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Summary

In this work, we address two major problems in Waste-to-Energy (WTE) System. One

is the facility location problem of operating WTE plants. The other is the incentive policy

that induces residents to participate in waste recycling.

In megacities, residential solid wastes are generated in huge quantities by the dense

population, including food wastes, paper, plastics, and etc.

WTE system aims to collect sufficient qualified and profitable residential waste to

generate energy and avoid emitting pollutants. We propose a framework to resolve

which facilities should be opened periodically based on waste generation of its neighbour

resident zones in the coming season.

Incentivation design is a challenging problem for which multiple contradictory factors

exist in the system. On one side, the distances, the resident zones, and the incentive

reservation levels, which also varies with different individuals, are supposed to be taken

into account for the accurate formulation. On the other side, this formulation would

increase the complexity of the overall model and make it hard to compute. So sample

average approximation is adopted to make it computable.

A two-stage stochastic programming model is proposed to describe the incentive-

location joint planning problem. Two scenarios are discussed: In the first scenario the

waste collected from resident zones is profitable and abundant, and in the second one

the residential waste is short and waste purchased from professional refuse processing

station is available. We adopt some heuristic methods and parallel computing with Map-

Reduce and to solve the problem in large scales which a single computer is incapable

of, and provide an upper bound and lower bound generated by Lagragian relaxation to

estimate the accuracy.

viii
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Chapter 1

Introduction

In this thesis, we mainly focus on the location decision and policy making in waste

management. Waste management is composed of all the activities concerned about refuse

from the generation to the disposal. The relevant challenge of waste management in any

modern highly-populated society nowadays encompasses the conflicts among the sharply

increasing waste generation, shrinking landfill site capacity, and the related atmospheric

and environmental pollution problems.

Rogner (Rogner et al.) believes that as to prevent from further global warming, green-

house gas should be emitted 50 percent less of the amount in 1990 by 2050. And Mikac

(Mikac et al., 1998) studies the highly-polluted land state in Zagreb, which contains

5 million tons of waste and points out the significant harm of landfill. The process of

landfill inevitably releases emissions including gas like methane and poisonous residue

that both contribute significantly to global warming and environmental pollution. Global

population explosion requires much more efficient approaches to utilize limited non-

renewable resources to avoid the possible crisis caused by meager resources. Also, in

the research area of sustainable development, resource utilization is one of the most

important topics. To make full use of resources, effective waste management systems are

considered necessary (Brunner and Rechberger, 2015) .

Therefore, due to the urgency generated by decreasing landfill availability, and poi-

sonous material contamination from incineration, waste recycling programme has been

regarded as an intermediary step in waste management. With the main purpose to reduce

the environmental pollution and achieve sustainable development of the environment,

waste recycling can save energy, highly utilize resources and reduce the heavy load of
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landfills (Seik, 1997; Rondinelli and Berry, 2000; Ekins et al., 2003; Tınmaz and Demir,

2006; Tsai, 2008; Paleologos et al., 2016) .

Take an instance in Singapore, the amount of residential waste disposed has risen

from 1,260 tonnes per day in 1970 to 8,280 tonnes per day in 2015 because of the rapid

increasing population and prosperous economy. Before the late 1970s, the landfill is the

main approach to deal with the waste disposed around the country. But after that, the

decreasing land space made it critical to find another method for waste disposal.

Growing volumes of waste and soaring energy prices are making sustainable waste

management a leading solution for a cleaner future. As one kind of source recovery ac-

tivities, Waste-to-Energy (WTE) system is world-widely considered as an complementary

municipal solid waste management method. Therefore the Singapore government pre-

ferred to adopt Waste-to-Energy system for its its highly efficiency to reduce the amount

of waste. The precedent of IUT global Ltd. chose a framework with a centralized waste

processing plant and public donated residential waste but did not sustain the mainte-

nance (IUTgroup, 2008; TheStraitTimes, 2011). The low rate of public participation and

high transportation cost around the city are the main factors to a successive of years of fi-

nancial loss. Therefore other types of facility-location frameworks need to be introduced

and a better policy to encourage residents’ participation is necessary.

1.1 Waste-to-Energy System

Some advanced techniques of Waste-to-Energy (WTE), such as anaerobic digestion (AD),

aerobic composting (AC), and gasification have contributed to the application of waste

management systems all over the world (Wang et al., 2014). Its flexibility and sustain-

ability enable the system especially applicable to the areas with dense population and

thus low landfill capacity.

Nowadays, the waste is being generated at a high speed. The annual amount of

residential waste in Denmark is more than 3.5 million tonnes. They prompt the waste

recycling programme by sorting the waste into more than 20 types and more than that,

some materials need to be recycled by the producer for reusing. Besides, the annual

amount of industrial waste is more than 12 million (Bogh et al., 2014). So the waste

recycling and reusing policy are critically necessary to make. Waste recycling is usually
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regarded as a legislation and some common models are built under the specific rules and

assumptions. However, if the recycled materials can be utilized properly, the waste and

CO2 emissions may be reduced significantly and it can also generate some new material

resource. which is a basic foundation of waste-to-energy conversation.

WTE system in Singapore is started as a waste management, absorbing both business

and residential waste. Reusable materials are sorted and made use of to save resources be-

fore incineration. Proper incineration technologies can reduce the waste volume greatly

up to 10% and generate the heat and steam to help run the facilities and supply electric-

ity power. Therefore this system can help Singapore to save the land and prolong the life

span of landfills.

As mentioned, the energy generated in WTE system can be used in the form of elec-

tricity or heat so it may seem a profitable programme. However in practice, this system

did not even achieve self-financing due to insufficient qualified waste. In Singapore, IUT

Global Ltd has to stop running the WTE system due to the great loss in three years

without enough qualified feedstock.

To this end, we propose to develop effective planning and scheduling strategies to

optimize the performance of the system.

The topic of supply chain management has become an area of interest for many

researchers who want to explore. Part of the models we propose are about the design of

green energy supply chain network, in line with the research on biomass supply chain

management.

The structure of this supply chain (Figure 1.1) is driven by the technology require-

ment for this product. And a premise of the problem is to determine the source of

feedstock. To simplify the problem, we just focus on the waste generated in daily resi-

dential life, not taking the industrial waste into account. Considering about the failure

precedent, it is clear that a desirable household recycling incentive policy need to be

established in order to attain the recycling targets. But it is not easy to raise the resi-

dents’ environmental awareness and make the recycling policy more effective. Also, the

failure of precedent indicates the significant effect of feedstock shortage as it is the only

foundation of profitability. Hence a complementary source need to be added in case of

loss of the primary feedstock. Besides, complementary feedstock can work as a buffer

3



Figure 1.1: Biocrude Supply Chain Structure

of the system in dealing with the variance of primary feedstock. Therefore, importing

qualified waste from large-scale professional waste-processing plant is proposed as an

optional secondary feedstock.

1.2 Incentive Policy in Recycling Program

Recycling needs people’s participation, and without it, the recycling cannot sustain. From

the point of view, during the policy making, public’s willing need to be fully taken account

into. Underestimation of its importance may lead to the failure of the decision. Because

without public’s participation, there is no raw resource for the WTE system and thus the

system will lose the ability to gain profit. People’s awareness helps to raise the amount

of waste and to improve the quality of the waste and thus makes the system sustainable.

From this perspective, incentive policy designing plays a critical role in this recycling and

processing program.

An effective incentivation policy should consider many factors, such as the local

culture, people’s behaviour and even the traffic conditions (Timlett and Williams, 2008).

The first thing that need to make clear is the recycling pattern, which is how they recycle

and why. Urgent as it is to launch recycling programs widely, many countries and areas

have applied various recycling incentives to prompt public participation. For example,

South Korea has gained remarkable progress and successful experience in recycling
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systems (Today, 2012, 2013) since it applied ’pay for improperly disposing of unclassified

waste’ policy. Also, it is also found in the recycling system of Hong Kong that small

rewards have a positive relationship with the amount of sorted waste (Yau, 2010) . In

addition, in the past 10 years, Singapore has also made remarkable progress on waste

reduction and raising residents’ environmental awareness on waste classification with

many environmental campaigns (Times, 2015).

1.3 Location-Incentivation Joint Design

Traditionally, the optimization of configuration in waste management framework (i.e., fa-

cility location) and policy design of incentivation in recycling programme are proceeded

sequentially: configuration optimization first, followed by incentivation policy making.

However, such a sequential strategy does not fully account for the interaction between

the configuration and incentivation optimization problems. And a simple example is

introduced to demonstrate this interaction below.

Consider a simple supply chain model consisting of one larger resident zone A with

1000 residents and one smaller zone B with only 100 people. The objective of facility

location is to maximize the total profit by minimizing the each person’s path to the

facility. And assume the price of waste in zone A is too high to be profitable while it is

well profitable in zone B, then the objective of policy is to maximize the profit of waste

we bought.

With sequential approaches, the location solution is to build the facility near zone

A, while the policy chooses to buy all the waste in B. This solution is feasible but not

necessarily optimal as the transportation cost from zone B to the facility may result in a

great loss. Here the transportation cost for waste is the interaction, which is decided both

by the facility location and incentivation policy. Now with the evolution of technology,

the system design shifts focus from feasibility to optimality. In this aspect, although the

sequential optimization is appealing for its simplicity, the simultaneous joint optimization

is the better to apply.

Today’s the WTE systems in mega cities are difficult to optimize: they are large,

complex and comprised of numerous interconnected components rather than the simple

example given above. To optimize such systems, one must accurately model not only their
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components, but also the potentially sophisticated interactions among those components.

Moreover, even if accurate system models are obtained, their complexity often renders

them mathematically and computationally intractable. So that it is also necessary to

propose proper computational approaches.

As discussed in preceding sections, in this thesis we propose to build up a facility

location framework embedded with incentive policy designing to balance the expense of

WTE plants, the cost of feedstock, etc. with the final criterion of maximizing the system’s

overall revenue.

More specifically, that is how many of WTE plants should be opened and where they

or it should be, and how the incentive should be decided.

To verify the feasibility and effectiveness of the proposed method, One-stage problem

with the only source from resident zones is set up as benchmark. It would be a typical

traditional design of supply chain network aiming to solve facility location and capacity.

And the subproblem is to determine the incentive. Our core improved model is to allow

for the secondary feedstock and its allocation.

In this paper, we let bold face lower case letters denote vectors, and bold face upper

case letters denote matrices. Besides, a tilde sign˜is used as an identification of random

variables (for vectors or matrices denoted with a tilde sign like ξ̃, every entry of which

is a random variable). For any x ∈ <, we define x+ = max{x, 0}, x− = max{−x, 0}. For

vectors vectors x ∈ <m, x+ and x− are defined in a similar way.

The main contribution of this thesis is developing optimization models that aim

to design cost-efficient supply chains for the operation of WTE system. We propose a

two-stage stochastic programming model for siting the recycling plant locations, and

incentivzation under uncertainty of residents’ reservation incentives and waste volumes.

To raise public environmental awareness, residents are paid some cash as incentive to

keep a habit of sorting their waste initiatively. It is supposed to be a long-term goal

to develop waste-to-energy sense and to encourage people to practice waste sorting.

Despite of the lack of residential waste, the system can also purchase secondary feedstock

as complement from professional waste plants. This strategy also helps to reduce the

amount of waste proceeded with traditional landfill or burning way.
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1.4 Outline of Thesis

The thesis consists of two major parts. The first (Chapter 3 and Chapter 4) and second

(Chapter 5 and Chapter 6) parts respectively deal with the model formulation and the

methodologies and the corresponding numerical results. Chapter 3 lays a model founda-

tion with a basic framework for the WTE recycling system. After taking the secondary

feedstock into account, Chapter 4 improves the model by providing a more complicated

framework. Then Chapter 5 introduces the methodologies adopted in this thesis with the

priority of different aspects like speed and accuracy. Chapter 6 shows some numerical

results to validate the effectiveness of the methods adopted and compares their applica-

tion range. In the final chapter, the conclusion is presented with areas for improvements

and suggestions for future research.
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Chapter 2

Literature Review

In this chapter there are two main parts. Section 2.1 introduces related literature, focus-

ing on the Waste-to-Energy system and the policy design in some recycling programs.

Section 2.2 presents an overview of methodologies adopted in this research.

2.1 Research Problem Related Literature

The related topics in this research is the Waste-to-Energy system background and incen-

tivation policy making for the recycling programme.

2.1.1 Waste-to-Energy

Municipal waste management is seen as one of the public services to provide people an

environmental and economical way to deal with their household waste.

However, due to the increasing population, the municipal solid waste management

has to tackle with some problems including the conflicts among growing waste gen-

eration, limited landfill capability, and the CO2 emission impact. As one of the most

widespread and commercially viable Waste-to-Energy (WTE) technology, anaerobic di-

gesters (AD) produce methane from the biomass as a green and renewable bio-energy

source from the organic wastes. This methane gas mixture has a high calorific value

which can be converted to electricity or burnt to release heat energy. Besides, as one final

product of the digester, the solid sludge produced can be re-used as agricultural fertiliz-

ers or as input for the gasification units. The economically feasible AD implementation

enables the profitability of a well-designed WTE system.
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The literature on modelling of waste management system (Gottinger, 1988; MacDon-

ald, 1996; Berger et al., 1999; Tanskanen, 2000; Morrissey and Browne, 2004) presents

a comprehensive brief of some common models. Initial waste management models are

based on Municipal Solid Waste management (MSW) and developed to deal with spe-

cific topics like waste transport problems. Due to the development system approach

and the wider application of waste management, MSW models then began to take into

consideration some environmental and system factors. However, most of the models

focused on economical problems, especially the problems on minimizing the cost. Only

a few considered the relationships of the variables within the systems. Nevertheless,

the shortcomings of the early models include not considering the recycling part, limited

alternatives solutions, and so on. From early 2000s, researchers began to consider the

environmental and social aspects as well. Thus the waste management models targeted

on all the waste streams to be managed and considered more available options.

Currently, some of the models are related to waste transport problems, discussing

how to lower the transport expense adopting different vehicle options and scheduling

strategies. Johansson (Johansson, 2006) integrates the cost of transport into the overall

system expense and proposed a model optimizing the waste collection under dynamic

scheduling and routing strategies. Macharis (Macharis et al., 2012) points out that the

barge transport is more environmental friendly as it emitted less CO2 than truck and train.

Palak (Palak et al., 2014) analyses how the CO2 emission policy influence the transport

decision in a biofuel waste management system. Inghels (Inghels et al., 2016) examine

the feasibility of replacing the traditional truck transport with barge and multimodal

truck.

In addition, some of MSW models are related facility location issues. Erkut (Erkut

et al., 2008) presents a new multicriteria supply chain model to solve the facility location

problem for waste management system at the regional level in North Greece. Sazvar

(Sazvar et al., 2014b) proposes a replenishment policy under a centralized plant. Faghri

(Faghri et al., 2002) proposes a geographic information system model to help make

facility location decision considering various factors relating to environment, society and

economy.

Of the mathematical models, many are focused on deterministic environments. For

instance, Roni (Roni et al., 2014) designs the hub-and-spoke supply chain network using
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existing data as a deterministic problem and Niziolek (Niziolek et al., 2016) built a de-

terministic mixed-integer nonlinear model to optimize the liquid fuel production during

the MSW process etc. However, the models under uncertain environment is usually more

complex, as they are often related to some unpredictable parameters like the amount of

demand. Jennings (Jennings and Suresh, 1986) takes the risk penalty as functions in-

cluding uncertain parameters for optimization model and uses the risk rating techniques

to solve the model. Escudero (Escudero et al., 1999) considers the demand, supply cost

and price of product as uncertainties and propose a optimization model for multiperiod

scheduling problem. Dempster (Dempster et al., 2000) focuses on a resource planning

problem under the uncertain demand and prices of the product. The model proposed by

Al-Othaman (Al-Othman et al., 2008) is developed as a multiperiod stochastic program-

ming model for petroleum products under the uncertain prices and demand. Carneiro

(Carneiro et al., 2010) regards the risk as uncertainty and present a two-stage stochastic

model for oil supply chain. Khor (Khor et al., 2008) proposed a two-stage stochastic

programming model for refinery under uncertain prices, demands and yields. Baetz and

Neebe (Baetz and Neebe, 1994) built a mix integer programming model under dynamic

environment. Everett (Everett and Modak, 1996) developed a multi-period model in

multi-region. Sundberg (Sundberg et al., 1994) discussed a static non-linear program-

ming model. And the summaries presents the model development of waste management

over decades and points out the important developments of the modelling which are

made in the research field of waste management in the past time.

In addition, at that time, the sustainability and integration have not been used in the

waste management systems, that means the models built do not consider revenues. With

the wide adoption of recycling programme, recent modelling has taken such factors into

account (Chang and Wei, 1999; MacDonald, 1996; Ghose et al., 2006). And nowadays

models are often built to adopt different waste management methods (Morrissey and

Browne, 2004; Pan et al., 2015).

Nevertheless, there is limited literature addressing the expense for the recycling

programme and the cost for the waste collected in waste management systems. And

there is no existing model dealing with multi-stage feedstock. Our problem requires to

combine these two goals together to co-design to optimize the system’s performance.
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2.1.2 Policy Design

Recent empirical researches have strongly revealed the positive impact of incentive mech-

anisms in waste recycling. For instance, the study of Yau (Yau, 2010) showed that in Hong

Kong, the reward in monetary form can induce the people to deliver the waste and can

greatly increase the household waste collected. In a study of using leisure voucher as an

incentive for waste recycling collection in England, Harder (Harder and Woodard, 2007)

proposed that most of the successful incentive schemes generally share three key charac-

teristics: rewards based on individual household basis, the sufficient level of the incentive,

and the ease of achieving these incentives. The research of Timlett and Williams (Timlett

and Williams, 2009) discussed how the population transience influence the the partici-

pation rate in recycling programme in Portsmouth, which is a populated city with high

rates of population flux and showed the relationship between the population dynamics

and recycling participation rate. Incentive-driven recycling planning problems have been

discussed in the literature mainly within the scope of reverse logistics for remanufactur-

ing. Guide (Guide Jr et al., 2003) studied the impact of financial incentives (in the form

of acquisition prices) on the remanufacturing industry which influence the quantity and

quality of recyclables. The authors proposed a simple framework for determining the op-

timal acquisition prices that match the demand and supply to maximize the profitability

of the remanufacturing firm, and provided an application example based on the cellular

telephone industry. Wojanowski (Wojanowski et al., 2007) discussed a continuous mod-

eling framework incorporating the deposit-refund policy in industrial firms collection,

facility network design, and pricing decisions. This model targets to describe the relativ-

ity of customers’ willing to buy and return some products with a stochastic model. The

net value recoverable from a returned product is determined through parametric analysis

as an important incentive for the company to offer deposit-refunds for free. The study

also showed that it is not enough for the government to set a minimum deposit-refunds

limit to raise the recycling participation portion when the products return value is low,

and some complementary accessibility-based policies can be used.

Deposit-refund policy is commonly utilized in promoting the return of used products

for remanufacturing, such as aluminium cans, glass bottles, batteries, and tires.
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However, such financial incentive policy has not been used in waste recycling man-

agement as cost information related to the amount of waste collected. But the above

literature provides a foundation to back up the relation between the amount of incentive

and waste recycled.

2.2 Research Methodology Related Literature

In this research we mainly adopted two solution approaches, parallel computing with

Map-reduced framework, Lagrangian relaxation and multi-stage optimization. Some of

them are combined to improve the performance including speed and accuracy.

2.2.1 Parallel Computing and Map-reduced

Parallel computing is a method of having multiple small jobs to solve a large problem.

In recent years it has been developed rapidly as the software and hardware in computer

field have been upgraded fast. Nowadays it has emerged as an important technology in

computing application. The past recent years have witnessed an ever-increasing accep-

tance and adopting of parallel processing, both for high-performance scientific computing

and for more ”general-purpose” applications, was a result of the demand for higher per-

formance, lower cost and sustained productivity. The acceptance has been facilitated by

a major development, massively parallel processors (Geist, 1994).

Parallel computing has made a tremendous impact on a variety of areas ranging from

computational simulations for scientific and engineering applications to commercial ap-

plications in data mining and transaction processing. The cost benefits of parallelism

coupled with the performance requirements of applications present compelling argu-

ments in favour of parallel computing (Grama, 2003).

Based on some studies by Chu et al. and Dean (Chu et al., 2007; Dean and Ghemawat,

2008), Map-reduced is a programming model and an associated implementation for

processing and generating large data sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value pairs, and a reduce function

that merges all intermediate values associated with the same intermediate key. So one of

its outstanding advantages is user-defined rules, allowing creating some unique functions
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to carry out. Also it is designed for multicore use, which is specialized for use over clusters

that have unreliable communication.

2.2.2 Stochastic Programming Models in Waste Management

The basic mathematical models in (Huang et al., 2010) discuss the facility location and

transport problems in supply chain framework under deterministic settings. And many

optimization models under stochastic environment are proposed in (Grossmann and

Guillén-Gosálbez, 2010; Chen and Fan, 2012) et al. They aim at dealing with different

stochastic nature of biomass supply and cost, and study the multistage models to solve

complicated problem. Furthermore, with the increasing publishment of GHG emossion

policies, Marufuzzaman (Marufuzzaman et al., 2014a) discussed the performance of the

biodiesel supply chain model with various constraints like carbon emission, carbon tax,

carbon cap mechanisms. And they used real-life application in extensions of the classical

economic lot-sizing (ELS) and economic order quantity (EOQ) models to get clear and

insightful numerical results. The paper concluded with an summary of the impact of the

biocrude supply chain design under different emission policies. And Md.S.Roni (Roni

et al., 2014) proposed a supply chain network design model for biomass co-firing in

coal-fired power plants due to practical problems that investment and processing costs

necessary for production of biofuel are very high (Wallace et al., 2005). The paper

used extensions of deterministic hub-and-spoken network design problem to model the

biomass supply system and bender decomposition to solve the NP− hard problem. Also,

it applied real-life data to evaluate the feasibility of the model in practice.

Also motivated by the cost of carbon emission fee, M.Marufuzzaman et al. (Marufuz-

zaman et al., 2014b) investigated the biodiesel supply chain via waste water treatment

under biomass supply and technology development uncertainties and develop the multi-

cut L-shaped based algorithm to solve model. The model captured the tradeoff that exists

between costs and emissions in the chain, and compared the formulation with different

carbon emission considerations to the one without such constraints. However, Palak.G

(Palak et al., 2014) suggested another perspective that analyzing the impact of such

carbon mechanisms on supplier and mode selection decisions. The paper modified the

extensions of classical EOQ models to evaluate different inventory replenishment deci-

sions and showed some observation results on how the carbon mechanisms affect the
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decision variables like expenses, revenues, facility location, and emissions in the biomass

supply chain models.

Sazvar.Z (Sazvar et al., 2014a) also worked on the EOQ models in a centralized

supply chain aiming to balance the financial and environmental criteria by determining

the transportation vehicles and inventory policy. In this paper, they linearized a scenario-

based multi-stage stochastic optimization and use real data to demonstrate the feasibility

and effectiveness. Rather than linearize the model, Oliveira.F (Oliveira et al., 2014) chose

to use stochastic bender decomposition and present several approaches for enhancing

the efficiency of the Benders cuts generated such as MagnantiWong cut generation and

SheraliLunday alternative cut generation. In the computation section comparisons are

made to prove the advancement of the algorithm.

2.3 Research Focus

It has never been addressed that the incentivation-location joint planning problem in

supply chain network. In addition, no existing scheduling model can efficiently solve the

two-stage scheduling problems in these plants. Thus in this research, we focus on joint

design for incentive-location planning of WTE system.
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Chapter 3

Incentive-Location Joint Planning:

Basic Model

As is known, in recycling programme, incentive mechanism is referred to encourage

people to classify their waste. And the configuration of waste management chain also

has a great effect on the incentive policy making. However, limited literature exists for

work involving embedding incentive policy design in a supply chain.

In this chapter, we begin with an establishment on the form of monetary incentive and

then combine it into this WTE supply chain. Section 3.1 first introduces the background

of incentive policy, then builds a model according to practical applications. Section 3.2

gives a detailed description on how location and incentive affect each other and what

problems we should solve in this part. Then Section 3.3 propose a mathematical model

aiming to resolve a general capacitated plant location problem embedded with incentive

policy, and a special case in which the capacity constraint is relaxed is proposed for

suburban districts. Section 3.4 provides a computational method for this joint planning

model. And data test is carried out in Section 3.5 to demonstrate the validation of model

and feasibility of method. At the end of this chapter, corresponding result analysis is

discussed.

3.1 Incentive Policy in Recycling Program

The scarceness of land and exploding amount of waste generation enables strategic waste

management be regarded as indispensable in megacities like Singapore, Shanghai and
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Hong Kong etc. Recycling and reusing, as one of the major topics in the arena of waste

management research, is adopted by more and more governments as an intermediary

measure to manage waste disposal. With the primary aim to lessen environmental dam-

age and achieve environmental sustainability, waste recycling can save energy, conserve

resources, reduce emissions from incinerators and raise residents’ environmental aware-

ness (Seik, 1997; Rondinelli and Berry, 2000; Ekins et al., 2003; Tınmaz and Demir,

2006; Tsai, 2008). It is known, recycling and reusing from the household waste stream

leads to reduced reliance on raw materials for the production of new goods and, at the

same time, reduces the quantities of post consumer waste disposed of by undesirable

means such as landfill. There is no doubt that effective management of household waste

has major potential benefits to society. In addition to the social benefit, the manually-

sorted residential waste usually has higher purity ratio thus is more profitable than those

from waste collection plant. Therefore, household waste is often set as principle source

of these recycling and reusing system(Shaw and Maynard, 2008).

Recycling from households has been promoted by firms and governments around the

world as one of the most important practices for achieving sustainability. The residential

waste,as primary feedstock, is the basis of all the functions. However, the success or fail-

ure of such a practice, relies heavily on the monetary incentive paid to the householders

for material sorting and recycling (Chen and Liu, 2014). Although legislation on manda-

tory disposal is introduced in some countries, most governments and firms choose to use

incentive to encourage more waste delivery. In the book named The Logic of Collective

Action, Olson (2009) explained the failures of groups to work in their collective inter-

est to achieve group benefits, with the insights drawn from the rational choice theory.

The point depends on individuals self-interests or so-called rationality. Given that other

people engage in a behaviour that is necessary to achieve a collective good, a rational

individual seeking to maximize utility or wealth can free-ride their efforts while still

gaining the benefits of their behaviour. This rational individual also reasons that if he

or she acts to achieve the collective good, the others will free-rider his or her efforts.

Therefore, he or she will not participate in the provision of the public good, and others

will act in the same way. As a result, there will be no cooperation and no collective good

is realized. In the failure case of IUT Global Ltd, what made the company suffer from

loss-making situation for three years in succession is that less than 10% of food waste in
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Singapore was being recycled under their quantity-based pricing policy. The companies

in Hong Kong use daily goods as reward raised the domestic waste recycling rate from

10% in 2001 to 23% in 2007 (Yau, 2010), greatly improved the feedstock input of the

system. Therefore an incentive plan should be developed as to support the feasibility of

system. Thus in this section we will propose a mathematical programming model to help

evaluate the appropriate incentivization plan.

3.1.1 Background

The success of incentive policy for recycling and reusing programme, in some previous

literature, are measured with indicators like recycling ratio or residents’ satisfaction. In

our work, as this focuses on the engineering field, the performance evaluation criteria is

the overall profit, thus the incentive is designed as monetary. This kind of measurement is

also supported by many studies that have shown that monetary incentives and providing

different types of recycling facilities matters (Hong et al., 1993; Jenkins et al., 2003;

Jakus et al., 1996; Tiller et al., 1997; Reschovsky and Stone, 1994; Bruvoll et al., 2002;

Fullerton and Kinnaman, 2002). But none of their cases involves the distance of recycling

facility.

Moreover, some quantity-discount pricing policies, which means the more waste

provided, the higher price offered, are not applicable to system due to low household

waste generation level. Jean-Daniel M. Saphores suggest a positive correlation of the

delivery distance and people’s willingness to participate in the recycling. Higher transport

cost is a result of longer path. So distance traveled is an important factor to take into

account. Moreover, Jean-Daniel M. Saphores also points out that significant numbers

of people are unwilling to sacrifice their time and energy to do sorting work for free

(Saphores et al., 2006). They have reservation levels for the incentive, which varies with

the individual. If the incentive minus transportation cost, also called net reward, is less

than the reservation level, then it is most likely the resident would refuse to join the

program. Hence with comprehensive considerations, the incentive in this WTE system

should paid in monetary way and combine the household reservation levels and the

distance for a delivery traveled.
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3.1.2 Assumptions and Formulation on Policy design

Some basic assumptions in our policy-making work are given below:

(a) A sample of reservation incentive levels is assumed to be available for each

resident zone. Hence we can use ξjt to indicate the reservation level of tth household in

zone j.

(b) Each individual resident has a reservation incentive, and he or she will sort and

deliver the waste to WTE facilities if the received incentive minus the transportation cost

(to and from the WTE facility) achieves or exceeds the reservation incentive level.

If we refer r, d, h, ξ as incentive, delivery distance, unit transportation cost for unit

waste, and reservation incentive level respectively, and denote z as an indicator whether

this person would take the incentive and participate, then this assumption can be re-

flected as the mathematical form:

z = IA(r) =


1 if r ∈ A

0 if r /∈ A

A = {r|r − dh− ξ ≥ 0} (3.1)

where IA is an indicator function defined as:

IA(x) =


1 if x ∈ A

0 if x /∈ A

(c) Different incentive policies are applied to different resident zones. And residents

in same zone will be taken as a whole to share the same distance information. That is, the

incentive policy is only related to the difference of zones, not WTE sites or individuals.

Thus we use rj to replace r in assumption (b), for it only varies with different j.

Because the reservation incentive level is a random variable in this system for not all

reservation data is available, it is necessary to introduce the sample estimation to denote

the portion of the people participated. And hence the sample estimator p̂(rj) is used to

refer the portion participated in zonej as follows:

p̂(rj) =
1

T

T∑
t=1

zjt (3.2a)
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zjt = IA(rj), A = {rj |rj − dh− ξjt ≥ 0} ,∀t (3.2b)

where T is the amount of samples in zone j.

3.2 Problem Description

Facility location is a critical aspect of supply chain planning for a wide range of business

systems. This is because it affects the overall cost, inventory price, and demand of the

product. In this system discussed, facility location planning is to decide to open one or

more capacitated WTE plants among multiple available sites which are limited by the

physical environment. Although centralized plant is beneficial to capital expenditure,it

may lead to the inconvenience of the waste delivery and high transportation cost, and

then further result in the breakdown of WTE system. But for decentralized facilities,

the higher rate of recycling may not be able to cover the heavy construction expense .

Therefore it is necessary to propose an effective model to evaluate on which site to open

a WTE plant.

The mathematical models we propose and our numerical analysis is focus on an-

swering the following questions about the supply chain design and corresponding costs.

These questions are to provided investors with a number of business rules to ensure the

long-term success of their invention. The questions related to supply chain design are:

◦ Given the amount of waste available in each resident zone, which facility site and

what plant capacity optimizes costs?

◦ Should a WTE plant locate centrally to receive all shipments from residential zones?

◦ How much should be offered to the participants in each residential zone?

The optimization model that we propose should maximize the total net profit of

the system. The costs include investment, transportation, incentive and penalty cost,

while the profit is the revenue by from WTE process output. Investment costs are the

costs related to the location and capacity of WTE plants, input to the WTE processing,

purchasing of waste. Transportation costs have only a variable component without fixed

part depending on the distance traveled and quantity shipped (given in S$/km/kg).

Penalty cost is paid for excess waste, including overtime working cost for both workers

and machines.
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3.3 Formulation

3.3.1 Assumptions

There are some basic assumptions in the model building.

(a) All sorted waste from the same resident zone has the average purity ratio, denoted

as θj . The purity ratio is a value between 0 to 1.

(b) The operating cost rates of per unit feedstock for all facilities are identical, de-

noted as W .

(c) Unit revenue of the waste from WTE process output (e.g. electricity generation)

is donated as q. Thus θjq is unit gross revenue for per unit feedstock.

(d) The disposal and incineration cost for per unit impure feedstock is denoted as cD.

Thus (1− θj)cD is the disposal and incineration fee for per unit feedstock.

(e) The open-up cost for facility includes fixed groundbreaking expense, bi and lin-

early dependent capacity expense, fi.

(f) Given a set of open WTE facilities, the residents only consider the nearest open

facility to travel to. So when given the open WTE facilities, the distance between resident

zone and WTE facility is determined.

(g) WTE plants cannot transfer the excess waste to each other.

(h) rj is the incentive offered for per unit feedstock for residents in zone j.

3.3.2 Modeling

If we refer yij as the accessibility of the delivery link from jth resident zone to ith

potential site, then

yij =


1 resident zone j is assigned to the facility at site i

0 otherwise

where
∑

i∈I yij = 1,∀j.

Then distance can be reformulated as yijdij , where dij is the distance from from jth

resident zone to ith potential site.
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In this way, the net profit for per unit primary feedstock should be the total revenues

less operating and disposal costs, which we use F1(rj) to express as follows:

F1(rj) = θjq − rj − (1− θj)cD −W (3.3)

In this chapter, we only consider the waste collected from resident zone as the sole

source, so decision variables are the opening status of WTE plant xi (1 represents open

and 0 otherwise), the capacity of each WTE plant νi, the amount of incentive for each

zone rj .

In the profit function (3.3), the primary feedstock purity ratio θj in each zone j

by definition is the proportion of per unit waste collected that is eventually usable for

WTE conversion,generating a revenue margin of θjq dollars. Also, for every unit waste

collected, a fraction of 1 − θj will need to be disposed since they are unsuitable for

WTE conversion, incurring a disposal cost of (1 − θj)cD. The operating cost rate W ,

is unit operating expense of a WTE facility. In summary, the unit profit margin term

θjq − rj − (1− θj)cD −W in the above accounts for the revenue generation from pure

feedstock θjq less the sum of incentive payout rj , impurity disposal charges (1 − θj)cD

and operating costs W .

On the condition of capacity constraint, there exist possibilities whether the amount

of feedstock exceeds or fails to reach the capacity limit. As we focus on the residential

waste, part of the waste is perishable and may contaminate the rest. Therefore excess

waste cannot be stored to be used in next period and thus some cost will be charged as

penalty. We have the expression λi for the amount of excess feedstock if ηj is referred as

the waste generation of zone j:

λ̃i =

 ∑
j∈J (i)

yij η̃j p̂(rj)− νi

+

(3.4)

Where η̃j p̂(rj) represents the waste collected from zone j and thus
∑

j∈J (i) yij η̃j p̂(rj)

is the overall waste collected in facility site i.

The problem can then be formulated as the following stochastic optimization prob-

lem:
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max Eη̃,λ̃

∑
j∈J

η̃j p̂(rj)F1(rj)−
∑
i∈I

giλ̃i

−∑
i∈I

(fiνi + bixi) (3.5a)

s.t. λ̃i ≥
∑
j∈J

yij η̃j p̂(rj)− νi, ∀i (3.5b)

λ̃i ≥ 0, ∀i (3.5c)

Kxi ≥ νi ≥ 0, ∀i (3.5d)∑
i∈I

yijdij ≤ xidij , ∀i, j (3.5e)

∑
i∈I

yij = 1, ∀j (3.5f)

yij ≤ xi, ∀i, j (3.5g)

xi, yij ∈ {0, 1} (3.5h)

νi, rj ≥ 0 (3.5i)

where g is the unit penalty cost, M is a suitable large number, and K is the capacity

limit due to WTE facility’s design.

Note that constraints (3.5b) and (3.5c) equals to expression (3.4) in a maximizing

problem. Constraint (3.5d) restricts the 0 capacity with the premise of closed plant by

setting νi = 0 when xi = 0. Constraint (3.5f) ensures for one zone there is only one

facility to deliver and Constraint (3.5e) makes sure that zone j will choose the nearest

opened facility to deliver by constraining yij = 1 when dij is least for all opened sites.

In the following we use the sample average approximation approach to obtain a

mixed integer (non-linear) programming formulation of the above problem. L scenarios

are simulated and the average of total profit in each scenario is taken to replace the

original objective in the following form, :

max
1

L

L∑
l=1

∑
j∈J

ηjlp̂(rj)F1(rj)−
∑
i∈I

giλil

−∑
i∈I

(fiνi + bixi) (3.6a)

s.t. λil ≥
∑
j∈J

yijηjlp̂(rj)− νi, ∀i (3.6b)

λil ≥ 0, ∀i (3.6c)
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Kxi ≥ νi ≥ 0, ∀i (3.6d)∑
i∈I

yijdij ≤ xidij , ∀i, j (3.6e)

∑
i∈I

yij = 1, ∀j (3.6f)

yij ≤ xi, ∀i, j (3.6g)

xi, yij ∈ {0, 1} (3.6h)

νi, rj ≥ 0 (3.6i)

3.4 Solution Approach

3.4.1 General Case

However, Model 3.6 is still a non-linear MIP problem and to be solved more directly, it

requires some alteration for the intractable part p̂(rj)F1(rj) in the objective 3.6a. Note

that p̂(rj) =
1

T

∑T
t=1 zjt (3.2), we use auxiliary variables Ajt and Bijt to help as:

Ajt = zjtF1(rj) (3.7)

Bijt = yijzjt (3.8)

Thus a MILP problem is formulated in the following way:

max
1

L

L∑
l=1

 1

T

T∑
t=1

∑
j∈J

ηjlAjt −
∑
i∈I

giλil

−∑
i∈I

(fiνi + bixi) (3.9a)

s.t. Kxi ≥ νi ≥ 0 (3.9b)∑
i∈I

yijdij ≤ xidij (3.9c)

∑
i∈I

yij = 1 (3.9d)

M(1− zjt) + rj −
∑
i∈I

yijdijh− ξjt ≥ 0 (3.9e)

Mzjt ≥ rj −
∑
i∈I

yijdijh− ξjt (3.9f)
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−Mzjt ≤ Ajt ≤Mzjt (3.9g)

F1(rj)− (1− zjt)M ≤ Ajt ≤ F1(rj) + (1− zjt)M (3.9h)

λil ≥
1

T

T∑
t=1

∑
j∈J

ηjlBijt − νi (3.9i)

λil ≥ 0 (3.9j)

Bijt ≤ zjt (3.9k)

Bijt ≤ yij (3.9l)

Bijt ≥ yij + zjt − 1 (3.9m)

yij ≤ xi (3.9n)

xi, yij , zjt ∈ {0, 1} (3.9o)

νi, rj ≥ 0 (3.9p)

Now solving directly in CPLEX is applicable to the general case.

3.4.2 Uncapacitated Case

In the special case where capacity constraints of the recycling faciltiy are relaxed, a sim-

pler solution approach is available. When the facility site is in remote and district with

scarce population, it is assumed the capacity limit constraints are not considered. Corre-

spondingly, the fixed cost bwould increase by including the cost of uncapacitated facilities.

The operating cost rate W , as stated, includes energy, material and labor overheads, and

can also include an item to account for the annualized plant capacity payments. In this

way, the model can be further simplified as:

max
1

L

L∑
l=1

∑
j∈J

ηjlp̂(rj)F1(rj)

−∑
i∈I

bixi (3.10a)

∑
i∈I

yijdij ≤ xidij , ∀i, j (3.10b)

∑
i∈I

yij = 1, ∀j (3.10c)

yij ≤ xi, ∀i, j (3.10d)

xi, yij ∈ {0, 1} (3.10e)
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rj ≥ 0 (3.10f)

First of all we need to transform
∑

j∈J ηjlp̂(rj)F1(rj) to
∑

i∈I
∑

j∈J yijηjlp̂(rj)F1(rj)

as
∑

i∈I yij = 1. Thus the objective can be reformulated as follows:

max
1

L

L∑
l=1

∑
i∈I

∑
j∈J

yijηjlp̂(rj)F1(rj)−
∑
i∈I

bixi (3.11)

It is straightforward that the model can be decomposed for i in the following way.

max
∑
i∈I

 1

L

L∑
l=1

∑
j∈J

yijηjlp̂(rj)F1(rj)− bixi

 (3.12)

Noted that the original objective can be seen as the sum of sub-objectives for each

i. If the value of the xi is given in each computation, in other words, it is known which

plants would be opened, the value of yij would be fixed by constraints (3.5e)(3.5f) and

each decomposed model has only one decision variables rj .

Then, for each i, the subproblem is shown as follows:

Gi(rj) = max
rj

1

L

L∑
l=1

∑
j∈J

yijηjlp̂(rj)F1(rj)− bixi (3.13a)

rj ≥ 0 (3.13b)

Based on our assumptions, the incentive reservation level is accessible from survey

data or other ways. So before further computation, we first arrange the incentive reser-

vation level ξjt with same j in ascending order {ξj1, ξj2, ..., ξjT }. It is not hard to see

that for any residential zone j, when rj ∈ [ξjt +
∑

i∈I yijdijh, ξj(t+1)

∑
i∈I yijdijh), the

value of p̂(rj) = t/T remains same and F1(rj) is negative linearly dependent with rj .

So if we increase rj ∈ [ξjt +
∑

i∈I yijdijh, ξj(t+1)

∑
i∈I yijdijh), the objective will de-

crease correspondingly. Given it is a maximum problem, rj tends to choose the value

of ξjt +
∑

i∈I yijdijh when rj ∈ [ξjt +
∑

i∈I yijdijh, ξj(t+1)

∑
i∈I yijdijh). Thus we could

convert the continuous rj into finite discrete values.

In this way, the optimal rj can be picked out by obtaining the maximum value of

p̂(rj)F1(rj) via substituting rj with different ξjt +
∑

i∈I yijdijh. Add all the final profits
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of subproblems under one combination of xi, and we can test all the combination of all

xi then get the optimal solution.

The flowchart of the steps is also displayed in Figure 3.1:

3.5 Data Experiment

3.5.1 Example Setting

After modeling, some numerical studies need to be carried out to demonstrate the solu-

tion method and evaluate the computational performance. As a typical magecity troubled

with a rapidly growing amount of household waste, Shanghai has invested a lot on waste

management system to develop a fitting and economic framework for its multiple dis-

tricts. Therefore we take Shenjialou, a district of Shanghai for case instance to test the

applicability of the model. In the map of Shenjialou District, 3.2 , there are mainly 5

residential zones and the historical values of parameters according to (TheStraitTimes,

2011; ZeroWasteSingapore, 2015)) are given as follows:

Table 3.1: The data setting for model parameters in Shenjialou District

Parameter Value
I, potential site numbers 2
J , residential zone numbers 5
W , operating cost for processing per unit waste 0.013 SGD/Kg
cD, unit disposal fee for the impure wastes 0.077 SGD/Kg
q, revenue for per unit pure waste 0.0985 SGD/Kg
h, unit transportation cost 0.003 SGD/(Kg * Km)
b, the fixed cost of each opened WTE facility 200 SGD
θj , the purity ratio of each resident zone 0.9

• The average of quarterly waste generation for each resident zone, η̃j is about

5000KG.

• The distance (Km) between each resident zone and WTE potential site is measured

in table 3.2:

Table 3.2: Distances between every WTE site and every residential zone, dij

Z1 Z2 Z3 Z4 Z5
S1 0.34 0.66 0.19 0.48 0.63
S2 0.76 0.98 0.54 0.38 0.20
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Figure 3.1: Flowchart of computational method for uncapacitated model
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Figure 3.2: Distribution of zones and sites in Shenjialou District

• Samples of reservation incentive level in each zone are referred in table 3.3 :

Table 3.3: Samples of reservation incentive level in each zone, ξj

zone j ξ1 ξ2 ξ3 ξ4 ξ5
1 0 0 0.2 0.3 1
2 0 0.2 0.25 0.25 0.5
3 0.01 0.01 0.03 0.05 0.5
4 0 0.2 0.2 0.5 0.8
5 0.1 0.1 0.15 0.3 2

3.5.2 Simulation Result

Following the steps in last section, we get the optimal solution step by step as follows:

1) Display all combinations of xi in table 3.4:

Table 3.4: All scenarios of opened site xi distribution

Scenario x1 x2 Notation
1 1 0 S1 is open and S2 is closed.
2 1 1 Both S1 and S2 are open.
3 0 1 S2 is open and S1 is closed.
3 0 0 Both S1 and S2 are closed.

We can quickly see to the conclusion under x1 = x2 = 0 that the profit is 0. So this

trivial scenario would not go through the following steps.

2) Take the scenario of x1 = 1, x2 = 0 for example:
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According to constraint (3.5e)(3.5f), the value of yij can be got correspondingly.

Table 3.5: yij at x1 = 1, x2 = 0

No j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 1 1 1 0 0
i = 2 0 0 0 1 1

Table 3.6: ξjt +
∑

i∈I yijdijh at x1 = 1, x2 = 0

zone j ξ1 ξ2 ξ3 ξ4 ξ5
1 0.00102 0.00102 0.20102 0.30102 1.00264
2 0.00198 0.20198 0.25198 0.25198 0.50159
3 0.01057 0.01057 0.03057 0.05057 0.50003
4 0.00144 0.20144 0.20144 0.50144 0.80117
5 0.10189 0.10189 0.15189 0.30189 2.00273

Substitute rj with all ξjt in the above table, and the corresponding result of

p̂(rj)F1(rj) is:

Table 3.7: The Optimal Value of p̂(rj)F1(rj) under Given ξjt

zone j ξ1 ξ2 ξ3 ξ4 ξ5
1 0.013386 0.026772 -0.079842 -0.186456 -0.93307
2 0.013194 -0.053612 -0.110418 -0.147224 -0.43403
3 0.011476 0.022952 0.022428 0.013904 -0.43262
4 0.013302 -0.053396 -0.080094 -0.346792 -0.73349
5 -0.006788 -0.013576 -0.050364 -0.187152 -1.93394

Therefore, the optimal solution is:

r1 = 0.00102,

r2 = 0.00198,

r3 = 0.01057,

r4 = 0.00144,

r5 = 0,

The profit is 181.1SGD.

3) In the same way, the optimal value under the other scenarios mentioned in 1) can

be calculated:

Scenario 2, −19.6SGD

Scenario 3, 175.82SGD

Scenario 4, 0
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That means, the optimal solution in this case is to open S1.

3.5.3 Sensitivity analysis

a) We change the amount of residential zones from 1 to 5 to see how the profit is affected.

There are 31 possible scenarios of residential zones including 5 of 1 residential zone, 10

of 2 zones, 10 of 3 zones, 5 of 4 zones and 1 of 5 zones. We denote OZj∗ as the scenario

in which the j∗ residential zones are in the system. And the trend of the profit in each

scenario of different zones is shown in Figure 3.3.

Figure 3.3: The trend of the profit in each scenario of different zones

From this figure, it is clear that none of the single zone scenarios is profitable, thus we

can tell it is unsustainable to equip each zones with a plant in this environment. But when

the amount of residential zones increases to 2, there are possibilities to make revenue.

OZ13 and OZ14 are profitable, partially indicating the distance affects a lot, while OZ 34

is non-profitable, showing that the reservation incentive also makes an influence. And

as the amount of residential zones increases, there is a marked improvement on the

possibilities of profitability.

b) We change the fixed cost of the plant to see how the profit is affected. The trend

of the profit to different fixed cost is shown in Figure 3.4.

Though the slope of the top of each profit bar seems steady, the profit to 0 fixed cost

is a little special. Actually, when there is no fixed cost, the system tends to open 2 plants
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Figure 3.4: The trend of the profit to different fixed cost

rather than only S1 in other scenarios in which the fixed cost is larger. It indicates that ,

despite of the fixed cost, or when the fixed cost is relatively little, S2 is profitable. If the

residential zones that transported their waste to S2 has a larger population, there is a

possibility that opening both two plants maximizes the system’s profit.

3.6 Summary

In this chapter, an incentive-location joint model is proposed to embed the incentive

policy making into a classical facility location problem. In the environment with uncertain

parameters, a stochastic programming model is proposed to maximize the overall profit,

which can be re-formulated into MILP by converting the continuous variable into discrete

values with its monotonicity in intervals. Additionally, a special case without capacity

limit constraints is discussed as some mecacities prefer to set the WTE potential sites in

suburbs for the consideration of noise. And the solution approach is presented showing

how the solution process is simplified. In the end, taking an area in Shanghai as the

environmental background, a numerical case is showed in detail to demonstrate the

solution process and the result also proves model’s effectiveness.

31



Chapter 4

Incentive-Location Joint Planning

with Secondary Feedstock

In this chapter, we propose a two-stage incentive-location joint planning model to be

more resistant to environmental variability and thus better fit realistic situations. Section

4.1 gives a general description to introduce the new features of this model. Section 4.2

presents explanations of the additional assumptions and notations for further application.

Then in section 4.3 mathematical formulation is presented.

4.1 Problem Description

In chapter 3, we built the model with the residential waste as the sole feedstock, and it is

proved effective on some environment of small scale and little variability. However, such

a system may not be sustainable economically if feedstock collected from resident zones

is insufficient to achieve a healthy capacity utilization. In that case, the model in chapter

3 would suffer the consequence of waste shortage because there is no any buffer. IUT

global’s failure also reveals there is a huge risk to rely entirely on the waste collected

for the factors influencing the waste generation are,to some degree, uncontrollable. So

it is necessary to absorb waste from other sources as a secondary feedstock owing to its

stable price and steadily constant resource. Some successful cases in Seoul (Lee and Paik,

2011) and Taiwan (Lu et al., 2006) also prove the contribution of secondary feedstock

to system’s maintenance .
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In this chapter, we consider, in our joint location and incentive model, the option

of purchasing and processing secondary feedstock.Generally, secondary feedstock can

be implemented via two methods. One is bio-fuel, which can be used in the WTE to

generate power which is sold to the grid. This is much more expensive to purchase due

to government or state taxations and limitations, and is only regarded as a back-up to

improve plant utilization. Another is to purchase low grade bio-waste which is cheap but

can only recover limited energy due to poor feedstock purity, which can be purchased

abundantly from professional waste-processing plants. In both cases, profit margin from

secondary feedstock is very low. Hence, the WTE operator’s primary revenue stream

should still be soliciting feedstock from resident’s if possible, and only using secondary

feedstock as a back-up.

4.2 Assumptions and Notations

In addition to the assumptions in Chapter 3, more reasonable assumptions are generated

for further application we may develop:

(a) We note that secondary feedstock ordering can take place either before or after

actual waste based on the practical situations. However, the problem structure would be

shown to be greatly simplified in the latter case, which is ordering secondary feedstock

after the waste actually generated. Hence in this model we only consider the more

general and difficult situation, the former case.

(b) Allocating the secondary feedstock to the individual plants is performed in the sec-

ond stage, after the waste generation ηj is given. We refer ui to the secondary feedstock

allocated to the facility in site i.

(c) No transportation of waste between WTE plants is available as the system does

not own vehicle fleet. Transshipment of feedstock from site to site also constitutes high

costs and negative environmental impacts that cannot be justified by the operator or

authorities.

And the following is the extra notations we may use in models.

Parameters

γ the purity ratio (the proportion of usable waste) of secondary feedstock
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p price of per unit secondary feedstock

li the transportation cost for per unit secondary feedstock allocated to site i

Variables

u total amount of secondary feedstock

ui amount of secondary feedstock allocated to ith facility

4.3 Two-stage Model Formulation

Before we start the detailed description of the two-stage model, the two stages are

need to be introduced and explained first for further construction. The first stage of the

framework design is the overall planning stage, aiming to determine all the parameters

before environment parameters are known. Then in the second stage some decisions

related to environment parameters are to make for further optimizaiton.

4.3.1 Formulations of Net Profit Function for the Secondary Feedstock

In the first stage, three decisions to be made are the capacity of each WTE plant ki, the

amount of incentive for each zone rj , and the quantity of secondary feedstock u. These

decisions will be made before the waste generations are known.

According to Expression (3.3), the net profit function referred to as F2 for the sec-

ondary feedstock follows the same:

F2 = γq − p− (1− γ) cD −W (4.1)

4.3.2 Formulations of Excess Waste

After the first stage, the volume of waste generation in resident zones and price of

secondary feedstock will be known. Now in this second stage, the secondary feedstock

should be allocated to each WTE plant to avoid waste and to maximize the profit. The

amount of secondary waste transported to the ith facility is defined as ui. Since it is

determined after waste generation is known, ui is related to the uncertainty ηj . Thus

the respective transportation cost for each site is uili and thereby expression λi for the

amount of excess feedstock is updated as:
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λ̃i =

 ∑
j∈J (i)

η̃j p̂j(rj) + ũi − νi

+

(4.2)

4.3.3 Model Formulations

Accordingly, The joint location-incentive planning problem with two source feedstock

can be formulated like basic model as the follows:

max
ν,u,y,x

−
∑
i∈I

(f ′ν + b′x) + Eη̃,λ̃,ũ

[
Q
(
ν, u,y,x, η̃, λ̃, ũ

)]
(4.3a)

s.t. Kxi ≥ νi ≥ 0, ∀i (4.3b)∑
j∈J

yij = 1, ∀i (4.3c)

∑
i∈I

yijdij ≤ xidij ,∀i, j (4.3d)

yij ≤ xi,∀i, j (4.3e)

xi, yij ∈ {0, 1} , ∀i, j (4.3f)

ν, u,u, r ≥ 0 (4.3g)

where

Q
(
ν, u,y,x, η̃, λ̃, ũ

)
= max

ui

∑
j∈J

η̃j p̂j(rj)F1(rj)−
∑
i∈I

ũili + uF2 −
∑
i∈I

giλ̃i (4.4)

λ̃i ≥
∑
j∈J

yij η̃j p̂(rj) + ũi − νi, ∀i (4.5a)

∑
i∈I

ũi = u (4.5b)

ũi, λ̃i ≥ 0 (4.5c)

Note that constraint (4.3a) restricts the 0 capacity with the premise of closed plant

by setting νi = 0 when xi = 0. Constraint (4.3c) ensures for one zone there is only one

facility to deliver and constraint (4.3d) makes sure that zone j will choose the nearest
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opened facility to deliver by constraining yij = 1 when dij is least for all opened sites

and Besides, constraints (4.5a) and (4.5c) equal to expression (4.2) in a maximizing

problem.

Multistage stochastic problem is acknowledged as difficulty to construct a general

approach to solve. So the first step of is to bring in some method to reform it into the

deterministic equivalent problem.

Sample estimator method is applied to make l as the index of scenarios for waste

generation:

l index of scenarios for waste generation (l = 1, · · · , L)

Then, under the assumption that we have L simulated scenarios, the waste generation

for zone j in scenario l, the data of which is accessible and deterministic, can be referred

as ηjl, 0 ≤ l ≤ L. And correspondingly, the variables related in second stage are also

changed, as they are supposed to be decided after the amount of waste generation is

determined, like ũi into uil and λ̃i into λil. Therefore the objective of the model is

thereby to maximize the summation of all the profit in each scenario by assigning values

to variables. And thence we get the following deterministic programming model and

name it as OM :

max
νi,u,yij ,xi,zjt

−
∑
i∈I

(fiνi + bixi) + Eη̃j ,λ̃i,ũi

[
Q
(
νi, u, yij , xi, η̃j , λ̃i, ũi, zjt

)]
(4.6a)

M(1− zjt) + rj −
∑
i∈I

yijdijh− ξjt ≥ 0, ∀j, t (4.6b)

zjt ∈ {0, 1} , ∀j, t (4.6c)

s.t. Kxi ≥ νi ≥ 0,∀i (4.6d)∑
j∈J

yij = 1,∀i (4.6e)

∑
i∈I

yijdij ≤ xidij ,∀i, j (4.6f)

yij ≤ xi, ∀i, j (4.6g)

xi, yij ∈ {0, 1} , ∀i, j (4.6h)

ν, u,u, r ≥ 0 (4.6i)
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where

Q
(
ν, u,y,x, η̃, λ̃, ũ, zjt

)
= max

ui

∑
j∈J

η̃j

(
1

T

T∑
t=1

zjt

)
F1(rj)−

∑
i∈I

ũili + uF2 −
∑
i∈I

giλ̃i

(4.7)

λ̃i ≥
∑
j∈J

yij η̃j

(
1

T

T∑
t=1

zjt

)
+ ũi − νi, ∀i (4.8a)

λ̃i ≥ 0, ∀i (4.8b)∑
i∈I

ũi = u (4.8c)

ũi ≥ 0,∀i (4.8d)

where constraints (4.8a) and (4.8b) are equivalent to what the excess waste function

(4.2) demonstrates in specific scenario. And constraints (4.6b) and (4.6c) reflect that

as an indicator variable, zjt=0 if the tth resident in zone j is not willing to contribute,

which is confined by rj −
∑

i∈I yijdijh− ξjt < 0. And since the objective is a maximizing

function with the signs of all zjt are positive, zjt in constraint (4.6b) tend to choose 1

instead of 0 when rj −
∑

i∈I yijdijh− ξjt ≥ 0.

4.4 Summary

In this chapter, to improve the performance of basic model of WTE system by modifying

it to be more resistant to environmental variability and thus better fit realistic situations,

secondary feedstock is implemented. So some additional explanations and notations

are presented like the new introduced variable the amount of secondary feedstock, the

quantity of secondary feedstock allocated etc.

Correspondingly, the entire model now includes a second stage in which there occurs

secondary feedstock allocation besides determining more decisions at the first stage. This

changes convert the model into a two-stage stochastic problem and the mathematical

formulations are introduced to explain net profit function and excess waste denotion.

There are some estimations and simplifications adopted for computational tractability.

Although it is still complicated to jointly design for incentive and location in a multi-stage
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problem under uncertain environment. However, this measure enhances the resistance

to environmental variability and makes the system more stabilized. And the capacity

utilization is also enhanced.

The measure of WTE system is not only a prompt for public waste classification but

also a tempt to take all profitable waste into consideration, thus with the development of

exploiting value of waste, it provides a potential to add waste from other sources instead.
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Chapter 5

Solution Approaches

Although for a fixed incentive level, model 4.6 is in the format of a mixed integer linear

programming (MILP) model, and can ideally be solved using commercially available

mixed integer solvers such as CPLEX, in general it is still non-linear in structure and

can pose computational difficulties when problem size scales up. Then in this chapter

we propose three solution approaches based on model OM . The first one is large-scale

mixed integer linear programming(MILP), the second is a parallel computing approach

based on Map-Reduce method, and the third is Lagrangian relaxation approach. Each of

them has its own advantage and shortcomings in order to apply in different cases.

5.1 Large-scale MILP

For a non linear problem with a part of multiplying two decision variables, a general idea

is to linearize it as a MILP problem and call the CPLEX solver. So we solve the model by

linearizing both the objective and constraints like what is processed in section 3.3.1.

Be noted the net profit function 3.3 is

F1(rj) = θjq − rj − (1− θj)cD −W (5.1)

And two auxiliary variables Ajt and Bjt are constructed that

Ajt = zjtF (rj) (5.2)
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Bijt = yijzjt (5.3)

Correspondingly, by replacing the part of multiplying two decision variables, the

whole model named MILP can be reformulated as follows,

MILP : max
1

L

L∑
l=1

 1

T

T∑
t=1

∑
j∈J

ηjlAjt −
∑
i∈I

uilli + uF2(p)−
∑
i∈I

giλil

−∑
i∈I

(fiνi + bixi)

(5.4a)

s.t. Kxi ≥ νi ≥ 0, ∀i (5.4b)∑
i∈I

yijdij ≤Mxidij ,∀i, j (5.4c)

∑
i∈I

yij = 1,∀j (5.4d)

M(1− zjt) + rj −
∑
i∈I

yijdijh− ξjt ≥ 0,∀j, t (5.4e)

−Mzjt ≤ Ajt ≤Mzjt, ∀j, t (5.4f)

F1(rj)− (1− zjt)M ≤ Ajt ≤ F1(rj) + (1− zjt)M, ∀j, t (5.4g)

λil ≥
1

T

T∑
t=1

∑
j∈J

ηjlBijt + uil − νi,∀i, l (5.4h)

λil ≥ 0,∀i, l (5.4i)

Bijt ≤ zjt,∀i, j, t (5.4j)

Bijt ≤ yij ,∀i, j, t (5.4k)

Bijt ≥ yij + zjt − 1,∀i, j, t (5.4l)∑
i∈I

uil = u,∀l (5.4m)

yij ≤ xi, ∀i, j (5.4n)

xi, yij , zjt ∈ {0, 1} (5.4o)

u, uil, νi, rj ≥ 0 (5.4p)

(5.4q)

To ensure the accuracy of Ajt = zjtF (rj) (5.2)and Bijt = yijzjt (5.3), some con-

straints are added in this model formulation. Be Noted that F1(rj) has bounds [−M,M ]
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when M is a suitable large number. Based on constraints (5.4f) and (5.4g), if zjt = 0 then

Ajt has to be zero as well. And if zjt = 1 then Ajt is forced to be F1(rj). Also, constraints

(5.4j) and (5.4k) ensure that Bijt will be zero if either zjt or yij is zero. The constraint

(5.4l) will make sure that Bijt will take value 1 if both binary variables yij and zjt are

set to 1. And the explanation of other constraints follows those stated in section 3.4.1

and section 4.3.3.

Now that it is a normal MILP model that can be solved by CPLEX.

However, although linearization into a MILP model is proposed as a solution approach

to solve the two-stage problem directly, incapability of data processing in large scale

prevents it from being a general solution for this model. Therefore in the following part

we suggest two other methods for wider application.

5.2 Parallel Computing Solution Approach using Map-reduced

Method

Now with the rapid development of network technologies, it is acknowledged that in the

past recent years the parallel computing has been increasingly accepted and adopted

both for computing theory and practical applications. It is applied to solve large problems

which can be decomposed into a series of smaller ones that can be solved individually at

the same time, especially for NPC(non-deterministic polynomial complete) problems. As

the parallel processors are increasingly utilized and the distributed processing spreads

wider, the parallel computing established its advantage as a high performance comput-

ing methodology for large volume numerical calculations. Instead of a possible failure

from dealing with an entire large problem in a local processor, parallel computing can

produce unequalled computational power in some cases by enabling multiple processors

do similar tasks at one time so each processor only need to focus on one or several small

jobs. The independent failure also enables the system fault tolerant in case of any failure

of one of the components. The schematic diagrams of traditional serial computing and

the parallel one are shown as Figure 5.1 and Figure 5.2 (Barney, 2015).

Map-reduced is an improved programming models for parallel processing and an

associated implementation for processing and generating large data sets. The master
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Figure 5.1: Traditional Series Computing Diagram

Figure 5.2: Parallel Computing Diagram

can collect the discrete results from each processor and do further process. And users

specify a map function that processes a value pair to generate a set of intermediate value

pairs, and a reduce function that merges all intermediate values associated with the same

intermediate key. (Dean and Ghemawat, 2008)

This process requires a series of input value pairs and finally provides a series of

output value pairs. And the Map-reduced library defines this computation process as two

function which are Map and Reduce. Function Map is designed to take a value pair as

input and produce a series of value pairs as intermediate output. Usually in this step, the

master computer need to decompose the whole job into subproblems in some way and

then assign the subproblems to the parallel clusters. And then, with the Map-reduced

library, the master computer collects all the intermediate output from the clusters to

pass the output to Function Reduce. After accepting these values, Function Reduce uses
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defined rules to generate a value pair as the final output. During this step, multiple

rules can be added like sum up, choosing the maximum or minimum, picking out and

reformation etc. So in this method, Function Map and Reduce are both specified by users,

which enables a wide application of parallel, distributed algorithms. And the schematic

diagram is displayed as Figure 5.3(Chu et al., 2007).

Figure 5.3: Map-reduced Framework Diagram

Take an example of a problem how many times the word the occurs most among a

large collection of books to demonstrate how Map and Reduce functions work in the

system. Usually the functions can be defined as the following pseudo-code 1 and 2.

Algorithm 1 Mapping Function

map(String InputKey, String InputValue):

//InputKey: book name

//InputValue: book contents

for each word the in InputValue:

EmitIntermediate( the, ”1”)

The Map function splits the books by their names into several parts and each mapper

gets one part, which are some books. And for each mapper, its job is to search for word

the and mark 1 when word the appears once.

Then the Reduce function receives all the keys, which are name of books, and the

intermediate values, which are some ”1” as many as the occurrences of word the. As

shown, the Reduce function we defined is to add up the occurrences of 1 and output.

Therefore we propose to convert the MILP in section 5.1 into a set of small problems

taking advantage of some discrete variables by generating finite subproblems with less
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Algorithm 2 Reducing Function

reduce(String OutputKey, Iterator IntermediateValues):

// OutputKey: a word

// OutputValues: a list of counts

intresult = 0;

for each 1 in IntermediateValues:

result += ParseInt(1);

Emit(AsString(result));

decision variables so that every subproblem can be solved independently with each single

compute resource.

5.2.1 Implementation of Parallel Computing Solution

The most obvious discrete decision variable in model 5.4 is the binary variable x, which

is quite suitable for enumeration for its discrete and narrow range. Enumerating x will

reduce the decision variable’s dimension and thus lower the large problem’s complex-

ity by fixing the value of x. Suppose there are 2 potential sites, enumerating x means

4 possible scenarios exist: x1 = 1, x2 = 1; x1 = 1, x2 = 0; x1 = 0, x2 = 0; x1 =

0, x2 = 1. If X is denoted as the set of combinations of all the possible values of xi, here

X = {{x1, x2} | {x1 = 1, x2 = 1} , {x1 = 1, x2 = 0} , {x1 = 0, x2 = 0} , {x1 = 0, x2 = 1}}

However, the size of each sub-problem can still be very large, and computational require-

ments are still quite high for a single processor that may cause failure. We therefore

further partition the remaining decision variables to get a set of solvable tasks.

It is observed the incentive r is related to discrete parameters. So before the com-

putation, arrange the incentive reservation level ξjt with same j in ascending order

{ξ11, ξ12, ..., ξ1T },{ξ21, ξ22, ..., ξ2T },...,{ξJ 1, ξJ 2, ...ξJ T }, where T is the amount of incen-

tive reservation levels of each zone.

And the only part in the objective related to rj is
∑

j∈J η̃j p̂j(rj)F1(rj), and referring

to the extracted core part is p̂j(rj)F1(rj) =

(
1

T

∑T
t=1 I

{
rj −

∑
i∈I yijdijh− ξjt ≥ 0

})
(θjq−

rj − (1 − θj)cD − W ). Therefore it is reasonable to consider the original range of rj ,

which is [0,+∞), as a series of smaller intervals that [0, ξj1 +
∑

i∈I yijdijh), [ξj1 +∑
i∈I yijdijh, ξj2 +

∑
i∈I yijdijh), ..., [ξjT +

∑
i∈I yijdijh,+∞).

44



Note that for any resident zone j, when rj ∈ [ξjt+
∑

i∈I yijdijh, ξj(t+1)

∑
i∈I yijdijh), t =

1, 2...T − 1, the value of I
{
rj −

∑
i∈I yijdijh− ξjt ≥ 0

}
remains same and it is appar-

ent that F1(rj) is negatively correlated with rj . As it is a maximizing problem, rj

is supposed to tend to choose the value of ξjt +
∑

i∈I yijdijh when rj ∈ [ξjt +∑
i∈I yijdijh, ξj(t+1)

∑
i∈I yijdijh), which enables the range of rj now can be converted

from a continuity into finite discrete values as
{
0, ξjt +

∑
i∈I yijdijh|t = 1, 2, ..., T

}
. Now

the dimensionality can be greatly lowered by enumerating the incentive variable r.

Denote X as the set of combinations of all the possible values of xi, and R as the

combinations of all the possible values of rj . Then the detailed steps are shown as

follows:

Step 1. Display all combinations in X as the values to assign to {x1, x2...xI};

Step 2. Display all combinations in R as the values to assign to {r1, r2...rJ };

Step 3. The subproblem under given x and r is an independent problem that can

be referred as g(x, r). Thus the problems can be decomposed into multiple subprob-

lems with different x and r. So Map-reduced method is applied to process all these

optimization subproblems to get optimal u, uil, νi, and the maximum profit g(x, r);

Step 4. When all subproblems are done, collect and compare all the results from the

computers and pick out the maximum profit and corresponding optimal solution .

To make it more clear in a mathematical form, the pseudo-code can be described as

Algorithm 3.

Algorithm 3 Pseudo-code for Implementation of Parallel Computing Solution
Input: d,xi
Output: X0,MR(X0)

1 Xset =
{
x1,x2, ...,x2I |xnt = x1, x2, ..., xI |xi = 0or1, i ∈ I, nt ∈ 1, 2, ..., 2I

}
2 for nt = 1 : 2I do
3 solve y according to xnt based on constraints (5.4c), (5.4d), and (5.4n)

4 Rset =
{
r1, r2, ..., r(T+1)J |

5 rmt =
{
r1, r2, ..., rJ |rj ∈

{
0, ξjt +

∑
i∈I yijdijh|t = 1, 2, ..., T

}
, j ∈ J

}
,mt ∈ 1, 2, ..., (T + 1)J

}
6 for mt = 1 : (T + 1)J do
7 Solve the model MILP (xnt, rmt) to get solution as xsnt,mt
8 end
9 end

10 Find the maximum value among all MILP (xnt, rmt, xsnt,mt), ∀nt,mt as final profit
MR(X0) and correspondingly its solution as X0
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This enumeration applied with Map-reduced method is applicable if there are a large

number of parallel processors available. But in practice can still be inefficient for very

large scale problems, or when computing resources are limited. Hence it is necessary

that sometimes we sacrifice a little accuracy to exchange for better speed. Therefore,

in the next part, we propose a heuristic solution approach, based on the Map-reduce

framework.

5.2.2 Small Map: Parallel Computing Using a Heuristic Method

In this part we suggest small maps as a heuristic method to solve this problem. Small

map method is after the step X is generated and a combination is picked. Under that

premise that x, yij can be calculated so it is known which resident zones are allocated

to which facility. So based on given x and y, we manually divide the whole map into

small maps which contains only 1 opened facility and the corresponding resident zones.

Subproblems are thereby generated and in each subproblem there is only one distince i

that makes xi = 1, which enables the working of MILP by CPLEX solver.The procedures

are displayed as follows:

Step 1. Choose a combination in X as the value to assign to
{
x1, x2...x|I|

}
, then yij

is calculated correspondingly;

Step 2. Based on the value of yij and xi, small maps which contains only one opened

facility and resident zones allocated to this facility are divided from the original full map;

Step 3. According to the description of the small map, a subproblem can be regarded

in the form of MILP where there is only one i making xi = 1. So by CPLEX solver we can

obtain the values of rj , νi, ui and the profit in each small map.

Step 4. Sum up all the profit as the total profit under this x, which is defined as g(x);

Step 5. Choose a new combination in X and return to step 2 until all combinations

have been tried or excluded.

Step 6. When all parts are done, compare all g(x) and pick out the maximal and the

corresponding solution. Set u =
∑

i∈I ui.

Here we need to address that this method produces a lower bound on the original

objective function, which is the expected profit, essentially due to the resolution of the

secondary feedstock constraints. In this constraint, the summation of uil for i is supposed

to be after the scenario l is given but here we exchange their sequences to save time.
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This will place harder restriction on the allocation of secondary feedstock by setting two

constraints ui = uil, ∀i and
∑

i ui = u instead of u =
∑

i∈I uil, ∀l. So the result of this

method actually is a feasible solution instead of necessarily optimal. The pseudo-code

can be described as Algorithm 4.

Algorithm 4 Pseudo-code for Small Maps
Input: d,xi
Output: X0, SM(X0)

11 Xset =
{
x1,x2, ...,x2I |xnt = x1, x2, ..., xI |xi = 0or 1, i ∈ I, nt ∈ 1, 2, ..., 2I

}
12 for nt = 1 : 2I do
13 get the values of y according to xnt based on constraints (5.4c), (5.4d), and (5.4n)

and denote it as ynt
14 for i = 1 : I do
15 if xi = 1 then
16 Ji =

{
j′|yij′ = 1andyij′ ∈ ynt

}
17 Solve the model MILP under the premise that xi = 1, j ∈ Ji, yij = 1 to get

solution as xsi,nt and the value of objective as pfi,nt
18 end
19 i = i+ 1

20 end
21 Calculate pfnt =

∑
i pfi,nt

22 end
23 Find the maximum value among all pfnt as final profit SM(X0) and correspondingly its

solution as X0

This small maps method lower the dimensions of the system by decomposition and

heuristic and thus can greatly speed up the computation process. However the charac-

teristic of heuristic implies that some loss of optimality will need to be accepted.

5.3 Lagrangian Relaxation Solution Approach

The application of Lagrangian relaxation has been widely adopted in optimizing prob-

lems. (Mulvey and Crowder, 1979) proposed to use Lagrangian relaxation to do cluster

analysis for this optimization algorithm is an effective solution technique for homoge-

neous clustering problem and also a good approach to providing tight lower bounds for

evaluating the quality of solutions generated by other methods. (Muckstadt and Koenig,

1977) applied a Lagrangian relaxation combined with a branch-and-bound algorithm

to decompose the problem into single generator problems and a sub-gradient method

is used to select the Lagrange multipliers that maximize the lower bound produced by

the relaxation. It proves the technique is capable of solving large problems to within
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acceptable error tolerances. That is why this method is adopted to solve the model of

large scale.

The key point of Lagrangian relaxation is to choose a proper constraint to relax in

order to reduce the difficulty and computation time. So in this model, we try to relax

the constraint (5.5e) λil ≥
∑

j∈J yijηjl

(
1

T

∑T
t=1 zjt

)
+ uil − νi, ∀l, i, into the objective.

Then the model named LRM is converted to:

LRM : max
1

L

L∑
l=1

∑
j∈J

ηjl

(
1

T

T∑
t=1

zjt

)
F1(rj)−

∑
i∈I

uilli + uF2 −
∑
i∈I

giλil

−∑
i∈I

(fiνi + bixi)

(5.5a)

+

L∑
l=1

∑
i∈I

µil(λil −
∑
j∈J

yijηjl

(
1

T

T∑
t=1

zjt

)
− uil + νi) (5.5b)

s.t. M(1− zjt) + rj −
∑
i∈I

yijdijh− ξjt ≥ 0 (5.5c)

∑
i∈I

uil = u,∀l (5.5d)

Mxi ≥ νi ≥ 0,∀i (5.5e)∑
i∈I

yijdij ≤Mxidij ,∀i, j (5.5f)

∑
i∈I

yij = 1,∀j (5.5g)

yij ≤ xi, ∀i, j (5.5h)

xi, yij , zjt ∈ {0, 1} ∀i, j, t (5.5i)

λil, u, uil, νi, rj ≥ 0, ∀i, j, l (5.5j)

where µ is the Lagrangian multiplier.

Using the subgradient method as the computational solution for LRM model, and

the pseudo-code can be generated as Algorithm 5.

where π is the scalar that satisfies 0 < π < 2, ε is the approximation error, and LB and

UB represent the lower bound and upper bound respectively. Be noted that ε is dependent

on the scale of the system’s input which, in small-scale problem ε could be set a little

smaller to get more accurate result but in larger-scale cases, ε should be a little larger

to balance speed and accuracy. The original values of LB and UB can be determined by
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Algorithm 5 Subgradient Method for LRM
Input: µ, π, LB,UB, ε
Output: X

24 while UB − LB <= ε do
25 solve LRM(µ)
26 get optimal solution X and corresponding λil, yij , zjt, uil, νi
27 replace UB with LRM(µ,X)

28 if λil ≥
∑

j∈J yijηjl

(
1

T

∑T
t=1 zjt

)
+ uil − νi and OM(X) > LB then

29 replace LB with OM(X)
30 end

31 sz = π(UB − LB)/||λil −
∑

j∈J yijηjl

(
1

T

∑T
t=1 zjt

)
+ uil − νi||2

32 µ = µ+ sz ∗ (λil −
∑

j∈J yijηjl

(
1

T

∑T
t=1 zjt

)
+ uil − νi)

33 end

the minimum observed profit and the maximum observed profit of the system. And µ is

required to be positive.

Although in general the Lagrangian relaxation cannot achieve the optimal solution

for the system planning problem, it can be used to generate an upper bound, and a lower

bound, on the optimal solution. That means, in addition to a feasible solution, which

usually is the lower bound, we can also get the maximum error rate to evaluate this

solution.

5.3.1 Lagrangian relaxation combined with Map-reduced method

In section 5.2, we have discussed the application of Map-reduced method. And in this

part, noted that each iteration is still a MILP problem that can be decomposed, we

propose to combine Lagrangian relation with Map-reduced and name it LR-MR for short.

The decomposition is similar to the approach in setion 5.2.1 in which enumerate the

values of xi, ∀i first and then distribute to paralleled clusters to save time. Also using

the subgradient method as the computational solution for this LR-MR method, and

the pseudo-code can be generated as Algorithm 6, where the parameters follows the

explanation and values in section 5.3.

This method improves Lagrangian relaxation with Map-reduced method to get a

better speed by decomposing each iteration into subproblems to solve in a parallel way.
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Algorithm 6 Lagrangian relaxation combined with Map-reduced method
Input: µ, π, LB,UB, ε
Output: X

34 Xset =
{
x1,x2, ...,x2I |xnt = x1, x2, ..., xI |xi = 0or1, i ∈ I, nt ∈ 1, 2, ..., 2I

}
35 while UB − LB <= ε do
36 decompose LRM(µ) into multiple subproblems LRM(µ,x1),

LRM(µ,x2),...,LRM(µ,x2I )
37 use Map-reduced method to map these subproblems to solve;
38 collect all the results to get optimal solution X and corresponding λil, yij , zjt, uil, νi
39 replace UB with LRM(µ,X)

40 if λil ≥
∑

j∈J yijηjl

(
1

T

∑T
t=1 zjt

)
+ uil − νi and OM(X) > LB then

41 replace LB with OM(X)
42 end

43 sz = π(UB − LB)/||λil −
∑

j∈J yijηjl

(
1

T

∑T
t=1 zjt

)
+ uil − νi||2

44 µ = µ+ sz ∗ (λil −
∑

j∈J yijηjl

(
1

T

∑T
t=1 zjt

)
+ uil − νi)

45 end

5.4 Summary

In this chapter of methodology, three solution approaches are introduced for compu-

tationally solving the non-liner two-stage stochastic programming model 4.6. Each of

the solution has its unique main application range and can provides different types of

solutions, enabling the system widely applicable.

As a most general linearization method, MILP can present the most accurately optimal

solution as it fully describes all the constraints without relaxation or restriction. However,

with the increase of data scale, it is hardly practicable without a super computer as the

data need to be processed get burgeoning massive at the same time.

Then the parallel computing method, with the idea of ’breaking an entirety into

a group of small pieces’ forms up a series of individual subproblems and allocated to

multiple independent processors. Allocating the tasks and collecting the results also

lead to some time delay so its computational time performance will not be shortened

proportionally. Based on this thought, a small change on constraints will also reduce the

complexity of subproblems on slight sacrifice of accuracy. But it provides no measurement

for error rate of this solution.
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However, Lagrangian relaxation can measure the error rate by offering an upper

bound and a lower bound of the solutions. And making the same change to the model

can also speed up the solution process.
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Chapter 6

Numerical Experiment

In this chapter, we first perform a series of numerical studies to assess the computational

performance and draw comparisons between the three solution approaches proposed

in chapter 5. And then we provide a a large scale case study to further illustrate the

application of our model in the realistic deployment situations. Furthermore, sensitivity

analysis of different parameters is conducted to develop a understanding of how the

input variables influence the performance of system.

6.1 Data Setting

For the computational studies in this chapter, the period is set as one year as the base time

unit. And all the cost and revenue parameters for this model are listed below. The WTE

data are based on an actual Anaerobic Digestion (AD) plant that operated in Singapore

(IUT Global Ltd, Singapores largest food waste recycling company (TheStraitTimes, 2011;

ZeroWasteSingapore, 2015)):

(1)The variable operating cost for processing per unit waste is W = 0.0259SGD/Kg.

(2)The unit disposal fee for the impure wastes paid to the incinerator is cD =

0.077SGD/Kg waste.

(3)The revenue is composed of the sales of electricity generated (0.24KWH/Kg

waste (net power generated during the processing) ) and compost produced (0.675Kg

compost/Kg waste). The computed revenue rate q is 0.0985SGD/Kg waste.

(4)The unit transportation cost is assumed to be h = 0.02SGD per Kg and per Km.
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(5)The building cost of per unit capacity is assumed to be f = 0.01SGD/Kg and the

annualized fixed cost of each opened WTE facility b is 20000SGD.

(6)The penalty cost paid for excess waste is gi = 0.1SGD/Kg including the labor fee

and extra machine depreciation.

All codes are developed by MATLAB, and integer and linear programming models are

solved using the CPLEX 12.5 solver. The computer used is equipped with I5 4590 core

and 4G memory. The distributed computing toolbox is activated in MATLAB and allows

the four processors works in parallel.

6.2 Comparison between the three computational approaches

In chapter 5, we proposed three solution approaches for the two-stage incentive-location

joint planning in case of the purpose for different application. So in this section sev-

eral numerical experiments are executed to compare the advantages and disadvantages

among the three methods in section 4.4 to discuss the situations that each solution is

better suitable for.

In this part, all purity ratio of primary feedstock θj are assumed to equal to 0.9 and γ

of secondary feedstock to 0.8. Besides, all transportation cost of unit secondary feedstock

li are assumed to have the same value 0.01 based on the price of transportation of trucks.

The total waste generated for each resident zone is generated randomly from interval

[1000, 1500], and the distance (Km) between each resident zone and WTE potential

site is generated randomly from interval [0, 1]. And assume the amount of scenarios is

L = 100. And incentive reservation levels following a uniform distribution are generated

randomly by simulation.

Table 6.1 provides a comprehensive comparison of the results calculated by each

method.
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8
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26.162
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3hr
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The aim of this table is mainly to present how theses approaches perform in aspect

of accuracy and computational speed in the cases of different scales.

Compare the cases where I = 3, J = 10 and I = 5, J = 10 respectively under the

same column, MILP, it can be seen that the speed of MILP decreases with the number of

potential sites I as the former takes 2min and the latter takes 6min. Similarly, compare

the cases where I = 3, J = 6 and I = 3, J = 10 still under the column MILP, the time

difference between 6s and 2min shows an increase in number of zones J also slows

down the method significantly. Also, the computation time of the three cases where

I = 3, J = 6, I = 4, J = 8, and I = 3, J = 10 respectively are 6s,1min and 2min

correspondingly, indicating the influence of the increase of I on the computational time

is also significant. In short, the computational time of MILP are not only related with the

amount of zones J but influenced more by the number of potential sites I. So when the

dimension of the case is above I = 10, J = 30, this method is incapable of solving this

problem, causing the machine to stall.

In the column of Parallel computing using the Small Maps heuristic, we compare

all the time in the similar way but the conclusion is different with that of MILP. The

amount of I, rather than J , has more effects on the computational time. In addition, the

computation by Map-reduced method is the fastest that can be completed within several

minutes in small-scale cases and 2hrs in large-scale ones. In other words, the speed of

Parallel computing method with Small Maps heuristic is quite desirable. In addition, in

spite of reducing the time considerably, this method does not scarifies the accuracy much.

In the four cases displayed, the error rates of the results by Map-reduced are all within

5% that can be ignored.

And in the column of Lagrangian relaxation method (LRM), the computational time is

far more than that of MILP and Map-reduced by reason of numerous iterations. However,

since the main part of LRM is the amount of iterations which is not directly related

with the amount of I and J , so the increase of I and J does not result in exponential

growth of computational time. Thus in large-scale cases, the computation time can

still remains acceptable compared to the small-scale cases. When combined with Map-

reduced method, the speed of LRM is enhanced rapidly in medium-scale and large-scale

cases rather than small-scale. That is caused by the procedure of Map-reduced that first

use map function to distribute all the jobs to clusters and then use reduce function to
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collect all the results to proceed for the final output. So when an individual iteration

can be done fast enough, the main part in computational time of the LR-MR is spent

on the distribution and collection. But when the scale get larger that one subproblem

takes long, LR-MR can make notable progress on shorten the computational time. And

the larger scale the case is, the more significant is the computational savings. Hence the

LR-MR method is regarded especially applicable to large-scale cases. Moreover, the LRM

provides an upper bound and lower bound for evaluation, so that the maximum error

rate can be obtained. Although the error rates get lager with the increase of case’s scale,

in these five cases, the maximum error rates are all acceptable and within 10% even in

large-scale cases, which proves the effectiveness of our methods.

To make it more clear, we choose the case of I = 3, J = 6 and I = 5, J = 10 to

discuss in detail in table 6.2. When the case of I = 5, J = 10 applied with LRM, the case

can get a stable value gap within 4 hours. And the amount of iterations are about 4400.

Using the ’tic toc’ function we got that the time for environment configuration is nearly

zero, only around 0.03 second. But one iteration averagely need 3.3 seconds to run over

including the 0.3 second of replacement of lagrangian multiplier µ. While for LR-MR

case, it takes 2.8 seconds including 0.08 second for all configuration and generation of

the mapping set.

Table 6.2: Add caption

Time for per iteration Amount of iterations
LR LR-MR

I=3,J=6 0.8s 1.7s 7000
I=5,J=10 3.3s 2.8s 4400

So it can be sees that the time spent on data preparation is quite limited and can be

ignored but the distribution and taking-back process is not negligible. The distribution

and taking-back process is the key factor to explain why LR-MR underperforms for cases

of small scales but is better in those of large scales. No matter in large or small problems,

the time of such process does not vary much. So in small cases, this process account for

too much comparing to the short time, while in large cases, it is insignificant.

In this table it is clear to see with the development of data scale, the increasing

of computational time is rapid. MILP can provide an accurate result but just for cases

of limited scales. Map-reduced method is the fastest for its cooperation with multiple
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parallel computers. Its shortage is lacking a criterion to evaluate its optimality gap solved

by a heuristic way. And Lagrangian relaxation supplement this criterion with a range of

the optimal solution, so the maximum possible error rate can be thus evaluated. And as

a feasible solution, the result served by map-reduced can also be regarded as a lower

bound. However, with multiple iterations, the disadvantage for the Lagrangian relaxation

is requiring much more time to get a stable interval. Therefore there three methods is

suitable to different occasions with different requirements.

6.3 Case Study

As another representative megacity, the waste management is a vital issue in Singapore

for it directly affects or even decides the sustainable development of the small island.

Hence in this case study, we consider the city status of Singapore as the test bed and

focus on a highly populated residential district in the west of Singapore, Clementi town.

Close to 83% of the Singapore population resides in state-owned high rise flats (Hous-

ing and Development Board). The district is partitioned into 30 resident zones, each

consisting of several high-rise residential blocks, and 10 potential WTE facility sites are

considered. The figure below illustrates the map information obtained from the Housing

and Development Board (HDB) Singapore. ((PropertyGuru, 2015) )

The waste generation in each scenario is randomly generated using a normal distri-

bution. The mean of residential waste generated in each zone, which is listed in the table

below, is estimated by multiplying the amount of per-capita household waste generation

in Singapore by the average population of each resident zones. And the standard vari-

ance is assumed empirically 0.1ton. The capacity limit of the WTE facility follows the

size of IUT global, which is 30000 tons per year.
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Figure 6.1: Distribution of 30 resident zones and 10 potential WTE sites in Clementi town,where
Fi for i = 1, 2, 10 are the indicators of potential facility sites and Zj for j = 1, 2, , 30 are the
indicators for resident zones

Table 6.3: The means of waste generations in 30 resident zones Unit: 100tons per year

1 2 3 4 5 6 7 8 9 10
1.53 1.53 0.76 1.53 0.76 2.3 1.53 2.3 1.53 1.53

11 12 13 14 15 16 17 18 19 20
0.76 1.53 0.76 3.83 1.53 2.3 1.53 0.76 1.53 2.3

21 22 23 24 25 26 27 28 29 30
1.53 1.53 1.53 1.53 0.76 1.53 3.06 2.3 2.3 1.53

The distance from each resident zone to each potential WTE site is measured on

Google Map and the data are listed in the Appendix.

With MATLAB with CPLEX solver we get the result as follows:

The overall profit is 538230 SGD with all 4 potential sites opened.
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Table 6.4: The incentive price of each resident zone Unit: SGDperton

1 2 3 4 5 6 7 8 9 10
22.72 24.32 20.66 24.13 23.86 27.65 22.56 23.86 24.12 23.09

The incentive price are listed in the table 6.4.

11 12 13 14 15 16 17 18 19 20
21.73 21.36 22.35 23.73 22.26 21.82 20.11 20.35 21.94 23.11

21 22 23 24 25 26 27 28 29 30
23.88 22.43 24.53 20.16 23.97 20.56 22.94 22.35 26.89 27.26

And based on the result it is clear that all the opened sites only absorb the residential

waste as the price of secondary feedstock is too high to make profit. And the assignment

of resident zones to opened facilities are displayed in figure 6.2.

Figure 6.2: The solution of opened facility and its assigned resident zones
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It is straightforward that the whole map are divided into four areas according to

opened sites which is indicated with a star and its assigned zones. And the specific data

are shown in table 6.5.

Table 6.5: The assignment of resident zones and capacity

Site Zone Capacity Unit: Tons per year

7 4,5,6,10,15,16,17,18,21,22,28,29,30 11580
8 11,13,19,20,23,24,25,27 6985.7
9 1,2,3,7,8 4689.4

10 9,12,14,26 5072.2

The capacities of each facility are 11580, 6985.7, 4689.4, and 5072.2 tons, added

up to 28327.3 tons while the IUT global set their facility centralized and the capacity

around 90000 tons, far more the amount it can collect. Too much idle capacity is also a

negative factors to its maintainability.

6.4 Sensitivity Analysis

In this section we change the values of several variables and make the sensitivity analysis

to evaluate how the optimal solution varies with the each variable.

6.4.1 Capacity Limit of Recycling Facilities

Here the capacity limit is changed. In the following the capacity of each site and the

amount of feedstock of each source are displayed in table 6.6.

Table 6.6: The capacity of each site and the amount of feedstock of each source

Capacity limit Capacity of each site Primary feedstock Secondary feedstock

0 0 0 0
300000 0 0 0
600000 0 0 0
900000 900000 9000000 0

1200000 900000 11726916.32 273083.6773
1500000 900000 14419858.79 580141.2108
1800000 900000 16758788.59 1241211.406
2100000 900000 20442283.43 557716.5674
2400000 900000 23932672.31 67327.69479
2700000 900000 26146243.45 853756.5478
3000000 900000 28747895.25 1252104.747
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In this table the first three rows implies when the capacity limit is under 600000 Kg,

the system tends to close all plants for it is nonprofitable. Also, we notice the individual’s

capacity is same to the capacity limit from 900000, which reveals two facts that the fixed

cost for opening facility is considerable and thus cannot be overlooked, and the feedstock

is profitable enough that the capacity tends to reach the limit. In addition we notice the

primary feedstock is also increasing which means the capacity limit is also a factor to

incentive. And this trend also indicate the primary feedstock is still a prime source of

the system for its profitable characteristic, otherwise the system would tend to absorb all

secondary feedstock instead.

And the trend of profit is also shown in figure 6.3.
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Figure 6.3: Profit to the capacity limit

In this figure it is not hard to see that although the slope is generally linearly but not

consistent all the time. When others are fixed, generally the more the primary feedstock

is taken in, the faster the profit is obtained.
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6.4.2 Price of the secondary feedstock

In this part we set the price of secondary feedstock as variable to see how it influence

the system’s performance. And in the following table 6.7 displays the capacity of each

site and the amount of feedstock of each source. Be noted that the amount of open

sites remains 10 when the price of secondary feedstock changes due to the abundant

profitable primary feedstock.

Table 6.7: The capacity of each site and the amount of feedstock of each source as a
function of secondary feedstock price

price capacity primary feedstock secondary feedstock
0 10000000 9569290 430709.8

0.005 10000000 9569779 430221.5
0.01 10000000 9612837 387162.8

0.015 10000000 9612837 387162.8
0.02 10000000 9613128 386871.7

0.025 10000000 9613128 386871.7
0.03 10000000 9613561 386438.9

0.035 9613561 9613561 0
0.04 9613561 9613561 0

0.045 9613561 9613561 0
0.05 9613561 9613561 0

0.055 9613561 9613561 0

In this table it is notable the secondary feedstock would stop being absorbed as the

price gets higher to a limit. It tells the price between 0.03 0.035 SGD/kg of secondary

feedstock would result in nonprofit of importing foreign waste and when it gets higher,

the system tends to focus on the resident waste only and thus the capacity will be

designed to reduce to only take in primary feedstock.

And the trend of profit is also shown in figure 6.4.

The profit in this figure declines steadily as the price gets higher before a limit

between 0.03 0.035 SGD/Kg. It is understandable that the loss of profit is partly caused

by the rise of the price paid. And figure 6.5 can show more details about how the price

of secondary feedstock profit by affecting the amount of each feedstock.

Before the price reaches 0.03 SGD/Kg, the primary feedstock is slightly increased

while the secondary is decreasing. In this period, the price has an effect on the amount of

secondary feedstock and the incentive. Therefore these two can influence mutually to fill
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the capacity with profitable waste. When the price surpasses 0.035 SGD/Kg, the price

will no longer affect the system’s performance for it is a just characteristic of secondary

feedstock which is totally out of the system. So the system will be unchanged however

the price increases.

Combined the two figures above, it is a fact that both the portion and total amount of

each feedstock are generally steady before price reaches 0.03SGD/Kg, so it is not the

main factor resulting in the decline of the profit and the higher price paid for secondary

feedstock is. However after price surpasses 0.035SGD/Kg, the profit is determined by

the structure and amount of feedstock absorbed because the price is excluded by the

system with secondary feedstock.

6.4.3 Purity ratios

In reality, feedstock purity ratio can drift from the assumed values. Here we integrated

the profit to the two variable into one table so that we can compare the data both

horizontally and vertically.

Table 6.8: The profit to θ and γ

θ\γ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.6 0 0 0 0 0 0 0 51250 139000
0.65 0 0 0 0 0 0 0 51250 139000

0.7 0 0 0 0 0 0 0 51250 139000
0.75 0 0 0 0 0 0 0 51250 139000

0.8 57642 57642 57642 58340 62111 65884 71598 80644 139000
0.85 141611 141611 141611 142309 146080 149853 153629 159346 168395

0.9 226547 226547 226547 227175 230569 233965 237598 241377 247096
0.95 312615 312615 312615 313243 316638 320034 323431 326832 330234

1 400125 400125 400125 400334 402706 406102 409500 412901 416303

And the 3D figure 6.6 is drawn to make it more clear.

Combining the table and figure we note that the profit value of the area where

γ is below 0.9 and θ is below 0.75 remains 0. That means when the purity ratios of

both feedstock are not high enough, the system tends not to open. And since 0.75 is

remarkably less than 0.9, the requirement for purity ratio of primary feedstock is much

lower. That is mainly because of the higher price we paid for secondary feedstock. In

addition, the increase in the purity ratio of any feedstock can assure the maintenance of
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Figure 6.6: The trend of profit to the purity ratios

system, not necessarily for both feedstock, which implies that raising people’s recycling

awareness or the secondary feedstock of better quality can somehow enables WTE system

running smoothly. Thus it is important to launch related campaign among residents and

to carefully choose a supplier with fine waste. And also, it can be seen from the table

both higher θ and γ contribute to the profit, but the rise of θ, the one of the primary

feedstock, contributes more considerable.Considering that it takes more effort to raise

the purity ratio from 0.95 to 1, the limitation, than that from 0.8 to 0.85, the system

needs to lay more emphasis on how to raise the quality of residents’ waste. In that

case, it is vitally necessary to raise residents’ awareness to sorting and recycling for the

sustainable development of this WTE system.

Then, the figure 6.7 shows the trend of secondary feedstock to the purity ratios

and the figure 6.8 is its contour plot for clear observation. These two figures help to

understand how the purity ratios influence the amount of supplement, or in other word

how much to buy if the secondary feedstock is of high quality.

Generally, the increase of the γ, the purity ratio of secondary feedstock helps the

system absorb more secondary feedstock while the increase of θ, the purity ratio of

primary feedstock is on the contrary. More specifically, when the residents’ waste is of

poor quality and the supplier’s waste of remarkable high quality, the system tends to buy

a lot of secondary waste. But as long as θ rises up, the system can stop relying too much
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Figure 6.7: The trend of secondary feedstock to the purity ratios

Contour plot of figure 6.7
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on the foreign supplier, which development model is not healthy. As a result, tit can be

seen that when θ is above 0.75, the increase of γ does not influence the system’s decision

significantly, which means system is stable when the foreign environment varies. In that

case, enhancing the primary feedstock is not only a way to make more revenue but also

and more importantly, a way to construct the system healthily.

6.4.4 Fixed cost for opened facility

In this part we set the fixed cost b as variable to see how it influence the system’s

performance.
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Figure 6.9: Number of opened facility to the fixed cost

It is shown in figure 6.9 the fixed cost is a factor to decide the amount of opened

facility. When the fixed cost becomes large, the system tends to have centralized facility

for the revenue of the feedstock may not be able to cover the expense of the opening

facility.
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6.5 Summary

In this chapter, simulations of different scales are first performed to evaluate the feasibil-

ity and scope of the solution approaches proposed in chapter 5. When and only when

dealing with cases of small scale, MILP is distinguished by optimality of solution from

other approaches and can be described with accurate and fast. While with the increase

of the scale, parallel computing based on Map-Reduce method can improve the speed

by managing a group of individual jobs separately in different clusters and the heuristic

algorithm can reduce the amount of jobs significantly. However, lacking a criterion to

evaluate the solution restricts its application range, while Lagrangian relaxation pro-

vides the criterion by relaxing a constraint and obtaining an upper bound and a lower

bound to calculate the maximum possible error rate. The high requirement for computer

configuration and the long solving time may be its restrictions. So it is clear presented

the three solution approaches are better applicable to different conditions with varied

requirements. After that, a case study simulated in Singapore is carried to validate the

feasibility of approaches. And the results indicate their respective application range. The

approaches would be applied balancing the scale of data, solving speed and solution

accuracy.

Multiple parameters are changed to carry out the system’s sensitivity analysis. There

is a start point for capacity limit from where the system is profitable and tends to open

WTE facility. And as the price of secondary feedstock is not profitable when taking penalty

cost into account, the system tends to adopt a conservative capacity limit. Also the purity

ratio to primary feedstock plays a more important role to profit, so it has a profound

and lasting effect to prompt people’s awareness to separate the waste precisely and

consciously. Also, the fixed cost of facility affects the distribution of system and partly

decides it is centralized or not. It indicates the distributed facilities are better built in

remote districts or suburbs while centralized plant is adoptive mostly in downtown.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis, an incentive-location joint planning model is built up for sitting the re-

cycling plant locations, and incentivization under uncertainty of residents’ reservation

incentives and waste volumes. The incentive policy here is designed to help prompt

residents’ environmental awareness and thus separate the residential waste precisely

and actively as the quantity and quality of sorted waste are both essential to this waste

management system. The general task is how to design jointly with multiple and some-

times contradictory decisions variables such as the location decision influences residents’

incentives pricing, transporting cost and overall profit.

First a basic model with a sole feedstock is proposed to evaluate the economic feasi-

bility of the WTE system framework under uncertain environment. Separated residential

waste are taken in as the only source and both residents’ incentive reservations and waste

generations make the environment uncertain. And a mathematical model is formulated

to optimize the system’s configuration by maximizing the overall profit. Methodologies

are also introduced for a better computational application. Then with the background

in Shanghai, a special case is added for feasibility study and experiment test. The result

is proved effective on environment of small scale and little variability. However, such a

system may not be sustainable economically if feedstock collected from resident zones is

insufficient to achieve a healthy capacity utilization. In that case, the model in chapter 3

would suffer the consequence of waste shortage because there is no buffer. IUT global’s

failure also reveals there is a huge risk to rely entirely on the waste collected for the
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factors influencing the waste generation are, to some degree, uncontrollable. Such a

system may not be sustainable economically if feedstock collected from resident zones is

insufficient to achieve a healthy capacity utilization.

Therefore, to enhance its resistance to environment variabilities and to provide a

proper buffer to the system, waste from professional processing plants is introduced as

secondary implement feedstock. Its poor purity ratio leading to low profitability estab-

lishes its introduction in secondary stage, as a way of back up. Thus two-stage mathemati-

cal programming model is formulated to fully describe the system including incentivation

policy design.

Three solution approaches are then presented to enhance the computational compat-

ibility especially on a large scale. Linearisation is applied to this two-stage optimizing

problem to formulate a MILP model. It can generate the most accurate solution but the

large data for megacities are often beyond its capability and causes failure. With enumer-

ation, parallel computing with Map-reduced framework can split the large problem into

many subproblems and allocate to multi processors but it still has a limitation for the

data scale. Thus a heuristic technique is used to obtain much smaller tasks by placing a

harder constraint. And the data from experiments indicates the error rate of solution is

within acceptable value. Lagrangian relaxation does not only provide an upper bound

for the problem but also is a good way to measure the accuracy of other methods.

A computational case study with the background of Singapore demonstrates how

the system can be performed efficiently and sustainably. The result also provides a

comprehensive comparison of three solution approaches on application range. MILP is

optimal solution in cases of small scale and parallel computing based on Map-Reduce

method with heuristic is fast and provide a feasible solution of high quality, while the

quality can be measured by Lagragian relaxation approach. A wide range of scales and

efficiency are covered by the three approaches, helping establish the system’s outstanding

competitiveness.

Multiple parameters are changed to carry out the system’s sensitivity analysis. There

is a start point for capacity limit from where the system is profitable and tends to open

WTE facility. And as the price of secondary feedstock is not profitable when taking penalty

cost into account, the system tends to adopt a conservative capacity limit. Also the purity

ratio to primary feedstock plays a more important role to profit, so it has a profound
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and lasting effect to prompt people’s awareness to separate the waste precisely and

consciously. Last but not least, the fixed cost of facility affects the distribution of system

and partly decides whether it is centralized or not. It indicates the distributed facilities

are better built in remote districts or suburbs while centralized plant is adoptive mostly

in downtown.

7.2 Future Work

In the context of this paper, there are many assumptions and simplifications used which

can be reviewed by further studies on this topic. Firstly, target inventory levels are

constants and are based on simplifying assumptions. Further studies may look into the

impact of different target levels as imposed by the different members within the supply

chain.

Also, in this study of information sharing scheme, in order to keep things simple, a

simple two-tiered supply chain is considered. This is not the case with many real-life

supply chains which are much more complex and connects many more echelons and

stakeholders. Further studies can deal with a supply chain with more layers and look

into the effect of the increase in complexity of the supply chain.

In this thesis many assumptions and approximations are adopted to simplify the

model process. These can be viewed as possible extensions or explorations in future

works. For instance, purity ratios can be separated to be viewed as uncertainties, which

maybe more specific and practical for different populations’ behaviour and thus influence

the incentivation pricing making. Customized incentive design may be applied to resident

zones for a better resource utilization.

In addition, multiple periods of planning can be considered as the system is supposed

to last for tens of years in which people’s behaviours may be subjected to change under

future rules and society state. Multiple periods of planning may react fast to environ-

ment changes in premise of not affecting the basic framework, thus resulting in a better

optimization and then making a contribution to long-term sustainability and profitability.

Also, in the stage of reallocation, inter communications may be added with the de-

velopment of green transporting. In this study, the concern about environment pollution

during loading and transporting is still outstanding. But when the technologies get
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mature and applied widely, the inter communication parts may be included in this frame-

work to get a better utilization of waste to avoid wasting of resources, and more directly,

to reduce penalty cost and get more profit. Future studies can significantly improve the

waste utilization by adopting an advanced inner communication system at low cost.

Moreover, the methodologies may be improved by taking some more precise heuristic

method to enhance the quality of feasible solution in parallel computing with heuristic

and Lagrangian relaxation. To get a better speed we placed a harder constraint into the

model in former approach and remove one from constrains in latter approach. Both of

the restriction and relaxation have exploring potential to improve. And future study may

look into how the heuristic steps influence the system’ s overall performance including

speed and accuracy.

Last but not least, due to realistic constraints, all computation performance is based

on the computer’s equipment. The trend would not change but the data may varies with

different machines. And the data for the test is regional hence the result of the cases are

not necessarily identical.

The function for incentive may be too general as the behaviour of residents are

complicated and changeable to many factors like weather and transportation condition.

It can be more specified in detail.
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