE—the BSEE.

Apart from the subcluster basis, another common set of basis functions

that remove BSIE is one that is centred on the cluster. We denote this as the

cluster basis and the k-body interaction can be written as

εAB···N = EAB···N (4.6a)

εABC···N = EABC···N−
(
EABC···N +EBAC···N

)
(4.6b)

εABCD···N = EABCD···N−
(
EABCD···N +EACBD···N +EBCAD···N

)
+
(
EABCD···N +EBACD···N +ECABD···N

)
(4.6c)

Here we omit the four-body term, εABCDE···N, to reduce clutter as it can be

easily obtained from eq (4.4) by appending E · · ·N to the subscripts of each term.

The basis functions centred on other monomers surrounding the subcluster of

interest are involved, indicated by the overline in the many-body interaction.

For example, computing εABC···N in eq (4.6b) requires total energies involving

basis functions centred on C · · ·N surrounding the subcluster AB. The binding

energy computed using the cluster basis is

ε
C
tot = Etot−

(n
1)

∑
A

EAB···N =
(n

2)

∑
A<B

εABC···N +
(n

3)

∑
A<B<C

εABCD···N + · · ·+ ε
′
A···N (4.7)

The εC
tot is named the site-site function counterpoise (SSFC) corrected binding
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energy.205 It is commonly referred to simply as the counterpoise (CP) method,

being a direct generalization of the CP method for a dimer system.181 The

cluster basis ensures that a common set of basis functions is employed in each

of the total energy calculations, removing the undesirable BSIE. Furthermore,

all the total energy terms employ the same basis, allowing for the sum of these

many-body interactions to add up to the Etot according to eq (4.1). Comparing

the subcluster basis and cluster basis, there is an additional effect in the latter

where the ghost functions surrounding the subcluster, e.g. functions centred on

C · · ·N in the case of εABC···N, improve the many-body interaction associated

with the subcluster. This is the BSEE. Mathematically, we define the BSEE

in the total k-body interaction, E(k)
ext., as the difference between the total k-body

interaction computed using the cluster basis and subcluster basis

E(1)
ext. =

(n
1)

∑
A

(
εAB···N− εA

)
(4.8a)

E(2)
ext. =

(n
2)

∑
A<B

(
εABC···N− εAB

)
(4.8b)

E(3)
ext. =

(n
3)

∑
A<B<C

(
εABCD···N− εABC

)
(4.8c)

E(4)
ext. =

(n
4)

∑
A<B<C<D

(
εABCDE···N− εABCD

)
(4.8d)

Unlike the BSIE, the BSEE is important in reproducing the total energy of a

cluster. In Chapter 3, we shown that the MBEs using the cluster basis exhibit

rapid convergence to the total energy by the four-body term.91 This indicates

that the total energy contains the BSEE as part of the variational optimization

and/or the perturbative treatment of electron correlation in the total energy. The

borrowing of basis functions from other monomers surrounding the subcluster

does improve the flexibility of the wavefunction of the subcluster and conse-

quently the quality of the many-body interaction. On a side note, this is like-
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wise true in valence-bonded systems where the bonding between atoms can be

improved by the basis functions from other surrounding atoms. This impor-

tance of BSEE also applies to the binding energy where the BSEE should be

incorporated into the many-body interactions used to compute the binding en-

ergy. Therefore, we consider the εC
tot, and not εS

tot, to be the best estimate of the

binding energy at a given level of theory and basis set.

To summarize many-body BSSE, there are two components, namely the

BSIE and BSEE. The first component is undesirable, arising from an imbal-

ance in the number of basis functions when computing energy differences in

the many-body interactions and the binding energy. This BSIE can be removed

by using a common set of basis functions in each of the total energy calcula-

tions, using either the subcluster basis or the cluster basis. The second compo-

nent originates from the extension of the subcluster basis due to the presence

of monomers surrounding the subcluster in the cluster. This BSEE is necessary

to reproduce the binding energy and total energy of the cluster and can only

be accounted for using the cluster basis. However, computing the many-body

interactions in the cluster basis is very expensive and defeats the usefulness of

the MBE in decomposing a large many-body system into manageable few-body

subsystems. Thus, we wish to analyse the amount of many-body BSSE present

so as to accurately yet cheaply reproduce the binding energy and total energy.

4.2.3 Many-ghost Many-body Expansion

To account for both the BSIE and BSEE (Section 4.2.2), we introduce the many-

ghost many-body expansion (MGMBE). The MGMBE defines these two com-

ponents of many-body BSSE up to the order of truncation of the many-body

interactions, allowing us to establish the amount of many-body BSSE present in

the many-body interactions. The MGMBE performs a two-dimensional many-

body decomposition with each decomposition accounting for one component of

many-body BSSE (Figure 4.2).
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Figure 4.2: The MGMBE performs a two-dimensional many-body decomposition
with the �rst being an MBE (left to right) up to the k-body interaction computed
using the subcluster basis, εA···K, using eq (4.4a�d). It is important to note that
the BSIE is removed by performing this calculation. A second many-ghost expansion
(top to bottom) then decomposes the BSEE from the cluster basis into contributions
from m-ghost-bodies, represented by the black lobes. These BSEE terms, ξA···KL···M,
are shown here for k +m ≤ 4, which can be computed using eq (4.10a�f). The
inset explains the various symbols in the �gure while the comments at the right and
bottom edge summarizes the components of the MGMBE along each row and column
respectively. We also note that along the diagonal where k+m is constant, the BSIE
and BSEE cancels as these terms share the same basis functions.

The first decomposition involves the MBE (Section 4.2.1) using the many-

body interactions computed in the subcluster basis, εA···K, which are free of the

BSIE. The second decomposition, denoted the many-ghost expansion, breaks

down the BSEE present in the cluster basis into contributions from one-ghost-

body, two-ghost-body and so on, up to (n−k)-ghost-body. To reiterate, a ghost-

body refers to the set of ghost functions centred on a monomer surrounding the

subcluster of interest. Both decompositions can be truncated at a low order to

hopefully reproduce the binding energy and total energy of the cluster. We note

that the MGMBE is a logical extension of the earlier many-body counterpoise
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(MBCP) method.196, 206 The MBCP method seeks to cheaply approximate the

εC
tot in eq (4.7) by performing two separate many-body decompositions on both

the Etot and EAB···N. The former is an MBE computed using the nuclei-centred

basis while the latter is essentially the many-ghost expansion performed on the

monomer total energies. In the MGMBE, we extend the many-ghost expansion

for any arbitrary k-body interaction to identify the BSEE present.

To recap, we denoted EA···KL···M as the total energy of subcluster A · · ·K

calculated in the presence of additional ghost functions centred on L · · ·M. The

same situation applies to the many-body interactions, evident from the discus-

sion on the nuclei-centred, subcluster and cluster basis in Section 4.2.2. Here,

we denote εA···KL···M as the k-body interaction of the k-mer subcluster A · · ·K

computed using total energies calculated with the set of basis functions cen-

tred on A · · ·KL · · ·M. The overline in the subscript denotes the ghost-bodies,

namely the set of ghost functions centred on monomers L · · ·M surrounding the

subcluster. For example, εABCD = EABCD− (EABCD +EBACD). In particular,

the many-body interaction computed using the subcluster basis, εA···K, and the

cluster basis, εA···KL···N, are specific cases of this general notation. In the for-

mer, there are no ghost-bodies involved while the entire cluster (excluding the

subcluster of interest) constitute all the ghost-bodies in the latter case. Now, we

can write the MGMBE of the total energy as

Etot =
(n

1)

∑
A

εA+
(n

2)

∑
A<B

εAB+
(n

3)

∑
A<B<C

εABC+
(n

4)

∑
A<B<C<D

εABCD + · · ·

(n
1)·(

n−1
1 )

∑
A,B

ξAB+
(n

2)·(
n−2

1 )

∑
A<B,C

ξABC+
(n

3)·(
n−3

1 )

∑
A<B<C,D

ξABCD+ · · ·

(n
1)·(

n−1
2 )

∑
A,B<C

ξABC+
(n

2)·(
n−2

2 )

∑
A<B,C<D

ξABCD+ · · ·

(n
1)·(

n−1
3 )

∑
A,B<C<D

ξABCD+ · · ·+ ξhigher (4.9)
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where ξA···KL···M is the BSEE from m-ghost-body L · · ·M in the k-body inter-

action of k-mer subcluster A · · ·K, of which there are
(n

k

)
·
(n−k

m

)
of such terms.

The first line in eq (4.9) gives the MBE using many-body interactions computed

in the subcluster basis using eq (4.4a–d). These interactions are free of BSIE

but lack the important BSEE. The missing BSEE terms are added in the follow-

ing lines with each line introducing contributions from a different number of

ghost-bodies. For cases where k+m≤ 4, ξA···KL···M can be expressed as

ξAB = εAB− εA (4.10a)

ξABC = εABC− εAB (4.10b)

ξABCD = εABCD− εABC (4.10c)

ξABC = εABC−
(
εAB + εAC

)
+ εA (4.10d)

ξABCD = εABCD−
(
εABC + εABD

)
+ εAB (4.10e)

ξABCD = εABCD−
(
εABC + εABD + εACD

)
+
(
εAB + εAC + εAD

)
− εA (4.10f)

The meaning of these terms can be better understood by looking at specific ex-

amples. For example, ξABCD in eq (4.10c) quantifies the amount by which the

ghost functions centred on D affect the three-body interaction of ABC, i.e., the

BSEE from D on εABC. Likewise, ξABCD in eq (4.10e) gives the cooperative

effect of the ghost functions centred on both C and D on two-body interaction

of AB and higher ghost-body BSEE can be interpreted similarly. These terms

represent the many-body decomposition of the BSEE present in the cluster ba-

sis. As such, the eq (4.10a–c), eq (4.10d–e) and eq (4.10f) resembles eq (4.2a),

eq (4.2b) and eq (4.2c) respectively. However, there is an additional εA···C term

(last term in each equation) in eq (4.10). This is the 0-ghost-body term where

there is no BSEE and the equivalent in a MBE correspond to a 0-body interac-

tion which is zero and thus omitted in the many-body interaction expressions.

86



4.2 THEORY

In order to compute the ξA···KL···M terms, all the εA···KL···M terms have to be ex-

pressed in terms of total energies that can be readily obtained from electronic

structure calculations. Here, we give an example where we express ξABCD in

terms of total energies

ξABCD = εABCD− εABC− εABD + εAB

=
(
EABCD−EABCD−EBACD

)
−
(
EABC−EABC−EBAC

)
−
(
EABD−EABD−EBAD

)
+
(
EAB−EAB−EBA

)
(4.11)

From eq (4.11), the maximum number of basis functions is limited to four

monomers in computing ξABCD. In fact, the maximum number of basis func-

tions is limited to (k+m) monomers in computing ξA···KL···M. It is also obvious

that rewriting the ξA···KL···M terms in terms of total energies can be cumbersome.

Fortunately, many total energy terms are repeated and can be collected to give

a more compact expression when all the ξA···KL···M terms are summed. The

derivation of these working equations is presented in the Appendix.

Given that the two decompositions are independent, the BSEE present in

each of k-body interactions can be truncated at a different m-ghost-body. A pru-

dent choice would be to truncate at order (k,m) such that k+m = α , keeping

the maximum number of basis functions in each electronic structure calcula-

tion to that of α monomers. For example, truncating the MGMBE at α = 2

would include the εA, εAB and ξAB terms while truncation at α = 3 includes the

previously mentioned terms as well as εABC, ξABC and ξABC terms.

A surprising result surfaced when the truncation order of the MGMBE is

such that k+m = α . Careful analysis of the working equations revealed that

all the total energies involving any ghost functions vanishes when we sum the

εA···K and ξA···KL···M terms with k+m=α , where α is a constant. Consequently,
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we obtain the many-body interactions computed using the nuclei-centred basis

from this summation. This implies that an MBE using the nuclei-centred basis

truncated at α bodies incorporates some BSEE, in particular contributions from

up to m= (α−k)-ghost-bodies in each of the k-body interactions. We stress that

this surprising result only occurs when the MGMBE terms are summed across

different k number of interacting bodies to obtain either the binding energy or

total energy. To illustrate this cancellation, let us consider the sum of ξAB, ξBA

and εAB. The first two terms would be ξAB = EAB−EA and ξBA = EBA−EB

respectively and the total energies involving ghost functions would be elim-

inated when we include the εAB = EAB − EAB − EBA. This leaves us with

ε ′AB = EAB−EA−EB. In essence, the BSEE in ξA···KL···M replaces the total en-

ergy terms involving ghost functions in the εA···K with corresponding ghost-free

terms, “transforming” it into the nuclei-centred counterpart, ε ′A···K. Expressed

alternatively—the BSIE for a higher-body interaction (something that must be

subtracted) is an BSEE for a lower-body interaction (something that must be

added)—and the two effects cancel each other exactly!

4.3 Results and Discussion

All quantum chemical calculations were performed using the MOLPRO suite of

programs.185 Calculations were carried out at the second-order Møller-Plesset

perturbation (MP2) level of theory using the augmented correlation-consistent

basis sets aug-cc-pVnZ, labelled AVnZ, n = D,T,Q,5.34, 124 The explicitly cor-

related MP2 (MP2-F12) theory208 was employed with the AVDZ basis set.

4.3.1 Basis Set Extension Effect in Many-body Interactions

In Chapter 3, we observed rapid convergence in the MBE using either the sub-

cluster or cluster basis. This indirectly suggest that the difference between these

two MBE—the BSEE—should converge rapidly with the number of bodies. We

computed the E(k)
ext. and total k-body interaction for the (H2O)6 cage and prism
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isomers up to the four-body term with increasing basis set quality. Both isomers

are taken from Richard et al.206 and showed similar trends. Thus, the data for

the cage isomer are shown in Figure 4.3 while the prism isomer counterpart are

in the Appendix. Similar studies exist in literature but are performed on small

trimer and tetramer clusters209, 210 or focused on the binding energy.206, 211 In-

stead, we choose to separately examine the BSEE in each of the total k-body in-

teraction, especially between the two-body and the three-and-higher-body inter-

actions, because they are dominated by different intermolecular interactions.48

At the two-body level (Figure 4.3a), the E(2)
ext. is always negative, indicating

that the additional ghost functions in the cluster basis help to lower the two-body

interactions. As expected, increasing the quality of the basis set decreases this

borrowing of basis functions to improve the two-body interactions. These BSEE

are generally small, below 1 m-Eh, because the additional basis functions in the

cluster basis are not centred on the nuclei or on regions between nuclei where the

interaction occurs. This is in contrast to the use of midbond functions where the

placement of basis functions at regions between interacting molecules improves

the description of the interaction.212 We point out that the E(k)
ext. also serves as

an error indicator of how well the many-body interactions computed using the

subcluster basis can be used in place of the cluster basis counterpart to reproduce

the binding energy or total energy. Thus, the E(2)
ext. can still be substantial if very

high accuracy is demanded. For the higher-body interactions (Figure 4.3b,c),

the E(3)
ext. and E(4)

ext. are minuscule—smaller than 0.045 m-Eh—and we can treat

the many-body interactions computed in both the subcluster and cluster basis

to be practically the same. This is of comfort as the use of the subcluster basis

render the construction of MBE-based ab initio water potentials31, 213 possible.

The reduction in dimensionality from applying the MBE is preserved unlike the

cluster basis which depends on the geometry of the cluster. Indeed, the many-

body interactions computed using the subcluster basis were used to construct ab

initio based PES to study large water clusters and bulk water.71, 76, 77, 79
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Figure 4.3: The (a�c) BSEE in the total k-body interaction, E(k)
ext., as de�ned in

eq (4.8) and the (d�f) total k-body interaction for the cage isomer of (H
2
O)

6
with

increasing basis set quality at MP2/AVXZ. The total k-body interaction are computed
using various location basis, namely the nuclei-centred (N), subcluster (S) and cluster
(C) basis described in Section 4.2.2 to determine the e�ects of many-body BSSE on
the many-body interactions. In particular, the lines for the cluster basis are dashed to
show clearly the similarities between that and the subcluster basis results. The E(4)

ext.
and total four-body interaction computed using the subcluster basis at MP2/AV5Z
are omitted due to steep computational cost.
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The tiny E(3)
ext. and E(4)

ext. brings us to an unrelated but important result. At

the complete basis set (CBS) limit, there is no BSSE, i.e., E(k)
ext. = 0. While

the converse is not necessarily true, it is worthwhile to investigate if the CBS

limit can be approximated using moderate-sized basis sets. Clearly, this is true

for the three-body (Figure 4.3e) and four-body interactions (Figure 4.3f). Both

the total three-body and four-body interaction computed using the subcluster or

cluster basis (light and dark blue lines) appear to have converged, presumably

to the CBS limit, varying by 0.005–0.015 m-Eh. This was mentioned in passing

recently in the construction of an ab initio water PES where the three-body inter-

actions computed using the subcluster basis at CCSD(T)/AVTZ are very similar

to the CBS limit values.79 With the removal of BSIE, we only require an AVDZ

basis set to obtain CBS limit three-body and four-body interactions. This re-

sult implies that primarily the convergence of the total energies with increasing

basis set quality comes from changes in the one-body and two-body interac-

tions. Thus, we can obtain the total energies of water clusters with increasing

basis set quality by recalculating the one-body and two-body interactions at the

respective basis sets. The fact that three-and-higher-body interactions do not

require a large basis set to achieve the CBS limit eliminates the need for ex-

trapolation or ad hoc measures as commonly employed for two-body interac-

tions. The ad hoc methods involve taking a fraction of the two-body interaction

computed using the subcluster and nuclei-centred basis,214–217 motivated by the

well-documented trend191, 214, 216, 217 that these two quantities converge to the

CBS limit from above and below respectively (Figure 4.3d).

As with our previous chapter, there is no guarantee that the observations

made on small (H2O)6 clusters still hold true in larger clusters.91 Thus, we com-

puted the BSEE up to the four-body interaction for a homologous series of op-

timized (H2O)8-16 clusters taken from Maheshwary et al.186 which is presented

together with the hexamer results (Figure 4.4). Since various cluster sizes are

involved, all the energies reported henceforth will be on a per monomer basis.
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MANY-BODY BASIS SET SUPERPOSITION EFFECT

Calculations were performed at the MP2/AVDZ and MP2/AVTZ. The explic-

itly correlated MP2-F12 theory model208 was also employed with the AVDZ

basis set as this combination typically yielded results of MP2/AVQZ quality,218

complementing the MP2/AVDZ and MP2/AVTZ results.
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Figure 4.4: The BSEE in the total k-body interaction, E(k)
ext., per H2

O monomer for
water clusters of increasing size, (H

2
O)

6-16
, computed at MP2 levels of theory with

various basis sets. The results for E(4)
ext. are not available at the MP2/AVTZ level due

to the steep computational cost involved in computing the four-body interactions.

As mentioned earlier, the E(k)
ext. serves as an error indicator of how well the

cheaper subcluster basis can reproduce the more expensive cluster basis. Here,

we propose an acceptable value for E(k)
ext.. Studies on atomization energies and

reaction enthalpies often require calculations to agree with experiments within

chemical accuracy, which is 4.2 kJ mol−1 or 1.6 m-Eh.219 However, the MBE

is often used to study the dynamical evolution of large molecular clusters and
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4.3 RESULTS AND DISCUSSION

do not involve bond breaking. As such, we introduce the “dynamical accu-

racy” where the error for large clusters is computed on a per monomer basis as

the properties derived from dynamical simulations are intensive in nature. A

suitable dynamical accuracy might be 10 % of the thermal uncertainty at room

temperature, kT , which is about 0.10 m-Eh or 0.25 kJ mol−1.

From Figure 4.4a, we again observe that the E(2)
ext. decreases with increas-

ing basis set quality where the use of the higher quality MP2/AVTZ (light blue

line) or the explicitly correlated MP2-F12/AVDZ (dark blue line) halved the

small E(2)
ext. present in MP2/AVDZ (orange line). While the E(2)

ext. per monomer

at MP2/AVTZ falls within dynamical accuracy, the BSEE exhibits a slow in-

crease with increasing cluster size. Fortunately, due to the small system size,

the E(2)
ext. can be practically eliminated through the use of larger basis sets or

CBS extrapolation. At the higher-body level, we confirmed that the E(3)
ext. and

E(4)
ext. are, if not negligible, then acceptable. The E(3)

ext. is insignificant, always

below 0.040 m-Eh per monomer (Figure 4.4b). The E(4)
ext. shows an increasing

trend with cluster size (Figure 4.4c). Nonetheless, the value is quite small (<

0.080 m-Eh per monomer) and would be even smaller if a larger basis set such

as AVTZ is used. Furthermore, there would be some partial cancellation of the

BSEE when the three-body and four-body interactions are summed. Therefore,

we conclude that the subcluster basis can be employed in computing three-body

and four-body interactions in place of the more expensive cluster basis.

Next, we overlaid the total k-body interaction computed using the subclus-

ter basis at different basis set quality (Figure 4.5). The cluster basis counterpart

shows identical trends and is presented in the Appendix. It is clear that the

total three-body and four-body interactions remain the same regardless of the

basis set used (Figure 4.5b,c). The total four-body interaction at MP2/AVTZ

(light blue line) appears to be different due to the scale of the energy axis which

exaggerates the small difference (< 0.055 m-Eh) between the MP2/AVTZ and

MP2/AVDZ values. The total two-body interaction (Figure 4.5a) becomes more
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stabilising with increasing basis set quality, echoing the hexamer results.
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Figure 4.5: Comparison of the total k-body interaction computed using the subclus-
ter basis per H

2
O monomer for water clusters of increasing size, (H

2
O)

6-16
, computed

at various levels of theory and basis sets.

In summary, we made three key observations: (i) the E(2)
ext. is small but

significant and diminishes with increasing basis set quality, (ii) the E(3)
ext. and

E(4)
ext. are much smaller, supporting the use of the cheaper subcluster basis to

compute the three-body and four-body interactions and (iii) the three-body and

four-body interactions computed using the subcluster basis have converged to

the CBS limit using an AVDZ basis set.
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4.3 RESULTS AND DISCUSSION

4.3.2 Many-ghost Many-body Expansion of Total Energy

CBS extrapolation at the two-body level would eliminate the E(2)
ext., which can

be coupled with AVDZ-quality three-body and four-body interactions to yield

binding energies of CBS quality. However, one may also be interested in re-

producing the total energy at a particular basis set. This is useful in assessing

the accuracy of fragmentation methods where small groups of adjacent atoms

are treated as bodies and selected many-body interactions are computed to ap-

proximate the total energies of large chemical systems.187, 201–203 We employed

the MGMBE truncated at different order in an attempt to reproduce the total en-

ergy (Table 4.3). We can then determine whether the omission of certain BSEE

affects the accuracy of the predicted total energy.

Table 4.3: Root Mean Square of the Error per H
2
O monomer (RMSE, m-Eh)

and Maximum Absolute Error per H
2
O monomer (MxAE, m-Eh), in reproducing

the total energy for a series of optimised water clusters from Figure 4.4 calculated
at MP2/AVDZ, MP2/AVTZ and MP2-F12/AVDZ. The MGMBE includes up to the
four-body term (k=1�4) of which the BSEE are truncated at di�erent m-ghost-body.a

m-ghost-body in k-bodyb MP2/AVDZ MP2/AVTZ MP2-F12/AVDZ

k=1 k=2 k=3 k=4 RMSE MxAE RMSE MxAE RMSE MxAE

0 0 0 0 2.505 2.779 1.286 1.402 0.811 0.868

1 0 0 0 0.122 0.162 0.065 0.110 0.431 0.518

2 1 0 0 0.101 0.150 0.032 0.060 0.267 0.343

1 2 1 0 0.280 0.324 0.091 0.105 0.510 0.595

2 2 1 0 0.145 0.197 0.066 0.095 0.338 0.461

3 2 1 0 0.320 0.463 0.088 0.141 0.298 0.462

All All All All 0.044 0.075 —c —c 0.037 0.062

a Error here is defined as the total energy of the cluster minus the MGMBE-predicted total
energy. The error per H2O monomer is first obtained before the RMS or maximum is taken. b

The digits give the highest number of ghost-bodies, m, that is incorporated into the k-body
interaction using the MGMBE and “All” refers to the cluster basis which includes all the BSEE.
For example, the second entry, {1,0,0,0}, indicates that the BSEE from up to one-ghost-body
is incorporated in the one-body interactions and there are no BSEE included for the
two-to-four-body interactions. c As the four-body interaction computed using the cluster basis
is computationally expensive at MP2/AVTZ, an estimate of the total energy is unavailable.
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From Table 4.3, including the BSEE from one-ghost-body into the one-

body interaction decreased the error by one order of magnitude as seen in the

entry {1,0,0,0}. This suggests that the one-body interaction is very sensitive

to the BSEE. This is not surprising as the one-body interaction constitutes the

majority (≈ 99.98%) of the total energy. The error decreased again when more

BSEE is incorporated (entry {2,1,0,0}). However, from entry {2,1,0,0} to

{3,2,1,0}, further inclusion of BSEE resulted in a larger error. Hypothesiz-

ing that this could be due to the BSEE in the one-body interaction, we varied

the truncation order of the BSEE in the one-body interaction (entry {1,2,1,0},

{2,2,1,0} and {3,2,1,0}) and observed a fluctuation in the error. While the

data is not shown here, the error actually oscillates wildly, changing in sign

from positive (entry {1,2,1,0}) to negative (entry {2,2,1,0}) and back to pos-

itive again (entry {3,2,1,0}). Recall the surprising result in Section 4.2.3 that

the MBE using the nuclei-centred basis truncated at the α-body term contains

the BSEE from up to m = (α − k)-ghost-bodies in each of the k-body interac-

tions. This suggests that the similar oscillatory behaviour reported previously91

in the MBEs using the nuclei-centred basis could be due to the BSEE present

in the one-body interaction. To determine if the two oscillatory behaviours are

related, we compared the convergence of the MBE using the nuclei-centred ba-

sis to the total energy of the cluster with that of the MGMBE of the one-body

interaction to the total one-body interaction in the cluster basis (Figure 4.6).

It is clear from Figure 4.6 that the two many-body decompositions are

practically identical except for the first two data points. It appears to be the

case that the poor convergence of the MBE using the nuclei-centred basis is

almost completely caused by the BSEE in the one-body interaction. The dif-

ferences in the first two data points is because the MBE (Figure 4.6a) includes

the actual many-body interactions together with the BSEE. In the first two data

points, there are additional errors in the MBE associated with neglecting these

many-body interactions. From the four-body term onwards, the majority of the
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Figure 4.6: (a) The error of the MBE of the total energy using the nuclei-centred
basis truncated at the α-body term follows an almost identical trend as (b) the error
of the MGMBE of the total one-body interaction in the cluster basis truncated at the
(α − 1)-ghost-body term. The calculations were performed at MP2/AVDZ for the
(H

2
O)

12
, (H

2
O)

14
and (H

2
O)

16
from Figure 4.4. The error of the MBE is de�ned

as the di�erence between the total energy, Etot, and the sum of the total one-body
interaction up to the total α-body interaction. Similarly, the error of the MGMBE
is de�ned as the di�erence between the one-body interaction computed using the
cluster basis, EAB···N, and the sum of the BSEE from up to (α − 1)-ghost-bodies
summed across all the monomers.

many-body interactions are accounted for and virtually all the remaining error

is apparently due to BSEE in the one-body interaction.

The errors in the MBE associated with the BSEE not only applies to the

brute force computation of all the
(n

k

)
individual k-body interactions but also

to “internally consistent” selected many-body interactions virtually always em-

ployed in fragmentation methods. These interactions are “internally consistent”

in a sense that the many-body interactions of the selected fragments (interacting

groups of atoms) and their constituent lower-body interactions are included and

only included once. This allows for the BSIE and BSEE to cancel. The poor

convergence of the MBE/MGMBE allows us to explain certain observations in

fragmentation methods. “Grafting” is employed in some fragmentation meth-

ods220–222 where the total energy of the system is calculated at a lower level of

theory or basis set to serve as a correction to the predicted total energy. Such

grafting approaches not only correct for missing important many-body interac-

tions but also account for the BSEE to a large extent, explaining the low errors

associated with these methods. Since the BSEE converges poorly with respect to
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the number of ghost-bodies, the expensive one-body interactions computed us-

ing the cluster basis is required to accurately reproduce the total energy. Future

investigations to develop cheaper alternatives to the cluster basis will be under-

taken. One possibility includes the omission of certain basis functions from the

basis set, in particular the tight valence-type functions (i.e., not diffuse func-

tions), on ghost-bodies that are far away from the monomer of interest. Thus,

only the contributing diffuse functions remain.

4.3.3 Many-ghost Many-body Expansion of Binding Energy

We have shown that the poor convergence of the MBE using the nuclei-centred

basis is due to the BSEE in the one-body interactions. With the removal of the

one-body interactions and its associated BSEE, we expect the remaining energy

to converge rapidly with the number of bodies. This remaining energy is the

binding energy, εC
tot, and the accuracy of the MGMBE is evaluated in Table 4.4.

Table 4.4: Root Mean Square of the Error per H
2
O monomer (RMSE, m-Eh) and

Maximum Absolute Error per H
2
O monomer (MxAE, m-Eh), in reproducing the εC

tot
for the same water clusters in Table 4.3. The MGMBE includes up to the four-body
term (k=2�4) of which the BSEE are truncated at di�erent m-ghost-bodies.a

m-ghost-body in k-bodyb MP2/AVDZ MP2/AVTZ MP2-F12/AVDZ

k=2 k=3 k=4 RMSE MxAE RMSE MxAE RMSE MxAE

0 0 0 0.160 0.197 0.046 0.058 0.090 0.104

1 0 0 0.046 0.070 0.073 0.114 0.060 0.090

2 1 0 0.009 0.015 0.019 0.043 0.015 0.028

All All All 0.044 0.075 —c —c 0.037 0.062

a Error here is defined as the εC
tot of the cluster minus the MGMBE-predicted εC

tot. The error per
H2O monomer is first obtained before the RMS or maximum is taken. b The digits give the
highest number of ghost-bodies, m, that is incorporated into the k-body interaction using the
MGMBE and “All” refers to the cluster basis which includes all the BSEE. For example, the
second entry, {1,0,0}, indicates that the BSEE from up to one-ghost-body is incorporated in
the two-body interactions and there are no BSEE included for the three-body and four-body
interactions. c As the four-body interaction computed using the cluster basis is computationally
expensive at MP2/AVTZ, an estimate of the εC

tot is unavailable.

From Table 4.4, the incorporation of the BSEE greatly reduces the error in
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reproducing the εC
tot, eventually giving a tiny error per monomer of below 0.015–

0.043 m-Eh (entry {2,1,0}), which is well within dynamical accuracy. In fact,

entry {2,1,0} gives a lower error than entry {All,All,All} which incorporates

all the BSEE in the two-to-four-body interactions. This can be attributed to a

reversal in the sign of the error. In entry {0,0,0}, the absence of BSEE which

stabilizes the binding energy results in negative errors. On the other hand, the

errors from the incorporation of all the BSEE up to the four-body interaction

in entry {All,All,All} are positive due to the neglect of higher-than-four-body

interactions. Thus, there is some form of error cancellation between the two

factors when the majority of the BSEE is accounted for in entry {2,1,0}. Fur-

thermore, the maximum number of basis functions ever employed in any total

energy calculation is limited to that of four monomers in entry {2,1,0}, originat-

ing from either the interacting bodies or ghost-bodies. This allows for expensive

theoretical models such as the Coupled Cluster Singles and Doubles with per-

turbative Triples [CCSD(T)] to be applied to obtain highly accurate εC
tot for large

clusters or even bulk-water simulations. It should be emphasized that no charge

embedding scheme152, 153, 223 was used although they are commonly applied to

water clusters. The use of such schemes is prevalent in the literature due to the

belief that the water-water interactions are highly many-body in nature. How-

ever, our results indicate that we only require up to the four-body interactions. It

is likely that any apparent higher-than-four-body effects are caused by the BSEE

in the one-body interactions which we have shown to be highly many-body in

nature (Figure 4.6).

Notably, the calculations involved in entry {2,1,0} is equivalent to that in

a MBCP(4) calculation.196, 206 A MBCP(4) calculation would involve a MBE

using the nuclei-centred basis truncated at the four-body term minus the one-

body interactions with the BSEE truncated at the (4−1) = 3-ghost-body level.

This is equivalent to a “{3,2,1,0}” MGMBE calculation of the total energy

minus the one-body interactions and its associated BSEE, i.e. the entry {2,1,0}
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in Table 4.4. Thus, an “{α − 2,α − 1, · · · ,0}” MGMBE calculation of the εC
tot

is identical to an MBCP(α) calculation. Note that for the MBCP method, the

MG1BE have to be truncated at one-order less than that of the MBE. This is

important to ensure that all the BSEE in the one-body interactions are properly

removed and this requirement only becomes obvious with the analysis of the

BSEE using the MGMBE presented in this chapter.

4.4 Summary

Through a systematic study of water clusters with improving basis set and in-

creasing cluster size, we concluded that one has to account for many-body BSSE

in order to reproduce the many-body interactions computed using the cluster ba-

sis. There are two distinct components to the many-body BSSE. The first arises

due to an imbalance in the number of basis functions used to compute a partic-

ular k-body interaction. In this case the k-body total energy calculation utilizes

many more basis functions than does the lower-body counterparts which are

necessary to extract the k-body interaction. The second arises due to the fact

that a k-body within a much larger cluster is further stabilized by the basis func-

tions of the surrounding bodies denoted as the BSEE. If one wants to reproduce

the binding energy and/or the total energy through a many-body approach, the

first BSIE is undesirable as it leads to erroneous many-body interactions. How-

ever, the BSEE is important as these extension effects improve the quality of

the total energy or binding energy by maximizing the flexibility of the wave

function at the given basis set. Thus, the best estimate of the binding energy at

a given basis set would be the total energy minus the one-body intramolecular

interactions computed using the cluster basis.

We found that both components of the many-body BSSE are accounted

for in the three-body and four-body interactions computed using the subclus-

ter basis and that these interactions appear to have converged to the CBS limit

using the AVDZ basis set. For the two-body interactions, and particularly for
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the one-body intramolecular interactions, important BSEE are significant and

have to be accounted for, thus making the use of the subcluster basis insuffi-

cient. To account for both the BSIE and the BSEE, we introduce the MGMBE

in this chapter. The MGMBE performs a two-dimensional many-body decom-

position with each decomposition accounting for one component of many-body

BSSE. Through the MGMBE of the total energy, we found that the oscillatory

behaviour encountered in MBEs using diffuse functions is caused by the BSEE

in the one-body interactions. With the adequate removal of the one-body in-

teractions and the associated BSEE, the MGMBE successfully reproduces the

binding energies of clusters using numerous small calculations that involves no

more than four monomers.

Despite the utility of decomposing a large cluster into small subsystems,

the MBE and the MGMBE comes with a limitation. The number of four-body

calculations increases quartically with the cluster size, substantially hindering

the scalability of these methods. To circumvent this, the next chapter will es-

tablish a rigorous criterion to select out all potentially significant many-body

interactions.
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5 | WHEN ARE MANY-BODY

EFFECTS SIGNIFICANT?

Many-body effects are required for an accurate description of both structure

and dynamics of large chemical systems. However, there are numerous such

interactions to consider and it is not obvious which ones are significant. We

provide a general and fast method for establishing which small set of three-

body and four-body interactions are important. This is achieved by estimating

the maximum many-body effects, εmax, that can arise in a given arrangement of

bodies. Through careful analysis of εmax we find two overall causes for signif-

icant many-body interactions. Firstly, many-body induction propagates in non-

branching paths, i.e, in a chain-like manner. Secondly, linear arrangements of

bodies promote the alignment of the dipoles to reinforce the many-body interac-

tion. Compact arrangements are favoured, not because of dipole alignment, but

rather because there are many short non-branching paths connecting the bod-

ies. Extended linear arrangements are favoured because dipoles can align well

while maintaining at least one short non-branching path. The latter result is not

intuitive as these linear arrangements can lead to significant many-body effects

extending over large distances. This chapter provides a rigorous explanation as

to how cooperative effects provide enhanced stability in helices making them

one of the most common structures in biomolecules. Not only do these helices

promote linear dipole alignment but their chain-like structure is consistent with
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the way many-body induction propagates. Finally, using εmax to screen for sig-

nificant many-body interactions, we are able to reproduce the total three-body

and four-body interaction energies using a small number of individual many-

body interactions.

5.1 Introduction

The interplay of numerous noncovalent interactions often underpin the dynam-

ics and structure of large chemical systems. Initial theoretical studies of non-

covalent interactions often assumed that interactions only occur between two

bodies, described by classical electrostatics and Lennard-Jones potentials.32, 224

Here, the body refers to a subunit within the large chemical system, for ex-

ample, a monomer in molecular clusters or an amino acid residue in proteins.

However, the interaction picture is more intricate than initially assumed where

a third body can alter the interaction between two bodies. This “third-party

effect” has acquired several names in the literature—cooperativity,225–227 non-

additive effects,48, 228 and many-body effects.163, 180 In this chapter, we refer to

these effects as many-body effects or more precisely k-body effects, where k is

the number of interacting bodies. When the bodies are highly polar or exhibit

hydrogen bonding, these many-body effects manifest strongly. One example

of this is the drastic enhancement of the dipole moment of water molecules in

the condensed phase as compared to the gas phase.24, 229 In biology, structural

changes such as the shortening of O···H hydrogen bonds in α-helices of increas-

ing length also illustrate the extent of these many-body effects.230–232

The importance of many-body effects means that we need to consider the

interactions between all triple and quadruple of bodies and so on, a seemingly

insurmountable task given the sheer number of such interactions. Fortunately,

due to the nearsightedness of electronic matter,233, 234 it is possible to neglect

some, if not the majority, of the many-body effects. Based on this nearsight-

edness notion, fragmentation methods were developed to reproduce the total
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energies of large chemical systems by breaking these systems into small frag-

ments.187, 201–203, 235 The small fragments are then selectively interacted based

on the inter-fragment distance or connectivity. Likewise, several parameters

based on the distances between the bodies in a large chemical system have been

proposed to identify important many-body effects.77, 79, 179, 236–238 However, the

choice of interactions/parameters are often based on chemical intuition, making

the aforementioned studies seem highly empirical. Thus, an analysis of the se-

lected many-body effects from these studies does not lend itself to a clear picture

of how many-body effects manifest.

To rigorously identify the significant many-body effects, we look to the

theory of intermolecular interactions. We focus on long-range interactions as

they persist at large separations, causing many-body effects to remain signifi-

cant even when the bodies are moderately apart. At long-range, intermolecu-

lar interactions can be separated into contributions from electrostatic, induction

and dispersion.48 Electrostatic interaction arises from the interaction between

static charge distributions while dispersion is a stabilization due to the correlated

motions of the electrons in different molecules. Electrostatic and dispersion

interactions exhibit no and negligible many-body effects respectively. Induc-

tion originates from the polarization of the electron cloud of a molecule by the

electric field of the neighbouring molecules. As the electric field exerted by a

molecule can be enhanced or negated by that of another molecule, induction is

highly many-body in nature and constitutes the majority of many-body effects.

This chapter revolves around estimating the maximum many-body inter-

action energy, εmax, that can arise from a particular arrangement of three or

four bodies. To keep εmax simple, we are only interested in the most important

contribution to the many-body effects. Thus, we derived the leading terms in

the many-body induction interaction. We then used εmax to identify significant

many-body effects in water clusters and secondary structures of polyglycine,

both of which contain highly polar bodies. By including the many-body contri-
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butions above a certain cut-off, we successfully reproduce the total many-body

interactions using a small number of the possible contributions. Furthermore,

we refined some of the included many-body interactions and found that the

many-body effects in 310- and α-helices of polyglycine extend up to 12 and 18

residues respectively. Other than its utility in many-body-based applications,

we separated εmax into distance and orientational components to understand

the propagation of many-body effects. Careful analysis of the distance com-

ponent revealed that many-body induction propagates in non-branching paths.

On the other hand, the orientational counterpart is related to the alignment of

the dipoles to maximise induction. With that, we identified that compact and

extended linear arrangements tend to possess significant many-body effects due

to their strong distance and orientational components respectively. The latter

implies that many-body effects can extend over large distances. These insights

help us rethink how many-body effects propagate.

5.2 Computational Details

5.2.1 Many-body Interactions

Following Chapter 4,239 the three-body and four-body interactions are computed

in the subcluster basis using the following formulae

εABC = EABC−
(
EABC +EACB +EBCA

)
+
(
EABC +EBAC +ECAB

)
(5.1)

εABCD = EABCD−
(
EABCD +EABDC +EACDB +EBCDA

)
+
(
EABCD +EACBD +EADBC +EBCAD +EBDAC +ECDAB

)
−
(
EABCD +EBACD +ECABD +EDABC

)
(5.2)

where EA···D are total energies obtained from quantum chemical calculations

and the subscript indicate the bodies being calculated. The overline in the sub-
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script, for example EABCD, indicates the presence of ghost functions centred on

body D where basis functions are placed on the locations of nuclei, but with-

out the nuclei being present in the quantum chemical calculation. In eq (5.1)

and (5.2), the use of a consistent set of basis functions centred on the subclus-

ter (ABC and ABCD respectively) removes the undesirable basis set imbalance

error in many-body BSSE (Section 4.2.2).239

5.2.2 Quantum Chemical Calculations

Quantum chemical calculations of all the total energies were performed using

the MOLPRO suite of programs.185 Calculations were carried out at either the

second-order Møller-Plesset perturbation (MP2) or Hartree-Fock (HF) level of

theory. Either the correlation-consistent basis sets, cc-pVnZ, labelled VnZ, n=

D or T, or the augmented form, aug-cc-pVDZ, labelled AVDZ was used.34, 124

In particular, the three-body and four-body interactions in the water clusters are

computed at MP2/AVDZ and HF/AVDZ respectively, which is of CBS quality

according to Section 4.3.1.239 For the polyglycine, the three-body and four-

body interactions were initially computed at MP2/VDZ and HF/VDZ respec-

tively (Figure 5.5). Selected three-body and four-body interactions are later

refined to a higher quality at MP2/VTZ (Figure 5.6). The magnitude of the

dipole, µ , and isotropic polarizability, α , were calculated using the Gaussian 09

package184 at the respective level of theory and basis set. For the calculation

of µ and α , we used the equilibrium geometry of the water monomer at the

respective level of theory and basis set for the water clusters and the optimised

geometry of the repeating unit for the polyglycine. The magnitude of the dipole

vector is given as µ =
√

µ2
x +µ2

y +µ2
z while the isotropic dipole-dipole polar-

izability is the average of the trace of the dipole-dipole polarizability matrix,

α = (αxx +αyy +αzz)/3.

The (H2O)16, (H2O)20, (H2O)32 and (H2O)40 clusters were obtained from

Yoo et al.,176 Wang et al.,240 Pruitt et al.177 and Saha et al.222 respectively.
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There are five clusters for each cluster size and the Cartesian coordinates are

found in the accompanying CD. For the H(C(O)NHCH2)24H polyglycine, the

repeating unit approach230 is used where each repeating C(O)NHCH2 body has

the same geometry. To obtain the geometry of the repeating unit, geometry opti-

mization using the Gaussian 09 package at HF/VDZ was performed on a shorter

H(C(O)NHCH2)18H polyglycine model with a constraint that the geometry of

each C(O)NHCH2 repeating unit is kept identical. The optimised geometry of

the repeating unit is found in the accompanying CD. In order to define the bod-

ies and compute the many-body interactions in polyglycine, covalent bonds have

to be severed. All severed covalent bonds were capped with hydrogen atoms,

a common practice in the fragmentation of valence-bonded systems.187, 201–203

The placement of capping hydrogen atoms follows that of a previous study.161

Furthermore, to ensure that a consistent set of basis functions are used in each

total energy calculation, ghost functions are placed at all the locations of the

capping hydrogens when these capping hydrogens are absent in the calculation.

5.2.3 Genetic Algorithm

To obtain the dipole orientations giving εmax, we applied a genetic algorithm

(GA). A GA dataset is created and fitted to simple models so that the orienta-

tional components can be evaluated quickly. The GA method is adapted from

Guimarães et al.241 where the energy function is replaced with the leading

many-body terms given in eq (5.3) and eq (5.4). In the GA method, the ini-

tial population, Npop, the fraction of clusters mutated per generation, fmut, the

number of generations with no improvement in energy, Nconv and the number

of iteration cycles for the history operator, Ncycles are required. For all the GA

runs, we specified that fmut=0.1, Nconv=10 and Ncycles=15. Npop were set to 26

and 50 for the three-body and four-body cases respectively. Triplicates of the

GA runs were performed and identical results were obtained.

To generate the geometries for the three-body GA dataset, two of the inter-
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body distances were fixed to 4 Å and the arrangement is solely dependent on the

angle, θ (Figure 5.1a). For the four-body counterpart, the arrangement can be

described using three lengths, two bending angles and one dihedral angles, sim-

ilar to the construction of a Z-matrix of a four-atom molecule (Figure 5.1b).

The angles in the above arrangements are chosen such that the fixed inter-body

distances form the shortest non-branching path. Thus, when presented with a

three-body or four-body arrangement, the shortest non-branching path will be

determined first. The corresponding angles will then be computed and plugged

into the models/functional fits to obtain the orientational component. The mod-

els/functional fits will be discussed next.

(a) Three-body GA dataset 

4Å A B C 
θ=180° 

4Å 4Å 

A 

B C 
θ=60° 4Å Interval 

of 5° 

(b) Four-body GA dataset 
A 

B C 

D 

θ1=60°–150° 

φ=0°–180° 

RAB=RBC=RCD=4Å 

θ2=60°–150° 

Figure 5.1: (a) To generate the three-body arrangements for the GA dataset, two
of the inter-body distances are �xed to 4 Å and the angle, θ is varied from θ = 60◦

to θ = 180◦. (b) Similarly, the four-body arrangements are generated by �xing three
of the inter-body distances to 4 Å and varying the two bending angles, θ1 and θ2,
and one dihedral angle, φ .

From this three-body GA dataset, we observed that the dipole orientations

exhibit two different behaviour. When the bodies are close to each other (small

θ ), the dipoles point to the circumcentre of the triangle formed by the three bod-

ies ABC. Conversely, when the bodies are arranged linearly, the dipoles become

aligned along AC with some offset related to the angles of the triangle ABC.

Thus, when presented with a three-body arrangement, both the “circumcentre”

and “align dipole” models will be applied and the larger three-body interac-

tion will be taken as ε
(3)
max. This procedure was tested on the geometries of the

three-body GA dataset and gave a mean absolute error (MAE) of 6%. A figure

detailing the two models and a comparison of the ε
(3)
max obtained from the two

models and the actual GA results are found in the Appendix. For the four-body
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interactions, the orientational components obtained from GA are fitted to a sum

of product of cosine functions using Mathematica242 and the fitted coefficients

are found in the Appendix.

5.3 Results and Discussion

5.3.1 Nature of Many-body Induction

To describe the induction interactions between the many bodies, we apply the

Rayleigh–Schrödinger perturbation theory.48 For each body, the charge distri-

bution is described as the magnitude of its dipole, µ , and the degree of distor-

tion of this dipole by the electric field of neighbouring molecules is given by an

isotropic dipole-dipole polarizability, α . Notice that the higher-rank multipoles

(the quadrupoles, octopoles and so on) are ignored as we are only interested

in the most significant contribution to the many-body induction. With that, the

leading three-body and four-body terms in the induction interactions were ob-

tained in eq (5.3) and (5.4) respectively (see Appendix for a detailed derivation)

ε
(3)
max = ∑

3paths

µAT ABαBT BCµC

R3
ABR3

BC
(5.3)

ε
(4)
max = ∑

12paths

µAT ABαBT BCαCT CDµD

R3
ABR3

BCR3
CD

(5.4)

where T AB gives a measure of alignment of the dipoles of body A and B and

RAB is the distance between body A and B. These leading terms are charac-

terized by an orientational component (the T ) in the numerator and a distance

component (the R) in the denominator. These leading many-body terms will

serve as the formulae to compute εmax.

From the distance component, we observe that the bodies are coupled in

non-branching paths. This can be understood by following the polarization of

the bodies (Figure 5.2a). Firstly, the electric field of body A polarizes body B,
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creating a first-order induced dipole, µAT ABαB. This alters the electric field of

B, which in turn changes the polarization of body C. The second-order induced

dipole, µAT ABαBT BCαC, can then interact with the electric field of body D to

give the second-order induction interaction, µAT ABαBT BCαCT CDµD, which

involves ABCD. This polarization process can be extended to any arbitrary kth-

order. Notice that the path followed by the polarization process can only be

extended by coupling the terminal body of the path with another body. This

ensures that the path is always non-branching, a key finding in this chapter. In

general, k polarizations lead to (k+ 1) couplings, allowing for at most (k+ 2)

bodies to be involved. This general trend also allows us to list down the pos-

sible couplings between the bodies at first-order and second-order induction

(Figure 5.2b). We observe that the leading two-body and three-body terms are

identical in order in distance, i.e., both having an overall dependence of L−6

where L is one of the inter-body distances. Furthermore, the leading three-body

induction term decays slower than the Axilrod–Teller–Muto three-body disper-

sion term which varies as L−9.243, 244 This is because the three-body dispersion

depends simultaneously on all three inter-body distances. On the other hand, the

three-body induction depends on the non-branching paths, which only involves

two distances. The leading four-body term is only found in the second-order

induction, having a L−9 overall distance dependence. In the leading many-

body terms, there are 3 and 12 possible non-branching paths joining three bod-

ies and four bodies respectively. The other cases shown in Figure 5.2b show

back-polarization to previously-involved bodies and these paths give rise to non-

leading terms. More importantly, the results show that the many-body effects

can extend over large distances as these effects do not depend simultaneously

on all the inter-body distances but rather the length of the non-branching path.

The orientational component of εmax gives a measure of how well the

dipoles can align themselves to reinforce the induction interaction. We con-

structed different three-body (Figure 5.3a) and four-body (Figure 5.3b) arrange-
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(b) kth-order  
induction  

(k+1) coupling  
in a chain → εA…N varies  

as L-3(k+1)  → 
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B 

C 
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k coupling in  
induced dipole 
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induction interaction → Chain-like  

propagation → 

Figure 5.2: The distance component of εmax reveals that many-body e�ects connect
the bodies in a chain-like manner. (a) Pictorial representation of the polarization
of the bodies to illustrate the chain-like coupling between bodies. Here, we use a
shorthand for the coupling between AB, T AB =T AB/R3

AB, and the terms on the right-
hand side are de�ned in eq (5.3) and (5.4). In general, at the k-order induction, there
are (k+1) pairwise couplings. (b) List of possible couplings, and the corresponding
distance dependence, at the �rst-order and second-order induction.

112



5.3 RESULTS AND DISCUSSION

ments to investigate which ones favour dipole alignment, i.e, a large orienta-

tional component. The size of these arrangements is determined by some of the

inter-body distances, L, while the shape is controlled by the angles θ , θCh and

θTd. The dipole orientations are obtained from simple models fitted to a GA

dataset (Section 5.2.3).

Figure 5.3: Compact and extended linear arrangement tend to possess signi�cant
many-body e�ects. (a) The geometry of three bodies changes from a compact ar-
rangement to a linear arrangement as the angle between the bodies, θ , increases. (b)
For four bodies, the chain-like arrangement becomes more extended as θCh increases
while the tetrahedral-like arrangements become more compact as θTd decreases. The
orientational components of εmax at the (c) three-body and (d) four-body level are
given with varying angles. Note that for both the orientational and distance compo-
nents are normalized against the largest possible value.

We observe that the extended linear arrangements give rise to large ori-

entational components, corresponding to large θ values for the three bodies

(Figure 5.3c) and large θCh values at the four-body level (Figure 5.3d). Such

linear arrangements allow all the dipoles to point in the same direction (see

“θ = 180◦” inset in Figure 5.3c), reinforcing the electric field and maximiz-
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ing the many-body effects. On the other hand, compact arrangements (small θ

and θTd) provide a modest orientational component with the dipoles pointing

towards a common point (see “θ = 60◦” inset in Figure 5.3c).

Altogether, compact arrangements give significant many-body effects be-

cause there are many short non-branching paths connecting the bodies, giv-

ing a large distance component while having a modest orientational compo-

nent. Extended linear arrangements also give significant many-body effects be-

cause dipoles can align well, resulting in a large orientational component while

maintaining at least one short non-branching path. The latter result is counter-

intuitive as it implies that many-body effects can propagate over large distances

but only in a directional manner. This explains why linear-type structures such

as helices are common stable structures in biomolecules. Furthermore, knowl-

edge of the geometries that can give rise to significant many-body effects is

important in a wide variety of many-body-based applications. It was shown

previously that the inclusion of linear arrangements in a three-body water po-

tential energy surface was critical to achieve high accuracy.77, 79 Furthermore,

a recent analysis of the three-body effects in water clusters proposed looking at

the “shell sum” of a trimer, determined by the distances between a central water

molecule and the two other waters.237 This is similar to the non-branching paths

which we derived have rigorously from perturbation theory whereas not much

explanation was given by the authors for their use of “shell sum”. Consequently,

a straightforward extension to four-body interactions is not clear based on their

work. Thus, to our knowledge, it appears that the work presented here is the first

to propose a method to establish which four-body interactions are significant.

It should be pointed out that the calculation of εmax can be extended to

charged and non-polar species. We can describe the charge distribution of the

bodies by the first non-zero multipole, i.e. the charge or the quadrupole. Con-

sequently, the R−3
AB coupling term is modified to a more general R−(lA+lB+1)

AB

dependence where the exponent is determined by the rank of the multipole, l.
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Most importantly, the bodies are still coupled in a non-branching path regardless

of the multipoles involved. This non-branching nature of many-body induction

will be a recurring theme in this chapter.

5.3.2 Identifying the Significant Many-body Effects

To determine if εmax can identify significant many-body interactions, we com-

puted the εmax for all possible three and four bodies in a series of (H2O)16-40

clusters (Figure 5.4). Water clusters are of interest as they contain strong many-

body interactions,25, 29, 32, 213 originating from the large dipole of water. The

wide range of conformations of the water molecules in water clusters also pro-

vide a thorough test. Note that there were five clusters being investigated for

each cluster size. To prevent clutter, we only present the results for one of the

five clusters in Figure 5.4a,b but the full dataset can be found in the Appendix.

Figure 5.4: The ability of εmax to identify signi�cant many-body interactions is eval-
uated in water clusters. (a,b) The magnitude of the actual many-body interactions,
|εactual|, were compared with that of the predicted maximum many-body interactions,
|εmax|. (c,d) Root mean square deviation (RMSD) per H

2
O in reproducing the total

many-body interactions using truncated values by including many-body interactions
with |εmax| > Ecut. The desired accuracy of 0.25 kJ mol−1 is achieved using Ecut of
250 J mol−1 and 100 J mol−1 at the three-body and four-body level respectively. (e,f)
The total number of many-body interactions (ALL) and the number of interactions
included at the above-mentioned Ecut.
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In Figure 5.4a,b, the majority of the many-body interactions are bound by

the |εmax| as the data points are found below the y = x dashed line. However,

a small number of interactions still exceed |εmax| slightly due to the neglect

of short-range effects in our treatment. This is confirmed by the observation

that the cases where |εactual|> |εmax| are frequently associated with large many-

body interactions where the bodies are likely to be close to each other. Fortu-

nately, this is not a problem as these cases are frequently associated with large

many-body interactions, which are always deemed significant given a reason-

able cutoff. Furthermore, we obtain a larger number of small many-body in-

teractions with increasing cluster size, indicating that a lot of these interactions

are insignificant and can be neglected. By summing the many-body interactions

above a cutoff, Ecut, we can cheaply reproduce the total many-body interaction.

Clearly, the value of Ecut depends on the desired accuracy. In dynamical simu-

lations where many-body-based methods are employed, an acceptable error for

the root mean square deviation (RMSD) per H2O might be a small fraction, say

10%, of the thermal uncertainty, kT . This desired accuracy of 0.25 kJ mol−1

at room temperature is achieved at Ecut of 250 J mol−1 and 100 J mol−1 at the

three-body and four-body level respectively (Figure 5.4c,d). Except for very

large Ecut, the RMSD decreases rapidly with smaller Ecut regardless of the clus-

ter size, suggesting that the above Ecut is applicable to larger water clusters.

Only a tiny number of interactions are included at the aforementioned Ecut, un-

like the drastic increase in the total possible number of many-body interactions

(Figure 5.4e,f). This effect is more pronounced at the four-body level due to the

faster decay of the the four-body interactions, which has an L−9 overall distance

dependence as compared to the L−6 dependence in the three-body (and two-

body) counterpart. More importantly, the number of many-body interactions in-

cluded increases linearly with cluster size, making this approach a linear-scaling

method and therefore highly amenable for large chemical systems.

We also applied the same analysis to different secondary structures of the
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H(C(O)NHCH2)24H polyglycine with each C(O)NHCH2 repeating unit being

a body (Figure 5.5). It is important to preserve the amide linkage within each

body as it is responsible for the large dipole moment and polarizability in polyg-

lycine. Again, we observe that the majority of |εactual| are bound by |εmax| except

for the tiny four-body interactions in the β -strands of ≈ 10−3 J mol−1 (Orange

dots in Figure 5.5b). This is because these interactions are essentially zero as

they are at the limits of our numerical precision. These results support our aim

to include only the significant many-body effects. Otherwise, in even larger

chemical systems, there will be an overwhelming number of tiny and numeri-

cally unstable interactions, which can affect the accuracy of many-body-based

applications.245 Chemical accuracy of 4.2 kJ mol−1 is achieved using Ecut of

25 J mol−1 and 10 J mol−1 at the three-body (Figure 5.5c) and four-body (Fig-

ure 5.5d) level respectively. Furthermore, the number of many-body interactions

required still exhibits linear growth with the number of residues (Figure 5.5e,f).

As a side observation, the polarizability of the C(O)NHCH2 repeating unit de-

creases dramatically with the removal of a methylene group and vice versa. This

implies that the many studies246–248 using chains of formamide (which has one

less methylene group than C(O)NHCH2) may have underestimated the many-

body effects in polypeptides although qualitative trends should still hold true.

Conversely, it was shown that the presence of alkyl groups on the side chains of

the amino acids favours helix formation.249

Due to the extended planar geometry of the peptide bond, there is signif-

icant anisotropy in the one-body N-methyl formamide. However, εmax is still

able to identify the significant many-body effects. This suggests that the use of

an isotropic polarizability does not undermine the accuracy of εmax. The suc-

cess in the identification of significant many-body effects in both water clusters

and polyglycine demonstrates the universality of the method. The water clusters

provide a variety of conformations while our isotropic polarizability assumption

is tested with the significant aniostropy in the peptide bonds.
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Figure 5.5: The ability of εmax to identify signi�cant many-body interactions is
evaluated in secondary structure of polyglygine. (a,b) The |εactual| were compared
with the |εmax| for the fully extended β -strand (β ), 2.27-ribbon (2.27), 310-helix
(310) and α-helix (α) structures. (c,d) RMSD in reproducing the total many-body
interactions using truncated values by including many-body interactions with |εmax|>
Ecut. Chemical accuracy of 4.2 kJ mol−1 is achieved using Ecuts of 25 J mol−1 and
10 J mol−1 at the three-body and four-body level respectively. (e,f) The total number
of many-body interactions (ALL) and the number of interactions included at the
above Ecut.

5.3.3 Many-body Effects in Helical Structures

Amongst the different secondary structures, the helical structures display the

most many-body effects. This is because the dipoles are aligned along the he-

lical axis, reinforcing the many-body interactions. Consequently, the |εactual|

of the 310- and α-helix structures tend to be near the |εmax| (Figure 5.5a,b).

To determine the extent of the many-body effects, we focus on the interactions

within the same and across different hydrogen-bonding chains (Figure 5.6a).

The hydrogen-bonding chains were chosen as a basis since they are consistent

with the way many-body induction manifests, i.e., in chains.

The A1A2A3-interactions are the largest amongst the selected many-body

interactions and it accounts for the preference of the α-helix over the 310-helix

at moderate to long peptide lengths (Figure 5.6b). Note that the A1A2A3-

interaction is small in the case of the β -strand, echoing the earlier observation
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Figure 5.6: The extent of many-body e�ects in helical stuctures were investigated.
(a) Diagrammatic representation of the hydrogen-bonding chains in the di�erent
secondary structures of polyglycine. Each residue is labelled XY where X identi�es
the hydrogen-bonding chain that the residue belong to and Y gives the position within
the chain. Comparison of selected (b) three-body and (c) four-body interactions in
the di�erent secondary structures of polyglycine.
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that there is negligible many-body effects. When two of the bodies are sepa-

rated apart by one residue, the three-body interaction decreases by an order of

magnitude (Entry A1A2A4 and A1A3A4). A rough calculation on εmax suggests

similar results where one of the inter-body distances doubles and the R−3 in

eq (5.3) leads to a decrease by a factor of 23 = 8. Similarly, the three-body in-

teraction decreases by another order of magnitude for the A1A3A5-interaction.

Comparing the three-body and four-body interactions, the inclusion of an ad-

ditional body decreases the many-body interactions by an order of magnitude

(Figure 5.6c). Thus, the five-body interactions can be safely ignored. We also

observe that many-body effects across different hydrogen bonding chains are

generally repulsive especially for the selected AAAB-type interactions. We

postulate that this could be due to the body in the B-chain disrupting the en-

hancement of electric field and dipole moment of the other three bodies in the

A-chain. Thus, the stability of the helix is driven by the three-body interactions

within the same hydrogen bonding chain.

Furthermore, given the drastic decrease in many-body interactions with

increasing separation of the residues, we can consider interactions spanning the

first to fifth position on the hydrogen bonding chain to be significant. We can

be more conservative and include borderline cases spanning the first to sixth

position. Since the 310-helix has two hydrogen bonding chains while the α-

helix has three, we would expect the many-body effects to asymptote by the

12th and 18th residue in the 310- and α-helices respectively. This is in good

agreement with previous studies on polyglycine230 (310: 14 residues, α: ≈ 20

residues) and studies on polyalanine231 (310: 18 residues, α: > 20 residues).

The slower asymptotic behaviour in the polyalanines is likely due to higher po-

larizability of alanine as compared to glycine which enhances the many-body

induction effects. Interestingly, Hua et al. concluded that the cooperative ef-

fects have not reached their asymptotic limits by the 40th residue in both 310-

and α-helices.232 We attribute this to the many-body BSSE from the diffuse
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functions in the 6-311++G** basis set used by the authors, which leads to poor

convergence of the MBE.91

5.4 Summary

We developed a general and fast method to identify significant many-body ef-

fects. This is achieved by estimating the maximum many-body effects, εmax,

that can arise in a given arrangement of bodies. Through careful analysis of the

distance and orientational components of εmax, we find two overall causes for

significant many-body interactions. Firstly, many-body induction propagates

in non-branching paths, i.e, in a chain-like manner. Secondly, linear arrange-

ments of bodies promote the alignment of the dipoles to reinforce the many-

body interaction. Consequently, we identified that compact and extended linear

arrangements are preferred to give significant many-body effects. Compact ar-

rangements are favoured due to the presence of many short non-branching paths

connecting the bodies. Extended linear arrangements are also preferred as they

favour the alignment of dipoles. The latter result is not intuitive as these linear

arrangements can extend over large distances but in a directional manner. For

the first time, this study provides a rigorous explanation as to how cooperative

effects provide enhanced stability in helicical structures.

We also tested the effectiveness of εmax in identifying significant many-

body effects. By including a small set of many-body interactions above a cer-

tain cutoff, we are able to cheaply reproduce the total three-body and four-body

interaction energies. The number of many-body interactions included scales lin-

early with the number of bodies, making our method highly suitable in the study

of large chemical systems. Furthermore, the method works for both water clus-

ters and polyglcine secondary structures, demonstrating its universal nature. In

conclusion, we have provided an explanation for the propagation of many-body

effects, which we believe will have far-reaching impact in the study of large

chemical systems, ranging from the condensed phase to large biomolecules.
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6 | CONCLUDING REMARKS

Throughout this thesis, we proposed various methodologies with the aim of

lowering the computational cost in the study of large water clusters and large

chemical systems in general. Our tools of choice are the many-body expansion

(MBE) and perturbation theory (PT). The study of basis set superposition effect

(BSSE) in the MBE spanned the Chapters 3 and 4 while the use of PT to identify

significant many-body effects was covered in Chapter 5.

At the beginning, our efforts were focussed on the refinement of existing

fragmentation methods to cheaply reproduce the total energy of large water clus-

ters. During this process, we stumbled upon a distressing observation that the

MBE does not converge rapidly by the four-body term as we initially hypoth-

esized. More alarmingly, the errors of truncating the MBE grew with system

size. We later identified that this is due to the BSSE associated with diffuse

functions, which is highly-many-body in nature. This was verified through the

analysis of the molecular orbital coefficients where the contributions of diffuse

ghost functions can be found simultaneously at many bodies. Furthermore, the

poor convergence of the MBE disappears when the bodies are pulled apart, in

agreement that BSSE decays rapidly with inter-boy distances. Thus, two obvi-

ous ways to restore the rapid convergence of the MBE is to omit the use of dif-

fuse basis functions or employ a larger basis set that is more complete. Notably,

the placement of a charge field, a common practice in fragmentation methods,
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do not resolve this problem. This is not surprising as the charges are used to

recover physical many-body effects and cannot compensate for BSSE. Further-

more, we found that the consistent use of the cluster basis in all the electronic

structure calculations also removes the poor convergence of the MBE.

While we have identified that the diffuse basis functions are the cause for

poor MBE convergence, there are still many unanswered questions regarding

many-body BSSE. In the previous chapter, we found that the many-body con-

tributions computed in the BSSE-prone nuclei-centred basis exhibit rapid MBE

convergence in the absence of diffuse functions. Furthermore, the use of the

subcluster basis led to rapid convergence albeit to an incorrect value, i.e., not

the total energy. The latter observation suggests that the difference between the

many-body contributions computed in the cluster basis and the subcluster basis

has to be responsible for the poor MBE convergence. Within the framework

of our proposed many-ghost many-body expansion (MGMBE), this difference

would be called the basis set extension effects. The basis set extension effects

correspond to the borrowing of basis functions outside of the subcluster (from

the cluster basis) to improve the quality of the many-body interactions. They

are necessary to recover the total energy using a many-body approach. Un-

fortunately, in the presence of diffuse functions, these extension effects in the

one-body energy are highly many-body, extending up to numerous ghost-bodies

simultaneously. This is the true cause of the poor convergence of the MBE. No-

tably, the extension effects only extend up to several bodies in the absence of

diffuse functions. In contrast, the BSSE that most quantum chemists are famil-

iar with, where there is an imbalance in the number of basis functions, is called

the basis set imbalance error. Surprisingly, in the nuclei-centred basis, the basis

set imbalance error cancels exactly the basis set extension effects, resulting in a

rapid MBE convergence.

A major drawback of the MBE is the sheer number of many-body in-

teractions to be considered. Intuitively, we expect a large majority of these
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many-body contributions to be insignificant especially with increasing cluster

size. While it is straightforward to determine whether a two-body interaction

is significant based on the inter-body distance, a selection criterion is not obvi-

ous for higher number of bodies given the high dimensionality in the arrange-

ments. Thus, we rigorously derived the leading three-body and four-body terms

in many-body induction. These terms will serve as a parameter to estimate the

maximum possible many-body effects in a given many-body arrangement. We

used this new parameter to identify the significant many-body effects and suc-

cessfully reproduced the total three-body and four-body interactions cheaply.

More importantly, we found that many-body induction manifest in a chain-like

manner. Consequently, the compact arrangements and extended linear arrange-

ments are favoured to give significant many-body effects. The latter result is not

intuitive as it implies that many-body effects can extend over large distances in

a directional manner. This can be rationalized by linear arrangements favouring

the strong alignment of dipole to reinforce induction and the arrangement of the

bodies are consistent with the way many-body induction manifest.

By elucidating the behaviour of many-body BSSE, we provide a sound

theoretical foundation for the proper implementation of the MBE in the study of

large chemical systems. This is useful in assessing the accuracy of fragmenta-

tion methods as we can identify the errors associated with BSSE and errors as-

sociated with the method itself. The ability to rigorously identify the many-body

interactions also provide a non-empirical approach to design new fragmentation

methods. Furthermore, the computational cost of many other MBE-based appli-

cations can be drastically reduced. Although the studies presented in this thesis

are focussed on water clusters, they are undeniably applicable to other large

chemical systems, ranging from large biomolecules in biochemistry to other

molecular clusters in condensed phase physics.

Some possible future work includes the use of high-rank multipolar elec-

trostatics to accurately reproduce some of the many-body interactions where
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the bodies are separated at an intermediate range. This will further reduce the

number of many-body interactions that have to be treated quantum mechani-

cally. Furthermore, we identified that the one-body energy should be computed

in the cluster basis to recover all the basis set extension effects. However, the

above calculation becomes computationally intractable with increasing cluster

size due to the increase in the number of basis functions. Perhaps approxi-

mations can be developed to approximate the one-body energy in the cluster

basis. Some criterion can be developed to identify the nearer ghost functions

that would contribute more significantly to the extension effects.

With the findings in this thesis and the proposed future work, highly ac-

curate quantum chemical calculations of large water clusters become possible,

allowing us to better understand the mysteries behind this simple liquid.
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A | SUPPLEMENTARY FIGURES

AND TABLES

Here, we include supplementary figures which contains similar trends as some
of the figures presented in the main text. For the convenience of the reader, the
list of supplementary figures and their corresponding counterparts in the main
text is listed below.

Figure

Main text Appendix Brief description

3.4 A.1 Convergence of the MBE for the 10OB (in
Main text) and 10OB (in Appendix) decamer

4.3 A.2 BSEE and the total k-body interaction for the
cage (in Main text) and prism (in Appendix)
isomer of (H2O)6

4.5 A.3 Comparison of the total k-body interaction
computed using the subcluster basis (in Main
text) and cluster basis (in Appendix)

5.1 A.4 The two models used to describe the three-
body GA dataset is further described here

5.4a A.5 Comparison of |ε(3)actual| with |ε(3)max|. Data for
one cluster is shown in Main text while data
for all five clusters are in the Appendix

5.4b A.6 Comparison of |ε(4)actual| with |ε(4)max|. Data for
one cluster is shown in Main text while data
for all five clusters are in the Appendix

Furthermore, tables with long lists of parameters are found here.
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A.1 Additional Figures
A.1.1 Convergence of MBE for 10OB
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Figure A.1: Convergence of the MBE for 10OB using various basis sets. Solid lines
represent the use of the k-mer basis while dashed lines represent the use of the cluster
basis.
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A.1.2 BSEE and Total Many-body Interaction in Prism Water
Hexamer
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Figure A.2: The (a�c) BSEE in the total k-body interaction, E(k)
ext., and the (d�f)

total k-body interaction for the prism isomer of (H
2
O)

6
with increasing basis set

quality at MP2/AVXZ. The total k-body interaction are computed using various
location basis, namely the nuclei-centred (N), subcluster (S) and cluster (C) basis
described in Section 4.2.2 to determine the e�ects of many-body BSSE on the many-
body interactions. In particular, the lines for the cluster basis are dashed to show
clearly the similarities between that and the subcluster basis results. The E(4)

ext. and
total four-body interaction computed using the subcluster basis at MP2/AV5Z are
omitted due to steep computational cost.

143



SUPPLEMENTARY FIGURES AND TABLES

A.1.3 Comparison of Total Many-body Energy Computed using
Cluster Basis
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Figure A.3: Comparison of the total k-body interaction computed using the cluster
basis per H

2
O monomer for water clusters of increasing size, (H

2
O)

6-16
, computed

at various levels of theory and basis sets.
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A.1.4 Modelling the Three-body GA Dataset
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Figure A.4: The dipole orientations in the three-body GA dataset exhibits two
di�erent behaviour depending on θ . (a) The dipoles either point to the circumcentre
of the triangle formed by the three bodies ABC when θ is small or become aligned
along AC with some o�set related to the angles of the triangle ABC when θ is large.
The two models are then tested on the θ used in the three-body GA dataset with
(b) RAB=4.0Å, RBC=4.0Å and (c) RAB=3.5Å, RBC=4.5Å.
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A.1.5 Comparison of the Actual and Maximum Possible Many-
body Interaction

Figure A.5: Comparison of the magnitude of the actual three-body interactions,
|εactual|, with that of the predicted maximum three-body interactions, |εmax| for water
clusters of di�erent size, including the (a) (H

2
O)

16
, (b) (H

2
O)

20
, (c) (H

2
O)

32
and

(d) (H
2
O)

40
clusters.
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Figure A.6: Comparison of the magnitude of the actual four-body interactions,
|εactual|, with that of the predicted maximum four-body interactions, |εmax| for water
clusters of di�erent size, including the (a) (H

2
O)

16
, (b) (H

2
O)

20
, (c) (H

2
O)

32
and

(d) (H
2
O)

40
clusters.
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A.2 Additional Tables
A.2.1 Fitted Coefficients for the Orientational Components of

Four-body Interactions

For the four-body interactions, the orientational components obtained from GA
are fitted to a sum of product of cosine functions of the following form

∑
1≤i, j,k≤3

ci, j,k cosi
θ1 cos j

θ2 cosk
φ (A.1)

Since i, j,k runs from 1 to 3, there are a total of 33 = 27 ci, j,k coefficients.
The fitted coefficients are given in Table A.1.

Table A.1: Fitted ci, j,k coe�cients for eq (A.1).

i j k ci, j,k i j k ci, j,k i j k ci, j,k

0 0 0 2.408239 0 0 1 0.405611 0 0 2 0.457653

1 0 0 0.223393 1 0 1 0.574079 1 0 2 -0.071959

2 0 0 1.433820 2 0 1 -0.109810 2 0 2 -0.509253

0 1 0 0.223393 0 1 1 0.574079 0 1 2 -0.071959

1 1 0 2.106957 1 1 1 3.473203 1 1 2 0.626254

2 1 0 -0.084414 2 1 1 1.774932 2 1 2 0.862841

0 2 0 1.433820 0 2 1 -0.109810 0 2 2 -0.509254

1 2 0 -0.084413 1 2 1 1.774932 1 2 2 0.862841

2 2 0 0.962129 2 2 1 1.675623 2 2 2 1.555943
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B | MATHEMATICAL

DERIVATIONS

This part of the Appendix includes long and tedious mathematical derivations
of the key equations presented in the thesis.

B.1 Many-ghost Many-body Expansion
Before proceeding to derive the working equations for the MBE and MGMBE,
we need to introduce a “general notation” in place of the specific notation used
in the chapter, which we shall call the “chapter notation” (Table B.1).

Table B.1: List of selected quantities in the chapter (in chapter notation) and their
corresponding general notation for the derivation of working equations.

Chapter General Definition

EA···K E(k)
j Total energy of the j-th k-mer subcluster A · · ·K cal-

culated in its own basis

EA···KL···M E(k,m)
j,β Total energy of the j-th k-mer subcluster A · · ·K cal-

culated in the presence of ghost functions centred on
the β -th set of m-ghost-bodies L · · ·M

ε ′A···K ε
′(k)
i k-body interaction of the i-th k-mer subcluster

A · · ·K computed in the nuclei-centred basis

εA···K ε
(k)
i k-body interaction of the i-th k-mer subcluster

A · · ·K computed in the subcluster basis

εA···KL···M ε
(k,m)
i,α k-body interaction of the i-th k-mer subcluster

A · · ·K computed using total energies calculated
with basis functions centred on both A · · ·K and the
α-th set of m-ghost-bodies L · · ·M

ξA···K,L···M ξ
(k,m)
i,α Basis Set Extension Effect (BSEE) from the α-th set

of m-ghost-bodies L · · ·M in the k-body interaction
of the i-th k-mer subcluster A · · ·K
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The general notation focusses on the number of monomer bodies and
ghost-bodies involved—denoted by the superscript—allowing for a more gen-
eral derivation up to any arbitrary number of bodies. Furthermore, the identity
of the monomer bodies and ghost-bodies are not given explicitly in the general
notation but represented by an integer variable denoted in the subscript. Also,
the subscript is dropped when all the terms of the same type are summed, e.g,
ε(k) gives the total k-body interaction computed in the subcluster basis.

B.1.1 Preliminaries: Many-body Interactions

Firstly, we need to establish compact equations for the total many-body inter-
actions computed in the various basis (nuclei-centred, subcluster and cluster)to
establish the cancellation of terms in the MGMBE. In the general notation (Ta-
ble B.1), the k-body interaction of the i-th k-mer subcluster computed in the
nuclei-centred basis, ε

′(k)
i , can be expressed in terms of total energies

ε
′(k)
i =

k−1

∑
g=0

(−1)g
( k

k−g)

∑
j=1

E(k−g)
j (B.1)

where E(k−g)
j is the total energy of the j-th (k− g)-mer with monomers taken

from the i-th k-mer subcluster. For example, in computing the three-body in-
teraction of timer ABC, g = 1 would correspond to dimers (k− g = 2) taken
from ABC, which could be either AB, AC or BC. The first term, where g = 0
and j = 1, would uniquely correspond to the total energy of the subcluster,
i.e., E(k)

1 = E(k)
i . To obtain the total k-body interaction computed in the nuclei-

centred basis, ε ′(k), we need to sum all
(n

k

)
individual k-body interactions

ε
′(k) =

(n
k)

∑
i=1

ε
′(k)
i (B.2)

When summing the individual many-body interactions, there are total energy
terms repeated for subclusters with overlapping monomers. For example, EA
is involved in computing ε ′AB, ε ′AC and in fact, all two-body interactions of the
form ε ′AX. Instead of performing tedious—and computationally inefficient—
bookkeeping of the total energies involved for individual many-body interac-
tions, we exploit the symmetry that each total energy term appears an equal
number of times when the terms are collected to give ε ′(k).

For ε ′(k), there comprises
(n

k

)
individual ε

′(k)
i given by eq (B.2) which in

turn contains
( k

k−g

)
total energy terms of the form E(k−g)

j given by eq (B.1). This

implies that in computing ε ′(k), there are a total of
(n

k

)
·
( k

k−g

)
total energy terms

of the form E(k−g)
j . Since such terms involve (k−g) monomers, there are only( n

k−g

)
of such unique E(k−g)

j terms. Thus, each of these total energy terms would
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be repeated

(n
k

)
·
( k

k−g

)( n
k−g

) =
(n− k+g)!
(n− k)!g!

=

(
n− k+g

g

)
times. In the general notation (Table B.1), we can combine eq (B.1) and (B.2)
to give a compact expression of the ε ′(k)

ε
′(k) =

k−1

∑
g=0

(−1)g
(

n− k+g
g

)
E(k−g) (B.3)

where E(k−g) refers to the sum of the total energies of each (k−g)-mer, which
can be trivially collected. Note that eq (B.3) is similar to eq(3.3) where the
lower-body energies in the latter equation is replaced with total energy terms.
Furthermore, eq (B.3) also apply to many-body interactions computed in the
cluster basis where the many-body interactions share the same total energy
terms. From the general expression in eq (B.3), we can also write out the total
k-body interaction explicitly up to the four-body terms

ε
′(1) = E(1) (B.4a)

ε
′(2) = E(2)− (n−1)E(1) (B.4b)

ε
′(3) = E(3)− (n−2)E(2)+

(n−1)(n−2)
2

E(1) (B.4c)

ε
′(4) = E(4)− (n−3)E(3)+

(n−2)(n−3)
2

E(2)− (n−1)(n−2)(n−3)
6

E(1)

(B.4d)

When the subcluster basis is used to compute many-body interactions, the
total energies cannot be reused. For example, EAB 6= EAC in computing εAB and
εAC. Thus, the compact expression for the total k-body interaction computed in
the subcluster basis, ε(k), would be different from the nuclei-centred counterpart
derived earlier. In computing the ε(k), a total of

(n
k

)
·
( k

k−g

)
total energy terms are

involved. For the many-body interaction computed in the subcluster basis, total
energy terms of the form E(k−g,g)

j,β will be calculated where there are (k− g)-
bodies and g-ghost-bodies. Interestingly, the number of unique terms is also(n

k

)
·
( k

k−g

)
. We obtain this by first considering that both the actual bodies and

ghost-bodies contribute to the subcluster basis and there are
(n

k

)
ways to pick

the subcluster basis of a k-mer subcluster. Subsequently, there are
( k

k−g

)
ways

to pick out the (k−g) actual bodies for placing the nuclei. Thus, each E(k−g,g)
j,β

total energy term only appears once when collected. In the general notation
(Table B.1), the compact expression of the ε(k) is

ε
(k) =

k−1

∑
g=0

(−1)gE(k−g,g) (B.5)
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where E(k−g,g) refers to the sum of the total energies of each (k−g)-mer calcu-
lated in the presence of g-ghost-bodies. From eq (B.5), we can also write out
explicitly the total k-body interaction computed in the subcluster basis up to the
four-body terms

ε
(1) = E(1,0) (B.6a)

ε
(2) = E(2,0)−E(1,1) (B.6b)

ε
(3) = E(3,0)−E(2,1)+E(1,2) (B.6c)

ε
(4) = E(4,0)−E(3,1)+E(2,1)−E(1,3) (B.6d)

B.1.2 Working Equations for the MGMBE
In the MGMBE, many total energy terms are repeated when the different BSEE
terms are summed. Here, we present the working equations for the total BSEE
from m-ghost-bodies in the total k-body interaction, ξ (k,m). Furthermore, we
describe the cancellation of total energy terms involving ghost functions in the
MGMBE.

The MGMBE performs a two-dimensional many-body decomposition of
the total energy of a cluster as shown in eq (4.9) in the chapter where the terms
are arranged in a two-dimensional array. In the general notation (Table B.1),
eq (4.9) in the chapter can be compactly written as

Etot =
n

∑
k=1

n−k

∑
λ=0

(n
k)·(

n−k
m )

∑
i,α

ξ
(k,m)
i,α (B.7)

where the first two sums represent the two-dimensional decomposition while the
last sum are essentially the BSEE terms arranged in a two-dimensional array in

eq (4.9) in the chapter, i.e. ∑
(n

k)·(
n−k

m )
i,α ξ

(k,m)
i,α = ∑

(n
k)·(

n−k
m )

A<···<K,L<···<M ξA···KL···M. In
fact, these terms are the total BSEE from the m-ghost-bodies in the total k-body
interaction

ξ
(k,m) =

(n
k)·(

n−k
m )

∑
i,α

ξ
(k,m)
i,α (B.8)

In eq (4.10) in the chapter, we expressed the individual BSEE terms in terms
of total energies for which k+m ≤ 4. In the general notation (Table B.1), the
BSEE from the α-th set of m-ghost-bodies in the k-body interaction of the i-th
k-mer subcluster, ξ

(k,m)
i,α , can be expressed as

ξ
(k,m)
i,α =

m

∑
γ=0

(−1)γ

( m
m−γ)

∑
β=1

ε
(k,m−γ)
i,β (B.9)
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where ε
(k,m−γ)
i,β refers to the k-body interaction of the i-th k-mer subcluster com-

puted in the presence of the β -th combination of (m− γ) ghost-bodies taken
from the α-th set of m-ghost-bodies. Since ε

(k,m−γ)
i,β is a many-body interaction,

it follows a form similar to eq (B.1) and thus can be further expressed in terms
of total energies

ε
(k,m−γ)
i,β =

k−1

∑
g=0

(−1)g
( k

k−g)

∑
j=1

E(k−g,g+m−γ)
j,β (B.10)

By inspecting eq (B.8), (B.9) and (B.10), we observe that in ξ (k,m), there is a
total of

(n
k

)
·
(n−k

m

)
·
( m

m−γ

)
·
( k

k−g

)
total energy terms of the form E(k−g,g+m−γ)

j,β .

The first two terms in the product,
(n

k

)
·
(n−k

m

)
originates from eq (B.8) while the

last two terms,
( m

m−γ

)
and

( k
k−g

)
, arises from eq (B.9) and (B.10) respectively.

Next, we consider the number of unique total energy terms. We first note that
there is a total of (k− g)+ (g+m− γ) = (k+m− γ) actual bodies and ghost-
bodies. Thus, the basis functions are centred on (k+m− γ) monomers while
nuclei are only placed on (k− g) monomers. Thus, there are

( n
k+m−γ

)
ways to

place the basis functions, followed by
(k+m−γ

k−g

)
to choose the nuclei, giving a

total of
( n

k+m−γ

)
·
(k+m−γ

k−g

)
unique total energy terms. Thus, each of these terms

would be repeated

(n
k

)
·
(n−k

m

)
·
( m

m−γ

)
·
( k

k−g

)( n
k+m−γ

)
·
(k+m−γ

k−g

) =
(n− k−m+ γ)!
(n− k−m)!γ!

· (m− γ +g)!
(m− γ)!g!

=

(
n− k−m+ γ

γ

)
·
(

m− γ +g
g

)

times. Now, we can write a compact expression for ξ (k,m)

ξ
(k,m) =

m

∑
γ=0

(−1)γ
k−1

∑
g=0

(−1)g
(

n− k−m+ γ

γ

)
·
(

m− γ +g
g

)
E(k−g,g+m−γ)

(B.11)

where E(k−g,g+m−γ) refers to the sum of total energies of each (k−g)-mer cal-
culated in the presence of (g+m− γ)-ghost-bodies. Note that when m = 0,
there is no BSEE from any ghost-body and we instead obtain the total k-body
interaction computed in the subcluster basis, i.e., ξ (k,0) = ε(k) and the working
equations reduces to eq (B.5).

From eq (B.11), we write down explicitly the working equations for the
total BSEE from m-ghost-bodies in the total k-body interaction, ξ (k,m), for the
various combinations of k and m used in the chapter, namely k+m≤ 4. We first
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begin with k = 1. When k = 1, we have

ξ
(1,m) =

m

∑
γ=0

(−1)γ

(
n−1−m+ γ

γ

)
E(1,m−γ) (B.12)

in which, we have the subcases where m = 0,1,2,3

ξ
(1,0) = E(1,0) (B.13a)

ξ
(1,1) = E(1,1)−

(
n−1

1

)
E(1,0) (B.13b)

ξ
(1,2) = E(1,2)−

(
n−2

1

)
E(1,1)+

(
n−1

2

)
E(1,0) (B.13c)

ξ
(1,3) = E(1,3)−

(
n−3

1

)
E(1,2)+

(
n−2

2

)
E(1,1)−

(
n−1

3

)
E(1,0) (B.13d)

When k = 2, we have (with the summation over g fully written out)

ξ
(2,m) =

m

∑
γ=0

(−1)γ

(
n−2−m+ γ

γ

)
E(2,m−γ)

−
m

∑
γ=0

(−1)γ

(
n−2−m+ γ

γ

)
·
(

m− γ +1
1

)
E(1,1+m−γ) (B.14)

in which, we have the subcases where m = 0,1,2

ξ
(2,0) = E(2,0)−E(1,1) (B.15a)

ξ
(2,1) =

{
E(2,1)−

(
n−2

1

)
E(2,0)

}
−
{

2E(1,2)−
(

n−2
1

)
E(1,1)

}
(B.15b)

ξ
(2,2) =

{
E(2,2)−

(
n−3

1

)
E(2,1)+

(
n−2

2

)
E(2,0)

}
−
{

3E(1,3)−
(

n−3
1

)
·2E(1,2)+

(
n−2

2

)
E(1,1)

}
(B.15c)

When k = 3, we have (with the summation over m fully written out)
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ξ
(3,m) =

m

∑
γ=0

(−1)γ

(
n−3−m+ γ

γ

)
E(3,m−γ)

−
m

∑
γ=0

(−1)γ

(
n−3−m+ γ

γ

)
·
(

m− γ +1
1

)
E(2,1+m−γ)

+
m

∑
γ=0

(−1)γ

(
n−3−m+ γ

γ

)
·
(

m− γ +2
2

)
E(1,2+m−γ) (B.16)

in which, we have the subcases where m = 0,1

ξ
(3,0) = E(3,0)−E(2,1)+E(1,2) (B.17a)

ξ
(3,1) =

{
E(3,1)−

(
n−3

1

)
E(3,0)

}
−
{

2E(2,2)−
(

n−3
1

)
E(2,1)

}
+

{
3E(1,3)−

(
n−3

1

)
E(1,2)

}
(B.17b)

When k = 4 and λ = 0, we have

ξ
(4,0) = E(4,0)−E(3,1)+E(2,2)−E(1,3) (B.18)

B.1.3 Cancellation of Terms the MGMBE
Careful analysis of the working equations of the ξ (k,m) in eq (B.11) revealed that
all the total energies involving any ghost functions vanishes when we sum the
ξ (k,m) terms with k+m = α , where α is a constant. We show this cancellation
of terms explicitly for cases where α = 2,3,4

ξ
(2,0)+ξ

(1,1) = E(2,0)−
(

n−1
1

)
E(1,0) (B.19a)

ξ
(3,0)+ξ

(2,1)+ξ
(1,2) = E(3,0)−

(
n−2

1

)
E(2,0)+

(
n−1

2

)
E(1,0) (B.19b)

ξ
(4,0)+ · · ·+ξ

(1,3) = E(4,0)−
(

n−3
1

)
E(3,0)+

(
n−2

2

)
E(2,0)−

(
n−1

3

)
E(1,0)

(B.19c)

From eq (B.19a–c), we observe that the second digit in the superscript in all the
total energy terms are zero, of the form E(k,0), indicating that there are no ghost-
bodies involved. In fact, the resulting expressions in each of the equation is
equivalent to the k-body interaction computed in the nuclei-centred basis, ε ′(k),
given in eq (B.3). This is a surprising and important result and the implications
are discussed in the chapter.

155



MATHEMATICAL DERIVATIONS

B.2 Derivation of Leading Many-body Terms

Using perturbation theory,48 we derive the first-order and second-order induc-
tion energy between k bodies, k = 2− 4. The leading terms from these energy
expressions will reveal the most important contribution to the k-body interac-
tion. Furthermore, we will identify trends that determine the coupling between
bodies. Here, we consider only the dipole-dipole induction, which constitutes
the most important many-body effect in highly polar molecules. Furthermore,
we assume that the polarizability is isotropic and thus there is no change in the
direction of the induced dipole. These equations can be generalized for any
arbitrary-rank multipoles, for example monopole or quadrupole, by modifying
the interaction tensor, T AB

tu , which mainly affects the exponent of the inter-body
distances in the denominator, R−n. Throughout the entire derivation section,
Einstein summation convention will be employed that implies summation over
terms with the same indices.

The leading three-body and four-body terms are found in eq (B.27) and
eq (B.36) respectively.

B.2.1 Prelude: The Two-body Terms

Consider two bodies A and B. The potential gradient at A due to B, V A(0)
i (B),

is given by

V A(0)
t (B) = T AB

tu µ
B
u =

T AB
tu

RAB
3 µ

B
u (B.20)

where t,u ∈ {x,y,z} is the direction of the potential gradient in the molecule
fixed, i.e., local axes of A and B respectively. T AB

tu is the dipole-dipole interac-
tion tensor while T AB

tu gives the orientational part. The (0) in the superscript of
V A(0)

t (B) indicates that this is the zero-order potential gradient due to the perma-
nent dipole of B. The order here indicates the number of polarizations applied.
Also, note that the potential gradient is the negative of the more familiar electric
field. A similar expression exist for V B(0)

u (A).

This potential gradient, V A(0)
t (B), induces a dipole in A

∆µ
A(1)
t (B) =−α

AV A(0)
t (B) (B.21)

where αA is the isotropic polarizability of A and the (1) in the superscript of
∆µ

A(1)
t (B) indicates that this induced dipole at A is obtained from the first-order

induction. As we have assumed an isotropic polarizability, the induced dipole is
in the same direction as the potential gradient, which need not be so in general.

This induced dipole, ∆µ
A(1)
t (B), then interacts with the potential gradient

to give the first-order induction energy at A due to B
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EA(1)
ind (B) =

1
2

∆µ
A(1)
t (B)V A(0)

t (B)

=−1
2

α
A
{

V A(0)
t (B)

}2 (B.22)

B.2.2 The Leading Three-body Contributions
Next, consider how the first-order induction energy at A changes when a third
body C is present. Now there is an additional field at A due to C which has a
similar form as eq (B.20) and the new total field at A due to both B and C is
simply the vectorial sum

V A(0)
t (B,C) =V A(0)

t (B)+V A(0)
t (C) (B.23)

In eq (B.22), we have purposefully written EA(1)
ind (B) in terms of αA and

V A(0)
t (B). When a third body C is present, EA(1)

ind (B,C) can be written in a

similar fashion by replacing the potential gradient V A(0)
t (B) with V A(0)

t (B,C).
Thus, the first-order induction at A due to B and C is

EA(1)
ind (B,C) =−1

2
α

A
{

V A(0)
t (B)+V A(0)

t (C)
}2

= EA(1)
ind (B)+EA(1)

ind (C)−V A(0)
t (C)αAV A(0)

t (B)
(B.24)

We observe that there are additional terms which are not present if A in-
teracted with B in the absence of C. These are the three-body contributions to
the induction energy at A

ε
A(1)
3B (B,C) =−V A(0)

t (C)αAV A(0)
t (B) (B.25)

Analogous expressions exist for the induction energy at B and C as well.
To obtain the three-body first-order induction energy, we sum the contributions
from A, B and C, which is given by

ε
tot(1)
3B =−V A(0)

t (C)αAV A(0)
t (B)−V B(0)

u (A)αBV B(0)
u (C)−V C(0)

v (B)αCV C(0)
v (A)

=−µC
v T CA

vt αAT AB
tu µB

u

RCA
3RAB

3 − µA
t T AB

tu αBT BC
uv µC

v

RAB
3RBC

3 − µB
u T BC

uv αCT CA
vt µA

t

RBC
3RCA

3

(B.26)

where v ∈ {x,y,z} refers to the direction of the potential gradient in the local
axes of C.

In the special case where A, B and C are identical molecules, the dipoles
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and polarizabilities would be the same and eq (B.26) simplifies to

ε
tot(1)
3B =−αµ

2

(
T CA

z′t T AB
tz

RCA
3RAB

3 +
T AB

z′u T BC
uz

RAB
3RBC

3 +
T BC

z′v T CA
vz

RBC
3RCA

3

)
(B.27)

which are the leading three-body contributions to the many-body induction. As
we will see later, higher-order induction also introduces three-body contribu-
tions but the additional terms contains additional R−3 terms. Thus, eq (B.27)
contains the three-body contributions that decay the slowest with inter-body
distance. Furthermore, the three separate terms in eq (B.27) represent the three
different non-branching paths in the leading three-body contributions.

Now, let us understand the origin of the many-body contributions. When
the sum of the potential gradients are squared in eq (B.24), there is a loss of
linearity which gave rise to cross terms as shown in eq (B.25). These cross
terms are the origins of the three-body induction energy. Careful inspection re-
vealed that each of the cross terms have the potential gradients terms centred
at particular body. For example, both V A(0)

t (C) and V A(0)
t (B) in eq (B.25) are

potential gradients terms centred at A but due to the multipoles of different bod-
ies, namely C and B respectively. Consequently, the powers of intermolecular
separation in the denominator of these cross terms, i.e., the R−3

CAR−3
AB terms, have

to share a common centre, specifically the body at which the potential gradients
are centred. We will make use of this observation in the next subsection.

B.2.3 Four-body Contributions

No Four-body Contributions in First-order Induction

Now we consider how first-order induction at A changes when a fourth body D
is present. A fourth body alters the three-body treatment by having an additional
field at A due to D. Following the same arguments as eq (B.24), the first-order
induction energy at A is

EA(1)
ind (B,C,D) = EA(1)

ind (B)+EA(1)
ind (C)+EA(1)

ind (D)

−V A(0)
t (D)αAV A(0)

t (B)

−V A(0)
t (D)αAV A(0)

t (C)

−V A(0)
t (C)αAV A(0)

t (B)

(B.28)

Similar to the three-body case, we observe cross terms that are of the form
V A(0)

t (C)αAV A(0)
t (B) from the loss of linearity. However, these cross terms

only involve three bodies simultaneously, i.e, they are strictly three-body. Fur-
thermore, recall that the powers of intermolecular separation in the denominator
share a common centre. Thus, only a maximum of three centres can be involved
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and the four-body contribution to the first-order induction energy is zero.

ε
tot(1)
4B = 0 (B.29)

Eq (B.28) can be extended to more bodies and it is clear that there are no
n-body interactions, n≥ 4, in the first-order induction energy.

Leading Four-body Terms in Second-order Induction

To obtain the leading four-body contribution in the induction energy, we look
at the second order induction energy. Upon first-order induction, the first-order
total dipole of B is being modified with an additional induced dipole due to A,
C and D

µ
B
u +∆µ

B(1)
u (A,C,D) = µ

B
u −α

B
{

V B(0)
u (A)+V B(0)

u (C)+V B(0)
u (D)

}
(B.30)

and analogous expressions exist for the first-order total dipole of A, C and D.
Consequently, the potential gradient at A due to B, which is of the same form as
eq (B.20) gets modified to

V A(1)
t (B) =

T AB
tu

RAB
3

{
µ

B
u +∆µ

B(1)
u (A,C,D)

}
=

T AB
tu

RAB
3

{
µ

B
u −α

BV B(0)
u (A)−α

BV B(0)
u (C)−α

BV B(0)
u (D)

}
=

T AB
tu µB

u

RAB
3 −

T AB
tu αBT BA

ut ′ µA
t ′

RAB
6 − T AB

tu αBT BC
uv µC

v

RAB
3RBC

3 − T AB
tu αBT BD

uw µD
w

RAB
3RBD

3

(B.31)

where w ∈ {x,y,z} refers to the direction of the potential gradient in the local
axes of D and the superscript (1) in V A(1)

i (B) indicates that this is the first-order
potential gradient at A due to B, i.e., the potential gradient at A due to the first-
order total dipole of B. Let us examine the final expression of eq (B.31) in detail.
The first term is due to the permanent dipole of B and is already present in the
zero-order potential gradient, V A(0)

t (B), given in eq (B.20). The remaining terms
originate from the induced dipole of B and thus have in common the isotropic
polarizability of B, αB.

Now, let us first write the second-order induction energy at A due to B, C
and D in terms of potential gradients
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EA(2)
ind (B,C,D) =

1
2

∆µ
A(2)
t (B,C,D)V A(0)

t (B,C,D)

=−1
2

V A(1)
t (B,C,D)αAV A(0)

t (B,C,D)

=−1
2

α
A{

V A(1)
t (B)V A(0)

t (B)+V A(1)
t (C)V A(0)

t (C)+V A(1)
t (D)V A(0)

t (D)

+V A(1)
t (C)V A(0)

t (B)+V A(1)
t (D)V A(0)

t (B)+V A(1)
t (D)V A(0)

t (C)

+V A(1)
t (B)V A(0)

t (C)+V A(1)
t (B)V A(0)

t (D)+V A(1)
t (C)V A(0)

t (D)
}

(B.32)

Note that to correctly obtain the second-order induction energy, the second-
order induced dipole has to be applied onto the zero-order/permanent potential
gradient and not a potential gradient of any other order. Unlike eq (B.28), we
cannot easily separate out the two-body components from the repeated-centre
terms, i.e., the V A(1)

t (B)αAV A(0)
t (B) terms. This is because the first-order po-

tential gradient V A(1)
t (B) contains contributions from both two and three bodies

as shown in eq (B.31). Nonetheless, we can analyse separately the repeated-
centre and cross-centre terms to find the leading four-body contributions to the
induction energy.

Let us first expand one of the repeated-centre terms, say

V A(1)
t (B)αAV A(0)

t (B) =

{
µB

u′T
BA

u′t

RBA
3 −

µA
t ′ T

AB
t ′u′ αBT BA

u′t

RBA
6 −

µC
v T CB

vu′ αBT BA
u′t

RCB
3RBA

3

−
µD

w T DB
wu′ αBT BA

u′t

RDB
3RBA

3

}
α

A
{

T AB
tu µB

u

RAB
3

}
=

µB
u′T

BA
u′t αAT AB

tu µB
u

RAB
6 −

µA
t ′ T

AB
t ′u′ αBT BA

u′t αAT AB
tu µB

u

RAB
9

−
µC

v T CB
vu′ αBT BA

u′t αAT AB
tu µB

u

RCB
3RBA

6

−
µD

w T DB
wu′ αBT BA

u′t αAT AB
tu µB

u

RDB
3RBA

6

(B.33)

In the final expression of eq (B.33), the first two terms involves only the bodies
A and B, equating to EA(2)

ind (B) with the terms being the first-order induction

energy and second-order correction respectively. By symmetry, the EA(2)
ind (C)

and EA(2)
ind (D) are found in the V A(1)

t (C)αAV A(0)
t (C) and V A(1)

t (D)αAV A(0)
t (D)

terms respectively. This implies that the two-body components to the induction
energy are only found in the repeated-centre terms in eq (B.32). The latter two
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terms in the final expression of eq (B.33) represent part of the second-order
correction to the three-body induction energy.

Next, we expand one of the cross-centre terms, say

V A(1)
t (C)αAV A(0)

t (B) =

{
µC

v T CA
vt

RCA
3 −

µA
t ′ T

AC
t ′v αCT CA

vt

RCA
6 −

µB
u′T

BC
u′v αCT CA

vt

RBC
3RCA

3

−µD
w T DC

wv αCT CA
vt

RDC
3RCA

3

}
α

A
{

T AB
tu µB

u

RAB
3

}
=

µC
v T CA

vt αAT AB
tu µB

u

RCA
3RAB

3 −
µA

t ′ T
AC

t ′v αCT CA
vt αAT AB

tu µB
u

RCA
6RAB

3

−
µB

u′T
BC

u′v αCT CA
vt αAT AB

tu µB
u

RBC
3RCA

3RAB
3

− µD
w T DC

wv αCT CA
vt αAT AB

tu µB
u

RDC
3RCA

3RAB
3

(B.34)

In the final expression of eq (B.34), the first term is part of the three-
body first-order induction, corresponding to the first term in eq (B.26). The
next two terms then constitute part of the second-order correction to the three-
body induction energy. Notably, the third term represents a cyclic coupling
between three bodies, explicitly the coupling B→C→ A→ B, which is unlike
the previous three-body contributions. The last term is of significance: the first
four-body contribution to the induction energy. All in all, the repeated-centre
terms such as eq (B.33) contains the two-body and three-body contributions
while the cross-centre terms such as eq (B.34) contains the three-body and four-
body contributions.

Let us consolidate all the four-body contributions in the second-order
induction, which are also the leading four-body contributions in many-body
induction. By symmetry, we expect six of these four-body contributions in
EA(2)

ind (B,C,D), one from each of the cross-centre terms, i.e, the last six terms

in eq (B.32). We also need to consider EB(2)
ind (A,C,D), EC(2)

ind (A,B,D) and

ED(2)
ind (A,B,C). Thus, there will be a total of 6×4 = 24 of such four-body con-

tributions in the second-order induction energy. However, since the following
expressions are equivalent,

µD
w T DC

wv αCT CA
vt αAT AB

tu µB
u

RDC
3RCA

3RAB
3 =

µB
u T BA

ut αAT AC
tv αCT CD

vw µD
w

RBA
3RAC

3RCD
3 (B.35)

half of the 24 four-body contributions are equivalent to the other half, giving
only 12 unique terms, corresponding to the 12 non-branching paths. In the
special case where all four bodies are identical, the dipoles and polarizabilities
would be the same and the leading four-body contributions to the many-body
induction is given by
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(B.36)

B.2.4 Summary
Behaviour of Induction

A careful analysis revealed that the terms generated from the k-order correction
to the induction energy, or simply the k-order induction, contain (k+1) dipole-
dipole interaction tensors, corresponding to a L−3(k+1) overall distance depen-
dence, where L is one of the inter-body distances. This originate from there
being k interaction tensors in the k-order induced dipole and one additional in-
teraction tensor when the induced dipole is applied onto the permanent potential
gradient. Since each interaction tensor connects only two bodies, (k+1) inter-
action tensors can provide coupling between at most (k+ 2) bodies. Thus, the
k-order induction can involve at most (k+ 2) bodies. Indeed, this is what we
observe with the leading three-body terms arising from the first-order induction
and having a L−6 overall distance dependence while the four-body counterparts
emerge from second-order induction and have a L−9 overall dependence.

We also observe that two adjacent interaction tensors have to share a com-
mon centre, specifically at the body that is polarized. Mathematically, the po-
larizability of the common centre, say A, is sandwiched between two adjacent
interaction tensors, in the form T CA

vt αAT AB
tu . This results in a path linking all the

bodies. More importantly, only the terminal of this path is allowed to interact
with another body. This is evidenced in both eq (B.33) and eq (B.34) where the
expanded V A(1)

t (X) can only be interacted with at the terminal A. This implies
that the path joining all the bodies contains no branching. This is how induction
propagates.

It should be noted that the the terminal of the induction non-branching
path can be connected to a previously induced body, giving rise to repeated in-
stances of a particular interaction tensor, for example, the last term in eq (B.33).
These terms constitutes the higher-order corrections.
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B.2 DERIVATION OF LEADING MANY-BODY TERMS

Five-and-higher-body Interactions

Following the arguments in Section B.2.4, the five-body interaction would first
appear in the third-order induction, having a L−12 overall distance dependence.
The terms would be of the form

µE
s T ED

sw αDT DC
wv αCT CA

vt αAT AB
tu µB

u

RED
3RDC

3RCA
3RAB

3 (B.37)

Due to the distance dependence, the five-body interaction is often very
weak and negligible in most if not all systems. For example, in water, we
would have µ = 0.8 a.u. and α = 10 a.u. while the T AB can only take a
maximum value of 2. Assuming the typical O–O distance in hydrogen bonded
water molecules (R = 5.2 a.u. ≈ 2.75 Å), eq (B.37) evaluates to be 0.026 m-Eh
or 0.068 kJ mol−1. Due to the R−12 overall dependence, this five-body interac-
tion diminishes rapidly with distance. By increase the distance to be R = 6 a.u.
(about 3.18 Å), the energy drops to 0.004 m-Eh or 0.010 kJ mol−1, making the
five-body interaction almost non-existent! We can extend this analysis further
to six-body interactions. The L−15 overall distance dependence would render
the six-body interactions to be insignificant in all systems.

Thus, we conclude that many-body inductive effects propagate in non-
branching paths. The k-order induction terms contain (k + 1) dipole-dipole
interaction tensors, corresponding to a L−3(k+1) overall distance dependence.
From this, we also deduced that five-body induction interaction are very likely
to be negligible while higher-body effects can be completely ignored.

163



MATHEMATICAL DERIVATIONS

164



C | CD CONTENTS AND

SUPPORTING PUBLICATIONS

C.1 CD Contents
The following files were attached in the CD accompanying this thesis.

Filename Description

thesis.pdf PDF containing a digital copy of this thesis

chp3xyz.pdf PDF containing the Cartesian coordinates of the
molecules studied in Chapter 3

chp4xyz.pdf PDF containing the Cartesian coordinates of the
molecules studied in Chapter 4

chp5xyz.pdf PDF containing the Cartesian coordinates of the
molecules studied in Chapter 5

C.2 Supporting Publications
Here, we attach the following publications which has been covered in this thesis.

1) Ouyang, J.F.; Cvitkovic, M.W.; Bettens, R.P.A. J. Chem. Theory Comput.
2014, 10, 3699–3707.

2) Ouyang, J.F.; Bettens, R.P.A. Chimia 2015, 69, 104–111.

3) Ouyang, J.F.; Bettens, R.P.A. J. Chem. Theory Comput. 2015, 11, 5132–
5143.

165



Trouble with the Many-Body Expansion
John F. Ouyang, Milan W. Cvitkovic, and Ryan P. A. Bettens*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

*S Supporting Information

ABSTRACT: Longstanding conventional wisdom dictates that the widely used
Many-Body Expansion (MBE) converges rapidly by the four-body term when
applied to large chemical systems. We have found, however, that this is not true
for calculations using many common, moderate-sized basis sets such as
6-311++G** and aug-cc-pVDZ. Energy calculations performed on water clusters
using these basis sets showed a deceptively small error when the MBE was
truncated at the three-body level, while inclusion of four- and five-body
contributions drastically increased the error. Moreover, the error per monomer
increases with system size, showing that the MBE is unsuitable to apply to large
chemical systems when using these basis sets. Through a systematic study, we
identified the cause of the poor MBE convergence to be a many-body basis set
superposition effect exacerbated by diffuse functions. This was verified by
analysis of MO coefficients and the behavior of the MBE with increasing
monomer−monomer separation. We also found poor convergence of the MBE
when applied to valence-bonded systems, which has implications for molecular fragmentation methods. The findings in this work
suggest that calculations involving the MBE must be performed using the full-cluster basis set, using basis sets without diffuse
functions, or using a basis set of at least aug-cc-pVTZ quality.

1. INTRODUCTION

The many-body expansion (MBE) is a useful and ubiquitous
formalism in the theoretical study of large chemical
systems.1−12 The MBE expresses the total energy, Etot, of an
n-body system as the sum of one-body, two-body, etc., up to n-
body energy contributions (see next section for a detailed
description). Calculating Etot directly for large systems is often
computationally unaffordable. The benefit of the MBE is that
for many systems Etot can be well approximated by truncating
the expansion to just the first few terms. Truncated MBEs have
found especially widespread use in the study of water clusters,
in which most intermolecular interactions are assumed to be
pairwise additive (i.e., completely captured in an MBE
truncated after the two-body term). The remaining (mostly
inductive) interaction energy is accounted for by the rest of the
terms in the MBE.
A longstanding and crucial question in modeling aqueous

systems is how many terms of the MBE are necessary to
adequately approximate the total energy. The earliest studies
addressing this question were performed on water dimers,
trimers, and tetramers. They found that three-body effects
accounted for about 10% of the interaction energy, and that
four- and higher-body effects were negligible.13,14 Subsequent
work on slightly larger clusters agreed that four- and higher-
body energy contributions were minute.15−20 The most
thorough examination of many-body effects was performed
on water hexamers by Xantheas in 1994, in which he found “the
contribution from four-body and higher terms to be negligible
for these systems.”21

The results from these studies eventually coalesced into an
oft-cited piece of conventional wisdom: that the many-body
expansion for water converges rapidly by the four-body term
and in a well behaved manner.22−24 Indeed, most current ab-
initio-based simulation models use MBEs truncated at three or
occasionally four bodies.25−28

Despite this, in the course of refining our group’s Combined
Fragmentation Method (CFM)11,12 for use with noncovalent
systems, we recently decided to verify the rapid convergence of
the MBE for a few water clusters. We calculated all the terms in
the MBEs of four (H2O)16 clusters with HF/6-31++G**,
expecting, per conventional wisdom, to observe convergence to
the true cluster energy by at most the five-body term
(convergence herein defined as consistently having an error
less than 1 m-Eh). Instead, not only did these MBEs not
converge by anywhere near the five-body term, the convergence
was notably erratic (Figure 1). Particularly worrying was that
while truncating the many-body expansion at the four-body
term led to a decent result (3.2−4.2 m-Eh error for
4444-a,c1b,cie), inclusion of the five-body term increased the
error (4.6−4.7 m-Eh error for 4444-a,c1b,cie) rather than
further converging the MBE toward the true cluster energy.
We are by no means the first to observe problems with the

MBE.19,31−33 To our knowledge, however, there has been no
thorough examination of under what circumstances the MBE
fails to converge rapidly. In the following sections, we will
demonstrate the wide extent of the MBE convergence problem
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and show that a many-body Basis Set Superposition Effect
(BSSE) is its cause. We stress that we do not question the
accuracy or validity of the many methods that use many-body
expansions, or question previous studies of many-body effects
in water. Our purpose in this work is simply to refine the
conventional wisdom about the MBE.

2. COMPUTATIONAL DETAILS
For a chemical system comprising n monomers, the MBE of the
total energy of the system, Etot, is the finite sum

∑ ε=
=

E
k

n
n k

tot
1

( , )

(1)

where ε(n,k) is the total k-body energy of the system. The total
k-body energy of the system is the component of the total
energy due to all k-body effects, so ε(n,1) is the sum of the
energies of all isolated monomers; ε(n,2) is the sum of the
energies of all dimers minus the energies of the monomers they
comprise, i.e., it is the sum of all the pairwise interaction
energies. Thus, the total interaction energy of the system is
given by

ε ε= −E n
tot\1 tot

( ,1)
(2)

For example, consider a system of three molecules, A, B, and
C. The one-body energy is

ε ε ε ε= + +
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the two-body energy is
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and the three-body energy is
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( ( ) ( )

( )) ( )
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where in all the above, εα
(3,k) and Eα are the k-body energy and

the total energy respectively of the subsystem α of the trimer.
For a more detailed explanation of the MBE, see Xantheas.21

ε(n,k) can also be expressed recursively in terms of the total
energy and lower-body energies34

∑ ∑ε ε= − − !
− ! − !α

α
=

− ⎡
⎣⎢

⎤
⎦⎥E

n i
n k k i

( )
( ) ( )

n k

i

k
n i( , )

1

1
( , )

(6)

where Eα is the total energy of the k-mer subsystem α of which

there are ( )n
k .

We also wish to clarify our use of the term basis set
superposition effect. When small basis sets are used in ab initio
calculations of molecular clusters, basis functions from one
molecule can be utilized by other molecules to compensate for
the incompleteness of their basis set. This results in an
improved description of the wave function of all molecules in
the cluster, which leads to a lowering of the total energy known
as the BSSE. One way of quantifying the BSSE is the
counterpoise (CP) method.35 In the CP method, the familiar
expression for the BSSE in the interaction energy of two
molecules, A and B, is given as

= − + −E E E E Eab a ab b( ( ) ( )) ( ( ) ( ))BSSE A A B B (7)

where a, b, and ab are the basis sets of molecule A, molecule B,
and the cluster AB, respectively. Applying the CP method to
the interaction energy of A and B, the BSSE-free interaction
energy is

ε ε= −

= − + −

= − +

E

E E E E

E E E

ab a b

ab ab ab

( ) ( ( ) ( ))

( ) ( ( ) ( ))

tot\1
CP

tot\1 BSSE

AB A B BSSE

AB A B (8)

Now, all the quantities are calculated consistently in the same
basis, namely the basis set of the cluster AB. The brilliance of
the CP method lies in that it does not try to remove the
lowering of energy in the total energy of the cluster AB due to
sharing of basis functions, which is a natural consequence of the
variational principle. Instead, it does the opposite where the
constituents A and B are calculated in the basis set of the cluster
AB so as to achieve a similar lowering of energy.
In the spirit of the CP method, we define the BSSE for the

sum of the total energies of all ( )n
k k-mers in the cluster

containing n monomers as

‐ ‐= −n kE E Emer mer( ) ( )n k n k n k
BSSE
( , ) ( , ) ( , )

(9)

where n-mer and k-mer are the basis set of the full molecular
cluster (cluster basis) and the basis set of the k monomers
considered (k-mer basis), respectively. Using our definition, the

Figure 1. Slow, erratic convergence of the MBE toward the full-cluster
energy for four (H2O)16 clusters calculated at HF/6-31++G**. The
linear fused cube 4444-a (a) was obtained from Yoo et al.,29 while the
fused pentameric structures c1b (b) and cie (c) were obtained from
Pruitt et al.30 The TIP4P MC structure (d) was obtained by taking a
random fragment of 16 water molecules from a TIP4P Monte Carlo
simulation of 400 water molecules.
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removal of the BSSE in the total energies when performing a
many-body energy decomposition (such as eqs 4 and 5) will
result in all the quantities being calculated consistently in the
cluster basis, ensuring that the MBE remains formally exact.
Indeed, the use of a consistent cluster basis has been employed
previously21,36,37 to obtain BSSE-free many-body energies.
From eq 9, BSSE can be seen as a lowering of the total energy
of the k-mer in the cluster due to the sharing of basis functions
from the remaining n − k monomers. Thus, when k = n, there is
no BSSE, i.e., EBSSE

(n,n) = 0. Notably, this definition of BSSE
reduces to the familiar expression in eq 7 in the context of the
interaction energy of a cluster where EBSSE = EBSSE

(n,1) .
All quantum chemical calculations were performed using the

Gaussian 09 package38 or the MOLPRO suite of programs39 at
the Hartree−Fock (HF) or second-order Møller−Plesset
perturbation (MP2) level of theory. A variety of Pople split-
valence basis sets were used, along with the series of Dunning
correlation-consistent cc-pVXZ basis sets, X = 2−4, labeled
VDZ, VTZ, and VQZ. An “A” or “dA” prepended to these basis
sets indicate they are augmented or doubly augmented,
respectively, with diffuse functions.

3. RESULTS AND DISCUSSION
3.1. Extent of the Poor Convergence of the MBE.

Prompted by our initial results (Figure 1), we attempted to
ascertain the extent of the MBE convergence problem. We
calculated MBEs up to the five-body term for a variety of
(H2O)n, n between 6 and 57, geometries (Table 1). Some
geometries are optimized structures from the literature; others

were taken from TIP4P Monte Carlo simulations. These latter
structures were included as they are representative of
geometries encountered in simulations using truncated-MBE-
based water models. All calculations were performed using the
AVDZ basis set, which is a better yet still computationally
manageable basis set compared to the 6-31++G** basis used in
Figure 1. The MBEs in Table 1 were only calculated to at most
the five-body term due to the steep computational cost of
calculating high-body terms for large clusters: the number of
additional calculations required to obtain the k-body energy of
an n-body system is (n!)/(k!(n − k)!).
Table 1 shows that the MBEs of very small clusters (n = 6−

8) indeed converge by the three-body term, as shown in
previous studies.21 But for larger clusters, while MBEs
truncated at the three-body term appear converged, inclusion
of four- and five-body energies increases the error in the MBE. A
notable oscillatory behavior also occurs wherein the error
changes sign when three- and higher-body energies are
included.
More alarmingly, Figure 2 shows that for the clusters studied

in Table 1, the four- and five-body MBE truncation errors per

monomer increase with system size. This was also noticed
previously in a smaller sample of water clusters by Kulkarni et
al., who called for further examination.19 This is concerning as
the error-per-monomer should be an intensive, not extensive,
property. Otherwise, the scalability of truncated-MBE-based
computational methods, such as fragmentation methods and
bulk material simulations, becomes questionable.

3.2. Cause of the Poor Convergence of the MBE.
Having found the MBE convergence problem to be widespread,
we sought to determine its cause. Initially, we thought the poor
convergence was due to the MBE not properly capturing the
many-body induction energy. Since induction energy is closely
related to the polarizability of the molecules in a system, we
performed MBE calculations for the optimized clusters studied
in Table 1 using a series of basis sets of increasing polarizability
(Table 2). If the poor MBE convergence were due to induction,
the error for truncating the MBE should worsen with increasing
polarizability. It is clear from Table 2 that this is not the case.
Instead, poor MBE convergence only occurred when using

small, incomplete basis sets augmented with diffuse functions,
namely 6-311++G** (P3) and AVDZ (D). This led us to
suspect that the convergence problem was due to BSSE. As a
preliminary test of this, the MBEs in Table 2 were recalculated
using the cluster basis, as opposed to the usual k-mer basis, in
all k-mer calculations. This eliminated the BSSE in the MBE
calculations as explained in section 2. As shown in Table 3, the
poor MBE convergence observed in Table 2 disappeared when

Table 1. Error (m-Eh) in the Total Energy of Water Clusters
(H2O)n, n = 6−57, As Approximated by an MBE Truncated
after the Two- through Five-Body Terma

(H2O)n two-body three-body four-body five-body

6b −9.769 −0.488 −0.006 0.017
8b −16.905 −0.426 0.491 −0.518
10b −23.227 −1.444 1.092 −1.099
12b −26.745 −0.399 1.519 −2.541
14b −27.613 −1.302 2.478 −3.563
16b −37.045 −0.631 2.940 −5.200
18b −37.060 −0.563 3.227 −5.848
20b −46.844 −0.741 4.219 −8.101
24c −106.289 −10.762 3.252
32d −130.794 −6.612 16.895
57e −97.126 −5.401 27.334
6f −1.674 −0.024 0.022 −0.009
8f −2.591 −0.072 0.072 −0.023
10f −1.704 0.041 0.157 −0.098
12f 0.189 0.266 0.274 −0.344
14f −6.870 −0.003 0.391 −0.495
16f −11.364 −0.378 1.153 −1.555
18f −6.524 −0.191 1.382 −2.009
20f −14.251 −0.721 1.692 −2.910
45f −36.931 −2.117 8.373

aAll calculations done at HF/AVDZ level of theory. bOptimized water
clusters obtained from Maheshwary et al.40 cOptimized water clusters
obtained from Gora et al.24 dOptimized water clusters obtained from
Pruitt et al.30 eOptimized water clusters obtained from Richard and
Herbert.41 fDisordered random fragments of (H2O)n obtained from a
TIP4P Monte Carlo simulations. For these disordered fragments, the
MBE truncation errors were averaged over four different random
fragments for n = 6 − 20.

Figure 2. Error-per-monomer of the MBE truncated at the four-body
level (red solid circles) and at the five-body level (blue solid squares)
for optimized water clusters (solid lines) and disordered water clusters
(dashed lines) from Table 1.
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BSSE was removed. (Note that not all terms were recalculated
due to the computational cost of using the full-cluster basis.) In
fact, the BSSE present in the many-body energies can be easily
computed as the difference between the errors in both tables.

To verify that BSSE was the cause of the poor MBE
convergence, we calculated the full MBEs for two (H2O)10
clusters, 10PP and 10OB (Figure 3), using basis sets of

increasing quality and diffusiveness and using both k-mer bases
and cluster bases. MP2 calculations were also performed for the
6-31G** and the 6-311G** series to investigate the effects of
electron correlation on the MBE convergence. As the results
were similar for both 10PP and 10OB clusters, only the errors
of the MBE for 10PP are presented in Figure 4. Results for
10OB are in the Supporting Information.
It is clear from Figure 4 that when the k-mer basis is used

(solid lines), the more diffuse functions that are present, the
worse the MBE convergence (red and orange solid lines), with
the exception of AVTZ and AVQZ. This is all precisely what
one would expect if BSSE were the cause of the poor MBE
convergence: more diffuse functions lead to more overlap of
basis functions between water molecules, increasing BSSE,
except for basis sets like AVTZ and AVQZ which are so
complete that water monomers need not rely on diffuse
functions from their neighbors to describe their wave functions.
Indeed, Truhlar and co-workers have made a similar
observation by examining the effects of increasing augmenta-
tion in the Dunning basis sets.42−44 It should be noted that
there are still tiny oscillations in the MBE truncation errors for
AVTZ and AVQZ in the range of 10−50 μ-Eh, which are hard
to see in the figure. Moreover, when the cluster basis is used
(dashed lines) and BSSE is eliminated, the MBE converges by
the four-body term regardless of the presence of diffuse
functions. Figure 4c−f further show that when electron
correlation is included, the MBE errors are amplified. This
can be attributed to additional BSSE associated with electron
correlationit is known that correlation energy converges
more slowly toward the complete basis set limit than the SCF
energy.45

We also examined the MO coefficients in these calculations
to specifically check whether the BSSE originated from the
diffuse functions. HF calculations were performed using VDZ,
AVDZ, and AVTZ basis sets on an arbitrarily chosen monomer
from 10PP with the ghost basis functions of all other waters in
the cluster present. (The choice of monomer does not
significantly affect the results due to the symmetry of the
cluster.) The distribution of MO coefficients for the occupied
MOs is shown in Figure 5. By performing calculations on a
single monomer in the cluster basis, all observations are solely
due to BSSE and not physical interaction between molecules. If
diffuse functions were causing the BSSEthat is, if water
molecules were using diffuse basis functions centered on other
molecules to improve the description of their own wave

Table 2. Error in Approximating the Total Energy of
Optimized Water Clusters (H2O)n, n = 8−20, with an MBE
Truncated at the Four-Body (4B) and Five-Body (5B) Term
Using Basis Sets of Increasing Isotropic Dipole−Dipole
Polarizability α̅

basis set

P1a P2a P3a Db Tb Qb

α̅ (a.u.) 3.74 4.87 6.50 7.97 8.23 8.30
(H2O)n error (m-Eh)

8 4B 0.01 0.07 1.24 0.49 0.05 0.01
5B 0.02 0.01 −0.67 −0.52 −0.04 0.00

10 4B −0.06 −0.01 0.91 1.09 0.04 −0.05
5B 0.04 0.01 −0.65 −1.10 −0.09 −0.02

12 4B 0.42 0.21 1.13 1.52 0.01
5B 0.01 −0.02 −0.55 −2.54 −0.36

14 4B 0.30 0.25 1.57 2.48 0.19
5B 0.06 0.02 −1.12 −3.56 −0.47

16 4B 0.47 0.32 2.82 2.94 0.00
5B 0.11 0.02 −1.75 −5.20 −0.66

18 4B 0.82 0.38 1.32 3.23
5B 0.03 −0.02 −0.66 −5.85

20 4B 0.98 0.48 2.00 4.22
5B 0.03 −0.04 −1.15 −8.10

aAll calculations performed at the HF level. Water geometries are from
Maheshwary et al.40 (the same geometries as used in Table 1). Pople
basis set P1: 3-21G, P2: 6-31G**, and P3: 6-311+G(2d,p). bDunning
basis set AVXZ where X = D or T or Q.

Table 3. Error for Truncating the MBE at the Four-Body
(4B) and Five-Body (5B) Term Using the Cluster Basis, As
Opposed to the k-mer Basis Used in Table 2, in All k-Body
Calculationsa

basis set

P1b P2b P3b Dc Tc

α̅ (a.u.) 3.74 4.87 6.50 7.97 8.23
(H2O)n error (m-Eh)

8 4B −0.07 −0.02 0.01 0.04 0.04
5B 0.01 0.01 0.00 0.00 0.00

10 4B −0.05 −0.03 −0.02 −0.02 −0.01
5B 0.00 0.00 −0.01 −0.01 −0.01

12 4B −0.01 0.00 −0.01 0.00
5B 0.00 −0.01 −0.02 −0.03

14 4B 0.01 0.02 0.03 0.05
5B 0.00 0.00 −0.01 −0.01

16 4B −0.10 −0.05 −0.02 0.02
5B 0.03 0.02 0.00 −0.01

18 4B −0.03
5B 0.00

20 4B −0.03
5B 0.00

aResults shown for a series of optimized water clusters (H2O)n, n = 8−
20, at the HF level using various basis set of increasing isotropic
dipole−dipole polarizability α̅. bPople basis set P1: 3-21G, P2: 6-
31G**, and P3: 6-311+G(2d,p). cDunning basis set AVXZ where X =
D or T.

Figure 3. (H2O)10 clusters chosen for a more detailed study on the
cause of poor MBE convergence. Both the pentagonal prism (10PP)
and open box (10OB) were obtained from Maheshwary et al.40
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functionthen there should be significant MO coefficients for
basis functions centered on the ghost molecules. Similarly, a
many-body BSSE effect can be inferred if there are significant
nonzero MO coefficients arising from many of these ghost
molecules simultaneously.
For VDZ (Figure 5a), significant nonzero MO coefficients,

represented by red or blue colored regions, are only found for a
few water molecules’ basis functions. In contrast, the AVDZ
basis set (Figure 5b) has significant nonzero MO coefficients
on all the water molecules’ basis functions. As the ghost water
molecules in Figure 5 are ordered by their proximity to the
monomer under study, the colored regions become fainter
across the horizontal axis due to decreasing overlap of the basis
functions from more distant ghosts. Nonetheless, the nonzero
coefficients imply that the BSSE is many-body in nature, with
contributions from all monomers in the system. The
contributions come primarily from the diffuse functions
(denoted D in the figure) of both oxygen and hydrogen,
again implicating diffuse functions in causing the BSSE. The

MO coefficient distribution for AVTZ (Figure 5c) also shows
contributions from diffuse functions, but less so than those for
AVDZ. Again, this is due to AVTZ being a more complete basis
set: the wave function of the monomer can be described using
its own core, valence, and diffuse basis functions without the
need for the basis functions of its neighbors. In fact, AVTZ’s
BSSE contribution to the total energy of the monomer is low at
2.7 ppm of the total energy of the monomer (−0.203 m-Eh) in
contrast to the higher contribution from both VDZ (68 ppm,
−5.197 m-Eh) and AVDZ (10 ppm, −0.768 m-Eh).
As a final test of our hypothesis, we investigated how MBE

convergence is affected by the average nearest-neighbor
distances of water molecules in a cluster. HF/AVDZ MBE
calculations using the k-mer basis were performed on a series of
progressively expanded structures derived from 10PP (Figure
6). The expanded structures were constructed by scaling the
distance between the center-of-mass of each water and the
center-of-mass of the entire 10PP cluster. This ensures that the
nearest-neighbor distances of all water molecules are increased

Figure 4. Convergence of the MBE for 10PP using various basis sets: (a) STO-3G series, (b) 3-21G series, (c) HF/6-31G** series,
(d) MP2/6-31G** series, (e) HF/6-311G** series, (f) MP2/6-311G** series, (g) VDZ series, and (h) VTZ/VQZ series. Solid lines represent MBE
calculated using the k-mer basis, while dashed lines represent MBEs calculated using the cluster basis. It should be noted that the diffuse functions of
the 6-31++G** basis set were used as the diffuse functions for the STO-3G and 3-21G basis sets, as these basis sets have no defined diffuse
functions.
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by the same factor. As the mean nearest-neighbor distance
increases, the oscillations in the MBE error gradually disappear.
This is because when the waters are farther apart, the overlap
between diffuse functions on different waters decreases
exponentially and so does the BSSE. This can be seen explicitly
in Figure 7, where an exponential fit captures the decay of BSSE
with increasing interwater-molecule distance.
The curious reader may wonder why the error oscillates from

positive to negative in nearly all the poorly convergent MBEs
we have shown. Our best explanation is that this behavior is
related to the inclusion/exclusion principle inherent in the

MBE. To obtain a system’s k-body energy, ε(k), the total energy
of each k-mer in the system has the total energy of all its
constituent (k − 1)-mers subtracted from it. But this results in
oversubtraction of (k − 2)-body energies, so the (k − 2)-mer
total energies have to be added back, and so on (see again eq
4). When subsequently obtaining the (k + 1)-body energy, the
signs of the terms in the expression switch: k-body energies are
subtracted where they were previously added etc. (in addition
to there being many more terms in the calculation). So if a
particular k-body energy is underestimatedperhaps due to an
inadequate basis setit will contribute to the overestimation of
the (k + 1)-body energy and then the underestimation of the (k
+ 2)-body energy and so on, leading to oscillation in the error.
Of course, the MBE by definition converges by the final term.
And each subsequent term in the MBE contains less BSSE-
derived error, EBSSE

(n,k+1) < EBSSE
(n,k) , since the more water monomers

that are in a calculation, the closer the basis set is to the correct,
full-cluster basis. But in the early MBE terms, there is much
utilization of neighboring waters’ diffuse basis functions, and
thus more error in each calculated energy, and thus oscillations
which diminish as more terms are added.

3.3. Methods to Improve MBE Convergence. We have
shown that rapid convergence of the MBE can be guaranteed
by performing calculations in the cluster basis or with a high-
quality basis set. These are, of course, fairly dispiriting solutions
as they greatly increase computational cost, so we have
examined several alternatives.
Since basis function overlap is distance-dependent, we tested

a distance-cutoff basis (d-c basis) which includes ghost
functions only from waters within a specified cutoff distance
of the water molecules in a calculation. Testing this d-c basis on
the (H2O)16 4444-a cluster using various cutoff distances gave
poor results (Table 4), however. This is likely due to the small
MBE truncation errors involved in the m-Eh range. With slight
changes in cutoff distances, one more or one fewer water’s
ghost functions might be included in a calculation, which could
lead to significant changes in calculated energies, drastically
affecting the MBE truncation errors. That said, we think the
distance-cutoff basis might work with a larger cutoff distance,
but in those cases it would be more economical to use a high-
quality basis set instead.
Another workaround that has been proposed, albeit for a

different problem, is the k-mer-centerd basis set (kCBS)
approach of Gora et al.24 The kCBS approach attempts to
remove BSSE in an MBE calculation by calculating each k-mer

Figure 5. Distribution of MO coefficients of an arbitrarily chosen
monomer of 10PP calculated with the cluster basis using (a) VDZ, (b)
AVDZ, and (c) AVTZ basis sets. The vertical axis shows the basis
functions arranged according to the nuclei (O or H). Only valence
functions (denoted V), functions with the smallest exponent, and
diffuse functions (denoted D) are shown. The horizontal axis shows
which water molecule the basis functions are centered on: Water 1 is
the monomer under study, and the rest are ghost molecules.

Figure 6. Convergence of the MBE for expanded structures derived
from 10PP with the following mean nearest-neighbor distance: (a)
5.25 a0, (b) 5.67 a0, (c) 6.61 a0, (d) 7.56 a0, (e) 8.50 a0, and
(f) 9.45 a0. The MBE truncation error has been normalized to the one-
body error (i.e., the interaction energy of the cluster).

Figure 7. Magnitude of the BSSE in the interaction energy |EBSSE
(10,1)| of

the expanded structures derived from 10PP shown in Figure 6 shows
an exponential decay with increasing mean nearest-neighbor distance.
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and all its subcalculations using the k-mer’s basis set. That is, a
dimer’s two-body contribution would be computed as total
energy of the dimer minus the total energy of its constituent
monomers, all calculated with the dimer basis set. This results
in substantially more calculations to compute the MBE since
calculations from previous terms cannot be reused, but it does
mean each calculation has no BSSE. We applied the kCBS
approach to the (H2O)16 4444-a cluster. From Table 4, we see
that the MBE does converge rapidly, but to an incorrect value.
This is likely because the kCBS approximation is not formally
exact: the terms in the MBE do not cancel due to the different
numbers of basis functions used in each term’s calculations.
The kCBS approach certainly does converge correctly when a
high-quality basis set is used, as has been demonstrated in the
literature, but this seems to be due to the high quality of the
basis set, not the kCBS method.
Strategies unrelated to BSSE for improving MBE con-

vergence are widely used. Many truncated-MBE-based
computational methods incorporate a charge field to
approximate higher-order many-body effects, typically by
interacting the one- or two-body fragments with a charge
field representing the rest of the system.2−4,6,10,46,47 While we
have not done a thorough analysis, preliminary results using
embedded charges from Stone’s distributed multipole analysis48

indicate that embedded charges dampen, but do not remove,
the oscillatory MBE behavior (Table 4). This is not surprising
as the embedded charges only serve to approximate the physical
higher-order many-body effects arising from induction and thus
do not remove the many-body BSSE.
Other methods include high-order many-body effects by

performing a low-level ab initio calculation on the full
system.3,4,49,50 Such methods capture many-body effects far
better than methods using only a truncated MBE.51 The full-
system calculations in these methods are not susceptible to
BSSE-based MBE convergence issues since they use full-system
basis, but lower-body calculations performed using only the k-
mer basis are still susceptible.
Thus, unhappily, we have found no alternative for avoiding

poor MBE convergence that is more efficient than using the
full-cluster basis or a high-quality basis set. As the use of the
cluster basis is computationally prohibitive, our recommenda-
tion is to use a high-quality basis set for MBE calculations; our
results indicate that at least AVTZ-quality is prudent.
3.4. Extension to Valence-Bonded Systems. So far we

have only presented data for noncovalent water clusters, but
MBE convergence problems also arise in valence-bonded

systems. This has great implications for fragmentation methods,
which in most cases use a truncated MBE, or something
analogous to it, to approximate the total energies of large
chemical systems.41,52−54

In fragmentation methods, small groups of adjacent atoms
are treated as bodies. Using our CFM algorithm11 to define
groups/bodies, we calculated the MBEs for a 22-carbon C22H24
conjugated alkene and α-cyclodextrin (Figure 8). Slow MBE

convergence is observed in both systems when incomplete basis
sets with diffuse functions are used, as seen in the case of
AVDZ for C22H24 and 6-31++G** for α-cyclodextrin. This is
no surprise as the same borrowing of basis functions from
adjacent groups that causes poor convergence in water clusters
occurs in these valence-bonded systems. The errors in the
C22H24 MBE are small (even negligible) because the molecule’s
linear shape minimizes basis function overlap. Compare this to
the MBE of the more compact α-cyclodextrin, where the errors
are beyond chemical accuracy until the inclusion of the nine-
body term. Since fragmentation methods rarely include five-or-
higher-body effects, it seems likely that fragmentation
calculations using BSSE-prone basis sets are liable to, and
have in the past been afflicted by, preventable, BSSE-based
errors. On an interesting related point, due to the above-
mentioned affects, we expect that any calculation that is
performed in order to predict bond-breaking energies would be
overestimated.

Table 4. Error for Truncating the MBE up to the Five-Body
Term, Performed Using Various Methods to Improve MBE
Convergencea

error (m-Eh)

method two-body three-body four-body five-body

k-mer basis −42.418 −4.763 4.588 −5.563
cluster basis −56.170 −1.217 −0.043 −0.056
d-c basis, 3 Å −35.325 −28.202 10.527 9.549
d-c basis, 4 Å −41.468 −46.804 85.769 −108.259
d-c basis, 5 Å −48.275 −34.555 87.929 −161.926
kCBS −50.464 4.779 6.268 6.279
charge field −12.466 −0.449 2.073 −2.054

aCalculations were performed at HF/6-31++G** on the (H2O)16
4444-a cluster shown in Figure 1. k-mer basis and cluster basis are
shown for reference.

Figure 8. Convergence of the MBE for the total energy of (a) C22H24
conjugated alkene and (b) α-cyclodextrin at HF level of theory for
various basis sets. Here, the CFM algorithm was used to define the
bodies in the MBE. The inset shows the structures of the molecules.
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It should be noted, though, that poor MBE convergence in a
valence-bonded system depends on the definition of “body”.
Another type of MBE that our group has examined is to treat
distortions in the internal degrees-of-freedom of a molecule as
bodies. Using the equilibrium geometry as a reference, an MBE
can be used to calculate the distortion energy of a molecule. We
demonstrate a proof-of-concept using the methanol molecule
(Figure 9). We distorted the molecule randomly in all 12

degrees of freedom, yielding a total distortion energy of about
140 m-Eh. The degree-of-freedom MBE converges by the four-
body term, even when a BSSE-prone basis set is used. This is
expected as a consistent basis set is used in all calculations,
essentially equivalent to the use of a full-cluster basis. Apart
from intramolecular degrees-of-freedom, intermolecular de-
grees-of-freedom or a combination of both could be treated in
the same manner. The utility of such an approach is obvious. A
high-dimensional system is broken down into to numerous,
completely independent (and thus highly parallelizable) much
lower-dimensional function evaluations. Future work will
explore how degree-of-freedom MBEs can be used to construct
accurate, high-dimensional potential energy surfaces from many
lower-dimensional surfaces.

4. CONCLUSIONS

There is no question that the many-body expansion is a
theoretically sound and extremely useful formalism in the study
of large molecular systems. But it is likewise clear from our
observations that care must be taken in its implementation.
Rapid convergence at the four-body term of the MBE cannot
be assumed, even when convergence appears to have occurred.
Incautious use of MBEs with systems and levels of theory
susceptible to BSSE is liable to yield errors well beyond
chemical accuracy. Moreover, the error per monomer worsens
extensively with system size. Such concerns are relevant in
valence-bonded and noncovalent systems alike. We conclude
that the use of a consistent basis set, either in the form of the
full-cluster basis or a high-quality basis set (at least AVTZ
quality), is necessary to avoid poor MBE convergence due to
BSSE.
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Modelling Water: A Lifetime Enigma

John F. Ouyang and Ryan P. A. Bettens*

Abstract: The first attempt to describe water dates back to 1933 with the Bernal–Fowler model and it would
take another forty years before the first computer simulation of liquid water by Barker and Watts in 1969. Since
then, over a hundred different water models have been proposed. Despite being widely studied, water remains
poorly understood. Examining the evolution of water models, we identified three distinct philosophies in water
modelling, namely the employment of effective point charges in pioneering empirical models, the incorporation
of polarization to describe many-body inductive effects and the extensive use of ab initio calculations to describe
short-range effects. In doing so, we can appraise the current understanding of water and identify attributes that
a water model should possess to capture the intricate interactions between water molecules.

Keywords: Force field ∙ Molecular dynamics ∙ Polarizable ∙ Potential energy surface ∙ Water models

1. Introduction

Considering the rich history of water
modelling, it would be prudent to ask why
scientists across different disciplines are
enthralled bywater.An obviousmotivation
would be its abundancewhich suggests that
water is undeniably important in the grand
scheme of nature. The strange properties
associated with water also spur academic
curiosity to unravel the mysteries behind
this small molecule. Most importantly, de-
ciphering the interactions between water
molecules would lead to basic understand-
ing of intermolecular forces, which govern
many dynamic processes in nature.

Given its ubiquity in nature, water has
been the subject of extensive research.
On Earth, water is the central solvent for
naturally occurring chemical processes.
In particular, water is the medium for bio-
chemical interactions, widely recognized
as the ‘matrix of life’.[1] Its place in biolo-
gy goes beyond a passive solvent, having
many active roles in molecular biology.[2–4]
Water-mediated hydrogen bonding pro-
vides exchangeable and extensible link-
ages to manoeuvre the peptide backbone
during protein folding, allowing proteins
to achieve their active conformation rapid-
ly.[5]Hydration changes can inducemodifi-
cation inDNAconformation and interfacial
waterpossessesauniquesequence-depend-
ent hydration structure, acting as a ‘hydra-

tion fingerprint’ for the recognition of the
DNAsequence.[6]Ona cosmic scale, detec-
tion of water vapour in the atmosphere of
an extrasolar gas-giant planet suggests that
the presence of water is common in gas-
giants.[7] Closer to home, studies on the
isotopic composition of water in meteor-
ites help us gain insights about the origins
of the early solar system.[8,9] Interestingly,
most water in the universe exists as dif-
ferent forms of amorphous ice and their
transitions in cold dense interstellar mo-
lecular clouds causes radical recombina-
tion, resulting in the synthesis of complex
organic molecules.[10] The role of water in
many chemical and biological processes
that are responsible for sustaining life, is
the driving force behind understanding its
behaviour under different conditions, and
in various environments.

Being one of the most studied sub-
stances, many physical properties of wa-
ter are accepted as international standards
such as its triple point and density.[11] Even
so, many of these physical properties are
considered anomalous as they contradict
the general theories of the liquid state of
matter. The most widely known property
would be the maximum density of water
at 4 °C, making water the only liquid to
expand upon cooling. Other anomalies
include the non-monotonic behaviour of
its isothermal compressibility and specif-
ic heat.[12,13] Furthermore, water exhibits
a very high boiling point and dielectric
constant for a simple liquid. Although the
aforementioned anomalies were known for
some time, new anomalous behaviours are
constantly uncovered. It was found that su-
percooledwater becomesmore diffusive as
pressure is increased to about 200 MPa at
room temperature.[14] Also, the discovery
of another supercooled liquid water state
at 150 K challenges the notion of a single
supercooled regime at ambient pressure[15]

and this newly discovered supercooled
state may lead to the identification of a
possible second critical point in super-
cooled confined water.[16] If the liquid state
is strange, the solid state would be bizarre
with water having fifteen known forms of
ice, many of which were only recently dis-
covered.[17,18] It is ironic that while better
technology has allowed us to probe the
properties of water further, these observed
phenomena can exacerbate confusion as
they remain unexplained.

The wealth of knowledge on water,
many of which deemed anomalous, im-
poses severe tests on any newly proposed
water model. Despite being a chemically
simple molecule, water is notoriously hard
to model. First, water can give rise to ex-
tensive hydrogen bonding networks.[19]
As early as 1920, hydrogen bond is first
suggested to occur in water[20] and it is
commonly agreed that these fleeting hy-
drogen bonds makes water unique from
most other liquids. Dimer interactions
are dominated by a deep minimum at the
hydrogen-bonded configuration,[21–23] im-
plying that certain configurations are pre-
ferred in water clusters and bulk water. The
strong directionality of hydrogen bonding
is the reason for the inclusion of explicit
water molecules in simulating water-me-
diated processes such as protein folding.[3]
However, the hydrogen bond minimum is
not overly stabilising, making dynamic hy-
drogen bonding rearrangements possible
in bulk water.[19] Second, the description of
water is complicated by strong non-addi-
tive inductive effects that manifest in water
due to the large dipole and polarizability of
water. Such inductive effects can enhance
the dipole moment of water molecules by
more than 60% in the condensed phase.[24]
This is further complicated by the fact
that the introduction of polarizability
can be rather deceptive,[25] compounded by
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reproduce macroscopic experimental da-
ta such as the liquid density and heat of
vaporization. The reliance on experimen-
tal data can be reconciled by noting that
these models flourished in the 1980s while
highly accurate ab initio tools such as the
Coupled-Cluster Single and Double, and
perturbative treatment of Triple excitations
[CCSD(T)] level of theory[34] and Dunning
correlation basis sets[35] were only devel-
oped in 1989 and became computationally
feasible many years later. Consequently,
these models only work well at reproduc-
ing macroscopic properties of the con-
densed phase near the conditions under
which they are parameterized, typically
ambient pressure and temperature, and
are targeted towards applications such as
biomolecular simulations rather than ba-
sic scientific enquiry about the anomalous
properties of water. The low computational
cost associated with these models would
make them remain the preferred choice for
the most computationally demanding ap-
plications. For example, the TIP3P mod-
el is the default water model used in the
CHARMM force field for biomolecular
simulations.[36] One of the earliest water
models in this class is the MCY model,[37]
well-known for being constructed entirely
from ab initio Hartree-Fock (HF) calcula-
tions. We will also look further into two
families of these pioneering water models,
namely the TIPnP and SPC water models.

2.1.1 TIPnP Family
First developed by Jorgensen in

1981 as the Transferable Intermolecular
Potential functionS (TIPS),[38] it was later
refined into the TIP3P and TIP4P model[39]
which most water scientists are familiar

reasons which will be covered in Section
3.1. All in all, water is especially sensitive
to how the forces between molecules are
described and thus demand a thorough
and basic understanding of intermolecular
forces.

2. Water Models

The Bernal–Fowler (BF) model can be
considered the first realistic water model,
describing water as a collection of point
charges and a repulsion-dispersion term.[26]
A similar representation would be used lat-
er in the first Monte Carlo simulation of
water by Barker and Watts[27] and the first
Molecular Dynamics (MD) simulation of
water by Rahman and Stillinger.[28] Since
the first computer simulation of water, a
myriad of water models, exceeding a hun-
dred to date, have been proposed. While
there already exist several excellent re-
views on the progress of modelling wa-
ter,[29–33] we still wish to survey the water
modelling scene with the aim of highlight-
ing the qualities of a good water model.

In the aforementioned reviews, wa-
ter models are categorized based on (i)
the interaction between water monomers
and (ii) the treatment of water monomers.
Polarizable models treat many-body in-
ductive effects explicitly using point polar-
izabilities whereas non-polarizable models
describe this polarization in an averaged
manner in the pairwise interactions. Rigid
water models constrain the intramolecular
degrees of freedom, typically to that of
the vibrational averaged geometry while
flexible counterparts relax all degrees of
freedom. Due to ab initio calculations ap-

proaching experimental accuracy, water
models can also be classified based on the
nature of the data (ab initio or experimen-
tal or both) used to parameterise the model.

Instead of following these traditional
and possibly restricting classifications,
we analysed the evolution of water mod-
els and broadly identified three distinct
philosophies in the saga of water model-
ling, namely the employment of enhanced
point charges in pioneering models to ef-
fectively describe induction in a pairwise
potential, the incorporation of polarization
in later models to describe explicitly the
many-body inductive effects and the exten-
sive use of ab initio data in state-of-the-art
models to accurately describe water–wa-
ter interaction at all ranges (Fig. 1). Water
models are not necessarily grouped based
on chronological order as these demarca-
tions represent distinct principles of water
modelling rather than actual time periods.
In doing so, we have alluded to the long
history of water modelling and its coming
of age.

2.1 Pioneering Empirical Water
Models

This class of water models has its or-
igins in legacy water models, aimed at
describing water with a low computation-
al cost and thus often utilise a rigid wa-
ter monomer. Similar to the BF model,
these models are empirical and non-po-
larizable, using point charges to represent
electrostatics and a Lennard-Jones term
for dispersion and repulsion. Induction
effects are effectively described by in-
creasing the point charges to simulate an
enhanced dipole moment found in the
condensed phase. Parameters are fitted to

Fig. 1. Timeline showing the year of implementation of various water models reviewed in this paper. Water models are grouped (using different colour
schemes) according to the three distinct philosophies of modelling water identified. Within each class of water models, the models are further sub-
divided into different families of water model that share similar traits.
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The ASP-W functional form was al-
so fitted to the (D2O)

2
VRT spectra, giv-

ing rise to the VRT(ASP-W) model.[55]
VRT(ASP-W) is the first water model to
achieve spectroscopic accuracy, able to
reproduce most of the tunnelling barriers
in the water dimer. While this is not sur-
prising given the use of same experimen-
tal data in constructing the model, it is
worthwhile to note that the use of the rigid
monomer approximation can still lead to
accurate predictions at the atomistic lev-
el. Later improvements would give rise
to the VRT(ASP-W)II and VRT(ASP-W)
III model, where induction is computed to
full iteration.[56]

2.2.2 SAPT Family
Both SAPT-ss and SAPT-pp water

models,[57] employing rigid water mono-
mers, were developed based on Symmetry-
Adapted Perturbation Theory (SAPT).[58]
SAPT-ss comprises a site–site form, with
a similar placement of sites as TIP4P but
instead uses the functional form of the
MCY model. Point charges and exponen-
tial terms are fitted to 1056 SAPT ener-
gies. The SAPT-pp is more complicated,
describing the intermolecular interactions
using expansions of functions in intera-
tomic vectors and Euler angles, again fitted
to the same 1056 SAPT energies.

Due to its complexity, SAPT-pp fell in-
to disuse and the site–site formwas evolved
to the SAPT-5s model.[59] To reflect the
anisotropy of electron distribution, two
new symmetry distinct sites representing
lone pairs and out-of-plane charges were
added, giving a total of five symmetry dis-
tinct sites (eight sites in total). An elabo-
rate functional form was adopted using a
polynomial-exponential terms to represent
exchange-repulsion and an inverse power
(6-8-10) series to describe induction and
dispersion. Consequently, no iteration of
the induced dipole is required in calcu-
lating the induction term as it is repre-
sented by fitted coefficients. The model’s
exchange-repulsion parameters are also
tuned to better reproduce the water dimer’s
acceptor tunnelling splitting, giving the re-
vised SAPT-5st.[60]

All the SAPT models mentioned above
only contain a pair potential. Thus, three-
body SAPT(HF) energies were incorporat-
ed into SAPT-5s, giving the SAPT-5s+3B
model.[61] This new three-body potential
is the first to include functional forms to
model three-body exchange effects using a
combination of exponential and Legendre
polynomial terms. Long-range effects are
described using a damped induced dipole
model. Later, the SAPT-5s functional form
is refitted using SAPT(DFT) energies and
this new SDFT-5s model[62] gives more ac-
curate results, attributed to the faster basis
set convergence with DFT.

with. Here, the nP refers to the number
of point sites in the model where point
charges and/or Lennard-Jones terms are
placed. In the simplest case, the atomic
sites were used as seen in TIP3P. An addi-
tional M-site along the HOH angle bisec-
tor is introduced in TIP4P to displace the
negative charge towards the hydrogens as
placing the negative charge on the oxygen
would lead to an excessively high dipole
moment.[27] In an attempt to describe in-
ductive effects, TIP4P-FQ (FQ for fluc-
tuating charge) was introduced where the
point charges fluctuate in response to the
environment to equalize the electronega-
tivities of the sites.[40] Later, Mahoney and
Jorgensen would introduce more TIPnP
variants, namely TIP5P[41] and TIP4PF.[42]
TIP5P replaced the M-site with two tetra-
hedral negative charges to mimic the lone
pairs on water but this resulted in a overly
structured water in simulations. TIP4PF is
a flexible version of TIP4P where intra-
molecular stretching and bending are de-
scribed by quadratic terms and the same
study showed that the inclusion of quan-
tum effects improve the predictions made
by this flexible water model.

Surprisingly, the models mentioned
thus far truncate long-range electrostatics
at a certain cut-off distance. The TIP4P-
Ew model is designed for use with Ewald
techniques to account for long-range elec-
trostatics, commonly employed in biomo-
lecular simulations.[43]Numerous other pa-
rameterization attempts were made, such
as TIP4P/2005[44] and q-TIP4P/F,[45]which
are optimised to better reproduce the ther-
modynamic properties of water and to ac-
count for quantum effects respectively.

2.1.2 SPC Family
Apart from the TIPnP family, another

family of water models is the Single Point
Charge (SPC) model, which only uses the
three atomic sites to place point charges
and/or Lennard-Jones terms.[46] Simple
values were used for its parameters such
as 1.0 Å for the O–H bond length and an
ideal tetrahedral angle of 109.5° instead of
the experimental gas-phase values used in
TIP4P. Shortly, the improved SPC/Emodel
was proposed to account for polarization
self-energy.[47] Similar to TIP4P-FQ, SPC-
FQ was introduced to incorporate induc-
tion effects.[40] Likewise, flexible mono-
mer versions such as SPC/Fw[48] and vari-
ants parameterized to account for quantum
effects, such as the q-SPC/Fw[49] model,
have been introduced.

2.2 Integrating Polarization into
Water Models

The increase in computational power
saw a transition towards increasingly com-
plicated water models with an emphasis on
the non-additivity of water–water interac-

tions, in particular induction/polarization
effects. Polarization is often incorporated
explicitly via central or distributed point
dipole–dipole polarizabilities, derived
from the use of perturbation theory to treat
intermolecular forces.[50]Despite the rigor-
ous theoretical background, such an imple-
mentation may lead to deceptive results as
we shall see in Section 3.1. Furthermore,
higher-order multipoles, typically up to
quadrupoles, are employed to represent
electrostatics instead of point charges in
recognition of the anisotropic nature of
the electron distribution. This led to more
elaborate analytic potentials that required
more parameters that would come from
a mix of ab initio and experimental spec-
troscopic data. This class of water models
flourished in the 1990s and 2000s when
accurate ab initio second-order Møller–
Plesset perturbation theory (MP2) and lat-
er CCSD(T) calculations become amend-
able. As the majority of the parameters
are monomer properties such as the dipole
moment and polarizability, highly accurate
ab initio calculations can be performed on
the small water monomer system. In some
cases, the Vibration-Rotation-Tunnelling
(VRT) spectroscopic data was used in the
parameterization as they represent infor-
mation at the atomistic level as opposed to
bulk water properties. Using these water
models, there would be more studies de-
voted towards water clusters, underscoring
the importance of microscopic understand-
ing of water. As the functional form of
these water models grew more complex, it
would naturally encompass a larger variety
of models and some of the notable water
models include the ASP, SAPT and TTM
family of water models.

2.2.1 ASP Family
The Anisotropic Site Potential with

Wormer’s dispersion (ASP-W) model,
based on Hayes–Stone intermolecular
perturbation theory (IMPT),[51,52] is one
of the earliest rigid water models to adopt
higher-order multipoles.[53] For electro-
statics, distributed multipoles are present
on both the oxygen and hydrogen atomic
sites, up to quadrupole and dipole respec-
tively whereas induction is computed at
first order (instead of full iteration) us-
ing point polarizabilites on oxygen up to
quadrupole. Site anisotropy was likewise
incorporated into the dispersion and re-
pulsion terms. Further refinements by the
same group led to the inclusion of a new
charge transfer term, creating theASP-W2
and ASP-W4 models, used to study the
stationary structures of the water dimer.[54]
The difference between both models lies in
the order of multipoles used with the orig-
inal multipoles being retained in ASP-W2
and hexadecapole present on each atom in
ASP-W4.
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2.2.3 TTM Family
TTM-R,[63] the first of Thole-Type

Model (TTM) water models, is based
on Thole’s idea of using smeared out
multipoles to mirror the diffuse picture of
electron distribution.[64] TTM-R utilises
TIP4P-style point charges for electrostatic
interactions and an inverse power (6-10-
12) series to represent dispersion and re-
pulsion. Smeared charges and dipole are
present on all atomic sites for induction and
intramolecular polarization can occur, ac-
counting for charge transfer.As theTTM-R
model consistently over-binds small water
clusters, the TTM2-R model was proposed
by refitting the inverse power (6-10-12) se-
ries tominimum energy pathways connect-
ing the global minimum and other station-
ary points of the water dimer.[65]

Monomer flexibility was then incorpo-
rated using the Partridge–Schwenke intra-
molecular Potential Energy Surface (PES)
and Dipole Moment Surface (DMS)[66]
resulting in the TTM2-F model, the first
water model to properly reproduce an in-
crease in the monomer bending angle in
water clusters.[67] A revised TTM2.1-F
model,[68] intended for simulations, was
proposed by modifying the inverse power
(6-10-12) series that decreases unphysical-
ly below 2.5 Å as such repulsive regions
may be sampled during condensed-phase
simulations.

Two unrelated updates, the TTM3-F[69]

and TTM4-F model[70] were also reported.
Aimed at describing the vibrational spectra
of water clusters and bulk water, TTM3-F
has modified partial charges to reflect the
behaviour that water dissociates to H+/OH–

in liquid as opposed to radical formation in
the gas phase. On the other hand, TTM4-F
is reparameterized to better reproduce po-
larizability surface. Notably, the popular
AMOEBA water model uses a Thole-type
induction model.[71]

2.3 Extensive Use of ab initio Data
in Water Models

As ab initio methods matured into re-
liable tools rivalling experimental accura-
cy, we ushered in an era of water models
empowered by ab initio data. This class of
water models relies on high-quality large
datasets (in the order of 105 data points)
of CCSD(T) energies, the gold standard
of quantum chemistry. The water mod-
els are deeply rooted in the Many-Body
Expansion (MBE) where the total energy
of a system can be decomposed into one-
body (monomer contribution), two-body
(pairwise interactions), three-body contri-
butions and so on. Separate PES are con-
structed for each of these k-body terms by
fitting large energy datasets which sample
important configuration space encountered
in water clusters and during condensed
phase simulations. The extensive amount

of high-quality data required can only be
fulfilled by large volumes of accurate ab
initio calculations which only became
amendable in recent years. The shift to-
wards large datasets and complicated PES
construction techniques stems from the
realization that short-range effects such
as charge transfer and exchange cannot be
accurately described by simple analytic
forms. Thus, sufficiently flexible function-
al forms are required to map the accurate
ab initio dataset into high-quality PES for
on-the-fly evaluation of energies. Water
monomer flexibility is a another common
feature in these models although a rigid
monomer constraint is often imposed in
demanding calculations such as condensed
phase simulations andVRT spectra predic-
tion. As a result, these models are mainly
focussed on studies of water clusters with
few examples of condensed phase simula-
tions. As the construction of these water
models is laborious, there were only three
families of such ab initio water models,
namely the HBB, CC-pol and MB-pol
family of water models.

2.3.1 HBB Family
The HBB water models describe the

PES for each of these k-body terms using
permutationally invariant polynomials in-
volving interatomic distances, incorporat-
ing the permutation symmetry of identical
atoms, i.e. the hydrogen and oxygen at-
oms. This alleviates the steep computa-
tional cost in evaluating high-dimensional
PES and drastically reduces the number
of data points required for fitting the PES.
The first HBB0 model uses polynomials
of Morse-type exponential functions, fit-
ted to 19805 CCSD(T)/AVTZ energies.[72]
Like all HBB models, all N(N−1)/2 inter-
atomic distances were used to preserve the
permutational symmetry, more than the ac-
tual 3N−6 degrees-of-freedom present in
the system. In the next revision HBB1, the
same functional form is refitted to an addi-
tional 10227 CCSD(T)/AVTZ energies to
better describe the low-energy configura-
tion space below 10000 cm–1.[73] This re-
fitting led the RMS fitting error to drop by
a factor of two, suggesting that the quality
of the functional form was previously not
maximized in HBB0.

A hybrid pair potential was developed
in the new HBB2 model, comprising long-
range and short-range components.[74] The
short-range component remains to be de-
scribed by permutationally invariant pol-
ynomials while the long-range component
is described using the TTM3-F model.
This led to slight improvements in accu-
racy and large computational savings as
the TTM3-F potential is much faster to
compute. The HBBn models only contain
a pair potential and cannot be used to de-
scribe water clusters where higher-body

effects have to be considered. Thus, the
WHBBmodel is introduced where a three-
body potential is again constructed using
permutationally invariant polynomials,
fitted to 40000 MP2/AVTZ energies.[75]
Interestingly, it was mentioned that the
three-body potential is shorter range than
the two-body counterpart and a cutoff
was implemented when the maximum
O–O distance is greater than 8 Å. Four-
and-higher-body effects are described by
induction using the TTM3-F model. For
all the water models in the HBB family,
the one-body potential is provided by the
Partridge–Schwenke intramolecular PES.

2.3.2 CC-pol Family
The CC-pol family of water models is

the successor of the SAPT family, utilising
ab initio energies computed at CCSD(T)
instead of SAPT energies. The first CC-pol
model[76] is similar to the SAPT-5s mod-
el except that induction is now explicitly
iterated instead of using a fitted inverse
power series. CC-pol is able to reproduce
the water dimerVRT spectra except for the
interchange splitting transition, attributed
to the rigid monomer approximation.

The CC-pol-8s model revamped the
placement of the interaction sites, having
eight symmetry distinct sites (25 sites in
total).[77] The three-dimensional Cartesian
space was scanned in regular intervals, fol-
lowed by finer subgrids to ensure that the
most optimal positions were chosen. As
only point charges were used (as opposed
to higher-order multipoles), the presence
of more interaction sites better represents
the anisotropy of the electron distribution
and led to a four-fold decrease in the fitting
errors. A flexible variant, CC-pol-8sf,[78]
was developed where monomer contribu-
tion to the interaction energy is obtained
from an earlier flexible SAPT-5s’fIR water
model.[79]

Feeling that the order of 105 data
points is inadequate to build an accurate
full 21-dimensional flexible-monomer
three-body PES, the authors reverted to
a rigid monomer model, consisting of the
pair potential CCpol2 and three-body po-
tential CCpol3.[80] CCpol2 is essentially
the same as CC-pol-8s, except that short-
range damping is included to improve the
description at very small intermolecular
distances as these regions may be sampled
during condensed phase simulations. The
CCpol3 model, fitted to 71456 CCSD(T)
energies, gives improved polarization from
the use of three atomic polarization cen-
tres, instead of one. Four-and-higher-body
interactions are described using a simple
polarization model. Surprisingly, the po-
larization model gives accurate four-body
energies to within a few percent, whereas
such models are known to have significant
errors for three-body interactions.
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2.3.3 MB-pol Family
The MB-pol family incorporates many

features from the HBB family of ab ini-
tio based water models. The prototype
HBB2-pol model[81] borrows from the
HBB2 model using a hybrid pair potential
and the Partridge–Schwenke intramolecu-
lar PES. The same HBB2 PES was used
for the short-range component of the pair
potential while the long-range component
was replaced with the TTM4-F model.
Furthermore, a three-body hybrid potential
is included where the short-range compo-
nent again incorporates the permutational
symmetry, fitted to 8019 CCSD(T) trimer
energies, while the long-range counterpart,
as well as four-and-higher-body effects,
are described by induction in the TTM4-F
model. The TTM4-F component greatly
reduced the order of the permutationally
invariant polynomials and the associated
computational cost, making HBB2-pol
amendable to condensed phase simula-
tions. TTM4-F was chosen after careful
comparison with two other polarizable
flexible water models, namely TTM3-F
and AMOEBA.

The eventual MB-pol model is de-
scribed in two papers, detailing the hybrid
pair potential[82] and higher-body effects
separately.[83] The hybrid pair potential
MB-pol(2B) was improved with the addi-
tion of two new sites to represent the lone
pairs of water, which greatly improved
the flexibility of the functional form in
the short-range component. Thus, the per-
mutationally invariant polynomials now
involves intersite distances between the
atomic sites and/or the lone pair sites,
fitted to 42508 CCSD(T) dimer energies.
The three-body potential MB-pol(3B) is
described in a similar fashion as in HBB2-
pol but fitted to a larger dataset of 12347
energies.All long range effects are handled
by induction using the TTM4-F model. It
was noted that short-range corrections are
not required at the four-and-higher-body
level, in agreement with CCpol3 authors’
observation that a simple polarization
model is sufficient.

On a final note, both HBB2-pol and
MB-pol are the first water models con-
structed from extensive CCSD(T) energies
dataset to be employed in classical and
quantum simulations of liquid water.[84,85]
In both instances, many structural and dy-
namic properties of liquid water under am-
bient conditions were reproduced, such as
the radial distribution functions, bulk water
density and diffusion coefficient.

3. Qualities of a Good Water Model

After reviewing the plethora of water
models shaped by different philosophies,
we identified several key features for the

proper description of water. They are
namely (i) the inclusion of polarizability
to account for non-additive effects, (ii) fit-
ting or interpolating energies to account
for short-range effects, (iii) incorporation
of monomer flexibility, (iv) accounting
for quantum effects in simulations and
(v) transferability and dissociable water
model.

3.1 Inclusion of Polarizability
As we witness from the integration of

polarization into water models, (Section
2.2) the inclusion of polarizability is cru-
cial in describing the significant many-
body inductive effects that arise from the
high dipole and polarizability of water.
Neglectingpolarization effects in empirical
point charge water models (such as TINnP
and SPC models in Section 2.1) prevents
an accurate description of virial coeffi-
cients, vapour pressures, critical pressure
and dielectric constant.[86] The first three
quantities involve gas phase properties
which are very sensitive to changes in the
environment. Clearly, the degree of po-
larization in the gas phase would differ
greatly from that in the condensed phase
for which the empirical models are cali-
brated. Likewise, polarization is required
to reproduce the enhanced dipole moment
in condensed phase to properly reproduce
the dielectric constant.

There are several excellent re-
views[30,87–89] on the implementation of
polarization as it found importance not
only in water models but also in ion sol-
vation, other small molecules and protein
simulations. Three methods for incorpo-
rating polarization exist, namely fluctuat-
ing charge, Drude oscillator and induced
point dipole models. While the first two
methods have been implemented in water
models, (e.g. TIP4P-FQ, SPC-FQ[40] for
fluctuating charge and SWM4-DP[90] for
Drude oscillator) the induced point dipole
model remains the most implemented for
water models. In fact, the ASP, SAPT and
TTM families of water models in Section
2.2 all use some kind of induced point
dipole model. In principle, higher-order
multipoles such as the quadrupole can
also be induced as seen in the ASP water
models but they see little action elsewhere
(SAPT and TTM families only involve
inducible dipole) perhaps due to the la-
borious theoretical expressions involved.
While the introduction of inducible dipole
models is increasingly prevalent, Guillot
cautions that poor implementation can
lead to deceptive results.[29] The induced
dipole moment is given as the product of
the polarizability with the electric field.
The electric field is often represented by
the point charges/multipoles present in the
model and this may be inadequate if high-
er-order multipoles are not considered.[91]

Furthermore, there is also dipole–quadru-
pole and quadrupole–quadrupole polar-
izabilities which are often neglected and
these inductive effects can be significant
given that water has a strong quadrupole
moment.

Finally, Thole[40] and Applequist et
al.[92] have pointed out that the point in-
duced dipole moment may become infinite
at small distances, which is commonly
known as the ‘polarization catastrophe’.
This can be avoided by screening the di-
pole–dipole interaction at short distances,
either using a Tang–Toennies damping
function[93] as seen in the ASP and SAPT
models or using smeared out charges and
dipoles in TTM models. This screening is
an indication that point multipoles cannot
properly describe the electronic distribu-
tion at small distances, underscoring the
importance of accounting for short-range
effects.

3.2 Short-range Effects
At short intermolecular distances R,

the power series expansion of inverse R
which defines the point multipole diverges,
causing the failure of point multipoles at
short-range. Furthermore, there is a charge
penetration effect as the electrons are
‘not fully felt’ within the electron cloud.
Physically, this can be interpreted as the
unrealistic representation of the electron-
ic distribution as if it was concentrated
at a point. Possible remedies include the
use of damping functions or smeared out
multipoles as seen in Section 2.2 as well as
partitioning the electronic distribution us-
ing distributedmultipoles.[50]Despite these
corrections, other short-range interactions
such as exchange-repulsion and charge
transfer have to be explicitly accounted
for. The distinction between short-range
and long-range interactions (electrostatic,
induction and dispersion) is rooted in their
different physical character where short-
range effects vary exponentially with in-
termolecular distance while long-range
effects behave as some inverse power of
intermolecular distance.[50] Thus, it would
be prudent to separate the total interaction
energy into short-range and long-range
components due to their intrinsically dif-
ferent nature as seen in the HBB2,WHBB,
HBB2-pol and MB-pol water models.

Unfortunately, unlike long-range in-
teractions which have well-defined for-
mulae based on IMPT, no exact analytic
form exists for short-range interactions.
Otherwise, high quality ab initio methods
which can describe these subtle short-
range effects up to any desired numerical
precision would have been developed in
vain. For theASP, SAPT andTTM families
of models, short-range exchange-repulsion
effects were modelled by simple exponen-
tial and/or polynomial-exponential terms.
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As these approaches proved inadequate,
large ab initio data sets are fitted to more
complicated functional forms to accurately
describe these exchange-repulsion effects
(Section 2.3). Currently, two such func-
tional forms have been implemented. The
permutationally invariant polynomials in
HBB and MB-pol families of models in-
corporate the permutational symmetry of
identical nuclei into exponential terms in-
volving interatomic distances. On the other
hand, CC-pol models uses simple polyno-
mial-exponential terms but applied be-
tween a large number of symmetry-distinct
sites, greatly increasing the flexibility of
the functional form. Inevitably, both meth-
ods incorporate some form of symmetry
which serves to alleviate the high compu-
tational cost. Furthermore, both methods
involve fitting of the coefficients of the
terms from ab initio data. An alternative
to fitting methods would be interpolation
methods. Examples include Shepard in-
terpolation[94,95] and Interpolating Moving
Least Square[96,97] as well as simpler inter-
polating methods such as cubic splines.
While interpolation methods ensure that
the PES passes exactly through the data-
set, care has to be taken that the asymp-
totic behaviour of the PES is enforced in
interpolating models which are otherwise
naturally incorporated into the functional
forms used in fitting models. Nonetheless,
it would be interesting to see new ab initio
based water models based on interpolation
methods and compare their accuracy with
existing models.

Another essential formalism employed
to describe short-range effects would
be the Many-Body Expansion (MBE).
Without the use of MBE, the dimension-
ality of the system would be too large for
any fitting or interpolation method to be
feasible. Instead, using theMBE, large wa-
ter clusters or even bulk water can be de-
composed into many-body contributions,
truncated at the four-body level. However,
basis set superposition effects causes poor
convergence of the MBE when diffuse
basis functions are involved[98] and these
diffuse functions are crucial in accurately
describing the hydrogen bonding between
water molecules.

3.3 Monomer Flexibility
In the MBE formalism, the one-body

contribution would correspond to intramo-
lecular distortions of water monomer. Due
to computational limitations, pioneering
empirical water models often employ rig-
id monomers. While later models would
comprise of flexible monomers, a rigid
monomer approximation is still preferred
for computationally demanding calcula-
tions such as spectra prediction and con-
densed phase simulations. Also, a large
dataset is required to fit flexible monomer

potentials which can disfavour their use
as seen in the CCpol2 and CCpol3 water
models. It is recommended that the vibra-
tional averaged geometry be used over the
equilibrium geometry when a rigid mono-
mer approximation is necessary.

Monomer flexibility is integral in the
atomistic understanding of water as sub-
tle changes in bond lengths and angles can
affect the predicted energetics and VRT
spectra of water clusters. The first water
models to include flexible monomers use
quadratic terms to describe the stretching
and bending motions, modelling the vi-
brational modes as harmonic oscillators.
This is overly simplistic in dealing with
the quantum mechanical effects that arises
when the electron clouds of the two hydro-
gens overlap during the bending motion.
Thus, more sophisticated intramolecular
PES were constructed, the most popular
being the Partridge–Schwenke intramolec-
ular PES, which is used in the TTM, HBB
and MB-pol families of water models. The
Partridge–Schwenke PES is also accom-
panied with an intramolecular DMS which
supplies the dipole moment required in
the calculation of long-range interactions.
This could be the reason why higher-order
multipoles are not involved in the long-
range components of these models as an
accurate quadrupole moment surface do
not exist yet.

It is important to realize that these in-
tramolecular vibrations are quantum me-
chanical in nature and their treatment with-
in classical simulations may not yield sat-
isfactory results.[99–101] The representative
example would be the harmonic oscillator
where the classical probability would be
greatest away from the equilibrium while
the quantum counterpart has the maxi-
mum probability at the equilibrium posi-
tion. Thus, flexible water models should be
simulated using methods that incorporate
quantum effects.

3.4 Nuclear Quantum Effects
Nuclear quantum effects and monomer

flexibility are intertwined since the mo-
tions of the nuclei obey the laws of quan-
tum mechanics rather than the classical
counterpart. This is especially so for water
due to the presence of the light hydrogen
nuclei and extensive hydrogen bonding,
both of which exhibit strong nuclear quan-
tum effects. Thus, processes involving the
hydrogen nuclei such as Grotthuss proton
shuttling[102] require nuclear quantum ef-
fects to be accounted for.[103]

Furthermore, disregarding nuclear
quantum effects can lead to poor descrip-
tion of the heat capacity of both liquid
and solid water[104,105] and low-tempera-
ture properties such as the densities of ice
polymorphs.[99] In addition, when nuclear
quantum effects are neglected, isotopic

effects cannot be probed, which can have
a significant influence in bulk properties.
For example, the enthalpy of vaporization
is ameasure of the strength of the hydrogen
bonding within liquid water. Classically,
there should be no isotopic effects present.
However, it has been shown experimental-
ly that the isotopic effects on the vapor-
ization enthalpy is important, increasing
by 0.4 kcal mol–1 from water to tritiated
water.[86]

A variety of quantum simulation meth-
ods exist and some of the computational
methodologies have been reviewed.[106]
The most commonly employed meth-
od would be Path Integral Molecular
Dynamics (PIMD),[107–109] which exploits
the isomorphism between the quantum
partition function expressed in path in-
tegral formalism and the classical parti-
tion function of a ring-polymer. This iso-
morphism provides a way to sample the
quantum nuclear configuration through
modifications of the classical MD tech-
nique. Other quantum simulation meth-
ods would include Path Integral Monte
Carlo (PIMC),[110,111] Path Integral Hybrid
Monte Carlo (PIHMC),[107,112,113] Centroid
Molecular Dynamics (CMD)[114–118]
and Ring Polymer Molecular Dynamics
(RPMD).[119,120]

While PIMD simulations have been
performed for the HBB2-pol and MB-pol
ab initio based models at ambient condi-
tions,[84,85] extreme conditions (low tem-
peratures, critical point) have not been
explored to elucidate the anomalous be-
haviour of water. On a side note, studies
on the quantum effects of water performed
on empirical water models such as TIP4P
should be interpreted with caution.As such
water models are parameterized to repro-
duce experimental values using classical
simulations, quantum effects are included
in these models in an effective manner.
Thus, performing quantum simulations on
these water models to investigate quantum
effects seems counterproductive unless the
model has been reparameterized for such
purposes.

3.5 Transferability and Ability
to Dissociate

While less discussed in literature, it is
ideal to develop a water model to be used
outside pure water systems for applications
such as explicit solvation of proteins. The
empirical and polarizable models (Section
2.1 and 2.2) are highly transferable due to
the use of point multipoles which share
the same functional form regardless of the
molecular species. This is not the case for
ab initio based water models (Section 2.3)
that rely on the MBE as new PES have to
be constructed for new combinations of
k-body interactions.

Finally, very few models in literature
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are able to dissociate into H+/OH– ions.
Water dissociation is difficult to handle as
the products (charged ions) are very differ-
ent from the reactant (neutral molecules).
This is complicated by the fact that water
dissociates homolytically into radicals
in the gas phase. It would be optimal to
use on-the-fly ab initio simulation tech-
niques such as Car-Parrinello Molecular
Dynamics (CPMD)[121] to study water dis-
sociation as these ab initio methods do not
make any distinction between H+/OH– ions
and neutral water molecules.

4. Concluding Remarks and
Outlook

The scene of water modelling remains
a vibrant one, especially in the last 15 years
where countless water models of distinct
modelling philosophies have been devel-
oped with the sole aim to better understand
this mysterious liquid. The strengths and
(more often) inadequacies of these water
models have provided useful information
on the essential ingredients for the making
of a universal water model.

It is only very recently, with the exten-
sive use of ab initio data and availability
of quantum simulations, that water mod-
els possess the right qualities to accurately
describe water at both the microscopic and
macroscopic level. Yet, there still leaves
room for development, in seeking new
ways to describe short-range effects using
interpolation techniques and employing
higher-order multipoles in long-range in-
teractions so that more of the configuration
space can be described cheaply.

Nonetheless, it is due time to put these
state-of-the-art water models to more rig-
orous tests to reproduce experimental re-
sults at extreme conditions. If these water
models were to succeed at these trials, then
perhaps it would be possible to explain the
many anomalies of water, fulfilling the role
of computations in assisting experiments
to dispel confusion and eventually pushing
the boundaries of science.
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ABSTRACT: The basis set superposition effect (BSSE) arises
in electronic structure calculations of molecular clusters when
questions relating to interactions between monomers within
the larger cluster are asked. The binding energy, or total
energy, of the cluster may be broken down into many smaller
subcluster calculations and the energies of these subsystems
linearly combined to, hopefully, produce the desired quantity
of interest. Unfortunately, BSSE can plague these smaller
fragment calculations. In this work, we carefully examine the
major sources of error associated with reproducing the binding
energy and total energy of a molecular cluster. In order to do so, we decompose these energies in terms of a many-body
expansion (MBE), where a “body” here refers to the monomers that make up the cluster. In our analysis, we found it necessary to
introduce something we designate here as a many-ghost many-body expansion (MGMBE). The work presented here produces
some surprising results, but perhaps the most significant of all is that BSSE effects up to the order of truncation in a MBE of the
total energy cancel exactly. In the case of the binding energy, the only BSSE correction terms remaining arise from the removal of
the one-body monomer total energies. Nevertheless, our earlier work indicated that BSSE effects continued to remain in the total
energy of the cluster up to very high truncation order in the MBE. We show in this work that the vast majority of these high-
order many-body effects arise from BSSE associated with the one-body monomer total energies. Also, we found that, remarkably,
the complete basis set limit values for the three-body and four-body interactions differed very little from that at the MP2/aug-cc-
pVDZ level for the respective subclusters embedded within a larger cluster.

1. INTRODUCTION

A major barrier to the theoretical study of large chemical
systems is the fact that the computational effort of electronic
structure methods increases drastically with system size. To
circumvent this, one can look to fragmentation methods1−4

where a large chemical system is broken up into numerous
small subsystems. From there, only certain important
interactions between these subsystems are considered for
electronic structure calculations so as to recover the total
energy of the system. Beyond a specified distance cutoff, each of
the subsystems can be treated as multipoles (point charges,
dipoles, quadrupoles, and so on) and interacted according to
perturbation theory5 to further reduce computational cost.
Fundamentally, fragmentation methods are rooted in the many-
body expansion (MBE), which decomposes the total energy of
a cluster, Etot, as the sum of one-body total energies, two-body
pairwise interactions, three-body interactions, and so on, up to
n-body interactions.6 The effects of additional bodies are
expected to diminish quickly with increasing bodies, allowing
for a good estimate of Etot by truncating the MBE at a low
order, typically at or before the four-body interaction.7−9

However, the basis set superposition effect10 (BSSE) comes
into play as energy differences are involved in computing the
many-body interactions. BSSE arises when monomers within a
molecular cluster borrow basis functions from other monomers
to compensate for their basis set incompleteness. The same
applies to any subcluster within the molecular cluster. Thus,

when the total energies of interacting monomers and their
isolated counterparts are compared, there is an imbalance in the
computed many-body interactions. To eliminate this basis set
imbalance error (BSIE) for a dimer system, Boys and Bernardi
proposed the counterpoise (CP) method to compute the
binding energy where the monomer energies are calculated in
the dimer basis.11 To clarify our use of terminology, we use the
term “location basis” to describe the placement of basis
functions at the specified location in the cluster. The CP
method was extended for many-monomer molecular clusters to
give the Site−Site Function Counterpoise (SSFC) method by
calculating the monomer energies in the cluster basis.12 The
many-body counterpoise (MBCP) method13,14 was proposed
later to approximate the expensive calculation of the monomer
energies in the cluster basis by performing a MBE-like
decomposition of the effects of the ghost functions present.
Nonetheless, the consistent use of the cluster basis in the SSFC
method allows for a meaningful decomposition of the binding
energy into its many-body contributions. The SSFC method is
not a unique extension of the CP method.12,15 Valiron and
Mayer proposed that the many-body interaction of a subcluster
can be instead computed using the set of basis functions
centered on the subcluster of interest, i.e., the subcluster basis.16

These many-body interactions can then be summed to give the
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Valiron−Mayer Function Counterpoise (VMFC) corrected
binding energy. While both the SSFC and VMFC methods
eliminate BSIE through the use of a consistent basis, the use of
the cluster basis in the former incorporates an additional basis
set extension effect (BSEE) where the monomers surrounding
the subcluster of interest can extend their basis functions
functions present in the cluster basis but not the subcluster
basisto improve the quality of the computed many-body
interactions.
The crucial point from the aforementioned counterpoise

methods is that many-body BSSE can be divided into two
components, namely the BSIE and BSEE (see section 2.2 for a
detailed description). The BSIE (where the E stands for error)
is undesirable, causing pairwise interactions and consequently
the binding energy of large clusters to be overstabilizing. On
the other hand, the BSEE (where the E stands for effect) is
necessary to reproduce the binding energy and total energy of
molecular clusters because all the monomers are better
electronically described with the additional external basis
functions. Earlier, we showed that the use of the cluster basis
leads to rapid convergence of the MBE,17 indicating that the
BSEE is indeed present in the total energy. When the subcluster
basis is used, we observed that the MBE converged rapidly, but
to an “incorrect value.” There is a significant difference between
this “incorrect value” and the total energy, which is essentially
the BSEE. More importantly, the rapid convergence associated
with the subcluster basis suggested that the BSEE diminishes as
rapidly as the many-body interactions. This is of relevance as
we noticed that the many-body interactions computed using
the subcluster basis are commonly employed in the
construction of ab initio based potential energy surface (PES)
in the literature.18−21 Furthermore, perturbation theory is only
compatible with many-body interactions computed using the
subcluster basis as the former is BSSE-free by definition
regardless of the type of BSSE. Thus, it is important to
determine if BSEE is significant in these many-body
interactions.
In this work, we examine the amount of BSSE, in particular

BSEE, present in many-body interactions in order to identify
the major sources of error associated with reproducing the
binding energy and total energy of a molecular cluster via an
MBE. First, we investigate whether the BSEE is significant in
the many-body interactions up to the four-body level. Second,
we introduce the many-ghost many-body expansion (MGMBE)
to precisely and quantitatively account for both the BSIE and
BSEE. Remarkably, we found that the oscillatory behavior of
the MBE when diffuse functions are involved can be traced to
the BSEE in the one-body interactions, i.e., the monomer total
energies. Third, with the removal of the monomer total
energies and associated BSEE, the MGMBE is able to
accurately reproduce the binding energies of molecular clusters
using the energies of numerous subclusters that are no larger
than four monomers. Notably the utilization of embedded
charges, or a coulomb field, is entirely unnecessary to
accomplish this.

2. THEORY
Before discussing the theory behind the MBE, many-body
BSSE, and MGMBE, we need to define the following terms and
quantities which will be constantly used throughout this work.
From here on, we denote the molecular cluster of interest
simply as the “cluster” while a “subcluster” refers to a collection
of monomers taken from the cluster. In the counterpoise

methods, additional basis functions are placed on the locations
of nuclei in the cluster, but without the nuclei being present in
the electronic structure calculation, and these functions are
called “ghost functions.”We also use the term “location basis” to
describe the location at which basis functions are placed in the
calculation. For example, the cluster basis refers to the
placement of basis functions at the locations of all nuclei
present in the cluster. Each of the “bodies” in the many-body
interactions refers to a monomer from the cluster, which is
taken to be an individual water molecule in this work. When
discussing the BSEE, we denote a “ghost-body” as the set of
ghost functions centered on a monomer surrounding the
subcluster of interest. Table 1 summarizes the relevant
quantities described in this work.

2.1. Many-Body Expansion. For a cluster containing n
monomers, the MBE allows us to decompose the total energy
of the cluster, Etot, into its many-body contributions

∑ ∑ ∑ ∑ε ε ε ε

ε

= ′ + ′ + ′ + ′

+ + ′
< < < < < <

···

( ) ( )( ) ( )
E

...

n n n n

tot
A

1

A
A B

2

AB
A B C

3

ABC
A B C D

4

ABCD

A N (1)

where εA···K′ is the k-body interaction of the k-mer subcluster

A···K, of which there are ( )n
k of such terms (Figure 1). The

prime symbol in εA···K′ indicates that the basis functions are
placed exclusively at the location of the nuclei; i.e., no ghost
functions are involved. In this work, we truncate the MBE at
the four-body level and thus only provide the relevant
equations up to the four-body interaction.
εA···K′ is not directly obtainable from electronic structure

calculations, which only gives the total energy, EA···K, of the k-
mer subcluster of interest. Thus, we need to write the many-
body interactions in terms of the total energies. εA···K′ is defined
recursively using lower-body interactions2,6,7,22 and can then be
expressed in terms of total energies

ε′ = EA A (2a)

ε′ = − +E E E( )AB AB A B (2b)

ε′ = − + + + + +E E E E E E E( ) ( )ABC ABC AB AC BC A B C
(2c)

Table 1. List of Important Quantities Presented in This
Work, Followed by a Brief Definition and the Equation in
Which It First Appeared

quantity definition eq

Etot total energy of a cluster. 1
EA···KL···M total energy of k-mer subcluster A···K calculated in the

presence of ghost functions centered on L···M
4a

εtot
C binding energy computed using the cluster basis 7
Eext.
(k) basis set extension effect (BSEE) in the total k-body

interaction
8

ξA···K,L···M BSEE from m-ghost-body L···M in the k-body interaction
of A···K

9

εA···KL···M k-body interaction of A···K computed using total energies
calculated with basis functions centered on A···KL···M

10b

aEA···KL···M is mentioned much earlier in text at the beginning of section
2.2. bεA···KL···M is defined and explained much earlier in text at the
second paragraph of section 2.3.
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ε′ = − + + +

+ + + + + +

− + + +

E E E E E

E E E E E E

E E E E

( )

( )

( )

ABCD ABCD ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D (2d)

Here, the one-body interaction, εA′ , is the total energy of
isolated monomer A while the two-body interaction, εAB′ , gives
the pairwise interaction between monomers A and B. The
three-body interaction, εABC′ , can be understood as the effect of
a third monomer C on the interaction between the other two
monomers A and B, and the higher-body interactions can be
interpreted similarly. In order to employ the MBE, the k-body
interaction of individual subclusters presented in eqs 2a−2d has
to be collected to give the total k-body interaction. Many total
energy terms are repeated during this collection process, and a
compact expression of the total k-body interaction is derived
and presented in the Supporting Information.
Other than expressing the total energy of the cluster using

the MBE, another quantity of interest is the binding energy of
the cluster

∑

∑ ∑ ∑

ε

ε ε ε

ε

= −

= ′ + ′ + ′ +
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n
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2
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A B C

3
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A B C D

4

ABCD

A N (3)

2.2. Many-Body Basis Set Superposition Effect. In the
electronic structure calculation of a cluster, basis functions from
one monomer can be exploited by other monomers to
compensate for their basis set incompleteness, and this is

known as BSSE. In many-body systems, this BSSE can be
divided into two components, namely the basis set imbalance
error (BSIE) and basis set extension effect (BSEE). The
distinction between these two components becomes clear when
we compare the various placements of basis functions, i.e., the
location basis, in computing the many-body interactions (Table
2). So far, the total energy, EA···K, is written such that it is

determined by the identity of the k-mer subcluster or, more
specifically, the location of the nuclei constituting the
subcluster. In the context of molecular orbital based electronic
structure calculations, the total energy also depends on the
placement of basis functions. For example, the total energy of
monomer A calculated in the nuclei-centered basis centered on
A alone would be different from that using the set of basis
functions centered on the cluster A···N. From here on, we use
the more general notation, EA···KL···M. The overline in the
subscript indicates the presence of ghost functions centered on
L···M in the electronic structure calculation.
The most straightforward method to compute the many-

body interactions is to place basis functions exclusively at the
locations of nuclei in the electronic structure calculations. This
is the usual way of calculating an electronic energy of a
molecule. Thus, the k-body interaction computed using the
nuclei-centered basis follows eqs 2a−2d presented earlier. We
emphasize again that the prime symbol in the many-body
interaction, εA···K′ , indicates the nuclei-centered basis where the
number of basis functions are different across the different total
energy terms. This is in contrast to the “consistent” subcluster
and cluster basis which will be introduced shortly. Similarly, the
binding energy computed using the nuclei-centered basis, εtot,
follows eq 3. The εtot is often called the uncorrected binding
energy for reasons that will be obvious in the following
discussion. In computing εAB′ using eq 2b, it is clear that EAB is
calculated using more basis functions as compared to EA and
EB. In calculating EAB, monomer A can utilize basis functions
centered on monomer B to improve the description of its wave
function and vice versa. This is obviously absent in the

Figure 1. MBE allows us to easily identify the numerous interactions
between monomers that is encompassed within the total energy of the
cluster. The MBE is illustrated here for a tetramer ABCD (n = 4)
where the total energy, Etot, is decomposed into the total k-body

interactions, k = 1−4, which comprises ( )n
k individual terms. The

explicit formulas for calculating each individual k-body interaction are
given in eqs 2a−2d in the text.

Table 2. Comparison of the Choice of Basis in Computing
the Many-Body Interactions and Binding Energy, Together
with the Name of the Method Reported in the Literaturea

location basis nuclei-centered subcluster cluster

many-body interactions εA···K′ εA···K εA···KL···N
eq for many-body
interactions

eqs 2a−2d eqs 4a−4d eqs 6a−6d

binding energy εtot εtot
S εtot

C

eq for binding energy eq 3 eq 5 eq 7
name in literature uncorrectedb VMFC/

kCBS
SSFC/CP

absence of BSIE?c no yes yes
presence of BSEE?c no no yes
does MBE converge to Etot? yes no yes
MBE convergence slow,

oscillatory
rapid rapid

further remarks default basis agree with
PT

very
expensive

aFurthermore, the absence of the BSIE and presence of BSEE in the
many-body interactions are compared with their effects on the
convergence of the MBE of the total energy. bThere is no formal name
for the nuclei-centered basis as it is the default basis in electronic
structure calculations. cAs summarized toward the end of section 2.2,
the absence of BSIE and the presence of BSEE is desirable, as in the case
of the cluster basis.
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calculation of EA and EB. This imbalance in the number of basis
functions used in the three different calculations of the total
energy is the origin of the BSIE. The same BSIE manifests in
higher-body interactions in eqs 2c and 2d and the binding
energy in eq 3. For the two-body interactions, the BSIE leads to
the interactions being overstabilizing. Previously, we also found
that MBEs using εA···K′ exhibit slow and oscillatory convergence,
especially when diffuse basis functions are present.17

To remove the BSIE in many-body interactions, we need to
ensure that there is a common set of basis functions employed
in each of the total energy calculation. The smallest common
set is one that is centered on the subcluster for which the many-
body interaction is computed. We denote this as the subcluster
basis and the k-body interaction can be written as

ε = EA A (4a)

ε = − +̅ ̅E E E( )AB AB AB BA (4b)

ε = − + +

+ + +
̅ ̅ ̅E E E E

E E E

( )

( )
ABC ABC ABC ACB BCA

ABC BAC CAB (4c)

ε = − + + +

+ + + + +

+ − + + +

̅ ̅ ̅ ̅E E E E E

E E E E E

E E E E E

( )

(

) ( )

ABCD ABCD ABCD ABDC ACDB BCDA

ABCD ACBD ADBC BCAD BDAC

CDAB ABCD BACD CABD DABC
(4d)

where the total energy terms containing the same number of
monomers are grouped together to reduce clutter. For each of
the many-body interactions, the same set of basis functions
centered on the subcluster of interest is employed for all the
total energy calculations and this introduces ghost functions
denoted by the overline in the subscript of total energy terms.
Note that, unlike the nuclei-centered basis, the prime symbol is
not present here as there is a consistent number of basis
functions in each total energy calculation. The binding energy
computed using the subcluster basis is

∑ ∑ ∑ε ε ε ε

ε

= + + +

+
< < < < < <

···

( ) ( )( )

...

n n n

tot
S

A B

2

AB
A B C

3

ABC
A B C D

4

ABCD

A N (5)

The εtot
S is known as the Valiron−Mayer function counterpoise

(VMFC) corrected binding energy16 in the literature. In our
previous study,17 we referred to the subcluster basis as the
kCBS method as named by Goŕa et al.23 The subcluster basis is
the standard way of predicting many-body interactions in the
construction of ab intito based PES as it is free of BSIE.18−21,24

Furthermore, these many-body interactions are reproduced
with high accuracy using multipoles and perturbation theory5
which are BSSE-free by definitionat intermediate to long
intermolecular separations. Unlike the εtot in eq 3, we cannot
express εtot

S as the difference between the total energy and the
monomer total energies. This is because the sum of the εA···K
does not add up to the total energy; i.e., eq 1 does not hold true
here. This is related to the fact that total energies between
different εA···K’s cannot be reused. For example, the different EA
and EAB are involved in computing εA and εAB, respectively,
whereas the nuclei-centered counterpart would only require the
same EA in both cases. Thus, when the εA···K’s are summed in a
MBE according to eq 1, the total energy terms do not cancel to

give the exact total energy eventually. This implies that there
are some effects present in the total energy that are not
accounted for in the subcluster basis. In fact, this is due to the
second component of BSSEthe BSEE.
Apart from the subcluster basis, another common set of basis

functions that remove BSIE is one that is centered on the
cluster. We denote this as the cluster basis and the k-body
interaction can be written as

ε = ···EA AB N (6a)

ε = − +··· ··· ···E E E( )AB ABC N ABC N BAC N (6b)

ε = − + +

+ + +
··· ··· ··· ···

··· ··· ···
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ABCD N BACD N CABD N (6c)
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··· ···
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···
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E
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)

ABCD ABCDE N ABCDE N ABDCE N

ACDBE N BCDAE N

ABCDE N ACBDE N ADBCE N

BCADE N BDACE N CDABE N

ABCDE N BACDE N CABDE N

DABCE N (6d)

For all the total energy calculations, the set of basis functions
centered on the entire cluster is employed. Thus, basis
functions centered on other monomers surrounding the
subcluster of interest are involved, indicated by the overline
in the many-body interaction. For example, computing εABC···N
in eq 6b requires total energies involving basis functions
centered on C···N surrounding the subcluster AB. The binding
energy computed using the cluster basis is

∑
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A B C D

4

ABCDE N A N
(7)

The εtot
C is named the site−site function counterpoise (SSFC)

corrected binding energy.12 It is commonly referred to simply
as the counterpoise (CP) method as the binding energy is a
direct generalization of the CP method for a dimer system.11

The cluster basis ensures that a common set of basis functions
is employed in each of the total energy calculations, removing
the undesirable BSIE. Furthermore, all the total energy terms
employ the same basis, allowing for the sum of these many-
body interactions to add up to the total energy according to eq
1. Comparing the subcluster basis and cluster basis, there is an
additional effect in the latter where the ghost functions
surrounding the subcluster, e.g. functions centered on C···N
in the case of εABC···N, improve the many-body interaction
associated with the subcluster. This is the BSEE. Mathemati-
cally, we define the BSEE in the total k-body interaction, Eext.

(k), as
the difference between the total k-body interaction computed
using the cluster basis and subcluster basis
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Unlike the BSIE, the BSEE is important in reproducing the
total energy of a cluster. We have previously shown that the
MBEs using εA···KL···N exhibit rapid convergence to the total
energy by the four-body interaction.17 This indicates that the
total energy contains the BSEE as part of the variational
optimization and/or the perturbative treatment of electron
correlation in the electronic structure calculation of the total
energy. The borrowing of basis functions from other monomers
surrounding the subcluster does improve the flexibility of the
wave function of the subcluster and consequently the quality of
the many-body interaction computed. On a side note, this is
likewise true in valence-bonded systems where the bonding
between atoms can be improved by the basis functions from
other surrounding atoms. This importance of BSEE also applies
to the binding energy where the BSEE should be incorporated
into the many-body interactions used to compute the binding
energy. Therefore, we consider εtot

C , and not εtot
S , to be the best

estimate of the binding energy at a given level of theory and
basis set.
To summarize many-body BSSE, there are two components,

namely the BSIE and BSEE. The first component is
undesirable, arising from an imbalance in the number of basis
functions when computing energy differences in the many-body
interactions and the binding energy. This BSIE can be removed
by using a common set of basis functions in each of the total
energy calculations which can be fulfilled by the use of the
subcluster basis or the cluster basis. The second component
originates from the extension of the subcluster basis due to the
presence of monomers surrounding the subcluster in the
cluster. This BSEE is necessary to reproduce the binding energy
and total energy of the cluster and can be accounted for using
the cluster basis. However, computing the many-body
interactions in the cluster basis is very expensive and defeats
the usefulness of the MBE in decomposing a large many-body
system into manageable few-body subsystems. Thus, we wish to
analyze the amount of many-body BSSE present so as to
accurately yet cheaply reproduce the binding energy and total
energy.
2.3. Many-Ghost Many-Body Expansion. To account for

both the BSIE and BSEE (section 2.2), we introduce the many-
ghost many-body expansion (MGMBE). The MGMBE defines
these two components of many-body BSSE up to the order of
truncation of the many-body interactions, allowing us to
establish the amount of many-body BSSE present in the many-
body interactions. The MGMBE performs a two-dimensional
many-body decomposition with each decomposition account-
ing for one component of many-body BSSE (Figure 2). The

first decomposition involves the MBE (section 2.1) using the
many-body interactions computed using the subcluster basis,
εA···K, ensuring that these interactions are free of the BSIE. The
second decomposition, denoted the many-ghost expansion,
breaks down the BSEE present in the cluster basis into
contributions from one ghost body, two ghost bodies, and so
on, up to (n − k) ghost bodies. To reiterate, a ghost body refers
to the set of ghost functions centered on a monomer
surrounding the subcluster of interest. Both decompositions
can be truncated at a low order to hopefully reproduce the
binding energy and total energy of the cluster at a low
computational cost. We note that the MGMBE is a logical
extension of the earlier many-body counterpoise (MBCP)
method.13,14 The MBCP method seeks to cheaply approximate
the εtot

C in eq 7 by performing two separate many-body
decompositions on both the Etot and EAB···N. The former
decomposition is an MBE computed using the nuclei-centered
basis while the latter decomposition is essentially the many-
ghost expansion performed on the monomer total energies. In
the MGMBE, we extend the many-ghost expansion for any
arbitrary k-body interaction to identify the BSEE present.
Previously, we mentioned that the total energy of a

subcluster does not depend solely on the identity of the
subcluster of interest but also on the placement of basis
functions. To recap, we denoted EA···KL···M as the total energy of
subcluster A···K calculated in the presence of additional ghost
functions centered on L···M. The same situation applies to the
many-body interactions, evident from the discussion on the
nuclei-centered, subcluster and cluster basis in section 2.2.
Here, we denote εA···KL···M as the k-body interaction of the k-

Figure 2. MGMBE performs a two-dimensional many-body
decomposition with the first being an MBE (left to right) up to the
k-body interaction computed using the subcluster basis, εA···K, using
eqs 4a−4d. It is important to note that the BSIE is removed by
performing this calculation. A second many-ghost expansion (top to
bottom) then decomposes the BSEE from the cluster basis into
contributions from m-ghost-body, represented by the black lobes.
These BSEE terms, ξA···KL···M, are shown here for k + m ≤ 4, which can
be computed using eqs 10a−10f. The inset explains the various
symbols in the figure while the comments at the right and bottom edge
summarizes the components of the MGMBE along each row and
column, respectively. We also note that along the diagonal where k +
m is constant, the BSIE and BSEE cancel as these terms share the same
basis functions.
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mer subcluster A···K computed using total energies calculated
with the set of basis functions centered on A···KL···M. The
overline in the subscript denotes the ghost bodies, namely the
set of ghost functions centered on monomers L···M
surrounding the subcluster. For example, εABCD = EABCD −
(EABCD + EBACD). In particular, the many-body interaction
computed using the subcluster basis, εA···K, and the cluster basis,
εA···KL···N, are specific cases of this general notation. In the
former, there are no ghost bodies involved, while the entire
cluster (excluding the subcluster of interest) constitutes all the
ghost bodies in the latter case. Now, we can write the MGMBE
of the total energy as
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where ξA···KL···M is the BSEE from m-ghost-body L···M in the k-
body interaction of k-mer subcluster A···K, of which there are

· −( ) ( )n
k n km of such terms. The first line in eq 9 gives the MBE

using many-body interactions computed using the subcluster
basis using eqs 4a−4d). While these many-body interactions are
free of BSIE, they lack the important BSEE. These missing
BSEE terms are added in the following lines with each line
introducing contributions from a different number of ghost
bodies. For cases where k + m ≤ 4, ξA···KL···M can be expressed as

ξ ε ε= −̅ ̅AB AB A (10a)

ξ ε ε= −̅ ̅ABC ABC AB (10b)

ξ ε ε= −̅ ̅ABCD ABCD ABC (10c)

ξ ε ε ε ε= − + +̅ ̅( )ABC ABC AB AC A (10d)

ξ ε ε ε ε= − + +̅ ̅( )ABCD ABCD ABC ABD AB (10e)

ξ ε ε ε ε

ε ε ε ε

= − + +

+ + + −̅ ̅ ̅

( )

( )
ABCD ABCD ABC ABD ACD

AB AC AD A (10f)

The meaning of these terms can be better understood by
looking at specific examples. For example, ξABCD in eq 10c
quantifies the amount by which the ghost functions centered on
D affect the three-body interaction of ABC, i.e., the BSEE from
D on εABC. Likewise, ξABCD in eq 10e gives the cooperative
effect of the ghost functions centered on both C and D on the
two-body interaction of AB, and higher-ghost-body BSEEs can
be interpreted similarly. These terms represent the many-body
decomposition of the BSEE present in the cluster basis. As
such, eqs 10a−10c, eqs 10d and 10e, and eq 10f resemble eq 2a,
eq 2b, and eq 2c, respectively. Upon comparison between the
two sets of equations, there is an additional εA···C term (last

term in each equation) in eq 10. This is the 0-ghost-body term
where there is no BSEE and the equivalent in a MBE
corresponds to a 0-body interaction which is zero and thus
omitted in the many-body interaction expressions. In order to
compute the ξA···KL···M terms, all the εA···KL···M terms have to be
expressed in terms of total energies that can be readily obtained
from electronic structure calculations. Here, we give an example
where we express ξABCD in terms of total energies

ξ ε ε ε ε= − − +

= − −

− − −

− − − + − −

̅ ̅
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E E E

E E E
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(11)

From eq 11, we observe that the maximum number of basis
functions is limited to that of four monomers in computing
ξABCD. In fact, the maximum number of basis functions is
limited to (k + m) monomers in computing ξA···KL···M. It is also
obvious that rewriting the ξA···KL···M terms in terms of total
energies can lead to cumbersome expressions. Fortunately,
many total energy terms are repeated across different ξA···KL···M’s
which can be collected to give a more compact expression when
all the ξA···KL···M terms are summed. The derivation of these
working equations is presented in the Supporting Information.
The two many-body decompositions in the MGMBE can be

truncated at a low order to hopefully reproduce the binding
energy and total energy of a cluster. Given that the two
decompositions are independent, the BSEE present in each of
the k-body interactions can be truncated at a different m ghost
body. A prudent choice would be to truncate at order (k, m)
such that k + m = α, keeping the maximum number of basis
functions in each electronic structure calculation to that of α
monomers. For example, truncating the MGMBE at α = 2
would include the εA, εAB, and ξAB terms while truncation at
α = 3 includes the previously mentioned terms as well as εABC,
ξABC, and ξABC terms.
A surprising result surfaced when the truncation order of the

MGMBE is such that k + m = α. Careful analysis of the working
equations in the Supporting Information revealed that all the
total energies involving any ghost functions vanish when we
sum the εA···K and ξA···KL···M terms with k + m = α, where α is a
constant. Consequently, we obtain the many-body interactions
computed using the nuclei-centered basis from this summation.
This point is worth emphasizing, which is the inclusion of
BSEE terms in the MGMBE cancels exactly all of the total
energies involving any ghost functions in eq 9. This implies that
an MBE using the nuclei-centered basis truncated at α bodies
incorporates some BSEE, in particular contributions from up to
m = (α − k) ghost bodies in each of the k-body interactions.
We stress that this surprising result only occurs when the
MGMBE terms are summed across different k number of
interacting bodies to obtain either the binding energy or total
energy. To illustrate this cancellation, let us consider the sum of
ξAB, ξBA, and εAB. The first two terms would be ξAB = EAB − EA
and ξBA = EBA − EB, respectively, and the total energies
involving ghost functions would be eliminated when we include
the εAB = EAB − EAB − EBA. Thus, we are left with the
εAB′ = EAB − EA − EB. In essence, the BSEE in ξA···KL···M replaces
the total energy terms involving ghost functions in the εA···K
with corresponding ghost-free terms, “transforming” it into the
nuclei-centered counterpart, εA···K′ . Expressed alternativelythe
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BSIE for a higher-body interaction (something that must be
subtracted) is an BSEE for a lower-body interaction (something
that must be added)and the two effects cancel each other
exactly!

3. RESULTS AND DISCUSSION

All quantum chemical calculations were performed using the
MOLPRO suite of programs.25 Calculations were carried out at
the second-order Møller−Plesset perturbation (MP2) level of
theory using the aug-cc-pVnZ, labeled AVnZ, n = D, T, Q, 5,
Dunning correlation-consistent basis sets augmented with
diffuse functions.26,27 The explicitly correlated MP2 (MP2-
F12) level of theory28 was employed with the AVDZ basis set.
3.1. Basis Set Extension Effect in Many-Body

Interactions. In our previous work, we observed rapid
convergence in the MBEs using either the subcluster or cluster
basis. This indirectly suggests that the difference between these
two MBEsthe BSEEshould converge rapidly with the
number of bodies. We computed the Eext.

(k) and total k-body
interaction for the (H2O)6 cage and prism isomers up to the
four-body term with increasing basis set quality. Both isomers

are taken from Richard et al.14 and showed similar trends. Thus,
the data for the cage isomer are shown in Figure 3, while the
prism isomer counterparts are in Figure S1 of the Supporting
Information. Similar studies exist in the literature but are
performed on small trimer and tetramer clusters29,30 or focused
on the binding energy.14,31 Instead, we choose to separately
examine the BSEE in each of the total k-body interactions,
especially between the two-body and the three-and-higher-body
interactions, because they are dominated by different
intermolecular interactions.5

At the two-body level (Figure 3a), the Eext.
(2) is always negative,

indicating that the additional ghost functions in the cluster basis
help to lower the two-body interactions. As expected, increasing
the quality of the basis set decreases this borrowing of basis
functions to improve the two-body interactions. These BSEEs
are generally small, below 1 m-Eh, because the additional basis
functions in the cluster basis are not centered on the nuclei or
on regions between nuclei where the interaction occurs. This is
in contrast to the use of midbond functions where the
placement of basis functions at regions between interacting
molecules improves the description of the interaction.32 We

Figure 3. (a−c) BSEE in the total k-body interaction, Eext.
(k), as defined in eq 8 and the (d−f) total k-body interaction for the cage isomer of (H2O)6

with increasing basis set quality at MP2/AVXZ. The total k-body interactions are computed using various location bases, namely the nuclei-centered
(N), subcluster (S), and cluster (C) basis described in section 2.2 to determine the effects of many-body BSSE on the many-body interactions. In
particular, the lines for the cluster basis are dashed to show clearly the similarities between that and the subcluster basis results. The Eext.

(4) and total
four-body interaction computed using the subcluster basis at MP2/AV5Z are omitted due to steep computational cost.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00343
J. Chem. Theory Comput. 2015, 11, 5132−5143

5138

C.2 SUPPORTING PUBLICATIONS

189



point out that the Eext.
(k) also serves as an error indicator of how

well the many-body interactions computed using the subcluster
basis can be used in place of the cluster basis counterpart to
reproduce the binding energy or total energy. Thus, the Eext.

(2)

can still be substantial if very high accuracy is demanded. For
the higher-body interactions (Figure 3b,c), the Eext.

(3) and Eext.
(4) are

minusculesmaller than 0.045 m-Ehand we can treat the
many-body interactions computed in both the subcluster and
cluster basis to be practically the same. This is of comfort as the
use of the subcluster basis renders the construction of MBE-
based ab initio water potentials24,33 possible. The reduction in
dimensionality from applying the MBE is preserved unlike the
cluster basis which depends on the geometry of the cluster.
Indeed, the many-body interactions computed using the
subcluster basis were used to construct ab initio based PES
to study large water clusters and bulk water.18−21

The tiny Eext.
(3) and Eext.

(4) bring us to an unrelated but important
result. At the complete basis set (CBS) limit, there is no BSSE,
i.e., Eext.

(k) = 0. While the converse is not necessarily true, it is
worthwhile to investigate if the CBS limit can be approximated
using moderate-sized basis sets. Clearly, this is true for the
three-body (Figure 3e) and four-body interactions (Figure 3f).
Both the total three-body and four-body interaction computed
using the subcluster or cluster basis (light and dark blue lines)
appear to have converged, presumably to the CBS limit, varying
by 0.005−0.015 m-EH. This was mentioned in passing recently
in the construction of an ab initio water PES where the three-
body interactions computed using the subcluster basis at
CCSD(T)/AVTZ are very similar to the CBS limit values.20

With the removal of BSIE, we only require an AVDZ basis set
to obtain CBS limit three-body and four-body interactions. This
result implies that primarily the convergence of the total
energies with increasing basis set quality comes from changes in
the one-body and two-body interactions. Thus, we can obtain
the total energies of water clusters with increasing basis set
quality by recalculating the one-body and two-body interactions
at the respective basis sets. The fact that three-and-higher-body
interactions do not require a large basis set to achieve the CBS
limit eliminates the need for extrapolation or ad hoc measures
as commonly employed for two-body interactions. The ad hoc
methods involve taking a fraction of the two-body interaction
computed using the subcluster and nuclei-centered basis,34−37

motivated by the well-documented trend34,36−38 that these two
quantities converge to the CBS limit from above and below,
respectively (Figure 3d).
As with our previous work,17 there is no guarantee that the

observations made on the small (H2O)6 clusters still hold true
when larger clusters are studied. To this end, we computed the
BSEE up to the four-body interaction for a homologous series
of optimized (H2O)8−16 clusters taken from Maheshwary et
al.,39 which is presented together with the hexamer results
(Figure 4). Since various cluster sizes are involved, all the
energies reported henceforth will be on a per monomer basis.
Calculations were performed at MP2/AVDZ and MP2/AVTZ.
The explicitly correlated MP2-F12 theory model28 was also
employed with the AVDZ basis set as this combination typically
yielded results of MP2/AVQZ quality,40 complementing the
MP2/AVDZ and MP2/AVTZ results.
As mentioned earlier, Eext.

(k) serves as an error indicator of how
well the cheaper subcluster basis can be used in place of the
more expensive cluster basis. Here, we wish to clarify what we
deem to be an acceptable value for Eext.

(k). Studies on atomization
energies and reaction enthalpies often require calculations to

agree with experiments within chemical accuracy, which is
4.2 kJ mol−1 or 1.6 m-Eh.

41 However, the MBE is often used to
study the dynamical evolution of large molecular clusters and
do not involve bond breaking. As such, we introduce the
“dynamical accuracy” where the error for large clusters is
computed on a per monomer basis as the properties derived
from dynamical simulations are intensive in nature. A suitable
dynamical accuracy might be 10% of the average molecular
kinetic energy at room temperature, (3/2)kT, which is about
0.14 m-Eh or 0.37 kJ mol−1.
From Figure 4a, we again observe that the Eext.

(2) decreases with
increasing basis set quality where the use of the higher quality
MP2/AVTZ (light blue line) or the explicitly correlated
MP2‑F12/AVDZ (dark blue line) halved the small Eext.

(2) present
in MP2/AVDZ (orange line). While the Eext.

(2) per monomer at
MP2/AVTZ falls within dynamical accuracy, the BSEE exhibits
a slow increase with increasing cluster size. Fortunately, due to
the small system size, this small Eext.

(2) can be practically
eliminated through the use of larger basis sets or CBS
extrapolation. Indeed, CBS extrapolation is routinely applied
to two-body interactions employed in ab initio two-body water
potentials.21,42,43 At the higher-body level, we confirmed that
the Eext.

(3) and Eext.
(4) are, if not negligible, then acceptable. The Eext.

(3)

is insignificant, always below 0.040 m-Eh per monomer (Figure
4b). The Eext.

(4) shows an increasing trend with increasing cluster

Figure 4. BSEE in the total k-body interaction, Eext.
(k), per (H2O)

monomer for water clusters of increasing size, (H2O)6−16, computed at
MP2 levels of theory with various basis sets. The results for Eext.

(4) are
not available at the MP2/AVTZ level due to the steep computational
cost involved in computing the four-body interactions.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00343
J. Chem. Theory Comput. 2015, 11, 5132−5143

5139

CD CONTENTS AND SUPPORTING PUBLICATIONS

190



size (Figure 4c). Nonetheless, the value is quite small (<0.080
m-Eh per monomer) and would be even smaller if a larger basis
set such as AVTZ is used. Furthermore, there would be some
partial cancellation of the BSEE when the three-body and four-
body interactions are summed. Therefore, we conclude that the
cheaper subcluster basis can be employed in computing three-
body and four-body interactions in place of their more
expensive cluster basis counterpart.
Next, we overlaid the total k-body interaction computed

using the subcluster basis at different basis set quality (Figure
5). The cluster basis counterpart shows identical trends and is

presented in Figure S2 of the Supporting Information. It is clear
that the total three-body and four-body interactions remain the
same regardless of the basis set used (Figure 5b,c). The total
four-body interaction at MP2/AVTZ (light blue line) appears
to be different due to the scale of the energy axis, which
exaggerates the small difference (<0.055 m-Eh) between the
MP2/AVTZ and MP2/AVDZ values. The total two-body
interaction (Figure 5a) becomes more stabilizing with
increasing basis set quality, echoing the hexamer results.
In summary, we made three key observations: (i) the Eext.

(2) is
small but significant and diminishes with increasing basis set
quality, (ii) the Eext.

(3) and Eext.
(4) are much smaller, supporting the

use of the cheaper subcluster basis to compute the three-body
and four-body interactions, and (iii) the three-body and four-

body interactions computed using the subcluster basis have
converged to the CBS limit using an AVDZ basis set.

3.2. Many-Ghost Many-Body Expansion of the Total
Energy. CBS extrapolation at the two-body level would
eliminate the Eext.

(2), which can be coupled with AVDZ-quality
three-body and four-body interactions to yield binding energies
of CBS quality without using the expensive cluster basis. Apart
from that, one may also be interested in reproducing the total
energy at a particular basis set. This is useful in assessing the
accuracy of fragmentation methods,1−4 such as the Combined
Fragmentation Method,44−46 where small groups of adjacent
atoms are treated as bodies and selected many-body
interactions are computed to approximate the total energies
of large chemical systems. We employed the MGMBE
truncated at different order in an attempt to reproduce the
total energy (Table 3). In this way, we can determine whether
the omission of certain BSEEs affects the accuracy of the
predicted total energy.
From Table 3, including the BSEE from a one-ghost-body

into the one-body interaction decreased the error by 1 order of
magnitude as seen in the entry {1, 0, 0, 0}. This suggests that
the one-body interaction is very sensitive to the BSEE. This is
not surprising as the one-body interaction constitutes the
majority (≈99.98%) of the total energy. The error decreased
again when more BSEE was incorporated (entry {2, 1, 0, 0}).
However, from entry {2, 1, 0, 0} to {3, 2, 1, 0}, further
inclusion of BSEE resulted in a larger error. Hypothesizing that
this could be due to the BSEE in the one-body interaction, we
varied the truncation order of the BSEE in the one-body
interaction (entry {1, 2, 1, 0}, {2, 2, 1, 0}, and {3, 2, 1, 0}) and
observed a fluctuation in the error. While the data are not
shown here, the error actually oscillates wildly, changing in sign
from positive (entry {1, 2, 1, 0}) to negative (entry {2, 2, 1, 0})
and back to positive again (entry {3, 2, 1, 0}). Recall the
surprising result in section 2.3 that the MBE using the nuclei-
centered basis truncated at the α-body term contains the BSEE
from up to m = (α − k) ghost-bodies in each of the k-body
interactions. This suggests that the similar oscillatory behavior
reported previously17 in the MBEs using the nuclei-centered
basis could be due to the BSEE present in the one-body
interaction. To determine if the two oscillatory behaviours are
related, we compared the convergence of the MBE using the
nuclei-centred basis to the total energy of the cluster with that
of the MGMBE of the one-body interaction to the total one-
body interaction in the cluster basis (Figure 6).
It is clear from Figure 6 that the two many-body

decompositions are practically identical except for the first
two data points. It appears to be the case that the poor
convergence of the MBE using the nuclei-centered basis is
almost completely caused by the BSEE in the one-body
interaction. The differences in the first two data points is
because the MBE (Figure 6a) includes the actual many-body
interactions together with the BSEE. In the first two data
points, there are additional errors in the MBE associated with
neglecting these many-body interactions. From the four-body
term onward, the majority of the many-body interactions are
accounted for, and virtually all the remaining error is apparently
due to BSEE in the one-body interaction.
The errors in the MBE associated with the BSEE not only

applies to the brute force computation of all the ( )n
k individual

k-body interactions but also to “internally consistent” selected
many-body interactions virtually always employed in fragmen-

Figure 5. Comparison of the total k-body interaction computed using
the subcluster basis per (H2O) monomer for water clusters of
increasing size, (H2O)6−16, computed at various levels of theory and
basis sets.
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tation methods. These interactions are “internally consistent” in
a sense that the many-body interactions of the selected
fragments (interacting groups of atoms) and their constituent
lower-body interactions are included and only included once.
This allows for the BSIE and BSEE to cancel. The poor
convergence of the MBE/MGMBE allows us to explain certain
observations in fragmentation methods. “Grafting” is employed
in some fragmentation methods47−49 where the total energy of
the system is calculated at a lower level of theory or basis set to

serve as a correction to the predicted total energy. Such grafting
approaches not only correct for missing important many-body
interactions but also account for the BSEE to a large extent,
explaining the low errors associated with these methods. Since
the BSEE converges poorly with respect to the number of ghost
bodies, the expensive one-body interactions computed using
the cluster basis are required to accurately reproduce the total
energy. Future investigations to develop cheaper alternatives to
the cluster basis will be undertaken. One possibility includes the

Table 3. Root Mean Square of the Error per (H2O) Monomer (RMSE, m-Eh) and Maximum Absolute Error per (H2O)
Monomer (MxAE, m-Eh), in Reproducing the Total Energy for a Series of Optimized Water Clusters from Figure 4 Calculated
at MP2/AVDZ, MP2/AVTZ and MP2-F12/AVDZa

m-ghost-body in k-bodyb MP2/AVDZ MP2/AVTZ MP2-F12/AVDZ

k = 1 k = 2 k = 3 k = 4 RMSE MxAE RMSE MxAE RMSE MxAE

0 0 0 0 2.505 2.779 1.286 1.402 0.811 0.868
1 0 0 0 0.122 0.162 0.065 0.110 0.431 0.518
2 1 0 0 0.101 0.150 0.032 0.060 0.267 0.343
1 2 1 0 0.280 0.324 0.091 0.105 0.510 0.595
2 2 1 0 0.145 0.197 0.066 0.095 0.338 0.461
3 2 1 0 0.320 0.463 0.088 0.141 0.298 0.462
all all all all 0.044 0.075 c c 0.037 0.062

aThe MGMBE includes up to the four-body interaction (k = 1−4) of which the BSEEs are truncated at different m-ghost bodies. Error here is
defined as the total energy of the cluster minus the MGMBE-predicted total energy. The error per (H2O) monomer is first obtained before the RMS
or maximum is taken. bThe digits give the highest number of ghost bodies, m, that are incorporated into the k-body interaction using the MGMBE,
and “all” refers to the cluster basis which includes all the BSEEs. For example, the second entry, {1, 0, 0, 0}, indicates that the BSEE from up to one
ghost body is incorporated in the one-body interactions, and there are no BSEEs included for the two-to-four-body interactions. cAs the four-body
interaction computed using the cluster basis is computationally expensive at MP2/AVTZ, an estimate of the total energy is unavailable.

Figure 6. (a) The error of the MBE of the total energy using the nuclei-centered basis truncated at the α-body term follows an almost identical trend
as (b) the error of the MGMBE of the total one-body interaction in the cluster basis truncated at the (α − 1)-ghost-body term. The calculations were
performed at MP2/AVDZ for (H2O)12, (H2O)14, and (H2O)16 from Figure 4. The error of the MBE is defined as the difference between the total
energy, Etot, and the sum of the total one-body interaction up to the total α-body interaction. Similarly, the error of the MGMBE is defined as the
difference between the one-body interaction computed using the cluster basis, EA B···N, and the sum of the BSEE from up to (α − 1) ghost bodies
summed across all the monomers.

Table 4. Root Mean Square of the Error per (H2O) Monomer (RMSE, m-Eh) and Maximum Absolute Error per (H2O)
Monomer (MxAE, m-Eh), in Reproducing the εtot

C for the Same Water Clusters in Table 3a

m-ghost-body in k-bodyb MP2/AVDZ MP2/AVTZ MP2-F12/AVDZ

k = 2 k = 3 k = 4 RMSE MxAE RMSE MxAE RMSE MxAE

0 0 0 0.160 0.197 0.046 0.058 0.090 0.104
1 0 0 0.046 0.070 0.073 0.114 0.060 0.090
2 1 0 0.009 0.015 0.019 0.043 0.015 0.028
all all all 0.044 0.075 c c 0.037 0.062

aThe MGMBE includes up to the four-body interaction (k = 2−4) of which the BSEEs are truncated at different m ghost bodies. Error here is
defined as the εtot

C of the cluster minus the MGMBE-predicted εtot
C . The error per (H2O) monomer is first obtained before the RMS or maximum is

taken. bThe digits give the highest number of ghost bodies, m, that are incorporated into the k-body interaction using the MGMBE, and “all” refers
to the cluster basis which includes all the BSEE. For example, the second entry, {1,0,0}, indicates that the BSEE from up to one ghost body is
incorporated in the two-body interactions, and there are no BSEEs included for the three-body and four-body interactions. cAs the four-body
interaction computed using the cluster basis is computationally expensive at MP2/AVTZ, an estimate of the εtot

C is unavailable.
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omission of certain basis functions from the basis set, in
particular the tight valence-type functions (i.e., not diffuse
functions), on ghost bodies that are far away from the
monomer of interest. Thus, only the contributing diffuse
functions remain.
3.3. Many-Ghost Many-Body Expansion of the Bind-

ing Energy. We have shown that the poor convergence of the
MBE using the nuclei-centered basis is caused by the BSEE in
the one-body interactions. With the removal of the one-body
interactions and its associated BSEE, we would expect the
remaining energy to converge rapidly with the number of
bodies. This remaining energy is the binding energy, εtot

C , and
the accuracy of the MGMBE is evaluated in Table 4.
From Table 4, the incorporation of the BSEE greatly reduces

the error in reproducing the εtot
C , eventually giving a tiny error

per monomer of below 0.015−0.043 m-Eh (entry {2, 1, 0}),
which is well within dynamical accuracy. In fact, entry {2, 1, 0}
gives a lower error than entry {all, all, all} which incorporates all
the BSEE in the two-to-four-body interactions. This can be
attributed to a reversal in the sign of the error. In entry
{0, 0, 0}, the absence of BSEE which stabilizes the binding
energy results in negative errors. On the other hand, the errors
from the incorporation of all the BSEE up to the four-body
interaction in entry {all, all, all} are positive due to the neglect
of higher-than-four-body interactions. Thus, there is some form
of error cancellation between the two factors when the majority
of the BSEE is accounted for in entry {2, 1, 0}. Furthermore,
the maximum number of basis functions ever employed in any
total energy calculation is limited to that of four monomers in
entry {2, 1, 0}, originating from either the interacting bodies or
ghost bodies. This allows for expensive theoretical models such
as the Coupled Cluster Singles and Doubles with perturbative
Triples [CCSD(T)] to be applied to obtain highly accurate εtot

C

for large clusters or even bulk-water simulations. It should be
emphasized that no charge embedding scheme9,50,51 was used,
although they are commonly applied to water clusters. The use
of such schemes is prevalent in the literature due to the belief
that the water−water interactions are highly many-body in
nature. However, our results indicate that we only require up to
the four-body interactions. It is likely that any apparent higher-
than-four-body effects are caused by the BSEE in the one-body
interactions which we have shown to be highly many-body in
nature (Figure 6).
Notably, the calculations involved in entry {2, 1, 0} are

equivalent to that in a MBCP(4) calculation.13,14 A MBCP(4)
calculation would involve a MBE using the nuclei-centered
basis truncated at the four-body term minus the one-body
interactions with the BSEE truncated at the (4 − 1) = 3-ghost-
body level. This is equivalent to a “{3, 2, 1, 0}” MGMBE
calculation of the total energy minus the one-body interactions
and its associated BSEE, i.e., entry {2, 1, 0} in Table 4. Thus, an
“{α − 2, α − 1, ..., 0}” MGMBE calculation of the εtot

C is
identical to an MBCP(α) calculation. Note that for the MBCP
method, the MG1BE has to be truncated at one order less than
that of the MBE. This is important to ensure that all the BSEE
in the one-body interactions are properly removed, and this
requirement only becomes obvious with the analysis of the
BSEE using the MGMBE presented in this work.

4. CONCLUSION
Through a systematic study of water clusters with improving
basis set and increasing cluster size, we concluded that one has
to account for many-body BSSE in order to reproduce the

many-body interactions computed using the cluster basis.
There are two distinct components to the many-body BSSE.
The first arises due to an imbalance in the number of basis
functions used to compute a particular k-body interaction. In
this case, the k-body total energy calculation utilizes many more
basis functions than does the lower-body counterparts which
are necessary to extract the k-body interaction. The second
arises due to the fact that a k-body within a much larger cluster
is further stabilized by the basis functions of the surrounding
bodies denoted as the BSEE. If one wants to reproduce the
binding energy and/or the total energy through a many-body
approach, the first BSIE is undesirable as it leads to erroneous
many-body interactions. However, the BSEE is important as
these extension effects improve the quality of the total energy
or binding energy by maximizing the flexibility of the wave
function at the given basis set. Thus, the best estimate of the
binding energy at a given basis set would be the total energy
minus the one-body intramolecular interactions computed
using the cluster basis.
We found that both components of the many-body BSSE are

accounted for in the three-body and four-body interactions
computed using the subcluster basis and that these interactions
appear to have converged to the CBS limit at the AVDZ level.
For the two-body interactions, and particularly for the one-
body intramolecular interactions, important BSEEs are
significant and have to be accounted for, thus making the use
of the subcluster basis insufficient. To account for both the
BSIE and the BSEE, we introduce the MGMBE in this work.
The MGMBE performs a two-dimensional many-body
decomposition with each decomposition accounting for one
component of many-body BSSE. Through the MGMBE of the
total energy, we found that the oscillatory behavior
encountered in MBEs using diffuse functions is caused by the
BSEE in the one-body interactions. With the adequate removal
of the one-body interactions and the associated BSEE, the
MGMBE successfully reproduces the binding energies of
clusters using numerous small calculations that involve no
more than four monomers.
Despite the utility of decomposing a large cluster into small

subsystems, the MBE and the MGMBE come with a limitation.
The number of four-body calculations increases quartically with
the cluster size, substantially hindering the scalability of these
methods. To circumvent this, a forthcoming publication will
establish a rigorous criterion to select out all potentially
significant many-body interactions.
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