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SUMMARY 
 
 

This thesis proposes several novel techniques for full-field displacement and 

displacement derivatives measurement in both static and dynamic applications. A 

Teager-operator based algorithm is proposed to obtain high-quality higher-order 

unwrapped phase derivative maps from a complex exponential signal, which is obtained 

from a numerical reconstruction in digital holographic interferometry (DHI). An 

algorithm is further developed to extend the phase derivatives determination method in 

digital speckle pattern interferometry (DSPI) and digital speckle shearing 

interferometry (DSSI). This algorithm employs Huang filtering and Hilbert transform 

along with Teager operator to obtain complex field from a single fringe pattern.  

In addition, a novel fringe analysis technique, which uses fringe orientation and 

fringe density map, is proposed to obtain phase derivatives directly from a single fringe 

pattern. Further, a derivative based simplified phase tracker model is proposed for phase 

demodulation from a single fringe pattern. The phase tracker utilizes predetermined 

phase gradients to overcome the limitations of existing phase tracker techniques.  

In time-average speckle interferometry, a novel amplitude varied refreshing 

reference frame technique is proposed to improve the contrast and visibility of a Bessel 

fringe pattern without the need for a phase shifting process. A mathematical model for 

the fringes obtained from the technique is derived. Subsequently, the derivative based 

phase tracker model is modified to measure vibrational amplitude from a single fringe 

pattern. The proposed quantitative vibrational analysis method is useful for both mode 

shape visualization and vibrational amplitude measurement.  
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viii

A novel ensemble of hybrid genetic algorithm for two-dimensional phase 

unwrapping method, is also proposed for phase unwrapping of a noisy phase map. The 

method performs better than the existing artificial intelligence based phase unwrapping 

techniques. A method to determine material properties of a small cantilever beam using 

DSPI is also developed which overcomes the influence of rigid body movement in the 

out of plane displacement measurement. All methods are verified with numerical 

simulations and validated by experiments. 

A list of publications arising from this research project is shown in Appendix. 
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CHAPTER ONE 

 
INTRODUCTION 

 

 
Light is electromagnetic radiation which exhibits properties of both waves and particles. 

Light as a wave, has wavelength, frequency, amplitude and phase. A typical human eye 

can detect light within a range of wavelength 390 nm to 700 nm. Though a human eye 

is sensitive to distinguish wavelength, frequency and amplitude, it is insensitive to 

phase values. Phase values of light wave would be significant and measuring phase 

along with amplitude would provide the complete wave-front of light. Phase difference 

between light beams of same wavelength causes either constructive or destructive 

interference. Hence interference phenomenon of light waves is exploited to determine 

the phase values and this technique is called as interferometry. Today, interferometry 

is widely used in many branches of physics and engineering and its application ranges 

from visualization of internal tissue microstructures to detection of gravitational waves. 

Structures undergo deformation, when any kind of load applied on it. In 

mechanics, measuring these deformations and strains have many useful applications 

from structural monitoring to material characterization. Conventional deformation and 

strain measurement techniques such as extensometer and electric resistance strain 

gauges are compact, accurate, and inexpensive. However, they can only provide 

measurement data at a single point and these devices should be in contact with the 

specimen. Hence optical techniques for displacement and strain measurements were 

developed. They can provide full-field measurements with high accuracy and they are 

non-contact in nature. Hence there is no additional stiffness appended in the specimen. 
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These optical techniques are mainly classified under two categories, coherent and 

incoherent light based methods. Coherent techniques use wave properties of light such 

as interference and diffraction and incoherent techniques use geometrical properties of 

a light beam. In this thesis, novel methods to determine displacement and displacement 

derivatives such as strain, curvature, twist using coherent techniques such as 

holography, speckle interferometry and shearography are proposed. 

 

1.1   Holography 

Holography is a field of science which deals with the practice of making holograms. In 

1948, Dennis Gabor invented holography unintentionally, during his research to 

improve the quality of electron microscope. The term holography comes from Greek 

words ‘holo’ which means whole and ‘graphe’ which means drawing. This term was 

coined by Dr. Gabor since holograms capture the whole wave front. Until the invention 

of lasers, making optical holograms was not practical as they need coherent light source. 

With the advent of the laser, full potential of holograms in various applications has been 

explored and Dennis Gabor was awarded with a Nobel Prize in 1971 for his invention 

and development of holographic method. 

 In holography, a coherent light beam is split into two beams. Reference beam 

reaches a photographic plate directly and the other beam is reflected from the object 

before reaching the photographic plate. The interference between these two beams are 

recorded in the photographic plate. In photography, a lens is used for image formation 

however in holographic recording the interference pattern is recorded directly on the 

photographic plate without any lens. After chemical processing of the photographic 

plate, a reference beam with same wavelength is used for reconstruction of the object 

wave. In Gabor’s holography, the reconstructed image has twin-image (real and virtual) 
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and zero-order term. Leith and Upatnieks suggested an off-axis holography technique, 

which provides solution to this zero-order and twin-image problem. Since then, it found 

applications in many fields from microscopy to data storage. Holographic 

interferometry is one such application. It is a technique to measure static and dynamic 

displacements of an object in sub-wavelength accuracy. Holograms of an object before 

and after deformation are recorded with the same photographic plate and the 

displacements are visible in the form of fringes in the reconstructed object wave as 

shown in Fig. 1.1. 

 

Figure 1.1 Holographic interferometric fringes. 

 After invention of electronic image capturing devices like charge-coupled 

device (CCD), photographic plates in holographic process are replaced and this 

provided a wide range of new capabilities. Digital holography records whole field 

information of an object using an electronic device (e.g. CCD), and the reconstruction 

of an object wave is carried out numerically. Several algorithms such as convolution 

method and pure Fourier transform have been proposed for reconstructing an object 

wave. Recording and reconstruction are integrated into one system, and processing of 
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holograms can be realized digitally without any intermediate photographic recording 

and wet chemical processing of photographic plates. In recent years, digital holographic 

technique has been successfully applied in various fields including holographic 

interferometry. In digital holographic interferometry (DHI), the numerical values of 

phase difference caused by the deformation is obtained. Hence it enables full field 

measurement of displacement and strain. However, holographic setup is highly 

sensitive to external disturbances, it can be applied only under laboratory conditions. 

 

1.2   Speckle pattern interferometry 

Speckle pattern interferometry is a technique, which uses correlation between speckle 

patterns to measure out of plane and in-plane displacements in components with 

optically rough surface. Speckle patterns, which typically occur in diffuse reflections 

of monochromatic light, are intensity patterns created by interference of many waves 

of same wavelength with different phase and amplitude. In holography, speckles are 

considered to be unwanted noise which reduces the resolution of the captured 

holograms. 

Later it was realized that speckles can carry information about surface 

deformation. In 1971, Butters and Leendertz found that the direct recording of a two-

beam interference pattern between a reference wave and a speckle wave carries the 

phase information of the speckle wave. A separate numerical reconstruction to get the 

complex amplitude is not necessary as in the case of DHI. 

 Speckle pattern interferometry requires a setup similar to holography where an 

interference pattern between a reference beam and an object beam is recorded. However 

speckle pattern interferometry uses TV camera with lens to capture subjective speckle 

pattern hence it is also called as ‘TV Holography’. Based on the capturing device used, 
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it is called as either electronic speckle pattern interferometry (ESPI) or digital speckle 

pattern interferometry (DSPI). Since this technique uses speckle correlation for 

measuring surface deformation, in-plane surface deformation measurement is also 

possible which is not the case with optical interferometry and holographic 

interferometry. This technique is less sensitive to ambient conditions than holography 

so it can be used outside laboratory conditions. However this technique is susceptible 

to rigid body motions and the reference beam should be coherent with object beam. 

  

1.3   Shearography 

Shearography or digital speckle pattern shearing interferometry (DSSI) is a coherent 

optical technique to measure surface displacement derivatives directly. Shearography 

is similar to DSPI except that it does not need a reference light wave to form speckle 

pattern but it uses the object itself as the known reference. The image would be sheared 

to obtain the displacement derivatives in the sheared direction. Since there is no separate 

reference wave, there is no need to maintain coherency between reference wave and 

object wave. Hence shearography requires simple experimental setup and does not 

require extreme stability. Due to these reasons, it is widely used in industries for in-situ 

measurements.  

All these coherent optical techniques can be used for defect detection in 

nondestructive testing (NDT), however shearography is more useful for this application 

as it is only sensitive to surface deformation derivatives and insensitive to gross 

deformations (Hung, 1997; Yang and Hung 2004; Zhu et al, 2011). Hence among 

coherent optical techniques, only shearography setup can be made as portable units 

similar to existing NDT methods such as ultrasonic testing. Today, shearography is one 
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of the most robust NDT methods which is predominantly used in automotive and 

aerospace industries (Zhu et al, 2011). 

 

1.4   Scope and outline of thesis 

Although coherent optical techniques are widely used in all major branches of 

experimental mechanics such as material properties determination, structural analysis 

and NDT, there are still considerable limitations and improvements are required in these 

techniques to face today’s challenges of unprecedented complexity. In coherent optical 

techniques, phase difference, which is caused by displacement and displacement 

derivatives, are retrieved from the captured frames. Most widely used phase retrieval 

techniques either require more than one frame at every deformation as in case of 

temporal phase shifting techniques or require complex experimental setup as in case of 

spatial phase shifting techniques. These limitations in phase retrieval methods prevent 

coherent optical techniques for real time dynamic deformation and strain measurements.  

The specific limitations and challenges in DHI, DSPI and DSSI are summarized 

as follows: (1) In DHI, the quality of an extracted phase map is highly affected by 

speckle noise. Noise filtering methods require very high computational time and it is 

difficult to further measure high-quality higher-order displacement derivatives. (2) In 

speckle pattern interferometry and shearography, few studies have been carried out to 

evaluate the phase distributions from a single fringe pattern. Another issue is how to 

measure phase derivatives directly from the fringe pattern. (3) In some applications 

with coherent optical methods such as time-average vibration analysis, fringe quality 

of interferometers needs to be improved. Existing techniques require complex 

experimental setup for improving fringe quality and for determination of vibration 

amplitude values. (4) Phase and phase derivatives maps obtained from most of phase 
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retrieval techniques would be wrapped. Existing phase unwrapping methods cannot 

unwrap noisy phase maps effectively and they also require more computational time. 

           The objectives of this research work are to develop new phase and phase 

derivatives determination techniques in coherent optical techniques, and to overcome 

the existing problems in some applications with these techniques. These objectives are 

summarized as follows: (1) In DHI, a Teager operator based discrete higher order image 

demodulation algorithm is proposed to determine the phase derivatives maps. This 

method provides higher-order displacement derivatives, such as first-order and second-

order displacement derivatives, and also a phase distribution of the test object is 

determined. (2) In speckle pattern interferometry and shearography, a novel method to 

determine phase derivatives maps directly from a fringe pattern is proposed. This 

method uses fringe orientation and fringe density maps to determine deformation 

derivatives. Furthermore, a novel derivative based regularized phase tracker method is 

proposed to obtain a phase map directly from a single DSPI or DSSI fringe patterns. (3) 

In time average vibration analysis, a method to improve fringe contrast is proposed. 

Furthermore, a method to determine vibration amplitude from single time average 

fringe pattern is proposed. (4) A phase unwrapping method to address noisy phase maps 

using an artificial intelligence method called ensemble of hybrid genetic algorithm is 

proposed. (5) A method to determine elastic modulus of a cantilever beam using DSPI 

is proposed. This method is able to reduce the influence of a small rigid body 

displacement in elastic modulus determination. A list of publications arising from this 

research work during the candidate’s Ph.D. period is included in Appendix. Most of the 

results presented in this thesis are mainly from these publications, but an in-depth 

analyses and detailed descriptions of the methods and their applications are also 

included in this thesis. The research work in this thesis may contribute to a better 
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understanding of coherent optical techniques principles and their applications in the 

field of experimental mechanics. This may also shed some light on the further 

development of these techniques for some novel practical applications. 

           The thesis is organized into six chapters. 

             In Chapter 1, a brief introduction of coherent optical techniques is given. In 

addition, some challenges existing in these techniques are described, and the objectives 

and significance of this research work are also presented. 

             In Chapter 2, a literature review is conducted with five parts. In the first part, 

wave theory of light is presented. In the second part, principles of various coherent 

optical techniques such as holography, speckle pattern interferometry and shearography 

are presented. In the third part, different spatial and temporal phase evaluation 

techniques are reviewed. In the fourth part, review of optical techniques employed for 

vibrational analysis are presented and in the last part, a review of principles and 

classifications of phase unwrapping is presented. 

             In Chapter 3, the theories of the proposed displacement and displacement 

derivatives methods are presented, and the proposed theories to address the existing 

challenges in some applications with these techniques are also described.   

             In Chapter 4, experimental works which are carried out to validate the proposed 

methods are presented, and the descriptions about equipment and specimens are also 

included.       

             In Chapter 5, the simulation and experimental results of the proposed 

techniques are presented, and the results in the applications are demonstrated. The 

analyses to validate the accuracy and the influence of different parameters on the 

performance of the proposed methods are also presented. In addition, the advantages, 

disadvantages of the proposed techniques are analyzed in detail. 
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             In Chapter 6, the research work is concluded, and the research directions for 

the further study are recommended. 
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CHAPTER TWO 

 
LITERATURE REVIEW 

 

 

2.1   The basics of light 

The Maxwell equations which provides the electromagnetic wave theory, describes 

the propagation of a light wave in vacuum as shown below. 
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                                                                                                     (2.1) 

 

where E is the electric field strength, 2  represents Laplace operator which is 

described as 
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                                                                                              (2.2) 

 

x, y and z represent the spatial coordinates, t represents the temporal coordinate, and c 

is the speed of the light wave in vacuum (
82.9979 10 m s ).  

           The electrical field E is a vector quantity, which represents that a light wave 

can vibrate in any direction perpendicular to the propagation. Light wave vibrating in 

a single plane is called linear polarized light and the above scalar wave equation can 

be rewritten as (Kreis, 2005; Schnars and Jueptner, 2005) 
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                                                                                                     (2.3) 
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where the propagation of the light is in the z direction. For a linearly polarized and 

harmonic plane wave, the important solution of Eq. (2.3) is described by 

 

0( , , ; ) cos(2 )wE x y z t A ft k r                                                                             (2.4) 

 

where wA  is the real amplitude of the light wave, f is the frequency of the light wave, 

k  is the wave vector, r  is the spatial vector [ ( , , )r x y z ], and 
0  is a constant phase. 

In this thesis, 
0k r     is defined as phase. The wave represented in a complex 

exponential form is often algebraically easier to deal with in the wave calculation and 

in derivations of optical principles. Hence the wave expression in the complex 

exponential form is written as 

 

 ( , , ; ) exp (2 )wE x y z t A j ft                                                                      (2.5) 

 

where 1.j    The real part of this complex exponential alone represents the 

physical wave. In many cases, 2 ft term is ignored since the spatial part of the 

electrical field is of the most interest. Hence, in this thesis, a light wave is represented 

as: 

 

 ( , , ; ) expwE x y z t A j          (2.6) 

  

2.2   Review of coherent optical techniques 

2.2.1   Holographic interferometry 

Dr. Gabor (1948) proposed in-line optical holographic setup as shown in Fig. 2.1. A 

coherent light source is split into two waves, i.e., reference and object waves. The 

angle between object and reference waves is small or close to zero (Xu et al., 2002, 
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2003; Sucerquia et al., 2006a, 2006b). An object is illuminated, and the object wave, 

which is a diffracted wavefront from the object, is then propagates towards a 

recording medium. The object and reference waves interfere before recording with a 

help of a beam splitter cube, and an interference pattern is captured on the surface of 

the recording medium. Without a loss of generality, only a given pixel (m, n) is 

considered. The recorded interference pattern is called hologram and the intensity

( , )oI m n  of a hologram recorded is given by: 

 

 ( , ) ( , )exp ( , )o o oE m n a m n j m n         (2.7) 

 ( , ) ( , )exp ( , )r r rE m n a m n j m n         (2.8) 

2 2 * *

0 0 0

2 2

0 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

            ( , ) ( , ) 2 ( , ) ( , )cos[ ( , ) ( , )]

o r r r

r r r o

I m n a m n a m n E m n E m n E m n E m n

a m n a m n a m n a m n m n m n 

   

   
  (2.9) 

  

where ( , )oa m n and ( , )ra m n  are real amplitude of object wave and reference wave; 

( , )o m n and ( , )r m n are the phase of object wave and reference wave. 

 

Figure 2.1  A typical in-line optical holographic experimental arrangement. 
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In Gabor’s in-line optical holographic setup, the angle between the object and 

reference waves is almost zero. This causes superposition of zero order term, virtual 

and real terms during holographic reconstruction. An appropriate angle between 

object and reference waves was introduced by Leith and Upatnieks (1962, 1963) to 

overcome this problem. This off-axis experimental setup is shown in Fig. 2.2 (Schnars 

and Jueptner, 2005). The basic principles of wave propagation and interference are the 

same with those of the in-line optical holographic setup. However, in off-axis optical 

holographic setup, the angle between object and reference waves is larger than the in-

line holographic setup. 

 

 

Figure 2.2  An off-axis optical holographic experimental arrangement. 

In optical holography, a photographic plate is used as a recording device. To 

reconstruct a hologram recorded, a reference wave of the same wavelength as in the 



 

CHAPTER TWO                                                                                           LITERATURE REVIEW 

 

14 

recorded hologram is used to illuminate the hologram. The modulation procedure, 

when the reference wave illuminates the recorded hologram, can be described by 

       

       

2 2

2* 2

( , ) , , , ,

, , , ,

o r o r r

o r r o

I m n E m n E m n E m n E m n

E m n E m n E m n E m n

  
  

 

          (2.10) 

 

where the first term is a zero-order term or DC term, and the second and third terms 

form real and virtual images, respectively. In off-axis optical holographic setup, these 

three terms is effectively separated which was not the case in in-line holographic 

setup. 

Holographic interferometry is one of the coherent optical techniques used in 

experimental mechanics. It is a non-contact and non-destructive technique which is 

used various applications, such as deformation measurement and object surface 

contouring (Schnars and Jueptner, 2005). There are two main types of holographic 

interferometry, i.e., double exposure and time-average methods. In double exposure 

method, a reference state of the object is first recorded in a recording medium, and a 

deformed state of the object is recorded in the same recording medium. In the optical 

reconstruction, interference fringes, which represents the deformation in the object are 

visible. In holographic interferometry, the wavefront of reference and deformed states 

of the object is given by 

 

 1 0 1( , ) ( , )exp ( , )I m n A m n j m n                                                        (2.11) 

 2 0 2( , ) ( , )exp ( , )I m n A m n j m n                                                              (2.12) 

 

where 
0( , )A m n denotes the real amplitude which is assumed as constant, and 

1( , )m n  

and 
2( , )m n  denote phase distributions of the object before and after deformation. 
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The phase value 
2( , )m n  is described by 

2 1( , ) ( , ) ,m n m n     where   is the 

phase difference between the reference and deformed states, which is directly related 

to the measured physical quantities. Hence, when a recorded hologram is illuminated 

by a reference wave, both wave fields are reconstructed as shown in Fig. 1. The 

intensity distribution ( , )dI m n  is calculated by the square of the summation of the two 

reconstructed complex amplitudes. 

 

  

 

*

1 2 1 2

2

( , ) ( , ) ( , ) ( , ) ( , )

2 1 cos( ( , ))

dI m n I m n I m n I m n I m n

A m n

  

  
                               (2.13) 

            

In optical holographic interferometry, quantitative phase measurement is 

difficult. A manual fringe counting can be employed for obtaining phase distribution 

in optical holographic interferometry but it is not accurate. Hence the phase is usually 

calculated from three or more phase-shifted holograms using a phase-shifting 

algorithm. This requires additional experimental effort and it is not suitable for 

dynamic measurements. Hence, it is important to develop digital approaches in order 

to quantitatively extract the phase distribution that is directly related to the measured 

physical quantity from a single interferogram. 

The digital holography was developed, when CCD technology is employed in 

the holographic research field (Schnars and Jüptner, 1994; Cuche et al., 1999). The 

experimental setups for recording in digital holography are the same as those shown 

in Figs. 2.1 and 2.2 except that a CCD is used instead of a photographic plate. Hence, 

numerical recording in digital holography does not require a reconstruction setup and 

wavefronts are reconstructed numerically.  
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Digital holography has several advantages over conventional optical 

holographic technique: (1) The holograms are recorded digitally and no wet chemical 

processing of a photographic plate is required; (2) the holograms can be recorded in 

real time at a video frequency which is useful in dynamic measurements; (3) 

numerical reconstruction and phase evaluation can be integrated into a single system 

and quantitative phase measurement is easier and more accurate. 

 Numerical reconstruction process is based on the Fresnel–Kirchhoff integral 

since the wavefront is formed by a diffraction of the reconstructing wave at the micro-

structure of a hologram. The diffraction of a light wave at an aperture, which is 

perpendicular to an incoming reference beam, is described by the Fresnel–Kirchhoff 

integral as shown below. 

 

1 2 1 cos
( ', ') ( , ) ( , ) exp

2

j
H u v R u v j dudv

 
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where ( , )H u v is a hologram, ( , )R u v is a reference wave of wavelength  and

2 2 2( ') ( ')u v d       
  

 . The expression of   is approximated using Taylor 

series expansion and the discrete version of Eq. (2.14) after Fresnel approximation is 

given by: 
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The intensity distribution ( , )hI m n  and the phase distribution ( , )m n  can be 

directly extracted from the reconstructed complex amplitude. 

 

2
( , ) ( , )hI m n m n                                                                               (2.16) 

 
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Im ( , )
( , ) arctan
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m n
m n

m n





                                                                         (2.17) 

 

where Im and Re denote imaginary and real parts of a complex amplitude, 

respectively. 

  This numerical reconstruction requires more computation. It is demonstrated 

that numerical reconstruction using convolution method is better than Fresnel 

approximation method when the reconstruction distance is relatively small (Dakoff et 

al., 2003). Hence a convolution approach is proposed as described by (Schnars and 

Jueptner, 2005; Kreis et al., 1997) 

 

    1( ', ') ( , ) ( , ) ( , )FFT FFT H u v R u v FFT g u v                           (2.18) 

 

where FFT  and 
1FFT 
 denote a two-dimensional (2D) Fourier transform and an 

inverse 2D Fourier transform, respectively. A fast Fourier transform can be 

implemented to increase the computation speed. Additionally, pixel size in the image 

plane is independent of the reconstruction distance and the wavelength, and the pixel 

size is equivalent to the pixel size of CCD camera. 

When a point source of the reference wave is located at the same plane of the 

object, numerical reconstruction process can be simplified as a pure Fourier transform 

(Wagner et al., 1999). A schematic digital lensless Fourier holographic recording 

setup is shown in Fig. 2.3. The spherical reference wave can be simplified as 
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   2 21 2
, exp expR u v j d j u v

d d

 
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                                       (2.19) 

 

 Hence, the reconstructed complex amplitude can be described by 

 

   2 2 1( ', ') exp ' ' ( , )C j FFT H u v
d


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where C denotes a constant complex value. 

 

Figure 2.3  Digital lensless Fourier holography. 

 In optical holographic interferometry, two light waves scattered from an object 

in different states are superimposed. However, as mentioned earlier, the phase 

distribution cannot be determined from a single interferogram. In DHI, quantitative 

phase measurement from a single hologram is possible. Hence, in each state of the 

object a digital hologram is recorded. Instead of superimposing more than one 

hologram as in conventional HI using photographic plates, the digital holograms are 

reconstructed separately. Difference between the reconstructed phase maps provides 

the change between the states (Schnars and Jueptner, 2005). This digital phase 

subtraction method (DPS) provides noisy wrapped deformation map. Since the 

wrapped phase map extracted is highly contaminated by speckle noise, the subsequent 



 

CHAPTER TWO                                                                                           LITERATURE REVIEW 

 

19 

phase unwrapping operation may not succeed. One strategy to overcome this problem 

is to process the original wrapped phase map to filter noise before phase unwrapping. 

However, in many practical applications, the direct filtering of the wrapped phase 

map is difficult due to high fringe density and low signal to noise (SNR) ratio. It is 

well known that phase itself is not a signal but rather a property of the signal (Ghiglia 

and Pritt, 1998). Hence, a complex phasors method which reduces speckle noise in the 

wrapped phase map was proposed (Chen et al., 2008; Quan et al., 2009). A complex 

phasor ( , )CP m n  is calculated by multiplying complex amplitude signal ( , ,2)m n , 

reconstructed from the hologram at the second (or deformed) state with the conjugate 

of complex amplitude signal *( , ,1)m n , reconstructed from the hologram captured at 

the initial state. Without a loss of generality, only a given pixel (m, n) is considered.  

 

*

'

( , ) ( , , 2) ( , ,1)

            ( , )exp{ [ ( , )]}

CP m n m n m n
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                (2.22) 

 

 

where  is the phase difference caused by the deformation. 

 The complex field obtained ( , )CP m n  is then virtual sheared and product of 

sheared complex field '( , )CP m n  and conjugate of complex field *CP provides phase 

derivatives as shown in Eq. (2.23) and Eq. (2.24).  
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where ( , )m n is a complex field of the phase derivative and ( , )m n is the slope in 

the sheared direction. The phase derivatives maps obtained from this method are 

affected by speckle noise, hence a sin-cos filtering or short time Fourier transform 

(STFT) filtering is applied to process the phase derivative maps (Chen et al., 2008; 

Quan et al., 2009). The phase and phase derivative maps obtained from this method 

are wrapped and a separate phase unwrapping technique is necessary to obtain 

unwrapped displacement, slope and curvature maps.  

A different approach of modeling the DHI reconstructed interference field as a 

piecewise polynomial phase was developed (Gorthi and Rastogi, 2009a; Gorthi and 

Rastogi, 2009b). The derivative maps were determined by computing polynomial 

coefficients of different segments of the interference field using high order 

instantaneous moments of the signal. This method is more suitable for determining 

the first order derivative than determining the higher order derivatives hence the 

complex lag moment method for the determination of high quality higher order 

derivatives was proposed (Rajshekhar and Rastogi, 2011; Cornu et al., 2007). 

Determination of cross derivative map like twist map is not possible in complex lag 

moment method because this method is only useful for the determination of any nth 

order derivative in a given direction. This method requires very high computation 

time as it requires as many Fourier transforms as the row or column size of the 

reconstructed hologram. 
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2.2.2   Speckle pattern interferometry 

Speckle pattern interferometry refers to a wide range of speckle metrology techniques 

such as TV holography (Butters and Leendertz, 1971), electronic speckle pattern 

interferometry (ESPI) (Butters et al, 1978), and digital speckle shearing interferometry 

(DSSI) (Ganesan et al, 1988; Hung, 1979; Hung, 1989). These optical techniques are 

employed to measure a various physical quantities, including in-plane and out-of-plane 

displacement, strain, twist, curvature, and 3-D profile.  

 Speckle patterns that are created by scattered coherent light from an optically 

rough surface can be classified into two types, depending on the optical systems used 

to observe them. If the speckle size depends on the size of area of illumination and the 

distance between the rough surface and the screen but does not depend on the optical 

system used to observe it, it is called objective speckle (Rastogi, 2011; Rastogi, 2015). 

If the speckle size depends on the aperture of the optical system used to observe it, it 

is called subjective speckle pattern. Subjective speckle pattern is used in speckle 

pattern interferometry setups such as TV Holography, digital speckle pattern 

interferometry (DSPI) and shearography. 

  Speckle patterns can be modified by displacements in the rough surface which 

scatters coherent light, changes in wavelength of coherent light source and changes in 

illumination or observation geometry. The phase value of a speckle pattern is 

influenced by all these factors as given by:  

 

.( ) .( )s i i i o ok r r k r r                                              (2.25) 
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Figure 2.4 Geometry for the sensitivity of the phase of a speckle 

where  is the phase of a speckle,
s is the random component caused due to 

roughness of the object, 
i is the actual phase of the beam from the light source, r is 

the position vector, 
ir is the incident wavefront’s curvature center, 

or is observation 

point’s position vector and 
ik and 

ok are the wave propagation vectors of incident and 

observation directions, respectively (Rastogi, 2015).  

 In DSPI, an interference pattern produced between two speckle patterns one 

from an object and another from a reference plate is captured using a CCD camera. 

The intensity I  of a speckle pattern interferogram which is helpful in measuring 

physical quantities is given by:  

 

  2 cos( )r o r o r oI I I I I                                     (2.26) 
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where 
rI and 

oI are the intensities of the reference and object beams and 
r and

o are 

the phase of reference and object beams respectively. The above equation can be 

simplified as 

 

0(1 cos )I I V                                     (2.27) 

0 r oI I I                     (2.28) 

2 r o

r o

I I
V

I I



                   (2.29) 

 

where
0I is the background intensity, V is the fringe contrast or fringe visibility and 

is the phase difference between reference and object beam. This interference pattern 

alone would not be enough to record a physical event as the phase  is influenced by 

random speckle phase caused by surface roughness of object and reference plate. 

Interferograms at different states of an object have to be recorded, then a change in 

phase value would be due to a physical event. An interferogram recorded after such 

deformation is given by:  

 

0( , , ) [1 ( , )cos{ ( , , )}]I m n t I V m n m n t                                 (2.30) 

( , , ) ( , ,0) ( , , )m n t m n m n t                                        (2.31) 

 

where  is the phase difference due to a physical event at t . t denotes either time in 

dynamic measurement or different states in a static measurement. Since phase 

difference   is directly proportional to a physical quantity, various phase retrieval 

methods were suggested in last few decades. These phase retrieval techniques are 

discussed in detail later in this chapter. 
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 Unlike, holographic interferometry, DSPI does not capture the entire 

wavefront but an interference of speckle patterns. Hence this technique is not as 

sensitive as holographic interferometry. In addition, as mentioned earlier phases in a 

speckle pattern are influenced by displacements of an object in all directions. Hence 

this method can be employed for both in-plane and out of plane displacement 

measurement where holographic interferometry can only be employed for out of plane 

displacement measurement. 

  In Fig. 2.5, a schematic diagram of an out of plane displacement measurement 

DSPI system is shown. The sensitivity vector k of a DSPI setup is given by:  

 

2
[(sin ) (1 cos ) ]i ok k k i k


 




                                        (2.32) 

 

where i and k are unit vectors in the x and z directions respectively,  is the angle 

between an illumination beam and an observation direction and  is the wavelength of 

the laser source. The illumination and observation directions are coincident in an out 

of plane displacement sensitive interferometer and  is close to zero. Hence in this 

configuration, phase difference  , which is highly sensitive to the displacement of 

the object in z direction is given by:  

 

4 w





                                              (2.33) 

 

where w is the surface displacement of the object in the z direction. 
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Figure 2.5 Out of plane interferometer 

 

Figure 2.6 In-plane interferometer 
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  In Fig. 2.6, a schematic diagram of an in-plane displacement measuring DSPI 

setup is shown. In this setup, two expanded collimated beams from opposite 

directions 
1ik and 

2ik illuminate the object. The angle between the directions of the 

illumination beams with the observation direction are 
1 and

2 . Since these angles are 

approximately equal, it is assumed that
1 2    . There is no reference plate used in 

in-plane displacement sensitive interferometer since the interference of speckle 

pattern occurs between the speckle patterns created by two illumination beams. This 

setup is sensitive to the surface displacement of the object in x direction and phase 

difference   is given by:  

 

4
sinu


 




                                           (2.33) 

 

where u is the surface displacement of the object in x direction. Hence the sensitivity 

of this setup is maximum when 
2


  and the sensitivity is zero when 0  . In other 

words, the sensitivity of in-plane displacement component would become zero when 

illumination beam and observation direction coincides, which is the case for an out of 

plane displacement setup. 

    Since DSPI can measure in-plane and out of plane displacements, various 

methods to measure three dimensional (3D) displacements of an object have been 

suggested (Yang et al, 2014). These 3D displacement measurement setups are 

combination of both in-plane and out of plane displacement measurement setups, 

which either use different channels or different wavelength for measuring 

displacement components in all three directions. 
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2.2.3   Shearography 

Digital shearography or DSSI is used to measure displacement derivatives of an 

object, which is carried out by optical shearing. The displacement derivative in a 

particular direction can be obtained in shearing the speckle pattern in that particular 

direction. Due to the shearing, every point in the image plane receives signals from 

two different points from the object and vice versa as shown in Fig. 2.7. In DSSI, an 

optically rough object is illuminated by a coherent source, the speckle pattern created 

on the object surface would interfere with a sheared speckle pattern. Since this 

method does not involve interference between two different beams, this method is less 

sensitive to environmental conditions. 

 

 

Figure 2.7 Shearography principle 

 

  The intensity I  recorded after interference between two speckle patterns is 

given by:  
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0( , ) [1 ( , )cos{ ( , )}]I m n I V m n m n                                   (2.34) 

 

where  is the phase difference caused by shearing. Similarly, an interference pattern 

obtained after loading is given by:  

 

0( , , ) [1 ( , )cos{ ( , ,0) ( , , )}]I m n t I V m n m n m n t                                   (2.35) 

 

where   is the phase difference caused by loading and it is given by:  

 

2
[sin sin (1 cos ) ]

u v w
x

x x x


    



  
    

  
                                (2.36) 

 

where  is the angle between illumination and observation direction in xz  plane,  is 

the angle between illumination and observation direction in yz  plane, x is the 

amount of shearing in the x  direction and u , v and w are components of surface 

displacement in x , y and z directions respectively. For a near normal illumination and 

observation condition, 0    . Hence the phase difference for such condition is 

given by:  

 

4 x w

x







 


                                             (2.37) 

 

 Different methods were proposed to introduce this shearing effect. Introducing 

an optical wedge is one such method as shown in Fig. 2.7. Since it does not contain 

any movable parts, this kind of system is more robust and compact. However, such an 

optical wedge can provide a fixed amount of shearing, hence this method is not 
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flexible (Leendertz and Butters, 1973; Hung, 1989; Rastogi, 2015). A shearography 

setup which uses a modified Michelson’s interferometer with a tilting mirror to 

introduce sharing is shown in Fig. 2.8. Since this contains an adjustable mirror tilt, it 

is possible to control the amount of shearing introduced. Hence this configuration is 

more flexible and compact (Rastogi, 2015). Utilizing the birefringence properties of a 

liquid crystal spatial light modulators (SLM) to introduce shearing in DSSI setup were 

also suggested (Falldorf et al, 2009). Since SLM based shearing does not have 

movable parts and also the amount of shearing is adjustable, this kind of setup has 

advantages of both optical wedge method and tilting mirror method (Falldorf et al, 

2009; Rastogi, 2015). 

 

Figure 2.8 Michelson’s interferometer for shearography 

 

 In general, both DSPI and DSSI both are using laser source and based on 

speckle pattern interferometers, hybrid dual experimental setups which can be 

switched between DSPI and DSSI setup were proposed (Bhaduri, 2006). In addition, 

both methods, provide physical measurements in terms of phase differences. Hence 
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such hybrid setups also contain features which facilitates easy phase retrieval such as 

piezoelectric transducers (PZT).  

  

2.3   Review of phase retrieval techniques 

2.3.1   Temporal phase retrieval techniques 

In interferometry, a physical entity is encoded in the form phase differences due to the 

difference between optical path lengths of interfering beams. Hence phase retrieval 

from the recorded intensities, provides quantitative values of the physical entity which 

cause this phase difference. An intensity map of an interferogram is given by:  

 

( , ) ( , ) ( , )cos{ ( , )}I m n A m n B m n m n                           (2.38) 

 

where A  is the background intensity, B is the amplitude modulation and  is the 

phase value. These three unknown values especially phase  have fast variations in 

spatial domain. Hence a slow variation can be introduced along the time t to deduce 

values for these unknowns. This temporal phase shifting, provides tN number of 

phase shifted frames as shown below.  

 

( , , ) ( , ) ( , )cos{ ( , ) }tI m n t A m n B m n m n                            (2.39) 

 

where t  is the known phase shift that is a constant for all pixels and t  represents 

different phase shifted frames.  

  There are many such phase retrieval methods available in the literature which 

use temporal phase shifting, hence only the most common methods are discussed in 

this review. These temporal phase shifting methods employ phase analysis for each 

pixel independently. Hence the representation of pixel coordinates is omitted for the 
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following equations in this section. Since there are three unknowns ( A , B and ) in 

the interferometric equation, we need at least three phase shifted frames to obtain the 

phase value as in the case of the three frame method (Malacara, 2007; Rastogi, 2015). 

One of the simplest temporal phase shifting algorithm, called four frame method 

captures four phase shifted frames with a known phase shift 
2

t


  (Malacara, 2007; 

Rastogi, 2015). The intensity maps for the four frame method is given by: 

 

(0) cosI A B                                         (2.41) 

(1) cos( / 2) sinI A B A B                                 (2.42) 

(2) cos( ) cosI A B A B                                 (2.43) 

(3) cos( 3 / 2) sinI A B A B                                 (2.44) 

(3) (1)
arctan{ }

(0) (2)

I I

I I






                                     (2.45) 

 

  The phase shift between each frame is introduced by a PZT. The phase shifters 

are prone to calibration errors so the phase shift may contain discrepancies. Hence a 

five frame method which is less susceptible to the calibration errors is proposed 

(Schwider, 1983; Rastogi, 2015). The phase shift for the five frame method is also 

introduced by a PZT and phase retrieval is carried out using the Eq. (2.46): 

 

2[ (3) (1)]
arctan{ }

(4) (0) 2 (2)

I I

I I I





 
                                   (2.46) 

 

  In addition, Carré’s method is proposed to eliminate the influence of 

calibration error completely using an unknown phase shifting value (Carré, 1966; 
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Malacara, 2007; Rastogi, 2015). Hence including phase shift, there are four unknowns 

for four frames of constant phase shift (2 3) / 2t t     and the recorded phase is 

given by the following Eq.: 

 

[ (0) (3) (1) (2)]{3[ (1) (2)] (0) (3)}3
arctan[ ]

2 (1) (2) (0) (3)

fs I I I I I I I I

I I I I




     
 

  
         (2.47) 

 

where sign[ (1) (2)]fs I I  . 

  In speckle interferometry, we can either record speklegrams before and after 

loading or we can subtract them to record the correlation fringes. The temporal phase 

shifting methods which are explained above are called the difference of phases in 

speckle interferometry as the phase shifted frames are captured before and after 

loading separately. Furthermore, the difference between the phase values would give 

the phase difference caused by a physical change. Alternatively, four phase shifted 

frames before loading can be captured and only one frame at every transient position 

is captured. The subtraction of a transient frame with four phase shifted reference 

frames provides four correlated fringe patterns at every transient position. Further 

processing would provide the phase difference values for each transient position as 

shown in Fig. 2.9. This method is called the phase difference method and it is most 

suitable for dynamic measurement as it requires only one frame for each transient 

position. However, the quality of the phase map obtained from this method is highly 

affected by speckle noise as is the case for any speckle correlated fringe patterns 

(Huntley, 2001; Rastogi 2015). 
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Figure 2.9 Different phase-retrieval methods in phase shifted speckle interferometry 

 

2.3.2   Spatial phase retrieval techniques 

In temporal phase retrieval techniques, the phase change that occurs at a single pixel 

with respect to time or at various states are considered for phase analysis but phase 

changes that occurred between neighboring pixels are not considered. Hence temporal 

phase shifting method need more than one frame for phase retrieval which makes the 

method not suitable for many real time dynamic applications. Spatial phase retrieval 

method requires only one frame hence they are more suitable for both dynamic and 

static applications. 

  Since phase shifting method is widely used for phase retrieval, there are many 

methods suggested to capture phase shifting within a single frame (Novak et al, 2005; 

Xie et al, 2013; Wang et al, 2016). These techniques are called spatial phase shifting 

techniques and in the methods, phase shifted images are recorded simultaneously in a 

CCD sensor in different quarters of an image plane (Novak et al, 2005; Rastogi, 2015). 

A conventional phase shifting algorithms are then employed for phase retrieval. Novel 
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methods, which combine both displacement and displacement derivative 

measurements are suggested (Xie et al, 2013; Wang et al, 2016). The displacement 

and displacement derivative information are spatially separated in an image plane 

using spatial phase shifting technique. The main drawbacks of the spatial phase 

shifting method are that the spatial resolution of the interferograms is less than 

temporal phase shifting method and it also requires complex experimental setups to 

achieve spatial phase shifting. 

 

2.3.3   Phase retrieval using spatial fringe analysis techniques 

 In many applications, phase difference values in a single fringe pattern vary 

slowly and continuously since the phase difference vales correspond to a physical 

entity. Spatial phase retrieval techniques which are applicable only to fringe patterns 

and utilizes the spatial continuity of phase values are called fringe analysis techniques.  

2.3.3.1 Transform based fringe analysis techniques 

Fourier analysis method is one of the most famous fringe analysis methods 

(Takeda et al, 1982). Fourier analysis is simple and effective for sinusoidal open 

fringes which are space-invariant in nature. However, the fringes obtained from real 

applications are space-varying and non-stationary. Fourier analysis on such a 

nonstationary signal results in huge error in the phase values. To overcome this error, 

researchers proposed various spatial fringe analysis methods such as short time 

Fourier transform (STFT) also called as window Fourier transform (WFT), 

continuous wavelet transform (CWT) and Hilbert transform. 

In WFT, it has been shown that the use of local windows instead of applying 

Fourier transform globally can reduce this error to some extent (Qian, 2004; Qian, 

2007). The window size in this method is fixed. As fixed window size causes 
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invariable spatial resolution, it still provides a phase error in non-stationary signals. It 

is well established that the window size is inversely proportional to the spatial 

resolution (Zhong and Weng, 2004). Hence a large window should be chosen for a 

low frequency fringes and a small window should be chosen for a high frequency 

fringes to obtain more accurate phase values. A dilating Gabor transform with 

changeable window size is introduced to overcome the phase error issue in non-

stationary signals (Zhong and Weng, 2004). 

Quan et al, proposed a fringe density estimation method based on continuous 

wavelet transform and it is used for estimating the variable window size in WFT 

(Quan et al, 2005; Zhong et al, 2007;). This method combines both CWT and WFT to 

provide more precise phase values. As WFT methods require high computation time 

and the accuracy of the phase values are influence by the boundary effects, a modified 

windows Fourier transform has been suggested (Quan et al, 2010;) This technique 

employs Gerchberg method to extrapolate the fringe pattern boundaries to reduce 

boundary effects and employs fast Fourier transform (FFT) instead of convolution 

method to improve computational speed. A comparison of various spatial fringe 

analysis techniques using Fourier transform, WFT and CWT are investigated by 

Huang et al. The effect of noise on all these methods are studied. It has been shown 

that 2D transform methods has better robustness against noise than their 1D 

counterparts (Huang et al, 2010).  

A common limitation of these methods is that they require a spatial carrier 

frequency to be introduced into the fringe pattern to overcome sign ambiguity 

problem in closed fringe patterns. In Fourier domain, fast varying carrier frequencies 

and slow varying frequencies which represent phase data can be separated easily and 

the inverse Fourier transform of low frequency data provides the required phase 
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values. Applying carrier frequency in a fringe pattern is difficult and it requires a 

complex experimental setup (Takeda et al, 1982; Malacara et al, 1998). 

A continuous wavelet transform method which does not require carrier 

frequency is proposed (Tay et al, 2007). In this method, ridge detection followed by 

tracking inflexion points is used to determine wrapped phase maps. However, this 

methods requires prior knowledge of the sign of the surface of the slopes to overcome 

the sign ambiguity problem. Ma et al, proposed a phase retrieval method based on 2D 

CWT which overcomes sign ambiguity problem. Ambiguous phase map is 

determined first using a 2D CWT as they are insensitive to noise and robust to 

frequency change in fringes. A phase determination rule based on phase continuity 

and frequency guidance is imposed to obtain accurate phase maps (Ma et al, 2011). 

Hilbert transform has also been employed for phase retrieval from a fringe 

pattern but 1D Hilbert transform still suffers with the sign ambiguity problem 

(Nakajima, 1988). A novel quadrature transform method which provides 2D Hilbert 

transform was proposed for phase demodulation of single fringe pattern (Larkin, 

2001a; Larkin, 2001b). This method uses vortex operator which is based on a spiral 

phase operator and a phase orientation map. Vortex operator provides Hilbert 

transform to determine a complex image from a fringe intensity distribution. Spiral 

phase operator ( , )m n is a phase only function which is applied to fringes in the 

Fourier domain while orientational phase operator, which is obtained from an 

orientation map ( , )m n , is applied in the spatial domain. Applying spiral phase 

function in the Fourier domain on a fringe pattern ( , )I m n results in fringes which 

include data of a unique orientation angle map ( , )m n and is given by 

 

( , ) ( , )cos{ ( , )}I m n B m n m n                  (2.48) 
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1[exp{ ( , )} [ ( , )]] exp{ ( , )} ( , )sin{ ( , )}F j m n F I m n j j m n B m n m n                  (2.49) 

1exp{ ( , )} [exp{ ( , )} [ ( , )]] ( , )sin{ ( , )}j m n F j m n F I m n jB m n m n                  (2.50) 

 

where 1.j    The vortex operator based 2D quadrature transform solves effectively 

without any need for carrier frequency. However, orientation map of the fringe pattern 

has to be determined for phase retrieval.  

 

2.3.3.2 Image processing based fringe analysis techniques 

Apart from the transform based fringe analysis techniques, image processing 

based fringe analysis techniques such as fringe tracking method, extreme map based 

method, sign map based method, phase tracker method, etc. are suggested for phase 

demodulation. These methods do not require more than one fringe pattern or carrier 

frequency or complex experimental setup for phase retrieval. 

Fringe tracking method or skeleton method retrieves phase by detecting the 

local maxima and minima of the fringe intensities which corresponds to 2π periodic 

function’s maxima and minima. This method is focused on reproducing the manual 

fringe counting method. Various methods for 2D tracking of these local extrema are 

proposed (Malacara et al, 1998; Sharpe, 2008). Quan et al suggested a method which 

uses adaptive weighted filters which reduces the noise and enhances the contrast for 

determining extreme maps. This method does not require fringe ordering and 

interpolating fractional fringe order (Quan et al, 2005). Local directional computing 

windows has been suggested to overcome high speckle noise problem in fringe 

tracking (Yang et al, 2009). This method calculates the gradient map from the filtered 
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image, from which the sign map and skeleton can be obtained robustly. Sign map 

helps to overcome the sign ambiguity problem. 

All the phase retrieval techniques, discussed in this review thus far from 

temporal phase shifting to image processing based fringe analysis techniques have 

one common limitation, they can only provide a wrapped phase map. A separate 

phase unwrapping algorithm is necessary to determine actual phase values (Malacara, 

2007; Rastogi 2015). Detailed analysis of various phase unwrapping techniques are 

discussed later in this chapter. 

Regularized phase tracking (RPT) method is also an image processing based fringe 

analysis technique which can provide unwrapped phase and phase derivative maps directly 

from a single fringe pattern (Servin et al, 1997). This method retrieves phase from single open 

and closed fringe patterns without any need for carrier frequency. As the name suggests, this 

method tracks phase continuously in the fringe pattern and phase maps with discontinuity 

cannot be solved using this method. In RPT, phase demodulation is carried out by minimizing 

a cost function with respect to phase ( , )m n , and phase derivatives ( , )x m n  and ( , )y m n  

as shown in the equations below. 

 

2

( , )

2

( , ) {[ ( , ) cos{ ( , , , )}]

[ ( , ) ( , , , )] ( , )}

wM

reg

U m n I p m n

p m n s m n

 

   

     



 

 


               (2.51) 

( , , , ) ( , ) ( , ){ } ( , ){ }x yp m n m n m n m m n n                            (2.52) 

 

where ( , )wM m n is a neighborhood region or a selected window, ( , )s m n is a status 

map to indicate whether a phase at a particular pixel has been determined and reg is a 
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constant regularizing parameter to control the smoothness of the estimated phase map 

( , )m n ; ( , )x m n and ( , )y m n are estimated local frequencies along the x and y  

directions respectively. These local frequencies represent the phase derivatives in the

x and y direction respectively. In the RPT method, phase derivatives are also 

determined along with phase values. Hence the minimization of the cost function 

requires more computation time (Kai et al, 2013). Conventional RPT method’s phase 

reconstruction accuracy drops around the saddle points of the fringe pattern. 

Techniques such as fringe-following regularized phase tracker, path independent 

regularized phase tracker, generalized regularized phase tracker and improved 

generalized regularized phase tracker have been proposed to overcome RPT’s 

limitations (Servin et al, 1997; Servin et al, 2001; Tian et al, 2010; Kai et al, 2012; 

Kai et al 2013).  

In fringe follower RPT, a scanning strategy is employed to improve the 

robustness of the phase tracker method. The bright regions of the fringe patterns are 

solved first for phase values to improve the accuracy of the detected phase values. It is 

shown that powerful combination of fringe following and RPT enables this technique 

to demodulate complex single interferograms successfully (Servin et al, 2001). As 

fringe follower method is a path dependent, path independent phase demodulation 

methods are proposed (Estrada et al, 2006; Tian et al, 2010). In these methods, phase 

demodulation is carried out with estimations within function space C(2) i.e., 

estimations where the curvature is continuous. This method estimates the frequency 

and second order potential regularizer to force demodulation to look into curvature 

space (Estrada et al, 2006). A variant of this method which uses paraboloid phase 

model to obtain the smoothest second order derivative is proposed (Tian et al, 2010). 
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These path independent methods provide better robustness against noise and 

complexity of the interferograms than the conventional RPT. 

As the conventional, fringe follower and path independent RPT methods 

require normalized fringe pattern for phase demodulation, pre-processing of fringe 

patterns is necessary. Generalized regularized phase tracker (GRPT) method is 

proposed to demodulate any fringe pattern without preprocessing (Kai et al, 2012). In 

this method, the cost function of the RPT is modified to include linear background, 

linear modulation and a quadrature phase to obtain general local fringe model and 

number of iterations for minimizing the cost function is determined based on the 

fringe quality. These two modifications provide better robustness against noise and 

guides the phase demodulation process near saddle points. An improvement on GRPT 

(iGRPT) method is proposed which employs changeable window size based on fringe 

frequency (Kai et al, 2014). It is shown that iGRPT improves the demodulation 

capabilities of GRPT by incorporating a background regularization tern and 

modulation regularization term in cost function. In general RPT methods are the most 

famous and robust methods among fringe analysis methods but they require more 

computation time than other fringe analysis techniques. The RPT variants are 

proposed to address various limitations of conventional RPT such as robustness 

against noise, dealing with frequency change and saddle points. However they all 

increase computation time further. 

2.3.4   Phase derivative determination techniques 

 Phase derivatives determination is also an important task in experimental 

mechanics, since displacement derivatives such as slope, curvature and twist maps are 

directly related to physical entities strain, flexural rigidity and torsional rigidity of the 
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object respectively. Hence phase derivatives too have lot of applications such as 

material characterization, quality assessment, fault identification etc. In many 

applications, the phase values can be determined and subsequent differentiation can 

be employed for phase derivatives determination. However, this direct differentiation 

method is not preferred as it is susceptible to the phase unwrapping and numerical 

differentiation methods are highly sensitive to noise.  

Phase tracker methods (RPT) are one of the very few phase retrieval 

techniques available in the literature which provides phase derivatives as a byproduct 

from the phase demodulation of a single fringe pattern. As mentioned in section 2.2.1, 

many methods for phase derivatives determination have been suggested in DHI from 

a complex amplitude field. However, for other interferometric techniques, a phase 

retrieval technique such as phase shifting or carrier frequency method has to be 

implemented so that these phase determination methods can be employed (Qian et al, 

2003; Rajshekhar et al, 2009).  

There are few direct phase derivatives methods suggested in the literature, 

which determines the phase derivatives from single fringe patterns. Sciammerella et al 

proposed direct strain or frequency modulations from fringe patterns (Sciammerella et 

al, 2003; Sciammerella et al, 2005). It is shown that the space-frequency 

representation of a fringe signal can be used to obtain the instantaneous frequency of 

the fringe patterns. The method showed extracting strain from fringe patterns using 

STFT or wavelets (Sciammerella et al, 2003). An extension of the method to two 

dimension transforms is proposed to improve robustness against noise (Sciammerella 

et al, 2005). It is shown that accuracy of phase derivatives estimation can be improved 

by employing Wigner-Ville distribution with smoothing Gaussian kernels than using 

continuous wavelets (Federico et al, 2003). Similarly, Tay et al suggested phase 
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derivative determination using wavelet ridges directly from a single fringe pattern 

(Tay et al, 2007). Recently, Kalman filter based phase derivatives determination 

algorithms from a single fringe pattern has been proposed (Kulkarni et al, 2016). 

 

2.4   Review of optical techniques in vibration analysis 

2.4.1   Mode shape visualization 

Modal analysis provides natural frequencies and frequency modes of a structure and is 

helpful in safe design and in determining material properties such as stiffness and 

damping coefficients. Traditionally mode shape visualization is carried out by 

Chladni patterns, which is a simple and cost effective method. However in certain 

cases like curved surfaces, this technique is not effective (Molin, 2007). Optical 

techniques such as holographic interferometry, DSPI and DSSI are employed for 

experimental modal analysis since they are highly sensitive non-contact full field 

measurements (Løkberg, 1984). Especially the time average methods which record 

interference patterns at a lower frequency than the vibrating object can provide real 

time mode visualization even for objects vibrating at very high frequencies. Time 

average holographic interferometry (TA-HI) and time average digital speckle pattern 

interferometry (TA-DSPI) methods can provide both the mode shape and quantitative 

amplitude measurement. Time average digital speckle shearing interferometry (TA-

DSSI) is used to obtain the vibration strains of an object from fringe patterns. 

 One of the major problems in time average method is the poor quality of the 

fringes obtained and consequently, it affects both the mode shape visualization and 

amplitude measurement. The equation for time average interferometer intensity is 

given by:  
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0 0[1 cos { }]avg rI I V J                                   (2.53) 

4
vA





                                        (2.54) 

 

where 
r is the speckle phase,  is the phase caused by vibrational amplitude 

vA and 

0J is a zero order Bessel function of the first kind. As mentioned above, the Bessel 

function is not visible due to the influence of the bias intensity, visibility and speckle. 

Various techniques have been reported to improve the fringe contrast by 

subtracting a time-average frame from a stationary reference frame (conventional 

subtraction method), a time-average phase shifted reference frame, a time-average 

force varied reference frame, and a refreshing reference frame (Nakadate, 1986; 

Pryputniewicz and Stetson, 1989; Wong et al, 1997; Wong et al, 1998; Davies et al, 

1987). Phase shifting technique requires a phase shifter to produce a high contrast 

fringe pattern (Nakadate, 1986). Wong et al, have shown that the subtraction of two 

time-average frames with different force levels of harmonic excitation improves the 

fringe contrast (Wong et al, 1997). In the refreshing reference frame technique, each 

frame is phase shifted and subtracted with a previous frame (Davies et al, 1987). This 

real time subtraction further improves the visibility of the recorded fringe pattern 

since ambient disturbances are suppressed. However, the method also requires a phase 

shifter to improve the fringe contrast. 

2.4.2   Vibration amplitude measurement 

A phase retrieval method provides quantitative vibration amplitude using TA-DSPI 

interferograms. However, the existing phase retrieval techniques are only suitable for 

cosine fringe patterns with good fringe contrast. Hence most of the methods suggested 

for vibration amplitude measurement assume Bessel fringes as cosine fringes. 
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Pryputniewicz et al, proposed a method which introduces a vibration in an 

illuminating beam to obtain a good contrast fringe pattern and phase shifting method 

is used to determine the vibration amplitude (Pryputniewicz and Stetson, 1989). This 

technique requires more than one fringe pattern and a complex experimental setup. 

Wong et al also proposed a method to measure the amplitude based on Hilbert 

transform but due to sign ambiguity, the method is only applicable to open fringe 

patterns (Wong et al, 1998). A novel method is proposed to overcome the limitation 

as it uses predetermined mask to correct sign ambiguity problem (Kumar et al, 2010). 

The technique is difficult to apply to a complex mode shape and also requires a phase 

shifter. Fringe analysis technique can be employed for phase retrieval from a single 

fringe pattern as discussed earlier. However, the technique requires good fringe 

contrast and a high computation time. 

 

2.5   Phase unwrapping 

Phase maps obtained from most phase retrieval techniques are wrapped between 

to . The process of determining a continuous phase map which represents a physical 

parameter from a 2 -modulo phase map is called phase unwrapping. To obtain the 

phase values from the wrapped signal, 2π value is either added or subtracted from the 

pixels adjacent to a phase jump. However due to the presence of noise, discontinuities 

and under sampled data (violation of Shannon’s law), this process is not as straight 

forward as simple addition or subtraction at phase jumps. Numerous phase 

unwrapping techniques have been proposed (Ghiglia et al, 1998) and all the methods 

have their own advantages and disadvantages. Hence there is no one solution that fits 

all the phase unwrapping problems (Robinson et al, 1993). Phase unwrapping 
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methods are mainly classified into three different groups such as minimum norm, 

branch-cut and network flow methods. 

 The minimum-norm method formulates a phase unwrapping problem into a 

minimization problem. A least square approach is used to minimize the fitting error 

where the algorithm seeks a phase function with path independent continuous 

unwrapped phase derivatives which has values close to the wrapped phase gradient 

(Servin et al, 1998).  

 Branch-cut and network flow methods use residues created due to noise and 

physical discontinuities for phase unwrapping. A positive and negative residue pair 

mark a region having a phase discontinuity. Integrating the phase values through the 

region provides erroneous phase maps (Goldstein et al, 1988; Buckland et al, 1995). 

The network flow method also uses the residue approach. In this method a high cost is 

assigned to regions marked by the residuals. The method calculates a flow with the 

minimal cost to find a path which crosses the least amount of discontinuities. Further, 

a flood-fill method i.e. an integration of phase values guided by the obtained path is 

carried out for phase unwrapping (Buckland et al, 1995). 

 The branch-cut is one of the most simplistic and effective phase unwrapping 

approach. It uses barriers or branch-cuts to prevent integration through those barriers 

during the unwrapping process instead of assigning cost for the discontinuities as in 

the case of the network flow method. The branch cuts cover the noisy and 

discontinuous regions in a phase map where a straight forward unwrapping should not 

be employed. Hence the determination of branch cuts becomes an important step in 

this method. Goldstein branch-cut algorithm is a classic branch-cut algorithm which 

determines the minimum cut length to prevent path integration from crossing these 

cuts (Goldstein et al, 1988). Subsequently, many branch-cut algorithms have been 
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proposed to find the global optimum in minimization of total cut length such as the 

Nearest Neighbor Algorithm, the Modified Nearest Neighbor Algorithm, Hybrid 

Genetic Algorithm (HGA), Simulated Annealing (SA), Reverse Simulated Annealing 

(RSA) and discrete Particle Swarm Optimization method (dPSO) (Karout et al, 2007; 

Gutmann and Weber, 2000; Gutmann and Weber, 1999; He et al, 2012). The nearest 

neighbor and modified nearest neighbor algorithms are local heuristic search 

algorithms. They are effective but will not find the global optimum. This gives long 

branch-cuts and less smooth unwrapped phase map. Other artificial intelligence (AI) 

methods used for solving phase unwrapping such as SA and RSA are slow compared 

to local heuristic search. Genetic algorithm (GA) outscores all AI methods due to 

memory factor (chromosomes). HGA is faster than GA since it uses local search for 

the population initialization (Karout et al, 2007). 

 

2.6   Summary 

Various optical techniques from DHI to DSSI have been employed to extract the 

surface displacement and its derivatives measurement. The optical hardware of these 

techniques are well evolved and innumerous experimental variants are suggested to 

overcome different limitations in different applications. Recent improvements in 

optical hardware for improving measurement accuracy and robustness against noise 

require highly sophisticated equipment. Hence they are more expensive, complicated 

and extremely difficult to employ outside laboratory conditions. 

 In last two decades, due to comprehensive improvement in computation facilities, 

many researchers are developing algorithmic solutions to enhance and to overcome 

classical challenges in optical techniques. These algorithmic improvements facilitate 
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experimentalists to minimize the complexity in the hardware employed and provides 

ease in carrying out experiments even outside laboratory conditions. 

 In DHI, a complex field is obtained directly from a single hologram and phase 

maps can be easily determined from the complex field. However, the phase 

derivatives determination is not straight forward in DHI. Phase derivatives 

determination methods suggested in literature are highly sensitive to speckle noise, 

requires more computation time and they also can only provide wrapped phase 

derivatives maps. 

 In speckle pattern interferometry techniques, the optical hardware is less sensitive 

to environmental disturbances which make them an ideal candidate for real 

applications from stress, strain measurement to defect detection. The phase shifting 

methods are the most famous and robust techniques for the full field phase 

measurement, but they need more than one fringe pattern. In dynamic measurements, 

only one fringe pattern can be captured for every deformation state and it is necessary 

to retrieve phase values from single fringe patterns. Spatial fringe analysis techniques 

provides solution to this problem. However, most of the transform based fringe 

analysis techniques require carrier frequency for solving the sign ambiguity problem 

in phase retrieval. Image processing based fringe analysis techniques neither need 

carrier frequency nor more than one fringe pattern for phase retrieval. Regularized 

phase tracker methods are more robust and famous fringe analysis techniques which 

also have an additional advantage that they provides unwrapped phase maps directly. 

However, they take high computation time and have limited accuracy near saddle 

points. Variants of RPT methods provide solution for improving phase accuracy but 

they require even more computation time than conventional RPT.  
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 Direct phase derivatives determination from single fringe pattern provides 

valuable physical measurements such as strain, flexural and torsional rigidity. Space-

frequency analysis on fringe patterns to obtain instantaneous frequencies are 

suggested for strain measurement. Comparatively, very little research have been 

carried out in direct phase derivatives measurement from single fringe pattern and 

there is a lot of scope for further exploration.  

 Time average methods are proved to be an excellent choice for experimental 

modal analysis. The mode shape visualization and natural frequency determination 

are carried out simultaneously using time average methods. However, complex 

experimental setups and phase shifters are required to obtain good quality fringes. In 

phase unwrapping methods, various techniques are proposed in literature for solving 

various challenges in different applications. Recently, many AI based solutions for 

phase unwrapping problems are investigated. It is shown that these methods are more 

robust against noise than conventional phase unwrapping methods.  
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CHAPTER THREE 

 
DEVELOPMENT OF THEORY 

 
 

Theoretical development of the proposed methods are organized in five sections 

corresponding to chronological order of the various stages of optical measurements. 

The first step of any optical measurement  method is to obtain high quality 

interferograms or fringe patterns from an experimental setup. Hence in the first section 

of this chapter, a theoretical development of an experimental approach to improve the 

fringe contrast in TA-DSPI is presented. An empirical mode decomposition method for 

pre-processing of fringe pattern in a fringe analysis is also discussed. In section 2, fringe 

analysis techniques for determination of phase derivatives such as a phase derivative 

measurement from a complex amplitude signal using Teager operator and a direct phase 

derivative from a single fringe pattern are presented. In section 3, development of a 

derivative based regularized phase tracker (DRPT) method and its advantages over 

conventional regularized phase tracker (RPT) method is presented. A derivation for 

quantitative amplitude measurement from a TA-DSPI fringe, which is obtained from 

the proposed experimental approach, is presented as well. In section 4, a phase 

unwrapping technique for unwrapping noisy fringe pattern using an artificial 

intelligence technique called ensemble of hybrid genetic algorithm is presented. In 

section 5, a method to determine material properties of a cantilever beam using DSPI 

is presented. 
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3.1   Fringe quality improvement 

3.1.1 Amplitude-varied refreshing reference frame technique in TA-DSPI 

The amplitude vA of a harmonically excited vibrating object is related to the amplitude eA of 

the harmonic excitation, which excites the object is given by  

 

2

2 2 2 2

{1 (2 / ) }

{(1 / ) (2 / ) }

e n
v

n n

A
A

 
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

 
                                                                                                     (3.1) 

 

where , and n are the damping coefficient, vibrating frequency and nth mode resonant 

frequency. Hence an increase in the amplitude eA  of the harmonic function increases the 

amplitude vA  and the relation is influenced by dynamic properties of the structure. 

 In the time average method, an interference pattern is captured at a lower frequency 

than the vibrating object and the equation of the recorded intensity avgI is given by 

 

0 0 0(1 cos( ) ( ))avg rI I V J                                                                                                         (3.2) 

 

where 0I  is the bias intensity, Vis the visibility and 0J  is a zero order Bessel function of the first 

kind and   is a fringe locus function given by 4
vA




    
 

. The phase difference 0( )r 

between the reference and object waves results in a speckle pattern. As mentioned above, the 

Bessel function is not visible due to the influence of the bias intensity, visibility and speckle. In 

the stationary reference phase method, a time average frame is subtracted with a reference 

frame when the object is in rest. The intensity of the reference frame is given by 
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0 0(1 cos( ))s rI I V                                                                                                          (3.3) 

 

Subtracting Eq. (3.2) from Eq. (3.3): 

 

0 0 0cos( )[1 ( )]s avg rI I I V J                                                                                                          (3.4) 

 

 Since the Eq. (3.4) is purely modulated by a Bessel function, the fringe pattern is visible 

but with a poor fringe contrast for high phase values. Any ambient disturbances will also affect 

the quality of the fringes. The present study attempts to address these two problems using an 

amplitude-varied refreshing reference frame. Refreshing reference frame techniques, which are 

suggested previously, require a phase shifting between every other frame to achieve better 

contrast. However, in the proposed method, a phase shift is not necessary. A small amplitude 

change between every other frame provides a good fringe contrast. This could be easily 

achieved by slowly varying the amplitude of harmonic excitation with a function generator 

because an amplitude variation in harmonic excitation causes an amplitude change in vibrating 

object. The intensity of the fringe pattern recorded is given by 

 

0 1 0 0 0 0cos( )[ ( ) ( )]avg avg rI I I V J J                                                                      (3.5) 

 

where  is a small change in fringe locus function triggered by a small change in the 

harmonic excitation. The increment in the amplitude is given as a factor of the original 

amplitude i.e. r   , where r is the factor of the increment. This is achieved by 

increasing the amplitude of the harmonic excitation eA by the factorr. The value for the factor

r should be small enough to not distort the fringe pattern. A detailed discussion for selecting 
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the proper value for r after analyzing the influence of r in the improvement of fringe contrast 

is presented in section 5.1.1.  

 

 

Figure 3.1(a) Comparison of fringe intensity between the conventional and proposed method; 
(b) Comparison of fringe contrasts between the conventional and proposed method. 
 

 Figure 3.1(a) illustrates a comparison between intensity of a one dimensional (1D) 

fringe pattern obtained from conventional subtraction method and intensity of a 1D fringe 

pattern obtained from the proposed method with r  value of 5%. Figure 3.1(b) shows the 

variation in fringe contrast of the fringe patterns. The contrast of the fringes obtained from 

conventional subtraction method decreases significantly for the first few fringes. The last fringe 

has just one tenth of the fringe contrast of the first fringe. The contrast of the fringes obtained 

from the proposed method increases steadily with the phase values and the fluctuation between 
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two adjacent fringes is small. As seen in Fig. 3.1(b) each fringe pattern has better contrast and 

is more visible especially at higher phase compared to the conventional subtraction method.   

 

3.1.2 Empirical mode decomposition for fringe normalization 

Huang et al. proposed an empirical mode decomposition method (EMD) for analyzing non-

linear and non-stationary signals (Huang et al, 1998). The signals are decomposed into intrinsic 

mode functions (IMF), which provide instantaneous frequencies and amplitudes with either a 

Hilbert or Teager spectrum (Huang et al, 1998; Boudraa et al, 2004). The empirical mode 

decomposition utilizes signal data more effectively and is adaptive. Hence the method is more 

effective than wavelet transform (WT). In addition to this advantage, the method also eliminates 

the DC term from the signal. Trusiak et al. proposed another novel 2D EMD method called 

enhanced fast empirical mode decomposition (EFEMD). It is based on an automatic selective 

reconstruction (ASR) to normalize the fringe pattern and requires little computation time for 

decomposition of the fringes (Trusiak et al, 2014). 

Empirical mode decomposition is a technique used to decompose a signal into a 

collection of intrinsic mode functions (IMFs). Decomposition of the signals is carried out by a 

process called sifting. In the sifting process, an upper and lower envelope of the signal is first 

determined by fitting all its local maxima and minima. The mean of the envelopes provides the 

first IMF of the signal. The difference between the original signal and the first IMF provides 

the residue signal and further IMFs are obtained from the residue signal by iterations. The 

sifting process continues till the residue becomes a monotonic function from which no IMF 

could be retrieved. Once all the IMFs are obtained, the instantaneous frequency of each IMF is 

easily obtained in either Hilbert or Teager spectrum. Unlike Fourier or Wavelet analysis, this 

technique does not have any predefined decomposition basis and is purely adaptive.  
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  Enhanced fast empirical mode decomposition is a two dimensional EMD for 

normalizing a fringe pattern. In EFEMD, envelopes are determined using morphological 

operations instead of surface fitting to reduce computation time. Some Intrinsic mode functions 

obtained by decomposition, contain useful signals while others contain unwanted data such as 

carrier, noise, etc. Hence to normalize a fringe pattern, IMFs which contains background 

variation and speckle noise need to be discarded. It is also possible that high contrast fringe data 

are present together with low contrast noises. Automated selective reconstruction (ASR) is 

employed to separate the signal from the noises before reconstruction. The ASR process 

determines the intensity modulation distribution pixel by pixel and a weighted map is assigned 

on each selected IMF for reconstruction. Since the process is completely automated, the 

computation time is greatly reduced (Trusiak et al, 2014). 

 A fringe pattern’s intensity field ( , )I m n can be expressed by:  

 

( , ) ( , ) ( , )cos{ ( , )} ( , )I m n A m n B m n m n m n                             (3.6) 

 

where ( , )A m n is a background variation, ( , )B m n is a local amplitude, ( , )m n is a phase 

value and ( , )m n is a speckle noise. ASR-EFEMD process is used to normalize the fringe 

pattern to remove the background variation (DC term), local amplitudes and speckle noise. The 

EFEMD decomposes the fringe pattern into K number of intrinsic mode frequencies (IMF).  

 

1

( , )
K

i
i

I m n IMF Residue


                      (3.7) 

 

              As mentioned earlier, these IMFs represent image features at various spatial scales. 

General strategy for normalization of the fringes is carrying out a band pass filtering i.e., first 
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few IMFs which represent high frequency speckle noise and several last IMFs along with the 

residue which represent low frequency background noise and bias term are removed before 

reconstruction. Manually selecting IMFs for reconstruction takes more time and is prone to 

error. Apart from that, each IMF contains two regions, sharply extracted fringes and noise, 

which makes IMFs selection more complex.  

In ASR method, amplitude modulation maps for each IMF is determined using Hilbert 

spiral phase transform and these amplitude modulation maps have values from 0 to 1, which 

represents the weightage of signal quality. Performing weighted averaging on IMFs with 

modulation maps as weights provides a normalized fringe pattern. The fringe pattern rI after 

reconstruction is given by: 

 

( , ) cos{2 ( , )}rI m n m n                     (3.8) 

 

Since the fringe pattern’s intensity ( , )I m n is the magnitude of a cosine signal, after 

normalization using ASR-EFEMD, the phase value of the cosine signal would be doubled as 

shown in Eq. (3.8). 

 

3.2   Phase derivatives determination 

3.2.1 Phase derivatives from complex amplitude using Teager operator 

In digital holographic interferometry (DHI), complex phasors method provides high 

quality wrapped phase maps (Chen et al, 2008). However this method requires filtering 

techniques such as sine-cosine filter and short time Fourier transform (STFT) for 

determining high quality phase derivative maps. Hence it takes high computational time 
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and can provide only wrapped derivative maps. Since the strain, curvature and twist 

measurements are of more interest than displacement measurement, various phase 

derivatives measurement methods are proposed (Quan et al, 2009; Rajshekhar and 

Rastogi, 2011; Kulkarni and Rastogi, 2014).  

3.2.1.1 Instantaneous frequency determination from a 2D signal 

 Maragos et al. proposed a discrete energy separation algorithm (DESA) based 

on Teager-Kaiser energy operator (TKEO) which provides instantaneous frequencies 

of a nonlinear and non-stationary signal (Maragos et al, 1993). The instantaneous 

frequency of a signal at a given point is equal to the phase derivative and it is obtained 

using amplitude-frequency demodulation methods (Huang et al, 1998; Boudraa et al, 

2004; Kulkarni and Rastogi, 2014). Diop et al. proposed a discrete higher order image 

demodulation algorithm (DHODA) based on higher order TKEO for amplitude-

frequency estimation (Diop et al, 2009). It is shown that the DHODA is more efficient 

in tracking the most significant part of the images so DHODA outperforms DESA by 

achieving lower error values than DESA (Diop et al, 2009). 

Higher order image demodulation algorithm is based on 2D higher order TKEO, 

which tracks energy and identify instantaneous amplitude and frequency in an image. 

In general, the amplitude component indicates texture contrast and frequency 

component indicates texture orientation. However, instantaneous frequency also 

represents the phase derivative of a fringe pattern. In the proposed method, DHODA is 

used to estimate phase derivatives from a 2D cosine fringe pattern. A 2D discrete cosine 

signal ( , )g m n with amplitude ( , )cA m n and frequencies ( , )x m n  and ( , )y m n  w.r.t. x and y 

direction is shown in Eq. (3.9) and a higher order TKEO for the discrete signal is shown 

in Eq. (3.10).  
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( , ) ( , )cos{ ( , ) ( , )}c x yg m n A m n m m n n m n                     (3.9) 

2
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    (3.10) 

 

where 1( , )g m n , 2( , )g m n  and 12( , )g m n  represents discretized partial derivatives g

x
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x y


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in the x, y and xy directions respectively. In Eq. (3.10), the first term 

represents the 2D extension of TKEO. This term is just a 1D TKEO extended to 

horizontal and vertical axes and it does not consider the other directions, such as 

diagonals. Hence Boudraa et al, included the second term in this 2D higher energy 

TKEO operator (Boudraa et al, 2005). Diop et al, derived DHODA algorithm for 

obtaining amplitude and frequency modulations (AM & FM) estimates based on this 

2D higher energy TKEO operator (Diop et al, 2009). In DHODA, the instantaneous 

frequency x in the horizontal direction, which is the partial derivative of phase

( ( , ) ( , ))x ym m n n m n   in the x direction, is given by: 

 

2 12 2 2( , ) arccos(1 { ( , )}/ { ( , )})x m n g m n g m n                      (3.11) 

 

Similarly, the instantaneous frequency y in the vertical direction, which is the partial 

derivative of phase ( ( , ) ( , ))x ym m n n m n   in the y direction, is given by: 

 

2 12 2 1( , ) arccos(1 { ( , )}/ { ( , )})y m n g m n g m n                     (3.12) 
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Since TKEO uses a few samples for the energy calculation, it has a better time 

resolution than the Hilbert transform and also requires relatively less computation time. 

3.2.1.2 Phase derivatives determination in DHI 

Instantaneous frequency determination methods requires high frequency carriers in the 

signal. To implement DHODA method for phase derivatives retrieval for optical 

coherent techniques, a carrier frequency should be introduced into the interferograms 

captured. However, introducing a high frequency carrier needs a complex experimental 

setup. To achieve this with a simple experimental setup, a high frequency carrier is 

introduced carried out digitally (Kulkarni and Rastogi, 2014) and it requires a complex 

amplitude of the signal. Since it is difficult to add phase to a cosine function, this cannot 

be done directly on a cosine fringe pattern.  

In DHI, the complex phasor method provides the complex amplitude of the 

phase difference map. Hence this method can be employed directly in DHI. A complex 

amplitude signal obtained from the complex phasor method is given by 

 

'( , ) ( , )exp{ [ ( , )]}CP m n a m n j m n                    (3.13) 

 

where ( , )C P m n is a complex amplitude and 'a is a slow varying amplitude which can 

be removed by high pass filtering.  

 

( , ) exp{ [ ( , )]}fCP m n j m n                                (3.14) 

 

Carrier frequencies cxw and cyw are then added to the complex signal fCP . 
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( , ) ( , )exp[ { }]cf f cx cyCP m n CP m n j mw nw 
                (3.15) 

( , ) exp[ { ( , ) }]cf cx cyCP m n j m n mw nw  
                  (3.16) 

( , ) exp{ ( , )}cfCP m n j m n 
                  (3.17) 

( , ) ( ( , ) )cx cym n m n mw nw   
                 (3.18) 

 

The real part of the complex image cfCP would give the required cosine fringes with a 

carrier frequency.  

 

( , ) Re{ ( , )} cos{ ( , )}cfg m n CP m n m n                 (3.19) 

 

To obtain phase derivatives in both directions, DHODA is applied on the cosine fringes 

as shown below. 

 

( , ) cos{ ( , )}g m n m n                           (3.20) 

 

The following equations show instantaneous frequencies in the horizontal and 

vertical directions of the cosine signals and are obtained by DHODA using 2D higher 

order TKEO: 

 

2 12

2 2

{ ( , )}
{ ( , )}( , ) arccos[1 ]g m n

x g m nm n 
                           (3.21) 

2 12

2 1

{ ( , )}
{ ( , )}( , ) arccos[1 ]g m n

y g m nm n 
                           (3.22) 

1

( 1, ) ( 1, )
( , )

2

g m n g m n
g m n

  
                         (3.23) 
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2

( , 1) ( , 1)
( , )

2

g m n g m n
g m n

  
                         (3.24) 

2 2
12

( 1, ) ( 1, )
( , )

2

g m n g m n
g m n

  
                         (3.25) 

( , ) { ( , ) }x x cxm n m n w                                      (3.26) 

( , ) { ( , ) }y y cym n m n w                                      (3.27) 

 

Equations (3.26) and (3.27) provide the first derivatives of the phase map ( , )m n in 

both x and y directions. Since Eqs. (3.21) and (3.22) contain a square root and an 

arccosine function, the first derivatives x and y are valid only for values between 0 

and / 2 . It is assumed that the phase ( , )m n is slow varying compared to carrier 

frequencies so at each pixel the value of ( , )x m n and ( , )y m n are less than cxw and cyw

respectively. Hence the values of the carrier frequencies cxw and cyw are set at / 4 .  

Due to the high noise sensitivity of DHODA, even a very small amount of noise 

would affect the phase derivative values. A 2D median low pass filter is thus applied 

on the phase derivatives to smoothen out large deviations caused by DHODA. A 

median filter is chosen to remove the spikes in the phase derivatives without affecting 

the adjacent pixels and a least square B-spline fitting interpolation function is 

subsequently applied to smoothen the phase derivatives map xf and yf . Furthermore, 

the second order phase derivatives xx , yy and xy can be obtained by employing 

DHODA using the previously determined first derivatives as shown below. 

 

( , ) exp{ ( , )}x xfCP m n j m n                                    (3.26) 

( , ) exp{ ( , )}y yfCP m n j m n                                    (3.27) 
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3.2.1.3 Phase derivatives determination using DHODA in DSPI 

As mentioned previously, DHODA cannot be applied directly on a cosine fringe and it 

is also highly sensitive to noise. Since a fringe pattern captured from speckle pattern 

interferometry is a cosine fringe pattern and highly affected by speckle noise, 

employing DHODA for phase derivatives determination from speckle fringe patterns is 

not a straight forward process. Hence a novel sequential algorithm called Teager Hilbert 

Huang transform based method for obtaining unwrapped first and second order phase 

derivatives directly from a single speckle fringe pattern is proposed. The method uses 

EFEMD (Huang transform), vortex operator (Hilbert transform) and DHODA (Teager 

operator) for phase derivatives estimation. Enhanced fast empirical mode 

decomposition is used to normalize a fringe pattern in order to remove background 

variations and speckle noises. Vortex operator (VO) is used to obtain a complex image 

from a cosine fringe. Discrete higher order image demodulation algorithm provides the 

instantaneous frequency i.e., phase derivatives of the fringe pattern. In the proposed 

method, the phase derivatives obtained could be integrated directly to obtain a phase 

map. 

In DSPI, an intensity field of fringe pattern recorded is given by: 

 

( , ) ( , ) ( , ) cos{ ( , )} ( , )I m n A m n B m n m n m n   
                                  (3.28) 

 

where ( , )A m n is the background variation, ( , )B m n  is a local amplitude and ( , )m n is a 

phase value. As mentioned earlier, the fringe pattern rI after EFEMD normalization is 

given by: 
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( , ) cos{2 ( , )}rI m n m n                   (3.29) 

 

Fringe pattern rI is a pure cosine signal with phase ( , )m n and vortex operator is used 

to obtain a complex image from the cosine signal. A combined plane fit and gradient 

method for obtaining an orientation map was employed (Yang et al, 2007). This method 

provides a π modulo map with a high accuracy irrespective of speckle noise level. Since 

the π modulo map causes sign ambiguity it is unwrapped into a 2π modulo map. Once 

the orientation map is obtained, VO is employed to convert the cosine signals into a 

complex amplitude signal as shown below.  

 

1
( , ){ } exp{ ( , )} [exp{ ( , )} [ ( , )]]r m n rVO I j m n FFT j m n FFT I m n                (3.30) 

( , ) ( , ) { ( , )}s r rCP m n I m n jVO I m n                               (3.31) 

( , ) exp{ ( , )}sCP m n j m n                                            (3.32) 

 

Any fringe pattern can be converted into a complex amplitude signal in this way 

and DHODA can be employed for phase derivatives determination from this complex 

amplitude signal, similarly as it is employed on the complex amplitude signal from DHI. 

The schematic flowchart of the proposed Teager Hilbert Huang transform for 

determination of high quality unwrapped phase derivatives from a single fringe pattern 

is shown in Fig. 3.2. The proposed method can determine high quality slope, curvature 

and twist maps from a single fringe pattern obtained from an out of plane displacement 

measuring DSPI setup. This method can also be employed for determining curvature 

and twist maps from shearography fringe patterns. 
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Figure 3.2 Schematic diagram of Teager-Hilbert-Huang transform algorithm. 

 

3.2.2 Phase derivatives determination using fringe orientation and density maps 

 In Teager-Hilbert-Huang transform method, a sequential algorithm is proposed to obtain 

phase derivatives from a fringe pattern. In this section, a direct first order phase derivative 

determination method is proposed. The proposed method uses fringe orientation and density 

maps to determine phase derivatives from a single fringe pattern. Since this method requires a 

normalized fringe pattern, ASR-EFEMD is employed as discussed in previous sections. Figure 

3.3 shows a pictorial representation of a fringe pattern with a selected window, fringe 

orientation and phase gradient directions. In the selected window, the directional difference of 

a fringe is minimum along a fringe tangential direction (fringe orientation direction) and 

maximum along a direction normal to the fringe (phase gradient direction). From the fringe 

density and phase gradient direction, the phase derivatives ( , )m n
x




and ( , )m n
y




at each 

pixel in the x and y directions can be obtained using the following equations.  
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Figure 3.3 A Fringe map. 

( , ) 2 cos{ ( , )}g

N
m n m n

x W

  


               (3.33) 

( , ) 2 sin{ ( , )}g

N
m n m n

y W

  


               (3.34) 

 

 

where ( , )g m n is the phase gradient angle (with respect to the x axis), N  is the number of 

fringes along the phase gradient direction and W is the length of the window in pixels. The 

phase gradient per pixel ( , )m n (radians/pixel) along the phase gradient direction is 

obtained by multiplying the fringe number N with 2 and dividing it by the window length

W . Subsequently, multiplying the phase gradient per pixel ( , )m n  by cos{ ( , )}m n  and

sin{ ( , )}m n , we obtain the phase derivatives ( , )m n
x




and ( , )m n
y




along the x and y 

directions respectively. 
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 Yang et al suggested an accumulated difference method to determine the fringe orientation 

and density simultaneously from a fringe map (Yang et al, 2007). The fringe density is 

calculated from the maximum directional difference while the fringe orientation is obtained 

from the minimum fringe difference direction. The  modulo fringe orientation is then 

unwrapped to obtain 2 modulo fringe orientation. As the influence of the window size is 

minimal compared to the plane-fit method, this method is more robust in determining the fringe 

orientation/phase gradient direction (Yang et al, 2007). Though the fringe density is susceptible 

to noises, the effect can be reduced by using EFEMD in the preprocessing. Furthermore a low 

pass medium filter can be applied on the fringe density to remove spikes caused by residual 

noises. The phase derivatives obtained using Eqs. (3.33) and (3.34) are biased due to noise 

sensitivity of the fringe density. Hence they are smoothened out by least square B-spline fitting 

interpolation. In the proposed method, though Yang’s method is discussed for the 

determination of fringe orientation and density, any other method could also be used. 

 

3.3   Phase retrieval 

3.3.1 Derivative based regularized phase tracker 

In dynamic fringe measurement, phase values at every transient position are required and it is 

difficult to capture more than one fringe pattern at each transient position. Hence phase 

extraction from a single fringe pattern is one of the most important and difficult tasks in 

dynamic measurement interferometry. As mentioned in the literature review, Fourier transform 

and other spatial phase shifting methods require a complex experimental setup to introduce a 

carrier frequency into a closed-fringe pattern. Phase demodulation methods provide phase 

values from a single closed-fringe interferogram and do not require a complex experimental 

setup. RPT method is one of the most robust phase demodulation methods but its phase 
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reconstruction accuracy drops around the saddle points of the fringe pattern. In this section, a 

novel RPT method called derivative based regularized phase tracker (DRPT) is proposed. The 

method can successfully demodulate single closed fringe patterns with less computation time 

than existing RPT methods and also can provide better accuracy around saddle points than 

conventional RPT. 

 The phase values can be obtained by integrating the phase derivatives that are 

calculated from the previous sections but even a small deviation in the phase derivatives would 

cause a large error in the phase values. As we know, in RPT, the phase demodulation is carried 

out by minimizing a cost function with respect to phase ( , )m n , and phase derivatives 

( , )x m n  and ( , )y m n  as given below. 

 

2

( , )

2

( , ) {[ ( , ) cos{ ( , , , )}]

[ ( , ) ( , , , )] ( , )}

wM

reg

U m n I p m n

p m n s m n

 
   

     


 

 
                            (3.35) 

( , , , ) ( , ) ( , ){ } ( , ){ }x yp m n m n m n m m n n                               (3.36) 

 

where  &  represent the local indices of the neighborhood window wM and m  & n

represent the indices of the entire fringe map. Since, local frequencies ( , )x m n  and ( , )y m n  

are also determined along with phase values, the minimization of the cost function requires 

more computation time.  

 In the proposed method, we suggest a novel derivative based phase tracking 

demodulation method which utilizes predetermined phase derivatives and a simplified cost 

function to estimate the phase values. The phase derivatives calculated from Eqs. (3.33) and 
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(3.34) also represent the local frequencies ( , )x m n  and ( , )y m n . Hence the cost function in 

Eq. (3.35) is minimized with respect to the phase value ( , )m n to obtain: 

 

( , , , ) ( , ) ( , ){ } ( , ){ }p m n m n m n m m n n
x y

          
 

                    (3.37) 

 

 In the proposed method, the computation time is considerably reduced due to a 

reduction in the number of variables, which in turn reduces the complexity of the minimization 

function. In addition to this advantage, RPT phase demodulation requires a fringe following 

technique to avoid saddle points but the proposed method utilizes predetermined local 

frequencies which guides the phase demodulation around the saddle points to achieve better 

accuracy than conventional RPT. Hence the proposed DRPT method is able to outperform the 

RPT phase demodulation method in terms of both accuracy and computing time. 

 

3.3.2 Vibration amplitude measurement in TA-DSPI 

As mentioned in the literature, quantitative vibration amplitude measurement requires 

good fringe contrast and higher computational time. In previous section, an amplitude-

varied refreshing reference frame fringe pattern is presented for improvement of TA-

DSPI fringe pattern. In this section, a quantitative amplitude measurement from a single 

TA-DSPI fringe pattern that is obtained from amplitude-varied refreshing reference 

frame technique is proposed. 

 As mentioned before, phase values can be retrieved from a single fringe pattern 

using DRPT method. The proposed model is based on cosine fringes so it is necessary 

to device a new model for fringes obtained using Eq. (3.5). Pryputniewicz et al proposed 
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a method, in which zero order Bessel fringes of the first kind are analyzed as they are 

cosine fringes and after phase retrieval a look up table is used to compensate the 

conversion from Bessel to cosine (Pryputniewicz and Stetson, 1989). Similar approach 

can be used for phase demodulation of fringe patterns obtained in this method. In Eq. 

(3.5), cosine functions replace Bessel functions as shown below.  

 

0 1 [cos( ) cos( )]avg avgI I B                                                                                   (3.38) 

( , ) ( , ) ( , )m n m n m n                                                                                   (3.39) 

 

where 0 0cos( )rB I V     and  is an error introduced by the conversion from Bessel to 

cosine. From trigonometry the two cosine terms are rewritten as: 

 

0 1

2
2 [sin( )sin( )]

2 2avg avgI I B
 

 
  

                                                            (3.40) 

 

Since the change in the fringe locus function   is small compared to 2  and sin( ) is 

a slow varying background function. Equation (3.40) is reduced to: 

0 1 [sin( )]avg avgI I B                                                                                              (3.41) 

where 2 sin( )
2

B B





and
2

  
  i.e., (1 )

2

r     . From Eq. (3.41), it is shown 

that the fringes obtained are sine functions.  

 Figure 3.4(a) shows a sine wave compared with a normalized wave function which is 

obtained using Eq. (3.5). While Fig. 3.4(b) shows a cosine wave compared with a normalized 

zero order Bessel function of the first kind. It is evident that the fringes produced by the 

proposed method can be considered as a sine function while a zero order Bessel function of the 
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first kind can be considered as a cosine function. Since  is small, sin( )
2


can be 

considered small as well and it would cause a slow varying background intensity. Hence the 

intensity value obtained using Eq. (3.41) has to be normalized and ASR-EFEMD is used for 

normalization to remove the noise and background contrast variation. The intensity of the 

fringes after normalization is a pure sine function given by: 

 

sin( )nI                                                                                                             (3.42) 

 

 

 

Figure 3.4 (a) A sine wave compared with a normalized fringe pattern obtained using the 
proposed method; (b) A cosine wave compared with a normalized Bessel function. 
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 In the DRPT method, the phase in a cosine function, saycos( ) , is demodulated by 

minimizing a cost function with respect to ( , )m n as shown in Eqs. (3.35) and (3.37). The 

fringes obtained are sine functions as shown in Eq. (3. 5) so the DRPT is modified for sine 

function vibrational amplitude measurement. The minimization function is given by  

 

,

2

( , )

2

( , ) {[ ( , ) sin{ ( , , , )}]

[ ( , ) ( , , , )] ( , )}

m n
TA n

M

reg

U m n I p m n

p m n s m n

 
   

    


 

  
               (3.43) 

 

After phase demodulation, the phase value   is corrected for errors introduced as shown in 

Eq. (3.39) to obtain accurate phase value and the amplitude vA . 

 

3.4   Phase unwrapping 

3.4.1 Ensemble of HGA for phase unwrapping 

3.4.1.1 Genetic Algorithm 

Genetic algorithm (GA) is an AI method which is based on the concept of evolution. It 

is a stochastic search technique that uses global random or problem-specific search 

controlled by a set of different operators. Every possible solution set will be considered 

as a single chromosome and every variable in the solution set is considered as a gene 

in the chromosome. The population, which is only a group of chromosomes, will 

undergo evolution in every generation by three processes called selection, crossover 

and mutation. Genetic algorithm uses both probability and adaptability in random 

exploration in search of the fit chromosome or global optimum. The selection process 

will make sure only fit chromosomes are selected for next generation to ensure ‘survival 
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of the fittest’. The crossover will choose some pair of chromosomes randomly for 

offspring generation and remaining chromosomes will be moved directly to next 

generation. Each chromosome pairs which are chosen for crossover will produce two 

offspring for the next generation. After the crossover process, some randomly chosen 

genes in some randomly chosen chromosome will undergo some random change in 

their value. This process is called mutation. If a mutation results in increase in fitness, 

the mutant gene will be replicated in the similar genes of other chromosomes. 

Otherwise, those genes will be eradicated gradually in future generations.  

Selection will make sure that the search is directed towards the best result while 

the mutation will ensure that the search will not be trapped in a local optimum. The 

crossover will make sure that some new solutions (offspring) are generated for every 

generation. This evolution will be repeated for every generation till the exit criteria is 

achieved. 

The initial solution for GA will be generated randomly. The random initial 

solution will take more time to converge. Karout et al proposed a hybrid genetic 

algorithm (HGA) approach for phase unwrapping, which combines the advantages of 

local search and GA (Karout et al, 2007). The initial population is generated based on 

a local search method called nearest neighbor method. This reduces the computation 

time drastically.  

3.4.1.2 HGA for phase unwrapping 

In GA, solutions are coded as chromosomes and they would be evolved under a fitness 

function which is defined by the problem. The phase unwrapping problem should be 

coded in GA syntax to employ HGA for solving it. In branch-cut phase unwrapping 

method, if a curl operation is applied on the wrapped phase map, noise and 

discontinuities cause non-zero residues. Branch cut is the region between a positive and 
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negative residue pair. Hence to determine branch-cuts, the residues should be correctly 

paired and it can be achieved by minimizing the summation distance between all the 

residue pairs i.e. total branch cut length. Any wrapped phase map has set of positive 

and negative residues and the objective is to pair them correctly by minimizing the total 

branch cut length. In this phase unwrapping coding, positive residues are packed as a 

primary chromosome and the negative residues are packed as a solution chromosome. 

Variations in the solution chromosomes are achieved by the modifying the position of 

the negative residues in the solution. When a solution is provided, positive residues in 

the primary chromosome will be paired with the corresponding negative residues in the 

solution chromosome. Fitness of a solution chromosome is calculated by the total 

Euclidian distance between the paired residuals. 

One of the challenges in this phase unwrapping coding is that number of positive 

and negative residues are not always equal in a residual map. Some residues near the 

boundary region might have their pairs outside the area of interest. To address such 

monopole residues, while initial population generation, some of the chosen border 

pixels are also included as residue pairs. First, each positive residues determine their 

neighbor negative residue. If the image boundary is nearer than the nearest negative 

residue, the corresponding border pixel is considered as the nearest neighbor. 

Subsequently, each negative residues which are not paired with any positives residues 

are paired with their nearest border pixel. These border pixel pairs of negative residues 

along with positive residues forms a primary chromosome. Figure 3.5 shows the 

residues and their corresponding opposite polarity. Primary chromosome which 

contains all the positive residues and the border pixel pairs of left out negative residues, 

is shown in Fig. 3.6. The corresponding residue pairs of the primary chromosome form 

the initial solution chromosome and it is shown in Fig. 3.6. In GA, each functional unit 
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of the chromosome is called as genes, so each residue in our phase unwrapping problem 

is a gene in a solution chromosome. 

 

Figure 3.5 Residue and their corresponding opposite polarity. 

Figure 3.6 Primary and initial chromosome. 
 

3.4.1.2a Initial population generation 

After coding the initial solution chromosome, an initial population (Fig. 3.7) is 

generated. The initial solution chromosome is create using nearest neighbor local search, 

so the GA converges faster than a random solution. More solution chromosomes are 

generated using a random initialization method from the single initial solution 

chromosome. In this method, two genes are randomly selected from the initial solution 

chromosome and the positions of these two genes are swapped in the chromosome. The 

cut length i.e., the total Euclidian distance between residue pairs, is calculated before 

and after the swapping. If the swapping generates better results i.e. a shorter cut length, 

the swapping is finalized. Otherwise, the genes are reverted back to their initial position. 
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This process (NNR2OPTI) is repeated until all the chromosomes required for the 

population are found. 

 

Figure 3.7 Initial population generation. 

3.4.1.2b Fitness evaluation and selection operator 

A selection operator is a survival key for the evolution. It is problem specific but should 

prevent a search from being trapped in a local optimum. The fitness of the chromosomes 

generated is evaluated based on a fitness function shown in Eq. (3.44). The 

chromosomes are sorted out in the order of fitness level. Similar chromosomes are 

deleted and new chromosomes are generated using the NNR2OPTI method. If the new 

chromosomes generated are similar to the existing chromosomes, they are deleted and 

newer chromosomes are generated. This process is repeated until all the chromosomes 

in the population are unique or after a specific time (Lm) of repetition. Lm is a parameter 

for this operation to make sure that the evolution is not trapped in a loop. A larger value 

of Lm gives a better possibility of unique chromosomes in a population. After this, a set 

of chromosomes, one based on the fitness value and another one randomly, are selected 

for the survival in the next generation. This step is repeated to form a whole population 

of chromosomes. Table 3.1 shows the fitness evaluation process.  
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2 2 1/2Fitness [( ) ( ) ]
pN

i i i i
i

xg xg yg yg                   (3.44) 

 

Where ig  is a positive residue, ig  is a negative residue, ixg  is a x coordinate, iyg  is a 

y coordinate and pN is the number of pairs. 

Table 3.1 Selection process of HGA. 

Current 
Population 

Fitness  
Value 

Sorted  
Population 

Fitness   
Value 

New Sorted 
Population 

Fitness  
Value 

Chromosome 1: 5789 Chromosome 6: 5600 Chromosome 6: 5600 
Chromosome 2: 7856 Chromosome 1: 5789 Chromosome 1: 5789 
Chromosome 3: 6159 Chromosome 3: 6159 Chromosome 3: 6159 
Chromosome 4: 7201 Chromosome 5: 6159 Chromosome 5: 6356 
Chromosome 5: 6159 Chromosome 4: 7201 Chromosome 4: 7201 
Chromosome 6: 5600 Chromosome 2: 7856 Chromosome 2: 7856 

 

3.4.1.2c Crossover and mutation 

The smallest edge crossover operator (SCX) is designed specifically for phase 

unwrapping (Karout et al, 2007). The chromosomes pairs are randomly selected for a 

crossover based on probability Pc so that good genes from the parents are preserved 

and better offspring are produced. The genes with minimum cut length from the parents 

would be transferred to the offspring. This might result in repeated genes in the 

offspring hence a LK method is employed to solve this issue as shown in Fig. 3.8. L 

number of genes are selected in the chromosome and their cut lengths are calculated. 

The genes are swapped to the corresponding positions of other genes and the cut lengths 

are calculated again. The process is continued until the cut length of a swapped position 

is shorter than the precious position. This LK algorithm is also used as a mutation 

operator in the proposed method. After the crossover, some chromosomes are randomly 

selected for mutation based on the probability Pm. Some genes in the selected 
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chromosomes are randomly selected and LK method is employed as shown in Figs. 3.9 

and 3.10.  

 

Figure 3.8 Crossover process. 

Figure 3.9 L-K Mutation operator performing three gene mutation (Unsuccessful). 

 

Figure 3.10 L-K Mutation operator performing two gene mutation (Successful). 

3.4.1.3 Ensemble of HGA (eHGA) 

In this method, the ensemble of parameter values is simultaneously employed in the 

HGA by using parallel populations. Even though the parameters are obtained 

selectively, it is uncertain that any single combination of parameter values would be 

effective for a particular problem (Tasgetiren et al, 2010). Based on the path chosen 
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(value fixed for parameters), the search explores in a space and selects a local optimum. 

For different values of the parameters, different paths are chosen. To make sure that 

more paths are evaluated in a single run and more possibilities are explored in the 

searched space, simultaneous usage of different parameter values is employed with 

different parallel populations. The offspring produced from a population not only 

competes with its peers from the same population but also with offspring of other 

populations. This ensemble of HGA (EHGA) explores more within a search space and 

also converges better with the same computational expense. It is also mentioned in the 

literatures that the ensemble will increase the performance of GA (Tasgetiren et al, 

2010; Zhou and Sun, 2005). 

The EHGA has Np populations evolving in parallel and each population has Nc 

chromosomes. Initial population generation is carried out for all the populations and 

generated chromosomes are assigned to each population. The selection operated can be 

completely replaced by tournament operator in the EHGA. However, for the first 

generation, some selection should be carried out to obtain the survival criteria before 

the chromosomes undergo the crossover operation. In the following generations after 

mutation, the tournament operator is employed. However, the selection process is not 

completely replaced by the tournament operator as the selection operator with a Lm 

parameter is retained to ensure the uniqueness of the chromosomes. The Lm parameter 

is assigned with unique values for every population. After the selection, crossover and 

mutation operations are carried out in each population. The parameters Pc and Pm, the 

probability for a chromosome to undergo crossover and mutation respectively, are also 

assigned unique values in each population. 
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After the operations are carried out, Nc numbers of offspring would be 

generated from each population. All the offspring from each population are put together 

in the offspring pool and a tournament selection is carried out to select the chromosomes 

for the next generation. The tournament operator ensures that the offspring competes 

with all the offspring from every population. Hence it is evident that the fittest offspring 

joins a different population even though they are generated from another population. 

This increases the possibilities in the search space.  

 

Figure 3.11 Flowchart for eHGA. 

The offspring in the pool are sorted based on the fitness and each population 

gets half of the required chromosomes (Nc/2) based on their fitness and the remaining 

half of the chromosomes are selected randomly. For example, if Nc=10, the fittest 5 
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chromosomes in the whole pool would be selected for every population irrespective of 

their origin and the remaining 5 chromosomes are randomly selected to ensure variation 

in the population. Since the fittest chromosomes are desirable, this type of selection 

ensures that all the offspring from different populations would have an equal chance to 

represent any given population. The flow of the EHGA is summarized as follows and a 

flowchart of algorithm is shown in Fig. 3.11.  

 

Step 1, Initialize each parallel population using NNR2OPTI operator.  

Step 2, Select the surviving chromosomes by selection operator in each population with 

unique value for Lm parameter. 

Step 3, Create an offspring by crossover operator (SCX) in each population with unique 

value for Pc. 

Step 4, Operate mutation in each parallel population using LK algorithm mutation 

operator with unique value for Pm. 

Step 5, Combine all the offspring from each parallel population and create a pool of 

offspring for the tournament. 

Step 6, Select chromosomes for each parallel population for next generation by 

tournament operator.  

Step 7, Repeat steps 2 to 6, until the exit criteria are satisfied.  

 

3.5   Material characterization of a small cantilever beam 

One of the important applications of optical techniques is material characterization of 

small objects as they are non-contact, non-destructive and provide full field 

measurements with high-resolution (Kim et al, 2008; Farias et al, 2009). In this section, 



 
CHAPTER THREE                                                                           DEVELOPMENT OF THEORY 

 

80

an experimental protocol is designed, which applies the DHODA algorithm, for 

determining the elastic modulus of a small cantilever beam. The speckle pattern 

interferometry technique is highly sensitive to the rigid body motion, hence the 

displacement obtained from DSPI is the summation of deformation and rigid body 

motion (Chen et al, 2013). Hence even a small rigid body movement affects the 

accuracy of the deformation measurement which in turn affects the accuracy of the 

mechanical properties determined from these data. Chen et al proposed a correction 

method for strain errors induced by small rigid body motions in ESPI. However this 

method requires the amount of rigid body motion for the error correction and in real 

applications, the rigid body motion is an unknown quantity. In this experiment, the rigid 

body movement problem is addressed to obtain accurate elastic modulus of the 

materials. 

 The deflection and slope along x axis of a cantilever beam loaded at the end is 

given by: 

 

2 (3 )
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6 a
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               (3.46) 

 

where w is the deflection in z direction, P is the load applied, L is the length of the 

cantilever beam, E is the elastic modulus and aI is the area moment of inertia. A 

cantilever beam before and after loading is shown in Fig. 3.12. An out of plane 

displacement measuring DSPI experimental setup measures the deflection w  and 

ideally, the Young’s modulus value could be determined from every pixel as it would 
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provide a deflection data from Eq. (3.45). However, as DSPI is sensitive to rigid body 

movement, the out of plane displacement captured by the DSPI set-up would be 

corrupted with rigid body movement. The translation movements in the x  and y  axis 

and the rotation about the z  axis causes in-plane displacement so they would not 

influence the out of plane displacement measurement. Rotation about the x  axis would 

cause a change in the deflection along the y  direction. Hence it is ignored as the 

deflection and slope of the cantilever beam are functions of x . Translation in the z  

direction and rotation about the y  axis cause a change in out of plane displacement and 

slope as given below: 

 

 

Figure 3.12 Deflection of a cantilever beam loaded at the end. 
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Figure 3.13 Rigid body movement along with deflection of a cantilever beam. 
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where dw is the out of plane displacement obtained by a DSPI setup, y is a rotation 

about the y  axis and zT is a translation in the z  direction. 

Figure 3.13 shows the actual deformation and rigid body movement due to a 

rotation and translation on a cantilever beam. Even a small rigid body movement would 

cause a large deviation in the elastic modulus value. Hence it is not straight forward to 

determine the elastic modulus of the material from the out of plane displacement values 

obtained by the DSPI setup as it is influenced by rigid body motion (translation and 

rotation). As it is known that the actual slope of deformation is zero at the fixed end

(0) 0
w

x





, the rotation term from Eq. (3.48) can be eliminated easily. Hence the elastic 

modulus is determined from a slope map irrespective of the rigid body movement. 
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However, in applications where the boundary conditions are unknown and a zero-slope 

point ( 0
w

x





) does not exist in the measured area, the proposed method cannot be 

applied.  

The deflection of a cantilever beam produces open fringes so the complex field 

of the phase map is obtained directly using Fourier transform method. From the 

complex field, a biased slope map is determined using DHODA. After that a median 

filtering and B-spline smoothing is carried out to obtain a high quality unwrapped slope 

map. Every pixel in the slope map provides an elastic modulus value (using Eq. (3.48)) 

and statistical mean and standard deviation of the elastic modulus of the material is 

obtained from the elastic modulus data at every pixel. There is no need for 

normalization of the speckle fringe pattern as this method uses Fourier transform to 

obtain a complex field of the phase map. 
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CHAPTER FOUR 

 
EXPERIMENTAL WORK 

 
To verify the theories and algorithms proposed digital holographic interferometry 

(DHI), digital speckle pattern interferometry (DSPI) and digital speckle shearing 

interferometry (DSSI) experimental validations are carried out. The out of plane 

displacement and displacement derivatives of centrally loaded circular plate is recorded 

using these systems. Quantitative vibration modal analysis on a thin circular plate is 

carried out using time average speckle pattern interferometry. Elastic modulus of a 

cantilever beam is determined using DSPI system. The equipment and experiment 

procedures are described in detail in the following sections. Apart from the experiments, 

various simulation studies are carried out as well to analyze the robustness and 

effectiveness of the proposed algorithms. All simulations are carried out using Matlab 

R2013b 64 bit and run on a computer equipped with Intel Core i7-4770 (3.4 GHz) 

processor and 8 GB RAM. 

4.1   Digital holographic interferometry (DHI) 

Figure 4.1 shows a schematic experimental arrangement for recording digital 

holograms in the spatial-domain analysis. A fiber optic coupler separates a coherent 

light beam into two beams of intensity ratio 90:10, i.e., object and reference waves. A 

polarizer is placed in the reference wave path to regulate the intensity. A beam splitter 

cube is placed in front of a CCD camera to recombine object and reference waves. A 

digital hologram is recorded by the CCD camera. A HeNe laser with power of 30 mW 

and wavelength 632.8 nm is used as light source and Manta G-201B monochrome 

camera, which has Sony ICX274AL CCD sensor with 1628x1236 pixels of size 4.4 μm 
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x 4.4 μm, is used to capture the fringe pattern. The CCD camera used to capture the 

holograms is shown in Fig. 4.2. A circular aluminum plate with a center point load is 

used as a specimen for the experiment. The aluminum disc has thickness of 1.5 mm and 

diameter of 50 mm. The micrometer loading setup used to apply static load at the center 

of the disc is shown in Fig. 4.3. 

As this is a Fourier lensless holography setup, the reference beam is a spherical 

wave. Hence, every pixel of the CCD can be utilized, and it can provide much sharper 

images (Wagner et al., 1999). The distance between the specimen and the CCD should 

be equal to the distance between the point source of the spherical reference wave and 

the CCD to obtain a Fourier lens-less hologram. In the experimental setup, the distance 

between the specimen and the CCD is 93 cm. The entire setup is placed on a vibration-

isolation table to reduce the influence of environmental vibration and ambient 

conditions. Two holograms one before and one after loading are captured to obtain the 

phase difference caused by the loading. The holograms captured before and after 

loading are used to validate various algorithms developed in this thesis. 

 

Figure 4.1 A schematic setup of DHI system. 
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Figure 4.2 Manta G-201B monochrome CCD camera. 

 

 

Figure 4.3 Thin plate specimen loaded at center. 

 

4.2   Digital speckle pattern interferometry (DSPI) 

4.2.1 Static loading on a thin circular plate 

The experimental setup of Michelson interferometry for an out of plane displacement sensitive 

DSPI measurement is shown in Fig. 4.4. A coherent light beam is opened by a microscope 

objective and a beam-splitter splits the beam into a reference and an object waves. The reference 

wave incidents on a reference plate and creates speckle patterns on the reference plate. Similarly 

the object wave creates speckle patterns on the specimen. The specimen and the reference plate 
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have optically rough surface and are painted with matt-white paint to have better visibility. The 

interference between these two speckle-patterns are captured by a CCD camera. The CCD 

camera has a lens and the speckle pattern has subjective speckles as the pattern is captured by 

an imaging system. 

 A HeNe laser with a power of 30mW and wavelength 632.8 nm is used as a light 

source. A Manta G-046B monochrome camera, which has Sony ICX415 CCD sensor with 

780 x 582 pixels of size 8.3 μm, is used to capture the fringe pattern. A circular plate with 

diameter of 65 mm and thickness of 1.23 mm, clamped at its edge, is used as a test specimen. 

The specimen is made of aluminum 6061-T6 alloy which has an elastic modulus 69 GPa and 

a Poison’s ratio 0.33. A point load is applied at the center of the specimen through a micrometer. 

A TML CLS-50NA compression load cell which measures load ranging 0-50 N, is mounted 

between the specimen and the micrometer as shown in Fig. 4.5. The load cell indicates the load 

applied and is useful to validate the measurement in the DSPI system. 

 

Figure 4.4 A schematic setup of Michelson DSPI system. 
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Both the reference plate and the specimen should be kept at equidistance from 

and the camera should be focused on the speckle-patterns to obtain high fringe contrast. 

A speckle-interference image is captured before loading and stored as a reference 

image. A static load is applied and the corresponding fringe patterns are captured by 

real time subtraction of the speckle-patterns after loading from the reference image. 

This real-time subtraction is carried out using a software named UU (Chen 2013). 

 

Figure 4.5 Load cell and micrometer setup. 

4.2.2 Material characterization of a small cantilever beam 

Material characterization of a cantilever beam is carried out using a DSPI system. The 

schematic diagram of the experimental setup is shown in Fig. 4.6, which is also a 

Michelson interferometer setup. Same laser source and CCD camera are used for the 

setup. The specimen and the loading setup are different as a cantilever beam is the 

specimen. Magnesium nanocomposite material is used to fabricate a small cantilever 

beam of length 100 mm with rectangular cross section of same width and height of 5.5 

mm. A fixture holds the specimen in one end with the effective length of 66mm and a 

micrometer attached with the load cell is used to apply load on the other end of the 

cantilever beam as shown in Fig. 4.7. 
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Figure 4.6 A schematic setup for material characterization of a cantilever beam.  

 

 

Figure 4.7 Magnesium nanocomposite cantilever beam loading setup.  

4.2.3 Time-average DSPI for vibration analysis 

A schematic diagram of the experimental setup is shown in Fig. 4.8.  A function generator 

which is attached with a shaker provides a harmonic excitation on the specimen as shown in 

Fig. 4.9 and 4.10. The specimen is a thin circular plate ,clamped at its edge, with diameter of 



 
CHAPTER FOUR                                                SIMULATIONS AND EXPERIMENTAL WORK 

 

90

65 mm and thickness of 1.6 mm and it is made of aluminum 6061-T6 alloy which has an elastic 

modulus 69 GPa and a Poison’s ratio 0.33. A HeNe laser source of wavelength 632.8 nm and 

Manta G-046B monochrome camera, which has Sony ICX415 CCD sensor with 582 × 780 

pixels of size 8.3 µm, are used to capture interference patterns. Amplitude of the harmonic 

excitation is manually varied using a function generator i.e. one time-average frame of the plate 

vibrating at some amplitude is captured first and another time-average frame of the same plate 

vibrating with a small change in the amplitude (5%), is captured next. These two time average 

frames captured are then subtracted digitally using UU software. However, this process could 

be automated by a simple program which controls both the function generator and the CCD 

camera. 

 

 

Figure 4.8 A schematic diagram of a TA-DSPI experimental setup. 
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Figure 4.9 Shaker and a thin circular aluminum plate – dynamic loading setup. 

 

 

Figure 4.10 Function generator and amplifier setup. 

  

4.3   Digital speckle shearing interferometry (DSSI) 

A schematic diagram of DSSI experimental setup for measuring the out of plane 

deformation derivatives is shown in Fig. 4.11. A coherent light beam is directed at a 

thin circular plate specimen. The light beam reflect from the plate is split into two beams.  
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They are reflected by mirrors 1 and 2 before forming a speckle-interference pattern. 

The speckle pattern is then captured using a CCD camera. Mirror 2 is attached to a 

micrometer setup, which facilitates the shearing. A reference speckle pattern is captured 

before loading. A static loading is applied on the specimen and a shearing is applied by 

tilting the mirror 2 with a micrometer. The speckle pattern after loading and shearing is 

captured and subtracted from the reference speckle pattern to produce shearography 

fringes.  

 

Figure 4.11 A schematic diagram of a DSSI experimental setup. 

 A HeNe laser source of wavelength 632.8 nm and Manta G-046B monochrome 

camera, which has Sony ICX415 CCD sensor with 582×780 pixels of size 8.3 µm, are 

used to capture interference patterns. The same specimen shown in Fig. 4.5 along with 

the micrometer loading setup is used in this DSSI experiment. The load applied is 
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measured using the compressive load cell for validation of the strain measurement in 

the DSSI system. 
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CHAPTER FIVE 

 
RESULTS AND DISCUSSION  

 
 

5.1   Fringe quality improvement 

5.1.1   Amplitude-varied refreshing reference frame technique in TA-DSPI 

Amplitude-varied refreshing reference frame technique is used to capture high quality 

time-average digital speckle pattern interferometry (TA-DSPI) fringes. A dynamic 

loading TA-DSPI experiment is carried out to validate the proposed technique. Figure 

5.1 shows fringe patterns of mode 2 vibration of a circular plate, which are captured 

using conventional subtraction from stationary frame technique (Fig. 5.1(a)) at 

frequency 8050Hz with amplitude 240mV and the proposed amplitude-varied 

refreshing reference frame technique (Fig. 5.1(b)) at the same frequency between 

amplitude 120-114mA. Only half of the amplitude applied for stationary frame 

technique is applied for the proposed technique as the proposed technique produces 

twice the amount of fringes than its counterpart. It is noticeable that the fringe pattern 

in Fig. 5.1(a) has black background and Fig. 5.1(b) has white background. In 

conventional technique, phase zero position always represents a dark fringe. However, 

in the proposed technique, phase zero can produce either white or dark fringe. Phase 

zero produces dark fringe, when the reference vibration has lower amplitude value than 

the second vibration and vice versa. 

 The figures show that the fringe quality obtained using the amplitude-varied 

refreshing reference frame technique is far more superior to the conventional technique. 
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Contrast values of the fringe patterns are calculated for a quantitative comparison and 

the result shows that the contrast value of a fringe pattern from the proposed method is 

0.39, which is far better than the contrast of a fringe pattern from the conventional 

technique (0.15). 

  

(a)       (b) 

Figure 5.1(a) TA-DSPI fringes obtained using conventional method; (b) TA-DSPI 
fringes obtained using proposed method. 

 

A simulation study is carried out to investigate the influence of the amplitude 

increment factor ron the fringe contrast. Fringe patterns are simulated using Eq. (3.5) 

with r values of 1%, 2%, 4%, 10%, 20% and 25% as shown in Fig. 5.2(a)-5.2(f) 

respectively. From these figures, we can see that there is no change in fringe contrast. 

The mean contrast values for Fig. 5.2(a)-5.2(f) are 0.74, 0.73, 0.73, 0.71, 0.69 and 0.73 

respectively. Hence it is evident that the factor r  has a very little or zero influence on 

the fringe contrast for rvalues less than 25%. However, fringe shapes are noticeably 

changed for rvalues 20% and 25% i.e. the central fringes inside the oval patterns are 

bright for rvalues 20% and 25% which is different from other fringe patterns. This is 

caused due to a significant change in fringe locus function. 
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Figure 5.2 (a) Simulated fringe pattern with amplitude increment factorr= 1%; (b) r= 2%;  
(c) r= 4%; (d) r= 10%; (e) r= 20%; (f) r=25%.  
 

5.1.2   Mode shape visualization using TA-DSPI and FEM Validation 

The specimen is excited at different frequencies and the mode shapes are captured at the 

resonant frequencies. Resonant frequencies are identified by their large displacements which 

cause more fringes in the fringe patterns. The fringe patterns at the first five vibration modes 

are captured at 30 fps using the conventional stationary reference method and using the 

proposed method. A FEM simulation is carried out using ANSYS to validate the experimental 

results i.e., to verify the mode shapes and their corresponding resonance frequencies. The fringe 

patterns obtained from the conventional and proposed method experiments are compared with 

the FEM modal analysis as shown in Fig. 5.3(a) - 5.3(o). The resonant frequencies at which 

these modes occur are tabulated in Table. 5.1, and it is noteworthy that both the experimental 

methods had resonances at same frequencies. For mode 2, 3 and for mode 4, 5, resonances 

occur at adjacent frequencies in the FEM results, however in reality, it occurs at distinct 

frequencies, as shown in the experimental results. Though, these four modes (2-5) from FEM 
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has different orientations from their corresponding experimental fringe patterns, this can be 

ignored as the specimen is circularly symmetric. Ideally, Mode 2 and Mode 3 obtained from 

the experiment should be orthogonal, but it is well established in the literature that orthogonal 

modes which has very little frequency gap would provide superimposed mode shapes (Soedel, 

2004). These superimposed modes are not necessarily orthogonal to each other in real 

experiments. In general, the correlation between mode shapes from FEM and experimental 

modal analysis are good and the discrepancies in the resonant frequencies are less than 3%. It 

is also evident from Fig. 5.3 that the proposed method provides better fringe quality for the 

same amplitude and frequency than the conventional method. FEM modal analysis can provide 

only Eigen values and vectors which represent natural frequencies and corresponding mode 

shapes. Hence the amplitude values shown in the FEM results are arbitrary so they should be 

ignored. 

                

(a)         (f)     (k) 

                

(b)         (g)     (l) 
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                 (c)         (h)     (m) 

 

                (d)         (i)     (n) 

 

                (e)         (j)     (o) 

 

Figure 5.3(a) TA-DSPI (stationary reference method) experimental fringe pattern of a 
circular plate vibrating in mode1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) 
TA-DSPI (amplitude-varied refreshing reference frame method) experimental fringe 
pattern of the same plate vibrating in mode1; (g) mode 2; (h) mode 3; (i) mode 4; (j) 
mode 5; (k) Mode shapes (obtained from FEM simulation) of a circular plate vibrating 
in mode 1; (l) mode 2; (m) mode 3; (n) mode 4; (o) mode 5. 
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Table 5.1 Comparison between experimental and FEM modal analysis. 

 

5.2   Phase and phase derivatives from complex amplitude using 

Teager operator - DHODA  

A simulated complex amplitude signal (512ൈ512 pixels) generated using Eq. (5.1) is shown in 

Fig. 5.4(a). Noise of 10 SNR is added and the corresponding phase map s is shown in Fig. 

5.4(b). The first and second order phase derivatives in the x direction ( , )x m n and ( , )xx m n

are shown in Figs. 5.4(c) and 5.4(d) respectively; the corresponding error maps ( , )xe m n and

( , )xxe m n are shown in Figs. 5.4(e) and 5.4(f) respectively. Similarly, the first and second order 

derivatives in the y direction ( , )y m n & ( , )yy m n and their corresponding error maps

( , )ye m n & ( , )yye m n are shown in Figs. 5.4(g) – 5.4(j). A phase map ( , )m n determined from 

integration of phase derivatives maps is shown in Fig. 5.4(k).  

 

exp( [ ( , )])s sCP j m n                                                                                                (5.1) 

 

 FEM Result (Hz) Experimental Result (Hz) Deviation 

Mode 1 2917.3 2886 -1.07% 

Mode 2 6050.2 6006 -0.73% 

Mode 3 6052.9 6042 -0.18% 

Mode 4 9888 9633 -2.58% 

Mode 5 9891.3 9773 -1.20% 
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(a)                                    (b) 

 

(c)                                    (d) 

 

 

(e)                                    (f) 
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(g)                                    (h) 

 

(i)                                    (j) 

 

(k) 

Figure 5.4(a) Simulated complex signal with noise (real part); (b) Phase map of the signal; (c) 
First order phase derivative in x direction; (d) Second order phase derivative in x direction; (e) 
Error map of first order derivative; (f) Error map of second order derivative; (g) First order 
phase derivative in y direction; (h) Second order phase derivative in y direction; (i) Error map 
of first order derivative; (j) Error map of second order derivative; (k) Estimated Phase map. 
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 The proposed algorithm requires 41 seconds to compute both the first and second order 

derivatives in both directions (fringe pattern 512ൈ512 pixels). The root mean square error 

calculated for the first and second order phase derivatives in the x and y directions are 0.0293, 

1.0 ൈ	10-3 and 0.0331, 1.3 ൈ 10-3 respectively. It is seen that the phase derivatives obtained from 

the simulation show less discrepancy. The maximum discrepancy for the first and second order 

phase derivatives are 0.124 radian/pixel and 5.5ൈ10-3 radians/pixel2 respectively and few 

regions show large deviations as is evident from the low RMSE values. 

 

5.2.1   Robustness and accuracy analysis of proposed method 

A study on effectiveness, accuracy and computation speed of the proposed technique is carried 

out to compare with the vortex operator (VO) with virtual sheering complex phasor and VO 

with discrete energy separation algorithm (DESA) methods. The phase and phase derivative 

maps are determined for a 512ൈ512 pixel fringe pattern shown in Fig. 5.4(a) and the root mean 

square errors and computation time are shown in Table. 5.2. The phase derivatives from a 

complex amplitude signal are determined by the virtual sheering complex phasor, DESA and 

discerete high order demodulation algorithm (DHODA) methods. The errors introduced by the 

virtual sheering complex phasor method are relatively larger than that of DESA and DHODA 

and it also requires a larger computation time. This is mainly due to the fact that a separate 

phase unwrapping method is required. This in turn increases the computation time and 

complexity. In this study, Goldstein’s branch-cut unwrapping method is used. The errors are 

also affected by the quality of the unwrapping process. Teager-Kaiser energy based methods 

i.e., DESA and DHODA, require relatively less computation time compared with the 

aforementioned methods and are also able to provide more accurate phase derivatives. The 

methods determine phase derivatives directly and the phase values are obtained by numerical 
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integration of the phase derivatives. Even minor deviations in the phase derivatives would result 

in large errors after integration. Hence the errors of the phase values are relatively higher. 

However, the phase derivatives determined using the proposed method are more accurate. 

Hence the proposed method is suitable for dynamic strain, twist and curvature measurements. 

Out of the two Teager-Kaiser energy based methods, DHODA uses a higher order energy 

operator. In general, a two-dimensional operator would be less sensitive to noise than its one 

dimensional counterpart. Two dimensional DESA is an extension of 1D DESA along the 

horizontal and vertical axes but DHODA analyzes the frequency in more directions (such as 

the diagonals) apart from the vertical and horizontal. Hence DHODA is able to track the 

frequencies more effectively than both 1D and 2D DESA. A comparison between 1D DESA, 

2D DESA and DHODA is also carried out and results are shown in Fig. 5.5(a)-5.5(g). A 

complex signal with SNR=2 (amplitude of signal to amplitude of noise ratio), demodulated 

with DHODA, 1D DESA and 2D DESA is shown in Fig. 5.5(a) (real part) and the slope and 

error maps are shown in Figs. 5.5(b)-5.5(g). The RMSE values of the slope calculated by 

DHODA, 1D DESA and 2D DESA are 0.0263, 0.0274 and 0.0323 respectively.  

Table 5.2 Comparison between different phase derivative determination algorithms. 

 RMSE – error 

in slope 

(radian/pixel) 

RMSE error in  

curvature  

(radian/pixel2) 

RMSE error 

in Phase 

(radian) 

Time taken for 

computation 

(sec) 

Complex Phasors 

(with phase 

unwrapping) 

0.0522 0.0036 1.180 81.5 

DESA 0.0403 0.0013 2.770 42.3 

DHODA 0.0293 0.0010 1.824 40.8 
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(a) 

     
(b)        (c) 

  
(d)        (e) 

 

    
                                 (f)          (g) 
Figure 5.5 (a) Simulated complex signal (real part); (b) First order phase derivatives in x 
direction determined using DHODA; (c) Corresponding error map; (d) First order phase 
derivatives determined using 1D DESA; (e) Corresponding error map; (f) First order phase 
derivatives determined using 2D DESA;  (g) Corresponding error map. 
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Figure 5.6 Comparison Teager-Kaiser energy operator based algorithms. 

 

 In Fig. 5.6, the actual slope values of a particular row (m=116) of a simulated signal is 

compared with the estimated values using DHODA, 1D DESA and 2D DESA. It is seen that 

for pixels from 170 to 250, 2D DESA values show large deviations from the actual values and 

the DHODA values show less discrepancies. The results show that the errors introduced by 

DHODA are less than that of 1D DESA and 2D DESA though they all require approximately 

the same computation time. On the whole, the proposed method (DHODA) outperforms the 

other methods in accuracy and computational time in phase derivative determination. 

 For DSPI fringes, the phase derivatives are obtained from the fringe patterns. Hence 

the sequential algorithm called Teager-Hilbert-Huang algorithm, is proposed. Due to the 

sequential processing, various parameters such as noise level, fringe density and window size 

affect the overall performance of the method. Hence it is important to study the influence of 

these parameters. Window size is a parameter which affects both the quality of the orientation 

map and computation time. Though the accuracy of the orientation map would only introduce 



 
CHAPTER FIVE                                                                                  RESULTS AND DISCUSSION 

 

106

a minor error, large deviations of the orientation however could have significant effect on the 

overall results. To obtain accurate results in the orientation map, the window size of the plane 

fit operation should be smaller than the smallest fringe width in a fringe pattern. The relation 

between window size and fringe width and its effects on phase derivatives are shown in Figs. 

5.7(a)-5.7(j). The fringe pattern shown in Fig. 5.7(a) contains different regions with different 

fringe widths; line A, shown in Fig. 5.7(a), has a fringe width of 12 pixels while line B has a 

fringe width of 38 pixels. Figures 5.7(b)-5.7(d) show an orientation, first order phase derivative 

and error map respectively calculated using an 11ൈ11 window size for a plane fit operation. 

Similarly Figs. 5.7(e)-5.7(g) and Figs. 5.7(h)-5.7(j) show the corresponding maps for window 

sizes of 17ൈ17 and 25ൈ25 respectively. The orientation map (Fig. 5.7(b)) and slope map (Fig. 

5.7(c)), which are obtained using a 11ൈ11 window, shows smaller errors than the slope maps 

calculated by window sizes of 17ൈ17 and 25ൈ25. The orientation map shown in Fig. 5.7(e) 

obtained with a 17ൈ17 window, shows relatively small errors in regions where the fringe width 

is larger than 17pixels. The orientation map shown in Fig. 5.7(h) show erroneous results 

throughout the entire region as the fringe widths are smaller than 25 pixels in most of the fringe 

pattern. Hence the results show that window size smaller than the smallest fringe width would 

provide more accurate results. In this work, the window size is chosen manually but an 

automated selection of window size based on the fringe width would expedite the entire 

process.  
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(a)     (b) 

 

             (c)             (d) 

               

             (e)             (f)       
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             (g)             (h)       

 

             (i)             (j)       

Figure 5.7 (a) Simulated fringe pattern; (b) Orientation map calculated with an 11ൈ11 pixel 
window; (c) First order phase derivatives in x direction; (d) Corresponding error map; (e) 
Orientation map calculated with a 17ൈ17 pixel window; (f) First order phase derivatives; (g) 
Corresponding error map; (h) Orientation map calculated with a 25ൈ25 pixel window; (i) First 
order phase derivatives; (j) Corresponding error map. 
 

  Speckle noise level, background and contrast would also affect the quality of the 

interferograms. Hence ASR-EFEMD is employed for normalization and speckle filtering. The 

significance of the noise removal and normalizaion process in the proposed method is validated 

with a simple analysis. The proposed method is employed on a noisy fringe pattern shown in 

Fig. 5.8(a) with and without normalization and noise removal. Slope maps obtained with 

employing the ASR-EFEMD normalization is shown in Fig 5.8(b) and without employing any 

normalization and noise removal process is shown in Fig. 5.8(c). The slope error achieved with 
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ASR-EFEMD normalization is 0.01 radian/pixel, which is more accurate than the slope error 

value of 0.34 radian/pixel achieved without employing any noise removal process. From these 

results, it is obvious that normalization and noise removal are important processes for the 

proposed fringe analysis method and ASR-EFEMD is an effective tool for that. 

 

(a)      (b)  

  

(c) 

Figure 5.8 (a) Simulated fringe pattern; (b) Slope map with noise removal; (c) Slope map 
without noise removal;  
 

Though noise and background variation can be removed by ASR-EFEMD 

normalization, noise level would still have an effect on the overall effectiveness of the proposed 

method. To study the effect of noise, the first and second phase derivatives are determined using 

the proposed method for a series of fringe patterns with SNR varying from 1 to 100 and the 

results are shown in Figs. 5.9(a)-5.9(b). It is seen that the errors are large for a signal with 
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SNR=1 and decrease with higher SNR values. However the decrease in error is not 

significant after SNR=2. This shows that enhanced fast empirical mode decomposition 

(EFEMD) is more effective in filtering noise and that the proposed algorithm is able to 

produce better quality phase derivatives even with SNR values as low as 2.  

 

(a) 

 

(b) 

Figure 5.9 (a) RMSE error of first order phase derivatives versus noise (SNR values); (b) 
RMSE error of second order phase derivatives versus noise (SNR values). 
 



 
CHAPTER FIVE                                                                                  RESULTS AND DISCUSSION 

 

111

 

5.2.2   Digital holographic interferometry 

The holograms obtained from the digital holography experiment before and after 

loading are shown in Fig. 5.10. The complex amplitude signal obtained from the 

complex phasors method is used to validate the proposed DHODA based phase 

derivatives determination technique and the results are shown in Fig. 5.11. The 

proposed method is able to determine the unwrapped slope and curvature maps from 

the DHI complex amplitude signal effectively. However, this signal has less number of 

fringes which means it has low instantaneous frequency values which can be easily 

separated from the carrier frequencies values.  

 

  

(a)       (b) 

Figure 5.10 (a) Digital hologram of a thin circular plate recorded before loading;  

(b) After loading. 
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(a) 

 

(b) 

 

(c) 

Figure 5.11 (a) Deformation fringes obtained from DHI; (b) First order phase derivative 
in x direction; (c) Second order phase derivative in x direction. 
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(a) 

 

(b) 

 

(c) 

Figure 5.12 (a) Deformation fringes with high fringe density; (b) First order phase 
derivative in x direction; (c) Second order phase derivative in x direction. 
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(a) 

 

(b) 

Figure 5.13 (a) First order phase derivative in x direction after zero-padding; (b) second 
order phase derivative in x direction after zero-padding. 

 

 To validate the effect of high density fringes (or higher instantaneous 

frequencies), another set of holograms with a larger applied load is captured. Due to the 

large load, the phase difference map has higher density fringes resulting in higher 

instantaneous frequencies. The proposed method is used to obtain phase derivatives and 

the results are shown in Fig. 5.12. The results show that the proposed method is not 
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able to determine accurate phase derivatives. Hence an interpolation is carried out by 

the zero-padding method on complex signal, before applying the DHODA method for 

phase derivatives determination. Zero-padding provides higher resolution complex 

signal, which means the complex signal are represented by more pixels (Shinpaugh et 

al, 1992; Lyons, 2001). Hence the fringe density and instantaneous frequency are 

reduced. The proposed DHODA method is implemented on higher resolution complex 

signals obtained from the same holograms and the results are shown in Fig. 5.13. The 

increase in number of pixels in Fig. 5.13 is caused as a result of zero-padding 

interpolation. The results show that zero-padding interpolation effectively overcome 

the high instantaneous frequency problem. Hence the proposed method can be applied 

for high and low density fringe patterns. 

 

5.2.3   Digital speckle pattern interferometry 

The fringe pattern obtained from DSPI for out of plane displacement measurement in a thin 

circular plate is shown in Fig. 5.14(a). The first and second order phase derivatives in the x

direction are shown in Figs. 5.14(b) and 5.14(c) respectively. Likewise, the first and second 

order phase derivatives in the y direction are shown in Figs. 5.14(d) and 5.14(e) respectively. 

A phase map obtained by integration of the first order phase derivatives is shown in Fig. 5.14(f). 

The phase derivatives obtained from the experimental results are well behaved even with high 

speckle noises.  
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                                  (a)                                                                           (b) 

 

                                  (c)                                                                           (d) 

  

                                       (e)                                  (f) 

Figure 5.14 (a) DSPI fringe pattern; (b) First order phase derivatives in x direction; (c) 
Second order phase derivatives in x direction; (d)  First order phase derivatives in y

direction; (e) Second order phase derivatives in y direction; (f) Phase map estimated by 
integrating first order phase derivatives. 
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The central displacement for a circular thin plate with elastic modulus E , Poisson’s 

ratio  , the radius 0r and the thickness t loaded with a central point load is given by the 

following equation.  

 

2 2
0

3

3 (1 )

4

Pr
w

Et





                                                                                                                       (5.2) 

 

For a load of 1.57 N, the theoretical displacement is 2.74 μm, which is in good 

agreement with the measured value of 2.69 μm. It is noted that, though the proposed 

method is able to retrieve the phase values and derivatives from a noisy fringe pattern, 

the measurement sensitivity is still limited by SNR value. Fringes, which do not have 

enough contrast, could not be processed effectively. However, a temporal phase shifting 

method, which has a high SNR value, would be more effective, due to its high 

sensitivity. The proposed method, however, is suitable for phase derivative 

measurement and in a dynamic situation where it is difficult to capture more than one 

fringe pattern at each deformed state. 

 

5.3   Phase and phase derivatives using derivative based regularized 

phase tracker 

5.3.1 Simulation study and comparison of proposed method with the RPT method 

A simulation study is carried out to verify the effectiveness of the proposed method using a 

simulated fringe pattern as shown in Fig. 5.15(a) with SNR 5 and the corresponding phase map 

is shown in Fig. 5.15(b). The proposed algorithm is implemented using MATLAB and requires 

60 s (512ൈ512 image) to determine the phase derivatives in both the x and y directions. The 
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computation time taken for the phase tracking process is 471 s. A specialized minimization 

algorithm with optimized code will further decrease the computation time. Phase derivatives 

(in the x direction) obtained using the proposed method is shown in Fig. 5.15(c). The values are 

compared with that obtained from direct differentiation of the phase map shown in Fig. 5.15(b) 

and the discrepancies are shown in Fig. 5.15(d). Similarly phase derivatives (in the y  direction) 

and their discrepancies are shown in Figs. 5.15(e) and 5.15(f) respectively. The discrepancies 

are within -0.08 to 0.08 (radian/pixel). From the derivative maps (Figs. 5.15(c) and 5.15(e)), a 

phase map is constructed using the proposed technique as shown in Fig. 5.15(g). It is seen that 

Fig. 5.15(g) is almost identical to Fig. 5.15(b) and the discrepancies as shown in Fig. 5.15(h) 

are within -0.8 to 0.6 (radians). It is noteworthy that the phase tracking process is carried out 

row by row with a constant window size. 

  Results obtained from the proposed method are also compared with that of the 

RPT and direct integration methods as shown in Figs. 5.16(a) - 5.16(d) and Table 5.3. 

All these methods do provide unwrapped phase values but the phase values are wrapped 

in Figs. 5.16(a) – 5.16(d) for better visual comparison. Six critical regions in the 

simulated wrapped phase map (Fig. 5.16(a)) are indicated.  From the results, it is seen 

that the phase values obtained by simple integration of phase derivatives (Fig. 5.16(b)) 

show the largest discrepancies compared with Fig. 5.16(a). The deviations of the 

marked regions 1-6 vary from 6% in region 2 to 50% in region 4. The RPT method is 

able to demodulate the phase values fairly accurately with deviations of less than 4% 

in regions 1, 3 and 6 as shown in Fig. 5.16(c). However the accuracy decreases 

drastically at saddle points especially in region 2 (17%). The proposed method does not 

show such discrepancies (Fig. 5.16(d)). The deviations at all the 6 regions are less than 

4%. 
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Figure 5.15 (a) Simulated fringe pattern; (b) Simulated phase map; (c) Phase derivatives in x 
direction; (d) Deviation in phase derivatives in x direction; (e) Phase derivatives in y direction; 
(f) Deviation in phase derivatives in y direction; (g) Phase map; (h) Deviation in phase values. 
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Figure 5.16 (a) Simulated wrapped phase map; (b) Wrapped phase map determined by direct 
integration of phase derivatives; (c) Wrapped phase map determined by RPT method; (d) 
Wrapped phase map determined by the proposed method. 
 

 Table 5.3 shows the computation time and RMS errors of the various methods 

employed. As can be seen, though the computation time taken by direct integration of 

the phase derivatives is the least compared with the RPT and the proposed methods, it 

shows large discrepancies in the phase values obtained. This is due to the accumulation 

of errors in the phase derivative values during integration. Compared to the RPT 

method, the proposed method is able to provide a better accuracy with less computation 

time. As mentioned earlier, the computation time of the proposed method is reduced 

due to the reduction in the number of variables and the complexity of the minimization 

function. Better accuracy is also achieved as the proposed method is able to process the 

saddle points better than the RPT method. However, using a fringe following technique 

or a paraboloid phase model, the RPT method would be able to achieve similar accuracy. 

However, this would be achieved at the expense of higher computation time. 
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Table 5.3 Comparison of proposed method with RPT. 

 Computation 

Time (s) 

 

RMSE phase 

error (radian) 

RMSE phase 

derivatives error 

in x direction 

(radian/pixel) 

RMSE phase 

derivatives error 

in y direction 

(radian/pixel) 

Regularized 

Phase 

Tracker (RPT) 

3300 0.7461 0.0352 0.0381 

Direct 

integration 

method 

60 2.2998 0.0294 0.0324 

Proposed 

method 

471 0.1779 0.0294 0.0324 

  Various parameters like noise level in the fringe pattern, window size to choose 

the neighborhood for minimization in phase tracker model and regularization parameter 

 in the phase tracker model would affect the accuracy of the phase estimation. Hence 

a study to find the effect of these three parameters on the output of the proposed system 

is carried out using the same simulated fringe pattern as shown in Fig. 5.15(a) with 

different noise levels.  

5.3.1.1 Effect of noise and window size of phase tracker in phase demodulation 

 In literature, it is shown that the window size in the regularized phase tracker would affect 

the phase accuracy drastically and a spatially adaptive window size is suggested to overcome 

this issue on complex fringe patterns with different fringe density at different regions (Kai et al, 

2013). The effect of window size in the proposed derivative based simplified phase tracker is 

analyzed using simulated fringes, which are demodulated with the proposed method with 

different window sizes. The results are plotted in Fig. 5.17(a). Four fringe patterns with SNR 

value 2, 3, 5 and 8 represent the four curves. From the results, the general trend obtained is that 
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the error value is increasing with increase in window size. When a fringe pattern has a constant 

fringe density these error curves would increment monotonously for values of window size 

above its fringe width but the simulated pattern, which is used in this study, contains different 

fringe density at different region. Hence wherever the window size matches with the fringe 

width, the phase accuracy would be good for that particular region but would suffer in 

remaining regions. Due to this, the increment in the error is very small till window size of 25 

because most of the fringes have width less than 25 pixels. Hence the window size larger than 

25 pixel increases the error value more rapidly. Increment in window size would also increases 

the computational requirement, so it is reasonable to choose a window size smaller than the 

smallest fringe width of the fringe pattern. In addition to this, it is also evident from the results 

that the increment in SNR value decreases the error value. However, the difference between 

SNR 5 and 8 curves are very small which shows that the noise removal by EFEMD is very 

effective for fringe patterns with SNR value above 5. 

5.3.1.2 Effect of regularization parameter of phase tracker in phase demodulation 

 Regularization parameter reg ensures the smoothness and continuity of phase 

demodulation. Hence lower values for regularization parameter causes sharp changes in a phase 

map. The accuracy of the phase variation with respect to the regularization parameter is studied 

in a simulated fringe pattern with SNR 5 and the results are plotted in Fig 5.17(b). The error 

values are shown in logarithmic scale to accommodate high error values and to highlight the 

differences between window size 5 and window size 18 curves.  It is found that regularization 

parameter values less than 0.5 cause very high discrepancies and values between 0.5 and 3 

provide accurate phase values for both curves. The parameter values >3 cause slightly larger 

error values but they are negligible compared to the error values for parameter<0.5. Hence it is 

reasonable to choose any parameter value above 0.5. 
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Figure 5.17 (a) Phase error vs Window size; (b) Phase error vs Regularization parameter. 
 

5.3.2 Digital speckle pattern interferometry 

The experimental setup for out of plane displacement measuring DSPI is used to capture the 

fringe pattern shown in Fig. 5.18(a). The derivatives in the x and y directions are shown in Figs. 

5.18(b) and 5.18(c) and the phase values obtained by the derivative based simplified phase 

tracker is shown in Fig. 5.18(d).  
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Figure 5.18 (a) DSPI fringe pattern; (b) derivatives in x  direction; (c) derivatives in y 
direction; (d) Phase map. 

 
The phase and phase derivatives obtained from the experimental results are well behaved even 

with high speckle noises. To validate the phase map quantitatively, the calculated maximum 

value is compared with the theoretical value calculated using Eq. (5.2). The maximum 

displacement of 4.43 m , measured from the experiment data using the proposed method, is in 

good agreement with the theoretical value of 4.46 m . 

 

5.3.3 Digital speckle shearing interferometry 

An out of plane deformation derivative measurement shearography experimental setup 

is used to verify the proposed method in the determination of slope, curvature and twist 

in a thin circular plate. The experimental fringe pattern obtained using DSSI is also 

utilized to explain the influence of fringe density and B-Spline smoothing in the 
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accuracy of the phase map determined. The load applied P  is measured using a load 

cell. If the material properties (Young’s modulus E  and Poisson ratio ) of the 

specimen is known, theoretical slope values across the central row of pixels in x 

direction of the specimen can be calculated using Eqs. (5.3) and (5.4). 
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where D is the flexural rigidity of the plate and pr  is the distance of corresponding 

position from the centre. 

A shearography fringe pattern of the specimen, captured for a static load of 2.49 

N with a 5-mm shear in the x direction (i.e. horizontal direction) is shown in Fig. 5.19(a). 

The normalized fringe pattern after EFEMD is shown in Fig. 5.19(b). The fringe 

gradient angle map and fringe density map are shown in Figs. 5.19(c) and 5.19(d). In 

Fig. 5.19(d), the center region has high intensity values than the rest of fringe density 

map as the fringe pattern has more dense fringes in the center. Due to this sharp change 

in fringe density, the chosen window size is not appropriate anymore in these region. 

Hence EFEMD normalization left some noise exactly in that high fringe density region 

as shown in Fig. 5.19(b).  
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(a)      (b) 

  
(c)      (d) 

 

Figure 5.19 (a) Shearography fringe pattern; (b) Normalized fringe pattern; (c) Fringe 
gradient angle map; (d) Fringe density map. 
 

A biased curvature map is determined by the proposed method as shown in Fig. 

5.20(a) and high quality curvature map is obtained after median filtering and B-spline 

smoothing as shown in Fig 5.20(b). In Fig. 5.20(a), a sharp discontinuity in the biased 

curvature map is occurred around coordinates (1,250) to (120,250). This is caused by a 

small corrupted region in the fringe orientation map, which is present in the left side of 

the map as shown in Fig. 5.19(c). This small corrupted region is formed while 

converting π-moduli fringe angle map to 2π-moduli fringe orientation map, due to 

unwrapping error. However, the discontinuity in the curvature is corrected by the 
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filtering process as shown in Fig. 5.20(b). Similarly, the twist maps, which are obtained 

before and after filtering and smoothing, are shown in Figs. 5.20(c) and 5.20(d). The 

slope map determined by the proposed DRPT which utilizes high quality curvature and 

twist maps is shown in Fig. 5.20(e). The proposed method was implemented using 

Matlab. It took 1101s of computation time to obtain slope, curvature and twist maps for 

this fringe pattern. Though the fringe pattern is affected by speckle noise, the proposed 

method is able to provide high quality slope, curvature and twist maps.  

 
(a)      (b) 

 
(c)      (d) 

 
(e) 

Figure 5.20 (a) Curvature map before filtering; (b) Curvature map after filtering; 
 (c) Twist map before filtering; (d) Twist map after filtering; (e) Slope map. 
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Figure 5.21 Comparison between theoretical & experimental values at central section. 

 The accuracy of the slope values obtained from the proposed method is validated 

by comparison with theoretical values. Slope values obtained across the central section 

of the specimen are plotted in Fig. 5.21. It is shown that the slope values obtained by 

proposed method is in good agreement with theoretical values for most parts except for 

a small deviation in the center (deviation up to 0.6e-4). This deviation from the 

theoretical values is due to high fringe density. Though the DRPT method performs 

better than the conventional RPT, a sharp change in fringe density has little impact on 

the accuracy of the proposed DRPT method. 

5.3.4 Vibration amplitude measurement using TA-DSPI 

5.3.4.1 Accuracy and parameter influence on amplitude determination using TA-DSPI 

A simulation study is carried out to determine the accuracy of the proposed method for vibration 

amplitude measurement. A 256ൈ256 fringe pattern is simulated using Eq. (3.5) with 0I and V

values of 1 and r  of 5%. A simulated fringe pattern is shown in Fig. 5.22(a) and the 

corresponding phase map is shown in Fig. 5.22(b). The phase derivatives in the x and y direction 

determined from the fringe pattern is shown in Figs. 5.22(c) & 5.22(d). A phase map 
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determined using the proposed method is shown in Fig. 5.22(e). The discrepancies between 

simulated phase values and values obtained using the proposed methods are shown in Fig. 

5.22(f). 

   

 

 
 

Figure 5.22 (a) A simulated time average fringe pattern; (b) corresponding phase map; (c) phase 
derivatives in x direction; (d) phase derivatives in y direction; (e) phase map after error 
correction for Bessel to cosine conversion; (f) phase error map. 
 



 
CHAPTER FIVE                                                                                  RESULTS AND DISCUSSION 

 

130

 

Figure 5.23 Phase error (RMSE) vs amplitude increment factorr . 

 

 The proposed method is implemented in Matlab and it took 136 seconds to process 

256ൈ256 size image. The root mean square error (RMSE) value calculated for this simulation 

is 0.2145 radian. However the deviations in the calculated phase are within 0.2 radian except 

in the regions where the vibration amplitude is maximum and near the boundaries. These larger 

deviations are due to speckle noise filtering and phase derivative smoothing function but overall 

the RMSE values for the phase map produced by this method are acceptable. 

As mentioned in section 5.1, fringe shapes are noticeably changed forrvalues 20% 

and 25% due to a significant change in the fringe locus function . The changes in the fringe 

shape affect the accuracy of the amplitude. Hence a new simulation study is conducted to 

investigate the influence of r in amplitude measurement. The proposed amplitude 

measurement is employed on a series of fringe patterns with rvalues from 1% to 60%. In Fig. 

5.23, phase error values (RMSE) are plotted againstr . The plot shows that the error values are 

less than 0.23 radian for r<50%. Hence choosing an amplitude increment value less than 50% 

provides high accuracy in amplitude measurement and there is no significant change in fringe 

contrast for rvalues below 25%. Hence it is better to choose a rvalue less than 25%. 
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Figure 5.24 (a) Mode 4 experimental fringe pattern after speckle filtering and normalization; 
(b) phase derivative in x direction; (c) phase derivative in y direction; (d) phase map after 
correction. 

 

5.3.4.2 Experimental validation 

To validate the proposed amplitude measurement in TA-DSPI using DRPT method, mode 4 

experimental fringe pattern (shown in 5.2(i)). Figure 5.24(a), shows the filtered and normalized 

mode 4 experimental fringe pattern. Phase derivatives obtained in the x and y directions are 

shown in Figs. 5.24(b)-5.24(c). A phase map after compensation of the Bessel to cosine 

function is shown in Fig. 5.24(d). It is seen that the corners of the phase map (Fig. 5.24(d)) have 

erroneous values which are caused due to the fact that circular vibration patterns are captured 

on a rectangular sensor. The phase map obtained after correction for Bessel are validated with 

the fringe counting method which estimates -15.3 radians in the valley and 8.9 radians at the 

peak. The phase map values, -16 radians in the valley and 8.4 radians at peak, show a good 

agreement with the fringe counting method. From the results, it is evident that the proposed 
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method is able to determine full field vibration amplitudes accurately from a single time average 

complex closed fringe pattern. 

 

5.4   Phase unwrapping using ensemble of hybrid genetic algorithm 

5.4.1 Simulation and comparison study of the proposed method 

The proposed Ensemble of Hybrid Genetic Algorithm (eHGA) based phase unwrapping 

method and Hybrid Genetic Algorithm (HGA) based phase unwrapping are implemented in C 

programming language to calculate the branch cut. A simulation study is carried out for 

analyzing the robustness and accuracy of the proposed method and the results are compared 

with Goldstein branch-cut algorithm and HGA algorithm. The first image shown in Fig. 5.25(a) 

is a wrapped phase signal with SNR 5. Figure 5.25(b) shows the calculated residues. Since the 

wrapped phase map has less noise, the unwrapped phase maps obtained from all the three 

methods are very similar to each other as shown in Figs. 5.25(c)-5.25(e). Both HGA and eHGA 

solutions are obtained at first iterations and no further convergence was necessary.  

     
(a)        (b) 

   
(c)    (d)    (e) 

Figure 5.25 (a) Simulated wrapped phase (SNR = 5); (b) Residues calculated; 
(c) Unwrapped phase map calculated by Goldstein method; (d) HGA; (e) eHGA. 
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(a)        (b) 

   
(c)   (d)   (e) 

Figure 5.26 (a) Simulated wrapped phase (SNR = 1); (b) Residues calculated; 
(c) Unwrapped phase map calculated by Goldstein method; (d) HGA; (e) eHGA. 

A noisy wrapped phase map with SNR 1, which is shown in Fig. 5.26(a), is 

unwrapped using all three methods. Data from Fig. 5.26(a) produced more residues than 

the data from Fig. 5.25(a), which can be seen in Figs. 5.25(b) and 5.26(b). An increase 

in number of residues makes the phase unwrapping process complex. The results are 

shown in Figs. 5.26(c)-5.26(e), the unwrapped phase map obtained from Goldstein 

method has more corrupted patches (Fig. 5.26(c)). Both HGA and eHGA outperformed 

Goldstein method as shown in Figs. 5.26(d)-5.26(e). Figure 5.27 shows 3D-plot of 

unwrapped phase maps calculated using these three algorithms. Even though the output 

of the HGA and eHGA are similar, the branch cut length found by eHGA is less than 

the length found by HGA method.  
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(a)      (b) 

 

(c) 

Figure 5.27 (a) Unwrapped phase map calculated by Goldstein algorithm; (b) HGA; (c) eHGA. 

 To unwrap the phase map shown in Fig 5.26(a), HGA required 47 iterations to 

obtain the solution. Whereas eHGA required only 22 iterations for producing a similar 

result and a solution is obtained at the 28th iteration. Table 5.4 illustrates a comparison 

of three algorithms in terms of computation time, cut length, RMSE and unweighted 

L0 measure. As artificial intelligence (AI) techniques would not produce the same result 

on every run, it is not valid to compare the convergence effectiveness of HGA and 

eHGA in one run. Hence both HGA and eHGA are executed on the same problem for 

10,000 times and the convergence results are shown in Fig. 5.28. The results show the 

mean fitness value or branch cut length (for 10,000 runs) at every generation (iteration) 
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for the first 300 generations. Even though the eHGA started with the same initial fitness 

value, it converged more efficiently than HGA. The mean branch cut length of eHGA 

at every generation is better than the mean branch cut length of HGA. Though eHGA 

requires more computation time to execute a generation than HGA, it compensates for 

the extra computation time by converging faster. Hence the overall solution obtained 

from the eHGA took less time than the HGA. From the results, it is evident that eHGA 

performs better than HGA for phase unwrapping a noisy fringe pattern. 

 

 

Figure 5.28 Performance comparison between HGA and eHGA. 

 Table 5.4 Comparison of results from different branch-cut methods. 

 

 Though the proposed branch cut minimization based phase unwrapping method is 

effective for noisy phase maps, it is not suitable for phase maps with discontinuities (Karout, 

Algorithm Time taken 
(s) 

Total Cut 
Length 

RMSE Unweighted L0 
measure 

Goldstein 1 5019.0 0.0150027 0.1352 

HGA 5 1204.38 0.0040324 0.1056 

eHGA 3 987.54 0.0038924 0.1063 
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2007). Residues caused due to discontinuities are different from the residues from noise, so the 

same approach will not be effective. A simulation study is carried out to verify the effectiveness 

of the proposed method for phase maps with discontinuities. Figure 5.29(a) is a simulated 

wrapped phase map and the unwrapped phase maps obtained using the proposed method is 

shown in Fig. 5.29(b). From the results, it is evident that this method is not effective for 

unwrapping phase map with discontinuities. 

 
(a)         (b)   

 

Figure 5.29 (a) Wrapped phase map with discontinuity; (b) 3D plot of unwrapped phase 
map calculated by eHGA; 
 
5.4.2 Experimental validation 

An experimental validation to analyze the performance of the proposed method in a 

noisy wrapped phase map is carried out. A wrapped phase map obtained from DHI is 

shown in Fig. 5.30(a). Phase unwrapping is carried out using HGA and eHGA and the 

results are shown in Figs. 5.30(b)-5.30(c) and 3D plots of an unwrapped phase map is 

shown in Figs. 5.30(d)-5.30(e).  
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(a)     (b)    (c) 

 

(d)       (e) 

Figure 5.30 (a) Wrapped phase map from DHI; (b) Unwrapped phase map calculated 
by eHGA; (c) HGA; (d) 3D plot of phase map calculated by eHGA; (e) HGA. 

 

 The results show that both HGA and eHGA are able to unwrap an experimental 

fringe pattern effectively. Thus, this method is able to overcome phase unwrapping of 

a noisy phase map, however the method is not suitable for a phase map with 

discontinuities. Hence the method is more suitable for displacement and strain map 

unwrapping and not suitable for profilometry application. 
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5.5   Material characterization of a small cantilever beam 

A magnesium nano-composite cantilever beam is loaded at the free end and a DSPI 

fringe pattern is captured. A load of 0.275 N is applied on the cantilever beam and the 

corresponding fringe pattern is shown in Fig. 5.31(a). The phase map of complex signal 

using the Fourier transform method is shown in Fig. 5.31(b). The deformation plot of 

the cantilever beam obtained from unwrapping the phase map is shown in Fig. 5.31(c). 

As the displacement is influenced by rigid body motion, the elastic modulus calculated 

from the values of the displacement obtained would contain large errors. Hence the 

slope map of the displacement is obtained using the DHODA method and the slope 

values are shown in Fig. 5.31(d). 

 The elastic modulus of the cantilever beam is calculated using a tensile testing 

for validating the proposed method. Figure 5.32 shows the stress-strain curve obtained 

from the tensile test (only elastic deformation) and the elastic modulus is 38.6±1.2 GPa. 

The elastic modulus obtained using the proposed method (Eq. (3.48)) is 37.78±0.77 

GPa which is more accurate than the elastic modulus (35.8±3.19 GPa) obtained from 

the deformation map without considering the influence of the rigid body movement (Eq. 

(3.47)). Due to the influence of small rigid body movement i.e. 0.5’ rotation about the 

y  axis, the elastic modulus shows a discrepancy of 6.1%. In comparison with the 

elastic modulus value obtained from the tensile test, the proposed method only shows 

a discrepancy of 2.1% but the same is 7.8% if the influence of the rigid body movement 

is not considered (Eq. (3.47)). Hence it is necessary to consider the influence of rigid 

body movement while measuring the material properties using DSPI and the proposed 

method is able to overcome this problem. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

Figure 5.31 (a) DSPI fringe pattern of a cantilever beam; (b) Phase map obtained from 
Fourier method; (c) Displacement map of the cantilever beam; (d) Slope map. 
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Figure 5.32 Stress-Strain curve from tensile test. 

 

(a) 

 

(b) 

Figure 5.33 (a) Comparison of experimental and theoretical slope value (in the middle 
row); (b) same comparison of deformation value (in the middle row). 
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 Figure 5.33(a) shows a comparison between the theoretical slope values caused 

and slope values obtained from experimental results (from the middle section of the 

image). Similarly Fig. 5.33(b) shows the theoretical deformation and the measured 

deformation. It is seen that the discrepancy between the theoretical slope values and 

experimental is less than the corresponding deformation values. The reason, as 

mentioned earlier, is due to the rigid body displacement. 
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CHAPTER SIX 

 
CONCLUSIONS AND FUTURE WORK 

 
 

6.1   Conclusions 

The main goals of this thesis are to develop novel phase and phase derivative 

determination algorithms in coherent optical techniques, and to overcome the existing 

problems. The main conclusions drawn from the research work in this thesis are 

summarized as follows: 

1. A novel phase derivative estimation method based on Teager operator to 

estimate the instantaneous frequencies from a complex amplitude is proposed. 

This method uses discrete higher order image demodulation for calculating 

biased phase derivatives. The biased phase derivatives are processed using B-

spline smoothing to obtain high quality phase derivatives. The main advantages 

of the proposed method are a) unwrapped phase derivatives in both the x and y 

directions are obtained directly from a complex signal; b) less computational 

time; c) it is more accurate than existing Teager operator based phase derivative 

algorithms. 

A sequential algorithm called Teager-Hilbert-Huang transform is also proposed 

to determine phase derivatives from a single fringe pattern. Comprehensive 

analyses to study the influence of various parameters on the accuracy of the 

proposed algorithm are carried out. The results show that the method provides 

accurate phase derivatives even from fringe patterns affected by speckle noise. 
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Experimental validations for the proposed method is carried out using both DHI 

(complex signal) and DSPI (fringe pattern).  

2. A novel method to calculate phase derivatives from fringe orientation and 

density is proposed. A derivative based simplified phase tracker algorithm is 

also proposed for phase demodulation. The novelty and main advantages of the 

proposed methods are a) this method determines the phase derivatives from 

fringe patterns directly without determining a phase map; b) determined phase 

derivatives are utilized for phase demodulation process; c) the proposed DRPT 

requires less computation time than the conventional RPT method; d) it also 

provides better accuracy and able to overcome the limitations of the RPT 

method. The experimental validation for the proposed method is carried out 

using both DSPI and DSSI. 

3. A novel experimental modal analysis technique for mode shape visualization 

and vibrational amplitude measurement using TA-DSPI is proposed. An 

amplitude varied reference frame technique is also proposed to improve fringe 

contrast in time average methods and a mathematical model is further developed 

to determine the vibration amplitude from a single TA-DSPI fringe pattern using 

DRPT method. The novelty and main advantages of the proposed method are a) 

the method does not require a phase shifter either for fringe contrast 

improvement or amplitude measurement; b) this method requires only one 

fringe pattern for amplitude measurement and numerical analysis and 

experiments are carried out to validate the proposed method. Numerical analysis 

results show that the proposed method provides better fringe contrast in 

recorded fringe patterns and good accuracy. A FEM modal analysis is carried 
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out to validate the experiment results for mode shape visualization.  Resonant 

frequencies and mode shapes obtained from FEM simulations are in good 

agreement with experiment. The proposed vibration amplitude determination 

method is validated with experimental TA-DSPI and the results show that the 

proposed method is able to demodulate complex and highly noisy fringe 

patterns. 

4. A novel eHGA algorithm for 2D phase unwrapping is proposed. Among the AI 

methods used for branch-cut phase unwrapping hybrid genetic algorithm is 

found to be more robust and fast. Numerical analysis is carried out to compare 

the HGA and the proposed method. The proposed method consistently able to 

converge faster than the HGA method and also provides better results. 

Unwrapped phase map obtained from DHI is used for experimental validation. 

The results also confirms that the proposed method performs better than the 

HGA method.  

5. A novel method to eliminate the influence of rigid body movement on Young’s 

modulus determination is developed. A mathematical model for rigid body 

movement in out of plane displacement measurement is analyzed and it is found 

that the impact of a rigid body movement can be removed in slope map easily 

than in displacement map. The proposed technique uses Fourier transform and 

DHODA method to calculate the slope map from a DSPI fringe pattern from 

which the elastic modulus of the cantilever beam is determined. The results 

obtained using the proposed method is in good agreement with that determined 

using a resonance frequency damping analyzer.  
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6.2   Future work 

The research work in this thesis has contributed significantly to improve phase retrieval 

techniques in displacement and displacement derivative measurements, and has also 

overcome some existing problems. Moreover, this research work also open up new 

research areas in optical measurement methods. In this thesis, the proposed techniques 

are described and validated with simulation and experimental results.  

 Though the proposed methods have overcome most of the existing challenges in 

optical displacement and displacement derivatives measurement, there are few 

limitations still exist. The Teager based phase derivatives determination methods have 

a limitation that the instantaneous frequency of the signal should not be greater than 

carrier frequency. Hence high frequency changes cannot be determined accurately. 

Derivative based regularized phase tracker method has reduced the computation time 

in RPT process, however large fringe pattern of size more than 1024x1024 pixels would 

take hours of computation time. Apart from these specific limitations, in all window 

based techniques proposed, the window size should be chosen manually. As mentioned 

earlier, eHGA phase unwrapping method are very effective for noisy phase maps but 

they cannot unwrap a phase map with discontinuities. In elastic modulus measurement 

of a cantilever beam, the rigid body movement can be corrected only when a known 

zero slope boundary condition point is available within the area of measurement. In 

general, phase retrieval techniques provide full-field displacement and displacement 

derivatives only when the boundary conditions are known. In practice, if the boundary 

conditions are unknown, force transducers or strain gauges could be attached to obtain 

boundary conditions, along with the optical techniques to measure full-field 

displacements. 
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 Research is a continuous process and there is no stop point. Hence it is impossible 

to say that this thesis has covered all possible aspects in this topic. It is recommended 

that some future work can be done to develop new techniques or improve the 

adaptability of the proposed techniques. The following issues can be further addressed.  

1. The frequency limitation in Teager based phase derivatives method is overcome 

by zero-padding frequency interpolation in DHI. However, no work has been 

done on a speckle fringe pattern. A Speckle fringe patterns resolutions are 

restricted by speckle noise and SNR value is also too low in a single fringe 

pattern analysis technique. All these factors prevent the speckle fringe pattern 

technique from achieving a higher resolution measurement. Further research 

can be carried out to improve the SNR value in a single speckle fringe pattern 

so that high frequency changes can be determined using Teager based methods. 

2. Derivative based regularized phase tracker method overcome most of the 

limitations of conventional RPT method. The influence of fringe density 

variation in accuracy is reduced in DRPT than in RPT technique. However high 

fringe density change would affect the accuracy of phase demodulation in a 

local region and DPRT method requires normalized fringe pattern for phase 

demodulation. Techniques such as generalized regularized phase tracker and 

improved generalized regularized phase tracker techniques are available to 

overcome the limitations. However, these methods require large computational 

time. Hence further research can be carried out to overcome the limitations 

without increasing the computational time. 

3. The proposed quantitative vibration analysis technique is utilized for mode 

shape visualization in this thesis. Further applications which utilizes the 

vibration amplitude data to determine material and structural properties 
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(dynamic elastic modulus, damping coefficient, frequency response functions, 

etc.) can be investigated. Similarly, this technique can be developed for non-

destructive testing to detect defects which are difficult to detect with 

conventional methods.  

4. The proposed eHGA utilized various parameters used in HGA for improving 

the convergence speed. Similarly, the ensemble of different operators for 

various operations such as initialization, selection, crossover & mutation, is 

expected to improve the results. Hence possibilities of such improvements on 

this algorithm can be investigated. The proposed algorithm is very effective for 

noisy images but it will not guarantee results if there are any real discontinuities 

present in the phase map. Hence further investigations can be carried out to 

develop hybrid algorithms for phase unwrapping problems which utilize the 

advantages of both AI and classical techniques. 

5. The influence of rigid body movement in in-plane displacement measurement 

can be studied and methods to reduce this influence can be developed. 

Applications which are susceptible to rigid body movement such as residual 

stress measurement, can be investigated for utilizing the proposed method. 

Further, methods to prevent the influences of rigid body movement in 

deformation measurement can be investigated. 
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