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SUMMARY 
 

 

Green tea (Camellia sinensis) is one of the world’s most popular beverage, and 

its consumption is on the rise due to its associated health benefits. Beverage 

manufacturers have responded to this growing trend by increasing the 

availability of ready-to-drink (RTD) green tea products in the market. In order 

for manufacturers to keep up and stay relevant with consumer choices, products 

will have to be designed with consumer acceptability in mind. As such, the 

objectives of this research were to systematically develop a methodology for 

collecting, analysing, and utilising data through the use of the design of 

experiments (DOE) methodology and a suite of modelling techniques, in order 

to aid in green tea flavour creation. The study of chemical, sensory, and hedonic 

properties of RTD green tea is an information gathering process, and can be 

divided into three main stages: (i) the design of experiment; (ii) the collection 

of data through chemical analyses, sensory profiling, and consumer acceptance 

testing; and (iii) analysis and interpretation of data.  

A study was first conducted to investigate the impact of volatile odours in RTD 

green tea beverages on consumer liking.  Eight volatile flavour keys, each 

comprised of a mixture of volatile odourants found commonly in RTD green tea 

beverages, were combined at different levels based on an experimental design 

to obtain a series of green tea odours. The most well-liked sample was an odour 

match of a commercial sample (liking score of 6.65 ± 1.30), while the least-

liked sample had a liking score of 3.65 ± 1.49. A linear stepwise regression 
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model was developed to objectively predict consumer liking using stepwise 

regression. Further analysis was conducted to identify flavour keys of lesser 

importance by performing stepwise regression on reduced experimental designs 

in order to reduce data dimensionality, such that odour keys with the greatest 

impact would be combined with taste keys in subsequent studies with limited 

sample sizes. Removal of the X7 and X8 flavour keys were found to the least 

impact on the resulting model structure, and were thus removed from 

subsequent studies. 

In the second study, the key non-volatile compounds affecting the taste profile 

of RTD green tea were identified through a series of taste reconstruction and 

omission sensory experiments. Thirty-nine non-volatile compounds in seven 

ready-to-drink (RTD) green tea samples were analysed and quantified using 

liquid chromatography, of which, 13 compounds with dose-over-threshold 

(DOT) values greater than one were used to reconstruct the taste profile of 

commercial RTD green tea products with no significant differences. Subsequent 

omission experiments revealed that caffeine, epigallocatechin gallate (EGCG), 

and glutamic acid were the main tastants in RTD green tea.  

Results obtained from the preliminary studies highlighted important aroma and 

taste keys with significant influences on the sensory profile and consumer 

acceptance of RTD green tea beverages, and were subsequently used in 

developing experimental designs and regression models for correlating 

chemical, sensory, and hedonic properties of RTD green tea. A linear partial 

least squares (PLS) regression model was developed to describe the effects of 

the eight flavour keys (six volatile keys, two non-volatile keys) on consumer 
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liking, with a coefficient of determination (R2) of 0.709, and a root-mean-square 

error (RMSE) of 3.70%. The PLS model was further augmented with an 

artificial neural network (ANN) to establish a PLS-ANN hybrid model. The 

established hybrid model was found to give a better prediction of consumer 

liking scores, based on its R2 (0.885) and RMSE (2.32%).  

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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CHAPTER 1 

 

INTRODUCTION 
 

 

1.1. Background  

Tea, a beverage made by infusing the leaves of Camellia sinensis in hot water, 

is the second most popular drink in the world after water (Butt & Sultan, 2009). 

Tea can be classified into three major categories: unfermented green tea, 

partially fermented oolong tea, and fermented black tea. Tea fermentation is a 

consequence of the enzymatic action of polyphenol oxidase (PPO) found in tea, 

which catalyses the oxidation and condensation of polyphenols into complex 

quinones and tannins (Obanda, Owuor, & Mang'oka, 2001). Unfermented green 

tea undergoes little fermentation due to inactivation of PPO through drying and 

steaming. Partially fermented oolong tea undergoes a brief fermentation period 

by crushing leaves and releasing PPO, followed by a heating process to 

inactivate enzymes and dry the leaves. Black tea undergoes a full fermentation 

process, and majority of polyphenols present are condensed to form complex 

polyphenols, before inactivation of PPO is initiated through a “frying” (i.e. 

heating) process (Wang & Ruan, 2009). 

Green tea is one of the most widely consumed beverages in East Asian countries, 

and is deeply ingrained in East Asian cultures, often with deep ties to the history 

of such countries and has been incorporated into many food products such as 

ice cream, baked goods, confectionary and as well as commercial and instant 

green tea beverages (Cabrera, Artacho, & Gimenez, 2006).  There has been an 
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increasing worldwide popularity in consumption of green tea, due to its 

purported health benefits, and to a certain extent, medicinal benefits arising 

from its antioxidant (Cabrera et al., 2006) and free radical scavenging properties 

(Butt & Sultan, 2009). Studies have shown that tea consumption has a positive 

impact on the body in numerous ways, including lowered risks for hypertension 

and cardiovascular disease (Cabrera et al., 2006; Higdon & Frei, 2003), weight 

control (Cabrera et al., 2006; Wolfram, Wang, & Thielecke, 2006), and to a 

certain extent, cancer prevention (Cabrera et al., 2006; Higdon & Frei, 2003; 

Jankun, Selman, Swiercz, & Skrzypczak-Jankun, 1997). Such health benefits 

are largely attributed to the high polyphenol content present in tea (Higdon & 

Frei, 2003).  

The growing trend of green tea consumption was reflected in the availability 

and sales of ready-to-drink (RTD) green tea products. Annual sales of RTD tea 

reached USD 6.7 billion in 2012 according to a market research report (Zegler, 

2013), with the growth of consumption being projected to increase in the next 

five years. In order for manufacturers to keep up with consumer preferences and 

stay relevant in the industry, products will have to be designed with consumer 

acceptability and liking in mind. Tea quality is closely associated with the aroma, 

taste, appearance and other physical attributes of the product (Kengpol & 

Wangkananon, 2015). These sensory qualities of green tea products are 

typically determined by expert human panels, and as such, are affected by 

subjectivity and the physiological conditions of human panellists (Yu, Wang, 

Yao, Zhang, & Yu, 2008). With this in mind, several studies have attempted to 

investigate the relationship between volatile constituents which contribute to the 

aroma profile and non-volatile compounds which contribute to the sensory and 
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hedonic properties of green tea (Liang et al., 2008; Pongsuwan et al., 2008; Yu 

et al., 2008), allowing for objective predictions of green tea quality parameters.  

Food sensory profiling and flavour analysis are key processes in product 

development and are essential in understanding consumers by helping to bridge 

the gap between product characteristics and consumer perception and 

acceptance. The study of the chemical, sensory, and hedonic properties of RTD 

green tea begins with an information gathering process, and can be divided into 

three main stages: (i) the design of experiments (DOE); (ii) the collection of 

data through chemical analyses, sensory profiling, and consumer acceptance 

testing; and (iii) modelling and interpretation of data. The design of an 

experiment is key to obtaining useful and representative data that can be used 

for subsequent analysis, which is especially so in regression model development. 

The use of the DOE approach employing classical techniques such as factorial 

designs and relatively newer methods such as optimal designs has been widely 

studied in various food products, but not in green tea related studies (Hewson, 

Hollowood, Chandra, & Hort, 2009; Knoop, Sala, Smit, & Stieger, 2013; Niimi, 

Overington, Silcock, Bremer, & Delahunty, 2016; Shiby, Radhakrishna, & 

Bawa, 2013). An adequate experimental design allows for proper estimation of 

the relationship between input factors and response variables. The use of 

classical methods may be limited in larger experiments due to a large number 

of experimental design points, which can be circumvented using computer-

based methods such as optimal designs. 

The collection of data through chemical and sensory analyses is another 

important challenge in new product development projects. Recent studies in 
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analytical methods are focused on development of rapid analytical methods 

allowing for high sample throughput (Ananingsih, Sharma, & Zhou, 2013; Jiang, 

Engelhardt, Thräne, Maiwald, & Stark, 2015). This extends to the use of sensory 

profiling methods, which is typically resource-intensive due to the amounts of 

time and money required in training an expert human panel (Yu et al., 2008). It 

would be an incentive for commercial companies to make use of quicker 

methods in analysing food samples, which would translate into lower costs and 

potentially greater profits. 

Lastly, predictive modelling allows for an empirical understanding of food 

systems through regression models. While there have been numerous studies 

correlating chemical and sensory profiles to green tea quality (Jumtee, Komura, 

Bamba, & Fukusaki, 2011; Liang et al., 2008; Wang & Ruan, 2009), there have 

been limited studies to date correlating all three aspects of green tea 

simultaneously (Ikeda, Nagai, & Sagara, 2004). Furthermore, due to the 

nonlinear relationship between chemical and sensory profiles and hedonic 

properties, linear regression methods may only provide a limited insight to food 

systems (Krishnamurthy, Srivastava, Paton, Bell, & Levy, 2007). Nonlinear 

methods such as artificial neural networks and support vector machines have 

been used to develop nonlinear regression models to predict quality parameters 

in green tea (Kengpol & Wangkananon, 2015; Yu et al., 2008). 
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1.2. Research objectives 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

1.3. Overview of thesis structure 

Chapter 1 describes the background and main objectives of the research, and 

provides a summary of the overall thesis structure. 

Chapter 2 contains a review of current literature and research on the volatile and 

non-volatile compounds present in green tea, as well as design of experiments 

and predictive modelling methodologies used in flavour and sensory evaluation 

studies. 

Chapter 3 presents results obtained in the preliminary study on volatile flavour 

keys used in developing RTD green tea beverages, and also identifying 

significant flavour keys contributing to an overall positive consumer liking. 

Chapter 4 investigates the non-volatile chemical profile of seven commercially 

available RTD green tea beverages, and the key compounds responsible for the 

taste of these green tea products. 

Chapter 5 covers the development of a hybrid regression model, which is 

comprised of a linear partial least square regression model augmented with a 
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nonlinear artificial neural network, and compares the model quality of the 

hybrid regression model with a linear PLS model and a nonlinear artificial 

neural network. 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Chapter 8 examines the impact of storage on the chemical and sensory profile 

of a heat treated RTD green tea beverage model system. 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

 

2.1. Volatile compounds in green tea 

Green tea quality can be determined by several factors, of which aroma is 

probably one of the most important. High quality green tea often contains a high 

concentration of volatiles, in particular terpenes and terpene alcohols (Kato & 

Shibamoto, 2001), and is characterised by characteristic “green” leafy and floral 

notes (Jumtee, Komura, Bamba, & Fukusaki, 2011). These compounds are 

found bound to sugar moieties during shoot formation, and are hydrolysed 

during the processing stage (Wang & Ruan, 2009). Due to the milder processing 

steps, the aroma of green tea is distinctively different from both oolong and 

black tea (Baptista, Tavares, & Carvalho, 1998) with fewer compounds 

contributing to a roasted odour. Instead, the aroma profile of green tea has been 

described to be a pleasant blend of sweet, floral notes and rancid odours 

(Baptista et al., 1998).  

Volatile compounds present in green tea are generally the products of plant 

metabolism, although a few classes may be associated with high temperature 

processes during the drying stages. Aldehydes and alcohols represent some of 

the key odourants of green tea aroma. Short chain aliphatic aldehydes and 

alcohols are associated with a green odour, typical of grass and leaves (Baptista 

et al., 1998). Pyrazines and pyrroles may be found in higher concentrations in 

roasted green tea from Maillard reactions and Strecker degradations of amino 
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acids, and are responsible for a nutty, roasted aroma (Wang & Ruan, 2009). A 

summary of odour compounds commonly found in green tea is presented in 

Table 2.1. 

The flavour of green tea is largely influenced by both volatiles and semi-

volatiles present in the matrix and headspace (Baptista et al., 1998). The main 

mode of volatile analysis in green tea is gas chromatography coupled to a mass 

spectrometer (GC-MS), flame ionisation detector (GC-FID) or both (GC-FID-

MS), as seen in many studies (Baptista et al., 1998; Jumtee et al., 2011; Kato & 

Shibamoto, 2001). While the analysis of green tea volatiles has mainly revolved 

around GC-MS or GC-olfactometry, the types of extraction methods employed 

may vary greatly, depending on the objectives and analytes of interest in the 

study. Solvent extraction and various distillation methods can be considered as 

some of the conventional methods employed in the analyses of flavour volatiles. 

With advances in technology and laboratory instrumentation, new methods such 

as solid phase extraction (SPE), solid phase microextraction (SPME), and 

solvent assisted flavour evaporation (SAFE) have gradually been adopted or 

replaced some of the conventional methods of sample preparation.  
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Table 2.1: Potent odour-active compounds extracted from three types of green tea. Adapted 

from Cheng, Huynh-Ba, Blank, & Robert, 2008; and Kumazawa & Masuda, (1999 and 2002). 

Compound name Odour quality 
Tea type† 

a b c d e 

Alcohols, aldehydes and 

ketones 
      

(Z)-3-hexen-1-ol  
woody, mushroom, 

green 
●  ● ● ● 

geraniol  floral, woody ● ● ● ● ● 

linalool  floral, green ● ● ● ● ● 

p-cresol  phenolic    ● ● ● 

2-phenylethanol  floral, honey, sweet ●     

3-methylbutanal  stimulus   ● ● ● 

heptanal  grass, mushroom ●     

(Z)-4-heptenal  fatty, fish, hay-like ● ● ● ● ● 

(E,E)-2,4-heptadienal  fatty  ● ● ● ● 

nonanal floral, green, orange-like ●  ● ● ● 

(E)-2-nonenal  leather-like, green ●  ● ● ● 

(E,E)-2,4-nonadienal  fatty, green ●  ● ● ● 

(E,Z)-2,6-nonadienal  fatty, cucumber-like ● ● ● ● ● 

(Z)-4-decenal  green  ●    

(E,E)-2,4-decadienal  green, fatty ● ● ● ● ● 

geranial  floral, leaves ●     

phenylacetaldehyde  honey-like ● ● ● ● ● 

2,3-butanedione  buttery  ● ● ● ● 

2,3-pentanedione  buttery    ● ● ● 

1-hepten-3-one  grass, metallic ●     

1-octen-3-one  mushroom-like ● ● ● ● ● 

(Z)-1,5-octadien-3-one  metallic ● ● ● ● ● 

(E,Z)-3,5-octadien-2-one  green ●     

3-methylnonane-2,4-dione  green  ● ● ● ● 

β -damascone honey-like  ●    

β -damascenone  honey-like, floral ● ● ● ● ● 

β -ionone  tea leaves, woody ● ●    

(Z)-jasmone  woody, floral ● ● ● ● ● 

geranylacetone  tea leaves, floral ● ● ● ● ● 

α-ionone  woody, floral ●     

β-ionone-5,6-epoxide  tea leaves, woody ●     

Acids, esters, and lactones       

acetic acid   acidic ●     

2-methylbutanoic acid  cheesy ●     

3-methylbutanoic acid  cheesy ●     

hexanoic acid  green, acid  ●    

3-hexenoic acid  sour, cheesy ●     

ethyl 3-methylbutanoate  fruity ●     

(Z)-3-hexenyl (Z)-3-

hexenoate  
green  ●    

methyl geranate  woody, leaf, floral ●     

(E)-methyl jasmonate  floral   ● ● ● 

4-nonanolide  sweet   ● ● ● ● 

jasmine lactone  sweet  ● ● ● ● 

coumarin  sweet, camphoraceous  ● ● ● ● 
  



10 

 

(Cont.) Table 2.1 

Compound name Odour quality 
Tea type†, ‡ 

a b c d e 

N-containing compounds       

2-acetyl-1-pyrroline roasty ●  ● ● ● 

2-acetylpyrazine  roasty, popcorn-like ●   ● ● 

2-ethylpyrazine  nutty  ●    

2-isobutyl-3-

methoxypyrazine  

bell pepper, green, 

earth 
●  ● ● ● 

2,3,5-trimethylpyrazine  nutty     ● ● 

2,5-dimethyl-3-ethylpyrazine  sweaty, roasty ●     

2-ethyl-3,5-dimethylpyrazine  roasty, nutty ● ● ● ● ● 

2,3-diethyl-5-methylpyrazine  nutty    ● ● ● 

indole  animal-like  ● ● ● ● 

Other compounds       

3-hydroxy-4,5-dimethyl-

2(5H)-furanone  
caramel-like     ● ● 

methyl anthranilate  grape-like   ● ● ● 

vanillin  vanilla-like  ● ● ● ● 

eugenol  spicy  ● ● ● ● 

2-methoxy-4-vinylphenol  spicy  ● ● ● ● 

2-aminoacetophenone  grape-like  ● ● ● ● 

maltol  sweet  ●    

4-hydroxy-2,5-dimethyl-

3(2H)-furanone  
caramel-like ●  ● ● ● 

guaiacol  spicy, smoky ● ● ● ● ● 
† a, c: Sencha; b, e: Longjing tea; d: Kamairi-cha 
‡ a: Cheng et al., 2008; b: Kumazawa & Masuda, 1999; c – e: Kumazawa & Masuda, 2002 

 

2.2. Non-volatile compounds in green tea 

Unlike volatile compounds which determine the aroma profile of tea, the non-

volatile components contribute to the taste profile of green tea. Analyses of the 

non-volatile components generally revolve around chromatographic methods 

and capillary electrophoresis, although in some studies other methods such as 

electronic tongue or near-infrared spectroscopy may be used as a form of non-

destructive analysis.  
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 2.2.1. Catechins 

Catechins are the major polyphenols in green tea (12.7 to 54.9 mg/100 mL 

steeped green tea) (Higdon & Frei, 2003). The main catechins found are (–)-

epicatechin (EC), (–)-epigallocatechin (EGC), (–)-epicatechingallate, (–)-

epigallocatechingallate (EGCG) (Wang, Helliwell, & You, 2000; Zuo, Chen, & 

Deng, 2002). The structures of these compounds are illustrated in Figure 2.1. 

Recent studies have suggested that polyphenols, notably catechins, are 

responsible for a large range of health benefits in the human body (Higdon & 

Frei, 2003).  
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Figure 2.1: Structures of major catechins found in green tea. 

 

Analyses of the non-volatile fraction of green tea are typically done using high 

performance liquid chromatography (HPLC) interfaced with ultraviolet 

absorption (El-Shahawi, Hamza, Bahaffi, Al-Sibaai, & Abduljabbar, 2012; 
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Friedman, Levin, Choi, Kozukue, & Kozukue, 2006; Wu, Xu, Heritier, & 

Andlauer, 2012), or a diode array detector (Wang & Helliwell, 2001; Wang et 

al., 2000; Zuo et al., 2002), although detectors such as mass spectrometer (Wu 

et al., 2012) and fluorescence detector may be used as well, depending on the 

sensitivity required. Other less common methods of analysis include capillary 

electrophoresis and its variants (Horie, Mukai, & Kohata, 1997; Hsiao, Chen, 

& Cheng, 2010; Peres, Tonin, Tavares, & Rodriguez-Amaya, 2011), Fourier 

transform near infrared spectroscopy (Chen, Zhao, Chaitep, & Guo, 2009) and 

electrode-based chemical sensors (Chen, Zhao, Guo, & Wang, 2010).  

Wang et al. (2000) developed a protocol for the analysis of tea catechins (GC, 

EGC, C, EGCG, EC, GCG, ECG), caffeine and gallic acid using HPLC coupled 

to an UV detector. A methanol/water/orthophosphoric acid (20/79.9/0.1) 

isocratic solvent system was employed. All nine compounds were successfully 

separated under 53 min. A similar acetonitrile/water system was found to give 

a complete separation of EGC and C. Orthophosphoric acid was found to be 

essential in providing complete baseline separations of EGC/C and ECGC/EC. 

The authors also studied the effects of ethanol concentration used during sample 

preparation, and concluded that the concentration of ethanol should be kept 

below 15% to minimise interaction with the mobile phase in order to achieve 

good separation and quantitation.  

Wu et al. (2012) utilised RP-HPLC-UV and RP-HPLC-MS to analyse and 

determine catechins and flavonol glycosides in Chinese teas. Separation was 

performed on a C18 column with a guard cartridge, using gradient elution with 

aqueous formic acid and acetonitrile as solvents. Electrospray ionisation (ESI) 
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was used as an ion source in the mass spectrometer. Constituents were identified 

using retention times and mass spectra, and quantified using RP-HPLC-UV.  

 

 2.2.2. Other phenolic compounds 

Flavonols are another major class of phenolic compounds in green tea (7 to 9% 

of total flavonoid content) (Higdon and Frei, 2003), and are responsible for the 

yellow colour of green tea infusions. Studies have suggested that flavonols may 

have certain beneficial physiological effects in the human body, similar to that 

of catechins (Finger, Kuhr, & Engelhardt, 1992). Flavonols are often found 

bound to one or more carbohydrate moieties. Commonly found flavonol 

glycosides include quercetin-3-O-glucoside, quercetin-3-O-galactoside, 

quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside (Wu et al., 2012). 

Myricetin glycosides are present at lower amounts (Del Rio et al., 2004). It has 

been suggested that flavonol glycosides may impart a mouth-drying and mouth-

coating sensation at very low concentrations (Scharbert, Holzmann, & Hofmann, 

2004). 

Theaflavins and thearubigins are condensation products of catechins, and are 

generally formed from the enzymatic fermentation of tea leaves through PPO-

catalysed reactions. As a result, theaflavins and thearubigins are found in higher 

concentrations in oolong and black teas, and little to none in green tea.  

Flavonol glycosides and gallic acid, like catechins, are usually analysed using 

HPLC coupled to a detector for separation and detection (Del Rio et al., 2004). 

UV, diode array and fluorescence detectors and mass spectrometers are some of 
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the more commonly used detectors. Although most recent studies focused on 

the profiling a single class of polyphenols, there is an increasing number of 

studies demonstrating simultaneous analysis of more than one class of tea 

components.  

In a recent study, Peng, Song, Shi, Li, and Ye (2008) employed the use of HPLC 

coupled to a photodiode array detector in developing an improved method of 

analysing phenolic compounds, purine alkaloids and theanine simultaneously. 

A C16 column equipped with a guard column was used in place of a C18 column 

to separate tea infusions. Poor reproducibility was obtained using C18 columns 

due to the use of polar solvents required for analysing polar molecules (gallic 

acid and theanine). The optimum temperature for separation on the column was 

found to be 35 °C, following coelution of C and caffeine, and EGC and an 

unknown component, at 40 °C and 30 °C respectively. High linearity with 

correlation coefficient of greater than 0.999 for all components, and recovery 

(85.56 to 103.86%) for all components were obtained using this method.  

Both Del Rio et al. (2004) and Wang, Lu, Miao, Xie, and Yang (2008) reported 

the use of HPLC-DAD-MS to separate polyphenols and purine alkaloids in tea. 

A two-step linear gradient elution programme was adopted by Del Rio et al. 

(2004), which according to the authors, allows for complete resolution of 

phenolic compounds with smaller peaks from larger peaks. On the other hand, 

Wang et al. (2008) made use of a single-step system, and their results indicated 

that there might be some coelution between GCG and an unknown compound, 

as well as a few other compounds.  
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 2.2.3. Purine alkaloids 

The distinct bitterness of tea is widely considered to be due to the presence of 

purine alkaloids (Figure 2.2) (Pongsuwan et al., 2008). Caffeine is present as 

the major alkaloid (Lin, Chen, & Harnly, 2008). Green tea contains normally 25 

to 40 mg/g of caffeine, depending on geographical origin, and processing and 

steeping conditions (Cabrera, Gimenez, & Lopez, 2003). Theobromine and 

theophylline are present at concentrations about ten and hundred times lower, 

respectively (Finger et al., 1992). Besides instilling a bitter taste to tea, caffeine 

was also found to modify the mouthfeel of tea. A study conducted by Millin et 

al. (1969) found that caffeine decreased the astringency caused by polyphenolic 

compounds, and at the same time increased the mouthfeel of the 

caffeine/polyphenol mixture. At the same time, the bitterness of caffeine was 

somewhat negated by the presence of polyphenolic compounds, which 

suggested that caffeine may have some interactions with polyphenolic 

compounds. 
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Figure 2.2: Structures of purine alkaloids found commonly in beverages. 
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A commonly used method of analysis of methylxanthines is reversed phase 

HPLC, using acetonitrile or methanol as a mobile phase, and coupled to a UV-

vis spectrophotometer or a photodiode array detector for identification 

(Angelino & Gennaro, 2000; Horie & Kohata, 2000). Analysis of 

methylxanthines and other tea polyphenols can be done simultaneously, but 

such analyses may be very time consuming (Horie & Kohata, 2000). 

Polyphenolic compounds can be removed prior to methylxanthines analysis 

using polyvinylpolypyrroridone (PVPP) as an absorbent. Nakakuki, Horie, 

Yamauchi and Kohata (1999) developed a rapid method of removing 

polyphenols from tea using a column packed with PVPP connected upstream to 

the HPLC column. 

Seeram et al. (2006) investigated catechin and caffeine content of green tea 

dietary supplements using a reverse-phase C18 column, coupled with a 

photodiode array detector. Aqueous and ethanolic-aqueous samples of green tea 

dietary products were not treated with PVPP, but instead catechins and caffeine 

were analysed concurrently and identified using known standards. Wang and 

Ruan (2009) determined concentration of caffeine in Longjing tea using a 

reverse-phase HPLC column. Detection of eluents was achieved using a UV-

vis spectrophotometer at 280 nm. Caffeine content was determined 

simultaneously with tea catechins using internal standards. 

 

 2.2.4. Sugars 

Tea polysaccharides are molecular complexes comprising of glycosidically 

linked monosaccharide residues with molecular weights of greater than 10 kDa. 
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Tea polysaccharides are mostly found covalently bound to polypeptides via O- 

or N- linkages (Nie & Xie, 2011). Recent studies have shown that tea 

polysaccharides may contribute towards several health benefits, including 

antihyperglycemic (Zhou et al., 2007), antimicrobial (Lee et al., 2006), and 

immuno-boosting effects (Monobe, Ema, Kato, & Maeda-Yamamoto, 2008). 

However, their exact physiological effect and composition and contribution 

towards taste in tea are still not well understood. 

There have been limited studies on the determination of tea polysaccharides in 

tea, partly due to its complex structure. Wei et al. (2011) developed a method 

utilising resonance light scattering to provide quantitative determination of tea 

polysaccharides in the presence of a cetylpyridinium chloride-sodium 

hydroxide system, which was shown to have higher selectivity than traditional 

methods such as colourimetric methods (Wei, Xi, Wu, & Wang, 2011).  

Monosaccharides are often found complexed to other components present in tea 

such as flavonol glycosides and terpenoid glycosides. There are limited studies 

on sugars in tea as well, possibly due to the fact that green tea, on its own, does 

not contain high amounts of simple sugars. Analysis of sugars is generally 

achieved through chromatographic means, although traditionally, it is done 

using colourimetric methods involving derivatisation with a chromophore. 

However, such methods usually involve the use of chemicals, some of which 

such as phenol may cause harm to human health. Other methods include 

techniques involving the use of enzymes and indicator compounds to determine 

sugar content colourimetrically, such as the glucose oxidase-peroxidase assay. 

The assay follows a two-step reaction as shown below: 
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glucose 
glucose oxidase
→            glucono-δ-lactone + H2O2 (Step 1) 

H2O2 + indicator 
peroxidase
→         coloured compound (Step 2) 

 

 

Rovio, Yli-Kauhaluoma and Sirén (2007) developed a new capillary zone 

electrophoresis (CZE) for the separation determination of neutral carbohydrates 

in beverages. Separation was done using uncoated fused-silica capillaries, and 

detection was done using DAD set to measure in the wavelengths between 260 

to 280 nm. Separation was achieved at pH 12.6, and a total of 12 carbohydrates 

were successfully resolved in under 2 min. Reproducibility was determined to 

be satisfactory, with correlation coefficients of greater than 0.94. 

Ding, Yu, and Mou (2002) utilised a method involving anion-exchange 

chromatography to successfully separate and detect 22 amino acids and sugars, 

which included sucrose, fructose and glucose. Analyses were performed using 

an AminoPac PA10 analytical column on an HPLC system coupled with an 

ED50 electrochemical detector equipped with a thin-layer type amperometric 

cell. The method offered high sensitivities in the range of pmol for all analytes, 

and high reproducibility with correlation coefficients greater than 0.99.  

 

2.2.5. Free amino acids 

Theanine (5-N-ethyl-L-glutamine), a derivative of glutamic acid, is a non-

proteinogenic amino acid found in tea that accounts for more than 50% of amino 

acids present (Wang et al., 2010). It is an important precursor in the synthesis 

of polyphenolic compounds in tea. Studies have shown that theanine is present 



19 

 

at a concentration between 4.9 to 10.9 mg/200 mL in green tea infusion, and up 

to 1 to 2% of the dry weight of green tea leaves (Wang et al., 2010). It has been 

suggested that theanine is responsible for the delicate, brothy, umami flavour of 

green tea, although other amino acids such as glutamic acid may contribute 

towards the umami taste as well (Pongsuwan et al., 2008). Strecker degradation 

of amino acids during processing or infusion may result in the formation of 

volatile aldehydes, which further contributes to the overall green tea flavour 

(Finger et al., 1992). 

Analysis of free amino acids in tea can be achieved through chemical or 

chromatographic methods. Ninhydrin and 2,4-dinitrofluorobenzene are 

commonly used colourimetric methods. Chromatographic methods are usually 

slightly more complicated techniques, requiring some form of derivatisation due 

to the absence of a chromophore moiety on amino acids. Commonly used 

labelling reagents include dabsyl chloride, phenylisothiocyanate (PITC) and o-

phthaldehyde (OPA). However, such reagents are not selective, and may react 

with other tea components such as catechins.  

In the investigation of free amino acids in tea conducted by Wang et al. (2010), 

isolation of free amino acids was achieved using solid phase separation. The 

amino acid eluent was dried and concentrated before derivatisation with OPA. 

Free amino acids content was determined by HPLC-DAD using a reversed-

phase column. Detector wavelength was set at 338 nm to detect derivatised 

amino acids. In another study conducted by Syu, Lin, Huang and Lin (2008) 

theanine and other amino acids were derivatised using dabsyl chloride. Analysis 
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was performed using a reversed-phase HPLC system, coupled to a UV-vis 

detector operating at 475 nm. 

A rapid method of theanine analysis has been described in a study conducted by 

Ying, Ho, Chen, and Wang (2005), in which o-phthaldehyde was used as the 

derivatising agent. Similarly, a reversed-phase HPLC system was used to 

separate theanine from other tea components, and a fluorescence detector with 

excitation and emission wavelengths set at 330 and 418 nm respectively, was 

used. However, detection of other amino acids was not described in this study. 

 

 2.2.6. 5'-nucleotides 

Umami is the fifth basic taste discovered after sweet, salty, sour and bitter, and 

is described as savouriness or broth-like. The amino acid glutamic acid was first 

isolated from seaweed as the source of an umami taste in soups. Following this 

discovery, the 5'-nucleotides guanosine monophosphate (GMP) and inosine 

monophosphate (IMP) were found to confer savouriness to foods as well. 

Disodium salts of GMP and IMP are currently used as flavour enhancer and 

potentiators (Ninomiya, 2002).  

IMP and GMP are found in high amounts in seafood (especially shellfishes such 

as abalone and scallop) and meat products. Certain plants such as mushrooms 

and tomatoes are known to contain high amounts of taste enhancing 5'-

nucleotides. The IMP and GMP profile in green tea has not been extensively 

studied, and there is little information in this regard. Existing literature utilised 
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HPLC as a method in analysing 5'-nucleotides in food samples (Ninomiya, 

2002).  

Koshiishi, Crozier, and, Ashihara (2001) investigated the nucleotide profile of 

fresh and manufactured tea leaves, and found that processed tea leaves had 

profiles significantly different from plants (including fresh tea leaves). Tea 

leaves were first treated using SPE and HPLC to obtain the 5'-nucleotides 

fraction, which was further analysed on an Asahipak GS 320-H HPLC column. 

Detection was achieved using a UV-vis detector measuring absorbance at 260 

nm. Both GMP and IMP were separated and quantified using 10 mM NaH2PO4 

(pH 4.6) as a mobile phase in isocratic mode. 

 

2.3. Use of design of experiment methodologies 

The design of experiments (DOE) methodology was first developed by Fisher 

in the 1920s, but it was not used until the last few decades when it was adapted 

for food sensory studies on a larger scale. A well-defined and well-structured 

experimental design allows for the study of input parameters (predictor 

variables) and the generated output (response variables), as well as various 

interactions that may exist between the input variables. In general, experimental 

designs are denoted by a matrix, with columns representing the independent 

variables associated with the study, and rows representing samples or 

experimental runs. Responses generated from an experimental design may be 

the sensory profile of a set of food products, or an optimisation process seeking 

to optimise a certain sensory and/or hedonic properties. The use of DOE in 

planning and conducting sensory studies allows the experimenter to obtain 



22 

 

useful information such as drivers of liking and dislike in a food product, which 

has important implications in consumer research. 

Experimental designs range from the basic one-factor-at-a-time approach, to 

classical factorial designs, and more recently, computer-generated designs that 

were developed in the last three decades. The use of the DOE methodology has 

been reviewed in other fields such as analytical chemistry (Dejaegher & Vander 

Heyden, 2011; Hibbert, 2012; Candioti, De Zan, Cámara, & Goicoechea, 2014) 

and bioprocess control (Mandenius & Brundin, 2008), but not in sensory 

science. The following sections will provide an overview of use of classical and 

computer-generated experimental designs for use in food sensory studies. For a 

review of sensory evaluation methods, readers are referred to Murray, 

Delahunty, & Baxter (2001), and Valentin, Chollet, Lelievre, & Abdi (2012) for 

a comprehensive overview. 

 

2.3.1. One-factor-at-a-time approaches 

The one-factor-at-a-time (OFAT) approach is one of the oldest and simplest 

approaches when it comes to experimental design. In this approach, all variables 

are set at a constant level, and the effect of each variable is investigated by 

changing individual variables one at a time. While this may appear to be an 

ordered and sophisticated approach to evaluating sensory qualities of foods, it 

is in fact highly inefficient, and may produce inaccurate results since the effects 

of changing a single factor at a time may be very different from changing 

multiple effects together (Ellekjær, Ilseng, & Næs, 1996; Montgomery, 2008; 

Olsson, Gottfries, & Wold, 2004b). 
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Food systems, in most, if not all cases, are multivariate in nature, with individual 

sensory characteristics and liking being a combinatorial effect of multiple 

physical and chemical qualities. For example, in the hedonic evaluation of a 

citrus beverage product, consumer liking may be dependent on various taste 

(sweetness, sourness) and odour qualities (fruity, citrus), in addition to various 

other physical properties (presence of solid sediments, colour). As such, sensory 

analysis of a food system or product using the OFAT approach would thus 

require a large amount of resources in a multivariable food system to attain a 

comprehensive set of results. Furthermore, estimation of the effect of individual 

variables is based on the assumption that interactions between variables are not 

important or non-existent, which on the contrary, are extremely common in food 

systems, in relation to consumer perception of these food products. 

 

2.3.2. Factorial designs approaches 

Factorial designs are classical experimental designs that have been widely used 

in scientific experiments, based on a combination of factors, to investigate 

multiple factors and their interactions simultaneously while reducing the degree 

of biasness in experiments. The use of factorial designs and other variants is 

widespread in the field of chemometrics and analytical chemistry. Recent 

studies in sensory and flavour science utilising the factorial design approach 

have been summarised in Table 2.2.  
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Table 2.2: Applications of factorial designs in sensory and flavour studies. 

Product/property 
Analytical 

methodology 
Experimental design References 

Umami taste Quantitative 

descriptive analysis 

Four-level full 

factorial design 

Baryłko-Pikielna & 

Kostyra (2007) 

Red wine Flavour chemical 

analysis 

Mixed-level factorial 

design 

Noguerol-Pato, 

González-Barreiro, 

Cancho-Grande, & 

Simal-Gándara 

(2009) 

Polyphenol-rich 

beverages 

Quantitative 

descriptive analysis 

and hedonic test 

Mixed-level factorial 

design 

Jaeger, Axten, 

Wohlers, & Sun-

Waterhouse (2009) 

Energy drink Quantitative 

descriptive analysis 

Three-level full 

factorial design 

Tamamoto, Schmidt, 

& Lee (2010) 

Extrusion product Hedonic test Mixture design Lobato, Anibal, 

Lazaretti, & 

Grossmann (2011) 

Odour-induced 

saltiness 

perception 

Quantitative 

descriptive analysis 

Mixed-level factorial 

design 

Nasri, Beno, Septier, 

Salles, & Thomas-

Danguin (2011) 

Extrusion product Quantitative 

descriptive analysis 

Two-level full 

factorial design 

Saeleaw, 

Dürrschmid, & 

Schleining (2012) 

Extra virgin olive 

oil 

Flavour chemical 

analysis 

Two-level full 

factorial design and 

Box-Behnken design 

Reboredo-Rodríguez, 

González-Barreiro, 

Cancho-Grande, & 

Simal-Gándara 

(2012) 

Yoghurt Hedonic test Mixed-level factorial 

design 

Ramírez-Sucre & 

Vélez-Ruiz (2013) 

Cross-modal taste 

interactions 

Quantitative 

descriptive analysis 

Two-level full 

factorial design 

Knoop, Sala, Smit, & 

Stieger (2013) 

Cheddar cheese 

taste 

Quantitative 

descriptive analysis 

Two-level fractional 

factorial design 

Niimi et al. (2014) 

 

 

Full factorial designs are orthogonal, balanced designs, allowing for the 

estimation of all main and interaction factors (the factors are said to be fully 

separated from each other), but would typically involve a large number of 

design points or samples, given by Equation 2.1: 
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n = mk  (Equation 2.1) 

 

where n is the total number of samples, k is the number of factors, and m is the 

number of levels of each factor. Conventionally, most experiments utilising full 

factorial designs make use of two levels, along with a small number of factors, 

resulting in a 2k design. The number of samples increases exponentially with 

the increase in number of factors, making it extremely costly to run such 

experiments, which is especially the case in sensory evaluations involving 

human panellists. Three-level factorial designs may serve better purposes in 

most cases, as they are able to generate second-order polynomial models for 

estimating curvature associated with the independent variables, but are more 

complicated than their two-level counterparts, and is especially so for a larger 

number of factors. When dealing with factors containing three or more levels, 

the number of samples required for complete estimation of main and interaction 

factors can reach a very high number, even when working with a small number 

of factors. For example, sensory profiling of a food product with four 

independent variables, each containing a low, mid, and high level, will require 

evaluation of 81 different samples. As such, two-level factorial designs are often 

used as screening designs to identify important factors, which are then studied 

in greater detail using experimental designs containing higher factor levels. 

Fractional factorial designs, as the name suggests, are fractions of full factorial 

designs, and are used to predict main and interaction factors using a subset of 

the full design, by utilising a smaller number of samples. The number of 
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experimental points in an experiment containing two levels for all factors is 

given by Equation 2.2: 

 

n = 2k – p  (Equation 2.2) 

 

where p represents the number of times the design is reduced by half, and the 

number of design generators used. Experimental designs for two-level fractional 

factorial designs are readily available in textbooks (Montgomery, 2008) and 

various online resources, and can be easily adapted for use by the experimenter. 

Chen, Sun, and Wu (1993) and Li, Zhang, and Zhang (2013) have published 

catalogues of three-level fractional factorial designs, categorised by the number 

of runs and factors. The Box-Behnken designs are examples of three-level 

designs used in the response surface methodology (Box & Behnken, 1960), with 

commonly-available resources for experimenters to use. The centre point in 

Box-Behnken designs are often replicated in order to approximate the 

experimental error.  

Fractional factorial designs may not be able to provide clear estimations of main 

and interaction factors as some of them may be confounded or aliased, 

depending on the degree of resolution of the experimental design. This is true 

when the number of factors involved in the experiment becomes large, which is 

typical in food-related sensory studies. The experimenter would then have to 

make a choice between utilising a larger amount of resources in obtaining in-
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depth knowledge of the system, and sacrificing information collected in 

exchange for resources spent. 

 

2.3.3. Computer algorithmic approaches to design of experiments 

Computer algorithmic designs are computer generated, non-standard 

experimental designs which are commonly used in place of classical designs in 

the following situations (Montgomery, 2008): (i) the experimental design space 

is constrained or irregular; (ii) a non-standard model is required; or (iii) there is 

a limitation on the number of experimental runs or sample size, which is a 

common phenomenon where the number of model variables (k) is greater than 

the number of observations (n). 

These limitations are encountered in the food sensory studies and experiments, 

and especially so for the third scenario. In the sensory evaluation of food 

products, the large number of independent variables may result in a very large 

factorial experimental design, and assessment of all experimental runs would 

likely result in sensory fatigue among panel members, and would require a large 

amount of resources in terms of time and money. Furthermore, symmetrical 

designs such as factorial designs or response surface methodologies may not 

necessarily produce the most ideal experimental design, as the relationship 

between physiochemical attributes in foods and sensory qualities may not be 

linear in nature. In sensory experiments, the levels of independent variables 

included in an experiment may be different due to constraints related to the 

nature of the experiment. Although mixed levels factorial designs may be 

developed to suit this purpose, it may result in unbalanced and non-orthogonal 
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designs. The use of a computer algorithm allows for greater flexibility in the 

construction of customised experimental designs, according to the experimental 

parameters (Périnel & Pagès, 2004). 

A set of design points is chosen from a candidate set, which may correspond to 

a classical design such as a full factorial design, or may be a specific 

experimental design customised by the experimenter, due to limitations or 

constraints in the experiment (Nguyen & Miller, 1992; Olsson et al., 2004b). As 

the name suggests, these methods employ the use of an algorithm in the 

selection of the ideal set of experimental design points. 

The candidate matrix refers to the matrix containing a set of experimental 

observations for the algorithm to select from. In classical designs, which may 

serve as the candidate design, there are mk experimental points spanning over 

the entire design matrix, where m represents the number of factor levels, and k 

representing the number of variables in the mathematical model forming the 

basis of the design (Olsson et al., 2004b). Given that the optimal experimental 

design of choice should contain much fewer numbers of experimental points 

than the candidate design, this leads to an arbitrarily large number of possible 

combinations when k becomes large. It should be noted that the number of 

design points chosen is dependent on the model to which data obtained will be 

fitted.  

A model containing k variables, excluding the constant term, should be 

estimated from an experimental design containing at least k + 1 design points 

for adequate degrees of freedom. For example, in a sensory evaluation of a 

beverage product containing five variables at three levels each, a full factorial 
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design contains 243 design points, which translates to 243 different products to 

be evaluated. The experimenter may choose to reduce this to a reasonable 

experimental design with 21 runs to prevent panel sensory fatigue, and to reduce 

the potential strain on resources spent on conducting the sensory evaluation. 

However, this results in (243
21
) ≈ 1030 possible combinations of experimental 

runs, of which exists a number of optimum subsets that ideally, would be used 

for experimentation.  

A brute force method of analysing all possible combinations of design points 

may not be possible even with a computer, and even so, is not recommended 

due to limitations in terms of time and cost (Nguyen & Miller, 1992; Veira, 

Sanchez, Kienitz, & Belderrain, 2011). As such, the best subset of design points 

should be selected based on a set of criterion based on a computer algorithm. 

Amongst the various criteria, optimal designs are perhaps the most commonly 

used in food sensory evaluation studies. Other less frequently employed 

computer algorithmic approaches used in experimental designs are space filling 

designs and Latin hypercube designs, which also rely on a computer algorithm 

for generating the experimental design. 

 

2.3.3.1. Optimal designs 

In optimal designs, there exist several criteria on which the optimality is based 

on, and of which, the D-optimality criterion is the commonly employed in food 

sensory studies. Other criteria include A-optimality and G-optimality (de 

Aguiar, Bourguignon, Khots, Massart, & Phan-Than-Luu, 1995; Montgomery, 
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2008). However, as these criteria are less often used due to greater 

computational requirements (Carlsson & Martinsson, 2003), this section will 

instead focus on D-optimal designs.  

The D-optimal design is a computer generated design that seeks to select a 

subset of design points, X, from a matrix of candidate points, M, such that the 

determinant of the Fisher information matrix, given by |X′ X| (X′ refers to the 

transpose of X), is maximised (Mentré, Mallet, & Baccar, 1997). Both the 

candidate and optimal sets of design points are defined by matrices containing 

N × k, and n × k design points respectively, where N > n. Maximising the 

determinant is equivalent to minimising the determinant of the inverse of the 

information matrix, such that: 

 

| (𝑿𝟎
′ 𝑿𝟎)

−1| = 𝑚𝑖𝑛
𝑋|𝑋∋𝑀

 (| (𝑿′ 𝑿)−1|)  (Equation 2.3) 

 

The D-optimal algorithm chooses an ideal subset from all possible combinations, 

and in doing so significantly reduces the number of required experiments, 

compared to standard design types, while maximising the prediction accuracy 

and minimising aliasing of regression model coefficients (Mitchell, 1974). A 

regression model correlating predictors to dependent variables would be of the 

general form: 

 

f(X) = βX' + e  (Equation 2.4) 
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where f(X) is an n × 1 matrix containing n observations, β is a k × 1 matrix 

containing unknown model coefficients (which is dependent on the model on 

which the experimental design is based upon), and e is an n × 1 matrix 

containing prediction errors of observations. The type of regression model is 

dependent on the purpose of the analysis. Often, it is a second-order polynomial 

equation which allows for estimation of main effects, potential two-factor 

interaction effect between the independent variables, and quadratic effects of 

the independent variables, which in turn allows for estimation and identification 

of maximums or optimal points. Higher order interaction effects may be 

disregarded as they often contribute insignificantly to the regression model. 

 

2.3.3.2. D-optimal design selection algorithm 

The selection of a D-optimal subset is based on a computer algorithm. Direct 

comparison of all possible subsets of points from a candidate set requires a 

significant amount of computing resources when taking into consideration all 

possible permutations, as discussed above. The use of an algorithm significantly 

reduces the load on computational power. 

There are several algorithms present in the literature for selecting a D-optimal 

subset of experimental design points from a candidate set, such as: (i) Fedorov’s 

exchange algorithm (Fedorov, 1972); (ii) modified Fedorov’s exchange 

algorithm (Ogungbenro, Graham, Gueorguieva, & Aarons, 2005); (iii) 

DETMAX algorithm (Mitchell, 1974); and (iv) sequential designs (Dror & 

Steinberg, 2008), to name a few. 
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Fedorov’s exchange algorithm is one of the most utilised exchange algorithms 

in optimal design theory, and has been implemented in several statistical and 

mathematical software packages. In brief, the algorithm is as follows: 

 

1. An n × k subset, containing n design points such that n > k, is chosen 

from a candidate set, and the determinant of the information matrix for 

this subset is calculated. 

2. The variance function of each design point in the selected subset and 

candidate set is calculated, and differences between all possible pairs 

between the subset (xi) and candidate set (xj) are determined. 

3. The pair of design points that has the largest positive difference is 

identified and exchanged, which leads to a larger determinant of the new 

information matrix. 

4. Steps 2 and 3 are repeated until the difference in variance functions 

between the subset and candidate set are the same, and there is no further 

change in the determinant of the information matrix. 

 

2.3.3.3. Quality indicators of experimental designs 

Several parameters can be used for the estimation of experimental design quality. 

The D-efficiency of an experimental design, which is a measurement of D-

optimality, is given by Equation 2.5: 
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D-efficiency = 
|(X' X)|

1
k

n
  (Equation 2.5) 

 

where X is the matrix of design points scaled to the range of -1 to 1, k is the 

number of factors, and n is the number of design points. The value of D-

efficiency ranges from 0 (not D-optimal) to 1 (fully D-optimal). Classical 

symmetrical designs such as full factorials, fractional factorials, and response 

surface methodology are fully D-optimal (de Aguiar et al., 1995; Olsson et al., 

2004b), and therefore have D-efficiencies of one. Comparison of D-efficiencies 

between different experimental designs allows the experimenter to select a 

design for having greater confidence in estimating regression coefficients. 

However, it should be noted that the calculation of D-efficiency using Equation 

2.5 is only applicable to two-level designs. For designs with more than two 

levels per variable, a scaling factor should be applied to the calculated D-

efficiency in order to convert the D-efficiency to a range of zero to one, such 

that comparisons to two-level designs can be made. 

Although fractional factorial designs may provide an experimental design with 

D-efficiency equals to one, and are readily available, they suffer the drawback 

of being unable to fully resolve confounded variables, especially for designs 

with lower resolutions. Such aliasing can be represented in a correlation table 

which compares the degree of correlation between a pair of model variable, as 

shown in Figure 2.3.  
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Figure 2.3: Correlation plots for (a) fractional factorial design; (b) Box-Behnken design; (c) D-optimal 

design for four factors and three levels. Correlation between model variables (linear, interaction, and 

quadratic effects) up to the second degree is indicated using a colour scale. 

 

 

This can be reduced through utilisation of Box-Behnken or optimal designs. 

However, Box-Behnken designs for a large number of design variables may 

result in a large number of samples, which falls into the problem of large number 

of experimental runs. D-optimal designs are able to reduce the degree of severe 

correlations between model variables, but are often not balanced, and their 

generation is dependent on a computer algorithm for the reasons stated above. 

As such, the experimenter will have to decide between the convenience of 

standard, classical designs such as fractional factorial or Box-Behnken designs, 

and the greater computing complications of the more versatile optimal designs.   

 

2.3.3.4. Applications of D-optimal experimental designs 

There has been some recent applications of D-optimal designs in sensory, 

flavour, and shelf life-related studies, as summarised in Table 2.3. 
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Table 2.3: Applications of D-optimal designs in sensory and flavour studies. 

Product/property 
Purpose for using 

D-optimal designs 

Experimental 

design 
References 

Taste interactions 

in citrus beverages 

Sample size 

reduction 

Three-factor mixed-

level, 16 runs 

Hewson, Hollowood, 

Chandra, & Hort (2008) 

Multimodal taste 

interactions in 

carbonated 

beverages 

Sample size 

reduction 

Three-factor mixed-

level, 18 runs 

Hewson, Hollowood, 

Chandra, & Hort (2009) 

Salad dressing Sensory analysis 

and shelf life study 

Three-factor mixed-

level, 14 runs 

Jang, Park, & Park (2011) 

Red wine ageing 

process 

Sample size 

reduction and use 

of a nonstandard 

model 

Two-factor mixed-

level, 20 runs 

Puškaš & Miljić (2012) 

Energy drink Sensory analysis 

and shelf life study 

Two-factor mixed-

level, 13 runs 

Shiby, Radhakrishna, & 

Bawa (2013) 

 

Hewson and co-workers (2008 and 2009) made use of D-optimal designs in 

reducing the number of beverage samples for sensory evaluation in the 

investigation of taste-aroma-trigeminal interactions. In the first study, odour-

taste interactions were investigated using a combination of lactic or citric acids, 

glucose or fructose, and two levels of citrus flavour, which resulted in a three-

factor, mixed-level full factorial design. A D-optimal subset of the candidate 

design was identified to reduce the total number of samples that were evaluated 

from 24 (four levels for glucose, three levels for lactic acid, and two levels for 

flavour) to 16. Four predictive models, each for a combination of a sugar and 

an acid, were developed to predict flavour intensity, sweetness, and sourness. 

In another similar study involving the use of a D-optimal subset for the 

reduction in total number of samples, a mixed-level design containing 18 runs 

was used. 

 In another study conducted by Puškaš and Miljić (2012) on the quality of aged 

red wine, a D-optimal subset was used to reduce the number of samples 
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investigated from 42 to 20. There were a total of six levels investigated for seed 

content added to the samples, and seven levels corresponding to the total ageing 

time. Results obtained were fitted into third-order polynomial regression models 

to predict total phenols, anthocyanin content, flavan-3-ol content, colour, and 

hue of the aged red wine samples, as a function of seed content and ageing time. 

Shiby, Radhakrishna, and Bawa (2013) made use of D-optimal designs in the 

development of whey-fruit juice energy drink mixes to reduce the number of 

samples from a two-factor, mixed-level mixture design with a design constraint. 

Whey was mixed with either grape or pomegranate juice with each component 

at a minimum of 20% and a maximum of 80%, and freeze dried to produce an 

energy drink dry mix, which was then stored for shelf life and sensory 

evaluations. 

In another study conducted by Olsson, Gottfries, and Wold (2004a), D-optimal 

designs were utilised in a so-called D-optimal onion design to select a subset of 

compounds from a candidate set of synthesised compounds with peroxisome 

proliferator-activated receptor (PPAR) α and γ activity, in order to investigate 

structural-efficacy relationships. D-optimal onion design was named as such 

due to the division of the candidate set into multiple layers based on the 

Euclidean distance of a design point from the centre point. A D-optimal 

selection was made for individual layers, which were combined together to form 

an experimental design, resembling the multi-layered nature of onions. The 

onion design was shown to perform better than standard D-optimal designs, 

based on the root-mean-squared errors of prediction. It provided greater control 

of the inner design space, compared to standard D-optimal designs which tend 
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to select extreme points in order to maximise the determinant. Although this 

study fell beyond the scope of flavour and sensory science, it is worth 

mentioning as the same principles can be adapted for use in designing 

experiments or sensory trials.  

 

2.4. Use of multivariate analysis techniques 

Raw datasets obtained from experiments often present little significance until 

useful information and relationships between factors can be extracted. The use 

of one-dimensional statistical methods such as analysis of variance (ANOVA) 

and correlation tests may provide experimenters with trends and patterns within 

a set of data, but limited information relating multiple datasets, such as between 

that of a set of sensory attributes and the consumer liking of a product, can be 

inferred from such methods. To put it simply, the experimenter is only able to 

obtain information on differences  between products or linear trends between 

different product attributes, as suggested by Zielinski et al. (2014). 

Mathematical and computer methods have been used in signal calibration in 

chemometrics, and tasks involving pattern recognition, classification, and 

regression, and have found applications in many fields including medicine, 

engineering, and image processing, to name a few. 

Univariate regression methods such as one-factor analysis of variance (ANOVA) 

are often insufficient in finding patterns between food physicochemical 

attributes, sensory profiles, and hedonic properties, due to a multitude of 

compounds and physical attributes that are present in food products (Zielinski 

et al., 2014). Furthermore, the presence of masking and synergistic effects, 
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especially between taste and odour properties of foods creates a nonlinear 

relationship between these factors (Noble & Ebeler, 2002). Often, a single 

product property such as texture or flavour may be related to several sensory 

attributes, as perceived by the human brain (Perrot et al., 2006). All these 

combine to give a highly complex relationship, which cannot be easily analysed 

using univariate methods. Multivariate statistical methods become essential for 

such analyses, and can be loosely categorised into linear and nonlinear methods, 

which will be briefly discussed in the next two sections.  

 

2.4.1. Linear regression  

Linear regression is used to study the linear relationship between a group of 

independent variables (predictor variables), and a set of dependent variable(s). 

In general, linear model is of the form (Equation 2.6): 

 

Y = β0 + β1x1+ β2x2+ …+ βnxn+E  (Equation 2.6) 

 

where Y is a vector of dependent variables, β is a vector of regression 

coefficients, x is a matrix for independent variables, and E is a vector associated 

with errors of the estimation. For example, the intensity of citrus attribute in an 

orange flavoured beverage may be a function of the concentrations of sucrose, 

ascorbic acid, and total amounts of terpenes present in the product. Likewise, 

this can be extended to prediction of consumer acceptance, where the liking of 
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a green tea drink may be positively correlated to the floral and green sensory 

attributes, and negatively correlated to bitterness.  

There are a number of statistical methods for multiple linear regression, of 

which the most commonly encountered techniques in the fields of chemometrics 

and sensory science are multiple linear regression, partial least squares 

regression (PLSR), and internal and external preference mapping, both of which 

are variants of principal component analysis. Examples of recent studies 

utilising these methods have been summarised in Table 2.4. 

 

Table 2.4: Application of linear regression methods in flavour and sensory studies. 

Product Purpose 
Analytical 

methodology 
References 

Strawberries Correlate consumer 

acceptability scores with 

sensory attribute intensities 

Multiple linear 

regression using 

principal 

components 

Ares, Barrios, 

Lareo, & Lema 

(2009) 

Bread Relate sensory characteristics 

to volatile composition, and 

correlate consumer perception 

to chemical composition 

Partial least 

squares regression 

Heenan, Dufour, 

Hamid, Harvey, & 

Delahunty (2009) 

Dry-cured 

ham 

Identify sensory 

characteristics driving 

consumer acceptability 

External 

preference 

mapping using 

principal 

components 

Resano, Sanjuán, 

Cilla, Roncalés, & 

Albisu (2010) 

Ice cream Correlate descriptive attributes 

and hedonic judgements, and 

investigate effects of formula 

composition on sensory profile 

Partial least 

squares regression 

Soukoulis, Lyroni, 

& Tzia (2010) 

Oolong tea Investigate relationship 

between chemical composition 

and sensory profile 

Multiple linear 

regression using 

principal 

components 

Wang et al. (2010) 



40 

 

Product Purpose 
Analytical 

methodology 
References 

White wine Correlate volatile and sensory 

data sets 

Partial least 

squares regression 

González Álvarez, 

González-Barreiro, 

Cancho-Grande, & 

Simal-Gándara 

(2011) 

Pomelo 

juice 

Correlate instrumental data 

and sensory profile 

Partial least 

squares regression 

Cheong, Liu, Zhou, 

Curran, & Yu 

(2012) 

Black tea Correlate chemical and aroma 

profile, and to develop 

measurement models for tea 

aroma quality 

Stepwise multiple 

linear regression 

Pang et al. (2012) 

Fruit 

smoothies 

Investigate effects of chemical 

and physical attributes on 

overall sensory properties 

Partial least 

squares regression 

Keenan, Brunton, 

Mitchell, Gormley, 

& Butler (2012) 

Sweet potato Correlate sensory properties to 

carotenoid and dry matter 

contents 

Stepwise multiple 

linear regression 

Tomlins, Owori, 

Bechoff, Menya, & 

Westby (2012) 

Blanched 

apple slices 

Correlate texture attributes to 

rheological properties 

Partial least 

squares regression 

Loredo, Guerrero, & 

Alzamora (2014) 

Lingonberry Correlate sensory 

characteristics with chemical 

composition 

Partial least 

squares regression 

Viljanen, Heiniö, 

Juvonen, Kössö, & 

Puupponen-Pimiä 

(2014) 

Beer Correlate sensory profile and 

higher alcohol and ester 

production during 

fermentation 

Partial least 

squares 

regression, 

artificial neural 

network, support 

vector machine 

Dong et al. (2014) 

Oranges, 

pineapples, 

and grapes 

Correlate consumer liking and 

sensory attributes to physical 

and physicochemical 

properties 

Univariate 

regression and 

multiple linear 

regression 

Corrêa et al. (2014) 

White wine Correlate sensory properties to 

chemical components 

Partial least 

squares regression 

Liu et al. (2015) 
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2.4.1.1. Multiple linear regression 

Multiple linear regression refers to the prediction of a single dependent variable 

from multiple independent variables, and can be considered as the most basic 

form of linear regression. Linear regression using a single independent variable 

is often insufficient, and is unlikely to yield a satisfactory explanation of the 

relationship between the independent and dependent variables, given that the 

number of predictor variables encountered in sensory evaluation of food can be 

numerous. 

The most often used approach to multiple linear regression is the least squares 

approach, which is to fit a line through a plot of independent versus dependent 

variables in a multidimensional hyperspace, minimising the errors of the sum 

of squares of deviation. Computation of the regression coefficients is a degree 

of freedom issue, that is to say, the number of observations or samples has to be 

greater than the number of independent variables (n > k), without which, the k 

× k covariance matrix of X′X is singular, and there is rank deficiency and 

insufficient information for estimation of model coefficients.  

Stepwise multiple linear regression is a linear regression technique that uses 

feature selection in building a regression model. In a nutshell, the regression 

procedure is divided into multiple steps, during which a model term is either 

added or removed from the regression model. The F-statistic is used to compare 

the new regression model against the model at the start of each step. Model 

terms with the most significant change in the F-statistic will be added or 

removed, such that only the most relevant features will be used in model 

building. Stepwise regression with only added model terms is known as forward 



42 

 

stepwise regression; stepwise regression that only allows for removal of model 

terms, commonly from an initial full model, is known as backward regression. 

A combination of both types of feature selection is the most commonly type of 

stepwise regression. 

Stepwise multiple linear regression may be used as an alternative to full multiple 

linear regression due to its feature selection property, allowing model selection 

to stop when the addition or deletion of model terms does not improve the 

quality of the resulting model. This property of stepwise multiple linear 

regression is independent of the number of model terms or observations, thus 

allowing k ≤ n criterion in regression problems to be satisfied or ignored.  

A general algorithm for forward-backward stepwise multiple linear regression 

is as follows: 

 

1. Specify type of regression model for fitting, as well as model terms that 

should be included at the initial step. 

2. At each step, the F statistic of each model term, when included into or 

removed from the model, is determined.  

3. The model term that results in the most significant F statistic will be 

included or excluded from the model. 

4. Steps two and three are repeated until there is no significant change in 

the F statistic. 
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2.4.1.2. Partial least squares regression 

Partial least squares regression (PLSR), or sometimes referred to as “projection 

onto latent structures”, was developed in the 1970s as a tool in economics, but 

has since been adopted in a number of fields, notably chemometrics, as well as 

the social sciences, as a statistical method. In this section, we will briefly discuss 

the basic concepts of PLSR as a form of regression tool in sensory science. 

Reviews discussing the technical aspects of PLSR in greater details can be 

found elsewhere (Abdi, 2003; Geladi, 1988; Höskuldsson, 1988; Noble & 

Ebeler, 2002; Rosipal & Krämer, 2006; Wold, Sjöström, & Eriksson, 2001). 

PLSR is a linear regression method that can be thought of as a combination 

between multiple linear regression and principal component analysis. Instead of 

using independent variables for regression, PLSR constructs new latent 

variables known as principal components, which are linear combinations of the 

original variables, and are not directly observed or measured (Rosipal & Krämer, 

2006).  

One of the most important features of PLSR in sensory science and 

chemometrics is its ability to deal with big data. As mentioned previously in 

Section 2.4.1.1, multiple linear regression is not feasible if the number of 

variables is greater than the number of observations or samples. In such cases, 

there may be a few latent variables that are sufficient in explaining most of the 

variation in the dependent variables. PLSR uses an extracted set of latent 

variables from the original independent variables to predict latent variables 

extracted from the original dependent variables, thereby indirectly predicting 

response variables using the predictors. Like multiple linear regression, PLSR 
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seeks to fit the model given in Equation 2.6, where Y is a matrix of n 

observations by q dependent variables, X is a n by p matrix, β is a p by q matrix 

containing the PLSR regression coefficients, and E is noise or residuals 

associated with both independent and dependent variables.  

The nonlinear iterative partial least squares (NIPALS) and statistically inspired 

modification of PLS (SIMPLS) algorithms are two of the most commonly used 

algorithms for PLSR. For a more technical discussion on the algorithms, we 

refer readers to the articles by Geladi and Kowalski (1986) and de Jong (1993).  

The number of components chosen to compute PLSR is an important factor in 

PLSR. While it is possible to use all components in constructing the PLSR 

model, this is not often done as components of higher degrees often explain a 

lower amount of variances, and may contain experimental noise, which is 

screened out in the earlier components. However, data containing a higher 

degree of nonlinearity may require a larger number of components to explain 

the nonlinearities associated with the data. Data transformation methods may be 

applied prior to PLSR to remove the nonlinearities, which may decrease the 

number of components required to construct PLSR models (Geladi & Kowalski, 

1986).  

PLSR has been used in a wide range of studies in analysis of flavours and 

sensory properties in food products. In most cases, PLSR was used to establish 

correlations between chemical components including taste and odour active 

compounds and sensory perceptions, sensory attributes and consumer 

preferences or acceptance, as well as between chemical components and 

hedonic properties. Gao et al. (2015) developed a PLSR model to correlate 
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concentrations of phenolic compounds in red wines with sensory attributes, 

which included appearance, fragrance, mouthfeel, and overall impressions, as 

determined by a trained sensory panel. The first two principal components were 

found to explain up to 62% of variance in appearance, and 40.1% of variance in 

mouthfeel perceptions. In another study related to wines, Liu et al. (2015) 

investigated the relationship between tastants and odourants, and sensory 

attributes of Slovak white wines using PLSR. The first two components were 

found to explain 44% of variance in X (chemical components) and 78% of 

variance in Y (sensory attributes). Rather than using selected odourants based 

on the odour activity values (OAV), the chemical data were used entirely to 

allow for consideration of potential interactions between compounds with OAV 

of less than one. 

Bindon et al. (2014) investigated the relationship between sensory properties 

and consumer preference in Cabernet Sauvignon wine. Chemical, sensory, and 

consumer liking data were obtained through chemical analyses, sensory 

profiling by a trained sensory panel, and consumer testing. PLSR models were 

developed to correlate chemical data to sensory data, as well as to associate 

sensory attributes and consumer liking to consumer demographics. The number 

of principal components selected for model development was based on the 

residual variance explained by each component. Validation of the PLSR model 

was done using the leave-one-out cross validation. 

Preference mapping is an extension of principal component analysis and other 

related methods (principal component regression etc.) that is used in producing 

a visual representation of sensory and consumer data from which significant 



46 

 

trends and observations such as consumer segmentation and drivers of liking 

can be easily deduced from. Both internal and external preference mapping has 

been widely used in sensory studies, and an extensive discussion of preference 

mapping can be referred to Greenhoff and MacFie (1994). 

 

2.4.2. Nonlinear regression models 

Linear regression models are often used in correlating different data sets within 

food systems. However, the information present in food systems may be 

inherently nonlinear in nature, resulting in the need for data transformation or 

other techniques in order to transform a nonlinear relationship into one that can 

be modelled by linear techniques. One of the most commonly used 

transformation method is the Box-Cox transformation, as well as the other types 

of power transformation. However, the transformed variables or model 

coefficients may be difficult to interpret. The use of nonlinear regression 

methods allows users to correlate different data sets with nonlinear relationships 

without the need to perform data transformation. While linear regression, and 

in some cases of nonlinear regression such as modelling the growth rate of 

microorganisms, often translates to determination of model coefficients based 

on a known model structure (e.g. Equation 2.6), there may not be a 

predetermined nonlinear model in most cases, such as in the relationship 

between chemical constituents and sensory characteristics of a food product. 

Machine learning and artificial intelligence methods such as fuzzy logic and 

artificial neural network may be used in such examples, and will be briefly 

discussed in the following sections. 
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2.4.2.1. Fuzzy logic 

Fuzzy logic is a decision making and classification tool that is modelled after 

the human thought process by generating complex decisions based on imprecise 

information. It has been used in sensory analysis to derive conclusions regarding 

consumer acceptance, ranking of food products, as well as identifying important 

factors for discrimination. Results obtained from sensory evaluation is 

dependent on the accuracy of human panels. As sensory results are often highly 

variable, subsequent analysis using statistical methods may produce results with 

low accuracy, precision, as well as repeatability (Mukhopadhyay et al., 2013). 

The uncertainty associated with such sensory results can be treated with 

computation methods involving the use of fuzzy logic.   

Briefly, fuzzy logic refers to probability-based logic where there is a lack of 

definite or absolute values in the data, as opposed to classical logic, where a 

value is either false (denoted by 0) or true (denoted by 1). Considering this, 

probability-based fuzzy logic allows for values in between 0 and 1, allowing for 

data to be ‘partially true or false’. The lack of an absolute value is an important 

aspect in sensory evaluation. For example, a fruit juice may not necessarily be 

absolutely sweet or sour, but may instead be partially sweet with a tinge of 

sourness. Furthermore, the nonlinear relationship between food constituents and 

sensory perception requires statistical analysis using nonlinear methods. Fuzzy 

logic is an important tool for analysing vague and fuzzy data that are frequently 

encountered in sensory data, and can be used to derive conclusions from sensory 

and hedonic properties of foods (Sinija & Mishra, 2011). 
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Fuzzy logic has been largely used for classification and ranking purposes in the 

food sensory domain. Sinija and Mishra (2011) made use of a fuzzy logic 

classifier on sensory data to rank the quality of instant green tea powder and 

granules, as well as to identify key product attributes affecting consumer 

perception of the green tea samples. Triplet scores for each green tea sample 

were calculated using the triangular membership function, based on a six-point 

acceptance scale for colour, flavour, taste, and strength. Flavour, taste, and 

colour were determined to be the most important product attributes affecting 

product quality, according to similarity values calculated from the membership 

functions of these attributes. Likewise, the similarity values of the tea samples 

were used to determine the ranking of green tea samples evaluated by the 

sensory panel.  

Liu, Dong, Wang, Yin, and Li (2012) developed a fuzzy system to reduce the 

subjectivity of human sensory evaluation on Chinese beers, and to transform 

complex sensory data into a common index for comparison and ranking. 

Similarly, membership functions for beer attributes were determined and 

converted into fuzzy weight vectors, which were then used in fuzzy 

comprehension evaluation to determine the quality of beer samples, based on 

sensory input from a consumer panel consisting of 30 male and 30 female 

consumers.  

Fuzzy logic has also been used in the analysis of sensory data in other food 

products and applications, such as consumer acceptability of Indian yoghurt 

(Routray & Mishra, 2012), sensory authentication of extra virgin olive oil 
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(Aparicio, Calvente, & Morales, 1996), and discrimination of red wines using 

adaptive fuzzy partition, which is derived from fuzzy logic (Piclin et al., 2008). 

 

2.4.2.2. Artificial neural network 

Artificial neural networks (ANNs) are a type of nonlinear method which were 

designed to mimic pattern recognition and information storage processes 

performed by the brain and biological nervous system, with individual nodes 

modelled after biological neurons, and weighted connections mimicking axons 

and synapses. This can be contrasted with fuzzy logic, which also attempts to 

simulate complex human thought processes. An ANN consists of a network of 

connected neural units, also known as nodes, which are typically divided into 

the input, output, and hidden layers.  

The input layer often corresponds to the independent variables, and its size is 

determined by the dimensionality of the input data set. The output layer 

generates the output of the ANN, which in most cases, is the predicted value of 

a dependent variable in a regression, or classification groups in classification 

problems. The hidden layer is a layer of nodes in between the input and output 

layers, and has no direct interaction with input and output data. This layer is the 

main ‘workhorse’ of the neural network, and is the main driving force behind 

ANN’s ability to solve complex nonlinear problems.  

Input to individual neurons is determined by the sum of outputs from neurons 

in the preceding layer, which in turn is affected by weights of individual neural 

connections and biases of preceding neurons. Weights and biases of an ANN 
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represent how information is processed by the neural network. The net input is 

then processed by the neuron transfer function, which is the same for neurons 

within the same layer, and information, or signal, is passed on to neurons in the 

subsequent layer. There are a number of transfer functions used in ANN, with 

the linear, and sigmoidal functions being the more commonly used transfer 

functions. The general workings of a single neural unit can be summarised by 

Equation 2.7, and shown in Figure 2.4: 

 

 

Figure 2.4: Illustration of (a) a single artificial neural unit, with the main processes of summation and 

transformation denoted by ∑ and φ, respectively; and (b) a three-layer artificial neural network with a 4-

3-1 architecture, with each layer consisting of artificial neural units. 

 

Y = f ( ∑ w X + b ) + e (Equation 2.7) 

 

where Y is the output of the neural unit, f refers to the transfer function, w is the 

connection weight of the input signal, X is the input signal, b is the bias 

associated with the neural unit, and e is the noise of the input. Given that a 

typical ANN consists of a number of such neural units, the entire neural network 
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is able to model highly nonlinear data and theoretically approximate any 

function, linear or nonlinear in nature.  

 

2.4.2.2.1. ANN training algorithms 

The back propagation (BP) algorithm is one of the most commonly used 

algorithm for training neural networks. Neural networks were considered to be 

a dying trend in the 1960s and 70s due to hype and limitations in the early 

conceptions of the neural network and perceptron. The initial perceptron 

algorithm was limited in solving nonlinear classification problems (Wythoff, 

1993). However, the development of the BP algorithm and incorporation of an 

additional hidden layer overcame this limitation, and led to a growth in the use 

of ANN as niche functions for classification and function approximation.  

Using the BP algorithm, ANNs are able to learn by processing inputs and 

comparing against desired outputs. Input data is initially fed forward through 

the input layer, hidden layer, and finally the output layer, with data 

transformation taking place in the hidden and output layers. The resulting output 

(predicted values or classification results) is compared against the observed or 

experimental output. The calculated errors between the predicted and observed 

output are propagated back throughout the network, and weights of connections 

between nodes and biases associated with nodes in the hidden and output layers 

are adjusted accordingly to lower the error function. Each cycle of processing 

and propagation is known as an epoch, and it is not uncommon for ANNs to 

have thousands of epochs.  



52 

 

A potential drawback of the BP algorithm is the tendency for the algorithm to 

be stuck in a local minimum while searching for a global minimum for the error 

function (Huang, Kangas, & Rasco, 2007). The error of the network is decreased 

with each training epoch, as connection weights and biases are adjusted to 

achieve the global minimum of the error function. As such, users would be 

required to perform several rounds of network training and validation to ensure 

that training of the ANN has not resulted in local minima. Despite of this 

drawback, ANNs holds great potential in computing due to their ability to 

perform tasks beyond simple pattern recognition.  

In training an ANN, the number of samples required should theoretically be at 

least equal to the number of variables present in the problem. Due to the 

presence of connection weights and biases, the number of observations required 

is very much higher in order to obtain a unique solution, compared to the 

regression or classification problem. However, this is unlikely to achieve in real 

life due to the difficulty in evaluating a large number of food products in a 

sensory evaluation, leading to multiple solutions when the network is trained 

repeatedly, as well as poor prediction capabilities using new, unseen data, and 

a lack of robustness (Huang et al., 2007). Another key factor affecting the 

robustness of the ANN is the size of the hidden layer. Although several rules 

for determining the number of nodes present are available in the literature, none 

of it have been fully established to be a good rule of thumb when training an 

ANN. One method which can be considered is to repeatedly train a network to 

search for the size of the hidden layer with the lowest error (mean square error, 

root mean squared error, and so on). The use of a hidden layer with a small 

number of nodes may be unable to fully model complex relationships in datasets, 
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while including too many nodes in the hidden layer may lead to overfitting and 

poor generalisation of the overall relationship between independent and 

dependent variables.  

 

2.4.2.2.2. Applications of ANN 

ANNs have been utilised for prediction, function approximation and generation 

of patterns unachievable by conventional statistical or modelling methods 

(Cimpoiu et al., 2011; Khanchi et al., 2007; Yu & Wang, 2007). Recent 

applications of ANN in flavour-related studies have been summarised in Table 

2.5. 

Krishnamurthy, Srivastava, Paton, Bell, and Levy (2007) investigated the use 

of artificial neural networks in predicting consumer liking of ten commercial 

beef bouillons from sensory profiles obtained from trained sensory panels. ANN 

was compared with linear regression methods including stepwise multiple linear 

regression, principal component regression, and partial least squares regression 

for predicting consumer liking scores. Two data sets were used for training two 

ANNs, the first consisted of raw data, while the other consisted of data with a 

transformation function applied to it. The ANN trained using the transformed 

data was found to be the best in predicting consumer liking, along with the best 

tolerance to variations in trained panel scores. 

Bahramparvar, Salehi, and Razavi (2014) evaluated the use of an ANN in 

predicting consumer acceptance of ice cream made from three different 

stabilisers. Consumer acceptance was predicted based on the magnitudes of six 
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sensory attributes determined by a trained panel. The size of the hidden layer 

was established as 10 nodes in a single layer by determining the mean absolute 

error, mean square error, and normalised mean square error of networks 

containing a different number of nodes in the hidden layer.  

ANN is often used alongside electronic noses and tongues in the analyses of 

odour and taste active compounds in food products as a tool for correlating the 

nonlinear digital signals to sensory characteristics or hedonic properties (Cevoli 

et al., 2011). The electronic nose is an array of metal oxide gas sensors, capable 

of detecting mixtures of volatile compounds and representing the differing 

levels of volatiles as a multivariate output signal. In recent years, ANN has been 

used in the interpretation of electronic nose and gas chromatography data in the 

study of volatile compounds in cheese (Cevoli et al., 2011), wines (Kruzlicova 

et al., 2009; Lozano et al., 2008), coffee (Michishita et al., 2010), green tea (Yu 

et al., 2008), and pear (Zhang et al., 2008). 
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Table 2.5: Applications of ANN for regression and pattern recognition in flavour and sensory studies. 

Product Purpose Analytical methodology References 

Green tea Rapid determination 

of quality grade 

Cluster analysis and artificial 

neural network for interpreting 

electronic nose data  

Yu, Wang, Yao, 

Zhang, & Yu 

(2008) 

Red and 

white 

wines 

Wine discrimination Probabilistic neural network for 

classification purposes using 

electronic nose data 

Lozano, Santos, 

& Carmen 

Horrillo (2008) 

White wine Discrimination of 

white wine varieties 

Classification of GCMS data 

using back propagation ANN 

Kruzlicova et al. 

(2009) 

Coffee Evaluation and 

development of 

ready-to-drink 

espresso aroma 

Regression of sensory data from 

GC-O and E-nose data using 

ANN 

Michishita et al. 

(2010) 

Pear Development of fruit 

quality indices 

ANN for prediction using E-nose 

data 

Zhang, Wang, & 

Ye (2008) 

Cheese Classification of 

cheeses based on 

ripening times 

Classification of GCMS data 

using back propagation ANN 

Cevoli et al., 

(2011) 

Beef 

bouillon 

Prediction of 

consumer liking  

ANN for prediction using trained 

sensory panel data 

Krishnamurthy, 

Srivastava, 

Paton, Bell, & 

Levy (2007) 

UHT milk Prediction of changes 

in sensory profiles 

during storage 

Back propagation ANN for 

prediction using concentrations of 

various chemical indicators 

Singh, Ruhil, 

Jain, Patel, & 

Patil (2009) 

Yoghurt Prediction of 

consumer acceptance 

and purchase intent 

ANN for prediction using several 

hedonic and sensory quality 

indicators 

Cruz et al. 

(2011) 

Ice cream Prediction of 

consumer acceptance 

ANN for prediction using sensory 

attributes as input data 

Bahramparvar, 

Salehi, & 

Razavi (2014) 

Soy sauce Classification 

according to 

fermentation and 

geographical region 

Back propagation ANN for 

classification using key variables 

of GCMS data  

Xu et al. (2014) 
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2.5. Conclusions 

In this chapter, several popular experimental design and regression 

methodologies have been presented and discussed, along with newer but less 

commonly applied computer algorithm-related techniques. While classical 

techniques such as fractional factorial designs and partial least squares 

regression have been widely used in food flavour and sensory related studies, 

these techniques may be inadequate in fully describing a complex and 

potentially nonlinear system found in food products. Computer-aided 

experimental designs such as optimal designs are gradually seeing greater use 

in food sensory evaluations.  The selection of an experimental procedure in 

sensory and flavour science is critical to obtaining an accurate set of data for 

interpretation through regression models or other methods. Such observations 

are important in understanding the relationships between food products and 

consumers, which in turn are key in determining the direction of growth and 

research for businesses. The computer algorithm-related techniques discussed 

in this review may be able to provide experimenters with a greater depth of 

information over existing techniques. However, this requires an initial 

investment in the computational power and software licensing costs, which may 

be significant at the beginning. Furthermore, newer computer-based methods 

are still very much in development, and it is crucial that these methods should 

be furthered explored in order to be readily established and accepted in food 

flavour and sensory related studies. 
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CHAPTER 3 

 

IDENTIFICATION OF KEY VOLATILE FLAVOUR 

KEYS IN THE DEVELOPMENT OF A READY-TO-

DRINK GREEN TEA BEVERAGE 
 

 

Abstract 

Eight volatile flavour keys, each representing an aroma dimension of green tea 

and comprised of a mixture of volatile odourants found commonly in ready-to-

drink green tea beverages, were mixed together using an olfactometer which 

allowed for controlled blending of mixtures of flavours into a single aroma 

profile, based on a 50-point D-optimal design to obtain a series of green tea 

odours. A consumer acceptance test was conducted to obtain liking information 

on these green tea odours. The most well-liked sample was an odour match of a 

commercial sample (liking score of 6.65 ± 1.30), while the least-liked sample 

had a liking score of 3.65 ± 1.49. A linear regression model was developed to 

objectively predict consumer liking based on the chemical formulation using 

stepwise regression, with a resulting coefficient of determination (R2) of 0.890, 

and training and validation root-mean-squared errors (RMSE) of 0.175 and 

0.629, respectively. Further analysis was conducted to identify flavour keys of 

lesser importance by performing stepwise regression on reduced experimental 

designs. Removal of the X7 and X8 flavour keys were found to have the least 

impact on the resulting model structure, and were thus fixed at the mid-level for 

subsequent studies. 
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Keywords: green tea; consumer liking; stepwise regression; olfactometer; 

experimental design 

 

3.1. Introduction 

Tea, a beverage made by infusing the leaves of Camellia sinensis in hot water 

(Higdon & Frei, 2003), is the most popular drink in the world after water with 

an annual production of 3.95 million tonnes in 2007 (Butt & Sultan, 2009; 

Higdon & Frei, 2003). Ready-to-drink (RTD) green tea beverages are becoming 

increasingly popular, due to the health benefits associated with the consumption 

of green tea, such as reduction in risks of diabetes and cardiovascular diseases, 

as well as its anti-carcinogenic and anti-obesity properties (Butt & Sultan, 2009). 

In light of this, beverage manufacturers have responded to this growing trend 

by increasing the production and availability of RTD green tea beverages 

(Zegler, 2013).  

In order to increase sales of food and beverage products, the extrinsic (brand, 

nutritional labelling, advertising and marketing) and intrinsic (flavour and 

texture profiles) properties of food products will have to be taken into 

consideration (Fernqvist & Ekelund, 2014). Food aroma properties have been 

widely accepted to play a critical role in consumer liking and acceptability, and 

is one of the key considerations in the development of new food and beverage 

products (Leclercq & Blancher, 2012). Volatile odourants are perceived by 

humans in the olfactory epithelium orthonasally (through the nose) or 

retronasally (from the mouth via the pharynx), giving rise to a perception of 

flavours from the external environment or from the mouth respectively (Small, 
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Gerber, Mak, & Hummel, 2005). Due to the differences in mechanisms in which 

odourant molecules reach receptors in the olfactory mucosa, the efficiency in 

which an odour is detected by orthonasal and retronasal stimulus is different. A 

previous study by Pierce and Halpern (1996) suggested that odour detection via 

the orthonasal route led to a higher degree of accuracy in the detection and 

identification of volatile compounds. The Virtual Aroma Synthesiser (VAS) is 

an olfactometer developed by Givaudan to deliver controlled amounts of food 

odourants in a gas phase through a nose piece which will be detected by sniffing 

through the smelling port. This allows for a rapid evaluation of samples, which 

when contrasted to traditional sensory evaluation of food products, requires less 

time and resources in the collection of sensory data (Leclercq & Blancher, 2012).  

In recent years, there has been an increase in the number of studies regarding 

the use of electronic nose (e-nose) and tongue (e-tongue) in the analysis of 

chemical constituents in green tea (Chen, Zhao, Chen, Lin, & Zhao, 2011; Huo 

et al., 2014). However, it is limited in its use in discriminating green tea quality, 

due to fundamental differences between detection of chemical compounds by 

an instrument and perception of an odour by biological organisms. Although the 

relationship between volatile odourants in green tea brews and leaves, and 

consumer acceptability has been studied extensively (Kumazawa & Masuda, 

2002; Lin, Dai, Guo, Xu, & Wang, 2012; Wang & Ruan, 2009), there are limited 

studies focusing on RTD green tea beverages. Kim et al. (2007) studied the 

effects of heating on the chemical constituents and colour changes of RTD green 

tea beverages, without considering effects on consumer acceptability and liking. 

It would be of relevance and interest to manufacturers of RTD green tea 

beverage to identify key chemical compounds affecting consumer liking.  
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As such, the main objectives of this study were to identify the key volatile aroma 

keys affecting hedonic properties of RTD green tea, and to develop a regression 

model for predicting consumer liking. This information would subsequently be 

used for dimension reduction in future studies involving non-volatile tastants 

and their effect on the flavour profile and consumer acceptance of RTD green 

tea. 

 

3.2. Materials and Methods 

3.2.1. Materials 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

3.2.2. Sample preparation 

Eight green tea flavour keys comprising of mixtures of different volatile flavour 

chemicals were developed for the MiniVAS, which is a portable version of the 

VAS. These flavour keys were designed by in-house flavourists to be able to 

reproduce the aroma profile of seven commercial RTD green tea products 

obtained from supermarkets in the People’s Republic of China. The MiniVAS 

is a proprietary tool developed by Givaudan allowing for rapid and automated 
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mixing of several flavour blocks, reducing the amount of time required for 

evaluating a large number of samples. The eight flavour keys represent aromas 

associated with the commercial RTD green tea samples in general, and are 

summarised in Table 3.1.  

Flavour keys were dosed into polyethylene tubes containing polystyrene foam 

particles according to the required amount. The polyethylene tubes were then 

mixed on an orbital shaker for 30 min to allow for adequate distribution of the 

flavour keys, followed by storage at 4 °C until subsequent use on the MiniVAS. 

 

Table 3.1: In-house formulated flavour keys used in the MiniVAS. 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

  

3.2.3. Sensory analysis 

A consumer acceptance study was conducted using a D-optimal experimental 

design consisting of 58 design points. Forty-two points were generated from the 

OPTEX procedure in the SAS package (SAS Institute Inc., North Carolina, 

USA) to form a D-optimal design that allowed for estimation of all main effects 

and two-factor interactions at two factor levels. Eight variables were included, 

corresponding to the eight green tea flavour keys that were developed. In 
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additionally, eight design points were added to allow for a quadratic fit to the 

eight flavours keys. The resulting three-level experimental design is 

summarised in Table 3.2. The aromas of three commercial RTD green tea 

samples were mimicked using the eight flavour keys (F52 to F54), and together 

with another design point (F51) consisting of mid-levels were included in the 

design as part of the validation set, which was evaluated in triplicate (once per 

session). Lastly, two dummy points were also included for calibration purposes. 

A total of 126 untrained panellists from the National University of Singapore 

were recruited through online (emails, online surveys) and offline means 

(approached directly). Prior to joining the sensory panel, participants were 

required to complete a pre-sensory survey to provide information on frequency 

of consumption of green tea, and other demographics. Participants that disliked 

or did not regularly consume green tea were excluded from the consumer 

preference study. Only participants who were frequent consumers of RTD green 

tea beverages (at least once per week) were recruited to participate in the 

sensory evaluation of the green tea model systems. Panellists were each 

assigned a random three-digit judge code. 

Samples were evaluated in duplicate over two sessions, on a liking scale of one 

to nine, with one denoting an extreme dislike for the odour, and nine denoting 

an extreme liking for the odour. Presentation order of the samples was based on 

a 54 × 54 Latin square. Panellists were required to place their nose at the 

smelling port of the MiniVAS, following which an odour would be emitted from 

the instrument. Facilitators were present to input scores for the panellists while 

they were evaluating green tea odour samples. Panellists were instructed to 
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breathe into a polyethylene cup filled with wet paper towels (source of 

humidified air) in order to remove carry-over odours in between samples. 

 

3.2.4. Data and statistical analyses 

Consumer liking scores were presented as mean ± standard deviation. Analysis 

of variance (ANOVA) was performed using MATLAB version 7.12 (The 

MathWorks, Inc., USA), with Tukey’s Honestly Significant Difference as a 

post-hoc test. Differences were considered to be statistically significant at p < 

0.05. The correlation between chemical formulation and consumer liking was 

investigated using regression analysis. All variables were normalised to a range 

of 0.1 to 0.9 based on the minimum and maximum values of each variable to 

ensure numerical consistency.  

Forward stepwise multiple linear regression was performed using MATLAB 

version 7.12. The coefficient of determination of the regression line (R2) and 

root-mean-squared errors of predicted values (RMSE) were used to describe 

reliability of the predictive power of regression models.  
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Table 3.2: Fifty-point D-optimal design for eight factors and three levels.  

********** 

This section contains confidential information, and has been omitted from the online version of this thesis. 

********** 
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3.3. Results and discussion 

3.3.1. Consumer preference study 

A consumer acceptance study was conducted to obtain liking scores for aromas 

associated with RTD green tea beverages using a 50-point D-optimal design. 

The most well liked sample was sample F54 (odour match of RTD green tea 

sample no. 3; 6.65 ± 1.30), while the least liked was sample F17 (3.65 ± 1.49). 

The resulting distribution of scores is shown in the form of a box-and-whiskers 

plot in Figure 3.1. 

 

Figure 3.1: Box-whisker plot of average consumer liking scores. First quartile, median and 

third quartile scores are denoted by the box; mean scores for samples are represented by 

diamond within box; whiskers show one standard deviation above and below mean of data. n = 

126. 

 

One-way ANOVA results indicated that the observed consumer liking scores 

for 54 green tea odours differed significantly (p < 0.05), despite of the relatively 

narrow range of liking scores. Post-hoc test was conducted using Tukey’s 

Honestly Significant Difference, and results obtained were summarised in Table 
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3.3. A total of 24 groups were obtained, and significant differences were 

detected at a significant difference of 0.69 between the most well-liked odour 

sample (F54) and the sample in the subsequent group (F22), and a significant 

difference of 0.67 in the least-liked samples (F07 and F05) in the groups with 

the lowest consumer liking score, according to ANOVA. 
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Table 3.3: ANOVA post-hoc test results obtained using Tukey’s Honestly Significant 

difference. 

Sam

ple 

Liking 

score 

                       

F07 3.65 ± 1.49                       x 

F06 3.75 ± 1.38                      w x 

F18 4.15 ± 1.32                     v w x 

F11 4.18 ± 1.35                    u v w x 

F01 4.29 ± 1.54                   t u v w x 

F04 4.31 ± 1.47                  s t u v w x 

F05 4.33 ± 1.34                 r s t u v w  

F09 4.35 ± 1.28                 r s t u v w  

F21 4.40 ± 1.24                q r s t u v w  

F12 4.41 ± 1.29               p q r s t u v w  

F15 4.43 ± 1.28               p q r s t u v   

F20 4.49 ± 1.36              o p q r s t u v   

F08 4.50 ± 1.43              o p q r s t u v   

F16 4.54 ± 1.39             m o p q r s t u v   

F30 4.55 ± 1.41             m o p q r s t u v   

F19 4.66 ± 1.33            l m o p q r s t u v   

F39 4.74 ± 1.37           k l m o p q r s t u v   

F03 4.77 ± 1.40          j k l m o p q r s t u v   

F41 4.81 ± 1.39         i j k l m o p q r s t u v   

F13 4.85 ± 1.31        h i j k l m o p q r s t u    

F29 4.85 ± 1.38        h i j k l m o p q r s t u    

F38 4.85 ± 1.43        h i j k l m o p q r s t u    

F27 4.87 ± 1.35        h i j k l m o p q r s t     

F34 4.88 ± 1.29       g h i j k l m o p q r s t     

F42 4.90 ± 1.35      f g h i j k l m o p q r s t     

F25 4.91 ± 1.34      f g h i j k l m o p q r s t     

F32 4.93 ± 1.33      f g h i j k l m o p q r s t     

F17 4.94 ± 1.38      f g h i j k l m o p q r s t     

F36 4.98 ± 1.30      f g h i j k l m o p q r s      

F31 4.99 ± 1.39      f g h i j k l m o p q r       

F10 5.04 ± 1.27      f g h i j k l m o p q        

F37 5.08 ± 1.42      f g h i j k l m o p         

F02 5.11 ± 1.61     e f g h i j k l m o          

F14 5.17 ± 1.28     e f g h i j k l m           

F43 5.21 ± 1.24     e f g h i j k l m           

F24 5.24 ± 1.51    d e f g h i j k l            

F45 5.30 ± 1.38   c d e f g h i j k l            

F44 5.33 ± 1.20   c d e f g h i j k l            

F26 5.38 ± 1.14   c d e f g h i j k             

F48 5.38 ± 1.28   c d e f g h i j k             

F46 5.38 ± 1.34   c d e f g h i j k             

F35 5.42 ± 1.24   c d e f g h i j              

F49 5.44 ± 1.24   c d e f g h i               

F50 5.46 ± 1.19  b c d e f g h i               

F40 5.49 ± 1.40  b c d e f g h                

F51 5.56 ± 0.89  b c d e f g                 

F28 5.56 ± 1.37  b c d e f                  

F52 5.57 ± 1.22  b c d e f                  

F23 5.77 ± 1.42  b c d e                   

F47 5.78 ± 1.11  b c d e                   

F53 5.91 ± 1.19  b c d                    

F22 5.95 ± 1.62  b c                     

F33 6.14 ± 1.30 a b                      

F54 6.65 ± 1.30 a                                             
† Products with same lower-case letters are not significantly different. 
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3.3.2. Modelling of analytical and hedonic datasets 

Multiple linear regression model using forward stepwise regression was used to 

identify the main drivers of liking. All main effect, interaction and quadratic 

terms were excluded from the initial model, and at each step, variables were 

added or deleted one at a time until an acceptable regression model was obtained. 

Addition or deletion of variables was dependent on the F-test, which compares 

quality of the model at any given step against the previous step. Entrance and 

exit tolerances were set at p = 0.05. In this study, main effects were prioritised 

over interaction and quadratic terms, i.e. as long as the p of a main effect was 

less than 0.05, the variable would be included in the model, even though there 

were other interactions or quadratic terms with smaller p. Although pairwise 

interactions of model variables were important, model factors consisting of a 

single variable would be able to provide a parsimonious interpretation of the 

relationship between volatile flavour keys and consumer liking of the overall 

aroma profile. 

The eight flavour keys were used as predictor variables while the mean 

consumer liking scores between the two sessions were used as response 

variables. Fifty samples comprising of the experimental design and eight 

quadratic points were used for model training, and the remaining four points 

consisting of three matches of commercial samples and the average of mid-level 

sample were used for model validation. The dummy points were used as a 

calibration for consumers at the start of each evaluation session, and were not 

used in model development. A regression model containing only the statistically 

significant terms was developed (Equation 3.1). The derived model is as such: 
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********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

Predictor inputs and predicted liking scores were normalised to a range of 0.1 

to 0.9. The coefficient of determination and root mean square error of the model 

were calculated as 0.890 and 0.175 respectively. Cross-validation of the model 

using the validation set resulted in a RMSE of 0.629. Residuals analysis 

revealed a fairly random distribution between bands, indicating that forward 

stepwise regression provided a good fit to the data.  X1 and X3 flavour blocks 

were determined to be the main positive drivers of liking, suggesting that 

samples with stronger fruity and floral notes were positively correlated to liking 

within the panel of consumers. X5 and X6 flavour blocks were negative drivers 

of liking. A quadratic term for the X3 flavour block was determined to be 

significant, indicating that there was a maximum dosage of the X3 flavour block 

which produced an optimum liking score. 

 

3.3.3. Dimensional reduction in experimental design 

The experimental design for the preliminary study investigated the effects of 

eight flavour keys, for which there would be a need for reduction in the number 

of flavour keys for an increase in the degrees-of-freedom to account for non-
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volatile tastants in the next stage of the study. Increasing the number of predictor 

variables is not an option, due to the increase in size of experimental design to 

cater for additional variables, which would result in an increase in the amount 

of resources required for conducting both trained and untrained panel sensory 

sessions. 

Reduction in dimensionality of the analytical data comes in the form of 

removing insignificant flavour keys from the experimental design by fixing 

these factors at the mid-level such that they were no longer variables, but were 

still present as they still contribute to the overall aroma profile of RTD green 

tea beverages. The approach adopted in this study was to compare model quality 

for different sets of predictor variables, each with one or more variables 

removed. Stepwise regression was used to construct the regression models, in a 

manner similar to that mentioned previously. The R2 and RMSE of the resulting 

regression models with one or more removed variables are shown in Figure 3.2. 

 

 ********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Figure 3.2: (a) Training set R2; (b) training set RMSE; and (c) validation set RMSE of original 

model and regression models developed using experimental designs with one or more removed 

flavour keys. 
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From Figure 3.2, it can be seen that up to two flavour keys in combinations of 

X2, X7, and X8, could be removed without significantly affecting model quality. 

Removal of the X1, X3, X5, and X6 flavour keys individually resulted in 

decreases in model R2 and an increase in RMSE of both training and validation 

sets, highlighting the importance of these flavour keys relative to other keys or 

combination of keys. Removal of the X4 flavour key seemingly resulted in a 

model of comparable quality to the original stepwise regression model, similar 

to that of removing the X2, X7, and X8 flavour keys. However, this was probably 

due to an inadequate range of concentration used in this study. In-house 

evaluation of commercial RTD green tea beverage samples by flavourists, from 

whom the eight flavour keys were designed by, suggested that the X4 flavour 

key was an important flavour aspect of the commercial samples. As such, it was 

recommended that the flavour key should be included in subsequent studies. 

Combinations of X2, X7 and X8 flavour keys were selected to be removed. 

Figure 3.3 shows a comparison of the significant terms in stepwise regression 

models between the different sets of flavour keys removed. 

Stepwise regression models developed from the removal of X2 and X8 flavour 

keys, and X7 and X8 flavour keys were the most similar to the original regression 

model (Equation 3.1), among the four data sets evaluated. The main effect terms 

were unchanged, with only slight differences in magnitudes. Removal of X2 and 

X7 flavour keys, and all three flavour keys resulted in a regression model 

containing very different significant terms, indicating a large change in terms of 

model stability. As such, the X7 and X8 flavour keys were chosen to be removed 

ultimately as the regression model quality was better than that of the data set 

with X2 and X8 flavour keys removed. 
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This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

Figure 3.3: Coefficients of significant regression model terms derived from stepwise regression 

based on experimental designs with (a) all variables intact; (b) X2 and X7 removed; (c) X2 and 

X8 removed; (d) X7 and X8 removed; and (e) X2, X7, and X8 removed. 

 

3.4. Conclusions 

In conclusion, a linear regression model was developed to objectively predict 

consumer liking of green tea odour from mixtures of chemical flavour keys 

using stepwise regression. The X1 and X3 keys were found to be key drivers of 

liking, suggesting that fruity, floral smelling green teas were well-received 

compared to less fruity and floral smelling samples. Among the eight flavour 

keys that were used in this study, the X7 and X8 flavour keys were found to be 

of the least importance, and were removed from the experimental design in 

subsequent studies and replaced with two other non-volatile flavour keys. 

  



73 

 

CHAPTER 4 

 

IDENTIFYING KEY NON-VOLATILE 

COMPOUNDS IN READY-TO-DRINK GREEN TEA 

AND THEIR IMPACT ON TASTE PROFILE 
 

 

Abstract 

Thirty-nine non-volatile compounds in seven ready-to-drink (RTD) green tea 

samples were analysed and quantified using liquid chromatography. Taste 

reconstruction experiments using thirteen selected compounds were conducted 

to identify the key non-volatile tastants. Taste profiles of the reconstructed 

samples did not differ significantly from the RTD tea samples. To investigate 

the taste contribution and significance of individual compounds, omission 

experiments were carried out by removing individual or a group of compounds. 

Sensory evaluation revealed that the astringent- and bitter-tasting (‒)-

epigallocatechin gallate, bitter-tasting caffeine, and the umami-tasting L-

glutamic were the main contributors to the taste of RTD green tea. Subsequently, 

the taste profile of the reduced recombinant, comprising of a combination of 

these three compounds and L-theanine, was found to not differ significantly 

from the sample recombinant and RTD tea sample. Lastly, regression models 

were developed to objectively predict and assess the intensities of bitterness and 

astringency in RTD green teas.  

Keywords: green tea; taste reconstruction; taste omission; half tongue test; 

sensory evaluation; mathematical modelling 
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4.1. Introduction  

Tea quality is usually evaluated by professional tea tasters based on the 

appearance, aroma and taste of the tea brew, as well as appearance of the dry 

and infused leaves (Liang et al., 2008). Due to the subjectivity and inconsistency 

of this evaluation method, several studies have attempted to correlate the 

chemical constituents and sensory characteristics to the perceived quality index 

evaluated by professional tea tasters (Liang et al., 2008; Pongsuwan et al., 2008). 

Volatile compounds contribute to the aroma profile, while non-volatile 

components contribute to the taste profile of green tea, which includes the 

characteristic bitterness and astringency. It has been generally accepted in the 

literature that astringency is a tactile sensation felt on the tongue caused by the 

interaction between tea polyphenols and salivary proteins (Brossaud, Cheynier, 

& Noble, 2001). However, Rossetti, Bongaerts, Wantling, Stokes, and 

Williamson (2009) found that astringency is not entirely a tactile perception 

caused by the loss of lubrication in the oral cavity, but may instead involve other 

mechanisms, such as the inhibition of sodium ion channels on epithelial cells, 

as suggested by Simon, Hall, and Schiffman (1992). 

Several groups of non-volatile compounds have been found to have potential 

activity on the taste profile of tea, including phenolic compounds, purine 

alkaloids, amino acids, nucleotides, carbohydrates, organic acids, ions and 

others (Kaneko, Kumazawa, Masuda, Henze, & Hofmann, 2006; Liang et al., 

2008; Scharbert & Hofmann, 2005; Wang & Ruan, 2009). Tea polyphenols, 

particularly tea catechins, have been extensively researched, and were found to 

have an effect on the bitterness and astringency of tea (Narukawa, Kimata, Noga, 
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& Watanabe, 2010). Purine alkaloids, in particular caffeine, are the other major 

contributors to bitterness in tea. Although the bitter taste in tea may be attributed 

to a range of varying non-volatile compounds, the bitter taste transduction 

pathway varies between different tastants. Green tea catechins are known to 

activate the human bitter taste receptors hTAS2R14 and TAS2R39 (Roland et 

al., 2013; Yamazaki, Narukawa, Mochizuki, Misaka, & Watanabe, 2013) in a 

dose dependent manner, with nonlinear responses at low and high 

concentrations. On the other hand, caffeine and other methylxanthines have 

been suggested to induce a bitter taste without activating bitter taste receptors 

(Rosenzweig, Yan, Dasso, & Spielman, 1999). 

On top of the commonly associated bitterness and astringency, green tea is often 

associated with having a unique umami taste quality, which might largely be 

contributed by L-glutamic acid and L-aspartic acid. L-theanine (5-N-ethyl-L-

glutamine), a non-proteinogenic amino acid that makes up more than 50% of 

the free amino acids content in green tea leaves, has been reported to have sweet, 

brothy and umami characteristics, and has also been described by many studies 

to be taste-active in green tea (Ekborg-Ott, Taylor, & Armstrong, 1997; Juneja, 

Chu, Okubo, Nagato, & Yokogoshi, 1999). 

While many of the past studies have focused on black tea, a limited number of 

studies were performed on green tea with an emphasis on its taste profile 

(Chaturvedula & Prakash, 2011). In light of the increasing demand for ready-

to-drink (RTD) green tea in East Asian countries, companies may choose to 

focus their attention on the younger consumers who are frequently on-the-go 

and may therefore prefer products offering a greater degree of convenience 
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(Chen, Zhu, Tsang, & Huang, 2001). Hence, RTD green tea was chosen as a 

model beverage system in the present study to explore the relationship between 

non-volatile components and sensory perception. 

As such, the main objective of this study was to identify the main non-volatile 

compounds affecting the taste profile of RTD green tea, and to develop 

regression models for the objective prediction of various taste attributes of RTD 

green tea. This was achieved through the following: (i) quantifying several 

groups of non-volatile compounds in commercially available RTD green tea 

samples; (ii) studying the taste activity of each compound; (iii) validating the 

taste contribution of the key compounds via sensory assessments consisting of 

taste reconstruction and omission experiments. 

 

4.2. Materials and Methods 

4.2.1. Samples, reagents, and standards 

Seven types of ready-to-drink (RTD) bottled, unsweetened green tea samples, 

with no other added flavours unrelated to green tea (e.g. lemon, honey), were 

obtained from supermarkets in China and Japan. Unopened green tea samples 

were stored at 25 °C away from direct sunlight in their original packaging. 

Samples were opened prior to analyses, and were not reused. Green tea samples 

were filtered through a 0.45 μm membrane prior to chromatographic separation, 

and used directly for sensory analyses. 

The following reagents and standards were obtained commercially: o-

phosphoric acid 85%, HPLC-grade acetonitrile (ACN) and HPLC-grade 
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methanol (MeOH) from Merck KGaA (Darmstadt, Germany); caffeine, gallic 

acid, (−)-epigallocatechin gallate (EGCG), (−)-gallocatechin gallate (GCG), 

(−)-epicatechin gallate (ECG), (−)-catechin gallate (CG), (−)-epigallocatechin 

(EGC), (−)-gallocatechin (GC), (−)-epicatechin (EC), (+)-catechin (C), L-

aspartic acid (Asp), L-glutamic acid (Glu), amino acids standard, guanosine-5′-

monophosphate disodium salt hydrate (GMP), inosine-5′-monophosphate 

disodium salt octahydrate (IMP) and sodium hydroxide solution 50% from 

Sigma-Aldrich Chemical Co. (Missouri, USA); L-theanine (Thea) from Tokyo 

Chemical Industry Co. Ltd. (Tokyo, Japan); ascorbic acid from DSM 

Nutritional Products Ltd. (Basel, Switzerland); AccQ-Fluor Reagent Kit and 

AccQ-Tag Eluent A Concentrate from Waters Corporation (Massachusetts, 

USA); skimmed milk from CP-Meiji Co. Ltd. (Bangkok, Thailand). 

 

4.2.2. Quantitative analyses 

4.2.2.1. High performance liquid chromatography (HPLC) system 

All HPLC analyses were performed on an Agilent 1100 Series HPLC system 

(Santa Clara, USA), which consisted of a micro vacuum degasser, a quaternary 

pump, an autosampler, a thermostatted column component, a diode array 

detector, a variable wavelength detector, and a refractive index detector.  
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4.2.2.2. Analyses of catechins, gallic acid and caffeine 

Standard solutions of catechins, gallic acid and caffeine were prepared by 

dissolving the required weight of each compound in deionised water. Ascorbic 

acid was added at a concentration of 5 mg/10 mL sample. All samples were 

filtered through a 0.45 μm membrane prior to HPLC analyses. Analysis was 

performed on the HPLC system equipped with an Agilent ZORBAX Eclipse 

XDB-C18 HPLC column (250 mm × 4.6 mm, 5 μm), according to Wang and 

Zhou (2004) with slight modifications described below. Mobile phase A 

consisted of 0.01% phosphoric acid in water, while mobile phase B was 100% 

methanol. Column temperature was set at 25 °C. Catechins, gallic acid and 

caffeine were detected at 230 nm and identified by comparison of retention 

times and spectrum of standard solutions. Analytes were quantified by external 

calibration standards. Performance of the HPLC method was validated through 

accuracy and precision tests. 

 

4.2.2.3. Analyses of free amino acids 

Precolumn derivatisation of free amino acids was performed using the AccQ-

Fluor Reagent Kit according to the manufacturer’s specifications. Separation 

was performed on the HPLC system equipped with a Waters AccQ Tag 

reversed-phase HPLC column (150 mm × 3.9 mm, 4 μm), according to the 

manufacturer’s specifications with slight modifications. Briefly, mobile phase 

A consisted of AccQ Tag Eluent A Concentrate in deionised water (1:10 v/v), 

while mobile phase B consisted of 60% ACN in deionised water. A gradient 

programme was used for the separation of amino acids: 0–0.5 min, linear 
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gradient from 0 to 2% B; 0.5–15 min, linear gradient from 2 to 7% B; 15–19 

min, linear gradient from 7 to 10% B; 19–32 min, linear gradient from 10 to 33% 

B; 32–33 min, 33% B; 33–34 min, linear gradient from 33 to 100% B; 34–40 

min, 100% B; 40–42 min, linear gradient from 100 to 0% B. Postrun time was 

2 min. Sample injection volume was 10 μL. Flow rate was 1.0 mL/min. Column 

temperature was set at 37 °C. Amino acids were detected at 248 nm, and 

identified by comparison of retention times and spectrum of standard solutions 

of amino acids kit and L-theanine. Quantification was done via external 

calibration curves. Performance of the HPLC method was validated through 

accuracy and precision tests. 

 

4.2.2.4. Analysis of 5'-nucleotides 

GMP and IMP were analysed on the HPLC system equipped with an Agilent 

ZORBAX SB-AQ HPLC column (250 mm × 4.6 mm, 5 μm), using an isocratic 

elution system. Mobile phase A consisted of 20 mmol potassium dihydrogen 

phosphate in deionised water, adjusted to pH 7 using sodium hydroxide. Total 

run time was 30 min. Postrun time was 2 min. Sample injection volume was 10 

μL. Flow rate was 0.5 mL/min. Column temperature was set at 30 °C. GMP and 

IMP were detected at 254 nm, and identified by comparison of retention times 

and spectrum of standard solutions. Analytes were quantified through the use of 

external calibration curves. Performance of the HPLC method was validated 

through accuracy and precision tests. 
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4.2.3. Sensory analyses 

4.2.3.1. Sensory design 

A sensory panel constituting of eight experienced panellists was trained to 

recognise and quantify the intensity of bitterness, umami taste and astringency 

using the following compounds dissolved in deionised water: caffeine (48.5 

mg/100 mL) for bitterness, L-glutamic acid (132.3 mg/100 mL) for umami, and 

EGCG (32.6 mg/ 100 mL) for astringency. The panellists were familiar with 

sensory experiments, and had prior experiences in sensory evaluations. A five-

point scale ranging from 0 (not detected) to 4 (very intense) was used in the 

sensory analyses. Deionised water was used as an anchor point for point 0, while 

the standard solutions used for training were used as anchor points for point 4 

on their respective scale. A modified version of the half tongue test (Scharbert 

& Hofmann, 2005) was employed as a means for sensory testing. Two samples 

(each containing 1 mL of solution) were delivered onto the left and right sides 

of the tongue simultaneously while keeping the head tilted back, using 

disposable pipettes. Panellists were then asked to rate the taste intensities of one 

of the solutions, relative to the other solution which was used as a reference. 

Nose clips were used to prevent any potential taste-odour interactions. The 

reference solutions used were deionised water, RTD green tea samples, and 

sample recombinant, depending on the objective of evaluation. 

To prevent excessive sensory fatigue and the carry-over effect of astringency, 

panellists were required to cleanse their palates with skimmed milk, followed 

by deionised water, before tasting the subsequent sample. In addition, samples 

were presented in a sequence of increasing concentration of catechins to reduce 
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any possible carry-over effect. Panellists were also required to take a 30 min 

break after every three samples to prevent sensory fatigue and adaptation. 

 

4.2.3.2. Taste reconstruction experiment 

Three RTD green tea samples (samples nos. 1, 2 and 7) were selected, based on 

analytical results, to represent the extremes and average of the green tea samples, 

respectively, and hence were used for sensory analyses. Thirteen taste 

compounds (caffeine, gallic acid, EGCG, GCG, ECG, CG, EGC, GC, EC, C, 

Asp, Glu and Thea) were selected based on their taste activity in the seven RTD 

green tea samples (Table 4.1; refer to Section 4.2) and dissolved individually in 

deionised water to obtain stock solutions. The stock solutions were then added 

together to obtain sample recombinants matching the chemical profiles of tea 

samples nos. 1, 2 and 7. The panellists were then asked to rate the taste 

intensities of the sample recombinants with reference to the respective green tea 

samples using the half tongue test. Samples were evaluated within 30 min of 

sample preparation, and were expectorated after tasting. 

 

4.2.3.3. Taste omission experiment 

To investigate the taste contribution and significance of the individual taste 

compounds, seven partial taste recombinants were prepared by omitting a single 

taste compound or a group of taste compounds from the complete taste 

recombinant of tea sample no. 2. Seven omission samples were prepared by 

removing: (a) all catechins; (b) gallic acid and all catechins except EGCG; (c) 
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caffeine; (d) Thea; (e) Glu and Asp; (f) Glu; and (g) Asp, from the complete 

recombinant. Panellists were required to rate the taste intensities of the partial 

sample recombinants with reference to the complete recombinant using the half 

tongue test, and samples were expectorated after tasting. 

 

4.2.3.4. Reduced recombinant testing 

Stock solutions of four taste compounds (caffeine, EGCG, Thea, Glu) were 

mixed together, according to the results obtained in Section 4.3, to obtain a 

reduced recombinant matching the chemical profile of tea sample no. 2. 

Similarly, panellists were asked to rate the taste intensities of the reduced 

sample recombinant with reference to the recombinant of green tea sample no. 

2 using the half tongue test. Samples were expectorated after tasting. 

 

4.2.4. Data and statistical analyses 

All HPLC analyses were performed in triplicates. Sensory evaluations 

comprised of a panel consisting of eight experienced panellists. Results were 

presented as mean ± standard deviation. Analysis of variance (ANOVA) was 

performed using Excel 2010. Differences were considered to be statistically 

significant at p < 0.05, unless otherwise specified. Forward stepwise multiple 

linear regression was performed using MATLAB version 7.12 (R2011a, The 

MathWorks, Inc.).  
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4.3. Results and discussion 

4.3.1. Non-volatiles profile of RTD green tea and dose-over-threshold (DOT) 

values 

In order to study the relationship between non-volatile compounds and the taste 

profile of RTD green tea, the concentrations of eight catechins, gallic acid, 

caffeine, 18 amino acids and two nucleotides were quantitatively determined. 

Dose-over-threshold (DOT) values for each compound were determined as the 

ratio of the concentration of compound to the taste threshold determined by 

previous studies (Table 4.1). Compounds in RTD green tea samples with DOT 

greater than one are highlighted in bold. 

Preliminary sensory evaluations of the seven green tea samples showed that 

sweetness, saltiness and sourness were not detected in them. As such, non-

volatile tastants responsible for these tastes were not chemically quantified and 

were excluded from subsequent sensory analyses. 
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Table 4.1: Experimental results obtained from HPLC analyses of seven RTD green tea samples. Compounds in samples with DOT greater than one are highlighted in bold. 

Compound 
Threshold  

(μg g-1 (ppm))† 

Concentration in RTD green tea sample (μg g-1 (ppm)) 

1 2 3 4 5 6 7 

Gallic acid 34a 4.49 ± 0.11 16.0 ± 0.2 5.73 ± 0.05 2.53 ± 0.03 13.7 ± 0.1 6.42 ± 0.02 7.48 ± 0.20 

EGCG 87b 16.7 ± 1.7 85.4 ± 10.5 23.4 ± 0.6 26.4 ± 2.5 29.2 ± 0.7 22.0 ± 1.7 27.9 ± 2.2 

GCG 179 b 11.5 ± 0.5 68.7 ± 1.8 21.1 ± 0.8 12.2 ± 0.7 21.6 ± 0.6 21.8 ± 0.2 20.6 ± 1.6 

EGC 159 b 9.96 ± 1.62 34.6 ± 4.7 18.5 ± 1.8 21.5 ± 0.7 21.3 ± 3.7 25.2 ± 3.1 30.9 ± 2.3 

GC 165 b 19.1 ± 0.8 55.1 ± 1.3 28.6 ± 1.1 22.9 ± 1.2 44.4 ± 1.4 51.4 ± 2.7 56.2 ± 1.4 

ECG 115 b 4.77 ± 0.15 27.3 ± 2.1 7.52 ± 0.47 6.60 ± 0.57 8.36 ± 0.54 6.22 ± 0.57 5.50 ± 0.45 

CG 111 b 5.99 ± 0.38 31.8 ± 1.9 11.8 ± 0.9 4.75 ± 0.10 10.2 ± 1.0 14.7 ± 1.1 11.6 ± 0.3 

EC 270 b 7.55 ± 0.38 28.2 ± 1.3 12.6 ± 0.8 13.6 ± 0.8 15.4 ± 0.8 15.3 ± 0.6 18.3 ± 0.2 

C 119 b 8.51 ± 0.30 24.3 ± 1.1 10.3 ± 0.2 6.77 ± 0.13 16.0 ± 0.7 21.8 ± 1.9 16.2 ± 0.5 

Total catechins - 84.1 ± 3.7 355 ± 8 134 ± 3 115 ± 2 166 ± 2 178 ± 3 167 ± 3 

Caffeine 97c 112 ± 5 243 ± 8 120 ± 9 97.1 ± 6.0 146 ± 10 128 ± 6 125 ± 2 

Asp 24d 14.5 ± 1.6 12.7 ± 1.2 5.82 ± 0.71 13.3 ± 2.2 17.0 ± 2.0 9.03 ± 2.33 9.48 ± 1.03 

Ser 1500e 7.39 ± 0.64 3.59 ± 0.64 2.26 ± 0.14 6.35 ± 0.98 8.35 ± 1.58 3.54 ± 0.98 4.05 ± 0.71 

Glu 9 d 19.0 ± 2.3 17.1 ± 1.1 8.65 ± 0.97 14.0 ± 3.1 22.3 ± 4.2 11.3 ± 2.6 12.2 ± 1.6 

Gly 1300 e n.d. 0.405 ± 0.046 n.d. n.d. 1.18 ± 0.14 0.406 ± 0.018 0.406 ± 0.032 

His 191 d 3.20 ± 0.25 1.65 ± 0.28 0.590 ± 0.034 3.57 ± 0.19 3.68 ± 0.39 0.824 ± 0.253 1.70 ± 0.42 

Arg 209 d 6.09 ± 0.64 6.27 ± 0.45 3.36 ± 0.42 5.04 ± 0.34 11.3 ± 0.7 3.88 ± 0.56 5.64 ± 0.46 

Thr 2600 e 2.19 ± 0.88 2.44 ± 0.52 1.23 ± 0.42 2.04 ± 0.27 4.01 ± 1.34 1.49 ± 0.50 1.82 ± 0.97 

Ala 600 e 1.96 ± 0.21 1.86 ± 0.16 0.946 ± 0.232 1.83 ± 0.15 4.58 ± 0.68 1.83 ± 0.41 1.72 ± 0.11 

Pro 1738 d 0.712 ± 0.138 0.490 ± 0.081 n.d. 0.709 ± 0.076 1.63 ± 0.36 0.409 ± 0.037 0.409 ± 0.016 

Thea 1045 c 36.0 ± 4.2 42.1 ± 3.5 19.6 ± 2.2 39.4 ± 1.5 40.5 ± 2.6 19.7 ± 1.7 28.3 ± 1.8 

Cys - n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Tyr 906 c 1.31 ± 0.07 2.20 ± 0.56 1.07 ± 0.31 1.49 ± 0.15 3.47 ± 0.48 1.73 ± 0.32 1.73 ± 0.36 

Val 400 e 1.64 ± 0.21 1.85 ± 0.15 1.27 ± 0.84 1.62 ± 0.19 3.41 ± 0.28 1.46 ± 0.44 1.69 ± 0.27 

Met - n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Lys 104 d 1.43 ± 0.19 0.921 ± 0.089 0.420 ± 0.056 1.49 ± 0.52 5.35 ± 1.42 0.638 ± 0.130 1.11 ± 0.12 

Ile 900 e 1.60 ± 0.58 0.868 ± 0.402 0.600 ± 0.116 1.11 ± 0.35 2.09 ± 0.39 0.843 ± 0.184 0.802 ± 0.273 

Leu 846 d 1.01 ± 0.25 0.424 ± 0.070 n.d. 0.814 ± 0.130 3.97 ± 0.83 0.427 ± 0.097 0.717 ± 0.142 

Phe 900 e 1.34 ± 0.12 0.899 ± 0.133 n.d. 1.52 ± 0.09 2.70 ± 0.19 0.504 ± 0.069 0.726 ± 0.052 

Total amino acids - 99.4 ± 8.0 95.7 ± 7.5 45.6 ± 3.6 94.2 ± 8.3 136 ± 15 57.6 ± 9.2 72.4 ± 5.7 

GMP 109 a n.d. 0.808 ± 0.011 0.767 ± 0.005 n.d. 0.632 ± 0.012 0.647 ± 0.038 1.10 ± 0.02 

IMP - n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
† Threshold values were obtained from the following sources: a Kaneko et al. (2006); b Scharbert, Holzmann and Hofmann (2004); c Scharbert and Hofmann (2005); d Schiffman, Sennewald and 

Gagnon (1981); e Kim and Lee (2003) (S.-H. Kim & Lee, 2003; Schiffman, Sennewald, & Gagnon, 1981) 

n.d. = not detected
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The total catechin content in all seven RTD green tea samples ranged from 

84.10 to 355.39 ppm, with sample no. 1 containing the lowest amount of 

catechins, and sample no. 2 containing the highest. Catechins can be broadly 

categorised into two groups: EGCG, GCG, EGC and GC in the first group, 

which were present in higher concentrations in the samples; and ECG, CG, EC 

and C, which were present in lower amounts. Caffeine and gallic acid contents 

ranged from 97.14 to 355.39 and 4.49 to 16.00 ppm, respectively. Tea sample 

no. 2 contained the highest amount of caffeine, while tea sample no. 4 contained 

the least. The DOT values of all catechin species and gallic acid were less than 

1.0, with the exception of EGCG in tea sample no. 2 (approximately 1.0), 

indicating that the concentrations of catechin species were below taste threshold 

values. The DOT values of caffeine in all the samples were equal to or greater 

than 1.0, with values ranging from 1.0 to 2.5. 

Regarding free amino acids, tea sample no. 3 had the lowest total free amino 

acid content with 45.64 ppm, while tea sample no. 5 had the highest with 135.51 

ppm. L-theanine was found to be the most abundant free amino acid in all the 

samples, with its concentrations ranging from 19.64 to 42.11 ppm. L-glutamic 

acid and L-aspartic acid were the next most abundant free amino acids present 

in the sample. The DOT values of L-glutamic acid were greater than one in all 

the samples except for sample no. 3, indicating a possible contribution towards 

an umami taste by L-glutamic acid. The DOT values of L-theanine and L-

aspartic acid were less than one in all the samples, suggesting a lack of taste 

activity by both compounds in these samples.  
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GMP was found to be absent or present at very low concentrations in the seven 

green tea samples, while IMP was not present at all. This suggested that the 5′-

nucleotides did not contribute towards the taste profile of the samples. 

Although the DOT values of catechins were less than one in the RTD samples, 

with the exception of EGCG in tea sample no. 2, astringency in tea samples no. 

1 and no. 7 was still detected by the panel. This could have indicated the 

presence of an unknown compound contributing towards tea astringency, or an 

additive effect by the presence of catechins. This was further investigated by 

conducting taste reconstruction and omission experiments, which are discussed 

below. 

 

4.3.2. Sensory evaluation of RTD tea samples and taste reconstruction 

experiments 

Sensory evaluation of the RTD tea samples was conducted to obtain the taste 

profile of individual samples. Panellists were required to evaluate the RTD tea 

samples based on the bitterness, umami taste and astringency of the samples, 

using a five-point scale ranging from 0 (not detectable) to 4 (very intense). 

Anchors used in panel training were below the maximum taste intensity in order 

to prevent excessive sensory fatigue, especially in the case of the astringent-

causing tastants, due to carry over effects. Results obtained are summarised in 

Table 4.2. Generally, bitterness and astringency were perceived to have a higher 

intensity, as compared to umami taste.  Tea sample no. 2 scored the highest for 

all the three taste attributes, and was perceived to have similar astringency as 
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sample no. 6. Tea sample no. 1 was the least bitter and astringent, while tea 

sample no. 4 was the least umami.  

Taste reconstruction experiments were performed to identify the key non-

volatile compounds contributing significantly to the individual taste attributes, 

using tea samples nos. 1, 2 and 7, which were chosen to represent the bottom, 

top and middle levels of taste intensities. Taste recombinants of these three 

samples were prepared using 13 non-volatile tastants selected based on their 

DOT values in the RTD green tea samples: gallic acid, eight species of catechins, 

caffeine, L-aspartic acid, L-glutamic acid and L-theanine. Although the DOT 

values of L-theanine were less than 0.1 in all the tea samples, it was included in 

the sensory analyses to further investigate its contribution towards the various 

taste attributes.  

Sample recombinants were compared to their respective original RTD green tea 

samples, and results obtained are summarised in Table 4.2. The intensities of 

taste attributes of the sample recombinants were found to be similar to those of 

the original samples, with the exception of astringency in recombinant tea no. 

1. A one-way ANOVA was used to test for differences among the tea samples 

and their reconstructed samples. A significant difference (F = 7.23, p < 0.05) 

was detected in the astringency of tea sample no. 1 and its reconstructed sample. 

This was attributed to the low astringency associated with tea sample no. 1, 

which resulted in decreased sensitivity towards the mouth puckering effect, and 

thus was likely to be below the threshold of accurate determination by the panel. 

Other than astringency in tea sample no. 1, other taste attributes were not found 

to be statistically different between the RTD samples and their corresponding 
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reconstructed samples. As such, the 13 non-volatile tastants were concluded to 

be sufficient in reproducing the taste profile of RTD green tea. 

 

Table 4.2: Taste profiles obtained from sensory evaluation of seven RTD green tea samples 

and the reconstructed samples of tea nos. 1, 2 and 7. 

Sample type 
Intensity of taste†

 

Bitter Umami Astringent 

RTD green tea Sample 1 1.13 ± 0.83a 1.00 ± 0.76ab 1.38 ± 0.92a 

Sample 2 2.56 ± 1.02b 2.13 ± 0.64b 2.81 ± 0.84c 

Sample 3 2.00 ± 0.93ab 1.50 ± 0.76ab 2.75 ± 0.89bc 

Sample 4 1.88 ± 0.64ab 0.875 ± 0.641a 1.63 ± 0.52ab 

Sample 5 1.88 ± 0.83ab 1.63 ± 0.52ab 1.88 ± 0.64abc 

Sample 6 2.31 ± 0.46ab 1.88 ± 0.99ab 2.81 ± 0.92c 

Sample 7 1.50 ± 0.53ab 1.50 ± 0.76ab 1.75 ± 0.46abc 

Sample 

recombinant 

Sample 1 1.06 ± 0.18 0.750 ± 0.707 0.438 ± 0.623 

Sample 2 2.94 ± 1.02 2.38 ± 0.88 3.06 ± 0.62 

Sample 7 1.88 ± 0.64 1.50 ± 0.53 2.06 ± 0.86 
† Values are expressed in terms of mean ± standard deviation. n = 8 panellists. 
a, b, c One-way ANOVA conducted at α = 0.05. Post-hoc test conducted using Tukey’s honestly 

significant difference test. 

 

4.3.3 Sensory evaluation of sample recombinant and taste omission 

experiments 

After determining the key non-volatile tastants responsible for the taste profile 

of the RTD tea samples, omission experiments were conducted to further 

narrow down the list of compounds that contribute significantly to taste. Tea 

sample no. 2 recombinant was used as the basis for comparison as it scored high 

in all the three taste attributes, and was thus easier for the panellists to identify 

differences that might be present between the omission samples and the 

recombinant sample. The omission samples were prepared by removing an 

individual or a group of compounds from the sample no. 2 recombinant. The 

panellists were required to evaluate and assess the taste intensities of the 

omission samples, with reference to the sample no. 2 recombinant, using the 
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half-tongue test. Seven omission samples were prepared by removing the 

following compound(s): (a) all catechins; (b) gallic acid and all catechins except 

EGCG; (c) caffeine; (d) L-theanine; (e) L-glutamic acid and L-aspartic acid; (f) 

L-glutamic acid; and (g) L-aspartic acid. Intensity scores of the three taste 

attributes were compared to that of the sample no. 2 recombinant (Figure 4.1). 

The omission of all eight catechin species from the sample recombinant resulted 

in a reduction in all three taste attributes (Figure 4.1a). A significant reduction 

in the astringency (-1.63) of the sample (F = 19.9, p < 0.001) was detected.  The 

bitterness and umami tastes of the omission sample were found to be lower than 

those of the original recombinant (by -0.75 for both) as well, but at an 

insignificant level. The sensory results in this research were consistent with 

results from previous studies, that catechins, as a group, elicited an astringent 

sensation, and to a certain extent, bitterness in green tea (Peleg, Gacon, Schlich, 

& Noble, 1999; Scharbert & Hofmann, 2005). Although gallic acid was 

included in this omission sample, the intensity of astringency was still 

significantly lower than that of the sample recombinant, suggesting a lack of 

contribution towards astringency. While the reduction in intensities of bitterness 

and astringency were expected, a reduction in umami taste was not expected, as 

a diminished bitterness and astringency would allow for a greater ease of 

perception of the umami taste. Furthermore, catechins have been suggested to 

be astringent- and bitter-causing, and are not commonly associated with an 

umami taste. However, in a study conducted by Narukawa et al. (2010), a few 

panellists associated EC with umami and salty tastes. As such, there is no 

definite conclusion that catechins do not impart an umami taste. Nevertheless, 

results obtained from this set of omission experiments showed that catechins 
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were the main group of compounds contributing to astringency in the RTD 

green tea samples.  

As EGCG was the only catechin species with a DOT value approximately equal 

to one, its contribution to the taste profile of RTD green tea was investigated by 

removing gallic acid and the other seven catechins in the second set of the 

omission experiments (Figure 4.1b). All the three taste attributes of the omission 

sample were less intense than those of the sample recombinant, but did not differ 

significantly (p > 0.05) from the recombinant sample, which suggested EGCG 

being the main contributor to astringency in the RTD tea samples. EGCG has a 

lower astringency threshold than the other species of catechins, according to the 

literature (Scharbert et al., 2004), which further supports the importance of 

EGCG in contributing to astringency in relation to the excluded compounds.  

Significant reductions in the intensities of bitterness (-1.44) and umami taste (-

1.25) were observed with the exclusion of caffeine from the sample recombinant 

(Figure 4.1c; F = 5.87, p < 0.05 for bitterness; F = 8.54, p < 0.05 for umami 

taste). Caffeine is the primary bitter-causing compound in most beverages, 

including green tea. Therefore, its omission resulted in the decrease in the 

intensity of bitterness. However, a similar reduction in the intensity of umami 

taste was not expected, as caffeine has not been shown to confer an umami taste. 

Furthermore, a reduction in bitterness would generally unmask umami taste, 

allowing it to be perceived better. As such, there is a possibility of bitter and 

umami taste-taste interaction within a mixture, or interactions between caffeine 

and umami-causing amino acids that has yet to be studied.  
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L-theanine has been suggested to have a complex taste profile, influencing the 

basic tastes (sweet, bitter, umami) and physical sensations (astringency) within 

the oral cavity (Ekborg-Ott et al., 1997; Juneja et al., 1999). As shown in Figure 

4.1d, the difference in umami intensities between its omission sample and the 

recombinant sample was large, but insignificant (difference of -1.0, F = 4.07, p 

= 0.063). Bitterness and astringency were similar in both samples (difference of 

-0.38 for bitterness and -0.5 for astringency). Contrary to previous studies, L-

theanine was not shown to be a major contributor to the taste profile of RTD 

green tea, which may be due to the low DOT values of L-theanine in the samples.  

Removal of aspartic acid and L-glutamic acid, both individually and as a group, 

resulted in a decrease in umami intensity. This was in agreement with previous 

studies reporting the umami-causing qualities of both amino acids (Kaneko et 

al., 2006; Yamaguchi & Ninomiya, 2000). However, removal of L-glutamic 

acid resulted in a greater reduction in the taste intensity of umami taste (by -

1.06), and it was therefore concluded that L-glutamic acid played a greater role 

than aspartic acid in contributing to the umami taste of RTD green tea (Figures 

4.1f, 4.1g). The differences in the intensities of bitterness and astringency 

between the sample recombinant and omission samples were found to be 

insignificant.  

Umami-causing tastants have been shown to exhibit remarkably high 

synergistic effects, for example in the case of L-glutamic acid and 5′ nucleotides 

(Yamaguchi, 1998), such that the total effect is greater than the sum of the 

effects caused by the individual compounds alone. 
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Figure 4.1: Taste profiles of tea 2 recombinant and omission experiments: (a) removing all 

catechins; (b) removing gallic acid and all catechins except EGCG; (c) removing caffeine; (d) 

removing L-theanine; (e) removing L-glutamic acid and aspartic acid; (f) removing L-glutamic 

acid; and (f) removing aspartic acid. Values are represented by mean scores of the sensory 

evaluation. n = 8 panellists. 

* Significant difference detected using one-way ANOVA (p < 0.05). 

** Significant difference detected using one-way ANOVA (p < 0.01). 

 

Simultaneous omission of both aspartic acid and L-glutamic acid was done to 

investigate the potential synergistic effect between the two amino acids (Figure 
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4.1e). However, results obtained suggested no taste synergism between the two 

compounds, as the reduction in the intensity of umami taste in the omission 

sample (e) was not greater than that of either samples (f) or (g). Interestingly, 

removal of both L-glutamic acid and aspartic acid resulted in a greater reduction 

in bitterness intensity, suggesting the possibility of the presence of a synergistic 

effect in affecting bitterness. The difference in bitter intensity in the omission 

sample (e) was found to be approximately twice that of sample (f), although it 

was still statistically insignificant. 

As such, EGCG was concluded to be the main contributor to astringency in RTD 

green tea, caffeine as the main contributor to bitterness, and L-glutamic acid to 

be the main contributor to umami taste.  

 

4.3.4. Sensory evaluation of reduced sample recombinant 

A reduced recombinant consisting of just EGCG, caffeine, L-glutamic acid and 

L-theanine was prepared to validate the significance of the key non-volatile 

tastants identified from the omission experiments. L-theanine was included in 

the reduced recombinant due to its complex taste profile in order to obtain a 

“rounded” profile, despite having a DOT value of less than one. The four 

compounds were added based on their concentrations in tea sample no. 2. The 

panellists were required to evaluate the reduced recombinant using the half 

tongue test.  

The taste attributes of the reduced sample recombinant did not differ 

significantly from the sample recombinant and the RTD tea sample (Figure 4.2; 
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bitterness: F = 0.4422, p = 0.649; umami: F = 1.26, p = 0.306; astringency: F = 

1.26, p = 0.306), suggesting that the four compounds used to construct the 

reduced sample recombinant were able to create a mixture to sufficiently 

replicate the taste profile of the RTD green tea sample.  

 

 

Figure 4.2: Taste profiles of RTD tea sample no. 2, sample no. 2 recombinant and reduced 

sample no. 2 recombinant. n = 8 panellists. 

 

4.3.5. Regression analysis of chemical and sensory profiles 

The taste reconstruction and omission experiments were conducted to identify 

the key non-volatile compounds that contributed to the taste profile of RTD 

green tea. Forward stepwise multiple linear regression (MLR) was employed to 

supplement these findings by exploring and describing the relationship between 

the chemical composition and the perceived sensorial characteristics, and 

regression models were established to provide an objective prediction of the 

taste attributes in RTD green teas. There is no literature on the use of 

mathematical modelling to predict the intensities of taste attributes in RTD 

green tea products. 
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Regression was performed after normalising the chemical and sensory data to a 

range of 0.1 and 0.9. The following two models relating bitterness and 

astringency to the concentrations of chemical components were obtained from 

forward stepwise MLR using observations from the original RTD tea samples 

and omission experiments as a training set: 

 

Bitterness = 1.37 + 0.00421 × caffeine + 0.000587 × glutamic acid − 0.00335 

× aspartic acid + 0.000859 × EGCG − 0.00127 × aspartic acid*glutamic acid + 

0.000308 × glutamic acid*EGCG  (Equation 4.1) 

 

Astringency = 1.38 + 0.00775 × EGCG + 0.161 × CG − 0.00902 × GC − 

0.00084 × EGCG*GC  (Equation 4.2) 

 

A satisfactory regression model for umami taste was not obtained from forward 

stepwise MLR, possibly due to the complexity of the taste attribute, as well as 

the relatively weak umami taste that could have been masked by the stronger 

bitter taste and astringency in the samples. This was further supported by the 

lack of significant differences in the omission experiments involving the 

umami-tasting non-volatile compounds.  

The regression models obtained (Equations 4.1 and 4.2) explained the 

dependency of the intensities of bitterness and astringency on the different 

chemical constituents present. Regression Equation 4.1 indicated that caffeine 
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was the main driver for bitterness, followed by EGCG, and L-glutamic acid, 

while aspartic acid was negatively proportional to bitterness. The magnitude of 

coefficient of L-glutamic acid was an order of magnitude lower than caffeine, 

suggesting a lesser contribution to bitterness by L-glutamic acid. On its own, L-

glutamic acid seemed to contribute very slightly to bitterness, but the interaction 

between aspartic acid and glutamic acid was found to negatively affect the 

intensity of bitterness. Variance explained by Equation 4.1 was 78.9%, with a 

root-mean-squared-error (RMSE) of 0.232. The bitterness model was validated 

with a subset of the data consisting of the sample recombinants and reduced 

recombinant, with a RMSE of 0.370. Caffeine and EGCG have been reported 

to confer bitterness, and caffeine is the main bitter-causing compound in 

beverages. Both umami tastants were not expected to contribute significantly to 

bitterness. Previous studies suggested the possibility of binary taste interactions 

and interactions between glutamic acid and bitter-tasting compounds, although 

results were not conclusive (Warmke & Belitz, 1993).    

EGCG, CG and GC were found to significantly affect the intensity of 

astringency, with EGCG and CG positively driving astringency. The 

EGCG*CG interaction term was found to drive astringency negatively, along 

with CG. The coefficient of determination obtained from this regression showed 

that 84.1% of variance was explained by the regression model, with a training 

RMSE of 0.209. Validation of the regression model using the recombinant 

samples resulted in a RMSE of 0.934, which was almost three times higher than 

that of the bitterness regression model. A large part of the error was attributed 

to the tea sample no. 1 recombinant, which was perceived to be significantly 

less astringent than the original tea sample by the panellists. The low intensity 
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of astringency could be a factor that led to the decreased sensitivity of the 

panellists. Removal of this anomaly decreased the RMSE of the astringency 

validation data to 0.562. 

One-factor-at-a-time robustness measurements were performed to assess the 

robustness of the regression models. The model coefficients of input parameters 

were adjusted by a factor of 10% and the corresponding model outputs were 

compared to those of the unadjusted model outputs (Figure 4.3). Adjustments 

to parameter coefficients in the bitterness regression model resulted in less than 

5% change in the model output for all coefficients, while the astringency model 

had a change of up to 9.41%, indicating greater robustness of the bitterness 

regression model.  

 

 

Figure 4.3: Magnitudes of change in model output corresponding to an adjustment of 10% in 

model parameter coefficients. 

 

Parameter sensitivity analysis was also conducted by determining the sensitivity 

index (SI) of individual input parameters in both regression models, using the 

following equation (Hamby, 1994): 
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SI = 
Dmax-Dmin

Dmax
  Equation (3) 

 

Where Dmin is the model output when all inputs are at minimum values, and Dmax 

is the model output when a single input is at maximum value (Table 4.3). 

Sensitive input parameters are denoted by their high SI, and negative SI denotes 

a negative correlation with the model output. While important inputs have high 

sensitivities, sensitive inputs may not be always important (Hamby, 1994). For 

the bitterness regression model, caffeine was determined to have the highest SI 

compared to the other three inputs, which was in agreement with the omission 

experiments. The SI of glutamic acid was almost two orders of magnitude 

smaller than that of caffeine, indicating that the bitterness model was not 

sensitive to the concentration of glutamic acid. For the astringency model, SI of 

all three input parameters were relatively high, indicating high sensitivity. 

However, results from the omission experiments indicated that CG and GC were 

shown to only have slight contributions to the intensity of astringency. As such, 

it was concluded that although the model output was highly sensitive to the 

concentrations of GC and CG, these two catechins were still less important than 

EGCG in affecting intensity of astringency. 
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Table 4.3: Sensitivity indices of model parameters for bother bitterness and astringency 

regression models. 

Regression 

model 

Model 

parameter 
Sensitivity index 

Bitterness Caffeine 0.427 

 Glutamic acid 0.00943 

 Aspartic acid -0.0459 

 EGCG 0.0507 

Astringency EGCG 0.324 

 CG 0.787 

 GC -0.580 

 

 

4.4. Conclusion 

In conclusion, a series of quantitative studies, taste reconstruction and omission 

experiments revealed that the bitter-tasting and astringent-causing EGCG, 

bitter-tasting caffeine, umami-tasting glutamic acid were the key non-volatile 

compounds that contributed to the taste profile of RTD green tea. Subsequent 

multiple linear regression using forward stepwise regression identified caffeine 

as the main contributor to bitterness, and EGCG as the major contributor to 

astringency. Two regression models correlating the concentrations of the key 

compounds to the intensities of bitterness and astringency were established, and 

can be used to objectively predict sensory scores for bitterness and astringency 

in other RTD green tea samples. 
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CHAPTER 5 

 

DEVELOPMENT OF A PARTIAL LEAST 

SQUARES-ARTIFICIAL NEURAL NETWORK 

(PLS-ANN) HYBRID MODEL FOR THE 

PREDICTION OF CONSUMER LIKING SCORES 

OF READY-TO-DRINK GREEN TEA BEVERAGES 
 

 

Abstract 

In order to develop products that would be preferred by consumers, the effects 

of the chemical compositions of ready-to-drink green tea beverages on 

consumer liking were studied through regression analyses. Green tea model 

systems were prepared by dosing solutions of 0.1% green tea extract with 

differing concentrations of eight flavour keys deemed to be important for green 

tea aroma and taste, based on a D-optimal experimental design, before 

undergoing commercial sterilisation by heating at 138.0 ± 1.5 °C for 15 s. 

Sensory evaluation of the green tea model system was carried out using an 

untrained consumer panel to obtain hedonic liking scores of the samples. 

Regression models were subsequently trained to objectively predict the 

consumer liking scores of the green tea model systems. A linear partial least 

squares (PLS) regression model was developed to describe the effects of the 

eight flavour keys on consumer liking, with a coefficient of determination (R2) 

of 0.709, and a root-mean-square error (RMSE) of 3.69%. The PLS model was 

further augmented with an artificial neural network (ANN) to establish a PLS-

ANN hybrid model. The established hybrid model was found to give a better 
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prediction of consumer liking scores, based on its R2 (0.816) and RMSE 

(2.32%). 

Key words: Green tea; consumer liking; regression; partial least squares; 

artificial neural network; optimisation 

 

5.1. Introduction 

Green tea is a beverage prepared by steeping the leaves of Camellia sinensis in 

hot water, and is one of the most popular beverages, especially in East Asian 

countries, due to the health benefits associated with consumption of green tea 

(Butt & Sultan, 2009). In order to support the modern, convenience-seeking 

lifestyles of students and working adults, food manufacturers have responded to 

the growing demand and popularity by increasing the availability and variety of 

ready-to-drink (RTD) and ready-to-eat food products (Euromonitor 

International, 2015). Annual sales of RTD tea products have reached staggering 

sales of USD 6.7 billion in 2012 according to a market research report (Zegler, 

2013), and in order for food and beverage manufacturers to stay relevant in this 

growing industry, products will have to be designed with consumer 

acceptability and likability in mind. 

The consumer liking and acceptance of RTD green tea beverages and other food 

products are largely dependent on several extrinsic and intrinsic factors. 

Extrinsic factors, which may include variables such as price of the product, 

nutritional information, consumer demographics, and brand or company 

reputability and credence, are largely unaffected by sensory properties of food 
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products (Bae, Lee, & Kim, 2015; Fernqvist & Ekelund, 2014). Intrinsic factors 

are largely driven by the sensory and chemical properties of the product, such 

as the sensory profile and presence of off-flavours (Shimoda, Shigematsu, 

Shiratsuchi, & Osajima, 1995), profiles of volatile odourants and non-volatile 

tastants (Chapter 4), as well as physical appearance of the product (Hurling & 

Shepherd, 2003). As the odour and taste properties of a product are affected by 

its chemical constituents, there have been numerous studies focusing on 

correlating the sensory profile of green tea beverages to its chemical profile, as 

well as the effects of the chemical profile on the overall acceptability of the 

product (Ikeda et al., 2004; Wang et al., 2010; Wang & Ruan, 2009). 

Predictive modelling allows for an empirical understanding of food systems 

through regression models correlating the chemical, sensory, and hedonic 

properties of green tea and other food products. Linear multiple regression 

techniques such as multiple linear regression and partial least squares (PLS) 

regression have been used for the prediction of hedonic properties of green tea 

beverages from both the chemical and sensory profiles (Jumtee et al., 2011; Lin 

et al., 2012; Wang & Ruan, 2009). However, as the relationship between 

chemical constituents and sensory and hedonic properties may not necessarily 

be linear, the linear regression methods may fail to take into account the 

nonlinear relationships between human perception and food properties 

(Krishnamurthy et al., 2007). Nonlinear methods such as artificial neural 

networks (ANN) have been used in recent years in exploring the nonlinear 

relationship between sensory properties and consumer perception in green tea 

beverages (Ikeda et al., 2004). However, one of the primary drawbacks of ANN 

as a regression tool is its ‘black box’ nature, from which it may be difficult to 
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derive useful relational information from ANNs. Hybrid models comprised of a 

linear portion and a nonlinear part have been suggested in modelling food 

properties (Therdthai & Zhou, 2002), in order to derive useful information such 

as drivers of liking and dislike from the linear model, while ensuring that the 

nonlinear relationships are well-modelled by the nonlinear ANN.  

As such, the main aims of this study were (i) to develop linear and nonlinear 

regression models for an objective prediction of consumer liking scores for 

RTD green tea beverages from the chemical formulation; (ii) to develop a 

hybrid model by augmenting the linear model with a nonlinear model; (iii) to 

assess and compare model qualities; and (iv) to optimise the RTD green tea 

formulation using the developed models as objective functions. 

 

5.2. Materials and Methods 

5.2.1. Materials 

The following materials were used in the preparation of the RTD green tea 

beverage model systems: ascorbic acid and epigallocatechin gallate (EGCG)-

enriched green tea extract (94% EGCG content) was obtained from DSM 

Nutritional Product Ltd (Basel, Switzerland), sodium bicarbonate was obtained 

from Merck KGaA (Darmstadt, Germany), caffeine was obtained from 

Givaudan International AG (Dübendorf, Switzerland), green tea extract (GTE) 

was obtained from Damin Foodstuff (Zhangzhou) Co. (Fujian, China), and 

other volatile flavouring ingredients were obtained from Givaudan Singapore 

Pte Ltd (Singapore, Singapore). For the sensory evaluation of RTD green tea 
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samples, crackers from Carr’s Table Water, United Biscuits (UK) Ltd. (UK) 

and skimmed milk from CP Meiji Ltd. (Bangkok, Thailand) were used. 

 

5.2.2. Sample preparation 

The RTD green tea beverage model systems were formulated based on a 22-run 

Bayesian D-optimal experimental design (H01 to H22) for eight factors at three 

levels (low, mid, high), based on a linear second-degree polynomial model to 

allow for estimation of linear, two-factor interaction, and quadratic effects, 

using JMP (SAS Institute Inc., Cary, NC, USA). An additional five samples 

corresponding to a mid-level sample (H23), a calibration sample without any 

flavour keys added, and three matches of commercial RTD green tea samples 

(H25 to H27) were included in the experimental design, giving a total of 26 

samples. The eight factors were based on flavour keys which significantly 

contributed to the overall flavour profile of RTD green teas, according to results 

obtained in Chapters 3 and 4, and comprised of six volatile odour keys (each 

consisting of a group of volatile compounds based on an in-house formulation) 

and two non-volatile tastant keys, summarised in Table 5.1. X1 represented a 

fruity, berry-like odour; X2 represented an ocean-like odour; X3 represented a 

floral, jasmine-like odour; X4 represented a nutty, roasted odour, X5 represented 

a pea-like, green vegetal odour, X6 represented a dry, sulphury odour, X7 

represented a bitter taste; while X8 represented an astringent, mouth-drying 

sensation. The eight flavour keys were mixed with green tea extract, ascorbic 

acid, sodium bicarbonate according to the experimental design and dissolved in 

deionised water. The mixture was sterilised by ultra-high temperature (UHT) 
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processing using a UHT/HTST system (Armfield Limited, Ringwood, UK) at 

138.0 ± 1.5 °C for a holding time of 15 s, before being rapidly cooled to a 

temperature of 15.0 ± 2.0 °C, and then subsequently filled into sterile 

polyethylene terephthalate (PET) bottles (330 mL) in a laminar flow aseptic 

filling cabinet. Bottled green tea samples were immediately stored at 4 °C until 

subsequent use within two weeks. 

 

Table 5.1: In-house formulated flavour keys used in preparation of RTD green tea beverage 

model systems. 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

5.2.3. Sensory evaluation 

5.2.3.1. Panel recruitment and selection 

Consumer acceptance test was performed using 146 untrained panellists (aged 

18 to 35, Chinese ethnicity), recruited from the student population of the 

National University of Singapore and staff members of Givaudan Singapore Pte 

Ltd. Panellists were required to complete a questionnaire to obtain 

demographical information and data pertaining to consumption of RTD 

beverages. Only participants of the questionnaire who were frequent consumers 

of RTD green tea beverages (at least once per week) were recruited to 
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participate in the sensory evaluation of the green tea model systems. Each 

panellist was assigned a random three-digit panellist code. 

 

5.2.3.2. Sensory evaluation procedure 

The green tea samples were evaluated by each panellist over two sessions to 

minimise the effects of sensory fatigue, with 14 or 15 samples being evaluated 

during each session. A random three-digit code was assigned to each of the 27 

green tea samples. Approximately 40 mL of each sample was poured into 

polypropylene cups (2 fl. oz.; SKP Pte Ltd., Singapore), and samples were 

evaluated by panellists in individual evaluation booths at an ambient 

temperature of 23.0 ± 1.0 °C. The presentation order of the samples was based 

on a 26 × 26 Latin square. After tasting five samples, panellists were given a 5 

min break before evaluating the next set of five samples. Panellists were 

provided with drinking water (23.0 ± 1.0 °C), skimmed milk (23.0 ± 1.0 °C) and 

crackers, and were instructed to consume small quantities of crackers and water 

after every sample, and small quantities of skimmed milk, cracker, and water 

during each break to reduce the carry-over effect of astringency.  

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Figure 5.1: Structure of a typical evaluation session. 
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The format of a typical evaluation session is summarised in Figure 5.1. Scoring 

of the green tea samples was done using FIZZ (Biosystèmes, Couternon, 

France), based on a 9-point scale with 1 indicating ‘like extremely’, and 9 

indicating ‘dislike extremely’. 

 

5.2.4. Statistical analysis and mathematical modelling 

Consumer liking scores were presented as mean ± standard deviation. Analysis 

of variance (ANOVA) was performed using MATLAB version 7.12 (The 

MathWorks, Inc., USA), with Tukey’s Honestly Significant Difference as a 

post-hoc test. Differences were considered to be statistically significant at p < 

0.05. The correlation between chemical formulation and consumer liking was 

investigated using regression analysis. All variables were normalised to a range 

of zero to one based on the minimum and maximum values of each variable to 

ensure numerical consistency. PLS regression models, ANNs, and PLS-ANN 

hybrid models were constructed and trained using the Neural Network Toolbox 

in MATLAB, and model optimisation was performed using a genetic algorithm 

found in the Global Optimisation Toolbox in MATLAB version 7.12. 

 

5.3. Results and discussion 

5.3.1. Consumer liking scores 

The observed liking scores of the RTD green tea samples were summarised in 

Figure 5.2. In general, the liking scores of the samples ranged from 4.79 (sample 
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H05) to 5.99 (sample H14). One-way ANOVA results indicated that the 

observed liking scores differed significantly among the samples (p < 0.05), 

which suggested that while the range of consumer liking scores was relatively 

narrow, products were significantly different. Post-hoc test was conducted using 

Tukey’s Honestly Significant Difference, and results obtained are summarised 

in Table 5, which showed that significant differences in consumer liking scores 

were present at differences in absolute scores of 0.80.  

Table 5.2: ANOVA post-hoc test results obtained using Tukey’s Honestly Significant 

difference. 

Sample 
Consumer 

liking score 

ANOVA post-hoc 

test results† 

H14 5.99     e 

H21 5.94    d e 

H26 5.92    d e 

H27 5.77   c d e 

H12 5.62  b c d e 

H15 5.53 a b c d e 

H02 5.51 a b c d e 

H13 5.51 a b c d e 

H16 5.49 a b c d e 

H08 5.47 a b c d e 

H07 5.44 a b c d e 

H23 5.41 a b c d e 

H19 5.36 a b c d e 

H10 5.29 a b c d e 

H04 5.27 a b c d e 

H09 5.21 a b c d e 

H01 5.18 a b c d  

H18 5.04 a b c d  

H20 5.00 a b c   

H03 4.99 a b c   

H22 4.94 a b    

H06 4.86 a b    

H25 4.83 a b    

H11 4.82 a b    

H05 4.79 a     

H17 4.79 a     
† Products with same lower-case letters are not significantly different. 
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Figure 5.2: Box and whiskers plot of observed consumer liking scores for RTD green tea 

samples. Bottom and top of box indicate first and third quartiles, while band within the box 

indicates the median score. Means of liking score are indicated by ♦, and standard deviations 

are shown as whiskers. n = 146. 

 

5.3.2. Partial least squares regression analysis of flavour keys and consumer 

liking 

PLS regression is a linear regression method that can thought of as a cross 

between multiple linear regression and principal component analysis, and was 

carried out to relate the observed consumer liking scores to the concentrations 

of the flavour keys as given by the Bayesian D-optimal experimental design, 

based on a linear second order polynomial model, with eight independent 

variables corresponding to the eight flavour keys. The RTD green tea samples 

were divided into a model training set comprising of the first 22 samples (H01 

to H22) that was used to train the regression model, and a validation set 

comprising of four samples (H23, H25 to H27) that was used as an unseen set 

to validate the trained model. Leave-one-out cross validation was used to 
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develop a PLS model for the training data. The quality of the resulting PLS 

regression model is shown in Figure 5.3. 

 

 

Figure 5.3: (a) Plot of predicted liking scores against observed liking scores, based on a two-

component PLS regression model; (b) residuals plot of two-component PLS regression model. 

Training samples are indicated as × while model validation samples are indicated as ×. 

 

The first two components of the PLS regression model explained approximately 

77% of the total variance in the training set, 44% in the validation, and had an 

overall R2 of 0.709. The RMSE of the training and validation sets were 3.11% 

and 5.93% respectively, with an overall error of 3.70%. Although the training 

data was well-modelled using a two-component PLS model, the low R2 and high 

RMSE associated with the unseen validation set suggested that the predictive 

capability of the regression model did not extend well into unseen data, as seen 

in the skewed distribution of the validation sample about the line of equality (i.e. 

y = x line). This could suggest either an overfitting of the PLS model, in which 

the model had been fitted to include noise or error that was inherently present 

in the data, or there was a degree of nonlinearity that was present within the 
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relationship between chemical constituents and consumer liking, that was not 

well-modelled by a linear model. 

Residuals analysis was carried out on the prediction errors of the PLS model to 

determine the prediction quality of the two-component PLS model, using 

Levene’s Test for homoscedasticity and the Wald-Wolfowitz runs test for 

randomness. Although results obtained suggested that the models residuals were 

randomly distributed (p > 0.10), variances for the model residuals were 

heteroscedastic (p < 0.25), as seen from the unequal variances in Figure 5.3b. 

The heteroscedasticity associated with the model residuals indicated that the 

regression model gave poorer predictions of consumer liking scores at higher 

scores, compared to lower liking scores, which together with the poor R2 and 

RMSE of the validation set, suggested that the two-component PLS regression 

model did not provide an adequate prediction of consumer liking of the RTD 

green tea samples. 

Nonetheless, additional information concerning the main drivers of liking and 

dislike of RTD green tea can be estimated from the regression model, based on 

parameter uncertainties. The confidence intervals of the PLS model coefficients 

were estimated using a modified jack-knife method, according to Martens and 

Martens (2000), as the uncertainty of model variables was not readily available 

due to the nature of PLS regression. The coefficients of the model parameters, 

along with the associated uncertainty are shown in Figure 5.4. Model 

parameters were considered to be significant if the uncertainty did not include 

zero. 
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Figure 5.4: Coefficients of two-component PLS regression model terms. Significant drivers of 

liking are represented in green, and significant drivers of dislike are given in red. 

 

The PLS regression model obtained explained the dependency of consumer 

liking on the concentrations of flavour keys used in formulating the RTD green 

tea samples. From Figure 5.4, it can be seen that the main linear drivers of 

dislike for RTD green tea were associated with the bitter and astringent flavour 

keys (X7 and X8). The model coefficient of the first-order term of X7 was 

generally larger in magnitude as compared to the other independent variables, 

suggesting a particular dislike for the bitter-associated flavour key by the 

untrained consumer panel. First order interaction terms containing the X7 

flavour key were found to negatively drive liking, suggesting the negative 

impact of this flavour key on the overall consumer liking of the RTD green tea 

model system. On the other hand, variables X3 and X4 were the main linear 

drivers of liking of RTD green tea for the consumer panel based on the 

significance of the first-order model terms for these two variables. These 

variables were observed to have significant interactions with other flavour keys 

which mostly positively affected consumer liking, such as X2X3, X2X4, and 

X3X4. Results obtained from regression analysis using a linear PLS model thus 
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suggested that the consumer panel preferred RTD green tea beverages that were 

formulated with ingredients associated with floral and roasted, nutty attributes, 

while ingredients associated with bitterness and astringency should be kept to a 

minimum. 

 

5.3.3. Structure of the PLS-ANN hybrid model 

In order to improve the predictive ability of the regression model, the linear two-

component PLS model was augmented with an ANN to yield a parallel PLS-

ANN hybrid model, comprising of both linear and nonlinear moieties. In theory, 

the hybrid model should have the advantages of both its constituents, while 

reducing the drawbacks associated with linear models and ANNs. The 

relationship between the flavour keys and consumer liking modelled using PLS 

can be described as: 

 

Y  =  f(X)  +  e′  

     =  Ŷ′  +  e′  (Equation 5.1) 

 

where Y is the observed liking scores, X is the concentration of flavour keys as 

given in the experimental design, Ŷ′ is the modelled liking scores expressed as 

a linear function of X, and e′ is the prediction error of the linear PLS model. 

The linear prediction error, e′, was used as the output for training the ANN 

model, where: 
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e′  =  g(X)  +  e 

     =  ΔŶ  +  e  (Equation 5.2) 

where ΔŶ is the prediction error modelled by the augmented ANN model, 

expressed as a function of X, and e is overall prediction error. By combining 

Equations 5.1 and 5.2, the overall function describing the PLS-ANN hybrid 

model was obtained: 

 

Y  =  f(X)  +  g(X)  +  e 

     =  Ŷ′  +  ΔŶ  +  e   

     = Ŷ  +  e   (Equation 5.3) 

 

where Ŷ is the modelled liking score based on the PLS-ANN hybrid parallel 

model. The structure of the hybrid parallel model is shown in Figure 5.5.  

In brief, the linear PLS model provided an estimation of consumer liking as well 

as insights based on the drivers of liking and dislike based on the flavour keys, 

while the ANN provided a means to model the nonlinearity that exists between 

odourants and tastants and the human perception of these chemical constituents, 

which may not be well-captured by the linear PLS model. 
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Figure 5.5: Structure of a PLS-ANN hybrid model. 

 

5.3.4. Determination of ANN hidden layer 

The linear PLS model provided an estimation of consumer liking as well as 

insights based on the drivers of liking and dislike based on the flavour keys. 

This can be augmented with an ANN to provide a means to model the 

nonlinearity that exists between odourants and tastants and the human 

perception of these chemical constituents, which may not be well-captured by 

the linear PLS regression model. 

Prior to building and training an ANN for use in regression, the number of 

neurons in the hidden layer (i.e. size of the hidden layer) was first optimised. 

Using a hidden layer containing too few neurons may result in underfitting, in 

which nonlinearity in the data may not be adequately modelled, while using too 

many neurons may result in overfitting of the data. The size of the hidden layer 

will therefore have to be carefully chosen to avoid both scenarios. This is 

typically achieved through a trial-and-error process by systematically changing 

the number of neurons and training duration (Bernados & Vosniakos, 2007), 

commonly known as the grid search method, and is simple to implement and 

reliable in low dimensional spaces (Bergstra & Bengio, 2012). In addition to 
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grid searching, other methods such as random search and evolutionary methods 

can be used in tuning the architecture and learning parameters of ANNs when 

the number of dimensions corresponding to network parameters involved is 

high (Bergstra & Bengio, 2012; Leung, Lam, Ling, & Tam, 2003).   

The size of hidden layer of the hidden layer together with the network training 

parameters (training duration, learning momentum and other associated 

parameters) were determined through a random search in the five-dimensional 

space. The following parameters were considered: two to ten neurons in the 

hidden layer, a training duration of five to 50 epochs, learning momentum (μ) 

of one to 30, μ increase of one to 10, and μ decrease of 0.01 to one. These 

learning parameters are associated with the Levenberg-Marquadt algorithm for 

ANN training. A multilayer feedforward, backpropagation ANN containing the 

tangent-sigmoid transfer function in the hidden layer and the linear transfer 

function in the output layer was trained according to the combinations of 

parameters derived from the random search. The ANNs were trained using 

leave-one-out cross validation with the training data set. Results obtained are 

presented in Figure 5.6. 

In general, the learning parameters μ, μ increase, and μ decrease did not exhibit 

any observable trends, according to sub-figures (i), (ii), and (iii) of Figures 5.6a 

and 5.6b. This indicates that while these learning parameters might have an 

effect on the overall predictive quality of the ANN regression model, it may be 

dependent on other network parameters such as the architecture and the training 

duration. For the PLS-ANN hybrid model (Figure 5.6a), RMSE for networks 

decreased with an increase in the number of neurons in the hidden, before 
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increasing, with a minimum observed at around five to seven neurons in the 

hidden layer. This could suggest that networks containing fewer than five 

neurons in the hidden layers were unable to adequately recognise and model the 

nonlinearity that was present in the data. The increase in the RMSE as the 

hidden layer size increased beyond seven neurons may suggest a degree of 

overfitting, based on leave-one-out cross validation. The trend for training 

duration was less clear, but it appeared that a minimum in the training error was 

observed at the range between 10 to 15 epochs.  

For the ANN model, the learning parameters μ, μ increase, and μ decrease did 

not have any clear effect on the training error of the regression model. Similarly, 

this could be due to the learning parameters being dependent on the other 

network parameters. The optimum size of the hidden layer was found to be 

between five to seven neurons, while training duration did not have an effect on 

the overall training error.  

Based on results obtained through leave-one-out cross validation on the training 

set, the lowest RMSE corresponded to an optimum hidden layer size of six 

neurons, with a training duration of six epochs for the pure ANN model; and an 

optimum hidden layer size of five, with a training duration of seven epochs for 

the hybrid model. As such, an ANN with a network architecture of 8-5-1 was 

then used as an augmentation to the PLS model developed in the previous 

section, while an 8-6-1 neural network was used for the ANN model.  
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Figure 5.6: Training RMSE of the (A) PLS-ANN hybrid model and (B) ANN model based on 

(i) learning momentum; (ii) increase in learning momentum; (iii) decrease in learning 

momentum; (iv) size of the hidden layer; and (v) training duration during optimisation of neural 

network training parameters. 
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5.3.5. Model qualities of the ANN and PLS-ANN hybrid models 

The RTD green tea samples were divided into training and validation sets in the 

same manner described in Section 5.3.2. Regression models were trained using 

the training set, and validated using the validation set. Results obtained are 

shown in Figure 5.7. The ANN model (Figure 5.7a) was found to have better 

prediction quality compared to the PLS model, as indicated by a total explained 

variance of approximately 89.9%, and an overall prediction error of 2.18%. The 

training R2 and RMSE were 0.908 and 1.96%, while the validation R2 and 

RMSE were 0.843 and 1.67%. This suggested that there might be a degree of 

nonlinearity which was not captured by the linear PLS model. 

For the PLS-ANN hybrid regression model (Figure 5.7c), the resulting R2 of the 

training and validation data set were 0.845 and 0.792 respectively, with an 

overall R2 of 0.840. Compared to the standalone two-component PLS model, 

the addition of an ANN portion as an augmentation improved the overall 

variance explained by approximately 20%. Similarly, the overall RMSE of the 

PLS-ANN hybrid model was 2.73%, which was lower than that of the PLS 

model. The RMSE of the training set (2.53%) and validation set (3.50%) were 

lower compared to the two-component PLS model.  
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Figure 5.7: (a) Plot of predicted liking scores against observed liking scores, based on an 8-6-

1 ANN; (b) residuals plot of ANN model; (c) plot of predicted liking scores against observed 

liking scores, based on a PLS-ANN hybrid model; and (d) residuals plot of PLS-ANN hybrid 

model. Training samples are indicated as × while model validation samples are indicated as ×. 

 

Regarding residuals analysis of the ANN model and PLS-ANN hybrid model 

(Figures 5.7b and 5.7d), results obtained indicated that residuals for both models 

were randomly distributed. However, residual variances for both models were 

heteroscedastic, indicating that similar to the PLS regression model, poorer 

predictions were expected for products with lower consumer liking scores. The 

test for residuals normality using the Lilliefors test (Lilliefors, 1967) indicated 

that residuals for the ANN model were normally distributed, while normality 

was not detected in the residuals of the PLS model and PLS-ANN hybrid model. 
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Between the PLS model and PLS-ANN hybrid model, the PLS-ANN hybrid 

model produced the best performance based on model quality. The PLS model 

had lower R2 and higher RMSE values, indicating poor predictive ability, 

relative to the other two ANN-based models, and demonstrating the ability of 

ANN to model nonlinearity, which was not well-modelled in linear models. 

Although the model qualities of the ANN and PLS-ANN hybrid model were 

very similar, the ANN model had a slightly higher overall R2 and lower overall 

RMSE. However, the PLS-ANN hybrid model has an advantage of being a 

‘grey-box’ model, as opposed to a ‘black-box’, in the case of the pure ANN 

model. This allowed for a better understanding of the relationship between 

chemical ingredients and consumer liking of the RTD green tea beverages. 

 

5.3.6. Model optimisation  

Model optimisation was performed to determine the optimal chemical 

formulation for the RTD green beverages. This was achieved using a genetic 

algorithm with the PLS and PLS-ANN hybrid models as objective functions. 

Genetic algorithms were chosen as the optimisation method of choice due to the 

nonlinear nature of ANNs, as well as the highly complex model structure 

associated with neural networks. In brief, genetic algorithms are a set of 

computer algorithms that are designed to solve complex problems by mimicking 

natural evolutionary processes, and by doing so, explore a higher number of 

solutions to an optimisation problem as compared to other algorithms (Shankar 

& Bandyopadhyay, 2004). The optimum formulations of RTD green tea 
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beverages based on the eight flavour keys for both models are shown in Figure 

5.8. 

 

 

Figure 5.8: Optimum RTD green tea formulation based on (a) two-component PLS model; and 

(b) PLS-ANN hybrid regression model. Axes represent concentrations of flavour keys scaled to 

a range of zero to one. 

 

The optimum consumer liking scores obtained through model optimisation were 

5.87, 5.97, and 6.07 for the PLS model, PLS-ANN hybrid model, and ANN 

model, respectively. It should be noted that the optimal consumer liking score 

based on the PLS model was within the observed range of consumer liking. This 

suggests that consumer liking may not be well-modelled by PLS regression. In 

general, X2, X3, and X4 were found to be at the maximum concentrations in both 

optimum formulations, while X5, X7, and X8 were found to have the most 

positive impact on consumer liking when these flavour keys are at the lowest 

concentrations for both PLS and PLS-ANN hybrid models. The concentrations 

of X1 and X6 were found to be different in both formulations, suggesting that 

these two flavour keys are associated with some degree of higher order 

interactions with other flavour keys, or nonlinearity which was not modelled by 
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linear models. The relationship between flavour keys and consumer liking were 

subsequently studied in greater details using contour plots shown in Figure 5.9.  

 

 

Figure 5.9: Contour plots showing effects of RTD green tea flavour keys (X1 to X8) on 

consumer liking for (a) PLS model; and (b) PLS-ANN hybrid model. Diagonal plots represent 

individual effect on consumer liking. Optimal points are indicated by ★. Baseline 

concentrations are equivalent to optimum formulations. 

 

From Figure 5.9a, it can be seen that flavour keys X1 to X6 had limited effects 

on the overall consumer liking based on the two-component PLS model. A 

higher degree of complexity can be seen in Figure 5.9b, as observed by the 
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greater degree of curvature in the contours, suggesting that the PLS-ANN 

hybrid model was able to correlate nonlinearity more strongly, as compared to 

the PLS model. This is evident in the irregular contour lines in the X1 flavour 

key and a nonlinear relationship between the X1 flavour key and consumer 

liking in Figure 5.9b, which was not present in the corresponding plots in Figure 

5.9a. 

 

5.4. Conclusions 

The relationship between chemical flavour keys and consumer liking has been 

established by mathematical modelling using linear PLS regression, nonlinear 

ANN, and a PLS-ANN hybrid model. Based on the PLS model, flavour keys X3 

and X4 were found to be the main linear drivers of liking, while X5, X7, and X8 

were found to be the main linear drivers of dislike, suggesting that the consumer 

population preferred a bland-tasting green tea with floral and roasted odours. 

Among the three regression models established, the linear PLS model was found 

to have the lowest model quality, while both the ANN model and PLS-ANN 

hybrid models were found to be of similar qualities, based on the values of R2 

and RMSE, and residuals analyses. In-depth analysis using model optimisation 

revealed that the PLS model did not fully model the nonlinearity that may be 

present in the data. Between both ANN-based models, the PLS-ANN hybrid 

model has an added advantage of providing basic information regarding the 

RTD green tea in the form of drivers of liking and dislike, which was not readily 

derived from the ANN model.  
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CHAPTER 6 

 

EVALUATION OF CONSENSUS PROFILING AND 

QUANTITATIVE FLAVOUR PROFILING IN THE 

OPTIMISATION OF A READY-TO-DRINK GREEN 

TEA BEVERAGE 
 

 

Abstract 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

6.1. Introduction 

Food sensory analysis and evaluation can be viewed as an information gathering 

process used to measure, analyse, and interpret behavioural responses to food 

products based on the five senses of sight, hearing, taste, smell, and touch, 

where human panellists are used as judges in measuring the attributes of a food 

product (Murray, Delahunty, & Baxter, 2001). It is comprised of a set of 

techniques that are used to measure human responses while minimising bias 

caused by potential confounding sources, which include branding and other 

information that may affect consumer perception (Mukhopadhyay, Majumdar, 

Goswami, & Mishra, 2013). Results obtained from food sensory studies provide 
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important information on the quality and characteristics of food product that can 

be used in several aspects such as new product development, consumer, flavour 

and taste profiling, and quality control. 

Descriptive sensory analysis allows for understanding of the sensory profile, 

which is closely related to the chemical constituents, as well as the hedonic 

properties of a food product. Commonly used descriptive sensory analysis 

techniques include the Flavour Profile Method (FPM), Texture Profile Method, 

Quantitative Descriptive Analysis (QDA), and Quantitative Flavour Profiling 

(QFP), and have been reviewed previously (Lawless & Heymann, 2010; Murray 

et al., 2001). In this study, both FPM and QFP were used to collect sensory 

information for a series of RTD green tea beverages. FPM was first developed 

in the mid-20th century for evaluating new products in the then-developing food 

industry, and is a consensus profiling method utilising a small, highly trained 

panel consisting typically of four to six panellists. In other words, panellists of 

the trained sensory panel come to a consensus on various sensory characteristics 

of the evaluated product using descriptors developed during panel training. This 

process is often guided by a panel leader to ensure that the discussion is not 

dominated by a single panellist. The Profile Attribute Analysis (PAA) is a 

modern variation of FPM using numerical values allowing for results obtained 

to be analysed statistically, and has been used in recent studies (Bedini et al., 

2013; Ömür-Özbek & Dietrich, 2008). QFP was first developed as a 

modification of QDA by Givaudan-Roure, and is used in the flavour and 

fragrance industry in sensory profiling. In QFP, a group of six to eight panellists 

are trained according to a set of sensory language developed by in-house experts 

and/or flavourists, resulting in a highly technical language that, although may 
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be of little consequence to the layperson or consumers, is useful in the 

development of new products for the food and fragrance industry (Murray et al., 

2001). A key difference between consensus profiling and QFP is the individual 

evaluation of sensory characteristics of the tested samples by the trained sensory 

panel in QFP following panel discussion and training, contrary to FPM which 

only involves a consensus reached upon thorough discussion. 

In the development and optimisation of new food products, it is necessary for a 

quick and efficient method to be used in all stages of the developmental process. 

This reduces the use of limited resources such as time and money. The 

development of an efficient data collection strategy encompassing sensory 

profiling and data analysis allows for this goal to be achieved. As consensus 

profiling methods require an arguably shorter time for data collection as 

compared to QFP-based methods, due to the additional individual profiling step 

present in QFP, it is of interest to investigate and compare the use of and results 

obtained from these two descriptive sensory analysis methods. 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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6.2. Materials and methods 

6.2.1. Materials and sample preparation 

The materials and ingredients used in this research were the same as those 

described in Section 5.2.1 (Chapter 5). Sample preparation was conducted 

according to the method described in Section 5.2.2 (Chapter 5). 

 

6.2.2. Sensory profiling 

6.2.2.1. Sensory panel selection and training 

A total of 10 female panellists (40 to 50 years of age) of Chinese ethnicity, with 

prior sensory evaluation experience, were recruited to be part of the trained 

sensory panel using the following criteria: normal colour vision, unimpeded 

sense of taste and smell. Panellists were not informed of the objectives and type 

of food product to be evaluated in this study.  

 

6.2.2.1. Consensus profiling using flavour impression profiling 

The sensory panel was trained over one session (three hours long) on key 

sensory descriptors of the 26 RTD green tea samples using volatile and non-

volatile chemical standards that were representative of the corresponding odour 

or taste descriptor. Training on identification of sensory attributes in samples 

was conducted over a period of two weeks (eight three-hour sessions). The set 

of sensory descriptors used in this study was previously developed by in-house 
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flavourists, and are summarised in Table 6.1. The sensory panel was first trained 

to recognise the 13 sensory descriptors.  

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Panel training was conducted at Givaudan Singapore Pte Ltd in a well-lit room 

with an ambient temperature of 23.0 ± 1.0°C. 

 

Table 6.1: Summary of sensory descriptors. 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

Flavour impression profiling (FIP), which is a profiling method based on some 

modifications of the Profile Attribute Analysis method, was used as a form of 

consensus profiling. Samples (50 mL) were presented to panellists in 

polypropylene cups (2 fl. oz.) coded with random three-digit codes at ambient 

temperature. Water, skimmed milk or diluted yoghurt (1:2, with water), and 

crackers were provided as palate cleansers, and panellists were instructed to 

consume small amounts whenever needed. Panellists were required to evaluate 
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the samples based on the 13 sensory descriptors using an intensity scale of zero 

to 100, and round table discussion was conducted, facilitated by a panel leader. 

Descriptor intensity was categorised as one of six levels (Table 6.2), before the 

sensory panel decided on an intensity score. Product evaluation was conducted 

over a period of four weeks. 

 

Table 6.2: Intensity levels of sensory scores. 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

 

6.2.2.2. Quantitative flavour profiling 

For QFP of the RTD green tea samples, the same trained sensory panel from the 

previous section was used, along with the same set of sensory descriptors. 

Samples were first evaluated in a training phase, during which panellists were 

familiarised with the range of intensities of sensory descriptors present in the 

products. Subsequently, panellists were required to evaluate the RTD green tea 

samples on an individual basis in sensory evaluation booths. A random three-

digit code was assigned to each sample, and presentation order of the samples 

was based on a Latin square to ensure a balanced and complete design. 

Panellists were provided with drinking water, skimmed milk or diluted yoghurt, 
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and crackers, and were instructed to consume small quantities after every 

sample to reduce the carry-over effects. Scoring of the descriptor intensities was 

done using FIZZ (Biosystèmes, Couternon, France) according to the intensity 

scale used in consensus profiling (Section 6.2.2.1). QFP of the green tea samples 

was repeated twice with the same sensory panel, and sensory scores were 

presented as the overall average. 

 

6.2.3. Statistical analysis and mathematical modelling 

Sensory scores obtained from consensus profiling were presented as a single 

number, while scores obtained from QFP were presented as mean ± standard 

deviation. Analysis of variance (ANOVA) was performed using MATLAB 

version 7.12 (The MathWorks, Inc, USA), with Tukey’s Honestly Significant 

Difference as a post-hoc test. Differences were considered to be statistically 

significant at p < 0.05. The sensory profiles of the RTD green tea samples 

obtained from consensus profiling and QFP were correlated to the chemical 

formulation and consumer liking scores using a partial least squares-artificial 

neural network model, as discussed previously in Chapter 5. Sensory scores 

were normalised to a range of zero to one based on the original intensity range 

of zero to 100. 
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6.3. Results and discussion 

6.3.1. Sensory profiling results 

The scores obtained from QFP and FIP of the RTD green tea samples are shown 

in Tables 6.2 and 6.3, respectively. 

 

6.3.1.1. QFP results 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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Table 6.3: QFP scores of RTD green tea samples. 

********** 

This section contains confidential information, and has been omitted from the online version of this thesis. 

********** 

 

Table 6.4: FIP scores of RTD green tea samples. 

********** 

This section contains confidential information, and has been omitted from the online version of this thesis. 

********** 
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6.3.1.2. FIP results 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

6.3.2. Comparison of sensory profiling methods 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

6.3.2.1. Absolute sensory scores 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Figure 6.1: This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 
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6.3.2.2. PCA of sensory scores 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Figure 6.2: This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 

 

6.3.2.3. k-means clustering 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Figure 6.3: This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 

 

 

 

6.3.3. Development of mathematical model 

Partial least squares-artificial neural network (PLS-ANN) hybrid models were 

trained to objectively predict consumer liking scores using sensory profiles of 

RTD green tea samples, according to Chapter 5. The use of a nonlinear hybrid 



136 

 

model in prediction of human responses is of interest due to its ability to model 

complex nonlinear relationships, which may be present in human sensory 

responses. 

In developing a PLS-ANN hybrid model, a linear PLS model was first trained 

to be used as the ‘backbone’ of the hybrid model. Augmentation of the nonlinear 

ANN model was performed in the following manner: 

 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

6.3.4. PLS-ANN hybrid models 

6.3.4.1. PLS model coefficients 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Figure 6.4: This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 
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6.3.4.2. Hybrid model quality 

The two-component PLS models were augmented with ANN, as discussed in 

Section 6.3.3. The resulting PLS-ANN hybrid model for FIP results contained 

eight neurons in the ANN hidden layer, while that for QFP results contained 

three neurons. Modelling results obtained are shown in Figure 6.5. 

 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Figure 6.5: Plots of predicted liking scores against observed liking scores, based on (a) FIP 

results; and (b) QFP results. Training samples are indicated as ● while model validation samples 

are indicated as ●. 

 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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6.4. Conclusions 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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 CHAPTER 7 

 

A COMPARISON OF EXPERIMENTAL DESIGNS 

IN THE DEVELOPMENT OF READY-TO-DRINK 

GREEN TEA BEVERAGES 
 

 

Abstract 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

7.1. Introduction 

Food product development is a critical process for the food industry, and is the 

culmination of advancements in knowledge of food preparation coupled with 

advancements in technology in the 20th century (Earle, 1997). The modern 

product development process is largely driven by the needs of consumers and 

market trends, and the nature of this process was summed up by Arteaga, Li-

Chan, Vazquez-Arteaga, and Nakai (1994) as an optimisation problem, due to 

the identification and optimisation of factors (food ingredients and properties) 

in producing the best alternative (most well-accepted product) out of all possible 

alternatives (Arteaga, Li-Chan, Vazquez-Arteaga, & Nakai, 1994).  
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Design of Experiments (DOE) methodologies are efficient tools in studying the 

effects of variables or regressors, which include levels, number of factors, and 

number of observations, on a desired output (Arteaga et al., 1994). This allows 

for a deeper understanding of the interactive relationships between variables, 

for which simpler experimental designs such as the one-factor-at-a-time (OFAT) 

approach are unable to provide. Compared to OFAT approaches, classical 

methods such as factorial designs, Box-Behnken designs, and recent methods 

such as computer-generated optimal designs are considered to be much more 

efficient, and are able to provide more information for product and process 

development and optimisation.  

Optimal designs are computer-generated, non-standard experimental designs 

used in place of classical experimental designs when certain design parameters 

are constrained, such as non-standard nonlinear models, or limitations on the 

number of experimental runs. Such designs are gradually gaining popularity in 

recent years, as seen by the increase in number of publications utilising optimal 

designs (Hewson, Hollowood, Chandra, & Hort, 2008; Hewson et al., 2009; 

Shiby et al., 2013). Although there are several optimality criteria in optimal 

designs, the D-optimality criterion is one of the most commonly used, due to its 

ease in computational requirements (Carlsson & Martinsson, 2003). D-optimal 

designs select a subset of design points from a candidate set in order to 

maximise the determinant of the Fisher information matrix, such that the 

variance of prediction of model coefficients is minimised. Compared to 

classical designs, D-optimal design allows for use of a lower number of samples, 

which in turn translates to a reduction in resources spent for collection of data. 
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********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

7.2. Materials and methods 

7.2.1. Materials and sample preparation  

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

 

7.2.2. Sensory evaluation 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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7.2.2.1. Consumer liking panel recruitment and selection 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

7.2.2.2. Consumer liking evaluation procedure 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

7.2.2.3. Trained panel selection and training 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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7.2.2.4. Quantitative flavour profiling 

QFP was conducted according to the method described in Section 6.2.2.2 

(Chapter 6). 

 

7.2.3. Statistical analysis and mathematical modelling 

Consumer liking scores were presented as mean ± standard deviation, while 

sensory scores obtained from consensus profiling were presented as a single 

number. The correlation between chemical formulation, sensory scores, and 

consumer liking was investigated using a partial least squares-artificial neural 

network (PLS-ANN) hybrid model, as discussed previously in Chapter 5. All 

variables were normalised to a range of zero to one based on the minimum and 

maximum values of each variable to ensure numerical consistency. Partial least 

squares regression models, artificial neural networks, and PLS-ANN hybrid 

models were constructed and trained using the Neural Network Toolbox in 

MATLAB version 7.12 (The MathWorks, Inc., USA). 
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7.3. Results and discussion 

7.3.1. Comparison of experimental design quality 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

Table 7.1: This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 

 

Table 7.2:  This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 
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Figure 7.1: This figure contains sensitive information, and has been omitted from the online version of this thesis. 
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7.3.2. Development of mathematical model for chemical and sensory data 

Partial least squares-artificial neural network (PLS-ANN) hybrid models were 

developed according to the method described in Chapter 5 for each sensory 

attribute, which allowed for an objective prediction of the sensory profile of a 

product from its chemical formulation. In order to train a hybrid model of high 

prediction accuracy, the following algorithm was used: 

 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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Figure 7.2: This figure contains sensitive information, and has been omitted from the online version of this thesis. 
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7.3.3. Effects on model quality 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Table 7.3:  This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 

Figure 7.3: This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 

Figure 7.4: This figure contains sensitive information, and has been omitted from the online 

version of this thesis. 

 

7.4. Conclusions 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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CHAPTER 8 

 

IMPACTS OF STORAGE ON THE SENSORY 

PROFILE OF A GREEN TEA MODEL SYSTEM 
 

 

Abstract 

Ready-to-drink (RTD) green tea beverages are convenient green tea products, 

which are susceptible to changes in their sensory and chemical profiles over 

storage. These factors affect the eventual sensory characteristics and consumer 

liking of the product, and are of interest to the RTD beverages industry. The 

main objective of this study was to investigate the impacts of storage on the 

chemical and sensory profiles of a RTD green tea model system. Sensory data 

were correlated with chemical data obtained from instrumental analysis to allow 

for an objective prediction of the sensory profiles. Results obtained suggested 

that products stored at 25 °C, 35 °C, and 45 °C experienced a greater change in 

the chemical and sensory profiles compared to samples stored under refrigerated 

conditions. Furthermore, an ageing duration of at least two days was required 

in order for the flavour profile of samples to develop. 

Keywords: green tea; storage; sensory; consensus profiling; partial least 

squares; artificial neural network 
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8.1. Introduction 

Green tea, a beverage conventionally prepared by infusing the unfermented 

leaves of Camellia sinensis in hot water, is presently one of the most widely 

consumed drinks throughout the world, especially in East Asia. It is also known 

for its many health benefits, such as its anti-carcinogenic and anti-diabetic 

properties. Food manufacturers have responded to the growing popularity of 

green tea by increasing the availability and variety of RTD green tea products 

in the market, which supports the modern lifestyles of consumers such as young 

working adults, who value convenience.  

Much of the substantial research on the odour and taste profiles of green tea has 

focused specifically on tea leaves and brews (Yang, Baldermann, & Watanabe, 

2013; Kumazawa & Masuda, 2002). There are also a number of studies related 

to changes in the chemical and sensory profiles brought about by different 

processing methods; with thermal processing being the most commonly 

employed industrial method (Wang et al., 2000; Wang, Zhou, & Wen, 2006; 

Kim et al., 2007) 

However, little is known about changes in the physicochemical and sensory 

profiles that may occur during storage of bottled RTD green tea prior to 

consumption, either when the product is stored at a warehouse, or in retail stores. 

These changes may be due to interactions taking place among the tea 

constituents, which may be dependent on storage conditions. This in turn has an 

impact on consumer acceptance, which has important implications for beverage 

manufacturers. 
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As a result, the objectives of this study were to investigate changes to the 

sensory and chemical profiles of an RTD green tea model system during storage, 

and to correlate sensory data to chemical constituents, in order to objectively 

predict the sensory profile of RTD green tea from analytical data. 

 

8.2. Materials and Methods 

8.2.1. Materials 

The following materials were used in the preparation of samples: ascorbic acid 

and epigallocatechin gallate (EGCG)-enriched green tea extract (94% EGCG 

content) were supplied by DSM Nutritional Products Ltd (Basel, Switzerland), 

sodium bicarbonate by Merck KGaA (Darmstadt, Germany), caffeine by 

Givaudan International AG (Dübendorf, Switzerland), green tea extract by 

Damin Foodstuff (Zhangzhou) Co. (Fujian, China), and flavouring ingredients 

by Givaudan Singapore Pte Ltd (Singapore). 

 

8.2.2. Sample preparation and storage 

A green tea model system was designed based on prior analyses of several 

commercial RTD green tea samples. Green tea extract, a green tea flavour which 

was designed to mimic the aroma profile of a commercial RTD green tea 

product obtained from supermarkets in China, EGCG, ascorbic acid, sodium 

bicarbonate and caffeine in known amounts were mixed and dissolved in 

deionised water, and heat-treated by ultra-high temperature (UHT) processing 
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using an OMVE HT122-A HTST/UHT system (OMVE, Netherlands) at 138 ± 

1 °C for a holding time of 15 s, then rapidly cooled to an outlet temperature of 

around 30 °C, before being aseptically filled into pre-sterilised polyethylene 

terephthalate (PET) bottles in an aseptic filling chamber (STAFtechco. Ltd, 

Thailand). After heat treatment, the bottled samples were kept at the following 

four storage temperatures: 4 °C in a chiller to simulate refrigeration, 25 °C in 

an air-conditioned room to mimic a typical environment of retailers of RTD 

products (e.g. a supermarket), and 35 °C and 45 °C to simulate storage during 

summertime or in tropical countries, as well as during transportation of products. 

 

8.2.3. Chemical analyses 

Quantitation of EGCG and caffeine was carried out by high performance liquid 

chromatography (HPLC) using an Agilent 1100 Series HPLC system coupled 

to a diode array detector, according to a previously described method (Section 

4.2.2.2). 

Quantitation of 44 volatile compounds was carried out by the standard addition 

method and analysed by gas chromatography (GC) on an Agilent 7890 Series 

GC system, equipped with an HP-INNOWax column (60 m × 0.25 mm, 0.25 

μm), coupled to a flame ionisation detector (FID), and mass spectrometer (MS). 

Volatiles were first extracted by solid phase extraction using LiChrolut En 200 

mg 3 mL (Merck Millipore, Germany), achieving a 150-fold concentration. 

Samples were injected in 1:10 split mode. The temperature programme used 

was 15 min at 50 °C, ramp of 3 °C/min to 250 °C, and holding time of 10 min. 

Nitrogen was used as a carrier gas at 1.87 mL/min. 
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8.2.4. Sensory evaluation 

Sensory profiling was carried out by 10 to 12 panellists in duplicates, using the 

Flavour Profile Method (Murray et al., 2001). Samples were served at room 

temperature between 22 to 25 °C. The flavour descriptors used were as follows: 

bitter, astringent (mouth-drying, puckering), fermented nutty (herbal medicine), 

fermented hay (woody), fruity-floral (rose-like), tea-floral (jasmine-like), green 

pea (pea-like), fresh green (freshly cut leaves), leafy (Sencha), fatty (cucumber), 

roasted chestnut (roasted cashew), longjing (catty), and marine (salty, dried 

fish). The descriptors were rated on a 100-point scale at intervals of ten. 

 

8.2.5. Statistical analysis 

All HPLC and GC analyses were performed in triplicates. Analysis of variance 

(ANOVA) was performed using Excel 2010 (Microsoft Corporation, USA). 

Principal component analysis, partial least squares regression, and artificial 

neural network were performed using MATLAB version 7.12 (The MathWorks, 

Inc., USA). 

 

8.3. Results and discussion 

8.3.1. Changes in sensory profile 

Results obtained from principal component analysis (PCA) of the average of 

two sensory evaluation sessions for the RTD green tea products are shown in 

Figure 8.1. 
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Figure 8.1: PCA biplot of sensory results as an average of two sessions. Sensory descriptors 

are represented by × as loadings on principal components. Samples are denoted as XY, where 

X refers to storage duration in days, and Y refers to storage temperature (a: 4 °C; b: 25 °C; c: 

35 °C; d: 45 °C). Samples on day 0 is denoted by 0. 

 

The first two principal components explained about 45% of the total variance. 

The first principal component (PC1) was positively correlated with marine, 

green pea, astringent, chestnut roasted, and bitter notes, which together, would 

reflect a more intense and roasted green tea profile; and was negatively 

correlated with the tea floral attribute, which would correspond to a lighter green 

tea profile. In general, most products stored at lower temperatures were found 

to have a higher intensity of the floral attribute, as compared to the other sensory 

attributes. Conversely, products that were stored at higher temperatures fell on 

the positive side of PC1, pointing to a more intense flavour and a stronger taste. 

This indicates that storage at or exposure to high temperatures may have 

changed the profile of RTD green tea products. However, it should be noted that 

the duration of storage plays an important role in the overall sensory profile of 

the samples. Products that were stored for two and four days were found to be 
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positively correlated to PC1, reflecting an increase in perception of astringency, 

bitterness, and roasted aromas over the first four days, but subsequent storage 

resulted in a decrease in the intensities of these attributes. 

It was noted that after two days of storage, there was an increase in the 

intensities of most attributes, with the exception of the tea floral attribute. For 

green tea samples stored at 4 °C, there was in fact a large decrease in the floral 

intensity. The intensity of the floral attribute gradually increased again on 

prolonged storage, with a corresponding decrease in the other attributes. For 

samples stored at 45 °C, there was generally an increase in intensity of the 

sensory attributes after two days of storage, which resulted in a stronger tasting 

tea. These sensory attributes gradually decreased in intensity with an increase 

in storage duration, as seen by a smaller area shown on the spider web plots 

shown in Figure 8.2. 

 

 

Figure 8.2: Spider web plots of RTD green tea samples stored at 4 °C and 45 °C. 
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8.3.2. Changes in chemical constituents 

In order to provide insights into the observed changes in the sensory profiles 

during storage, the changes in selected volatile compounds (showing the 

greatest variation with storage time) are shown in Figure 3. During the first few 

days of storage at 4 °C (Figure 8.3a), the concentrations of compounds such as 

phenylacetaldehyde were relatively high, contributing to the predominantly 

floral note of the RTD samples. Phenylacetaldehyde degraded slowly over 

storage, and by mid-storage, the cis-3-hexenyl esters responsible for a green 

note became more prominent, resulting in an overall green note. Towards the 

end of storage, there was an increase in the concentrations of other floral 

compounds such as indole and methyl dihydrojasmonate, which led to a shift in 

sensory profile back to a more floral tasting green tea. Likewise, for samples 

stored at 45 °C (Figure 8.3b), there was a shift in the overall sensory profile with 

storage time. During early storage, compounds such as phenylacetaldehyde 

contributing to a floral profile, were dominating, but underwent degradation 

very quickly due to the elevated storage temperatures. Although the 

concentrations of pyrazines did not change greatly, the roasted nutty note still 

became the dominant one as perception of the overall floral note decreased. 

This suggests that the changes in a perceived sensory cannot be explained solely 

by changes in the levels of compounds responsible for it, but also by changes in 

intensities of other attributes. Physical and chemical reactions such as 

adsorption of volatiles onto walls of the container (Marin, Acree, & Hotchkiss, 

1993), hydrolysis of ester and glycosidic bonds (Yang et al., 2013), and 
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oxidation reactions may result in changes in the concentrations of volatile 

compounds within the samples, leading to changes in the sensory profiles as 

observed in this study. 

 

 

Figure 8.3: Changes in selected chemical compounds during storage for samples stored at (a) 

4 °C and (b) 45 °C 

 

8.3.3. Predictive modelling 

It is known that the relationship between sensory perception and chemical 

stimuli is not straight forward, due to many possible interactions between 

different chemical compounds, and between chemical compounds and taste and 

odour receptors. Predictive modelling allowed for a better understanding of the 

system by correlating 46 chemical components to eight sensory attributes 

through regression models. In this study, partial least squares regression (PLSR) 

was used as a means of linear regression, and was compared against artificial 

neural networks (ANN), which was used as a form of nonlinear regression. It 

has been suggested that the relationship between food components and the 
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sensory attributes may not necessarily be linear, due to the manner in which 

humans perceive smells (Krishnamurthy et al., 2007). As such, ANN may be 

useful in modelling this nonlinearity. 

ANN is based on a network of connected neuronal units, designed to mimic the 

biological nervous system. Input to individual units is determined by the sum of 

weighted outputs from neighbouring units, with a bias attached to each unit, and 

is processed by a neuronal transfer function. ANNs are able to learn by 

processing inputs and comparing against desired outputs. Errors are propagated 

back throughout the network, and weights of neural connections and neuron 

biases are adjusted accordingly to achieve the desired outcome. In this study, 

the input layer contained 46 neural units, each corresponding to a chemical 

compound. The hidden and output layers contained the sigmoidal and linear 

transfer functions, respectively. The network was trained by a back propagation 

algorithm to predict eight sensory attributes. The data were randomly divided 

into a training set and a validation set in a 75:25 ratio. The training set was used 

to develop the regression model using PLS or ANN, and the models were 

validated using the validation set. Model quality of the PLSR and ANN models 

is shown in Figure 8.4. A lower root-mean-squared error (RMSE) corresponds 

to a more accurate prediction by the model.  

In general, both PLSR and ANN models were similar in terms of overall model 

quality, indicating that the linear PLSR model was able to perform on par with 

the nonlinear ANN model. This could be due to the high number of principal 

components selected (number of PCs = 9) for the PLSR model, which in turn, 

may suggest nonlinearity within the sensory and chemical data sets. Although 
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both the high dimensional PLSR and ANN model gave similar overall 

predictions, there were some differences within the individual sensory attributes. 

 

 

Figure 8.4: RMSE values of PLSR and ANN models for overall model quality and prediction 

qualities for eight individual sensory descriptors. 

 

From Figure 8.4, it can be seen that the prediction quality of the ANN model 

for most of the odour-based attributes was better than that of the PLSR model, 

as shown by the lower validation RMSE values. For the taste-related sensory 

attributes, the opposite was true with the PLSR model providing a lower 

validation RMSE value. This suggest that the relationship between food 

components and odour attributes may contain a greater degree of nonlinearity, 

as compared to correlation between food components and taste attributes; but 

further work is required to ascertain this. Future work will focus on modelling 

the changes in the chemical composition of RTD green under different storage 

conditions by combining information from kinetic models and ANN to yield a 

hybrid grey-box model. 
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8.4. Conclusions 

In conclusion, the sensory and chemical profiles of RTD green tea were affected 

by storage at different conditions. Storage under ambient conditions and higher 

temperatures resulted in a significant change in the sensory profile of the RTD 

green tea samples, which was caused by a change in the chemical constituents. 

This rate of change was reduced in samples stored under refrigerated conditions, 

indicating that there is a need for refrigeration of RTD green tea beverage 

products after the production stage, in order to minimalise the change in the 

overall sensory profile. Regression models were developed to objectively 

predict the sensory profile of RTD green tea based on its chemical composition. 
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CHAPTER 9 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

9.1. Conclusions 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

In Chapter 3, the key volatile flavour keys affecting consumer liking were 

identified using the MiniVAS. A linear stepwise regression model was 

developed to objectively predict hedonic properties of odour model systems of 

RTD green tea beverages. Fruity and floral smelling volatile flavour keys were 

found to be positive drivers of liking, indicating that RTD green tea beverages 

with stronger fruity and floral notes would be more popular with consumers. 

These findings were in line with results obtained in subsequent studies, 

highlighting the significance of the floral flavour key as a driver of liking, and 

the green pea flavour key as a driver of dislike. In order to reduce data 

dimensionality of the RTD green tea model system, the flavour keys with the 

least contribution to the overall consumer liking were identified and removed 

as independent variables, based on comparison between the initial regression 

model and the regression models that were developed from reduced 

experimental designs. Both the X7 and X8 flavour keys were found to have little 
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impact (i.e. neither positively nor negatively affecting liking), and were thus 

excluded from subsequent experimental designs.  

A series of taste reconstruction and omission experiments were conducted in 

Chapter 4 to identify key non-volatile compounds affecting the overall taste 

profile of RTD green tea beverages. Bitter-tasting caffeine, bitter-tasting and 

astringent-causing EGCG, and umami-tasting glutamic acid were found to be 

important tastants in green tea following chemical and sensory analyses. 

Subsequent regression analysis using stepwise regression identified both 

caffeine and EGCG as the most significant non-volatile compounds in green tea, 

affecting bitterness and astringency respectively. The stepwise regression 

models that were developed also allowed for the prediction of intensities of 

bitterness and astringency based on the chemical profile of RTD green tea 

samples. Based on results obtained in Chapters 3 and 4, D-optimal experimental 

designs incorporating important volatile and non-volatile flavour keys were 

developed for use in Chapters 5, 6, and 7.  

Mathematical models were developed using PLS regression, ANN, and PLS-

ANN hybrid models to study the relationship between chemical flavour keys 

and consumer liking of RTD green tea model systems in Chapter 5. The floral 

and chestnut roasted flavour keys were found to positively drive consumer 

liking, while the green pea, bitter, and astringent flavour keys were found to be 

negative drivers based on the linear PLS model. Amongst the PLS, ANN, and 

PLS-ANN hybrid model, the linear PLS model was found to have the lowest 

model quality based on R2, RMSE, and residuals analysis. Although both the 

ANN and PLS-ANN hybrid models were found to have comparable model 
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qualities, the PLS-ANN hybrid model contained an added advantage of 

providing basic information of the relationship between chemical and hedonic 

properties. Product optimisation was also performed using genetic algorithm to 

identify the chemical formulation of an RTD green tea model system 

corresponding to optimal consumer liking.  

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Lastly, the effects of storage duration and temperature on the chemical and 

sensory profiles of RTD green tea was investigated in Chapter 8. A shift of 

sensory profile from floral to nutty, roasted attributes was observed in samples 

stored at higher temperatures. This corresponded to an overall decrease of 

compounds with floral attributes such as phenylacetaldehyde and phenylethyl 

alcohol, and an increase in pyrazines which were responsible for the nutty and 

roasted profile. For samples stored under refrigerated conditions, there was a 

slight change in the overall sensory profile from floral, to green, and then back 

to floral, due to changes in the chemical constituents over time. Results obtained 

from this study indicate that prolonged storage, even under refrigerated 

conditions, should be avoided due to potential changes in the chemical and 

sensory profile, which will in turn affect other sensory and hedonic properties. 
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9.2. Recommendations 

9.2.1. Mathematical and statistical software for analysis 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

 

9.2.2. Choice of analytical procedure and comparison between methods 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 

Table 9.1:  Advantages and disadvantages of design of experiments methods. 

Table 9.2:  Advantages and disadvantages of regression methods. 

 

9.2.3. Future work 

********** 

This section contains confidential information, and has been omitted from the 

online version of this thesis. 

********** 
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