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Summary 

This thesis introduces an approach to analyze and manage flexibility in 

engineering systems design based on decision rules and stochastic 

programming. The approach differs from standard real options analysis (ROA) 

relying on dynamic programming in that it parameterizes the decision 

variables used to design and manage the flexible system in operations. 

Decision rules are based on heuristics triggering mechanisms that are used by 

decision makers (DMs) to determine the appropriate timing to exercise the 

flexibility. They can be treated similarly as and combined with physical design 

variables, and optimal values can be determined using multistage stochastic 

programming techniques. The proposed decision rule approach is first 

formulated as a generic stochastic programming model. The model is then 

instantiated through applications in waste-to-energy systems (WTE) as 

demonstration. Results show that the proposed approach recognizes the value 

associated with flexibility in a similar amount as standard ROA. In addition, 

the form of the solution provides intuitive guidelines to DMs for exercising the 

flexibility in operations. Furthermore, the demonstration shows that the 

method is suitable for analyzing complex systems and problems when multiple 

uncertainty sources and different flexibility strategies are considered 

simultaneously. Finally, a framework is developed to guide designers to apply 

the decision rule approach throughout the design process.  
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Chapter 1 –Introduction 

1.1 Background 

The design of complex engineering systems – such as real estate development 

projects, airports, bridges, power plants, telecommunication, and waste-to-

energy (WTE) systems – is challenging because engineering systems typically 

have a long lifespan and operate in an uncertain environment. The lifecycle 

performance of engineering systems is affected inevitably by such uncertainty. 

Flexibility in engineering systems design, also referred as the concept of real 

options – “the right, but not obligation to change a system in the face of 

uncertainty” (Trigeorgis, 1996), provides a way to handle uncertainty in the 

face of changing conditions (Fricke & Schulz, 2005). It helps improve the 

lifecycle performance of engineering systems by reducing exposure to 

downside risks (i.e. acting like an insurance policy) and enabling the system to 

capture upside opportunities (i.e. like a call option on a stock). Attributable to 

these characteristics, flexibility has been demonstrated in many industry case 

studies to help improve expected lifecycle performance by 10% to 30% 

compared to standard design and project evaluation approaches (Cardin, 2014; 

de Neufville & Scholtes, 2011).  

The case of the SYSAV WTE plant in Malmö, Sweden provides a real-world 

example of how flexibility works in large scale engineering systems. The 

SYSAV WTE plant is the most energy efficient plant in Sweden, as well as 

being one of the advanced plants in the world. It had two boilers with a 

capacity of 200,000 tonnes of waste per year when it began operation in 1973 
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(Friotherm, 2006). As the demand on waste incineration increased, it was 

extended by a new Unit 3 in 2003 and a new Unit 4 in 2008. Now the facility 

has a total capacity of 630,000 tonnes of waste per year and is one of the 

largest of its kind in Europe (Poulsen, 2008). The flexibility to expand 

capacity has improved the performance of the SYSAV WTE plant through 

two ways. On the one hand, it enabled the facility to start with small capacity 

to save on initial capital cost. Also, the capacity expansion flexibility enabled 

the system to expand to satisfy the increasing demand, when the amount of 

solid waste had increased dramatically.  

Real options analysis (ROA) is a systematic approach that relies on financial 

options theory to assess the value of flexibility in irreversible investments in 

real physical assets operating under uncertainty (Mun, 2006). Classical ROA 

approaches are based on the Black-Sholes financial options-pricing model that 

emerges from solving a system of stochastic partial differential equations and 

using dynamic programming (Black & Scholes, 1973; Dixit & Pindyck, 1994). 

A simplification of the financial options model was introduced by Cox, Ross, 

and Rubinstein (1979), who proposed a binomial lattice as a discrete-time 

approximation of the Black-Scholes options pricing model. The binomial 

lattice approach has been widely used in capital budgeting and strategic 

decision making because it explicitly accounts for the value of flexibility 

(Trigeorgis, 1996).  

There are several challenges when applying the standard ROA in an applied 

engineering setting. First, previous studies on ROA generally focus on how to 

value flexibility. Determining the optimal time to exercise the flexibility, 
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however, may be challenging in practice. For instance in binomial lattice 

analysis, one needs to determine the current stage and state in the lattice by 

fitting past historical data. From that state, future evolution of the uncertainty 

driver is projected, a backward induction process must be applied up to the 

decision point based on a pre-defined recursive formula, and decision makers 

(DMs) must choose an exercise policy based on the highest expected reward. 

In addition, the wide adoption of ROA techniques has been challenged in 

practice, partly because it relies on advanced mathematical concepts that may 

not be intuitive to DMs in practice (Engel & Browning, 2008). Furthermore, 

the analysis of a flexible system considering two or more independent but 

intertwined uncertainty drivers and flexibility strategies can be challenging. 

The analysis requires the development of a multinomial lattice if two or more 

uncertainty drivers analyzed (Antikarov & Copeland, 2001). The curse of 

dimensionality arising in the dynamic programming analysis may make it 

difficult for applying such approaches when more complex systems and 

problems are considered (Nembhard, Shi, & Aktan, 2005). Another challenge 

is that standard ROA relies on assumptions that apply well to finance, but not 

necessarily in an engineering setting. For example, the path independence 

assumption crucial to path recombination and computational savings may not 

hold (T. Wang & de Neufville, 2005). Because of path dependencies inherent 

to complex engineering systems, system value after an up-down movement 

may not be the same as that after a down-up movement because the decision 

sequences and resulting physical artifacts may differ. 

Recent efforts have focused on developing practical approaches for assessing 

the value of flexibility in an engineering setting, to help designers and DMs 
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implement it, and to manage it in operations. The work on flexibility in 

engineering design aims to do that just by relaxing and/or modifying some of 

the underlying assumptions behind standard ROA, to better suit the needs of 

industrial and systems engineers. The emphasis is rather to enable rank 

ordering of different design alternatives (e.g. rigid vs. flexible design), based 

on their expected lifecycle performance. A main challenge, however, is how to 

actually extract the value of flexibility in operations. After flexibility has been 

embedded in the system design, its value may be lost when the system is 

implemented for various reasons. A major reason for this to happen is that 

decision makers (DMs) simply may not know when and how to exercise the 

flexibility. Ambiguity and vagueness may crop up in decision making process, 

so that opportunities of exercising the flexibility are missed (Janney & Dess, 

2004). For example, in the garage design problem in de Neufville, Scholtes, 

and Wang (2006), it is shown that a flexible design (phased design with the 

flexibility to expand capacity) produces much greater expected net present 

value (ENPV) ($5.12 million) as compared to the best alternative fixed design 

($2.94 million). However, in reality the flexibility was never exercised 

because the new owners were unaware of the flexibility embedded nor how to 

exercise it in an optimal manner.  

1.2 Motivation 

The motivation for this study is twofold. First, there is a need to provide 

intuitive guidance to DMs on when and how to exercise the flexibility in 

operations. This is important because a well-designed engineering system can 

reach better lifecycle performance only if it is implemented following an 
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optimal or best design strategy, in a stochastic sense. As uncertainty evolves 

over time, it may be challenging to make decisions on when to exercise 

flexibility so as to achieve better performance – especially when many 

stakeholders and thousands of design variables are involved.  

Second, it is difficult to access the value of flexibility in large scale 

engineering system projects. These systems typically face multiple uncertainty 

sources (e.g. market prices and demand, amount of natural resources, 

regulations, technology, etc.). In addition, several flexibility strategies may be 

implemented simultaneously to extract additional value from uncertainty. How 

to analyze and manage different flexibilities concurrently in the face of 

multiple sources of uncertainty can be a challenging task.  

1.3 Purpose of study 

The main purpose of this study is to propose a new approach to analyze and 

manage flexibility in engineering systems based on heuristics-based decision 

rules and multistage stochastic programming. This approach contrasts and 

compares to standard ROA by emulating directly the decision making process, 

and parameterizing its characteristics as well as the physical design variables. 

A decision rule is a heuristics-based triggering mechanisms used by DMs to 

determine when it is appropriate to exercise a given flexibility. Some 

conditional-go decision rules can be thought of as conditional “If-Then-Else” 

programming statements, planning for a particular flexible action if certain 

conditions about the main uncertainty drivers are met. A multistage stochastic 

programming model is proposed to find stochastically optimal decision rules 

and physical design variables to implement and manage the flexible system in 
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operations. Such approach is in line with Simon’s view (1972) that human 

decision agents may tend to rely on heuristic rules to achieve stated 

satisfactory level of performance when operating under complex and uncertain 

environments. A typical solution using the proposed approach consists of two 

parts. One part contains the physical system design variable(s) describing the 

initial physical state of the system. The other part contains the decision rule(s) 

guiding decision-making dynamically based on available information at the 

decision points, and as uncertainty unfolds. 

1.4 Expected contributions 

The main contributions of this thesis can be summarized into three parts. The 

first part is a new approach for analyzing and managing flexibility in 

engineering systems design. The approach differs from standard ROA used in 

flexibility valuation based on dynamic programming by parameterizing the 

decision variables used to design and manage the flexible system in operations. 

This approach not only recognizes the inherent value stemming from 

flexibility, it also provides solutions with intuitive guidance on how to manage 

the flexibility in operations. In addition, this new approach lends itself 

naturally to analyze complex systems embedded with multiple flexibility 

strategies and facing multiple uncertainty sources (of course, the systems must 

be able to be modelled as multistage integer linear programs).  

The second part is a framework to apply the proposed decision rule approach 

in design practice. The framework addresses the idea of design for 

implementation by focusing on generating decision rules throughout the 

design phase. With this framework, designers can start with a baseline design 
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and generate a valuable flexible design that is practical to implement in 

operations by exploiting the concept of decision rules.  

The third part is applications of the proposed approach in designs of three 

WTE systems. Numerical studies on three different WTE systems are carried 

out to demonstrate the application of the decision rule approach and the 

framework. Throughout these case studies, managerial insights are provided to 

improve the design and management of these real projects.  

1.5 Thesis content summary 

The remainder of this thesis is organized as follows:  

Chapter 2 provides a literature review of theories and methodologies of real 

options and flexibility in engineering systems, stochastic programming, 

decision rules, and WTE systems. Research gaps are identified after the 

review.  

Chapter 3 introduces the generic formulation of the proposed approach. The 

details of the multistage stochastic programming model and formulations of 

three types of decision rules are described. In particular, the solution algorithm 

for the multistage stochastic programming model is described in details.  

Chapter 4 presents how the generic model introduced in Chapter 3 can be 

instantiated to model simple flexibilities. First, six managerial flexibilities are 

modeled by following simple project examples. Then, a case study on the 

design of a WTE systems using anaerobic digester (AD) technology is carried 

out to demonstrate the application of the proposed approach in real systems.  
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Chapter 5 demonstrates the ability of the proposed approach to analyze 

complex systems with compound flexibilities and multiple uncertainty sources. 

A complex engineering system – hybrid WTE system – with two flexibility 

strategies and two uncertainty sources is analyzed to exhibit this advantage of 

the proposed approach.  

Chapter 6 proposes a framework to apply the decision rule approach in design 

practice. The framework is summarized in six-step procedures. Comparison 

between the proposed framework and a standard real options analysis 

approach is made to show the difference. A third case study – design of multi-

storey recycling facility – is conducted to demonstrate how to apply the 

framework in design practice.  

Finally, Chapter 7 summarizes this thesis, and discusses the applications and 

limitations of the proposed approach. It ends with giving insights on future 

reach opportunities.  
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Chapter 2 – Literature Review 

This chapter aims to provide an up-to-date review of existing works and 

identify the research gaps addressed in this thesis. Flexibility is associated 

with the concept of a real option, which provides the “right, but not the 

obligation, to change a system as uncertainty unfolds” (Trigeorgis, 1996). 

Three commonly used ROA approaches are introduced in Section 2.1: Black-

Scholes model, multiplicative lattice approaches, and simulation-based 

approaches. The strengths and weaknesses of each approach are discussed. 

Section 2.2 discusses the challenges of applying existing ROA approaches in 

analyzing flexibility in engineering systems design. In Section 2.3, stochastic 

programming and decision rules are introduced as potential solutions to 

address the identified challenges faced by existing ROA approaches. In 

Section 2.4, the application domain – the WTE systems – is introduced and the 

research gaps related to them are identified. Finally, the research gaps and 

research opportunities based on the review are summarized at the end of this 

chapter. 

2.1 Real options analysis 

ROA is a systematic approach that relies on financial options theory to assess 

the value of flexibility in irreversible investments in real physical assets 

operating under uncertainty (Mun, 2006). Classical ROA approaches are based 

on the Black-Sholes options-pricing model that has emerged from solving a 

system of stochastic partial differential equations and using dynamic 

programming (Black & Scholes, 1973; Dixit & Pindyck, 1994). A 
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simplification of the financial options model was introduced by Cox et al. 

(1979), who proposed a binomial lattice as a discrete-time approximation of 

the Black-Scholes options-pricing model. With the rapid development of 

computer technologies, simulation models have become easily available to 

assess the value of real options that are otherwise difficult to value by partial 

differential equations or lattice approaches. This section will introduce these 

three approaches and identify their challenges in practice.  

2.1.1 The Black-Scholes model 

Classical ROA approaches stem from the Black-Sholes financial options-

pricing model that has emerged from solving a system of stochastic partial 

differential equations (Black & Scholes, 1973). There are two basic types of 

financial options: calls and puts. A call option is the right to buy a specific 

asset by paying a pre-specified exercise price on or before a specified time; a 

put option is the right for the holder to sell the underlying asset to receive the 

exercise price. If the option can be exercised at any time up to the expiration 

date, it is called an American option; if only on the expiration date, a European 

option. The underlying assets to options include the common stock, stock 

indexes, bonds, commodities, foreign currencies, corporate liabilities, and so 

on.  

The basic idea to evaluate options is to construct a replicating portfolio 

composed of 𝑁 shares of the underlying asset (e.g. the common stock) and $𝐵 

of riskless bond that will exactly replicate the future payouts of the option. 

According to the law of one price, to prevent risk-free arbitrage profits, the 

option and this equivalent portfolio must have exactly the same price (or 
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value). Thus, the value of the option can be determined by calculating the cost 

of its equivalent replicating portfolio.  

Suppose the price of the underlying stock (current price being 𝑆) will either 

rise up to 𝑆+ or deline to 𝑆+, with probabilities 𝑞 and 1 − 𝑞, respectively, i.e.  

 

The value of the option, 𝐶, is contingent on the price of the underlying stock. 

Denote the exercise price as 𝐸,  

 

where  𝐶+ and 𝐶− are the values of the call option at the end of the period if 

the stock price rises or declines, respectively.  

The net out-of-pocket cost of the equivalent replicating portfolio for this call 

option is 𝑁𝑆 − 𝐵 . Let 𝑟  be the risk-free interest rate. The value of this 

portfolio over the next period will accordingly be 
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To satisfy the law of one price, the portfolio should have the same payouts in 

each state at the end of the period as the option, i.e. 

 𝑁𝑆 − 𝐵 = 𝐶 (2.1) 

 𝑁𝑆+ − (1 + 𝑟)𝐵 = 𝐶+ (2.2) 

 𝑁𝑆− − (1 + 𝑟)𝐵 = 𝐶− (2.3) 

Solving these equations yields 

 𝑁 =
𝐶+ − 𝐶−

𝑆+ − 𝑆−  (2.4) 

 𝐵 =
𝑆−𝐶+ − 𝑆+𝐶−

(𝑆+ − 𝑆−)(1 + 𝑟)
 (2.5) 

 𝐶 =
𝑝𝐶+ + (1 − 𝑝)𝐶−

1 + 𝑟
 (2.6) 

where  

 𝑝 ≡
(1 + 𝑟) − 𝑆−

𝑆+ − 𝑆−  (2.7) 

is the risk-neutral probability.  

Standard option valuation typically relies on four basic assumptions as below:  

S1: Frictionless markets which mean that: 1) there are no transaction costs or 

taxes; 2) there are no restrictions on short sales, and full use of proceeds is 

allowed; 3) all shares of all securities are infinitely divisible; and 4) borrowing 

and lending are unrestricted.  
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S2: The risk-free interest rate is constant over the life of the option. 

S3: No dividends paying for the underlying asset over the life of the option. 

S4: The stock prices follow a stochastic diffusion Wiener process, i.e.: 

 
𝑑𝑆
𝑆

= 𝛼 𝑑𝑑 + 𝜎 𝑑𝑑 (2.8) 

where 𝛼  is the instantaneous expected return on the stock, 𝜎  is the 

instantaneous standard deviation of stock returns, and 𝑑𝑑 is the differential of 

a standard Wiener process.  

Black and Scholes (1973) introduced the Black-Sholes partial differential 

equation to solve the continuous application of the dynamic portfolio 

replication strategy under assumptions S1 to S4.  

In the equivalent replicating portfolio represented by (2.1), its limit is 𝑁 =

𝜕𝐶/𝜕𝑆. As the Wiener processes underlying 𝑆 and 𝐶 are the same, the Wiener-

process can be eliminated in an infinitely short period of time, 𝑑𝑑. According 

to Ito’s lemma,  

 𝑑𝐶 =
𝜕𝐶
𝜕𝑑

𝑑𝑑 +
𝜕𝐶
𝜕𝑆

𝑑𝑆 +
1
2

𝜕2𝐶
𝜕𝑆2 𝜎2𝑆2𝑑𝑑 (2.9) 

From 𝑑𝐶 = 𝑁 𝑑𝑆 − 𝑑𝐵 and 𝑁 = 𝜕𝐶/𝜕𝑆,  

 𝑑𝐶 =
𝜕𝐶
𝜕𝑆

𝑑𝑆 − 𝑑𝐵 (2.10) 

Equating the above two expressions for 𝑑𝐶 results in 
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 𝑑𝐵 = �−
𝜕𝐶
𝜕𝑑

−
1
2

𝜕2𝐶
𝜕𝑆2 𝜎2𝑆2� 𝑑𝑑 (2.11) 

Since the portfolio must be riskless under the assumption of no arbitrage, 

hence,  

 𝑑𝐵 = 𝐵𝑟 𝑑𝑑 = �
𝜕𝐶
𝜕𝑆

𝑑𝑆 − 𝐶� 𝑟 𝑑𝑑 (2.12) 

Equating the two expressions for 𝑑𝐵 in (2.11) and (2.12) and denoting partial 

derivatives using subscripts, the following partial differential equation is 

obtained:  

 
1
2

𝜎2𝑆2𝐶𝑆𝑆 + 𝑟𝑆𝐶𝑆 − 𝐶𝜏 − 𝑟𝐶 = 0 (2.13) 

subject to the terminal condition 

 𝐶 = max (𝑆 − 𝐸, 0) (2.14) 

and boundary conditions 

 𝐶 = 0 when 𝑆 = 0 (2.15) 

 𝐶 → 𝑆 𝑎𝑎 𝑆 → ∞ (2.16) 

Solving the partial differential equation subject to the terminal condition and 

the boundary conditions results in the famous Black-Sholes formula for the 

prices at time zero:  

 𝐶(𝑆, 𝜏; 𝐸) = 𝑆𝑁(𝑑1) − 𝐸𝑒−𝑟𝜏𝑁(𝑑2) (2.17) 

where 
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𝑑1 =
ln �𝑆

𝐸� + (𝑟 + 1
2 𝜎2)𝜏

𝜎√𝜏
 

𝑑2 = 𝑑1 − 𝜎√𝜏 

where 𝑁(∙) is the cumulative standard normal destitution function.  

The Black-Sholes formula represents the continuous application of the 

replicating portfolio hedge. The number of shares of the stock held in the 

portfolio is given by 𝑁(𝑑1), and the amount of riskless bond borrowed is 

given by 𝐸𝑒−𝑟𝜏𝑁(𝑑2).  

As real options are likened to financial options, the options-pricing model has 

been applied to assess the value of real options in many studies. Myers (1984) 

first suggested using the options-pricing method to value investments with 

operating options. Many studies have applied the classic options-pricing 

theory to assess the value of real options by identifying a twin security which 

is traded in the financial markets (Mason & Merton, 1985). McDonald and 

Siegel (1985) applied options-pricing techniques to study the investment 

problem of a firm given the option to shut down or change the production 

level. Grenadier and Weiss (1997) developed a model of the optimal 

investment strategy in technological innovations based on options pricing.  

Applications of the Black-Scholes model on real options rely on satisfying the 

basic assumptions S1 to S4. For many real options, however, these 

assumptions are hard to be satisfied. First of all, the underlying project or 

system upon which the real options are built does not have a market price. 

Secondly, the no-arbitrage condition is usually unrealistic for real options; it is 
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difficult to find equivalent replicating portfolios for real options. Lastly, the 

assumption based on the stochastic diffusion Wiener process is not suitable for 

many real options. Collectively, these challenges limit wide application of the 

Black-Scholes model in ROA.  

2.1.2 Lattice approaches 

As a discrete-time approximation of the Black-Scholes options-pricing model, 

the binomial lattice model introduced by Cox et al. (1979) won more 

popularity in ROA due to its simplicity. In the binomial lattice model, the 

stochastic process of the value of the underlying asset is approximated using a 

multiplicative binomial lattice. It assumes that the value of the underlying 

asset, 𝑆, may either increase at a rate 𝑢 with a probability 𝑞 or decrease to 𝑑𝑆 

with a probability 1 − 𝑞, such that 𝑑 = 1/𝑢. By assuming path independence, 

the lattice nodes recombine so that the number of possible outcomes is 

significantly reduced. The movement of the value of the underlying asset can 

be described in Figure 2-1. 

 

Figure 2-1: The evolution of uncertainty in the binomial lattice 

The value of the option represented by Equation (2.6) still holds after denoting  

𝑆+ ≡ 𝑢𝑆 and 𝑆− ≡ 𝑑𝑆. The evaluation procedure can be extended to multiple 
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time periods. With the total number of periods denoted as 𝑇 , and as the 

number of upward movements as 𝑛, the price of the option will be:  

 𝐶 =
∑ 𝑇!

𝑛! (𝑇 − 𝑛)! 𝑝𝑛(1 − 𝑝)𝑇−𝑛max (𝑢𝑛𝑑𝑇−𝑛𝑆 − 𝐸, 0)𝑇
𝑛=0

(1 + 𝑟)𝑇  (2.18) 

It is noteworthy that the risk-neutral probability 𝑝 is used in Formula (2.17), 

which is defined by Equation (2.7). The relationship between the up and down 

movements in a binomial lattice and the standard deviation of the rate of 

return on the underlying asset can be described as: 

𝑢 = 𝑒�𝑇/𝑛 

The binomial formula can approximate the continuous time form by dividing 

its life time, 𝑇, into increasingly small intervals, until 𝑛 approaches infinity. It 

has been proved that, in the limit, the binomial model approaches the Black-

Scholes model (Cox et al., 1979).  

The binomial lattice approach has been widely used in various application 

fields. Luenberger (1997) applied the binomial lattice method to value the 

investment of a gold mine. Antikarov and Copeland (2001) provided a detailed 

guide on how to apply the binomial lattice approach to value real projects. The 

binomial lattice approach has also been used by de Neufville (2008) in 

evaluating the flexibility to abandon a mine pit subject to copper price 

uncertainty.  

Variants of the binomial lattice methods have also been proposed for ROA. 

Kamrad and Ritchken (1991) developed a multinomial lattice procedure to 
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value real options with multiple sources of uncertainty. As shown in Figure 

2-2, a lattice with two sources of uncertainty consists of five possible 

movements emerging from each node, each with a probability of occurrence. 

As there is no recombination in the multinomial lattice, the number of nodes 

increases exponentially with the number of time periods. This constitutes the 

main challenge for the multinomial lattice method – the curse of 

dimensionality.  

 

Figure 2-2: A multinomial lattice with two uncertainty sources 

The lattice approaches provide some guidance on how to value flexibility and 

when to exercise it in operations. One challenge in practice, however, is the 

determination of the optimal timing to exercise flexibility. For instance, one 

needs to determine the current stage and state in the lattice by fitting past 
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historical data. From there, future evolution of the uncertainty driver is 

projected, a backward induction must be applied up to the decision point based 

on a pre-defined recursive formula, and DMs must choose an exercise policy 

based on the highest expected reward. Another challenge is that the lattice 

approaches rely on assumptions that apply well to finance, but not necessarily 

to an engineering setting. For example, the path-independence assumption 

crucial to path recombination and computational savings may not hold (T. 

Wang & de Neufville, 2005). Because of path dependencies inherent to 

complex engineering systems, system value after an up-down movement may 

not be the same as after a down-up movement because the decision sequences 

and resulting physical artifacts may differ. Furthermore, when two or more 

uncertainty drivers and flexibility strategies are involved a complex flexible 

system, even multinomial lattices may become impractical due to the curse of 

dimensionality (Nembhard et al., 2005).  

2.1.3 Simulation-based approach 

With the rapid development of computer technologies, simulation models have 

become easily available to assess the value of real options that otherwise are 

difficult to value by using partial differential equations or lattice approaches. 

In simulation models, the stochastic process of uncertainty sources is modeled 

by generating a sizeable number of scenarios using Monte Carlo simulation. 

Decision rules are usually embedded in these models to facilitate the decisions 

on the exercise of options. Moel and Tufano (2000) applied the simulation 

method to value the real options inherent in the Antamina Mine in Peru. Juan, 

Olmos, Pérez, and Casasus (2001) developed a simulation based model to 
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evaluate the value of options in a harbor investment project. Another 

application has been seen in simulation model built by de Neufville et al. 

(2006) using spreadsheet to assess the value of options to expand the capacity 

of a parking garage under demand uncertainty.  

The use of the simulation-based approach is meritorious in that it enables the 

handling of complex systems in contrast to approaches based on the options-

pricing theory i.e. the Black-Scholes model and binomial lattice approach; the 

difference is that the former does not require as strict assumptions as the latter. 

One key challenge, however, is the ability to specify the stochastic process so 

that the model simulates the system accurately. Another challenge concerns 

the computational efficiency; for a system is too complex or a payoff function 

that is expensive to compute, it may be time-consuming to acquire the 

required accuracy.  

2.2 Flexibility in engineering systems 

In the context of engineering, flexibility is an important system attribute that 

enables engineering systems to change easily in the face of uncertainty (Fricke 

& Schulz, 2005). Over the last decade, ROA approaches have been adapted to 

suit the needs of flexibility analysis in engineering design. All the aforesaid 

approaches, however, have limitations for practical applications. The Black-

Sholes model requires the establishment of partial differential equations, 

which may not be intuitive to DMs in practice. In the Black-Sholes model and 

lattice-based approaches, all the decisions on flexibility exercise are 

determined as outcomes of the model; there are no generic decision rules to 

guide managers as uncertainty resolves throughout the project lifecycle. 
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Exercising the real option is typically based on a process inspired from the 

Bellman’s recursive formula, which may not fully capture the actual decision-

making process in reality (Bellman, 1952). Although the simulation-based 

approach explicitly employs decision rules, there is currently no systematic 

approach to determine the most value-enhancing decision-rule parameters.  

2.3 Stochastic programming and decision rules 

Stochastic programming is a method for modeling optimization problems that 

involve uncertainty. In stochastic programming models, some parameters are 

uncertain but their probability distributions are known or can be estimated. 

The goal of the model is to find some feasible policy for all possible data 

instances that maximize the expectation of the objective function. When some 

of the decision variables involved in a stochastic programming model are 

restricted to take integer values whereas other decision variables takes 

continuous values, the model is called a mixed-integer stochastic 

programming model. Mixed-integer programming is very useful for 

formulating discrete optimization problems, especially in simulating decision-

making process. Ahmed, King, and Parija (2003) used a stochastic mixed-

integer programming model to solve a capacity expansion problem. Tao Wang 

(2005) proposed stochastic mixed-integer programming for ROA to address 

the problem of path-dependency that constrains classical ROA approaches.  

As pointed out by Birge and Louveaux (2011), there are few general efficient 

methods to solve stochastic mixed-integer programming problems. Certain 

techniques are available to solve problems with special properties, such as 

decomposition methods, simple integer recourse, and sampling average 
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approximation, etc. The concept of decision rules has also been applied to 

approximate and solve stochastic programming models (Georghiou, 

Wiesemann, & Kuhn, 2015; Kuhn, Parpas, & Rustem, 2008).  

A decision rule, or implementable policy, is a function which maps the 

observations of uncertainty data to decisions (Shapiro, Dentcheva, & 

Ruszczyński, 2009). Garstka and Wets (1974) surveyed different types of 

decision rules in stochastic programming. Four classes of decision rules are 

identified and studied via case examples: zero-order, linear, safety-first and 

conditional-go decision rules. The authors opined that difficulties might arise 

in restricting the class of acceptable rules to those specific functional forms to 

derive optimal rules, unless for some highly-structured problems. Nevertheless, 

any approximation of the optimal rule by a certain class of decision rules 

would yield quantitative bounds that have significant theoretical and practical 

implications.  

Even for some intractable problems, a good approximation to an optimal 

solution can be obtained by searching for specific classes of decision rules. 

This is a utilitarian view in the paradigm investigating how to enable 

flexibility in design and management of engineering systems. Due to the 

complexity of the systems and uncertain environment, the design problems are 

usually of a substantial size and cannot be solved easily. By formulating the 

problem using decision rules, it is possible to obtain a good approximation to 

the optimal solution typically found using standard ROA techniques. In 

addition, generic decision rules have an advantage in that they are practical 
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and intuitive for DMs to use in operations. They can be modeled explicitly to 

emulate the decision-making process in a firm or organization. 

As such, this thesis recognizes the importance of decision rules as a way to 

assess the value of flexibility in design and management of complex systems. 

Against this backdrop, a systematic approach based on stochastic 

programming is proposed to find stochastically optimal decision rules that 

guide dynamic decision-making based on available information, as 

uncertainties are resolved. 

2.4 Waste-to-energy systems design 

The case application studies rely on the design and deployment of WTE 

technologies in an urban setting. Municipal solid waste management is 

becoming a predicament in the sustainable development of megacities. In the 

face of increasing waste and limited landfill sites, WTE technologies, which 

generate energy in the form of electricity and/or heat from waste, are 

garnering high favor due to their capacity to recover energy while efficiently 

disposing of waste. Various WTE technologies are promising in terms of 

offering electricity, heat and transport fuels (Münster & Lund, 2010). Thus far, 

the literature on WTE systems has mainly focused on system optimization and 

evaluation; consideration has not been dedicated to the strategic management 

process of designing and deploying capacity in WTE systems. In particular, 

little research has been taken to analyze WTE systems from the perspective of 

flexibility. This thesis targets the issue of how to manage the decision making 

process during the implementation of such flexible systems by applying the 

proposed approach based decision rules.  
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Three different types of WTE systems are studied as demonstrations in this 

thesis. An upcoming AD plant that treats food waste in Singapore is first 

considered in Section 4.3. This case study is inspired by Hu and Cardin (2015), 

who have considered embedding flexibility into the system design as a 

mechanism to deal pro-actively with uncertainties. Upon analysis of the 

uncertainty and interdependency of the system elements in an AD plant, two 

system elements related to capacity are identified as valuable opportunities for 

embedding flexibility. Therefore, in this case study, it is assumed that the AD 

plant is designed with flexibility to expand the capacity as needed. This case 

study demonstrates how the decision rule approach can be used to analyze the 

flexibility to expand capacity. Results are compared to that of standard ROA.  

The design of a hybrid WTE system with AD and gasification technologies is 

analyzed in the second case study in Section 5.2. This is an advanced facility 

with improved efficiency of waste treatment using a combination of those two 

WTE technologies. In such a complex system, two sources of uncertainty (i.e. 

the amount of food waste and other organic waste) and two flexibility 

strategies (i.e. capacity expansion of AD and capacity adjustment for the 

gasifier) are considered simultaneously. This case study shows that the 

proposed approach can be extended to analyze complex systems when 

multiple uncertainty sources and flexibility strategies are considered 

simultaneously.  

Finally, the design of a multi-storey recycling facility (MSRF) is elucidated to 

demonstrate the application of the generic framework proposed in Chapter 6. 

MSRF is a first-of-its-kind facility planned by Singapore as a solution to 
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reduce land-take while creating more space for essential activities undertaken 

by the waste management industry (NEA, 2014b). An MSRF facility is 

envisaged to be a multi-story, multi-tenanted pilot facility processing different 

waste streams that could share common facilities and services such as 

weighbridges and a vehicle-parking depot. It achieves land-saving by hosting 

recycling activities for different types of wastes on different stories.  

2.5 Research questions 

Previous sections review existing ROA approaches and discuss their 

application in the analysis of flexibility in engineering systems. The review 

identifies several inadequacies in using existing ROA approaches in an 

engineering context. To address these challenges, an approach based on 

stochastic programming and decision rules is recognized as a potential 

solution to analyze flexibility in engineering systems design. The concept of 

decision rules, however, has not been systematically studied in this area. 

Motivated by these research gaps, this thesis aims to develop an efficient 

approach to analyze and manage flexibility in engineering systems. More 

specifically, the research objectives can be summarized via the five research 

questions as below:  

1. How to provide intuitive guidance for DMs to operate the systems in 

practice, besides assessing the value of flexibility in engineering systems?  

This thesis introduces the concept of decision rules in the design process to 

generate results that are readily applicable for decision making in operations. 

Decision rules provide practical guidance on when it is appropriate to and how 
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to exercise the flexibility. They are intuitive for DMs to follow in operations 

because they enable emulating directly the decision making process in reality. 

As such, decision rules can be either normative or prescriptive (i.e. what they 

should be) or descriptive (i.e. what they are currently). The hypothesis is that 

with clearly specified decision rules, DMs are less likely to fall into escalation 

of commitment, so that the theoretical value of flexibility can be fully 

extracted in operations.  

2. How to analyze flexibility exploiting the idea of decision rules? 

As decision rules can be characterized by decision variables whose 

“stochastically optimal values” can be approximated, the problem of searching 

for optimal decision rules fits well into a stochastic programing framework. 

Therefore, the hypothesis is that the concept of decision rules in flexibility 

analysis can be formulated using multistage stochastic programming models. 

3. How to solve the stochastic programming model with decision rules?  

The multistage stochastic programming models are usually of large size, but 

many of them have a specific structure, which is suitable to be solved by 

applying some decomposition methods. Various decomposition methods are 

available in the literature on stochastic programming. The hypothesis is that 

the proposed models can be solved by applying some decomposition 

techniques. In particular, it is postulated that a Lagrangian decomposition 

approach can be used as a solution algorithm. 

4. How to guide designers to apply the decision rule approach during the 

design process? 
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A framework is necessary to guide designers on how to apply the proposed 

decision rule approach. The framework should explain all necessary 

procedures to address the concept of decision rules throughout the design 

phase. The hypothesis is that with this framework, designers can start with a 

baseline design and generate a valuable flexible design that is practical to 

operate by exploiting the concept of decision rules.   

5. How to validate the efficiency and effectiveness of the proposed approach?  

Numerical studies can be used to demonstrate the efficiency and effectiveness 

of the proposed approach. First, case examples from Trigeorgis (1996) will be 

used to demonstrate the ability of the proposed approach to model different 

types of flexibility. Then, case studies on three different WTE systems will be 

conducted to demonstrate the efficiency and effectiveness of the proposed 

approach by comparing with standard ROA approaches. The hypothesis is that 

these case studies will show that the proposed approach is able to analyze 

different types of flexibility efficiently.  

2.6 Summary 

This chapter reviews existing ROA approaches and discusses their application 

in the analysis of flexibility in engineering systems. The review identifies 

several inadequacies of applying existing ROA approaches in an engineering 

context. Stochastic programming and decision rules are recognized as a 

potential solution to address the challenges faced by existing ROA approaches. 

WTE systems are selected as a meaningful application domain as they are 

important for sustainable development of megacities while little research has 
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been undertaken to analyze them from the perspective of flexibility. Based on 

the review, research opportunities are identified and research objectives are 

summarized as five concise questions. The rest of this thesis will introduce the 

proposed approach by addressing the five research questions.  
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Chapter 3 –A Generic Stochastic Programming 

Model with Decision Rules 

3.1 Introduction 

In the previous chapter, relevant research works were briefly introduced and 

their limitations were identified. The main research gap addressed in this 

thesis is the inadequacy of an approach in, firstly, providing intuitive guidance 

to DMs on when and how to exercise the flexibility in operations and, 

secondly assessing the value of flexibility in large scale engineering system 

projects. To address these research opportunities, this thesis proposes an 

approach based on decision rules and multistage stochastic programming to 

assess the value of flexibility and to determine the best design and exercise 

strategies in operations. 

In this chapter, a generic multistage stochastic programming model using 

decision rules is introduced. Three types of decisions rules that can be applied 

easily to the management of flexibility in engineering systems are introduced 

by generic formulations. An algorithm based on Lagrangian decomposition is 

proposed to solve the multistage stochastic programming model. Instantiations 

of the generic model are introduced in subsequent chapters using simple 

examples and real-case studies on WTE systems.  
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3.2 Model formulation 

Let 𝝃 = (𝝃1, … , 𝝃𝑇) be a scenario of uncertainty, where 𝝃𝑡 is the uncertainty to 

be observed in period 𝑑 ∈ 𝒯 = {1,2, … , 𝑇} . Note that 𝝃𝑡 is a vector so that it 

can represent multiple sources of uncertainty. Denote Ω  as the set of all 

possible uncertainty scenarios. Suppose the total number of scenarios is very 

large or even infinite. As a common approach, the sample average 

approximation (SAA) method is applied to reduce the number of scenarios to a 

manageable size: it is assumed that a sample 𝝃1, … 𝝃𝐾 of K scenarios, with the 

corresponding probabilities  𝑝𝑘 ≥ 0, ∑ 𝑝𝑘𝐾
𝑘=1 = 1 , is generated using Monte 

Carlo simulation to approximate the problem. Figure 3-1 illustrates the 

sequence of events over the finite planning horizon. There is no operation at 

the beginning of planning horizon, time 0, which represents present time. The 

DM must make a decision 𝒙𝑡  at the beginning of period 𝑑  from a set of 

feasible decisions 𝑋𝑡 when 𝑑 ≥ 1. Note that 𝒙𝑡 is a vector, which means it can 

consider several flexibility strategies simultaneously. Let 𝑋 ⊆ 𝑋1 ×∙∙∙× 𝑋𝑇 

denote the set of all feasible decisions sequence 𝒙, where 𝒙 = (𝒙1, … , 𝒙𝑇). A 

decision rule, or implementable policy,  𝛿 , is a function which maps each 

scenario of uncertainty 𝝃 in Ω to a sequence of decisions 𝒙 in 𝑋 (i.e., 𝛿: Ω →

𝑋). Let 𝒟 denote the set of all mappings from Ω to 𝑋. The form of 𝛿 varies in 

different problems, a vector of parameters 𝜽 is used to characterize it. So the 

decision rule can be represented as 𝛿𝜽.  
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Figure 3-1: Planning horizon and sequence of events 

It is assumed that the DM’s choices are nonanticipative in that the choice of 

decision  𝒙𝑡  at the beginning of period 𝑑  only depends on the information 

available up to the beginning of period 𝑑 . In the multistage setting, the 

uncertain data 𝝃1, … , 𝝃𝑇  is revealed gradually over time. Let notation 𝝃[𝑡]: =

(𝝃1, … , 𝝃𝑡−1)  denote the history of the uncertainty realization up to the 

beginning of period 𝑑 . The nonanticipativity constraint requires that the 

decision 𝑥𝑡 depends only on the uncertain data process 𝝃[𝑡]. In other words, if 

the revealed uncertainty data up to the beginning of period 𝑑 in two scenarios 

is the same, then the decision made at the beginning of period 𝑑 should be 

exactly the same, no matter how different they will be in the following periods. 

Exploiting this requirement, 𝛿𝜽(𝝃)  can be represented as  𝛿𝜽(𝝃) =

�𝛿𝜽�𝝃[1]�, … , 𝛿𝜽�𝝃[𝑇]��, where 𝛿𝜽�𝝃[𝑡]� is the decision made at the beginning 

of period 𝑑.  

The DM’s goal is to select a feasible decision rule to maximize total expected 

profit. The profits are determined by a sequence of profit 

functions �𝑟1�𝛿𝜽�𝝃[1]�, 𝝃1�, … , 𝑟𝑇�𝛿𝜽�𝝃[𝑇]�, 𝝃𝑇�� where the profit in period 𝑑 

depends on the decision 𝒙𝑡 and the revealed uncertain data 𝝃𝑡 in period 𝑑. Let 
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r(𝛿𝜽(𝝃), 𝝃) = ∑ � 1
1+𝜋

�
𝑡

𝑟𝑡�𝛿𝜽�𝝃[𝑡]�, 𝝃𝑡�𝑇
𝑡=1  denote the total profit. The problem 

of choosing an optimal decision rule is then:  

 max
𝛿𝜽

�𝑬[r(𝛿𝜽(𝝃), 𝝃)] = � 𝑝𝑘 �  𝑟𝑡�𝛿𝜽�𝝃[𝑡]
𝑘 �, 𝜉𝑡

𝑘�
𝑇

𝑡=1

𝐾

𝑘=1

� (3.1) 

 s. t. 𝛿𝜽�𝝃[𝑡]
𝑘 � ∈ 𝑋𝑡, ∀𝑘, 𝑑 (3.2) 

 𝛿𝜽�𝝃[𝑡]
𝑘 � =  𝛿𝜽 �𝝃[𝑡]

𝑘′
� ,   if 𝝃[𝑡]

𝑘 = 𝝃[𝑡]
𝑘′

, ∀𝑘, 𝑘′, 𝑑 (3.3) 

 𝛿𝜽 ∈ ∆⊆ 𝒟 (3.4) 

where ∆ is a subset of  𝒟, the variables with superscript 𝑘 correspond to the 

variables in scenario 𝑘. 

It is worthy to mention that though expected net present value (ENPV) is used 

here as objective function in the model, the objective function is not necessary 

to be restricted to be ENPV only. The objective function can be extended to 

other types of objectives for engineering systems with different characteristics 

or DMs with different risk profile. Examples of extensions could be mean-

variance, where both the return and risk are taken into consideration (Gülpınar, 

Rustem, & Settergren, 2003), and Conditional Value-at-Risk, which is a 

widely accepted risk measure (Schultz & Tiedemann, 2006). In this thesis, it is 

assumed that the decision maker is risk neutral and ENPV is used as the 

objective.  

If this model can be solved to the optimum, then an optimal decision rule 𝛿∗ 

can be obtained, under which the DM will do best by choosing 𝛿𝜽
∗(𝜉) to attain 

the maximum expected total profit as uncertainty 𝝃 unfolds. However, even 

with the SAA method, the problem may be very large. In the case of ∆= 𝒟, to 
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obtain an analytical formulation of 𝛿∗  might be extremely difficult. In the 

design of flexible engineering systems, one is usually interested in certain 

types of flexibilities embedded in the system, which will lead to some 

particular patterns of decision rules. Therefore, to obtain the closed form 

solution to the decision rule problem, ∆  can be restricted to a class of 

mappings, which is a subset of  𝒟. 

 By restricting  ∆  to be a proper subset of  𝒟 , it is possible to solve such 

problem which is generally intractable computationally. Several forms of 

decision rules are introduced in Section 3.3. The choice of decision rule form 

is based on the characteristics of the specific problem. 

As can be seen from the formulations, the decision rule approach is flexible to 

model engineering design problems. From the perspective of modeling, there 

are two important features. The first one is that the decision rule approach can 

readily handle multiple uncertainty sources. In model (3.1)-(3.4), the 

uncertainty is represented as a vector 𝝃 . Thus the number of uncertainty 

sources corresponds to the number of elements in 𝝃. As can be seen in the 

formulations, the number of elements in 𝝃 does not change the structure of the 

problem. Furthermore, the complexity of the model is determined by the 

number of decision variables and the number of constraints, neither of which 

will be significantly increased as the number of elements in 𝝃 increases. In fact, 

as the uncertainty is represented using 𝑲  scenarios, the problem can be 

decomposes into 𝑲  small problems which are easy to solve. Therefore, 

increasing from single uncertainty source to multiple uncertainty sources will 

not significantly increase the complexity of the modeling and analysis. It is 
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also straightforward to consider multiple flexibility strategies simultaneously. 

This can be seen by the fact that 𝒙𝑡 is a vector of decisions, with each element 

representing a decision regarding a given flexibility strategy. This formulation 

also lends itself naturally to Lagrangian decomposition, and can handle a 

considerable number of scenarios efficiently. The model needs to be scaled up 

to handle several flexibilities simultaneously, while the computational 

difficulty does not increase intractably. In Chapter 4, this thesis introduces 

modeling of different types of flexibilities using the proposed model. A simple 

WTE system is used as demonstration application. Chapter 5 then 

demonstrates scalability of the approach to more complex systems with 

multiple flexibility strategies and multiple uncertainty drivers.  

3.3 Decision rules 

In this section, three generic types of decision rules that can be applied easily 

to the management of flexibility in engineering systems are introduced. 

Decision rules specific to a given system may be generated using systematic 

concept generation processes, and typically rely on the designer’s creativity 

and expertise with the system (Cardin et al., 2013). Decision rules can be 

created by considering generic real option strategies (e.g. capacity expansion, 

abandonment, switching, phasing capacity deployment, deferring investment, 

etc.) combined with design enablers (which physically enable the exercise of 

the decision rule) (Cardin, 2014). Thus many decision rules exist and can be 

explored, depending on the system of interest, the uncertainty it faces, and its 

purpose or mission. This is an active topic of ongoing research.   
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3.3.1 Conditional-go decision rule 

With conditional-go decision rules, the decision at each time stage is made 

according to an estimate of future conditions, based on past information. The 

rule is usually expressed as “if the uncertainty realizations in the past satisfy a 

certain set of criteria, then exercise the flexibility, else do nothing.” There are 

various ways to formulate the conditional-go decision rules. Binary variables 

are usually introduced to facilitate this. A common formulation of the 

conditional go rule useful in the proposed stochastic programming setting is as 

below:  

 
𝒆𝑡 = 𝟏(𝑔(𝝃[𝑡]) ∈ 𝝓𝑡) (3.5) 

where 𝒆𝑡 is a vector of binary variables, each element of  𝒆𝑡 representing the 

decision to exercise or not a flexibility: if it is equal to 1, then the flexibility is 

exercised; if equal to 0, it is not exercised. 𝟏(∙)  is an indicator function. 

𝑔(𝝃[𝑡]) is a function of 𝝃[𝑡],  and can be an estimate of future conditions based 

on 𝝃[𝑡]. 𝝓𝑡 is the criteria to be satisfied in order to exercise the flexibility at 

time 𝑑. The Big-M method is very useful in the formulation of the indicator 

function.  

Because of the use of binary variables, a problem relying on conditional-go 

decision rules can often be formulated as a mixed integer linear program 

(MILP). The class of conditional-go decision rules is a compromise between 

precision and computational difficulty. While it cannot necessarily find a 

global optimum, it is often helpful to find good enough approximations. The 

form of the solution is useful in the management of flexibility in practice, 
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since it emulates a system operator’s decision making process – and simplifies 

it greatly. 

To make a connection with standard ROA, the formulation of Bellman’s 

equation in the binomial lattice can be thought conceptually as a conditional-

go decision rule. The decision rule can be described as “if the expected value 

of the up and down movement in the next stage is higher when exercising the 

option, then exercise the option, if not, keep the system in the same state.” 

Such decision rule is applied recursively in the backward induction process, 

starting from the last stage (e.g. last time period) until time zero, or the 

exercise time. Such decision rule is hard-coded in the binomial lattice 

approach. Thus, there is less freedom to implement different types of decision 

rules, and decision rules that emulate directly the system operator’s decision 

making process.  

3.3.2 Constant decision rule 

If the decision to be made at time stage  𝑑 , 𝛿𝑡(∙), is independent of the 

observations of the uncertainty data up to stage 𝑑, 𝝃[𝑡], then the decision rule 

belongs to a class called constant decision rules. This is a special case of a 

multistage problem: the problem of determining a decision rule function 

degenerates to determining a single sequence of decisions to be made at each 

stage. Thus it actually enables the DM to collapse a multistage problem into a 

two-stage problem. Only one linear program is required to solve to determine 

the options to be chosen at each stage. In this way, the computation cost can 

be reduced dramatically.  
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 max
𝒙

�� 𝑝𝑘 �  𝑟𝑡�𝒙𝑡, 𝝃𝑡
𝑘�

𝑇

𝑡=1

𝐾

𝑘=1

� (3.6) 

 s. t.  𝒙𝑡 ∈ 𝑋𝑡, ∀𝑘, 𝑑 (3.7) 

The shortcoming of this class of decision rules is that it does not fully follow a 

rational process because it forces the DM to make decisions for all time stages 

before realizing any of the uncertainties. However, in some cases, it can 

provide an insurance policy against the worst possible outcomes. 

3.3.3 Linear decision rule  

Linear decision rules are a class of decision rules 𝛿𝑡(∙)  that are linearly 

dependent on the observed uncertainty data 𝝃[𝑡]. They can be expressed as 

𝛿𝑡�𝝃[𝑡]� = 𝐿𝑡𝝃[𝑡],  for some matrix 𝐿𝑡  with proper dimensions. Substituting 

these linear decision rules to problem (3.1) – (3.4) yields the following 

approximate problem:  

 max
𝐿

�� 𝑝𝑘 �  𝑟𝑡�𝐿𝑡𝝃[𝑡]
𝑘 , 𝝃𝑡

𝑘�
𝑇

𝑡=1

𝐾

𝑘=1

� (3.8) 

 s. t.  𝐿𝑡𝝃[𝑡]
𝑘 ∈ 𝑋𝑡, ∀𝑘, 𝑑 (3.9) 

By using linear decision rules, the size of the original stochastic programming 

problem grows only moderately with the number of time stages. Therefore, the 

original problem can be converted to a finite linear program that is amenable 

to numerical solution. The form of the solution is also easy to use in 

operations, since it is a linear combination of the observed uncertainty 

realizations. 
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3.4 Solution procedure - Lagrangian decomposition 

An important challenge in multistage stochastic programming is the large 

dimension that makes most problems NP-hard to solve. Even if the problem 

can be simplified into a deterministic structure by assuming the finiteness of Ω, 

the computational effort still increases significantly with the number of 

scenarios. However, in order to obtain a good approximation for the 

uncertainty, a large number of scenarios are usually needed. In the cases where 

integer decision variables are involved, the problem will become 

computationally intractable. To overcome this difficulty, decomposition is an 

effective approach.  

It can be observed that the structure of problem (3.1) – (3.4) is convenient to 

be split into 𝐾  small subproblems, one for each scenario. And the optimal 

value of problem (3.1) – (3.4) is equal to the weighted sum with weights 𝑝𝑘, of 

the optimal value of the subproblems. However, it is the nonanticipativity 

requirement that links the decision sequences associated with different 

scenarios. The nonanticipativity constraints (3.3) can be expressed by ensuring 

the equality of the parameters 𝜽 in each scenario, i.e. 

 𝜽1 = ⋯ = 𝜽𝐾 (3.10) 

where  𝜽𝑘  is a replication of the decision rule parameters in scenario  𝝃𝑘 . 

Another way to write the nonanticipativity is to require that  

 𝜽𝑘 = 𝜽�, 1 ≤ 𝑘 ≤ 𝐾 (3.11) 

where 𝜽� = ∑ 𝑝𝑘𝜽𝑘𝐾
𝑘=1  is the average of 𝜽𝑘 over its 𝐾 replications.  
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The size of the original problem grows exponentially in the number of 

scenarios. If the coupling constraints can be relaxed, the problem can be 

decomposed into 𝐾  subproblems such that each scenario can be solved 

independently. Lagrangian relaxation is applied to the coupling constraints by 

allowing the DM to follow different decision rules in different scenarios; 

however, violations of the decision rule coupling constraints are penalized 

with Lagrange multipliers in the objective function.  

By assigning Lagrange multipliers 𝝀 = (𝜆1, … , 𝜆𝐾) to these coupling 

constraints, the following Lagrangian is obtained 

 𝐿(𝛿𝜽, 𝝀) ≔ � 𝑝𝑘𝑟(𝛿𝜽(𝝃𝑘), 𝝃𝑘)
𝐾

𝑘=1

+ � 𝜆𝑘(𝜽𝑘 − 𝜽�)
𝐾

𝑘=1

 (3.12) 

The dualization of problem (3.1) – (3.4) with respect to the coupling 

constraints can be expressed as the following problem:  

 𝑍𝐿𝐿 = min
𝝀

�𝐷(𝝀) ≔ max
𝜃

𝐿(𝛿𝜃, 𝝀)�    𝑎. 𝑑.  (3.2) and (3.4) (3.13) 

By general duality theory, the optimal value of problem (3.13) is greater than 

or equal to the optimal value of problem (3.1) – (3.4). Therefore, an upper 

bound of problem (3.1) – (3.4) is obtained by solving problem (3.13). The 

form of 𝐷(𝝀) makes it suitable to be decomposed into 𝐾 scenario subproblems: 

 max
𝜽𝑘

�𝑟�𝛿𝜽𝑘(𝝃𝑘), 𝝃𝑘� + �𝜆𝑘 −
∑ 𝜆𝑘𝐾

𝑘=1

𝐾
� 𝜽𝑘� ,    ∀𝑘 (3.14) 

The subproblems are generally of small size in comparison to problem (3.13), 

so they can be solved efficiently by applying parallel computation techniques. 
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𝐷(𝝀) can be obtained by summing up the optimums of the subproblems with 

weights 𝑝𝑘.  

Theoretically, if all the constraints are convex and all the variables are 

continuous, the optimum of 𝑍𝐿𝐿 will be equal to the optimum of the original 

problem (3.1) – (3.4). However, a duality gap may exist due to the existence of 

integer decision variables. This means that the optimum of 𝑍𝐿𝐿 will be strictly 

larger than the optimum of problem (3.1) – (3.4). Therefore, the aim is to 

obtain a good upper bound on problem (3.1) – (3.4) by solving 𝑍𝐿𝐿. 

A tight upper bound 𝑍𝐿𝐿 can be obtained by using a subgradient method to 

vary  𝝀 . Given an initial value  𝝀0 , a sequence of multiplier values 𝝀𝑖  is 

generated by the following rule 

 𝜆𝑘
𝑖+1 = 𝜆𝑘

𝑖 + 𝑑𝑖�𝜽𝑖
𝑘 − 𝜽�𝑖� (3.15) 

where 𝜽𝑖
𝑘and 𝜽�𝑖 are optimal solutions to 𝐷(𝜆) with the multipliers set to 𝜆𝑘

𝑖 

and 𝑑𝑖 is a scalar step size in the 𝑖𝑡ℎ iteration. For the choice of step size 𝑑𝑖, the 

most commonly used strategy is adopted (Fisher, 2004):  

 𝑑𝑖 =
𝜌𝑖(𝐷(𝝀𝑖) − 𝐷∗)

�𝜽𝑖 − 𝜽�𝑖�
2  (3.16) 

where 𝐷∗ is the value of the best known feasible solution to problem (3.1) – 

(3.4), 𝐷(𝝀𝑖)  is the optimal solution to the Lagrangian relaxation with 

multipliers set to 𝝀𝑖 and the scalar 𝜌𝑖 is chosen between 0 and 2 and its value 

is halved whenever 𝐷(𝝀𝑖) fails to decrease in a fixed number of iterations.  
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A heuristic method can be used to generate feasible solutions to 𝑍𝐿𝐿, which 

are lower bounds. This method should be designed based on the characteristics 

of the problem. For example, in the application of the AD plant problem 

described in Section 4.2, the heuristic method used is: set the maximum 

capacity 𝑥𝑀 as the maximum value of 𝑥𝑀
𝑘  among the 𝐾 subproblems; set the 

initial capacity 𝜀, and other two decision rule variables 𝛼, 𝛽  as the average 

value of 𝜀𝑘, 𝛼𝑘 and 𝛽𝑘 respectively.  

The gap between the upper bound and lower bound determines the quality of 

the solution. Because solving the dual to optimality is not guaranteed, the 

search is terminated when the gap is lower than a certain value or after a 

predetermined number of iterations. 

3.5 Summary 

This chapter proposes a generic multistage stochastic programming model to 

explicitly consider decision rules in the analysis of flexibility in the design of 

engineering systems. Three types of decisions rules are introduced using 

generic formulations. An algorithm based on Lagrangian decomposition is 

introduced to solve the multistage stochastic programming model.  
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Chapter 4 – Modeling Simple Flexibilities 

4.1 Introduction 

This chapter demonstrates how the generic model proposed in Chapter 3 can 

be applied to model flexibilities in engineering systems. First, six types of 

managerial flexibilities are formulated by using simple examples from 

Trigeorgis (1996). Subsequently, a case study on a WTE system using AD 

technology is conducted as demonstration to apply the proposed approach in a 

real-world engineering system problem.  

4.2 Simple examples of flexibility 

Trigeorgis (1996) utilized a generic example to show how contingent-claims 

analysis (CCA) could be used to evaluate the value of operating real options 

(flexibility). In this section, the sample example is analyzed using the 

proposed decision rule approach to demonstrate its capability to model these 

flexibilities. The results are compared to those of CCA presented by 

Trigeorgis (1996). Throughout the formulations of these simple flexibilities, 

conditional-go rules are applied as it emulates the decision making process of 

CCA.  

Suppose that a firm has an opportunity to invest 𝐼0 = $104 million (all equity) 

in a project (e.g. to build a plant). The expected value of this project follows a 

multiplicative binomial process: in each period, the project value either 

increases by an up factor 𝑢 = 1.8 or decreases by a down factor 𝑑 = 0.6. That 
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is, the expected value will be $180 million if the market moves up (𝑉+ = 180) 

or $60 million if the market moves down (𝑉− = 60 ). There is an equal 

probability (𝑞 = 0.5) that the project will move up or down in any year. The 

discount rate is 𝑘 = 20% and the risk-free interest rate is 𝑟 = 8%. Figure 4-1 

illustrates the binomial lattice of the cash flow. The objective is to determine 

the net present value of the project. In addition, when flexibility is present, the 

value of flexibility needs to be assessed.   

 

Figure 4-1: The binomial lattice of the cash flow 

4.2.1 Flexibility to defer investment 

Suppose the firm has the exclusive right to defer undertaking the project in a 

given year. What is the value of the investment opportunity provided by the 

flexibility to defer investment? It is evident that the flexibility to defer 

undertaking the project has a positive value as it maintains the opportunity to 

benefit from favorable future scenarios and provides the right to avoid loss in 

unfavorable market circumstances. To evaluate the value of the flexibility to 

defer, a simple stochastic program is built following the generic model 

described in Chapter 3.  
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Because the flexibility to defer the project grants DMs the right, but not the 

obligation, to invest in a given year, they will wait and construct the plant only 

if the project value in the next year turns out to be favorable. Therefore, the 

decision rule to capture the decision making can be expressed as: wait until 

Year 1, and invest in the project if the gross project value in year one 𝑉1 

exceeds a critical value 𝑉∗; otherwise, do not invest. A binary variable 𝑒 is 

used to capture the decision of exercising the flexibility to invest in Year 

1: 𝑒 = 1 when 𝑉1 ≥ 𝑉∗; otherwise 𝑒 = 0. The problem can be formulated as: 

 max
𝑉∗

𝛦 �
𝑒(𝑉1 − 𝐼1)

1 + 𝑟
� (4.1) 

 𝑎. 𝑑.  𝑒 = 1(𝑉1 > 𝑉∗) (4.2) 

where 𝛦(·)  denotes the expectation and 1(·)  the indicator function. The 

constraint (4.2) can be formulated using the big M method:  

 𝑉1 − 𝑉∗ > 𝑀(𝑒 − 1) (4.3) 

 𝑉1 − 𝑉∗ ≤ 𝑀𝑒 (4.4) 

where 𝑀 is a sufficiently large constant.  

By subscribing the expectation function and big M representation, Problem 

(4.1) and (4.2) can be expanded as:  

 max
𝑉∗

𝑝𝑒+(𝑉1
+ − 𝐼1) + (1 − 𝑝)𝑒−(𝑉1

− − 𝐼1)
1 + 𝑟

 (4.5) 

 𝑎. 𝑑.  𝑒+ = 1(𝑉1
+ > 𝑉∗) (4.6) 

 𝑒− = 1(𝑉1
− > 𝑉∗) (4.7) 

where 𝑝 is the risk-neutral probability,  
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 𝑝 =
(1 + 𝑟) − 𝑑

𝑢 − 𝑑
 (4.8) 

Upon solving this simple optimization problem, the net present value (NPV) 

of the project is $25.07 million. The project per se has a negative NPV of $4 

million if taken immediately. Therefore, the value of the flexibility to defer 

investment is $29.07 million. These results are the same as the results obtained 

using the CCA by Trigeorgis (1996).  

Besides the results regarding the valuation of the flexibility to defer, the 

results also reveal guidelines for the DMs to make a decision in Year 1. 

According to the results, the threshold to determine whether to invest the plant 

in Year 1 is 𝑉∗ = 60. This translates into a decision that the DMs should 

invest in the project only when the gross value of the project in year one is 

larger than 60: when the market moves up (𝑉1
+ = 180), the DMs should invest; 

when the market moves down, DMs should not invest. This decision rule is in 

line with the decisions generated from the CCA by Trigeorgis (1996).   

4.2.2 Flexibility to expand 

Once the project is implemented, the DMs may have the flexibility to change 

it in different ways at different time periods throughout its lifespan. The 

flexibility to expand enables the DMs to expand the project by making 

additional investment if the market turns out better than originally expected. In 

this example, suppose that the DMs have the option to make an additional 

investment of $80 million one year after the project is undertaken. This 

follow-on expansion would double the scale of the project. With this 

expansion in Year 1, the DMs can decide either to operate the plant on the 
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original scale of production or on twice that original scale to receive double 

the project value with additional cost. This problem can be modeled as:  

 max
𝑉∗

𝛦 �
𝑒(2𝑉1 − 𝐼1

′) + (1 − 𝑒)𝑉1

1 + 𝑟
− 𝐼0� (4.9) 

 𝑎. 𝑑.  𝑒 = 1(𝑉1 > 𝑉∗) (4.10) 

Upon solving this optimization problem, the total value of the investment 

opportunity is $33.04 million. The value of the flexibility to expand is 

therefore equal to 33.04 − (−4)  = $37.04 million. The threshold to exercise 

the flexibility to expand is 𝑉∗ = 60. In the upside scenario, 𝑉1
+ = 180 > 60, 

therefore  𝑒 = 1, the plant is expanded to receive twice the project value. In 

the downside scenario, 𝑉1
− = 60 , 𝑒 = 0 , the project remains the same. A 

comparison shows that the results are again the same as the solutions by 

Trigeorgis (1996). 

4.2.3 Flexibility to contract 

The flexibility to contract is akin to the flexibility to expand. It enables the 

system to reduce the operation scale of a project if the market turns out worse 

than originally expected. The flexibility to contract can be seen as a put option 

that reduces the project’s exposure to risk.  

In this example, assume that the investment cost of the project is to be spent 

over two years. Specifically, an initial investment of $50 million (𝐼0 = 50) is 

required to initiate the project and a follow-up cost of $58.32 (the future value 

of $54 million) (𝐼1 = 54) is to be spent to maintain the scale of operation in 

year one. In one year, DMs will have the option to reduce to half of the scale 

of the project by spending less, 𝐼1
′′ = $25  million. In this way, the 
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management may find it valuable to exercise this option if the market does not 

accept the product as well as expected. The formulation of the problem is:  

 max
𝑉∗

𝛦 �
(1 − 𝑒)(𝑉1 − 𝐼1) + 𝑒(0.5𝑉1 − 𝐼1

′′)
1 + 𝑟

− 𝐼0� (4.11) 

 𝑎. 𝑑.  𝑒 = 1(𝑉1 ≤ 𝑉∗) (4.12) 

Upon solving this optimization problem, the total value of the project with 

flexibility to contract is $ − 2.16  million. The value of the flexibility to 

contract is therefore equal to −2.16 − (−4)  = $1.84 million. The threshold to 

exercise the flexibility to contract is 𝑉∗ = 60. In the upside scenario, 𝑉1
+ =

180 > 60, therefore  𝑒 = 0, the project remains the same. In the downside 

scenario, 𝑉1
− = 60, 𝑒 = 1, the scale of the project is halved to save expenses. 

The results are the same as those reported in Trigeorgis (1996).  

4.2.4 Flexibility to temporarily shut down 

If the revenue of a project in a given year is lower than its operating cost, the 

flexibility to temporarily shut down production may significantly reduce its 

potential loss. In this example, suppose that the cost in year one can be divided 

into fixed cost, 𝐹𝐶 =  $18.32, and variable cost, 𝑉𝐶 =  $40 and that the cash 

revenue of the project in a given year equals to 30% of the project value, i.e. 

𝐶 = 0.3𝑉 . The fixed cost is to be paid yearly after the project has been 

launched whereas the variable cost is necessary to be spent in order to acquire 

the cash revenue. However, if the market turns out unfavorable and the cash 

revenue in the next year is less than the variable cost, the DMs may choose to 

exercise the flexibility to temporarily shut down the production to save 

variable cost and relinquish the cash revenue. In other words, the flexibility 
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enables the DMs either to operate the plant in a given year and receive the 

value of project minus the variable costs, or to temporarily shut down 

production and receive the value of project minus the cash revenue. The 

formulation of the problem is:  

 max
𝑉∗

𝛦 �
(1 − 𝑒)(𝑉1 − 𝑉𝐶) + 𝑒(𝑉1 − 0.3𝑉1) − 𝐹𝐶

1 + 𝑟
− 𝐼0� (4.13) 

 𝑎. 𝑑.  𝑒 = 1(𝑉1 ≤ 𝑉∗) (4.14) 

The results show that the value of the project with flexibility to temporarily 

shut down is $8.22 million. The value of flexibility is 8.22 − (−4)  = $12.22 

million. This result is the same as that in Trigeorgis (1996). The threshold to 

temporarily shut down production is 𝑉∗ = 60. In the upside scenario, 𝑉1
+ =

180 > 60, 0.3𝑉1
+ = 54 > 40, therefore 𝑒 = 0, the project remains the same. 

In the downside scenario, 𝑉1
− = 60, 0.3𝑉1

− = 18 < 40, thus 𝑒 = 1, the plant 

will be temporarily shut down.  

4.2.5 Flexibility to abandon 

Besides the flexibility to temporarily shut down production of the project, the 

DMs may enjoy the flexibility to abandon the project to receive the salvage 

value if the market condition is exceedingly unfavorable. In this example, 

assume that the project can be abandoned in exchange for its salvage value, 𝐴, 

which fluctuates over time as follows:  
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Figure 4-2: The binomial lattice of the salvage value 

Assume that DMs would abandon the project early if the difference between 

the value of the project and its salvage value is lower than a threshold 𝑉∗. The 

problem can be formulated as:  

 max
𝑉∗

𝛦 �
𝑒𝑉1 + (1 − 𝑒)𝐴1

1 + 𝑟
− 𝐼0� (4.15) 

 𝑎. 𝑑.  𝑒 = 1(𝑉1 − 𝐴1 ≤ 𝑉∗) (4.16) 

Upon solving this optimization problem, results show that the value of the 

project with flexibility to abandon is $0.44 million. The value of flexibility is 

0.44 − (−4)  =  $4.44 million. Again, this result is the same as that in 

Trigeorgis (1996). The threshold to abandon the project is 𝑉∗ = 0, implying 

that the project should be abandoned when the project value is lower than its 

salvage value. In the upside scenario, 𝑉1
+ − 𝐴1 = 72.5 > 0, therefore 𝑒 = 0, 

the project goes on nonetheless. In the downside scenario,  𝑉1
− − 𝐴1 = −8, 

thus 𝑒 = 1, the project will be abandoned to receive the salvage value.  
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4.2.6 Flexibility to switch 

The abandonment can be viewed as a switching option in which abandoning 

the project is viewed as a second operating mode of the project. In addition to 

abandoning the project, a project may have multiple operating modes so that 

the DMs have the flexibility to switch to different modes as uncertainty 

reveals. To model this type of flexibility, formulations similar to the structure 

of Problem (4.15) and (4.16) can be used.  

4.3 Case study I: Capacity expansion of a WTE system using 

AD technology 

The preceding section demonstrates formulations of different types of 

flexibilities using generic examples. These examples are uncomplicated given 

that the main purpose is to demonstrate the ease with which different types of 

flexibility can be modeled using the proposed decision rule approach. In this 

section, the approach is applied to a real-world system: the design of an 

upcoming AD plant that treats food waste in Singapore. The goals of this case 

study are twofold. Firstly, it demonstrates how the proposed approach can be 

utilized to design and manage flexibility in engineering systems in practice. 

Secondly, it enables a comparison between the proposed decision rule 

approach and standard ROA, and evaluates thoroughly their similarities and 

differences.  
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4.3.1 Problem analysis 

The study builds upon and extends the work by Hu and Cardin (2015), who 

considered embedding flexibility into the system design as a mechanism to 

deal pro-actively with uncertainty of the amount of food waste collected. After 

analyzing the uncertainty and interdependency of the system elements in an 

AD plant, two system elements related to capacity are identified as valuable 

opportunities to embed flexibility (i.e. tipping floor and major tankage). Using 

these design enablers, it is assumed that the AD plant is designed with the 

ability to expand capacity in a flexible manner, as needed. More specifically, 

one assumes that the AD plant is modularly designed, which means it can 

expand the capacity by units of modules. Abandonment is not considered in 

this paper, i.e., the capacity is increasing monotonically. The goal of DMs is to 

select the appropriate capacity expansion strategy to maximize the expected 

total profit, i.e., ENPV, in a lifespan of 𝑇 years. 

It is assumed that the centralized AD plant is to be built in Tuas, using trucks 

to collect food waste from households and food courts around the city. Let 𝜉𝑡 

denote the amount of food waste collected in year 𝑑. The food waste is turned 

into biogas, compost and residue after a series of processes in the plant. The 

biogas is further used to generate electricity, the compost can be sold for 

agriculture, while the residue and any unprocessed feedstock have to be sent to 

landfill for disposal by paying disposal fee. The revenue of the AD plant 

mainly comes from three sources: the sale of electricity to the grid, the sale of 

compost, and the tipping fee collected from the household and food courts. 

The cost of the AD plant consists of installation cost, maintenance cost, land 
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rental cost, labor cost, transportation cost, as well as disposal cost. The profit 

function 𝑟𝑡 of the AD plant in period 𝑑 ≥ 1 can be expressed as:  

 𝑟𝑡 = 𝑅𝑡 − 𝐶𝑡 − 𝑃𝑡 (4.17) 

where 𝑅𝑡 is the revenue function, 𝐶𝑡 is the cost function, and 𝑃𝑡 is the penalty 

function due to the capacity shortage. They are defined as below:  

 𝑅𝑡 = (𝑑1 + 𝑑2)𝑝(𝜉𝑡 − 𝑓𝑡) + 𝑑3𝜉𝑡 (4.18) 

 
𝐶𝑡 = 𝑑4𝜉𝑡 + 𝑑5(𝑥𝑡 − 𝑥𝑡−1) + (𝑑6  + 𝑑8 + 𝑑9)𝑥𝑡

+ 𝑑10(1 −  𝑝 + 𝑝𝜏)(𝜉𝑡 − 𝑓𝑡) + 𝑑7(𝑥𝑀 − 𝑥𝑡) 
(4.19) 

 𝑃𝑡 = 𝑑10𝑓𝑡 (4.20) 

where 𝑥𝑀 is the designed maximum capacity, 𝑓𝑡 = max (0, 𝑥𝑡 − 𝜉𝑡) represents 

the capacity shortage, 𝑝 is the purity ratio of the food waste, 𝜏 is the residue 

rate, 𝑑1  is the net unit revenue from electricity generation, 𝑑2  is the unit 

revenue from compost sale, 𝑑3 is the unit revenue from tipping fee, 𝑑4 is unit 

transportation cost, 𝑑5 is unit capacity installation cost, 𝑑6 is unit land rental 

fee, 𝑑7 is unit reserved land fee, 𝑑8 is unit labor cost, 𝑑9 is unit maintenance 

cost, and 𝑑10 is unit disposal cost.  

The AD plant is modularly designed: the capacity can be expanded in units of 

modules, each module with a unit capacity 𝑜𝑢 tons per day. Abandonment is 

not considered, i.e., the capacity is increasing monotonically. The total 

expected profit, i.e., ENPV, of the AD plant is considered in a lifespan of 𝑇 

years.  

The main source of uncertainty is the amount of food waste collected. 

Historical data in the past 10 years show that the amount of food waste 
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collected in Singapore has a deterministic growth rate, but the amount 

variation in each period is random. Based on this observation, it is suitable to 

model the fluctuating waste amount using geometric Brownian motion (GBM): 

 𝑑𝜉𝑡 = 𝜇𝜉𝑡𝑑𝑑 + 𝜎𝜉𝑡𝑑𝑑𝑡 (4.21) 

where variable 𝜇 is the annual growth rate of the food waste amount, σ is the 

volatility of the food waste amount, and 𝑑𝑑𝑡 is the basic Wiener process giving 

a random shock to  𝜇 . The first term at the right hand side models the 

deterministic trend, and the second term models the uncertainty shock 

occurring at each period. With these two parts, the GBM formulation captures 

the stochastic properties of the waste generation process. 

4.3.2 Binomial lattice analysis 

In order to apply ROA over a discrete time horizon, the model of the 

uncertainty can be simplified using the binomial lattice approach proposed by 

Cox et al. (1979). Assuming food waste amount can move up at rate 𝑢 with 

probability 𝑞, or down at rate 𝑑 with probability 1 − 𝑞, such that 𝑑 = 1/𝑢, the 

rate and probability of movement are given as:  

 𝑢 = 𝑒σ√∆𝑡 (4.22)  

 𝑞 =
1
2

+
1
2

�
𝜇
𝜎

� √∆𝑑 (4.23) 

where ∆𝑑 is the length of each time interval.  

In each period 𝑑, the DM must choose an option of capacity 𝑥𝑡 from a set of 

feasible options  𝑋𝑡  to maximize the total expected profit, given that the 

capacity selected in the preceding time is 𝑥𝑡−1, and the realization of the food 
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waste amount is 𝜉𝑡. The value 𝑅 of the total profit at time 𝑑 and state (𝑥𝑡−1, 𝜉𝑡) 

is defined with the following recursive equation: 

𝑅𝑡(𝑥𝑡−1, 𝜉𝑡) = max
𝑥𝑡

 �𝑟𝑡(𝑥𝑡−1, 𝑥𝑡, 𝜉𝑡)

+
1

(1 + 𝜋) � 𝑝𝑗𝑅𝑡+1�𝑥𝑡, 𝜉𝑡+1,𝑗�
𝑛

𝑗=1

� , 0 < t < T 

(4.24) 

where 𝑟𝑡(𝑥𝑡−1, 𝑥𝑡, 𝜉𝑡) is the profit in time period 𝑑, 𝑥𝑡 is the capacity chosen in 

time 𝑑, 𝑅𝑡(𝑥𝑡−1, 𝜉𝑡) is the total expected profit from time 𝑑  to the last time 

period, 𝑥𝑡−1 is the capacity applied in time 𝑑 − 1, 𝑛 is the number of jumps 

from each node (in the binomial lattice, n = 2), 𝜋 is the discount rate, 𝜉𝑡+1,𝑗 is 

the food waste amount in node order  𝑗  of the following  𝑛  nodes at time 

interval 𝑑 + 1, and 𝑝𝑗 is the according probability of the state. 

To solve the dynamic programming problem, it starts from the last period and 

go back one time period at each iteration. The expected total profit in the last 

time period can be calculated by:  

 𝑅𝑇(𝑥𝑇−1, 𝜉𝑇) = max
𝑥𝑇

 𝑟𝑇(𝑥𝑇−1, 𝑥𝑇 , 𝜉𝑇) (4.25) 

When the first node is reached, the optimal solution is obtained. The solution 

of the binomial lattice model consists of two parts: the first part is the 

maximum of the total expected profit of the program 𝑅1; the second part is the 

optimal decision for the first period 𝑥1. The results will be compared to the 

results of the proposed approach in the Section 4.3.4.  
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4.3.3 Multistage stochastic programming with conditional-go decision 

rules 

To apply the proposed stochastic programming model with decision rules, a 

set of conditional-go decision rules is considered. The type of decision rule 

can be expressed as: at the end of time period 𝑑 − 1, if the observed amount of 

waste collected in the last year is more than a certain level (i.e.(𝑥𝑡−1 −

 𝛼𝑡)𝑜𝑢) , then expand the capacity by 𝛽𝑡𝑜𝑢. Here, 𝑥𝑡 is an integer representing 

the number of modules installed at time 𝑑; 𝛼𝑡 is a parameter in unit of number 

of modules representing the severity level of the capacity shortage at time 𝑑, a 

higher (lower) 𝛼𝑡  means the DM is more (less) keen to expand capacity to 

prevent capacity shortage; and 𝛽𝑡  represents the scale of each expansion at 

time  𝑑  (i.e. the number of modules deployed). To fit to the framework in 

Section 3.2, Constraint (3.4) about the decision rule can be represented by  

 𝜉𝑡−1
𝑘 − (𝑥𝑡−1

𝑘 − 𝛼𝑡
𝑘)𝑜𝑢 ≥ 𝑀(𝑒𝑡

𝑘 − 1),    𝑑 = 2 … 𝑇, ∀ 𝑘 (4.26) 

 𝜉𝑡−1
𝑘 − (𝑥𝑡−1

𝑘 − 𝛼𝑡
𝑘)𝑜𝑢 ≤ 𝑀𝑒𝑡

𝑘,     𝑑 = 2 … 𝑇, ∀ 𝑘 (4.27) 

 ℎ𝑡
𝑘 ≤ 𝛽𝑡

𝑘𝑜𝑢,    𝑑 = 2 … 𝑇, ∀ 𝑘 (4.28) 

 ℎ𝑡
𝑘 ≥ �𝑒𝑡

𝑘 − 1�𝑀 + 𝛽𝑡
𝑘𝑜𝑢, 𝑑 = 2 … 𝑇, ∀ 𝑘 (4.29) 

 ℎ𝑡
𝑘 ≤ 𝑒𝑡

𝑘𝑀,          𝑑 = 2 … 𝑇, ∀ 𝑘 (4.30) 

where 𝑀 is a large enough number (as a rule of thumb, the value for 𝑀 should 

be at least 100 times larger than the largest value of any variable in the 

problem), 𝛼𝑡
𝑘  and 𝛽𝑡

𝑘  are the replications of the corresponding decision rule 

variables in scenario 𝑘, 𝑒𝑡
𝑘 is a binary variable indicating whether to expand in 

year 𝑑 in scenario 𝑘, and ℎ𝑡
𝑘 is the amount of capacity to be added. When the 

waste amount in year 𝑑 − 1 reaches a certain threshold, i.e. �𝑥𝑡−1
𝑘 − 𝛼𝑡

𝑘�𝑜𝑢 , 
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(4.26) and (4.27) will force 𝑒𝑡
𝑘 = 1, which means the flexibility of expanding 

capacity should be exercised in year 𝑑. Meanwhile, (4.28), (4.29), and (4.30) 

will force ℎ𝑡
𝑘  to be equal to  𝛽𝑡

𝑘𝑜𝑢 , the amount of capacity to be added. 

Conversely, when the waste amount in the previous year is less than the 

threshold, 𝑒𝑡
𝑘  will be equal to 0 and the amount of capacity to be added in 

year 𝑑, i.e. ℎ𝑡
𝑘, will be 0.  

Constraint (3.2) defines the set of available options in each time, and can be 

represented by: 

 𝑥𝑡
𝑘𝑜𝑢 = 𝑥𝑡−1

𝑘 𝑜𝑢 + ℎ𝑡
𝑘, 𝑑 = 2 … 𝑇, ∀ 𝑘 (4.31) 

 𝑥𝑡
𝑘 ≤ 𝑥𝑀

𝑘 ,     ∀𝑑, 𝑘 (4.32) 

 𝑥1
𝑘 = 𝜀𝑘,     ∀𝑘 (4.33) 

 𝑜𝑢𝑥𝑡
𝑘+𝑓𝑡

𝑘 ≥ 𝜉𝑡
𝑘,  𝑑 = 1,2, … , 𝑇, ∀𝑘 (4.34) 

where 𝜀𝑘 is the number of modules installed in the first year in scenario 𝑘, 𝑥𝑀
𝑘  

is the maximum number of modules allowed to be expanded in scenario 𝑘. 

Constraint (4.31) defines the incremental of the capacity, constraint (4.32) 

requires the capacity to be no larger than the maximum capacity designed, 

constraint (4.33) defines the initial capacity, and constraint (4.34) defines the 

capacity shortage 𝑓𝑡
𝑘.  

The decision variables parameterizing the decision making process are the 

decision rule variables  𝛼𝑡, 𝛽𝑡 , and the initial design variables  𝜀, 𝑥𝑀 . Let 

𝜃 = (𝛼2 … 𝛼𝑇 , 𝛽2 … 𝛽𝑇 , 𝜀, 𝑥𝑀) denote the set of decision variables and provide 

a complete solution to design and manage the flexible system. In the above 

constraints, a replication of these decision variable,  𝜃𝑘 , is made for each 
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scenario, so as to make it convenient to decompose the problem later. In order 

to satisfy the requirement of nonanticipativity, the equality of replications 

must be forced, i.e.  

 𝜽1 = ⋯ = 𝜽𝐾 = 𝜽 (4.35) 

The stochastic programming problem with decision rules can be formulated as: 

 max
𝜽

� 𝑝𝑘 � �
1

1 + 𝜋
�

𝑡

𝑟𝑡
𝑘�𝑥𝑡

𝑘, 𝜉𝑡
𝑘�

𝑇

𝑡=1

𝐾

𝑘=1

,     𝑎. 𝑑.  (4.26) − (4.35) (4.36) 

where 𝑝𝑘 is the weight associated with scenarios 𝑘. To make a fair comparison 

with standard ROA, the scenarios of uncertainty of the food waste amount are 

generated from the binomial lattice. A lattice of 𝑇 time periods contains 2𝑇 

scenarios.  

The above formulation enables different expansion judgment criteria and 

different levels of expansion at each stage by allowing different values 

of 𝛼𝑡  and 𝛽𝑡. This is consistent with standard ROA. However, for simplicity 

and demonstration purposes, 𝛼𝑡 and 𝛽𝑡 are assumed to be respectively equal at 

each stage in the computational experiments, i.e. 𝛼2 = ⋯ = 𝛼𝑇 , 𝛽2 = ⋯ = 𝛽𝑇. 

In this way, the decision rule becomes even simpler and practical to use, 

because the expansion judgment criteria and expansion level are the same at 

each stage and throughout the project lifetime. The stochastic program enables 

finding the optimal value of each such parameter across a given range of 

scenario samples. 

Problem (4.36) is a MILP. The number of constraints and decision variables 

increase exponentially as the number of scenarios considered increases. To 
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solve it efficiently, Lagrangian decomposition is used by dualizing the 

coupling constraint (4.35) with a set of Lagrange multipliers, and then 

decomposing the problem into  𝐾  scenario subproblems. The algorithm 

described in Section 3.4 is applied and implemented in C++ by calling CPLEX. 

The details of the solution are presented in the following section.  

4.3.4 Computational experiments 

Numerical Results 

This section presents the numerical results of the standard ROA and proposed 

decision rule approaches. The main assumptions of the AD plant used in the 

numerical study are listed in Table 4-1. Based on historical data of the food 

waste amount in Singapore, parameters of the uncertainty can be inferred in 

Table 4-2. Then the binomial lattice is generated, as shown in Figure 4-3. 
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Table 4-2: Parameters of uncertainty 

Parameters Value Definition 
𝜇 14.1% Annual growth rate 
𝜎 16.4% Volatility 
𝑢 1.18 Upside factor 
𝑑 0.85 Downside factor 

𝑞 93% Probability of moving up 
 

 

Figure 4-3: Binomial lattice of the waste amount 

To make a fair comparison, two configurations of experiments are emphasized. 

Firstly, the uncertainty data used in the stochastic program (4.36) are 

generated from the same paths in the binomial lattice shown in Figure 4-3. 

Secondly, the action space in the ROA is set to be consistent with the decision 

rule approach: it is assumed that the AD plant can be installed with the same 

capacity range as the result of the decision rule approach, i.e., in each time 𝑑, 

the DM can choose a capacity 
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from   𝑋 = {𝜀𝑜𝑢, (𝜀 + 1)𝑜𝑢, (𝜀 + 2)𝑜𝑢, … , 𝑥𝑀𝑜𝑢} , where 𝜀  and 𝑥𝑀  are the 

values of the corresponding decision variables in the decision rule approach. 

The multistage stochastic program (4.36) is solved using the Lagrangian 

decomposition algorithm described in Section 3.4. The algorithm is terminated 

when the gap between the upper and lower bound is smaller than 5% or after 

100 iterations. The program is run on a PC with Intel Core i5-2500 @ 

3.30GHz quad core processor and 8GB memory. After solving the problem 

with a size of 512 scenarios (all paths from the binomial lattice) and 9 year 

periods, it shows that the algorithm is able to get feasible solutions with low 

duality gap very fast. Table 4-3 shows the progression of bounds in the 

proposed Lagrangian decomposition algorithm. It shows that the best ENPV 

of $38.7 million is obtained within 100 iterations, and the final gap between 

the upper and lower bounds is 2.3%. To show the efficiency of the algorithm, 

the program runs under different number of scenarios (which are generated 

based on Formula (4.21) using the Monte Carlo approach). As can be seen in 

Table 5-4, the solution time of the original model using CPLEX MIP solver 

increases exponentially as the size of the problem increases. It becomes not 

solvable when the number of scenarios is as large as 500. However, the 

solution time of the Lagrangian algorithm increases linearly as the size of the 

problem increases. This shows that the proposed algorithm is capable of 

efficiently solving the problems of large size. In addition, based on the 

observations of the available results, the difference between the ENPV 

obtained by using the proposed algorithm and by using CPLEX MIP solver, 

which is the real optimal solution, is less than 1%. 
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Table 4-3: Bounds from the Lagrangian decomposition algorithm 

Iterations 
Lagrangian solution 

 (upper bound) 
($, million) 

Postulated lower 
bound 

($, million) 

Gap between 
lower and 

upper bounds 

2 98.7 31.4 214.3% 
10 56.2 36.8 52.8% 
20 41.2 38.7 6.6% 

50 40.2 38.7 4.0% 

100 39.6 38.7 2.3% 

 

Table 4-4: Comparison of the results for 9 years 

No. of 
scenarios 

CPLEX Proposed algorithm 
Difference 
of ENPV ENPV 

($, million) 
Solution 
time (s) 

ENPV 
($, million) 

Solution 
time (s) 

10 35.2 2 34.9 8 0.9% 

50 34.9 37 34.7 42 0.6% 

100 33.8 157 33.6 74 0.6% 

200 34.3 25,632 34.0 157 0.9% 

500 N/A* N/A 33.8 401 N/A 

*N/A means the problem is not solvable as the PC runs out of memory.  

The value of flexibility, which means the ENPV of the flexible design 

compared to the inflexible design, is measured to compare the performance of 

the models. The expected value of flexibility is defined as:  

 Expected value of flexibility = ENPVflexible − ENPVinflexible (4.35) 

To calculate the value of flexibility, a baseline inflexible design is formulated 

as:  
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 max
𝑥𝑓
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𝑟𝑡
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𝑇

𝑡=1

𝐾

𝑘=1

 (4.36) 

where 𝑥𝑓 is the capacity of the AD plant throughout the lifespan. One should 

note that building a large rigid system can benefit from economies of scale, i.e., 

the average unit capacity installation cost is lower. In this study, unit capacity 

installation cost of the inflexible design is assumed to be 90% of that of the 

flexible designs. 

Table 4-5 shows the solutions for the three optimization models. The ENPV of 

the inflexible design is $36.9 million. The ENPV using standard ROA is $40.8 

million. Thus $3.9 million of additional value can be achieved compared to the 

inflexible design. As for the decision rule model, the ENPV can be as high as 

$38.7 million, with expected value of flexibility of $1.8 million.  

Table 4-5: Solutions for optimization models 

Models Solutions 
ENPV 

($ million) 

Value of 
flexibility 
($ million) 

Computation 
time (s) 

Inflexible 
design 

𝑥𝑓 = 14 36.9 - 0.146 

ROA 𝑥1 = 8 40.8 3.9 0.015 
Decision rule 

approach 
𝜀 = 9, x𝑀 = 23, 

α = 1, β = 2 
38.7 1.8 73 

 

The valuation results are of similar order of magnitude, and show that standard 

ROA can gain the highest ENPV. This is not surprising, since the backward 

induction process finds the best capacity deployment path through the lattice 

at each stage. This contrasts with the decision rule approach based on a 

heuristics, which by design deploys the same capacity in each expansion phase 

to ease the management process. A key observation here is that both 
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approaches recognize a similar amount of value from flexibility using a 

similar capacity expansion strategy. Also, the performance improvement is 

non-negligible as compared to the inflexible system, which is in line with the 

results obtained in the literature.  

One may conclude from the results in Table 4-5 that by enabling flexibility in 

the WTE system, the ENPV improves significantly. However, this is based on 

the assumption that the unit cost of capacity installation for the inflexible 

design is 90% of that of the flexible designs due to economies of scale, and the 

fact that a flexible design may require additional upfront costs. Intuitively as 

the economies of scale factor decreases (i.e. economies of scale becomes 

stronger), the value of flexibility should decrease, because there is more 

economic incentive to build large. To see how valuable the flexibility is 

compared to the economies of scale in this system, a sensitivity analysis is 

conducted by varying the factor of economies of scale from 50% to 100%. 

Results in Table 4-6 show as expected that the value of flexibility decreases as 

economies of scale become stronger (i.e. lower economies of scale factor). 

The value of flexibility is offset by economies of scale when the factor is as 

low as 50% (note: industry standard is typically no lower than 60%). 

Table 4-6: Sensitivity analysis on the factor of economies of scale 

Factor of economies of scale 100% 90% 80% 70% 60% 50% 
ENPV of inflexible design 

($ million) 
36.4 36.9 37.3 37.8 38.2 38.7 

Value of flexibility 
($ million) 

2.43 1.8 1.4 0.9 0.5 0 
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Using the Solution 

This section describes the forms of the solutions under each approach, and 

how to use them to exercise the flexibilities in operations. For the inflexible 

design, decision making is simple: build a system with capacity of 14 modules 

(14 modules × 30 tpd/module = 420 tpd) in the first period, and do not make 

any change in the future.  

The solutions of the standard ROA require conducting a backward induction 

process at each node, which can be stored in a lookup table showing the 

optimal capacity for the next year based on the current state. For instance, 

Table 4-7 shows the lookup table of the possible choices for node 𝑛4,2 (defines 

the 𝑘th node in period 𝑑 in the lattice as 𝑛𝑡,𝑘). Such table must be created each 

time a decision must be made because it depends on the capacity installed in 

the possible previous states. At the beginning of each time period, the DM 

must determine the current position (i.e. node, characterizing the stage/state) 

in the binomial lattice and the path followed up to that node, and then identify 

the optimal decision based on the position.  

Table 4-7: Lookup table for node 𝑛4,2 in the lattice 

Current 
capacity 

240 270 300 330 360 390 420 450 

Optimal 
options 

330 330 330 330 360 390 420 450 

Current 
capacity 

480 510 540 570 600 630 660  

Optimal 
options 

480 510 540 570 600 630 660  

 

One practical disadvantage of using the lookup tables to make decisions, 

however, is that it does not provide clear guidance when the realization of 
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uncertainty falls outside the values of the lookup nodes in the lattice. One way 

to approximate the problem is to locate the realization of uncertainty to the 

nearest corresponding node in the lattice. Figure 4-4 illustrates the decision 

making procedure. For instance, if the realized waste amount in year 4 is 230 

tpd and the waste amount in year 3 has been allocated to the node 𝑛3,2, then 

the waste amount in year 4 will be allocated to the node 𝑛4,2 (with value of 

263) as it is closer than node 𝑛4,3 (with value of 191). Based on Table 5-7, if 

current installed capacity is 300 tpd, expansion to 330 tons per day should be 

done. If current capacity is 360 tpd, no flexibility should be exercised, and 

capacity should remain at 360 tpd. There is no unique optimal decision on 

each node because current capacity varies depending on the path of the 

uncertainty realization up to that point. Therefore, the DM has to keep 

checking the path of the uncertainty realization recursively and refer to the 

lookup table produced for each node. The correctness of the decision depends 

on the ability to locate the correct position in the binomial lattice, and apply 

the recursive process correctly. Of course, the best way to use the standard 

ROA is to conduct the backward induction process in each year based on 

realized uncertainty information to find the optimal decisions. This, however, 

increases computational effort.  
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Figure 4-4: Illustration of decision making procedure following results of 
standard ROA 

Under the decision rule approach, the system should be designed with initial 

capacity of 𝜀 = 9 modules (270 tpd) in the first year, and extra land should be 

reserved to facilitate maximum capacity of 𝑥𝑀 = 23 modules (690 tpd) in the 

future (land should also be reserved under standard ROA). Every year, the DM 

should expand the capacity by 𝛽 = 2 modules (60 tpd) once the amount of 

waste collected in the previous year is higher than the value of the current 
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capacity minus the equivalent of 𝛼 = 1 module of capacity (i.e. (𝑥𝑡−1 − 1) ∗

30 tpd). For example, if installed capacity is 300 tpd and waste generated in 

the previous year reached 270 tpd or more, expansion to 360 tpd should occur. 

One observation is that that the decision making process under the decision 

rule approach is quite readily applicable as compared to standard ROA, and 

does not rely on backward induction.  

Out-of-Sample Studies 

To validate and compare the performance of the three decision making 

approaches numerically, an out-of-sample study is conducted. Three 

simulation models are built to capture the decision making processes described 

in the previous sub-section. A number of 10,000 sample scenarios are 

generated based on formula (4.21) by the Monte Carlo approach, using the 

inferred parameters in Table 4-2. It is assumed that each scenario has the same 

weight, i.e. 𝑝𝑘 = 1
10000

, ∀𝑘. 

The results of the out-of-sample test are summarized in Table 4-8. The 

performance under the decision rule approach is again of the same order of 

magnitude as under standard ROA, only 1.4% less on average. This difference 

stems again from the same capacity being deployed in each expansion phase 

under the decision rule approach. Both approaches rank order the design 

alternatives in a consistent manner (i.e. flexible solution is better than the 

inflexible solution). Table 4-8 shows that the computation time of the decision 

rule approach is also similar to that for standard ROA (0.02s). As expected, 

the ENPV of each approach is lower than the optimal objective value obtained 

in the optimization models. This is because the optimization model finds a 
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solution that fits better the sample scenarios from the binomial lattice, while 

both solutions must perform under unseen scenarios in the out-of-sample 

studies.  

Table 4-8: Results of out of sample simulation (10,000 scenarios) 

Models 
ENPV 

($ million) 
Value of flexibility 

($ million) 
Computation 

time (s) 

Inflexible design 32.3 - 0.16 

ROA 34.8 2.5 0.02 

Decision rule approach 34.3 2.0 0.02 

4.3.5 Discussions 

Influence of uncertainty 

The preceding analysis shows that the performance under the decision rule 

approach is of the same order of magnitude as that under standard ROA in 

terms of the ENPV, only 1.4% less on average. This difference is attributed to 

the abilities of different capacity expansion strategies to handle the uncertainty 

in the waste amount. To elucidate how the uncertainty affects this difference, 

sensitivity analysis was conducted by varying the volatility of the waste 

amount from 14.2% to 24.6%. The ENPVs of the two approaches in out-of-

sample test are shown in Figure 4-5. As can be seen, the ENPVs decrease as 

the volatility increases. In particular, the difference between the ENPV of 

standard ROA and that of the decision rule approach becomes slightly larger 

as the volatility increases. This means that the increase of uncertainty in the 

food waste amount weakens the ability of the decision rule approach to obtain 

a high ENPV to a greater extent than it affects that of the ROA approach. The 

reason for this is that the decision rule approach deploys the same capacity in 
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each expansion phase to ease the management process. When the volatility 

becomes higher, the change of the waste amount becomes more uncertain. In 

some scenarios, the increment of waste amount may be so high that an overall-

best amount of capacity expansion is difficult to satisfy the requirement. Due 

to the flaw of average, the opportunity lost in these extreme scenarios may not 

be compensated by cost savings occurring in downside scenarios. In contrast, 

the standard ROA approach enables more flexibility in the expansion amount 

in each stage. Therefore, the difference of performance of these two 

approaches increases as the volatility increases. It is anticipated that when 

more flexible decision rules are utilized, this gap will be smaller. A more 

flexible decision rule, however, will diminish its ease of use in management 

practice. There is a trade-off between the high performance and the ease of use 

in selection of decision rules.  

 

Figure 4-5: Sensitivity analysis on volatility 
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Cost of having simple decision rules 

From a more general perspective, the solutions of standard ROA can be also 

considered a type of decision rule as represented by dynamic programs or 

lookup tables (as approximation of dynamic programs solutions). Though this 

decision rule provides higher ENPVs, it is less intuitive for the DMs in 

practice. In contrast, the conditional-go decision rule provides intuitive and 

readily usable guidelines to DMs for exercising the flexibility in operations, 

but its performance is compromised in terms of the ENPV. It is evident that 

there is a trade-off between the ease of use and the performance in the 

selection of the decision rules. To observe this trade-off, another type of 

decision rules – the constant decision rule – is applied to solve the same 

problem. The performance of these three decision rules are then compared and 

discussed.  

As introduced in Section 3.3.2, a constant decision rule determines the 

capacity to be deployed in each time period, regardless of the realization of 

uncertainty in practice. The output of the stochastic programming model is a 

set of decision variables indicating the capacity to deploy in each time period. 

The scale of this model is much smaller than the model for the conditional-go 

decision rule as it does not require binary variables to represent the capacity 

expansion processes and can therefore be solved directly using the CPLEX 

MIP solver. The optimization model is solved under the same uncertainty 

scenarios used in Section 4.3.4. A simulation model is built to conduct an out-

of-sample test using the capacity deployment strategy obtained from the 



 

73 
 

optimization model. The result is listed in Figure 4-6 alongside the results of 

the other two strategies.  

 

Figure 4-6: Comparison of performances of different decision rules 

The performance comparison between the three different types of decision rule 

approaches reveals that the highest ENPV in out-of-sample simulation is 

obtained via standard ROA, followed by the conditional-go decision rule 

(intermediate), and lastly the constant decision rule (lowest). The ranking of 

ENPVs mirrors the ranking of their ease of use in reverse order. The rule 

associated with the greatest ease for the DMs to follow is the constant decision 

rule (by dint of its fixed capacity deployment), followed by the conditional-go 

decision rule (intermediate), and lastly the standard ROA (most difficult as it 

requires solving backward reduction). This observation leads to a conclusion 

that the ease of use of a decision rule comes with a cost in its performance: the 

greater ease of use of a decision rule relates to greater compromise in its 

performance.  
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4.4 Summary 

This chapter illustrates how the generic model proposed in Chapter 3 can be 

applied to analyze flexibilities in engineering systems. Firstly, simple projects 

are used as examples to demonstrate the formulations of different types of 

flexibilities with comparison to the work by Trigeorgis (1996). The results 

show that the proposed approach is easily applicable to analyze different types 

of flexibility. Then, a case study on a WTE system is used to demonstrate the 

application of the approach in real-world systems. In the case study, the results 

show that the decision rule approach not only recognizes a similar amount of 

value stemming from flexibility compared with standard ROA in terms of the 

ENPV in the out-of-sample test, but also requires similar computational time. 

It also rank orders the design alternatives in a similar fashion as standard ROA 

(i.e. showing that the flexible design is expected to perform better over time 

than an inflexible solution). The form of the solution is reasonably intuitive to 

be used by the DMs in operations.  
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Chapter 5 – Modeling Compound Flexibilities and 

Multiple Uncertainty Sources 

5.1 Introduction 

Chapter 4 demonstrates the analysis of six simple flexibilities using the 

proposed decision rule approach through some simple examples and a case 

study on an AD plant for which the standard ROA is likewise readily 

applicable. In practice, however, it is very common to see combinations of 

these flexibilities in complex systems. One challenge of using standard ROA 

to analyze these complex systems is that the calculation effort increases 

dramatically when the complexity of the problem increases as more 

uncertainty drivers and decision variables are considered. In contrast, as 

mentioned in Section 3.2, the proposed decision rules approach lends itself 

naturally to the analysis of more complex systems. In this chapter, a more 

complex engineering system – a hybrid WTE system – with multiple 

flexibilities and uncertainty sources is analyzed to exhibit important 

advantages of the proposed approach.  

5.2 Case study II: Hybrid WTE system with AD and gasifier 

technology 

In this section, a hybrid WTE system with AD and gasifier is considered. In 

such a system, two uncertainty sources and two flexibility strategies are 

considered simultaneously. This section shows that the proposed approach 
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lends itself naturally to the analysis of more complex systems with multiple 

uncertainty sources and flexibility strategies.  

5.2.1 Problem analysis 

In the hybrid WTE system, there are two types of technologies to treat organic 

waste: AD and gasification. Both technologies are able to generate gas from 

organic waste, and then generate electricity from the gas using a gas engine. In 

particular, the AD unit is better at treating high moisture organic waste, such 

as food waste, while the gasifier is better at treating low moisture organic 

waste such as paper, wood and horticultural waste. Therefore, organic waste is 

divided into two categories: food waste and other organic waste (i.e. paper, 

wood and horticultural waste). In this hybrid system, all food waste is treated 

by AD, and other organic waste is mainly treated by the gasifier. If the 

capacity of the gasifier is not high enough to handle all other organic waste, 

the untreated feedstock will be transferred to the AD.  

The AD unit is assumed to be similar to the AD plant studied in case study I, 

i.e., it is modularly designed. However, unlike the AD unit, the capacity of the 

gasifier unit,  𝑦𝑡 , is a continuous decision variable - it can be changed 

continuously. Denote 𝜉𝑡 as the amount of food waste as before and introduce 

𝜂𝑡 as the total amount of other organic waste in year 𝑑. Historical data in the 

past 10 years show that the amount of food waste and other organic 

waste collected has a deterministic positive growth rate, but the 

amount of variation in each period is random. Based on this 
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observation, it is suitable to model the fluctuating waste amount using 

standard GBM.  

The profit function 𝑟𝑡 of the hybrid WTE system in year 𝑑 is defined as:  

 𝑟𝑡 = 𝑇𝑡 + 𝑅𝐴𝑡 + 𝑅𝐺𝑡 − 𝐶𝐴𝑡 − 𝐶𝐺𝑡 − 𝑃𝑡 (5.1) 

where 𝑇𝑡 is the tipping fee, 𝑅𝐴𝑡 and 𝑅𝐺𝑡 are the revenue generated by the AD 

and gasifier respectively, 𝐶𝐴𝑡  and 𝐶𝐺𝑡  are the cost of AD and gasifier 

respectively, 𝑃𝑡 is the penalty function incurred by capacity shortage in AD. 

By reusing the notations for AD in Section 4.3, the definitions of the functions 

are as below:  

 𝑇𝑡 = 𝑑3(𝜉𝑡 + 𝜂𝑡) (5.2) 

 𝑅𝐴𝑡 = (𝑑1 + 𝑑2)(𝑝(𝜉𝑡 − 𝑓𝑡) + 𝑝′𝑓′
𝑡) (5.3) 

 

𝐶𝐴𝑡 = 𝑑4𝜉𝑡 + 𝑑5(𝑥𝑡 − 𝑥𝑡−1) + (𝑑6  + 𝑑8 + 𝑑9)𝑥𝑡

+ 𝑑10𝜏(𝑝(𝜉𝑡 − 𝑓𝑡) + 𝑝′𝑓′
𝑡)

+ 𝑑10(1 −  𝑝)(𝜉𝑡 − 𝑓𝑡) + 𝑑7(𝑥𝑀 − 𝑥𝑡) 

(5.4) 

 𝑅𝐺𝑡 = 𝑑11𝑝′(𝜂𝑡 − 𝑓′
𝑡) (5.5) 

 
𝐶𝐺𝑡 = 𝑑4𝜂𝑡 + 𝑑15(𝑦𝑡 − 𝑦𝑡−1) + (𝑑6 + 𝑑12 + 𝑑13)𝑦𝑡 + 𝑑10𝜏 ,𝑝′(𝜂𝑡

− 𝑓′
𝑡) + 𝑑10(1 −  𝑝′)𝜂𝑡 + 𝑑7(𝑦𝑀 − 𝑦𝑡) 

(5.6) 

 𝑃𝑡 = 𝑑10𝑓𝑡 (5.7) 

where 𝑝′ is the purity ratio of other organic waste, 𝑓′
𝑡 is the capacity shortage 

for the gasifier, 𝑦𝑀 is the maximum capacity reserved for the gasifier, 𝑑11 is 

the revenue from electricity sale of per ton per day waste treated in the gasifier, 

𝑑12 is the total of labor, admin, maintenance cost per ton per day waste treated 

in the gasifier, 𝑑13 is the cost of refuse derived fuel process per ton per day 
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waste treated in the gasifier, 𝑑15 is the capital cost of per ton per day capacity 

of the gasifier, 𝜏 , is the residue ratio of the gasifier.  

5.2.2 Multinomial lattice analysis 

Based on the binomial lattice approach by Cox et al. (1979), Kamrad and 

Ritchken (1991) developed a multinomial lattice procedure to value options 

with multiple sources of uncertainty. The main challenge of lattice based 

methods, however, is that the computational effort increases dramatically 

when the dimension of the state variables increase, which makes them difficult 

to apply when there are more than two state variables.  

Figure 5-1 shows a lattice for two sources of uncertainty. There are five 

possible movements emerging from each node, each with a probability of 

occurrence (Kamrad & Ritchken, 1991). As there is no recombination in the 

multinomial lattice, the number of nodes in period 𝑇 is 5𝑇 . When 𝑇 = 9 is 

considered, the lattice becomes extremely large – the number of nodes in the 

last period is nearly 2 million. This exponential increase causes the first curse 

of dimensionality for the multinomial lattice method.  
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Figure 5-1: A multinomial lattice 

Similar to the binomial lattice approach, the multinomial lattice is solved using 

a backward induction process. At the end of each period 𝑑, DMs must decide 

on capacities of next period 𝑥𝑡+1  and 𝑦𝑡+1  that will maximize the total 

expected profit based on the current state of the system, 𝑥𝑡  and 𝑦𝑡 , and 

information on uncertainty realization, 𝜉𝑡  and  𝜂𝑡 . The recursive reward 

function is:   

 

𝑅𝑡(𝑥𝑡, 𝑦𝑡, 𝜉𝑡 , 𝜂𝑡)

= max
𝑥𝑡+1,𝑦𝑡+1

�𝑟𝑡(𝑥𝑡, 𝑦𝑡, 𝜉𝑡, 𝜂𝑡)

+
1

(1 + 𝜋) � 𝑝𝑗𝑅𝑡+1�𝑥𝑡+1, 𝑦𝑡+1, 𝜉𝑡+1,𝑗, 𝜂𝑡+1,𝑗�
𝑛

𝑗=1

� , 0 < 𝑑 < 𝑇 

(5.8) 
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Since variable  𝑦𝑡  is continuous, it needs to be discretized to simplify the 

calculation of the dynamic program. A simple method is to discretize it to an 

integer variable, i.e. 𝑌𝑡 = {𝜀′, 𝜀′ + 1 … 𝑦𝑀}. Therefore, the number of possible 

decision choices in period 𝑑 is |𝑋𝑡| ∗ |𝑌𝑡|. It can be seen that the number of 

decisions choices increases exponentially as the dimension of the decision 

variables increases. The multidimensionality of the decision variables is the 

second curse of dimensionality for this multinomial lattice method.  

Due to the curses of dimensionality, the multinomial lattice method becomes 

impractical for complex problems. In particular, calculations using standard 

backward dynamic programming show that it is unable to solve the hybrid 

WTE problem with two dimensions of uncertainty sources and two flexibility 

strategies.  

To get some results of the multinomial lattice model, an approximated 

dynamic programming (ADP) approach is used to solve the problem. ADP is a 

modeling and algorithmic framework for solving stochastic optimization 

problems with multidimensional random variables and multidimensional 

decision variables. To apply ADP, the multinomial lattice model should be 

reformulated from the perspective of dynamic programming. Define state 

variable 𝑆𝑡 = (𝑥𝑡, 𝑦𝑡, 𝜉𝑡, 𝜂𝑡). The total expected profit starting from period 𝑑 

until the last period can be represented using the equation bellow:  

 
𝑅𝑡(𝑆𝑡−1) = max

𝑥𝑡,𝑦𝑡
�� 𝑝𝑗 �𝑟𝑡�𝑆𝑡−1, 𝑆𝑡,𝑗� +

1
1 + 𝜋

𝑅𝑡+1�𝑆𝑡,𝑗��
𝑛

𝑗=1

� , 0 < 𝑑

< 𝑇 

(5.9) 
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where 𝑛 = 5  for a multinomial lattice of two sources of uncertainty, 𝑝𝑗 

represents the probability of each emerging path from a node, 𝑆𝑡,𝑗 represents 

the state corresponding to the emerged path 𝑗.  

The key idea of ADP is to use a value function to approximate the 𝑅𝑡+1(∙) in 

equation (5.9). Using an approximation to the value function, the decision 

making process can be simulated forward in time by generating samples of 

uncertainty paths. Then the approximation can be iteratively updated using 

regression methods based on observations in the simulation. Linear functions 

are widely used in the literature as they are easy to implement, and powerful to 

approximate complex value functions. In this paper, 𝑅𝑡+1(∙)  is approximated 

using a weighted linear combination of a set of basis functions 𝜙𝑡+1(∙) , 

associated with weights 𝝆𝑡+1 , i.e. 𝑅𝑡+1(∙) = 𝝆𝑡+1
𝑇𝝓𝑡+1(∙) . Figure 5-2 

describes the least square policy iteration algorithm used to solve the hybrid 

WTE system problem.  
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Figure 5-2: Least square policy iteration algorithm (pseudo-code) 

5.2.3 Multistage stochastic programming with decision rules 

To apply the decision rule approach to analyze the hybrid WTE system, two 

types of decision rules are used. As the AD unit has basically the same 

characteristics of the system in Section 4.3, the same conditional-go decision 

rule is used to model this component. Thus, all of the constraints of Problem 

(4.36) can be reused in the new problem, except for constraint (4.34) that is 

revised as:  
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 𝑜𝑢x𝑡
𝑘+𝑓𝑡

𝑘 ≥ 𝜉𝑡
𝑘 + 𝑝′𝜏 ,�𝜂𝑡

𝑘 − 𝑓′
𝑡
𝑘� + 𝑓′

𝑡
𝑘,   𝑑 = 1,2, … , 𝑇, ∀𝑘 (5.10) 

The revised constraint takes the untreated feedstock of the gasifier as the 

feedstock of AD. As the capacity of the gasifier can be adjusted to any real 

number, a linear decision rule is applied to determine the capacity based on 

the information over the past few years. Linear decision rules are a class of 

decision rules that are linearly dependent on the observed uncertainty data. In 

this demonstration, the form of linear decision rule that determines the 

capacity of the gasifier is a linear function of the waste amount over the past 

three consecutive years.  

The constraints regarding the gasifier are as below:  

 𝑦𝑡
𝑘 = 𝛾1𝑡

𝑘𝜂𝑡−1
𝑘 + 𝛾2𝑡

𝑘𝜂𝑡−2
𝑘 + 𝛾3𝑡

𝑘𝜂𝑡−3
𝑘 ,      𝑑 = 4 … 𝑇, ∀𝑘 (5.11) 

 𝑦1
𝑘 = 𝑦2

𝑘 = 𝑦3
𝑘 = 𝜀′𝑘,    ∀𝑘 (5.12) 

 𝑦𝑡
𝑘 ≤ 𝑦𝑀

𝑘,    ∀𝑘 (5.13) 

 𝑦𝑡
𝑘 + 𝑓′

𝑡
𝑘 ≥ 𝜂𝑡

𝑘 ,    ∀𝑘 (5.14) 

Constraint (5.11) defines the linear relationship of the capacity of the gasifier 

with the uncertainty realizations in the past three years, where 𝛾1𝑡
𝑘, 𝛾2𝑡

𝑘, 𝛾3𝑡
𝑘 are 

the coefficients of the linear function to be optimized. 𝜀′𝑘 is the capacity of the 

gasifier in the first three years, 𝑦𝑀
𝑘 is the maximum capacity of the gasifier 

needed to be reserved. Now the set of decision rule variables 𝜽 becomes 

𝜽 = (𝛼2 … 𝛼𝑇 , 𝛽2 … 𝛽𝑇 , 𝜀, 𝑥𝑀, 𝛾14 … 𝛾1𝑇 , 𝛾24. . 𝛾2𝑇 , 𝛾34 … 𝛾3𝑇 , 𝜀′, 𝑦𝑀) 

In order to satisfy the nonanticipativity requirement, all the decision variables 

should be equal over all scenarios, i.e.𝜽𝟏 = ⋯ = 𝜽𝑲. Similar to Section 4.3, 
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for simplicity and demonstration purposes, 𝛼𝑡, 𝛽𝑡, 𝛾1𝑡, 𝛾2𝑡 and 𝛾3𝑡 are assumed 

to be respectively equal at each time period. Thus this form of the decision 

rule is constant throughout the lifetime, which is readily usable for the DMs to 

apply in operations. Therefore, 

 𝛼2
1 = 𝛼𝑡

𝑘, 𝛽2
1 = 𝛽𝑡

𝑘, ∀𝑑, 𝑘 (5.15) 

 γ14
1 = γ1𝑡

𝑘, γ24
1 = γ2𝑡

𝑘, γ34
1 = γ3𝑡

𝑘, 𝑑 = 4, … , 𝑇, ∀𝑘 (5.16) 

The stochastic programming problem with decision rules for the hybrid WTE 

system is formulated as:  

 
𝑚𝑎𝑥

𝜃
� 𝑝𝑘 � �

1
1 + 𝜋

�
𝑡

𝑟𝑡
𝑘�𝑥𝑡

𝑘, 𝑦𝑡
𝑘, 𝜉𝑡

𝑘�
𝑇

𝑡=1

𝐾

𝑘=1

,     

 𝑎. 𝑑.  (4.26) − (4.33), (5.10) − (5.16) 

(5.17) 

Problem (5.17) is also an MILP. It can be solved using the same algorithm as 

described in Section 3.4.  

5.2.4 Computational results 

According to the technical parameters from existing WTE technologies (Klein, 

2002), the main assumptions for the gasifier model are listed in Table 5-1. The 

parameters for the uncertainty driver can be inferred based on historical data 

of organic waste generated in Singapore, as shown in Table 5-2. 
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Table 5-1: List of assumptions for the gasifier unit 

Parameters Value Definition 

𝑝′ 70% Purity ratio of the other organic waste 
feedstock 

𝜏′ 20% Residue ratio of the gasifier 

𝑑11 S$62,678/tpd Revenue from electricity generation per tpd 
waste processed in the gasifier 

𝑑12 S$5,840/tpd Total of labor, admin, maintenance cost per tpd 
waste treated in the gasifier 

𝑑13 S$2,920/tpd Cost of the RDF process per tpd of waste 
treated in the gasifier 

𝑑15 S$96,970/tpd Capital cost of per tpd capacity of the gasifier 

 

Table 5-2: Parameters of uncertainty drivers 

Parameters Definition Food waste Other organic waste 

𝜇 Annual growth rate 14.1% 6.0% 

𝜎 Volatility 16.4% 4.1% 

𝜉0/ 𝜂0 Waste amount in year 0 191 tpd 2,823 tpd 

 

The least square policy iteration algorithm described in Figure 5-2 is 

programmed using C++. The number of sample paths generated in each 

iteration is 𝐼 = 40. The results converge well after 𝐻 = 1000 iterations. As it 

uses a linear function of the state variables to approximate the value 

functions 𝑅𝑡(∙), the results are the exact forms of 𝑅𝑡(∙) at each time period. 

The value of 𝑅1(∙) corresponds to the ENPV of the system, as shown in Table 

11. Based on the forms of 𝑅𝑡(∙), decisions on the respective capacities for AD 



 

86 
 

and gasifier can be made by solving the optimization problem at each time 

period 𝑑:  

 

(𝑥𝑡, 𝑦𝑡) = arg max
𝑥𝑡,𝑦𝑡

�� 𝑝𝑗 �𝑟𝑡(𝑆𝑡−1, 𝑥𝑡, 𝑦𝑡)
𝑛

𝑗=1

+
1

(1 + 𝜋) 𝝆𝑡+1
ℎ−1𝑇𝝓𝑡+1(𝑆𝑡)�� 

(5.18) 

Problem (5.17) is solved under 512 scenarios of uncertainty generated based 

on Equation (4.21) via the Monte Carlo approach. Table 5-3 shows the 

solutions for the three models. For the inflexible design, ENPV = $751.1 

million. For standard ROA using multinomial lattice and ADP, ENPV = 

$765.2 million. As for the decision rule model, ENPV = $765.1 million. As 

can be seen, the decision rule approach recognizes performance for the 

flexible system similar to standard ROA using multinomial lattice and ADP – 

only a 0.01% difference. Both the decision rule and ROA/ADP approaches 

recognize additional value from flexibility in approximately the same amount, 

as compared to the inflexible system (i.e. benchmark expected value of 

flexibility is $765.2 million – $751.1 million = $14.1 million, and about $14.0 

million under the decision rule approach). Both approaches can solve more 

complex problems with multiple uncertainty sources and multiple flexibility 

strategies. Computation is much faster for the decision rule approach (333 

seconds), however, as opposed to standard ROA (4254 seconds).  
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Table 5-3: Results of the hybrid WTE system 

 

 

Solutions ENPV 

($ million) 

Computation 
time (s) AD Gasifier 

Inflexible 
design 𝑥𝑓 = 570 𝑦𝑓 = 3668 751.1 0.2 

ROA based 
on ADP 

Values of 𝝆𝑡 to approximate 𝑅𝑡(∙) by 

𝑅𝑡(∙) = 𝜌𝑡0 + 𝜌𝑡1𝑥𝑡−1 + 𝜌𝑡2𝜉𝑡−1
+ 𝜌𝑡3𝑦𝑡−1 + 𝜌𝑡4𝜂𝑡−1 

765.2 4254 

Decision rule 
approach 

𝜀 = 11, 
x𝑀 = 1470, 

α = 2, β = 3 

𝜀′ = 3219, 𝑦𝑀 = 6382 

γ1 = 0.47, γ2
= 0.28, γ3 = 0.35 

765.1 333 

 

Using the Solution 

This section describes the forms of the solutions under each approach, and 

how to use them to exercise the flexibilities in operations. The comparison 

aims to support the view that the solution from the decision rule approach is 

more intuitive to use in operations than from standard ROA.  

In the standard ROA using multinomial lattice and ADP, a linear function of 

the state variables is used to approximate the value functions 𝑅𝑡(∙), and the 

results are the exact forms of 𝑅𝑡(∙) at each time period. Based on the forms 

of 𝑅𝑡(∙), decisions on the respective capacities for AD and gasifier can be 

made by solving the optimization problem at each time period 𝑑:  
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(𝑥𝑡, 𝑦𝑡) = arg max
𝑥𝑡,𝑦𝑡

�� 𝑝𝑗 �𝑟𝑡(𝑆𝑡−1, 𝑥𝑡, 𝑦𝑡)
𝑛

𝑗=1

+
1

(1 + 𝜋) 𝝆𝑡+1
ℎ−1𝑇𝝓𝑡+1(𝑆𝑡)�� 

(5.19) 

subject to capacity currently installed 𝑥𝑡−1  and 𝑦𝑡−1 , and uncertainty 

realization for variables 𝜉𝑡−1 and 𝜂𝑡−1.  

Under the decision rule approach, the AD should be designed with initial 

capacity of 𝜀 = 11 modules (330 tpd) and extra land should be reserved to 

facilitate maximum capacity of x𝑀 = 1470  tpd in the future. The gasifier 

should be designed with initial capacity of 𝜀′ = 3219  tpd with maximum 

capacity of 𝑦𝑀 = 6382 tpd. At the end of every year 𝑑 − 1 (𝑑 ≥ 2), the DM 

should decide on the capacity of the AD unit for year 𝑑 based on the amount of 

food waste collected in year 𝑑 − 1: if it is higher than the value of the current 

capacity minus 𝛼 = 2 modules of capacity (𝑖.𝑒. 𝑥𝑡−1 −2∗30 𝑑𝑝𝑑), then the 

capacity should be expanded by 𝛽 = 3 modules (𝑖.𝑒. 90 tpd). At the same time, 

the DM should adjust the capacity of the gasifier starting from year 4: set the 

capacity of the gasifier as described by the linear function of the amount of 

other organic waste over the last three consecutive years, i.e., 𝑦𝑡 =

0.47𝜂𝑡−1 + 0.28𝜂𝑡−2 + 0.35𝜂𝑡−3.  

One may notice that the decision rule approach provides readily applicable 

guidance on the decision making process in operations in each time period. 

The capacity to deploy for both plants can be determined straightforwardly by 

following the decision rules, subject to realizations of the two uncertainty 
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drivers. In contrast, the form of the solution under ADP requires solving the 

optimization program in (5.19) at each time period to determine the capacity 

for both plants. This is typical of the form of solutions obtained from 

multinomial and ADP approaches. It is obvious that this form of solutions is 

more challenging to use for DMs as compared to the proposed decision rule 

approach. 

5.3 Summary 

In this chapter, the proposed decision rule approach is applied to solve a more 

complex flexible hybrid WTE system design problem. The analysis 

demonstrates that the decision rule approach can be augmented in a 

straightforward manner to analyze more complex systems when multiple 

uncertainty sources and flexibility strategies are considered simultaneously. 

Computational results show that it not only is readily applicable to solve such 

problem but also provides intuitive guidance to DMs in operations. 

Conversely, standard ROA based on multinomial lattice and ADP proves more 

challenging due to the curse of dimensionality. It leads nonetheless to similar 

ENPV performance results as the decision rule approach, but requires more 

computational time to find a solution, and additional optimization to determine 

the physical capacity of the system in each time period. Both approaches 

recognize value improvements stemming from flexibility, as compared with an 

inflexible benchmark design.  
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Chapter 6 – A Framework for Analyzing Flexibilities 

Using Decision Rules 

6.1 Introduction 

In the preceding chapters, the decision rule approach has been introduced and 

its capability of analyzing various flexibilities in engineering systems has been 

demonstrated, especially in complex systems. With the basics of the decision 

rule approach outlined, this chapter is now concerned with its application in 

design practice. Specifically, a six-step framework is proposed to guide 

designers to apply the approach throughout the design process. The framework 

addresses the idea of design for operation by focusing on generating decision 

rules throughout the design phase. With this framework, designers can start 

with a baseline design and generate a valuable flexible design that is practical 

to operate by exploiting the concept of decision rules.  

6.2 A framework for analyzing and managing flexibility in 

engineering design using decision rules 

Table 6-1 summarizes the six-step design framework. It illustrates the 

procedure that designers must undertake when designing engineering systems 

by exploiting the concept of decision rules. The details of each step are 

introduced as follows.  
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Figure 6-1: Framework for analyzing and managing flexibility in engineering 
design using decision rules 

6.2.1 Step 1: Baseline design 

Design for flexibility must use an existing design concept as a starting point. 

Traditional design practices usually intend to optimize designs based on the 

forecasting of main uncertainty factors like future markets, customer demands 

and requirements, etc. The outcome of these approaches is often a rigid design 

with fixed design variables and parameters that it is unable to adapt to 

uncertain future. However, one should believe that by explicitly considering 

uncertainty and flexibility in the design, the lifecycle performance of the 

system can be improved. Here, this design configuration is referred to as the 

baseline design concept, in the sense that they serve as points of comparison to 

the flexible design concepts generated by following this framework.  

Step 1 helps designers build their knowledge of the system. The design 

architecture must be able to be expanded to consider uncertainty and 

flexibility in subsequent phases. According to the taxonomy by Cardin (2014), 

a baseline design can be created using approaches such as the systemic 
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approach (Pahl & Beitz, 2013), axiomatic design (Suh, 2001), concurrent 

design (Roos, Womack, & Jones, 1990),  Concept-Knowledge theory 

(Hatchuel & Weil, 2009), function-based failure analysis (Kurtoglu, Tumer, & 

Jensen, 2010), and architecture generation using Bayesian network (Moullec 

et al., 2013).  

6.2.2 Step 2: Uncertainty recognition 

Engineering systems inevitably face numerous uncertainty sources during their 

long lifespans. The lifecycle performance of engineering systems is affected 

by uncertainty in different ways. While uncertainty may bring opportunities 

for better performance when its realization is more favorable than expected, it 

may also undermine the performance when conditions are unfavorable.  

In Step 2, designers identify and model main uncertainty sources affecting 

lifecycle performance which are then modelled as stochastic processes. When 

knowledge is available about the underlying phenomena, probability and 

possibility theories are useful to determine the stochastic process. When 

information is not readily available, designers may rely on methods like 

experts survey, the Dempster-Shafer method (Dempster, 1967; Shafer, 1976) 

or scenario planning (Helmer, 1967) etc. When historical data is available, the 

information of the stochastic process can be inferred using statistical 

techniques. With the information of the stochastic process, a number of 

scenarios of realizations of uncertainty can be generated using Monte Carlo 

simulation. These scenarios serve as the input for the optimization model in 

Step 5.  
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It is noteworthy that when the system faces multiple uncertainty drivers, each 

uncertainty driver is respectively modelled using a stochastic process. In this 

case, a scenario consists of realizations of all uncertainty sources.  

6.2.3 Step 3: Flexibility identification 

In this step, designers generate flexible design concepts to handle uncertainty 

identified in Step 2. A flexible design concept consists of two parts: a flexible 

strategy and flexibility enablers. The flexible strategy describes how the 

system adapts itself in the face of changing conditions. The flexibility enablers 

are essential elements to be embedded in the system to render possible the 

exercise of flexible strategy. The procedure in this step can be classified into 

two categories: strategy generation and enabler identification.  

Generation of flexibility strategy  

Several types of flexibility strategies can be considered in engineering system 

design (Trigeorgis, 1996).  

1) Deferral of investment. The option to defer gives DMs the right, but not the 

obligation, to defer a project for a period of time. When future market or 

technology is highly uncertain, it is prudent to wait until more information of 

uncertainty unfolds before investing in a system.   

2) Capacity adjustment (expansion and contraction). Once a system is 

implemented, the DMs may have the flexibility to change it in different ways 

at different time periods throughout its lifespan. When the realization of 

market is optimistic, the option to expand its capacity enables the system to 
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capture more revenue. When the realization of market is not as good as 

expected, the option to contract its capacity enables the system to reduce the 

exposure to loss.   

3) Abandonment of projects. If one has the right, but not the obligation, to 

terminate a project to receive salvage value, it is called the flexibility to 

abandon a project. Abandonment options are important for some projects to 

prevent further loss, such as exploration and development of natural resources.   

4) Temporarily shutting down.  If the revenue of a system is lower than its 

operating cost, the option to temporarily shut down may significantly reduce 

potential loss. This type of flexibility is common in the mining industry.  

5) Switching options. A system may have several operating modes. The option 

to switch enables the system flexibility to operate in different modes at 

different times so as to obtain the highest lifecycle performance.  

6) Combinations of above.  

The forms of these strategies vary depending on the system of interest. 

Creativity is needed for designers to instantiate in the system of interest. 

Several techniques are available to aid in the recognition of valuable flexibility 

strategies for the system at hand. Mikaelian, Nightingale, Rhodes, and 

Hastings (2011) introduced an integrated real-options framework to support 

strategy generation by characterizing a real option as a mechanism and type. 

Flexibility types are mapped to different mechanism patterns upon recognition 

of main uncertainty sources. Cardin et al. (2013) suggested that a prompting 

mechanism and explicit training can help in flexibility strategy generation. 
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This technique includes a short lecture and a structured prompting mechanism 

to help designers understand more about the influence of uncertainty and lead 

them to generate flexibility concepts.  

Identification of flexibility enablers  

After flexibility strategies are generated, the designers need to identify 

valuable opportunities (i.e. enablers) to embed flexibility in the system. The 

following techniques in the literature can be used to support flexibility enabler 

identification.  

Industry Guidelines. Principles in industry guidelines can be used to enable 

flexibility in engineering systems design, e.g. ideality, simplicity, modularity, 

embedding safeguards, parts reduction, spatial principle, interface decoupling, 

adjustability, etc. (Fricke & Schulz, 2005; Gil, 2007; Keese, Seepersad, & 

Wood, 2009; Qureshi et al., 2006; Rajan, Van Wie, Campbell, Wood, & Otto, 

2005).  

Design Structure Matrix (DSM). Many DSM-based procedures have been 

developed to identify valuable opportunities to embed flexibility in 

engineering systems. Giffin et al. (2009) applied change propagation analysis 

in the design of a complex sensor system. Hu and Cardin (2015) proposed a 

DSM-based method by integrating the Bayesian network to model change 

propagation in the flexibility identification process. The DSM method is 

further extended to sensitivity DSM (Kalligeros, 2006), engineering system 

matrix (Bartolomei, Hastings, de Neufville, & Rhodes, 2012), logical multiple 

domain matrix (Mikaelian, Rhodes, Nightingale, & Hastings, 2012), etc.  
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Screening Model. The screening model is a simplified, conceptual, low-

fidelity model to screen for the most important variables and interesting 

flexibility of the system. For example, in the design of hydroelectric dams case 

by Tao Wang (2005), a non-linear programming model that optimizes the 

system (assuming a deterministic state) is used to represent the system and to 

screen for the promising candidates designs. De Weck, Neufville, and Chaize 

(2004) used a similar approach to identify valuable candidate design variables 

for flexibility in the design of a satellite system.  

6.2.4 Step 4: Decision rule selection 

In this step, appropriate decision rules are recommended to analyze and 

manage flexible designs generated in Step 3. A table is used as a guideline on 

the types of decision rules that should be considered for the different types of 

flexibility strategies. 

Types of decision rules 

Three generic types of decision rules that can be applied readily to the 

management of flexibility in engineering systems are briefly discussed below. 

The formulations of these decision rules have been introduced in Section 3.3. 

Decision rules specific to a given system may be generated using systematic 

concept generation, and typically rely on the designer’s creativity and 

expertise with the system. Many decision rules exist and can be explored, 

depending on the system of interest, uncertainty drivers, and system mission 

or purpose. 

Conditional-go decision rule 
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With conditional-go decision rules, the decision at each time stage is based on 

an estimate of future conditions and past information. The rule is usually 

expressed as “if the uncertainty realizations in the past satisfy a certain set of 

criteria, then exercise the flexibility; otherwise maintain the status quo.” There 

are various ways to formulate the conditional-go decision rules; binary 

variables are usually introduced to facilitate this.  

Linear decision rule  

Linear decision rules are a class of decision rules that are linearly dependent 

on the observed uncertainty data. The decisions to be made can be expressed 

as linear combinations of the observed realization of uncertainty. This type of 

decision rule has been widely used to approximate hard optimization problems 

under uncertainty.  

Constant decision rule 

If the decision to be made in each time period is independent of the 

observations of the uncertainty data up to that time period, then the decision 

rule belongs to a class called constant decision rules. This is a special case of a 

multistage problem: the problem of determining a decision rule function 

degenerates to one determining a single sequence of decisions to be made at 

each stage. The shortcoming of this class of decision rules is that it does not 

follow a fully rational process because it forces the DMs to make decisions for 

all time stages before realizing any of the uncertainties. In some cases, 

however, it can provide an insurance policy against the worst possible 

outcomes.  
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Choice of decision rules 

Based on the assumption of rational decision making for different flexibility 

strategies and the qualitative properties of the decision rule types, a guideline 

on the types of decision rule to consider when analyzing a certain type of 

flexibility strategy is summarized in Table 6-1. Note that the guidelines below 

are not exhaustive, and may be altered in the future. They are useful to provide 

guidance, and may not be the only guidelines available to analysts.  

Table 6-1: Choice of decision rules for each type of flexibility 

 Constant 
decision rules 

Linear 
decision rules 

Conditional-go 
decision rules 

Deferral options √  √ 

Capacity adjustment √ √ √ 

Abandonment options √  √ 

Temporarily shutting down √  √ 

Switching options √  √ 

Combination of flexibilities √ √ √ 

 

As can be seen, both constant decision rules and conditional-go decision rules 

are applicable to every type of flexibility strategy. As constant decision rules 

are unable to adapt decisions to the realizations of uncertainty, they do not 

make full use of flexibility. They are therefore recommendable only when the 

volatility of uncertainty source is low or to provide an insurance policy against 

the worst possible outcomes. Conditional-go decision rules are another type of 

decision rules that can be applied to every type of flexibility strategy. This is 

because the “if-then” statement emulates a system operator’s decision-making 
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process and simplifies it greatly. In most circumstances, conditional-go 

decision rules are useful in the management of flexibility in practice.  

Linear decision rules are applicable for only the strategy of capacity 

adjustment when the capacity can be adjusted continuously. This is because 

the linear combination of uncertainty realizations is usually a real number. 

When the capacity of a system can be adjusted continuously, linear decision 

rules provide a good approximation of optimal decisions.  

As can be seen in Table 6-1, several decision rules are available for analysis of 

every type of flexibility strategy. The choice of the type of decision rules to 

apply should be made based on the characteristics of the system of interest. 

For example, all the three types of decision rules are available for the strategy 

of capacity adjustment. If a system is modularly designed (i.e. its capacity 

belongs to a set of discrete numbers), then conditional-go decision rules can be 

used whereas linear decision rules are not applicable. In another case where 

the capacity of a system can be adjusted continuously, then linear decision 

rules are more suitable than conditional-go decision rules as they are more 

computationally efficient. In any circumstance, constant decision rules can be 

used, but it usually cannot recognize as much value of flexibility as other types 

of decision rules. If it is not evident that which type of decision rules suits the 

system better, one may conduct analysis using every type of decision rule 

available and then choose the best one based on comparison of their 

performances.  
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6.2.5 Step 5: Design optimization 

In this step, the decision rules and design variables need to be optimized to 

obtain the best performance of the flexible system in operations. Several 

techniques may be used to optimize the design, such as the stochastic 

programming proposed in Chapter 3 and simulation-based optimization. 

Simulation-based optimization is a powerful method to generate approximate 

solutions for complex problems in which the objectives and constraints may 

be non-linear, non-convex or non-smooth. However, weaknesses of 

simulation-based optimization are that the optimization process can run for a 

long time and there is no guarantee on result accuracy (Vazan & Tanuska, 

2012). Applications of simulation-based optimization in flexibility analysis 

can be found in Deng (2015). For convex problems with linear constraints and 

objective functions, stochastic programming is effective to find optimal 

solutions in some sense. Therefore, it is usually recommendable to apply 

stochastic programming approach if the problem can be formulated under the 

stochastic programming framework. In this thesis, the focus is on the 

stochastic programming approach.   

By instantiating the generic stochastic programming model introduced in 

Chapter 3 with the characteristics of the system studies, a typical solution of 

the model will consist of two parts. One part contains the physical system 

design variables describing the initial physical state of the system; the other 

part contains the optimal value of parameters characterizing the decision rules 

selected in Step 4. The details of the model have been introduced in Chapter 3.  
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6.2.6 Step 6: Operations management 

Steps 1-5 focus on the design of flexible systems. Through these steps, 

valuable flexibility is embedded in the system. In operations, however, the 

value of flexibility may be lost if the system operators are unware of when and 

how to exercise it. This step addresses the issue of managing the exercise of 

flexibility in the implementation phase of the system design.  

The outcome of the optimization problem in Step 5 consists of two parts. The 

first part is physical design variables, which specify the design of the system 

in the initial stage. The other part is the decision rule, which provides 

straightforward guidance on when and how to exercise flexibility in 

subsequent time periods. Therefore, upon the launch of the system, the DMs 

should keep observing the realizations of uncertainty and make decisions on 

the exercise of flexibility following the decision rule. Take the WTE system in 

Case Study I in Section 4.3 as an example: the design optimization results tell 

the designer to install a capacity of nine modules in the first year. In the 

following years, the DM should expand the capacity by two modules (60 tpd) 

once the amount of waste collected in the previous year is higher than the 

value of the current capacity minus the equivalent of one module of capacity. 

As can be seen, an advantage is that this approach renders decision-making 

process simple and straightforward. 

6.3 Case study III: Design of a multi-storey recycling facility 

In this section, a case study on an MSRF is conducted to demonstrate the 

application of the proposed framework. The MSRF is a first-of-its-kind 
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facility planned by Singapore as a solution to reduce land-take while creating 

more space for essential activities undertaken by the waste management 

industry. An MSRF facility is envisaged to be a multi-story, multi-tenanted 

pilot facility processing different waste streams that could share common 

facilities and services such as weighbridges and a vehicle-parking depot. It 

achieves land-saving by hosting recycling activities for different types of 

wastes on different stories.   

6.3.1 Baseline design 

A fixed MSRF designed under deterministic conditions is considered to be a 

baseline design. The fixed design consists of five stories of which the ground 

level is for unloading waste feedstocks and parking whereas the first to fourth 

floors are used for recycling metal, paper, plastics, and organic waste, 

respectively. The waste feedstock is fed into the system on the ground floor, 

and then transferred up to upper floors by conveyors. On each floor, there are 

machines to select specific waste. After selection and further processing, the 

recyclables (plastics, paper and metal) are packed and sold as raw materials to 

the corresponding factories whereas the organic waste is treated using gasifiers 

to generate electricity.  

The location of this pilot MSRF is planned to be at the existing Sarimbun 

Recycling Park (NEA, 2014b). It is expected to process the four types of waste 

generated in one of Singapore’s six public waste collection sectors – Jurong. 

Let it be supposed that the lifespan of the MSRF is 20 years. Based on 

historical data of population statistics (Brinkhoff, 2015) and waste generation 

(NEA, 2014a) in past ten years, it is forecasted that the total amount of the 
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four types of waste generated in Jurong will reach about 8,000 tons per day 

(tpd). Therefore, the capacity of the baseline MSRF design is set as 8,000 tpd, 

i.e. 2,000 tpd on each floor.  

A discounted cash flow model is built to calculate the NPV of the MSRF 

design.  

 𝑁𝑃𝑉 = �
𝑇𝑅𝑡 − 𝑇𝐶𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

 (6.1) 

where 𝑇𝑅𝑡 denotes the total revenue in year 𝑑 and 𝑇𝐶𝑡 represents the total cost 

in year 𝑑. The cost data of such a facility is inferred based on the work by 

Dubanowitz (2000) whereas the economic data of waste recycling is obtained 

from the report by the Asian Development Bank (2013). Results of the 

calculation show that NPV of the baseline MSRF design is $1.96 billion.  

6.3.2 Uncertainty recognition 

The main uncertainty sources are the amount of each type of waste generated 

in the future. An examination of the historical data for the past ten years 

reveals that the amount each type of waste has a deterministic growth rate, but 

the amount variation in each period is random. Based on this observation, it is 

suitable to model the fluctuating waste amount using the GBM:  

 𝑑𝜉𝑡 = 𝜇𝜉𝑡𝑑𝑑 + 𝜎𝜉𝑡𝑑𝑑𝑡 (6.2) 

where 𝜉𝑡  is the waste amount in year 𝑑,  𝜇 is the annual growth rate of the 

waste amount, σ is the volatility of the waste amount, and 𝑑𝑑𝑡  is the basic 

Wiener process giving a random shock to 𝜇. 
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Monte Carlo simulation is used to generate samples to evaluate the ENPV of 

the design under uncertainty. Results show that the ENPV of the baseline 

MSRF design under uncertainty is $1.94 billion, which is lower than the NPV 

under deterministic conditions. This difference of performance shows that the 

uncertainty affects the system’s performance – the value of the project is 

overestimated by ignoring the uncertainty. This is attributed to the flaw of 

average: in the upside scenarios where the waste amount is higher than the 

capacity, the facility is unable to capture the opportunity for more profit due to 

the limitation of the capacity; thus the low revenue in downside scenarios 

where the waste amount is very low cannot be compensated by higher revenue 

in upside scenarios. Hence, uncertainty modeling provides a more accurate 

view of the true performance of the system.  

6.3.3 Flexibility identification 

The uncertainty in the waste amount affects the performance of the system. 

When the realization of the waste amount increases more quickly than 

expected, the fixed design is unable to capture the opportunity of generating 

more revenue by processing more feedstock. Conversely, if the realization of 

the waste amount does not increase as much as expected, the fixed design ends 

up with wasting investment of excess capacity. In addition, as the amounts of 

the four types of waste are independent of each other, some of them may 

increase more quickly than others. Accordingly, it is evident that equally 

allocating capacity to each type of waste is not the most efficient way to utilize 

the capacity. Therefore, the flexibility strategy of capacity expansion is 

considered to improve the MSRF design. To embed this strategy, a two-phase 
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design is considered. The MSRF starts with a small plant with only half the 

capacity of the baseline design (five stories, the capacity of each storey is 

1,000 tpd), but with the potential to expand a similar Phase 2 plant in future. 

This flexibility can be realized by building large conveyors, etc. Furthermore, 

each floor of the Phase 2 plant can be configured to handle any type of waste 

as needed. This flexibility would enable the system to adapt to the change in 

the composition of waste feedstock. Once the Phase 2 plant is built, the DMs 

can allocate recycling technologies on each floor eventually as needed. For the 

flexible MSRF design, designers need to decide when to expand Phase 2 and 

how to allocate the recycling technologies to the Phase 2 plant. Figure 6-2 

illustrates the comparison between the baseline design and the flexible design 

concepts.  

 

Figure 6-2: Illustration of the flexible design and the baseline design 

6.3.4 Decision rules selection 

According to Table 6-1, all the three types of decision rules are applicable for 

capacity expansion. As the capacity of the MSRF is measured by the number 

of stories deployed, it is a discrete number, for which the linear decision rule is 

not directly suitable. The conditional-go rule is sufficiently flexible to emulate 

the decision on the expansion of Phase 2 and allocation of technology on each 
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floor. Therefore, the conditional-go decision rule is used in the design and 

management of the flexible MSRF system.  

Two decisions are to be made throughout the lifespan of the flexible MSRF 

system: the first one is when to deploy Phase 2 whereas the other is how to 

allocate technologies on each floor of Phase 2. Thresholds are defined as 

decision variables to facilitate the decision-making. Two decision rules 

regarding these two decisions are as below.  

Decision rule 1: When the amount of a certain type of waste is more than a 

threshold more than the capacity installed, then deploy one more floor of 

facility for this type of waste.  

Decision rule 2: When any type of waste facility is triggered to expand, 

construct Phase 2.  

6.3.5 Design optimization 

The general stochastic programming model described in Section 3.2 is 

instantiated with the feature of the MSRF system. The objective function is to 

maximize the ENPV. Denote 𝜉𝑖,𝑡  as the amount of the 𝑖 th type of waste 

generated in year 𝑑, where 𝑖 = 1,2,3,4 represents metal, paper, plastics, and 

organic waste respectively. Let 𝛼𝑖 denote the threshold to expand facility for 

the 𝑖th type of waste. Then the stochastic programming model becomes:  

 max
 

� 𝑝𝑘 �
𝑇𝑅𝑡

𝑘 − 𝑇𝐶𝑡
𝑘

(1 + 𝑟)𝑡

𝑇

𝑡=1

𝐾

𝑘=1

 (6.3) 

 𝑛𝑖,1
𝑘 = 1, ∀𝑘, 𝑖 (6.4) 
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 𝑀𝑒𝑖,𝑡
𝑘 ≥ 𝜉𝑖,𝑡−1

𝑘 − �𝑢𝑛𝑖,𝑡−1
𝑘 + 𝛼𝑖

𝑘�, 𝑑 > 1, ∀𝑘, 𝑖 (6.5) 

 𝑀�𝑒𝑖,𝑡
𝑘 − 1� ≤ 𝜉𝑖,𝑡−1

𝑘 − �𝑢𝑛𝑖,𝑡−1
𝑘 + 𝛼𝑖

𝑘�,   𝑑 > 1, ∀𝑘, 𝑖 (6.6) 

 𝑛𝑖,𝑡
𝑘 = 𝑛𝑖,𝑡−1

𝑘 + 𝑒𝑖,𝑡
𝑘 , 𝑑 > 1, ∀𝑘, 𝑖 (6.7) 

 � 𝑛𝑖,𝑡
𝑘

4

𝑖=1

≤ 4𝑁𝑡
𝑘 , ∀𝑑, 𝑘 (6.8) 

 𝑀𝑒′
𝑡
𝑘 ≥ � � 𝑒𝑖,𝑡

𝑘
4

𝑖=1

𝑡

𝑗=1

, 𝑑 > 1, ∀𝑘 (6.9) 

 𝑀�𝑒′
𝑡
𝑘 − 1� ≤ � � 𝑒𝑖,𝑡

𝑘
4

𝑖=1

𝑡

𝑗=1

− 1, 𝑑 > 1, ∀𝑘 (6.10) 

 𝑁𝑡
𝑘 = 1 + 𝑒′

𝑡
𝑘, 𝑑 > 1, ∀𝑘 (6.11) 

 𝛼𝑖
1 = 𝛼𝑖

𝑘, 𝑑 > 1, ∀𝑘, 𝑖 (6.12) 

 𝑓𝑖,𝑡
𝑘 + 𝑢𝑛𝑖,𝑡

𝑘 ≥ 𝜉𝑖,𝑡
𝑘 , ∀𝑑, 𝑘, 𝑖 (6.13) 

where 𝑛𝑖,𝑡
𝑘  is the number of floors of the facility for waste 𝑖  in year 𝑑  in 

scenario 𝑘, 𝑒𝑖,𝑡
𝑘  is a binary decision variable indicating whether to expand one 

floor of facility for waste 𝑖 in year 𝑑 in scenario 𝑘, 𝑀 is a sufficiently large 

number (typically 100 times larger than the value of any variable in the 

program), 𝑢  is the capacity of each floor (1,000 tpd), 𝑁𝑡
𝑘  is the number of 

buildings installed in year 𝑑 in scenario 𝑘 , 𝑒′
𝑡
𝑘  is a binary decision variable 

indicating whether Phase 2 is built, and 𝑓𝑖,𝑡
𝑘  is the amount of waste 𝑖 that is 

untreated because of lack of capacity.  

Decision rule 1 is realized by constraints (6.5) to (6.7). If the amount of waste 

𝑖 reaches a certain threshold, i.e. 𝑢𝑛𝑖,𝑡−1
𝑘 + 𝛼𝑖

𝑘, then constraints (6.5) and (6.6) 

will force 𝑒𝑖,𝑡
𝑘 = 1, which means that one more floor of facility for waste 𝑖 
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should be installed. Decision rule 2 is realized by constraints (6.9) to (6.11). If 

the expansion of capacity for any waste has been triggered, i.e. 

∑ ∑ 𝑒𝑖,𝑡
𝑘4

𝑖=1
𝑡
𝑗=1 > 0, then constraints (6.9) and (6.10) will force 𝑒′

𝑡
𝑘 = 1, which 

means that Phase 2 is deployed. Constraint (6.12) is the coupling constraint 

that forces the decision-rule variables to be the same in different scenarios.  

Problem (6.3) - (6.13) is solved using the algorithm described in Section 3.4. 

Table 6-2 lists the optimal value of the thresholds 𝛼𝑖 for each type of waste. 

The ENPV of the flexible MSRF design is $2.00 billion. As can be seen, by 

embedding flexibility in the system, the flexible design achieves a significant 

improvement of $60 million in terms of ENPV comparing to the inflexible 

design. This is because the flexibility enables the system to capture revenues 

by expanding capacity in scenarios when the waste amount increases rapidly 

and to avoid excess investment in scenarios when the waste amount increases 

slowly. The next section will describe how this is achieved by managing the 

flexibility following the decision rules.  

Table 6-2: Optimal value of thresholds for each type of waste 

Waste type Metal Plastic Paper Organic 

𝛼𝑖 336 114 190 1,217 

6.3.6 Operations management 

Upon solving the optimization problem, optimal decision rules are determined 

to guide decision-making in the operations of the MSRF system. The 

imperative actions needed to be done by the DMs after the system starts is to 

keep observing the realization of waste amounts and to accordingly decide 
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whether to build Phase 2 and how to allocate the facility by following the rules 

as below:  

Rule 1: If the amount of metal (plastic/paper/organic) waste in the previous 

year exceeds the current capacity for treating metal (plastic/paper/organic) by 

336 tpd (114/190/1217 tpd), then one more floor of facility should be added to 

treat metal (plastic/paper/organic).  

Rule 2: If any type of waste treatment facility is triggered to expand capacity, 

Phase 2 should be built. The floors of Phase 2 are gradually deployed with 

required facility as needed.  

These rules are simple and straightforward for the DMs to follow. With these 

rules, the DMs are able to adapt their decisions to exercise the flexibility 

according to the realization of uncertainty. Figure 6-3 depicts the deployment 

of waste facilities by following the decision rules in five different scenarios. 

As can be seen, the capacity deployed for each type of waste varies in 

different scenarios. By following the decision rule, it adapts to the realization 

of uncertainty. In scenarios where the amount of waste increases quickly, 

more floors of capacity are installed (e.g. scenarios 3-5). Conversely, in 

scenarios where the amount of waste does not increase so much, less capacity 

is deployed (e.g. scenarios 1 and 2). Furthermore, the space of the MSRF is 

allocated dynamically according to the realization of amount of each type of 

waste. When the amount of a certain type of waste increases more 

significantly than others, more floors in Phase 2 will be allocated to process 

that type of waste. For example, the capacity for metal is the highest among all 

the five scenarios; this is because the amount of metal waste is the highest. In 
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particular, the number of floors for treating metal is as high as five floors in 

scenario 3, which means the whole Phase 2 is deployed for metal waste 

because the amount of metal increases to so significant an extent.   

 

Figure 6-3: Capacity deployment in five scenarios 

6.4 Comparison with existing ROA approaches 

This section presents a detailed comparison between the proposed framework 

and a standard ROA approach. In particular, the binomial lattice approach is 

used as the baseline for comparison as it is the most commonly used tool in 

real options analysis. The procedures of the binomial lattice approach are 

summarized and compared to the proposed decision rule framework in Figure 

6-4.  
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Figure 6-4: Comparison of decision rule approach with the binomial lattice 
approach 

The first and third steps of both approaches are similar, both of which 

requiring a baseline as a starting point and applying similar methods to 

generate flexibility concepts. The difference, however, surfaces in the 

uncertainty recognition step. As for the decision rule approach, a distinct 

advantage can be seen in its modeling multiple uncertainty sources as it can 

use a vector to represent the uncertainty sources and model them as stochastic 

processes. As for the binomial lattice approach, it is a challenging task to 

model multiple uncertainty sources. Even though the lattice can be extended to 

a multinomial lattice to model multiple uncertainty sources, the computational 

effort increases dramatically as the dimensions of the uncertainty and state 

variables increase. Due to the curse of dimensionality, the lattice method 

becomes impractical for complex problems.   
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Upon identification of flexibility strategies, the binomial lattice approach 

applies a backward induction process based on dynamic programming to 

quantify the value of flexibility. In contrast, the decision rule approach first 

selects a form of decision rule, whereupon a multistage stochastic 

programming model is built to evaluate the value of flexibility and generate 

the best decision rules. As may be observed, both methods rely on advanced 

mathematical techniques (i.e. dynamic programming for the binomial lattice 

approach, stochastic programming for the proposed approach); this may pose 

challenges to wider applicability in practice. However, with regards to the 

operations management, practitioners may find the decision rule approach 

more intuitive, since the decision rules generated can emulate the decision-

making process in a firm or organization and do not require application of a 

dynamic programming-based backward induction process or to determine the 

state of the system in the lattice to choose the optimal expansion policy. The 

decision-making criteria do not change over time since stochastically optimal 

parameters for the decision rules are found. The deployment path will adjust 

dynamically as uncertainty unfolds, but the rules governing the strategy will 

not. 

6.5 Summary 

This chapter introduces a framework for the design and management of 

flexibility in engineering systems focusing on the perspective of practicability 

in the implementation phase. By incorporating decision rules in the design 

process, this framework not only generates optimal system designs, but also 

provides intuitive guidance for the DMs to implement the system in practice. 



 

114 
 

The case study demonstrates how the framework can be used to guide the 

design of flexibility in an MSRF system. A qualitative comparison of the 

framework with the procedures relying on a binomial lattice approach was 

then performed, whence two main advantages of the proposed framework 

emerge. One is that the decision rule approach provides straightforward 

decision rules and simplifies decision-making in operations. The other 

advantage is that the decision rule approach is superior to the lattice approach 

in that it is able to handle multiple uncertainty sources. 
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Chapter 7 – Conclusions 

7.1 Summary 

This thesis has proposed a new approach to analyze flexibility in engineering 

systems design based on multistage stochastic programming and decision rules. 

The work of this thesis can be summarized by answering the five research 

questions in Section 2.5.  

1. How to provide intuitive guidance for DMs to operate the systems in 

practice, besides assessing the value of flexibility in engineering systems?  

This thesis focuses on introducing decision rules in the flexible design of 

engineering systems. Decision rules provide practical guidance on when it is 

appropriate to and how to exercise the flexibility. They are intuitive for DMs 

to follow in operations because they enable emulating directly the decision 

making process in reality. Analysis in Chapter 4-6 have shown that by 

providing intuitive guidance using decision rules, DMs are more likely to 

achieve the value of flexibility in operations.  

2. How to analyze flexibility exploiting the idea of decision rules? 

A generic multistage stochastic programming model has been developed to 

illustrate the approach in Section 3.2. One key feature of this model is that its 

solutions not only enable assessing the value of flexibility and suggesting 

values for the physical system design variables, but also providing decision 

rules for guiding decision-making dynamically based on available information 

as uncertainty unfolds. Furthermore, the formulation of the model indicates 
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that the approach can deal with complex problems with multiple uncertainty 

drivers and multiple flexibility strategies, while also leading to similar 

valuation outcomes as standard ROA techniques. 

3. How to solve the stochastic programming model with decision rules?  

For simplicity, the model proposed in Section 3.2 is converted to a 

deterministic structure by assuming the finiteness of uncertainty scenarios. A 

Lagrangian decomposition approach is used as a solution algorithm to solve 

the large stochastic programming model. Numerical experiments in Section 

4.3 have shown that this algorithm is capable of efficiently solving the 

problems of large size.  

4. How to guide designers to apply the decision rule approach during the 

design process? 

A framework has been developed for applying the proposed decision rule 

approach in design practice. The framework consists of six steps, it provides 

step-by-step guidance on how to design and manage a flexible system 

embedding the decision rule concept. The framework differs from existing 

design procedures by focusing on the perspective of practicability in 

implementation phase throughout the design process. A case study on a MSRF 

system demonstrates how the framework can be used to guide design of 

flexibility in engineering systems.   

5. How to validate the efficiency and effectiveness of the proposed approach?  

Numerical studies have been used to demonstrate the efficiency and 

effectiveness of the proposed approach. First, case examples from Trigeorgis 
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(1996) have been used to demonstrate the ability of the proposed approach to 

model different types of flexibility. Besides, this, two WTE systems have been 

studied to demonstrate the performance of the proposed approach.  

In the first case study on the AD plant in Section 4.3, the results show that the 

decision rule approach recognizes a similar amount of value stemming from 

flexibility as standard ROA in terms of ENPV in the out-of-sample test, and 

also requires similar computational time. It also rank orders the design 

alternatives in a similar way as standard ROA (i.e. showing that the flexible 

design is expected to perform better over time than an inflexible solution). The 

form of the solution is reasonably intuitive to be used by the DMs in 

operations.  

The second case study on a hybrid WTE system in Section 5.2 demonstrates 

that the decision rule approach can be augmented in a straightforward manner 

to analyze more complex systems when multiple uncertainty sources and 

flexibility strategies are considered simultaneously. Computational results 

show that it is readily applicable to solve such problems and provide intuitive 

guidance to the DMs in operations. Standard ROA based on multinomial 

lattice and ADP proves more challenging due to the curse of dimensionality. It 

leads nonetheless to similar ENPV performance results as the decision rule 

approach, but requires both more computational time to find a solution and 

additional optimization to determine the physical capacity of the system in 

each time period. Both approaches recognize value improvements stemming 

from flexibility, as compared with an inflexible benchmark design. 
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To summarize, there are three contributions in this thesis. The main 

contribution is to propose a new decision rule-based approach for analyzing 

and managing flexibility in engineering systems design. This approach not 

only recognizes the inherent value stemming from flexibility, it also provides 

solutions with intuitive guidance on how to manage the flexibility in 

operations. The second contribution is a framework for applying the proposed 

approach in design practice. With this framework, designers can start with a 

baseline design and generate a valuable flexible design that is practical to 

implement in operations by exploiting the concept of decision rules. The third 

contribution of this study is the three case studies on WTE systems. 

Managerial insights are provided to improve the design and management of 

these systems. 

7.2 Limitations and future work 

There are important limitations to consider in this thesis. First of all, there are 

limitations in the decision rule methodology. Firstly, the freedom of enabling 

the analysis of a wide array of decision rules warrants the need for more 

systematic approaches for identifying relevant decision rules in complex 

engineering systems. Questions that require further exploration – which ones 

to focus on, how to enable them in the system design, and how to best manage 

in operations – abound, as outlined by Cardin (2014). Secondly, the proposed 

decision rule approach also relies on an advanced mathematical technique (i.e. 

stochastic programming) to identify feasible solutions. Because of such 

complexity, it is possible that DMs will not trust the solution and therefore not 

use it in operations. This is, however, a shortcoming shared by standard ROA 
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as well. Thirdly, the value of flexibility depends heavily on the quality of the 

decision rule. Good decision rules may generate more value whereas bad ones 

may undermine it. Therefore, designers and planners must investigate 

carefully the space of possible decision rules and rely on their expertise with 

the system to make good choices. Creativity is needed on the one hand, and 

quantitative evaluation is needed on the other hand to determine whether a 

possible flexibility strategy indeed creates value, as suggested by Cardin, et al. 

(2013). Fourthly, the proposed decision rule approach is of course limited by 

computational power. More complex decision rules coupled with multiple 

uncertainty drivers may be difficult to analyze under the proposed framework 

at some stage, if too many are considered – also an issue for standard ROA. 

Finally, the value of flexibility may be limited by the constraint that forces the 

decision rule parameters to be the same in each time period. If such parameters 

could be adjusted depending on the scenario (e.g. capacity added), more value 

could ostensibly be extracted. However, it would be difficult for the DMs to 

determine the best value for such parameters in each time period, and would 

require determining their position on the evolution path of the uncertainty 

(similar to standard ROA). Therefore, the proposed approach trades off some 

value-enhancement potential in the flexibility valuation process for enabling 

decision-making that is more readily applicable by practitioners.  

Furthermore, there are limitations in the framework. Firstly, the framework 

assumes that probability distribution information of uncertainty sources 

throughout the system life span is known. This is a limitation due to the very 

nature of the stochastic programming approach employed. In practice, 

however, the environment in which an engineering system operates in can 
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change over time. In another case, the distribution of uncertainty may be 

simply unavailable. Secondly, not every complex system can be analyzed by 

following the decision rule framework. As the framework uses stochastic 

programming to model and solve the problem, some systems maybe too 

complex that they cannot be described as MILPs. In this case, simulation 

based optimization can be used to find the optimal design and decision rules. 

For example,  Deng (2015) developed a simulation optimization approach to 

analyze the planning of mobility on demand system.  

Finally, there are some limitations in the case studies. Firstly, the case studies 

presented in this study are studied only from a lifecycle economic perspective. 

As WTE systems are closely related to urban sustainable development, future 

work may extend the models to multi-objective performance attributes to 

evaluate WTE systems from social, environmental as well as economical 

perspectives. Secondly, the case studies rely on many assumptions on cost 

parameters. As the WTE systems studied are pioneer research projects, many 

parameters are not available. Therefore, the cost parameters are collected from 

successful applications of similar technologies in Europe, United States, and 

Singapore. It represents the best available data since only one AD plant has 

been built in Singapore, no gasifier or MSRF has been built in Singapore, and 

limited information about the Singapore market is publicly available. Thirdly, 

the discount rate is assumed to be constant throughout the life span. In reality, 

however, the discount rate may change over time. Fourthly, the case studies 

use ENPV as objective function. This assumes that the decision maker is risk 

neutral which may not be true in practice. To improve this, future work may 
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extend the model to use mean variance objective function to consider both the 

return and risk of the systems.  

More opportunities exist for future work, as motivated from the limitations 

described above. Firstly, it is possible to investigate other formulations for the 

decision rules (e.g. enforcing a number of consecutive years of increase or 

decrease before making a decision). While small percentage differences exist 

between the performance of the flexible systems as recognized under standard 

ROA and the decision rule approach, it is possible that decision rules 

formulated differently could generate better value and performance. Secondly, 

in the framework, the selection of types of decision rules is mainly based on 

the type of flexibility studied. The characteristics of the uncertainty drivers, 

however, should also impact the choice of the best form of decision rules. 

Future research opportunities exist in matching the forms of decision rules to 

the types of stochastic processes.  
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