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Summary

This thesis addresses the modeling and inversion in near-field

microwave microscopy (NFMM) and electrical impedance to-

mography (EIT) problems. Both the modeling and inversion

are conducted in the framework of Laplace’s equation since

the computational domain is much smaller than the wavelength

in the NFMM and the problem is purely static in the EIT.

The original contributions of this thesis are: Firstly, the thesis

presents a complete analysis of tip-sample interaction in NFMM,

which includes proposing both lumped element model method

and impedance variation method to analyze the experimental

system, deriving the Green’s function for calculating charges on

tip in equivalent-sphere model, and introducing the concept of

effective height to analyze the contribution of tips in NFMM.

Secondly, based on the analysis of tip-sample interaction, the

thesis proposes a novel forward solver for NFMM which can be

applied to arbitrary tip shapes, thick and thin films, and complex

inhomogeneous perturbation. It is shown that this method can

accurately calculate capacitance variation due to inhomogeneous

perturbation in insulating or conductive samples, as verified by

both results of commercial software and experimental data from

microwave impedance microscopy (MIM). Thirdly, a nonlinear

image reconstruction method with total variation constraint in

NFMM is presented based on the forward solver proposed.

ix



Numerical results show that the proposed method can accurately

reconstruct the permittivity distribution in three dimensional

samples for NFMM. Most importantly, it is found from the

results that the resolution has been significantly improved in the

reconstructed image. Finally, inversion method is also applied

to solve the electric impedance tomography (EIT) problem in a

domain with arbitrary boundary shape, and two new inversion

methods are presented. The first is the new fast Fourier

transform subspace-based optimization method (NFFT-SOM),

and the second is the low frequency subspace optimization method

(LF-SOM). The thesis gives a detailed analysis of strengths

and weaknesses of NFFT-SOM and LF-SOM. It is found that

compared with the traditional subspace optimization method

(SOM), both of the proposed methods are faster and can get a

smaller exact error in solving EIT problem.
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Chapter 1

Introduction

This thesis addresses modeling and inversion in near-field microwave mi-

croscopy (NFMM) and electrical impedance tomography (EIT) problems.

Both the modeling and inversion are conducted in the framework of Laplace’s

equation since the computational domain is much smaller than the wavelength

in the NFMM and the problem is purely static in the EIT. In the NFMM,

the thesis mainly studies tip-sample interaction problem, effective forward

solver and the corresponding inversion method. In the EIT, the studies are

focused on the new inversion methods which are fast and robust to noise

in reconstructing electrical properties. This introductory chapter provides a

general description of the inverse problem, near-field microwave microscopy

and electrical impedance tomography problems.

1.1 Inverse problem

An inverse problem is the process of solving for the properties of an object (or

parameters of a system) from the observation of the response of this object

(or system) to a probing signal [8]. It is called inverse problem because it

1



1 INTRODUCTION

starts with the response and then reconstructs the properties of the object

which cause the response. On contrary, a forward problem starts with the

known model and then calculate the response to a probing signal. For

example, if an obstacle with specific permittivity distribution is illuminated

by electromagnetic waves, the calculation of the scattered fields is the forward

problem; if one observes scattered field far away from the the obstacle, the

inverse problem, which is referred to as the inverse scattering problem, is to

reconstruct the position, shape and permittivity distribution of the obstacle

from the observed scattered field.

The inverse scattering technique is one of the most important approaches

in quantitatively determining either physical or geometrical properties in

various fields [9]. In remote sensing, inversion method is used to estimate

physical parameters from the observations of external or internal radiant

energy [10]. Inverse technique also acts as a powerful tool to analyze human

organs and biological systems in biomedical imaging and diagnosis [11]. In

quantum physics, an important application of inversion method is to find

the potential from the impedance function [12]. One of the most important

advantages of inversion method is that it avoids expensive and destructive

evaluation. In order to detect the inhomogeneities in a medium, one only

needs to collect the scattered field outside the medium instead of drilling a

hole in it. Thus, inverse scattering techniques are also widely used in non-

destructive detection [13]. In this thesis, studies are focused on the application

of inversion method on characterization of electrical properties in near-field

microwave microscopy and electrical impedance tomography problems.

2



1 INTRODUCTION

1.2 Near-field microwave microscopy

Near-field microwave microscopy (NFMM) is concerned with measuring the

microwave electrodynamic response of materials which have length scales far

shorter than the free-space wavelength of the radiation [4, 14–18]. It is an

emerging technique used to image semiconductor devices [19], nanoparticles

[20], dielectric samples [21], two-dimensional electron gas [22] and other

materials with interesting properties [23–26]. In this section, some basic

concepts, state of the art, and challenges in NFMM techniques are introduced.

1.2.1 Why near-field microwave microscopy?

Compared with microscopy which relies on the far field interaction, NFMM

utilizes the near field interaction between tip and sample. It is well known

that, in far field, the spatial resolution is limited by the wavelength known

as Abbe diffraction limit found by Ernst Abbe in 1873. It states that spatial

Fig. 1.1 Field regions for antennas equal to, or shorter than, one-half
wavelength of the radiation they emit. According to the definition in
“Electromagnetic Radiation: Field Memo” by OSHA cincinnati laboratory,
the 2 wavelengths definition for far field is approximate “rules of thumb”.
More precise far field boundary is normally defined based primarily on
antenna type and antenna size as 2D2/λ. (From Wikipedia)
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resolution ∆r is limited by the equation [27]:

∆r =
λ

2n sin θ
(1.1)

in which the denominator n sin θ is known as numerical aperture (NA) and

can reach about 1.4 − 1.6 in modern optics. Techniques exploiting shorter

wavelengths such as Ultraviolet (UV) [28–32] and X-ray microscopes [33, 34]

are often used to increase the resolution, but they are often expensive and

some of them may cause damage to samples under test.

To obtain higher resolution, near-field techniques are widely used. In

NFMM, the tips used are often in micrometer order, whereas the operating

frequency is with a few GHz. Thus, the tips are shorter than half

of the wavelength of the radiation they emit, and can be treated as

electromagnetically short antennas. Figure 1.1 presents field regions for

antennas equal to, or shorter than, one-half wavelength of the radiation they

emit, and it suggests that NFMM should work at the near field region since

the distance between tip and sample is normally tens of nanometers. In near

field region, the diffraction limit is not valid, and the spatial resolution is

decided by the size of the source or detector [14]. The reason is that it is

the evanescent field that interacts with sample under test in near field region

rather than propagating electromagnetic wave. Mathematically, evanescent

waves can be characterized by a wave vector where one or more of the vector’s

components has an imaginary value [35]. Suppose that the wave vector of

evanescent wave have the form:

k = krr̂ + kz ẑ = βr̂ + jαẑ (1.2)

in which r̂ and ẑ are unit direction in cylindrical coordinate and j is the

imaginary unit. The magnitude of wave vector k is calculated as k =√
k2r + k2z . If ∆r = 2π

kr
is defined as the spatial resolution in r direction
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[2], in propagating electromagnetic wave, it is easy to find k > kr and

∆r > λ, which means the spatial resolution is limited by wavelength. For

evanescent wave, since one or more of the wave vector’s components has an

imaginary value, it is possible that k < kr and ∆r < λ. Therefore, exploiting

the near field interaction is able to extend the diffraction limit and obtain

higher resolution in NFMM. Additionally, it is noted that this consideration

is an alternative explanation of extending diffraction limit in near field region,

and, as included in [36], another explanation is concerned with Heisenberg

uncertainty principle [37].

Compared with optical microscopy and other microscopy operating at

high frequency range, one of the most important advantages of microwave

microscopy is the relative simplicity of the detected signal interpretation and

experimental instrument implementation [14]. In microwave frequency, the

electromagnetic wave interacts with sample in a very straightforward way

and the principle can be described by classical electromagnetic theory. On

contrary, in optical microscopy, the optical radiation interacts with materials

through quantum interactions, plasmon excitation, lattice dynamics, etc., and

these interactions are much more complicated [14].

Moreover, compared with atomic-force microscopy (AFM) that mainly

measures the topography information of nanostructures [38–42], NFMM

has a high resolution image on physical properties including permittivity,

conductivity and permeability of sample under investigation [4, 15–18]. In

comparison with scanning tunneling microscope (STM), which is an instru-

ment for imaging surfaces at the atomic level [43–48], microwave microscopy

measures properties of materials at sub-micron scale, and many emerging

phenomena such as phase-separation during metal-insulator transition and

quantum spin hall edge states are observed at this length scale [2, 22].
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1.2.2 State of the art in NFMM

NFMM technique has been studied extensively in the last two decades, and

substantial progress has been made in the aspects of theory, instrumentation,

imaging resolution, and data interpretation. This section summarizes state

of the art in NFMM including evolution of probes, circuit design, spatial

resolution, and applications.

NFMM in S. M. Anlage’s group starts from the probe constructed from

an open-ended resonant coaxial line which is excited by an applied microwave

voltage in the frequency range of 7.5−12.4 GHz [49], and this simple near-field

scanning microwave microscope has a spatial resolution of about 100 µm. In

last two decades, probes in his group develop from blunt probe to scanning

tunneling microscope (STM) resonant probe [49–56], and the reported spatial

resolution is improved from 100 µm to about 100 nm [49, 55–59]. The main

applications of NFMM in his group include imaging microwave electric fields

from superconducting and normal-metal microstrip resonators [60], measuring

local magnetic properties of metallic samples [61], imaging topography of

La0.67Ca0.33MnO3 thin film on LaAlO3 substrate [54], and quantitatively

measuring dielectric permittivity and nonlinearity in ferroelectric crystals

[62].

Probes in M. Tabib-Azar’s group mainly include evanescent microwave

probe (EMP) with microstripline resonator [63–71] and AFM compatible

probe [72]. One advantage of EMP is that, by changing its geometry

and frequency of operation, one can easily alter its characteristics for

a specific sensing application [69]. It also proves that EMP is able to

nondestructively monitor excess carrier generation and recombination process

in a semiconductor [71]. The AFM compatible probe consists of a coaxially

shielded heavily doped silicon tip and an aluminum (Al) coplanar waveguide,
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which can be applied to image embedded nanostructures [72]. Most of the

working frequencies in his group are below 4 GHz and the reported spatial

resolution is about 50 nm under contact mode and 0.1 µm under non-contact

mode. Applications of NFMM in his group are mainly concerned with imaging

materials with high conductivity [66, 67], quantifying stress and resistivity

change with hydrogen concentration variation [73], mapping temperature

distributions [70], detecting depletion regions in solar cell p-n junctions in

real time [68], and studying surface electron spin resonance [74].

Golosovsky’s group mainly applies resonant-slit probe in near-field mil-

limeter wave resistivity microscope [75–80]. The spatial resolution is better

than 100 µm under contactless model [78–80], and 1 µm in slit direction

under contact mode [76, 77]. The NFMM technique in his group can be used

to test semiconducting wafers, conducting polymers, oxide superconductors,

and printed circuits [78], measure ordinary and extraordinary Hall effect

[76], and locate heating of biological media [81]. Similarly, in Nozokido’s

group, slit-type probes are also used to observe the electrical anisotropy in the

viewed object [82] and transition phenomena of photoexcited free carriers [83].

Besides slit probes based NFMM, scanning nonlinear dielectric microscope is

also used in his group to examine ultrahigh-density storage devices and image

the state of spontaneous polarization of a ferroelectric material [84–87].

In Kim and Lee’s group [88–91], NFMM begins with a near-field scanning

millimeter-wave microscope based on a resonant standard waveguide probe

[88]. The waveguide based NFMM has a spatial resolution of about 2 µm, and

images thin films by measuring the variation of resonant frequency and quality

factor. Then, near-field scanning microwave microscope with a tunable

dielectric resonator is developed, which improves the spatial resolution to

better than 1 µm [89–91]. The NFMM in their group is mainly applied to
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image DNA film in buffer solution [92], investigate space charge properties at

the interface of pentacene thin films [93], characterize the sheet resistance of

indium-tin-oxide (ITO) thin films [94], and image Y Ba2Cu3Oy thin film on

MgO substrate [95].

Scanning tunneling microscope (STM) probe is also used as a point-like

evanescent field emitter in Xiang’s group [96, 97]. His group achieves a

5 µm spatial resolution [96], and improves it to 100 nm by using phase-

sensitive detection and adjusting shifter for 90◦ out-of-phase between signal

and reference [98]. A conducting sphere is used in the same potential to

represent the whole tip, and quantitatively measure the dielectric properties

[99–101]. Nevertheless, the validity of this analysis requires complete shielding

of parasitic near-field components, and the exact tip shape near the apex is

also crucial. His group mainly applies NFMM to image dielectric constant

profiles [97, 99–101], investigate ferroelectric domains [97, 102–104] and

measure low-k dielectric films with varying film thicknesses [105].

Besides NFMM in the above groups, ultratall coaxial tip based on

microelectromechanical systems (MEMS) technology is used in Daniel W.

van der Weide’s group [106]. Z. Popović’s group also propose a near-

field microwave measurement system which is able to achieve large scan

areas (1 mm2) with micrometer spatial resolution, long-term measurement

stability and good signal-to-noise [107], and his group has applied NFMM

to investigate monolithic microwave integrated circuit (MMIC). Moreover,

Vladimir V. Talanov’s group has applied NFMM to measure the lumped-

element impedance of a test vehicle [108] for the first time.

Recently, microwave impedance microscopy (MIM), one of the most

advanced NFMM, is constructed in Shen’s team [2, 3, 6, 7, 15, 19, 22, 109,

110], which is able to make nano-scale images of conductivity and permittivity
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of a sample with a spatial resolution better than 100 nm. It has wide

applications and can be applied to image semiconductor devices, investigate

phase separated materials, measure buried structures and image biological

specimens. In this thesis, the experimental part is conducted with MIM, and

it is particularly introduced in Chapter 2. In addition to the above mentioned

groups, Gramse’s and Sacha’s teams focus on the tip-sample interaction study

[21, 111–119], and the comparisons between the work in this thesis and their

methods are addressed in Chapter 2 and Chapter 3.

1.2.3 Challenges in NFMM

Although substantial progress has been made in NFMM in last two decades,

it remains an area of active research and continues to pose a variety of

challenging questions. Among them, solving tip-sample interaction problems,

quantitatively extracting properties of materials from measured signals and

improving imaging spatial resolution are three urgent issues.

It is difficult to solve tip-sample interaction problem in NFMM due to the

complexity of tip geometry and circuits, large computational area for three

dimensional samples, and contribution of cantilevers. In this thesis, based on

a complete analysis of tip-sample interaction in NFMM, a novel forward solver

is developed. As is verified both numerically and experimentally, this solver

is general and efficient and at the same time is able to deal with arbitrary tip

in three-dimensional setup.

Moreover, although NFMM can receive signals that is related to physical

properties of objects under test, most of the studies are limited to qualitative

detection. Quantitatively extracting physical information from received

signals is still a very challenging task, especially for three dimensional

inhomogeneous samples. Till now, quantitative studies have been focusing on
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Fig. 1.2 Modeling of a cross section of a human thorax showing current
stream lines and equi-potentials from drive electrodes [1].

extracting parameters from a homogeneous media with a constant permittiv-

ity or conductivity [113–115], and in comparison, sample information is hardly

obtained from inhomogeneous materials. This thesis proposes a nonlinear

image reconstruction method based on the above mentioned forward solver

to retrieve both permittivity and conductivity information of inhomogeneous

samples from measured signals. It is also verified by numerical examples that

this method is able to improve imaging resolution as well.

1.3 Electrical impedance tomography prob-

lem

Electrical impedance tomography (EIT) is a non-invasive imaging technique

in which an image of the internal impedance of the body or subject is

reconstructed from the external surface electrode measurements. Since

Barber and Brown developed the first EIT device in the early 1980s,

electrical impedance tomography has attracted intense interests recently in
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geophysics, environmental sciences, medicine, and non-destructive evaluation

fields since it is cheap, fast, portable and sensitive to physiological changes

[120–123]. Compared with other imaging techniques, such as computerized

tomography (CT) scanners, functional magnetic resonance imaging (f-MRI)

methods, and ultrasound scanning, EIT is able to provide new and different

information such as electrical tissue properties and act as a continuous

monitoring technique. Most importantly, only small devices are needed in

EIT measurement and no ionising radiation is imposed on users.

Normally, when examining the body part using EIT techniques, people

need to attach conducting surface electrodes around the body and apply small

alternating current to some of the electrodes. The voltages are recorded from

the other electrodes and this process is repeated several times to collect the

data for extracting the body information using the reconstruction algorithms.

In medicine, EIT is widely used to monitor lung function since the resistivity

of lung tissue is much higher than that of other soft tissues within the

thorax. Figure 1.2 presents modeling of a cross section of a human thorax

showing current stream lines and equi-potentials from drive electrodes [1]. It

suggests that equi-potential lines are bent with the variation of conductivity

between different organs in the thorax, which means that one can obtain the

information of organs by measuring the voltages changes from the electrodes

around the body.

Figure 1.3 presents a brief schematic of forward and inverse models in

electrical impedance tomography problems. As is depicted in Fig. 1.3,

electrical current is injected from the boundary of an object. In EIT forward

model, the conductivity distribution is known and the potential distribution

needs to be calculated. However, in EIT inverse model, the potential on

the boundary is measured and the task is to reconstruct the conductivity
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Fig. 1.3 A brief schematic of forward and inverse models in electrical
impedance tomography problems.

distribution of the object. Mathematically, EIT inverse problem is a very

challenging problem due to its nonlinear and highly ill-posed properties

[124, 125]. Till now, many researchers focus on studying the uniqueness of

the EIT solution [124, 126–128] and improve the experimental techniques

[129, 130]. As a non-invasive medical imaging technique, the algorithm

which is fast in reconstructing information of object under test and robust

to environmental noise is also crucial [131–135]. In this thesis, studies are

focused on the new reconstruction algorithms which are fast and at the same

time robust to noise in EIT problem.

1.4 Overview of the thesis

The author’s original contribution is presented in the remainder of the thesis,

where both of the modeling and inversion are conducted in the framework of

Laplace’s equation in NFMM and EIT.

In Chapter 2, some challenging problems of tip-sample interaction in
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NFMM are discussed. The first part of this chapter presents the electronics

of the NFMM used in the experimental part of the study, and both lumped

element model method and impedance variation method are used to analyze

the experimental system. Then, to deal with tip-sample interaction problems,

the Dirichlet Green’s function is derived to calculate charges on tips in

equivalent-sphere model, and the limitations of equivalent-sphere model have

also been discussed. Finally, the concept of effective height is proposed to

analyze the contribution of tips in NFMM, which is crucial in numerically

solving tip-sample interaction problems for different modes in NFMM.

According to the analysis in Chapter 2, a novel forward solver is proposed

for NFMM in Chapter 3, which can be applied to arbitrary tip shapes, thick

and thin films, and complex inhomogeneous perturbation. The computational

domain for tip-sample interaction problem in the forward solver is reduced to

a block perturbation area by applying Green’s Theorem, and thus it can

save substantial time and memory during calculating either electric field

or contrast capacitance for three-dimensional (3D) models of NFMM. It

is shown that this method can accurately calculate capacitance variation

due to inhomogeneous perturbation in insulating or conductive samples,

as verified by both finite element analysis results of commercial software

and experimental data from microwave impedance microscopy (MIM). More

importantly, this forward solver also provides a rigorous framework to solve

the inverse problem which has great potential to improve resolution by

deconvolution in NFMM.

Based on the forward solver presented in Chapter 3, a nonlinear image

reconstruction method with total variation constraint in NFMM is presented

in Chapter 4. The method is fast because it reduces the computational

domain for tip-sample interaction problem to a block perturbation area by
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applying Green’s Theorem in the forward model. Numerical results show that

the proposed method can accurately reconstruct the permittivity distribution

in three dimensional samples for NFMM. Most importantly, it is found from

the results that the resolution has been significantly improved in the retrieved

image.

In Chapter 5, two numerical methods are proposed to solve the electric

impedance tomography (EIT) problem in a domain with arbitrary bound-

ary shape. The first is the new fast Fourier transform subspace-based

optimization method (NFFT-SOM). Instead of implementing optimization

within the subspace spanned by smaller singular vectors in subspace-based

optimization method (SOM), a space spanned by complete Fourier bases is

used in the proposed NFFT-SOM. The thesis studies the advantages and

disadvantages of the proposed method through numerical simulations and

comparisons with traditional SOM. The second is the low frequency subspace

optimization method (LF-SOM), in which the deterministic current subspace

and noise subspace in SOM are replaced with low frequency current and the

space spanned by discrete Fourier bases, respectively. A detailed analysis

of strengths and weaknesses of LF-SOM is also given through comparisons

with the above-mentioned SOM and NFFT-SOM in solving EIT problem in

a domain with arbitrary boundary shape.

Finally, in Chapter 6, a summary of this thesis is given, as well as

suggestions for future work.
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Chapter 2

Tip-Sample Interaction in

NFMM

2.1 Introduction

In NFMM, as a tip scans over samples, the impedance between tip and ground

changes corresponding to the perturbation introduced by the sample under

test, and the variation of impedance is detected and recorded in the measured

signal. The ultimate goal of quantitative measurement in NFMM is to find

the relationship between detected quantities and the sample properties. The

processes to achieve this goal can be decomposed into two parts. The first

part is to establish the relationship between measured signals and impedance

between tip and sample, and the second part is to relate the properties of

materials to the impedance between tip and sample, which is also called tip-

sample interaction problems in NFMM. This chapter includes solutions for

both of the parts, and it is organized as follows.

Section 2.2 introduces basic electronics of the NFMM used in the

experimental part of the study, in which both the lumped element model
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Fig. 2.1 Block diagram of MIM electronics in the reflection mode. [2, 3]

method and the impedance variation method are used to establish the

relationship between measured signals and impedance between tip and

sample. Then, to deal with tip-sample interaction problems, in section 2.3,

Green’s function is derived to calculate charge density on tip for equivalent-

sphere model, which is the most widely used equivalent model in NFMM.

The limitations of equivalent-sphere model have also been discussed in this

section. In section 2.4, the concept of effective height is proposed to analyze

the contribution of tips in NFMM, and this concept is crucial in numerically

solving tip-sample interaction problems for different modes in NFMM.

2.2 Microwave impedance microscopy

In this thesis, the experimental parts are conducted on microwave impedance

microscopy (MIM) [2, 3, 6, 7, 15, 19, 22, 109, 110], which is one of the most

advanced NFMMs. As is depicted in Fig. 2.1 [2, 3], in MIM, the signal

generated from microwave source is divided into two pathes. One path is

used as a reference signal for a quadrature mixer, and the other one is further
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Fig. 2.2 Measurement environment for microwave impedance microscopy
with setup and devices [2–4].

divided into two signals. The first one goes to a directional coupler and

then to the tip which scans above the sample under test, and there is a z-

match circuit between the coupler and tip. The second one is used to cancel

common-mode signal [2]. Figure 2.2 shows a photo of experimental setup and

devices consisting of AFM, AFM controller, RF Source, and MIM electronics

for MIM [4]. In an MIM measurement, GHz voltage modulation is delivered

to a metallic tip. When the tip is brought close to and scans across the surface

of a sample, variations of tip sample admittance are recorded.

In output part of MIM electronics, a phase shifter is added in the reference

signal line to make sure that the output channels, MIM-Re and MIM-

Im correspond to the real part (1/∆R) and imaginary part (∆C) of the

tip-sample admittance variation (1/∆Z), respectively. The principles that

calibration only on the phase is sufficient to guarantee such correspondences

are presented as follows. The received reflection coefficient S11 at the position

between Z-match and coupler in Fig. 2.1 can be expressed as:

S11 = f(1/R + jωC) = f(Y ) (2.1)
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where Y is the tip-sample admittance, then:

dS11

d(1/R)
=
dS11

dY

dY

d(1/R)
=
dS11

dY
(2.2)

and

dS11

d(C)
=
dS11

dY

dY

d(C)
= jω

dS11

dY
(2.3)

Thus, the differential of S11 with respect to differential of 1/R and C have a

90◦ shift, and also a constant ω difference. Considering that the differential

of S11 is linear with the output of MIM, one only needs to first calibrate some

lossless material to get the position of imaginary signal by adjusting the phase

in reference signal, which guarantees that imaginary signal corresponds to

capacitance variation. Then, the MIM-Re consequently corresponds to real

part of the tip-sample admittance variation.
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(a)

(b)

(c)

Fig. 2.3 (a) A lumped element model between Z-match network and ground.
(b) Magnitude of S11 for experiment and simulation. (c) Phase of S11 for
experiment and simulation.
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2.2.1 Lumped element modeling

Figure 2.3(a) presents a lumped element model for the region between Z-

match network and ground. The S11 parameter is measured experimentally

through vector network analyzer (VNA) at the point between the Z-match

circuit and coupler in Fig. 2.1. Then the S11 parameter is loaded into the

Advanced Design System (ADS) software as the design goal and the values

of capacitance and resistance in Fig. 2.3(a) are optimized such that the

calculated S11 of the optimized circuit matches the measured S11. Figure

2.3(b) and 2.3(c) present the comparison of magnitude and phase for S11

between numerical and experimental results after optimization, respectively,

in which Rc = 5 Ω, Cb = 1.87 pF , C = 13.5 fF , and R = 2302 Ω have been

obtained through the optimization process.

Although the S11 parameter of the established lumped element model

matches well with that measured in experiment, the method using lumped

element model to analyze tip-sample interaction has its limitations. As is

observed in experiment, both the magnitude and phase of S11 at the resonant

frequency is sensitive to environment effects, which means that a small

perturbation may cause dramatic variations in performance of S11. Due to

the inevitable experimental error in S11, it is difficult to establish an accurate

value for all the components in lumped element model. Thus, lumped

element model is only appropriate to qualitatively understand the tip-sample

interaction in MIM. To quantitatively evaluate the tip-sample interaction in

MIM, a more accurate approach is needed, which will be presented in the

next subsection, where the relationship between the impedance variations

and MIM signals is studied.
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2.2.2 MIM-R and MIM-I channels

In order to quantitatively extract sample information, the relationship

between measured signals in MIM and impedance variations between tip

and sample is established as follows. For a linear MIM electronic system

[2], the relationship between MIM-Re (SR) and MIM-Im (SI) signals and the

variations of reflection coefficient ∆S11 at the position between Z-match and

coupler in Fig. 2.1 can be expressed as:

SR +j SI ∝ ∆S11 (2.4)

where ∆S11 is the variations due to the perturbation in sample and can

be calculated as S11(Y ) − S11(Y0) with Y0 being the reference impedance,

i.e., the impedance between tip and sample without perturbation presented

(impedance at the reference point). Take Taylor expansion on S11(Y ):

S11(Y ) = S11(Y0) + S
′

11(Y0)(Y − Y0) + . . . (2.5)

in which the difference between Y and Y0 is a tiny perturbation compared to

the whole impedance between tip and sample. Then, from Eq. (2.5), one can

get:

∆S11 ∝ ∆Y (2.6)

with ∆Y = ∆1/R + jω∆C. Therefore, the received MIM-Re and MIM-Im

have an approximately linear relationship with the variations of impedance

between tip and sample:

SR +j SI ∝ ∆1/R + jω∆C (2.7)

Thus, in data interpretation process, one needs to firstly do a calibration to

find the linear coefficient between received signals and impedance variations

for further sample information analysis. Normally, approach curve method is

21



2 TIP-SAMPLE INTERACTION IN NFMM

used to obtain this coefficient, and details of this method are included in the

experimental calibration part of Chapter 3.

2.3 Equivalent-sphere model in NFMM

The previous section has introduced an approach to interpret MIM-Re or

MIM-Im signals as impedance variations between tip and sample by exploiting

the linear relationship between them. To quantitatively extract sample

information, in next step, one needs to solve the tip-sample interaction

problem, i.e., to establish the relationship between tip-sample impedance and

material properties. As is mentioned previously, this problem is difficult

to be numerically solved by traditional method or software due to large

computational region for 3D samples. Thus, several equivalent models have

been adopted by researchers to model the tip-sample interaction. Among

them, the equivalent model which assumes the tip as a small conducting

sphere is widely used to solve tip-sample interaction problems especially for

thin films [136, 137]. In this section, Green’s function is deduced under

bispherical coordinate system, in which tip is modeled as a conducting sphere

[138].

2.3.1 Bispherical coordinate system

The bispherical coordinate system is defined by [5]:

x =
a sin η cosφ

coshµ− cos η
(2.8)

y =
a sin η sinφ

coshµ− cos η
(2.9)

z =
a sinhµ

coshµ− cos η
(2.10)
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Fig. 2.4 Bispherical coordinate system [5].

hµ = hη =
a

coshµ− cos η
(2.11)

hφ =
a sin η

coshµ− cos η
(2.12)

where 0 ≤ φ ≤ 2π, −∞ < µ < ∞, and 0 ≤ η ≤ π. hµ, hη and hφ are

the scale factors, and a is the distance between the foci and original point.

As is illustrated in Fig. 2.4, those for constant µ0 represent the spheres

surface with center at z = a cothµ0, x = y = 0, and radius R = a|cschµ0|.

Those for constant η represent the spindle-shaped surfaces when η > π/2,

and apple-shaped surfaces when η < π/2. For any point of P , η = ∠F1PF2

and µ = ln( |PF1|
|PF2|

).

The transformation relationship of unit vector between bispherical and
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Cartesian coordinate can be expressed as:
µ̂

η̂

φ̂

 =


∂x
∂µ

hµ

∂y
∂µ

hµ

∂z
∂µ

hµ
∂x
∂η

hη

∂y
∂η

hη

∂z
∂η

hη
∂x
∂φ

hφ

∂y
∂φ

hφ

∂z
∂φ

hφ



x̂

ŷ

ẑ

 = Mc


x̂

ŷ

x̂

 (2.13)

where Mc can be calculated as:

Mc =


−2xz
Q

−2yz
Q

−2z2
Q

+ R2+a2

Q

−x
√
4R2−4z2
Q

+ x√
x2+y2

R2−a2
Q

−y
√
4R2−4z2
Q

+ y√
x2+y2

R2−a2
Q

− z
√
4R2−4z2
Q

−y√
x2+y2

x√
x2+y2

0


(2.14)

with R =
√
x2 + y2 + z2 and Q =

√
(R2 + a2)2 − (2az)2.

2.3.2 Green’s function due to a charge

In NFMM, with the tip-ground voltage applied, the dielectric materials

between tip and ground are polarized as dipoles, and these dipoles are

secondary sources which further perturb the charge distribution on tip. By

measuring the capacitance variation (charge variation) on the tip, one is able

to collect the material information under test. Thus, the effect of a dipole on

tip charge distribution is critical to solve tip-sample interaction in equivalent-

sphere model.

In this part, Green’s function in the tip-ground system due to a charge is

first derived, in which the potential at the boundary is set to zero for both

tip and base, namely the boundary condition in the problem is ϕ (µ = 0) = 0

and ϕ (µ = µ0) = 0 where µ = 0 and µ = µ0 represent ground plane and

boundary of tip, respectively. To obtain the Green’s function under this

boundary condition, the following Poisson equation needs to be solved:

∇2ϕ = − 1

hµhηhφε0
δ(µ− µc)δ(η − ηc)δ(φ− φc) (2.15)
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where the subscript c denotes the source point. This is an inhomogeneous

partial differential equation, and normally the complete solution of this kind

of equation consists of a particular solution of the inhomogeneous equation

plus general solution of homogeneous equation. In bispherical coordinates, the

Laplacian operator is R-separable, and one can separate the Laplace equation

[139] and then get the following particular solution:

ϕp =
1

4πε0a

√
(coshµ− cos η)(coshµc − cos ηc) · Fp (2.16)

where

Fp =
∞∑
n=0

n∑
m=0

εm
(n−m)!

(n+m)!
cos[m(φ−φc)]·Pm

n (cos ηc)P
m
n (cos η)

e−(n+0.5)(µ−µc)µ > µc

e−(n+0.5)(µc−µ)µ < µc

(2.17)

in which εm is Neumann factor with εm = 1 when m = 0, and εm = 2 when

m > 0, and Pm
n (cos η) is the associated Legendre function of the first kind.

By comparing with this particular solution and considering that ϕ is finite

at surface of η = 0, π, the general solution can be expressed as the following

form:

ϕg =
√

(coshµ− cos η)·
∞∑
n=0

n∑
m=0

cos[m(φ− φc)]·Pm
n (cos η)(Ae(n+0.5)µ+Be−(n+0.5)µ)

(2.18)

where A and B are two coefficients to be determined under the boundary

condition.

Taking the boundary condition ϕ = ϕg+ϕp = 0|µ=0;µ=µ0 into account, the

simplified Green’s function due to a unit charge under a conducting spherical

tip can be expressed as:

Gq = ϕg + ϕp =
∞∑
n=0

n∑
m=0

−M
√

(coshµ− cos η)· cos[m(φ− φc)]Pm
n (cos η) · FG

(2.19)
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Fig. 2.5 Dipole geometry.

where

FG =


2 sinhN(µ0−µ) sinhNµc

sinhNµ0
µ > µc

2 sinhN(µ0−µc) sinhNµ
sinhNµ0

µ < µc

(2.20)

and

M = −1

a

√
(coshµc − cos ηc) · εm

(n−m)!

(n+m)!
Pm
n (cos ηc) ·

1

4πε0
(2.21)

with N = 0.5 + n.

2.3.3 Tip charge variation due to a dipole

To calculate the Green’s function due to a dipole in equivalent-sphere model,

as is illustrated in Fig. 2.5, a dipole consisting of two equal opposite charges

with a distance of d is first considered. The potential due to this dipole can

be expressed as [140]:

Φp(x) =
q

4πε0|x− x′|
− q

4πε0|x− x′ + nd|
(2.22)

For a small d, one can expand |x−x
′
+nd|−1 using a Taylor series expansion

in three dimensions [140]:

1

|x + a|
=

1

x
+ a · ∇(

1

x
) + · · · (2.23)

Thus, as d approaches to zero, the potential becomes:

Φp =
1

4πε0
P · ∇′

(
1

|x− x′|
) = P · ∇′

Gq (2.24)

where P = nqd = µ̂pµ + η̂pη + ϕ̂pϕ is the dipole moment. Thus, in

26



2 TIP-SAMPLE INTERACTION IN NFMM

the bispherical coordinate system, the Green’s function due to a dipole is

expressed as:

Gp = P · ∇′
Gq =

pµ
hµ

∂Gq

∂µ
+
pη
hη

∂Gq

∂η
+
pϕ
hϕ

∂Gϕ

∂µ
(2.25)

Then, the induced charges on tip due to an arbitrary dipole is calculated as:

ρs = −ε∂Gp

∂n
= ε(

pµ
hµ

∂2Gq

∂µ2
+
pη
hη

∂2Gq

∂η∂µ
+
pϕ
hϕ

∂2Gϕ

∂µ∂µ
) = ρsµ + ρsη + ρsϕ (2.26)

where ρsµ, ρsη and ρsφ are given as following form:

ρsµ =
∞∑
n=0

n∑
m=0

ρm(−0.5L−0.5c sinhµc·L0.5
0 ·Al·N ·sinhNµc+L

0.5
c ·L0.5

0 ·Al·N2·coshNµc)

(2.27)

ρsη =
∞∑
n=0

n∑
m=0

DeCpη
hηchµ0

cos(m(φ− φc))Pm
n (cos η) · L0.5

0 K
′

µ (2.28)

ρsϕ =
∞∑
n=0

n∑
m=0

−Mpϕ
hϕchµ0

m sin(m(φ− φc))Pm
n (cos η) · L0.5

0 K
′

µ (2.29)

with

ρm =
pµN

2hµchµ0π

(n+m)!

(n−m)!
Pm
n (cos η)Pm

n (cos ηc)εm cos(m(φ− φc)) (2.30)

Kµ =
2 sinhN(µ0 − µ) sinhNµc

sinhNµ0

(2.31)

De =
1

2
(coshµc − cos ηc)

−0.5 · sin ηcPc + (coshµc − cos ηc)
0.5 · Pc′ (2.32)

in which Pc = Pm
n (cos ηc), C = εm(n+m)!/(4aπ(n−m)!), L0 = coshµ−cos η,

Lc = coshµc − cos ηc and Al = 1/Na sinh(Nµ0). The calculation of hµc , hµ0 ,

hηc , and hϕc can be obtained from Eq. (2.11) and Eq. (2.12).

2.3.4 Numerical validation and conclusions

Figure 2.6 presents a typical potential distribution of tip-ground system, in

which the 2D axisymmetric electrostatic COMSOL mode analysis is employed

to verify the solution in Eq. (2.26) with the consideration that the size of tip
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Fig. 2.6 Typical potential distribution of tip-ground system for equivalent-
sphere model.

is much larger than the wavelength. Actually, if the operating frequency is

1 GHz, then the wavelength is 0.3 m, which is much larger than a nanometer

tip. In simulation, tip is set to be a perfect conducting sphere with radius of

a = 60 nm having a constant 1 V potential. For convenience, the induced

dipole is replaced by a very small dielectric sphere with radius of 3 nm and

permittivity of εr = 10, where the dipole moment of this sphere can be

expressed as [140]:

p = 4πε0a
3(
εr − 1

εr + 2
)E (2.33)

in which E is the electric field in absence of dielectric sphere, and has the

following relationship with the electrical field inside the sphere (Ein).

E =
εr + 2

3
Ein (2.34)

Figure 2.7 shows the surface charge density on the tip of φ = 0 surface

induced by a unit dipole placed along the η direction, where position of the

dipole is µc = 2.1, ηc = arcsin(tanhµc), and φc = 0. The sphere tip is

positioned at µ = 2.81. Figure 2.8 shows the surface charge density on the
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Fig. 2.7 Surface charge density on the tip of φ = 0 surface induced by a unit
dipole placed along the η direction, where horizontal coordinate represents
the X coordinate of the tip surface.

tip of φ = 0 surface induced by a unit dipole placed along the φ direction,

where position of the dipole is µc = 2.1, ηc = 2π/3, and φc = 0. The sphere

tip is represented by µ = 2.81. And it is seen that analytical solution matches

quite well with simulation results for both cases, which verifies the analytical

solution in Eq. (2.26).

Fig. 2.8 Surface charge density on the tip of φ = 0 surface induced by a unit
dipole placed along the φ direction, where horizontal coordinate represents
the X coordinate of the tip surface.
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To sum up, this section has introduced the analytical solution of Green’s

function which can be used to solve tip-sample interaction problem of

equivalent-sphere model in near-field microwave microscopy, and this solution

is verified by COMSOL software. However, the equivalent-sphere model has

its limitations. As is found by other researchers [112, 114], the accuracy of

solving tip-sample interaction problem by replacing a practical tip with a

small conducting sphere is questionable when the sample under test is thick.

The inaccuracy is due to the important contributions from the upper part of

tip. In next section, a concept of effective height is proposed to further study

the contributions from the upper part of tip, and the limitations of equivalent-

sphere are also verified in experiment by the measurement of microwave

impedance microscopy.

To sum up, although approximating a practical tip by a sphere is simple

in solving tip-sample interaction problem in NFMM, it has limitations and

constraints. A more general and effective approach is needed, and Chapter 3

of the thesis will introduce a novel forward problem solver which is able to

effectively solve general tip-sample interaction problem in NFMM.

2.4 Quantitative analysis of effective height of

probes in NFMM

As mentioned in last section, equivalent-sphere model has limitations in

solving tip-sample interaction problem, and thus many researchers focus on

studying numerical methods to solve the problem. Nevertheless, tip-sample

interaction problem is difficult to be numerically solved due to the high

computational cost involved. This section proposes a concept of effective

height which is able to reduce the computational domain of tip-sample
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interaction problem.

NFMM typically uses a metallic probe (a tapering tip) to scan across

various points (~r) on the surface of a sample while maintaining a tip-sample

spacing (l ). The sample is typically mounted on an electrical ground surface.

The capacitance between the tip and the ground surface C(~r, l) changes when

the tip is near or upon a perturbation in the sample [109, 141, 142], and this is

illustrated in Fig. 2.9(a). For convenience, C(~r, l) is denoted as C(l) unless a

mention of scanning point ~r is strictly needed in this study. The capacitance

C(l) is a function of the sample properties (permittivity, conductivity and

topography), the geometry of the tip, and tip-sample spacing. In general,

NFMM measures different quantities under different modes, and the measured

parameters are directly related with C(l), C ′(l) = ∂C(l)/∂l, and C ′′(l) =

∂2C(l)/∂l
2

under their own mode, respectively.

To accurately model the tip-sample interaction and the measurement

quantities is of critical importance to understand the measured signal and

isolate or interpret the sample parameters (which are of ultimate importance

in microscopy) from the measured quantities. Thus, in general, it is preferred

that the measurement quantities are less sensitive to the tip geometry,

more sensitive to the perturbations in the sample, and that the tip-sample

interaction is easy to model. Several equivalent models have been adopted by

researchers for modelling the tip-sample interaction in near-field microwave

microscopy. Among them, replacing the tip by a small conducting sphere is

widely used to approximate tip-sample interaction [99, 137], but the accuracy

of this approximation is questionable, due to the important contribution from

the upper part of tip [112, 114] and cantilever [114, 116, 119]. Although the

cantilever can be shielded before experiments [7, 110], the computational cost

for evaluating tip-sample interaction in numerical model is extremely high due
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to the large size of tip cone part.

This section proposes a concept of effective height of tip which is sufficient

for modelling the tip-sample accurately for practical purposes. This concept

of effective height of tip is very useful in reducing computational area of

evaluating tip-sample interaction, determining the sensitivity of the above

three capacitance related parameters to the tip height, and explaining the

conclusions in previous literatures such as [143, 144]. This approach also

exposes the incompleteness of arguments often used in the context of tip-

sample interaction for near-field microwave microscopy. Most importantly,

the conclusions made in this section are very helpful in improving imaging

resolution in NFMM. In experimental part, the validity of the concept of

effective height is studied using microwave impedance microscopy [3] that

involves pyramid tip with approximately 5.3 µm [6] and circular cone Pt tip

with approximately 100 µm [7] measuring thin and thick samples with either

dielectric or conducting materials.

2.4.1 Experimental details and analysis approach

Setup: All experiments and numerical results shown here correspond to

microwave impedance microscopy [3] setup, a simplified schematic of which is

shown in Fig. 2.9(a), where MIM measures a complex valued signal amplified

by the microwave circuits.

Tip geometry: An example of tip geometry used in numerical analysis is

shown in Fig. 2.9(a), and it can be depicted by tip height H, radius of apex

part r, and half cone angle θ. The tip-sample spacing l is the distance between

the lowest point of the apex and the upper surface of the sample. As is shown

in Fig. 2.10(a) and (b), two probes have been used in experiment, the first

probe is a pyramidal probe with the height of approximately H = 5.3 µm and
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Fig. 2.9 (a) A simple schematic of microwave impedance microscopy with
cone-sphere tip. Unless stated otherwise, H = 15 µm, r = 50 nm, θ = 20◦,
hs = 200 nm, l = 20 nm, and εr = 3.9 are used for numerical analysis (Not
to scale). (b) Discretization of the tip.

half cone angle θ = 35◦ [6]. The second probe is a Pt probe [7] with a height

of approximately H = 100 µm and half cone angle θ = 6.5◦, where the probe’s

apex is approximately sphere. The SEM image and detailed information of

geometries for both tips have been included in experimental validation part

in Fig. 2.10(a) and (b).

Samples: For numerical analysis, any point in the sample is characterized

by the relative permittivity εr, which may be complex valued if the material

at that point is conducting. In general, this section considers the sample as

made of silica SiO2 with relative permittivity εr = 3.9 of height 200 nm. If

different materials or heights have been used, the details are specified in the

relevant results. Samples used in the experiments include bulk homogeneous

SiO2 with the height of 2 µm (thick sample) and aluminum disk with the

height of 12 nm on a silicon substrate of thickness 100 nm [110] (thin sample).

A thin layer of aluminum dot is assumed to be oxidized and thus composed

of aluminum dioxide Al2O3.

Analysis approach and implementation details: As discussed before, the

analysis approach in this section is based on the effective height which is
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(a) (b)

Fig. 2.10 (a) SEM image of the pyramid tip [6] in MIM measurement. (b)
SEM image of the Pt tip [7] in MIM measurement.

sufficient for modelling the tip-sample interaction accurately for practical

purposes, and the simulation is conducted in COMSOL Multiphysics of

concerned parameters under a tip-sample bias of 1 V . To remove large

background effects in C(l) and C ′(l), whenever C(l) and C ′(l) are considered

in this section, a reference value C(lref ) and C ′(lref ) at a large tip-sample

distance (lref = 500 nm) have been subtracted from C(l) and C ′(l),

respectively. For C ′′(l), the background effects are eliminated by taking

the second order derivative of capacitance. In the analysis approach,

the cumulative contribution is considered at a variable height h for each

parameter. For this purpose, tip is discretized into a total number of N

small elements, and, as is depicted in Fig. 2.9(b), the total charges on each

element is calculated as Q1, Q2, ..., QM , QM+1, ..., QN with the Mth element

corresponding to a variable height h. Specifically, when the geometry of the

whole tip is taken into account, the value of C, C ′, and C ′′ at a tip-sample

distance l are calculated as CH(l), C ′H(l), and C ′′H(l), respectively. Therefore,
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cumulative contribution for C at the height of h can be defined as:

Cc(l, h) =
M∑
i=1

[Qi(l)−Qi(lref )]/CH(l)× 100% (2.35)

Similarly, C ′ at the height of h is defined by finite difference as:

C ′c(l, h) =
M∑
i=1

Di/C
′
H(l)× 100% (2.36)

with

Di =
[(Qi(l + ∆l)−Qi(l −∆l))− (Qi(lref + ∆l)−Qi(lref −∆l))]

2∆l
(2.37)

where ∆l is a small perturbation of tip-sample distance, and cumulative

contribution for C ′′ at the height of h is defined as:

C ′′c (l, h) =
M∑
i=1

[Qi(l + ∆l)− 2Qi(l) +Qi(l −∆l)]

∆l2
/C ′′H(l)× 100% (2.38)

It is evident that h = 0, and h = H are the two extremes which

correspond to zero contribution and 100% contribution, respectively, to any

parameter. The effective height he is further defined as the height h at which

the cumulative contribution is 98%. Obviously as shown in Fig. 2.9(b), the

upper cone part need not to be modelled when the effective height he of a

practical tip used in experiment is smaller than the tip height H, and thus

complexity involved with the large size of the tip can be dispensed away.

2.4.2 Results and discussions

2.4.2.1 Cumulative contribution of C ′(h), C ′(h), and C ′′(h)

Figure 2.11(a) and 2.11(b) present the cumulative contribution of C(h), C ′(h),

and C ′′(h) for the typical model illustrated in Fig. 2.9(a) with tip-sample

spacing l = 20 nm. It is noted that the results presented in Fig. 2.11

follow the same general trends for other values of tip-sample spacing. The

value l = 20 nm is used because small tip-sample spacing implies very strong
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(a) (b)

Fig. 2.11 Cumulative contribution of C(h), C ′(h), and C ′′(h) for the typical
model illustrated in Fig. 2.9(a) for (a) dielectric material and (b) metal.

coupling between the sample and tip. It is found from Fig. 2.11(a) that the

apex part of the tip (which corresponds to the first point with h = 0.033 µm)

contributes approximately 5.5%, 55% and 89% to the total value for C ′′(h),

C ′(h), and C ′′(h) when dielectric material is considered, respectively.

Another remarkable phenomenon is that the upper cone part contributes

barely to the total value of C ′(h) and C ′′(h), whereas it keeps contributing

to the value of C(h). The reason is that the upper cone part is far away

from the sample and ground, and can be treated as stray capacitance which

is approximately linear to tip-sample distance l [114, 118]. Therefore, the

capacitance contribution from the upper part can be expressed as Cup =

Kl+ c, in which K and c are constant coefficients related with tip geometries

and sample properties. For C ′(h) and C ′′(h), the stray capacitance from

upper cone part is either subtracted by taking a reference point or eliminated

by taking the second order derivative, whereas the upper cone part keeps

contributing to C even when it is far away from the sample. Thus, considering

the effective height is only meaningful when C ′(h) and C ′′(h) is evaluated.

As is shown in Fig. 2.11(a), the effective heights he of the dielectric materials
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(a) (b)

(c) (d)

Fig. 2.12 Effective height for C ′ as a function of relative permittivity (εr) for
(a) three different sample heights hs = 20 nm, hs = 200 nm, hs = 500 nm,
(b) three different apex radii r = 50 nm, r = 150 nm, and r = 500 nm, (c)
three different tip half-cone angles: θ = 6◦, θ = 20◦, and θ = 35◦, and (d)
three different reference distances l = 5 nm, l = 12 nm, and l = 20 nm.
Unless stated otherwise in each case, all the other parameters are the same
as that in Fig. 2.9(a).

in Fig. 2.9(a) are 4.7 µm and 0.6 µm for C ′(h) and C ′′(h), respectively.

Compared with dielectric materials, it is found from Fig. 2.11(b) that the

lower part of the tip contributes more to the total value when metal is

considered, which results in a smaller effective height for both C ′(h) and

C ′′(h). Specifically, when the dielectric materials are replaced by metal, the

effective height for C ′(h) and C ′′(h) are 2.2 µm and 0.3 µm, respectively, and
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it is also noted that the most upper part contribution still cannot be neglected

for C(h) even when the material under the tip is perfect conductor.

As compared to C ′, it is concluded that the effective height of C ′′ is much

smaller and it is also found that the C ′′ has larger contribution from the

apex of the tip, with other parameters being the same, thus making it better

suited to extract localized sample information below the apex and to provide

improved imaging resolution of NFMM. The results in Fig. 2.11(a) and (b)

also explain the conclusion in [143, 144] that the force gradient (proportional

to C ′′) has better resolution than that of force (proportional to C ′) mode in

electrostatic force microscopy (EFM). On contrary, compared with C ′′, one of

the advantages of C ′ is that it is easier to evaluate either in numerical software

or experiment since C ′′ requires a second order derivative with respect to tip-

sample distance l.

2.4.2.2 Effective height of C ′(h) and C ′′(h)

As is mentioned previously, this section considers the effective height he of the

tip for different sample properties, tip geometries, and tip-sample distances,

and the results have been presented in Fig. 2.12(a)-(d). It is found from Fig.

2.12(a) that, as a general result, he is a decreasing function of the relative

permittivity εr and an increasing function of sample height hs. It is also

noted that he increases fast when εr is smaller than 5, and becomes almost

independent from εr when relative permittivity is larger than 30. Figure

2.12(b) and (c) show the effects of tip geometries by considering different apex

radii and half cone angles, and it is seen that tips with larger r and smaller

θ have smaller effective height. With other parameters unchanged, larger

apex radius means larger area of lower part of the tip and thus contribution

comes more from that part for such tips. Moreover, the effects of tip-sample
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distances on effective height are considered, and the results are shown in

Fig. 2.12(d). It suggests that the model with smaller tip-sample distance

has smaller effective height for the interaction concentrates more on the apex

part.

In table 2.1, the effective height he of C ′′(h) for typical tips and samples

is presented, and it is found that the effects of relative permittivity, sample

height, apex radius, half cone angle and tip-sample distance have on the

effective height for C ′′(h) are very similar to that for C ′(h). Whereas,

compared with C ′, he is much smaller when C ′′ is considered.

Since the effective heights for both C ′′(h) and C ′ vary in a small range

with the changes of tip geometries and sample properties, it is easy for us to

determine approximate values of he based on Fig. 2.12(a)-(d) and table 2.1

to model tip-sample interaction problems concerned with different kinds of

tips and materials practically. Specifically, to calculate the effective height he

of a practical setup, one need to first determine an initial value of effective

height h0 according to the half cone angle of the practical tip θ from Fig.

2.12(c) and the first three rows of table 2.1 without consideration of the

effects of tip radius and the thickness of sample. The half apex angel θ is

in the range of 6◦ ≤ θ ≤ 35◦. Then, an adjustment e1 is added on h0, i.e.,

he = h0 + e1, following the relation e1 ≈ 7(hs − 200) − 330(r − 50)0.4 and

e1 ≈ 1.1(hs− 200)− 51(r− 50)0.4 for C ′ and C ′′, respectively, in which all the

units are nanometers and tip radius and sample thickness are in the range of

50 nm ≤ r ≤ 500 nm and hs ≤ 2 µm, respectively. In addition, it should

be noted that the empirical formulas of effective height are not valid for the

“tip” that has a larger bottom part but a smaller upper part.
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Table 2.1 Effective height he of C ′′(h) for typical tips and samples in NFMM
(Units: µm).

εr 3.5 5 7 10 15 30 50
hs = 200 nm, θ = 6◦ 0.27 0.24 0.22 0.21 0.2 0.2 0.2
l = 20 nm, θ = 20◦ 0.67 0.54 0.46 0.41 0.38 0.35 0.34
r = 50 nm θ = 35◦ 1.08 0.91 0.79 0.71 0.64 0.58 0.56
hs = 200 nm, r = 20 nm 0.93 0.82 0.74 0.69 0.65 0.6 0.59

l = 20 nm, θ = 20◦ r = 100 nm 0.35 0.37 0.23 0.21 0.2 0.18 0.18
hs = 200 nm, l = 30 nm 0.83 0.72 0.64 0.59 0.55 0.51 0.5

r = 50 nm, θ = 20◦ l = 40 nm 0.96 0.84 0.77 0.71 0.67 0.64 0.62
r = 50 nm, θ = 20◦ hs = 300 nm 0.8 0.65 0.57 0.51 0.48 0.45 0.44

l = 20 nm, hs = 20 nm 0.41 0.38 0.36 0.35 0.34 0.33 0.32

2.4.3 Experiment validation

In the first example, experiment is conducted using a long Pt tip [7] with

the height of approximately 100 µm to measure both bulk SiO2 and Al dot

sample [110] with microwave impedance microscopy (MIM). The detailed

information and SEM image of the Pt tip [7] are presented in Fig. 2.10(a).

For bulk SiO2 sample, it is homogeneous and the height of it is about 2 µm,

as is presented in Fig. 2.13(a). In simulation, the effective height he of C ′

for SiO2 is first determined based on the equation he = h0 + e1, in which

h0 ≈ 3.5 µm and e1 ≈ 12.5 µm are obtained from Fig. 2.12(c) and the

expression for e1 in previous section, respectively. Then, a truncated tip with

H = 16 µm is used to replace the practical Pt tip when C ′ is evaluated in

COMSOL Multiphysics (2D AC/DC electrostatic module). It is found from

Fig. 2.13(a) that simulation results agree well with experiment results when

using a truncated tip with H = 16 µm to model a practical Pt tip with

H ≈ 100 µm. Figure 2.13(a) also presents the simulation results from a

equivalent-sphere tip model of which the radius is equal to the apex radius

of Pt tip. It suggests that discrepancies are found between experimental

and simulated results from the equivalent-sphere model, which indicates that
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(a) (b)

(c)

Fig. 2.13 C ′ as a function of tip-sample spacing l with Pt tip measuring (a)
bulk SiO2 and (b) Al dot sample for both simulation and experiment results.
(c) C ′ as a function of tip-sample spacing l with pyramid tip measuring Al
dot sample for both simulation and experiment results. (Blue square denotes
the simulation results from the truncated tip with effective height; Black line
denotes the experimental results; Red star denotes the simulation results from
equivalent-sphere tip of which the radius is equal to apex radius of practical
tip.)

replacing the tip by a small conducting sphere is not accurate in modeling

the tip-sample interaction.

For Al dot sample, as is shown in Fig. 2.13(b), there is a layer of oxide

with height of 2 − 5 nanometers formed on Al with the height of 12 − 15

nanometers and the substrate layer is SiO2 with the height of approximately

100 nm. In simulation, the effective height of C ′ for Al dot sample is first
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calculated as 3 µm, and a truncated tip with H = 3 µm is used to replace

the practical Pt tip when C ′ is evaluated in COMSOL Multiphysics for Al

dot sample. As is presented in Fig. 2.13(b), it suggests that the simulation

results match perfectly with experiment results when C ′ is evaluated for Al

dot sample. Similarly, the results obtained from the equivalent-sphere tip

model are also compared with experimental results in Fig. 2.13(b), and it

suggests that discrepancies exist between experimental and simulated results

obtained by equivalent-sphere model.

Further experiment is conducted using a pyramid tip [6] with the height

of 5.3 µm to measure Al dot sample. The detailed information and SEM

image of the pyramid tip [6] are depicted in Fig. 2.10(b). Since the geometry

of the pyramid tip is not axisymmetric, three dimensional (3D) COMSOL

Multiphysic module has to be applied to solve tip-sample interaction in

simulation. By calculating the effective height he according to the equation

he = h0 + e1 in previous section, it is found that the tip height H = 5.3 µm

is not large enough to make us use truncated tip in simulation to model the

practical tip. Thus, the complete pyramid tip with H = 5.3 µm is used

in simulation, and Fig. 2.13(c) presents the performance of both simulation

and experiment results as a function of tip-sample spacing l for C ′. It is

found that the results match well between experiment and simulation, but the

performance is not good when replacing the whole tip by a small conducting

sphere of which the radius is equal to the apex radius of the pyramid tip.

Apparent discrepancies are found between experimental and simulated results

obtained by equivalent-sphere model, which further verifies the inaccuracy of

using equivalent-sphere model to model the tip-sample interaction in MIM.
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2.5 Summary

This chapter mainly studies the approach to quantitatively interpret sample

properties from measured quantities in NFMM, which can be decomposed into

two issues. The first issue is to determine the relationship between measured

quantities and tip-sample impedance, and in this chapter, an impedance

variation based method is proposed to solve this problem. The second issue

is to establish the relationship between tip-sample impedance and material

properties, i.e., to solve the tip-sample interaction problem, which is the most

crucial part in quantitatively extracting properties of materials from measured

signals.

To deal with tip-sample interaction problem, Green’s function is firstly

derived to calculate charges on tips in equivalent-sphere model, and the

solution is verified by COMSOL software. The analytical solution of

Green’s function can help us comprehend the principles behind NFMM,

such as the effects of each geometry parameter on tip charge variations.

Moreover, compared with numerically calculating Green’s function, the usage

of analytical solution saves a lot of time and computer memory. The

limitations of equivalent-sphere model are also discussed in this chapter.

Then, to reduce computational region of evaluating tip-sample interaction

in numerical method and to determine the sensitivity of the capacitance

related quantities to the tip height, a concept of effective height is proposed

to analyze the contribution of tips in NFMM. The original contributions of

the “effective height” section are summarized as follows. Firstly, it is found

that the effective height for the first and second derivative of capacitance with

respect to vertical distance is much smaller than the one for the capacitance,

which has the advantage of greatly reducing the computational complexity.
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Secondly, the effective height of C ′ and C ′′ considering a wide range of

tip and sample information is established, which is helpful to quickly and

approximately estimate the effective height of other practical tips. Thirdly,

this section has discussed the effects of relative permittivity, sample height,

apex radius, half cone angle and tip-sample distance have on the effective

height, and the concept of effective height provides a unified solution to

explain some important conclusions in previous literatures. Fourthly, all the

conclusions in this section provide very helpful instructions for improving

imaging resolution in NFMM, since a small effective height is in correlation

to a small area of sample that contributes to measured signal, i.e., better

resolution.

Additionally, although the concept of effective height is able to reduce

computational cost to some extent, the full numerical solution of tip-sample

interaction problems is challenging because it still involves complex 3D

geometries that cover a wide range of sizes, from nanometric contribution of

the sample features to micrometric contribution of the tip. The next chapter

will introduce a novel method based on finite element-boundary integral to

further reduce the computational domain.
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Chapter 3

A Novel Forward Solver in

NFMM

3.1 Introduction

As introduced in previous chapter, replacing the tip by a small conducting

sphere is widely used to approximate tip-sample interaction [99, 137], but

the accuracy of this approximation is questionable, due to the important

contribution from the upper part of tip [112, 114]. Besides the equivalent-

sphere model, approximate analytical solution is also used in solving tip-

sample interaction problem [21, 145], but the tip geometry is limited to very

few specific types [146–148]. More importantly, fabricated tips can hardly be

of a rigorously regular shape in practice, which further makes the approximate

analytical solutions inaccurate and inflexible. Also, the above two methods

are mainly used to calculate homogeneous samples and can hardly be applied

to samples with inhomogeneous perturbation presented.

Another well-known approach is to obtain the capacitance between

a metallic tip and an inhomogeneous sample using a boundary integral
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method [149], but quantitatively speaking, the results can hardly be accurate

especially when the perturbation in sample is inhomogeneous due to approx-

imations made in the theoretical part of the method. Moreover, an algorithm

called generalized image charge method (GICM) [150] has also been developed

and widely used. It has been applied to evaluate electrostatic interaction

between the tip and metallic nanowire over the surface by using the Green’s

function of segment [151], and to calculate electric field at very small tip-

sample distances [152]. Nevertheless, the models used in these papers are 2D

symmetric, and when the setup of tip-sample interaction is asymmetric, the

approach can hardly be accurate since it is derived under symmetric setup.

Therefore, a fast, accurate and general approach to evaluate the tip-

sample interaction with arbitrary tip and inhomogeneous perturbation is

yet to be realized, and this chapter proposes an approach based on finite

element-boundary integral (FE-BI) methods to fill this gap [4, 153]. Based

on the fact that only a limited region beneath the tip contributes to the

tip-sample capacitance in NFMM [153], the computational domain of tip-

sample interaction problem can be reduced to a block area by applying

Green’s Theorem in the proposed method, and it is fast when computing a

3D tip-sample interaction problem for both insulating and conductive sample.

Contrast capacitance due to various perturbations is calculated using this

method and compared with both numerical results obtained by commercial

software and experimental images of MIM.

In an MIM measurement, GHz voltage modulation is delivered to a

metallic tip, usually of pyramid shape with a base length of about 5 µm and

an apex diameter of nearly 50 nm [6]. When the tip is brought close to and

scanned across the surface of a sample, variations of tip-sample admittance are

recorded, the imaginary and real parts of which are denoted as MIM-Im and

46



3 A NOVEL FORWARD SOLVER IN NFMM

MIM-Re signals, respectively. For samples under test the major contribution

of impedance perturbation comes from variations of dielectric constant and

conductivity. Semi-quantitative information of local permittivity or electrical

conductivity is obtained by comparing MIM data to admittance-permittivity

or conductivity curve (response curve) simulated in commercial finite analysis

software. Usually a 2D axisymmetric model of a cone-shaped tip on a

large homogeneous sample is used to calculate the admittance between the

two, whereas a point-by-point full 3D simulation remains impractical due to

extremely large computational cost. A fast, general method of calculating

admittance between arbitrary tip and inhomogeneous samples is therefore

highly desirable for experiments.

This chapter is organized as follows. Section 3.2 describes the theoretical

principle of the forward solver, and proposes an approach to implement it.

In section 3.3, the results are presented when the perturbation in sample

under test is inhomogeneous, and the image of capacitance variation due

to an “H” shape perturbation structure is shown. Also, the computation

time of applying the proposed method in solving the scanning problems is

compared with that of using COMSOL Multiphysics. To further demonstrate

the FE-BI based forward solver, the image of a buried sample obtained by

MIM in experiment is compared with capacitance variation computed by the

proposed method in section 3.4. Finally, original contributions of this chapter

are summarized in section 3.5.
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Fig. 3.1 A typical near-field microwave microscopy scheme including
geometry and parameters used in the calculation of this chapter: H = 5 µm,
h = 0.485 µm, θ = 30◦, Wp = 1.2 µm, Ws = 6 µm, hp = 0.4 µm, tip sample
distance l = 20 nm, and hs = 0.6 µm (Not to scale).

3.2 Theory and principle of forward solver

3.2.1 Model description

The geometry and parameters used in the calculation are sketched in Fig. 3.1,

and this section considers a widely used cone-sphere tip which is depicted by

the height of the whole tip H, height of cone h, and half cone angle θ. It is

noted that the tip can be of arbitrary geometry and the cone sphere tip is

chosen as an example to present the modeling. In this thesis, frequency is set

to be 1 GHz unless otherwise stated. A three-dimensional sample with two

layers is considered in this chapter. One layer is called feature layer which is a

cuboid region with height hp and width Ws, another one is a bottom surface

grounded substrate layer with height hs and width Ws. All perturbations

are located inside a finite region in the feature layer, which is denoted as the

domain I.

Here, the domain I is chosen as a cuboid with width Wp and height hp.
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Outside the domain I, other regions of feature layer and substrate layer are

filled with known materials and here SiO2 with relative permittivity of 3.9

is used for both of them as an example in this chapter. In this model, it is

assumed that the top surface of the sample is flat and the distance between

the bottom of tip and the top surface of sample is l.

3.2.2 Calculation of potential

Under a tip-sample bias of 1 V , the background potential, i.e., with the

absence of perturbation, is denoted as φi(r). The task is to calculate the

change in capacitance, referred to as contrast capacitance, when perturbation

is present. The model in this chapter calculates the potential inside domain I

using finite element method (FEM) and deals with the potential outside via

the boundary element method (BEM). In domain I, the potential satisfies

the following equations:

∇ · (ε(r)∇φ(r)) = 0 (3.1)

For dielectric samples, ε(r) is a real value representing permittivity of sample,

whereas for conductive materials, ε(r) is replaced by ε(r) − jσ(r)/ω with

σ(r) and ω to be electrical conductivity and angular frequency, respectively.

Following the finite element method [154], domain I is discretized into

rectangular brick elements, and Eq. (3.1) can be discretized as:

K · φ−B · qb = 0 (3.2)

where K and B are evaluated as integral over domain I element and its

boundary element respectively. qb is corresponding to potential derivative at

the boundary with qb = ∂φb
∂n′ , where φb and n′ are the potential on the boundary

and outer normal direction of the boundary, respectively. According to

Green’s Theorem, the electrical potential in the exterior region of domain
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I satisfies the following equation [140]:

φ(r) = φi(r) +

∮
s

[G(r, r′)ε(r′)
∂φ(r′)

∂n′

−φ(r′)ε(r′)
∂G(r, r′)

∂n′
]dr′ (3.3)

where s and n′ are the boundary of domain I and its inward normal direction,

respectively. G(r, r′) is the potential due to a unit charge (Green’s function)

in the background medium, i.e., when there is no perturbation presented in

the sample. Under most cases, G(r, r′) has no analytical solution but it can

be evaluated numerically easily using commercial software. In detail, the

Green’s function G(r, r′) is calculated as:

∇ · (ε(r)∇G(r, r′)) = −δ(r − r′) (3.4)

The physical meaning of G(r, r′) is the potential at the position of r due

to a unit point charge at the position r′. Thus, for the case when there is

no analytical solution, it can be numerically calculated by putting a unit

charge at the position of r′ and evaluate the potential at r. For calculating

∂G(r, r′)/∂n′, one only needs to replace the charge with a dipole [140] due to

reciprocity principle.

Following the discretization method in FEM, the potential φb on boundary

of domain I satisfies the following equation by applying collocation method

to Eq. (3.3):

H · φb +G · qb = b (3.5)

where H and G are calculated as integrals of ∂G(r, r′)/∂n′ and G(r, r′) over

boundary element of domain I, respectively, and b is corresponding to φi(r)

on the boundary of domain I. By combining Eq. (3.2) and Eq. (3.5), the

potential on the boundary of domain can be easily solved.
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3.2.3 Calculation of contrast capacitance

A homogeneous sample which excludes the perturbation is chosen as a

reference model to obtain reference capacitance Cref between tip and ground.

Contrast capacitance (denoted as Ccontrast), which is defined as the difference

between capacitance in the presence of perturbation and Cref , is evaluated

in this chapter. The proposed method to calculate contrast capacitance in

this chapter can also be directly applied to calculate capacitance derivative

with respect to tip sample distance (dC/dl), which is a parameter widely

used in electrostatic force microscopy [111–113, 155, 156]. One only need

to calculate capacitance for two different tip-sample distances, and then

use finite difference to calculate dC/dl. Other parameters related with

capacitance in NFMM, such as d2C/dl2 [117, 136, 143], can also be calculated

in a similar way.

To calculate contrast capacitance between tip and ground, N is defined as

the inward normal direction of tip surface. Taking derivative of both sides in

Eq. (3.3) with respect to N , integrating it over the tip, and then multiplying

both sides by the permittivity of air, Eq. (3.3) becomes:

∆φ =

∮
tip

∮
s

[ε0
∂G(r, r′)

∂N
ε(r′)

∂φ(r′)

∂n′
]drdT−

∮
tip

∮
s

[ε0
∂(∂G(r, r′)/∂n′)

∂N
φ(r′)ε(r′)]drdT

(3.6)

in which

∆φ =

∮
tip

[ε0
∂φ(r)

∂N
− ε0

∂φi(r)

∂N
] dT (3.7)

For ∆φ, an integral of ε0∂φ(r)/∂N and ε0∂φi(r)/∂N over tip surface are

total charges on the tip with and without perturbation presented, respectively.

Since the voltage on tip is 1 V , the left hand side of Eq. (3.6) is directly equal

to the contrast capacitance defined in section previously. On the right hand
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side of Eq. (3.6), if one changes the integral order, it is easy to get the contrast

capacitance between tip and ground due to the presence of perturbation in

sample:

Ccontrast =

∮
s

[Gc(r, r
′)ε(r′)

∂φ(r′)

∂n′

−φ(r′)ε(r′)
∂Gc(r, r

′)

∂n′
]dr′ (3.8)

where Gc(r, r
′) and ∂Gc(r, r

′)/∂n′ can be calculated as the total charges on

the tip due to a unit charge (Green’s function) and dipole in background,

respectively. In detail,

Gc(r, r
′) =

∮
tip

ε0
∂G(r, r′)

∂N
dT (3.9)

It is obvious from the definition of G(r, r′) in Eq. (3.4) that the physical

meaning of Gc(r, r
′) is the total charges on the tip due to a unit charge.

Similarly, when there is no analytical solution for Gc(r, r
′) and ∂Gc(r, r

′)/∂n′,

they can be calculated by evaluating the total charges on the tip when a unit

charge and dipole are presented, respectively.

For Eq. (3.8), using the same process in discretizing Eq. (3.3), contrast

capacitance on tip can be evaluated as:

Ccontrast = −LT · φb −M
T · qb (3.10)

The matrices L and M are calculated as integrals of Gc(r, r
′) and

∂Gc(r, r
′)/∂n′ over boundary element of domain I, and the superscript T

denotes the transpose operator. For the perturbation with conductive

materials presented, capacitance variation will be frequency dependent. The

relationship between charges on the tip and capacitance is:

Q(ω) =
I(ω)

jω
= V (ω)(−jGts(ω)

ω
+ C(ω)) (3.11)

where Gts is the conductance between tip and sample. Under a tip-sample
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Fig. 3.2 Contrast capacitance due to the perturbation of domain I which is
filled with homogeneous oxide with relative permittivity εx for both FE-BI
method and COMSOL values.

bias of 1 V , capacitance is equal to the real part of Q(ω), and combined with

Eq. (3.10), one can get:

Ccontrast(ω) = Re(−LT · φb −M
T · qb) (3.12)

where Re denotes taking the real part of a complex value. Similarly,

considering the relationship between Q(ω) and Gts, contrast conductance is

obtained from Eq. (3.10):

∆Gts(ω) = Im[(L
T · φb +M

T · qb)ω] (3.13)

with Im denotes taking the imaginary part of a complex value.

3.3 Numerical validation

3.3.1 Contrast capacitance at one scanning point

Contrast capacitance is evaluated using the FE-BI approach (denoted as Cfe)

in this chapter and compared with simulation result of COMSOL software

(denoted as Ccom). The first example is concerned with contrast capacitance
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due to the perturbation of domain I which is filled with homogeneous oxide

with relative permittivity εx for both FE-BI and COMSOL values, and, as

is illustrated in Fig. 3.2, it shows a good agreement between them when εx

varying from 6 to 40. Relative error, which is defined as |Cfe−Ccom|/|Ccom|,

is below 0.4% in Fig. 3.2.

In the second example, domain I is filled with four layers of perturbation

as shown in Fig. 3.3(a), and each layer has a height of hn = 100 nm.

The materials filled in each layer are alumina, an unknown oxide, glass and

silicon with relative permittivity set to be 9.3, εy, 6 and 11.7, respectively.

Contrast capacitance due to this four layers perturbation from both FE-BI

and COMSOL results, with εy varying from 6 to 40, is presented in Fig.

3.3(b). In Fig. 3.3(c), certain oxide is replaced by conductive materials with

relative permittivity of 16 and conductivity of σ varying from 0.02 S/m to

7.82 S/m. It is found that contrast capacitance calculated by FE-BI approach

agrees excellently with that by finite element software for both insulating and

conductive perturbation with relative error smaller than 0.6%.
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(a)

(b)

(c)

Fig. 3.3 (a) The side view of a sample with four layers of perturbation filled in
domain I. Each layer has a width of Wp and height of hn and these four layers
are filled with alumina, some certain oxide, glass and silicon, respectively. (b)
Capacitance variation due to the four layers of perturbation sample depicted
in Fig. 3.3(a) for both FE-BI method and COMSOL when changing εy from
6 to 40 and (c) changing the conductivity of the second layer from 0.02 S/m
to 7.82 S/m.
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3.3.2 Effective interaction area

In order to show that the contribution of contrast capacitance in tip-sample

interaction comes primarily from the perturbation of a limited window

(effective interaction area) beneath the tip [153], silicon with permittivity

of 12 is filled in domain I. The width Wp of perturbation domain I is

gradually increased from a small value to 5 µm while other parameters are

kept unchanged. Again, Cref is calculated as the capacitance when there is

no perturbation presented (Wp = 0 µm).

Figure 3.4 shows the contrast capacitance normalized to Wp = 5 µm as a

function ofWp for three different half cone angles of tip, and Fig. 3.5 shows the

normalized contrast for three different substrate heights hs. Conclusions can

be drawn that the contrast capacitance increases when the size of perturbation

domain I is enlarged, but it saturates when Wp reaches some certain value.

The conclusions suggest that only a limited region (effective interaction area)

beneath the tip contributes to the contrast capacitance. Besides, from Fig.

3.4, it is found that with a sharp tip the contrast capacitance increases faster

to saturation than that with a blunt tip, which means that the response on a

Fig. 3.4 Contrast capacitance normalized to Wp = 5 µm as a function of Wp

for three different half cone angles of tip.
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Fig. 3.5 Contrast capacitance normalized to Wp = 5 µm as a function of Wp

for three different substrate heights hs.

blunt tip comes from a larger region beneath the tip. This conclusion suggests

that under the same condition, high resolution will be achieved for a sharper

tip. From Fig. 3.5, it is seen that, comparing with a thick sample, a thin film

is easier to achieve higher resolution with other parameters being the same.

This conclusion suggests that if it is possible, one should reduce the thickness

of sample under test to achieve better resolution in experiment. One physical

reason behind these conclusions is that the electric field concentrates more

between the tip and ground for a sharper tip or thinner sample.

Another point to be addressed is that in Fig. 3.4 and 3.5, the

perturbation domain I is full of perturbation materials, but in practice

perturbation normally comes from only a fraction of the domain I, for

example, perturbations are often particles or stripes. Further simulation

results also show that, in the latter case, it is much easier for contrast

capacitance to reach saturation point comparing with the former case. This

is due to the fact that for such small perturbation particles or stripes, the

perturbation contribution decreases faster when it is farther away from the

tip.
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To summarize, for situations where perturbation materials occupy only

a fraction of the domain I, the computational window beneath the tip can

be chosen to be a smaller domain. Further simulation also suggests that for

most of the sample in experiment, Wp corresponding to NCcontrast = 80% is

good enough for computing contrast capacitance.

3.3.3 Contrast capacitance at different scanning points

In this example, a three dimensional sample with an “H” shape perturbation is

considered, and a cone-sphere tip is applied to scan over this three dimensional

structure with a certain tip-sample distance l. The substrate area is filled

with SiO2 while perturbation region is filled with certain oxide with relative

permittivity of 16. The calculation is done with a finite-element package

COMSOL 4.3 3D solver and the result is used as a benchmark to compare with

the FE-BI results obtained by the method in this chapter. In the calculation of

contrast capacitance using FE-BI method, at each scanning point, a window

with width of 1.2 µm beneath the tip is considered as the perturbation region

Fig. 3.6 Cone-sphere tip scans over a three dimensional sample with an “H”
shape perturbation presented (Wp = 100 nm and Ls = 400 nm).
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Fig. 3.7 Contrast Contrast capacitance image when tip scans over “H” shape
perturbation (simulation results from COMSOL).

Fig. 3.8 Contrast Contrast capacitance image when tip scans over “H” shape
perturbation (results from FE-BI method).

which contributes to the contrast capacitance.

Figure 3.7 presents the contrast capacitance image when the tip scans over

the sample shown in Fig. 3.6 in COMSOL, and Fig. 3.8 shows the counterpart

obtained by the proposed FE-BI method, where it is seen that both results

agree with each other perfectly. If same computers and discretizations on

domain I are used, for such a pattern, it takes about 130 minutes and more

than 30 GB RAM to finish the simulation in COMSOL whereas it takes

only about 18 minutes and 1 GB RAM using the stored Green’s function
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to compute the contrast capacitance applying the method introduced in this

chapter. It suggests that the proposed method has great advantage in the

scanning of 3D structure over commercial software.

Moreover, even if the structures (here, the “H” pattern) fabricated

in the same substrate have been changed, one can directly compute the

perturbation on the tip without re-storing the Green’s function. Another

important advantage of the method in this chapter is that it can be directly

applied to inverse problem, and the properties of unknown materials can

be reconstructed by solving the inverse problem. By comparing with the

exact pattern shown in Fig. 3.6, it is seen from Fig. 3.7 and 3.8 that

the perturbation response on a tip is actually a convolution from a region

beneath the tip rather than just from a single pixel beneath the tip. If one

can reconstruct the materials properties by deconvolution, the resolution can

be noticeably improved.

3.4 Experimental validation

Figure 3.9 presents a two layer standard sample for measuring the dielectric

response of microwave impedance microscopy. In the measurement, a pyramid

tip with the height of 5.3 µm , angle of 69◦ and apex diameter approximately

Fig. 3.9 Side view of a buried sample structure, and SiO2 is buried in Al2O3

layer with a specific pattern.
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Fig. 3.10 Capacitance varying with tip-sample distance (l) for both EFM
and MIM (scaled). The horizontal axis denotes the tip-sample distance.

of 50 nm is used and the schematic of the pyramid tip is depicted in Fig.

2.10(a) [6]. The sample under test consists of a doped Si layer and Al2O3

layer with permittivity of 9, and SiO2 with permittivity of 3.9, buried in

Al2O3 layer with a specific pattern.

In experiment, electrostatic force microscopy (EFM) is used to calibrate

the signal of MIM [118, 157]. In one mode of MIM, measured signal is directly

proportional to capacitance between tip and ground. Thus, as is presented

in Fig. 3.10, if taking tip-sample approach curves at the same scanning point

by both EFM and MIM, the approach curves can be matched between them

by a scaling factor (620 aF/V ) on MIM. Thus, one is able to directly convert

measured signal into capacitance images when tip scans across the sample in

Fig. 3.9 using the scaling factor.

Since there is always an arbitrary offset in the experiment, one needs

to take capacitance difference between two different tip-sample distances to

eliminate it. Figure 3.11(a) presents the capacitance difference image between

tip-sample distance of 0 nm and 200 nm measured by microwave impedance

microscopy. Although there are some small discontinuities due to drifts in
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experiment, it is found that the buried structure pattern is clearly resolved.

In FE-BI part, contrast capacitance at a tip-sample distance of 0 nm and

200 nm is calculated. Fig. 3.11(b) shows capacitance difference between

tip-sample distance of 0 nm and 200 nm obtained by the FE-BI method in

this chapter. Except for some small discrepancies due to stains in sample

and drifts in experiment, it is found that capacitance difference measured

by experiment matches well with results calculated by FE-BI method. The

data (denoted as A) in the scanning area of Fig. 3.11(a) is also extracted,

and compared with the value of capacitance difference (denoted as B) at the

same positon in Fig. 3.11(b). It is found that the relative error, which is

calculated as |A−B|/|B|, is as small as 3.05%.
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(a)

(b)

Fig. 3.11 (a) Capacitance difference between tip-sample distance of 0 nm
and 200 nm measured by MIM (dash-line rectangular represents the specific
calculation area in FE-BI method). (b) Capacitance difference between tip-
sample distance of 0 nm and 200 nm computed by FE-BI method in this
chapter. Each pixel has an area of 0.25× 0.25 um2.
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3.5 Summary

In this chapter, a hybrid numerical method combing boundary element and

finite element methods is used to reduce the computational domain of tip-

sample interaction in NFMM into a box (the domain I). The associated

computational costs are largely reduced in tip-sample interaction problem.

The principles behind the approach are firstly derived in this chapter, and

then the proposed approach is verified by both numerical and experimental

methods in this chapter. The original contributions of the method proposed

are summarized as follows.

The first advantage of this approach is that it can be directly applied to

scanning microscopy and saves considerable time and memory. For different

scanning points, the region that perturbs the tip-ground capacitance is limited

to a box (the domain I) beneath the tip and consequently for the materials

outside this region one can treat them as known homogeneous material due to

their negligible contribution to contrast capacitance. Thus, Green’s function

is not changed for different scanning points, and one only needs to change the

value of K matrix that depends on the properties of perturbation materials

during the scanning process. To conclude, the proposed method reduces the

three-dimensional computational domain to the computational box (i.e., the

aforementioned effective region) beneath the tip, which avoids using FEM

to compute the whole computational domain (whatever between the tip and

the ground) during the scanning process. To simulate three-dimensional tip-

sample interaction for scanning points, the proposed method is much faster

than brute force all-domain methods.

The second advantage of this approach is that the framework is applicable

to various models regardless of the tip shape, sample type and perturbation
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material, and the results are very accurate. For different setting of tips and

samples, one only needs to calculate the corresponding Green’s function on

the boundary of effective region. When analytical Green’s function is not

available, one can numerically calculate it and then save it in the library. Note

that the numerical evaluation of Green’s function is needed only once for a

given experimental setup, and will not change during the scanning process.

The third and most important advantage is that this rigorous approach

can be directly applied to inverse problem in next chapter, where one is able

to reconstruct the materials properties from received signal of NFMM by

deconvolution and noticeably improve resolution.
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Chapter 4

Nonlinear Image

Reconstruction with Total

Variation in NFMM

4.1 Introduction

As is stated previously, most of the studies in NFMM are limited to qualitative

detecting, and it is still a very challenging task to quantitatively extract

physical properties such as permittivity and conductivity of materials from

received signals, especially for three dimensional inhomogeneous samples

[113–115, 158]. In this chapter, based on the above mentioned forward

problem solver, a fast nonlinear image reconstruction method using conjugate

gradient (CG) algorithm with total variation constraints [158] is presented

to quantitatively restore both permittivity and conductivity information of

inhomogeneous samples from capacitance variation signals. Numerical results

show that the proposed method can accurately reconstruct the permittivity

distribution in three dimensional samples under test. More importantly, it
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is also found that, by reconstructing the permittivity and conductivity of

samples from the received capacitance signals, the imaging resolution can be

highly improved in NFMM.

This chapter is organized as follows. Section 4.2 describes the theoretical

principle of the reconstruction method, and introduces an efficient CG based

approach with total variation constraints. In section 4.3, the numerical

results for various samples under test are presented, and it is shown that

the proposed method is able to restore permittivity and conductivity from

capacitance variation and improve resolution in NFMM. Finally, the main

original contributions and future work are included in section 4.4.

4.2 Inverse formulation

In the inverse problem, the contrast capacitance between tip and sample is

measured at every scanning point, whereas the permittivity or conductivity

distribution of the sample is unknown and has to be determined.

Defining the matrix P , which picks up the boundary nodes out of all

nodes, the potential at the boundary φb is obtained by combining Eq. (3.2)

and Eq. (3.5):

φb = P · φ = P ·Kε ·B ·G
−1
· b (4.1)

with

Kε = (K +B ·G
−1
·H · P )−1 (4.2)

Therefore, the contrast capacitance ∆Ci at the ith scanning point is obtained

by

∆Ci = −LTφb −M
T
qb = (M1 +M3) ·K

i

ε ·M2 +M4 (4.3)

where M1 = −LT · P , M2 = B · G
−1
· b, M3 = M

T · G
−1
· H · P , and
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M4 = −MT · G
−1
· b. K

i

ε is the value of Kε at the ith scanning point, and

it is also the only term which is related with the unknown permittivity ε in

Eq. (4.3). Then, a nonlinear least squares cost function corresponding to

the residue between measured contrast capacitance and the predicted one is

defined:

fc =
S∑
i=1

(∆Ci −∆Cm
i )2 (4.4)

where ∆Cm
i is the measured contrast capacitance at the ith scanning point,

and S represents the total number of scanning points. Since the sample

considered is piecewise constant, the total variation regularization is defined

[158]:

T (ε) =

∫
I

√
|∇ε|2 + α2dI (4.5)

where ε is the predicted permittivity, and α is a small positive constant to

keep T (ε) differentiable at ε = 0. Specifically, the total variation T of a

discrete imaging with a M ×M sampling grid is expressed as [159, 160]:

T (ε) =
M−2∑
i,j=0

√
|εi+1,j − εi,j|2 + |εi,j+1 − εi,j|2 + α2

+
M−2∑
i=0

√
|εi+1,M−1 − εi,M−1|2 + α2

+
M−2∑
j=0

√
|εM−1,j+1 − εM−1,j|2 + α2 (4.6)

Therefore, one is able to define the objective function with a total variation

regularization term as:

f(ε) =
S∑
i=1

(∆Ci −∆Cm
i )2 + βT (ε) (4.7)

where β is a regularization parameter to be adjusted in optimization process

[161–163]. The unknown permittivity in sample under test is reconstructed

by minimizing the objective function in Eq. (4.7).
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4.3 Implementation procedures

In the inverse procedures, conjugate gradient (CG) method is used to

minimize the objective function in Eq. (4.7), and the implementation

procedures of this nonlinear inverse problem are detailed as follows.

• Step 1) Calculate M1, M2, M3, and M4 in Eq. (4.3).

• Step 2) Initial step, n = 1; Give an initial guess of ε0 = εb, and εb is the

background permittivity.

• Step 3) Determine the search direction: Calculate the matrix term K
i

ε,

objective function f(εn), and gradient of objective function g(εn) =

∂f(εn)/∂εn. Then determine the Polak-Ribière-Polyak (PRP) direc-

tions [164]: If n=1, the search direction ρ1 is ρ1 = −g1. Otherwise,

ρn = −gn + (Re[(gn − gn−1)∗ · gn]/||gn−1||2)ρn−1, where the superscript

“*” denotes the transpose conjugate operator.

• Step 4) Determine the search length ln according to Wolfe conditions

[164] (Initialize m=0):

– Step 4.1) Calculate f(ε+ γmρn) and g(ε+ γmρn).

– Step 4.2) If |g(ε+ γmρn)T | ≤ −σgTnρn and f(ε) − f(ε+ γmρn) ≥

−δγmgTnρn, where σ and δ are two parameters adjusted in

optimization and 0 < δ < σ < 1, let ln = γm and move to Step 5).

Otherwise, let ln = γm, m = m+ 1, and go to Step 4.1).

• Step 5) Update εn+1: εn+1 = εn + lnρn.

• Step 6) If termination condition is satisfied, stop iteration. Otherwise,

let n = n+ 1, and go to step 3).
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Fig. 4.1 (a) A three-dimensional sample with an “H” shape perturbation
presented with Ws = 6 µm, hs = 1 µm, hp = 0.4 µm, Wh = 100 nm,
Ls = 400 nm, εb = 3.9 and ε1 = 16; (b) Top view of exact distribution of
relative permittivity in (a); (c) The simulated received capacitance signal; (d)
Reconstruction of relative permittivity from the signal in (c).
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4.4 Numerical validation

This section presents some numerical results to evaluate the performance

of the proposed nonlinear reconstruction method in this chapter. In all

the numerical results, as is illustrated in Fig. 3.1, a cone-sphere tip with

H = 0.5 µm, h = 0.485 µm, and θ = 30◦ is used. The measured signals

are computed by commercial software COMSOL, which include capacitance

and capacitance derivative signals. Capacitance signal is same as the

contrast capacitance in the forward model, and capacitance derivative signal

is computed as the derivative of capacitance signal with respect to tip-

sample distance. Both of them are widely used measured signals in NFMM

measurements.

Figure 4.1(a) presents a three dimensional “H” shape perturbation

presented sample. The total sample size is Ws×Ws×hs with Ws = 6 µm and

hs = 1 µm. The “H” shape perturbation is distributed in a top layer layer of

the sample with the thickness hp = 0.4 µm, width Wh = 100 nm , and length

Ls = 400 nm. As illustrated in Fig. 4.1(a), except the “H” perturbation

shape, all the other regions of the sample have a relative permittivity of

εb = 3.9. The top view of exact distribution of permittivity is depicted in Fig.

4.1(b). Contrast capacitance computed by COMSOL software is shown in

Fig. 4.1(c), where the “H” feature is hardly recognized although the position

and size of the “H” shape are roughly displayed. As is mentioned above,

the measured capacitance signal is not the exact sample properties beneath

the tip, but an accumulative response over a spread region centered at the

tip. Thus, by restoring the permittivity of the sample from the measured

capacitance, imaging resolution can be improved. Figure 4.1(d) presents the

reconstructed relative permittivity from the received capacitance signal in
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Fig. 4.2 (a) A three-dimensional sample with an “51” shape perturbation
presented with Ws = 6 µm, hs = 1 µm, hp = 0.4 µm, Ws1 = 100 nm, Ws2 =
250 nm, Ls1 = 600 nm, Ls2 = 150 nm, εb = 3.9, and ε1 = 16; (b) Top view of
exact distribution of relative permittivity in (a); (c) The simulated received
capacitance derivative signal; (d) Reconstruction of relative permittivity from
the signal in (c).

Fig. 4.1(c). It suggests that, by reconstructing the relative permittivity for

all pixels, the “H” pattern is retrieved in Fig. 4.1(d), and imaging resolution

is highly improved.

In the second example, a more challenging three dimensional sample is

considered. The total size of the sample is the same as that of the first

example, whereas the shape of perturbation is more complex. As illustrated

in Fig. 4.2(a), a “51” shape perturbation is distributed in a top layer layer

of the sample with the thickness hp = 0.4 µm, width Ws1 = 100 nm,

Ws2 = 250 nm, and length Ls1 = 600 nm, Ls2 = 150 nm. Figure 4.2(b)
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presents the top view of exact distribution of relative permittivity for “51”

shape perturbation sample. The simulated received capacitance derivative

signal is shown in Fig. 4.2(c), and it is found that the perturbation feature

can hardly be identified from the received capacitance derivative signal. As

presented in Fig. 4.2(d), the relative permittivity distribution is reconstructed

from the received capacitance derivative signal. It suggests that the proposed

nonlinear reconstruction method is able to reconstruct the sample properties

from received signal and improve imaging resolution at the same time.

Fig. 4.3 Top view of exact distribution of (a) relative permittivity and
(b) conductivity for a conductive sample with an “51” shape perturbation
presented; The simulated received (c) capacitance derivative and (d)
conductance derivative signals; Reconstructed (e) relative permittivity and
(f) conductivity from the received signals.
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Fig. 4.4 (a) The simulated received capacitance derivative signal, where 5%
Gaussian noise is added; (b) Reconstruction of relative permittivity from the
signal in (a).

In the third example, a three dimensional sample with conductive

perturbation presented is considered. The geometry size and position of

the sample are the same as that of the second sample in Fig. 4.2(a),

whereas the perturbation of “51” shape is replaced by conductive material

with relative permittivity εr = 16 and conductivity σ = 0.2 S/m. The top

view of exact distribution of relative permittivity and conductivity for the

sample are depicted in Fig. 4.3(a) and (b), respectively. The capacitance

and conductance derivative signals are recorded by COMSOL software, and

depicted in Fig. 4.3(c) and (d), respectively. Similarly, it is found that

the perturbation feature can hardly be distinguished from the received

capacitance and conductance derivative signals. In the inverse problem, both

of relative permittivity and conductivity are reconstructed from the received

signals. As shown in Fig. 4.3(e) and (f), the imaging resolution is highly

improved and sample properties are restored.

The fourth example considers a noisy case, where the received signal in

the second example is recorded as a matrix R. Additive white Gaussian noise

(AWGN) is added to the received signal, and is quantified by (||r||/||R||) ×

100%, where ||·|| denotes Frobenius norm. Figure 4.4(a) presents the received
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capacitance signal with 5% Gaussian noise. The reconstructed permittivity

profile from the received noisy signal is shown in Fig. 4.4(b), and it suggests

that, with the presence of white Gaussian noise, the proposed method is able

to reconstruct the properties of materials and improve the imaging resolution

at the same time.

4.5 Summary

This chapter presents a nonlinear image reconstruction method with to-

tal variation constraint in near-field microwave microscopy (NFMM). The

method is fast because it reduces the computational domain for tip-sample

interaction problem to a block perturbation region by applying Green’s

Theorem in the forward model. In the inverse procedures, conjugate gradient

(CG) method is used to minimize the objective function.

Numerical examples show that the proposed method can not only quanti-

tatively reconstruct the permittivity distribution in three dimensional samples

for NFMM, but also improve the imaging resolution. Most importantly, the

methods proposed can be accomplished in a post-processing sense without

requiring expensive and complex instruments in experiment or destructing

the samples under test, and it can also be easily applied to other scanning

imaging systems with very few changes.

In the next step, the experimental part of the inversion method will be

focused to verify that the proposed method is able to improve resolution in

experiment. It mainly includes the compensation of drift errors and noise,

the calibration of various samples and the design of samples which can be

hardly distinguished in experiment.
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Chapter 5

Two FFT Subspace-Based

Optimization Methods for

Electrical Impedance

Tomography

5.1 Introduction

In previous chapters, the modeling and inversion of NFMM have been

discussed, which are in the framework of Laplace’s equation that is described

by Eq. (3.1). In this chapter, modeling and inversion of electrical impedance

tomography (EIT), which are also in the framework of Laplace’s equation,

are studied. As mentioned in the first Chapter, electrical impedance

tomography has attracted intense interests recently in both mathematical

and engineering communities [120–122]. It is well-known that EIT is a

very challenging problem due to its nonlinear and highly ill-posed properties

[124, 125]. Various methods have been proposed to solve EIT problems
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such as factorization method [131, 132], unconstrained least squares methods

[133], variationally constrained numerical method [134], and subspace-based

optimization method (SOM) [135].

The factorization method is able to locate the boundaries of inclusions fast,

but it cannot be applied to some challenging inclusions, such as an annulus

or two inclusions with one more conductive and the other one less conductive

than the background [165–167]. In addition, the factorization method is not

robust in presence of noise [168–170]. Traditionally, the unconstrained least

squares approach has been the method of choice [133], due to its simplicity

and relatively low computational cost. However, the unconstrained least

squares approach does not make the best use of the measured data, and

the image resolution is very limited [134]. Later, variational constraints

method is proposed to achieve a better image resolution by efficiently using

the data fit [134]. However, neither unconstrained least squares approach nor

variational constraints method is robust to noise and reconstructed results

are not satisfying when 3% noise is added in [134].

Recently, subspace-based optimization method (SOM) is proposed to solve

electrical impedance tomography (EIT) problems [135]. In SOM, through a

full singular value decomposition (SVD) of matrix mapping from induced

current to voltage on the boundary, the induced current is decomposed

into deterministic part and ambiguous part. The deterministic part can be

computed from SVD, whereas the ambiguous part is obtained by optimizing

the subspace spanned by singular vectors corresponding to small singular

values. Compared with the contrast source inversion (CSI) method [171–

173], SOM has the properties of faster convergence rate and good robustness

against noise. However, a drawback of SOM is the overhead computation

associated with the full SVD of matrix mapping from induced current to
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voltage on the boundary [174]. In order to reduce the computational cost,

an improved method is proposed in [175] to avoid the full SVD in SOM by

using a thin SVD method. In addition, the computational speed is further

increased with FFT applied in twofold subspace-based optimization method

(TSOM) [176].

This chapter proposes two FFT subspace-based optimization methods

for electrical impedance tomography in a domain with arbitrary boundary

shape [123]. The first one is a new fast Fourier transform subspace-

based optimization method (NFFT-SOM). Compared with the original SOM

method in [135], the original contributions and advantages of NFFT-SOM

are as follows:

(1) Instead of solving problems with circular boundary, where analytical

Green’s function is available, the proposed method extends to be

applicable to a domain with an arbitrary boundary shape.

(2) Instead of using a noise subspace corresponding to smaller singular

values in SOM, complete Fourier bases are used in NFFT-SOM. It

is found that, compared with SOM, NFFT-SOM can obtain better

reconstructed results in dealing with high noise EIT problem. Also,

the computational complexity of the proposed method is greatly reduced

compared with [135] for two reasons. Firstly, it avoids the full singular-

value decomposition of the matrix mapping from the induced current to

received voltage. Secondly, FFT can be directly used in algorithm to

accelerate the computational speed.

(3) It is also found that NFFT-SOM is robust to the change of number of

significant singular values (the integer L) for both high and low noise

cases, which is an important and encouraging conclusion.

78



5 TWO FFT SUBSPACE-BASED OPTIMIZATION METHODS
FOR ELECTRICAL IMPEDANCE TOMOGRAPHY

(4) Instead of using coupled dipole method to solve the EIT problem, a more

general method, i.e., method of moment (MOM) is adopted in NFFT-

SOM.

Additionally, compared with the thin SVD method in [175], where the

computational costs is reduced in [175] by constructing the ambiguous current

subspace from identity matrix and deterministic current subspace, the NFFT-

SOM constructs the ambiguous current subspace that is directly spanned by

complete Fourier bases instead of singular value vectors.

Compared with the twofold subspace-based optimization method in [176],

where 2D Fourier bases are used to construct the current subspace for two

dimensional TM cases, 1D Fourier bases are used in NFFT-SOM for EIT

problems in proposed method. Since the subspace spanned by low frequency

Fourier bases roughly corresponds to the subspace spanned by singular vectors

with large singular values [176, 177], 1D Fourier bases adopted in this chapter

directly exhibit such a correspondence, whereas the 2D Fourier bases adopted

in [176] have to be sorted in order to exhibit such a correspondence. In

addition, when the domain of interest is not a rectangle, the application of

2D Fourier bases requires an extra work of extending the domain of interest to

a rectangle that is able to fully cover it. For NFFT-SOM, there is no need to

extend the domain of interest to a rectangle one. These are two advantages of

the proposed method over [176] as far as implementing the SOM is concerned.

As mentioned above, it is well known that the behavior of Fourier

functions is similar to that of singular function in singular value decomposition

(SVD) in the sense that low-frequency Fourier functions correspond to

those singular functions with large singular values [176, 177]. Thus, it is

very natural to think that we can replace the deterministic current and

noise subspace in SOM with low frequency current and space spanned by
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discrete Fourier bases, respectively. For convenience, we denote this method

as low frequency subspace optimized method (LF-SOM). In this chapter,

the performance of LF-SOM has been discussed through various numerical

simulations and comparisons with traditional SOM and NFFT-SOM in EIT

problems. Additionally, it is noted that though we test our proposed methods

in two-dimensional examples in this chapter, both of the proposed methods

are applicable to three-dimensional cases.

5.2 Forward model

5.2.1 Model description

In this chapter, a two-dimensional domain I consisting of a square and four

half circles is considered. As it is depicted in Fig. 5.1, the square has a

Fig. 5.1 A typical schematic of EIT problem with a two dimensional domain
consisting of a square with width W1 and four half circles with a radius of
W1/2, in which W1 = 1, and σ0 = 1. Voltages are measured at a number of
Nr nodes on the boundary ∂I which are labeled as dots.
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width of W1 which is surrounded by four half circles with a radius of W1/2.

Actually, domain I can be of arbitrary shape, and the one in Fig. 5.1 is

chosen as an example to present the proposed method. The background is

homogenous material with the conductivity of σ0 and some inclusions with

conductivity of σ(r) are embedded in a region interior to domain I. Electrical

current is injected from the boundary ∂I into domain I, and voltages are

measured at a number of Nr nodes on the boundary ∂I which are labeled as

dots in Fig. 5.1. There are a total number of Ni excitations of current from

boundary, and voltages at all nodes are measured for each excitation. Due

to the presence of inclusions, the voltages measured at the boundary differ

from those in homogenous case, and the differential voltage between these

two cases at each node is recorded as V q
p , p=1, 2, . . . , Ni, q=1, 2, . . . , Nr.

5.2.2 Theoretical principle

The Neumann boundary value problem in EIT can be described as the partial

differential equation∇·(σ∇µ) = 0 in I, with σ ∂µ
∂ν

= J on ∂I given a boundary

excitation current J ∈ H−1/2(∂I) with
∮
∂I
Jds = 0, where ν is the outer

normal direction on the boundary ∂I. This Neumann boundary value problem

has a unique weak solution given that µ ∈ H1(I) with
∮
∂I
µds = 0. The

partial differential equation can further be written as:

∇ · (σ0∇µ) = −ρin in I, σ0
∂µ

∂ν
= J on ∂I (5.1)

with the induced source ρin = ∇ · [(σ − σ0)∇µ]. Since the inclusions are

within a region interior to I, the σ at the boundary ∂I is just the known σ0.

To solve Eq. (5.1) in method of moment [178], the Green’s function G(r, r′)

in homogeneous background medium is defined and it satisfies the following
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differential equation with the normalization
∮
∂I
G(r, r′)ds = 0,

∇ · (σ0∇G(r, r′)) = −δ(r− r′) with σ0
∂G

∂ν
= − 1

|∂I|
on ∂I (5.2)

where δ(r − r′) is the Dirac delta function, and r and r′ are the field point

and source point in domain I, respectively.

The solution of every linear differential equation like Eq. (5.1) consists

of two part: the particular solution µs that depends on the induced source

ρin together with the boundary condition σ0
∂µs

∂ν′
= 0 on ∂I, and the general

solution that depends on the exciting current J on the boundary that is

injected into a homogeneous medium in absence of induced source ρin. The

superscript s in µs means “scattered” since the physical meaning of µs is

actually scattered potential by the induced source.

For the particular solution, it can be solved according to Green’s theorem

[140] as:

µs =

∫
I

G(r, r′)ρin(r′)dr′ + I∂I (5.3)

with

I∂I =

∮
∂I

[G(r, r′)σ0
∂µs

∂ν ′
+ µsσ0

G(r, r′)

∂ν ′
]ds′ (5.4)

On boundary ∂I, according to σ0
∂µs

∂ν′
= 0 and the predefined normalization∮

∂I
µsds = 0, it is easy to get I∂I = 0. Therefore, µs =

∫
I
G(r, r′)ρin(r′)dr′ is

the particular solution for differential equation in Eq. (5.1).

For the general solution, it satisfies that ∇ · (σ0∇µ0) = 0 with σ0
∂µ0

∂ν′
=

J on ∂I. Thus, the compete solution for Eq. (5.1) is

µ = µ0 + µs = µ0 +

∫
I

G(r, r′)∇′ · [(σ(r′)− σ0)∇′µ(r′)]dr′ (5.5)

Utilizing the identity ∇′ · (G(r, r′)A) = A · ∇′G(r, r′) + G(r, r′)∇′ ·A with

A = (σ(r′) − σ0)∇′µ(r′) and considering that
∫
I
∇′ · (G(r, r′)A)dr′ = 0 due
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to divergence theorem, Eq. (5.5) becomes

µ = µ0 +

∫
I

−∇′G(r, r′) · (σ(r′)− σ0)∇′µ(r′)dr′ (5.6)

Taking gradient on both side of Eq. (5.6), the following self-consistent

equation can be obtained.

Et = E0 +

∫
I

−∇[∇′G(r, r′) · (σ(r′)− σ0)Et(r′)]dr′ (5.7)

for electric field Et = −∇µ and E0 = −∇µ0.

5.2.3 Discretization method

In method of moment (MOM) [178], domain I is discretized into a total

number of M small squares that are centered at r1, r1, . . . , rM , and the mth

subunit has an effective radius of am. Pulse basis function and delta test

function are used in MOM and the total electric field exerting on subunits

E
t

p(rm) can be expressed as,

E
t

p(rm) = E
0

p(rm) +
M∑
n=1

GD(rm, rn) · ξn · E
t

p(rn) (5.8)

where p represents the pth injection of current, and E
0

p(rm) is the electric

field in homogeneous background. ξn relates the current induced in the nth

subunit J(rn) to the total electric field E
t

p(rn), i.e., J(rn) = ξn · E
t

p(rn).

According to Eq. (5.6), ξn can be calculated as ξn = πa2m(σ(rn)− σ0)I2, and

I2 is a two-dimensional identity matrix. The Green’s function GD(rm, rn) is

characterized as GD(r, r′) · d = −∇[∇′G(r, r′) · d] for a arbitrary dipole d.

Since the boundary of domain I is irregular, G(r, r′) in Eq. (5.7) has no

analytical solution. Instead, it can be computed using numerical software

as potential at r due to a unit dipole placed at r′. In order to deal

with singularities in the integral, G(r, r′) is decomposed into two parts:

unbounded-domain Green’s function G0(r, r
′) that contains singularity, and
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the general Green’s function GI(r, r
′) that contains no singularity and is

directly calculated as G(r, r′)−G0(r, r
′). Then, in Eq. (5.7), the singularities

in the integral can be easily calculated with the analytical solution, and the

other part of integral is calculated by Gaussian quadrature method [179]. The

details to deal with singularities are included in next section.

The relationship between J(rn) and E
t

p(rn), together with Eq. (5.8) leads

to

Jp = ξ · (E0

p +GD · Jp) (5.9)

where Jp is a 2M -dimensional vector with

Jp = [Jxp (r1), J
x
p (r2), ..., J

x
p (rM), Jyp (r1), J

y
p (r2), ..., J

y
p (rM)]T (5.10)

in which Jxp (rM) and Jyp (rM) are x and y component of induced current at rM

for the pth injection of current on boundary ∂I, respectively. The superscript

T denotes the transpose operator of a matrix. GD is a 2M ×2M matrix with

GD = [Gxx, Gxy;Gyx, Gyy] (5.11)

in which Gxx is a M ×M matrix. Gxx(m,n) and Gxy(m,n) is computed as

x component of electric field at rm due to a unit x-oriented and y-oriented

dipole placed at rn, respectively. Gyx and Gyy can also be evaluated in a

similar way. ξ consists of ξm in a diagonal way, and ξm can be calculated as

ξm = πa2m(σ(rn) − σ0). Thus, the induced current Jp can be obtained from

Eq. (5.9). According to Eq. (5.6), the differential voltage on the boundary

V (r∂I) can be calculated as:

V (r∂I) = µ− µ0 =

∫
I

−∇′G(r∂I, r
′) · (σ(r′)− σ0)∇′µ(r′)dr′ (5.12)

where r∂I is the position at the boundary ∂I. Following the same discretized

method in Eq. (5.8), the differential voltage V p at the boundary for pth
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injection is then calculated as

V p = G∂ · Jp (5.13)

where G∂(r∂I, r
′) is characterized as G∂(r∂I, r

′) = ∇′G(r∂I, r
′) and G∂ is a

Nr × 2M matrix [G
x

∂, G
y

∂]. G
x

∂(q, n) and G
y

∂(q, n) are calculated as potential

on the boundary node rq due to a unit x-oriented and y-oriented dipole at

rn, respectively. This forward model has been verified by comparing with

commercial software (COMSOL), and numerical results calculated by the

proposed forward model agree well with the simulation results produced by

COMSOL for various examples.

5.2.4 Singularities in Green’s function

As is mentioned in previous section, to deal with the singularities in the

integral of Eq. (5.7), G(r, r′) is decomposed into two parts: unbounded-

domain Green’s function G0(r, r
′)

G0(r, r
′) =

−1

2πσ0
log(|r− r′|) (5.14)

Fig. 5.2 Schematic of Green’s function integral on a small cell with
singularities.
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which contains singularity and the general Green’s function GI(r, r
′) that

contains no singularity and is directly calculated as G(r, r′)−G0(r, r
′). The

second part is directly calculated by Gaussian quadrature method [179], and

for the first part, it is calculated as follows. As depicted in Fig. 5.2, for

arbitrary small discretization cell D with the size of 2b × 2b, one needs to

calculate the following integration in Eq. (5.7) (Suppose that the filed point

is at the origin):

I1 =

∫∫
D

−∇[∇′G(r, r′) · d0] dx′dy′ (5.15)

in which d0 is a unit dipole. Ixx and Ixy are defined as the x component

of I1 due to a unit x and y oriented dipole, respectively. Similarly, Iyx and

Iyy are defined as y component of I1 due to a unit x and y oriented dipole,

respectively. Thus,

Ixx = −
∫ b

−b

∂

∂x

∫ b

−b
[∇′G(r, r′) · (x̂)] dx′dy′ = −1/2 (5.16)

Iyy, Ixy and Iyx are calculated as -1/2, 0, 0 in a similar way, respectively.

5.3 Inverse algorithm

5.3.1 Subspace-based optimization method (SOM)

It is well-known that EIT is a highly ill-posed problem, which means that

the induced current can’t be uniquely determined from Eq. (5.14). In the

traditional SOM [174, 180], a full singular value decomposition is firstly

conducted on G∂ , in which G∂ =
∑

m umσmν
∗
m with G∂ · νm = σmum,

σ1 ≥ σ2 ... ≥ σ2M > 0. Alternatively, G∂ = U · Σ · V
∗
, in which U is a

Nr × Nr matrix composed of left singular vectors, V is a 2M × 2M matrix

composed of right singular vectors, and Σ is a diagonal matrix composed of
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singular values. The superscript ∗ denotes the transpose conjugate operator.

Then, induced current J is mathematically classified into deterministic

current J
s

and ambiguous current J
n
, J = J

s
+ J

n
, where the former is

uniquely determined by the signal subspace V
s

composed of first L singular

vectors and the latter is reconstructed in the noise subspace V
n

spanned by

the remaining 2M − L singular value vectors [174, 180].

5.3.2 New fast Fourier transform subspace-based opti-

mization method (NFFT-SOM)

As mentioned in [175, 176], the drawback of the traditional SOM is its

overhead computational cost associated with a full SVD of the matrix

mapping from the induced current to received signal, especially when the

domain of interest is large. Thus, an alternative method to construct

ambiguous part of induced current is proposed to avoid a full SVD of the

matrix mapping from induced current to scattered fields [175].

This chapter proposes a new fast Fourier transform subspace-based

optimization method (NFFT-SOM) which avoids a full SVD of G∂, and in

addition, fast Fourier transform can be used to accelerate the computational

speed at the same time. In NFFT-SOM, the deterministic current is still

computed by the first L singular vectors, whereas the ambiguous current is

spanned by a complete Fourier bases F , in which the 2M × 2M dimensional

matrix F consists of units F (m,n) = exp(−j2π(m− 1)(n− 1)/(2M)). Since

only the first L singular vectors is needed, a thin-type SVD of G∂ is sufficient

to supply these bases, and the complexity of a thin SVD is smaller than that

of a full SVD [175, 181]. Thus, the induced current can be written in the
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form

Jp = J
s

p + F · αnp (5.17)

where αp
n is a 2M -dimensional vector to be optimized. F · αpn is

calculated in fast Fourier transform way with the computational complexity of

O(2M log22M), whereas the complexity of direct multiplication in traditional

SOM is O(2M(2M −L)). Since 2M −L is usually much larger than log22M ,

the computational cost in NFFT-SOM is much smaller. Using Eq. (5.17),

the residue of Eq. (5.14) is

∆f
p = ||G∂ · J

s

p +G∂ · F · αnp − V p||2 (5.18)

and residue of Eq. (5.9) becomes

∆a
p = ||A · αnp −Bp||2 (5.19)

in which A = F − ξ · (GD ·F ), and Bp = ξ · (E0
+GD ·J

s

p)−J
s

p. The objective

function is defined as:

f(αn1 , α
n
2 , ..., α

n
Ni
, ξ) =

Ni∑
p=1

(∆f
p/|V p|2 + ∆s

p/|J
s

p|2) (5.20)

5.3.3 Low frequency subspace optimization method

(LF-SOM)

Considering the fact that low-frequency Fourier functions in FFT correspond

to those singular functions with large singular values in SVD [176, 177], one

can further replace the deterministic current J
s

in NFFT-SOM with low

frequency components of current in this section, and denote the method as

low frequency subspace optimization method (LF-SOM). In LF-SOM, the

deterministic current J̃Lp is spanned by the first L low frequency Fourier bases,

i.e., J̃Lp =
L∑
i=1

α
′
iFi = FLα

′L
p , and the coefficient α

′L
p can be calculated in a least
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square sense from Eq. (5.14) by

α
′L
p = ((G∂FL)∗ · (G∂FL))

−1
· ((G∂FL)∗ · V p) (5.21)

The computational complexity of Eq. (5.21) is O(2MNrL), which is smaller

than the computational complexity (O(2MNr
2)) of thin SVD [175, 181] in

NFFT-SOM since L is usually smaller than Nr. Thus, the speed of LF-SOM

is faster compared with NFFT-SOM.

Therefore, induced current Jp can be spanned by Fourier bases as

Jp =
L∑
i=1

α
′

iFi +
L∑
i=1

(αi − α
′

i)Fi +
2M∑

i=L+1

αiFi = J̃Lp + F · βnp (5.22)

Where βp
n

is a 2M -dimensional vector to be reconstructed. For LF-SOM, the

objective function and following steps are the same as that of NFFT-SOM

except that induced current is expressed in a different way as it is in Eq.

(5.22).

5.3.4 Implementation procedures

The optimization method used in the contrast source inversion method is

adopted, i.e., alternatively updating the coefficients αp
n and the polarization

tensor ξ. The implementation procedures of NFFT-SOM and LF-SOM are

as follows [174, 176, 182]:

• Step 1) Calculate G∂, GD. For NFFT-SOM, compute the thin SVD of

G∂, and obtain J
s

p in Eq. (5.17). For LF-SOM, compute α
′L
p in Eq.

(5.21), and obtain J̃Lp .

• Step 2) Initial step, n = 0; Give an initial guess of ξ according to back

propagation [171], and initialize αnp,0 = 0, ρp,0 = 0.

• Step 3) n=n+1.
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– Step 3.1) Update αnp,n: calculate gradient gp,n = ∇αnp f evaluate

at αnp,n−1 and ξn−1. Then determine the Polak-Ribière-Polyak

(PRP) directions [164]: ρp,n = −gp,n + (Re[(gp,n − gp,n−1)
∗ ·

gp,n]/||gn−1||2)ρp,n−1. Update αnp,n as: αnp,n = αnp,n−1 + dp,nρp,n.

dp,n is the search length, and the objective function is quadratic

in terms of parameter dp,n. dp,n can be easily obtained as done in

[171, 182].

– Step 3.2) Update ξn: For the mth subunit, m = 1, 2, . . . , M ,

calculate the induced current (Jp,n)m and the total electric filed

(E
t

p,n)m. Then objective function becomes quadratic in terms of

(ξn)m, and the solution is given by [174]:

(ξ)m = [

Ni∑
p=1

(E
t

p,n)∗m

||Jsp||
·

(Jp,n)m
||Jsp||

]/[

Ni∑
p=1

(E
t

p,n)∗m

||Jsp||
·

(E
t

p,n)
m

||Jsp||
] (5.23)

• Step 4) If the termination condition is satisfied, stop iteration. Other-

wise, go to step 3).

(a) (b)

Fig. 5.3 (a)The exact profile of two half circles: radii of both half circles are
0.3, and centers are located at (-0.35, -0.2) and (0.35, 0.1), respectively. (b)

The singular values of the operator G∂, where the base 10 logarithm of the
singular value is plotted.
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(a) (b)

(c) (d)

Fig. 5.4 Reconstructed conductivity profiles at the 60th iterations with
L = 4 for (a) traditional SOM (b) NFFT-SOM and (c) LF-SOM, where
20% Gaussian noise is added. (d) Comparison of exact error f in the first
300 iterations for the three inversion methods with L = 4, where the base 10
logarithm of the exact error value is plotted.

5.4 Numerical simulation and discussions

In this section, numerical examples for both high and low noise cases are

considered to verify the proposed methods, and compare the performance

of tradition SOM, NFFT-SOM and LF-SOM. As shown in Fig. 5.3(a), the

“two half circles” profile is considered in numerical simulations. Although all

numerical results reported in this section are for the “two half circles” profile,

the proposed algorithms have been tested on various other profiles, and all

drawn conclusions are the same as the one reported in this section.
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In these examples, a total number of Ni = 10 current excitations is placed

at the boundary ∂I, where J2t−1(φ) = cos(tφ), and J2t(φ) = sin(tφ), t=1,

2, . . . , 5, and 0 ≤ φ ≤ 2π. A total number of Nr = 40 measurements

is conducted on the boundary of ∂I. A priori information is known that

inclusions are within a circle of radius
√

2/2W1 centered at the origin with

W1 = 1, which is referred to as the domain of interest. In discretization, the

domain of interest is divided into 1421 subunits with dimensions 0.033×0.033.

The measured voltage is computed by commercial software COMSOL to avoid

inverse crime, and recorded as a matrix R with the size of Nr · Ni. In this

examples, additive white Gaussian noise (AWGN) is added to the measured

voltages, and is quantified by (||r||/||R||)×100%, where ||·|| denotes Frobenius

norm.

The value of L is important in implementing SOM and the proposed

algorithms. In previous literatures [174, 176, 180], L is usually determined

from singular values of the operator G∂, and a good candidate of L takes the

value where singular values noticeably change the slope in the spectrum [174].

In EIT, as is depicted in Fig. 5.3(b), it is difficult to find a good candidate

of L directly from the spectrum of G∂. Thus, it is preferred that there is a

consecutive range of integer L, instead of a single value, that can be chosen

for various cases.

With the presence of 20% white Gaussian noise, the reconstructed

conductivity profiles at 60th iteration for SOM, NFFT-SOM, and LF-SOM

are presented in Fig. 5.4(a), 5.4(b), and 5.4(c), respectively. It is found that

the reconstruction results are quite satisfying for all the three methods when

L = 4. If the same computer is used, for 60 iterations, it takes about 63

seconds to finish the optimization for SOM whereas it takes only about 15

and 14 seconds for NFFT-SOM and LFSOM, respectively. It suggests that
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(a) (b)

(c) (d)

Fig. 5.5 Reconstructed conductivity profiles at the 60th iterations with L =
12 for (a) traditional SOM (b) NFFT-SOM and (c) LF-SOM, where 20%
Gaussian noise is added. (d) Comparison of exact error f in the first 300
iterations for the three inversion methods with L = 12, where the base 10
logarithm of the exact error value is plotted.

compared with traditional SOM, the proposed methods has great advantage

in the speed. To further compare the three methods quantitatively, exact

error f is defined as |Aσ − Bσ|/|Bσ|, where Aσ and Bσ are reconstructed

conductivity and exact conductivity of the profile, respectively. Figure 5.4(d)

presents the comparison of exact error with the base of 10 logarithm in the

first 300 iterations for the three inversion methods. It is found that, compared

with SOM, both LF-SOM and NFFT-SOM can get a smaller exact error for

high noise cases, but with more iterations.

It is worthwhile to discuss the reasons of the results in Fig. 5.4(d). In
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(a) (b)

(c)

Fig. 5.6 Comparison of exact error f in the first 300 iterations for (a)
traditional SOM (b) NFFT-SOM and (c) LF-SOM with 20% Gaussian noise,
where the base 10 logarithm of the exact error value is plotted.

SOM, the deterministic current is calculated from the spectrum analysis of

(5.14) without using any optimizations, and ambiguous current is determined

by optimizing a noise subspace which is perpendicular to the deterministic

current space. Since the voltages measured at the boundary V p contain white

Gaussian noise, the calculated deterministic current differs from the exact one.

When the noise level is high, the deterministic current becomes inaccurate and

needs to be optimized as well. In the proposed NFFT-SOM and LF-SOM,

the space to be optimized is no longer perpendicular to the deterministic

current space, and instead the space spanned by complete Fourier bases is

used. In the optimization, the deterministic current of NFFT-SOM and LF-
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(a) (b)

(c)

Fig. 5.7 Reconstructed conductivity profiles at the 60th iterations with
L = 12 for (a) traditional SOM (b) NFFT-SOM and (c) LF-SOM, where
1% Gaussian noise is added.

SOM is further optimized based on an initial value calculated from Eq. (5.14).

Therefore, compared with SOM, both LF-SOM and NFFT-SOM can get a

smaller exact error for high noise cases, but with more iterations.

To study the effects of L on the three inversion methods, with L = 12, the

reconstructed conductivity profiles at 60th iteration for SOM, NFFT-SOM,

and LF-SOM are presented in Fig. 5.5(a), 5.5(b), and 5.5(c), respectively.

It is noted that the reconstructed profile for NFFT-SOM outperforms those

for the traditional SOM and LF-SOM. Figure 5.5(d) shows the exact error

with the base of 10 logarithm for the three inversion methods, and it suggests

that SOM and LF-SOM can hardly converges to a satisfying exact error with
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(a) (b)

(c)

Fig. 5.8 Comparison of exact error f in the first 300 iterations for (a)
traditional SOM (b) NFFT-SOM and (c) LF-SOM with 1% Gaussian noise,
where the base 10 logarithm of the exact error value is plotted.

L = 12. The exact error of SOM, NFFT-SOM, and LF-SOM varying with

number of iterations for different values of L are further plotted in Fig. 5.6(a),

5.6(b), and 5.6(c), respectively. It suggests that NFFT-SOM is robust to L

variations, and a good reconstructed results can be obtained by NFFT-SOM

for 4 ≤ L ≤ 12. In comparison, the effects of L on LF-SOM and SOM are

dramatic, which makes it difficult to choose an appropriate L in practice.

The effects of L on the three methods are also considered under low noise

cases. With the presence of 1% white Gaussian noise, the reconstructed

conductivity profiles at 60th iteration for SOM, NFFT-SOM, and LF-SOM

with L = 12 are presented in Fig. 5.7(a), 5.7(b), and 5.7(c), respectively. It
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suggests that, unlike the high noise cases, the reconstruction results are quite

satisfying for all the methods with L = 12. The exact error curves of SOM,

NFFT-SOM, and LF-SOM for different values of L are also plotted in Fig.

5.8(a), 5.8(b), and 5.8(c), respectively, where 1% noise is added. It is found

that, compared with the high noise cases, the effects of L on all the three

methods are much smaller, and a good reconstructed result can be obtained

with 4 ≤ L ≤ 12 for all the inversion methods.

5.5 Summary

This chapter proposes two fast Fourier transform subspace-based optimization

methods (NFF-SOM and LF-SOM) to solve the EIT problem with arbitrary

boundary. Through numerical simulations and analysis, it suggests that

NFF-SOM and LF-SOM have two advantages over traditional SOM. Firstly,

the speed of the proposed methods is much faster than that of traditional

SOM since the computational complexity is largely reduced by implementing

FFT in the optimization procedures. In NFFT-SOM, the computational

speed is also accelerated by avoiding the full singular-value decomposition

of the matrix mapping from the induced current to received voltage. In LF-

SOM, the computational cost is further reduced by replacing the singular

value decomposition with a lower computational cost least square method.

Secondly, compared with SOM, both LF-SOM and NFFT-SOM can get

a smaller exact error for high noise cases, which means that a better

reconstructed result can be obtained for the proposed methods.

Most importantly, besides the above mentioned two advantages, it is found

that NFFT-SOM has another advantage that it is robust to the L variations.

For NFFT-SOM, there is a consecutive range of integer L, instead of a single
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value, that can be chosen in practice for both high and low noise cases. This

is an important and encouraging advantage, especially for EIT where it is

difficult to directly find a good candidate of L from the spectrum of G∂.

Additionally, further numerical simulations also suggest that the drawback

of the proposed methods is that, compared with traditional SOM, both of the

proposed methods need more iterations in optimization since the noise spaces

of them are spanned by complete Fourier bases.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis addresses the modeling and inversion in near-field microwave

microscopy (NFMM) and electrical impedance tomography (EIT) problems.

Both the modeling and inversion are conducted in the framework of Laplace’s

equation since the computational domain is much smaller than the wavelength

in the NFMM and the problem is purely static in the EIT. For NFMM,

in order to quantitatively reconstruct material information from measured

signals, a boundary integral and finite element based method is proposed to

solve the tip-sample interaction problem, which is a very challenging task in

NFMM. The EIT problem is well known as a difficult problem in the filed

of inverse problems for its severely nonlinear and highly ill-posed properties,

and the thesis has proposed two methods which are highly robust to noise

and have low computational cost to solve the problem. In the following, all

the specific contributions are summarized as follows:

• The thesis has conducted a complete analysis on tip-sample interaction

problems in NFMM:
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– A lumped element model between Z-match network and ground in

MIM is presented, and the limitations of the method are discussed.

As an improvement of the lumped element method, impedance

variation method is proposed to establish the relationship between

measured signals in MIM and impedance variations between tip

and sample. The theoretical principles behind the impedance

variation method are proved in detail.

– The Dirichlet Green’s function to calculate charges on tip in

equivalent-sphere model under Bishperical coordinate system is

derived. This solution is verified by numerical software, and the

limitations of equivalent-sphere model are also discussed.

– A quantitative analysis approach is presented to determine an

effective height of probe beyond which the probe geometry does not

contribute significantly to the measurements in NFMM. The study

has compared the performance of effective height among three

measurement parameter manipulations, and in addition has shown

that the effective height highly depends upon the manipulations.

The numerical analysis and associated experimental results show

that second derivative of capacitance with respect to tip-sample

distance is the most robust to probe height. Most importantly,

the conclusions about effective height under different measurement

parameter manipulations is significant in improving imaging reso-

lution in NSMM.

• The thesis has proposed a novel forward solver for NFMM which can

be applied to arbitrary tip shapes, thick and thin films, and complex

inhomogeneous perturbation. The proposed method reduces the three-
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dimensional computational domain to the computational box beneath

the tip, which avoids using FEM to compute the whole computational

domain during the scanning process. To simulate three-dimensional tip-

sample interaction for scanning points, the proposed method is much

faster than brute force all-domain methods.

• The thesis has presented a nonlinear image reconstruction method with

total variation constraint in NFMM, and it is verified in numerical

examples that it can not only retrieve the permittivity and conductivity

distributions in three dimensional samples, but also improve the imaging

resolution in NFMM.

• The thesis has proposed two fast Fourier transform subspace-based

optimization methods (NFF-SOM and LF-SOM) to solve the EIT

problem with arbitrary boundary. It suggests that the speed of the

proposed methods is much faster than that of traditional SOM since

the computational complexity is largely reduced by implementing FFT

in the optimization procedures. Moreover, compared with traditional

SOM, both LF-SOM and NFFT-SOM can get a smaller exact error

for high noise cases, which means that a better reconstructed results

can be obtained for the proposed methods. Most importantly, besides

the above mentioned two advantages, it is found that NFFT-SOM has

another advantage that it is robust to the L variations. Additionally,

the disadvantages of the proposed methods are also discussed in the

thesis. It suggests that the drawback of the proposed methods is

that, compared with traditional SOM, both of the proposed methods

need more iterations in optimization since the noise spaces of them are

spanned by complete Fourier bases.
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6.2 Future work

Several challenging issues have been dealt with in this study, and future work

will address the following aspects:

• The thesis has proposed a nonlinear reconstruction method in chapter

4 based on the proposed forward solver to retrieve the properties of

material in NFMM. It suggests that the reconstruction method is able

to not only quantitatively obtain sample information from measured

signals, but also to improve imaging resolution. Although the proposed

method has been verified numerically in this study, it definitely deserves

the best endeavor to accomplish it in experiment. Thus, in the next

step of the work, practical experiment of inversion method will be

addressed, which includes calibrating the MIM systems, fabricating

various samples, and dealing with drift errors and noise.

• One of important advantages of the proposed reconstruction method

is that it can be easily applied to other microscopies with very few

changes about the current setups. Thus, the reconstruction method in

this study will also be applied to other scanning imaging techniques. For

examples, in another project in which the author has helped to develop

the numerical model of optical system, the image inversion approach

has been used to improve the resolution of a confocal laser scanning

microscope experimentally.

• Based on the working principle of NFMM, it is meaningful to apply

the methods and knowledge in this study to investigate some emerging

materials, such as two-dimensional (2D) materials [20, 22, 183]. For

examples, the MIM introduced in this thesis is very appropriate to
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investigate formation of ripples, electron-hole and chemical doping in

graphene and 2D materials beyond graphene. Therefore, the possible

specific future work may include studying these phenomena using the

near-field microwave microscopy techniques.

• The thesis has applied LF-SOM and NFFT-SOM to solve nonlinear,

highly ill-posed EIT problems under static situation. In next step, it is

meaningful to extend the methods to time-harmonic electromagnetic

wave issues. For EIT problems, the developed algorithms are very

powerful tools to solve the practical problems in medical imaging,

and the application of these algorithms to commercially available EIT

instrument is also an important aspect of the future work.
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Appendix A: Derivation of

Coefficients in Dirichlet Green’s

Function for Equivalent-Sphere

Model

In this appendix, we have derived Eq. (2.19) from Eq. (2.18) and Eq. (2.16).

According to the boundary condition ϕ = ϕg + ϕp = 0|µ=0, we have:

− 1

4πε0a

√
(coshµc − cos ηc)·Fp(µ = 0) =

∞∑
n=0

n∑
m=0

cos[m(φ− φc)]·Pm
n (cos η)(A+B)

(A.1)

in which

Fp(µ = 0) =
∞∑
n=0

n∑
m=0

εm
(n−m)!

(n+m)!
cos[m(φ−φc)]·Pm

n (cos ηc)P
m
n (cos η)e−(n+0.5)µc

(A.2)

Further considering the boundary condition ϕ = ϕg + ϕp = 0|µ=µ0 , we have:

− 1

4πε0a

√
(coshµc − cos ηc)·Fp(µ = µ0) =

∞∑
n=0

n∑
m=0

cos[m(φ− φc)]·Pm
n (cos η)Ae

(A.3)

with Ae = Ae(n+0.5)µ0 +Be−(n+0.5)µ0 , and

Fp(µ = µ0) =
∞∑
n=0

n∑
m=0

εm
(n−m)!

(n+m)!
cos[m(φ−φc)]·Pm

n (cos ηc)P
m
n (cos η)e−(n+0.5)(µ0−µc)

(A.4)
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Combining A.1 and A.2, we can solve A and B as:

A =
M [e−(0.5+n)(µ0+µc) − e−(0.5+n)(µ0−µc)]

e−(0.5+n)µ0 − e(0.5+n)µ0
(A.5)

and

B =
M [e−(0.5+n)(µ0−µc) − e−(0.5+n)(µc−µ0)]

e−(0.5+n)µ0 − e(0.5+n)µ0
(A.6)

with

M = −1

a

√
(coshµc − cos ηc) · εm

(n−m)!

(n+m)!
Pm
n (cos ηc) ·

1

4πε0
(A.7)
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