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Chapter 1

Bell nonlocality

Quantum mechanics was born with a lot of counter-intuitive phenomena. Among

those, Bell nonlocality is one of the popular topics that has been studied intensively

recent years. In this chapter, we will introduce some basic notions and background

knowledge about nonlocality which are already known before. This will be helpful

for the main study on self-testing in later chapters.

1.1 Bell inequality

Suppose two players named Alice and Bob are playing a game against Eve. Alice and

Bob both have a box (or machine) at their sites. Each box has two buttons and two

lights on it, while one of the buttons being pressed will consequently lead one of the

lights to be switched on (of course, it is not fixed which light will be switched on each

time). Without loss of generality, we label the different buttons of Alice and Bob as

(x, y) ∈ {0, 1}, and the different lights of Alice and Bob as (a, b) ∈ {0, 1}. Eve will

give the order of which buttons Alice and Bob should press for each run. Then Alice

and Bob will operate on their sites and submit the results of a and b to Eve. Eve will

calculate a ⊕ b. Alice and Bob win if a ⊕ b = xy (modulo 2) or lose otherwise. We

can list the truth table for clarity as in Table 1.1.

For a given measurement setting (x, y), the winning probability for Alice and Bob

is
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Figure 1.1: The XOR game.

x y a b x y a b

0 0
0 0

0 1
0 0

1 1 1 1

1 0
0 0

1 1
0 1

1 1 1 0

Table 1.1: List of cases when Alice and Bob will win.

Pxy =

p(a = b = 0) + p(a = b = 1), xy = 0,

p(a = 0, b = 1) + p(a = 1, b = 0), xy = 1.

(1.1)

where p is the probability of the event. It could also be expressed in a simpler way as

Pxy =
1 + (−1)xyExy

2
, (1.2)

where Exy is defined as the correlation coefficient
∑

a,b p(a = b|x, y)− p(a 6= b|x, y).

This game can also be cast in another way. Suppose Alice and Bob (we will call

them A and B instead for convenience) both have one black box (by which we mean

they know nothing about the box itself) at their sites. Each box has two measurement

settings labeled as x ∈ {0, 1} for A and y ∈ {0, 1} for B. With unbiased choice of

measurement settings (x, y), the two black boxes will produce two outcomes (a, b).
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The purpose of the game is to maximize the following function of probabilities

B = E00 + E01 + E10 − E11, (1.3)

where Exy is defined as in (1.2). It can be shown [1] that with any classical strategy

without A and B communicating, the maximum value of B is 2

B ≤ 2. (1.4)

However, in the case that Alice and Bob are able to use quantum resources, for in-

stance a maximally entangled state of two qubits, the inequality is able to be violated

maximally to 2
√

2 [2]. Such a game is normally called a Bell test and the above

inequality is well known as the Clauser-Horne-Shimony-Holt (CHSH) inequality [1].

With its original form given by John Bell [3], a reply to the Einstein-Podolsky-Rosen

(EPR) paradox [4], the CHSH inequality imposes a non-trivial constraints on the

statistics given by the Bell test.

1.2 Correlations

The correlations arising from the game described in the previous section in fact can be

divided into several different categories depending on the constraints that are applied

to the system. To continue the discussion, we first introduce the formal mathematical

description of the game.

Suppose Alice and Bob each have a system which they can perform measurements.

Each of them can have m different choices of measurements and each measurement

will have n possible outputs. We remove the limitation for the numbers of the mea-

surement choices and the outputs to be binary here to make it more general. We label

the inputs of Alice and Bob for the measurements they choose as x, y ∈ {0, 1, ...,m}

and the outputs as a, b ∈ {0, 1, ..., n}. Such a measurement setting is always called

(2,m, n) scenario, where 2 means two parties, m stands for the number of choice of

measurements for each party and n stand for the number of the outputs for each
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measurements, for instance, the game described in the previous section is the (2,2,2)

scenario. For the pair of input (x, y), we use p(ab|xy) to denote the probability that

output pair (a, b) occurs.

It is easy to see that for given input (x, y), the normalization condition and posi-

tivity constraint apply

∑
a,b

p(ab|xy) = 1 (1.5)

p(ab|xy) ≥ 0 (1.6)

Except for the basic constraints (1.5-1.6), depending on different extra constraints,

the probability distribution p(ab|xy) has three main types. These three types of cat-

egories turn out to be in different hierarchic levels. We will introduce in a descending

order regarding the size of the set.

1.2.1 No-signalling correlations

As we have already mentioned in the previous section, a natural constraint that we

can impose on the game is that A and B is not allowed to communicate between

each other. This is essential to make the game non-trivial, since with communication

A and B could output whatever values that are required to win the game according

to certain rules. It is not difficult to see that A and B could have a pre-established

agreement and once any of A and B broadcasts his or her input, the other one could

choose which output he or she needs to produce. With such tricks, the value of (1.3)

could be easily reached to 4.

To sum up the idea of no-signalling [2, 5], it basically says that before any of A

and B produces his or her output of the measurement, he or she cannot know the

inputs of other one. If we write this requirement down as mathematical equations, it

is simply
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∑
b

p(ab|xy) =
∑
b

p(ab|xy′) for any a, x, y and y′, (1.7)

∑
a

p(ab|xy) =
∑
a

p(ab|x′y) for any b, y, x and x′. (1.8)

These equations tell that, no matter what input A gets, from the observation B, he

cannot tell which measurement A has made, and the other way around. This avoids

the possibility that A and B can use the probability patterns to signal between each

other. Hence, if equations (1.7-1.8) are guaranteed, the signalling of the measurement

settings (x, y) could be precluded.

A typical type of no-signalling correlation is the PR-box correlation discovered by

Popescu and Rohrlich in 1994 [5]. The joint probability is given by

p(ab|xy) =


1
2
, if a⊕ b = xy,

0, otherwise.

(1.9)

Up to now, there is no evidence of the existence of the PR-box correlation in nature

and it is not clear whether such correlation exists or not, however, it is beyond the

discussion of this thesis.

1.2.2 Quantum correlations

As suggested by the name, quantum correlations are the ones that could be achieved

using quantum systems. In this case, the two boxes at A and B could be parts of

any quantum state, and the measurements performed on them could also be any

measurements on their quantum sub-systems. In order to keep the non-triviality, we

inherit the no-signalling constraint. In this sense, we could infer easily that the set

of no-signalling correlations is larger than or at least equal to the set of quantum

correlations. Under the principle of quantum mechanics, the statistics given by such
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a game could be expressed as

p(ab|xy) = Tr(ρABMa|x ⊗Nb|y), (1.10)

where ρAB is the state of the quantum system, Ma|x and Nb|y are the elements of

the corresponding measurements on A and B given inputs x and y respectively. Nor-

mally, these measurements could be represented as positive operator-valued measure

(POVM) [6]. We write the measurements as a tensor product form since the way the

game is played does not allow non-local measurements. A and B performs their mea-

surements separately and measurements are absolutely commuting with each other.

1.2.3 Classical correlations

Classical correlations represent the set of correlations that could be achieved by

classical systems, also called local correlations. Again we inherit the no-signalling

constraint for non-triviality. In the classical world, there is no superposition as in

quantum physics. Determinism, which plays an important role in classical physics,

suggests that the outputs of A and B are both determined as soon as the inputs are

chosen.

The simplest classical correlations are the deterministic correlations, which means

whenever an input is chosen on one side of A and B, the output of him or her will be

determined. Formally, it will be

pd(ab|xy) =

1, if a = ax and b = by,

0, otherwise.

(1.11)

However, from the perspective of p(ab|xy), there could be uncertainty in the pro-

cess, and these uncertainties could be possessed by A and B, or even the box itself.

This is not against the determinism of classical mechanics but just a matter that we

do not have enough knowledge about the system itself. Normally, we associate these

knowledges that we have no information as the local hidden variable denoted by λ [3].
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Sometimes, the λ is also called shared randomness between A and B, whether it is

between A and B or the boxes.

With the introduction of the local hidden variable λ, the local probability distri-

bution for a classical model will take the form of p(a|x, λ) and p(b|y, λ). The input

of one side does not appear in the output of another side is due to the no-signalling

assumption. One may argue that the p(a|x, λ) and p(b|y, λ) here could also be ran-

dom, say p(a|x, λ) = p(a|x, λ, λ′) and p(b|y, λ) = p(b|y, λ, λ′). However, it could be

proved that λ′ could be absorbed with λ into one local hidden variable [7, 8]. Hence,

it is sufficient to consider only the deterministic local hidden variable model pd(a|x, λ)

and pd(b|y, λ).

Now we can write the joint probability as

p(ab|xy) =

∫
λ

dλρ(λ)pd(a|x, λ)pd(b|y, λ), (1.12)

where ρ(λ) is the probability density function of λ and
∫
λ
ρ(λ)dλ = 1. One thing

should be noticed here is that, we have already assumed that the distribution of

the local hidden variable is not affected by the input x and y, this is usually called

measurement independence condition. We do not consider this situation since it is

normally treated as a separate topic as one can never verify where an experiment

is measurement independent or not. Moreover, once measurement independence is

violated, the no-signalling assumption could also be violated. As shown in [9], it

could be proved that any classical correlation could be rewrote into the formalism

(1.12). This is important since it infers that the set of classical correlation is actually

convex and any point in this set could be expressed as a convex combination of the

deterministic points (1.11).

1.3 Two polytopes and the quantum set

As we have discussed in section 1.2, the correlations that correspond to the bipartite

game could be divided into different categories by assuming different constraints. The
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more constraints we impose on the system, the smaller the size of the correlation set

will be. It is not difficult to see that the no-signalling set is the largest one and

the classical set (also called the local set) is the smallest one. The purpose of this

section is to discuss a little bit more about properties and relations of these different

sets, specially how to characterize them properly. We will see that the no-signalling

and local set could actually be characterized with polytopes in the probability space

and the quantum set could be characterized by the Navascués-Pironio-Aćın (NPA)

hierarchy [10, 11].

1.3.1 The polytope and facets

In fact, for a certain game, we could denote the statistics with a point in the space

spanned by p(ab|xy), denoted as P . The dimension of the subspace that p lives could

be easily derived as m2n2 − m2, where the minus sign is due to the normalization

constraints (1.5).

The set of no-signalling correlations is normally denoted by NS. It has the least

constraints applied to the behaviour of the probability distributions. The dimension

of the NS set in the P space could be easily calculated.

dimNS = m2n2 −m2 − 2(m2 −m)n+ 2m(m− 1), (1.13)

where the third term is due to the no-signalling constraints (1.7-1.8) and the forth

term is due to the fact that there are actually redundant equations if one combines

the normalization constraints and part of the no-signalling constraints. Since all the

constraints for the set of NS are linear, it is not difficult to see that the region that

represents the set in the space P is a polytope. With the same reason, the set of local

correlations, denoted by L, could also be found as a polytope in the space P .

If we take a look at the constraints that are associated with the set of quantum

correlation, denoted by Q, and the set of local correlations L,, they actually do not

decrease the number of the free variables. Hence, the dimensions of the set Q and

L are the same as the dimension of the set of NS, which is equal to (1.13). In a
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short summary, the sets of NS, Q and L all live in the space of P with the same

dimension, and it is easy to see that L ( Q ( NS.

Figure 1.2: A sketch that shows the relation of the no-signalling set NS, the quantum
set Q and the local set L. They are all convex, besides, the sets NS and L are
described by polytopes.

One of the interesting topics to study about these different sets is the boundary

properties. For the local set L and the no-signalling NS, they are the facets of the

polytopes and they are flat. Therefore, the remaining question is to find out these

facets. Especially a detailed characterization of the boundary of the local set will give

us the ability to differentiate classical behaviours and quantum behaviours.

As we have discussed in the previous section, all classical correlations could be

explained as convex combinations of the deterministic points (1.11), then, these de-

terministic points forms the extremal points of the polytope of L. To characterize the

facets, we use the outward-pointing normal vector n . It is not a bad idea to choose

fully mixed point O as the reference point. Therefore, the inequality corresponding

to a facet of L could be expressed as

n ·
−→
OP ≤ s, (1.14)
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where
−→
OP is the vector pointing from O to the point P representing an arbitrary

point in the space of P , and s is a constant that could be determined later. The

equal sign takes place when P is on the facet. If we expand the vectors in the form

of its coordinates, it will become

∑
abxy

nabxyp(ab|xy) ≤ s (1.15)

for the points that are in L. The inequality above is normally called a Bell inequality.

For the case of m = 2 and n = 2, the local polytope and its facets are completely

solved by Froissard [12] and later by Fine [7] independently. It of course includes

the inequality (1.4) as shown in section 1.1. Moreover, it is shown that the CHSH

inequality with its variants when relabelling the inputs and outputs are the only facets

of this scenario [13].

For the cases of m and n not equal to 2, the Bell inequalities are also well stud-

ied, for instance, when m = 2 and n is arbitrary, the Collins-Gisin-Linden-Massar-

Popescue (CGLMP) inequality [14, 15] gives,

[a1 − b1] + [b1 − a2] + [a2 − b2] + [b2 − a1 − 1] ≥ d− 1, (1.16)

where [ax − by] =
∑n−1

k=0 kp(ax − by = k mod n) and n = d is number of outputs

of each subsystem. It could be verified that this inequality reduces to the CHSH

inequality (1.4) when n = 2.

For the case of both m and n to be arbitrary, the CGLMP inequality was extend

to

[a1 − b1] + [b1 − a2] + [a2 − b2] + ...+ [am − bm] + [bm − a1 − 1] ≥ d− 1, (1.17)

by Barrett et el. [16].

Bell inequalities play an important role in the study of the relation between quan-

tum and classical correlations. It is a very straight forward benchmark that tells the

difference of these two behaviours. A violation of a Bell inequality will definitely
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suggest that the system involved displays non-local properties to some extend. This

is often used as a tool to detect entanglement of quantum resources [17, 18, 19].

They are also often used in the experiments as well, such as the famous Bell test

experiments [20, 21, 22, 23], loophole free test [24, 25, 26], random number genera-

tion [27, 28], etc.

In general, the inequalities from the facets could be derived systematically with

the aid of computer programs, for instance PORTA [29]. However, the complexity

of the problem grows very fast as the number of the inputs and outputs of the game

increase.

1.3.2 The quantum set and NPA hierarchy

Like the no-signalling and local set, quantum set is also convex due to the fact that

any mixture of points in the quantum set could always be realized by quantum me-

chanics. However, it is not true that the Q is still a polytope in the probability

space. Therefore, the boundary of Q is generally not flat and not as easy as L to be

characterized .

A lot of efforts have been dedicated to characterize the quantum set Q, such

as information causality [30]. In this thesis, we will concentrate more on the NPA

criterion, which was first introduced by Navascués et. al. in 2008 [10, 11]. It is a

criterion that asymptotically approaches the quantum set. Later in 2012, it was used

for self-testing and this also brings new perspectives to self-testing itself [31, 32]. We

will first discuss the NPA characterization of quantum set in this section and later in

the next chapter discuss the application to self-testing.

To begin with, we will first introduce the idea of a sequence of operators. For

the two party game as we described above, without knowing the dimension of the

system, we will see later in the next chapter that it is always reasonable to assume

the measurements to be projective and the state of the system is in a pure state |φ〉.

A sequence S is a set of operators which are monomial products of the measurement
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projectors Πa|x and Πb|y, defined as

S = {1} ∪ {Πa|x} ∪ {Πb|y} ∪ {Πa|xΠa′|x′} ∪ {Πb|yΠb′|y′} ∪ {Πa|xΠb|y}.... (1.18)

The elements goes from identity to the products of infinite number of projectors.

However, if we choose to cut at some place, for instance, products of up to n projectors,

then we can define a sequence of level n

Sn = {1} ∪ {Πa|x} ∪ {Πb|y} ∪ {Πa|xΠa′|x′} ∪ {Πb|yΠb′|y′} ∪ {Πa|xΠb|y}...

... ∪ {Πa|xΠa′|x′ ...Πb|yΠb′|y′ ...︸ ︷︷ ︸
n projectors

}. (1.19)

It is not difficult to see that S0 = {1}. Now we can bring up the first NPA result.

Proposition 1. Suppose a probability distribution p could be explained by quantum

physics. If a group of operators O = {Oi}ni=1 satisfies

∑
i,j

akij 〈φ|O
†
iOj |φ〉 = fk(p), k = 1, ...,m, (1.20)

where akij are real coefficients, |φ〉 represents the state of the system and fk are lin-

ear functions of the probabilities p(ab|xy), then, there must exist a n × n positive

semidefinite matrix Γ such that

Γ ≥ 0, (1.21)

where Γ is called a certificate.

Proof. It is reasonable to define Γ = 〈φ|O†iOj |φ〉. For any vector v ∈ Cn,

v†Γv =
∑
i,j

v†iΓijvj =
∑
i,j

v†i 〈φ|O
†
iOj |φ〉 vj = 〈φ| (

∑
i

v†iO
†
i )(
∑
j

Ojvi) |φ〉

= 〈φ|V †V |φ〉 ≥ 0, (1.22)

where V =
∑

iOivi.

12



This is a necessary condition for a behaviour p to be quantum. It is not yet a

characterization of the quantum set. However, we could think (1.21) as a relaxation

of the quantum set. With some certain certificate Γ which has finite dimension, it

is for sure that the set defined by it will be at least bigger than the quantum set.

Having this notion, we could now introduce the hierarchical characterization of the

quantum set.

For a behavior p arising from the black box scenario that could be explained by

quantum physics, it is reasonable to assume the measurements to be projective and

the state of the system to be a pure state. This is due to the fact that we can always

increase the dimension of the system studied to include all the necessary physical

parts to make the state pure and the measurements projective. Hence, any operator

Oi associated with the system could be expressed as a linear combination of the

elements belongs to the sequence S∞. Normally, one cannot include all the elements

of S∞ into any practically solvable problem. We can define a certificate of order n as

the following.

Definition 1. A certificate Γn is said to be of order n if Γn is a |Sn| × |Sn| matrix

and Γnu,v = 〈φ|U †V |φ〉, where u, v are the indexes for U, V ∈ Sn.

If a behavior p allows a certificate Γn, we say that p belongs to Qn. Due to

the simple fact that the positivity of a matrix always leads to the positivity of its

submatrices but not the reverse way, the certificate corresponding to a submatrix will

always be a necessary condition for the certificate of the original matrix. From the

definition of Sn in (1.19), we know that S1 ⊆ S2 ⊆ S3 ⊆ ... ⊆ Sn ⊆ .... With the

reason explained before, it then follows that Q1 ⊆ Q2 ⊆ Q2 ⊆ ... ⊆ Qn ⊆ .... As the

hierarchy level increase, the set defined by Γn will become smaller. To see how well

the Qn approaches to the quantum set Q1, we have the following results.

Theorem 1. If a behavior p allows the certificate for any n ≥ 1, then p belongs to

1One should know that the quantum set defined here is actually different than the quantum set
in (1.10). This is because, in the NPA’s work, the commutation rule is defined as [Ma|x, Nb|y] = 0
other than that in (1.10). The former is obviously stricter than the latter one. Thus, this will not
affect its application for our purpose, since later we will see, we always try to get a relaxed version
of the quantum set when we are using NPA with self-testing.
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Q.

We will not give the proof here, one could refer to [11] for details. Basically, a

certificate limn→∞ Γn will give the characterization of any quantum behavior. There

exist some cases that Γn for all n ≥ n0 are equivalent, however it is not generally

guaranteed. We could see that to fully characterize the quantum set, it requires

extremely huge computational power [33], in some cases even impossible [34]. Hence,

later we will see what we normally do is to have a relaxed version of Γ∞, which means

some certain Γn. This will make a lot problems solvable numerically. In the next

chapter, we will also use these results to the main problem we are going to discuss

here in this thesis, which is self-testing.
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Chapter 2

Self-testing and semidefinite

programming

Quantum physics, since last century, has been one of the most successful theory in

history. It is also the only theory up to now that could explain phenomena at atomic

level. It also has a wide range of applications in modern technologies, like semi-

conductor, laser, atomic clock, magnetic resonance imaging and so on. Recent years,

especially the last two decades, a lot of efforts has been dedicated to bring quantum

physics into the field of information science, for instance, there is quantum cryptogra-

phy that claims to be more secure than classical cryptography [35, 36, 37, 38, 39, 40],

there are even experiments that are trying to deploy quantum key distribution be-

tween different places with satellites [41]. There are also prototypes of quantum com-

puters that claim to be exponentially faster than classical computers [42]. Hopefully,

we are going to do a lot with quantum devices in the future.

Since all quantum devices will inevitably play with quantum states and measure-

ments, it becomes a crucial issue for us to know what is the quantum state in the

device and how to manipulate it. However, it is unlikely that people, for instance

the customers, will build all these devices from scratch by themselves, like nowadays,

nobody will build a computer from resistors and capacitors. They will probably buy

these so called quantum devices from some companies. The problem then comes that

whether these devices can really produce the quantum state and measurements that
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are claimed to be there. It is unlikely that we could always open the device and check

every elements inside. Even though we could really open the device, it is still not

easy for us to know whether certain elements in the devices are the one that play the

role or not. This is why people start to think about device independent self-testing.

Self-testing is a device independent way to assess the system and the measurement.

In fact, there are also a lot of works which study the properties of the state of

the system and the measurements in a device independent manner, for instance,

entanglement witness [19], dimension witness [43], measurement overlapping [44] and

etc. However, self-testing aims specifically to certify the exact state of the system

and the measurements. Unlike tomography, it requires no information about the

dimension of the Hilbert space or the inner mechanism of the devices. The only thing

required is the statistics from the experiments. Under this scenario, the device of

each party in the game could be considered as a black box with buttons and bulbs

on it, that the experimentalists can only press the button and check out the on and

off of the bulbs. Due to the merit of not requiring the details about the devices,

self-testing is used in many interesting problems, for instance, interactive proofs for

quantum computation [45, 46], arbitrary randomness amplification [47, 48] and etc.

The story of self-testing goes back to 1992 [49]1, when Popescu and Rohrlich

proved a surprising result that if a two party binary game, as we described in the

previous chapter, could violate the Bell inequality (1.4) to its maximal quantum

value 2
√

2, the system that is used in the game must be equivalent to the two-qubit

singlet state |Φ+〉 = (|00〉 + |11〉)/
√

2 up, which is also call a EPR state, and the

measurements on each side are complementary. Here, by singlet state, we mean all

the four Bell states since they are equivalent up to local unitaries. In 1998, Mayers

and Yao [51] first came up with the term ”self-testing” while they proposed another

criterion. The proof of Mayers and Yao was simplified and made robust to small

fluctuations by McKague et al. in 2012 [52]. Besides these, a lot more efforts have

been dedicated to self-testing in recent years and the zoo of the states that could

be self-tested has been enlarged tremendously: self-testing of all multi-partite graph

1In fact, in the work of Summers and Werner [50], similar result has also been derived.
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state [53]; any pure bipartite entangled state [54]; tripartite non-graph state [55, 56];

one relevant two-qutrit state [32]; all the self-testings of singlet state [57]. One of the

main issues of self-testing is that a useful self-testing will give us a robust tolerance

to experimental fluctuations. A lot of the works we have mentioned not only give

a way to self-test those states in the ideal case, but also provide robustness bounds

which are doable regarding current experimental precisions. The robustness bound is

normally derived either by analytical ways or numerical methods, which we will talk

about a bit later. Recently, a nearly optimal robustness bound was given using a new

technique with the help of extraction channels and operator inequalities [58], which

give inspirations for finding new ways of deriving the robustness bound.

2.1 Self-testing and its definition

Suppose a vendor comes to you and tries to sell you a so-called quantum device, for

instance, a EPR resource. Without opening the device, how could we certify that

whether the device could really produce EPR state and we are able to manipulate

each part of the EPR pair? This is why the idea of self-testing comes out which

aims to assess these devices in both the aspect of the state of the device and the

measurements. In this scenario, the devices could be thought as black boxes. The

assessment is done device-independently, where by ”device-independent” we mean

that we are not assuming the dimension of the Hilbert space or how the devices work

inside the boxes. What we are using is only the experimental statistics.

For simplicity, we will first give the formal definition of self-testing for the bipartite

case:

Definition 2. For a bipartite experiment, the probability distribution is given by

p(ab|ij), where a, b denote the ath, bth outcome of the ith, jth measurement Ai,

Bj locally on A and B, then, p self-tests a quantum state |φ̃〉 and measurements σi,

σj, if there exists a local isometry Ψ = ΨA⊗ΨB, such that for the state of the device
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|φ〉 and the measurements Ai, Bj:

Ψ(|φ〉AB ⊗ |ξ〉A′B′) = |junk〉AB ⊗ |φ̃〉A′B′ , (2.1)

Ψ(AiBj |φ〉AB ⊗ |ξ〉A′B′) = |junk〉AB ⊗ (σi ⊗ σj) |φ̃〉A′B′ , (2.2)

where |ξ〉 is the trusted ancilla qubits which could be taken as |00〉 normally for con-

venience.

To be concrete, we are going to see what self-testing is more practically by re-

viewing the Mayers-Yao test [59] for a maximally entangled state. In this test, each

run A will choose to make one dichotomic measurement out of three, and B will

choose one dichotomic measurement out of two. A and B are not allowed to com-

municate which measurement they chose before they perform the measurements. Let

us denote the inputs of A and B by x ∈ {0, 1, 2} and y ∈ {0, 1}, and the out-

puts by a ∈ {0, 1} and b ∈ {0, 1}. Again, the correlation coefficient is defined as

Exy =
∑

a,b p(a = b|x, y)− p(a 6= b|x, y), where p is the probability distribution of the

measurement results. What the Mayers-Yao test says is that, if quantum physics can

explain the process, then the following theorem holds:

Theorem 2. If the correlations of test satisfy the following relation:

E00 = 1, E11 = 1,

E01 = 0, E10 = 0,

E20 =
1√
2
, E21 =

1√
2
, (2.3)

then there exists a local isometry Ψ = ΨA ⊗ΨB, such that for the state of the device

|φ〉 and the measurements Ai, Bj:

Ψ(|φ〉AB ⊗ |ξ〉A′B′) = |junk〉AB ⊗ |Φ
+〉A′B′ , (2.4)

Ψ(AiBj |φ〉AB ⊗ |ξ〉A′B′) = |junk〉AB ⊗ (σi ⊗ σj) |Φ+〉A′B′ , (2.5)

where σ-s are the Pauli operations on the ancillary qubits. Since we are free to choose
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which state to be the product state ancilla, for convenience, we take |ξ〉 = |00〉.

Proof. In the scenario of device-independent self-testing, we do not assume the dimen-

sion of the Hilbert space. Hence, it is reasonable to assume that the measurements

Ai and Bj acting on A and B are both projective, and the state of the system is in a

pure state |φ〉. If we denote the projectors of Ai and Bj as Πa|x=i and Πb|y=j, then

Ai = Πa=0|x=i − Πa=1|x=i,

Bj = Πb=0|y=j − Πb=1|y=j, (2.6)

moreover,

A2
i = B2

j = 1, (2.7)

[Ai, Bj] = 0. (2.8)

The commutation relation of Ai and Bj is due to the fact that A and B are both

applying local measurements and the order of how they apply them should not affect

the results. One property that we may use later is that, if two normalized state

vectors |φ1〉 and |φ2〉 satisfy 〈φ1|φ2〉 = cos θ, then we can conclude that the angle

formed by the vectors |φ1〉 and |φ2〉 will be θ. Since Eij = 〈φ|AiBj |φ〉, from the fact

that E00 = 1, we know that

A0 |φ〉 = B0 |φ〉 . (2.9)

Similarly, we can infer that

A1 |φ〉 = B1 |φ〉 ,

A0 |φ〉 ⊥ B1 |φ〉 , A1 |φ〉 ⊥ B0 |φ〉 ,

θ(A2 |φ〉 , B0 |φ〉) =
π

4
, θ(A2 |φ〉 , B1 |φ〉) =

π

4
. (2.10)

To achieve the above relations, the only possibility is that the vector A2 |φ〉 lies in
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the middle of the vectors A0 |φ〉 and A1 |φ〉, which simply means,

A2 |φ〉 =
A0 + A1√

2
|φ〉 =

B0 +B1√
2
|φ〉 . (2.11)

If one multiply A2 on the left of both side,

l.h.s = A2
2 |φ〉 = |φ〉 ,

r.h.s = A2
B0 +B1√

2
|φ〉

=
B0 +B1√

2
A2 |φ〉 =

(
B0 +B1√

2

)2

|φ〉

=
1

2

(
B2

0 +B2
1 +B0B1 +B1B0

)
|φ〉 , (2.12)

with the property A2
i = B2

j = 1, we get the following relation immediately

(B0B1 +B1B0) |φ〉 = 0. (2.13)

This is nothing but the anti-commutative property of B0 and B1. With similar

calculations, we could also derive that

(A0A1 + A1A0) |φ〉 = 0. (2.14)

With these properties of Ai and Bj, we could already construct a local isometry Ψ as

in Figure 2.1.

What the isometry does is to extract the target state |Φ+〉 out of the system into

20



Figure 2.1: Local isometry that extracts the target state from the system into the
ancillary qubits. H is the qubit Hadamard gate.

the ancillary qubits. To see this more clearly, we practice the following exercise,

Ψ(|φ〉AB ⊗ |00〉A′B′) = CA1CB1HA′HB′CA0CB0HA′HB′ |φ〉AB ⊗ |00〉A′B′

=CA1CB1HA′HB′CA0CB0 |φ〉AB ⊗ |++〉A′B′

=
1

2
CA1CB1HA′HB′(|φ〉AB |00〉A′B′ +B0 |φ〉AB |01〉A′B′

+ A0 |φ〉AB |10〉A′B′ + A0B0 |φ〉AB |11〉A′B′)

=
1

2
CA1CB1(|φ〉AB |++〉A′B′ +B0 |φ〉AB |+−〉A′B′

+ A0 |φ〉AB |−+〉A′B′ + A0B0 |φ〉AB |−−〉A′B′)

=
1

4
[(1+ A0)(1+B0) |φ〉AB |00〉A′B′ +B1(1+ A0)(1−B0) |φ〉AB |01〉A′B′

+ A1(1− A0)(1+B0) |φ〉AB |10〉A′B′ + A1B1(1− A0)(1−B0) |φ〉AB |11〉A′B′ ],

(2.15)

where CAi/Bj
represents the control gate of Ai or Bj and H represents the Hadamard

gate, and |±〉 represents the state |0〉±|1〉√
2

. One could check that in fact the isometry

we used here is local and unitary, which are the conditions that any real isometry

should satisfy. With the help of properties (2.9), (2.10), (2.13) and (2.14), it will not
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be difficult to proceed with the simplification of the above equation

Ψ(|φ〉AB ⊗ |00〉A′B′) =
1

2
(1+ A0) |ψ〉AB (|00〉+ |11〉)A′B′

=
1+ A0√

2
|ψ〉AB |Φ

+〉A′B′ . (2.16)

This is exactly what the definition of self-testing is as (2.4). The part of 1+A0√
2
|ψ〉AB

would be the junk state. For the condition (2.5), it is not hard to see once we plug

the operators in equation (2.15).

With the example of the Mayers-Yao test, we can now have a summary of the

self-testing of the singlet state.

Theorem 3. For the two qubit singlet state |Φ+〉AB, a self-testing is possible if one

can define unitary operators ZA, XA, ZB and XB, such that

ZA |φ〉 = ZB |φ〉 , (2.17)

ZAXA |φ〉 = −XAZA |φ〉 , (2.18)

ZBXB |φ〉 = −XBZB |φ〉 . (2.19)

2.2 Robustness

One of the main issue for self-testing is that whether it is robust against statistic

errors. The problem is interesting simply because we can never have perfect statistics

in the real case. Hence, it remains to be answered whether the state of the system is

close to the ideal state even if the statistics is not perfect, and also how much it is

close to.

Once the system we are studying is not ideal, basically all the equations in the

Proof of Theorem 2 will not be valid. All the nice relations between the operators

and the anti-commutative relations do not hold any more. However, the optimistic

fact is that the isometry we defined in the ideal case is still a valid isometry, in the

sense that it is local and unitary. Thus, it is no harm if we apply the same isometry
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as we had in the ideal self-testing to the non-ideal one. It is for sure that the output

state after the isometry will be different compared to the ideal one, and the distance

between these two is what we are interested in.

To continue the discussion of robustness, we will use the example of Mayers-Yao

again. For clarity, we will denote the system that corresponds to the ideal statistics

from now on as |φ̃〉. The distance between the output of the isometry for the real

system and the ideal one is

D = ‖Ψ(|φ〉AB ⊗ |00〉A′B′)−Ψ(|φ̃〉AB ⊗ |00〉A′B′)‖. (2.20)

If we consider the case that the errors of all the statistics are upper bounded by ε,

which is

‖p(ab|xy)− p̃(ab|xy)‖ ≤ ε, (2.21)

where p̃ corresponds to the ideal case. Then it would be nice to show that the distance

D is upper bounded by some function of ε

D ≤ f(ε), (2.22)

and the performance of self-testing depends on the scaling of the function f(ε).

With tedious calculations, one could derive that

f(ε) =
√

2ε+ 2
√

2(
√

2ε)
1
4 . (2.23)

as given in [52].

2.3 Self-testing with inequalities

In the example of the Mayers-Yao test, it uses the probability distribution as a cri-

terion to self-test. In fact, the inequalities arise from the game could also be used as
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criteria as shown in [52]. In this section, we will go over these results to see how it is

done.

Basically, it is going to be the same state, which is the maximally entangled state.

Instead of having three measurements on Alice side, now he only has two. One could

still use x, y ∈ {0, 1} to denote the inputs and a, b ∈ {0, 1} to denote the outputs.

The inequality that will be used is the CHSH inequality as shown in Chapter 1. The

self-testing of the CHSH inequality says:

Theorem 4. If the CHSH inequality (1.3) is maximally violated by 2
√

2, there exists

a local isometry Ψ = ΨA ⊗ ΨB, such that for the state of the device |φ〉 and the

measurements Ai, Bj:

Ψ(|φ〉AB ⊗ |00〉A′B′) = |junk〉AB ⊗ |Φ
+〉A′B′ , (2.24)

Ψ(AiBj |φ〉AB ⊗ |00〉A′B′) = |junk〉AB ⊗ (σi ⊗ σj) |Φ+〉A′B′ , (2.25)

where σ-s are the Pauli operations on the ancillary qubits.

Proof. Here, we will not go through the complete proof, since we only need to define

unitary measurements XA, XB, ZA and ZB that satisfy

XA |φ〉 = XB |φ〉 , ZA |φ〉 = ZB |φ〉 ,

XAZA |φ〉 = −ZAXA |φ〉 , XBZB |φ〉 = −ZBXB |φ〉 . (2.26)

Once we have these measurements properly defined, a self-testing will following nat-

urally as what we did in the Mayers-Yao example.

To show the existence of such measurements, let us try to define them as below

first.

ZA = A0, XA = A1,

ZB =
B0 +B1

|B0 +B1|
, XB =

B0 −B1

|B0 −B1|
, (2.27)

where |B0±B1| =
√

(B0 ±B1)2. With such definition, we could see that XA, XB, ZA
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and ZB are all unitary.

The maximal violation of CHSH basically tells us

〈φ|A0B0 + A0B1 + A1B0 − A1B1 |φ〉

= 〈φ|A0(B0 +B1) + A1(B0 −B1) |φ〉

=2
√

2. (2.28)

Let us first try to evaluate the norm of the following vectors

‖
(
A0 − (B0 +B1)/

√
2
)
|φ〉 ‖ =

√
2 + 〈φ| {B0, B1}/2 |φ〉 −

√
2 〈φ|A0(B0 +B1) |φ〉,

(2.29)

‖
(
A1 − (B0 −B1)/

√
2
)
|φ〉 ‖ =

√
2− 〈φ| {B0, B1}/2 |φ〉 −

√
2 〈φ|A1(B0 −B1) |φ〉.

(2.30)

This will simply imply that

〈φ|A0(B0 +B1) |φ〉 ≤
√

2 + 〈φ| {B0, B1}/2
√

2 |φ〉 , (2.31)

〈φ|A1(B0 −B1) |φ〉 ≤
√

2− 〈φ| {B0, B1}/2
√

2 |φ〉 . (2.32)

However, according to the CHSH violation (2.28), the sum of the two term must be

2
√

2. It then follows that

〈φ|A0(B0 +B1) |φ〉 =
√

2 + 〈φ| {B0, B1}/2
√

2 |φ〉 (2.33)

〈φ|A1(B0 −B1) |φ〉 =
√

2− 〈φ| {B0, B1}/2
√

2 |φ〉 , (2.34)

If we apply Cauchy-Schwartz inequality to (2.33) and (2.34), we get

〈φ|A0(B0 +B1) |φ〉 ≤ 〈φ| |A0(B0 +B1)| |φ〉 ≤ 〈φ| |B0 +B1| |φ〉 , (2.35)

〈φ|A1(B0 −B1) |φ〉 ≤ 〈φ| |A1(B0 −B1)| |φ〉 ≤ 〈φ| |B0 −B1| |φ〉 , (2.36)
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which is

|B0 +B1| ≥
√

2 + 〈φ| {B0, B1}/2
√

2 |φ〉 , (2.37)

|B0 −B1| ≥
√

2− 〈φ| {B0, B1}/2
√

2 |φ〉 . (2.38)

We can square both inequalities and get

2 + {B0, B1} ≥ 2 + 〈φ| {B0, B1}/2
√

2 |φ〉2 + 〈φ| {B0, B1} |φ〉 , (2.39)

2− {B0, B1} ≥ 2 + 〈φ| {B0, B1}/2
√

2 |φ〉2 − 〈φ| {B0, B1} |φ〉 . (2.40)

Evaluating both side of the above inequalities on state |φ〉, we get

2 + 〈φ| {B0, B1} |φ〉 ≥ 2 + 〈φ| {B0, B1}/2
√

2 |φ〉2 + 〈φ| {B0, B1} |φ〉 , (2.41)

2− 〈φ| {B0, B1} |φ〉 ≥ 2 + 〈φ| {B0, B1}/2
√

2 |φ〉2 − 〈φ| {B0, B1} |φ〉 . (2.42)

To make the above inequalities hold, it must be satisfied that,

〈φ| {B0, B1} |φ〉 = 0. (2.43)

Thus, |B0 +B1| = |B0 −B1| =
√

2 and,

{B0, B1} = 0. (2.44)

From (2.33) and (2.34), we will see that

ZA |φ〉 = A0 |φ〉 =
B0 +B1√

2
|φ〉 , (2.45)

XA |φ〉 = A1 |φ〉 =
B0 −B1√

2
|φ〉 . (2.46)
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Hence ZB = B0+B1√
2

and XB = B0−B1√
2

, besides

ZA |φ〉 = ZB |φ〉 , (2.47)

XA |φ〉 = XB |φ〉 . (2.48)

The commutation relation will follow immediately

XBZB + ZBXB =
1

2
(B1B0 −B0B1) +

1

2
(B0B1 −B1B0) = 0. (2.49)

Hence

(XAZA + ZAXA) |φ〉 = (XAZB + ZAXB) |φ〉

=(ZBXA +XBZA) |φ〉 = (ZBXB +XBZB) |φ〉 = 0. (2.50)

With the unitary operators XA, XB, ZA and ZB equipped with the properties (2.47),

(2.48), (2.49) and (2.50), we can then follow what we did in the Mayers-Yao example

and complete the proof.

2.4 Self-testing with semidefinite program

Although the way we dealt with the robustness bounds in the previous section is

useful, sometimes the scaling of the function f(ε) may not be that good. Normally,

the best bound we could get scales like O(ε
1
2 ) and sometimes even worse as O(ε

1
8 ) [60,

52, 54]. This will impose a higher requirement on the experiments. Even though, with

the state of art experiment that is dedicated to this kind of test, the performance of

the bound is still reasonable, we still hope to find out whether it is possible to improve

the robustness bounds or not.

Semidefinite program (SDP) has been used a lot to tackle the problems in the

study of quantum mechanics, for instance, the characterization the set of separable

states [61, 62], bounding the amount of randomness [27, 28], state discrimination [63]

and etc. Self-testing with semidefinite program (SDP) has recently been developed
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to tackle this problem [31, 32]. In terms of robustness performance, it improves a

lot over the analytical methods we were using in the previous section. However, it

should be emphasized that the best thing about this idea is not just to improve the

robustness, but to give a new way of how we think about self-testing.

Let us take a look at the Definition 2 of self-testing, for a general state that may

not be the ideal case, as we have said before, there is no harm to apply the same

isometry as we had in the ideal self-testing to the non-ideal one,

Ψ(|φ〉AB ⊗ |ξ〉A′B′) = |junk〉AB ⊗ |ϕ〉A′B′ .

As long as the isometry is local and unitary, this operation is valid. Even though

there might be isometries that could have better performance, we still stay our focus

on the above isometry since it will give a lower bound of all possible isometries. If

this isometry leads to a better robustness bound, our aim has already been achieved.

However, this will not forbid one to study possible alternatives of isometries. We will

use the fidelity to measure the distance between the ideal system and the nonideal

one is

F = ‖ 〈ϕ̃|ϕ〉A′B′ ‖
2, (2.51)

where |ϕ〉A′B′ is the state of the ancillary qubits after tracing out the system, and

|ϕ̃〉 is the ideal target state that we are trying to self-test the system into. With the

isometry which we have described in Figure 2.1, Ψ could be expressed as a linear

combination of the measurement operators and the fidelity F then could always be

expressed as a linear function of the average values of the measurement operator

monomials. This could be seen from (2.15) for example. In (2.15), after AB are traced

out, the coefficients of |ij〉A′B′ will be sums of the average values of the measurement

operator monomials. Thus, one will get a linear function of the average values of the

measurement operator monomials if the fidelity of the ancillary qubits with the target

state is calculated. These monomials are simply the elements of a sequence S defined
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in Chapter 1.

S = {1} ∪ {Πa|x} ∪ {Πb|y} ∪ {Πa|xΠa′|x′} ∪ {Πb|yΠb′|y′} ∪ {Πa|xΠb|y}....

Since the experiment only gives us the knowledge about the probability distribution

but not the terms like Πa|xΠa′|x′ , the problem left is to find out the values of those un-

known operator monomials that are allowed by quantum mechanics. Such a problem

could be cast into the following semidefinite program

min F (S)

such that 〈φ|Πa|xΠb|y |φ〉AB = p(ab|xy),

Γ ≥ 0,

(2.52)

where Γ(S) is a certificate defined in Chapter 1. As we have shown a certain monomi-

als certificate, Γ(Sn) ≥ 0 is a relaxation of the requirement that the behaviour of the

system belongs to quantum mechanics. Hence, a looser condition will give us a valid

lower bound of the fidelity F , which is also the robustness bound of the self-testing.

There are two essential factors of this method. Firstly, we need to have a proper

probability distribution as a criterion. Secondly, with this criterion, we need to define

an isometry corresponding to the closest ideal case self-testing compared with the

real one. The isometry is the key to derive the expression of fidelity F . With these

two factors fulfilled, it is then possible to solve the SDP (2.52). It is also these factors

that we will dedicate the main efforts to in the self-testings that will appear later in

this thesis.

2.5 By-products of self-testing with SDP

The SDP method provides us a novel perspective of how we view self-testing. Com-

pared to the methods we introduced earlier, it simplifies the way we solve the problem

and improves the robustness a lot. However, these are not the only benefits we get

from self-testing with SDP. We are going to discuss these by-products of self-testing
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with SDP in two aspects here. The first one is to derive an inequality that is maxi-

mally violated by the state |ϕ̃〉 that is self-tested, which has been shown in [64]. The

second one is to retrieve the quantum strategy that achieves the probability p(ab|xy)

that is used as the criterion to self-test as given in [11].

To begin with, let us first introduce the duality theory. Generally, a semidefinite

problem could be formalized in the following way

min
X

〈C,X〉

subject to 〈Ak, X〉 = bk, k = 1, 2, ...,m,

X ≥ 0,

(2.53)

where C and X are matrices, and 〈C,X〉 = Tr[CTX]. It is normally called the primal

problem. On the contrary, there exists a counterpart problem that is called the dual

problem, which takes the form

max
y

∑
k bkyk

subject to
∑

k ykAk − C ≤ 0, k = 1, 2, ...,m.
(2.54)

Therefore the SDP of self-testing maps to the formalism of the primal problem and

p(ab|xy) will be the bks. With such formalism of the primal and dual problem, there

are the weak duality theorem and strong duality theorem which can be proved. The

weak duality theorem states that,

Theorem 5. if both the primal and dual problems are feasible, the value of the primal

SDP is at least the value of the dual SDP.

Proof. The proof is quite straight forward.

〈C,X〉 −
∑
k

bkyk = 〈C,X〉 −
∑
k

yk 〈Ak, X〉 = 〈C −
∑
k

ykAk, X〉 ≥ 0. (2.55)

The above value is normally referred as the duality gap. Besides, the strong duality

theorem says,
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Theorem 6. if the primal problem is bounded and strictly feasible (X > 0), then the

dual problem has a optimal solution and 〈C,X〉 =
∑

k bkyk, and vice versa. If both

the primal and dual problem are bounded and strictly feasible, both problems will have

optimal solutions.

The proofs of the above two theorems could be found in [65]. The weak and strong

duality theorems basically tell us that, if a self-testing SDP has optimal solutions for

both the primal and dual problems, the objective functions of the two problems will

be equal. Since the primal and dual problem are equivalent, yks are also constrained

by quantum physics. Noticing that in the objective function of the dual problem,

bks are actually the probability distribution, then the dual problem is basically doing

the maximization over any linear combination of the given probability distribution

over the quantum mechanically allowed space in yks. It is now clear that this specific

linear combination of p(ab|xy)s that achieves the maximum is the inequality we are

looking for. To put it neatly

I =
∑
k

y∗kpk(ab|xy), (2.56)

where y∗k represents the value of the variable which gives the optimal solution of the

SDP and pk(ab|xy) is the corresponding probability term to bk.

The other by-product we are going to talk about here is the reconstruction of the

quantum strategy that achieves p(ab|xy) given the SDP is optimally solved. This

only make sense if the system really belongs to quantum. However, as we have shown

in Chapter 1, generally, the size of the SDP problem goes to infinite in order to

achieve the quantum set. Therefore, this seems to be a no-go path to what we need

practically. Fortunately, there are some cases that we may still do something.

Theorem 7. Suppose ΓnX,Y = {Γns,t : s, t ∈ SX,Y } is a submatrix of Γn, where SX,Y =

{s : |s| ≤ n∗ − 1} ∪ {s : s = abs′, a ∈ X, b ∈ Y, s′ ∈ SX,Y , |s| ≤ n∗} and n∗ < n. For a

finite n, if there exists some n∗, such that

rank(ΓnX,Y ) = rank(Γn), (2.57)
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for all X, Y , the behaviour p(ab|xy) has a quantum representation with a Hilbert space

dimension d ≥ rank(Γn).

This basically tells us that if the certificate matrix is not full rank in a way that

is described in the above theorem, we can always find a finite dimensional quantum

system and measurement settings that achieve p(ab|xy). However, we are not going

to show all the details here. For more information about the proof and the techniques

to reconstruct the state and measurements, please refer to [11].
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Chapter 3

Self-testing of bipartite systems

In this chapter, we are going to talk about the self-testing of bipartite systems. Bi-

partite quantum systems are broadly used in quantum information processing, for

instance, quantum key distribution [35, 36, 37, 38, 39, 40], quantum random genera-

tion [27, 28], certification of entangled measurements [66], quantum repeaters [67, 68]

and etc. Hence, it is important to assure that the bipartite systems used in these

tasks are what they are required to be, especially for those tasks that the customers

really have no access to the inner mechanism of the devices. Self-testing provides

a device-independent way to certify the state and measurements. It only requires

the experimental statistics. The self-testing of bipartite state is also the best studied

case. Here, we will first focus on the maximally entangled state and see a variety of

the ways to self-test the same state. In this process, we found that a geometric view

of this problem actually simplified most of the proofs a lot [57]. Then, we will talk a

bit more on the self-testing of an arbitrary bipartite state. Furthermore, we will have

some outlooks on the future study of self-testing of bipartite systems.

3.1 Self-testing of singlet state

The singlet state |Φ+〉 = (|00〉 + |11〉)/
√

2, also called maximally entangled state, is

the most encountered state in quantum information processing. A lot of protocols and

tasks utilize the nice properties of this state to make it possible to achieve quantum
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advantages over classical systems. Due to this fact, the progress of self-testing’s

history is actually accompanied by the development of the self-testing of the singlet

state. The first work that contains the idea of self-testing the singlet state was given

by Popescu and Rohrlich in 1992 [49], later in 2004, Mayers and Yao first coined the

task to certify imperfect apparatuses as ’self-testing’ [51]. However, till that time,

robustness of self-testing is still not considered for practical usage. In 2012, Mckague

et al. [52] simplified the proof of the original self-testing of the singlet state and made

it robust against experimental fluctuations for the first time.

Since we have used the self-testing of the singlet state in Chapter 2 to introduce

the general formalism of self-testing, we will not show it again here. One could also

refer back to Chapter 2 for more details about these two tests.

3.2 All the self-testings of singlet state

A short summary for the self-testing of the singlet state is, till 2012, the ways to

self-test are basically the CHSH test and the Mayers-Yao test. These two ways of

self-testing the singlet state are different in the sense that the probability arising from

the two tests are not equivalent. If we consider them as points in the probability space

P , they are two distinct points at different locations. This inspires us that possibly

there are more criteria which can also self-test the singlet state. Moreover, is it

possible to make a connection between these two points in a certain way such that

all the points belongs to the connection self-test the singlet state?

The answer to these questions turn out to be yes and there are actually a lot

more criteria that coincide with our expectations. We call this result as all the self-

testings of the singlet state [57]. In the process of deriving this result, we also found

a geometric way to look into the self-testing problem, which has never been used

before. It gives us a more intuitive view on the nature of the problem rather than

mathematical equations.

As we have seen in Chapter 2, the most important factor of self-testing is to define

a valid local isometry that extracts the target state out of the system. From Theorem
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3, we see that as soon as one could find unitary operators XA/B and ZA/B, we call

them control operators, on each party such that

XA |φ〉 = XB |φ〉 , ZA |φ〉 = ZB |φ〉 ,

XAZA |φ〉 = −ZAXA |φ〉 , XBZB |φ〉 = −ZBXB |φ〉 , (3.1)

the isometry could be immediately constructed as in Figure 2.1. The construction of

the control operators XA/B and ZA/B should be purely based on the knowledge we

had for the system, which are the measurements {Πa|x}, {Πb|y} and the probability

distribution p(ab|xy).

3.2.1 All the self-testings in the ideal case

We state the result as the following.

Theorem 8. A and B both choose one dichotomic measurement out of two and we

denote their choices as x ∈ {0, 1} and y ∈ {0, 1}. The outputs of A and B will be

denoted by a ∈ {0, 1} and b ∈ {0, 1}. The observed correlation Exy will self-test a

singlet state if and only if

∑
(x,y)6=(i,j)

arcsin(Exy)− arcsin(Eij) = ξπ with i, j ∈ {0, 1}, ξ ∈ {+1,−1}, (3.2)

where arcsin(Exy) ∈ [−π
2
, π
2
], and provided arccos(Exy) = 0 or π holds for at most one

pair (x, y).

Proof. First we should stress that if there are more than one arccos(Exy) equal to

0 or π, one could actually check that the correlations arising from this case will be

local. Hence there is no need to consider the self-testing of this case.

We will now prove that (3.2) is a sufficient condition for self-testing the singlet

state. The measurement operators involved in this problems are A0, A1, B0 and B1,

35



which are defined as

Ax = Π0|x − Π1|x,

By = Π0|y − Π0|y. (3.3)

They are all unitary and hence satisfy A2
x = B2

y = 1. The vectors representing Ax |φ〉

and By |φ〉 live in a space with unbounded dimension. However, these vectors satisfy

the following relations

〈Ax |φ〉 , By |φ〉〉 = Exy, (3.4)

where 〈~u,~v〉 is the inner product of ~u and ~v. Let us denote Exy = cosαxy, where

αxy ≥ 0. αxy basically represents the angle spanned by vectors Ax |φ〉 and By |φ〉.

Let us first consider the relations between the vectors A0 |φ〉, A1 |φ〉 and B0 |φ〉.

From the simple reason that the angle spanned by A0 |φ〉 and A1 |φ〉 will be smaller

than the sum of the angles spanned by A0 |φ〉 with B0 |φ〉 and A1 |φ〉 with B0 |φ〉, and

larger than the difference of the two, we get

|α00 − α10| ≤ θ ≤ α00 + α10, (3.5)

where θ = 〈A0 |φ〉 , A1 |φ〉〉. We can also argue similarly for the vectors A0 |φ〉, A1 |φ〉

and B1 |φ〉 and get

|α01 − α11| ≤ θ ≤ α01 + α11. (3.6)

In fact, the eight conditions (3.2) are equivalent to each other after relabelling of the

input and output indexes. Hence, it is reasonable to assume arcsin(E00)+arcsin(E01)+

arcsin(E10)− arcsin(E11) = π, which means

α00 + α10 = α01 − α11. (3.7)
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Figure 3.1: Relative configuration of the vectors.

Now it is clear that (3.5) and (3.6) could be satisfied if and only if

θ = α00 + α10 = α01 − α11. (3.8)

To this point, all the four vectors Ax |φ〉 and By |φ〉 could be decided in the same

space, as sketched in Figure 3.1. It is not difficult to derive that

B0|φ〉 =
sin(α00)A1|φ〉+ sin(α10)A0|φ〉

sin(α00 + α10)
, (3.9)

A1|φ〉 =
sin(α10)B1|φ〉+ sin(α11)B0|φ〉

sin(α11 + α10)
. (3.10)

Due to the fact that A2
x = B2

y = 1 and [Ax, By] = 0, after we apply B0 on (3.9), we

get

B2
0 |φ〉 = B0

sin(α00)A1|φ〉+ sin(α10)A0|φ〉
sin(α00 + α10)

=
sin(α00)A1 + sin(α10)A0

sin(α00 + α10))
B0|φ〉 =

(
sin(α00)A1 + sin(α10)A0

sin(α00 + α10)

)2

|φ〉

=
sin2(α00) + sin2(α10) + sin2(α00) sin2(α10)(A0A1 + A1A0)

sin2(α00 + α10)
|φ〉 ,

which infers

(A0A1 + A1A0) |φ〉 = 2 cos(α00 + α10) |φ〉 . (3.11)
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Similarly, we get

(B0B1 +B1B0) |φ〉 = 2 cos(α10 + α11) |φ〉 , (3.12)

from (3.10). These commutation relation of Ax and By will help us to define the

control operators

ZA = A0,

XA =
A1 − cos(α00 + α10)A0

sin(α00 + α10)
,

ZB =
sin(α01)B0 − sin(α00)B1

sin(α01 − α00)
,

XB =
sin(α00)B1 − sin(α01)B0

sin(α01 − α00)
. (3.13)

We can actually check the commutation relation of ZA/B and XA/B

(ZAXA +XAZA) |φ〉

=A0
A1 − cos(α00 + α10)A0

sin(α00 + α10)
|φ〉+

A1 − cos(α00 + α10)A0

sin(α00 + α10)
A0 |φ〉

=
A0A1 + A1A0 − 2 cos(α00 + α10)

sin(α00 + α10)
|φ〉 = 0. (3.14)

Similarly we can show that (ZBXB +XBZB) |φ〉 = 0. Now, the only thing left to be

proved is the unitarity of the operators (3.13). It is for sure that ZA is unitary since

A0 is unitary by definition. For the rest, we will give the proof of XA

〈φ|X†AXA |φ〉 = 〈φ| A
2
1 + cos2(α00 + α10)A

2
0 − cos(α00 + α10)(A0A1 + A1A0)

sin2(α00 + α10)
|φ〉

= 1, (3.15)

and the proof of ZB andXB will follow the same procedure. Besides, since 〈φ|ZAZB |φ〉 =
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1 and 〈φ|XAXB |φ〉 = 1, it follows that

ZA |φ〉 = ZB |φ〉 ,

XA |φ〉 = XB |φ〉 . (3.16)

With the relations (3.14) and (3.16), we found the conditions for a self-testing as

defined in (3.1) are satisfied. Hence, it would not be hard to show the self-testing

following the standard method described in Chapter 2.

Now we will explain why (3.2) is a necessary condition to self-test the singlet state

with the measurement scenario described in Theorem 8.

Firstly, it is widely known that the conditions (3.2) define the boundary of the

correlations {Exy} achievable with quantum physics in the (2,2,2) scenario [2, 69].

Meanwhile, in the work of Masanes [70, 71], they proved that in a (2,2,2) scenario,

an extremal point of the quantum set can be generated by measuring a singlet if and

only if it satisfies (3.2). One could checked that the points satisfying condition (3.2)

are all nonlocal except that more than one of the arccos(Exy) are zero or π. Since

ideal self-testing is only achievable with points on the boundary of the quantum set,

this suggests that any criterion that self-tests the singlet state must satisfy condition

(3.2).

With the results shown above, we found an interesting consequence [57]. The

following correlations Exy that self-test the singlet state

E00 =
1√
2
, E01 = 0, (3.17)

E10 =
1√
2
, E11 = 1, (3.18)

is just a simplification of the Mayers-Yao test, in which one of A’s measurements is

removed, see Figure 3.2. We call this as the reduced Mayers-Yao self-testing.

This suggest that the third measurement of A in the Mayers-Yao test is in fact

redundant to achieve a self-testing of the singlet state.

One could also plot the area that could deliver a self-testing of the singlet state
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(a) The original Mayers-Yao test.
(b) Reduced Mayers-Yao test.

Figure 3.2: The settings for the original Mayers-Yao test and the reduced Mayers-Yao
test.

in the coordinates of αs. It is now able to put the simplified Mayers-Yao test and

CHSH test in the same plot.

Figure 3.3: Regions in the space of αs (where we reduced the complexity of the
problem by considering α00 + α10 = α01 − α11) that can be self-tested, as the gray
region.
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3.2.2 Robustness

Next, we are going to discuss the robustness of such self-testings of the singlet state.

As what we have discussed in Chapter 2, there are two treatments for the robustness

of self-testing, analytical method and semidefinite programming method. Here, we

will concentrate on the SDP method. The idea of robust self-testing is to give a

reasonable estimation of how far away the system is from the ideal system when

experimental errors or any kind of imperfections are presented in the statistics. If we

denote the system that gives an ideal self-testing of some certain state as |φ̃〉, and

the system that gives an imperfect statistics as |φ〉, the distance of the two can be

evaluated as

D =‖Ψ(|φ〉AB ⊗ |00〉A′B′)−Ψ(|φ̃〉AB ⊗ |00〉A′B′)‖

=‖ |junk〉AB ⊗ |ϕ〉A′B′ − |junk〉AB ⊗ |ϕ̃〉A′B′ ‖, (3.19)

where |ϕ̃〉 and |ϕ〉 correspond to the ideal self-testing and imperfect one. However,

we can even get rid of the junk and estimate the distance of the ancillary qubits after

applying the isometry. We could use the fidelity to measure this distance

F = ‖ 〈ϕ̃|ϕ〉A′B′ ‖
2. (3.20)

We use the standard formalism of semidefinite program as in (2.52) and the input of

the program, p(ab|xy), is constrained as

|p(ab|xy)− p̃(ab|xy)| ≤ ε, (3.21)

where p̃(ab|xy) is the probability distribution from the ideal system and ε is maximum

fluctuation of the probabilities over the ideal ones.

To proceed with the SDP, we first need to define a valid isometry. The control

operators defined in (3.13) are good candidates for the isometry. However, the uni-

tarity of these operators holds only if the statistics are ideal, and such properties will
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disappear once there are errors in the statistics. Due to the fact that, the way the

errors appear may have no specific patterns, it is also impossible to define a set of

operators that are strictly unitary. The way to solve this problem is to introduce a

new unitary operator called ”localizing matrix” [56, 65] that has the same eigenvalues

as the one defined in (3.13). For instance, we could define X ′A = A2 which is unitary

and simply set the constraint

A2XA = A2(A1 − cos(α00 + α10)A0)/ sin(α00 + α10) ≥ 0, (3.22)

which will assure A2 and XA to share the same eigenvalues. After this tweak, we

can simply use X ′A as a valid control operator. We can also do the same trick to ZB

and XB and then define the isometry we want. However, before we proceed, there is

still something which we can do to simplify the problem. If we apply a rotation of

Ry(α00) = exp(−iσyα00/2) on the subsystem of B, the target state will become

|ϕ̃〉 = cos(
α00

2
)
|00〉+ |11〉√

2
+ sin(

α00

2
)
|01〉 − |10〉√

2
, (3.23)

and the ideal control operators will become

ZA = A0,

XA =
A1 − cos(α00 + α10)A0

sin(α00 + α10)
,

ZB = B0,

XB =
B1 − cos(α10 + α11)B0

sin(α11 + α10)
. (3.24)

Now, we only need to construct the localizing matrices A2 and B2 for XA and XB.
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The SDP will become

min F (S)

such that | 〈φ|Πa|xΠb|y |φ〉AB − p̃(ab|xy)| ≤ ε,

Γ(S) ≥ 0,

ΓSA
(A2XA) ≥ 0,

ΓSB
(B2XB) ≥ 0,

(3.25)

where SA is a set subset of S and ΓSA
(A2XA)s,t = 〈φ| s†A2XAt |φ〉 for s, t ∈ SA. As

we have discussed already, we do not have the computational power for S = S∞, so

normally we use Sn for certain n as a relaxation of the SDP. In this case, it turns out

to be that S3 is enough to give a good bound even after we remove some elements in

S3. The S we are using here is

S = {1, Ax, By, AxBy, AxAx′ , ByBy′ , A0A1/2A0, B0B1/2B0}, (3.26)

and the sequence for ΓSA
(A2XA) and ΓSB

(B2XB) are

SA = {1, A0, A1, A2},

SB = {1, B0, B1, B2}. (3.27)

In Figure 3.4, we present the robustness bounds for different setting of measurements.

Since there are too many choices of measurement settings, we only plot a few cases

that cover both CHSH and the reduced Mayers-Yao, which have the settings α00 =

π/4 and α10 = π/4 with the rest two angle being freely changing. For comparison,

we also include the robustness bound of the original Mayers-Yao in the plot. It seems

that the CHSH will always have the best performance in terms of robustness and

the reduced Mayers-Yao performs worse than the original Mayers-Yao. However, the

comparison is not conclusive since all the robustness bounds are not tight anyway.
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Figure 3.4: Robustness bound for the singlet fidelity F as a function of the imperfec-
tions of the observed correlations ε. We plot the bounds for four four-setting criteria
(θ = π/2, α00 = π/4, α01) and for the five-setting MayersYao criterion.

3.2.3 The inequalities

A nice feature of self-testing is that only boundary points of the quantum set could

be self-tested. Hence whenever a self-testing is achieved, a point at the quantum

boundary will be identified. As a result of all the self-testing of singlet states, it

confirms the result by [2, 69, 70, 72] that the equality (3.2) defines all the extremal

points of the quantum boundary for the (2,2,2) scenario in the slice of zero marginals

(
∑

y Exy =
∑

y Exy = 0). Since we have the boundary in this slice parametrized, it

could be possible to derive the inequality that is maximally violated by each extremal

point in this slice.

Let us consider the subspace E with the basis (~e00, ~e01, ~e10, ~e11). The parametriza-
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tion of the quantum boundary is

E00 = cos(α00),

E01 = cos(α00 + α10 + α11),

E10 = cos(α10),

E11 = cos(α11). (3.28)

A generalization of the cross product in the high dimension space will give the normal

vector. At each point in this subspace, there are three vectors that could be defined

to be tangent to the boundary, which are

~v1 =
∂E

∂α00

=
(
− sin(α00),− sin(α00 + α10 + α11), 0, 0

)
,

~v2 =
∂E

∂α10

=
(
0,− sin(α00 + α10 + α11),− sin(α10), 0

)
,

~v3 =
∂E

∂α11

=
(
0,− sin(α00 + α10 + α11), 0,− sin(α11)

)
, (3.29)

and the normal vector would be the cross product

~n =
∧

(~v1, ~v2, ~v3) =

∣∣∣∣∣∣∣∣∣∣∣∣

v11 v21 v31 v41

v12 v22 v32 v42

v13 v23 v33 v43

~e00 ~e01 ~e10 ~e11

∣∣∣∣∣∣∣∣∣∣∣∣
=
(

sin−1(α00),− sin−1(α00 + α10 + α11), sin
−1(α10), sin

−1(α11)
)
. (3.30)

Hence, the inequality of at each point which defines the quantum boundary will be

I = ~n · ~E =
E00

sin(α00)
− E01

sin(α00 + α10 + α11)
+

E10

sin(α10)
+

E11

sin(α11)

≤ cot(α00)− cot(α00 + α10 + α11) + cos(α10) + cos(α11), (3.31)

where the maximal is achieved with the corresponding boundary point (3.28). This

also recovers the game which is defined in the work by Miller and Shi [73]. We could
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notice that the inequality coincides with the CHSH inequality when α00 = α10 =

α11 = π/4.

Since we are confined in a specific slice, generally speaking, it is not confirmed

whether theses inequalities are the ones that are maximally violated in the full corre-

lation space C, which is equivalent to the probability space P here. However, because

these points self-test the singlet state within the whole space C, there must exist an

inequality for each of them in C. As seen from the above result, the inequality we

derived from the four dimensional space is unique for each point, so we confirm that

these inequalities are actually the inequalities which characterize the extremal point

in the whole correlation space.

A sketch that shows the slice we studied with all the marginal statistics to be zero

could be found in Figure 3.5. In fact, one could see that the inequalities (3.31) we

found above are actually the tangent planes of boundary points of the quantum set

Q in Figure 3.5.

3.3 α-inequality and self-testing of partially entan-

gled qubit state

As we have shown in the previous section, the maximally entangled state could be

self-tested. Now the question arises that whether we can self-test any bipartite qubit

state. Of course, we only consider pure state for self-testing. It turns out that we are

able to do that as long as the state is entangled.

This result was first shown in the work of [54], and later a flaw in the proof

was corrected in [74] while confirming the inequality-based criterion. It used a tilted

CHSH inequality called α-inequality which is maximally violated by the partially

entangled state to achieve the self-testing. This could be summarized as the following

theorem.
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Figure 3.5: Slice in the space C of the (2,2,2) scenario where marginal statistics are all
zero. B is the CHSH inequality and B′ is also a CHSH inequality but with relabelled
indexes of inputs and outputs. The Tsirelson’s bound, which is maximally violated
using singlet state, is also recovered by the equality (3.2).

Theorem 9. In the (2,2,2) scenario, if the α-inequality

Iα = αE0× + E00 + E01 + E10 − E11 ≤
√

8 + 2α2, (3.32)

is violated maximally for α ∈ [0, 2] [75], where Ei× stands for the probability marginal

on A and same for B with E×j, then there exists a local isometry Ψ = ΨA⊗ΨB, such

that for the state of the device |φ〉 and the measurements Ai, Bj (i, j ∈ {0, 1}):

Ψ(|φ〉AB ⊗ |00〉A′B′) = |junk〉AB ⊗ |θ〉A′B′ , (3.33)

Ψ(AiBj |φ〉AB ⊗ |00〉A′B′) = |junk〉AB ⊗ (σi ⊗ σj) |θ〉A′B′ , (3.34)

where σ-s are linear combinations of the Pauli operations on the ancillary qubits,

|θ〉 = cos(θ) |00〉+ sin(θ) |11〉 for θ ∈ (0, π/2) and sin(2θ) =
√

(1− α2)/(1 + α2)
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The proof of the self-testing could also be found in [54]. It was originally proved

analytically using the technique of Sum of Square (SOS) [54, 74]. In the next section,

we will cover the SDP method of the self-testing in this case. Hence, we are not going

to discuss in detail about the proof here.

It is important to point out that the reason why only the state |θ〉 is considered

is due to the fact that, any pure entangled state could always be written in the form

of |θ〉 in certain basis.

Since the criterion of the inequality being maximally violated is equivalent to

the full probability distribution given the optimal strategy that achieve the maximal

violation, one could still have the self-testing if the probability distribution is provided.

In this case, the optimal strategy is given by the state |θ〉 measured by

A0 = σx, A1 = σx,

B0 = cos(µ)σz − sin(µ)σx, B1 = cos(µ)σz + sin(µ)σx, (3.35)

where tan(µ) = sin(2θ).

3.4 All the extremal points that self-test the par-

tially entangled state

In section 3.2, we have shown that the singlet state actually has a whole set of different

self-testings. This intrigues us to think whether this is also the case for the partially

entangled states. However, to get an analytical proof of more self-testings of the

partially entangled state, it would require a lot more computations. On the other

hand, self-testing with SDP provides us a new way to tackle the problem. Since it

does not have that much of mathematical proofs compared to the analytical method,

it is faster and simpler to find out whether the proposed self-testing is working or

not by SDP. In this section, we will basically use the SDP method, and show that

all the extremal points in the (2,2,2) scenario (see Section 3.4.3), except for the local

deterministic points, will self-test the partially entangled state.
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3.4.1 The self-testings

From Chapter 2, we see that for qubit system, the key to define a valid isometry

is to find a pair of anti-commutative operators on each party. In the case of the

singlet state, we manage to vary the measurement directions from the ideal CHSH

ones arbitrarily up to condition (3.2) and still prove the anti-commutativity of the

operators defined as (3.13). Hence, we are also willing to see whether it still gives us

a self-testing by changing the direction of the measurements arbitrarily up to some

constraints.

(a) Optimal measure-
ment settings for A for
α-inequality.

(b) Optimal measure-
ment settings for B for
α-inequality.

(c) Measurement settings
for A in the arbitrary case.

(d) Measurement settings
for B in the arbitrary
case.

Figure 3.6: Measurement settings for the partially entangled state.
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As in Figure 3.6, we have sketched out the ideal measurements to self-test with

the α-inequality self-testing and the measurements in arbitrary directions.

The corresponding new measurements are

A0 = cos(γ)σz − sin(γ)σx, A1 = cos(δ)σz + sin(δ)σx,

B0 = cos(β)σz − sin(β)σx, B1 = cos(α)σz + sin(α)σx. (3.36)

The task for us is to see if one has the statistics from the state |θ〉 measured by

these operators, will it give us a self-testing regarding some certain configurations

(α, β, γ, δ)?

In a formal way, the question could be stated as, if we observed the statistics

E0× = cos(2θ) cos(γ) E1× = cos(2θ) cos(δ)

E×0 = cos(2θ) cos(β) E×1 = cos(2θ) cos(α)

E00 = cos(β) cos(γ) + sin(2θ) sin(β) sin(γ)

E01 = cos(α) cos(γ)− sin(2θ) sin(α) sin(γ)

E10 = cos(β) cos(δ)− sin(2θ) sin(β) sin(δ)

E11 = cos(α) cos(δ) + sin(2θ) sin(α) sin(δ) (3.37)

can we show a self-testing of state |θ〉?

The good feature about self-testing with SDP is that one does not have to go

through all the mathematics to prove the rigidity of the ideal self-testing. The only

thing needed is to define a valid isometry and plug into the SDP program with the

statistics and let it run. As long as the SDP output a fidelity of one regarding the

target state, we may conclude the self-testing of the state.

To define a valid isometry, we may get some inspirations from the ’believed’ op-

timal strategy as the measurements in (3.36) have already shed light on the possible

control operators. Before we write down the control operators, we will also play the

same trick as in (3.23) and (3.24). After a rotation of Ry(γ) on the first qubit and a

rotation of Ry(β) on the second qubit, the original target state |θ〉 will be transformed
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into

|θ̃〉 = cos(
γ

2
) cos(

β

2
) |θ〉+ sin(

γ

2
) sin(

β

2
) |θ1〉

+ cos(
γ

2
) sin(

β

2
) |θ2〉+ sin(

γ

2
) cos(

β

2
) |θ3〉 , (3.38)

where |θ1〉 = sin(θ) |00〉 + cos(θ) |11〉, |θ2〉 = cos(θ) |01〉 − sin(θ) |10〉 and |θ3〉 =

− sin(θ) |01〉+ cos(θ) |10〉. The corresponding optimal measurements will become

Ã0 = σz, Ã1 = cos(γ + δ)σz + sin(γ + δ)σx,

B̃0 = σz, B̃1 = cos(α + β)σz + sin(α + β)σx. (3.39)

Now with the clean form above, we can simply write down the control operators

ZA = Ã0,

XA =
Ã1 − cos(γ + δ)Ã0

sin(γ + δ)
,

ZB = B̃0,

XB =
B̃1 − cos(α + β)B̃0

sin(α + β)
. (3.40)

However, since we do not know if such a setting will give us a self-testing even if

the statistics are perfectly matching (3.37), we cannot assure the unitarity of the

operators defined above. To solve this problem, again, as for the singlet case, we

introduce two localizing matrices, A2 and B2, and impose the constraints that

A2XA ≥ 0,

B2XB ≥ 0. (3.41)
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Now we can finalize the formalization of the semidefinite program as

min F (S)

such that 〈φ|Πa|xΠb|y |φ〉AB = p(ab|xy),

Γ(S) ≥ 0,

ΓSA
(A2XA) ≥ 0,

ΓSB
(B2XB) ≥ 0,

(3.42)

where p(ab|xy) is the probability distribution from (3.37). For the sequence S, SA

and SB, we keep them the same as what we have used in the singlet case as (3.26)

and (3.27).

We list below the minimum of the fidelity for a few cases with different (α, β, γ, δ, θ).

α β γ δ θ Fmin

45◦ 0 0 120◦ 35◦ 0.998244154919248
19◦ 25◦ 5◦ 95◦ 25◦ 0.999999654068137
35◦ 25◦ 5◦ 100◦ 15◦ 0.999994305252953
14◦ 0 0 115◦ 5◦ 0.999034127029206

Hardy 68.5414◦ 35.1132◦ 68.5414◦ 35.1132◦ 24.9060◦ 0.999103351320114

Table 3.1: List of fidelity from SDP with different (α, β, γ, δ, θ).

In the table, we also list the point that represents the Hardy paradox [76] (in a

rotated basis) for example, which is the state

|ϕ〉 =
√

(1− a2)/2 |01〉+
√

(1− a2)/2 |10〉+ a |11〉 , (3.43)

measured by

A0 = σz, A1 = cos(η)σz + sin(η)σx,

B0 = σz, B1 = cos(η)σz + sin(η)σx, (3.44)

where a =
√√

5− 2 and cos(η) = a2.
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As the results shown, there is indeed a big part in the space of (α, β, γ, δ, θ) can be

self-tested. As we will see later in Section 3.4.3, those points which can be self-tested

definitely include all the extremal points of th quantum set. The Hardy point actually

behaves differently than the other extremal points in this set. We will cover more

detail about this in Section 3.4.2.

The measurement settings (3.36) and state |θ〉 which deliver self-testings actually

cover all the extremal points that could self-test the partially entangled qubit state

in the (2,2,2) scenario. The reason could be found in Section 3.4.3.

As for the robustness of these self-testings, it is for sure that one could get some

bound following the same method as what we did in the singlet case. However, since

the main concern here is the existence of self-testing, we will not discuss the robustness

further.

3.4.2 The inequalities

We know from Chapter 2 that for any SDP program that gives a self-testing of

a quantum state, the dual problem of the primal will give the inequality that is

maximally violated by the state. It is also not exceptional here, the dual problem will

definitely give the inequality that is maximally violated by the partially entangled

state |θ〉.

Although in the previous section we have shown the self-testing with the α-

inequality, it is not a bad idea to retrieve the inequality again using the dual of

the SDP program to check the consistency. Specifically, we consider the case when

α = 1 in Theorem 9. The α-inequality will simply be

I1 = E0× + E00 + E01 + E10 − E11. (3.45)

What is interesting is that, the inequality we derived from the dual of the SDP is

I ′1 = −0.30805177E0× + 0.016737746E1× − 0.24839279E×0 − 0.28919283E1×

− 0.55811724E00 − 0.5610094E010.72157791E10 − 0.73465683E11, (3.46)
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and it is surprisingly not the same as the α-inequality. This leads us to have the idea

that the inequality from the dual program may be wrong. To test if the inequality

is legitimate, it is not difficult to check the maximal violation of the inequality by a

simple semidefinite program

min −I ′1(S)

such that Γ(S) ≥ 0.
(3.47)

From the result of the SDP, the maximal violation of the I ′1 is

max
SDP
I ′1 = 2.039276242265367. (3.48)

We could also just input the statistics given by the optimal strategy and get the value

of the α-inequality

I ′1(optimal) = 2.039121937171557. (3.49)

The relative difference of this two value is

max
SDP
I ′1 − I ′1(optimal)

I ′1(optimal)
=

2.039276242265367− 2.039121937171557

2.039121937171557

= 7.567232297229453× 10−5, (3.50)

which is quite reasonable to make us believe that actually I ′1 is the inequality that is

maximally violated by the state in Theorem 9 and also self-tests the state.

The above result is quite interesting because it basically tells us that for a specific

boundary point of the quantum set Q, there may exit not only one inequality that

characterizes it. Following this intuition, we are looking forward to seeing the different

inequalities that characterize the same boundary point.

From Section 3.2.3, we see that if there is a parametrized representation of the

boundary of the quantum set, we can actually derive the inequality that characterizes

each boundary point in the correlation space. However, if we take a look at the
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correlations (3.37), we find that there are actually only five free parameters for the

eight correlations including the marginals. Hence, it is not possible to define an

unique inequality that specifies each point in the eight dimensional space C. This

might be the reason that why there are two inequalities that both characterize the

point for α = 1 in Theorem 9. Since we know that in the space C, Q is a eight-

dimension set, hence, the boundary of Q must be a seven-dimension hypersurface.

A possible explanation could be that, in fact, the boundary points of the quantum

set that we have found are not part of a seven-dimension hypersurface within a local

region. Within this region, the boundary of the quantum set is just a five-dimension

hypersurface. One could imagine the rim of on side of a curved surface as an example

(the green line in Figure 3.7). The purple plane, which represents the inequality that

is maximally violated by the extremal point, contacts with the quantum set at a point

which has a lower dimension than the whole quantum set. This is also the reason

why we will see later that this plane which defines the inequality could actually rotate

freely to some extent.

Figure 3.7: A conceptual sketch of how the quantum set may look like.

As we have mentioned, even though the set of points we derived here do not form

a seven-dimension hypersurface on the quantum boundary, it is still possible to get

some non-trivial inequalities that are maximally violated by those points. To define

an inequality, it is the same to state the normal vector of the hyperplane define by
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the inequality. For a specific point

c = c(E0×, E1×, E×0, E×1, E00, E01, E10, E11), (3.51)

in C, let us denote the inequality belongs to it with ~n. From the parametrized bound-

ary points we found, we could at most derive five tangent vectors at each point, which

are

~v1 =
∂c

∂α
, ~v2 =

∂c

∂β
, ~v3 =

∂c

∂γ
, ~v4 =

∂c

∂δ
, ~v5 =

∂c

∂θ
. (3.52)

These vectors are all orthogonal to ~n,

~n · ~v1 = 0, ~n · ~v2 = 0, ~n · ~v3 = 0, ~n · ~v4 = 0, ~n · ~v5 = 0. (3.53)

To these point, we manage to fix five out of the eight degrees of freedom of ~n, and

there is nothing we can do to fix the other three. Hence, what we can do is to manually

assign the three degrees some certain values. However, this inequality defined by ~n

may not be promised to characterize the point c, since it could happen that ~n is

pointing at some other parts of the quantum set. On the other hand, the vectors

that is near a known valid vector ~n∗ will be highly probably define a valid inequality.

Hence, we could do our numerical search around ~n∗, which means

~n · ~n∗ ≥ 1− ε, (3.54)

where ε is a constant and supposed to be very small compared to 1. One more thing

should be paid attention to is that whether ~n is an outward or inward vector. Once

we found that the inequality define by ~n is not maximally violated by c, we could just

invert the vector and check the maximal violation again.

With the method described above, we manage to find more inequalities that define

the points in the α-inequality self-testing, such as
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I ′′1 = −0.30805177E0× + 0.016737746E1× − 0.24839279E×0 − 0.28919283E1×

− 0.55811724E00 − 0.5610094E010.72157791E10 − 0.73465683E11, (3.55)

I ′′1 = −0.30805177E0× + 0.016737746E1× − 0.24839279E×0 − 0.28919283E1×

− 0.55811724E00 − 0.5610094E010.72157791E10 − 0.73465683E11. (3.56)

For the Hardy point, first of all, we could derive the inequality from the dual of the

SDP program

IHardy = −0.002787601707553E0× − 0.750567748544415E1×

− 0.776102171961274E×0 − 0.028370726495952E1×

+ 0.776919397995680E00 − 0.779707763464578E01

+ 0.000810022525836E10 + 0.751407698482343E11, (3.57)

however, once we follow the method described above, no matter how we lower the

value of ε in (3.54), we still cannot find a valid inequality that is maximally violated

by the Hardy point. Another strange result we found from the SDP is that, the point

that maximizes the IHardy is actually not unique, for instance, both the two points

bellow

c0 =
(
2−
√

5, 2
√

5− 5, 2
√

5− 5, 2−
√

5,

3(
√

5− 2), 2
√

5− 5, 6
√

5− 13, 3(
√

5− 2)
)
, (3.58)

c1 =(−0.139728324364676,−0.565721523778005,−0.493599330702860,

− 0.328988174023790, 0.646128872869022,−0.531283418205931,

0.416842121534432, 0.763266511249520), (3.59)
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could violate IHardy maximally to

max
SDP
IHardy = 2.307515± 0.000002. (3.60)

This suggest that, any mixture of these two points in between them

cHardy = λc0 + (1− λ)c1, 0 ≤ λ ≤ 1, (3.61)

will also violate the inequality IHardy maximally.

3.4.3 The extremal points and the quantum set of (2,2,2)

We have shown that the state |θ〉 together with measurement settings (3.36) define

a whole set of criterion that self-test the partially entangled state. There are some

consequences following this result.

First, with such a set of self-testings, we could argue that actually it contains all

the extremal points of the quantum set in the (2,2,2) scenario, except for some special

cases which can be identified. We know from the work of Masanas [71] that in the

(2,2,2) scenario, all the extremal points could be achieved with pure entangled qubit

states and projective measurements. In addition, any pure entangled qubit bipartite

state could be Schmidt decomposed into the form of |θ〉, and all the projective mea-

surements considered in (3.36) are free to change into any direction, it is confident

to say that the extremal points must be included by the correlations from |θ〉 and

measurement settings (3.36).

Since we know that only the points on the boundary of the quantum set could be

self-tested, the set of self-testings we derived must be on the boundary. Basically, this

set is composed of either extremal points or the boundary points in the flat region.

If the correlations obtained by |θ〉 and measurement settings (3.36) that cannot be

self-tested could be excluded from the boundary of the quantum set, then we are safe

to say this set contains all the extremal points. With the following argument, it could

be confirmed that those correlations could actually be excluded from being extremal
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points of the quantum set.

Suppose there is a correlation point c in the space of C which is derived from state

|θ〉 and measurements (3.36), if it cannot be self-tested and is still an extremal point,

there must be at least two different solutions to the equations (3.37). Moreover, these

solutions must have different values for θ, since otherwise the state associated to c

will be unique and then can be self-tested. Thus, the way to check whether the point

c is an extremal point or not is to check whether (3.37) has different solutions with

different θs.

We will write down the correlations (3.37) here for convenience,

E0× = cos(2θ) cos(γ) E1× = cos(2θ) cos(δ)

E×0 = cos(2θ) cos(β) E×1 = cos(2θ) cos(α)

E00 = cos(β) cos(γ) + sin(2θ) sin(β) sin(γ)

E01 = cos(α) cos(γ)− sin(2θ) sin(α) sin(γ)

E10 = cos(β) cos(δ)− sin(2θ) sin(β) sin(δ)

E11 = cos(α) cos(δ) + sin(2θ) sin(α) sin(δ)

Imagining there are two solutions for fixed correlations Exy, and they have different

θ ∈ (0, π/2), denoted by θ1 and θ2. Due to the first four marginals in (3.37), we know

that (α, β, δ, γ) corresponding to θ1 and θ2 must be different. Let us denote the angles

belongs to the two different solutions as (α1, β1, δ1, γ1, θ1) and (α2, β2, δ2, γ2, θ2). From

the first four marginals, we have

cos(γ2) =
cos(2θ1) cos(γ1)

cos(2θ2)
, cos(δ2) =

cos(2θ1) cos(δ1)

cos(2θ2)
,

cos(β2) =
cos(2θ1) cos(β1)

cos(2θ2)
, cos(α2) =

cos(2θ1) cos(α1)

cos(2θ2)
.
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Substituting these relations to the four correlations, we have

sin(2θ2) sin(β2) sin(γ2) = sin(2θ1) sin(β1) sin(γ1) +

(
1− cos2(2θ1)

cos2(2θ2)

)
cos(β1) cos(γ1),

(3.62)

sin(2θ2) sin(α2) sin(γ2) = sin(2θ1) sin(α1) sin(γ1)−
(

1− cos2(2θ1)

cos2(2θ2)

)
cos(α1) cos(γ1),

(3.63)

sin(2θ2) sin(β2) sin(δ2) = sin(2θ1) sin(β1) sin(δ1)−
(

1− cos2(2θ1)

cos2(2θ2)

)
cos(β1) cos(δ1),

(3.64)

sin(2θ2) sin(α2) sin(δ2) = sin(2θ1) sin(α1) sin(δ1) +

(
1− cos2(2θ1)

cos2(2θ2)

)
cos(α1) cos(δ1).

(3.65)

Obviously, the product of the r.h.s. of (3.62) and (3.65) will be equal to that of the

(3.63) and (3.64), since the l.h.s. are equal. After simplification, we get

(
1− cos2(2θ1)

cos2(2θ2)

)
sin(2θ1)

(
cos(α1) sin(β1) sin(γ1) cos(δ1)

+ sin(α1) cos(β1) cos(γ1) sin(δ1)

)
=

−
(

1− cos2(2θ1)

cos2(2θ2)

)
sin(2θ1)

(
cos(α1) sin(β1) cos(γ1) sin(δ1)

+ sin(α1) cos(β1) sin(γ1) cos(δ1)

)
, (3.66)

which will lead to

(
1− cos2(2θ1)

cos2(2θ2)

)
sin(2θ1) sin(α1 + β1) sin(γ1 + δ1) = 0. (3.67)

Since θ1 6= θ2 and (α, β, δ, γ) ∈ [0, π], to satisfy this relation, one of the following
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cases must happen 

α1 + β1 = π, (3.68)

α1 = β1 = 0, (3.69)

γ1 + δ1 = π, (3.70)

γ1 = δ1 = 0. (3.71)

With the same argument, we could also derive the relations of (α2, β2, δ2, γ2). Let us

consider the situation where (3.68) happens. With the four marginals in (3.37), we

have

cos(α) = − cos(β) =
E×1

cos(2θ)
,

cos(γ) =
E0×

cos(2θ)
,

cos(δ) =
E1×

cos(2θ)
.

If we substitute them into the four correlations in (3.37), we will get four quadratic

equations about cos2(2θ)

cos4(2θ) + (E2
00 − E2

0×−E2
×0 − 1) cos2(2θ)

+(E2
0× + E2

×0 + E2
0×E

2
×0 − 2E0×E×0E00) = 0, (3.72)

cos4(2θ) + (E2
01 − E2

0×−E2
×1 − 1) cos2(2θ)

+(E2
0× + E2

×1 + E2
0×E

2
×1 − 2E0×E×1E01) = 0, (3.73)

cos4(2θ) + (E2
10 − E2

1×−E2
×0 − 1) cos2(2θ)

+(E2
1× + E2

×0 + E2
1×E

2
×0 − 2E1×E×0E10) = 0, (3.74)

cos4(2θ) + (E2
11 − E2

1×−E2
×1 − 1) cos2(2θ)

+(E2
1× + E2

×1 + E2
1×E

2
×1 − 2E1×E×1E10) = 0. (3.75)

Each of the four equations will give two solutions of cos2(2θ). To make them com-

patible, we need the coefficients of these four equations to be exactly the same, since
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the coefficients of cos4(2θ) are all 1. This means

(E2
00 − E2

0× − E2
×0 − 1) = (E2

01 − E2
0× − E2

×1 − 1)

=(E2
10 − E2

1× − E2
×0 − 1) = (E2

11 − E2
1× − E2

×1 − 1), (3.76)

or the sum of the first and the last will be equal to that of the middle two’s

E2
00 − E2

0× − E2
×0 + E2

11 − E2
1× − E2

×1

=E2
01 − E2

0× − E2
×1 + E2

10 − E2
1× − E2

×0, (3.77)

which will be simplified to

E2
00 + E2

11 = E2
01 + E2

10. (3.78)

Now, we can substitute back the solution of (α1, β1, δ1, γ1, θ1), which will lead to

sin(2θ1) sin(2α1) sin(γ1 + δ1) cos(γ1 − δ1) = 0, (3.79)

under the case of (3.68). To satisfy this relation, there are three possibilities

α1 = 0, (3.80)

γ1 + δ1 = π, (3.81)

γ1 = δ1 = 0, (3.82)

γ1 − δ1 = ±π/2. (3.83)

For the case of (3.80), the first term and last term in (3.76) will lead to

(1− cos2(2θ1))(cos2(γ1)− cos2(δ1) = 0, (3.84)

which means

γ1 = δ1. (3.85)
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For the case of (3.83), again, the first term and last term in (3.76) will lead to

(
sin2(α1)− cos2(α1) sin2(2θ1)

)
cos(2γ1) = 0, (3.86)

or

(
sin2(α1)− cos2(α1) sin2(2θ1)

)
cos(2δ1) = 0, (3.87)

which gives


tan(α1) = sin(2θ1), (3.88)

γ1 = 3π/4, and δ1 = π/4, (3.89)

δ1 = 3π/4, and γ1 = π/4. (3.90)

After all these cases being found, we still have one more situation that we excluded

from the first beginning, which is when θ = 0 or θ = π/2. In this case, the state of the

system will be the product state |00〉 or |11〉. We will see that the correlation in (3.37)

will actually be independent on A and B. This will lead to the local strategy and

hence only the deterministic points will be non-trivial in the sense that they cannot

be decomposed into any combinations of points in C. These local deterministic points

are also part of the extremal points of the quantum set Q.

Now, we can summarize all the possible values of (α, β, δ, γ, θ) which will give two

solutions with different θs for (3.37).

As shown in the table, we found that in any of the cases that a correlation point

c may have two different solutions for θ ∈ (0, π/2), there will always be one party

of A or B performing the two measurements in the same direction, which obviously

leads to classical correlations. These correlations could always be decomposed as

linear combinations of the local deterministic points. This will suggest that, except

for the 16 local deterministic points, those correlations derived from state |θ〉 and

measurements (3.36) which cannot self-test must not be extremal points, since if they

were, as we have proved above, they only have unique solutions for θ except for the
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α + β = π

α = 0, β = π, γ = δ 6= 0
α = π, β = 0, γ = δ 6= 0

γ + δ = π
γ = δ = 0

γ − δ = ±π/2, tan(α) = ± sin(2θ)
α = β = 0 γ = δ

α− β = ±π/2 γ + δ = π, tan(γ) = ± sin(2θ)

α = β 6= 0
γ = 0, δ = π
γ = π, δ = 0
γ = 0, δ = 0

Table 3.2: List of cases when (3.37) have two solutions with different θs.

non-extremal points in Table 3.2 and it will lead to the self-testing of the state and

contradicts to the results. We can summarize the relation of the points belong to

different categories in Figure 3.8.

Figure 3.8: Different categories of correlations of the form (3.37).

In summary, we manage to show that the set of correlations derived from state |θ〉

and measurements (3.36) which can be self-tested actually includes all the extremal

points of the (2,2,2) scenario, except for the local deterministic points. Moreover,

it also includes some non-extremal points, for instance the flat region we found for

Hardy point in the previous section. To this point, in terms of the boundary of

64



the quantum set for the (2,2,2) scenario, what we could say is that, we have all the

extremal points already. If there still exists any part of the quantum boundary which

is not included in this set we found, they must be flat due to the convexity of the

quantum set. Moreover, since these extra flat regions will connect to the extremal

part at some point, they must can be expressed as linear combinations of the extremal

points we found.
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Chapter 4

Self-testing of multipartite systems

Multipartite system is the system which has more than two parties. Compared to

bipartite system, it is more difficult to characterize them and the way to study them

is also quite different. Multipartite system also has many good properties that make

quantum information processing more efficient and useful in many cases than bi-

partite system, for instance, entanglement distillation [77, 78],quantum error correc-

tion [79, 80, 81], fault-tolerant quantum computation and measurement-based quan-

tum computation [82, 83].

In this chapter, we are going to consider the self-testing in the case of multipartite

system. More specifically, we are going to start with multipartite qubit states, since

it much easier to deal with compared to high dimensional states. Previous study of

multipartite system has already shown the self-testing of a large collection of states

called graph states [53]. In this chapter, we concentrate more on the non-graph state

that could be self-tested.

4.1 Self-testing of 3-qubit W state

4.1.1 The self-testing

Unlike the Greenberger-Horne-Zeilinger (GHZ) state, which belongs to the class of

graph state [84, 85] and has been well studied for the purpose of the self-testing in [53],
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the W state is not in the class and also not studied yet. The n-partite W state take

the following form

|Wn〉 =
1√
n

(|100...0〉+ |010...0〉+ ...+ |000...1〉), (4.1)

which is in a superposition of states which has one party being |1〉 and the rest being

|0〉s. The study of W state becomes interesting since it has the nice property that

even if some parties get lost, the state still remains entangled. In this sense, it is more

robust against losses. Hence, W state has many applications especially in quantum

information processing, for instance superdense coding [86] and information splitting

[87]. Thus, the certification of such state becomes interesting both in the sense of

real application and for the purpose of self-testing itself.

For simplicity, we will first study the case when n = 3, which is the state

|W3〉 =
1√
3

(|100〉+ |010〉+ |001〉). (4.2)

A straight observation of this state is that, once we project any of the party into

state |0〉, the state of the rest two parties becomes a maximally entangled state.

From the knowledge of Chapter 2, we know that the maximally entangled state could

be self-tested. Hence, the above observation lead us to propose the criterion for the

self-testing of |W3〉 state.

Theorem 10. A, B and C are spatially separated. A and B each can perform two

measurements labelled by x, y ∈ {0.1}, C can perform three measurements labelled by

z ∈ {0, 1, 2}. When measuring on an unknown shared quantum state |φ〉, each of them

produces binary outcomes labelled by a, b, c ∈ {0, 1}. The |W3〉 state is self-tested if

the following statistics are observed:

〈φ|ΠA
0|0Π

B
0|0Π

C
1|0 |φ〉 = 〈φ|ΠA

0|0Π
B
1|0Π

C
0|0 |φ〉 = 〈φ|ΠA

1|0Π
B
0|0Π

C
0|0 |φ〉 =

1

3
, (4.3)
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〈φ|ΠA

0|0B0C0 |φ〉 = −〈φ|ΠA
0|0B1C1 |φ〉 = −2

3
,

〈φ|ΠA
0|0B1C0 |φ〉 = 〈φ|ΠA

0|0B0C1 |φ〉 = 0,

〈φ|ΠA
0|0B0C2 |φ〉 = −〈φ|ΠA

0|0B1C2 |φ〉 = −
√

2

3
,

(4.4)


〈φ|ΠB

0|0A0C0 |φ〉 = −〈φ|ΠB
0|0A1C1 |φ〉 = −2

3
,

〈φ|ΠB
0|0A1C0 |φ〉 = 〈φ|ΠB

0|0A0C1 |φ〉 = 0,

〈φ|ΠB
0|0A0C2 |φ〉 = −〈φ|ΠB

0|0A1C2 |φ〉 = −
√

2

3
,

(4.5)

Proof. To begin with the proof, we need to be reminded that all the measurements

in self-testing can be treated as projective measurements since the dimension of the

Hilbert space is not limited. We can always include those dimensions that make

the measurements projective. Moreover, for binary output measurement O which is

projective, it is generally true that

O2 = 1. (4.6)

These are all the preliminary knowledges we need to know before we entering the

proof.

From the observation (4.3), we notice that 〈φ|ΠA
0|0Π

B
0|0Π

C
1|0 |φ〉+〈φ|ΠA

0|0Π
B
1|0Π

C
0|0 |φ〉+

〈φ|ΠA
1|0Π

B
0|0Π

C
0|0 |φ〉 = 1. This hints us that except for the probabilities of the three

output combinations above, all the rest are zero

〈φ|ΠA
a|xΠ

B
b|yΠ

C
c|z |φ〉 = 0, a+ b+ c 6= 1, (4.7)

which is also to say

‖ΠA
a|xΠ

B
b|yΠ

C
c|z |φ〉 ‖

=
√
〈φ|ΠC

c|zΠ
B
b|yΠ

A
a|xΠ

A
a|xΠ

B
b|yΠ

C
c|z |φ〉 = 0, a+ b+ c 6= 0. (4.8)
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It is not a bad idea to carry out the following calculation

‖ΠA
0|0By |φ〉 ‖ =

√
〈φ|B†yΠA

0|0Π
A
0|0By |φ〉 =

√
〈φ|ΠA

0|0 |φ〉

=
√
〈φ|ΠA

0|0Π
B
1|0Π

C
0|0 |φ〉+ 〈φ|ΠA

0|0Π
B
0|0Π

C
1|0 |φ〉

=

√
2

3
. (4.9)

For the same reason, we have

‖ΠA
0|0Cz |φ〉 ‖ = ‖ΠB

0|0Ax |φ〉 ‖ = ‖ΠB
0|0Cz |φ〉 ‖ =

√
2

3
. (4.10)

From the observation (4.4), we notice that

〈φ|ΠA
0|0B0C0 |φ〉 = ‖ΠA

0|0B0 |φ〉 ‖ · ‖ΠA
0|0C0 |φ〉 ‖ · cos(θ)

=

√
2

3
·
√

2

3
· cos(θ) = −2

3
, (4.11)

which means the angle between the vectors ΠA
0|0B0 |φ〉 and ΠA

0|0C0 |φ〉 is

∠(ΠA
0|0B0 |φ〉 ,ΠA

0|0C0 |φ〉) = π. (4.12)

Following similar procedure, we could derive the angles for the other vectors

∠(ΠA
0|0B1 |φ〉 ,ΠA

0|0C0 |φ〉) =
π

2
, (4.13)

∠(ΠA
0|0B1 |φ〉 ,ΠA

0|0C1 |φ〉) = 0, (4.14)

∠(ΠA
0|0B0 |φ〉 ,ΠA

0|0C2 |φ〉) =
3π

4
, (4.15)

∠(ΠA
0|0B1 |φ〉 ,ΠA

0|0C2 |φ〉) =
π

4
. (4.16)

With these information, the only possible configuration that these four vectors can

be put in the vector space is that they are all in the same plane as in Figure 4.1
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Figure 4.1: Configuration of vectors in the space for 3-qubit W state.

This implies that

ΠA
0|0C2 |φ〉 =

ΠA
0|0B1 |φ〉 − ΠA

0|0B0 |φ〉√
2

. (4.17)

We could also apply ΠA
0|0C2 on both sides of the above equation and get

ΠA
0|0Π

A
0|0C2C2 |φ〉

=ΠA
0|0 |φ〉 = ΠA

0|0C2

ΠA
0|0B1 |φ〉 − ΠA

0|0B0 |φ〉√
2

=
B1 −B0√

2
ΠA

0|0C2 |φ〉 =
B1 −B0√

2

ΠA
0|0B1 |φ〉 − ΠA

0|0B0 |φ〉√
2

=ΠA
0|0
(B1 −B0√

2

)2 |φ〉 = ΠA
0|0

(B2
0 +B2

1 − {B0, B1})
2

|φ〉

=ΠA
0|0

(21− {B0, B1})
2

|φ〉 = ΠA
0|0 |φ〉 − ΠA

0|0
{B0, B1}

2
|φ〉 . (4.18)

This will lead to

ΠA
0|0{B0, B1} |φ〉 = 0, (4.19)

which is the anti-commutativity of B0 and B1 acting on the system |φ〉 subjective to

the projector ΠA
0|0. For the same reason, we can also derive

ΠB
0|0{A0, A1} |φ〉 = 0. (4.20)
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From (4.12) and (4.14), we can see that

ΠA
0|0B0 |φ〉 = −ΠA

0|0C0 |φ〉 ,

ΠA
0|0B1 |φ〉 = ΠA

0|0C1 |φ〉 .

Thus,

ΠA
0|0C0Π

A
0|0C1 |φ〉 = ΠA

0|0C0Π
A
0|0B1 |φ〉 = ΠA

0|0B1Π
A
0|0C0 |φ〉

= −ΠA
0|0B1Π

A
0|0B0 |φ〉 = ΠA

0|0B0Π
A
0|0B1 |φ〉

= ΠA
0|0B0Π

A
0|0C1 |φ〉 = ΠA

0|0C1Π
A
0|0B0 |φ〉

= −ΠA
0|0C1Π

A
0|0C0 |φ〉 (4.21)

This suggests that C0 and C1 also have the anti-commutativity when acting on |φ〉

subject to the projector ΠA
0|0.

With similar argument, we can also derive

ΠB
0|0{A0, A1} |φ〉 = 0, (4.22)

ΠB
0|0{C0, C1} |φ〉 = 0, (4.23)

Now we could start to define our local isometry. To define the isometry, we need

the control operator. However, before we define the isometry, it is not bad to try to

estimate the output of an isometry in the tripartite case. The local operation at each

party is the same as that in Figure 2.1. Then for an arbitrary state |φ〉,

Ψ(|φ〉ABC ⊗ |000〉A′B′C′)

=ΠA
0 ΠB

0 ΠC
0 |φ〉 |000〉+ ΠA

0 ΠB
0 XCΠC

1 |φ〉 |001〉

+ΠA
0XBΠB

1 ΠC
0 |φ〉 |010〉+ ΠA

0XBΠB
1 XCΠC

1 |φ〉 |011〉

+XAΠA
1 ΠB

0 ΠC
0 |φ〉 |100〉+XAΠA

1 ΠB
0 XCΠC

1 |φ〉 |101〉

+XAΠA
1XBΠB

1 ΠC
0 |φ〉 |110〉+XAΠA

1XBΠB
1 XCΠC

1 |φ〉 |111〉 , (4.24)
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where Π
A/B/C
a/b/c is the projector of ZA/B/C . This is the general output of any given

isometry.

We propose the following definition for the control operators

ZA = A0, XA = A1,

ZB = B0, XB = B1,

ZC = C0, XC = C1. (4.25)

With such definition, one could check that the isometry (4.24) preserves the inner

product of any input states,

Ψ†(|φ′〉 ⊗ |000〉)Ψ(|φ〉 ⊗ |000〉) = 〈φ′|φ〉 , (4.26)

this is also due to the fact all the control operators defined are unitary.

With the property (4.8), we know that in the sum of the above output of the

isometry, only three of the terms will remain, which gives

Ψ(|φ〉ABC ⊗ |000〉A′B′C′)

=ΠA
0|0Π

B
0|0XCΠC

1|0 |φ〉 |001〉+ ΠA
0|0XBΠB

1|0Π
C
0|0 |φ〉 |010〉+XAΠA

1|0Π
B
0|0Π

C
0|0 |φ〉 |100〉 .

(4.27)

In addition, for any party, for instance A,

XAΠA
1 |φ〉 = XA

1− ZA
2

|φ〉 =
1+ ZA

2
XA |φ〉 = ΠA

0XA |φ〉 . (4.28)

Thus, for the system satisfying the statistics in Theorem 10,

Ψ(|φ〉ABC ⊗ |000〉A′B′C′)

=ΠA
0|0Π

B
0|0XCΠC

1|0 |φ〉 |001〉+ ΠA
0|0XBΠB

1|0Π
C
0|0 |φ〉 |010〉+XAΠA

1|0Π
B
0|0Π

C
0|0 |φ〉 |100〉

=ΠA
0|0Π

B
0|0Π

C
0|0XC |φ〉 |001〉+ ΠA

0|0Π
B
0|0Π

C
0|0XB |φ〉 |010〉+ ΠA

0|0Π
B
0|0Π

C
0|0XA |φ〉 |100〉
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=
√

3ΠA
0|0Π

B
0|0Π

C
0|0XB |φ〉

|001〉+ |010〉+ |100〉√
3

.

= |junk〉ABC |W3〉A′B′C′ . (4.29)

which successfully extracts a |W3〉 state out of the system that is compatible with the

criterion.

4.1.2 Robustness

Now we are going to discuss the robustness of the self-testing of the |W3〉 state. As we

have defined before, the study of the robustness is to estimate how close the system is

to the ideal |W3〉 state if the experimental data is not perfectly matching the criterion

showing in Theorem 10. That is to say, if

| 〈φ|ΠA
a|xΠ

B
b|yΠ

C
c|z |φ〉 − p̃(abc|xyz)| ≤ ε, (4.30)

where p̃(abc|xyz) is the statistics given in Theorem 10 for the ideal case, how close is

the output state of the isometry compared to the output in the ideal case? In another

way to say, we hope to see what is the fidelity of the ancillary qubits with that of the

ideal case,

F = F (ε) = ‖ 〈ϕ̃|ϕ〉 ‖2, (4.31)

where |ϕ̃〉 and |ϕ〉 correspond to the output state of the ancillary qubits in the ideal

case and nonideal case.

We could in principle follow the procedure as that of section 2.2 to have an an-

alytical expression of F (ε). However, we will simply give the analytical bound here

without discussion in detail,

F ≥ 1− 12.35ε
1
2 − 2944.2ε− 185.25ε

5
4 . (4.32)

For detailed proof, please refer to Appendix A and [55].
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On the contrary, we will use the SDP method to get a robustness bound directly,

both because of it simplicity and better performance.

For the isometry, it is obvious that a proper one will be (4.24) with control oper-

ators (4.25). Thus, the formalism of SDP will be

min F (S)

such that | 〈φ|ΠA
a|xΠ

B
b|yΠ

C
c|z |φ〉 − p̃(abc|xyz)| ≤ ε,

Γ(S) ≥ 0.

(4.33)

We choose the sequence S to be the S2 removed some of the terms, which is

S = {1, Ax, By, Cz, AxByCz, AxBy, AxCz, ByCz, AxAx′ , ByBy′ , CzCz′ ,

AxAx′ByBy′ , ByBy′CzCz′ , AxAx′CzCz′ , AxAx′ByBy′CzCz′}. (4.34)

With all these components ready, we get the robustness bound as the following,

Figure 4.2: Robustness bound as a function of ε for 3-qubit W state. As a comparison,
we put a red cross on the x axis, where ε = 0.000265, that gives zero fidelity with
result from analytical method.

For comparison, we put a red cross on the x axis, where ε = 0.000265, that gives
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zero fidelity with result from analytical method (4.32). As the plot showing, the

bound from the SDP is much better than the one from the analytical method.

4.2 Self-testing of N-qubit W state

Since we have shown in the previous section that the self-testing of 3-qubit W state

can be achieved, we now ask the question that whether this result could be generalized

to N-qubit W state. The answer turns out to be yes, and we will state the result

below.

Theorem 11. Suppose there are N parties, A1, A2,..., An−1 and An. A1, A2,...,

An−1 each can perform two measurements labelled by x1, x2, ..., xn−1 ∈ {0.1}, An

can perform three measurements labelled by xn ∈ {0, 1, 2}. After measuring on an

unknown shared quantum state |φ〉, each of them produces binary outcomes labelled

by a1, a2, ..., an ∈ {0, 1}. The |Wn〉 state is self-tested if the following statistics are

observed:

〈φ|Πk
1|0

∏
i 6=k

Πi
0|0 |φ〉 =

1

n
, k = 1, 2, ..., n, (4.35)


〈φ|Aj0An0

∏
i 6=j,n Πi

0|0 |φ〉 = −〈φ|Aj1An1
∏

i 6=j,n Πi
0|0 |φ〉 = − 2

n
,

〈φ|Aj1An0
∏

i 6=j,n Πi
0|0 |φ〉 = 〈φ|Aj0An1

∏
i 6=j,n Πi

0|0 |φ〉 = 0,

〈φ|Aj0An2
∏

i 6=j,n Πi
0|0 |φ〉 = −〈φ|Aj1An2

∏
i 6=j,n Πi

0|0 |φ〉 = −
√

2

n
,

(4.36)

j = 1, 2, ..., n− 1, (4.37)

where the superscripts represent the indexes of the parties and Axi is the measurement

operator associated to each party.

Proof. Due to the similarity to the 3-qubit W state self-testing, the proof of the N -
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qubit W state self-testing is actually quite similar to the proof of the 3-qubit case.

Since the key point of proving a self-testing is to define proper control operators at

each party that anti-commute to each other, we will derive such a pair of operators

for each party and skip the rest of the proof. One could simply complete the proof

with the isometry for N parties once having the anti-commutative operators.

From the statistics (4.35), we know that 〈φ|
∏n

i=1 Πi
ai|xi |φ〉 = 0 if

∑
i ai 6= 1. It is

also a good idea to carry out the following estimation

‖Ajxj
∏
i 6=j,n

Πi
0|0 |φ〉 ‖ =

√
‖ 〈φ|

∏
i 6=j,n

Πi
0|0(A

j
xj)†A

j
xj

∏
i 6=j,n

Πi
0|0 |φ〉 ‖

=

√
‖ 〈φ|

∏
i 6=j,n

Πi
0|0 |φ〉 ‖ =

√
2

n
. (4.38)

With the observation (4.36), we will carry out similar estimation as (4.12).

− 2

n
= 〈φ|

∏
i 6=j,n

Πi
0|0A

j
0A

n
0

∏
i 6=j,n

Πi
0|0 |φ〉

= ‖Aj0
∏
i 6=j,n

Πi
0|0 |φ〉 ‖ · ‖An0

∏
i 6=j,n

Πi
0|0 |φ〉 ‖ · cos(θ)

=

√
2

n
·
√

2

n
cos(θ), (4.39)

where θ = ∠(Aj0
∏

i 6=j,n Πi
0|0 |φ〉 , An0

∏
i 6=j,n Πi

0|0 |φ〉) and ∠(, ) represents the angle be-

tween the two vectors in the parentheses. This shows that

∠(Aj0
∏
i 6=j,n

Πi
0|0 |φ〉 , An0

∏
i 6=j,n

Πi
0|0 |φ〉) = π. (4.40)
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With similar calculation, we get

∠(Aj1
∏
i 6=j,n

Πi
0|0 |φ〉 , An1

∏
i 6=j,n

Πi
0|0 |φ〉) = 0, (4.41)

∠(Aj1
∏
i 6=j,n

Πi
0|0 |φ〉 , An0

∏
i 6=j,n

Πi
0|0 |φ〉) =

π

2
, (4.42)

∠(Aj0
∏
i 6=j,n

Πi
0|0 |φ〉 , An1

∏
i 6=j,n

Πi
0|0 |φ〉) =

π

2
, (4.43)

∠(Aj0
∏
i 6=j,n

Πi
0|0 |φ〉 , An2

∏
i 6=j,n

Πi
0|0 |φ〉) =

3π

4
, (4.44)

∠(Aj1
∏
i 6=j,n

Πi
0|0 |φ〉 , An2

∏
i 6=j,n

Πi
0|0 |φ〉) =

π

4
. (4.45)

With such relation of these vectors, the only case that could happen is as the following,

as all the vectors are in the same plane.

Figure 4.3: Configuration of vectors in the space for N-qubit W state.

This means

An2
∏
i 6=j,n

Πi
0|0 |φ〉 =

Aj1
∏

i 6=j,n Πi
0|0 |φ〉 − A

j
0

∏
i 6=j,n Πi

0|0 |φ〉√
2

=
An0
∏

i 6=j,n Πi
0|0 |φ〉+ An1

∏
i 6=j,n Πi

0|0 |φ〉√
2

. (4.46)
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Applying An2
∏

i 6=j,n Πi
0|0 on both side of the equation, we get

An2A
n
2

∏
i 6=j,n

Πi
0|0

∏
i 6=j,n

Πi
0|0 |φ〉 = An2

∏
i 6=j,n

Πi
0|0
Aj1
∏

i 6=j,n Πi
0|0 − A

j
0

∏
i 6=j,n Πi

0|0√
2

|φ〉

=
Aj1
∏

i 6=j,n Πi
0|0 − A

j
0

∏
i 6=j,n Πi

0|0√
2

An2
∏
i 6=j,n

Πi
0|0 |φ〉

=

(
Aj1
∏

i 6=j,n Πi
0|0 − A

j
0

∏
i 6=j,n Πi

0|0√
2

)2

|φ〉

=

(
(Aj1)

2
∏

i 6=j,n Πi
0|0 + (Aj0)

2
∏

i 6=j,n Πi
0|0

2
− 1

2
{Aj0, A

j
1}
∏
i 6=j,n

Πi
0|0

)
|φ〉 ,

=
∏
i 6=j,n

Πi
0|0 |φ〉 −

1

2
{Aj0, A

j
1}
∏
i 6=j,n

Πi
0|0 |φ〉 , (4.47)

which simply means

{Aj0, A
j
1}
∏
i 6=j,n

Πi
0|0 |φ〉 = 0. (4.48)

This shows the anti-commutativity ofAj0 andAj1 subjective to the projection
∏

i 6=j,n Πi
0|0.

With similar argument, we could also prove

{An0 , An1}
∏
i 6=j,n

Πi
0|0 |φ〉 = 0. (4.49)

These are all the essentials we need to complete the rest of the proof.

4.3 Self-testing of 3-qubit states in general

In the previous two sections, we show that W state can be self-tested. It is easy to

generalize the 3-qubit W state self-testing to N -qubit since there exists some certain
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simplicity in the form of the state itself. In this section, we seek the possibility of

self-testing states that may not be as simple as a W state.

We try to get inspirations from the way we did in the W state self-testing. By

scrutinizing the criteria in the W state self-testing, we notice that, the idea behind

them is to first project the state into a state that has entanglement in two parties,

then, one could apply the bipartite self-testing to these two parties. Hence, the key

point is that the state should have a structure which would allow us to follow the

similar procedure as we had in the W state self-testing.

Fortunately, a result of the study on generalized Schmidt decomposition of 3-qubit

state [88] sheds light on our problem. For a 3-qubit state, up to local unitaries, it can

be generally written as

|φ〉ABC = λ0 |000〉+ λ1e
iθ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉 . (4.50)

Depending on the values of λis and θ, the state will be in different classes. Among

those, there are the class of product states, biseparable states and generalized (ex-

tended) GHZ states. It is easy to see that the method which arises from the W state

self-testing will not work on these state. We will then skip the study of these classes

and only concentrate on the rest of the states. Since it is still not clear whether the

phase could be self-tested or not in the 3-qubit case, to simplify, we will only consider

the case where θ = 0. Specifically, we will study the cases which{
λ0 6= 0, the number of (λi = 0) = 1, i = 1, 2, 3, 4, (4.51)

λ0λ2λ3 6= 0, λ1 = λ4 = 0. (4.52)

We can rewrite the state as

|φ〉 = λ0 |000〉ABC + |1〉A (λ1 |00〉+ λ2 |01〉+ λ3 |10〉+ λ4 |11〉)BC. (4.53)

For the λis satisfying (4.51) or (4.52), there exists a Schmidt decomposition for the
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state inside the parentheses,

|φ〉 = λ0 |000〉+
√

1− λ20 |1〉A
(

cosαA |0′B0′C〉+ sinαA |1′B1′C〉
)
, (4.54)

where as λ20 + λ21 + λ22 + λ23 + λ24 = 1 and |0′B/C〉, |1′B/C〉 are the bases of A and B after

the Schmidt decomposition.

On the other hand, if we rewrite the state to single out the party B or C

|φ〉 = |0〉B
(
λ0 |00〉+ λ1 |10〉+ λ2 |11〉

)
AC + |1〉B

(
λ3 |10〉+ λ4 |11〉

)
AC, (4.55)

|φ〉 = |0〉C
(
λ0 |00〉+ λ1 |10〉+ λ3 |11〉

)
AB + |1〉C

(
λ2 |10〉+ λ4 |11〉

)
AB. (4.56)

Depending on whether λ1 = 0, λ2 = 0 or λ3 = 0, one can choose to single out B or

C. Let us say λ3 = 0, then we will choose the partition (4.55). Obviously, the state

in the first parentheses will have a Schmidt decomposition,

|φ〉 = |0〉B
(
λ0 |00〉+ λ1 |10〉+ λ2 |11〉

)
AC + λ4 |1〉B |11〉AC

=
√

1− λ24 |0〉B
(

cosαB |0′A0′′C〉+ sinαB |1′A1′′C〉
)
AC + λ4 |1〉B |11〉AC , (4.57)

where |0′A〉, |1′A〉, |0′′C〉 and |1′′C〉 are the bases of A and C after the Schmidt decompo-

sition.

With the partition (4.54) and (4.57), we could come up with the criterion for the

self-testing of the state. First, we can project the state of A into |1〉 and perform a

self-testing of the partially entangled state |αA〉 in a rotated basis. Then, we project

the state of B or C into |0〉 depending on whether λ1 = 0, λ2 = 0 or λ3 = 0, and

perform a self-testing of the partially entangled state |αB/C〉 in a rotated basis. We

are supposed to get the self-testing of the state after these two steps, however, it still

need to be verified.

One thing which should be discussed here is that, for a self-testing of a partially

entangled state, the measurement setting is not arbitrary. Hence, the measurements
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we choose on A, B and C should satisfy the constraints set by the self-testing of

partially entangled state simultaneously with different partitions. It is quite subtle to

state the exact relation of the measurement settings and the parameters λis, therefore,

we will give an example state and show the process to find the proper measurement

settings.

Let us take the following state as an example

|φ〉ABC =
1

2
√

77

(
9 |000〉+ 5 |100〉+ 9 |101〉+ 11 |111〉

)
ABC. (4.58)

where we set λ3 = 0. With such a state, the partitions (4.53) and (4.55) will become

|φ〉 =
9

2
√

77
|000〉ABC +

1

2

√
227

77
|1〉A

( 5√
227
|00〉+

9√
227
|01〉+

11√
227
|11〉

)
BC,

(4.59)

|φ〉 =
1

2

√
17

7
|0〉B

( 9√
187
|00〉+

5√
187
|10〉+

9√
187
|11〉

)
AC +

11

2
√

77
|1〉B |11〉AC .

(4.60)

Now we can perform the Schmidt decompositions inside the parentheses of these two

partitions. For the partition which singles out A,

|φ〉 =
9

2
√

77
|000〉ABC +

1

2

√
227

77
|1〉A

(
cosαA |0′B0′C〉+ sinαA |1′B1′C〉

)
BC, (4.61)

where αA = 14.492528461873206◦, and

|i′B〉 = UB |i〉B , (4.62)

|i′C〉 = VC |i〉C , (4.63)

UB =

−0.679874579341885 −0.733328409626066

−0.733328409626066 0.679874579341885

 , (4.64)

VC =

−0.233039556506182 −0.972467256571347

−0.972467256571347 0.233039556506182

 . (4.65)

82



For the partition which singles out B,

|φ〉 =
1

2

√
17

7
|0〉B

(
cosαB |0′A0′′C〉+ sinαB |1′A1′′C〉

)
AC +

11

2
√

77
|1〉B |11〉AC , (4.66)

where αB = 30.016323409628981◦, and

|i′A〉 = U ′A |i〉A , (4.67)

|i′′C〉 = V ′C |i〉C , (4.68)

U ′A =

 0.605126489344957 0.796129343695512

−0.796129343695512 0.605126489344957

 , (4.69)

V ′C =

 0.796129343695512 0.605126489344957

−0.605126489344957 0.796129343695512

 . (4.70)

Hence, the proper measurement settings will be able to self-test this two partially en-

tangled state after this two sets of transformations. A possible measurement settings

will be the following

A0 = σz, A1 = σx,

B0 = σz, B1 = σx,

C0 = σz, C1 = σx,

C2 =
−σz + σx√

2
. (4.71)

With these measurements and the state (4.58), we could have the ideal strategy that

leads to the criterion of our self-testing.

To exam the feasibility of the criterion, we will use the SDP to verify if it really

can self-test the state (4.58). Inspired from the ideal strategy above, we will define
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our control operators as the following

ZA = A0, XA = A1,

ZB = B0, XB = B1,

ZC = C0, XC = C1.

With all these components ready, we could write down the formalism of the SDP

min F (S)

such that 〈φ|ΠA
a|xΠ

B
b|yΠ

C
c|z |φ〉 = p̃(abc|xyz),

Γ(S) ≥ 0,

(4.72)

where p̃ is the probability distribution from the ideal strategy. We put the sign of

the probability to be equal since we only want to know whether it self-tests the state

(4.58) or not rather than the robustness.

For the state (4.58) considered here, with a SDP matrix of dimension 57, we

manage to get

Fmin = 0.999999610643920. (4.73)

Thus, it is fair enough to trust the correctness of the criterion proposed above.

The reason that we still have three measurements for C is, it may happen that

the measurements of C could self-test the partially entangled 2-qubit state with the

measurements of B under partition (4.61), but cannot self-test with the measurements

of A under partition (4.66), since they undergo different rotations according to the

Schmidt decomposition. Hence, even though the third measurement on C may be

redundant in some cases, we still keep it to guarantee the success of the self-testing.

It turns out that the self-testing of the partially entangled state under partition (4.61)

can only be achieved with at least C2 included. In general, as long as the 3-qubit

state could be written in two different partitions with valid Schmidt decompositions

like (4.54) and (4.57), one could add more measurement settings on any of the parties
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to ensure the success of the self-testing of the bipartite partially entangled state. This

will allow us to self-test all the states in the categories (4.51) and (4.52). However,

it is still not clear whether the 3-qubit state with non-trivial phase involved is self-

testable or not in general. We are also looking forward to future studies to cover this

topic.

To summarize, we have studied a more general case of 3-qubit state self-testing.

Besides the trivial states, for instance the product states and biseparable states, and

the states that belong to the graph state class, with the procedure described above,

we are able to self-test the states that have genuine tripartite entanglement (with

real coefficients). Although it could still be possible to study the behaviour of the

quantum set in the tripartite case, we will skip that since the amount of computation

required is much more than that of the bipartite case. Besides the methods we

presented to self-test multipartite states, we are also looking forward to self-testing

by inequalities, since there are actually inequalities associated to multipartite states

studied before [89, 90, 91, 92, 93].
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Chapter 5

Parallel self-testing of

entanglement resource

In the previous chapters, our main focus is on one copy of some specific state. How-

ever, the certification of multiple copies of state becomes more and more popular

recently. As in the work of [45, 94], the proposed model for quantum computing

requires multiple pairs of certified singlet states. This intrigues us to study the self-

testing of multiple copies of quantum states.

In general, there could be two ways to certify multiple copies of state. In terms of

non-local game, it could be played either sequentially or parallelly. In the bipartite

case, a sequential test means that the two parties receive the measurement settings for

each copy of state sequentially and reveal the results immediately after the measure-

ments are done. However, in the parallel case, the measurement settings for all the

copies on each party arrive at the same time, and both of the parties will reveal the

results of the measurements of all the copies at the same time. With these definition,

it could be seen that a parallel test in fact has less restrictions on how the game is

played. The two players at each party could even use the history of the results of the

measurements on previous copies to mimic the behaviour of them. On the contrary,

a sequential test will be much more restricted, since in each run, the players need

to reveal the result of each copy and there is not to much freedom to play around

compared to a parallel one. In this sense, a sequential test could also be considered
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as independent test of each copy. For the difference of these two games, one could

refer to [95] for more details.

We are more interested in the parallel test of the state because it has less re-

quirements of how the test is run. In fact, parallel repetitions have also been widely

studied before [96, 97, 98, 99]. In this chapter, we will talk about how we could

self-test multiple copies of singlet states in parallel and derive a robustness bounds

that is reasonable for current experiments.

(a) Scheme of sequential CHSH test.

(b) Scheme of parallel CHSH test.

Figure 5.1: A sketch shows the difference between the sequential test of CHSH and
parallel test of CHSH.
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5.1 Parallel self-testing of two singlet states using

CHSH

It is know that the violation of the CHSH inequality will self-test the singlet state

|Φ+〉. The idea that comes straight forward after this fact is, can we self-test multiple

pairs of singlet states in a similar manner. To put it another way, if the statistics

arising from a parallel test lead to maximal violation of the CHSH inequality for each

of the copies, can we say that the system is self-tested into multiple pairs of singlet

states? This is different to independent test of each copy of the state since, as we have

said before, in a parallel scenario the results of the measurements on some copies of

the states may affect the behavior of the others.

5.1.1 Self-testing in the ideal case

For simplicity, we will study the case for two copies here first. To make it clean, the

question that we are trying to answer is, given the statistics of a bipartite non-local

game

p(a1a2b1b2|x1x2y1y2), (5.1)

where a1, a2, x1, x2 ∈ {0, 1} are the outputs and inputs of the first and second sub-

systems of A and similar for B, if p leads to the maximal violation of the CHSH

inequality on each of the subsystems 1 and 2,

BCHSH(p(a1b1|x1y1)) = 2
√

2, (5.2)

BCHSH(p(a2b2|x2y2)) = 2
√

2, (5.3)

can we claim that the subsystems 1 and 2 are self-tested into two singlet states

simultaneously?

Unfortunately, the answer to this question is no. The reason for this is simple, one

may notice that, to violate the CHSH inequality, for instance (5.2), the probability
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p(a1b1|x1y1) actually takes four different values depending on which one it is chosen

from p(a1b1|x1x2y1y2). If one of the p(a1b1|x1x2y1y2) is chosen, then the other three

will be free to change but still violates the CHSH inequalities maximally, which will

not be compatible with the statistics of that from the two singlets case. Thus, to

promise the system really behaves the same way as two singlets measured by corre-

sponding measurements, we need to require all the probabilities to be the same as

that from the two singlet ones. With this adjustment, we have the main results as

below

Theorem 12. A and B both choose one four-outcome measurements out of four and

we denote their choices as x ∈ {0, 1, 2, 3} and y ∈ {0, 1, 2, 3}, where x and y are the

decimal representations of x1x2 and y1y2. The outputs of A and B will be denoted

by a ∈ {0, 1, 2, 3} and b ∈ {0, 1, 2, 3}, where a and b are the decimal representations

of a1a2 and b1b2. The observed statistics p(ab|xy) will self-test two copies of singlet

states if it is given by

p(ab|xy) = Tr[|Φ+Φ+〉 〈Φ+Φ+|A∗xBy], (5.4)

where

A∗0 = σz ⊗ σz, A∗1 = σz ⊗ σx,

A∗3 = σx ⊗ σz, A∗4 = σx ⊗ σx,

B∗0 =
σz − σx√

2
⊗ σz − σx√

2
, B∗1 =

σz − σx√
2
⊗ σz + σx√

2
,

B∗2 =
σz + σx√

2
⊗ σz − σx√

2
, B∗3 =

σz + σx√
2
⊗ σz + σx√

2
. (5.5)

Before continuing, there is actually a simplification that could make the problem

look cleaner. For the ideal strategy (5.4) with (5.5), we could apply a rotation Ry(
π
4
)

to each of the subsystems on party B, the state and measurement settings will now
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become

|ϕ̃〉 =

(
cos(

π

8
)
|00〉+ |11〉√

2
+ sin(

π

8
)
|01〉 − |10〉√

2

)
, (5.6)

and

A0 = σz ⊗ σz, A1 = σz ⊗ σx,

A3 = σx ⊗ σz, A4 = σx ⊗ σx,

B0 = σz ⊗ σz, B1 = σz ⊗ σx,

B3 = σx ⊗ σz, B4 = σx ⊗ σx.

(5.7)

In the following proof, we will simply use the above settings.

Proof. To prove the self-testing of the state (5.6), basically we need to derive four

pairs of anti-commutative operators on each of the supposed qubit subsystems. With

these operators, we can then define a valid isometry that can turn the state of the

system into the ideal state (5.6). Now suppose Πa|x and Πb|y are the projectors for

the measurement operators on A and B. Inspired from the ideal strategy, we could

define the operators below which are supposed to be the σz and σx operations on the

four subsystems:

ZA1 := ΠA
0|0 + ΠA

1|0 − ΠA
2|0 − ΠA

3|0 (5.8)

ZA2 := ΠA
0|0 − ΠA

1|0 + ΠA
2|0 − ΠA

3|0 (5.9)

XA1 := ΠA
0|3 + ΠA

1|3 − ΠA
2|3 − ΠA

3|3 (5.10)

XA2 := ΠA
0|3 − ΠA

1|3 + ΠA
2|3 − ΠA

3|3 (5.11)
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Z ′A1
:= ΠA

0|2 + ΠA
1|2 − ΠA

2|2 − ΠA
3|2 (5.12)

Z ′A2
:= ΠA

0|1 − ΠA
1|1 + ΠA

2|1 − ΠA
3|1 (5.13)

X ′A1
:= ΠA

0|1 + ΠA
1|1 − ΠA

2|1 − ΠA
3|1 (5.14)

X ′A2
:= ΠA

0|2 − ΠA
1|2 + ΠA

2|2 − ΠA
3|2 (5.15)

2ZB1 := ΠB
0|0 + ΠB

1|0 − ΠB
2|0 − ΠB

3|0

+ΠB
0|2 + ΠB

1|2 − ΠB
2|2 − ΠB

3|2 (5.16)

2ZB2 := ΠB
0|0 − ΠB

1|0 + ΠB
2|0 − ΠB

3|0

+ΠB
0|1 − ΠB

1|1 + ΠB
2|1 − ΠB

3|1 (5.17)

2XB1 := ΠB
0|3 + ΠB

1|3 − ΠB
2|3 − ΠB

3|3

+ΠB
0|1 + ΠB

1|1 − ΠB
2|1 − ΠB

3|1 (5.18)

2XB2 := ΠB
0|3 − ΠB

1|3 + ΠB
2|3 − ΠB

3|3

ΠB
0|2 − ΠB

1|2 + ΠB
2|2 − ΠB

3|2 (5.19)

The subscripts A1/2 and B1/2 denote the first and second sub-qubits that are

supposed to be in the state for A and B. From the ideal strategy (5.7), we see that

actually one can have different expressions for the σz and σx on any of the qubit

subsystems. This is why we have Z and Z ′ in the above definition. For B, Z and X

could be considered as the average effects of two different possible definitions of σz

and σx.

By construction,

[ZA1 , ZA2 ] = 0, [XA1 , XA2 ] = 0,

[Z ′A1
, X ′A2

] = 0, [X ′A1
, Z ′A2

] = 0.

(5.20)

Also, from the definitions of V , and W , we could see that the eigenvalues are bounded
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between -1 and 1 since their norms are all equal or less than 1.

Imagining the correlations of the real experiment achieve the maximal violation

of CHSH on each pair of the subsystems that are supposed to be singlets, which are,

1

2
〈φ|
[(
ZA1 + Z ′A1

)
(ZB1 +XB1) +

(
XA1 +X ′A1

)
(ZB1 −XB1)

]
|φ〉 = 2

√
2

(5.21)

1

2
〈φ|
[(
ZA2 + Z ′A2

)
(ZB2 +XB2) +

(
XA2 +X ′A2

)
(ZB2 −XB2)

]
|φ〉 = 2

√
2.

(5.22)

These can be decomposed into four separate inequalities:

〈φ| [ZA1 (ZB1 +XB1) +XA1 (ZB1 −XB1)] |φ〉 ≤ 2
√

2 (5.23)

〈φ|
[
Z ′A1

(ZB1 +XB1) +X ′A1
(ZB1 −XB1)

]
|φ〉 ≤ 2

√
2 (5.24)

〈φ| [ZA2 (ZB2 +XB2) +XA2 (ZB2 −XB2)] |φ〉 ≤ 2
√

2 (5.25)

〈φ|
[
Z ′A2

(ZB2 +XB2) +X ′A2
(ZB2 −XB2)

]
|φ〉 ≤ 2

√
2 (5.26)

In order to see (5.21) and (5.22) hold, the above inequalities must take the equal sign.

Having these equalities, we could now apply the Theorem 4 in Chapter 3 to all of

them, and it will allow us to prove the anti-commutativity of the following pairs of

operators,

{ZA1 , XA1} = 0, {Z ′A1
, X ′A1

} = 0,

{ZA2 , XA2} = 0, {Z ′A2
, X ′A2

} = 0,

{VB1 ,WB1} = 0, {VB2 ,WB2} = 0,

(5.27)
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where

VB1 =
ZB1 +XB1
|ZB1 +XB1 |

, WB1 =
ZB1 −XB1
|ZB1 −XB1|

, (5.28)

VB2 =
ZB2 +XB2
|ZB2 +XB2 |

, WB2 =
ZB2 −XB2
|ZB2 −XB2|

, (5.29)

and |ZB1 ±XB1 | = |ZB2 ±XB2| =
√

2. Due to the anti-commutativity of V and W , it

will also follow that the anti-commutativity of Z and X on B,

{ZB1 , XB1} = 0, {ZB2 , XB2} = 0.

(5.30)

In addition, we would get the following relations,

ZA1 |φ〉 = WB1 |φ〉 = Z ′A1
|φ〉 , (5.31)

XA1 |φ〉 = VB1 |φ〉 = X ′A1
|φ〉 , (5.32)

ZA2 |φ〉 = WB2 |φ〉 = Z ′A2
|φ〉 , (5.33)

XA2 |φ〉 = VB2 |φ〉 = X ′A2
|φ〉 . (5.34)

Similar to (5.20), we could also derive that,

[XB1 , XB2 ] = 0, [ZB1 , ZB2 ] = 0,

[ZB1 , ZB2 ] = 0, [XB1 , XB2 ] = 0.

(5.35)

With all these properties derived above, the isometry in Figure 5.2 will successfully

map the state of the system |φ〉 into the target state (5.6).
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Figure 5.2: Local isometry that extracts the target state from the system into the
ancillary qubits. H is the qubit Hadamard gate.

5.1.2 Self-testing with SDP and the robustness bound

Instead of going through the tedious analytical proof of the self-testing, a more simple

method would be using the NPA hierarchy and SDP program to test the criterion

directly.

Generally speaking, a local operation for two qubits that extract the information

out of the system, for example on A, could always be expressed as the following

SAA′ |00〉A′ = |00〉A′ π
A1
z=0π

A2
z=0

+ |01〉A′ σ
A2
x πA1

z=0π
A2
z=1

+ |10〉A′ σ
A1
x πA1

z=1π
A2
z=0

+ |11〉A′ σ
A1
x σA2

x πA1
z=1π

A2
z=1, (5.36)

where σx and πz are the ideal Pauli-x operation and projector of the Pauli-z operation

on the ideal subspaces. However, when we are dealing with the case where the

two subsystems are considered as a whole, normally we do not have information

of the behaviour of the subsystems. Inspired from the ideal strategy (5.7), a possible
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proposal for the realizations of the above operations on each subsystem would be

πA1
z=sπ

A2
z=t −→ Π2s+t|0 ,

σA1
x −→ Π0|3 + Π1|3 − Π2|3 − Π3|3 ,

σA2
x −→ Π0|3 − Π1|3 + Π2|3 − Π3|3 ,

σA1
x σA2

x −→ Π0|3 − Π1|3 − Π2|3 + Π3|3 .

(5.37)

Thus, the local isometry for A will be expressed as

SAA′ |00〉A′ = |00〉A′ Π0|0

+ |01〉A′ (Π0|3 − Π1|3 + Π2|3 − Π3|3) Π1|0

+ |10〉A′ (Π0|3 + Π1|3 − Π2|3 − Π3|3) Π2|0

+ |11〉A′ (Π0|3 − Π1|3 − Π2|3 + Π3|3) Π3|0 . (5.38)

In order to check the validity of the above definition of the isometry, we still need to

verify whether it is unitary or not.

Proof of (5.38) to be unitary. Here we prove that the map

|φ〉A −→ SAA′ |φ〉A ⊗ |0, 0〉A′

with SAA′ satisfying Eq. (5.38) preserves the scalar product. To start, we note that

the action of this map can be written as

SAA′ |φ〉A ⊗ |0, 0〉A′ =
1∑

i,j=0

(Si,jA ⊗ 1) |φ〉A ⊗ |i, j〉A′ , (5.39)

where Si,jA are operators acting on Alice’s system, which are described in Eq. (5.38),
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i.e.

S0,0
A = Π0|0 (5.40)

S0,1
A = (Π0|3 − Π1|3 + Π2|3 − Π3|3) Π1|0

S1,0
A = (Π0|3 + Π1|3 − Π2|3 − Π3|3) Π2|0

S1,1
A = (Π0|3 − Π1|3 − Π2|3 + Π3|3) Π3|0

The scalar product 〈φ′|φ〉A, thus becomes

〈φ′|A ⊗ 〈0, 0|A′ (SAA′)† SAA′ |φ〉A ⊗ |0, 0〉A′ (5.41)

=
∑
i,j

〈φ′|A ⊗ 〈i, j|A′ (Si,jA ⊗ 1)†

×
∑
k,`

(Sk,`A ⊗ 1) |φ〉A ⊗ |k, `〉A′

= 〈φ′|A
∑
i,j

(Si,jA )† Si,jA |φ〉A

= 〈φ|φ′〉A ,

where in the last step we used the identity
∑

i,j(S
i,j
A )†Si,jA = 1, which can be checked

explicitly.

If we combine the isometry for B, we will get the isometry that is intended to

extract the target state

Ψ = SAA′ ⊗ SBB′ . (5.42)

Thus, the formalism of SDP will be

min F (S)

such that | 〈φ|ΠA
a|xΠ

B
b|y |φ〉 − p̃(ab|xy)| ≤ ε,

Γ(S) ≥ 0,

(5.43)

where p̃ is the probability distribution from the ideal strategy, and we choose the
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sequence S to be,

S = {1,Πa|x,Πb|y,Πa|xΠb|y,Πa|x=0Πa′|x=3Πb|y=0,Πa|x=0Πb|y=3Πb′|y=0}. (5.44)

The robustness bound is given in Figure 5.3

Figure 5.3: Robustness bound of two singlet fidelity as a function of ε. The two lines
labelled as 417 × 417 and 167 × 167 correspond to different sequence S, the latter
one only includes Πa|0 and Πb|0 instead of all the Πa|x and Πb|y. As a comparison, we
also plot the square of the singlet self-testing fidelity, which is a fair estimation of the
sequential CHSH test on two singlets.
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Compared to the work of RUV [45, 94], our robustness managed to make a dra-

matic improve.1 This value of the fidelity is not yet of practical interest. However,

if we are not tied to loophole-free experiment, the state of art violation of the CHSH

inequality is BCHSH = 2.8276 [100]. This will give ε = 3 × 104, for which our SDP

certifies F1 ≥ 0.999 and F ≥ 0.996.

5.2 Parallel self-testing of two singlet states using

Magic Square Box game

As we have seen, the two singlet states can actually be self-tested with the statistics

arising from the ideal strategy of two CHSH test. Besides the CHSH, the magic

square game is also well known for its weirdness and the optimality associated to

singlet states. This makes us to come up with the idea of self-testing two singlet

states using magic square game.

We will give a short review of the magic square game [101, 102, 103]. Suppose

each of A and B has a box which has nine bulbs on it, as in Figure 5.4. Each bulb

could have two possible colours and each column or row is associated with a button

on the boxes. When the game is played, A will choose the buttons that decides which

one of the three rows is going to light on, and B will choose the buttons that decides

which one of the three columns is going to light on.

The winning criterion of A and B is:

1. The intersection bulbs of A and B always have the same colour,

2. Whichever column or row is chosen, the number of red bulbs is always even

except the third column of B.

It is shown in [103] that, to win the game, A and B could perform the following

1In Eq. (41) of [32] we find the estimate ||ψ − ψ̄ ⊗ |junk〉 ||2 ≤ 72284× 4ε (notice that ε in that
paper is equal to 2

√
2ε in our notation). Even leaving self-testing aside, the algebraic maximum of

the l.h.s. is 2; therefore the estimate is trivial for ε ≥ 1
144568 .
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Figure 5.4: Examples of the results that satisfy the winning criterion.

measurements on two singlet states

|φ〉 =

(
|00〉+ |11〉√

2

)⊗2
. (5.45)

The measurements corresponding to the buttons of R1, R2, R3 are σz⊗σz, σx⊗σx
and σy ⊗ σy. With such three measurements, A could recover all the colours of the

three bulbs in each row he choose. Similarly,the measurements corresponding to the

buttons of C1, C2, C3 are σx ⊗ σz, σz ⊗ σx and σy ⊗ σy, see Table 5.1.
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C1 C2 C3

R1 σz ⊗ 1 1⊗ σz σz ⊗ σz

R2 1⊗ σx σx ⊗ 1 σx ⊗ σx

R3 σz ⊗ σx σx ⊗ σz σy ⊗ σy

Table 5.1: Measurement strategy to win the magic square game.

In the following, we are going to try to use the statistics that is achieved with the

above strategy as a criterion to self-test two singlet states.

An analytical proof of the self-testing will be found in [104]. For simplicity, we

will just introduce the SDP method to self-test the state here.

Before going into the details about the SDP method, we will first make a small

simplification of the original problem. If we apply a rotation Ry(π/2) on the second

qubit of B, we will be able to transform the original strategy into the following

measurements

R1/C1: {πz ⊗ πz}, R2/C2: {πx ⊗ πx}, R3/C3: {|χ±〉 〈χ±| , |χ′±〉 〈χ′±|}

(5.46)

on the state

|φ〉 =
|00〉A1B1 + |11〉A1B1√

2
⊗ (|00〉+ |11〉)A2B2 + (|01〉 − |10〉)A2B2

2
, (5.47)

where |χ±〉 =
(
(|00〉− |11〉)A2B2 +(|01〉+ |10〉)A2B2

)
/2 and |χ′±〉 =

(
(|00〉+ |11〉)A2B2 +

(|01〉 − |10〉)A2B2
)
/2.

Now we can consider how to construct the isometry which is necessary for the

SDP. Comparing with the formalism of the two qubits isometry in (5.36) and (5.38),
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we found that, the problem we are encountering here is in fact quite similar to it.

The isometry is indeed the same as the one in the double CHSH case, since the ideal

measurements on R1/C1 and R2/C2 are the same as that of A0/3 and B0/3 of the

double CHSH case.

Thus, the local isometry for A will be expressed as

SAA′ |00〉A′ = |00〉A′ Π0|1

+ |01〉A′ (Π0|2 − Π1|2 + Π2|2 − Π3|2) Π1|0

+ |10〉A′ (Π0|2 + Π1|2 − Π2|2 − Π3|2) Π2|0

+ |11〉A′ (Π0|2 − Π1|2 − Π2|2 + Π3|2) Π3|0 , (5.48)

where we use Πa|r to denote the projector for the outcome a with respect to the

button Rr pressed, similar for B. As we proved before, this is a valid isometry in the

sense that it is unitary for arbitrary input state. If we combine the isometry for B,

we will get the isometry that is intended to extract the target state

Ψ = SAA′ ⊗ SBB′ . (5.49)

Thus, the formalism of SDP will be

min F (S)

such that | 〈φ|ΠA
a|rΠ

B
b|c |φ〉 − p̃(ab|rc)| ≤ ε,

Γ(S) ≥ 0,

(5.50)

where p̃ is the probability distribution from the ideal strategy, and we choose the

sequence S to be,

S = {1,Πa|r,Πb|c,Πa|rΠb|c,Πa|r=1Πa′|r=2Πb|c=1,Πa|r=1Πb|c=2Πb′|c=1}. (5.51)

The robustness bound is given in Figure 5.5.

As we could see, the robustness converges to one when the error in the statistics
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Figure 5.5: Robustness bound of two singlet fidelity as a function of ε. The two
lines labelled as 417 × 417 and 167 × 167 correspond to different sequence S. As a
comparison, we also plot the square of the singlet self-testing fidelity.

is zero, which simply indicates the self-testing in the ideal case works.

From the comparison to the double CHSH test, the Magic Square criterion seems

to be less robust. Even comparing with the bound of the double CHSH test that uses

a smaller matrix and similar imperfect resources. The results also suggest that the

parallel self-testing is different from two independent copies. However, it should be

reminded that definite and general comparisons cannot be drawn, since the bounds

are not guaranteed to be tight absolutely.

5.3 Parallel self-testing of N singlet states?

From the result we have shown above, we could see that a parallel self-testing of two

singlet states are actually possible. This motivates us to ask whether a generalization

of the method to N pairs of singlet states will still work. Due to the limitation of the

computational power, it could not be checked directly by SDP methods. However,
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recent results that generalize our methods show that it is possible to self-test with

both N CHSH test [105] and generalized magic square game for N pair of singlets [106].
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Chapter 6

Conclusion

In this thesis, we discussed a variety of topics related to self-testing, a device inde-

pendent way that characterizes the quantum systems.

We started by introducing the basics of quantum nonlocality and the idea of poly-

topes for local set. Regarding the quantum set, we introduced the NPA hierarchy [11]

characterization and took its advantage to apply to the problems of self-testing.

In the study of the bipartite self-testing, we stepped further comparing the original

study of the limit examples of states in the literatures. Specifically, we managed

to show all the criteria that self-test the singlet state. With the generalization to

partially entangled state, we recovered all the extremal points of the quantum set in

the bipartite qubit scenario and proved that all of them actually self-test the partially

entangled state. Along with the by-products of the SDP methods, we are able to know

more about the properties of the quantum set at the boundary points, explicitly we

have shown that the extremal point in this case does not lie in a surface of dimension

seven, one less than the dimension of the quantum set, but actually resides in an even

lower dimensional subspace in the whole quantum set.

Later, we study the self-testing of multi-partite systems. We managed to show

that all the 3-qubit state with real coefficients can actually be self-tested and a specific

class of N qubit state, namely the N-qubit W state could also be self-tested.

Lastly, we give explicit examples of criteria that self-test two singlet states in

parallel and the robustness of the methods is applicable regarding the state of art of
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current experiments. This work has brought a lot interests to the field of computer

science that many of those results coming out recently actually share similar ideas as

ours [107, 106, 105, 108, 109, 110]. Our results have been generalized to N pairs with

both the parallel CHSH test and Magic Square game we studied. This is essential to

the well known quantum computing scheme proposed by [45, 94].

Through the study in this thesis, we are able to use the idea of self-testing to not

only study the device independent certification of unknown devices and enrich the

scenarios that could be self-tested by studying a variety of states, but also utilize it

as a tool to study the boundary properties of the quantum set. Even though, it is

now limited to the bipartite qubit case, it give us an opportunity to unveil the long

lasting mystery of the quantum boundaries, and we hope more investigation could be

made to more scenarios.

We are also looking forward to seeing more examples of self-testing to enrich the

zoo, especially, whether an entangled state with arbitrary number of parties in ar-

bitrary dimensions could be self-tested? Is it possible to self-test a quantum state

with phase involved? Concerning the robustness, with the recent new technique [58],

whether it is possible to generalize it to more states other than the 2-qubit singlet

state? In terms of the self-testing itself, with the standard formalism always involv-

ing ancillary qubits, which is believed to give more power to self-testing [111, 112],

whether it is possible to get rid of these ancillas and even open the ”black box” to

play directly with the device itself? Hopefully, with these questions answered, we can

bring our knowledge about self-testing to a new level.
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Appendix A

Analytical robustness bound for W

state self-testing

This appendix provides the details of the derivation of the analytical bound (4.32).

We first introduce the following lemma:

Proposition 2. Suppose each statistics in (4.3), (4.4) and (4.5), in the order of

appearance, has a deviation ε1, ε2, ..., ε15 from its expected value, e.g.

〈φ|ΠA
0|0Π

B
0|0Π

C
1|0 |φ〉 =

1

3
+ ε1, (A.1)

for the first term, then,



‖(ΠA
0|0B1B0 + ΠA

0|0B0B1) |φ〉 ‖ ≤ δ1

‖(ΠA
0|0B0C0 + ΠA

0|0C0C1) |φ〉 ‖ ≤ δ2

‖(ΠA
0|0B1 − ΠA

0|0C1) |φ〉 ‖ ≤ δ3

‖(ΠA
0|0B0 + ΠA

0|0C0) |φ〉 ‖ ≤ δ4,

(A.2)

(A.3)
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‖(ΠB
0|0A1A0 + ΠB

0|0A0A1) |φ〉 ‖ ≤ δ5

‖(ΠB
0|0C1C0 + ΠB

0|0C0C1) |φ〉 ‖ ≤ δ6

‖(ΠB
0|0A1 − ΠB

0|0C1) |φ〉 ‖ ≤ δ7

‖(ΠB
0|0A0 + ΠB

0|0C0) |φ〉 ‖ ≤ δ8,

(A.4)

where δis are functions of εis.

Proof. We give the proof for (A.2), the proof for (A.4) is similar.

To be rigorous, we assume

〈φ|ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉 = ε16

〈φ|ΠA
0|0Π

B
1|0Π

C
1|0 |φ〉 = ε17

〈φ|ΠA
1|0Π

B
0|0Π

C
1|0 |φ〉 = ε18

〈φ|ΠA
1|0Π

B
1|0Π

C
0|0 |φ〉 = ε19

〈φ|ΠA
1|0Π

B
1|0Π

C
1|0 |φ〉 = ε20.

(A.5)

We can now write

‖ΠA
0|0B1 |φ〉 ‖ =

√
| 〈φ|ΠA

0|0B1B1ΠA
0|0 |φ〉 |

=
√
| 〈φ| (ΠA

0|0)
2 |φ〉 | =

√
| 〈φ|ΠA

0|0 |φ〉 |

=

√
2

3
− (ε1 + ε2 + ε16 + ε17)

=

√
2

3
− δ0. (A.6)

where δ0 = ε1 + ε2 + ε16 + ε17 and they all come from results which involve ΠA
0|0.
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Similarly,

‖ΠA
0|0B0 |φ〉 ‖ = ‖ΠA

0|0C1 |φ〉 ‖ = ‖ΠA
0|0C0 |φ〉 ‖

= ‖ΠA
0|0C2 |φ〉 ‖ =

√
2

3
− δ0. (A.7)

Then,

‖(ΠA
0|0B1 − ΠA

0|0C1) |φ〉 ‖

=
√
| 〈φ|ΠA

0|0B1B1ΠA
0|0 + ΠA

0|0C1C1ΠA
0|0 − 2ΠA

0|0B1C1ΠA
0|0 |φ〉 |

=

√√√√√ | 〈φ|ΠA
0|0B1B1Π

A
0|0 |φ〉+ 〈φ|ΠA

0|0C1C1Π
A
0|0 |φ〉

− 2 〈φ|ΠA
0|0B1C1Π

A
0|0 |φ〉 |

=

√
|(2

3
− δ0)× 2− 2× (

2

3
− ε5)|

=
√

2|δ0 − ε5|. (A.8)

Using the same techniques, we are able to get

‖(ΠA
0|0B0 − ΠA

0|0C0) |φ〉 ‖ =
√

2|δ0 − ε4|. (A.9)
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To get the first line of (A.2), we estimate the following distance,

‖(ΠA
0|0C2 −

ΠA
0|0B1 − ΠA

0|0B0√
2

) |φ〉 ‖

=

√√√√√√√√√√
| 〈φ|ΠA

0|0C2C2Π
A
0|0 +

1

2
ΠA

0|0B1B1Π
A
0|0

+
1

2
ΠA

0|0B0B0Π
A
0|0 − ΠA

0|0B1B0Π
A
0|0

−
√

2ΠA
0|0C2B1Π

A
0|0 +

√
2ΠA

0|0C2B0Π
A
0|0 |φ〉 |

=

√√√√√√√
|(2

3
− δ0)× 2−

√
2× (

1√
2

2

3
− ε8)

−
√

2× (
1√
2

2

3
− ε9)− 〈φ|ΠA

0|0B1B0 |φ〉 |

=
√
|
√

2(
√

2δ0 − ε8 − ε9) + 〈φ|ΠA
0|0B1B0 |φ〉 |

≤

√√√√√√ |
√

2(
√

2δ0 − ε8 − ε9)|+ |ε6|

+

√
2

3
− δ0 ×

√
|2(δ0 − ε4)|

=
δ1

(2 + 2
√

2)
√

2
, (A.10)

where the | 〈φ|ΠA
0|0B1B0 |φ〉 | is estimated by using the triangle inequality |a + b| ≤

|a|+ |b| and Cauchy–Schwarz inequality |a · b| ≤ |a| · |b|,

| 〈φ|ΠA
0|0B1B0 |φ〉 | = | 〈φ|ΠA

0|0B1(C0 +B0 − C0) |φ〉 |

≤ | 〈φ|ΠA
0|0B1C0 |φ〉 |+ | 〈φ|ΠA

0|0B1(B0 − C0) |φ〉 |

= |ε6|+ | 〈φ|ΠA
0|0B1(B0 − C0) |φ〉 |

≤ |ε6|+ ‖ΠA
0|0B1 |φ〉 ‖ · ‖(B0 − C0) |φ〉 ‖

= |ε6|+
√

2

3
− δ0 ×

√
|2(δ0 − ε4)|. (A.11)
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In order to estimate the ‖(ΠA
0|0B1B0 + ΠA

0|0B0B1) |φ〉 ‖, first consider,

(ΠA
0|0C2)

2 |φ〉

= (
ΠA

0|0B1 − ΠA
0|0B0√

2
+ ΠA

0|0C2 −
ΠA

0|0B1 − ΠA
0|0B0√

2
)2 |φ〉

= (
ΠA

0|0B1 − ΠA
0|0B0√

2
)2 |φ〉

+ (ΠA
0|0C2 −

ΠA
0|0B1 − ΠA

0|0B0√
2

)2 |φ〉

+ 2(
ΠA

0|0B1 − ΠA
0|0B0√

2
)(ΠA

0|0C2 −
ΠA

0|0B1 − ΠA
0|0B0√

2
) |φ〉 . (A.12)

The first term contains the anticommutative terms while the last two terms have a

same factor. By using the identity C2
2 |φ〉 = B2

1 |φ〉 = B2
0 |φ〉 = |φ〉, we can easily

deduce that,

(ΠA
0|0B1B0 + ΠA

0|0B0B1) |φ〉√
2

=(ΠA
0|0C2 +

ΠA
0|0B1 − ΠA

0|0B0√
2

)

(ΠA
0|0C2 −

ΠA
0|0B1 − ΠA

0|0B0√
2

) |φ〉 , (A.13)

and the norm can be estimated,

‖
(ΠA

0|0B1B0 + ΠA
0|0B0B1) |φ〉√

2
‖

≤ ‖ΠA
0|0C2(Π

A
0|0C2 −

ΠA
0|0B1 − ΠA

0|0B0√
2

) |φ〉 ‖

+
1√
2
‖ΠA

0|0B1(Π
A
0|0C2 −

ΠA
0|0B1 − ΠA

0|0B0√
2

) |φ〉 ‖

+
1√
2
‖ΠA

0|0B0(Π
A
0|0C2 −

ΠA
0|0B1 − ΠA

0|0B0√
2

) |φ〉 ‖

≤ (‖ΠA
0|0C2‖∞ +

1√
2
‖ΠA

0|0B1‖∞ +
1√
2
‖ΠA

0|0B0‖∞)

× ‖(ΠA
0|0C2 −

ΠA
0|0B1 − ΠA

0|0B0√
2

) |φ〉 ‖. (A.14)
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The infinite norm can be estimated

‖ΠA
0|0C2‖∞ ≤ ‖ΠA

0|0‖∞‖C2‖∞

= ‖ΠA
0|0‖∞‖P 0

D − P 1
D‖∞ ≤ ‖ΠA

0|0‖∞(‖P 0
D‖∞ + ‖P 1

D‖∞)

= 2. (A.15)

Similar for ‖ΠA
0|0B0‖∞ and ‖ΠA

0|0B1‖∞. Then, we get

‖
(ΠA

0|0B1B0 + ΠA
0|0B0B1) |φ〉√

2
‖ ≤ δ1√

2
. (A.16)

The other relations can be proved similarly.

Using the above proposition, we can now turn into the robustness of the W3 state.

We shall use the isometry with the same local operations described in Figure (2.1),

irrespective of the errors in the statistics. The output state can always be displayed

as (4.24), the problem then is whether we can prove it’s close to the target state

|junk〉ABC |W3〉A′B′C′ . However, it’s not easy to figure out what is the exact form of

this target state. What we want to do first is to estimate the distance

‖Ψ(|φ〉ABC ⊗ |000〉A′B′C′)−
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ ‖. (A.17)

There would be 8 terms regarding to the ancillary qubits. We need to estimate

the norm of each term. Since there are too many terms involved, we shall only show

explicitly some of them, for instance the term

‖ΠA
0|0Π

B
0|0C1Π

C
1|0 |φ〉 |001〉

− ΠA
0|0Π

B
0|0Π

C
0|0C1 |φ〉 |001〉 ‖

= ‖ΠA
0|0Π

B
0|0C1Π

C
1|0 |φ〉 |001〉 − ΠA

0|0Π
B
0|0Π

C
0|0C1 |φ〉 |001〉 ‖. (A.18)

From Proposition 2, we could see that the operator pairs {A0, A1}, {B0, B1} and

{C0, C1} are almost anticommutative. Thus, the operators {A0, A1}, {B0, B1} and
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{C0, C1} in (4.24) other than |001〉, |010〉 and |100〉 can always be moved to the right

of Π
A/B/C
1|0 with the cost of a small error. Using (A.4), we have,

‖ΠA
0|0Π

B
0|0C1Π

C
1|0 |φ〉 |001〉 − ΠA

0|0Π
B
0|0Π

C
0|0C1 |φ〉 |001〉 ‖

=‖ΠA
0|0Π

B
0|0C1C0 |φ〉 |001〉+ ΠA

0|0Π
B
0|0C0C1 |φ〉 |001〉 ‖

≤‖ΠB
0|0‖∞‖ΠA

0|0C1C0 |φ〉 |001〉+ ΠA
0|0C0C1 |φ〉 |001〉 ‖

=δ1. (A.19)

Similarly, the terms with |010〉 and |100〉 can also be shown to be bounded by the same

errors. For the other 5 terms in (4.24), by using the properties A2
1 = B2

1 = C2
1 = 1, it

shows that,

‖ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉 |000〉+ ΠA

0|0B1Π
B
1|0C1Π

C
1|0 |φ〉 |011〉

+ A1Π
A
1|0Π

B
0|0C1Π

C
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A
1|0B1Π

B
1|0Π

C
0|0 |φ〉 |110〉

+ A1Π
A
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B
1|0C1Π

C
1|0 |φ〉 |111〉 ‖

≤‖ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉 |000〉 ‖+ ‖ΠA

0|0B1Π
B
1|0C1Π

C
1|0 |φ〉 |011〉 ‖+

‖A1Π
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B
0|0C1Π

C
1|0 |φ〉 |101〉 ‖+ ‖A1Π

A
1|0B1Π

B
1|0Π

C
0|0 |φ〉 |110〉 ‖

+ ‖A1Π
A
1|0B1Π

B
1|0C1Π

C
1|0 |φ〉 |111〉 ‖

=| 〈φ|ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉 |+ | 〈φ|ΠA

0|0Π
B
1|0Π

C
1|0 |φ〉 |

+ | 〈φ|ΠA
1|0Π

B
0|0Π

C
1|0 |φ〉 |+ | 〈φ|ΠA

1|0Π
B
1|0Π

C
0|0 |φ〉 |

+ | 〈φ|ΠA
1|0Π

B
1|0Π

C
1|0 |φ〉 |

=ε16 + ε17 + ε18 + ε19 + ε20

=δ2. (A.20)

Thus, we then obtain the distance as

‖Ψ(|φ〉ABC ⊗ |000〉A′B′C′)−
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ ‖ ≤ 3δ1 + δ2. (A.21)
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The norm of
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ can be estimated,

‖
√
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0|0Π

B
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B
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C
1|0) |φ〉 |
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0|0XC |φ〉 ‖ · ‖ΠA

0|0(Π
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CΠA
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B
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=1− 3ε1 + 3δ1, (A.22)

and,

‖
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ ‖

2
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C
1|0) |φ〉 |
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− 3| 〈φ|XCΠA
0|0Π

B
0|0(Π
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0|0C1 − C1Π

C
1|0) |φ〉 |

≥1− 3ε1 − 3δ1. (A.23)

These results imply that,

‖
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ − |junk〉ABC |W3〉A′B′C′ ‖ ≤ 1−

√
1− 3ε1 − 3δ1

(A.24)

where,

|junk〉ABC |W3〉A′B′C′ =

√
3ΠA

0|0Π
B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′

‖
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ ‖

. (A.25)
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Finally,

‖Ψ(|φ〉ABC ⊗ |000〉A′B′C′)− |junk〉ABC |W3〉A′B′C′ ‖

≤‖Ψ(|φ〉ABC ⊗ |000〉A′B′C′)−
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ ‖

+ ‖
√

3ΠA
0|0Π

B
0|0Π

C
0|0 |φ〉ABC ⊗ |W3〉A′B′C′ − |junk〉ABC |W3〉A′B′C′ ‖

=3δ1 + δ2 + 1−
√

1− 3ε1 − 3δ1. (A.26)

As we have said, without losing the generality, we take the maximum ε among εis for

notational simplicity. Then the relaxed observation requirement will not affect the

robustness bound proved below. So a conservative upper bound will be

‖Ψ(|φ〉ABC ⊗ |000〉A′B′C′)− |junk〉ABC |W3〉A′B′C′ ‖

≤ 13

2
ε+ 9(2 + 2

√
2)(

20

3
)
1
4

9
√

15 + 6
√

5

20
ε

3
4

+ 9(2 + 2
√

2)(
20

3
)
1
4 ε

1
4

≈ 7.5ε+ 119.2ε
3
4 + 49.4ε

1
4 . (A.27)

Thus, the fidelity could be estimated as

F = 1− ‖Ψ(|φ〉ABC ⊗ |000〉A′B′C′)− |junk〉ABC |W3〉A′B′C′ ‖2

2
(A.28)

≈ 1− 12.35ε
1
2 − 2944.2ε− 185.25ε

5
4 . (A.29)
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[85] Otfried Gühne, Géza Tóth, Philipp Hyllus, and Hans J. Briegel. Bell Inequali-
ties for Graph States. Phys. Rev. Lett., 95, 120405, 2005.

[86] Pankaj Agrawal and Arun Pati. Perfect teleportation and superdense coding
with W states. Phys. Rev. A, 74, 062320, 2006.

[87] Shi-Biao Zheng. Splitting quantum information via W states. Phys. Rev. A,
74, 054303, 2006.
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