
OPTIMIZATION FOR DECISION

MAKERS WITH AMBIGUOUS

PREFERENCES

YANG ZHIYUE

NATIONAL UNIVERSITY OF SINGAPORE

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/83107989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


OPTIMIZATION FOR DECISION

MAKERS WITH AMBIGUOUS

PREFERENCES

YANG ZHIYUE

(B.Eng. Shanghai Jiao Tong University)

A THESIS SUBMITTED

FOR THE DEGREE OF PHD OF ENGINEERING

DEPARTMENT OF INDUSTRIAL AND

SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2017

SUPERVISORS:
Assistant Professor Tan Chin Hon, Main Supervisor

Assistant Professor William Benjamin Haskell, Co-Supervisor



DECLARATION

I hereby declare that the thesis is my original

work and it has been written by me in its entirety.

I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any

degree in any university previously.

YANG ZHIYUE

12th January 2017



iv



Acknowledgment

The four-year period PhD study in ISE department was an impressive ex-

perience. Firstly, I would like to extend my sincere gratitude to my main

supervisor, Assistant Prof. Tan Chin Hon. I am thankful that Prof. Tan

could accept me as his student after my previous supervisor left NUS. I have

benefited intellectually from his invaluable guidance and sharp insights on

academic research and emotionally from his great and selfless care. His

talent and enthusiasm in work have a deep influence on my attitude to-

wards challenges and obstacles as an individual. I want also express my

sincere gratitude to my co-supervisor, Assistant Prof. William B. Haskell.

His wisdom and expertise in optimization have enlightened a lot in my

research directions. Sharing his mathematical insights and research expe-

riences opens my way to a better understanding of optimization.

I shall also deeply thank the ISE department and National University of

Singapore for providing me with the prestigious Graduate Research Schol-

arship. This great opportunity offers me support so that I can devote to

my research. This opportunity also provides me with a platform so that I

could meet my excellent colleagues from whom I can always learn, includ-

ing my seniors, my labmates as well as PhD candidates under our common

supervisors.

Finally, I am immensely indebted to my parents and friends for their

unconditional love and support. Thanks to them, I can achieve this.

v



vi



Contents

Abstract xi

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminary 9

2.1 Notation and assumptions . . . . . . . . . . . . . . . . . . . 9

2.2 Definitions of concepts . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Stochastic dominance . . . . . . . . . . . . . . . . . . 12

2.2.2 Other concepts . . . . . . . . . . . . . . . . . . . . . 15

3 Literature review 17

3.1 Stochastic dominance (SD) . . . . . . . . . . . . . . . . . . . 17

3.1.1 Development of SD . . . . . . . . . . . . . . . . . . . 17

3.1.2 Optimization framework of ASD . . . . . . . . . . . . 22

3.2 Risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Scalar-valued risk measures . . . . . . . . . . . . . . 25

3.2.2 Vector-valued risk measures . . . . . . . . . . . . . . 26

3.3 Optimization of general risk measures . . . . . . . . . . . . . 27

vii



3.3.1 Multivariate prospects . . . . . . . . . . . . . . . . . 27

3.3.2 Preference uncertainty . . . . . . . . . . . . . . . . . 28

3.3.3 Computational tractability . . . . . . . . . . . . . . . 29

3.3.4 Target-oriented measure . . . . . . . . . . . . . . . . 30

4 Weighted risk-averse almost stochastic dominance and its

optimization 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Weighted risk-averse almost stochastic dominance . . . . . . 32

4.2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Necessary and sufficient conditions . . . . . . . . . . 33

4.3 Optimization with stochastic dominance . . . . . . . . . . . 38

4.3.1 Problem description . . . . . . . . . . . . . . . . . . 40

4.3.2 Weighted risk-averse almost stochastic dominance . . 47

4.3.3 Robust certainty equivalent maximization problem . 50

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Portfolio optimization problem with WRASD . . . . 54

4.4.2 Portfolio optimization problem with RCE . . . . . . 56

5 Dominance of the Maximum Geometric Mean Portfolio in

the long run 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Optimization frameworks for scalar-valued risk measures 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Problem formulations . . . . . . . . . . . . . . . . . . . . . . 74

6.3.1 Subgradient characterization . . . . . . . . . . . . . . 76

viii



6.3.2 Acceptance set approach . . . . . . . . . . . . . . . . 82

7 Conclusion and Future Research 89

Bibliography 93

Appendix A Proof of Theorem 4.2.1 101

Appendix B Proof of Theorem 4.3.2 105

Appendix C Proof of Corollary 4.3.1 107

Appendix D Proof of Theorem 5.3.1 109

ix



x



Abstract

The fundamental goal of this thesis is to build optimization frameworks

for decision makers with unknown preferences under different conditions.

Specifically, we firstly propose a new stochastic dominance relationship in

which utility functions are weighted against a reference utility for risk-

averse decision makers. The necessary and sufficient conditions are pro-

vided. We then formulate our proposed weighted almost stochastic domi-

nance in our optimization framework by convex function interpolation and

subgradient characterization. We will resort to linear programming and its

duality as our technique.

We next extend the concept of almost stochastic dominance to random

variables with normal and log-normal probability distributions, and ap-

ply the results to mean-variance analysis and Maximum Geometric Mean

(MGM) strategy. We show how we could calculate the amount of domi-

nance by which a normally or log-normally distributed reward dominates

another by almost stochastic dominance and determine the set of utility

functions such that one prospect dominates the other.

We then provide a more general optimization framework that considers

the following four factors: multivariate prospects, preference uncertainty,

computational tractability, and target-oriented measure. Two approaches,

subgradient characterization and acceptance set approach, are considered.
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Chapter 1

Introduction

1.1 Background

Comparing random variables, or more precisely comparing distributions,

has been fundamental and of great interest as it is prevalent in real life.

For instance, we may encounter situations to choose between investments,

or to compare Monte Carlo simulation results. Some of the early works on

this topic include Mann and Whitney (1947), who gave a test of whether a

random variable is stochastically larger than another; and Lehmann (1955),

who made a comparison of several definitions of ordered sets of distribu-

tions. Their discussion laid the foundation of the subsequent approaches

for comparing random variables.

One common way of ranking random variables is the notion of stochas-

tic dominance (SD). SD is a form of stochastic ordering. The term is used

in decision analysis to refer to situations where one prospect (a probability

distribution over possible outcomes) can be considered stochastically su-

perior over another based on preferences regarding outcomes (Levy, 1992).

A preference might be a simple ranking of outcomes from most to least

favored, or it might also employ a value measure such as different kinds of

utility functions. As more assumptions such as risk aversion are needed,
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higher order SD is taken into account.

The concept of SD was first introduced in a test of whether one of

two random variables is stochastically larger than the other. However,

traditional SD rules may not reveal dominance between two options even

though there is an obvious preference for one of these options because the

corresponding utility sets contain “extreme” utility functions that do not

correspond to decision makers observed in practice. One example would

be that most “reasonable” investors would prefer a higher proportion of

stocks as the investment horizon increases (Leshno and Levy, 2002). An

“extreme” utility function could be in the form of not assigning a relatively

high marginal utility to very low values or a relatively low marginal utility

to large values. These relationships are thus quite restrictive and leads to

challenges for use in practice. In optimization problems, they may even

make the problem infeasible.

This leads to various paradoxes in decision making and the introduc-

tion of almost SD (ASD) by Leshno and Levy (2002). ASD resolves this

difficulty by giving relaxations of traditional stochastic dominance rela-

tionships. Several notions of ASD that are more flexible than conventional

SD have been proposed. The idea is to choose a strict subset of the corre-

sponding utility set of conventional SD that gives rise to a weaker stochastic

dominance relation but that only includes realistic utility functions. ASD

is an ordering that reveals the preferences among most decision makers so

that the extreme cases of decision makers, which are theoretically possible

but rarely observed in practice, could be left out.

Even though ASD possesses several advantages over traditional SD, it

still does not reveal the preferences observed in the St. Petersburg para-

dox. Tan (2015) generalizes the conditions of ASD by introducing a weight

function to address this issue. The proposed the necessary and sufficient

conditions for WASD imply the unanimous preference by all individuals
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with non-decreasing utility functions whose marginal utilities are bounded

by a reference marginal utility.

It can be noted that along the development of SD, its definition has been

tailored to be more practical. Meanwhile, we note that individuals have

been observed to be risk-averse under multiple settings (Brenner, 2015;

Rieger et al., 2015). People may wish to check for unanimous preference

across all non-extreme and non-decreasing concave utility functions, rather

than across all non-extreme and non-decreasing utility functions, when

screening a set of feasible acts. Therefore, the prevalence of risk-aversion

among decision makers makes considering concavity restrictions in WASD

an interesting topic.

The concept of SD can also be applied between specific common prob-

ability distributions. The normal distribution is common and well-known.

In particular, the central limit theorem states that the arithmetic mean of

a large enough number of independently and identically distributed ran-

dom variables will be approximately normally distributed, regardless of

the underlying distribution of random variables. This attractive property

makes the normal distribution important and useful. For instance, the

connection between SD and the normal distribution gives insights in the

mean-variance efficient frontier analysis. The log-normal distribution is

popular in describing natural phenomena as well. In particular, many nat-

ural growth processes are in the form of the accumulation of multiple small

percentage changes, which become additive on a log scale. For example,

in the world of finance, the log-normal property of stock prices is among

the assumptions of the famous Black–Scholes model. Therefore, linking SD

with these specific distributions has practical advantages.

Since SD plays an important role in the decision analysis literature, it is

highly considered in the stochastic optimization models regarding decision

making and this connection has already been made. For example, we could
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employ a parametric representation of the set of utility functions used to

define the dominance constraint (Dentcheva and Ruszczyński, 2003; Hu

et al., 2012; Haskell and Jain, 2013). SD has appeared in the dominance

constraints of convex optimization problems. Multi-variate SD constraints

are developed along a similar fashion as well. Under this parametric repre-

sentation, increasing concave utility functions show up in the dual problems

as the Lagrange multipliers of SD constraints. From another perspective,

representations of SD constraints based on linear and integer programming

are developed in which the entire family of increasing concave functions is

represented (Luedtke, 2008; Armbruster and Luedtke, 2015).

Rather than comparing random variables, one might be interested in

evaluating each random variable independently. This could be done via risk

measures which can take into account the risk preferences of the decision

maker. We propose that the following four considerations be taken into

account for a general risk measure optimization framework:

Multivariate prospects. A general risk-aware optimization framework

should be able to handle multiple criteria. Many key problems in stochas-

tic optimization have multiple criteria. For instance, a portfolio in the

financial market whose assets cannot be aggregated may be deemed a mul-

tivariate case. An effective risk management paradigm must be able to

handle multivariate random prospects.

Preference uncertainty. Risk-averse preference is of great interest due

to its prevalence across decision makers. However, risk-seeking preferences

(or a mixture of them) have also been observed. Even for risk-averse de-

cision makers, the extent of their aversion towards risk also differs. In

particular, it is difficult for a decision maker to precisely express his risk

preferences. Hence, a practical risk management scheme must be robust

against uncertainty in risk preferences.

Computational tractability. This is a major consideration in the related
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literature on robust optimization as many problems in practice involve a

large number of variables and constraints. Therefore a risk-aware frame-

work should be computationally tractable. Ideally, it should be evaluated

with convex optimization techniques.

Target-oriented measure. In real life, a decision maker may evaluate the

fitness of his decision with respect to a target or goal. Under this context,

risk may be interpreted as failure to meet the desired targets or goals. A

comprehensive optimization framework should be able to take targets into

account.

Next, we discuss the main research objectives.

1.2 Research objectives

While there is a rich literature on stochastic dominance relationships as well

as optimization models based on it, there remain areas of improvements.

Specifically, we address the following questions:

1. Is there a SD relationship for which the decision maker is known to

be risk-averse and whose utility is approximately known? We aim

to reveal the unanimous preference between prospects by all risk-

averse decision makers whose utility functions are unknown but not

deviating too much from a reference utility (e.g. constant relative

risk aversion utility). As mentioned, risk aversion is often observed

in practice. Although the utility of the decision maker is unknown,

it could often be approximated via a series of lottery comparisons.

Surprisingly, SD for such settings is rarely discussed.

2. Can we develop an optimization framework that introduces a set

of constraints for this new proposed SD relationship? This model

could provide a decision making scheme for all risk-averse decision

makers whose utility functions are unknown but remain in some cer-
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tain range. Specifically, under reasonable assumptions, this frame-

work is computationally tractable by employing convex optimization

techniques with a non-parametric representation of dominance con-

straints.

3. How can we apply the concept of ASD to specific probability distribu-

tions, e.g. the log-normal distribution? Understanding the conditions

for ASD between specific distributions allows us to study the pref-

erences of individuals in settings where these distributions are valid.

For example, there is both theoretic and empirical evidence that, un-

der a sufficiently long horizon, investment returns are approximately

log-normal distributed.

4. Based on the optimization framework of SD relationship, can we gen-

eralize it to one that considers the four considerations mentioned

in the previous section? With this model, the value of the target-

oriented risk measure given multivariate prospects by decision mak-

ers who have convex risk measures, which has multiple applications

in practice, could be determined.

As the decision making process is becoming more sophisticated, a broad

range of requirements should be taken into account. The purpose of this

thesis is to propose a new SD condition which can guide decision making

as well as improve existing optimization formulations. We then apply the

concept of ASD to specific probability distributions. Lastly, we provide a

unifying framework that satisfies all four of our considerations just outlined.

We combine the work on different perspectives of optimization and SD.

Previously the two different bodies of literature were, for the most part,

restricted to different communities. However, we feel that there exists a

natural link between them and a combination of these two fields is promis-

ing. Although the study here is theoretically oriented, these models indeed
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provide some significant insights in real life, as we will illustrate in this

thesis. For instance, we are interested in a portfolio optimization prob-

lem where we aim to maximize the expected return such that the portfolio

stochastically dominates a given benchmark.

After the work in this dissertation, the following contributions can be

summarized.

1. We have proposed a new SD relationship in which utility functions

are weighted against a reference utility for risk-averse decision makers

and an optimization framework that introduces a set of constraints

of the above mentioned SD relationship. In particular, new SD rela-

tionship addresses the gap of SD for risk-averse decision makers. The

optimization framework here could address the limitation in conven-

tional SD optimization approaches when the preference information

is incomplete. In this way, we could avoid to make decision makers

to evaluating a series of pairwise comparisons between lotteries men-

tioned in Armbruster and Delage (2015). We use a utility range to

describe preference that does not deviate too much from a popular

pattern.

2. We have extended the concept of ASD to log-normal probability

distributions and applied the results to mean-variance analysis and

MGM strategy. We note that though MGM portfolio could maxi-

mize expected return, but does not maximize expected utility across

all nondecreasing utility functions, even in the long run. Levy (2016)

attempted to address this concern but under some conditions. By

applying the concept of ASD to log-normal probability distributions,

we could relax some of these conditions to make it more reasonable.

3. We provided a more general optimization framework that considers

the four considerations we have mentioned. This framework deals
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with the multivariate case and target-based measure that are not con-

sidered in Armbruster and Delage (2015). It also addresses the com-

putational tractability that is not focused in Brown and Sim (2009)

and Brown et al. (2012). Specifically, this is done by subgradient

characterization and acceptance set approach.

The remainder of this thesis is organized as follows. Chapter 2 presents

the notation and some critical concepts that are used in this dissertation.

Chapter 3 provides a comprehensive literature review of related previous

work. Chapter 4 proposes a new stochastic dominance relationship and the

corresponding optimization model. Chapter 5 discusses the application of

the concept of ASD to some well-known probability distributions, namely

the log-normal distribution. Chapter 6 proposes a unifying optimization

framework with good properties. Chapter 7 concludes the whole thesis and

highlights possible topics for future research.
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Chapter 2

Preliminary

In this chapter, we introduce basic notation and assumptions, as well as

some critical concepts and definitions that are used in this dissertation.

We list them here to make the dissertation self-contained and convenient

to check.

2.1 Notation and assumptions

Let Ω denote a sample space with elements ω ∈ Ω, B a Borel σ-algebra

defined on Ω, and P a probability measure defined on (Ω, B). Hence we

have introduced a probability space (Ω, B, P ).

Next, we define Ln to be the linear space of essentially bounded B-

measurable mappings X : Ω→ Rn for n ≥ 1. When n = 1, it corresponds

to the univariate random variable case where we write it as L. When

n ≥ 2, we write Ln to denote the space of multivariate prospects. For any

X, Y ∈ Ln, we write X ≤ Y when X (ω) ≤ Y (ω) for all ω ∈ Ω.

Let Z ⊂ Rm be a decision set determined by decision makers. Let G :

Z → Ln be a random-variable-valued mapping with realizations denoted

by [G (z)] (ω) for all ω ∈ Ω. Therefore, the mapping G (z) inherits the

randomness in the underlying decision-making problem and is a random

variable. We introduce a random variable Y ∈ Ln to be the benchmark of
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G(z).

For any compact set X ⊂ R, let C (X ) be the space of continuous

functions on X in the supremum norm,

‖u‖C(X ) , sup
x∈X
|u (x) |.

In addition, we let C1 (X ) denote the set of continuously differentiable func-

tions in C (X ) and C2 (X ) denote the set of continuously second-order dif-

ferentiable functions in C (X ).

Let f ∈ C(Z) be a deterministic objective function on the decision

set and m : X → R be a nonnegative weight function which bounds the

marginal utilities of risk-averse decision makers.

Let H be a closed convex cone in Rn such that Rn
+ ⊂ H and H 6= Rn

with an induced partial ordering by X � 0 if and only if X ∈ H almost

surely.

We now make some assumptions in our decision-making optimization

problem for technical convenience.

A1 Z is closed and convex.

A2 G : Z → Ln is convex.

A3 f is concave.

Therefore, [G (z)] (ω) : Z → Rn is convex in z ∈ Z for P -almost all

ω ∈ Ω. This key convexity assumption ensures that convex optimization

techniques could be used. We want to choose z ∈ Z so that G (z) has a

favorable distribution in some sense. To evaluate the distribution of G (z),

we use mappings ρ : Ln → R which we refer to as “risk functions” in line

with Ruszczyński and Shapiro (2006).

We make the following key assumption on the underlying sample space:
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A4 Ω is finite. Random variables on (Ω, B, P ) have bounded and finite

support in the interval X , [xmin, xmax].

For later use, we introduce a discretization Θ , {θ1, . . . , θK} ⊂ X of X

where θ1 < θ2 < · · · < θK , θ1 = xmin, and θK = xmax. Note that the length

of the longest subinterval of Θ, maxi=2,...,K (θi − θi−1), is a measure of the

granularity of Θ. We make an additional technical assumption regarding

the support of the benchmark Y :

A5 suppY is finite and suppY ⊂ Θ.

We can meet this assumption by construction since the benchmark Y

is a user input. The discretization Θ is also a user input, and it can be

constructed a priori to include the support of Y .

We will make further assumptions on the weight function m.

A6 m is Lipschitz continuous with constant L.

This is a relatively strong form of function uniform continuity. Imagine

a double cone with slopes of L and −L. When the vertex moves along the

function curve, the curve will always remain entirely outside the cone.

A7 ConeH that defines the acceptance setA (containing Ln(H)) possesses

the substitutability property:

−ei + αe1 ∈ H, ei − βe1 ∈ H, α, β > 0, i = 2, ..., n,

where ei denotes the unit vector with ith component 1.

This means that any entry other than the one in the first position, can

be substituted or compensated by some position in the first entry. More

precisely, it states that the unitary prices of the assets for i ≥ 2 in terms of

the first asset must be bounded. We give an example of H in two-dimension

Euclidean space as following.
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Example 2.1.1. Let H = {(x1, x2) ∈ R2 : 5x1 + x2 ≥ 0, 1
5
x1 + x2 ≥

0}. Then the linear space of essentially bounded H-valued B-measurable

random vectors Ln(H) can be used to define the acceptance set A in two-

dimension case.

2.2 Definitions of concepts

In this section, we will start with stochastic dominance and its related con-

cepts. This is the key idea in revealing the dominance relationship between

prospects. Definitions as well as the corresponding sufficient and necessary

conditions will be discussed. Different types of stochastic dominance are

associated with different categories of utility functions of decision makers.

We could apply these concepts to different decision makers accordingly. In

addition, we will also introduce some other concepts that used in the opti-

mization frameworks and the application of stochastic dominance, such as

robust certainty equivalent, maximum geometric mean (MGM) portfolio,

etc.

2.2.1 Stochastic dominance

Let FX and FY denote the cumulative distribution function (cdf) of random

variables X and Y , respectively. Let S1 denote the set of outcomes where

FX > FY (i.e., S1 = {t : FX(t) > FY (t)}).

We denote a collection of utility functions U ⊂ C (X ) the set of all non-

decreasing utility functions, and Uicv ⊂ C (X ) the set of all non-decreasing

convex utility functions.

The theory of SD was developed by Hadar and Russell (1969), Hanoch

and Levy (1969), Rothschild and Stiglitz (1970). They provide the defini-

tion as well as the criteria rules and proof. We begin with the following

definition of conventional SD:
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Definition 2.2.1 (Stochastic dominance). For X, Y ∈ L, X stochastically

dominates Y , denoted by X �U Y , if and only if E[u(X)] ≥ E[u(Y )] for

all u in U .

Conventional SD is defined via the expected utility theory here. We

know that the set of utility functions such that X is clearly preferred over

Y is set of all non-decreasing utility functions. We can also conclude the

dominance relationship from another perspective, which leads to the intro-

duction of its sufficient and necessary condition.

It can be showed that X stochastically dominates Y if and only if

FX(t) ≤ FY (t)∀t, and there exists a t0 such that the strict inequality

FX(t0) < FY (t0) holds. In particular, it can be noted that the cdf curve of

X cannot go above that of Y everywhere. The conditions from both the

expected utility theory and the cdf relationship are equivalent in showing

the dominance relationship between X and Y .

We then introduce the following defition of ASD:

Definition 2.2.2 (Almost stochastic dominance). For X, Y ∈ L and 0 <

ε < 0.5, X dominates Y with ε-ASD, denoted by X �U∗(ε) Y , if and only

if E[u(X)] ≥ E[u(Y )] for all u in U∗(ε), where:

U∗(ε) =

{
u ∈ U ∩ C1 (X ) : u′(t) ≤ inf{u′(t)}

[
1

ε
− 1

]
∀t
}
.

i.e. when the expected utility of X is greater than or equal to the expected

utility of Y for all u ∈ U∗(ε).

In particular, U∗(ε) is the set of all differentiable nondecreasing utility

functions whose marginal utility deviates by a maximum factor of
[

1
ε
− 1
]
.

For example, all utility functions whose marginal utility is no greater than

2 and no lesser than 0.5 are contained in U∗(0.2).

Leshno and Levy (2002) showed that for 0 < ε < 0.5, X dominates Y
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with ε-ASD if and only if:

ε ≥
∫
S1

[FX(t)− FY (t)]dt∫∞
−∞ |FX(t)− FY (t)|dt

. (2.1)

In particular, note that the denominator in Equation (2.1) corresponds to

the total area between FX and FY while the numerator in Equation (2.1)

corresponds to the area between FX and FY where FX > FY . Comparing

to the conventional SD case where the cdf curve of X cannot go above that

of Y everywhere, it is allowed to violate this rule if the violation is within

some predetermined level. As shown in Figure 2.1, area A1 is the violation

area which is the numerator in Equation (2.1), and A1 + A2 is the total

area which is the denominator. Therefore, X dominates Y with ε-ASD if

and only if the ratio of the two areas is less than the predetermined level

ε.

Fig. 2.1. Almost stochastic dominance.

Definition 2.2.3 (Weighted almost stochastic dominance). For X, Y ∈ L

and 0 < ε < 0.5, X dominates Y with (m, ε)-WASD, denoted by X �U∗(m,ε)
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Y , if and only if E[u(X)] ≥ E[u(Y )] for all u in U∗(m, ε), where:

U∗(m, ε) =

{
u ∈ U ∩ C1 (X ) :

[
1

ε
− 1

]−0.5

m(t) ≤ u′(t) ≤
[

1

ε
− 1

]0.5

m(t), ∀t

}
.

U∗(m, ε) is the set of all differentiable nondecreasing utility functions

whose marginal utility differs from m(t) by a maximum factor of
[

1
ε
− 1
]0.5

.

In particular, m(t) denotes a nonnegative function that describes the marginal

utility of some canonical utility function, which U∗(m, ε) is constructed

around.

Tan (2015) showed that for 0 < ε < 0.5, X dominates Y with (m, ε)-

WASD if and only if:

ε ≥
∫
S1
m(t)[FX(t)− FY (t)]dt∫∞

−∞m(t)|FX(t)− FY (t)|dt
. (2.2)

Equation (2.2) is very similar to Equation (2.1) other than a weight function

is required in the integral. Note that WASD relationship becomes ASD if

the weight function is a constant. Thus ASD is a special case of WASD.

2.2.2 Other concepts

Armbruster and Delage (2015) proposes the concept of robust certainty

equivalent which removes the need of a benchmark by which the desired

prospect depending on our decisions should dominate.

The certainty equivalent is the amount for sure such that one would be

indifferent between it and the random prospect:

Definition 2.2.4 (Robust Certainty Equivalent (RCE)). The Robust Cer-

tainty Equivalent of a prospect X is:

Cu [X] , sup {s : u (s) ≤ E [u (X)]} , ∀u ∈ U .
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This can be formulated as an RCE maximization problem which is

tractable.

Maximum geometric mean (MGM) strategy has been proposed for in-

vestors with a sufficiently long horizon (see Kelly (1956), Breiman (1960),

and Markowitz (1976)). It aims for maximal terminal wealth by investing

in each period based on the logarithm of returns.

Definition 2.2.5 (Maximum Geometric Mean (MGM) Portfolio). For a

long investment horizon with multi-period, MGM portfolio is a portfolio

investing in each period aiming to maximize

E[log(1 +Rt)],

where Rt represents the one-period portfolio rate of return. Rt’s are inde-

pendently and identically distributed and have finite mean and variance.

In particular, it follows from the law of large numbers that a MGM

portfolio will almost surely outperform other portfolios in the long run

under mild conditions.
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Chapter 3

Literature review

This chapter presents a survey of literature pertinent to studies on stochas-

tic dominance (SD) as well as risk measures. Related optimization frame-

works, especially classical linear programming, will also be discussed. In

particular, we look into how the concept of SD and risk measures can be

adopted within various optimization frameworks.

3.1 Stochastic dominance (SD)

In this section, we start with the development of stochastic dominance

(SD). In particular, we review how the concept of SD has evolved. In addi-

tion to the review on the development of SD, previous studies that have at-

tempted to develop SD-related optimization framework are also discussed.

3.1.1 Development of SD

As more complicated and practical needs are considered in decision making,

the concept of SD has evolved along the way. The development of SD can

be broadly broken down as follows: Conventional SD and Almost SD.
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Conventional SD

In 1932, Karamata proved a theorem, i.e. Karamata’s inequality, which

is very similar to second-order SD (SSD). Then the concept of SD was

introduced in mathematics by Mann and Whitney (1947) and Lehmann

(1955). Mann and Whitney gave a test of whether a random variable is

stochastically larger than another. A statistic depending on the relative

ranks of the two random variables is proposed for testing the hypothesis

that the continuous cumulative distribution functions of the two are equiv-

alent. Lehmann made a comparison of several definitions of ordered sets

of distributions. These definitions attempt to make precise the intuitive

notion that large values of the parameter which labels the distributions go

together with large values of the random variables themselves.

Originating from the majorization theory, the theory of SD and its many

theoretical and empirical extensions in economics and finance were formally

developed when four papers were independently published by Hadar and

Russell (1969), Hanoch and Levy (1969), Rothschild and Stiglitz (1970)

and Whitmore (1970). The first three papers provide the definition of the

first-order SD (FSD) and second-order SD (SSD) as well as the criteria

rules and proof. The fourth paper develops those for the third-order SD

(TSD). The SD rules can easily be extended to higher orders, i.e. nth-

order SD. Since then, hundreds of papers have been written on the topic,

as highlighted in a survey paper by Levy (1992). Levy pointed out the

following four main areas of development:

1. further theoretical development;

2. application of SD rules to empirical data;

3. application of SD rules to other economic and financial issues;

4. application of SD rules in statistics.
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These traditional SD rules have been developed to offer, in many cases,

efficient criteria on decision making in both theory and application (Levy,

1992). However, these conventional rules sometimes have limitation in

failing to reveal some obvious dominance between prospects due to some

extreme utility functions in the case of even a very small violation of these

rules. Such examples can be seen in Leshno and Levy (2002).

Almost SD

The theory of ASD developed by Leshno and Levy (2002) plays an impor-

tant role in several fields, particularly in finance. They provide a new way

of imposing restrictions on the first and second derivatives of utility func-

tions so that the preferences that do not represent most decision makers

are excluded.

Since Leshno and Levy’s paper, other works have further drawn sev-

eral important applications. For example, Levy (2009) employs ASD to

make the case for “stocks for the long run”. It is shown that ASD and

the geometric-mean argument do not necessarily support long-run invest-

ment in equities. Specifically, bonds may be preferred to stocks over a

short horizon, but stocks are preferred in the long run. Regarding invest-

ment strategies, Bali et al. (2009) use data from the United States to show

that the ASD approach unambiguously supports the popular practice that

suggests a higher stock-to-bond ratio for long investment horizons. Levy

et al. (2010) construct several experiments to show that the ASD rule cor-

responds to sets of non-pathological preferences. Bali et al. (2011) further

adopt the ASD rule to examine the practice of investing in stock market

anomalies. They found that the ASD rule provides evidence for “the sig-

nificance of size, short-term reversal, and momentum for short investment

horizons and the significance of book-to-market and long-term reversal for

longer term horizons” (pp. 18). Lizyayev and Ruszczyński (2012) comment
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on the difficulty of introducing ASD constraints within an optimization

model and provide an alternative tractable formulation.

Tzeng et al. (2013) show that the almost second degree SD introduced

by Leshno and Levy (2002) does not possess the property of expected-

utility maximization. They modify the definition of the ASD to achieve

this property. Nonetheless, Guo et al. (2013a) construct some examples

to show that the ASD definition modified by Tzeng et al. (2013) does not

possess any hierarchy property and establish necessary conditions for ASD

criteria of various orders in Guo et al. (2013).

The advantages of ASD over SD and the mean-variance rule are as

follows:

1. ASD is able to rank otherwise unrankable alternatives.

2. ASD can eliminate alternatives that are considered to be inferior by

most investors.

3. ASD sheds light on the debate related to optimal portfolio compo-

sition and the planned investor horizon. It is possible to establish a

functional relationship between the percentage of equity in the port-

folio and the planned investors horizon. Namely, ASD may be em-

ployed by financial advisors in choosing portfolios for young versus

old investors.

However, Tan (2015) points out that ASD fails to reveal the preference

relationships observed in St. Petersburg paradox. As a result, the re-

lated concept of weighted almost stochastic dominance (WASD) has been

proposed. Specifically, a reference function is introduced and the set of

utility functions whose marginal utility differs from the reference marginal

function by a maximum factor is considered.

Tsetlin et al. (2015) develop generalized almost stochastic dominance

which combines different rules of almost stochastic dominance into one
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framework. This concept addresses the implementation issues and incon-

sistencies between integral conditions and their associated utility classes of

different rules of ASD.

Risk preference among decision makers

Risk preference is the tendency to choose a risky or less risky position.

Different decision makers may have different risk attitudes. There are three

basic types of risk preferences: risk-averse, risk seeking and risk-neutral.

Risk-averse decision makers dislike risk. They will stay away from

adding high-risk investments to portfolios and, in turn, will often forfeit

higher return. Such decision makers are generally characterized by concave

utility functions. Risk-seeking decision makers, in contrast, are generally

characterized by convex utility functions. Theoretical works linking SD

theory to the selection rules for risk-averse and risk-seeking decision mak-

ers under different restrictions on the utility functions has also been well

investigated. Quirk and Saposnik (1962), Hanoch and Levy (1969) develop

the theory of SD related to economics and obtained SD rules for risk-averse

decision makers. To distinguish SD theory for risk-averse decision makers

from that for risk-seeking decision makers, they call this ascending stochas-

tic dominance because the cumulative distribution function is integrated

in ascending order from the leftmost point of downside risk.

On the other hand, Hammond (1974), Li and Wong (1999), and Wong

(2007) develop the stochastic dominance rules for risk-seeking decision mak-

ers, which they call descending stochastic dominance because the cumula-

tive distribution function is integrated in descending order from the right-

most point of upside profit.

The application of ASD to risk-averse and risk seeking decision makers

has been discussed. The theory of second-order ASD developed by Leshno

and Levy (2002) can be considered as the case for risk-averse decision mak-
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ers. ASD relationships for risk-seeking decision makers to the first three

orders are developed by Guo et al. (2013b).

Among different risk preferences, risk-aversion is of great interest due

to its prevalence across decision makers. Eckel and Grossman (2008) show

that decision makers are generally risk-averse via abstract gamble experi-

ments and contextual environment experiments. In particular, their study

suggests that women generally have greater risk aversion then men. More-

over, these results from both kinds of experiments are consistent with field

studies. Rieger et al. (2015) conduct an extensive international survey on

risk preferences which reveals an attitude of risk aversion in gains and risk

seeking in losses on average. Furthermore, they highlight that the degree

of risk attitudes is affected by different factors such as economic conditions

and cultural factors. Brenner (2015) proposes a subjective option valuation

model to probe the risk preferences of U.S. executives. The author con-

cludes that the observed behavior among 7000 U.S. executives is basically

consistent with moderate relative risk aversion.

In conclusion, risk aversion is prevalent among most decision makers.

Hence, it is interesting to consider risk aversion in weighted almost stochas-

tic dominance relationships. Moreover, we expect that we could control the

degree of risk aversion in this new SD relationship so that it better describes

the behavior of decision makers.

3.1.2 Optimization framework of ASD

The connection between stochastic dominance relationships and optimiza-

tion problems has been broadly discussed. One possible way is to form the

stochastic dominance relationships in the constraints.

We start with the univariate case. Dentcheva and Ruszczyński (2003)

introduce SD constraints into stochastic optimization problems and develop

necessary and sufficient conditions of optimality and duality theory for their
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proposed optimization framework. They also show that Lagrange multi-

pliers regarding dominance constraints are concave non-decreasing utility

functions, which is consistent with risk-averse preference. Again Dentcheva

and Ruszczyński (2004) introduce SD relationships with second order into

stochastic optimization problems which leads to nonlinear constraints. In

this case, they develop a new splitting approach and provide the corre-

sponding optimality and duality theory.

The time horizon is another factor that could be of interest. For ex-

ample, Dentcheva and Ruszczyński (2008) are interested in a finite horizon

stochastic programming problem which improves the model by introduc-

ing a random reward sequence into the constraints. The dominance in the

constraints is defined by discounting two processes: a family of discount

sequences, and by applying a univariate order. Optimality conditions are

also provided. Haskell and Jain (2013) formulate stochastic dominance

constraints for infinite horizon discrete time Markov decision processes

(MDPs). They use a linear programming model to obtain the optimal pol-

icy and compute the dual of this linear program to obtain average dynamic

programming optimality equations that reflect the dominance constraints.

This work has also been extended to the multivariate case. Dentcheva

and Ruszczyński (2009) extend the optimization model they proposed in

Dentcheva and Ruszczyński (2003) to the multivariate case. They identify

a suitable multivariate stochastic order and describe its generator in terms

of utility functions. With the assumption of convexity, they reveal that the

Lagrange multipliers regarding dominance constraints are elements of the

generator.

Haskell et al. (2013) introduce stochastic order constraints defined in

terms of parametrized families of increasing concave functions. They show

that utility functions behave as the Lagrange multipliers of the correspond-

ing constraints, and that the dual problem is a search over utility functions.
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Homem-de Mello and Mehrotra (2009) introduce the cut generation

problem. In particular, they discuss linear optimization problems with a

newly introduced concept of multidimensional polyhedral linear second-

order stochastic dominance constraints and propose a cutting-surface algo-

rithm to deal with this problem.

Hu et al. (2012) study optimization problems with multivariate stochas-

tic dominance constraints of second order. They apply the Sample Average

Approximation (SAA) method to this problem which is a semi-infinite pro-

gram and develop a finitely convergent method to find an ε-optimal solution

of the SAA problem.

It can be noted that the above mentioned works implement a para-

metric representation of the utility functions used to reflect the dominance

constraints. From a different perspective, a non-parametric representation

of the utility functions can be employed. Luedtke (2008) suggests new

integer and linear programming formulations for optimization under first-

and second-order stochastic dominance constraints. They also present a

specialized branching strategy and heuristics. Armbruster and Luedtke

(2015) proposes a constraint using a new version of multivariate stochas-

tic dominance which connects to expected utility maximization theory and

is relatively tractable. The good thing here is that such a constraint can

be formulated with linear constraints for second-order dominance relations

and with mixed-integer constraints for first-order relations. Haskell et al.

(2014) investigate the optimization problem with an infinite number of

constraints indexed by a function space of non-decreasing concave utility

functions. They focus on effective numerical methods of SAA formulation

and Lagrangian duality theory.

In the above mentioned previous studies, one issue that can be noted

is that the optimization frameworks generally require a benchmark in or-

der to introduce the stochastic dominance constraints (i.e. the desired
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prospect depending on our decisions should stochastically dominate the

given benchmark). However, the choice of a benchmark is not trivial to

make and remains an interesting topic to explore. So far we do not have

reasonable guidance in constructing a benchmark, in particular, for differ-

ent risk preferences. The robust certainty equivalent firstly introduced in

Armbruster and Delage (2015) is an alternative, which is a different concept

from Ben-Tal and Teboulle (2007).

Another issue is that there is limited work in formulating almost stochas-

tic dominance constraints, or more generally weighted almost stochastic

dominance, in optimization problems. Therefore, it is interesting to formu-

late almost, as well as, weighted almost stochastic dominance constraints

in our optimization framework.

3.2 Risk measures

In this section, we firstly review the previous work on risk measure with

some good properties (e.g. coherent risk measure). Specifically, we are

interested in scalar-valued and vector-valued risk measures. In addition

to the review on risk measures, previous studies that aim to develop the

optimization framework for general risk measures are also discussed. In

particular, we focus on studies related to our four main considerations

respectively.

3.2.1 Scalar-valued risk measures

We start with the review on scalar-valued risk measure functions. Risk

measures in this category return a real scalar to reflect the degree of risk.

Artzner et al. (1999) is a pioneering paper in coherent risk measure which

discusses methods of measurement of market and non-market risks. In par-

ticular they determine a set of four desirable properties and refer to the
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measures satisfying these properties “coherent”. Follmer and Schied (2002)

propose the concept of a convex risk measure which is an extension of the

idea in Artzner et al. (1999). They prove a corresponding extension of the

representation theorem in terms of probability measures on the underlying

space of scenarios. Ruszczyński and Shapiro (2006) introduce convex risk

functions in optimization problems. Specifically they develop new repre-

sentation theorems for risk models, and optimality and duality theory for

problems with convex risk functions with convex analysis and optimization

theory.

3.2.2 Vector-valued risk measures

When dealing with multivariate prospects it is sometimes more natural

to use vector-valued risk functions. Risk functions are extended to the

vector-valued setting in Jouini et al. (2004) and Burgert and Rschendorf

(2006). Jouini et al. (2004) defines coherent risk measures as set-valued

maps from L∞n into Rd satisfying some axioms. They also discuss the ag-

gregation issue as well as necessary and sufficient conditions of coherent

aggregation. Burgert and Rschendorf (2006) introduce convex risk mea-

sures for portfolio vectors defined axiomatically. They further illustrate

two natural classes of examples of risk measures for portfolio vectors which

are easy to interpret and investigate their corresponding properties. Cascos

and Molchanov (2007) develop risk functions that take values in abstract

cones, which include the classical risk measures and set-valued risk mea-

sures and obtains a natural definition of vector-valued risk measures. They

also demonstrate that the idea of depth-trimmed regions from multivariate

statistics is closely associated with the definition of risk measures. Hamel

and Heyde (2010) define set-valued convex measures of risk as well as the

corresponding acceptance sets. They also show their dual representation

theorems. Set-valued measures of risk are also provided based on primal

26



and dual descriptions. Ararat et al. (2014) shed light on multi-asset fi-

nancial market with frictions. The utility-based risk of a financial posi-

tion with such conditions can be quantified by set-valued risk measures,

and market frictions are modeled by convex random solvency regions rep-

resenting proportional transaction costs or illiquidity effects. Molchanov

and Cascos (2016) consider risky positions in multivariate portfolios and

give a constructive approach for vector-valued risk functions where a set-

valued portfolio is acceptable if it possesses a selection where all individual

marginals are acceptable. The obtained risk measure possesses the good

properties of coherency, law invariance and having values being upper con-

vex closed sets. The dual representation was also provided.

3.3 Optimization of general risk measures

It is not always suitable to guarantee the reliability of a decision when we

maximize expected performance in stochastic optimization. As a result,

a number of risk measures, which generalize expected performance, have

been proposed to give the decision maker flexibility in expressing his risk

preferences. However, it is still challenging to do risk-aware optimization

in practice from both a modeling and a computational perspective. In

this section, previous studies pertaining to the four considerations (i.e.

multivariate prospects, preference uncertainty, computational tractability,

target-oriented measure) mentioned in the introduction will be reviewed.

3.3.1 Multivariate prospects

A general risk-aware optimization framework must be able to handle mul-

tiple criteria. Many key problems in stochastic optimization have multiple

criteria. Thus, an effective risk management paradigm must be able to

handle multivariate random prospects.
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Gutjahr and Pichler (2013) survey many key stochastic multi-objective

optimization problems and their solution techniques, and focuses on the

analysis of decision-making problems that simultaneously consider multi-

ple objectives and stochastically represented uncertainty. It is argued that

many key problems are naturally multi-objective. In Liefooghe et al. (2007),

a multi-objective formulation of the flow-shop scheduling problem sub-

jected to a wide range of uncertainties is proposed. Several multi-objective

methods that are able to handle any type of probability distribution are

also discussed. Chen et al. (2010) consider three stochastic multi-objective

models for designing transportation network under demand uncertainty,

and show how to compute Pareto optimal solutions that explicitly opti-

mize all objectives under demand uncertainty by simultaneously generating

a family of optimal solutions.

It can be noted that the combination of multiple decision criteria and

uncertainty is of great interest for its practical usefulness. Many financial

positions, for instance, a portfolio whose assets cannot be aggregated, fall

into the multivariate case.

3.3.2 Preference uncertainty

It is difficult for a decision maker to precisely express his risk preferences.

In response, a practical risk management system must be robust against

ambiguity in risk preferences. The case of expected utility maximization

has received major attention.

In Armbruster and Delage (2015), ambiguity in risk preferences is con-

sidered in expected utility maximization. They propose finding a solution

that is robust to a set of possible utility functions obtained by preference

elicitation. In particular, they showed that the worst-case utility can be

expressed as the maximum of a reasonable sized linear program. In Delage

and Li (2015), the discussion is extended to ambiguity in risk preferences
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over general risk functions. They seek financial positions that perform

best given the worst-case of the risk measure potentially perceived by the

decision maker and show how this robust risk minimization problem can

be solved numerically by formulating convex optimization problems in a

tractable way.

The assumption of incomplete preference information is necessary. Al-

though it has been highlighted that risk-aversion is prevalent in people’s be-

havior, risk-seeking behavior or a mixture of the two has also been observed

(Kahneman and Tversky, 1979). Even for risk-averse decision makers, the

extent to which they are risk-averse also differs.

3.3.3 Computational tractability

Some research work has been done focusing on the computational tractabil-

ity of robust optimization, which is a topic of major concern in the litera-

ture. Goh and Sim (2010) deals with a linear programming problem with

uncertainties, which has expected values both in the objective and con-

straints. They obtain an approximate solution to the problem that is dis-

tributionally robust which is more flexible than using linear decision rules.

In Wiesemann et al. (2014), distributionally robust optimization is studied

where the true probability distribution lies in standardized ambiguity sets.

In particular, we are interested in risk-aware frameworks that can be

evaluated with convex optimization techniques. For instance, the risk-

aware formulations in Armbruster and Delage (2015) and Delage and Li

(2015) can be cast as convex optimization problems on finite probability

spaces. In Haskell et al. (2014), the technique in Armbruster and Delage

(2015) is combined with sample average approximation and extended to

the multivariate setting on general probability spaces.
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3.3.4 Target-oriented measure

In real life, it is often the case to make a specific amount of monetary

reward and to interpret risk in terms of loss to meet this target. Therefore,

a decision maker often evaluates the fitness of his decision with respect to

a target or goal. A comprehensive optimization framework should ideally

be able to take such targets into account.

Brown and Sim (2009) firstly propose satisficing measures to quantify

risk of financial positions based on the ability to achieve financial tar-

gets. Brown et al. (2012) continue this work and develop a general class

of aspirational risk preferences by showing that these preferences share a

representation in terms of targets. It can be noted that a target-based risk

measure has the advantage of easy interpretation and is more natural to

specify than risk tolerance parameters.

Based on the above mentioned four considerations, we are interested

in the formulations that can be evaluated with convex optimization tech-

niques. Basically, the approaches that deal with risk measure can be cat-

egorized into two types. One type is by subgradient characterization, as

shown in Armbruster and Delage (2015), Delage and Li (2015) and Haskell

et al. (2014). The other one is the acceptance approach. The previous re-

lated work are Jouini et al. (2004), Burgert and Rschendorf (2006), Hamel

et al. (2011), and Molchanov and Cascos (2016).

The review above has revealed that many aspects are discussed in terms

of the optimization framework. However, a unified framework of almost

stochastic dominance that satisfies all four considerations is still not well

studied. Furthermore, the algorithms with respect to the framework are

also not yet deeply investigated.

30



Chapter 4

Weighted risk-averse almost

stochastic dominance and its

optimization

4.1 Introduction

As reviewed in Section 3.1, the theory of stochastic dominance has been in-

vestigated extensively and deeply. The introduction of almost and weighted

almost stochastic dominance provides more flexibility in decisions rules as

well as more reasonable restrictions on the set of utility functions consid-

ered. In particular, ASD requires that the marginal utilities do not deviate

by a maximum factor while WASD requires that the marginal utilities do

not deviate from that of a reference utility by a maximum factor. WASD re-

duces to ASD when the reference utility is linear. However, these concepts

do not consider the risk-aversion factor which, as highlighted previously, is

prevalent among decision makers. Therefore, it is natural and reasonable

to focus on risk-averse decision makers in WASD.

The combination of stochastic dominance relationships and optimiza-

tion methods has been broadly discussed in the previous chapter. One
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natural way is to form the stochastic dominance relationships in the con-

straints. However, there is limited work in formulating ASD nor WASD

constraints in optimization problems.

In this chapter, we will first propose WASD relationship under risk-

averse preferences. The necessary and sufficient conditions would be pro-

vided. Next, we will formulate our proposed WASD in the constraints in

our optimization framework. We will resort to linear programming and its

duality as our technique. Generalized stochastic dominance relationship

introduced by Tsetlin et al. (2015) can be investigated in a similar way.

As noted, these is no reasonable guidance in the construction of a bench-

mark in SD constraints. As a remedy, an optimization framework of robust

certainty equivalent maximization problem will also be discussed.

In the following, the conditions for WASD for risk-averse decision mak-

ers are defined in Section 4.2. A WASD constrained convex optimization

framework for risk averse decision makers will be obtained in Section 4.3.

Section 4.3.3 formulates the WASD as a robust certainty equivalent maxi-

mization problem.

4.2 Weighted risk-averse almost stochastic

dominance

4.2.1 Preliminary

There are a variety of SD relationships, each accounting for a different

set of utility functions. We would like to provide a flexible optimization

framework that can deal with these relationships by providing a particular

category of stochastic dominance relationships on L.

There is a difficulty with using conventional SD relationships because

the corresponding utility sets contain “extreme” utility functions that do
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not correspond to decision makers observed in practice. One example would

be that most “reasonable” investors would prefer a higher proportion of

stocks as the investment horizon increases (Leshno and Levy, 2002). An

“extreme” utility function could be in the form of not assigning a relatively

high marginal utility to very low values or a relatively low marginal utility

to large values. These relationships on L are thus quite restrictive and lead

to challenges for use in practice. In optimization problems, they may even

make the problem infeasible.

ASD resolves this difficulty by giving relaxations of traditional stochas-

tic dominance relationships. Several notions of ASD that are more flexible

than conventional SD have been proposed. The idea is to choose a strict

subset of the corresponding utility set of conventional SD that gives rise

to a weaker stochastic dominance relation but that only includes realistic

utility functions.

Recently, Tan (2015) proposed the necessary and sufficient conditions

for WASD, which implies the unanimous preference by all individuals with

non-decreasing utility functions whose marginal utilities are bounded by a

reference marginal utility. However, it can be noted that risk-aversion is

prevalent among decision makers and therefore we suggest including con-

cavity restrictions in WASD.

4.2.2 Necessary and sufficient conditions

Here, we develop a new almost stochastic dominance relationship based on

the marginal utilities of the decision maker. There are multiple reasons

why our proposed condition is of interest:

1. Individuals have been observed to be risk-averse under multiple set-

tings (Brenner, 2015; Rieger et al., 2015). Therefore, the analyst may

wish to check for unanimous preference across all non-extreme and

non-decreasing concave utility functions, rather than across all non-
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extreme and non-decreasing utility functions, when screening a set of

feasible acts. In particular, the efficient set (i.e., set of non-dominated

acts) obtained by WASD may contain acts that are only preferred by

risk-seeking individuals and can be further eliminated if the decision

maker is known to be risk-averse. Hence, our proposed condition can

reduce the size of the efficient set, simplifying the decision process.

2. From the perspective of optimization, our proposed condition has ad-

vantages over ASD and second-degree stochastic dominance (SSD).

Firstly, our condition leads to convex optimization problems because

it is defined in terms of non-decreasing concave functions. ASD in-

cludes non-convex functions, and thus we may not obtain convex op-

timization problems under ASD. Secondly, our condition is more flex-

ible than SSD and it gives the decision maker more modeling power.

Specifically, even if the decision maker sets a reasonable benchmark

for performance, there may not be any feasible decisions which domi-

nate the benchmark in SSD. However, feasible optimization problems

can be obtained for reasonable benchmarks under our proposed con-

dition by adjusting the parameter ε, when necessary.

We present a necessary and sufficient condition for unanimous pref-

erence by all rational risk-averse decision makers whose utility does not

deviate too much from a reference utility. We term our condition weighted

risk-averse almost stochastic dominance (WRASD).

Definition 4.2.1. Weighted risk-averse almost stochastic dominance. Given

a constant 0 < ε < 0.5, we define the family of utility functions

Uw (m, ε) ,

{
u ∈ Uicv ∩ C1 (X ) :

(
1

ε
− 1

)−0.5

m (x) ≤ u′ (x) ≤
(

1

ε
− 1

)0.5

m (x) , ∀x ∈ X

}
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We call the resulting relationship “weighted risk-averse almost stochastic

dominance” (WRASD) if E [u (X)] ≥ E [u (Y )] for all u ∈ Uw (m, ε).

Fig. 4.1. Illustration of set Uw (m, ε).

The set Uw (m, ε) is the set of all differentiable nondecreasing concave

utility functions whose marginal utility differs from m(t) by a maximum

factor of
[

1
ε
− 1
]0.5

, as shown in Figure 4.1. It provides greater flexibility in

expressing risk preferences than Uicv through user control over the weight

function m and the parameter ε. From the definition, we see that functions

in Uw (m, ε) are bounded from above and below:

(
1

ε
− 1

)−0.5 ∫ x

xmin

m (ξ) dξ ≤ u (x) ≤
(

1

ε
− 1

)0.5 ∫ x

xmin

m (ξ) dξ, ∀x ∈ X .

Example 4.2.1. CRRA (Constant relative risk-averse) utility functions

have the general form:

u(x) =


1

1−αx
1−α if α > 0, α 6= 1,

lnx if α = 1,

where α is the risk aversion parameter. In this case the weight function

m(x) has the form:

m(x) = x−α, α > 0.
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In the following theorem, we give necessary and sufficient conditions for

the preference of X over Y by WRASD to hold in terms of the cumulative

distribution functions FX and FY , respectively.

Theorem 4.2.1. For 0 < ε < 0.5, X �Uw(m, ε) Y if and only if

[(
1

ε
− 1

)0.5

m (xmin)−
(

1

ε
− 1

)−0.5

m (xmax)

]

· max
x∈[xmin, xmax]

{∫ x

xmin

[FX(t)− FY (t)] dt

}
(4.1)

≤
(

1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (t)− FX(t)] dt.

Proof. See Appendix A.

Theorem 4.2.1 provides a condition that can be used to check for unan-

imous preference by all rational risk-averse decision makers whose utility

does not deviate too much from a reference utility by a maximum factor(
1
ε
− 1
)
. The proof of the theorem is based on the observation that the

second derivative of a concave utility function is non-increasing. Hence,

it is sufficient to ensure preference for all utility functions whose marginal

utility at the smallest and largest element in X , rather than across the

whole outcome space, differs by a maximum factor
(

1
ε
− 1
)
.

It is noted that WRASD is based on the difference between the area

under FX and FY (i.e., FY (t) − FX(t)) and is different from ASD, which

is based on the area between FX and FY (i.e., ||FX − FY ||). In particular,

the max term in the left hand side of Equation (4.1) is the largest violation

area, which is A1 as shown in Figure 4.2; the integral term in the right hand

side of Equation (4.1) is the real area of intersection between the two cdfs,

not the area in absolute value, which is A2 − A1 as shown in Figure 4.2.

Example 4.2.2. We provide an example to illustrate WRASD relation-

ship. Suppose we have two discrete random variables X and Y and their

probability mass functions:
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Fig. 4.2. Illustration of WRASD.

Fig. 4.3. Cumulative distribution functions of X and Y
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Table 4.1
Probability mass functions of X and Y .

t 1000 2000 3000 4000
Pr(X = t) 0 0.65 0 0.35
Pr(Y = t) 0.32 0 0.68 0

The cumulative distribution functions of X and Y can be seen in Fig-

ure 4.3. In this case, xmin = 1000, xmax = 4000. According to the cumula-

tive distribution functions of X and Y , we obtain

max
x∈[xmin, xmax]

{∫ x

xmin

[FX(t)− FY (t)] dt

}
=

∫ 3000

1000

[FX(t)− FY (t)] dt = 10,

and ∫ xmax

xmin

[FY (t)− FX(t)] dt = 340.

In addition, we suppose the utility function of the decision maker can

be approximated by a logarithm function. Therefore, we have m(x) = x−1.

It follows that m(xmin) = 1
1000

and m(xmax) = 1
4000

.

According to Theorem 4.2.1, we have

[(
1

ε
− 1

)0.5

· 1

1000
−
(

1

ε
− 1

)−0.5

· 1

4000

]
· 10 ≤

(
1

ε
− 1

)−0.5

· 1

4000
· 340.

Therefore, ε ≥ ε∗ = 4
39

= 0.103. We conclude that the preference for X

over Y can be guaranteed for all rational risk-averse decision makers whose

utility functions belong to the set Uw
(

1
x
, 0.103

)
.

4.3 Optimization with stochastic dominance

We believe that Armbruster and Delage (2015) addresses an important lim-

itation in conventional stochastic optimization approaches and that their

proposed approach is suitable when we have very limited information re-

garding the utility function of the decision maker (e.g., only know that the
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decision maker is risk averse) and it is possible to have the decision maker

evaluate a series of pairwise comparisons between lotteries. A difficulty

in applying the approach proposed by Armbruster and Delage (2015) is

that decision makers may not be willing or may be biased to make a se-

ries of pairwise comparisons between lotteries in practice. In such a case,

the analyst may wish to determine the optimal solution based on a CRRA

utility function, which can be appropriate for describing the preferences of

individuals across multiple settings (see Wakker (2008)). The appropriate

γ value to use in the CRRA function can be based on earlier work, like

the study by Brenner (2015) which provides comprehensive risk aversion

parameters estimates based on option exercising data.

It is important to note that, in this work, we do not assume that the

preference of the decision maker is perfectly described by a CRRA utility

function. If that were so, the robustness of a solution with respect to de-

viation in the value of α can easily be studied by conventional sensitivity

analysis. Rather, we merely assume that the utility function of the decision

maker deviates marginally from a CRRA utility function with predefined

risk aversion parameter. This assumption is more appropriate as it is un-

likely that the preference of the decision maker is perfectly described by a

CRRA utility function in practice.

In this section, we consider the case where the decision maker’s util-

ity function can be estimated reasonably well by some parametric function

(e.g., CRRA utility function). We seek a solution that is robust to devia-

tions from our estimated utility function. In particular, we consider a set of

utility functions whose marginal utility deviates from a reference marginal

utility by no greater than some predefined factor τ . We note that this set

is similar to that which was proposed by Tan (2015) in defining WASD to

explain the unanimous preference for the non-risky reward observed in the

classical St. Petersburg paradox (Bernoulli, 1954).
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Our result is particularly helpful in practice because constraints based

on conventional stochastic dominance can be too strict, resulting in poor

solutions. In the extreme case, the introduction of these stochastic dom-

inance constraints can result in infeasible optimization problems (i.e., no

feasible solution stochastically dominates the benchmark), as we will illus-

trate in a numerical example using a simple portfolio optimization problem.

The introduction of WASD constraints, rather than constraints based on

conventional stochastic dominance, provides the analyst with the flexibility

to adjust the degree of dominance desired.

4.3.1 Problem description

In the stochastic optimization literature, it is often assumed that the utility

function of the decision maker is available. However, the utility function

of the decision maker is generally unknown in practice. One way to resolve

this problem is to elicit the utility function by asking the decision maker

to make a series of pairwise comparisons between lotteries.

As defined in Section 2.1, we have a random variable G (z) determined

by the elements in the decision set Z. In this chapter, we consider G (z)

as reward. In particular, we will benchmark G against Y with respect to

almost stochastic dominance. We first shed light on the set of all nonde-

creasing convex utility functions Uicv ⊂ C (X ). Given a set U ⊂ Uicv, we

obtain

sup
z∈Z
{f (z) : G (z) �U Y } . (4.2)

Problem (4.2) has finitely many variables and infinitely many con-

straints via the SD relationship of G (z) and Y . As a semi-infinite pro-

gramming problem, Problem (4.2) is generally difficult to solve because we

cannot enumerate all of the constraints. The main difficulty is that the

constraint index set U in Problem (4.2) is an infinite-dimensional space of

functions. However, if U is suitably chosen then we can use linear pro-
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gramming duality to get a more tractable representation of the dominance

constraint.

Since the SD relationship can be revealed by the expected utility given

the corresponding utility set, we can deal with the SD relationship by using

the shortfall function

ψ (G (z) ; U, Y ) , inf
u∈U

E [u (G (z))− u (Y )] . (4.3)

It can be noted that function ψ (G (z) ; U, Y ) is concave with respect to z.

Each z → E [u (G (z))− u (Y )] is concave by Assumption A2 and the fact

that u ∈ Uicv. The infimum of concave functions is concave.

Hence, we can rewrite Problem (4.2) with a single functional constraint

as

sup
z∈Z
{f (z) : ψ (G (z) ; U, Y ) ≥ 0} . (4.4)

Problems (4.2) and (4.4) are equivalent, but Problem (4.4) is in a more

computationally advantageous form as we will see. Immediately, we can

see that Problem (4.4) is a convex optimization problem. The objective

f is concave by Assumption A3, and the implicit constraints z ∈ Z are

convex by Assumption A1.

For Problem (4.4), the general scheme is as follows with two stages:

1. Take the dual of the minimization in Problem (4.3) to obtain a min-

imization problem

2. Amalgamate the two maximization objectives to obtain a single min-

imization problem

When the minimization in Problem (4.3) can be written as the linear

programming problem (abusing notation)

min
x
{〈g (G (z)) , x〉 : Ax ≥ b}
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with dual

max
p
{〈b, p〉 : A∗p ≤ g (G (z))}

then we can write Problem (4.4) as

max
z∈Z, p

{f (z) : 〈b, p〉 ≥ 0;A∗p ≤ g (G (z))} ,

which is a convex optimization problem.

In addition, Assumptions A4 and A5 hold here. Since, we introduce

a discretization Θ , {θ1, . . . , θK} ⊂ X of X where θ1 < θ2 < · · · < θK ,

θ1 = xmin, and θK = xmax. In this case, we can produce Θ by dividing

the interval X uniformly. Then the length of the uniform sub-intervals is

a measure of the granularity of Θ. Since both the benchmark Y and Θ are

user inputs, we could ensure that the discretization Θ includes the support

of Y .

In order to solve Problem (4.4), we start with the subproblem (4.3).

Basically we have two steps in solving Problem (4.3), as in Haskell et al.

(2014):

1. Determine the values of u on the finite set Θ, vk = u (θk) for k =

1, . . . , K.

2. Interpolate among {vk}Kk=1 to compute the term

E [u (G(z))] =
∑
ω∈Ω

P ({ω})u (G(z) (ω))

by setting the values {u (G(z) (ω))}ω∈Ω.

Since interpolation is required, we resort to piecewise linear function.

Let:

• vk be the value of u at θk for k = 1, . . . , K (without loss of generality

we just take v0 = 0);
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• sk be the slope of u on (θk, θk+1) for k = 1, . . . , K − 1.

Then a piecewise linear function u ∈ C (X ) will be like

u (x) = sk (x− θk) + vk, x ∈ [θk, θk+1] , ∀k = 1, . . . , K − 1,

In this way, we can ensure the continuity of utility functions. This

piecewise linear u therefore is completely determined by its values at its

breakpoints v = {vk}Kk=1 ∈ RK and the subgradients at the breakpoints

s = {sk}K−1
k=1 ∈ RK−1.

The following result is a necessary condition for a piecewise linear u to

lie in Uicv. With this result, the first step above mentioned is done. The

values of u on the finite set Θ can be determined.

Lemma 4.3.1 (Haskell et al. (2016)). (i) Let u ∈ Uicv, then there exist

v = {vk}Kk=1 ∈ RK and s = {sk}K−1
k=1 ∈ RK−1 such that

vk+1 = sk (θk+1 − θk) + vk, ∀k = 1, . . . , K − 1,

sk ≥ sk+1 ≥ 0, ∀k = 1, . . . , K − 2.

(ii) Given {vk}Kk=1 ∈ RK and {sk}K−1
k=1 ∈ RK−1, define

u∗ (x) = min
k
{sk (θk+1 − θk) + vk} ,

then u∗ ∈ Uicv.

Proof. See Boyd and Vandenberghe (2004), Subsection 6.5.5. We see that

this condition is simply the requirement that a subgradient exists for u at

all θ ∈ Θ, and that the subgradients are decreasing.

In Lemma 4.3.1, we set up the framework of a non-decreasing con-

cave utility function, that is, the discrete values {vk}Kk=1 would lie on a

non-decreasing concave function. In the first step, since the domain is
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Fig. 4.4. Illustration of Lemma 4.3.1 (i).

Fig. 4.5. Illustration of Lemma 4.3.1 (ii).
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dicretized, there are many intervals. In each interval, there is a linear func-

tion determined by the values of two end points. Among the intervals, the

slopes of linear functions are in the non-increasing order, as shown in Fig-

ure 4.4. In part (ii), we aim to find the lowest part of all linear functions in

each interval via the minimization problem. Thus the resulting piecewise

function is concave, as shown in Figure 4.5.

The next lemma describes a procedure for linearly interpolating between

values {u (θ)}θ∈Θ for any u ∈ Uicv. With this result, the second step above

mentioned can be done.

Lemma 4.3.2 (Haskell et al. (2016)). Let u ∈ Uicv, and define

u∗ (x) , min
a≥0, b∈R

a x+ b

s.t. a θ + b ≥ u (θ) ,∀θ ∈ Θ.

i) u∗ is nondecreasing and concave.

ii) u∗ is equal to −∞ outside conv {Θ} ∪ R+.

iii) If û is another increasing concave function with û (θ) ≥ u (θ) for all

θ ∈ Θ, then û ≥ u∗.

Proof. i) The function u∗ is increasing and convex as it is the supreme of

increasing linear functions. It is also immediate that u∗ (θ) = u (θ) for all

θ ∈ Θ.

ii) In the domain where it is outside conv {Θ} ∪R+, since we minimize

on a such that a ≥ 0, we will have a→∞ which results in u∗ → −∞.

iii) Moreover, u∗ ≤ û for any û ∈ Uicv with û (θ) ≥ u (θ) for all θ ∈ Θ.

We see that the hypograph of u∗ is by definition the intersection of the

hypographs of all û ∈ Uicv with û (θ) ≥ u (θ) for all θ ∈ Θ.

In Lemma 4.3.2, for any values determined by decision makers, we in-

terpolate them among the framework we have set up in Lemma 4.3.1, that
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Fig. 4.6. Illustration of Lemma 4.3.2.

is, they will lie one the piecewise concave function, as shown in Figure 4.6.

Theorem 1 in Armbruster and Delage (2015) gives a similar proof as

well. By observation, u∗ has the following form according to Lemma 4.3.2:

u∗ (x) = u (θk)+
u (θk+1)− u (θk)

θk+1 − θk
(x− θk) , x ∈ [θk, θk+1] , ∀k = 1, . . . , K−1.

It follows that Lemma 4.3.2 can be used to linearly interpolate between the

values of a piecewise linear u given by {vk}Kk=1.

To achieve this, we introduce some additional decision variables for the

later development: x→ aωx+bω represents a linear function corresponding

to each scenario ω ∈ Ω. Let a = {aω}ω∈Ω ∈ R|Ω| and b = {bω}ω∈Ω ∈ R|Ω| be

the parameters for the family of linear functions just defined. We use these

functions to linearly interpolate among the values {vk}Kk=1 of a piecewise

linear function.

So far, we have done the two steps so that the utility function linearly

interpolated is non-decreasing and concave. For the sake of convenience,

we define the following set:
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For this result, let

Vp ,
{

(v, s, a, b) ∈ RK × RK−1 × R|Ω| × R|Ω| :
y

vk+1 = sk (θk+1 − θk) + vk, ∀k = 1, . . . , K − 1,

aωθk + bω ≥ vk, ∀k = 1, . . . , K, ∀ω ∈ Ω,

sk ≥ sk+1 ≥ 0, ∀k = 1, . . . , K − 2,

a ≥ 0, v1 = 0} .

represent a set of constraints on the parameter values that determine a

piecewise linear u. We can use it in our upcoming linear programming

formulation because this set consists of only linear constraints on the vari-

ables.

4.3.2 Weighted risk-averse almost stochastic domi-

nance

In the previous section, we have investigated how to interpolate nondecreas-

ing and concave utility functions piecewise linearly. This corresponds to

conventional SD relationships. However, this is not practical since the set of

nondecreasing and concave utility functions contains “extreme” functions,

which does not describe the preferences of most individuals in practice.

WRASD, which can reveal unanimous preference by all rational risk-averse

decision makers whose utility does not deviate too much from a reference

utility by a maximum factor
(

1
ε
− 1
)
, can be more appropriate. Therefore,

the SD we proposed in Section 4.2 provides a good solution to this problem.

We are specifically interested in

sup
z∈Z
{f (z) : ψ (G (z) ; Uw (m, ε) , Y ) ≥ 0} , (4.5)

where the dominance constraints are generated by WRASD.
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In this circumstance, the piecewise linear utility function should fall

in some range determined by the weight function. This can be realized by

imposing constraints on the subgradients at the breakpoints of the piecewise

linear utility function. Since the utility function is interpolated piecewise

linearly, it is reasonable to assume a piecewise linear reference utility. This

leads to the piecewise constant weight function m0 : X → R.

m0 (x) = wk,∀x ∈ [θk, θk+1), ∀k = 1, . . . , K − 2,

m0 (x) = wK−1,∀x ∈ [θK−1, θK ] .

This is the most basic possible form. We will see that by imposing

constraints on the subgradients at the breakpoints of the piecewise linear

utility function leads to linear programming.

In the next theorem, we show that ψ (X; Uw (m0, ε) , Y ) can be solved

by a linear programming problem:

Theorem 4.3.1. Suppose Ω is finite and X, Y ∈ L, then ψ (X; Uw (m0, ε) , Y )

is equal to the optimal value of the following linear programming problem:

min
v, s, a, b

∑
ω∈Ω

P ({ω}) (aωX (ω) + bω)−
K∑
k=1

Pr {Y = θk} vk (4.6)

s.t. (v, s, a, b) ∈ Vp, (4.7)(
1

ε
− 1

)−0.5

wk ≤ sk ≤
(

1

ε
− 1

)0.5

wk, ∀k = 1, . . . , K − 1. (4.8)

Proof. The objective term
∑

ω∈Ω P ({ω}) (aωX (ω) + bω) and constraint (4.7)

correspond to Lemma 4.3.1 and Lemma 4.3.2, and the objective term∑K
k=1 Pr {Y = θk} vk corresponds to E [u (Y )]. Finally, constraint (4.8) cor-

responds to the weight function and expresses the weights on the subgra-

dients of u ∈ Uw (m0, ε) required by WRASD.

The proceeding theorem discusses the dual to Problem (4.6) - (4.8)and
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shows how to solve Problem (4.5) directly by using linear programming

duality. We introduce dual decision variables λ = {λk}K−1
k=1 ∈ RK−1, µ =

{µk}K−2
k=1 ∈ RK−2

+ , δ = {δkω}k∈K,ω∈Ω ∈ RK|Ω|
+ , γ =

{
γlk, γ

l
k

}K−1

k=1
∈ R2K−2

+ .

Theorem 4.3.2. (i) Problem (4.5) is equivalent to

max
z∈Z, λ, µ≥0, δ≥0, γ≥0

f (z) (4.9)

s.t.
K−1∑
k=1

(
1

ε
− 1

)−0.5

wkγ
l
k −

K−1∑
k=1

(
1

ε
− 1

)0.5

wkγ
u
k ≥ 0,

(4.10)

− Pr ({Y = θk}) + λk−1 − λk +
∑
ω∈Ω

δkω = 0, ∀k = 1, . . . , K,

(4.11)

− λk (θk+1 − θk) + µk−1 − µk − γlk + γuk ≥ 0, ∀k = 1, . . . , K − 1,

(4.12)

P ({ω}) [G (z)] (ω)−
K∑
k=1

θkδkω ≥ 0, ∀ω ∈ Ω, (4.13)

P ({ω})−
K∑
k=1

δkω = 0, ∀ω ∈ Ω. (4.14)

(ii) Problem (4.9) - (4.14) is a convex optimization problem.

Proof. See Appendix B.

Remember that we have just introduced the piecewise constant weight

function, which is the most basic form. We now evaluate how well a piece-

wise constant weight function m0 can approximate a general weight func-

tion m.

We have assumed that m is Lipschitz continuous with constant L, which

is a relatively strong form of function uniform continuity. In order to com-

pare a piecewise constant weight function m0 with a general weight function

m, we construct m0 (x) = m (θk) for x ∈ [θk, θk+1) for k = 1, . . . , K − 1.

With this construction, we can also show that any utility function could
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be approximated by a piecewise linear one. The following proposition gives

an error estimate.

Proposition 4.3.1. For ε > 0 such that maxi=2,...,K (θi − θi−1) < ε, we

have:

(i) ‖m−m0‖C(X ) < εL.

(ii) For any u ∈ Uw (m, ε), there is a û ∈ Uw (m0, ε) such that ‖u −

û‖C(X ) <
(

1
ε
− 1
)0.5

ε L (xmax − xmin).

Proof. See Appendix C.

The preceding result shows that we could approximate a general weight

function with a piecewise constant one. Note that it is not always the case

that Uw (m, ε) ⊂ Uw (m0, ε) in general, since m0 ≥ m by our construction.

However, since m0 ≥ m, for any u ∈ Uw (m, ε) there exists a û ∈ Uw (m0, ε)

with û ≥ u.

4.3.3 Robust certainty equivalent maximization prob-

lem

So far we have discussed the optimization framework which introduces

stochastic dominance relationships. All of them require a given bench-

mark by which the desired prospect depending on our decisions should

dominate. Armbruster and Delage (2015) proposes the concept of robust

certainty equivalent which removes the need of a benchmark.

We briefly comment on the robust certainty equivalent (RCE) for G.

The certainty equivalent is the amount for sure such that one would be

indifferent between it and the random prospect:

Cu [G (z)] , sup {s : u (s) ≤ E [u (G (z))]} , ∀u ∈ U .

Since we do not know the exact utility functions but a prevalent class of
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utility functions, we adopt the worst-case utility function for convenience,

which is tractable in the formulation. The RCE maximization problem

looks like

max
z∈Z

inf
u∈U

Cu [G (z)] . (4.15)

Problem (4.15) avoids the difficult problem of constructing a benchmark

as in stochastic dominance constraints.

A big advantage of the formulation of robust certainty equivalent is that

it avoids the difficult problem of constructing a benchmark as in stochastic

dominance constraints. The choice of a benchmark is not trivial to make

and remains an interesting topic to explore. So far we do not have reason-

able guidance in constructing a benchmark, in particular, for different risk

preferences. Therefore, it is natural that we aim at the highest amount

of guaranteed return. Unlike utilities that can be scaled arbitrarily, this

measure has a meaningful set of units.

Now we discuss the shape of our formulation. A function f : Rn → R

is called quasiconcave if its domain and all its super-level sets

Sξ = {x ∈ dom f | f(x) ≥ ξ} , ∀ξ ∈ R,

are convex. We have the following lemma on the objective of Problem

(4.15).

Lemma 4.3.3. z → infu∈U Cu[G (z)] is quasiconcave.

Proof. Since all u ∈ U are increasing and concave, the function z →

u ([G (z)] (ω)) is concave as the composition of the increasing concave func-

tion u with the concave function [G (z)] (ω) for all ω ∈ Ω. Then

E [u (G (z))] =
∑
ω∈Ω

P ({ω})u ([G (z)] (ω))

is concave as the nonnegative sum of concave functions. We know that
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Cu [G (z)] ≥ t is equivalent to E [u (G (z))] ≥ u(t) and therefore Cu [G (z)]

is quasiconcave in z. Thus, the point-wise infimum infu∈U Cu [G (z)] is

quasiconcave in z with infu∈U Cu [G (z)] ≥ t.

When U = Uw (m0, ε), the optimal value of Problem (4.15) under

WRASD is greater than t if and only if the constraint

ψ (G (z) ; Uw (m0, ε) , t) ≥ 0

has a feasible solution in z ∈ Z because infu∈Uw(m0, ε) Cu [G (z)] ≥ t is

equivalent to ψ (G (z) ; Uw (m0, ε) , t) ≥ 0. Therefore, we can solve Prob-

lem (4.15) with binary search via a series of feasibility problems like

max
z∈Z
{0 : ψ (G (z) ; Uw (m0, ε) , t) ≥ 0} . (4.16)

It can be shown that the cut generation problem ψ (X; Uw (m0, ε) , t)

in Problem (4.16) can be given by the optimal value of the following linear

programming problem:

min
v, s, a, b

∑
ω∈Ω

P ({ω}) (aωX (ω) + bω)− t

s.t. (v, s, a, b) ∈ Vp,(
1

ε
− 1

)−0.5

βk ≤ sk ≤
(

1

ε
− 1

)0.5

βk, ∀k = 1, . . . , K − 1.

The last constraints correspond to the weight function in the definition of

Uw (m0, ε).

In fact we aim to find out the value of t such that ψ (X; Uw (m0, ε) , t) =

0, which is the worst case. To solve Problem (4.16), we compute the dual

of ψ (G (z) ; Uw (m0, ε) , t) (which is a linear programming problem) which

then gives a system of convex inequality constraints. Then we can combine

this dual problem with our original problem and we have the following
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theorem.

Theorem 4.3.3. (i)Problem (4.16) is equivalent to

max
z∈Z, λ, µ≥0, δ≥0, γ≥0

0 (4.17)

s.t.
K−1∑
k=1

(
1

ε
− 1

)−0.5

βkγ
l
k −

K−1∑
k=1

(
1

ε
− 1

)0.5

βkγ
u
k ≥ 0,

(4.18)

− 1t (θk) + λk−1 − λk +
∑
ω∈Ω

δkω = 0, ∀k = 1, . . . , K,

(4.19)

− λk (θk+1 − θk) + µk−1 − µk − γlk + γuk ≥ 0, ∀k = 1, . . . , K − 1,

(4.20)

P ({ω}) [G (z)] (ω)−
K∑
k=1

θkδkω ≥ 0, ∀ω ∈ Ω, (4.21)

P ({ω})−
K∑
k=1

δkω = 0, ∀ω ∈ Ω, (4.22)

(ii) Problem (4.17) - (4.22) is a convex optimization problem.

The proof is very similar to that of Theorem 4.3.2, which can be seen

in Appendix C.

By Problem (4.17) - (4.22), we can conclude whether the RCE of prospect

G(z) depending on our decision is less than the given t or not. If there is

a feasible solution, then the RCE of G(z) is greater than or equal to the

value of given t; if there is no solution, then the RCE of G(z) is less than

the value of given t.

In order to figure out the worst case of RCE, we require that the differ-

ence of the expected utility of the random prospect and the value of t be

small enough. Thus we apply a binary search method. We summarize the

binary search algorithm next.

Theorem 4.3.4. Suppose that Problem (4.6) - (4.8) is feasible. Algorithm
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1 finds a robust certainty equivalent t̄ = t1+t2
2

of X such that |t̄− t∗| < ζ in

at most O (log (1/ζ)) computations of ψ (X; Uw (m0, ε) , t), where t∗ is the

true robust certainty equivalent of X.

input : A routine that solves model optimally and ζ > 0.
output: t1+t2

2

Step1: Set t1 := τ1 and t2 := τ2;

Step2: If t2 − t1 < ζ, stop. Output: t1+t2
2

;

Step3: Let t := t1+t2
2

. Solve Problem (4.16) by Problem (4.17) -
(4.22);

Step4: If ψ (G (z) ; Uw (m0, ε) , t) ≥ 0 is feasible, update t1 := t.
Otherwise, update t2 := t;

Step5: Go to Step 2.

Algorithm 1: Binary search

Proof. It can be noted that every loop in Algorithm 1 reduces the gap

between t1 and t2 by half. We now show the correctness of the binary

search. Note that ψ (G (z) ; Uw (m0, ε) , t) is non-increasing in t. If

ψ (G (z) ; Uw (m0, ε) , t) ≥ 0,

then t ≤ t∗; otherwise, we have t∗ < t; we always have t1 < t∗ < t2. It

follows that t̄ = t1+t2
2

is close enough to t∗ after sufficiently many loops.

4.4 Examples

4.4.1 Portfolio optimization problem with WRASD

A portfolio optimization problem can be represented as:

z ∈ Z

{
E

[
m∑
i=1

Rizi

]
: E

[
u

(
m∑
i=1

Rizi

)]
≥ E [u (Y )] , ∀u ∈ Uw (m, ε)

}
.

We consider a simple portfolio consisting of two stocks. In addition, a

bond fund will be used as the benchmark. Their returns are listed in Table
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4.2 with G (z) = R1z1 +R2z2 and E [G (z)] = 0.113z1 + 0.105z2.

Table 4.2
Returns of two stocks and a bond fund.

Rate of return: r 5% 6% 7% 9% 11% 12%

Pr, (R1 = r) 0.1 0 0 0 0 0.9

Pr, (R2 = r) 0 0.1 0 0 0.9 0

Pr, (Y = r) 0 0 0.4 0.6 0 0

We formulate the cut generation problem ψ (G (z) ; Uw (m0, ε) , Y ) in

which Uw (m0, ε) is the set of all non-decreasing concave utility functions

with marginal utilities bounded by a piecewise constant weight function

m0 for any given 0 < ε < 0.5. In this example, we firstly assume m0

is constant, which reduces to the almost first-order stochastic dominance

(AFSD) proposed by Leshno and Levy (2002). Then we assume that the

piecewise constant values of m0 are obtained from the logarithmic utility

function (i.e. u(x) = log x) which is proposed in Tan (2015). According to

Theorem 4.3.2, we solve the portfolio optimization problem as ε changes.

The results are shown in Figure 4.7 and Figure 4.8, respectively.

As can be seen in Figure 4.7 and Figure 4.8, the vertical axis shows the

optimal weights for both assets (z∗1 , z
∗
2) and the horizontal axis denotes ε.

In Figure 4.7, it can be noted that when ε = 0.04, we have z∗1 = 0 and z∗2 = 1

and when ε = 0.057, we have z∗1 = 1 and z∗2 = 0. This is consistent with

the fact that R2 dominates Y by AFSD with ε > 0.04, and R1 dominates

Y by AFSD with ε > 0.057. When ε < 0.04, there is no AFSD relationship

and the problem is infeasible. In Figure 4.8, the solution pattern is similar

to that in Figure 4.7 except that the corresponding ε value for feasible

solutions becomes greater. This is because m0 imposes stricter restrictions

on the utility functions.

Therefore, neither R1 nor R2, nor the combination of R1 and R2 will

dominate the benchmark Y by the conventional stochastic dominance.
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Hence, our simple portfolio example is infeasible under conventional SD

constraints. However, the introduction of WASD constraints allows us to

obtain solutions that are reasonable in practice.

Fig. 4.7. m0 is constant.

4.4.2 Portfolio optimization problem with RCE

Now we provide an illustration example of the robust certainty equivalent

maximization problem. Suppose that there are assets i = 1, . . . ,m. The

random return rate for asset i is Ri, and the return rate for asset i on

ω ∈ Ω is Ri (ω). Let Z = {z ∈ Rm :
∑m

i=1 zi = 1, z ≥ 0} be the set of

feasible portfolio allocations. The overall portfolio return rate is

G (z) =
m∑
i=1

Rizi

We see that the mapping G (z) is linear in the sense that z →
∑m

i=1Ri (ω) zi

is linear for all ω ∈ Ω. We aim to find the combination of these assets with

the largest robust certainty equivalent. We consider the two stocks used in
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Fig. 4.8. m0 is obtained from the logarithmic utility function.

the previous example (i.e. Table 4.2).

We formulate the robust certainty equivalent maximization problem

maxz∈Z infu∈Uw(m0, ε) Cu[G (z)], where Uw (m0, ε) is the set of all nonde-

creasing concave utility functions with marginal utilities bounded by a

piecewise constant weight function m0 for any given 0 < ε < 0.5. Here

we assume that the piecewise constant values of m0 are obtained from the

CRRA utility function (see Example 4.2.1) as proposed in Tan (2015). We

solve the robust certainty equivalent maximization problem as ε changes

and risk aversion parameter α changes. In this solution, we choose ζ = 10−5

and a discretization of X with evenly spaced sub-intervals of 0.2. Figure 4.9

and Figure 4.10 show the optimal RCE and the optimal weights of assets

as ε changes by fixing α = 0.8, respectively. Figure 4.11 shows the optimal

RCE as α changes by fixing ε = 0.1. In this case where α is in the range

of [0.7, 0.9], we always have z∗1 = 0, z∗2 = 1.

It can be noted that RCE is a measure with a meaningful set of units,

unlike utility measures that can be scaled arbitrarily. In particular, we
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note that RCE increases when allowable deviation from the reference utility

decreases (i.e., increasing ε). In addition, RCE decreases when degree of

relative risk aversion increases (i.e., increasing α).

Fig. 4.9. Optimal RCE solutions as ε changes.
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Fig. 4.10. Optimal weights as ε changes.

Fig. 4.11. Optimal RCE solutions as α changes.
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Chapter 5

Dominance of the Maximum

Geometric Mean Portfolio in

the long run

5.1 Introduction

It has been proposed by many that an investor with a sufficiently long

horizon should adopt a maximum geometric mean (MGM) strategy, which

aims for maximal terminal wealth by investing in each period based on

the logarithm of returns (see Kelly (1956), Breiman (1960), and Markowitz

(1976)). In particular, it follows from the law of large numbers that a

MGM portfolio will almost surely outperform other portfolios in the long

run under mild conditions.

One of the main criticism of the “clear preference” for the MGM strat-

egy was raised by Merton and Samuelson (1974) who noted that the MGM

strategy does not maximize expected utility across all nondecreasing util-

ity functions, even in the long run. Levy (2016) attempted to address

this concern by showing that, in the long run, the expected utility of the

MGM portfolio is no less than the expected utility of all other portfolios
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under certain conditions. Namely, when (i) terminal wealth of portfolios

are log-normally distributed, (ii) geometric standard deviation of the MGM

portfolio is no less than geometric standard deviation of the other portfolios

and (iii) marginal utility is bounded.

For infinitely long investment horizons, it follows from the central limit

theorem that terminal wealth is lognormally distributed under mild con-

ditions. Furthermore, this assumption appears to be reasonable under a

sufficiently long investment horizon in practice. Based on the annual rates

of returns of various assets from 1926 to 2012, Levy (2016) observed that,

across a 20-year horizon or longer, deviation between the log-normal dis-

tribution and empirical distributions based on actual returns appear neg-

ligible.

The requirement for higher geometric standard deviation is more prob-

lematic as the terminal wealth of the MGM portfolio will almost surely be

greater than the terminal wealth of all other portfolios, and not just those

with smaller geometric standard deviation, in the long run. However, the

superiority of the MGM portfolio over portfolios with larger geometric stan-

dard deviation in the long run is not addressed by Levy (2016).

In addition, we believe that there is merit in relaxing the requirement for

bounded marginal utility. Although a case for bounded marginal utility was

presented in Levy (2016), we believe that there are cases where unbounded

marginal utility is reasonable. For example, since an investor who has lost

all capital is “out of the game”, it is reasonable to assume u′(w)→∞ when

w → 0.

In this chapter, we refine the argument presented by Levy (2016) re-

garding the superiority of the MGM strategy in the long run by relax-

ing the requirements of higher geometric standard deviation and bounded

marginal utility. In particular, we show that a higher geometric mean is

necessary and sufficient for log-weighted almost stochastic dominance and
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the MGM strategy is preferred by all investors whose utility function de-

viates marginally from the logarithm utility function. Furthermore, the

maximum allowable deviation increases in the investment horizon and is

unbounded.

In the following, the problem will be described in Section 5.2. The

main results by applying ASD relationship for log-normal distribution will

be presented in Section 5.3. We will conclude this chapter in Section 5.4.

5.2 Problem description

Let Xt denote the portfolio return (end of period value) in period t. For

an investment horizon of T periods, the terminal wealth of the portfolio

is WX(T ) = ΠT
t=1Xt. If each Xt is independent and follows a log-normal

distribution with parameters µX and σ2
X , WX(T ) also follows a log-normal

distribution with parameters TµX and Tσ2
X . Consider a second portfolio

with terminal wealth WY (T ) that is log-normally distributed with param-

eters TµY and Tσ2
Y .

Assuming that µX , µY , σX and σY are finite, it follows from the law

of large numbers that the terminal wealth of the portfolio with higher

geometric mean will almost surely be greater (see Levy (2016) for details).

Stated formally, if µX > µY then:

P [WX(T ) > WY (T )]→ 1, asT →∞.

Here, we note that the assumption on log-normally distributed returns

is not particularly restrictive since it follows from the central limit theorem

that the terminal wealth distribution of both portfolios approach the log-

normal distribution in the long run, even if Xt and Yt are not log-normally

distributed.

Although the argument above appears compelling, Merton and Samuel-
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son (1974) noted that the preferred investment strategy of an investor with

iso-elastic utility is independent of the investment horizon and the MGM

strategy does not maximize the expected utility of investors under some

iso-elastic utility functions. Therefore, the MGM strategy does not domi-

nate under conventional stochastic dominance rules in the long run and it

is not immediately clear that the MGM strategy should be preferred.

Levy (2016) attempted to resolve this issue by proving that the expected

utility of a log-normally distributed prospect with higher geometric mean

and geometric standard deviation will be at least as large as the expected

utility of another log-normally distributed prospect in the long run under

bounded marginal utility. However, this does not explain why the MGM

portfolio is also preferred over portfolios with higher geometric standard

deviation and by investors with unbounded marginal utility. In the next

section, we explain why the superiority of the MGM strategy in the long

run is better explained via log-weighted almost stochastic dominance.

5.3 Main results

We begin by introducing the concept of weighted almost stochastic domi-

nance (WASD) proposed by Tan (2015). Let U denote the set of all differ-

entiable nondecreasing utility functions and U∗(m, ε) denote the set of all

differentiable nondecreasing utility functions whose marginal utility differs

from m(t) by a maximum factor of
[

1
ε
− 1
]0.5

for some constant ε ∈ (0, 0.5]:

U∗(m, ε) =

{
u ∈ U :

[
1

ε
− 1

]−0.5

m(t) ≤ u′(t) ≤
[

1

ε
− 1

]0.5

m(t),∀t

}
.

We note that m(t) is a nonnegative function that describes the marginal

utility of some canonical utility function, which U∗(m, ε) is constructed

around. For example, if the decision maker’s preference is described ap-

proximately by logarithm utility, we set m(t) = d
dt

ln(t) = 1
t
.
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Tan (2015) showed that X dominates Y with (m, ε)-WASD if and only

if E[u(X)] ≥ E[u(Y )] for all u in U∗(m, ε). Since U∗(m, ε) increases as ε

decreases, a lower ε implies a higher maximum allowable deviation from

the canonical utility function such that preference for X over Y is clear.

Consider two random variables X and Y that are log-normally dis-

tributed with parameters µX , σ2
X , µY and σ2

Y .

Theorem 5.3.1. Suppose X ∼ lnN(µX , σ
2
X), Y ∼ lnN(µY , σ

2
Y ), µX > µY

and σX 6= σY . X dominates Y with
(

1
t
, ε
)
-WASD if and only if:

ε ≥ 1

2

1− φ
√
π

φ
√
π · erf( φ√

2
) +
√

2e−
φ2

2

 ,
where φ = µX−µY

|σX−σY |
and erf(·) denotes the Gauss error function.

Theorem 5.3.1 highlights the set of utility functions such that X is

clearly preferred over Y . For mathematical convenience, let

h(φ) =
1

2

1− φ
√
π

φ
√
π · erf( φ√

2
) +
√

2e−
φ2

2

 .
For any two portfolios with log-normal returns, one could easily determine

the largest U∗(1
t
, h(φ)) such that preference for the portfolio with higher

geometric mean can be guaranteed by computing h(φ). The corresponding

values of h(φ) for different φ are illustrated in Figure 5.1.

The following two propositions highlight that h(φ) decreases in φ and

approaches 0 as φ grows infinitely large.

Proposition 5.3.1. h(φ) is strictly decreasing in φ.
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Fig. 5.1. The relationship between h(φ) and φ.

Proof of Proposition 5.3.1. We take the derivative of h(φ).

h′(φ) = −1

2
·

√
π
(
φ
√
π · erf

(
φ√
2

)
+
√

2e−
φ2

2

)
(
φ
√
π · erf

(
φ√
2

)
+
√

2e−
φ2

2

)2

−1

2
·
−φ
√
π
(√

π · erf
(

φ√
2

)
+
√

2φe−
φ2

2 −
√

2φe−
φ2

2

)
(
φ
√
π · erf

(
φ√
2

)
+
√

2e−
φ2

2

)2

= −1

2
·
πφ · erf

(
φ√
2

)
+
√

2πe−
φ2

2 − πφ · erf
(

φ√
2

)
(
φ
√
π · erf

(
φ√
2

)
+
√

2e−
φ2

2

)2

= −1

2
·

√
2πe−

φ2

2(
φ
√
π · erf

(
φ√
2

)
+
√

2e−
φ2

2

)2

< 0.

�

Proposition 5.3.2. limφ→∞ h(φ) = 0.
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Proof of Proposition 5.3.2. Follows from the observation that

lim
φ→∞

erf(
φ√
2

) = 1

and

lim
φ→∞

φ−1e−
φ2

2 = 0.

�

Having obtained the results above, we are now ready to study the su-

periority of the MGM portfolio in the long run from the perspective of

WASD. Let WX(T ) denote the terminal wealth of the MGM portfolio at

period T where WX(T ) is log-normally distributed with parameters TµX

and Tσ2
X . In addition, let WY (T ) denote the terminal wealth of another

portfolio at period T where WY (T ) is log-normally distributed with pa-

rameters TµY and Tσ2
Y . Since the MGM portfolio has maximal geometric

mean, µX > µY .

If σX = σY , preference for WX(T ) over WY (T ) is clear as the former

dominates the latter with first-degree stochastic dominance (Levy, 1973).

If σX 6= σY , it follows from Theorem 5.3.1 that WX(T ) dominates WY (T )

with
(

1
t
, h(φ)

)
-WASD, where:

φ =
TµX − TµY∣∣∣√TσX −√TσY ∣∣∣ =

√
T (µX − µY )

|σX − σY |
.

Since φ increases with T , it follows from Proposition 5.3.1 that the max-

imum allowable tolerance from logarithm utility, such that there is clear

preference for WX(T ) over WY (T ), increases with T . Therefore, prefer-

ence for the portfolio with higher geometric mean becomes clearer as the

investor’s investment horizon increases.

Furthermore, since φ→∞ as T →∞, it follows from Proposition 5.3.2

that the maximum allowable tolerance is unbounded. Hence, the max-
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imum allowable tolerance from logarithm utility becomes infinitely large

as the investment horizon grows infinitely long. From the perspective of

log-weighted almost stochastic dominance, a higher geometric mean is nec-

essary and sufficient for clear preference across an infinitely long invest-

ment horizon, which is consistent with the observation that a portfolio

with higher geometric mean will almost surely have higher terminal wealth

in the long run.

5.4 Discussion

In this chapter, we address the gap between the preference for the MGM

strategy in the long run from the perspectives of the law of large numbers

and stochastic dominance. In particular, the former states that the MGM

strategy is almost surely to be better in the long run but preference for the

MGM strategy is unclear under conventional stochastic dominance rules.

Here, we explain why the clear preference for the MGM strategy in the

long run can be explained via log-weighted almost stochastic dominance.

Besides adding to the theoretic debate regarding the superiority of the

MGM strategy in the long run, this work also adds to the stochastic domi-

nance literature by providing additional support for the use of log-weighted

almost stochastic dominance to explain clear preferences between risky

prospects in practice for a wide range of decision makers. In particular,

log-weighted almost stochastic dominance can reveal the clear preference

for the MGM strategy in the long run but, as noted by Merton and Samuel-

son (1974), WASD based on other CRRA utility functions may not.

Finally, this work presents an alternative to the mean-variance frame-

work proposed by Markowitz (1952), which is often criticized for assump-

tions on normality and quadratic utility. In our work, we highlight that

a geometric-mean-geometric-standard-deviation framework is suitable for
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comparing between investments with log-normal returns, which is reason-

able for investors with a sufficiently long investment horizon. Here, we do

not assume that the utility of the decision maker follows any particular form

but only assume that it can be approximated by logarithm utility. One key

insight is that the maximum allowable deviation from logarithm utility can

be expressed as a function of the geometric mean and geometric standard

deviations of investments under consideration (see, Theorem 5.3.1). In par-

ticular, the greater the difference in geometric mean and the smaller the

difference in geometric standard deviation, the clearer the preference for

the investment with higher geometric mean.
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Chapter 6

Optimization frameworks for

scalar-valued risk measures

6.1 Introduction

As reviewed in Section 3.3, we point out four aspects that our optimization

framework should take into account: multivariate prospects, preference un-

certainty, computational tractability, target-oriented measure. Specifically,

previous work that is pertinent to each area has been reviewed respectively.

It can be noted that risk-aware optimization is a highly developed field.

However, it is not easy to do risk-aware optimization in practice for models

that simultaneously address the above mentioned four considerations.

One of the difficulties lies in determining the risk preferences of the de-

cision maker. Here, we will offer intuitive frameworks for doing risk-aware

optimization that are easy to apply. All the prospects we consider in this

chapter are multivariate. Specifically, we aim to construct a set of appro-

priate risk measures that well characterizes possible decision-maker risk

preferences, and then construct a robust stochastic optimization problem

using this risk measure set. The set of risk measures should be carefully

chosen so that we can appeal to the special structure of convex interpolation
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problems to make our robust formulations computationally tractable.

In this chapter, we focus on scalar-valued risk measures (although the

inputs are multivariate). In particular, we look into two approaches: sub-

gradient characterization and acceptance set approach. In the subgradi-

ent characterization approach, the set of risk measures is constructed by

convex function interpolation as well as other conditions such as elicited

comparison information. Then we aim to minimize the worst-case of the

constructed risk measures. In the acceptance set approach, we aim to fig-

ure out the acceptance set which is determined by the elicited comparisons

of given prospects.

In the following, the preliminary will be provided in Section 6.2. The

two approaches that deal with the scalar-valued risk measures will be dis-

cussed in Section 6.3.

6.2 Preliminary

We define any mapping ρ : Ln → Rd as a risk measure where d ≤ n. When

d = 1, ρ is a scalar-valued risk measure. When d ≥ 2, ρ is a vector-valued

risk measure.

We define the following category of risk measures:

Ricx , {ρ : ρ is nondecreasing, convex, and ρ (0) = 0} ,

defined to be the set of all monotonic and convex risk functions such that

the risk of the zero portfolio is zero. Therefore, the risk measures in Ricx

possess the following two key properties:

• Convexity: ρ (λX + (1− λ)Y ) ≤ λ ρ (X)+(1− λ) ρ (Y ) for allX, Y ∈

Ln and λ ∈ [0, 1].

• Monotonicity: If X, Y ∈ Ln and X ≤ Y , then ρ (X) ≤ ρ (Y ).
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Now, we present several other conditions to be used in the construction

of our uncertainty sets:

• Positive homogeneity: If α ≥ 0 and X ∈ Ln, then ρ (αX) = α ρ (X).

Positive homogeneity is well studied for univariate risk functions, see

Ruszczyński and Shapiro (2006). Notice that positive homogeneity

implies that ρ (0) = 0.

• Translation equivariance: If α ∈ R and X ∈ Ln, then ρ (X + α e1) =

ρ (X) + α. We define

Req , {ρ : ρ (X + α e1) = ρ (X) + α} .

Translation equivariance is also well studied for univariate risk func-

tions, where we modify the definition for multivariate risk functions.

• Normalization: For fixed W0, Y0 ∈ Ln, ρ (W0) − ρ (Y0) = 1 (e.g. we

can take W0 = 1 and Y0 = 0). We define

Rnor , {ρ : ρ (W0)− ρ (Y0) = 1} .

We include normalization to avoid risk measures which take arbitrar-

ily large values, which incurs difficulties for our upcoming optimiza-

tion problems. In implementation, we often take W0 = 1 and Y0 = 0

to require that ρ (1) = 1.

• Elicited preference: Given a finite collection of pairs of random vec-

tors Wk, Yk ∈ Ln indexed by K, ρ (Wk) ≤ ρ (Yk) for all k ∈ K. We

define

Relc (Σ) , {ρ : ρ (Wk) ≤ ρ (Yk) ,∀k ∈ K} withΣ , {(Wk, Yk)}Kk=1 .

Preference elicitation is explored for expected utility and univariate
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risk functions in Armbruster and Luedtke (2015) and Delage and Li

(2015). Its extension to the multivariate setting is quite natural.

6.3 Problem formulations

Suppose we have a random variable G(z) defined in Section 2.1. In this

chapter, we consider G(z) as loss. Given a risk function ρ : Ln → R,

ρ (G (z)) is a measure of the fitness of G (z), where lower values of ρ (G (z))

are preferred. The corresponding risk-aware optimization problem is

min
z∈Z

ρ (G (z)) . (6.1)

Problem (6.1) is the main object of attention in this paper. Next, we give

conditions for Problem (6.1) to be a convex optimization problem.

Proposition 6.3.1. Suppose ρ ∈ Ricx, and that assumptions A1 and A2

hold. Then Problem (6.1) is a convex optimization problem.

Proof. We need only to show that z → ρ (G (z)) is convex since Z is a

convex set by assumption. Choose z1, z2 ∈ Z and λ ∈ [0, 1] and compute

ρ (G (λ z1 + (1− λ) z2)) ≤ ρ (λG (z1) + (1− λ)G (z2))

≤ λ ρ (G (z1)) + (1− λ) ρ (G (z2)) ,

where the first inequality follows by convexity of G and monotonicity of ρ,

and the second inequality follows by convexity of ρ.

Next we give several specific examples of risk functions to better moti-

vate Problem (6.1).

Example 6.3.1. For a utility function u : Rn → R , the expected utility

ρ (·) = E [u (·)] is a risk measure. This is closely related to the theory of

stochastic dominance that we have discussed in Chapter 4.

74



Example 6.3.2. For the univariate case, the conditional value-at-risk with

the form of φα (X) = infη∈R
{
η + (1− α)−1 E

[
(X − η)+

]}
is a risk measure

on L.

Example 6.3.3. For n ≥ 1, we let F be a collection of convex functions

g : Rn → R. Then ρ : Ln → R defined by ρ (X) = supf∈F E [g (X)] is a

convex function on Ln since the supremum of convex functions is convex.

We emphasize that Problem (6.1) requires exact specification of the

decision maker’s risk preferences via the risk function ρ. However, this

information is difficult to elicit in practice. In this subsection we propose a

family of uncertainty sets for the decision maker’s risk preferences. Then,

we propose a robust optimization problem over this uncertainty set and

show how to reformulate it as a tractable convex optimization problem.

We are interested in the risk measures in Ricx. It is reasonable to

restrict to monotonic risk functions since greater loss should be associated

with greater risk. The requirement of convexity is also reasonable for our

setting since diversification should not increase risk.

We will use the notation R ⊂ Ricx to denote an uncertainty set of

risk functions. We will consider more restrictions on R later. The robust

optimization problem can be represented as:

min
z∈Z

sup
ρ∈R

ρ (G (z)) . (6.2)

which minimizes the worst-case risk over the uncertainty set R. Problem

(6.2) can be interpreted as being robust against uncertainty in the decision

maker’s risk preferences. This type of robust formulation was proposed

for the univariate case in Delage and Li (2015), while now we extend this

framework to the multivariate case.

Next we establish convexity of Problem (6.2).

Proposition 6.3.2. Suppose assumptions A1 and A2 hold, and R ⊂ Ricx,
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then Problem (6.2) is a convex optimization problem.

Proof. For any ρ ∈ R, each z → ρ (G (z)) is convex since

ρ (G (λ z1 + (1− λ) z2)) ≤ ρ (λG (z1) + (1− λ)G (z2))

≤ λ ρ (G (z1)) + (1− λ) ρ (G (z2)) ,

for all z1, z2 ∈ Z and λ ∈ [0, 1], where the first inequality follows from

convexity of G and monotonicity of ρ, and the second inequality follows by

convexity of ρ. Then, we see that z → supρ∈R ρ (G (z)) is convex since the

supremum of convex functions is convex.

6.3.1 Subgradient characterization

Next, we discuss tractable reformulations of the robust optimization Prob-

lem (6.2) for various uncertainty sets R. The key to the following devel-

opment is found in Boyd and Vandenberghe (2004), Subsection 6.5.5 (for

example) which shows that interpolation problems with convex functions

can be solved with convex optimization. This observation allows us to solve

Problem (6.2) with convex optimization techniques.

Again, Assumptions A4 and A5 also hold here. They vastly simplify

our development. For the benchmark, we can meet Assumption A5 by

construction since the benchmark Y is user input. The discretization Θ is

also user input, and it can be constructed a priori to include the support

of Y .

Since Ω is finite, we identify a random variables X ∈ Ln with a vector

X (ω) ∈ Rn |Ω| where we list the realizations of X component-wise. We

define

Θ = {X} ∪

{⋃
k∈K

{Wk, Yk}

}
∪ {0}

to be the union of the supports of random vector X,
⋃
k∈K {Wk, Yk}, and
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the origin. Since Ω is finite, the set Θ is finite as well.

For the robust optimization problem, the general scheme is as follows

with two stages:

1. Take the dual of the inner maximization in Problem (6.2) to obtain

a minimization problem

2. Amalgamate the two minimization objectives to obtain a single min-

imization problem

When the inner maximization in Problem (6.2) can be written as the

linear programming problem

max {〈f (G (z)) , x〉 : Ax ≥ b}

with dual

min {〈b, p〉 : A∗p ≤ f (G (z))}

then we can write Problem (6.2) as

min
z∈Z

min
p
{〈b, p〉 : A∗p ≤ f (G (z))} ≡ min

z∈Z, p
{〈b, p〉 : A∗p ≤ f (G (z))} ,

which is a convex optimization problem.

Likewise, we could use the interpolation techniques in Chapter 4 to

cope with the inner maximization in Problem (6.2). However, we make

two changes here: the functions that are interpolated here are convex, and

the prospects we are interested in are multivariate. The main two steps for

the linear interpolation technique here are as the following:

1. Determine the values of ρ (θ) on the finite set Θ for k = 1, . . . , K.

2. Interpolate to obtain the worst-case risk over the uncertainty set.

We introduce the following decision variables:
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• sθ be the subgradient of ρ at θ for θ ∈ Θ.

• tθ be the intercept of ρ at θ for θ ∈ Θ.

The following lemma is a necessary condition for a piecewise linear ρ to

lie in Ricx. With this result, the first step above mentioned is done. The

values of ρ on the finite set Θ can be determined.

Lemma 6.3.1. (i) Let ρ ∈ Ricx, then there exist {sθ}θ∈Θ ⊂ Rn |Ω|
+ and

{tθ}θ∈Θ ⊂ R such that

ρ (θ) = 〈sθ, θ〉+ tθ, ∀θ ∈ Θ,

ρ (θ′) ≥ 〈sθ, θ′〉+ tθ, ∀θ, θ′ ∈ Θ, θ 6= θ′.

(ii) Given {sθ}θ∈Θ ⊂ Rn |Ω|
+ and {tθ}θ∈Θ ⊂ R, define

ρ∗ (x) = max
θ∈Θ
{〈sθ, x〉+ tθ} ,

then ρ∗ ∈ Ricx.

Proof. See Boyd and Vandenberghe (2004), Subsection 6.5.5. It can be

noted that the subgradients for all ρ ∈ Ricx are finite on conv {Θ} . Specif-

ically, at all x ∈ conv {Θ} there are sx ∈ Rn |Ω|
+ and tx ∈ R such that

ρ (x) = 〈sx, x〉+ tx and ρ (y) ≥ 〈sx, y〉+ tx, ∀y.

Given a set of values {ρ (θ)}θ∈Θ where ρ ∈ Ricx, the next lemma con-

structs the largest increasing convex function ρ∗ with ρ∗ (θ) ≤ ρ (θ) for all

θ ∈ Θ.

Lemma 6.3.2. Let ρ ∈ Ricx, and define

ρ∗ (x) , max
a≥0, b
〈a, x〉+ b

s.t. 〈a, θ〉+ b ≤ ρ (θ) ,∀θ ∈ Θ.
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i) ρ∗ is increasing and convex.

ii) ρ∗ is equal to ∞ outside conv {Θ} ∪ Rn |Ω|
− .

iii) If ρ̄ is another increasing convex function with ρ̄ (θ) ≤ ρ (θ) for all

θ ∈ Θ, then ρ̄ ≤ ρ∗.

Proof. i) The function ρ∗ is increasing and convex as it is the supremum of

increasing linear functions. It is also immediate that ρ∗ (θ) = ρ (θ) for all

θ ∈ Θ.

ii) In the domain where it is outside conv {Θ}∪Rn |Ω|
− , since we maximize

on a such that a ≥ 0, we will have a→∞ which results in ρ∗ →∞.

iii) Moreover, ρ∗ ≥ ρ̄ for any ρ̄ ∈ Ricx with ρ̄ (θ) ≤ ρ (θ) for all θ ∈

Θ. We see that the epigraph of ρ∗ is by definition the intersection of the

epigraphs of all ρ̄ ∈ Ricx with ρ̄ (θ) ≤ ρ (θ) for all θ ∈ Θ.

We now proceed to discuss the specifics of the construction of the un-

certainty set R. We begin by identifying some desirable properties of risk

functions that should belong to this set. We already discussed the mono-

tonicity and convexity in the previous section, since these conditions are

necessary for Problem (6.1) to be convex. Now, we present several other

conditions to be used in the construction of our uncertainty sets:

We are interested in the set of risk measures R1 = Ricx ∩ Rnor ∩ Relc.

We introduce decision variables s =
(
sθ ∈ Rn |Ω|)

θ∈Θ
, t = (tθ ∈ R)θ∈Θ, a ∈

Rn |Ω|, and b ∈ R.

Theorem 6.3.1. Fix X ∈ Ln, then supρ∈R1
ρ (X) is equal to the optimal
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value of the following linear programming problem:

sup
a, b, s, t

〈a, X〉+ b (6.3)

s.t. 〈sθ, θ′〉+ tθ ≤ 〈sθ′ , θ′〉+ tθ′ , ∀θ, θ′ ∈ Θ, θ 6= θ′, (6.4)

〈a, θ〉+ b ≤ 〈sθ, θ〉+ tθ, ∀θ ∈ Θ, (6.5)

〈sθ, θ〉+ tθ ≤ 〈sθ′ , θ′〉+ tθ′ , ∀θ ∈ {Wk} , θ′ ∈ {Yk} , (6.6)

〈sθ, θ〉+ tθ = 0, θ = 0, (6.7)

〈sθ, θ〉+ tθ − 〈sθ′ , θ′〉 − tθ′ = 1, θ = W0, θ
′ = Y0, (6.8)

sθ ≥ 0, ∀θ ∈ Θ, (6.9)

a ≥ 0. (6.10)

If Problem (6.3) - (6.10) has an optimal solution
(
â, b̂, ŝ, t̂

)
, then

ρ̂ (X) = 〈â, X〉+ b̂

is the value of the worst-case risk measure of X.

Proof. Constraints (6.4) and (6.8) ensure that ρ (θ) takes the values of a

risk measure in Ricx evaluated on Θ by Lemma 6.3.1. Constraint (6.5)

ensures that we find out the worst-case risk measure in Ricx evaluated on

Θ by Lemma 6.3.2. Constraint (6.6) requires that ρ (θ) takes the values of

a risk measure in Relc. Constraint (6.7) require the risk measure takes the

values of a risk measure in Rnor.

The preceding proposition allows us to compute the worst-case risk

by solving a linear programming problem. Next we aim to optimize over

the decision set and turn attention back to Problem (6.2). We introduce

decision variables α = (αθ,θ′)θ,θ′∈Θ, θ 6=θ′ ∈ R|Θ|(|Θ|−1), β = (βθ)θ∈Θ ∈ R|Θ|,

γ = (γθk)k∈K ∈ R|K|, δ, ε ∈ R and z. Then Problem (6.2) is equivalent to a

convex optimization problem by the following theorem.
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Theorem 6.3.2. Problem (6.2) is equivalent to

min
α, β, γ, δ, ε, z

ε

s.t.
∑
θ′ 6=θ

αθ,θ′θ
′ −
∑
θ

αθ,θ′θ
′ − βθθ +

∑
k

γθkθ1
{
θk ∈

⋃
Wk

}
−
∑
k

γθkθ1
{
θk ∈

⋃
Yk

}
+ δθ1 {θ = 0}+ εθ1 {θ = W0} − εθ1 {θ = Y0}〉 ≥ 0,

∀θ, θ′ ∈ Θ, θ 6= θ′,∑
θ′ 6=θ

αθ,θ′ −
∑
θ

αθ,θ′ − βθ +
∑
k

γθk1
{
θk ∈

⋃
Wk

}
−
∑
k

γθk1
{
θk ∈

⋃
Yk

}
+ δ1 {θ = 0}+ ε1 {θ = W0} − ε1 {θ = Y0} = 0, ∀θ ∈ Θ,

∑
θ

βθθ −G (z) ≥ 0,∀θ ∈ Θ,

∑
θ

βθ − 1 = 0,

α, β, γ ≥ 0.

The proof is very similar to that of Theorem 4.3.2, which can be seen in Appendix B.

81



6.3.2 Acceptance set approach

An alternative way of defining risk measures is provided by the notion

of acceptance set, that is, the set of random variables X ∈ Ln which

are considered risk free by decision makers. In this subsection, we be-

gin by defining the acceptance set for scalar-valued risk measures with

multi-variate prospects. Then, we propose a tractable convex optimization

problem showing how to solve Problem (6.1) by the acceptance set method.

In Jouini et al. (2004), they proved a representation result for the risk

sets which have monotone, homogeneous, translation invariant and substi-

tutability properties. We start with the definition of acceptance set.

Definition 6.3.1. An acceptance set for scalar-valued risk measures with

multi-variate prospects is a closed convex cone A of Ln, containing Ln(H),

and such that R × {0}n−1 6⊂ A. Here, Ln(H) denotes the linear space of

essentially bounded H-valued B-measurable random vectors.

Intuitively, the elements in the set A are considered acceptable because

no additional capital is required in order to be risk free.

In Burgert and Rschendorf (2006), given an acceptance set A we can

define a corresponding risk measure

ρA (X) = inf {m ∈ R : X +me1 ∈ A} ,

which is convex when A is convex. Here X + me1 denotes that all the

realizations of the first entry in X are added by m. In this case, the set of

all convex risk measures can be denoted as Ricx∩Req. We will similarly use

the notation R ⊂ Ricx∩Req to denote an uncertainty set of risk functions.

In this case, we think that investors are able to aggregate their port-

folios to the first position. In order for a risky random vector X to be

acceptable in terms of risk, the decision maker determines that some de-

terministic capital m should be added to the first position. We say that
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this deterministic capital m cancels the risk induced by X if X + me1 is

acceptable by decision makers in the sense of the risk measure. The risk

measure of X will be the lowest amount of such deterministic m.

Using this representation, we can adapt the worst-case acceptance set

approach from Delage and Li (2015). In particular, the worst-case risk

measure is of the form

%R (X) = sup
A:ρA∈R

inf {m ∈ R : X +me1 ∈ A} .

This worst-case risk measure obtains the greatest value of deterministic

capital that would be required to make X risk free. Since we are interested

in convex risk measures, the good thing here is that the worst-case risk

measure can be equivalently considered as looking for a worst-case accep-

tance set A such that ρA = %R. It follows that we are going to construct an

acceptance set A effectively. It can be noted that the larger the acceptance

set A is, the smaller the value of m will be. Therefore, the worst-case accep-

tance set A should be the smallest convex set that covers all the acceptable

points.

Meanwhile, we still consider the elicited comparison information. Given

a finite collection of pairs of random vectors Wk, Yk ∈ Ln indexed by K,

we define a set of the risk measures revealing these elicited comparisons:

Relc (Σ) = {ρ (Wk) ≤ ρ (Yk) for all k ∈ K} with Σ , {(Wk, Yk)}Kk=1. In

particular, we start with a special case of risk measures R2 = Ricx ∩Req ∩

Relc (Σ0) with Σ0 , {(Wk, 0)}Kk=1. In addition, we list the realizations of X

component-wisely. Therefore, we consider X ∈ L with a vector (X (ω)) ∈

Rn |Ω|. We show in this case how supA: ρA∈R ρA (X) can be solved by linear

programming.

Proposition 6.3.3. Given a set of acceptable random payoffs {Wk}Kk=1

and any random payoff G(z), the value supA: ρA∈R2
ρA (G(z)) with Σ0 ,
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{(Wk, 0)}Kk=1 and R2 6= ∅ is obtained as the optimal value of the following

linear program:

min
z,m, θ

m

s.t.G(z) +me1 ≥
K∑
k=1

θkWk,

θk ≥ 0, ∀k,

where m ∈ R, θ ∈ RK.

Proof. Following Burgert and Rschendorf (2006), all convex risk measures

can be equivalently defined in terms of acceptance sets. We thus focus on

the set of acceptance set candidates

A := {A : ρA ∈ R2} ,

and we wish to evaluate supA: ρA∈R ρA (X). We also introduce

A∗ :=

{
Z : ∃θ, Z ≥

K∑
k=1

θkWk, θ ≥ 0

}
.

We start by showing that A∗ ⊆ A for all A ∈ A. A∗ is the set of

points that dominate some convex combinations of the set 0 ∪ {Wk}Kk=1

and must therefore be included in any convex monotone set containing

0∪{Wk}Kk=1. Note that zero vector is implicitly acceptable since ρ (0) = 0.

It can be noted that for any two sets A1, A2 ∈ A, if A1 ⊆ A2, then

ρA1 (G(z)) ≥ ρA2 (G(z)). Therefore, ρA∗ (G(z)) ≥ supA∈A ρA (G(z)).

We then show that A∗ ∈ A. In other words, we verify that: a) A∗

contains the points {Wk}Kk=1; b) A∗ is convex and monotone; c) ρA∗ (0) = 0.

a) can be seen by the definition of A∗.

For b), given X1, X2 ∈ A∗, we have two convex combinations ζ1 and ζ2

such that Xj ≥
∑K

k=1 ζ
j
iWk when j = 1, 2. Therefore, given any 0 ≤ α ≤ 1,
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we have

αX1 + (1− α)X2 ≥ α
K∑
k=1

ζ1
iWk + (1− α)

K∑
k=1

ζ2
iWk

=
K∑
k=1

(
αζ1

i + (1− α) ζ2
i

)
Wk,

thus αX1 + (1− α)X2 ∈ A∗. Also, given X1 ∈ A∗, there exists a convex

combination ζ1 such that X1 ≥
∑K

k=1 ζ
1
iWk. With the same ζ1, for any

X2 ≥ X1 we have X2 ≥ X1 ≥
∑K

k=1 ζ
1
iWk and X2 ∈ A∗.

For c), by construction ρA∗ (0) ≤ 0 since 0 ∈ A∗. Also, since A∗ ⊆ A

for all A ∈ A, then ρA∗ (0) ≥ ρA (0) = 0.

Since A∗ ∈ A, then ρA∗ (G(z)) ≤ supA∈A ρA (G(z)). Therefore,

ρA∗ (G(z)) = sup
A∈A

ρA (G(z)) .

Fig. 6.1. Illustration of acceptance set method.

As shown in Figure 6.1, dark blue area is the convex hull of all the

acceptable points; light blue area is the acceptance set, which is the smallest

convex cone that contains all the acceptable points. Proposition 3.2 in
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Delage and Li (2015) shows a similar proof which covers the univariate

case. It is apparent to see the intuition here. The acceptable points are

determined by the elicited comparisons, that is, those prospects {Wk}Kk=1

with value greater than 0 are accepted. For all the candidate acceptance

sets corresponding toRicx∩Req and the above-mentioned acceptable points,

the worst-case acceptance set is the smallest monotone polyhedron that

contains the convex hull of all the acceptable points.

So far we have discussed the case where the acceptance set is determined

by the elicited comparisons between prospects and 0. A more practical and

interesting problem is when the elicited comparisons are made between non-

zero prospects. With the worst-case acceptance set method, we can extend

the results to this new case. The key thing here is still how to determine the

worst-case acceptance set based on the elicited comparisons. In particular,

we are interested in the set of risk measures R3 = Ricx ∩ Req ∩ Relc (Σ)

with Σ , {(Wk, Yk)}Kk=1. In addition, we still list the realizations of the

prospect component-wisely.

Proposition 6.3.4. Given a set of acceptable random payoffs {Wk, Yk}Kk=1

and any random payoff G(z), let {Xj}Jj=1 = 0∪{Wk, Yk}Kk=1 be the set of all

elements in the elicited comparisons and the zero prospect and we denote

it as X. The value supA: ρA∈R3
ρA (G(z)) with Σ , {(Wk, Yk)}Kk=1 and

R3 6= ∅ is obtained as the optimal value of the following linear program:

min
z,m, θ

m (6.11)

s.t.G(z) +me1 ≥
J∑
j=1

θjXj + θT
j δ̄je1, (6.12)

θj ≥ 0, ∀j, (6.13)

where m ∈ R, θ ∈ RJ , and where δ̄ ∈ RJ is the optimal solution of the
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linear programming:

min
δ, {yj}Jj=1

J∑
j=1

δj (6.14)

s.t. δi ≤ δj, ∀(i, j) ∈ Σ̄ (6.15)

(Xi −Xj)
Tyj + δie1 − δje1 ≥ 0, ∀i 6= j, (6.16)

θj ≥ 0, ∀j, (6.17)

δ1 = 0, (6.18)

where each yj ∈ Rn and Σ̄ is the set of pairs in the partial ordering of

{Xj}Jj=1 described by the elicited comparisons:

Σ̄ := {(i, j) ∈ {1, 2, ..., J}2 : (Xi, Xj) ∈ Σ}.

Since the proof is complicated, we just present the general idea and steps

here. A similar proof with details can be seen in Delage and Li (2015).

In order to prove the above mentioned proposition, we need the fol-

lowing three steps. Firstly, we need the fact that ρA(X, δ) (G(z)) is non-

decreasing in δ, where A (X, δ) represents the convex hull of all the points

{Xj + δj}Jj=1:

A (X, δ) =

{
Z ∈ Rn : ∃θ ∈ RJ , Z ≥

J∑
j=1

θj (Xj + δje1) , θ ≥ 0

}
.

Next, we need the fact that the problem maxδ∈∆

∑J
j=1 δj is equivalent

to Problem (6.14)-(6.18). In particular, let δ̄ ∈ RJ be its optimal solution,

then each δ̄i is the optimal solution of maxδ∈∆ δj, where the set ∆ is denoted

by

∆ :=
{
δ ∈ RJ : ρA(X, δ) (Xj + δje1) ≥ 0, i = 1, ..., J, δ1 = 0, δi ≤ δj, ∀(i, j) ∈ Σ̄

}
.
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It follows that for any prospect G(z), the worst-case risk measure of

G(z) in the set of R3 is the optimal value of the problem:

%R3 (G(z)) = max
δ∈∆

ρA(X, δ) (G(z)) ,

Together with the three steps, we can show that

max
δ∈∆

ρA(X, δ) (G(z)) = ρA(X, δ̄) (G(z)) .

The idea here is similar to the case where we make elicited comparisons

between prospects and 0. For a given prospect, the acceptance set in the

worst-case is determined by the set of the feasible risk values δ ∈ ∆ for

the prospects in the elicited comparisons {Xj}Jj=1. Then, the worst-case

risk measure is obtained by determining the monotone convex hull of the

points {Xj + δj}Jj=1.
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Chapter 7

Conclusion and Future

Research

The fundamental goal of this thesis is to build optimization frameworks for

decision makers with unknown preferences under different conditions. In

brief, we answer the questions raised in Section 1.2 as follows:

1. We have proposed a new SD relationship in which utility functions are

weighted against a reference utility for risk-averse decision makers.

2. We have developed an optimization framework that introduces a set of

constraints of the above mentioned stochastic dominance relationship.

3. We have extended the concept of ASD to log-normal probability

distributions and applied the results to mean-variance analysis and

MGM strategy.

4. We provided a more general optimization framework that considers

the four considerations we have mentioned.

In Chapter 4, we proposed weighted almost stochastic dominance for

risk-averse decision makers, which seeks to reveal unanimous preference

between two prospects by all decision makers with non-decreasing concave

utility function whose marginal utility does not deviate from the reference
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by a maximum factor
(

1
ε
− 1
)
. We also formulated our proposed WRASD in

the constraints of our optimization framework. Specifically, we introduced

a cut generation problem with linear programming and used piece-wise

linear utility functions by interpolation with monotone concave functions.

In addition, we imposed boundaries on the subgradients of utility functions

so that the deviation from the reference utility was limited. The optimal

solution of the cut generation problem could be derived by solving its dual

problem once. In our optimization framework of robust certainty equivalent

maximization problem, we solved a series of cut generation problems where

a scalar target was deemed the benchmark in each iteration. The robust

certainty equivalent solution was determined via a binary search. The

framework in this chapter is a non-parametric representation that leads to

efficient tractable linear programming.

In Chapter 5, we applied the concept of weighted almost stochastic

dominance to prospects with log-normal probability distribution. In par-

ticular, we addressed the gap between the preference for the MGM strategy

in the long run from the perspectives of the law of large numbers and SD.

Besides adding to the theoretic debate regarding the superiority of the

MGM strategy in the long run, this work also adds to the SD literature by

providing additional support for the use of log-weighted almost stochastic

dominance to explain clear preferences between risky prospects in practice

for a wide range of decision makers. This work also presents an alternative

to the mean-variance framework proposed by Markowitz (1952), which is

often criticized for assumptions on normality and quadratic utility. For in-

vestments with log-normal returns, which are reasonable for investors with

a sufficiently long investment horizon, we show that a geometric-mean-

geometric-standard-deviation framework is more appropriate.

In Chapter 6, we firstly proposed the subgradient characterization ap-

proach to tackle risk measures. The set of risk measures was constructed
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by convex function interpolation as well as subgradient characterization.

The ambiguity in risk preferences was tackled by the elicited comparison

information. Then we aim to solve the robust optimization problem by

minimizing the worst-case of the constructed risk measures. The accep-

tance set approach is an alternative technique. In this case, the set of risk

measures consists of the positions that could get rid of risk induced by

the prospect (i.e. to make it accepted) by adding to it. We showed that

the acceptance set is the smallest monotone polyhedron that contains the

convex hull of all the acceptable points.

So far we provided mathematical optimization models that could deal

with the ambiguity in risk preferences for decision makers. On the whole

some contributions have been achieved in this thesis. Nevertheless, some

further research is necessary to extend our work. Some possible topics for

future extension are as follows.

In Chapters 4 and 6, we restrict our attention to risk-averse decision

makers and the corresponding optimization problems that can be formu-

lated or approximately solved by LP models. The risk-averse restriction,

which corresponds to concavity in utility function and convexity in risk

measure, is reasonable for both explicit quantitative analysis and in real

life. In contrast, the LP model assumption is made from a computational

perspective. Hence, the extension from this LP model to more general and

complicated optimization models (e.g., nonlinear problems) could be one

of the future research directions. However, the computation and optimiza-

tion would be more difficult. As a result, new analytic or approximation

techniques are required for this extension.

In Chapter 5, we note that a relationship exists between the difference of

means and the difference of standard deviations when we compare two log-

normally distributed random variables. This relationship is useful when we

aim to choose the prospect that is not dominated by all other choices in a
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feasible set. Incorporating this constraint in the optimization model would

be of interest and significance. This will also provide a new perspective of

mean-variance analysis.

In Chapter 6, we restrict our interest in scalar-valued risk measures. It

is sometimes more natural to use vector-valued risk functions when dealing

with multivariate prospects (Ararat et al., 2014; Molchanov and Cascos,

2016). In the case of scalar-valued risk measures, we deem that investors

are able to aggregate the assets in their portfolio. However, it is not avail-

able for investors to aggregate the assets in their portfolio under some

circumstances. In addition, treating each asset in the portfolio and allocat-

ing reserves separately are not beneficial to the financial agents. Therefore,

it would be interesting to investigate vector-valued risk measures. The

assumption of convexity could ensure computational tractability.
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Appendix A

Proof of Theorem 4.2.1

Proof. Firstly, we show the necessity. For any differentiable real-valued

function u(x) and distribution FX(x), by applying integration by parts

twice:

E [u (X)] =

∫ xmax

xmin

u (ξ) dFX (ξ)

= u (xmax)−
∫ xmax

xmin

u′ (ξ)FX (ξ) dξ

= u (xmax)− u′ (xmax)
∫ xmax

xmin

FX (ξ) dξ

−
∫ xmax

xmin

(∫ ξ

xmin

FX (η) dη

)
(−u′′ (ξ)) dξ.

Define S1 = {x ∈ X | FX(x) > FY (x)} and denote the complement of

S1 as SC1 . Hence, for any u ∈ Uw (m, ε):

E [u (X)]− E [u (Y )]

= u′ (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

+

∫ xmax

xmin

(∫ ξ

xmin

[FY (η)− FX (η)] dη

)
(−u′′ (ξ)) dξ

= u′ (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ
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−
∫
S1

(∫ ξ

xmin

[FX (η)− FY (η)] dη

)
(−u′′ (ξ)) dξ

+

∫
SC1

(∫ ξ

xmin

[FY (η)− FX (η)] dη

)
(−u′′ (ξ)) dξ

≥ u′ (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

−
∫
S1

(∫ ξ

xmin

[FX (η)− FY (η)] dη

)
(−u′′ (ξ)) dξ (A.1)

≥ u′ (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

−max
x∈S1

{∫ x

xmin

[FX (η)− FY (η)] dη

}
·
∫
S1

(−u′′ (ξ)) dξ

≥ u′ (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

− [u′ (xmin)− u′ (xmax)] max
x∈S1

{∫ x

xmin

[FX (η)− FY (η)] dη

}
(A.2)

= u′ (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

− [u′ (xmin)− u′ (xmax)] max
x∈[xmin, xmax]

{∫ x

xmin

[FX (η)− FY (η)] dη

}
≥

(
1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

−

[(
1

ε
− 1

)0.5

m (xmin)−
(

1

ε
− 1

)−0.5

m (xmax)

]

· max
x∈[xmin, xmax]

{∫ x

xmin

[FX (η)− FY (η)] dη

}
(A.3)

≥ 0. (A.4)

Equation (A.1) follows that
∫
SC1

(∫ ξ
xmin

[FY (η)− FX (η)] dη
)

(−u′′ (ξ)) dξ

is non-negative. Equation (A.2) follows because u is concave. Equa-

tion (A.3) follows from the fact that u′ (xmin) ≤
(

1
ε
− 1
)0.5

m (xmin), and

u′ (xmax) ≥
(

1
ε
− 1
)−0.5

m (xmax). Equation (A.4) is true by assumption.

Next, we show sufficiency by contradiction. Suppose that E [u (X)] ≥
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E [u (Y )] , ∀u ∈ Uw (m, ε) and

[(
1

ε
− 1

)0.5

m (xmin)−
(

1

ε
− 1

)−0.5

m (xmax)

]

· max
x∈[xmin, xmax]

{∫ x

xmin

[FX(t)− FY (t)] dt

}
>

(
1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (t)− FX(t)] dt.

Consider a differentiable concave utility function u ∈ Uw (m, ε) such

that if xmin ≤ x < xm − δ,

u′(x) =

(
1

ε
− 1

)0.5

m (xmin) ,

if xm − δ ≤ x < xm + δ,

u′(x) =

(
1
ε
− 1
)0.5

m (xmin)−
(

1
ε
− 1
)−0.5

m (xmax)

2δ
(xm − δ − x)+

(
1

ε
− 1

)0.5

m (xmin) ,

if xm + δ ≤ x ≤ xmax,

u′(x) =

(
1

ε
− 1

)−0.5

m (xmax) ,

where [xm − δ, xm + δ] is a small neighborhood of xm = arg maxx∈[xmin, xmax]{∫ x
xmin

[FX (η)− FY (η)] dη
}

.

Using integration by parts, we obtain:

E [u (X)]− E [u (Y )]

= u′ (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

+

∫ xmax

xmin

(∫ ξ

xmin

[FY (η)− FX (η)] dη

)
(−u′′ (ξ)) dξ

=

(
1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

−
∫ xm+δ

xm−δ

(∫ ξ

xmin

[FX (η)− FY (η)] dη

)
(−u′′ (ξ)) dξ (A.5)
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=

(
1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

−
∫ xm+δ

xm−δ
max

x∈[xmin, xmax]

{∫ x

xmin

[FX (η)− FY (η)] dη

}
(−u′′ (ξ)) dξ + o (δ) (A.6)

=

(
1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

−
(

1
ε
− 1
)0.5

m (xmin)−
(

1
ε
− 1
)−0.5

m (xmax)

2δ
· 2δ

· max
x∈[xmin, xmax]

{∫ x

xmin

[FX (η)− FY (η)] dη

}
+ o (δ)

=

(
1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (ξ)− FX (ξ)] dξ

−

[(
1

ε
− 1

)0.5

m (xmin)−
(

1

ε
− 1

)−0.5

m (xmax)

]

· max
x∈[xmin, xmax]

{∫ x

xmin

[FX (η)− FY (η)] dη

}
+ o (δ)

Equation (A.5) follows from the fact that u′′ (x) = 0 for all x /∈ [xm − δ, xm + δ].

Equation (A.6) follows from Equation (A.5) by the substitution

o (δ) =

∫ xm+δ

xm−δ

(
max

x∈[xmin, xmax]

{∫ x

xmin

[FX (η)− FY (η)] dη

}

−
∫ ξ

xmin

[FX (η)− FY (η)] dη

)
(−u′′ (ξ)) dξ

By our assumption,

[(
1

ε
− 1

)0.5

m (xmin)−
(

1

ε
− 1

)−0.5

m (xmax)

]

· max
x∈[xmin, xmax]

{∫ x

xmin

[FX(t)− FY (t)] dt

}
>

(
1

ε
− 1

)−0.5

m (xmax)

∫ xmax

xmin

[FY (t)− FX(t)] dt.

In addition, observe that o (δ)→ 0 when δ → 0. Therefore, E [u (X)] <

E [u (Y )] for a sufficiently small δ which contradicts our assumption that

E [u (X)] ≥ E [u (Y )] , ∀u ∈ Uw (m, ε).
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Appendix B

Proof of Theorem 4.3.2

Proof. (i) The function ψ (X; Uw (m0, ε) , Y ) is explicitly (recall v1 = 0)

min
v, s, a, b

∑
ω∈Ω

P ({ω}) (aωX (ω) + bω)− vt (B.1)

s.t. vk+1 = sk (θk+1 − θk) + vk, ∀k = 1, . . . , K − 1, (B.2)

sk ≥ sk+1, ∀k = 1, . . . , K − 2 (B.3)

aωθk + bω ≥ vk, ∀k = 1, . . . , K, ∀ω ∈ Ω, (B.4)(
1

ε
− 1

)−0.5

βk ≤ sk ≤
(

1

ε
− 1

)0.5

βk, ∀k = 1, . . . , K − 1, (B.5)

a, s ≥ 0. (B.6)
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The Lagrangian for Problem (B.1) - (B.6) is

L (v, s, a, b, λ, µ, δ, γ)

=
∑
ω∈Ω

P ({ω}) (aωX (ω) + bω)−
K∑
k=1

1t (θk) vk

+
K−1∑
k=1

λk (vk+1 − sk (θk+1 − θk)− vk)

+
K−2∑
k=1

µk (sk+1 − sk) +
K∑
k=1

∑
ω∈Ω

δkω (vk − aωθk − bω)

+
K−1∑
k=1

γlk

((
1

ε
− 1

)−0.5

βk − sk

)
+

K−1∑
k=1

γuk

(
sk −

(
1

ε
− 1

)0.5

βk

)
.

Rearranging terms gives

L (v, s, a, b, λ, µ, δ, γ)

=
K−1∑
k=1

(
1

ε
− 1

)−0.5

βkγ
l
k −

K−1∑
k=1

(
1

ε
− 1

)0.5

βkγ
u
k

+
K∑
k=1

vk

(
−1t (θk) + λk−1 − λk +

∑
ω∈Ω

δkω

)

+
K−1∑
k=1

sk
(
−λk (θk+1 − θk) + µk−1 − µk − γlk + γuk

)
+
∑
ω∈Ω

aω

(
P ({ω})X (ω)−

K∑
k=1

θkδkω

)

+
∑
ω∈Ω

bω

(
P ({ω})−

K∑
k=1

δkω

)
.

The desired form of the dual follows, which we substitute into Problem

(4.5).

(ii) All of the terms in Problem (4.9) - (4.14) are linear except for the

objective E [G (z)] and the constraints P ({ω}) [G (z)] (ω)−
∑K

k=1 θkδkω ≥ 0.

The objective is concave and the function P({ω}) [G (z)] (ω) is concave by

assumption on G.
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Appendix C

Proof of Corollary 4.3.1

Proof. (i) Follows immediately from the assumption of Lipschitz continuity

of m, for x ∈ [θk, θk+1) we have

|m0 (x)−m (x) | = |m (θk)−m (x) | ≤ L |x− θk| < εL.

(ii) For u ∈ Uw (m, ε), we have

(
1

ε
− 1

)−0.5

m (x) ≤ u′ (x) ≤
(

1

ε
− 1

)0.5

m (x) , ∀x ∈ X .

By part (i),

(
1

ε
− 1

)−0.5

(m0 (x)− ε L) ≤ u′ (x) ≤
(

1

ε
− 1

)0.5

(m0 (x) + ε L) , ∀x ∈ X .

Now set

û′ (x) =



u′ (x) ,
(

1
ε
− 1
)−0.5

m0 (x) ≤ u′ (x) ≤
(

1
ε
− 1
)0.5

m0 (x) ,(
1
ε
− 1
)−0.5

m0 (x) , u′ (x) <
(

1
ε
− 1
)−0.5

m0 (x) ,(
1
ε
− 1
)0.5

m0 (x) , u′ (x) >
(

1
ε
− 1
)0.5

m0 (x) .

If we define û (x) =
∫ x
xmin

û′ (ξ) dξ, then û ∈ Uw (m0, ε). We have ‖u′ −
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û′‖C(X ) ≤
(

1
ε
− 1
)−0.5

ε L by construction, and integration gives the desired

result.

108



Appendix D

Proof of Theorem 5.3.1

Proof. First, we present four technical lemmas which will be used in the

proof of Theorem 5.3.1.

Lemma D.1. For a normally distributed prospect with mean µ, standard

deviation σ and cumulative distribution function F :

∫
F (t)dt =

t

2
+

1

2

[
(t− µ)erf

(
t− µ√

2σ

)
+

√
2σ√
π
e
−
(
t−µ√
2σ

)2
]

+ const.

Proof of Lemma D.1.

F (t) =
1

2

[
1 + erf

(
t− µ√

2σ

)]
∫
F (t)dt =

1

2

∫
1 + erf

(
t− µ√

2σ

)
dt

=
1

2

[
t+
√

2σ

(
t− µ√

2σ
erf

(
t− µ√

2σ

)
+

1√
π
e
−
(
t−µ√
2σ

)2
)]

+ const

=
t

2
+

1

2

[
(t− µ)erf

(
t− µ√

2σ

)
+

√
2σ√
π
e
−
(
t−µ√
2σ

)2
]

+ const. �

Lemma D.2. If t0 = µXσY −µY σX
σY −σX

then t0−µX
σX

= t0−µY
σY

.

Proof of Lemma D.2. First, observe that it follows from the lemma
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condition that:

t0 − µX
σX

=

µXσY −µY σX
σY −σX

− µX
σX

=
µX − µY
σY − σX

Next, observe that it follows from the lemma condition that:

t0 − µY
σY

=

µXσY −µY σX
σY −σX

− µY
σY

=
µX − µY
σY − σX

It follows from the above two equations that t0−µX
σX

= t0−µY
σY

. �

Lemma D.3. If t0 = µXσY −µY σX
σY −σX

then µX−t0
σX

= µX−µY
σX−σY

.

Proof of Lemma D.3.

µX − t0
σX

=
µX − µXσY −µY σX

σY −σX
σX

=
µY − µX
σY − σX

=
µX − µY
σX − σY

. �

Lemma D.4. Suppose X ∼ N(µX , σ
2
X), Y ∼ N(µY , σ

2
Y ), µX ≥ µY and

σX 6= σY . X dominates Y with (1, ε)-WASD if and only if:

ε ≥ 1

2

1− φ
√
π

φ
√
π · erf( φ√

2
) +
√

2e−
φ2

2

 ,
where φ = µX−µY

|σX−σY |
and erf(·) denotes the Gauss error function.

Proof of Lemma D.4. Under the lemma conditions, there is exactly

one intersection point t0 = µXσY −µY σX
σY −σX

between F and G (Levy 2006).

Hence, there are the following two possible cases to consider:

• S1 = {t : −∞ < t ≤ t0}

• S1 = {t : t0 < t <∞}
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First, we consider the case where S1 = {t : −∞ < t ≤ t0}. It follows

from Lemma D.1 that:

2

∫
S1

[F (t)−G(t)] dt

= 2

∫ t0

−∞
[F (t)−G(t)] dt

= (t0 − µX)erf

(
t0 − µX√

2σX

)
+

√
2σX√
π
e
−
(
t0−µX√

2σX

)2

− lim
t→−∞

[
(t− µX)erf (t) +

√
2σX√
π
et

]
− (t0 − µY )erf

(
t0 − µY√

2σY

)

−
√

2σY√
π
e
−
(
t0−µY√

2σY

)2

+ lim
t→−∞

[
(t− µY )erf (t) +

√
2σY√
π
et

]

= t0

[
erf

(
t0 − µX√

2σX

)
− erf

(
t0 − µY√

2σY

)]
−
[
µXerf

(
t0 − µX√

2σX

)
− µY erf

(
t0 − µY√

2σY

)]
+

√
2√
π

[
σXe

−
(
t0−µX√

2σX

)2

− σY e
−
(
t0−µY√

2σY

)2]

− lim
t→−∞

[
(µY − µX)erf (t) +

√
2 (σX − σY )√

π
et

]

= (µY − µX)erf

(
t0 − µX√

2σX

)
+

√
2(σX − σY )√

π
e
−
(
t0−µX√

2σX

)2

− lim
t→−∞

[
(µY − µX)erf (t) +

√
2 (σX − σY )√

π
et

]
(D.1)

= (µY − µX)erf

(
t0 − µX√

2σX

)
−
√

2√
π

(σY − σX)e
−
(
t0−µX√

2σX

)2

+ (µY − µX).

Equation (D.1) follows from Lemma D.2. The last equality follows from

the fact that limt→−∞ erf (t) = −1 and limt→−∞ e
t = 0.
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In a similar fashion, it can be shown that:

2

∫
SC1

[G(t)− F (t)] dt

= 2

∫ ∞
t0

[G(t)− F (t)] dx

= (µY − µX)erf

(
t0 − µX√

2σX

)
−
√

2√
π

(σY − σX)e
−
(
t0−µX√

2σX

)2

− (µY − µX).

Therefore:

∫
S1

[F (t)−G(t)] dt∫∞
−∞ |F (t)−G(t)|dt

=

∫
S1

[F (t)−G(t)] dt∫
S1

[F (t)−G(t)] dt+
∫
SC1

[G(t)− F (t)] dt

=
(µY − µX)erf

(
t0−µX√

2σX

)
−
√

2√
π
(σY − σX)e

−
(
t0−µX√

2σX

)2

+ (µY − µX)

2

{
(µY − µX)erf

(
t0−µX√

2σX

)
−
√

2√
π
(σY − σX)e

−
(
t0−µX√

2σX

)2}
=

1

2
+

µY − µX

2

{
(µY − µX)erf

(
t0−µX√

2σX

)
−
√

2√
π
(σY − σX)e

−
(
t0−µX√

2σX

)2}

=
1

2
+

√
π(µY −µX)√
2(σY −σX)

2

{
√
π(µY −µX)√
2(σY −σX)

erf
(
t0−µX√

2σX

)
− e

−
(
t0−µX√

2σX

)2}

=
1

2
−

√
π(µX−µY )√
2(σX−σY )

2

{
√
π(µX−µY )√
2(σX−σY )

erf
(
µX−t0√

2σX

)
+ e

−
(
µX−t0√

2σX

)2} (D.2)

= ε ≥ 1

2

1− φ
√
π

φ
√
π · erf( φ√

2
) +
√

2e−
φ2

2

 . (D.3)

Equation (D.2) follows from the observation that erf(−t) = −erf(t).

Equation (D.3) follows from Lemma D.3 and the observation that σX > σY

when S1 = {t : −∞ < t ≤ t0}. When S1 = {t : −∞ < t ≤ t0}, it follows

from Equation 2.2 and Equation (D.3) that X dominates Y with (1, ε)-
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WASD if and only if:

ε ≥ 1

2

1− φ
√
π

φ
√
π · erf( φ√

2
) +
√

2e−
φ2

2

 .
In a similar fashion, it can be shown that, when S1 = {t : t0 ≤ t <∞},

X also dominates Y with ε-ASD if and only if:

ε ≥ 1

2

1− φ
√
π

φ
√
π · erf( φ√

2
) +
√

2e−
φ2

2

 .
Hence, X dominates Y with ε-ASD if and only if:

ε ≥ 1

2

1− φ
√
π

φ
√
π · erf( φ√

2
) +
√

2e−
φ2

2

 . �

Proof of Theorem 5.3.1. Since X ∼ lnN(µX , σ
2
X), Y ∼ lnN(µY , σ

2
Y ),

we have ln(X) ∼ N(µX , σ
2
X), ln(Y ) ∼ N(µY , σ

2
Y ). It follows from Lemma

D.4 that ε ≥ 1
2

[
1− φ

√
π

φ
√
π·erf( φ√

2
)+
√

2e−
φ2

2

]
if and only if:

E[u(ln(X))] ≥ E[u(ln(Y ))],∀u ∈ U∗(1, ε),

which is equivalent to:

E[v(X)] ≥ E[v(Y )],∀v ∈ U∗
(

1

t
, ε

)
. (D.4)

by setting v(t) = u (ln(t)) and invoking chain rule for computing the deriva-

tive of the composition of two functions.

Since Equation (D.4) is necessary and sufficient for
(

1
t
, ε
)
-WASD, ε ≥

1
2

[
1− φ

√
π

φ
√
π·erf( φ√

2
)+
√

2e−
φ2

2

]
is also necessary and sufficient for

(
1
t
, ε
)
-WASD.

�
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