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Summary

In this thesis, we study equilibrium existence issues in games whose components (players, types,

actions, etc.) have general structures that allow uncountably many elements. Specifically, we

focus on the existence of perfect equilibria in large games, Bayesian Nash equilibria in general

Bayesian games, and stationary Markov perfect equilibria in stochastic games. We provide a

complete characterization for the existence of these equilibria and discuss their related properties

in general frameworks.

It has been pointed out that a large game with infinitely many actions does not necessarily

have a pure-strategy Nash equilibrium, much less a pure-strategy perfect equilibrium. In

Chapter 2, we formulate the concept of pure-strategy perfect equilibrium under such setting, and

restore its existence by providing a necessary and sufficient condition. This work complements,

and extends, Rath (1994, 1998), who considered the case of finite actions. Our analysis borrows

insights from Simon and Stinchcombe (1995), who showed that, unlike Selten’s well-known

result, perfect equilibrium is not necessarily admissible and characterized limit admissibility,

and He, Sun and Sun (2016), who utilized a crucial condition, namely nowhere equivalence, to

study relevant existence problems. We prove that nowhere equivalence is not only sufficient but

also necessary for the existence of limit admissible perfect equilibrium. Further, we establish

a condition requiring certain level of robustness on best strategies responding to small social

aggregates fluctuations, and discuss its related properties.

Since Harsanyi (1967–68), the literature on theory of games with incomplete information

has not yet yielded a general existence result for pure-strategy Bayesian Nash equilibria. To

obtain such existence result, it is crucial for the information structures in Bayesian games to
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Summary

be absolutely continuous, since Simon (2003) showed a non-existence example without such

continuity. In Chapter 3, we study Bayesian games with general action space, interdependent

payoffs and correlated general type space. We introduce a condition of coarser density weighted

payoff-relevant information, a general version of the absolute continuity condition mentioned

above, and prove that it is a necessary and sufficient condition for the existence of pure-strategy

Bayesian Nash equilibria in every general Bayesian game. This condition is obtained by

distinguishing two different diffuseness of information and characterizing the relation between

them. Our result brings new insights into the longstanding issue in the literature and provides a

complete characterization in a more general framework compared to previous studies. We also

show that under such condition, every behavioral strategy profile possesses a strong purification.

Stochastic games are first introduced by Shapley (1953). Since then, the existence of

stationary Markov perfect equilibria in stochastic games has been studied extensively. The

literature on stochastic games developed substantially in the last twenty years, but except for

several special classes, no general result has been known. In Chapter 4, we consider large

stochastic game with general state and action spaces. The main result establishes the existence

of behavioral-strategy stationary Markov perfect equilibria in large stochastic games without any

specific condition. Since pure-strategy stationary Markov perfect equilibrium may fail to exist,

we further identify a condition, namely the nowhere equivalence condition, which completely

characterizes the existence of pure-strategy stationary Markov perfect equilibria in general.

Under the same condition, every behavioral-strategy stationary Markov perfect equilibrium has

a strong purification, which means, for every behavioral-strategy stationary Markov perfect

equilibrium, there is an equivalent pure-strategy stationary Markov perfect equilibrium with the

same total discounted payoffs for almost all the players. In addition, the closed-graph properties

for the correspondences of both behavioral-strategy and pure-strategy stationary Markov perfect

equilibria are presented.

xii



Chapter 1

Introduction

Games whose components have general structure have shown their value in modelling realistic

social phenomena. Think of describing “perfect competition” in a competitive market where

the amount of participants is huge and each of them has negligible influence, one may need

to consider games with a continuum of players as suggested in Aumann (1964). Allowing

other components such as feasible type or action space to be uncountablely many is also more

relevant to the reality. Therefore, the study of games in a general framework receives significant

attentions in the literature on game theory.

In contrast to finite games, equilibria often fail to exist in a general framework due to the

limitation of Lebesgue measurability. Various methods have been proposed to tackle this non-

existence problem, such as distributional equilibria, standard representations, hyperfinite agent

spaces, saturated probability spaces, and agents spaces with the condition of “many more agents

than strategies”, but they only focus on special circumstances.1 To obtain such existence in a

general framework, we borrow the insights from He et al. (2016), who utilized the “ nowhere

equivalence” condition to study relevant equilibrium existence issues, and He and Sun (2013);

He and Sun Y (2014), who provided the theory of regular conditional distributions of correspon-

dences as a theoretical foundation for strategic analysis, and we study the characterizations of

equilibrium existences in various environments.

1See for example, Mas-Colell (1984), Hart, Hildenbrand and Kohlberg (1974), Khan and Sun (1999), Keisler
and Sun (2009) and Rustichini and Yannelis (1991).
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Chapter 1. Introduction

In this thesis, we consider equilibrium existences as well as their related properties in three

typical classes of games with general structure in their components regarding player, type, action

or state spaces. Specifically, the focus is on large deterministic games, general Bayesian games

and large stochastic games, as elaborated in the following.

1.1 Large deterministic games

Selten (1975) introduced the notion of perfect equilibrium into finite games, for the purpose of

precluding “irrational” Nash equilibria in which some players use dominated strategies. But

similar notion has not yet been established in large games with infinitely many actions. Technical

issues arise as soon as one wants to fomulate this concept properly in large environment. Such

issue, to be specific, is about the possible failure of the standard fixed point arguments due to

a lack of regular properties2 of conditional distributions/expectations of correspondences in

general. This was elaborated by Khan, Rath and Sun (1997) in the early literature, who showed

that a large game with infinitely many actions does not necessarily have a pure-strategy Nash

equilibrium. Hence the existence of its refinement–a pure strategy perfect equilibrium–cannot

be guaranteed either.

In the literature, there are two independent strands relevant to the study of perfect equilibra in

games with a continuum of players and infinitely many actions: one is to work with finite-player

games with compact, metrizable sets of normal form actions and continuous payoff (“infinite

normal-form games” for short), while the other is to study large games with finite actions. In

contrast to finite games, irrational strategies may survive in perfect equilibria of games with large

structures regarding either player or action spaces. Still, we can retrieve a similar but weaker

property, namely the limit admissible property, for perfect equilibria in the large environment.

Simon and Stinchcombe (1995) made a breakthrough in generalizing Selten’s idea to infinite

normal-form games.3 Their work formulated the notion of perfect equilibrium, and showed its

existence in infinite normal-form games. As shown by Simon and Stinchcombe (1995), it is not
2Regular properties here means convexity, compactness and preservation of upper hemicontinuity.
3Specifically, “infinite normal-form game” is referred to the finite-player games with compact, metrizable sets

of normal form actions and continuous payoff.
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1.1. Large deterministic games

generally true that each perfect equilibrium in their setting precludes dominated strategies, or in

other words, each perfect equilibrium is admissible. In fact, they constructed a specific finite-

player game with infinitely many actions where any admissible perfect equilibrium fails to exist.

To compensate and improve this result, they proposed the concept of “limit admissibility” as an

appropriate alternative, which enlarged admissible strategy sets by including their boundaries,

and showed each perfect equilibrium in infinite normal-form games is limit admissible. Note

that these two concepts (“limit admissible” and “admissible”) coincide in games with finitely

many actions.

In the context of large games, Rath (1994, 1998) formulated and established the existence of

perfect equilibria in games with a continuum of players and finitely many actions. To illustrate

that perfect equilibria in large games may fail to preclude irrational strategies, he constructed a

specific large game with finite actions which possesses a non-admissible perfect equilibrium.

Nevertheless, he further pointed out that every large game with finite actions always has an

admissible perfect equilibrium.

In Chapter 2, we formulate the notion of perfect equilibrium in large games with infinitely

many actions. In order to establish its existence, we adopt the nowhere equivalence condition

introduced by He et al. (2016), and show it is not only sufficient but also necessary for the

general existence of perfect equilibria in large game with infinitely many actions. As with

Simon and Stinchcombe (1995) and Rath (1994, 1998), perfect equilibria under our setting

may not be admissible either, due to the large structure of both player and action spaces. In

fact, we give non-existence examples to illustrate such failure, which will continue even when

we relax the requirement from admissible to limit admissible. Nevertheless, we prove that

under nowhere equivalence condition, every large game with infinitely many actions has a limit

admissible perfect equilibrium, which extends Rath’s result. This strengthened existence result

also deduces the necessity of nowhere equivalence condition. Finally we study a so-called “best

response robustness condition”, analogue to Rath’s boundary condition, under which every

Nash equilibrium is a perfect equilibrium. This condition actually demands a strong level of

robustness on best responses with respect to small fluctuations of social aggregates, and hence

yields nice properties as well as constraints which we will discuss in the last section of this

3



Chapter 1. Introduction

chapter.

1.2 General Bayesian games

Bayesian games, or games with incomplete information, capture a common phenomenon in

many realistic cases, the information asymmetry among individuals. In this literature, many

progresses have been made, for example, Harsanyi (1967–68). Nevertheless, a fundamental

question about the existence of pure-strategy Bayesian Nash equilibria in Bayesian games in a

general framework still remains unanswered, which calls for further studies.

In fact, the general existence of pure-strategy equilibria will not be possible without a

condition of absolute continuity on information structure. As a counterexample, a special

Bayesian game with no pure-strategy equilibria was brought up by Simon (2003). Hellman

(2014) further showed that without such continuity, a Bayesian game may not even have

measurable approximate pure-strategy equilibria.

In Chapter 3, we study the existence of pure-strategy Bayesian Nash equilibria in Bayesian

games with general action spaces, interdependent payoffs and correlated types.4 We introduce a

condition of coarser density weighted payoff-relevant information, and prove that it is sufficient

for pure-strategy Bayesian Nash equilibria to exist in every general Bayesian game. This condi-

tion is obtained by distinguishing two different diffuseness of information and characterizing

the relation between them, which borrows technical insights from He and Sun X (2014), He et

al. (2016) and He and Sun (2014a). Such condition is also shown to be a minimal requirement

given the validity of the pure-strategy equilibrium existence in every Bayesian games of an

identical information structure with the same set of players and actions.

Previous studies in the literature has proposed various assumptions to settle this existence

issue in general, including supermodular in strategies (see Vives (1990)), Spence-Mirrlees single

crossing property (see Athey (2001)), multidimensional and partially-ordered type and action

spaces (see McAdams (2003)), and compact locally complete metric action semilattics and

4We called Bayesian games with general action spaces, interdependent payoffs and correlated types to be
general Bayesian games for short.

4



1.3. Large stochastic games

partially-ordered type spaces (see Reny (2011)). But all these results are built upon a basic

assumption that the information is independent and diffusive among players.

However, the case of Bayesian games with correlated types and interdependent payoffs is

different. Though positive result was obtained in general finite-action Bayesian games by He and

Sun (2014a), who proposed a condition of ”coarser inter-player information” that completely

charaterlizes such existence, Khan et al. (1999) pointed out that no general existence result

is valid in Bayesian games with general action space even with independent and diffusive

information. Therefore, a suitable condition to restore such existence is desirable.

In searching of such condition, evidence in extant literature suggests that an enriched

information structure may be able to support a general existence result. With the underlying

assumption of independent information, relevant studies on such enriched information structure

includes the atomless Loeb space (see Khan and Sun (1999)), the saturated probability type

spaces (see Loeb and Sun (2006) or Wang and Zhang (2012)), and the “relative diffuseness”

information assumption (see He and Sun X (2014)). Each one of these information structures

can establish the existence of pure-strategy equilibria in Bayesian game in general.

Our result brings new insights to the longstanding fundamental issue by establishing the

existence of pure-strategy Bayesian Nash equilibria in Bayesian games in a general framework,

and provides a complete characterization for information structure that supports such existence.

A purification result is further presented.

1.3 Large stochastic games

Begining from Shapley (1953), the literature on stochastic games has been substantially de-

veloped, providing theoretical foundations for modelling dynamic strategic interactions in a

stochastic environment. To further study such interactions in a framework with many players that

fits into a wide range of applications, it is natural to consider stochastic games with a continuum

of players. Previous studies proposed various solution concepts under such setting. In this paper,

we focus on a standard one: the stationary Markov perfect equilibrium, and explore its related

5



Chapter 1. Introduction

properties.

There is extensive research on establishing the existence of stationary Markov perfect

equilibria in stochastic games with general state spaces; see Nowak and Raghavan (1992), Duffie

et al. (1994), Duggan (2012) and Levy (2013). Though recent development by He and Sun

(2015) is able to cover previous results in Nowak and Raghavan (1992), Duffie et al. (1994),

Nowak (2003) and Duggan (2012), the extant literature has not yielded a general result. In fact,

examples constructed in Levy (2013) and Levy and McLennan (2015) show that such equilibria

may not exist in the case of general state spaces.

This paper studies stationary Markov perfect equilibria in stochastic games with a continuum

of players and general state spaces. The main result in Chapter 4 establishes the existence of

behavioral-strategy stationary Markov perfect equilibria without any specific condition, and

provides a sufficient and necessary condition for the existence of pure-strategy stationary Markov

perfect equilibria in such games.5

Our work offers a new technique to circumvent a measurability issue arisen in the establish-

ment of our main result This technical development therefore is crucial to support the general

existence of behavioral-strategy stationary Markov perfect equilibria. For pure-strategy station-

ary Markov perfect equilibria, we identify a crucial condition, namely the nowhere equivalence

condition,6 and show that it is not only sufficient but also necessary for the existence of pure-

strategy stationary Markov perfect equilibria. Under this particular condition, we also show

that every behavioral-strategy Markov perfect equilibrium can be purified into an equivalent

pure-strategy stationary Markov perfect equilibrium with identical payoffs for almost all players,

which reveals that the virtue contribution of such condition is to validate the purification.

This work also studies the closed-graph property for stationary Markov perfect equilibria

in large stochastic games with a prerequisite that transition probabilities are uniformly norm-

continuous. We show that in such setting, this property holds generally for the correspondence

of stationary Markov perfect equilibria in behavioral strategies. To obtain an analogous result for

5To be specific, we study stochastic games with a continuum of players, general state spaces (Polish spaces) and
action spaces (compact metric spaces). We also adopt action distributions as societal summaries in this setting.

6 As mentioned previously, this condition is introduced by He et al. (2016)
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1.4. Organization

equilibria in pure strategies, we impose the nowhere equivalence condition, which guarantees the

pure-strategy equilibrium existence, and show that such condition actually provides a complete

characterization of the closed-graph property for the correspondence of pure-strategy stationary

Markov perfect equilibria in our setting.

1.4 Organization

The main results in Chapters 2, 3 and 4 are based on the papers Sun and Zeng (2014), He, Sun,

Sun, and Zeng (2014) and He, Sun, and Zeng (2016), respectively.

This thesis is organized as follows. In Chapter 2, we formulate the notion of perfect equilibria

in large games with infinitely many actions, and provide a complete characterization of the

existence of perfect equilibria. The property of limit admissibility as well as robustness are

further discussed. In Chapter 3, we study pure-strategy Bayesian Nash equilibria in games with

incomplete information, interdependent payoffs and correlated types. We identify a necessary

and sufficient condition for such existence, followed by a related purification result. In Chapter 4,

we establish the existence of behavioral-strategy stationary Markov perfect equilibria in every

large stochastic game, and provide a necessary and sufficient condition for the existence of pure-

strategy stationary Markov perfect equilibria in this setting. We further present a purification

result as well as the closed graph property for such equilibria.

7





Chapter 2

Perfect Equilibria in Large Games

2.1 Introduction

Selten (1975) introduced (trembling hand) perfect equilibrium to restrict the set of Nash equilib-

ria in finite games (i.e., games with finite players and finite actions). This refinement precludes

weakly dominated actions by requiring some notion of neighborhood robustness to small pertur-

bations of the original game. Based on Selten (1975)’s original idea, Simon and Stinchcombe

(1995) formulated perfect equilibrium in finite-player games with infinitely many actions, and

showed its existence and several properties. Rath (1994, 1998) was the first to consider perfect

equilibrium in large games.1 In particular, Rath (1994, 1998) formulated the notion of perfect

equilibrium in large games with finite actions and established its existence. One may ask whether

perfect equilibria exist in the large games with infinitely many actions.2 This motivates this

chapter.

Structurally, we work with the framework of large games, where the action spaces are

compact metric spaces and each player’s payoff function continuously depends on her/his own

action and on the societal aggregate of other players’ actions. In this framework, a perfect

1The large games and their applications have been extensively studied; see the survey by Khan and Sun (2002)
for example. For some recent developments and applications of large economies/games, see Einy et al. (2000),
Einy and Shitovitz (2001, 2003), Fu and Yu (2015), Hammond (1979, 2015), Khan et al. (2013), Qiao and Yu
(2014), Rauh (2007), Sun et al. (2012), Sun and Yannelis (2007), Yannelis (2009) among others.

2It is well known that a large game with infinitely many actions does not necessarily have a pure strategy Nash
equilibrium, and a pure strategy perfect equilibrium either; see Section 2 in Khan et al. (1997) for example.

9



Chapter 2. Perfect Equilibria in Large Games

equilibrium is defined as a “limit” of a sequence of ε-perfect equilibria describing the possibility

of making mistakes. In each ε-perfect equilibrium, each player adopts a completely mixed

strategy, which is a full support probability distribution on the action set assigning at least 1− ε

weight to the set of best response actions. Then we show that the set of perfect equilibria is

generally a proper subset of the set of Nash equilibria; see Proposition 1, Examples 1 and 2.

This result is compatible with the analogue in finite games.

The notion of mixed/behavioral strategy which involves randomization is widely used in

game theory. However, one may not observe individuals to make decisions by using various

randomization devices in many practical situations.3 Then the question is in what kind of games,

randomization essentially plays no useful role. Namely, under what conditions a game has a pure

strategy equilibrium. To obtain the existence of pure strategy perfect equilibria, we turn to the

nowhere equivalence condition introduced in He et al. (2016).4 This condition distinguishes the

player space from the characteristics type space which is generated by the mapping specifying

the individual payoff functions and action sets.5 In Theorem 1, we prove that a large game

always has a pure strategy perfect equilibrium whenever the underlying player space satisfies the

nowhere equivalence condition. By distinguishing the player space from the characteristics type

space, we allow different players with the same characteristics (payoff and action set) to choose

different optimal actions in equilibria. This leads to possible purifications of behavioral strategy

equilibria6 and the existence of pure strategy equilibria.7 In contrast, the traditional set-up

where the spaces of players and their characteristic types are identical may fail to have such a

heterogeneity and hence could not ensure the existence of pure strategy equilibria. Moreover, it

follows from Theorem 2 of He et al. (2016) that the condition of nowhere equivalence is also

necessary for obtaining the existence of pure strategy perfect equilibria.

3See Aumann (1987), Milgrom and Weber (1985), Radner and Rosenthal (1982) and Rubinstein (1991) among
others.

4The condition of nowhere equivalence is one of the four equivalent conditions identified in He et al. (2016) that
provide a unified and minimal framework for handling the failure of the Lebesgue interval in in various problems
associated with competitive equilibria in large economies and Nash equilibria in large games.

5The nowhere equivalence condition requires that give any non-trivial collection of players, when the player
space and the characteristics type space are restricted to such a collection, the former one contains the latter one
strictly in terms of measure spaces.

6A pure strategy profile is said to be a purification of a behavioral strategy profile if the expected pay-
offs/distributions of these two strategy profiles are the same for all the players.

7For more details, see Example 3 and Remark 4 in He et al. (2016).
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2.1. Introduction

The admissibility8 of perfect equilibria was studied extensively. Though Selten (1975)

showed that every perfect equilibrium in finite games is admissible, this is not generally true.

Simon and Stinchcombe (1995) constructed a finite-player game with infinitely many actions,

where an admissible perfect equilibrium fails to exist; see Example 2.1 therein. In the context

of large games, Rath (1998) constructed a large game with finite actions, in which there is a

perfect equilibrium that is not admissible; see Section 5 therein. Nevertheless, Rath (1998)

further pointed out that every large game with finite actions always has an admissible perfect

equilibrium in Theorem 2(a). However, we construct a large game with infinitely many actions,

in which an admissible perfect equilibrium does not exist. This suggests that the existence

and the admissibility of perfect equilibria may not be compatible in large games with infinitely

many actions. In finite-player games (with infinitely many actions), as suggested by Simon and

Stinchcombe (1995), the limit admissibility could be an appropriate alternative: an equilibrium

is limit admissible if it puts no mass on the interior of the set of weakly dominated strategies. It

is of interest to see if such a limit admissible perfect equilibrium exists or not in large games with

infinitely many actions. We provide a full characterization on this existence in Theorem 2: the

nowhere equivalence condition is sufficient and necessary for the existence of limit admissible

pure strategy perfect equilibrium.

We also discuss the concept of proper equilibrium in large games with infinitely many

actions. Such a notion was introduced by Myerson (1978) for finite games. It further refines

perfect equilibrium by assuming that more costly trembles are made with significantly smaller

probability than less costly ones. The notions of proper equilibrium for finite-player games with

infinitely many actions, and for large games with finite actions have been formulated by Simon

and Stinchcombe (1995) and Rath (1994, 1998) respectively. They also established the existence

of proper equilibria in the corresponding settings. For large games with infinitely many actions,

we follow the approach of finite partitions adopted by Simon and Stinchcombe (1995) to define

proper equilibrium. In Theorem 3, we show that the nowhere equivalence condition is sufficient

and necessary for the existence of pure strategy proper equilibria for large games with infinitely

many actions.

8An equilibrium is admissible if it puts no mass on weakly dominated strategies.
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Chapter 2. Perfect Equilibria in Large Games

Motivated by Rath (1998), we establish a condition requiring certain level of robustness on

best responses while the social aggregate fluctuating within a small range. This condition, called

“best response robustness condition” in the following, is examined in Section 2.6. We show

that every Nash equilibrium is a perfect equilibrium when the game satisfies the best response

robustness condition; see Proposition 2. For almost every player, the perfect equilibrium strategy

is required to be in the lim sup of the ε-perfect equilibrium strategies. Based on the best response

robustness condition, we have a stronger result: almost every perfect equilibrium strategy can be

a limit of a sequence of ε-perfect equilibrium strategies under the condition of best response

robustness; see Proposition 3.

The rest of this chapter is organized as follows. In Section 2.2, we present the set-up of

large games with infinitely many actions and formulate the notions of ε-perfect equilibrium and

perfect equilibrium. We also consider the relation between a Nash equilibrium and a perfect

equilibrium in Section 2.2. In Section 2.3, we establish our main existence result via the nowhere

equivalence condition; see Theorem 1. In Sections 2.4 and 2.5, we strengthen the existence

result of pure strategy perfect equilibria to the existence of their refinement that satisfies the

limit admissibility or the properness; see Theorems 2 and 3, respectively. Section 2.6 studies the

best response robustness condition. All the proofs are collected in Section 2.7.

2.2 Perfect equilibria of large games

In this section, we shall specify the formulation of large games with general action spaces. The

player space is modeled by an atomless probability space (I,F , λ).9 Each player i has to restrict

her/his actions to a certain (nonempty) subset of a compact metric space A, denoted by Ai.10

This action correspondence A : i 7→ Ai is supposed to be measurable and compact-valued.11

The set of Borel probability measures on A, denoted by M(A), will serve as the space of

9A probability space (I,F , λ) (or its σ-algebra) is atomless if for any non-negligible subset E ∈ F , there is a
F-measurable subset E′ of E such that 0 < λ(E′) < λ(E).

10One can take A to be the compact metric space [0, 1]N with the product topology, since every compact metric
space is homeomorphic to a compact subset of [0, 1]N; see Theorem 3.40 in Aliprantis and Border (2006).

11We are grateful to the anonymous referee for suggesting us to work with an action correspondence rather than
a common action space.
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2.2. Perfect equilibria of large games

societal summaries. Note thatM(A) is also a compact metric space under weak topology. Each

player’s payoff continuously depends on her/his own action as well as on a societal summary

that describes the action distribution of all the players. For simplicity, the payoff function for

each player is assumed to be a bounded continuous function on A ×M(A).12 The space of

payoffs UA is then defined as the space of all bounded continuous functions on the product space

A×M(A) with its sup-norm topology and the resulting Borel σ-algebra. Now, we are ready to

present the definition of large games.

Definition 1 (Large game). A large game is a measurable function G from I to UA.

In a large game G, player i’s payoff function G(i) is usually rewritten as ui for simplicity.

A behavioral strategy profile (resp. a pure strategy profile) g is an F-measurable function

from I toM(A) (resp. A) such that g(i;Ai) = 1 (resp. g(i) ∈ Ai) for λ-almost all i ∈ I , where

g(i;Ai) is the value of the probability measure g(i) on the subset Ai ⊆ A. Let Ψ be the set of

all the behavioral strategy profiles.

Moreover, letM(Ai)
fs be the set of Borel probability measures on Ai assigning strictly

positive mass to every nonempty open subset of Ai. Then an (F -measurable) behavioral strategy

profile g with g(i) ∈ M(Ai)
fs for λ-almost all i ∈ I captures the notion that any player

may “tremble” and play any one of her actions. Such a behavioral strategy profile is called a

behavioral strategy profile with full support. Let Ψfs be the set of all the behavioral strategy

profiles with full support.

Given a behavioral strategy profile g, player i’s expected payoff is

Ui(g) =

∫
A

ui

(
a,

∫
I

g(i) dλ(i)

)
g(i; da),

where
∫
I
g(i) dλ(i) is the Gelfand integral of g,13 denoting the average action distributions of

all the players. Note that when g is a pure strategy profile, the social summary
∫
I
g(i) dλ(i) is

12The results in this paper still hold even if we assume that each player i’s payoff function is on Ai ×M(A).
In this formulation, a large game G is defined to be a function from D × M(A) to R such that G(·, µ) is
F × B(A)-measurable and G(i, ·, ·) : Ai ×M(A)→ R is continuous, where D = {(i, a) ∈ I ×A | a ∈ Ai}.

13The Gelfand integral of g is a probability measure such that
( ∫

I
g(i) dλ(i)

)
(B) =

∫
I
g(i;B) dλ(i) for each

B ∈ B(A).
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Chapter 2. Perfect Equilibria in Large Games

λg−1, which is the action distribution induced by g. Let Bri(g) be the set of player i’s (pure)

best response actions to the behavioral strategy profiles g, that is,

Bri(g) = arg max
a∈Ai

ui

(
a,

∫
I

g(i) dλ(i)

)
.

Since Ai is a compact metric space and ui is continuous on A×M(A), we have that Bri(g) is

nonempty and compact for each g.

Next, we present the definition of Nash equilibria.

Definition 2 (Nash equilibrium). A pure strategy Nash equilibrium g is an F-measurable pure

strategy profile such that for λ-almost all i ∈ I ,

ui
(
g(i), λg−1

)
≥ ui

(
a, λg−1

)
for all a ∈ Ai.

The distance between two probability distributions µ and ν on A will be measured by the

strong metric ρs and the weak metric ρw:

ρs(µ, ν) = sup
{
|µ(B)− ν(B)|

∣∣∣ B ∈ B(A)
}

and

ρw(µ, ν) = inf

{
ε > 0

∣∣∣∣∣ for all B ∈ B(A),
µ(B) ≤ ν(Bε)+ε

ν(B) ≤ µ(Bε)+ε

}
,

where Bε is the ε-neighborhood of the Borel measurable set B. Clearly, the topology onM(A)

induced by the strong metric is finer than the topology induced by the weak metric, and these

two metrics induce the same topology when A is a finite set. We turn now to the definitions of

(strong/weak) ε-perfect equilibria and (strong/weak) perfect equilibria, noting the central role

that different distances play.

Definition 3 (ε-perfect equilibrium). A strong ε-perfect equilibrium gε is an F-measurable

behavioral strategy profile with full support such that for λ-almost all i ∈ I ,

ρs
(
gε(i),M(Bri(g

ε))
)

:= inf
µ∈M(Bri(gε))

ρs(gε(i), µ) < ε,

14



2.2. Perfect equilibria of large games

whereas a weak ε-perfect equilibrium satisfies

ρw
(
gε(i),M(Bri(g

ε))
)

:= inf
µ∈M(Bri(gε))

ρw(gε(i), µ) < ε.

Definition 4 (Perfect equilibrium). A pure (resp. behavioral) strategy strong perfect equilibrium

g is an F-measurable pure (resp. behavioral) strategy profile such that there exists a sequence

{gn}n∈Z+ where

(1) each gn is a strong εn-perfect equilibrium with εn → 0 as n goes to infinity,

(2) for λ-almost all i ∈ I , g(i) ∈ supp Ls gn(i) (resp. Ls gn(i)),14

(3) lim
n→∞

∫
I
gn(i) dλ(i) = λg−1 (resp.

∫
I
g(i) dλ(i)).

A pure (resp. behavioral) strategy weak perfect equilibrium g is an F -measurable pure (resp.

behavioral) strategy profile such that there exists a sequence {gn}n∈Z+ where

(1’) each gn is a weak εn-perfect equilibrium with εn → 0 as n goes to infinity,

(2’) for λ-almost all i ∈ I , g(i) ∈ supp Ls gn(i) (resp. Ls gn(i)),

(3’) lim
n→∞

∫
I
gn(i) dλ(i) = λg−1 (resp.

∫
I
g(i) dλ(i)).

The above notions of ε-perfect equilibrium and perfect equilibrium are straightforward

adaptations of the corresponding notions for games with finite players (Selten (1975), Simon

and Stinchcombe (1995)) and for large games with finite actions (Rath (1994, 1998)). In games

with a finite number of players, a perfect equilibrium is required to be a limit of a sequence

of ε-perfect equilibria; see Selten (1975) and Simon and Stinchcombe (1995). In the presence

of a continuum of players, this (almost everyone) convergence may break down; see Rath

(1994). Hence, one has to settle for something less by weakening the requirement from almost

14Ls gn(i) denotes the topological lim sup of the sequence of the subsets
{
{gn(i)}

}
n∈Z+

; see Definition 3.80
in Aliprantis and Border (2006). This limit as well as the notion of limit lim

n→∞
are with respect to the usual weak

convergence of distributions. For a probability µ on a topological space X endowed with the Borel σ-algebra
B(X), suppµ denotes its support, which is required to satisfy (1) µ

(
(suppµ)c

)
= 0 and (2) if G is open and

G∩ suppµ 6= ∅, then µ(G∩ suppµ) > 0; see Section 12.3 in Aliprantis and Border (2006). For a set of probability
measures N on (X,B(X)), we use suppN to denote the set {suppµ | µ ∈ N}.

15



Chapter 2. Perfect Equilibria in Large Games

everyone convergence. Then, it is a natural one that a perfect equilibrium is in the lim sup of

strategies of almost every player. Furthermore, as discussed in Rath (1994), the requirement that∫
I
gn(i) dλ(i) converges to λg−1 is crucial as this assumption guarantees that the limit of ε-best

responses is a best response in the limit.

The following proposition shows that a perfect equilibrium is always a Nash equilibrium in

large games. This result is compatible with the fact that the perfect equilibrium is a refinement

of Nash equilibria in games with finite players.

Proposition 1. In any large game, a pure strategy weak/strong perfect equilibrium is a pure

strategy Nash equilibrium.

In games with finite players, it is well known that the perfect equilibrium is a strict refinement

of Nash equilibrium. We present an example to illustrate that this statement also holds in large

games.

Example 1. Let the Lebesgue unite interval (L,L, η) be the player space, where L = [0, 1], L is

the Lebesgue σ-algebra, and η is the Lebesgue measure. Let the set A = {0, 1} be the common

action set. For each player i ∈ L, given a societal summary ξ ∈M(A), the payoff function is

defined as follows:

ui(1, ξ) = ξ({1}) and ui(0, ξ) = 0.

Claim 1. For the game in Example 1, f 1(i) ≡ 0 is a Nash equilibrium but not a perfect

equilibrium.

The claim above shows that perfect equilibrium is a strict refinement of Nash equilibrium in

large games.

It is a straightforward observation that any strong perfect equilibrium is a weak perfect

equilibrium, based on the fact that the topology on M(A) induced by the strong metric is

finer than the topology induced by the weak metric. Furthermore, the notions of strong perfect

equilibrium and weak perfect equilibrium coincide when the action set A is finite. However,

there are essential differences between these two concepts in large games with infinitely many
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2.3. The existence of perfect equilibria

actions. The following example presents such a large game, which illustrates that the set of

strong perfect equilibria is a proper subset of weak perfect equilibria.15

Example 2. Let the Lebesgue unit interval (L,L, η) be the player space, and the set A =

{−1} ∪ [0, 1] the common action space. The payoff functions are defined as follows.

For each player i ∈ [0, 1
2
), given her own action a ∈ A and a societal aggregate ξ ∈M(A),

her payoff function is u1(a, ξ) =
∫
A
v(a, a2) dξ(a2), where

v(a, a2) =



1
8
a2, if a = −1, a2 ∈ [0, 1],

a, if a ∈ [0, a2
2

), a2 ∈ [0, 1],

a2 − a, if a ∈ [a2
2
, 1], a2 ∈ [0, 1],

0, if a ∈ A, a2 = −1.

For each player i ∈ [1
2
, 1], given her own action a ∈ A and a societal aggregate ξ ∈M(A),

her payoff function is u2(a, ξ) = −a if a ∈ [0, 1] and u2(−1, ξ) = −2.

Claim 2. For the game in Example 2, we have the following results.

(1) There is a unique strong perfect equilibrium f 1 (modulo negligible subsets of players),

where f 1(i) = −1 for i ∈ [0, 1
2
) and f 1(i) = 0 for i ∈ [1

2
, 1].

(2) Besides f 1, there is another weak perfect equilibrium f 2(i) ≡ 0.

The claim above shows that the set of strong perfect equilibria is a possibly proper subset of the

set of weak perfect equilibria in large games with infinitely many actions.

2.3 The existence of perfect equilibria

Khan et al. (1997) constructed a large game (with infinitely many actions), which does not

have a pure strategy Nash equilibrium; see Section 2 therein. Since a pure strategy perfect

15This example is motivated by Example 2.3 in Simon and Stinchcombe (1995).
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Chapter 2. Perfect Equilibria in Large Games

equilibrium is always a pure strategy Nash equilibrium as shown in Proposition 1, a pure strategy

prefect equilibrium in that game does not exist either. In this section, we systematically study

the existence issue of pure strategy perfect equilibria, and prove that the nowhere equivalence

condition, introduced in He et al. (2016), is sufficient and necessary to guarantee the existence.

In our formulation, the player space is endowed with two σ-algebras F and G, where

G is a countably-generated sub-σ-algebra of F . We assume that large games and action

correspondences are G-measurable. The two σ-algebras F and G are called the universal σ-

algebra and the characteristics type σ-algebra, respectively, and the probability space (I,G, λ)

is called the characteristic type space. Here G can be viewed as the σ-algebra generated by the

mapping (G,A) specifying the individual payoff functions and action sets.

For any non-negligible subset D ∈ F , i.e., λ(D) > 0, the restricted probability space

(D,GD, λD) is defined as follows: GD is the σ-algebra {D ∩ D′ : D′ ∈ G} and λD is the

probability measure re-scaled from the restriction of λ to GD; the restricted probability space

(D,FD, λD) is defined similarly. We state the nowhere equivalence condition introduced in He

et al. (2016) as follows.

Definition 5 (Nowhere equivalence condition). The σ-algebraF is said to be nowhere equivalent

to the sub-σ-algebra G, if for every non-negligible subset D ∈ F , there exists an F -measurable

subset D0 of D such that λ(D04D1) > 0 for any D1 ∈ GD, where4 denotes the symmetric

difference operator. That is, D04D1 = (D0 \D1) ∪ (D1 \D0).

The condition of nowhere equivalence requires that given any non-trivial collection of players,

when the player space and the characteristic type space are restricted to such a collection, the

former contains the latter strictly in terms of measure spaces.

By distinguishing the player space from the characteristic type space, the condition of

nowhere equivalence allows the heterogeneity that different players with the same payoff to

select different optimal (pure) actions, which in turn guarantees the existence of pure strategy

equilibria; see He et al. (2016). However, in the example constructed by Khan et al. (1997),

both the spaces of players and their characteristic types are the Lebesgue unit interval, which

fails to have such a heterogeneity. In particular, a continuum version of the classical sequential
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2.4. Limit admissible perfect equilibria

replica model as in Debreu and Scarf (1963) satisfies the nowhere equivalence condition.

To view an analogous situation in a finite-player setting, let k and n be positive integers,

I = {1, 2, . . . , k n} be the space of players, and F the power set of I . Let G be the σ-algebra

generated by a partition {I1, I2, . . . , Ik} of I , where each I` has n players sharing the same

characteristics. In some asymptotic sense, F is nowhere equivalent to G when n goes to infinity.

Under the nowhere equivalence condition, we have the following existence result.

Theorem 1. Every G-measurable large game G has an F-measurable pure strategy strong

perfect equilibrium if and only if F is nowhere equivalent to G.

Remark 1. The nowhere equivalence condition is needed for the purification of behavioral

strategy perfect equilibria so to allow us obtaining a pure strategy equilibrium. In general, in a

large game, such a purification method does not work; see He et al. (2016) and its references. In

a game where some players with a given characteristics have multiple optimal (pure) actions,

to purify a behavioral strategy equilibrium, one has to allows the heterogeneity that different

players with the same characteristics to select different optimal (pure) actions; see the examples

in He et al. (2016) and their discussions.

2.4 Limit admissible perfect equilibria

In games with finite players and finite actions, it is well known that a perfect equilibrium is

always admissible, that is, it can not be in weakly dominated strategies. However, this result

does not necessarily hold in general. For finite-player games with infinitely many actions, an

admissible perfect equilibrium may fail to exist; see Example 2.1 in Simon and Stinchcombe

(1995). Furthermore, Rath (1998) constructed a large game with finite actions, in which there is

a perfect equilibrium that is not admissible; see Section 5 therein. In the following, we construct

a large game with infinitely many actions, motivated by Example 2.1 in Simon and Stinchcombe

(1995), in which the unique strong perfect equilibrium is not admissible. This suggests that

the existence and the admissibility may not be compatible in large games with infinitely many

actions.
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Chapter 2. Perfect Equilibria in Large Games

Example 3. Let the Lebesgue unit interval (L,L, η) be the player space and A = [0, 1
2
] the com-

mon action space. The common payoff function for each player i is u(ai, ξ) =
∫ 1

2

0
v(ai, y) dξ(y)

where ai denotes player i’s action, ξ is a societal summary, and v(·, ·) is a continuous function

on [0, 1
2
]× [0, 1

2
] given by:

v(x, y) =


x, if x ≤ 1

2
y,

y(1−x)
2−y , if 1

2
y < x.

Claim 3. The unique strong perfect equilibrium for this game is f , where f(i) ≡ 0 (modulo

non-negligible subsets of players). However, the strategy 0 is weakly dominated for each player.

This claim shows that an admissible perfect equilibrium may fail to exist for large games with

infinitely many actions. Therefore, an admissible perfect equilibrium may not exist even when

the players have a common payoff function.16

In finite-player games, as suggested by Simon and Stinchcombe (1995), the limit admissibil-

ity could be an appropriate alternative: a strategy is limit admissible if it puts no mass on the

interior of the set of weakly dominated strategies. Thus, in the framework of large games, one

may turn to the limit admissibility to resolve this incompatibility.

Definition 6 (Limit admissibility). A pure strategy ai ∈ Ai is said to be a weakly dominated strat-

egy for player i if there exists a behavioral strategy µi ∈M(Ai) such that ui(ai, µ) ≤ ui(µi, µ)

for every µ ∈ M(A) and ui(ai, µ̄) < ui(µi, µ̄) for some µ̄ ∈ M(A), where ui(µi, µ) =∫
Ai
ui(ai, µ) dµi(a). For each i ∈ I , let Θi be the set of weakly dominated strategies for player

i.

• A strategy profile f is said to be admissible if for λ-almost all i ∈ I , f(i) ∈ Θc
i , where Θc

i

is the complement of the set Θi relative to Ai.

• A strategy profile f is said to be limit admissible if for λ-almost all i ∈ I , f(i) ∈ (Θo
i )
c,

where Θo
i is the interior of the set Θi and (Θo

i )
c is the complement of the set Θo

i relative to

Ai.
16The nowhere equivalence condition is trivially satisfied.
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Furthermore, two pure strategies ai and āi in Ai are said to be equivalent if ui(ai, µ) = ui(āi, µ)

for all µ ∈M(A).

Remark 2. In a large game, a “limit admissible strategy” is the same as a “admissible strategy”.

Under the nowhere equivalence condition, the following result shows that the existence

and limit admissibility of perfect equilibria are compatible in large games with infinitely many

actions.

Theorem 2. Every G-measurable large game has an F-measurable limit admissible strong

perfect equilibrium in pure strategies if and only if F is nowhere equivalent to G.

2.5 Proper equilibria of large games

In this section,17 we consider the notion of proper equilibrium, which further refines the notion

of trembling hand perfect equilibrium by assuming that more costly trembles are made with

significantly smaller probability than less costly ones. To define a proper equilibrium of a large

game, we follow the approach of finite partitions adopted by Simon and Stinchcombe (1995).

Given a finite Borel measurable partition P = {P1,P2, . . . ,Pm} of the action space A, let

Pji = Pj∩Ai for each i ∈ I and j = 1, 2, . . . ,m. DenotePi = {Pji | j = 1, 2, . . . ,m and Pji 6=

∅}. We first define the ε-proper equilibrium relative to a finite partition P , which requires the

relative weight condition (Condition (2) in Definition 7) to hold for the finite partition P .

Definition 7 (ε-proper equilibrium relative to a finite partition P). Let ε > 0 and P =

{P1,P2, . . . ,Pm} be a finite measurable partition of the action space A. A (behavioral strat-

egy) strong (resp. weak) ε-proper equilibrium relative to P , g = gε(P), is an F-measurable

(behavioral) strategy profile with full support such that

(1) g is a strong (resp. weak) ε-perfect equilibrium,

17We are grateful to the anonymous referee for suggesting us to study proper equilibria in large games with
infinitely many actions.
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(2) for λ-almost all i ∈ I , if ui
(
P`i ,
∫
I
g(i) dλ(i)

)
� ui

(
Pki ,

∫
I
g(i) dλ(i)

)
for P`i and Pki in Pi,

then g(i;P`i ) ≤ ε · g(i;Pki ), where ui
(
P`i ,
∫
I
g(i) dλ(i)

)
� ui

(
Pki ,

∫
I
g(i) dλ(i)

)
means

sup
a′∈P`i

ui
(
a′,
∫
I
g(i) dλ(i)

)
< inf

a′′∈Pki
ui
(
a′′,
∫
I
g(i) dλ(i)

)
.

Let Pros(ε,P) (resp. Prow(ε,P)) denote the set of all F -measurable behavioral strategy strong

(resp. weak) ε-proper equilibria relative to P .

Definition 8 (Proper equilibrium relative to a finite partition P). Let P = {P1,P2, . . . ,Pm}

be a finite measurable partition of the action space A. A pure (resp. behavioral) strategy strong

proper equilibrium relative to P , g = g(P), is an F -measurable pure (resp. behavioral) strategy

profile such that there exists a sequence {gn}n∈Z+ where

(3) each gn is a strong εn-proper equilibrium relative to P with εn → 0 as n approaches infinity,

(4) for λ-almost all i ∈ I , g(i) ∈ supp Ls gn(i) (resp. Ls gn(i)),

(5) lim
n→∞

∫
I
gn(i) dλ(i) = λg−1 (resp.

∫
I
g(i) dλ(i)).

Let Pros(P) denote the set of all F-measurable behavioral strategy strong proper equilibria

relative to P .

The definition of weak proper equilibria relative to P is similar, and the set of all F-

measurable behavioral strategy weak proper equilibria relative to P is denoted by Prow(P).

The following definition requires that the set of proper equilibria does not depend on

any particular finite partition by “anchoring” the finite partitions. Given a finite measurable

partition P = {P1,P2, . . . ,Pm} of the action space A, the diameter of P is defined to be

the maximum of the diameter of its elements, i.e., diam(P) = maxj=1,2,...,m diam(Pj) =

maxj=1,2,...,m supa,b∈Pj d(a, b) where d(·, ·) is a metric on A. Let β > 0. We further denote

Pros(β) = ∪{P : diam(P)=β} Pros(P) and Prow(β) = ∪{P : diam(P)=β} Prow(P).
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2.6. Condition of best response robustness

Definition 9 (Proper equilibrium). A pure (resp. behavioral) strategy strong proper equilibrium

g is an F-measurable pure (resp. behavioral) strategy profile such that there exists a sequence

{gn}n∈Z+ where

(6) each gn is a strong proper equilibrium relative to a finite measurable partition with the

diameter βn, where βn → 0 as n approaches infinity,

(7) for λ-almost all i ∈ I , g(i) ∈ supp Ls gn(i) (resp. Ls gn(i)),

(8) lim
n→∞

∫
I
gn(i) dλ(i) = λg−1 (resp.

∫
I
g(i) dλ(i)).

The definition of weak proper equilibria is similar.

Remark 3. Simon and Stinchcombe (1995) required a strong (resp. weak) proper equilibrium

g to be in ∩P Pros(P) (resp. ∩P Prow(P)), where the intersection is taken over all possible

finite measurable partitions. However, Pros(P) may not be a closed set in our setting, and hence

∩P Pros(P) may not be well defined.

Under the nowhere equivalence condition, we have the following existence result.

Theorem 3. Every G-measurable large game G has an F-measurable pure strategy strong

proper equilibrium if and only if F is nowhere equivalent to G.

2.6 Condition of best response robustness

In this section, we will consider the condition of best response robustness, which is motivated

by the boundary condition in Rath (1998). We follow the notation in the previous sections and

restrict our attention to games with a common action space and strong perfect equilibria unless

otherwise stated explicitly.

Definition 10 (Best response robustness). A large game G is said to have robust best response

with respect to a given societal aggregate µ ∈M(A) if there exists an open neighborhood Vµ

of µ such that a ∈ Bri(µ) implies a ∈ Bri(τ) for all τ ∈ Vµ and for λ-almost all i ∈ I .
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When the best response with respect to µ is robust, it means that every best response of

µ is a best response with respect to any societal aggregate with small perturbation of µ. The

following proposition shows that the best response robustness condition is sufficient for a Nash

equilibrium to be a perfect equilibrium.

Proposition 2. Let f be a pure strategy Nash equilibrium in a large game G : (I,G, λ)→ UA.

Suppose that either (1) the societal aggregate λf−1 ∈ M(A)fs or (2) the societal aggregate

λf−1 /∈M(A)fs and the game G has robust response with respect to λf−1. Then f is a perfect

equilibrium. Moreover, there exists a sequence of εn-perfect equilibria which converges almost

everyone to f (εn converges to zero as n approaches infinity).

Now we revisit Example 2. The strategy profile f 2 ≡ 0, which induces the Dirac measure on

the point 0, is a pure strategy Nash equilibrium. For any µ ∈M(A) with small perturbation of

δ0 (the Dirac probability measure at the point 0), as shown in Example 2, the action −1 is the

unique best response for player i ∈ [1
2
, 1]. That is, the condition of best response robustness is

violated there.

In the definition of perfect equilibria, we do not require that the perfect equilibrium is a limit

of a sequence of ε-perfect equilibria. However, the following result, which is an extension of

Theorem 1(b) in Rath (1998), shows that every perfect equilibrium can be a limit of a sequence

of ε-perfect equilibria under the condition of best response robustness.

Proposition 3. Suppose that for any societal aggregate µ ∈M(A) \M(A)fs, the large game

G has robust best response with respect to µ. Then every pure strategy perfect equilibrium of G

is the almost everyone limit of a sequence of ε-perfect equilibria. That is, for every pure strategy

perfect equilibrium g∗, there is a sequence {gn}n∈Z+ such that (1) each gn is an εn-perfect

equilibrium with εn → 0 as n approaches infinity; (2) gn converges almost everyone to g∗; (3)

lim
n→∞

∫
I
gn(i) dλ(i) = λ(g∗)−1.

Rath (1998) also studied a stronger condition that the order of actions with respect to a given

societal aggregate is robust: for a societal aggregate µ, there exists an open neighborhood Vµ

of µ such that G(i)(a, µ) ≥ G(i)(b, µ) implies G(i)(a, τ) ≥ G(i)(b, τ) for each τ ∈ Vµ and
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for λ-almost all player i ∈ I . It is a mild boundary condition when the action space is finite.

However, such a condition is quite strong when the action space is infinite. The following

proposition illustrates the restrictiveness of this condition under infinite action space.

Proposition 4. Suppose that for any societal aggregate µ ∈M(A) \M(A)fs, there exists an

open neighborhood Vµ of µ such that G(i)(a, µ) ≥ G(i)(b, µ) implies G(i)(a, τ) ≥ G(i)(b, τ)

for each τ ∈ Vµ and for λ-almost all player i ∈ I . Suppose that A is an infinite compact

metric space. Then for each i and any two actions a and b of player i, then one and only one

of the following statements holds: a weakly dominates b, b weakly dominates a, or a and b are

equivalent.

Notice that the proposition above may fail if there are only finite actions; see the following

simple example.

Example 4. Let the Lebesgue unit interval (L,L, η) be the player space, and the set A = {0, 1}

the common action space. Thus, a societal aggregate can be described as a two-dimensional

vector µ = (µ0, µ1), where µa is the proportion of players choosing action a (a = 0, 1). The

common symmetric payoff function is defined as follows:

u(a, µ) =


µ0, if a ∈ [0, 1

2
],

1− µ0, if a ∈ (1
2
, 1].

Clearly, either 0 or 1 will be dominated by the other under some particular societal aggregates.

Although the best response robustness condition can guarantee a Nash equilibrium to be a

perfect equilibrium, the equilibrium strategy could be weakly dominated. This point has been

illustrated in (Rath, 1998, Section 4). Here we provide a simple example.18

Example 5. Let the Lebesgue unit interval (L,L, η) be the player space, and the set A = [0, 1]

the common action space. The symmetric payoff function is ui(a, µ) = a · ρw(µ, η), where η is

the uniform distribution (i.e., the Lebesgue measure) on [0, 1].

18The authors thank Lei Qiao for suggesting the idea of this example.
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Chapter 2. Perfect Equilibria in Large Games

Let us consider the following two Nash equilibria: (1) everyone plays the dominant strategy

1, (2) for each i, player i chooses the strategy i. Clearly, this large game satisfies the best response

robustness condition, and hence these two Nash equilibria are perfect equilibria. However, the

strategy adopted by player i in the second equilibrium is a weakly dominated strategy.

2.7 Proofs

2.7.1 Regular conditional distribution

In this subsection, we state the definitions of the transition probability and the regular conditional

distribution here for the convenience of readers.

Recall that (I,F , λ) is an atomless probability space and G is a sub-σ-algebra of F . Given a

measurable subset E, λ|E denotes the restriction of λ to E. Let X be a Polish space (complete

separable metrizable topological space), B(X) the Borel σ-algebra of X , andM(X) the space

of all Borel probability measures on X with the topology of weak convergence. We recall that

M(X) is again a Polish space, and if X is compact then so isM(X). We use Cb(X) to denote

the set of all bounded continuous function from X to R.

Definition 11. A G-measurable transition probability from I to X is a mapping φ : I →M(X)

such that for every B ∈ B(X) the mapping

φ(·;B) : i 7→ φ(i;B)

is G-measurable, where φ(i;B) is the value of the probability measure φ(i) on the Borel subset

B ⊆ A.

We use RG(X), or RG when it is clear, to denote the set of all G-measurable transition

probabilities from I to X . Let Z+ denote the set of positive integers.

Definition 12. A sequence {φn}n∈Z+ inRG is said to converge weakly to φ inRG , denoted by
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2.7. Proofs

φn ⇒ φ, if for every bounded Carathéodory function c : I ×X → R,19

lim
n→∞

∫
I

[∫
X

c(i, x)φn(i; dx)

]
dλ(i) =

∫
I

[∫
X

c(i, x)φ(i; dx)

]
dλ(i).

The weak topology onRG is defined as the weakest topology for which the functional

φ 7→
∫
I

[∫
X
c(i, x)φ(i; dx)

]
dλ(i)

is continuous for every bounded Carathéodory function c : I ×X → R.

We next review the regular conditional distribution. Let f be an F-measurable mapping

from I to X . A mapping µf |G : I ×B(X)→ [0, 1] is said to be a regular conditional distribution

for f given G, if

1. for λ-almost all i ∈ I , µf |G(i, ·) is a probability measure on X ,

2. for each Borel subset B ⊆ X , µf |G(i, B) = E[1B(f) | G](i) for λ-almost all i ∈ I , where

E[1B(f) | G] is the conditional expectation of the indicator function 1B(f) given G.

Since X is assumed to be a Polish space endowed with the Borel σ-algebra, the regular condi-

tional distribution for f given G always exists; see Theorem 5.1.9 in Durrett (2010).

Let F be an F-measurable correspondence from I to X . We use

R(F ,G)
F =

{
µf |G

∣∣∣ f is an F-measurable selection of F
}

to denote the set of regular conditional distributions induced by F-measurable selections of F

conditional on G.

The following results on regular conditional distributions of correspondences are stated as a

lemma here for the convenience of readers.

Lemma 1.
19Given a probability space (I,G, λ) and a Polish space X , a function c : I ×X → R is a Carathéodory function

if c(·, x) is G-measurable for each x ∈ X and c(i, ·) is continuous for each i ∈ I .
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Chapter 2. Perfect Equilibria in Large Games

1. (Theorem 3(C5) in He and Sun (2013)) Suppose that (I,F , λ) is atomless and G is a

countably generated sub-σ-algebra of F . If F is nowhere equivalent to G, then for any

g ∈ RG , there exists an F-measurable mapping g∗ such that µg
∗|G = g.

2. (Corollary 1 in He and Sun (2013)) Given g ∈ RG and an F-measurable mapping g∗, if

µg
∗|G = g, then for λ-almost all i ∈ I , g∗(i) ∈ supp g(i).

3. (Corollary 8(B8) in He (2014, p.67)) Let Z be a separable Banach space endowed with the

norm ‖ · ‖. Suppose that F is nowhere equivalent to G and G is a p-integrably bounded,20

weak* compact valued correspondence from (I,G, λ) to Z∗ with 1 ≤ p <∞. Let F be a

weak* closed valued correspondence from I × Y to Z∗ where Y is a metric space. If

• F (i, y) ⊆ G(i) for λ-almost all i ∈ I;

• for each y ∈ Y , F (·, y) is G-measurable;

• for each i ∈ I , F (i, ·) is weak* upper-hemicontinuous;

then H(y) = IFF (·,y) is weak* upper-hemicontinuous, where

IFF (·,y) =
{ ∫

I
f dλ(i) | f is an F-measurable Gelfand integrable selection of F (·, y)

}
.

2.7.2 Proofs of results in Section 2.2

Proof of Proposition 1. We show that a pure strategy weak perfect equilibrium is a pure strategy

Nash equilibrium at first.

Let g be an F -measurable pure strategy weak perfect equilibrium, and {gn}n∈Z+ a sequence

of εn-perfect equilibria satisfying the three corresponding conditions in Definition 3. Thus, for

λ-almost all i, there is a probability measure µi such that µi ∈ Ls gn(i) and g(i) ∈ suppµi.

Hence, there is a subsequence of {gn(i)}n∈Z+ , say {gn(i)}n∈Z+ itself for simplicity, such that

µi = lim
n→∞

gn(i).

20A correspondence G is said to be p-integrably bounded if there is a real-valued function h such that hp is
integrable and sup{‖x‖ | x ∈ G(i)} ≤ h(t) for almost all i.
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2.7. Proofs

For each n ∈ Z+, since gn is a weak εn-perfect equilibrium, we have

ρw
(
gn(i),M(Bri(g

n))
)
< εn,

which implies that gn(i)
(

Bri(g
n)εn

)
≥ 1 − εn for λ-almost all i, where Bri(g

n)εn is the εn-

neighborhood of the Borel measurable subset Bri(g
n).

Hence for any n and N with N ≤ n, we have

gn(i)
(
∩Nk=1∪∞j=k Bri(gj)εj

)
≥ 1− εn.

Since µi = lim
n→∞

gn(i), letting n go to infinity, we get

µi

(
∩Nk=1∪∞j=k Bri(gj)εj

)
≥ 1 for all N .

Then letting N go to infinity, we have

µi

(
∩∞k=1∪∞j=k Bri(gj)εj

)
≥ 1. (2.1)

We claim that:

(i) ∩∞k=1∪∞j=k Bri(gj)εj = ∩∞k=1∪∞j=k Bri(gj) if εn goes to 0 as n approaches infinity.

(ii) ∩∞k=1∪∞j=k Bri(gj) ⊆ Bri(g).

Based on these two claims and Equation (2.1), we have

µi(Bri(g)) = 1,

where Bri(g) is a compact set. Thus, suppµi is a subset of Bri(g). Moreover, since g(i) ∈

suppµi, g(i) ∈ Bri(g) for λ-almost all i. Therefore, g is a pure strategy Nash equilibrium.

For a behavioral strategy weak perfect equilibrium g, following the above proof by replacing

µi with g(i), we have g(i)
(
Bri(g)

)
= 1 for λ-almost all i. Thus, g is a behavioral strategy Nash
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Chapter 2. Perfect Equilibria in Large Games

equilibrium.

Now we need to prove the validity of Claims (i) and (ii).

Proof of Claim (i): It suffices to show ∩∞k=1∪∞j=k Bri(gj)εj ⊆ ∩∞k=1∪∞j=k Bri(gj) if εn → 0 as

n→∞. For any x ∈ ∩∞k=1∪∞j=k Bri(gj)εj and for any ε > 0, we have

B(x, ε) ∩
(
∪∞j=k Bri(g

j)εj
)
6= ∅ for each k ∈ Z+,

where B(x, ε) is the ε-neighborhood of x. Since εn goes to zero as n approaches infinity, there

exists an positive integer N1 such that εn < ε whenever n > N1. For each N2 ∈ Z+, it is clear

that

B(x, ε) ∩
(
∪∞j=max{N1,N2} Bri(g

j)εj
)
6= ∅,

which implies that there exists an positive integer ` ≥ max{N1, N2} such that B(x, ε) ∩

Bri(g
`)ε` 6= ∅. By the choice of N1, we know that B(x, 2ε) ∩ Bri(g

`) 6= ∅. Therefore,

x ∈ Ls Bri(g
n) = ∩∞k=1∪∞j=k Bri(gj).

Proof of Claim (ii): Since Ai is compact, there exists a countable dense set {ām}m∈Z+ ⊆ Ai.

For any a ∈ ∩∞k=1∪∞j=k Bri(gj), let a = lim
n→∞

an where an ∈ Bri(g
n). Hence,

ui
(
a, λg−1

)
= lim

n→∞
ui
(
an,
∫
I
gn dλ

)
≥ lim

n→∞
ui
(
ām,

∫
I
gn dλ

)
= ui

(
ām, λg

−1),
for all ām and λ-almost all i. Thus, a ∈ Bri(g) and ∩∞k=1∪∞j=k Bri(gj) ⊆ Bri(g).

Proof of Claim 1. If ξ({1}) = 0, then ui(1, ξ) = ui(0, ξ) and if ξ({1}) > 0, then ui(1, ξ) >

ui(0, ξ). Thus, for each player, 1 weakly dominates 0. It is easy to see that there are two Nash

equilibria: (1) f 1(i) = 0 for all i and (2) f 2(i) = 1 for all i.

For each ε ∈ (0, 1
2
) and each player i ∈ I , let gε(i) = (1− ε, ε) be a behavioral strategy of

player i, that is, she has probabilities 1− ε and ε to choose actions 1 and 0 respectively. Then it

is clear that gε is an ε-perfect equilibrium. Since gε converges weakly to f 2 as ε goes to zero, f 2

is a perfect equilibrium.
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However, we can not find a sequence of ε-perfect equilibria converging to f 1. To show it,

we suppose that hε = (hε1, h
ε
2) is a sequence of ε-perfect equilibria converging to f 1, where hε1

and hε2 specify the probabilities choosing actions 1 and 0 respectively. Then for η-almost all i,

hε1(i) 6= 0 should be close to 0. However, for each player i, the action 1 is the best choice given

hε, which leads to a contradiction. Thus, f 1 is not a perfect equilibrium.

Proof of Claim 2. For each player i ∈ [1
2
, 1], for any societal response ξ, her unique best

response is 0. Thus, the societal response ξ induced by a Nash equilibrium should be in the form

of 1
2
δ0 + 1

2
µ for some µ ∈M(A), where δ0 is the Dirac probability measure at 0.

For each player i ∈ [0, 1
2
), we have u1(0, ξ) = 0 and

u1(−1, ξ) = 1
2

∫ 1

0
v(−1, a2) dµ(a2) + 1

2
v(−1, 0) = 1

16

∫ 1

0
a2 dµ(a2),

which is nonnegative.

For 0 < a < 1
2
, we have

u1(a, ξ) =
∫
A
v(a, a2) dξ(a2) = 1

2
v(a, 0) + 1

2

∫
A
v(a, a2) dµ(a2)

= 1
2
(0− a) + 1

2
µ(−1)v(a,−1) + 1

2

∫ 2a

0
v(a, a2) dµ(a2) + 1

2

∫ 1

2a
v(a, a2) dµ(a2)

= −a
2

(
µ(−1) +

∫ 1

0
dµ(a2)

)
+ 1

2

(∫ 2a

0
(a2 − a) dµ(a2) +

∫ 1

2a
a dµ(a2)

)
= −a

2
µ(−1) + 1

2

∫ 2a

0
(a2 − 2a) dµ(a2) ≤ 0,

and the equality holds if and only if µ = δ2a.

For 1
2
≤ a ≤ 1, we have

u1(a, ξ) =
∫
A
v(a, a2) dξ(a2) = 1

2
v(a, 0) + 1

2

∫
A
v(a, a2) dµ(a2)

= 1
2
(0− a) + 1

2
µ(−1)v(a,−1) + 1

2

∫ 1

0
v(a, a2) dµ(a2)

= −a
2

(
µ(−1) +

∫ 1

0
dµ(a2)

)
+ 1

2

∫ 1

0
(a2 − a) dµ(a2)

= −a
2
µ(−1) + 1

2

∫ 1

0
(a2 − 2a) dµ(a2) ≤ 1−2a

2
,
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and the equality holds if and only if µ = δ1.

When µ = δ2a for some a ∈ (0, 1
2
), we have u1(−1, ξ) = 1

2
v(−1, 0) + 1

2
v(−1, 2a) = a

8
> 0,

and when µ = δ1 (the Dirac probability measure at 1), we have u1 = (−1, ξ) = 1
2
v(−1, 0) +

1
2
v(−1, 1) = 1

16
> 0. Thus, for player i ∈ [0, 1

2
), any action a ∈ [0, 1) can not be a best

response. That is, the possible best responses of player i ∈ [0, 1
2
) are −1 and 0, which implies

that suppµ ⊆ {−1, 0}. Hence, u1(−1, ξ) = 1
16

∫ 1

0
a2 dµ(a2) = 0 = u1(0, ξ). The actions −1

and 0 are the two best responses of each player i ∈ [0, 1
2
).

(1) To show that f 1 is the unique strong perfect equilibrium, we shall prove that in any strong

ε-perfect equilibrium, the action −1 is the unique best response for each player i ∈ [0, 1
2
) given

the other players’ equilibrium strategies.

For each ε > 0, let gε be a strong ε-perfect equilibrium. Denote gε1
2

=
∫ 1/2

0
gε(i) dη(i) and

gε2
2

=
∫ 1

1/2
gε(i) dη(i). Obviously, gε1 and gε2 are two probability measures on A with full support.

As discussed above, for each i ∈ [1
2
, 1], 0 is the unique best action of player i. Due to the

definition of the strong perfect equilibrium, we have gε(i)({0}) ≥ 1− ε for i ∈ [1
2
, 1].

For each player i ∈ [0, 1
2
), we consider the following three cases. First, suppose that

a ∈ [0, 1
2
). Since gε2({0}) ≥ 1− ε, we have

∫
A
v(a, a2)

gε2
2

(da2) ≤ 1
2
gε2({0}) · v(a, 0) + ε

2
a ≤ 1

2
(−a)(1− ε) + 1

2
aε = −a

2
+ aε.

Furthermore, we have

u1(a,
∫
gε) =

∫
A
v(a, a2)

gε1
2

(da2) +
∫
A
v(a, a2)

gε2
2

(da2)

≤
∫
A
v(a, a2)

gε1
2

(da2)− a
2

+ aε

=
∫ 2a

0
(a2 − a)

gε1
2

(da2) +
∫ 1

2a
a
gε1
2

(da2)− a
2

+ aε

=
∫ 2a

0
(a2 − 2a)

gε1
2

(da2)− ag
ε
1

2
({−1}) + aε,

which is in turn less than zero when ε is sufficiently small.
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Second, suppose that a ∈ [1
2
, 1]. Then we have

∫
A
v(a, a2)

gε2
2

(da2) ≤ 1
2
gε2({0}) · v(a, 0) + ε

2
(1− a) ≤ 1

2
(1− ε) · (−a) + ε

2
(1− a) = ε−a

2
,

and hence

u1(a,
∫
gε) ≤

∫ 1

0
(a2 − 2a)

gε1
2

(da2)− a
2
gε1({−1}) + ε

2
< 0,

when ε is sufficiently small.

Lastly, suppose that a = −1. Since gε1 and gε2 have full support on A, we have

u1(−1,
∫
gε) =

∫ 1

0
1
8
a2

gε1
2

(da2) +
∫ 1

0
1
8
a2

gε2
2

(da2),

which is strictly larger than 0.

Therefore, for i ∈ [0, 1
2
), the action−1 is player i’s unique best action, and hence gε(i)({−1}) >

1− ε. Let ε go to zero. Then we get the unique strong perfect equilibrium f 1, where f 1(i) = −1

for each i ∈ [0, 1
2
) and f 1(i) = 0 for each i ∈ [1

2
, 1].

(2) In the following, we shall show that f 2(i) ≡ 0 is a weak perfect equilibrium. Let ν be a

probability measure on A with full support. For each ε > 0, consider the strategy profile gε: for

each player i ∈ [0, 1],

gε(i) = µ := (1− ε)δε + εν,

where δε is the Dirac probability measure on A at the point ε. It suffices to show that the distance

between the societal response µ and the set of best responses of player i ∈ [0, 1
2
) is less than kε

for some k ∈ Z+.

For each player i ∈ [0, 1
2
), if she chooses the action −1, then her payoff is

u1(−1,
∫
gε) =

∫
A

1
8
a2µ(da2) = (1− ε) ε

8
+ ε
∫
A
a2
8
ν(da2) <

ε
4
,
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when ε is sufficiently small. If she chooses ε
2
, then her payoff is

u1(
ε
2
,
∫
gε) =

∫
A
v( ε

2
, a2)µ(da2) =

∫ ε
0
v( ε

2
, a2)µ(da2) +

∫ 1

ε
v( ε

2
, a2)µ(da2)

> (1− ε) ε
2
> ε

4
,

when ε is sufficiently small. If she chooses an action a ≥ 2ε, then her payoff is

u1(a,
∫
gε) =

∫
A
v(a, a2)µ(da2) = (1− ε)

∫ 1

0
v(a, a2)δε(da2) + ε

∫ 1

0
v(a, a2)ν(da2)

= (1− ε)(ε− a) + ε
∫ 2a

0
(a2 − a)ν(da2) + ε

∫ 1

2a
aν(da2)

= (1− ε)(ε− a) + ε
∫ 2a

0
(a2 − 2a)ν(da2) + εa− εaν({−1})

< ε− a− ε2 + 2aε < −ε+ 3ε2 < 0,

when ε is sufficiently small. Therefore, the best response of player i ∈ [0, 1
2
) should be in [0, 2ε]

given the societal response µ. It follows that the distance between the societal response µ and

the set of best responses is at most 3ε under the weak metric. Let ε go to zero. Then the limit

f 2(i) ≡ 0 is a weak perfect equilibrium.

2.7.3 Proof of Theorem 1

Before proving Theorem 1, we show the existence of G-measurable strong ε-perfect equilibria

for G-measurable large games.

Lemma 2. For any ε ∈ (0, 1), every G-measurable large game G has a G-measurable strong

ε-perfect equilibrium.

Proof. The set of G-measurable behavioral strategy profiles, denoted by ΨG , is the set of

transition probabilities φ from (I,G, λ) to the set A such that φ(i;Ai) = 1 for λ-almost all i ∈ I ,

where φ(i;Ai) is the value of the probability measure φ(i) on the subset Ai ⊆ A. One can show

that the set of all these transition probabilities is convex and weakly compact; see Balder (1995)

for example.

For any ε ∈ (0, 1), randomly pick a G-measurable behavioral strategy profile with full
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support g0 ∈ Ψfs.21 Let

N(g0) =
{
g ∈ ΨG | for λ-almost all i, g(i;B) ≥ ε

3
g0(i;B) for any B ∈ B(Ai)

}
,

and S(g0) =
{ ∫

I
g(i; ·) dλ(i) ∈ M(A) | g ∈ N(g0)

}
. It is clear that S(g0) is a nonempty

convex subset ofM(A).

In the following, we will show that S(g0) is weakly closed. Let {
∫
I
gn(i; ·) dλ(i)}n∈Z+ be

a sequence in S(g0), which converges weakly to µ ∈ M(A). By the definition of S(g0), we

have gn ∈ N(g0) for each n ∈ Z+. That is, for λ-almost all i ∈ I , gn(i;B) ≥ ε
3
g0(i;B) for any

B ∈ B(Ai). Thus,
{
gn(i;·)− ε

3
g0(i;·)

1− ε
3

}
n∈Z+

is a sequence in ΨG . By the weak compactness of ΨG ,

there exists a G-measurable g′ ∈ ΨG such that a subsequence of
{
gn(i;·)− ε

3
g0(i;·)

1− ε
3

}
n∈Z+

, without

loss of generality say itself, converges weakly to g′(i; ·). For each i ∈ I , let g(i; ·) = (1 −
ε
3
)g′(i; ·)+ ε

3
g0(i; ·). Thus, we have that {gn}n∈Z+ converges weakly to g. By the definition of the

weak convergence of transition probabilities,
∫
I
gn(i) dλ(i) converges weakly to

∫
I
g(i) dλ(i),

which leads to µ =
∫
I
g(i) dλ(i). This implies that µ ∈ S(g0). Since S(g0) is weakly closed in

the weakly compact setM(A), S(g0) is also weakly compact inM(A).

For each i ∈ I and τ ∈M(A), let

N̂(i, g0) =
{
ν ∈M(Ai) | ν(B) ≥ ε

3
g0(i;B) for any B ∈ B(Ai)

}
,

and

Dg0(i, τ) = arg max
µ∈N̂(i,g0)

∫
A

ui(a, τ) dµ(a).

Notice that Dg0(i, τ) is the set of best responses restricted to the set of behavioral strategies

N̂(i, g0), given the societal response τ .

Since N̂(i, g0) is a weakly closed set inM(Ai), it is also weakly compact. Then, Berge Max-

imum Theorem (see Theorem 17.31 in Aliprantis and Border (2006)) implies that the correspon-

21Such a G-measurable behavioral strategy profile with full support exists due to Casting Representation
Theorem; see Corollary 18.14 in Aliprantis and Border (2006). In particular, there exists a sequence {fn}n∈Z+ of
G-measurable selections from the action correspondence A satisfying Ai = {f1(i), f2(i), . . .} for each i ∈ I . Let
g0(i;B) =

∑
n∈Z+

1
2n 1B

(
fn(i)

)
for each i ∈ I and B ∈ B(Ai). Then g0 is a G-measurable behavioral strategy

profile with full support.
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dence Dg0(i, ·) : M(A) � N̂(i, g0) is nonempty, compact-valued and upper-hemicontinuous.

Define a correspondence Bg0 : S(g0) �M(A) as follows: for any τ ∈ S(g0), let

Bg0(τ) =

∫
I

Dg0(i, τ) dλ(i),

which is the set of integrals of all G-measurable selections of Dg0(i, τ). Then it is easy to see

that the correspondence Bg0 is indeed from S(g0) to S(g0). Clearly, Bg0 is also convex and

upper-hemicontinuous. Hence, by Kakutani-Fan-Glicksberg fixed-point theorem, Bg0 has a

fixed-point, say τ ∗. That is, there is a g∗ ∈ N(g0) such that

τ ∗ =

∫
I

g∗(i) dλ(i), and g∗(i) ∈ Dg0(i, τ
∗) for λ-almost all i ∈ I .

Finally, we claim that for λ-almost all i ∈ I ,

g∗
(
i; Bri(g

∗)
)
≥ 1− ε

3
g0
(
i;Ai \ Bri(g

∗)
)
≥ 1− ε

3
g0(i;Ai) = 1− ε

3
.

Thus, ρs
(
g∗(i),M(Bri(g

∗))
)
< ε for λ-almost all i ∈ I . Therefore, g∗ is a G-measurable strong

ε-perfect equilibrium.

We prove the remaining claim by contradiction. Assume that there exists a non-negligible

subset E ∈ G such that for each i ∈ E,

g∗
(
i; Bri(g

∗)
)
< 1− ε

3
g0
(
i;Ai \ Bri(g

∗)
)
.

Fix a player i ∈ E, and pick an action a0 ∈ Bri(g
∗). Denote ui

(
a0,
∫
I
g∗(i) dλ(i)

)
by c

for simplicity, which is player i’s maximum payoff given other players’ strategy profiles g∗−i.

Without loss of generality, we assume that c is positive.22

22It suffices if some big enough constants are added to the payoff functions.
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We define a new strategy for player i as follows:

ξ =
(
g∗(i) +

(
g∗
(
i;Ai \ Bri(g

∗)
)
− ε

3
g0
(
i;Ai \ Bri(g

∗)
))
· δa0

)∣∣∣
Bri(g∗)

+ ε
3
g0(i)

∣∣∣
Ai\Bri(g∗)

.

It is not difficult to see that ξ ∈M(Ai) and ξ(B) ≥ ε
3
g0(i;B) for any B ∈ B(Ai).

In the following we shall show that player i will be better off when she deviates from the

strategy g∗(i) to the strategy ξ defined above.

∫
Ai

ui

(
a,

∫
I

g∗(j) dλ(j)

)
g∗(i; da)

=

∫
Bri(g∗)

ui

(
a,

∫
I

g∗ dλ

)
g∗(i; da) +

∫
Ai\Bri(g∗)

ui

(
a,

∫
I

g∗ dλ

)
g∗(i; da)

= c · g∗
(
i; Bri(g

∗)
)

+

∫
Ai\Bri(g∗)

ui

(
a,

∫
I

g∗ dλ

)
g∗(i; da)

< c · g∗
(
i; Bri(g

∗)
)

+ c · g∗
(
i;Ai \ Bri(g

∗)
)
− c · ε

3
g0
(
i;Ai \ Bri(g

∗)
)

+

∫
Ai\Bri(g∗)

ui

(
a,

∫
I

g∗ dλ

)
ε
3
g0(i; da)

=

∫
Bri(g∗)

ui

(
a,

∫
I

g∗ dλ

)
dξ(a) +

∫
Ai\Bri(g∗)

ui

(
a,

∫
I

g∗ dλ

)
dξ(a)

=

∫
Ai

ui

(
a,

∫
I

g∗(j) dλ(j)

)
dξ(a).

By the definition of Dg0(i, τ
∗), we have g∗(i) /∈ Dg0(i, τ

∗), which holds for every player i in

E. Thus, g∗(i) is not a measurable selection of the correspondence Dg0(i, τ
∗), which leads to a

contradiction.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We first prove the sufficiency part.

Let {εn}n∈Z+ be a sequence such that 0 < εn < 1 and εn goes to zero as n approaches

infinity. By Lemma 2, for each εn, there exists gn ∈ Ψfs such that gn is a G-measurable strong

εn-perfect equilibrium. Since {
∫
I
gn(i; ·) dλ(i)}n∈Z+ is a sequence in the compact metric space

M(A), there is a subsequence, without loss of generality say itself, converges weakly to some

measure µ ∈M(A).
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By Proposition 1 in He et al. (2016), there exists a σ-algebraH such that G ⊆ H ⊆ F ,H is

nowhere equivalence to G and F nowhere equivalence toH.

Let Y =
{

1, 1
2
, 1
3
, . . . , 1

k
, . . . , 0

}
. It is clear that Y is a metric space (equipped with the

Euclidean metric on R). Define a weakly closed correspondence F : I×Y �M(A) as follows:

for each i ∈ I ,

F (i, 1
k
) = ∩k`=1∪∞n=`{gn(i; ·)} for k = 1, 2, . . .,

F (i, 0) = ∩∞`=1∪∞n=`{gn(i; ·)} = Ls gn(i; ·).

It can be checked that for each y ∈ Y , F (·, y) is G-measurable, and for each i ∈ I , F (i, ·) is

weak* upper-hemicontinuous.

SinceH is nowhere equivalent to G, by Corollary 8(B8) in He (2014) (see also Lemma 1 or

He and Sun Y (2014)), we have IHF (·,y) is weak* upper-hemicontinuous, where

IHF (·,y) =
{ ∫

I
f dλ(i) | f is anH-measurable Gelfand integrable selection of F (·, y)

}
.

Since
∫
I
gn(i; ·) dλ(i) ∈ IH

F (·, 1
n
)
, and as n approaches infinity

∫
I
gn(i; ·) dλ(i) converges weakly

to µ and 1
n
→ 0, by the upper-hemicontinuity, we have µ ∈ IHF (·,0). Hence, there exists an

H-measurable selection g of F (·, 0) such that µ =
∫
I
g(i; ·) dλ(i).23 It is not difficult to see that

g is anH-measurable transition probabilities from I to A.

SinceF is nowhere equivalent toH, Theorem 3(C5) in He and Sun (2013) (see also Lemma 1

or He and Sun Y (2014)) implies the existence of anF -measurable mapping g∗ : I → A such that

µg
∗|H = g, which leads to λ(g∗)−1 =

∫
I
g(i; ·) dλ(i).24 Moreover, by Corollary 1 in He and Sun

(2013) (see also Lemma 1 or He and Sun Y (2014)), for λ-almost all i ∈ I , g∗(i) ∈ supp g(i),

where g(i) ∈ F (i, 0) = Ls gn(i) for λ-almost all i ∈ I . Thus,
∫
I
gn(i, ·) dλ(i) converges weakly

23We use the nowhere equivalent condition to prove the existence of behavioral strategy equilibria for simplicity.
Note that an alternative proof can be done through Fatou lemma directly. More specifically, Fatou lemma for
Gelfand integrals implies the existence of a G-measurable strategy profile g such that

∫
I
g(i; ·) dλ(i) = µ =

lim
n→∞

∫
I
gn(i; ·) dλ(i) and g(i) ∈ suppLs gn(i) for λ-almost all i ∈ I . In this way, such a strategy profile is a

behavioral strategy perfect equilibrium and its existence does not rely on the nowhere equivalence condition.
24For each Borel subset B ∈ B(A), we have λ(g∗)−1(B) = E[1B(g

∗)] = E[E[1B(g
∗) | H]] =∫

I
g∗(i;B) dλ(i).
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to λ(g∗)−1 and g∗(i) ∈ supp Ls gn(i) for λ-almost all i ∈ I . For λ-almost all i ∈ I , since

supp Ls gn(i) ⊆ Ai, we have g∗(i) ∈ Ai. It is clear that g∗ is an F-measurable pure strategy

strong perfect equilibrium.

The necessity follows directly from Theorem 2 in He et al. (2016) and Proposition 1

above.

2.7.4 Proofs of results in Section 2.4

Proof of Claim 3. Clearly, for any x and y, v(x, y) ≥ 0, and the equality holds if and only

if x = 0 or y = 0. When y > 0, the function v(·, y) strictly increases on [0, y
2
], and strictly

decreases on [y
2
, 1
2
]. That is, the unique maximum is achieved at the point y

2
.

When player i chooses the action 0, then she will always get the payoff 0 regardless of other

players’ actions. However, when player i chooses the action 1
2
, then she will obtain a strictly

positive payoff except λ-almost all players choose the action 0. Therefore, the action 0 is weakly

dominated for each player.

In the following, we shall first show that f is the unique Nash equilibrium (modulo non-

negligible subsets of players), where f(i) = 0 for each i ∈ I . Suppose that ξ is the social

response induced by a Nash equilibrium.25 Let s = inf{0 ≤ t ≤ 1/2 | ξ([0, t]) = 1}. For each

y ∈ [0, s], player i’s payoff v(·, y) is strictly decreasing on [ s
2
, 1
2
]. This implies that player i’s

best response to ξ must assign total probability on the set [0, s
2
]. The symmetry implies that

ξ([0, s
2
]) = 1. By the definition of s, we have s ≤ s

2
, and hence s = 0. Therefore, f is the unique

Nash equilibrium.

Next, we will find a sequence of ε-perfect equilibria which converges weakly to f . We first

consider the two-player game in Example 2.1 of Simon and Stinchcombe (1995). The common

25It is clear that this large game has a Nash equilibrium f ≡ 0.
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action is [0, 1
2
], and the symmetric payoff function is given by

v(x, y) =


x, if x ≤ 1

2
y,

y(1−x)
2−y , if 1

2
y < x.

As shown in Simon and Stinchcombe (1995), (0, 0) is the unique strong perfect equilibrium.

That is, there exists a sequence {εn}n∈Z+ converging to 0 and a sequence of εn-perfect equilibria

(ξn, ξn) such that {(ξn, ξn)}n∈Z+ converges weakly to (0, 0) as n goes to infinity. Now move to

the game in our example. Let fn be the constant transition probability, mapping each i ∈ I to ξn.

Since ξn converges weakly to δ0 (the Dirac probability measure at the point 0), we have fn(i)

converges weakly to f(i) for each i. For each i ∈ I , we have Bri(fn) = Br(ξn), and hence

fn(i)(Bri(fn)) = ξn(Br(ξn)) ≥ 1− εn. Therefore, fn is a strong εn-perfect equilibrium, which

leads to the conclusion that f is the unique strong perfect equilibrium.

Before we offer a proof of Theorem 2, we shall need two additional lemmas. The following

lemma shows that for each player i, the complement of the interior of the set of weakly

undominated strategies is nonempty.

Lemma 3. In every large game, the set (Θo
i )
c is nonempty for each player i ∈ I .

Proof. Fix an arbitrary player i. We consider the following two-player game: the two players

are i and −i; the action sets for player i and player −i are Ai andM(A), respectively; the

payoff functions for player i and player −i are ui(ai, µ) and −ui(ai, µ) respectively, for each

ai ∈ Ai and µ ∈M(A).

By Theorem 2.1 in Simon and Stinchcombe (1995), for this two-player game, the set of

behavioral strategy strong perfect equilibria is a closed, nonempty subset of the set of behavioral

strategy weak perfect equilibria which is a closed subset of behavioral strategy limit admissible

Nash equilibria. Thus, there is a behavioral strategy strong perfect equilibrium (µi, µ−i) which

is limit admissible. That is, µi(Θo
i ) = 0, which in turn implies that (Θo

i )
c is nonempty.

Let Hc be the correspondence from I to A given by Hc(i) = (Θo
i )
c for each i, and H̃c the
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correspondence from I toM(A) given by H̃c(i) =M
(
(Θo

i )
c
)
, where (Θo

i )
c is the complement

of the interior of the set of weakly dominated strategies for player i.

Lemma 4. Both Hc and H̃c are two G-measurable correspondences.

Proof. If Hc is a measurable correspondence, then Lemma 18.4 in Aliprantis and Border (2006)

implies that the correspondence coHc is a measurable correspondence as well, where coHc(i)

is the convex hull of (Θo
i )
c for each i. Since A is a compact metric space, Density Theorem

(Theorem 15.10 in Aliprantis and Border (2006)) implies that the set of probability measures

on (Θo
i )
c with finite support is dense inM

(
(Θo

i )
c
)
. By the embedding mapping a 7→ δa, the set

of probability measures on (Θo
i )
c with finite support can be identified with co(Θo

i )
c = coHc(i).

By Lemmas 18.2 and 18.3 in Aliprantis and Border (2006), the measurability of coHc implies

the measurability of the correspondence coHc which is H̃c. Therefore, we only need to show

the measurability of Hc.

Let H be the correspondence from I to A given by H(i) = Θo
i . Clearly, the correspondence

Hc is measurable if and only if H is measurable. By Lemmas 18.2 and 18.3 in Aliprantis and

Border (2006), the correspondence H is measurable if and only if H̄ is measurable, where H̄ is

a correspondence from I to A given by H̄(i) = Θo
i .

Since eachM(Ai) andM(A) are compact, let {µni }n∈Z+ and {µn}n∈Z+ be the dense sets

ofM(Ai) andM(A), respectively. For each m and n in Z+, define the correspondence Hm
n

from I to A as follows: for each i, Hm
n (i) is

∞⋃
j=1

([
∩nk=1 {a | ui(a, µk) ≤ ui(µ

j
i , µ

k) + 1
n
}
]
∩
[
∪∞k=1 {a | ui(a, µk) + 1

m
≤ ui(µ

j
i , µ

k)}
])
.

By Lemma 18.4 in Aliprantis and Border (2006), Hm
n is G-weakly measurable. We claim that

∪∞m=1 ∩∞n=1 H
m
n (i) is the set of weakly dominated strategies for player i for each i.

For each a ∈ ∪∞m=1 ∩∞n=1 H
m
n (i), there exists an integer m such that a ∈ ∩∞n=1H

m
n (i). Thus,

for each n, there exists ξni ∈ {µni }n∈Z+ such that ui(a, µk) ≤ ui(ξ
n
i , µ

k) + 1
n

for k = 1, 2, . . . , n.

And there also exists ηni ∈ {µn}n∈Z+ such that ui(a, ηni ) + 1
m
≤ ui(ξ

n
i , η

n
i ). Since M(Ai)

andM(A) are compact, there exist convergent subsequences of {ξni }n∈Z+ and {ηni }n∈Z+ , say
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themselves respectively. Suppose that the limits of {ξni } and {ηni } are ξ and η respectively. For

each j ∈ Z+, ui(a, µj) ≤ ui(ξ
n
i , µ

j) + 1
n

holds for any n ≥ j. Let n go to infinity. Then we have

ui(a, µ
j) ≤ ui(ξ, µ

j) for each j ∈ Z+. Similarly, we have ui(a, η) + 1
m
≤ ui(ξ, η). Therefore,

a is a weakly dominated strategy of player i.

Next, suppose that a is a weakly dominated strategy for player i. Then there exists a strategy

ξ such that ui(a, µk) ≤ ui(ξ, µ
k) for each k ∈ Z+ and ui(a, µk0) < ui(ξ, µ

k0) for some k0 ∈ Z+.

Thus, there exists a positive integer m such that ui(a, µk0) + 1
m
< ui(ξ, µ

k0). Fix this integer

m. For each n ∈ Z+, the denseness of {µni }n∈Z+ and the continuity of ui imply the existence

of ξni ∈ {µni }n∈Z+ such that ui(a, µj) ≤ ui(ξ
n
i , µ

j) for each j ∈ Z+. Thus, a ∈ Hm
n (i) for the

fixed integer m and for each n ∈ Z+. Therefore, a ∈ ∪∞m=1 ∩∞n=1 H
m
n (i).

By definition, we have H̄ = ∪∞m=1 ∩∞n=1 H
m
n , and hence H̄ is G-measurable.

Proof of Theorem 2. We first prove the sufficiency part.

For any ε ∈ (0, 1), randomly pick a G-measurable behavioral strategy profile with full

support g0 ∈ Ψfs. Let

N(g0) =
{
g ∈ ΨG | for λ-almost all i, g(i;B) ≥ ε

3
g0(i;B) for any B ∈ B(Ai)

}
,

and S(g0) =
{ ∫

I
g(i; ·) dλ(i) ∈ M(A) | g ∈ N(g0)

}
. By the similar arguments in Lemma 2,

S(g0) is a nonempty, convex and weakly closed subset ofM(A).

By Lemma 3, (Θo
i )
c is a nonempty compact set in Ai. For each i ∈ I and τ ∈M(A), define

N̂(i, g0) = {ν ∈M(Ai) | ν = (1− ε
3
)κ+ ε

3
g0(i), κ ∈M((Θo

i )
c)},

and

Dg0(i, τ) = arg max
µ∈N̂(i,g0)

∫
A

ui(a, τ) dµ(a).

For each i, since N̂(i, g0) is a weakly closed set inM(A), it is also weakly compact. Then

Berge Maximum Theorem (see Theorem 17.31 in Aliprantis and Border (2006)) implies that the

correspondence Dg0(i, ·) : M(A) � N̂(i, g0) is nonempty, compact and upper-hemicontinuous.
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Define a correspondence Bg0 : S(g0) �M(A) as follows: for any τ ∈ S(g0), let

Bg0(τ) =

∫
I

Dg0(i, τ) dλ(i),

which is the set of integrals of all G-measurable selections of Dg0(i, τ). Then it is easy to see

that the correspondence Bg0 is indeed from S(g0) to S(g0). Clearly, Bg0 is also convex and

upper-hemicontinuous. Hence, by Kakutani-Fan-Glicksberg fixed-point theorem, Bg0 has a

fixed-point, say τ ∗. That is, there is a g∗ ∈ N(g0) such that

τ ∗ =

∫
I

g∗(i) dλ(i), and g∗(i) ∈ Dg0(i, τ
∗) for λ-almost all i ∈ I .

We claim that for λ-almost all i ∈ I ,

g∗
(
i; Bri(g

∗)
)
≥ 1− ε

3
g0
(
i;Ai \ Bri(g

∗)
)
≥ 1− ε

3
g0(i;Ai) = 1− ε

3
.

Thus, ρs
(
g∗(i),M(Bri(g

∗))
)
< ε for λ-almost all i ∈ I , that is, g∗ is a strong ε-perfect

equilibrium.

We prove the claim by contradiction. Assume that there exists a non-negligible subset E ∈ G

such that for each i ∈ E,

g∗
(
i; Bri(g

∗)
)
< 1− ε

3
g0
(
i;Ai \ Bri(g

∗)
)
.

Fix a player i ∈ E. Lemma 3 implies that there exists an undominated strategy a0 ∈ (Θo
i )
c

which is a best response to g∗. Denote ui
(
a0,
∫
I
g∗(i) dλ(i)

)
by c for simplicity, which is player

i’s maximum payoff given other players’ strategy profiles g∗−i. Without loss of generality, we

assume that c is positive.

We define a new strategy for player i as follows:

ξ =
(
g∗(i) +

(
g∗
(
i;Ai \ Bri(g

∗)
)
− ε

3
g0
(
i;Ai \ Bri(g

∗)
))
· δa0

)∣∣∣
Bri(g∗)

+ ε
3
g0(i)

∣∣∣
Ai\Bri(g∗)

,
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where δa0 is the Dirac measure on A at the point a0. It is easy to see that ξ ∈ (1− ε
3
)M((Θo

i )
c)+

ε
3
g0(i). By the similar arguments in the proof of Lemma 2, player i is better off when she

deviates from the strategy g∗(i) to the strategy ξ defined above.

Take a sequence of {εn}n∈Z+ such that εn goes to zero when n approaches infinity. For each

n ∈ Z+, the proof above implies that there exists a G-measurable εn-perfect equilibrium hk such

that hk(i) ∈ (1− εn
3

)M((Θo
i )
c) + εn

3
g0(i). By the similar arguments in the proof of Theorem 1,

there exists an F-measurable pure strategy profile h∗ such that
∫
I
hn(i; ·) dλ(i) converges

weakly to λ(h∗)−1 and h∗(i) ∈ supp Lshn(i) for λ-almost all i ∈ I . For each n ∈ Z+,

let h̃n(i) =
hn(i)− εn

3
g0(i)

1− εn
3

. Clearly, we have lim
n→∞

∣∣ ∫
I
hn(i; ·) dλ(i) −

∫
I
h̃n(i; ·) dλ(i)

∣∣ = 0

and Lshn(i) = Ls h̃n(i) for all i ∈ I . Since supp h̃n(i) ⊆ Hc(i) for all i ∈ I , we have

supp Ls h̃n(i) ⊆ Hc(i) for all i ∈ I . Thus, h∗(i) ∈ supp Lshn(i) ⊆ Hc(i) = (Θo
i )
c for all

i ∈ I . Therefore, h∗ is an F-measurable limit admissible perfect equilibrium in pure strategies.

The necessity follows directly from Theorem 2 in He et al. (2016) and Proposition 1

above.

2.7.5 Proof of Theorem 3

To prove Theorem 3, we need the following two lemmas.

Lemma 5. For any fixed finite partitionP = {P1,P2, . . . ,Pm} and any ε ∈ (0, 1√
m

), Pros(ε,P)

is nonempty and contains a G-measurable ε-proper equilibria relative to P .

Proof. For any i ∈ I , let Ji = {j = 1, 2, . . . ,m | Pji 6= ∅} and Ωj = {i ∈ I | Pji 6= ∅}.

Without loss of generality, we assume Ωj 6= ∅ for each j = 1, 2, . . . ,m. For each j =

1, 2, . . . ,m, we consider the correspondence Aj : Ωj � Pj such that Aj(i) = Pji = Ai ∩ Pj

for each i ∈ Ωj . It is clear that this correspondence has G ⊗ B(A)P
j -measurable graph and

nonempty values. Then the standard measurable selection theorem (see Theorem 18.26 in

Aliprantis and Border (2006)) implies that Aj admits a G-measurable selection f j . For each

rmi = (x1i , x
2
i , . . . , x

m
i ) ∈ [0, 1]m with

∑m
j=1 x

j
i = 1 and xji = 0 for each j /∈ Ji, we define a
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probability measure σ(rmi ) on (Ai,B(Ai)) as follows:

σ(rmi ) =
∑
j∈Ji

xji · δfj(i).

For each i ∈ I , we then define a correspondence T (i, ·) : M(A) �M(Ai) as follows:

T (i, µ) =
{
σ(rmi )

∣∣∣ ui(P`i , µ)� ui(Pki , µ) implies x`i ≤ ε2xki , and xji ≥ ε2m for j ∈ Ji
}
.

It is easy to check that the correspondence T (i, ·) is convex, compact and upper-hemicontinuous.

In the following we shall prove that T (i, ·) has nonempty values. Given µ, it suffices to show

that there exists a vector rmi = (x1i , x
2
i , . . . , x

m
i ) such that xji ≥ ε2m for j ∈ Ji and x`i ≤ ε2xki

if ui(P`i , µ) � ui(Pki , µ) for P`i and Pki in Pi. For each i ∈ I , µ ∈ M(A) and Pji ∈ Pi, let

V (i, µ,Pji ) = {Pki ∈ Pi | ui(P
j
i , µ) � ui(Pki , µ)}, and W (i, µ) = {Pji ∈ Pi | V (i, µ,Pji ) =

∅}. It is easy to see that W (i, µ) is nonempty. Define ρ` = 1 + |V (i, µ,P`i )| for ` ∈ Ji. For

the fixed Pji , define x`i = ε2ρ` for ` ∈ Ji \ {j}, x`i = 0 for ` 6∈ Ji and xji = 1 −
∑

` 6=j x
`
i .

Consider the vector r = (x1i , x
2
i , . . . , x

m
i ). By the definition of ρ`, ρ` ≤ m for ` ∈ Ji, and hence

x`i = ε2ρ` ≥ ε2m for ` ∈ Ji \ {j}. Moreover, xji = 1 −
∑

`6=j x
`
i > 1 − (m − 1)ε2 > ε2 since

ε2 < 1
m

. Suppose that ui(P`i , µ) � ui(Pki , µ) for some P`i and Pki in Pi. If Pki = Pji , then

xki = xji > ε2 and x`i ≤ ε4 (since V (i, µ,P`i ) contains at least one element Pki ). If Pki 6= P
j
i ,

then ρ` ≥ ρk + 1, which implies x`i ≤ ε2xki . Therefore, the correspondence T (i, ·) has nonempty

values.

Randomly pick a G-measurable behavioral strategy profile with full support g0 ∈ Ψfs. Let

N(g0) =
{
g ∈ ΨG | for λ-almost all i ∈ I , g(i;B) ≥ εNg0(i;B) for any B ∈ B(Ai)

}
,

and S(g0) =
{ ∫

I
g(i; ·) dλ(i) ∈M(A) | g ∈ N(g0)

}
, where N is an positive integer which is

sufficiently large. For any i ∈ I and τ ∈M(A), we define

N̂(i, g0) =
{
ν ∈M(A) | ν(B) ≥ εNg0(i;B) for any B ∈ B(Ai)

}
,
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and

Dg0(i, τ) = (1− ε) arg max
µ∈M(Ai)

∫
Ai

ui(a, τ) dµ(a) + (ε− εN)T (i, τ) + εNg0(i).

Then, Berge Maximum Theorem (see Theorem 17.31 in Aliprantis and Border (2006)) implies

that the correspondence Dg0(i, ·) : M(A) � N̂(i, g0) is nonempty, compact-valued and upper-

hemicontinuous.

Define a correspondence Bg0 : S(g0) �M(A) as follows: for any τ ∈ S(g0), let

Bg0(τ) =

∫
I

Dg0(i, τ) dλ(i),

which is the set of integrals of all G-measurable selections of Dg0(i, τ). Then it is easy to see

that the correspondence Bg0 is indeed from S(g0) to S(g0). Clearly, Bg0 is also convex and

upper-hemicontinuous. Hence, by Kakutani-Fan-Glicksberg fixed-point theorem, Bg0 has a

fixed-point, say τ ∗. That is, there is a g∗ ∈ N(g0) such that

τ ∗ =

∫
I

g∗(i) dλ(i), and g∗(i) ∈ Dg0(i, τ
∗) for λ-almost all i ∈ I .

Denote g∗ = (1− ε)g∗1 + (ε− εN)g∗2 + εNg0 where g∗1(i) ∈ arg maxµ∈M(Ai)

∫
Ai
ui(a, τ

∗) dµ(a)

and g∗2(i) ∈ T (i, τ ∗) for λ-almost all i ∈ I .

Finally, by definition, we have for λ-almost all i ∈ I ,

g∗
(
i; Bri(g

∗)
)

= (1− ε)g∗1
(
i; Bri(g

∗)
)

+ (ε− εN)g∗2
(
i; Bri(g

∗)
)

+ εNg0
(
i; Bri(g

∗)
)
≥ 1− ε.

Thus, ρs
(
g∗(i),M(Bri(g

∗))
)
< ε for λ-almost all i ∈ I . Therefore, g∗ is a G-measurable strong

ε-perfect equilibrium.

For λ-almost all i ∈ I , if ui(P`i , τ ∗)� ui(Pki , τ ∗) for P`i and Pki in Pi, then P`i ∩Bri(g
∗) =

∅. Since supp
(

arg maxµ∈M(Ai)

∫
Ai
ui (a, τ

∗) dµ(a)
)
⊆ Bri(g

∗), then g∗1(i;P`i ) = 0. Hence,

g∗(i;P`i ) = (ε − εN)g∗2(i;P`i ) + εNg0(i;P`i ) = (ε − εN)x`i + εNg0(i;P`i ) ≤ ε[(ε − εN)xki +

εNg0(i;Pki )] ≤ εg∗(i;Pki ) for some vector rmi = (x1i , x
2
i , . . . , x

m
i ) and the sufficiently large

integer N . Since P is a finite partition, such an integer N exists. Therefore, we conclude that g∗
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is a G-measurable strong ε-proper equilibrium respect to the finite partition P .

Lemma 6. For any fixed finite partition P = {P1,P2, . . . ,Pm}, the set of proper equilibrium

respect to P , Pros(P), is nonempty and contains anH1-measurable pure strategy strong proper

equilibria relative to P , where H1 is a σ-algebra on I such that G ⊆ H1 ⊆ F , F is nowhere

equivalent toH1 andH1 is nowhere equivalent to G.

Proof. Let {εn}n∈Z+ be a sequence such that 0 < εn <
1√
m

and εn goes to zero as n approaches

infinity. By Lemma 5, for each εn, there exists a G-measurable strong εn-proper equilibrium

relative to P , denoted by gn. By the similar arguments in the proof of Theorem 1, there exists an

H1-measurable pure strategy profile g∗ such that
∫
I
gn(i; ·) dλ(i) converges weakly to λ(g∗)−1

and g∗(i) ∈ supp Ls gn(i) for λ-almost all i ∈ I . That is, g∗ is anH1-measurable pure strategy

strong proper equilibrium relative to P .

Proof of Theorem 3. We first prove the sufficiency part.

Let {βn}n∈Z+ be a sequence such that 0 < βn < min{1, diam(A)} and βn goes to zero

as n approaches infinity. By Lemma 6, for each βn, there exists an H1-measurable strong

proper equilibrium relative to a finite partition with diameter βn, denoted by gn. Since

{
∫
I
gn(i; ·) dλ(i)}n∈Z+ is a sequence in the compact metric space M(A), there is a subse-

quence, without loss of generality say itself, converges weakly to some measure µ ∈M(A). By

Proposition 1 in He et al. (2016), there exists a σ-algebra Ĥ such thatH1 ⊆ Ĥ ⊆ F , F nowhere

equivalence to Ĥ and Ĥ is nowhere equivalence toH1.

Let Y =
{

1, 1
2
, 1
3
, . . . , 1

k
, . . . , 0

}
. It is clear that Y is a metric space (equipped with the

Euclidean metric on R). Define a weakly closed correspondence F : I×Y �M(A) as follows:

for each i ∈ I ,

F (i, 1
k
) = ∩k`=1∪∞n=`{gn(i; ·)} for k = 1, 2, . . .,

F (i, 0) = ∩∞`=1∪∞n=`{gn(i; ·)} = Ls gn(i; ·).

It can be checked that for each y ∈ Y , F (·, y) isH1-measurable, and for each i ∈ I , F (i, ·) is

weak* upper-hemicontinuous.
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Since Ĥ is nowhere equivalent toH1, by Corollary 8(B8) in He (2014) (see also Lemma 1

or He and Sun Y (2014)), we have IĤF (·,y) is weak* upper-hemicontinuous, where

IĤF (·,y) =
{ ∫

I
f dλ(i) | f is an Ĥ-measurable Gelfand integrable selection of F (·, y)

}
.

Since
∫
I
gn(i; ·) dλ(i) ∈ IĤ

F (·, 1
n
)
, and

∫
I
gn(i; ·) dλ(i) converges weakly to µ and 1

n
→ 0 as n

approaches infinity, by the upper-hemicontinuity, we have µ ∈ IĤF (·,0). Hence, there exists an

Ĥ-measurable selection g of F (·, 0) such that µ =
∫
I
g(i; ·) dλ(i). It is not difficult to see that g

is an Ĥ-measurable transition probabilities from I to A.

SinceF is nowhere equivalent to Ĥ, Theorem 3(C5) in He and Sun (2013) (see also Lemma 1

or He and Sun Y (2014)) implies the existence of anF -measurable mapping g∗ : I → A such that

µg
∗|H = g, which leads to λ(g∗)−1 =

∫
I
g(i; ·) dλ(i). Moreover, by Corollary 1 in He and Sun

(2013) (see also Lemma 1 or He and Sun Y (2014)), for λ-almost all i ∈ I , g∗(i) ∈ supp g(i),

where g(i) ∈ F (i, 0) = Ls gn(i) for λ-almost all i ∈ I . Thus,
∫
I
gn(i, ·) dλ(i) converges

weakly to λ(g∗)−1 and g∗(i) ∈ supp Ls gn(i) for λ-almost all i ∈ I . It is clear that g∗ is an

F-measurable pure strategy strong proper equilibrium.

The necessity follows directly from Theorem 2 in He et al. (2016) and Proposition 1

above.

2.7.6 Proofs of results in Section 2.6

Proof of Proposition 2. It suffices to show that, under the assumption, f is the almost every-

where limit of a sequence of εn-perfect equilibria, where εn goes to zero as n approaches infinity.

Let η = λf−1, and Vη be an open neighborhood of η. The rest of the proof is divided into two

parts: (i) when η /∈M(A)fs and (ii) when η ∈M(A)fs.

(i) First suppose that η /∈ M(A)fs. Since f is a Nash equilibrium, we have f(i) ∈

Bri(λf
−1) for λ-almost all i ∈ I , where Bri(λf

−1) = arg maxa∈A ui(a, λf
−1). Randomly pick

a probability measure µ ∈M(A)fs and a sequence {εn}n∈Z+ such that εn → 0 as n→∞. For
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each n ∈ Z+, let

fn(i) = (1− εn
2

)f(i) + εn
2
µ.

It is easy to see that fn(i) ∈M(A)fs and fn(i) converges weakly to f(i) for λ-almost all i ∈ I

as n→∞. For the open neighborhood Vη, there exists a sufficiently large integer N such that∫
I
fn(i) dλ(i) ∈ Vη if n ≥ N . Thus, by the assumption, Bri(λf

−1) ⊆ Bri
( ∫

I
fn(i) dλ(i)

)
for

λ-almost all i ∈ I and n ≥ N . Hence, for n ≥ N , we have

fn(i)
(

Bri
( ∫

I
fn(i) dλ(i)

))
≥ fn(i)

(
Bri(λf

−1)
)

= (1− εn
2

)f(i)
(
Bri(λf

−1)
)

+ εn
2
µ
(
Bri(λf

−1)
)

≥ 1− εn
2
− εn

2
= 1− εn

Thus, fn is an εn-perfect equilibrium for each n ∈ Z+,
∫
I
fn(i) dλ(i) converges weakly to λf−1

and fn converges almost everywhere to f .

(ii) Now suppose that η ∈M(A)fs. As in part (i), randomly pick a sequence {εn}n∈Z+ such

that εn → 0 as n→∞. For each n ∈ Z+, let

fn(i) = (1− εn
2

)f(i) + εn
2
λf−1.

It is clear that fn(i) ∈M(A)fs and
∫
I
fn(i) dλ(i) = λf−1 for each n ∈ Z+. Thus, Bri(λf

−1) =

Bri
( ∫

I
fk(i) dλ(i)

)
for all i ∈ I . Moreover, for each n ∈ Z+, we have

fn(i)
(

Bri
( ∫

I
fn(i) dλ(i)

))
= fn(i)

(
Bri(λf

−1)
)

= (1− εn
2

)f(i)
(
Bri(λf

−1)
)

+ εn
2
λf−1

(
Bri(λf

−1)
)

≥ 1− εn
2
− εn

2
= 1− εn

Thus, again, we have the conclusion that fn is an εn-perfect equilibrium for each n ∈ Z+,∫
I
fn(i) dλ(i) converges weakly to λf−1 and fn converges almost everywhere to f .

Proof of Proposition 3. It suffices to show the existence of a perfect equilibrium which is an
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almost everyone limit of a sequence of εn-perfect equilibria. By Theorem 1, there is a pure

strategy perfect equilibrium g∗. Let η∗ = λ(g∗)−1, and Vη∗ be an open neighborhood of η∗

which satisfies the assumption in the statement of this theorem. By the similar arguments in

the proof of Proposition 1, it is easy to see the existence of a sequence of εn-perfect equilibria

whose almost everyone limit is g∗.

Proof of Proposition 4. Suppose that there exists a player i and two actions a and b such that

ui(a, µ1) > ui(b, µ1) and ui(a, µ2) < ui(b, µ2) for some societal aggregates µ1 and µ2. We will

show that there is a contradiction. Let E = {µ ∈M(A) | ui(a, µ) = ui(b, µ)}. The continuity

of the payoff function implies that E is a closed set. By the Density Theorem (Theorem 15.10 in

Aliprantis and Border (2006)), the set of probability measures on A with finite support is dense

inM(A). Thus, there exist two finite support measures ν1 and ν2 such that ui(a, ν1) > ui(b, ν1)

and ui(a, ν2) < ui(b, ν2). Let νβ = (1− β)ν1 + βν2 for β ∈ [0, 1]. By the intermediate value

theorem, there exists β′ such that the finite support measure νβ′ = (1− β′)ν1 + β′ν2 satisfies

ui(a, νβ′) = ui(b, νβ′). Thus E is nonempty and contains a measure νβ′ with finite support.

For any ν ∈ E, if ν /∈M(A)fs, then there exists a open neighborhood Vν such that for any

τ ∈ Vν , τ ∈ E. That is, every measure in E with finite support is an interior point of E. Let

µγ = (1− γ)ν1 + γνβ′ for γ ∈ [0, 1]. Since E is a closed set inM(A), there exists γ′ such that

γ′ = min{γ ∈ [0, 1] | (1− γ)ν1 + γνβ′ ∈ E}. It is easy to see that the finite support measure

µγ′ is on the boundary of E, which leads a contradiction.
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Chapter 3

Pure-strategy Equilibrium in General

Bayesian Games

3.1 Introduction

Since Harsanyi (1967–68), Bayesian games, where players have incomplete information on some

important parameters (such as payoff functions, the information other players have, etc.), have

been widely studied over the years, and many contributions have been made to the underlying

theory of information. One of the most fundamental questions is known to be the existence

of pure-strategy Bayesian Nash equilibria. To guarantee such existence, a condition imposing

absolute continuity on the information structures is essential. Indeed, without an absolutely

continuous information structure, Simon (2003) constructed a Bayesian game that has no pure

strategy equilibria. His idea was further developed by Hellman (2014), who constructed a

simpler example to show that without such absolute continuity condition, a Bayesian game may

not even have measurable approximate pure-strategy equilibria.

In this paper, we consider general Bayesian games which allow players’ actions to be infinite,

types to be correlated, and payoffs to be interdependent. We introduce a condition of “coarser

density weighted payoff-relevant information”, a version of the absolute continuity condition in

a general setting, to distinguish the informational influence of a player on her own strategies and
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the informational influence on the payoffs of all the players. With this condition, we establish

the existence of pure strategy equilibria for general Bayesian games; see Theorem 4. More

importantly, such condition is also shown to be minimal in the sense that if every general

Bayesain game of an identical information structure with the same set of players and actions

has a pure-strategy equilibrium, then every player has coarser density weighted payoff-relevant

information; see Proposition 5.

To obtain the existence of pure-strategy equilibria in Bayesian games with general action

spaces, several other assumptions on the payoff functions have been proposed. Vives (1990)

showed that the supermodularity in strategies is a sufficient condition for the existence of pure

strategy equilibria.1 By assuming Spence-Mirrlees single crossing property, Athey (2001) proved

that a monotone pure-strategy equilibrium exists, and McAdams (2003) generalized this result

to setting in which spaces of type and action are multidimensional and only partially ordered.

Reny (2011) further generalized Athey (2001)’s and McAdams (2003)’s results to the setting

which allows action spaces to be compact locally complete metric semilattices and type spaces

to be partially ordered probability spaces.

Note that all these existence results mentioned above rely on the assumptions of independence

and diffuseness of information. To allow players’ types to be correlated and payoffs to be

interdependent, He and Sun (2014a) proposed the condition of “coarser inter-player information”,

and showed that this condition is not only sufficient but also necessary for the existence of

pure-strategy equilibria in finite-action Bayesian games.2 However, Khan et al. (1999) pointed

out that a pure-strategy equilibrium may not exist in Bayesian games with general action spaces,

even the private information are independent and diffuse. This nonexistence result leads us to

find a suitable condition to retain the existence of pure-strategy equilibria for general Bayesian

games.

Besides assuming specific structures on the payoff structures, another approach has been

1A game is supermodular in the strategies if one player’s strategy increases pointwise, the best response
strategies of all opponents must increase pointwise.

2In Bayesian games with finitely many actions, the existence of behavioral/distributional strategy equilibria
was well established; see, for example, Milgrom and Weber (1985). Based on Dvoretsky, Wald and Wolfowitz
(1951)’s purification result, it is straightforward to obtain the existence of pure strategy equilibria; see also Radner
and Rosenthal (1982) and Khan et al. (2006). Khan and Sun (1995) extended the existence result to Bayesian
games with countably many actions.
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proposed to guarantee the existence of pure-strategy equilibria, which imposes rich structures

on the information spaces. Khan and Sun (1999) modeled the players’ information spaces by

atomless Loeb spaces,3 and showed that a pure-strategy equilibrium exists. Such existence result

also holds when each player’s information space is modeled by a saturated probability space;

see Keisler and Sun (2009) and Khan and Zhang (2014).4 Based on the condition of “nowhere

equivalence” proposed in He et al. (2016), He and Sun X (2014) introduced the “relative

diffuseness” assumption to characterize the differences between payoff-relevant and strategy-

relevant diffuseness of information, which leads to the existence of pure-strategy equilibria as

well.

3.2 General Bayesian games

A Bayesian game can be described as follows. The set of players is I = {1, . . . , n}. Each

player i ∈ I observes a private signal/type ti, whose value lies in some measurable space (Ti, Ti).

After observing the type, player i then chooses an action from some nonempty compact metric

space. Each player’s payoff may depend on the actions chosen by all the players, and on the

type profiles as well. Let λ be an information structure for the game, which is a joint probability

distribution on (
∏

1≤i≤n Ti,⊗1≤i≤nTi). We allow players’ types to be correlated and payoffs to

be interdependent.

Formally, a Bayesian game Γ consists of the following five elements.

• The set of players: I = {1, 2, . . . , n}.

• The set of actions available to each player: {Ai}i∈I . Each Ai is a nonempty compact

metric space endowed with the Borel σ-algebra B(Ai). Denote A =
∏n

i=1Ai.

• The (private) information space for each player: {Ti}i∈I . Each Ti is endowed with a

σ-algebra Ti. Denote T =
∏n

i=1 Ti, and T = ⊗ni=1Ti.
3Such probability spaces were introduced by Loeb (1975). For the construction, see Loeb and Wolff (2015).
4Khan and Zhang (2014, 2016) also showed that the saturation property is necessary for the existence of pure

strategy equilibria. That is, if the information space of only one player is not saturated, a pure strategy equilibrium
in Bayesian games with general action space may not exist.

53



Chapter 3. Pure-strategy Equilibrium in General Bayesian Games

• The prior: λ, a probability measure on the measurable space (T, T ).

• The payoff functions: {ui}i∈I . Each ui is a mapping from A× T to R such that

1. ui(a, ·) is measurable for each a ∈ A and ui(·, t) is continuous for each t ∈ T ,

2. ui is integrably bounded in the sense that there is a real-valued integrable function

hi on (T, T , λ) with |ui(a, t)| ≤ hi(t) for all (a, t) ∈ A× T .

For each i ∈ I , let λi be the marginal probability of λ on (Ti, Ti). Throughout this paper,

we assume that λ is absolutely continuous with respect to ⊗ni=1λi, with the corresponding

Radon-Nikodym derivative q. As usual, the notation −i denotes all the players except player i,

and λ−i = ⊗j 6=iλj .

For each i ∈ I , a behavioral strategy (resp. pure strategy) for player i is a Ti-measurable

function from Ti toM(Ai) (resp. Ai), whereM(Ai) denotes the space of Borel probability

measures on Ai endowed with the topology of weak convergence. Let LTii (resp. LTi0,i) be the set

of all the behavioral strategies (resp. pure strategies) for player i, and LT =
∏n

i=1 L
Ti
i .5 A pure

strategy can be viewed as a behavioral strategy by taking it as a Dirac measure for all ti ∈ Ti.

Given a strategy profile f = (f1, f2, . . . , fn), player i’s expected payoff is

Ui(f) =

∫
T

∫
A

ui(a, t) ·
∏
j∈I
fj(tj; daj) λ(dt)

=

∫
T

∫
A

ui(a, t) ·
∏
j∈I
fj(tj; daj) · q(t)⊗j∈I λj(dtj),

where fj(tj;B) denotes the value of fj(tj) on the Borel subset B of Aj .

A behavioral (resp. pure) strategy equilibrium is a behavioral (resp. pure) strategy profile

f ∗ = (f ∗1 , f
∗
2 , . . . , f

∗
n) such that f ∗i maximizes Ui(fi, f ∗−i) in LTii (resp. LTi0,i) for each i ∈ I .

5A behavioral strategy of player i is a transition probability from (Ti, Ti) to
(
Ai,B(Ai)

)
. The definition and

several properties of transition probability are stated in Section 3.5.1.
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3.3 Main results

In this section, we will prove the existence of pure strategy equilibria in general Bayesian games

under the condition “coarser density weighted payoff-relevant information.” More importantly,

we show that this condition is also necessary for the existence result. Furthermore, we consider

the related purification issue as well.

3.3.1 Coarser density weighted payoff-relevant information

For each player i ∈ I , we consider the density weighted payoff

wi(a, t) = ui(a, t) · q(t)

for each a ∈ A and t ∈ T . Let Fi be the σ-algebra on Ti generated by the collection of mappings

{
wj(a, ·, t−i) | j ∈ I, a ∈ A, t−i ∈ T−i

}
.

That is, the σ-algebra Fi ⊆ Ti represents player i’s density weighted payoff-relevant infor-

mation. To be more precise, Fi is player i’s information flow to the density weighted payoffs of

all players, which describes the influence of player i’s private information in all players’ density

weighted payoffs. Throughout this paper, we assume that (Ti,Fi, λi) is an atomless probability

space for each i ∈ I . We will characterize the relationship between Ti and Fi in the following.

For each i ∈ I , recall that (Ti, Ti, λi) is an atomless probability space. For any nonnegligible

subset D ∈ Ti, the restricted probability space (D,FDi , λDi ) is defined as follows: FDi is the

σ-algebra {D ∩D′ : D′ ∈ Fi} and λDi the probability measure re-scaled from the restriction of

λi on FDi . Furthermore, (D, T Di , λDi ) can be defined similarly.

Below, we state the definition of nowhere equivalence (see He et al. (2016); He and Sun Y

(2014)).

Definition 13. A σ-algebra Ti is said to be nowhere equivalent to its sub-σ-algebra Fi if for

every nonnegligible subset D ∈ Ti, there exists a Ti-measurable subset D0 of D such that
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λi(D04D1) > 0 for any D1 ∈ FDi , where D04D1 is the symmetric difference (D0 \D1) ∪

(D1 \D0).

We shall introduce the definition of coarser density weighted payoff-relevant information as

follows.

Definition 14. Player i is said to have coarser density weighted payoff-relevant information

if Ti is nowhere equivalent to Fi under λi.

A Bayesian game is said to have coarser density weighted payoff-relevant information if

each player has coarser density weighted payoff-relevant information.

This assumption implies that on any nonnegligible subset D ⊆ Ti, T Di is always essentially

larger than FDi , which means that the player i’s information influencing her own strategies is

“much” richer than the information influencing the payoffs of all the players.

3.3.2 Existence of pure strategy equilibria

The theorem on the existence of pure strategy equilibria is presented below, and its proof is

given in Section 3.5.2.

Theorem 4. Every Bayesian game with coarser density weighted payoff-relevant information

has a pure strategy equilibrium.

Remark 4. For Bayesian games with coarser density weighted payoff-relevant information,

players’ payoffs may be interdependent and types could be correlated. Indeed, no matter whether

types are independent or correlated, the Radon-Nikodym derivative q can always absorb them

into density weighted payoffs.

If types are independent and each player’s payoff only depends on her own type, the condition

of “coarser density weighted payoff-relevant information” becomes the condition of “relative

diffuseness” in He and Sun X (2014). In such Bayesian games, He and Sun X (2014) showed

that the relative diffuseness condition can guarantee the existence of pure strategy equilibria.
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In Theorem 4, we show that the condition of “coarser density weighted payoff-relevant

information” is sufficient for the existence of pure strategy equilibria. More importantly, this

condition is necessary as well.

Fix a finite set of players I = {1, 2, . . . , n} with n ≥ 2 and a compact metric space A

with infinitely many elements. Each player i ∈ I has a private information space (Ti, Ti, λi)

and atomless density weighted payoff-relevant information Fi. Let Hn be the collection of

all Bayesian games with the player space I , the common action set A and the above private

information spaces {(Ti, Ti/Fi, λi)}i∈I . The following result is a generalization of Theorem 5

in He and Sun (2014a).

Proposition 5. If every Bayesian game in Hn with type-irrelevant payoffs has a pure strategy

equilibrium,6 then every player i has coarser density weighted payoff-relevant information.

3.4 Purification

In this section, we shall consider the notion of strong purification, and prove its existence based

on the condition of coarser density weighted payoff-relevant information.7

Definition 15. Let f = (f1, f2, . . . , fn) and g = (g1, g2, . . . , gn) be two behavioral strategy

profiles.

1. The strategy profiles f and g are said to be payoff equivalent if for each player i ∈ I ,

Ui(f) = Ui(g).

2. The strategy profiles f and g are said to be strongly payoff equivalent if

(a) they are payoff equivalent;

(b) for each player i ∈ I and any given behavioral strategy hi, the two strategy profiles

(hi, f−i) and (hi, g−i) are payoff equivalent.
6A Bayesian game is said to have type-irrelevant payoffs if the payoff function of each player does not depend

on the type profile t.
7The notion of strong purification was proposed in Khan et al. (2006). Its existence has been proved therein for

the case that the action space is finite for every player.
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3. The strategy profiles f and g are said to be distribution equivalent if for each player i ∈ I

and Borel subset B ⊆ Ai,

∫
Ti

fi(ti)(B)λi(dti) =

∫
Ti

gi(ti)(B)λi(dti).
8

4. Suppose that f is a pure strategy profile. For player i, fi is said to be belief consistent

with gi if fi(ti) ∈ supp gi(ti) for λi-almost all ti ∈ Ti, where supp gi(ti) is the support of

the measure gi(ti). Moreover, f is said to be belief consistent with g if they are belief

consistent for each player i ∈ I .

Now we are ready to state the definition of strong purification.

Definition 16. Suppose that f is a pure strategy profile and g is a behavioral strategy profile.

Then f is said to be a strong purification of g if they are strongly payoff equivalent, distribution

equivalent and belief consistent.

In the following, we shall establish the existence result of strong purification based on the

condition of coarser density weighted payoff-relevant information.

Proposition 6. In a Bayesian game with coarser density weighted payoff-relevant information,

every behavioral strategy profile g possesses a strong purification f .

Remark 5. It is easy to see that if the given behavioral strategy profile g is an equilibrium, then

its strong purification f is a pure strategy equilibrium.

Recall that Hn is the collection of all Bayesian games with the player space I and the private

information spaces {(Ti, Ti/Fi, λi)}i∈I . The following result shows that the condition of coarser

density weighted payoff-relevant information is not only sufficient, but also necessary for the

existence of a strong purification.

Proposition 7. If for every Bayesian game in Hn with private values, every behavioral strategy

profile has a strong purification, then every player i has coarser density weighted payoff-relevant

information.
8When fi is a pure strategy,

∫
Ti
fi(ti)(B) dλi(ti) = λi

(
f−1i (B)

)
for any Borel subset B in Ai.
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3.5 Proofs

3.5.1 Preliminary results

Asymptotic independent supplement

Below, we shall state the definition of “asymptotic independent supplement”.

Definition 17. The σ-algebra F admits an asymptotic independent supplement in T if for

some strictly increasing sequence {nk} and each k ≥ 1, there exists a T -measurable partition

{E1, E2, . . . , Enk} of T with λ(Ej) = 1
nk

and Ej being independent of F for j = 1, 2, . . . , nk.

This condition will be used for deriving the necessity results. The following lemma is from

He and Sun (2013) (see also He and Sun Y (2014)). It shows that this condition is indeed

equivalent to the condition of nowhere equivalence.

Lemma 7. The following statements are equivalent.

(i) T is nowhere equivalent to F .

(ii) F admits an asymptotic independent supplement in T .

Transition probability and regular conditional distribution

Let (T, T , λ) be an atomless complete countably-additive probability space and F a sub-σ-

algebra of T . Let X be a Polish space (complete metrizable topological space), B(X) the

Borel σ-algebra, andM(X) the space of all Borel probability measures on X endowed with

the topology of weak convergence. We use Cb(X) to denote the set of all bounded continuous

function from X to R.

Definition 18. An F-measurable transition probability from T to X is a mapping φ : T →

M(X) such that for every B ∈ B(X), the mapping

φ(·;B) : t 7→ φ(t;B)
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is F -measurable, where φ(i;B) is the value of the probability measure φ(i) on the Borel subset

B of A.

We use RF(X), or RF when it is clear, to denote the set of all F-measurable transition

probabilities from T to X .

Definition 19. A sequence {φn}n∈Z+ inRF is said to weakly converge to φ inRF , denoted by

φn =⇒ φ, if for every bounded Carathéodory function c : T ×X → R,9

lim
n→∞

∫
T

[∫
X

c(t, x)φn(t; dx)

]
dλ(t) =

∫
T

[∫
X

c(t, x)φ(t; dx)

]
dλ(t).

The weak topology onRF is defined as the weakest topology for which the functional

φ 7→
∫
T

[∫
X

c(t, x)φ(t; dx)

]
dλ(t)

is continuous for every bounded Carathéodory function c : T ×X → R.

We next review the regular conditional distribution. Let f be a T -measurable mapping from

T to X . A mapping µf |F : T × B(X)→ [0, 1] is said to be a regular conditional distribution for

f given F , if

1. for λ-almost all t ∈ T , µf |F(t, ·) is a probability measure on X;

2. for each Borel subset B ⊆ X , µf |F(·, B) is a version of E[1B(f) | F ], where E[1B(f) |

F ] is the conditional expectation of the indicator function 1B(f) given F .

Since X is assumed to be a Polish space endowed with the Borel σ-algebra, the regular condi-

tional distribution for f given F exists; see Theorem 5.1.9 in Durrett (2010).

Let F be a T -correspondence from T to X . We use

R(T ,F)
F =

{
µf |F | f is a T -measurable selection of F

}
9Given a probability space (T,F , λ) and a Polish space X , a function c : T × X → R is a Carathéodory

function if c(·, x) is F-measurable for each x ∈ X and c(t, ·) is continuous for each t ∈ T .
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to denote the set of all regular conditional distributions induced by T -measurable selections of

F conditional on F .

The following result on regular conditional distributions of correspondences is stated as a

lemma here for the convenience of readers, which is Theorem 3 in He and Sun (2013) (see also

He and Sun Y (2014)).

Lemma 8. Suppose that (T, T , λ) is atomless and F is a countably-generated sub-σ-algebra of

T . If T is nowhere equivalent to F , then for any sub-σ-algebra G of F , we have the following

results.

(C1) For any closed valued F-measurable correspondence F from T to X ,R(T ,G)
F is convex.

(C2) For any closed valued F-measurable correspondence F from T to X ,R(T ,G)
F is weakly

closed.

(C3) For any compact valued F -measurable correspondence F from T to X ,R(T ,G)
F is weakly

compact.

(C4) Let F be a compact valued F -measurable correspondence from T to X , Z a metric space

and G a closed valued correspondence from T × Z to X such that

• for each (t, z) ∈ T × Z, G(t, z) ⊆ F (t),

• for each z ∈ Z, G(·, z) (denoted as Gz) is F-measurable from T to X ,

• for each t ∈ T , G(t, ·) (denoted as Gt) is upper-hemicontinuous from Z to X .

Then H(z) = R(T ,G)
Gz

is upper-hemicontinuous from T toRG .

(C5) For any G ∈ RF , there exists a T -measurable mapping g such that µg|F = G.

3.5.2 Proof of Theorem 4

Lemma 9. Let (T, T , λ) be a probability space, F a sub-σ-algebra of T , h a T -measurable

mapping from T to a Polish space X with the Borel σ-algebra B, and µh|F a regular conditional

distribution of h given F . Let g be a B ⊗ F-measurable function from X × T to R such that
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|g(x, t)| ≤ φ(t) for all (x, t) ∈ X × T , where φ is integrable on (T, T , λ). Define a function ψ

from T to R by letting ψ(t) = g(h(t), t) for any t ∈ T . Then, for λ-almost all t ∈ T ,

E[ψ|F ](t) =

∫
X

g(x, t)µh|F(t; dx). (3.1)

Proof. LetH be the class of non-negative B ⊗F -measurable function g from X × T to R such

that equation (3.1) holds.

For any measurable setsB ∈ B andC ∈ F , let g = 1B×C . Since µh|F is a regular conditional

distribution of h given F , we have E[1B(h)|F ] = µh|F(B) =
∫
X

1B(x)µh|F(dx). Since C is

F-measurable, we obtain that

E[1B(h)1C |F ] = 1CE[1B(h)|F ] =

∫
X

1B(x)1Cµ
h|F(dx),

which implies that equation (3.1) holds for g = 1B×C . Hence 1B×C ∈ H

By the properties of conditional expectation, it is obvious thatH is a λ-system in the sense

that (1) the constant function 1 is in H; (2) for any non-negative real numbers c1, c2, any

g1, g2 ∈ H, c1g1 + c2g2 ∈ H; (3) for any increasing sequence of functions gn, n ≥ 1 inH with a

limit function g, one has g ∈ H. Since the class D of measurable rectangles B × C with B ∈ B

and C ∈ F is a π-class (i.e., closed under the operation of finite intersections), the usual π − λ

Theorem10 implies that equation (3.1) holds for every non-negative B ⊗ F -measurable function

g from X × T to R.

For a B⊗F -measurable function from X×T to R satisfying the conditions in the statement

of the lemma, one can consider the positive and negative parts of g. The rest is clear.

Proof of Theorem 4:

For each i ∈ I , let RFi be the set of Fi-measurable transition probabilities from Ti to

Ai. Clearly, RFi is nonempty, convex and weakly compact (under the topology of weak

convergence). LetRF =
∏

i∈I RFi , which is endowed with the product topology.

10See, for example, Theorem 1.4.3 of Chow and Teicher (1997, p. 16).
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Given a pure strategy profile h = (h1, h2, . . . , hn), for any two distinct players i and j,

any actions a−j ∈ A−j , any types t−j ∈ T−j , the Fubini property implies that the function

wi(a−j, aj, t−j, tj) in terms of (aj, tj) is B(Aj) ⊗ Fj-measurable, where B(Aj) is the Borel

σ-algebra on Aj . Lemma 9 implies that for λj-almost all tj ∈ Tj ,

Eλj
[
wi(a−j, hj(tj), t−j, tj)

∣∣∣ Fj] =

∫
Aj

wi(a−j, aj, t−j, tj) · µhj |Fj(tj; daj). (3.2)

Fix player 1. For any t1 ∈ T1 and any a1 ∈ A1, we have

∫
T−1

u1(a1, h−1(t−1), t1, t−1) · q(t1, t−1) λ−1(dt−1)

=

∫
T−1

w1(a1, h−1(t−1), t1, t−1) λ−1(dt−1)

=

∫
T−(1,2)

∫
T2

w1

(
a1, h2(t2), h−(1,2)(t−(1,2)), t−2, t2

)
λ2(dt2) λ−(1,2)(dt−(1,2))

=

∫
T−(1,2)

∫
T2

Eλ2
[
w1

(
a1, h2(t2), h−(1,2)(t−(1,2)), t−2, t2

) ∣∣∣ F2

]
λ2(dt2) λ−(1,2)(dt−(1,2))

=

∫
T−(1,2)

∫
T2

∫
A2

w1

(
a1, a2, h−(1,2)(t−(1,2)), t−2, t2

)
· µh2|F2(t2; da2) λ2(dt2) λ−(1,2)(dt−(1,2))

= · · ·

=

∫
T−1

∫
A−1

w1(a1, a−1, t1, t−1) ·
∏
j 6=1

µhj |Fj(tj; daj) λ−1(dt−1),

where the subscript −(1, 2) denotes all the players except players 1 and 2. The first equality

is due to the definition of density weighted payoff. The second equality is due to the Fubini

property. The third equality holds by taking the conditional expectation. The fourth equality is

implied by Equation (3.2). Then the previous four equalities are repeated for n− 2 times (from

T3 to Tn). This procedure is omitted in the fifth equality, and finally leads to the last equality.

One can repeat the argument and show that for any i ∈ I , ai ∈ Ai and ti ∈ Ti,∫
T−i

ui(ai, h−i(t−i), ti, t−i) · q(ti, t−i) λ−i(dt−i)

=

∫
T−i

∫
A−i

wi(ai, a−i, ti, t−i) ·
∏
j 6=i
µhj |Fj(tj; daj) λ−i(dt−i).

(3.3)
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For each i ∈ I , let Fi be a mapping from Ti × Ai ×RF to R defined as follows:

Fi(ti, ai, g1, . . . , gn) =

∫
T−i

∫
A−i

wi(ai, a−i, ti, t−i) ·
∏
j 6=i
gj(tj; daj) λ−i(dt−i).

It is clear that Fi is Ti-measurable on Ti and continuous on Ai. For each i ∈ I and each

(g1, g2, . . . , gn), consider the best response correspondence Gi from Ti to Ai:

Gi(ti, g1, . . . , gn) = arg max
ai∈Ai

Fi(ti, ai, g1, . . . , gn).

Then Berge maximum theorem and measurable maximum theorem imply that this correspon-

dence is nonempty, compact-valued and upper-hemicontinuous, and admits a Ti-measurable

selection; see Theorems 17.31 and 18.19 in Aliprantis and Border (2006). Thus,R(Ti,Fi)
Gi(·,g1,...,gn) is

nonempty. Since Ti is nowhere equivalent to Fi, Theorem 3 in He and Sun (2013) implies that

R(Ti,Fi)
Gi(·,g1,...,gn) is convex, weakly compact and upper-hemicontinuous onRF =

∏n
i=1RFi (each

RFi is endowed with the topology of weak convergence).

Consider the correspondence Ψ fromRF to itself as follows:

Ψ(g1, g2, . . . , gn) =
n∏
i=1

R(Ti,Fi)
Gi(·,g1,...,gn).

It is clear that Ψ is nonempty, convex, weakly compact and upper-hemicontinuous onRF . By

Fan-Glicksberg’s fixed-point theorem, there exists a fixed point (g∗1, g
∗
2, . . . , g

∗
n) of Ψ. That is, for

each i ∈ I , there exists a Ti-measurable selection f ∗i of Gi(·, g∗1, . . . , g∗n) such that g∗i = µf
∗
i |Fi .

Under the strategy profile (f ∗1 , f
∗
2 . . . , f

∗
n), the payoff of player i is

Ui(f
∗) =

∫
T

wi(f
∗
i (ti), f

∗
−i(t−i), ti, t−i) λ(dt)

=

∫
Ti

∫
T−i

wi(f
∗
i (ti), f

∗
−i(t−i), ti, t−i) λ−i(dt−i) λi(dti)

=

∫
Ti

∫
T−i

∫
A−i

wi(f
∗
i (ti), a−i, ti, t−i) ·

∏
j 6=i
g∗j (tj; daj) λ−i(dt−i) λi(dti).

The first equality holds due to the definition of Ui. The second equality holds based on the
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Fubini property, and the third equality relies on Equation (3.3). By the choices of (g∗1, g
∗
2 . . . , g

∗
n)

and (f ∗1 , f
∗
2 , . . . , f

∗
n), we have that (f ∗1 , f

∗
2 . . . , f

∗
n) is a pure strategy equilibrium.

3.5.3 Proof of Proposition 5

To prove Proposition 5, we first consider a sequence of auxiliary games.

Example 6. Let ρ be a metric on the given compact metric space A. For each fixed integer

m ≥ 2, pick m distinct elements in A, denoted as a1, a2, . . . , am. For each i = 1, 2, . . . ,m, we

choose a positive real number rm < 1 such that closed balls B̄(ai, rm) : = {a ∈ A | ρ(ai, a) ≤

rm} (i = 1, 2, . . . ,m) are disjoint. By Urysohn’s Lemma and the property that every closed set

is a Gδ set in metric spaces, there exist continuous functions {fmi }i=1,2,...,m and hm satisfying

the following requirements:

• fmi : A→ [0, 1] such that fmi (a) = 1 for all a ∈ B̄(ai,
rm
2

), fmi (a) = 0 for a ∈ B(ai, rm)c

and fmi (a) ∈ (0, 1) for a ∈ B(ai, rm) ∩ B̄(ai,
rm
2

)c;

• hm : A→ [0, 1] such that hm(a) = 0 for a ∈ ∪mi=1B̄(ai,
rm
2

), hm(a) = −5 for (∪mi=1B(ai, rm))c.

Now we construct a 2-player Bayesian games Gm. The two players have a common action

space A. The information structure is the same as the Bayesian game in Example 1 of He

and Sun (2014a). The payoff functions are given as follows. Given the private information

(t1, t2) ∈ T1 × T2, when player 1 chooses action s1 and player 2 chooses action s2, their payoffs

are:

um1 (s1, s2, t1, t2) =
m∑
i=1

fmi (s1) · fmi (s2) ·
(
3− ρ(s1, ai)

)
+

m∑
i=1

fmi (s1) · fmi+1(s2) ·
(
1− ρ(s1, ai)

)
+

∑
i,j : i 6=j, i+16=j

fmi (s1) · fmj (s2) ·
(
2− ρ(s1, ai)

)
+ hm(s1)− 2,

um2 (s1, s2, t1, t2) =
m∑
i=1

fmi (s1) · fmi+1(s2) ·
(
3− ρ(s2, ai+1)

)
+

m∑
i=1

fmi (s1) · fmi (s2) ·
(
1− ρ(s2, ai)

)
+

∑
i,j : i 6=j, i+16=j

fmi (s1) · fmj (s2) ·
(
2− ρ(s2, ai)

)
+ hm(s2)− 2,

where we denote fmm+1 = fm1 and am+1 = a1.

65



Chapter 3. Pure-strategy Equilibrium in General Bayesian Games

In the following we will show that only {a1, a2, . . . , am} survive in the iterated elimination

of strictly dominated strategies for both players.

Round 1: For any (t1, t2) ∈ T1 × T2 and any s2 ∈ A, player 1’s payoff is um1 (x, s2, t1, t2) =

hm(x)− 2 = −7 if she chooses an action x ∈
(
∪mi=1B(ai, rm)

)c, while her payoff will be

um1 (a1, s2, t1, t2) =



−2, if s2 ∈
(
∪mi=1B(ai, rm)

)c
,

3 · fm1 (s2)− 2, if s2 ∈ B(a1, rm),

fm2 (s2)− 2, if s2 ∈ B(a2, rm),

2 · fmj (s2)− 2, if s2 ∈ B(aj, rm) for some j 6= 1, 2,

if she chooses the action a1.

Since for each i = 1, 2, . . . ,m 0 ≤ fmi (a) ≤ 1 for any a ∈ A, the action x is strictly

dominated by a1 for player 1. Therefore, every action in
(
∪mi=1B(ai, rm)

)c is strictly dominated

and will be eliminated from player 1’s action space. That is, A′1 = ∪mi=1B(ai, rm) survives after

this round.

Round 2: For any (t1, t2) ∈ T1 × T2 and any s1 ∈ A′1, player 2’s payoff is um2 (s1, y, t1, t2) =

hm(y)− 2 = −7 if she chooses an action y ∈
(
∪mi=1B(ai, rm)

)c, while her payoff will be

um2 (s1, a1, t1, t2) =


3 · fmm (s1)− 2, if s1 ∈ B(am, rm),

fm1 (s1)− 2, if s1 ∈ B(a1, rm),

2 · fmj (s1)− 2, if s1 ∈ B(aj, rm) for some j 6= 1,m,

if she chooses the action a1.

Since for each i = 1, 2, . . . ,m, 0 ≤ fmi (a) ≤ 1 for any a ∈ A, the action y is strictly

dominated by a1 for player 2. Therefore, every action in
(
∪mi=1B(ai, rm)

)c is strictly dominated

and will be eliminated from player 2’s action space. That is, A′2 = ∪mi=1B(ai, rm) survives after

this round.
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Round 3: For any (t1, t2) ∈ T1 × T2 and any s2 ∈ A′2, when player 1 chooses an action

x′1 ∈ B(a1, rm) \ {a1}, her payoff is


fm1 (x′1) · fm1 (s2) ·

(
3− ρ(x′1, a1)

)
+ hm(x′1)− 2, if s2 ∈ B(a1, rm),

fm1 (x′1) · fm2 (s2) ·
(
1− ρ(x′1, a1)

)
+ hm(x′1)− 2, if s2 ∈ B(a2, rm),

fm1 (x′1) · fmj (s2) ·
(
2− ρ(x′1, a1)

)
+ hm(x′1)− 2, if s2 ∈ B(aj, rm) for some j 6= 1, 2.

On the other hand, if player 1 chooses the action a1, her payoff will be


3 · fm1 (s2)− 2, if s2 ∈ B(a1, rm),

fm2 (s2)− 2, if s2 ∈ B(a2, rm),

2 · fmj (s2)− 2, if s2 ∈ B(aj, rm) for some j 6= 1, 2.

Since for each i = 1, 2, . . . ,m, 0 ≤ fmi (a) ≤ 1 for any a ∈ A, the action x′1 is strictly

dominated by a1 for player 1. Therefore, every action in B(a1, rm) \ {a1} is strictly dominated

and will be eliminated from player 1’s action space. For i = 2, 3, . . . ,m, similar arguments

show that every action in B(ai, rm) \ {ai} is strictly dominated by ai for player 1. Therefore,

A′′1 = {a1, a2, . . . , am} survives after this round.

Round 4: For any (t1, t2) ∈ T1 × T2 and any s1 ∈ A′′1, if player 2 chooses an action y′1 ∈

B(a1, rm) \ {a1}, her payoff is


fm1 (y′1) ·

(
3− ρ(y′1, a1)

)
+ hm(y′1)− 2, if s1 = am,

fm1 (y′1) ·
(
1− ρ(y′1, a1)

)
+ hm(y′1)− 2, if s1 = a1,

fm1 (y′1) ·
(
2− ρ(y′1, a1)

)
+ hm(y′1)− 2, if s1 = aj for some j 6= 1,m.
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On the other hand, if player 2 chooses the action a1, her payoff will be


1, if s1 = am,

−1, if s1 = a1,

0, if s1 = aj for some j 6= 1,m.

Since for each i = 1, 2, . . . ,m, 0 ≤ fmi (a) ≤ 1 for any a ∈ A, the action y′1 is strictly

dominated by a1 for player 2. Therefore, every action in B(a1, rm) \ {a1} is strictly dominated

and will be eliminated from player 2’s action space. For i = 2, 3, . . . ,m, similar arguments

show that every action in B(ai, rm) \ {ai} is strictly dominated by ai for player 2. Therefore,

A′′2 = {a1, a2, . . . , am} survives after this round.

Clearly, given any behavioral strategy, a rational player will choose a strictly dominated

action with probability zero. Thus, we can allow these two players to focus on the actions in

A′′ = {a1, a2, . . . , am}. The payoff matrix restricted on the action set A′′ is as follows. Notice

Player 1

Player 2
a1 a2 a3 · · · am

a1 1,−1 −1, 1 0, 0 · · · 0, 0
a2 0, 0 1,−1 −1, 1 · · · 0, 0
a3 0, 0 0, 0 1,−1 · · · 0, 0

...
...

...
...

...
...

am −1, 1 0, 0 · · · 0, 0 1,−1

that it is the same as the one in Example 1 of He and Sun (2014a).

Since m is an arbitrary fixed integer, the arguments above works for each integer m ≥ 2.

Claim 4. Suppose that (s1, s2) is a pure strategy equilibrium of the gameGm. Then for λi-almost

all ti ∈ Ti, si(ti) ∈ A′′ = {a1, a2, . . . , am}, where i = 1, 2.

Proof of Claim. Firstly we want to show s1(t1) ∈ ∪mj=1B(aj, rm) for λ1-almost all t1 ∈ T1.

Suppose that there exists a measurable subset T ′1 ⊆ T1 such that λ1(T ′1) > 0 and s1(t1) ∈
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(∪mj=1B(aj, rm))c for each t1 ∈ T ′1. Since s1 solves

max
s′1∈L

T1
0,1

U1(s
′
1, s2) =

∫
T2

[∫
T1

ui(s
′
1(t1), s2(t2), t1, t2) · q(t1, t2) · λ1(t1)

]
λ2(t2).

Based on the simple calculation, we have

q(t1, t2) =


1

2(1−h1(t1))h2(t2) , if 0 < h1(t1) ≤ h2(t2) < 1,

0, otherwise,

where hi is a measure preserving mapping from (Ti,Fi, λi) to ([0, 1],B, τi) such that for anyE ∈

Fi there exists a set E ′ ∈ B such that λi(E∆h−1i (E ′)) = 0, and τi is the marginal distribution

of the uniform distribution on the triangle of the unit square {(l1, l2) | 0 ≤ l1 ≤ l2 ≤ 0}. It

can be checked that there exists T ′′1 ⊆ T ′1 and T ′2 ⊆ T2 such that λ1(T ′′1 ) > 0, λ2(T ′2) > 0 and

0 < h1(t1) ≤ h2(t2) < 1 for each t1 ∈ T ′′1 and t2 ∈ T ′2. Let s∗1 be the strategy defined by

s∗1(t1) =


a1, if t1 ∈ T ′′1 ,

s1(t1), otherwise.

Then by the same arguments in Round 1 and the simple calculation, we have U1(s1, s2) <

U1(s
∗
1, s2). which leads to a contradiction. Therefore, s1(t1) ∈ ∪mj=1B(aj, rm) for λ1-almost all

t1 ∈ T1. Similarly, we have s2(t2) ∈ A′′ for λ2-almost all t2 ∈ T2.

Secondly we want to show s1(t1) ∈ A′′ for λ1-almost all t1 ∈ T1 in this case. Suppose that

there exists a measurable subset T ′1 ⊆ T1 such that λ1(T ′1) > 0 and s1(t1) ∈ (∪mj=1B(aj, rm))c \

A′′ for each t1 ∈ T ′1. Let T ′1,j = T ′1 ∩ B(aj, rm) for j = 1, 2, . . . ,m. Then there exists

j ∈ {1, . . . ,m} such that λ1(T ′1,j) > 0. Since s1 solves

max
s′1∈L

T1
0,1

U1(s
′
1, s2) =

∫
T2

[∫
T1

ui(s
′
1(t1), s2(t2), t1, t2) · q(t1, t2) · λ1(t1)

]
λ2(t2).

It can be checked that there exists T ′′1,j ⊆ T ′1,j and T ′2 ⊆ T2 such that λ1(T ′′1,j) > 0, λ2(T ′2) > 0
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and 0 < h1(t1) ≤ h2(t2) < 1 for each t1 ∈ T ′′1,j and t2 ∈ T ′2. Let s∗1 be the strategy defined by

s∗∗1 (t1) =


aj, if t1 ∈ T ′′1,j,

s1(t1), otherwise.

Then by the same arguments in Round 3 and the simple calculation, we have U1(s1, s2) <

U1(s
∗∗
1 , s2). which leads to a contradiction. Therefore, s1(t1) ∈ A′′ for λ1-almost all t1 ∈ T1.

Similarly, we have s2(t2) ∈ A′′ for λ2-almost all t2 ∈ T2.

Proof of Proposition 5. First we consider a sequence of 2-player games {Gm}m≥2 in Example 6,

and then extend it to a sequence of n-player games. Based on the claim above and Theorem 5 in

He and Sun (2014a), we thus have T1 has no F1-atom under λ1, and T2 has no F2-atom under

λ2 either.

By adding dummy players as in the proof of Theorem 5 in He and Sun (2014a), we can

get a sequence of n-player games {Gm,i}m≥2,i=1,2,...,m, where for each m ≥ 2, players i and

i + 1 (denote m + 1 = 1) are the only active players in the game Gm,i. Adopting the same

arguments as in the proof of Theorem 5 in He and Sun (2014a), all the players have coarser

density weighted payoff-relevant information.

3.5.4 Proof of Proposition 6

Let g be an F-measurable behavioral strategy profile. By Theorem 3 in He and Sun (2013),

there exists a pure strategy profile f such that for each i ∈ I , gi = µfi|Fi . It is obvious that f

and g are distribution equivalent. Hence, we have

Ui(g) =

∫
T

∫
A

ui(a, t) ·
∏
j∈I
gj(tj; daj) λ(dt)

=

∫
T

∫
A

wi(a, t) ·
∏
j∈I
gj(tj; daj) ⊗i∈I λi(dti)

=

∫
T

∫
A

wi(a, t) ·
∏
j∈I
µfj |Fj(tj; daj) ⊗i∈I λi(dti)

=

∫
T

∫
A

wi(fi(ti), f−i(t−i), ti, t−i) ⊗i∈I λi(dti)
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= Ui(f).

The first three equalities are due to the definitions of Ui, wi, and fi respectively. The fourth

equality follows from repeated applications of Lemma 9 as in the proof of Equation (3.3).

Next, we verify strong payoff equivalence. For any player i ∈ I and any given behavioral

strategy hi, we can obtain

Ui(hi, g−i) =

∫
T

∫
Ai

∫
A−i

wi(ai, a−i, t) ·
∏
j 6=i
gj(tj; daj) · hi(ti; dai) ⊗i∈I λi(dti)

=

∫
Ti

∫
Ai

∫
T−i

∫
A−i

wi(ai, a−i, ti, t−i) ·
∏
j 6=i
gj(tj; daj) ⊗j 6=i λj(dtj)hi(ti; dai)λi(dti)

=

∫
Ti

∫
Ai

∫
T−i

∫
A−i

wi(ai, a−i, ti, t−i) ·
∏
j 6=i
µfj |Fj(tj; daj) ⊗j 6=i λj(dtj)hi(ti; dai)λi(dti)

=

∫
Ti

∫
Ai

∫
T−i

∫
A−i

wi(ai, f−i(t−i), ti, t−i) ⊗j 6=i λj(dtj)hi(ti; dai) λi(dti)

= Ui(hi, f−i),

where the fourth identity follows from Equation (3.3) and the rest are clear. Thus, f and g are

strongly payoff equivalent.11

Finally, we shall show that f and g are belief consistent. Fix i ∈ I . Define a nonnegative val-

ued function ci fromAi×Ti such that for each ai ∈ Ai and ti ∈ Ti, ci(ai, ti) = d(ai, supp gi(ti)),

where d(ai, supp gi(ti)) is the distance of ai to the support of the probability measure gi(ti). It

is obvious that for each ti ∈ Ti,
∫
Ai
ci(ai, ti)gi(ti; dai) = 0. Since gi is Fi-measurable, ci is

B(Ai)⊗Fi-measurable. Lemma 9 implies that

∫
Ti

ci
(
fi(ti), ti

)
λi(dti) =

∫
Ti

E
[
ci
(
fi(ti), ti

)
| Fi
]
λi(dti)

=

∫
Ti

∫
Ai

ci(ai, ti)gi(ti; dai) λi(dti) = 0,

which implies that c
(
ti, fi(ti)

)
= 0 for λi-almost all ti ∈ Ti. Hence, fi(ti) ∈ supp gi(ti) for

λi-almost all ti ∈ Ti, and fi and gi are belief consistent. Thus, f and g are belief consistent.

11It is also obvious that strongly payoff equivalence preserves the equilibrium property. Thus, if g is a Bayesian-
Nash equilibrium in behavioral strategy, then f is a Bayesian-Nash equilibrium in pure strategy.
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Therefore, f is a strong purification of g.

3.5.5 Proof of Proposition 7

Let ([0, 1],B, η) be the Lebesgue unit interval, where B is the Borel σ-algebra on [0, 1] and

η is the Lebesgue measure. As is well known, there is a measure preserving mapping φi

from (Ti,Fi, λi) to ([0, 1],B, η) such that for any E ∈ Fi, there exists a set E ′ ∈ B with

λi(E4φ−1i (E ′)) = 0 (see, for example, Lemma 6 in He et al. (2016)).

Fix a positive integer m ≥ 2. We consider the following game.

The set of players is I . Player i has the private information space (Ti, Ti, λi). The com-

mon prior is λ = ⊗i∈Iλi. The common action space is A = [0,m]. For the action profile

(a1, . . . , an) ∈
∏

i∈I Ai and state profile (t1, . . . , tn) ∈
∏

i∈I Ti, the payoff of player i is

ui(a1, . . . , an, t1, . . . , tn) = −
∏

0≤j≤m−1

(ai − φi(ti)− j)2.

Notice that the payoff of player i does not depend on the action and the state of her opponents.

Define a behavioral strategy g1 for player 1 as

g1(t1) =
1

m

∑
0≤j≤m−1

δφ1(t1)+j,

where δφ1(t1)+j is the Dirac measure on A at the points φ1(t1) + j. Let ĝ1 be a function on the

unit interval L1 = [0, 1] as

ĝ1(l1) =
1

m

∑
0≤j≤m−1

δl1+j.

Then g1 = ĝ1 ◦ φ1 and is F1-measurable. Let τ be a probability measure on A such that for any

Borel subset B in A,

τ(B) =

∫
T1

g1(t1)(B)λ1(dt1),
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which implies that

τ(B) =

∫
T1

ĝ1(φ1(t1))(B)λ1(dt1) =

∫
[0,1]

ĝ1(l1)(B)η(dl1).

It is clear that τ is the uniform distribution on A.

Due to the condition of Proposition 7, the behavioral strategy g1 has a strong purification f1.

By the definition, f1 and g1 are distribution equivalent. As a result, λ1f−11 = τ . Based on the

belief consistency condition, f1(t1) ∈ {φ1(t1), φ1(t1) + 1, . . . , φ1(t1) +m− 1} for λ1-almost

all t1 ∈ T1. Thus, f1(t1) = φ1(t1) + j on a T1-measurable set Cj ⊆ T1 for j = 0, . . . ,m− 1.

Recall that for any E ∈ F1, there exists a set E ′ ∈ B with λ1(E4φ−11 (E ′)) = 0. Then for

any j = 0, . . . ,m− 1, we have

λ1(Cj ∩ E) = λ1(Cj ∩ φ−11 (E ′)) = λ1(f1 ∈ E ′ + j)

= τ(E ′ + j) =
1

m
η(E ′) =

1

m
λ1(φ

−1
1 (E ′)) =

1

m
λ1(E),

and hence λ1(Cj) = 1
m

. Therefore, {C0, . . . , Cm−1} is a T1-measurable partition of T1 such

that Cj is independent of F1 for j = 0, . . . ,m− 1, which implies that F1 admits an asymptotic

independent supplement in T1 under λ1. By Lemma 7, T1 is nowhere equivalent to F1 under λ1.

Based on an analogous argument, Ti is nowhere equivalent to Fi under λi for every i ∈ I .
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Chapter 4

Stationary Markov Perfect Equilibria in

Large Stochastic Games

4.1 Introduction

Dynamic strategic interactions are common phenomena in economics. To consider such inter-

actions in the setting of many agents, this paper studies stochastic games with a continuum of

agents. The focus will be on stationary Markov perfect equilibria.

A large stochastic game is played by a continuum of players in discrete time with evolving

publicly observable states, where the state evolution is governed by a transition probability

determined by the state and the players’ action distribution. In each stage, the current state

induces a large game in which players simultaneously choose feasible actions and realize their

state-dependent stage payoffs. A natural starting point for strategic analysis in this setting is

to consider equilibria that reflect the stationary structure of the environment, which leads us to

study stationary Markov perfect equilibria.

There is an extensive literature on the existence of behavioral-strategy stationary Markov

perfect equilibria in finite-player stochastic games.1 However, Levy (2013) and Levy and

McLennan (2015) constructed examples on the non-existence of such equilibria for the case of

1See, for example, the book Neyman and Sorin (2003) and the survey Jaśkiewicz and Nowak (2016).
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general state spaces. Based on the condition of “(decomposable) coarser transition kernels”,

He and Sun (2015) showed the existence of stationary Markov perfect equilibria. This paper

demonstrates the existence of behavioral-strategy stationary Markov perfect equilibria in large

stochastic games without any special conditions.

Given that large games often have pure-strategy Nash equilibria, a natural question is whether

pure-strategy stationary Markov perfect equilibria exist in large stochastic games. We point out

that pure-strategy stationary Markov perfect equilibria may not exist in general by presenting a

counterexample in Example 7. To circumvent this nonexistence issue, we follow He, Sun and

Sun (2016) by using the “nowhere equivalence” condition on the agent space to characterize

the existence of pure-strategy stationary Markov perfect equilibria in large stochastic games

(Theorem 6). With the same condition, we show in Theorem 7 that for every behavioral-strategy

stationary Markov perfect equilibrium, there is an equivalent pure-strategy stationary Markov

perfect equilibrium with the same total discounted payoffs for almost all the agents.

Next, we consider the fundamental issue of whether the model of stochastic games with a

continuum of agents is in general a good proxy to large finite-agent stochastic games; namely,

whether the closed graph property for the correspondence of stationary Markov perfect equilibria

holds. Example 8 indicates that such a property may fail in general. By imposing uniform norm

continuity on the transition probabilities as in Duffie et al. (1994), we show the closed graph

property for the behavioral-strategy stationary Markov perfect equilibria in Theorem 8. We

also use the nowhere equivalence condition on the agent space to characterize the closed graph

property for pure-strategy stationary Markov perfect equilibria.

The rest of this chapter is organized as follows. Section 2 presents the large stochastic

game model. Section 3 provides the existence theorem and the purification theorem. Section 4

discusses the upper hemi-continuity and the closed graph property. The appendix contains all

the proofs of our results.
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4.2 Markov perfect equilibria in large stochastic games

In this section, we shall specify the formulation of large stochastic games with general action

and state spaces. The player space is modeled by an atomless probability space (I,G, λ).2 All

players observe the realized public state s, whose value lies in a Polish space (S,S, µ). They

then simultaneously choose actions from a common feasible action set A, which is a compact

metric space. The set of Borel probability measures on A, denoted byM(A), will serve as the

space of societal summaries. Note thatM(A) is also a compact metrizable space endowed with

the topology of weak convergence of measures and the resulting Borel σ-algebra σ(M(A)).

Given the realized public state, each player’s payoff continuously depends on her/his own

action as well as on a societal summary that addresses the interdependence of everyone’s

actions.3 The space of stage payoffs UA is then defined as the space of all bounded continuous

functions on the product space A×M(A) with its sup-norm topology and the resulting Borel

σ-algebra.

Time is infinite and discrete, i.e., t ∈ N. The public state evolves in a Markov fashion with a

(stationary) transition probability P , which assigns probabilities on future states depending on

the current state and the current societal summary. Technically, The transition probability P is a

S ⊗ σ(M(A))-measurable mapping from S ×M(A) toM(S), whereM(A) andM(S) are

endowed with the Borel σ-algebras σ(M(A)) and σ(M(S)) respectively. The existence of such

transition probability is a standard result of regular conditional distributions in probability theory

(see, for example, Theorem 1.6, Chapter 4 of Durrett (2005)). Note that all players discount the

future by the same rate β where β ∈ [0, 1).

Now, we are ready to present the definition of large stochastic games.

Definition 20 (Large stochastic game). A discrete time (stationary) large stochastic game G

with the player space (I,G, λ), public state space (S,S, µ) and the common action space A

consists of a G ⊗ S-measurable mapping u from I × S to the space of stage payoffs UA, a

transition probability P and a common discounted factor β ∈ [0, 1).
2A probability space (I,G, λ) (or its σ-algebra) is atomless if for any non-negligible subset E ∈ G, there is a

G-measurable subset E′ of E such that 0 < λ(E′) < λ(E).
3In fact, the payoff function for each player under a realised state is a bounded continuous function onA×M(A).
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Remark 6. This model fits into a wide range of applications. For example, a homogeneous

goods industry with a continuum of indentical firms. Each firm has negligible influence on the

whole market and hence a price taker. Based on the observation of the current price (the public

state), it will choose its own production level. And the aggregate production in return will affect

the market price in the next stage.

In general, the strategy of a player is a complete set of plans that describes the choices a

player will make, given every possible realization of initial histories for any time. In the relevant

literature, attention is typically focused on Markov strategies, which based on current states

only (Marskin and Tirole (2001)). One may, therefore, define a Markov behavioral strategy

profile in a large stochastic game as a sequence of G ⊗ S measurable functions {f t}t∈N such

that f t : I × S →M(A) with each player i plays behavioral strategy {f t(i, ·)}t∈N.

Without loss of generality, player i’s stage payoff function in large stochastic game G under

public state s is denoted as u(i, s, ·, ·) with a uniform upper bound Bu for all i, s.4 Given a

Markov behavioral strategy profile {f t}t∈N, the continuation payoff of player i from a certain

sequence of realizations of the public states {st}t∈N is thus given by

∞∑
t=0

βt
∫
A

u(i, st, a,

∫
I

f t(i, st)µ(di))f t(i, st, da),

where the Gelfand integral
∫
I
f t(i, st)µ(di) is the societal summery at time t under the Markov

behavioral strategy profile f t with the realized public state st.

As the public state evolves with the transition probability P , we can further define the

sequence of continuation payoffs {V t(i, st, {f t̃}t̃∈N)}t∈N, where V t is player i’s discounted

expected continuation payoffs started from time t given Markov strategy {f t̃}t̃∈N and initial

state st,

V t(i, st, {f t̃}t̃∈N) =

∫
A

u(i, st, a,

∫
I

f t(i, st)µ(di))f t(i, st, da)

4It is well-known that u(·, ·, ·, ·) is a Carathéodory function, see for example, Theorem 4.55 in Aliprantis and
Border (2006). If u is not uniformly bounded, we can replace each u ∈ UA by composing a continuous increasing
function arctan ◦ u.
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+
∞∑

t̃=t+1

β t̃−t
∫
S

...

∫
S

∫
A

u(i, st̃, a,

∫
I

f t̃(i, st̃)µ(di))f t̃(i, st̃, da)

× P (dst̃|st̃−1,
∫
I

f t̃−1(i, st̃−1)µ(di))...P (dst+1|st,
∫
I

f t(i, st)µ(di)).

From the literature of dynamic programming, we know the sequence {V t}t∈N is well-defined,

G ⊗S-measurable for any given Markov strategy {f t̃}t̃∈N. We now formally define a behavioral-

strategy Markov prefect equilibrium.5 For other related discussions of this equilibrium concept

one may refer to Fudenberg and Tirole (1991) and Marskin and Tirole (2001). The definition here

is thus an adaptation of the original concept to large stochastic games, synthesizing equilibrium

concepts used in finite player stochastic games and large games.

Definition 21 (Markov perfect equilibrium). A behavioral-strategy Markov perfect equilibrium

f ∗ = {f ∗t}t∈N in a large stochastic game is a Markov behavioral strategy profile such that at

any t and µ-almost all s,

V t(i, s, f ∗) ≥ V t(i, s, (f ∗−i, fi)),

for any other strategy fi of player i for λ-almost all i ∈ I .

Notice that in the definition above, players are choosing optimally at every time for every

possible realization of the states given that they will continue to choose optimally in the future.

Though Markov strategy only allows players to condition their choices on the current state

instead of the entire realized past history, a Markov perfect equilibrium is indeed a subgame

perfect equilibrium. One may be able to see this by observing that, it is optimal for a player to

use a Markov strategy when all other players are using this special kind of subgame strategy.

Therefore, a Markov perfect equilibrium strategy is actually a subgame perfect equilibrium

strategy.

The rest of this chapter is concerned with stationary Markov perfect equilibrium, which is

a G ⊗ S-measurable function f ∗ from I × S toM(A) such that for every t ∈ N, f t = f ∗ and

{f t}t∈N constitutes a Markov perfect equilibrium.

To study the stationary Markov perfect equilibrium, one may, therefore, seek to understand
5Pure strategy Markov equilibrium can be defined analogously, with a slight modification on the societal

summaries and the stage payoffs.
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the stationary structure of the large stochastic game. Recall that a large game is defined as a G-

measurable mapping from the player space I to the payoff space UA. Hence a G ⊗S-measurable

mapping u : I × S → UA in large stochastic game G, which assigns each player a specific stage

payoff function under any state, defines a state-contingent large game. This game captures all

the static elements of large stochastic game G, and thus represents the stationary structure of G.

It is thus called the auxiliary game of large stochastic game G and denoted as Ga,

A state-contingent large game u : I × S → UA is in fact a class of static large games

parametrized by state s. A behavioral strategy profile f , which is G ⊗ S-measurable from I × S

toM(A), is called a state-contingent Nash equilibrium in the state-contingent large game u, if

f(·, s) stands as a Nash equilibrium for large game u(·, s) under almost all state s.

Definition 22 (State-contingent Nash equilibrium). A behavioral strategy profile f constitutes a

behavioral-strategy state-contingent Nash equilibrium for a state-contingent large game u, if for

µ-almost all fixed s ∈ S,

∫
A

u(i, s, a′,

∫
I

f(i′, s)λ(di′))g(i, s, da′) ≥ u(i, s, a,

∫
I

f(i′, s)λ(di′)),

for all a ∈ A and λ-almost all i ∈ I , where
∫
I
f(i′, s)λ(di′) denotes the Ge′lfand integral of

f(·, s).

4.3 The existence of stationary Markov perfect equilibria

4.3.1 Behavioral-strategy stationary Markov perfect equilibria

Rath, Sun and Yamashige (1995) constructed a large game with infinitely many actions, which

does not have a pure-strategy Nash equilibrium. Motivated by their example, we construct a

large stochastic game in the following which does not have any pure-strategy stationary Markov

perfect equilibrium.

Example 7. Consider a large stochastic game G with the unit interval [0, 1] as the player space

I , which is endowed with Lebesgue measure λ and the related σ-algebra. The action space
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A is the interval [−1, 1], andM(A) denotes the set of social summaries. Let UA be the set of

continuous function on A×M(A), which denotes the utilities. Define the public space S to be

the finite set {1, 2, 3, ..., 10}. The large stochastic game G then maps from I × S to UA, whose

payoff function of this large game is specified as follows:

u(i, s, a, µ) : = g(a, 0.5d(λ∗, µ)),−|i− |a||+ s,

where λ∗ is the uniform distribution on [−1, 1], d(λ∗, µ) is a Prohorov distance between λ∗ and

µ, and for any a ∈ A and l ∈ (0, 1],

g(a, l) =



a
2

0 ≤ a ≤ l
2
;

l−a
2

l
2
≤ a ≤ l;

−g(a− l, l) l ≤ a ≤ 2l.

Claim 5. The large stochastic game G has a behavioral-strategy stationary Markov perfect

equilibrium, however, there is no pure-strategy stationary Markov perfect equilibrium.

This example sheds some light on existence results. One may, therefore, explore the existence

of behavioral-strategy stationary equilibria as well as the validity of purifications. In this section,

we systematically study the existence issue of stationary Markov perfect equilibria. First the

existence result for behavioral-strategy stationary Markov perfect equilibria is presented.

Theorem 5. Every large stochastic game has a behavioral-strategy stationary Markov perfect

equilibrium.

We now briefly explain the idea behind the proof. The problem of the equilibrium existence,

by Lemma 12, boils down to finding a state-contingent Nash equilibria in its auxiliary game.

The fact that an auxiliary game is indeed a class of large games parametrized by states and every

large game possesses a behavioral-strategy Nash equilibrium, leads to the study of a specific

kind of measurable selection, which selects measurable functions in a measurable way that the

resulted function is product measurable. To obtain such selection, we need to extend the main

theorem Mertens (2003) to infinite dimensional space.
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The general existence of behavioral-strategy stationary Markov perfect equilibria sheds light

on the existence of pure stationary Markov perfect equilibria under a special circumstance,

namely the large stochastic game with finite-dimensional action spaces. Indeed, with a slight

modification of setting societal summaries to be action integrations instead of distributions, we

derive the following proposition.

Proposition 8. Under the setting that the common action set is compact in a finite-dimensional

real topological vector space and societal summaries are action-integrations, every large

stochastic game has a pure-strategy stationary Markov perfect equilibrium.

Notice that in a large stochastic game with n actions, its societal summaries, or action

distributions, lies in the unit ball in Rn, which hence can also be interpreted as action integrations.

Therefore, the proposition above can be applied directly in (i) every large stochastic game with

finitely many actions. Due to the fact that every isomorphism of Rn onto an n-dimensional (real)

topological vector space is a homeomorphism, another application is to the case of (ii) large

stochastic games of action-integrated societal summaries, with action space to be a compact set

in the n-dimensional Euclidean space.We summarise the above observations into the following

corollary.

Corollary 1.

(i) Every large stochastic game with finite actions admits a pure-strategy stationary Markov

perfect equilibrium.

(ii) Every large stochastic game, with compact feasible action sets in Rn and action-integrated

societal summaries, has a pure-strategy stationary Markov perfect equilibrium.

All details of the proofs in this subsection are placed in Section 4.5.2.

4.3.2 Pure-strategy stationary Markov perfect equilibria

In the previous section we have studied the existence of behavioral-strategy stationary Markov

perfect equilibria and explored the equilibrium existence in pure strategy under several special
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cases. Now we turn to the study of the existence of pure-strategy stationary Markov perfect

equilibria in general. We show that the nowhere equivalence condition, introduced in He et al.

(2016), is sufficient and necessary to guarantee such existence in general. A further purification

result follows under this condition.

In our current formulation, two σ-algebras F and G are introduced to the player space such

that (I,F , λ) is the probability space for players with G being a sub σ-algebra of F . These two

σ-algebras F and G are called the universal σ-algebra and the characteristics type σ-algebra,

respectively. Here G can be viewed as the σ-algebra induced by stage payoffs under all possible

states6. That is to say, F consists of every event that may happen among the whole population,

while G only consists of those perceivable ones. Hence, the information processed by F is

essentially richer than that by G.

Nowhere equivalence condition requires certain properties on every probability space re-

stricted to a non-negligible set in F . To be exact, for any non-negligible subset D ∈ F , i.e.,

λ(D) > 0, the restricted probability space (D,GD, λD) is defined as follows: GD is the σ-

algebra {D ∩D′ : D′ ∈ G} and λD is the probability measure re-scaled from the restriction of λ

to GD; the restricted probability space (D,FD, λD) is defined similarly. We state the nowhere

equivalence condition introduced in He et al. (2016) as follows.

Definition 23 (Nowhere equivalence condition). The σ-algebra F is said to be nowhere equiv-

alent to the sub-σ-algebra G, if for every non-negligible subset D ∈ F , there exists an F-

measurable subset D0 of D such that λ(D04D1) > 0 for any D1 ∈ GD, where4 denotes the

symmetric difference operator. That is, D04D1 = (D0 \D1) ∪ (D1 \D0).

By relaxing the measurability of strategy profiles to the enlarger σ-algebra F ⊗ S, we are

able to establish the general existence of pure stationary Markov perfect equilibria. Furthermore,

this nowhere equivalence is shown to be a complete characterization of such a general existence

result. We are now ready to present the existence theorem.

Theorem 6. Every G ⊗ S-measurable7 large stochastic game has an F ⊗ S-measurable pure-
6That is to say, G is the σ-algebra generated by all u(·, s·, ·) for all possible s, where u(·, ·, ·, ·) is a stage payoff

mapping from I × S to UA.
7We slightly mix the notation here just for illustrative simplicity, to be accurate one should say “every large
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strategy stationary Markov perfect equilibrium if and only if F is nowhere equivalent to G.

It is known that behavioral-strategy stationary Markov perfect equilibria exist without any

condition in large stochastic games (Theorem 5). Theorem 6 further implies that, under nowhere

equivalence condition, it may be possible to purify a behavioral-strategy stationary equilibrium

to a pure-strategy stationary one in general. We then proceed to the details of this purification

result. Normally, a pure strategy profile is a purification of a behavioral strategy profile if they

both induce the same societal summary and are consistent with individual strategies. With a

slight modification regarding the term “state contingent”, the formal definition of purification

that suits our setting follows.

Definition 24 (Purification). A pure-strategy stationary Markov perfect equilibrium (resp. state-

contingent Nash equilibrium) f is a purification of a behavioral-strategy stationary Markov

perfect equilibrium (resp. state-contingent Nash equilibrium) f̃ if for µ-almost all s,

(i) (societal summary equivalence) the distribution of f(·, s) is equivalent to that of f̃ ,

λf−1(·, s) =

∫
I

f̃(i′, s)λ(di′).

(ii) (strategy consistency) each player i’s action in f(i, s) is selected from the support of the

corresponding behavioral strategy f̃(i, s); that is,

f(·, s) ∈ supp f̃(·, s) for λ-almost all i.

We are now ready to show the purification under the nowhere equivalence condition. It

proves the sufficiency of this particular condition for the pure-strategy equilibrium existence.

Theorem 7. For every G ⊗ S-measurable large stochastic game, every G ⊗ S-measurable

behavioral-strategy stationary Markov perfect equilibrium pocesses a F ⊗ S-measurable

purification if F is nowhere equivalent to G.

All details of the proofs in this section are placed in Section 4.5.2.

stochastic game with with G ⊗ S-measurable stage payoff mapping u from I × S to UA”.
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4.4 Approximation and the closed-graph property

A significant difference between finite-player stochastic games and large stochastic games is

that the former has strategic behaviors but the later does not. Nevertheless, connections of the

behaviors between these two environment can be established by approximation.

From now on, we will study another representation of large stochastic games, which is in

terms of choosing a sequence of finite-player stochastic games and look at the stationary Markov

perfect equilibrium in the limit game. The linking between these two kinds of representations is

the “closed graph property”.

Preliminary: Let (In, In, λn) be an n-element probability space with n ∈ N, where In denotes

its power set 8 and λn is its probability measure. In particular, λn assigns equal weight to each

element. (In, In, λn) then serves as the space of n players.

The public state space (S,S, µ) is a polish space. The common action space A is compact

and metrizable, and its probability distribution space isM(A), denotes the whole collection

of societal summaries. Let UA be the Banach space of continuous functions on A ×M(A)

endowed with the sup-norm topology and the resulting Borel σ-algebra. β is the common

discount factor. The transition probability P n is a S ⊗ σ(M(A))-measurable mapping from

S ×M(A) toM(S).

A large finite stochastic game Gn consists of a In ⊗ S measurable mapping un(in, s, ·, ·)

from In × S into UA, together with a S ⊗ σ(M(A))-measurable transition probability P n and

a common discounted factor β. As a well-known fact in the literature, a behavioral-strategy

stationary Markov perfect equilibrium in the respective large finite stochastic game Gn can be

therefore defined in the following recursive form, see He and Sun (2015) for example.

Definition 25. (Stationary Markov perfect equilibria in large finite stochastic games) For any

n ∈ N, a behavioral strategy profile fn : In × S →M(A) is a behavioral-strategy stationary

Markov perfect equilibrium in large finite stochastic game Gn, if there exists a continuation

8The power set In is the collection of all subsets of In.
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utility function vn(i, s) ∈ LIn⊗S∞ (In × S)9 which satisfies for µ-almost all fixed s ∈ S,

vn(i, s) = (1− β)

∫
A

un(i, s, a,

∫
In
fn(i′, s)λn(di′))fn(i, s, da) + β

∫
S

vn(i, s′)P n(ds′|s,
∫
In
fn(i′, s)λn(di′))

= max
a∈A

(1− β)un(i, s, a,

∫
In

(a, fn−i(i
′, s))λn(di′)) + β

∫
S

vn(i, s′)P n(ds′|s,
∫
In

(a, fn−i(i
′, s))λn(di′))

for all i ∈ In, and
∫
In

(a, fn−i(i
′, s))λn(di′) denotes a strategy profile that player i plays a and

his opponent player j plays fn(j, s) for j 6= i under state s.

Note that a proper approximation to a large stochastic game requires each player’s influence

in the sequence of large finite stochastic games decreases to zero as the number of players

tends to infinity. In our setting, this is satisfied since supi∈In λn(i) = 1
n
→ 0 as n → ∞. We

further impose uniform continuity on the convergent class of transition probabilities under norm

topology. This condition smoothes the flow of information in the evolution of states, which we

will explain in details later. The closed graph property, therefore, can be described formally as

below:

Definition 26 (The closed graph property). A behavioral-strategy (resp. pure-strategy) station-

ary Markov perfect equilibrium correspondence of a large stochastic game G0 has the closed

graph property, if for any sequence of large finite stochastic games {Gn}n>0
10 satisfies that for

µ-almost all s,

(i) the sequence of stage utilities {un(·, s, ·, ·)}n>0 converges weakly to u0(·, s, ·, ·) as n→∞,

(ii) the sequence of behavioral-strategy (resp. pure-strategy) stationary Markov perfect equi-

libria fn of Gn for each n > 0 is such that {
∫
In
fn(i, s)λn(di)}n>0 converges weakly to

some ν(s) ∈M(A) as n→∞,

(iii) {P n(s′|s, τ)}n≥0 is uniformly continuous in any τ ∈M(A) whereM(A) andM(S) are

endowed with the prohorov metric and total variation norm respectively,

9 LI
n⊗S
∞ (In × S) denotes the set of In ⊗ S measurable function whose sup-norm is finite, i.e., ||h||∞ <∞

for h ∈ LIn⊗S∞ (In × S).
10 Equal weight condition can be further relaxed to the condition supi∈In λn(i)→ 0.
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there exists a behavioral-strategy (resp. pure-strategy) stationary Markov perfect equilibrium

f 0 of G0 such that
∫
I0
f 0(i, s)λ0(di) = ν(s) for µ-almost all s.

4.4.1 On the norm continuity of the transition

In general, the closed graph property is not necessarily true in a large stochastic game, for small

information conveying in the discrete environment may lead to strategic behaviors surviving

in the sequence of large finite stochastic games but not in the limit continuum game. To avoid

such failure, strategy behaviors should decline with increasing number of players, which in fact

narrows the difference between the discrete and continuum environments.

A Common approach, followed in the literature on stochastic games, is to specify certain

level of prerequisite continuity on the transition probability in societal summaries, ranging

from (1) weak continuous (e.g., Federgruen (1978) and Dutta and Sundaram (1998)); (2) norm-

continuous (e.g., Solan (1998) and Mertens and Parthasarathy (2003)) (3) norm-continuous and

absolutely continuous with respect to a fixed, non-atomic probability measure (e.g, Duffie et al.

(1994) and Duggan (2012)); etc. We adopt the norm-continuous condition herein, which is a

proper choice due to the failure of the closed graph property under weaker continuity conditions

(Example 8).

Definition 27 (Norm continuity of the transition).

• The total variation norm ‖ · ‖ of any element ρ in a space of signed measures on an

arbitrary measurable space (S,S) is defined by

||ρ||TV : = sup
k∑
i=1

|ρ(Ai)|,

where the supremum is over all finite partitions of S into disjoint measurable subsets. For

any two probability measures µ1 and µ2 ∈ M(S), the distance between them specified

by the total variation norm has an equivalent definition (Lemma 11.5, Stokey, Lucas and

Prescott (1989)):

||µ1 − µ2||TV : = 2 · sup
A∈S
|µ1(A)− µ2(A)|.
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• We call a transition probability P is norm-continuous inM(A) if the transition probability

P : S×M(A)→M(S) is a S ⊗ σ(M(A))-measurable mapping and for µ-almost all s,

P (s′|s, λ) is a continuous mapping fromM(A) toM(S),

whereM(A) is endowed with weak topology andM(S) is endowed with total variation

norm topology.11

In the following, we will discuss the appropriateness of the norm-continuous condition by

two examples. We first present a counnterexample in which the transition probability is weak

continuous in but not norm continuous inM(A), and the closed graph property for stationary

Markov perfect equilibria correspondence fails.

Example 8. Let a sequence of large finite games {Gn}n∈N with probability space (In, In, λn)

to be the player space of Gn, where In = { 1
n
, 2
n
, ..., n−1

n
, 1} with equally distributed weights

on each player, i.e, λn( k
n
) = 1

n
for k = 1, 2, ..., n, and the Lebesgue unite interval (I, I, λ) be

the continuum player space of G in the limit, where I = [0, 1], I is the Lebesgue σ-algebra,

and λ is the Lebesgue measure. The rest elements are the same for both the sequence of large

finite stochastic games {Gn}n∈N and the limit large stochastic game G: the two-action space

A = {C,D} and the type space (S,S, µ) where S = [0, 1], S is the Lebesgue σ-algebra and µ

is the Lebesgue measure. All games {Gn}n∈N and G share the same transition probability P ,

which is defined as:

P (s′|s, λ) = δa1
2
, and δs denotes the Dirac measure on state s.

where λ = (a1, 1− a1) is a societal summary with a1 being the proportion of players choosing

“C”. The payoff function for each player is defined in the following: if the realized state s

satisfies 0 ≤ s < 1
2
, then each player receives −3 with action “C” and −2 with action “D”; on

the other hand, if 1
2
≤ s ≤ 1, then each player receives −1 with “C” and 0 with “D”. And the

discount factor δ > 1
2
.

11Though the measurability statement seems the same, it is actually strengthened compared to the initial setting
due to the strengthen of the image space’s topology.
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Claim 6. For the games described in Example 8, we have the following results:

(i) For all s ∈ S, the transition probability P : M(A) → M(S) is weak continuous in

M(A) where bothM(A) andM(S) are equipped with weak topologies. But P is not

norm-continuous inM(A).

(ii) The strategic behavior that every player choose “C” if state 1
2
≤ s ≤ 1, and “D” otherwise,

i.e, fn(·, s) ≡ C for 1
2
≤ s ≤ 1 and fn(·, s) ≡ D for 0 ≤ s < 1

2
, is a stationary Markov

perfect equilibrium in every finite player game Gn.

(iii) The unique stationary Markov perfect equilibrium in the limit large stochastic game G is

that every player chooses “D” (f ≡ D) .

The large stochastic game we constructed in the example above fails to satisfy the closed graph

property12 under (uniformly) weak continuity, which implies stronger continuity is required.

In the following we revisit Example 8, and regain the closed graph property by modifying the

transition probability such that it is uniformly norm-continuous.13 A further discussion shows

that the closed graph property is valid under such modification.

Example 9. Use the identical setting in Example 8, except that the transition probability P is

redefined as follows:

P (s′|s, λ) = a1µ1 + (1− a1)µ0, where µ0 and µ1 are two distinguished probability measures on [0, 1].

Then we claim that

(i) The transition probability is norm-continuous;

(ii) There exists a large number N , such that for all n ≥ N , all players play “D” in all states,

i.e., fn ≡ D, is the unique stationary Markov perfect equilibrium in those large finite

stochastic game Gn. Therefore the stationary Markov perfect equilibrium correspondence

in the large stochastic game G has the closed graph property.
12 That is, the sequence of stationary Markov perfect equilibria fn in the sequence of large finite stochastic

games clearly does not converge weakly to f for µ-almost all state s.
13Note that existence, hence nowhere equivalence, is not a key issue here, since Corollary 1 can guarantee the

equilibrium existence in finite-action environment.
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The intuition for Example 9 is the following. Although µ0 and µ1 can be quite different (e.g.

µi = δi for i ∈ {0, 1})14, the state evolution rule gives defectors a chance to get away with a

probability proportional to the size of cooperators. Since a single player’s influence is almost

negligible in a large population, an unilateral deviation will become profitable to any individual

player as the ppopulation size goes beyond certain level. Hence always playing “D” is the only

stationary Markov perfect equilibrium in the game Gn when the population is significantly large.

The proofs in this section are given in Section 4.5.3.

4.4.2 The closed graph theorem

In this section, we consider the closed graph theorem. As suggested in Lemma 12, this asymptotic

implementation requires that, as a sequence of finite-player stochastic games converges towards

the limit, the set of stationary Markov perfect equilibria in each finite-player stochastic game

should approximate the set of state-contingent Nash equilibria in its auxiliary game. Uniform

continuity in the state evolution process (if valid) will help to control the evolution such that

it becomes smooth and tractable, since no sharp drifts occur from time to time. Hence it is a

suitable prerequisite for such approximation.

Throughout this section, we are working with a general framework, except for adopting such

condition. Although this condition itself is quite strong, the proof of Lemma 14 suggests that

such continuity is actually reasonable for considering the closed graph property in general large

stochastic games, due to the arbitrary choices of continuation payoffs. Also previous example

(Example 8) shows that with weaker continuity such property may fail.

The validity of the closed graph theorem hinges on two key factors: one is the issue of

equilibrium existence, and the other is a smooth information flow, i.e., no revelation of unilateral

deviations when the population size is large enough. For behavioral-strategy stationary Markov

perfect equilibria, the former is guaranteed by Theorem 5, and the later is supported by the

uniform norm-continuity in the transition probability.

Theorem 8 (The closed graph theorem). The behavioral-strategy stationary Markov perfect

14Here δa denotes the Dirac measure which places mass 1 on the point a.
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equilibrium correspondence of any large stochastic game has the closed graph property.

When restricted to pure strategies, the nowhere equivalence condition completely character-

izes the equilibrium existence (Theorem 6). Therefore, the two conditions together: the nowhere

equivalence and uniform norm-continuity, are sufficient for the closed graph theorem to hold for

the pure-strategy stationary Markov perfect equilibrium correspondence of any large stochastic

game.

A further scrutiny gives that nowhere equivalence is also necessary for the closed graph

theorem of pure-strategy stationary Markov perfect equilibria. Indeed, this is a straightforward

application of the closed graph property in He et al. (2016). They show that nowhere equivalence

is the sufficient and necessary condition for the pure Nash equilibrium correspondence of every

large game to satisfy the closed-graph property. The large repeated game bridges their asymptotic

implementation and the current one. While the closed-graph property in He et al. (2016) is

static, the current one involves the stochastic evolutions of states. It is, therefore, conceivable

that the nowhere equivalence is also a necessary condition for the closed graph theorem herein.

We then summerize the above discussions in the following proposition, which completely

characterizes the closed graph property for pure-strategy stationary Markov perfect equilibrium

correspondences of large stochastic games.

Proposition 9. The F ⊗ S-measurable pure-strategy stationary Markov perfect equilibrium

correspondence of any G ⊗ S-measurable large stochastic game has the closed graph property

if and only if F is nowhere equivalent to G.

In the following we will give an example illustrating the necessity of nowhere equivalence.

Motivated by Example 4 in He et al. (2016), we construct a counterexample using large repeated

games to explain that the lack of the nowhere equivalence condition leads to the failure of the

(pure) closed graph theorem.

Example 10. Define a large repeated game G such that the player space is the Lebesgue unit

interval (I,F , λ) where I = [0, 1], F is the Lebesgue σ-algebra, and λ is the Lebesgue measure.

The common action space is A = [−1, 1]. The stage payoffs for game G are defined as follows.

91



Chapter 4. Stationary Markov Perfect Equilibria in Large Stochastic Games

For player i ∈ [0, 1], action a ∈ A and societal action distribution v ∈M(A),

G(i, a, v) = −(a+ i)2 · (a− i)2.

Now we define a sequence of finite-player repeated games {Gk}k∈N. For each k ∈ N, the

probability space (Ik,Fk, λk) is the agent space of the game Gk, where Ik = {1, 2, ..., 2k}, Fk

is the power set of Ik, and λk is the counting probability over Fk. The stage payoff function for

player j ∈ Ik in the game Gk is

Gk(j, a, v) = −(a+
j

2k
)2 · (a− j

2k
)2,

for her own action a ∈ A and societal action distribution v ∈ M(A). For each k ∈ N and

j ∈ Ik, let

fk(j) = (−1)j
j

2k
.

All games {Gk}k∈N and G are endowed with the same discount factor β and trivial transition

probability. Consider all stationary Markov perfect equilibria in the large repeated game G are

measurable in the Lebesgue σ-algebra F , which is clearly not satisfied the nowhere equivalence

condition. Then we have the following claim:

Claim 7.

(i) The sequence of finite-player repeated games {Gk}k∈N converges weakly to G, i.e.,

PkG
−1
k ⇒ PG−1 as k →∞.

(ii) fk is a pure-strategy stationary Markov perfect equilibrium of finite-player repeated game

Gk for each k ∈ N, and the sequence of {Pkf−1k }k∈N converges weakly to the uniform

distribution on A.

(iii) The uniform distribution on A is not a distribution of any F -measurable stationary Markov

perfect equilibrium in large repeated game G.

All proofs in this section are given in Section 4.5.3.
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4.5 Proofs

We begin this appendix by collecting recent results on the regular conditional distributions of

correspondences.

4.5.1 Regular conditional distribution

In this subsection, we state the definitions of the transition probability and the regular conditional

distribution here for the convenience of readers.

Recall that (I,F , λ) is an atomless probability space and G is a sub-σ-algebra of F . Given a

measurable subset E, λ|E denotes the restriction of λ to E. Let X be a Polish space (complete

separable metric topological space), B(X) the Borel σ-algebra of X , andM(X) the space of

all Borel probability measures on X with the topology of weak convergence. We recall that

M(X) is again a Polish space, and if X is compact then so isM(X). We use Cb(X) to denote

the set of all bounded continuous function from X to R.

Definition 28. A G-measurable transition probability from I to X is a mapping φ : I →M(X)

such that for every B ∈ B(X) the mapping

φ(·;B) : i 7→ φ(i;B)

is G-measurable, where φ(i;B) is the value of the probability measure φ(i) on the Borel subset

B ⊆ A.

We use RG(X), or RG when it is clear, to denote the set of all G-measurable transition

probabilities from I to X . Let Z+ denote the set of positive integers.

Definition 29. A sequence {φn}n∈Z+ inRG is said to weakly converge to φ inRG , denoted by

φn ⇒ φ, if for every bounded Carathéodory function c : I ×X → R,15

lim
n→∞

∫
I

[∫
X

c(i, x)φn(i; dx)

]
dλ(i) =

∫
I

[∫
X

c(i, x)φ(i; dx)

]
dλ(i).

15Given a probability space (I,G, λ) and a Polish space X , a function c : I ×X → R is a Carathéodory function
if c(·, x) is G-measurable for each x ∈ X and c(i, ·) is continuous for each i ∈ I .
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The weak topology onRG is defined as the weakest topology for which the functional

φ 7→
∫
I

[∫
X
c(i, x)φ(i; dx)

]
dλ(i)

is continuous for every bounded Carathéodory function c : I ×X → R.

We next review the regular conditional distribution. Let f be an F-measurable mapping

from I to X . A mapping µf |G : I ×B(X)→ [0, 1] is said to be a regular conditional distribution

for f given G, if

1. for λ-almost all i ∈ I , µf |G(i, ·) is a probability measure on X;

2. for each Borel subset B ⊆ X , µf |G(i, B) = E[1B(f) | G](i) for λ-almost all i ∈ I , where

E[1B(f) | G] is the conditional expectation of the indicator function 1B(f) given G.

Since X is assumed to be a Polish space endowed with the Borel σ-algebra, the regular condi-

tional distribution for f given G always exists; see Theorem 5.1.9 in Durrett (2005).

Let F be an F-measurable correspondence from I to X . We use

R(F ,G)
F =

{
µf |G

∣∣∣ f is an F-measurable selection of F
}

to denote the set of regular conditional distributions induced by F-measurable selections of F

conditional on G.

We present results on regular conditional distributions of correspondences culled from

Theorem 3, Corollary 1 and Lemma 3 in He and Sun (2013) (see also He and Sun Y (2014)).

Lemma 10. Suppose that (T, T , λ) is atomless and F is a countably generated sub-σ-algebra

of T . If T is nowhere equivalent to F , then for any sub-σ-algebra G of F , we have the following

results.

C1 For any closed valued F-measurable correspondence F from T to X ,R(T ,G)
F is convex.

C2 For any closed valued F-measurable correspondence F from T to X , R(T ,G)
F is weakly

closed.
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C3 For any compact valued F-measurable correspondence F from T to X ,R(T ,G)
F is weakly

compact.

C4 Let F be a compact valued F -measurable correspondence from T to X , Z is a metric space,

G is a closed valued correspondence from T × Z to X , such that

a ∀(t, z) ∈ T × Z, G(t, z) ⊆ F (t);

b ∀z ∈ Z, G(·, z) (denoted as Gz) is F-measurable from T to X;

c ∀t ∈ T , G(t, ·) (denoted as Gt) is upper-hemicontinuous from Z to X;

Then H(z) = R(T ,G)
Gz

is upper-hemicontinuous from Z toRG .

C5 For any G ∈ RF , there exists a T measurable mapping g such that µg|F = G.

C6 Given G ∈ RF and a T -measurable mapping g. If µg|F = G, then for λ-a.e. t ∈ T ,

g(t) ∈ suppG(t).

C7 Let F be a compact valued correspondence from T to X , Y is a metric space, G is a closed

valued correspondence from T × Y to X , such that

a ∀(t, y) ∈ T × Y , G(t, y) ⊆ F (t);

b ∀y ∈ Y , G(, y)(denoted as Gy) is F-measurable from T to X;

c ∀t ∈ T , G(t, ) (denoted as Gt) is upper-hemicontinuous from Y to X;

Then H(y) = DTGy is upper-hemicontinuous from Y toM(X).

Lemma 11. For any σ-algebra G, φn, φ ∈ RG for n ∈ N. Then φn ⇒ φ if and only if

lim
n→∞

∫
E

∫
X

c(x)φn(t, dx)] dλ(t) =

∫
E

∫
X

c(x)φ(t, dx)] dλ(t)

for every E ∈ G and c ∈ Cb(X).
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4.5.2 Proofs of results in Section 4.3

Notice that for each player, to find a subgame perfect equilibrium strategy is actually solving the

one-player optimal policy problem in a stochastic programming given other players’ strategies.

Holding this view, a stationary Markov perfect equilibrium, therefore, can be defined in a

recursive form, which is also known as the “Bellman equation” (see, for example, Bellman

(1957)). We give the formal definition of a stationary Markov perfect equilibrium in the

following, which is equivalent to the definition in Section 4.2.

Definition 30 (Stationary Markov perfect equilibrium). A behavioral-strategy stationary Markov

perfect equilibrium in a large stochastic game f is a G ⊗ S measurable strategy profile from

I × S toM(A) such that there exists a continuation utility function v(i, s) ∈ LG⊗S∞ (I × S)16,

which satisfies for µ-almost all fixed s ∈ S,

v(i, s) = (1− β)

∫
A

u(i, s, a′,

∫
I

f(i′, s)λ(di′))f(i, s, da′) + β

∫
S

v(i, s′)P (ds′|s,
∫
I

f(i′, s)λ(di′))

= max
a∈A

(1− β)u(i, s, a,

∫
I

f(i′, s)λ(di′)) + β

∫
S

v(i, s′)P (ds′|s,
∫
I

f(i′, s)λ(di′))

for λ-almost all i ∈ I .

We first need to present a technical lemma, which is essential for reducing problems in a

stochastic environment to those in a static environment with a continuum of players.

Lemma 12 (Equivalence theorem). In any large stochastic game, the set of pure-strategy/behavioral-

strategy stationary Markov perfect equilibria coincides with that of the pure-strategy/behavioral-

strategy state-contingent Nash equilibrium in its auxiliary game.

Proof of Lemma 12. Recall that in Section 4.2, the space of payoffs UA is defined as the space

of all continuous functions on the product space A×M(A) uniformly bounded by Bu with its

sup-norm topology and the resulting Borel σ-algebra.

We show that a behavioral-strategy stationary Markov perfect equilibrium is a behavioral-

strategy state-contingent Nash equilibrium at first.
16 LG⊗S∞ (I × S) denotes the set of G ⊗ S measurable function whose sup-norm is finite, i.e., ||h||∞ <∞ for

h ∈ LG⊗S∞ (I × S).
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Let f : I × S → M(A) be an G ⊗ S-measurable stationary Markov perfect equilibrium

satisfying the corresponding conditions in Definition 30: there exists an G ⊗ S-measurable

function v(i, s) ∈ L∞(I × S) such that for µ-almost all fixed s ∈ S,

v(i, s) = (1− β)

∫
A

u(i, s, a′,

∫
I

f(i′, s)λ(di′))f(i, s, da′) + β

∫
S

v(i, s′)P (ds′|s,
∫
I

f(i′, s)λ(di′))

= max
a∈A

(1− β)u(i, s, a,

∫
I

f(i′, s)λ(di′)) + β

∫
S

v(i, s′)P (ds′|s,
∫
I

f(i′, s)λ(di′))

for λ-almost all i ∈ I , which implies for µ-almost all fixed s ∈ S,

∫
A

u(i, s, a′,

∫
I

f(i′, s)λ(di′))f(i, s, da′) = max
a∈A

u(i, s, a,

∫
I

f(i′, s)λ(di′))

for λ-almost all i ∈ I . Therefore, f is a state-contingent Nash equilibrium in its auxiliary game

by Definition 22.

Now we need to prove that in any large stochastic game, a behavioral-strategy state-

contingent Nash equilibrium in its auxiliary game is also a behavioral-strategy stationary Markov

perfect equilibrium.

Let g : I × S →M(A) be an G ⊗ S-measurable behavioral-strategy state-contingent Nash

equilibrium satisfying the Definition 22, and H : L∞(I × S)→ L∞(I × S) be a mapping such

that for any v ∈ L∞(I × S),

H(v) = (1−β)

∫
A

u(i, s, a′,

∫
I

g(i′, s)λ(di′))g(i, s, da′)+β

∫
S

v(i, s′)P (ds′|s,
∫
I

g(i′, s)λ(di′)).

Given β ∈ [0, 1), it is easy to verify that H is a contraction mapping, which is, for any

v1, v2 ∈ L∞(I × S),

||H(v1)−H(v2)||∞ = ||β
∫
S

v1(i, s
′)− v2(i, s′)P (ds′|s,

∫
I

g(i′, s)λ(di′))||∞

≤ β

∫
S

||v1 − v2||∞P (ds′|s,
∫
I

g(i′, s)λ(di′))

= β||v1 − v2||∞.
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Therefore, Banach fixed point theorem shows there is a unique v∗ ∈ L∞(I × S) such that

H(v∗) = v∗, which combined with the fact that g is a state-contingent Nash equilibrium in the

auxiliary game derives the following equalities:

H(v∗) = v∗ = (1− β)u(i, s, a′,

∫
I

g(i′, s)λ(di′))g(i, s, da′) + β

∫
S

v∗(i, s′)P (ds′|s,
∫
I

g(i′, s)λ(di′))

= max
a∈A

(1− β)u(i, s, a′,

∫
I

g(i′, s)λ(di′))g(i, s, da′) + β

∫
S

v∗(i, s′)P (ds′|s,
∫
I

g(i′, s)λ(di′)).

Therefore, g is also a behavioral-strategy stationary Markov equilibrium in the specific large

stochastic game. Note that pure-strategy case can be shown similarly, and hence we omit its

proof here.

Remark 7. The theorem above can be further generated to the case of non-stationary Markov

perfect equilibria in large stochastic games with time-varying auxiliary games, i.e., in a non-

stationary large stochastic game, a Markov strategy {f t}t∈N is a pure-strategy/behavioral-

strategy Markov perfect equilibrium if and only if for every t, f t is a pure-strategy/behavioral-

strategy state-contingent Nash equilibrium in the corresponding auxiliary game Gt.17

Proof of Claim 5. Since a stationary Markov perfect equilibrium in a large stochastic game

is always a state-contingent Nash equilibrium in its auxiliary game (Lemma 12). Fixed each

s, a standard fixed point result shows the large game G(·, s) has a behavioral-strategy Nash

equilibrium. A collection of all such equilibria for all s results in a behavioral-strategy stationary

Markov perfect equilibrium. By Rath et al. (1995), there is no pure-strategy Nash equilibrium

in the large game G(·, s) for each s. It is thus easy to conclude that no pure stationary Markov

perfect equilibrium ever exists in the constructed large stochastic game G either.

Before proving Theorem 5, we present the main theorem in Mertens (2003) for readers’

conveniences.

Lemma 13 (Theorem 3 in Mertens (2003)). Let P (dω|e) be a bounded Rk-valued kernel

17Similar case was studied by Chakrabarti (2003). However, his proof still has a gap regarding the product
measurability issue. By Remark 7, our method in fact can be used to establish the existence of non-stationary
Markov perfect equilibrium in his setting. Moreover, his assumption of the continuity on transition probability
actually is not needed.
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from (E, E) to (Ω,A), two measurable spaces (i.e., ∀e ∈ E, P (·|e) is a bounded Rk-valued

measure on (Ω,A), and ∀A ∈ A, P (A|·) is E -measurable). Let N be a measurable map

from (E × Ω, E ⊗ A) to K∗(Rl), which is P -integrable in the sense that for any measurable

selection f from N , f(ω, e) is P (dω|e)-absolutely integrable for any e ∈ E. Define
∫
N dP

as the map from E to subsets of Rk·l (the tensor product of Rk and Rl) defined by
∫
N dP :

e → {f(ω, e) dP (d dω|e)|f is an E ⊗ A-measurable selection from N}, and denote its graph

by (F,F) ⊆ (E ×Rk·l, E ⊗ Borel sets). Assume that A is separable,

B1: (
∫
N dP ) is an E-measurable map to K∗(Rkl), and F is measurable in E ×Rkl.

B2: there exists a measurable, Rl-valued function f on (F × Ω,F ⊗A) such that f(e, x, ω) ∈

N(e, ω) and x =
∫
f(e, x, ω)P (dω|e).

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Recall that the player space is (I,G, λ), and the state space is (S,S, µ).

The action space and the societal summary space are A andM(A) respectively. Denote the

large stochastic game and its auxiliary game as G and Ga respectively18. The stage payoff

function can be rewritten as u(i, s, a, ν), which is G ⊗ S-measurable on I × S and continuous

on A×M(A).

By the equivalence theorem, to prove the existence of behavioral-strategy stationary Markov

perfect equilibria, it is equivalent to prove the existence of behavioral-strategy state-contingent

Nash equilibria in its auxiliary game.

For µ-almost all fixed s, Ga(·, s) is a large game and it is well-known that there exists an

G-measurable behavioral-strategy Nash equilibrium. Define a correspondence N mapping each

state s ∈ S into the set of societal summaries of behavioral-strategy Nash equilibria in the

auxiliary game Ga(·, s); that is,

N(s) = {
∫
I

h(i′, s)λ(di′) : h is a G-measurable behavioral-strategy Nash equilibrium of the auxiliary game Ga(·, s)}.

Now we claims the followings to be true, and will show their validity at the end of this proof:

18These notations are inherited from the standard setting in Section 4.2.
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Claim 8.

(i) N is an S-measurable, nonempty-valued, compact-valued correspondence.

(ii) G̃ is a nonempty, convex and compact-valued, G ⊗ S-measurable correspondence from

I × S toM(A), where G is countable generated andM(A) is the space of probability

measures on a Polish space A. Let a correspondence Φ from S to the set of probability

measure on action spaceM(A) be:

Φ(s) = {
∫
I

g(i′)λ(di′) : g is an G-measurable selection of G̃(·, s)}.

Then for any S-measurable selection φ̃ of Φ, there exists an G ⊗ S-measurable mapping

ψ from I × S toM(A) such that ψ(i, s) ∈ G̃(i, s) for λ× µ-almost all (i, s) and φ(s) =∫
I
ψ(i′, s)λ(di′) for µ-almost all s ∈ S.

By Claim 8 (i), there exists an S-measurable selection n of N . Then define a correspondence

B such that

B(i, s) : = {
∫
I

g(i′)λ(di′) : g is an G-measurable selection of arg max
ν∈M(A)

∫
A

u(i, s, a′, n(s))ν(da′)}.

Then Claim 8 (ii) gives the existence of a behavioral-strategy state-contingent Nash equilibrium.

Now we prove Claim 8 (i) and (ii).

Proof of Claim 8 (i): Define a correspondence H mapping from S ×M(A) toM(A) as

follows:

H(s, τ) = {
∫
I

φ(i′)λ(di′) : φ(·) is a G-measurable selection of argmax
ν∈M(A)

∫
A

u(i, s, a′, τ)ν(da′)}

for any s ∈ S and τ ∈ M(A). We now show that for any fixed τ , H(·, τ) is an S-measurable

correspondence. Since A is a compact set, the set of bounded continuous function Cb(A) is

equivalent to C(A), which is a separable Banach lattice. Denote {fn}n∈N as the set of countable

bounded continuous function which is dense in C(A). Since Cb(A) separate points inM(A),
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with the dense countable set {fn}n∈N the probability measure setM(A) can be identified as

a subset of RN for mapping every µ ∈ M(A) to (
∫
A
f1(a)µ(da),

∫
A
f2(a)µ(da), ...) ∈ RN.

Then the original measurability issue can be transformed to the measurability issue in the

correspondence H̃ mapping from S ×M(A) to RN where

H̃(s, τ) : = {(
∫
A

f1(a)

∫
I

h(i, da)λ(di),

∫
A

f2(a)

∫
I

h(i, da)λ(di), ...) :

∫
I

h(i, ·)λ(di) ∈ H(s, τ)}.

For fixed τ , consider every n ∈ N. Since
∫
A
fn(a)

∫
I
h(i, da)λ(di) =

∫
I

∫
A
f1(a)h(i, da)λ(di),

the correspondence
∫
I

∫
A
fn(a)B(i, s, τ)λ(di), whereB(i, s, τ) = argmax

ν∈M(A)

∫
A
u(i, s, a′, τ)ν(da′),

is S-measurable by Theorem 2 in Mertens (2003) (see also Lemma 13, B1). Lemma 18.4 (2) in

Aliprantis and Border (2006) implies that countable product correspondence whose components

are weakly measurable functions is weakly measurable, and Lemma 18.2 (2) shows that weakly

measurability and measurability are the same when dealing with compact-valued correspon-

dences. Based on those results, we are able to establish that H(·, τ) is S-measurable with fixed

τ ∈M(A).

Now we need to show for any fixed s, H(s, ·) is upper hemi-continuous on τ . Since by

the Berge’s maximum theorem argmax
ν∈M(A)

∫
A
u(i, s, a′, τ)ν(da′) is upper hemi-continuous on

τ , the integration of this compact-valued and convex-valued correspondence is also upper

hemicontinuous. Again let d(·, ·) be the Prohorov metric on M(A), and a function D on

S ×M(A) be D(s, τ) = −d(H(s, τ), τ), then for any fixed s by Lemma 17.23 in Aliprantis

and Border (2006), D(s, ·) is upper semi-continuous, and for any fixed τ , and D(·, τ) is S-

measurable.

To show N is S-measurable, we first show for any open set O ⊆ R, φO is a S-measurable

correspondence, whose definition is in the following.

φO(s) = {ν ∈M(A) : D(s, ν) ∈ O}.

To prove such measurability we use definition directly. For any closed set F ⊆M(A), we can

find a countable dense subset {µ1, µ2...} of F due to the compactness ofM(A). Denote φO’s
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lower inverse image of F as φlO(F ), then

φlO(F ) = {s ∈ S : φO(s) ∩ F 6= ∅}

= {s ∈ S : D(s, ν) ∈ O for some ν ∈ F}

= {s ∈ S : D(s, µn) ∈ O for some n}

= ∪∞n=1{s ∈ S : D(s, µn) ∈ O},

where the third equality follows from the openness of O and the upper semicontinuity of D

in M(A). Since the function D is measurable in s for each ν ∈ M(A), each of the sets

{s ∈ S : D(s, µn) ∈ O} belongs to the σ-algebra S, so φO is a S-measurable correspondence.

Finally, notice that the correspondence N whose definition is given previously:

N(s) = {
∫
I

h(i′, s)λ(di′) : h is a G-measurable behavioral-strategy Nash equilibrium of the auxiliary game Ga(·, s)},

has an alternative but equivalent definition by utilizing the newly defined function D:

N(s) = {τ ∈M(A) : D(s, τ) = 0}.

We now show that N is an S-measurable compact-valued correspondence and conclude our

proof. Define Nn : S →M(A) by Nn(s) = {ν ∈ M(A) : |D(s, ν)| < 1
n
}. Then by previous

argument that φO is S-measurable, each correspondence Nn is measurable, which combined

with Lemma 18.3 in Aliprantis and Border (2006), deduces its closure correspondence Nn is

also measurable. And N(s) ⊆ Nn(s) = {ν ∈M(A) : |D(s, ν)| ≤ 1
n
}, so N(s) = ∩∞n=1Nn(s),

which is obviously compact-valued. By Lemma 18.4(3) in Aliprantis and Border (2006), the

intersection N is measurable.

Proof of Claim 8 (ii): Through out this proof, we will deal with compact metric space A

instead of the Polish space A as we claimed in the beginning. But this is in fact without loss of

generality here, since otherwise we can always embed the Polish space A into a larger compact

metric space Ã such that the topology inM(Ã) restricted onM(A) is exactly the same as the
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one inM(A).

Let {fn}n∈N be a set of countable real valued bounded continuous functions on A which

is dense in C(A) and hence separates points inM(A). Given {fn}n∈N, define a sequence of

operators {φn}n∈N such that φn : M(A) → R and φn(v) =
∫
A
fn dν, for any ν ∈ M(A) and

n ∈ N. And define another sequence of operators {φn}n∈N such that φn : M(A)→ Rn,

φn(ν) = (φ1(ν), φ2(ν), ..., φn(ν)) = (

∫
A

f1 dν,

∫
A

f2 dν, ...,

∫
A

fn dν),

for any ν ∈M(A) and n ∈ N.

Hence, for the given G̃, define a sequence of correspondence {Gn}n∈N based on the sequence

of oprators {φn}n∈N such that for each n ∈ N:

Gn(i, s) : = φn ◦ G̃(i, s) = {(
∫
A

f1ν, · · · ,
∫
A

fnν) : ν ∈ G̃(i, s)}.

Then Gn is a nonempty, compact-valued, G ⊗ S-measurable correspondence from I × S to Rn.

Given any mapping g from I × S toM(A), denote the composite function gn : = φn(g(i, s))

which maps from I ×S to R for any n ∈ N and gn : = φn ◦ g = (g1, · · · , gn) which maps from

I × S to Rn.

Given Φ(s) = (
∫
G̃ dλ)(s) = {

∫
I
p(i, s)λ(di) : p is an G-measurable selection of G̃(·, s)}

for each s ∈ S. Then for any n ∈ N, let

Φn(s) = (

∫
Gn dλ)(s) = {

∫
I

p̃(i, s)λ(di) : p̃ is an G-measurable selection of Gn(·, s)}.

Denote the graph of Φn by Hn with the corresponding σ-algebraHn : = S ⊗B(Rn)19.

Suppose that φ̃ is an S-measurable selection of Φ, which by definition satisfies that: for

any s, there exists a function gs such that gs is an G-measurable selection of G̃(·, s) and

φ̃(s) =
∫
I
gs(i

′)λ(di′). Then for each fixed s ∈ S, note that φ̃(s) is a probability measure on A.

19B(Rn) denotes the Borel σ-algebra on the n-dimensional Euclidian space Rn
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For any n ∈ N, let

αn(s) = φn(φ̃(s, ·)) and αn(s) = φn(φ̃(s, ·)) = (α1(s), ...αn(s)). (4.1)

Obviously αn(s) is an S-measurable function, since φn is a continuous function onM(A). Note

that αn(s) ∈ Φn(s) for each s ∈ S, and hence αn is a S-measurable selection of Φn.

Due to Theorem 3 in Mertens (2003) (see also Lemma 13, B2), there exists a measurable, Rn-

valued function hn on (I×Hn,G×Hn) such that hn(i, s, y) ∈ Gn(i, s) for any (i, s, y) ∈ I×Hn

and y =
∫
I
hn(i, s, y)λ(di). Let ln(i, s) = hn(i, s, αn(s)). Then ln is a G ⊗ S-measurable

selection of Gn such that

αn(s) =

∫
I

ln(i, s)λ(di) where αm(s) =

∫
I

lnm(i, s)λ(di), 1 ≤ m ≤ n (4.2)

for any s ∈ S. Since ln(i, s) = hn(i, s, αn(s)) ∈ Gn(i, s), then by definition, for each (i, s),

there exists an ν(i,s) ∈ G̃(i, s) such that ln(i, s) = (
∫
A
f1(a)ν(i,s)(da), ...,

∫
A
fn(a)ν(i,s)(da)).

Therefore, (φn)−1ln(i, s) ∩ G̃(i, s) 6= ∅.

For any n ∈ N, define the sequence of correspondenceGn as G̃n(i, s) : = (φn)−1(ln(i, s))∩

G̃(i, s) 6= ∅, which is a sub-correspondence of G̃ with G̃n ⊆ G̃. For each n ∈ N, pick a G ⊗ S-

measurable selection ψn of G̃n. Then ψn is also a G ⊗ S-measurable selection of G̃. Since G̃

has compact valued, by the weak compactness of young measure, there exists a subsequence of

{ψn}n∈N such that it converges to a limit, denoted as ψ∞. Let the convergence subsequence of

{ψn}n∈N to be {ψn}n∈N itself for notation simplicity.

We then claim that (iii) ψ∞ ∈ G̃ for λ×µ-almost all (i, s), and (vi) φ(s) =
∫
I
ψ∞(i′, s)λ(di′)

for µ-almost all s ∈ S.

To prove claim (iii), suppose that ψ∞ is not a selection of G̃. Then there exists some

measurable set E ∈ G ⊗ S with λ× µ(E) > 0 such that ψ∞(i, s) /∈ G̃(i, s) for any (i, s) ∈ E.

Since {fn}n∈N separates points inM(A) and G̃ is convex and compact valued, there exists

some positive integer n′ and a measurable subset E ′ ⊆ E with positive measure such that for
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any (i, s) ∈ E ′,

∫
A

fn′(a)ψ∞(da|(i, s)) /∈ {
∫
A

fn′(a)P (da) : P ∈ G̃(ω)}.

Without loss of generality, we can assume that there exists some measurable subset Ẽ ⊆ E ′

with λ× µ(Ẽ) > 0 and a sufficiently small ε > 0 such that for any (i, s) ∈ Ẽ,

∫
A

fn′(a)ψ∞(da|(i, s)) > {
∫
A

fn′(a)P (da) + ε : P ∈ G̃(ω)}.

Then ∫
Ẽ

∫
A

fn′(a)ψ∞(da|ω)P (dω) > {
∫
Ẽ

∫
A

fn′(a)P (da) + ε : P ∈ G̃(ω)}.,

which contradicts with the assumption that the sequence {ψn}n∈N weakly converges to ψ∞.

Now we turn to prove the claim (iv). Denote ψn(s) be the Gel′fand integral of ψn(·, s) for

each s; that is, ψn(s) =
∫
I
ψn(i, s, ·)λ(di) ∈M(A) for all n ∈ N∪ {∞}. Then given the set of

countable bounded continuous function {fm}m∈N on A which is dense in Cb(A).

For the G⊗S-measurable selection ψn of G̃n where G̃n(i, s) : = (φn)−1(ln(i, s))∩G̃(i, s) 6=

∅, ∀n ∈ N, it is easy to see that lnm = fm ◦ ψn for 1 ≤ m ≤ n, which is the m-th component of

n-tuple vector ln = (ln1 , ..., l
n
n). Fix m ∈ N, for any measurable set Ẽ ⊆ S,

∫
Ẽ

∫
A

fm(a)ψ∞(s, da)µ(ds) =

∫
Ẽ

∫
I

∫
A

fm(a)ψ∞(i, s, da)λ(di)µ(ds)

= lim
n→∞

∫
Ẽ

∫
I

∫
A

fm(a)ψn(i, s, da)λ(di)µ(ds)

= lim
n→∞

∫
Ẽ

∫
I

lnm(i, s)λ(di)µ(ds)

=

∫
Ẽ

αm(s)µ(ds)

=

∫
Ẽ

∫
A

fm(a)φ(s, da)µ(ds).

The second equality is by Theorem 2.1.3 of Castaing, Fitte and Valadier (2004) (see also

Lemma 11). The forth equality is valid because of Equation (4.2), whereas the last equality
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holds for Equation (4.1). Therefore,

∫
A

fm(a)ψ∞(s, da) =

∫
A

fm(a)φ(s, da)

for each m ∈ N for µ-lamost all s. As a result, ψ∞(s) = φ(s) for µ-almost all s ∈ S. This

concludes our proof.

Proof of Proposition 8. It is easy to see that, if there exists an S-measurable function mapping

each s to a social summary of Nash equilibria in large game Ga(·, s), with the measurable

selection theorem in Mertens (2003) (see also Lemma 13) we can directly have the conclusion.

Therefore, we just need to show the correspondence from the state space S to the set of social

summaries of Nash equilibria in large game G(·, s), is S-measurable and compact-valued, i.e.,

N(s) = {
∫
I

g(i′)λ(i′) : g is a Nash equilibrium of the auxiliary game Ga(·, s)},

is S-measurable, and compact valued, which will implies the existence of a measurable selection.

This is an analogue to the previous proof. Without loss of generality, we will show the case

in Rn instead of finite-dimensional vector space for simplicity. Define a correspondence H

mapping from S × Rn to Rn as follows:

H(s, τ) = {
∫
I

φ(i′)λ(di′) : φ(·) is a G-measurable selection of argmax
a′∈A

u(i, s, a′, τ)}

for any s ∈ S and τ ∈ Rn. Since A is a compact set, the correspondence argmax
a′∈A

u(i, s, a′, τ)}

is S-measurable for any fixed τ is directly from the measurable maximum theorem, and hence we

can further deduce the correspondence H(·, τ) is S-measurable with fixed τ ∈ Rn by Theorem

2 in Mertens (2003) (see also Lemma 13, B1).

Since by the Berge’s maximum theorem, for any fixed s, argmax
a′∈A

u(i, s, a′, τ) is upper

hemi-continuous on τ , the integration H(s, ·) is also upper hemicontinuous due to Proposition 8

in Hildernbrand (1974) that integration preserves upper hemicontinuity. Again let d(·, ·) be the

Prohorov metric on M(A), and a function D on S × Rn be D(s, τ) = −d(H(s, τ), τ), then for
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any fixed s by Lemma 17.23 in Aliprantis and Border (2006), D(s, ·) is upper semi-continuous,

and for any fixed τ , and D(·, τ) is S-measurable.

To show N is S-measurable, we first show for any open set O ⊆ R, φO is a S-measurable

correspondence, whose definition is in the following.

φO(s) = {a ∈ Rn : D(s, a) ∈ O}.

To prove such measurability we use definition directly. For any closed set F ⊆ Rn, we can

find a countable dense subset {a1, a2...} of F due to the separability of Rn. Denote φO’s lower

inverse image of F as φlO(F ), then

φlO(F ) = {s ∈ S : φO(s) ∩ F 6= ∅}

= {s ∈ S : D(s, ν) ∈ O for some ν ∈ F}

= {s ∈ S : D(s, an) ∈ O for some n}

= ∪∞n=1{s ∈ S : D(s, an) ∈ O},

where the third equality follows from the openness ofO and the upper semicontinuity ofD in Rn.

Since the functionD is measurable in s for each τ ∈ Rn, each of the sets {s ∈ S : D(s, an) ∈ O}

belongs to the σ-algebra S, so φO is a S-measurable correspondence.

Finally, notice that the correspondence N whose definition is given previously:

N(s) = {
∫
I

g(i′)λ(i′) : g is a Nash equilibrium of the auxiliary game Ga(·, s)},

has an alternative but equivalent definition by utilizing the newly defined function D:

N(s) = {τ ∈M(A) : D(s, τ) = 0}.

We now show that N is an S-measurable compact-valued correspondence and conclude our

proof. Define Nn : S → Rn by Nn(s) = {a ∈ Rn : |D(s, ν)| < 1
n
}. Then by previous

argument that φO is S-measurable, each correspondence Nn is measurable, which combined
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with Lemma 18.3 in Aliprantis and Border (2006), deduces its closure correspondence Nn is

also measurable. And N(s) ⊆ Nn(s) = {ν ∈M(A) : |D(s, ν)| ≤ 1
n
}, so N(s) = ∩∞n=1Nn(s),

which is obviously compact-valued. By Lemma 18.4(3) in Aliprantis and Border (2006), the

intersection N is measurable.

Under the nowhere equivalence condition, we extend Theorem 1, Mertens (2003) to the case

of general probability measure space in the following, which will serve to establish the existence

result as well as for independent interests.

Theorem 9 (Extension of Mertens’ theorem). Let (I,F , λ) be an atomless probability space

with a countablely-generated sub σ-algebra G, satisfying that F is nowhere equivalent to

G. (S,S, µ) is a probability space with the Borel σ-algebra S. G̃ is a nonempty, compact-

valued, G ⊗ S-measurable correspondence from I × S to a compact metric space A. Let a

correspondence Φ from S to the set of probability measure on action spaceM(A) be:

Φ(s) = {λ ◦ g(·)−1 : g is an F-measurable selection of G̃(·, s)}.

Then for any S-measurable selection φ of Φ, there exists an F ⊗S-measurable mapping ψ from

I × S to A such that ψ(i, s) ∈ G̃(i, s) for λ× µ-almost all (i, s) and φ(s) = λ ◦ ψ(·, s)−1 for

µ-almost all s ∈ S.

Proof of Theorem 9. Recall that A is a compact metric space, whereas Cb(A) denotes the set of

all bounded continuous real functions on A, which coincides with the set of continuous functions

on A, C(A), due to compactness of A. Since C(A) separates points in the set of probability

measures on A, i.e., M(A) (Theorem 15.1 in Aliprantis and Border (2006)) and C(A) is a

separable Banach lattice (Theorem 9.14 in Aliprantis and Border (2006)), there exists a set of

countable dense continuous functions separating points inM(A).

Let {fn}n∈N be a set of countable real valued bounded continuous functions on A which

is dense in C(A) and hence separates points inM(A). Given G̃, define a sequence of corre-

spondence {Gn}n∈N based on the countable continuous functions {fn}n∈N such that for each
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n ∈ N:

Gn(i, s) : = (f1, · · · , fn) ◦ G̃(i, s) = {(f1(a), · · · , fn(a)) : a ∈ G̃(i, s)}.

Then Gn is a nonempty, compact-valued, G ⊗ S-measurable correspondence from I × S to Rn.

For notation simplicity, given any mapping g from I × S to A, denote the composite function

gn : = fn ◦ g which maps from I × S to R for any n ∈ N and hence gn : = (f1, · · · , fn) ◦ g =

(g1, · · · , gn) which maps from I × S to Rn.

Given Φ(s) = (
∫
G̃ dλ)(s) = {

∫
I
p(i, s)λ(di) : p is an F-measurable selection of G̃(·, s)}

for each s ∈ S. Then for any n ∈ N, let

Φn(s) = (

∫
Gn dλ)(s) = {

∫
I

p̃n(i, s)λ(di) : p̃n is an F-measurable selection of Gn(·, s)}.

Denote the graph of Φn by Hn with the corresponding σ-algebraHn : = S ⊗B(Rn)20. Notice

that the Borel σ-algebra S on the polish space S is generated by the set of all its open sets, which

has a countable basis, and therefore S is countable generated (or separable).

Suppose that φ is an S-measurable selection of Φ, which by definition satisfies that: for

any s, there exists a function gs such that gs is an F-measurable selection of G̃(·, s) and

φ(s) = λ ◦ gs(·)−1. Then for each fixed s ∈ S, note that φ(s) is a probability measure on A. For

any n ∈ N, let

αn(s) =

∫
A

fn(a)φ(s, da) =

∫
I

fn
(
gs(i)

)
λ(di), (4.3)

and αn = (α1, . . . , αn). Obviously αn(s) =
∫∫

An
(f1, ..., fn)φ(s, da) is an S-measurable

function, since
∫∫

An
(f1, ..., fn)(·)(da) is a continuous function onM(A). Note that αn(s) ∈

Φn(s) for each s ∈ S, and hence αn is a S-measurable selection of Φn.

Due to Theorem 3 in Mertens (2003) (see also Lemma 13, B2), there exists a measurable, Rn-

valued function hn on (I×Hn,G⊗Hn) such that hn(i, s, y) ∈ Gn(i, s) for any (i, s, y) ∈ I×Hn

and y =
∫
I
hn(i, s, y)λ(di). Let gn(i, s) = hn(i, s, αn(s)). Then gn is a G ⊗ S-measurable

20B(Rn) denotes the Borel σ-algebra on the n-dimensional Euclidian space Rn
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selection of Gn such that

αn(s) =

∫
I

gn(i, s)λ(di) where αm(s) =

∫
I

gnm(i, s)λ(di), 1 ≤ m ≤ n (4.4)

for any s ∈ S. Since gn(i, s) = hn(i, s, αn(s)) ∈ Gn(i, s), then by definition, for each

(i, s), there exists an a(i,s) ∈ G̃(i, s) such that gn(i, s) = (f1(a(i,s)), ..., fn(a(i,s))). Therefore,

(f1, ..., fn)−1gn(i, s) ∩ G̃(i, s) 6= ∅.

For any n ∈ N, define the sequence of correspondenceGn as G̃n(i, s) : = (fn)−1(gn(i, s))∩

G̃(i, s) 6= ∅, which is a sub-correspondence of G̃ with G̃n ⊆ G̃. For each n ∈ N, pick a G ⊗ S-

measurable selection ψn of G̃n. Then ψn is also a G ⊗ S-measurable selection of G̃.

For each n ∈ N, let ϕn(i, s, ·) be the regular conditional distribution of ψn conditional on

{∅, I} ⊗ S21 under the product probability measure λ× µ; that is, ϕn = µψ
n|{∅,I}⊗S which is a

mapping from I × S × B(X) to [0, 1]. Therefore, {ϕn}n∈N is a sequence of regular conditional

probabilities regarding to a sequence of measurable selections of G ⊗ S-measurable selections

of G̃, i.e., {ϕn}n∈N ⊆ RF⊗S,{∅,I}⊗SG .

Due to Theorem 3 in He and Sun (2013) (see also C2 and C3, Lemma 10), RF⊗S,{∅,I}⊗S
G̃

is weakly closed and weakly compact. Therefore, a subsequence of {ϕn}n∈N will weakly

converge to some ϕ∞, and there exists an F ⊗ S-measurable selection of G̃, ψ∞, such that

ϕ∞ = µψ
∞|{∅,I}⊗S . Since ϕn is {∅, I} ⊗ S-measurable for each n ∈ N, it is obvious that

ϕn(i, s, ·) is constant element in the probability measure spaceM(A) for µ-almost all s. Hence,

denote ϕn(s) be the Gelfand integral of ϕn(·, s) for each s; that is, ϕn(s) =
∫
I
ϕn(i, s, ·)λ(di) ∈

M(A). Then given the set of countable bounded continuous function {fm}m∈N on A which is

dense in Cb(A), for fixed m ∈ N and n ∈ N ∪ {∞},

∫
E

∫
A

fm(a)ϕn(s, da)µ(ds) =

∫
E

∫
I

∫
A

fm(a)ϕn(i, s, da)λ(di)µ(ds)

=

∫
E

∫
I

fm(ψn(i, s))λ(di)µ(ds).

holds for each measurable set E ⊆ S. Hence,
∫
A
fm(a)ϕn(s, da) =

∫
I
fm(ψn(i, s))λ(di) for

21The defnition of regular conditional distribution is given in Section 4.5.1.
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µ-almost all s. Since there are countable pairs of (m,n) where m,n ∈ N, we can conclude

that
∫
A
fm(a)ϕn(s, da) =

∫
I
fm(ψn(i, s))λ(di) for µ-almost all s holds for each m,n ∈ N. Fix

n ∈ N and vary m,
∫
A
fm(a)ϕn(s, da) =

∫
I
fm(ψn(i, s))λ(di) is valid for µ-almost all s. This

result with the fact that {fm}m∈N is dense in Cb(X) gives that, for µ-almost all s,

ϕn(s) = λ ◦ ψn(s, ·)−1 for all n ∈ N ∪ {∞}. (4.5)

Let the convergence subsequence of {ϕn}n∈N to be {ϕn}n∈N itself for notation simplicity.

Recall that {fm}m∈N is the set of countable bounded continuous function dense in Cb(A). For

the G ⊗ S-measurable selection ψn of Gn where Gn(i, s) : = (fn)−1(gn(i, s)) ∩ G̃(i, s) 6= ∅,

∀n ∈ N, it is easy to see that gnm = fm ◦ ψn for 1 ≤ m ≤ n, which is the m-th component of

n-tuple vector gn = (gn1 , ..., g
n
n). Fix m ∈ N, for any measurable set Ẽ ⊆ S,

∫
Ẽ

∫
A

fm(a)ϕ∞(s, da)µ(ds) =

∫
Ẽ

∫
I

∫
A

fm(a)ϕ∞(i, s, da)λ(di)µ(ds)

= lim
n→∞

∫
Ẽ

∫
I

∫
A

fm(a)ϕn(i, s, da)λ(di)µ(ds)

= lim
n→∞

∫
Ẽ

∫
I

fm(ψn(i, s))λ(di)µ(ds)

= lim
n→∞

∫
Ẽ

∫
I

gnm(i, s)λ(di)µ(ds)

=

∫
Ẽ

αm(s)µ(ds)

=

∫
Ẽ

∫
A

fm(a)φ(s, da)µ(ds).

The fifth equation is valid because of Equation (4.4), whereas the last equation holds for Equation

(4.3). Therefore, ∫
A

fm(a)ϕ∞(s, da) =

∫
A

fm(a)φ(s, da)

for each m ∈ N for µ-lamost all s. As a result, ϕ∞(s) = φ(s) for µ-almost all s ∈ S. Combined

with Equation (4.5), we have λ ◦ ψ∞(·, s)−1 = φ(s) for µ-almost all s ∈ S.

Theorem 9 implies that by the nowhere equivalence condition, we can select one Nash

equilibrium corresponding to one state in a measurable way among the whole state space such
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that the joint mapping is product measurable. It effectively tackles the measurability issue where

the existence result hinges on.

Proof of Theorem 6. First we assume F is nowhere equivalent to G and prove the existence

of stationary Markov equilibria in a large stochastic game. Notice that by the equivalence

theorem (Theorem 12) it is sufficient to prove the existence of state-contingent Nash equilibria

in its auxiliary game. Denote the large stochastic game and its auxiliary game as G and Ga

respectively22. Denote the stage payoff function as u(i, s·, ·) for player i at state s.

Define Φ such that

Φ(s) = {λ ◦ g(·)−1 : g is an F-measurable selection of arg max
a∈A

G(i, s, ·,
∫
I

f̃(i′, s)λ(di′))},

and Φ is nonempty-valued. Note that
∫
I
f̃(i′, ·)λ(di′) is a S-measurable selection of Φ. By

Theorem 9, the result follows.

For the converse, assume every large stochastic game has a pure strategy stationary Markov

perfect equilibrium. Restrict to the degenerated case which has only one state, and again by the

equivalence theorem, the assumption implies that every large game has one pure strategy Nash

equilibrium, which by Theorem 2 in He et al. (2016), is a necessary and sufficient condition for

F being nowhere equivalent to G. Then we reach our conclusion.

Proof of Theorem 7. It is the same as the sufficient part of Theorem 6.

4.5.3 Proofs of results in Section 4.4

Proofs of results in Section 4.4.1

Proof of Claim 6. (i) Clearly, for any action distribution (a0, 1 − a0) ∈ M(A) where a0 ∈

[0, 1] and a sequence of action distributions {(an, 1− an)}n∈N such that limn→∞ an → a0,

P (s′|an, s) = δan
2

(s′) converges weakly to δa0
2

(s′) for µ-almost all s, which implies that P

is continuous whenM(A) andM(S) are both endowed with weak topologies. However,

22These notations are inherited from the standard setting in Section 4.2.

112



4.5. Proofs

such convergence cannot be strengthened into total variation norm sense inM(S), since

the total variation norm between two distinguish Dirac measure is 2, i.e,

‖δa − δa′‖TV = 2 · sup
A∈S
|δa(A)− δa′(A)| = 2 for a 6= a′,

which implies that for limn→∞ an → a0, P (s′|an, s) keep distance 2 with P (s′|a0, s) in

total variation norm, and hence does not converge to P (s′|a0, s) in total variation norm

sense.

(ii) For every n ∈ N, we need to prove that the strategy profile fn of large finite stochastic

game Gn is a stationary Markov perfect equilibrium:

fn(i, s) =


D, 0 ≤ s < 1

2
, i ∈ In,

C, 1
2
≤ s ≤ 1, i ∈ In.

The case that starting game Gn with initial state s0 where 0 ≤ s0 <
1
2

is trivially ture,

i.e, no player will ever deviate from playing “D” and the transition probability is δ0 in all

stages, which means everyone will remain forever in state 0 from second stage on.

On the other hand, consider starting game Gn with initial state s0 where 1
2
≤ s0 ≤ 1.

Given every player’s strategy as above, player i knows that his opponents are going to

choose “C” in this stage. If he plays “C”, the transition probability is δ 1
2
, which means the

state s1 in the next stage is 1
2

and everyone still cooperates, then by keeping choosing “C”

his expected payoff is at least −1
1−δ . But if he deviate to “D” in this stage, the transition

probability for next stage is δn−1
2n

, and the state in the next stage will be n−1
2n

< 1
2

which

means everyone will start to choose “D” in the next stage and with this trend, keep “D”

forever, which gives him the expected payoff −2δ
1−δ . Given that δ > 1

2
, “C” strictly dominates

“D” and player i will always choose “C” whenever state s satisfies 1
2
≤ s ≤ 1. Such

analysis goes through in reaching each stage (in the beginning of each subgame), which

means fn is actually a stationary Markov perfect equilibrium.

(iii) By the equivalence theorem (Theorem 12), the stationary Markov perfect equilibria in
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a large stochastic game are the state-contingent Nash equilibria in its auxiliary game.

Therefore, we just need to find out all the state-contingent Nash equilibria in the component

game of the large stochastic game we constructed. Notice that for every state s ∈ S, “D”

strictly dominates “C” and hence the unique state-contingent Nash equilibrium is f ≡ D,

which is also the unique stationary Markov perfect equilibrium in the large stochastic game

G in Example 8.

Proof of the claims in Example 9. (i) Denote the Borel σ-algebra of state space [0, 1] as B[0, 1].

If an → a, then

‖anµ1 − aµ1‖TV = 2 · sup
B∈B[0,1]

|anµ1(B)− aµ1(B)| ≤ 2|an − a| → 0, and

‖(1− an)µ0 − (1− a)µ0‖TV = 2 · sup
B∈B[0,1]

|(1− an)µ0(B)− (1− a)µ0(B)| ≤ 2|an − a| → 0,

which shows the norm continuity in transition probability.

(ii) We prove this claim by contradictions. Assume in the constructed sequence of large finite

stochastic game {Gn}n∈N, there exists a sequence of stationary Markov perfect equilibria fn

and a positive measure set Sn such that for any s ∈ Sn, there exists an ε(s) > 0, the distributions

under state s λn(fn)−1(·, s) : = (an(s), 1− an(s)) satisfies an(s) ≥ ε(s) for all n ∈ N.

Fixed n ∈ N for the game Gn, and consider the case under state s0 ∈ Sn
⋂

[1
2
, 1]. As-

sume there is a player i using “C” in state s0(i.e., fn(i, s0) = C) in the equilibrium fn.

For simplicity, denote his expected payoff to be V n
s (ai) if the current state is s and he plays

action ai while others are all following actions specified by the equilibrium fn. When the

current state is s0, his expected payoff of choosing the equilibrium action “C” is V n
s0

(C) =

−1 + δ
(
an(s)

∫
S
V n
s′ (f(i, s′))µ1(ds

′) + (1− an(s))
∫
S
V n
s′ (f(i, s′))µ0(ds

′)
)

where an(s) is the

equilibrium actions distribution under state s. If he chooses to deviate to “D” one-time in current

state s0 after which he goes back to his original equilibrium actions, then his expected payoff
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turns out to be

Vs0(D) = δ

(
(an(s)− 1

n
)

∫
S

V n
s′ (f(i, s′))µ1(ds

′) + (1− an(s) +
1

n
)

∫
S

V n
s′ (f(i, s′))µ0(ds

′)

)
,

When n is large enough, V n
s0

(C) < V n
s0

(D). Since sups∈S,a∈{C,D},n∈N |V n
s (a)| ≤ 3

1−δ , we can

find an integer N (e.g., N > 6δ
1−δ ) such that if n > N then V n

s0
(C) < V n

s0
(D) for all state

s0 ∈ Sn
⋂

[1
2
, 1]. Things will be the same when the next stage turns out to be s0 ∈ Sn

⋂
[1
2
, 1],

and the following stages as well. Hence in large finite stochastic games Gn with n > 6δ
1−δ ,

no player will choose “C” in state s0 ∈ Sn
⋂

[1
2
, 1], which contracts with the assumption that

an(s0) ≥ ε(s0) > 0 for all n ∈ N and all s0 ∈ Sn
⋂

[1
2
, 1].

Now turn to the current state s′0 ∈ Sn
⋂

[0, 1
2
), similar analysis will gives that there exists an

integerN ′, if the number of players n excessesN , V n
s′0

(C) < V n
s′0

(D) for all state s′0 ∈ Sn
⋂

[0, 1
2
),

which derives similar contradictions. Therefore, we conclude that when the number of players

is large enough, all players will choose to play “D” is the only stationary Markov perfect

equilibrium, which implies the validity of limit principle in the modified large game G.

Proofs of results in Section 4.4.2

We first define the concept of ε-approximate state-contingent Nash equilibrium.

Recall that Gn is a large finite stochastic game with the player space (In, In, λn) (a finite-

element probability measurable space), the state space (S,S, µ) (a polish space), the action space

A (a compact metric space) and the societal summary spaceM(A) (a compact metric space)

such that un assigns each player and state with a state payoff function, i.e., un is a measurable

mapping from In × S to UA, where the payoff space UA is the (uniformly bounded) Banach

space of continuous functions on A ×M(A) endowed with the sup-norm topology and the

resulting Borel σ-algebra.

Definition 31 (State-contingent ε-approximate Nash equilibrium). A behavioral strategy profile

fn : In×S →M(A) is a behavioral-strategy state-contingent ε23-approximate Nash equilibrium

23ε is a S-measurable mapping from S to R+.
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of the state-contingent large game un, if for µ-almost all state s, ε(s) ≥ 0 such that

∫
A

un(i, s, a,

∫
In
fn(i, s)λn(i))fn(i, s)(da) ≥ max

a∈A
un(i, s, a,

∫
In

(a, fn−i(i, s))λ
n(i))− ε(s),

for all i ∈ Iε(s)n where Iε(s)n ⊆ In with λn(I
ε(s)
n ) ≥ 1− ε(s), and (a, fn−i(i, s)) denotes a strategy

profile that player i plays a and his opponent player j plays fn(j, s) for j 6= i under state s.

Notice that pure strategy State-contingent ε-approximate Nash equilibrium can be defined

analogously. Now we are ready to present the lemma.

Lemma 14 (Apporximation). For every sequence of large finite stochastic games {Gn}n∈N

with sup
i∈In

λn(i)→ 0, and the sequence of pure-strategy/behavioral-strategy stationary Markov

perfect equilibria fn of Gn for each n ∈ N, if the sequence of transition probabilities {P n}n∈N is

uniformly continuous in norm, then there exists a sequence of S-measurable mapping εn : S →

R+ such that fn is a pure-strategy/behavioral-strategy state-contingent εn-approximate Nash

equilibrium of the auxiliary game Gn
a , and limn→∞ ε

n(s) = 0 for µ-almost all s.

Proof of Lemma 14. We only prove the case for pure stationary Markov perfect equilibria. The

behavioral-strategy equilibrium case can be proven similarly. For any player i, we need to

quantify the difference between his equilibrium stage payoff Gn
a(i, s)(fn(i, s), λn(fn(·, s))−1)

and his possible maximal stage payoff max
a∈A

Gn
a(i, s)(a, λn(a, fn−i(·, s))−1). By definition, there

exists a continuation utility function vn(i, s) ∈ LIn×S∞ (In × S)24 which satisfies for µ-almost

all fixed s ∈ S,

vn(i, s) = (1− β)Gn
a(i, s)(fn(i, s), λn(fn(·, s))−1) + β

∫
S

vn(i, s′)P n(ds′|s, λn(fn(·, s))−1)

= max
a∈A

(1− β)Gn
a(i, s)(a, λn(a, fn−i(·, s))−1) + β

∫
S

vn(i, s′)P n(ds′|s, λn(a, fn−i(·, s))−1)

for λn-almost all i ∈ In, and (a, fn−i(·, s)) denotes a strategy profile that player i plays a and his

opponent player j plays fn(j, s) for j 6= i under state s. Therefore, we can achieve our goal by

24 LI
n×S
∞ (In × S) denotes the set of In × S measurable function whose sup-norm is finite, i.e., ||h||∞ <∞

for h ∈ LIn×S∞ (In × S).
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looking into the absolute difference between these two terms in the following:

|max
a∈A

Gn
a(i, s)(a, λn(a, fn−i(·, s))−1)−Gn

a(i, s)(fn(i, s), λn(fn(·, s))−1)| (4.6)

=
β

1− β

(
max
a∈A

∫
S

vn(i, s′)P n(ds′|s, λn(a, fn−i(·, s))−1)−
∫
S

vn(i, s′)P n(s′|s, λn(fn(·, s))−1)
)

Let d be the prohorov metric on M(A), by the assumption that supi∈In λ
n(i) → 0, for any a,

d(λn(fn(·, s))−1, λn(a, fn−i(·, s))−1) ≤ 2 supi∈In λ
n(i)→ 0 as n→ +∞. Therefore

maxa∈A d(λn(fn(·, s))−1, λn(a, fn−i(·, s))−1) ≤ 2 supi∈In λ
n(i) → 0 as n → +∞, which by

the uniformly norm continuity in the transition deduces, for any ε > 0, there exists an integer N

large enough such that for all n ≥ N ,

max
a∈A
‖P n(·|s, λn(a, fn−i(·, s))−1)− P n(·|s, λn(fn(·, s))−1)‖TV ≤ ε (4.7)

By Theorem 11.7, Stokey, Lucas and Prescott (1989) the above equation equals to

max
a∈A

(
sup

f∈BS∞(S)

|
∫
S

f(s′)P (ds′|s, λn(a, fn−i(·, s))−1)− P (s′|s, λn(fn(·, s))−1)

)
→ 0, (4.8)

where BS∞(S) is the space of bounded measurable functions endowed with sup norm: ‖f‖ : =

sups∈S |f(s)|.

Since vn is the (discounted) continuation utility of the players with uniformly bounded

stage payoffs 25, therefore (modify vn(·, s) on s in a µ-zero-measure set if necessary) vn is also

uniformly bounded by Bu
1−β for all s ∈ S and n ∈ N. By Equation (4.8) the following equation :

max
a∈A
|
∫
S

vn(i, s′)P n(ds′|s, λn(a, fn−i(·, s))−1)−
∫
S

vn(i, s′)P n(ds′|s, λn(fn(·, s))−1)|

≤ max
a∈A
‖P n(·|s, λn(a, fn−i(·, s))−1)− P n(·|s, λn(fn(·, s))−1)‖TV → 0 (4.9)

holds uniformly for λn-almost all i ∈ In. For all s ∈ S, let εn(s) be as follows:

εn(s) : =
β

1− β
max
a∈A
‖P n(·|s, λn(a, fn−i(·, s))−1)− P n(·|s, λn(fn(·, s))−1)‖TV ,

25UA is bounded by Bu in the basic setting.
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for all finite sets In where n ∈ N. That εn is S-measurable is implied by the norm continuity of

the transition probability P n. Combine Equations (4.6), (4.7) and (4.9), for µ-almost all s and

λn-almost all i ∈ In,

|max
a∈A

Gn
a(i, s)(a, λn(a, fn−i(·, s))−1)−Gn

a(i, s)(fn(i, s), λn(fn(·, s))−1)|

≤ β

1− β
max
a∈A
|
(∫

S

vn(i, s′)P n(ds′|s, λn(a, fn−i(·, s))−1)−
∫
S

vn(i, s′)P n(ds′|s, λn(fn(·, s))−1)
)
|

≤ εn(s)→ 0,

which concludes our lemma.

Proof of Theorem 8. Recall that a behavioral-strategy stationary Markov perfect equilibrium

correspondence of a large stochastic game G0 has the closed graph property, if for any sequence

of large finite stochastic games {Gn}n>0
26 satisfies that for µ-almost all s,

(i) the stage utilities of this sequence un(·, s, ·, ·) converge weakly to u0(·, s, ·, ·) as n→∞,

where un is a measurable mapping from In × S to UA for n ≥ 0;

(ii) the sequence of behavioral-strategy stationary Markov perfect equilibria fn of Gn for

each n > 0 is such that {
∫
In
fn(·, s)λn}n>0 converges weakly to some ν(s) ∈ M(A) as

n→∞;

(iii) {P n(s′|s, τ)}n≥0 is uniformly continuous in any τ ∈M(A) whereM(A) andM(S) are

endowed with the prohorov metric and norm topology respectively;

there exists a behavioral-strategy (resp. pure-strategy) stationary Markov perfect equilibrium f 0

of G0 such that
∫
I0
f 0(·, s)λ0 = ν(s) (resp. λ0(f 0(·, s))−1 = ν(s)) for µ-almost all s.

By Lemma 14, fn is a behavioral-strategy state-contingent εn-approximate state-contingent

Nash equilibrium of Gn with ε → 0 for µ-almost all s. Then for µ-almost all s, fixed such s,

fn(·, s) is a behavioral-strategy εn(s)-approximating Nash equilibrium for large game Gn
a(·, s),

whose payoff function is un(·, s, ·, ·). Such pair (Gn
a(·, s), fn(·, s)) corresponds to a εn(s)-

26 Equal weight condition can be further relaxed to the condition supi∈In λn(i)→ 0.
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approximating Nash equilibrium distribution27 τn(s) : = (
∫
I
Gn
a(i, s)λn(i),

∫
I
fn(i, s)λn(i)),

which is a Borel probability measure on UA × A, and its marginal distributions satisfy that

τn(s)UA = λnGn
a(·, s)−1 = λnun(·, s, ·, ·)−1 and τn(s)A =

∫
In
fn(i′, s)λn(di′). Since {τn(s)}n>0

is relatively compact, there exists an limit point, i.e., there exists a subsequence of {τn(s)}n>0

weakly converges to a probability measure, denoted as τ 0s . Without loss of generality, we denote

the subsequence as the sequence itself. Since un(·, s, ·, ·)⇒ u0(·, s, ·, ·) and
∫
In
fn(i′, s)λn(di′)⇒

ν(s) ∈M(A), hence (τ 0s )UA = λ0u0(·, s, ·, ·)−1 and (τ 0s )A = ν(s).

We now show that τ 0s is again a Nash equilibrium distribution of λ0G0
a(·, s)−1, which

therefore by Theorem 1 in Sun et al. (2016), there exists a Nash equilibrium f 0
s of large game

G0
a(·, s), which induces τ 0s , i.e., (τ 0s )A =

∫
I0
f 0
s (i′)λ0(di′) = ν(s).

Define Brε
n(s)(τn(s)) : = {(v, a) ∈ UA × A|v(a, τn) ≥ max

x∈A
v(x, τn) − εn(s)} and

Br(τ 0s ) : = {(v, a) ∈ UA×A|v(a, τ 0s ) ≥ max
x∈A

v(x, τ 0s )}. By the definition of εn(s)-approximate

Nash equilibrium distribution, for n ≥ N ,

τn(s)
(
∩Nk=1∪∞j=k Brε

n(s)(τn(s))
)
≥ 1− εn(s).

Then letting n go to infinity, we have

τ 0s

(
∩Nk=1∪∞j=k Brε

n(s)(τn(s))
)
≥ 1.

We then let N goes to infinity,

τ 0s

(
∩∞k=1∪∞j=k Brε

n(s)(τn(s)
)
≥ 1. (4.10)

It is easy to see that ∩∞k=1∪∞j=k Brε
n(s)(τn(s)) ⊆ Br(τ 0s ) so we conclude the claim.

Since for G0
a, its payoff u0(i, s, ·, ν(s)) is G ⊗ S-measurable on I × S and continuous on A.

27A similar proof of Theorem 1 in Sun, Sun and Yu (2016)
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Define a new correspondence G̃0
a from I × S toM(A) such that

G̃0
a(i, s) : = arg max

v∈M(A)

∫
A

u0(i, s, a′, ν(s))v(da′).

By Measurable Maximum theorem (Theorem 18.19 in Aliprantis and Border (2006)), G̃0
a is a

G ⊗ S-measurable, nonempty, convex and compact-valued correspondence. And let Φ(s) is a

correspondence such that

Φ(s) : = {
∫
I

g(i′)λ(i′) : g is an G-measurable selection of G̃0
a(·, s)}.

Since ν(s) =
∫
I0
f 0
s (i′)λ0(di′) where f 0

s is a Nash equilibrium in the component game G0
a(·, s)

for µ-almost all s, ν(s) is a S-measurable selection of Φ. Therefore, by Claim 8 in the proof

of Theorem 5, there exists an G ⊗ S-measurable mapping f 0 from I × S toM(A) such that

f 0(i, s) ∈ G̃0
a(i, s) and

∫
I0
f 0(i′, s)λ0(di′) = ν(s) for µ-almost all s, which concludes that the

behavioral-strategy stationary Markov perfect equilibrium correspondence of large stochastic

game G0 has the closed graph property.

Proof of Proposition 9. We first prove the sufficient part. Given the sequence of converging

large finite stochastic games Gn and its pure stationary Markov perfect equilibrium fn, By

Theorem 8 there exists a behavioral-strategy stationary Markov perfect equilibrium f 0 in the

limit large stochastic gameG0 such that for µ-almost all s,
∫
I0
f 0(·, s)λ0 = ν(s), which therefore

by the purification theorem (Theorem 7) shows the validity of pure stationary Markov perfect

equilibrium correspondence of large stochastic game G0 has the closed graph property.

To prove the necessity of nowhere equivalence condition, consider the reduced large stochas-

tic games with only one state, in other words, the large repeated games. Regardless, all players

repeatedly play the strategies specified in one of their static Nash equilibrium is always a (trivial)

stationary Markov perfect equilibrium of the repeated game (See, for example, Theorem 1 in

Ratliff (1990)). Therefore, if restrict the limit principle to a special case that, for any large

repeated game, and any sequence of large finite-player repeated games weakly converging to it
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with the sequence of converging trivial stationary Markov perfect equilibria28, the limit principle

property is satisfied. By the equivalence theorem, such reduction can be interpreted as every

G-measurable large game satisfies the closed-graph property for F -measurable Nash equilibria.

Then by Theorem 2 (iv) in He et al. (2016), F is nowhere equivalent to G.

Proof of Claim 7. (i) It is easy to verify that the sequence of finite-player repeated games

{PkG−1k }k∈N converges weakly to PG−1, and hence such verification is omitted here.

(ii) The discussion in Example 4, He et al. (2016) shows that fk is a pure-strategy Nash

equilibrium in the component game of Gk for k ∈ N, whose distribution Pkf−1k converges

weakly to the uniform distribution on A. It is a classical result that any Nash equilibrium

in the component game of a finite-player repeated game is a history-independent subgame

perfect equilibrium (See, for example, Theorem 1 in Ratliff (1990)). Hence, {fk}k∈N

is a sequence of stationary Markov perfect equilibria converging weakly to the uniform

distribution on A.

(iii) By the equivalence theorem (Theorem 12), the set of stationary Markov perfect equilibrium

in a large stochastic game is the same as the set of Nash equilibrium in its component

game. By Claim 3, He et al. (2016), the uniform distribution is not a distribution of any

Nash equilibrium of the component game of the large repeated game G, which implies that

it cannot be a distribution of a stationary Markov perfect equilibrium as well. Therefore,

the closed-graph property fails in this case.

28 The “trivial stationary Markov perfect equilibria in a large finite-player repeated game” here means Nash
equilibria in its component game.

121





Bibliography

Aliprantis, C. D. and Border, K. C., Infinite Dimensional Analysis: A Hitchhiker’s Guide, Berlin,

Springer, 2006.

Athey, S., Single crossing properties and the existence of pure strategy equilibria in games of

incomplete information, Econometrica 69 (2001), 861–889.

Aumann, R. J., Markets with a continuum of traders, Econometrica 32 (1964), 39–50.

Aumann, R. J., Correlated equilibrium as an expression of Bayesean rationality, Econometrica

55 (1987), 1–18.

Balder, E. J., A unifying approach to existence of Nash equilibrium, International Journal of

Game Theory 24 (1995), 79–94.

Bellman, E., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957. Repub-

lished 2003.

Castaing, C., Fitte, P., and Valadier, M., Young Measures on Topological Spaces: with Ap-

plications in Control Theory and Probability Theory, volume 571 of Mathematics and its

Applications, Kluwer Academic Publishers, Dordrecht, 2004.

Chakrabarti, S. K., Pure strategy Markov equilibrium in stochastic games with a continuum of

players, Journal of Mathematical Economics, 39(7) (2003), 693–724.

Chow, Y. S. and Teicher, H., Probability Theory: Independence, Interchangeability, Martingales,

3rd edition, New York, Springer, 1997.

123



Bibliography

Debreu, G. and Scarf, H., A limit theorem on the core of an economy, International Economic

Review 4 (1963), 235–246.

Duffie D., Geanakoplos, J., Mas-Colell, A., and McLennan, A., Stationary Markov Equilibria,

Econometrica 62 (1994), 745–781.

Duggan, J., Noisy Stochastic Games, Econometrica, 80 (2012), 2017–2045.

Durrett, R., Probability: Theory and Examples, 3rd edition, Cambridge University Press, 2005.

Durrett, R., Probability: Theory and Examples, 4th edition, Cambridge University Press, 2010.

Dutta, P. and Sundaram, R., The Equilibrium Existence Problem in General Markovian Games:

essays in economics analysis, Organizations With Incomplete Information ed. by M. Majumdar.

Cambridge University Press, 1998, 159–207.

Dvoretsky, A., Wald, A., and Wolfowitz, J., Elimination of Randomization in Certain Statistical

Decision Procedures and Zero-Sum Two-Person Games, The Annals of Mathematical Statistics

22 (1951), 1–21.

Einy, E., Moreno, D., and Shitovitz, B., On the core of an economy with differential information,

Journal of Economic Theory 94 (2000), 262–270.

Einy, E. and Shitovitz, B., Private value allocations in large economies with differential informa-

tion, Games and Economic Behavior 34 (2001), 287–311.

Einy, E. and Shitovitz, B., Symmetric von NeumannMorgenstern stable sets in pure exchange

economies, Games and Economic Behavior 43 (2003), 28–43.

Federgruen, A., On N-person stochastic games with denumerable state space, Advances in

Applied Probability 10 (1978), 452–471.

Fu, H. and Yu, H., Pareto-undominated and socially-maximal equilibria in non-atomic games,

Journal of Mathematical Economics 58 (2015), 7–15.

Fudenberg, D. and Tirole, J., Game Theory, MIT Press, Cambridge, MA, 1991.

124



Bibliography

Hammond, P. J., Straightforward individual incentive compatibility in large economies, Review

of Economic Studies 46 (1979), 263–282.

Hammond, P. J., A notion of statistical equilibrium for games with many players, working paper,

University of Warwick, 2015.

Harsanyi, J. C., Games with Incomplete Information Played by ‘Bayesian’ Players, Management

Science 14 (1967–68) 159–182, 320–334, and 486–502, Parts I–III.

Hart, S., Hildenbrand, W., and Kohlberg, E., On Equilibrium Allocations as Distributions on the

Commodity Space, Journal of Mathematical Economics 1 (1974), 159–166.

He, W., Theory of Correspondences and Games, Ph.D. Thesis, National University of Sin-

gapore, (2014). Available at http://scholarbank.nus.edu.sg/handle/10635/

118631.

He, W. and Sun, X., On the diffuseness of incomplete information game, Journal of Mathematical

Economics 54 (2014) 131–137.

He, W., Sun, X., and Sun, Y., Modeling infinitely many agents, Theoretical Economics, forth-

coming. Available at http://econtheory.org/ojs/index.php/te/article/

viewForthcomingFile/1647/15041/1.

He, W., Sun, X, Sun, Y., and Zeng, Y., Pure-strategy equilibria in general Bayesian games,

working paper (2014).

He, W. and Sun, Y., The necessity of nowhere equivalence, working paper, National University

of Singapore, 2013. Available at http://arxiv.org/abs/1307.7168.

He, W. and Sun, Y., Conditional Expectations of Correspondences, working paper, National

University of Singapore, 2013 (updated in 2014). Available at http://arxiv.org/abs/

1311.4154.

He, W. and Sun, Y., Conditional Expectations of Banach Valued Correspondences, working

paper, National University of Singapore, 2014.

125

http://scholarbank.nus.edu.sg/handle/10635/118631
http://scholarbank.nus.edu.sg/handle/10635/118631
http://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/1647/15041/1
http://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/1647/15041/1
http://arxiv.org/abs/1307.7168
http://arxiv.org/abs/1311.4154
http://arxiv.org/abs/1311.4154


Bibliography

He, W. and Sun, Y., Stationary Markov Perfect Equilibria in Discounted Stochastic Games,

Journal of Economic Theory (2017). Available at http://dx.doi.org/10.1016/j.

jet.2017.01.007.

He, W., Sun, Y., and Zeng, Y., Stationary Markov equilibria in large stochastic games, working

paper (2016).

Hellman, Z., A game with no Bayesian approximate equilibria, Journal of Economic Theory

153 (2014), 138–151.

Hilderbrand, W., Core and equilibria of a large economy, Princeton University Press, Princeton,

New Jersey, 1974.
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