
TRAJECTORY GENERATION BASED GUIDANCE AND CONTROL
OF ROTORCRAFT UNMANNED AERIAL VEHICLES

LAI SHUPENG

(B.Eng.(Hons.), NTU)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2016

Declaration

I hereby declare that the thesis is my original work
and it has been written by me in its entirety. I have
duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any
degree in any university previously.

LAI SHUPENG
21th October 2016

i

ii

Acknowledgments

I would like to express my deepest and most sincere gratitude to my main supervisor,

Prof. Ben M. Chen, for his guidance and support during my study as a Ph.D. student.

Without his help on project identification, system work design, and various technique

details, my study as a Ph.D. student would not be possible. I would also like to thank Dr.

Peng Kemao from Temasek Lab at NUS, and Prof. Luo Delin from Xiamen University

for showing me promising directions on the initial stage of my research. Appreciations

are also given to Prof. Lee Tong Heng, Prof. Chu Delin and Dr. Chen Chang for their

kind suggestions and patience during numerous meetings and discussions.

Special thanks are given to the members of the NUS Unmanned System Research

Group for their help and encouragement. Especially, I would like to thank Mr. Wang

Kangli and Dr. Li Kun for their help on developing the embedded system used in this

thesis, Dr. Cui Jinqiang and Mr. Qin Hailong for developing the SLAM module and

Dr. Lin Feng for his creative ideas on various projects. Appreciations are also given to

my colleagues and classmates: Dong Xiangxu, Wang Fei, Kevin Ang, Pang Tao, Phang

Swee King, Liu Peidong, Yang Zhaolin, Bai Limiao, Ke Yijie, Lin Jing, Bi Yingcai, Li

Jiaxin, Qin Geng, Chen Xudong, Lao Mingjie, Lan Menglu, Li Xiang and Tian Hongyu.

Moreover, I would like to thank Dr. Bai Haoyu for his hands-on instructions on software

design, development and debug.

Also, I have to thank my parents for their understanding on my choice of pursuing

post-graduate study.

Last but not least, I would like to appreciate the support, both mentally and eco-

nomically, from the Graduate School For Integrative Sciences and Engineering of the

National University of Singapore who opens the door of my research career.

iii

iv

Contents

1 Introduction 1

1.1 An Introduction to Guidance of Airborne Systems 2

1.1.1 Target Aiming . 3

1.1.2 Path Following . 4

1.1.3 Trajectory Tracking . 7

1.1.4 Guidance in Obstacle Dense Environment 10

1.2 An Overview of Rotorcraft Unmanned Aerial Vehicles (RUAVs) 14

1.2.1 RUAV platform . 14

1.2.2 RUAV Navigation . 16

1.2.3 RUAV Guidance . 18

1.3 Contributions . 19

2 System Design and Implementation 21

2.1 Mission Level . 23

2.1.1 Software Architecture . 23

2.1.2 Mission Management System 25

2.2 Guidance Level . 27

2.2.1 Global Planner . 28

2.2.2 Local Planner . 33

2.3 Control Level . 38

2.3.1 Cascaded Control Structure 38

2.3.2 Robust Perfect Tracking (RPT) Control 41

2.4 Conclusion . 44

v

3 Offline Trajectory Generation Algorithm 45

3.1 Dynamic Feasibility . 46

3.2 Algorithm Overview . 48

3.2.1 Requirement Analysis . 48

3.2.2 Clamped Normalized Uniform B-Spline (NUBS) 48

3.3 Solving of Minimum Jerk Trajectory 52

3.3.1 Problem formulation . 52

3.3.2 Quadratic Programming . 55

3.3.3 Time Vector Optimization . 62

3.3.4 Reconstructing of Trajectory 65

3.4 UAV Calligraphy . 68

3.5 Conclusion . 74

4 Online Trajectory Generation Algorithm 77

4.1 Online Velocity Trajectory . 78

4.1.1 State Constrained Sliding Mode Control 78

4.1.2 Velocity Command Filter . 83

4.1.3 Double Integrator TPBVP . 87

4.1.4 Time Synchronization . 94

4.1.5 Safe Fly Zone . 96

4.2 Online Position Trajectory . 100

4.2.1 Position Command Filter . 100

4.2.2 Geometric Path Following by Coordinate Projection 103

4.2.3 Following Moving Ground Target 111

4.2.4 Reference Governor . 112

4.2.5 Triple Integrator TPBVP . 116

4.3 Conclusion . 126

5 Guidance in Obstacle-Strewn Environment 127

5.1 System and Platform . 129

5.2 Environment Perception . 131

5.3 Planning and Guidance . 138

vi

5.3.1 Problem Overview . 138

5.3.2 Task Decomposition . 139

5.3.3 Event Triggered Trajectory Switching 142

5.3.4 Multiple Waypoint Mission Management 145

5.4 Flight Experiment . 149

5.5 Relaxed Formation and Flocking . 152

5.5.1 Relaxed Formation among Obstacles 152

5.5.2 Tandem Flocking . 155

5.6 Conclusion . 157

6 Conclusion and Future Work 159

6.1 Conclusion . 159

6.2 Future Works . 161

6.2.1 Towards Smarter Motion Planning 161

6.2.2 Towards Smarter Multi-vehicle System 162

7 List of Author’s Publication 175

vii

viii

Summary

This thesis studies the guidance and control problem of rotorcraft unmanned aerial ve-

hicles in general environments targeting complex missions such as multi-vehicle stage

performance and obstacle-strewn navigation.

Modern unmanned aerial vehicles are required to perform precise maneuvers utiliz-

ing their dynamic capabilities to achieve task elements which are inaccessible by other

means. Pre-planned and high-quality flying trajectories are adopted to satisfy people’s

subjective opinions in applications like the multi-drone light show and camera path de-

sign. On the other hand, in a dynamic world, sensor-guided and sensor-guarded actions

are necessary, as there is no perfectly predefined path suitable for the whole mission,

and motions need to be solved instantly to deal with unforeseen changes.

The proposed guidance and control structure combines the techniques of trajectory

generation and robust control to provide solutions to states-constrained nonlinear con-

trol problems. It can be used for multiple applications, such as human-in-the-loop path

design, real-time autonomous navigation in obstacle-strewn environment, high-quality

reference tracking flight on low-cost platforms, multi-vehicle formation flight, track-

ing of moving targets and disturbance rejection in windy environment. The guidance

and control structure has been successfully realized and tested in real environments on

actual UAV platforms.

ix

x

List of Tables

4.1 Time consumption of predicting a future state 95

4.2 Experiment data of complex mission 109

4.3 Experiment data of fast flight with disturbance rejection 111

4.4 Comparison between decision tree and direct bisection method 123

5.1 Comparison between event triggered switch and RHC 145

xi

xii

List of Figures

1.1 The GNC structure . 2

1.2 The pure pursuit guidance . 4

1.3 The three-point guidance . 5

1.4 The path following guidance . 6

1.5 Carrot chasing method . 7

1.6 L1 nonlinear guidance law . 8

1.7 Trajectory generation applications . 9

1.8 Path returned by A-star algorithm . 11

1.9 Common types of rotorcrafts . 14

1.10 Some models of RUAVs . 15

1.11 Different configurations of common multi-copters 16

1.12 Sensors used during RUAV navigation 17

2.1 RUAV system for trajectory generation based guidance 22

2.2 GCS software architecture . 24

2.3 GCS user interface . 25

2.4 GCS mission management system . 25

2.5 GUI for mission editing . 27

2.6 A graph of 2D tile map . 28

2.7 A-star path finding from one room to another 30

2.8 RRT path finding in cluttered environment 33

2.9 Quad-rotor altitude control by tracking different references 34

2.10 Generation-examination-tracking process for trajectory-based guidance 35

2.11 Following of 2D circling path . 36

xiii

2.12 Following of 3D path . 37

2.13 Generalized point mass model for rotorcrafts 39

2.14 Cascaded control structure for a quad-rotor 40

3.1 B-spline trajectory: Limit acceleration 5 m/s2 and velocity 20 m/s . . . 62

3.2 3D Trajectory obtained through time vector optimization 64

3.3 Flight mission with end position constraint only 66

3.4 Flight mission with no end constraint 67

3.5 UAV calligraphy system . 69

3.6 Split-and-merge sequence on continuous line segments 70

3.7 User input and generated spline of vortex drawing 71

3.8 Generated spline’s acceleration of vortex drawing 71

3.9 User input and generated spline of Chinese character Guang 71

3.10 Generated spline’s acceleration of Chinese character Guang 72

3.11 Tracking performance with real vehicle writing on paper 72

3.12 Comparison between user input, reference and outcome 73

3.13 Demonstrations and stage performances 74

4.1 K-Lion micro quad-rotor . 78

4.2 A Futaba RC controller . 79

4.3 Plot of regions 1 to 8 . 81

4.4 Velocity trajectory: initial acceleration violate limits 83

4.5 Velocity trajectory: steering to velocity target other than zero 83

4.6 Tracking of velocity reference . 84

4.7 Command generating system . 84

4.8 Coordinates utilized by the system . 86

4.9 BlackLion-168 quad-rotor . 87

4.10 Experiment data for velocity tracking 88

4.11 Experiment data for long distance flight 89

4.12 Trapezoidal acceleration profile . 90

4.13 Wedge acceleration profile . 92

xiv

4.14 Comparison between forward simulation and TPBVP: no constraints

violation . 94

4.15 Comparison between forward simulation and TPBVP: initial state vio-

late constraints . 94

4.16 Time synchronized velocity trajectory 97

4.17 Safe fly zone: vehicle trace . 98

4.18 Safe fly zone: commands and response 99

4.19 Position trajectory: all initial states within constraints 102

4.20 Position trajectory: initial acceleration violates constraints 102

4.21 Position trajectory: initial acceleration and velocity both violate con-

straints . 103

4.22 Filtered reference for position command 104

4.23 Coordinates during following 2D path 105

4.24 Outcome of line segment path following algorithm 105

4.25 Following of complex path using the position command filter 106

4.26 Complex mission: vehicle trace . 107

4.27 Complex mission: reference and response 108

4.28 Fast flight and wind disturbance: vehicle trace 109

4.29 Fast flight and wind disturbance: reference and response 110

4.30 Mission with user controlled speed . 111

4.31 LOS coordinate system connecting vehicle to target 112

4.32 Following a moving ground target . 113

4.33 Reference governor with translational controller 114

4.34 Disturbance rejection with reference governor 115

4.35 Disturbance rejection without reference governor 116

4.36 7 segments of the point to point maneuver 117

4.37 Decision trees for selecting the correct case 120

4.38 State trajectory obtained by triple integrator TPBVP solver and the for-

ward simulation . 120

4.39 Time synchronized solution of triple integrator TPBVP 125

4.40 Applications utilize the command generators 126

xv

5.1 The X8 configuration octo-copter BL-068 129

5.2 System design and module assignment 130

5.3 Cost map generation process. 132

5.4 A cost map generated by laser scanner. 133

5.5 Comparison between Bresenham’s algorithm 136

5.6 Safe path way and generated trajectory 140

5.7 Trajectory generated independently on each axis in global frame vs ro-

tated frame . 141

5.8 Event based trajectory switching . 143

5.9 The RHC based strategy compared to the proposed trajectory switching

(noted as TS) algorithm. 146

5.10 Simulation environment’s 2D map for comparison between event trig-

gered and RHC strategy. 147

5.11 Exploration mission with multiple waypoints. 148

5.12 Result of map reconstruction in the IMAV competition fly-off 149

5.13 Experiment environment consists of pillars and other obstacles. 149

5.14 Normal avoidance situation . 150

5.15 Emergent avoidance . 150

5.16 Obstacle avoidance applications in various environment 151

5.17 UAV patrol in simulated environment. 151

5.18 Possible reaching area of moving neighbor agent 153

5.20 Follower trying to maintain the formation while performing obstacle

avoidance . 153

5.19 The trajectory of 2 agents exchanging their position in cluttered envi-

ronment . 154

5.21 Leader follower moving formation in cluttered environment 154

5.22 Trace of vehicles during flocking . 156

5.23 Reference trajectories during flocking 156

6.1 A possible motion planning structure for different systems 164

xvi

List of Symbols

Latin variables

a = [ax, ay, az]
T Vehicle acceleration in G

a Equivalent of a on a single axis

aco Acceleration during AC phase for time synchronization

acruise Cruise acceleration

aI = [aIx, aIy, aIz] Internal acceleration state of command filter

aI Equivalent of aI on a single axis

areach Reachable acceleration after AI phase

aref = [arefx, arefy, arefz]
T Vehicle acceleration reference in G

aref Equivalent of aref on a single axis

arft Filtered acceleration command

amax = [amaxx, amaxy, amaxz]
T Maximum acceleration in G

amax Equivalent of amax on a single axis

amin = [aminx, aminy, aminz]
T Minimum acceleration in G

amin Equivalent of amin on a single axis

{B} : { ~xB, ~yB, ~zB} Body coordinate

Bk Base function of NUBS

ci Control point of NUBS, i ∈ N

ci Equivalent of ci on a single axis, i ∈ N

da Acceleration cruse direction

dair Air drag force

{D} : { ~xD, ~yD, ~zD} Dynamic target coordinate

Ds = [d0, d1, d2...]
T 3D data point vector

Ds = [d0, d1, d2...]
T 1D data point vector

xvii

dlead Distance from pvirtual to carrot

dp Velocity cruse direction

Dtime = [t0, t1, t2...]
T Approaching time vector

D$ = [Υ0,Υ1,Υ2 . . .] Time duration vector

Es = [η0, η1 . . .]
T Control vector of 2nd order NUBS on a single axis

Faug Feedback control law derived by RPT

FΣ Magnitude of rotorcraft’s total thrust

fA∗ A-star cost

g Gravity force

{G} : { ~xG, ~yG, ~zG} Global inertia coordinate

Gs Grids covered by a given trajectory

gA∗ Smallest cost to starting point

hA∗ Estimated cost to goal point

Id Length of Ds and Dtime

js(t) Jerk of cubic clamped B-spline

{L} : { ~xL, ~yL, ~zL} Intermediate heading coordinate

mq Rotorcraft’s mass

N ′c Tuning parameter for proportional navigation

Ni,p($) Base function of a general B-spline i, p ∈ N

p = [px, py, pz]
T Vehicle position in G

p Equivalent of p on a specific axis

pI = [pIx, pIy, pIz]
T Internal position state of command filter

pI Equivalent of pI on a single axis

prand Random sampled point in RRT growing

pref = [prefx, prefy, prefz]
T Vehicle position reference in G

pref Equivalent of pref on a specific axis

prft Filtered position command

pvirtual Projected vehicle position on flight path

q Rotorcraft’s controlled inner loop outputs

qref Reference of rotorcraft’s controlled inner loop outputs

GRB Rotation matrix from B to G

xviii

GRL Rotation matrix from L to G
LRB Rotation matrix from L to B

rL1 L1 nonlinear guidance law radius

rv Vehicle radius

s Path parameter of NUBS

Sk NUBS of order k

Tmax = [Tmaxx, Tmaxy, Tmaxz]
T Upper cuboid boundary of the virtual thrust

Tmin = [Tminx, Tminy, Tminz]
T Lower cuboid boundary of the virtual thrust

Ts = [τ0, τ1, τ2...]
T Control vector of clamped cubic B-spline

TΣ Total thrust vector by all propellers

Tg = {T + g | T ∈ TΣ} The set of virtual thrust considered gravity

TΣ The set of achievable combined thrust

tcruise Duration of VC phase

Tsearch RRT searching tree

tsp A specific timestamp for querying trajectory state

TF
s Fixed part of Ts

TP
s Programmable part of Ts

Ttrue Real time duration of NUBS trajectory

Ts = [τ0, τ1, τ2...]
T Equivalent of Ts on a single axis

uj = [ujx, ujy, ujz]
T Vehicle jerk in G

uj Equivalent of uj on a specific axis

uout RPT controller’s output

uq Rotorcraft’s true inputs

usat RPT controller’s output after saturation

uv Virtual input of rotorcraft’s outer loop

ujmax = [ujmaxx
, ujmaxy

, ujmaxz
]TMaximum jerk in G

ujmax Equivalent of ujmax on a single axis

ujmin = [ujminx
, ujminy

, ujminz
]T Minimum jerk in G

ujmin Equivalent of ujmin on a single axis

v = [vx, vy, vz]
T Vehicle velocity in G

v Equivalent of v on a specific axis

xix

vair Air velocity

vcruise Cruise velocity

vend End velocity

vI = [vIx, vIy, vIz]
T Internal velocity state of command filter

vI Equivalent of vI on a single axis

vmax = [vmaxx, vmaxy, vmaxz]
T Maximum velocity in G

vmax Equivalent of vmax on a single axis

vmin = [vminx, vminy, vminz]
T Minimum velocity in G

vmin Equivalent of vmin on a single axis

vref = [vrefx, vrefy, vrefz]
T Vehicle velocity reference in G

vref Equivalent of vref on a specific axis

vreach Reachable velocity after VI phase

vrft Filtered velocity command

Vb = [$0, $1, $2, ...] Knot vector of a general B-spline

Vc Closing velocity

Vknot Knot vector of clamped cubic B-spline

wg Jerk weight factor

{W} : { ~xW, ~yW, ~zW} Waypoint line coordinate

xq Rotorcraft’s non-translational innerloop states

Greek variables

α Factor converting path parameter s to real time t

εt Bounded error for trajectory tracking

ηc Lateral acceleration reference

ηi Control point of clamped 2nd order NUBS, i ∈ N

ηi Equivalent of ηi on a single axis, i ∈ N

γi Control point of clamped 1st order NUBS, i ∈ N

γi Equivalent of γi on a single axis, i ∈ N

Γi,k Base function for kth order clamped B-spline

λLOS Angle between heading and LOS

Λs = [γ0, γ1 . . .]
T Control vector of 1st order NUBS on a single axis

ωn Natural frequency

xx

ψref Yaw angle reference

τi Control point of clamped cubic NUBS, i ∈ N

τi Equivalent of τi on a single axis, i ∈ N

τki Control point of kth order on a single axis, i, k ∈ N

Θ = [φ, θ, ψ]T Euler angles

Υi Time duration between two adjecent members of Dtime

$ Path parameter of a general B-spline

ζ Damping ratio

Acronyms

1D One Dimension

2D Two Dimensional

2.5D Semi Three Dimensional

3D Three Dimensional

AC Acceleration constant

AD Acceleration decreasing

AI Acceleration increasing

BIT Batch Informed Tree

CNC Computer Numerical Control

CPU Central Processing Unit

CT Current Trajectory

DOF Degree of Freedom

ET Emergent Trajectory

GC Ground Control

GCS Ground Control Station

GNC Guidance Navigation Control

GPS Global Positioning System

GUI Graphical User Interface

HMI Human-Machine Interface

LOS Line Of Sight

LOT Line Of Track

LTI Linear Time Invariant

xxi

MGCS Mission Guidance Control System

MPC Model Predictive Control

MPEPC Model predictive Equilibrium Point Control

NDI Nonlinear Dynamic Inversion

NUBS Normalized Uniform B-spline

PD Positive Definite

POI Point Of Interest

PT Possible Trajectory

RAM Random-access Memory

RC Radio Control

RHC Receding Horizon Control

ROI Region Of Interest

ROM Read-only Memory

RPT Robust Perfect Tracking

RRT Rapid Random Tree

RUAV Rotorcraft Unmanned Aerial Vehicle

SLAM Simultaneous Localization and Mapping

SMC Sliding Mode Control

SPD Semi-positive Definite

TCP Transmission Control Protocol

TPBVP Two Point Boundary Value Problem

UAV Unmanned Aerial Vehicle

UV Unmanned Vehicle

UWB Ultra-wideband

VC Velocity constant

VD Velocity decreasing

VFH Vector Field Histogram

VI Velocity increasing

VTOL Vertical Take Off and Landing

xxii

Chapter 1

Introduction

Unmanned system, since its creation, serves to free human beings from hazardous,

repetitive and exhaustive works such as equipment maintenance, industrial inspection,

and disaster search-rescue. The rapid evolution of mechanical hardware, communi-

cation equipment, sensing technology and artificial intelligence is making impressive

progress in improving our daily life through automation. The recent development of Un-

manned Aerial Vehicle (UAV), especially Rotorcraft Unmanned Aerial Vehicle (RUAV)

further fills up the blank in the unmanned system family. With its growing popularity,

various challenges emerge due to the demands of more complicated tasks. Among the

presented issues, a reliable, efficient and intelligent Mission Guidance Control System

(MGCS) is assigned with high priority. In this thesis, the author proposed and imple-

mented a trajectory generation based guidance and control system for RUAV to handle

various tasks from simple path following to navigation in a complex environment. The

proposed structure has been successfully implemented on multiple RUAV platforms

ranging from low-cost quad-rotor to helicopters with complex dynamics.

In this chapter, an overview of the development of guidance technology and RUAV

is presented. In Section 1.1, guidance of airborne systems is reviewed in detail. Section

1.2 introduces different aspects of RUAV from platforms to algorithms. Finally, the

contribution of the author’s work is covered in Section 1.3.

1

1.1 An Introduction to Guidance of Airborne Systems

Guidance remains a central problem of controlling air vehicles since their first appear-

ance in history. Nowadays, it is usually mentioned as a part of the Guidance Navigation

Control (GNC) system which frequently appears on modern autopilots, missiles, space-

craft and auto cars. Technically, guidance commonly refers to the determination of a

path or trajectory that leads the vehicle from current state to the desired state [1, 2, 3].

Navigation is to determine the current location, velocity, attitude and other guidance-

related state variables. And control means to manipulate the vehicle’s actuator to track

the guidance commands. A general GNC structure is depicted in Figure 1.1. The mea-

surement unit consists of various sensors, which are responsible for environment per-

ception and vehicle monitoring. The navigation module utilizes these data to estimate

the vehicle’s states and reconstruct the surrounding environment. The information is

then processed by the guidance module to generate reference command for vehicle’s

controllers. And finally, the controllers respond by actuating the vehicle to track the

desired path.

The burgeoning development of the guidance system from the 1950s to 1980s led to

significant progress in modern control theory. Especially during the Apollo space pro-

gram, many guidance and control theories have been proven great successful by numer-

ous engineering practices. Recently, the rise of Unmanned Vehicles (UV), especially

UAVs, again proposes great challenges to these established methods. For UAVs, their

guidance systems require a higher level of intelligence and faster response to incoming

events, due to the lack of human pilots. The new scenario that is not considered in pre-

vious work includes guidance with collision avoidance, the guidance of UAV swarm,

guidance under mission management and guidance under semi-auto driving.

Figure 1.1: The GNC structure

2

The commonly applied guidance laws for airborne systems is presented in the fol-

lowing sub-sections. They can be categorized into guidance by target aiming, guidance

by path following and guidance by trajectory tracking. Moreover, as a critical topic for

UV, guidance in the obstacle-strewn environment is also included.

1.1.1 Target Aiming

Target aiming guidance laws are commonly used on missiles and are relatively mature.

These guidance laws assume the vehicle travels much faster than the aimed target and

pursue the target constantly by manipulating the velocity direction of the vehicle. Com-

monly used target aiming guidance laws include: pure pursuit guidance [4], relative

velocity guidance, and three-point guidance [5]. Variations of the basic methods were

reported to have better performance. In [6], fuzzy logic is utilized on top of proportional

navigation law. In [7], series of neural network based guidance method are mentioned

and compared to their traditional counterparts.

Pure Pursuit

Pure pursuit problem could be illustrated by Figure 1.2. The line segment connecting

the vehicle and the target is called the line of sight (LOS). λLOS, which can be measured

by the bearing sensors, is the angle between the vehicle’s heading direction and the

target. The vehicle is then constrained to march in the direction of LOS until it intercepts

the target. This strategy is similar to pursuit-evasion game and often results in a tail

chase. The earliest pure pursuit guidance is the proportional navigation method that

aligns the vehicle’s velocity along the LOS through canceling out λ̇LOS. Once λ̇LOS

reaches zero, the vehicle will fly to the target directly. The proportional navigation

method could be written as:

ηc = N ′cVcλ̇LOS (1.1)

where ηc is the lateral acceleration reference, N ′c is a tuning parameter, Vc is the closing

velocity. By increasing N ′c, the vehicle will steer more aggressively. However, this

method does not work well for a fast-moving target. To tackle this problem, relative

velocity method was developed. Its idea is to utilize the velocity information of the

target by aligning the relative vehicle-target velocity along the LOS. Relative velocity

3

LOS

Vehicle

TargetTarget

LOS

x

y

Figure 1.2: The pure pursuit guidance

method has been widely applied on air-air missiles. Also, it has been employed by

mariners to avoid collisions on the sea. It has better performance when the vehicle is

not significantly faster than the target. However, since it requires the information of

the target velocity, the vehicle must be equipped with more avionics, which results in

higher cost and increased complexity.

Three Point Guidance

On the other hand, the three-point guidance method utilizes a different strategy by in-

troducing a ground control (GC) point and the line of track (LOT). It lies its root to the

surface-air missiles, where a ground station would aim the target with a light beam and

the missile would try to ride on the light beam. As illustrated in Figure 1.3, unlike the

pure pursuit method, the vehicle does not utilize the LOS information at all. Therefore

its onboard bearing sensors could be replaced with more sophisticated equipment at

GC. The vehicle’s flying path gradually converges to the LOT by changing its heading

angle until it intercepts the target.

1.1.2 Path Following

Compared to the target aiming guidance, path following is more complicated. It is

to design control laws that could drive the vehicle to reach and follow a geometric

4

LOT

Vehicle

Target

x

y

GC

Figure 1.3: The three-point guidance

path while fulfilling the dynamic constraints of the vehicle. Path following guidance is

widely adopted by the aircraft, ship, and mobile robot. The basic idea (see Figure 1.4)

is to minimize the lateral tracking error from the vehicle to the path while maintaining

a forwarding speed in the direction of the path. In Figure.1.4, the point O is the pro-

jection point of the vehicle’s position on the path, and the formed coordinate is called

a Frenet-Serret coordinate. Once the lateral error is reduced to and stabilized at zero,

the vehicle will follow and stay on the path permanently. Path following is currently

the most popular type of guidance implemented in real life scenario. The representa-

tive methods include carrot following algorithm, nonlinear control guidance law [8] and

vector field based path following [9]. In recent years, many other more advanced path

following algorithms have made noticeable improvements in vehicle performance, but

their fundamental ideas are similar to the three representative cases.

Carrot Chasing Algorithm

As a basic approach of following a geometric path reference, carrot chasing has influ-

enced the design and implementation of later algorithms. The idea is to assign a virtual

target point (aka. the carrot point) on the path and let the vehicle chase it. In airborne

systems, this method is commonly adopted by fixed wing aircraft. Aircraft’s mission

is usually specified by waypoints which are 3d positions of latitude, longitude, and

5

Vehicle

Lateral error

Tangent line

Path

y

x

forwardV

O

Figure 1.4: The path following guidance

altitude. The aircraft is required to follow the straight line defined by two adjacent way-

points as in Figure 1.5. The key is to localize the carrot position on the straight line path.

The first step is to project the vehicle’s position onto the waypoint line (point pvirtual

in Figure 1.5) and the carrot is set to be at distance dlead ahead of pvirtual. Then the

desired heading direction of the vehicle is determined as the vector point from the vehi-

cle’s current position to the carrot. The second step is to utilize a target aiming guidance

method, typically the proportional navigation method, to calculate the required lateral

acceleration to turn the vehicle towards the desired heading direction. Here dlead is a

tuning parameter that determines the behavior of the algorithm as a damping factor.

With a smaller dlead, the vehicle moves faster to the waypoint line, but at the cost of

longer oscillation. When it is large, the vehicle moves to the waypoint line slowly but

more smoothly.

L1 Nonlinear Guidance Law

The dlead in the carrot chasing algorithm depends on various factors such as vehicle

speed, lateral track error, and shape of the path. And it must be tuned in realtime to

achieve the best performance. In [8], a nonlinear guidance law was first developed to

handle this problem, by updating the carrot’s position nonlinearly. Again the waypoint

line following case is used as an example. In Figure 1.6, a circle with radius rL1 around

6

Desired heading direction

Vehicle

carrot

y

O

Waypoint_i+1

Waypoint_i

x

virtualp

forwardV

leadd

Lateral error

Figure 1.5: Carrot chasing method

the vehicle intercepts the waypoint line at most two times. Based on the waypoint’s

forwarding direction, the intersection point towards the next waypoint is chosen as the

carrot. The algorithm can be proved as Lyapunov stable with a critical damped con-

verging characteristic. Another advantage of this algorithm is that it can follow any

geometric path as long as the interception point can be calculated. For special cases

where the vehicle is too far away from the path to take any interception, the carrot is set

to be the origin of the Frenet-Serret coordinate.

Vector Field Path Following

Different from the carrot chasing based method, the vector field algorithm generates a

field of the desired velocity throughout the space, instead of giving a virtual leading

target. The field acts like streams of water that push the vehicle towards the path and

also in the forward direction of the path [9].

1.1.3 Trajectory Tracking

Though path following based guidance law is widely adopted by the current airborne

system, the drawbacks are to be reckoned. Firstly, it is hard for the vehicle to follow a

geometric path very precisely since these paths do not consider the dynamic property of

the vehicle. Secondly, the timestamp for vehicle’s state is unavailable. A vehicle could

7

Desired
heading

Vehicle

carrot
y

O

Waypoint_i+1

Waypoint_i

x

virtualp

forwardV

1Lr

Figure 1.6: L1 nonlinear guidance law

not tell its future position, velocity and other guidance related states easily, the only way

is to perform a forward simulation using current measurements. However, such simula-

tion is time-consuming and inaccurate due to the disturbances and measurement noise.

These drawbacks introduce significant difficulty for applications like indoor navigation

and multi-vehicle formation reconfiguration. To tackle these issues, trajectory tracking

based guidance is introduced from the robotics and computer numerical control (CNC)

machining society. The philosophy of this method is straightforward:

• Generate the trajectory

• Exam the feasibility of the trajectory

• Track the trajectory as tight as possible

A trajectory is commonly a function of time t which allows its state to be examined at

specific time tsp. An excellent tracking performance relies on a well-designed controller

in conjunction with a trajectory that resembles some key dynamics of the system. This

method has been successfully applied to many RUAVs to perform delicate maneuvers

that are difficult to achieve using traditional path following method. For example to

fly through narrow circles in high speed [10], to intercept fast moving object [12], to

cooperate and construct buildings [11], to perform multi-uav light show (see Figure

1.7(a)) and even to write calligraphy [13] (see Figure 1.7(b)).

8

(a) MultiUAV Lightshow

(b) UAV Calligraphy

Figure 1.7: Trajectory generation applications

Due to the relative maturity in feedback control theory, the research of this ap-

proach concentrates on the trajectory generation algorithm. Three major types of such

algorithms are as follows [11]:

1. Path re-parameterization: this method is often used by CNC machines. A pure

geometric path is first generated using a class of primitives, then parameterized in

time to enforce the dynamic constraints of the vehicle. Frequently used primitives

include line segments [14], polynomials [15] and splines [16].

2. Optimization based on differential flatness: many rotor-crafts’ models or their

controllable approximations are differentially flat about their position and head-

9

ing [17, 11]. Therefore, the trajectory’s feasibility depends on the position’s

derivatives. A group of methods aiming to minimize these derivatives is hence

invented. In [10], minimum snap trajectories are first applied to quad-rotors with

excellent performance. In [18], the generated trajectory guided the quad-rotor to

fly indoor at 8 m/s, by minimizing a weighted sum of multiple derivatives. A

recent progress that pushes the method to online usage which guides the vehi-

cle to navigate in obstacle-strewn environment is reported in [19]. Most of these

algorithms utilize a gradient based convex optimization method to optimize the

indirect trajectory represented using polynomials. However, in [12], a different

strategy was adopted to generate a large number of trajectories efficiently. Then

the available trajectory that satisfies all constraints and minimizes a given opti-

mization target was chosen. This method could generate trajectory in real time to

allow a modified quad-rotor play tennis.

3. Optimal control based: the last group of methods directly deal with the non-linear

dynamics of rotorcrafts. Model predictive control (MPC) strategy is suggested by

numerically solving optimization problems [20] or employing the Pontryagin’s

minimum principle [21].

1.1.4 Guidance in Obstacle Dense Environment

For unmanned vehicles to work safely in general environment, an obstacle avoidance

capability is necessary. The early developments focus on ground vehicles and mobile

robots. These methods can be differentiated into two categories as the local planner

and global planner. The former is responsible for realtime reaction to any environment

changes and sensor updates that could lead to a collision. Typical solutions include the

potential field algorithms [22], vector field histogram (VFH) method [23] and velocity

obstacle strategy [24]. The later is responsible for searching the connectivity informa-

tion of the environment and providing general guidance for the local planner to prevent

being stuck at a local minimum point. The A-star [25] and rapid random tree (RRT)

[26] algorithms can be used for this purpose.

10

Figure 1.8: Path returned by A-star algorithm

Global Planning Algorithms

Global planner’s main task is to analyze the connectivity information of the environ-

ment. Though they can also be used to handle the vehicle dynamics, it is hard to main-

tain algorithm’s real time performance. Therefore, most global planners work in the

configuration space where vehicle dynamics are largely neglected. Their results are a

series of linked line segments which connect from the vehicle’s current position to the

target. The best example is the connectivity path returned by the A-star algorithm [27]

executed in the configuration space (see Figure 1.8). These line segments give a general

idea of which direction the vehicle should aim for. The A-star algorithm is developed

from the dynamic programming method; it always provides the optimal path if it ex-

ists. Many improvements of this algorithm such as D-star [28], D-star lite [29] and

jumping point A-star, are developed and utilized in real life scenario. The D-star algo-

rithm which reuses the last planning’s information to correct the path when environment

changes has been successfully implemented on Mars rover. However, due to their nature

of dynamic programming, these algorithms suffer from the curse of dimensionality and

11

perform poorly in the high dimensional search. On the other hand, the RRT algorithm

represents another family of random sampling based technique. Its idea is to lower the

dimension of searching space by examining only the randomly sampled points. Its time

complexity scales much better, but it might take very long time to converge in an envi-

ronment with narrow passages. Variations of RRT includes the RRT-star algorithm [30]

which brings the optimal property into RRT, anytime-RRT [31] which allows efficient

guidance in the unknown environment by reusing the history information, and the more

recently reported batch informed tree (BIT*) algorithm [32] which tries to combine the

dynamic programming idea with random sampling technique.

Local Planning Algorithms

Local planner’s task is to follow the line segment path provided by the global planner

while fulfilling the vehicle’s dynamic and locally avoid any obstacle. Traditional suc-

cessful cases of local planners include the VFH [23], potential field algorithm [22], and

velocity obstacle strategy [24]. They use the environment information to choose the

best control reference directly. For example, the idea of VFH algorithm is to constantly

select an obstacle free direction that is close to the line segment path. Its three major

steps are:

1. Creation of Cartesian grid: project the range sensors’ measurement into a grid

map.

2. Creation of polar histogram: construct a one-dimensional polar map based on the

Cartesian map centered at the current location of the vehicle. The histogram tells

the distance of surrounding obstacles to the vehicle.

3. Selection of candidate peak: the peaks in the polar histogram, that is the directions

with far away obstacles, are selected based on their closeness to the desired line

segment path.

The potential field algorithm simulates two forces, an attraction force centered on the

target, and a repulsion force surrounding obstacles. If the force field is constructed

properly, the vehicle will be captured by the target’s attraction field while pushed away

by obstacle’s repulsion field to prevent the collision. However, such field fulfilling the

12

vehicle’s dynamic could be difficult to design. For moving obstacles, velocity obstacle

is utilized. It works by constructing a local frame centered around the moving obstacle

and removing the relative velocity reference of the vehicle that could lead to a collision.

Once eliminating all velocity references that are unsafe, the rest available choices are

sorted based on their closeness to the target. The major drawback of these traditional

methods is the lack of collision free guarantee, especially with higher order non-linear

vehicle models. Recently, the trajectory generation based local planner is proven to be

a better solution for fragile vehicles with complex dynamics [19].

13

1.2 An Overview of Rotorcraft Unmanned Aerial Vehicles

(RUAVs)

1.2.1 RUAV platform

Rotorcraft is a sub-category of aircraft where the name comes from its single or multiple

rotors that are capable of providing thrust to lift and actuate the vehicle. It possesses

the ability of vertical takeoff and landing (VTOL), hovering, low-speed cruising and

backward flying which is uncommon in other types of aircraft. These characteristics

make it superb in various applications like navigation in cluttered environment [33] and

short-range reconnaissance [34].

Like conventional fix-wing aircraft, rotorcrafts utilize the relative motion between

air and wing surface to generate lift. Unlike the fix-wing aircraft which creates the

relative motion by moving the whole body in the air, a rotorcraft rotates its wing surface

around a fixed axis to achieve the same purpose.

With the difference in the number of propellers and their configuration, the four

major type of rotorcrafts are classified as in Figure 1.9 (based on [35]). Based on the

propellers’ topology, rotorcrafts are optimized for different purposes which ultimately

determine their utility.

Rotorcrafts are ideal for short-range inspection, disaster monitoring, human rescu-

ing and cargo transportation in the crowded area. However, many of these tasks are

either dangerous for human involvement or difficult to deploy human operators. It thus

attracts significant interests from the unmanned system society where the focus is to

Figure 1.9: Common types of rotorcrafts

14

(a) PD100 BlackHornet UAV (b) Rapter 90 Helicopter

(c) An electric quad-rotor

Figure 1.10: Some models of RUAVs

produce dedicated hardware equipped with smart algorithms that could perform tasks

with less human involvement. One state-of-art example is the PD100 developed by the

Proxdynamics which weighs 18 g and is capable of flying at 5 m/s up to 25 min [36]. It

is capable of cruising in the wind gust, performing autonomous missions and streaming

out the realtime video (see Figure 1.10(a)). A more conventional platform Raptor-90

[37] represents a broad category of traditional RUAV; it is gasoline powered with a total

length of 1.4m and a ready-to-flight weight of 4.4kg (see Figure 1.10(b)).

Despite the reduced size and weight, these rotorcrafts suffer from inconvenience

in maintenance and repairing. In fact, the conventional helicopter, coaxial, tandem

and synchropter configuration designs are commonly seen in larger vehicles due to the

requirement of complex mechanical structures. Contrarily, multi-rotors, like the quad-

rotors are usually designed for small size battery-powered UAVs thanks to their simple

machinery and compatibility to electric motors (see Figure 1.10(c)). Based on the num-

ber and configuration of rotors, multi-rotor can be further classified as in Figure 1.11.

A rule of thumb on the multi-rotor vehicle is: the smaller the propeller, the better the

controllability but the lower the efficiency. Thus multi-rotor designers must maintain a

balance between control performance and in-air endurance.

15

Figure 1.11: Different configurations of common multi-copters
Green circle: rotate in clockwise, blue circle: rotate in anti-clockwise

1.2.2 RUAV Navigation

Unlike ground vehicles, RUAVs lack the direct sensors like the odometer to report its

velocity and position, it requires a dedicated navigation module to perform even simple

missions like hovering or point-to-point flight. Here, navigation refers to the determi-

nation of the vehicle’s position, velocity as well as its attitude. The navigation module

is fused with other onboard sensors to provide estimation on vehicle states. Despite the

variations among applications, the navigation methods of a RUAV can be classified as

the following categories:

1. Global positioning system (GPS) based. The most common way of localizing an

air-vehicle is to utilize a GPS module (see Figure 1.12(a)). It provides reasonably

accurate position measurement, and the velocity can be estimated by filtering with

other measurable states. The advantages of GPS are its availability throughout the

world, and it requires no external setup. However, high-quality GPS signals can

only be received in open fields, which brings problem for indoor, forest or urban

applications.

2. Optical flow based. Another commonly used navigation method is to utilize an

optical flow sensor to get velocity measurement (see Figure 1.12(b)). The po-

sition measurement is acquired by integrating the velocity history. Consuming

16

(a) A Prallax GPS
module

(b) A Px4flow smart
camera

(c) A Hokuyo laser
scanner

(d) A Bumblebee
stereo camera

(e) A Microsoft
kinect camera

(f) A vicon camera (g) A UWB posi-
tioning system

Figure 1.12: Sensors used during RUAV navigation

little computational power and being effective in nearly all scenario make it an

excellent companion to GPS module. The major disadvantage of this method is

the drifting in position after long-time integration of noisy velocity measurement.

3. Simultaneous Localization and Mapping (SLAM) based. SLAM, being a hot

researched topic on its own, is also intensively utilized as navigation method

for RUAV. On top of acquiring vehicle states, SLAM also provides the environ-

ment information which can be used in planning and guidance phases. Therefore,

SLAM requires more sophisticated sensors like laser scanner (see Figure 1.12(c)),

stereo camera (see Figure 1.12(d)) and RGBD camera (see Figure 1.12(e)). How-

ever, the complex SLAM algorithm usually consumes a large amount of compu-

tational power.

4. External aided. Finally, for many researchers, an additional positioning system

such as Vicon (see Figure 1.12(f)) or Ultra-wideband (UWB) (see Figure 1.12(g))

are used to measure the vehicles’ status. However, these types of equipment are

not portable and require complicated calibration procedure before each setup.

Though it provides the highest level of accuracy, it is used for research and de-

velopment purposes mainly.

17

1.2.3 RUAV Guidance

Large size rotorcrafts traditionally adopt the most mature path following based guid-

ance method. However, due to the requirements of full automation and utilizing the

agile dynamics, trajectory tracking methods are becoming popular, especially among

small size RUAVs. Researchers have made a significant effort on widening the possible

applications of RUAVs. To demonstrate the performance, RUAVs capable of perform-

ing aggressive maneuvers are developed. In [10, 38, 11], the multi-rotors were made

to fly through narrow windows, perch on vertical walls and catch flying objects. An-

other hot topic of RUAV guidance is their cooperation and consensus. For missions

like surveillance and area coverage, multiple vehicles significantly increase the effi-

ciency and overall reliability. In [39, 40] both centralized and distributed solutions were

applied to solve the formation control problem. Finally, to allow the vehicle to work

safely in the general environment, RUAV obstacle avoidance has been intensively stud-

ied. Chen and his group [19, 41] presented a method of navigating through unknown

cluttered environments by efficiently solving the convex optimization problem. The au-

thor also implemented light-weight algorithms [33] to make RUAV flying through the

forest like environment by online decomposing the complex guidance problem into a

series of two point boundary value problem (TPBVP).

18

1.3 Contributions

In this chapter, various guidance techniques utilized by the airborne system have been

investigated and reviewed. Traditional methods like target based guidance and path

following method have been studied by reviewing representative algorithms. Their tar-

geting vehicle groups, advantages, and disadvantages have been discussed. Further,

new approaches based on trajectory generation have been given extra emphasis due to

their compatibility to the RUAVs. Rotorcraft platforms are introduced based on their

working principal and classification. Multi-rotors receive special notice since they are

the major RUAV type in the industry. As a part of the GNC system, RUAV navigation

is studied since their performance determines the rest of the system design. Finally,

developing in RUAV guidance technology is reviewed. Various aspects like aggressive

maneuvering, swarming and obstacle-strewn environment navigation are covered.

Major contributions of this thesis can be categorized into three topics. Namely the

implementation of a trajectory-based MGCS, the reference generation and guidance

algorithms utilized by RUAVs, and an RUAV capable of flying in obstacle-strewn envi-

ronment. They are covered in dedicated chapters with details. The organization of the

thesis is as follows.

Chapter 2 discusses the system design and implementation of MGCS. The work

covers developing a user-vehicle interface to allow mission management, introducing

various global planning techniques for realtime applications and implementing a cas-

caded controller for better tracking performance. Such a system is highly modularized

which makes it an ideal testbed for different sensing, navigation, guidance and control

methods.

Chapter 3 and 4 introduce several trajectory generation and guidance algorithms.

One off line method utilizes the B-spline as path primitives and optimizes the weighted

derivatives of the position trajectory. There are also algorithms utilize the sliding mode

control (SMC) principal to generate dynamically feasible reference in realtime. Target

tracking and path following methods based on coordinate projection are also covered.

Chapter 5 discusses the developing and implementation of the trajectory based guid-

ance system that allows an octo-rotor to fly in GPS-denied and obstacle-strewn environ-

ment. This method decomposes the complex trajectory optimization problem into a

19

series of TPBVPs. The case of multiple vehicles equipped with this approach form-

ing leader follower formation while marching in obstacle-strewn environment is also

studied.

Finally, Chapter 6 draws a conclusion on this thesis and the idea of trajectory gener-

ation based guidance. Its advantages, disadvantages, possible improvements and future

research topics are analyzed and discussed.

20

Chapter 2

System Design and Implementation

In this chapter, the author designed and implemented an MGCS dedicated for trajectory-

based guidance. The system is utilized in various projects and studies. The task of our

RUAV’s software system is to:

• Generate its trajectory based on mission and environment.

• Perform accurate trajectory tracking.

• Read command from the human operator.

To fulfill these requirements, a structure in Figure 2.1 is proposed. Though an unmanned

system it is, the flow starts with a human operator and a Human-Machine Interface

(HMI) which is responsible for assigning high-level missions, such as mapping a par-

ticular area, carrying a payload to rendezvous point or cooperating with other vehicles

to monitor a target. Then the mission manager decomposes these high-level tasks with

pre-set vehicle behaviors. For example, to reconstruct an environment model of some

user-defined areas, the task will be decomposed by assigning suitable waypoints and

generating corresponding flight paths which would essentially scan through the whole

working area. By following the paths and taking photos along the way, image footages

can be easily obtained for later vision-based reconstruction.

Once the mission is clearly defined, the guidance module handles the problem of

piloting the vehicle from current location to the point of interest (POI). A two-level

21

Figure 2.1: RUAV system for trajectory generation based guidance

planning process is adopted to deal with complex tasks such as exploration or navi-

gation in the obstacle-strewn environment. The final output of the guidance module,

specifically, the dynamically feasible reference, would be tracked by the lower-level

vehicle controller.

Due to the nonlinear dynamics of most rotorcrafts, a two-level controller is com-

monly adopted. The first level is a transnational controller, which converts the reference

trajectory into acceleration commands. The second level controller, which is usually re-

ferred as attitude controller, stabilizes the vehicle and tracks the generated acceleration

commands.

For the controller to work properly, measurements are provided by a navigator unit

which performs sensor fusion. Further, the vehicle states and environmental information

also affect the planner and human operator’s decision. The design and implementation

of the mission, guidance, and control layer are discussed in their dedicated sections with

detail. The similar system structure is reported to be utilized successfully by various

type of RUAVs such as octo-rotors [33], helicopters [37] and coaxial-rotors [42].

22

2.1 Mission Level

The mission level consists of an HMI and the mission manager. In our implementa-

tion, they are combined into a ground control station (GCS) which handles the user

interaction through a graphical user interface (GUI) and manages each vehicle in the

underlying data layer.

2.1.1 Software Architecture

The GCS software consists of four layers, modules in the same layer are interchange-

able to provide maximum customization capability. The architect of the software is

shown in Figure 2.2. A top down tree shape design is adopted for handling connection

to multiple vehicles. A centralized manager interface is maintained for better user ex-

perience. Similar design could be found in [43] which served as a base for the author’s

development. The four layers in Figure 2.2, namely the link layer, the protocol layer,

the data layer and the GUI layer are discussed as follows.

• Link layer: The link layer provides drivers and interfaces for accessing different

communication hardwares. Vehicles utilize a various type of data links, like Eth-

ernet devices or serial devices. For each link, a dedicated thread can be assigned

to prevent the process from jamming while the link is performing synchronized

operation. The outputs from the link layer are raw binary arrays; no external

parsing is done at this level. Time-consuming operations such as parsing are re-

moved from the link layer since many hardware devices have limited buffer size

that needs to be frequently cleaned to prevent buffer overflow. A virtual buffer is

created at the protocol level to keep track of all received data.

• Protocol layer: the protocol layer holds the parser and decoder for various com-

munication protocols which include low bandwidth heartbeat packages as well

as realtime stream flows. During our practice, all low bandwidth data parsing

shares the same thread while tasks like video decoding have their dedicated pars-

ing threads. The outputs from the protocol layer are data blocks like image frames

or vehicle state reports.

• Data layer: the data layer stores and manages the decoded data from vehicles.

23

Figure 2.2: GCS software architecture

The data is categorized into state data and mission data. For state data, their main

purpose is for the user to monitor the performance of the vehicle such as location,

battery voltage, and temperature. Therefore, no interaction is required with the

state data. The mission data, on the other hand, is different. The user might create,

edit or cancel a mission through the user interface. Since the vehicle is only

capable of executing a series of mission primitives, it is necessary for the mission

manager to translate the human defined task into mission primitives that could

be understood by the vehicle. Most human defined tasks could be decomposed

into combinations of mission primitives statically. However, for operations like

exploring and searching, algorithms in [44] can be utilized.

• User interface: the last layer is a GUI, which provides the terminal for human-

computer interaction. Its widgets can be classified into two types. One is the

monitoring type which receives information only and includes flight instrument

board, video player, and warning message windows. Another is the task manage-

ment type which requires communication with the mission manager. An overview

of the GUI is shown in Figure 2.3.

24

Figure 2.3: GCS user interface

Figure 2.4: GCS mission management system

2.1.2 Mission Management System

Besides monitoring the vehicle and its sensor data, the most important function for the

GCS is to provide the mission management service. In our implementation, a waypoint

based mission management system is developed based on [43]. That is, all human de-

fined tasks such as flight path, the region of interest (ROI), target to intercept and object

to follow are all ultimately described by a series of waypoints. Such a mission manage-

ment system consists of three main components (see Figure 2.4): the communication

engine, the mission translator, and the mission interface.

• Communication Engine: mission data is different from others in a way that they

need to be kept in order. Missing even one package in mission data might alter

the mission and render the whole task useless. Therefore, a retransmission mech-

anism is needed to guarantee an ordered data transfer. Here, a technique similar

to Transmission Control Protocol (TCP) is adopted from [43]. When the GCS

initiates a mission transmission talk, it sends a handshaking message with the

25

number of mission elements to the vehicle. Once the vehicle received the mes-

sage, it begins to request each mission element in order. Only when the receiving

of mission element i is confirmed, it will start to request element i + 1. If no

response is received after requesting element i, a retransmission request for that

element is sent.

• Mission translator: the user defined task consists of three geometry primitives as

the path, region, and target. The mission translator is responsible for decompos-

ing them into waypoints. For example, paths can be represented by endpoints

of line segments or control points of splines. Regions are defined by connecting

multiple paths to form a closed shape. And the target is a single waypoint pos-

sibly on the move. Further, each waypoint also describes the functional purpose

of the geometry primitive. For example, a region could be either an ROI or a

forbidden zone, a flight path can be either a mission path or an emergent home

return path. In this way, the whole mission is translated into a list of waypoints

that could be understood by the vehicle’s onboard computer.

• Mission interface: the mission can be created, edited or canceled by clicking or

dragging on the map. The detailed mission parameters can be set through an

excel like table interface. An example of mission interaction is given in Figure

2.5. The red waypoints are the flight path point defining a desired flight path. The

blue waypoints are the return-home waypoints defining the path in auto-return-

home mode. The green polygon is the safe-operation area, the vehicle cannot

leave this area under any mode. And finally, the orange curve line denotes the

current trajectory tracked by the vehicle.

26

Figure 2.5: GUI for mission editing

2.2 Guidance Level

As a trajectory based guidance system, it takes inputs from the mission manager which

is a list of waypoints and output reference for the vehicle’s controller. To solve the more

complex problem, a high-level global planner is cascaded with the trajectory generator.

In fact, human uses this decoupled planning strategy all the time. When hikers are trav-

eling in the field, they make a global plan by studying the map. For the rest of time, they

focus on walking, observing the surroundings and avoiding obstacles. The global plan

is not reconsidered unless the environment changes tremendously such as the breaking

down of a bridge; or the high-level task shifts. This setup serves to conserve an enor-

mous amount of computational time. It also helps to increase system robustness as most

global planners are dynamic programming based and are sensitive to noises.

In our implementation, the global planner is a geometric pathfinder, and the local

planner is a trajectory generator. The pathfinder provides a geometric path as connected

line segments, and local planner generates trajectories to follow the geometric path

while avoiding the obstacles.

27

(a) 4-connected tile map graph (b) 8-connected tile map graph

Figure 2.6: A graph of 2D tile map

2.2.1 Global Planner

The task of the global planner is to: find a series of line segments that connect the ve-

hicle to its target position. Two types of path searching algorithm have been covered in

this thesis; namely, the graph searching based and random sampling based. Noticeably,

these searching algorithms perform search routine in the configuration space of the vehi-

cle. Though they could be used for state space searching while considering the vehicle’s

dynamics, it is time-consuming and defeats the purpose of decoupled planning.

Graph Searching

Graph searching algorithm is a well-established family for pathfinding. The first step is

to transfer the configuration space into a graph which is a set of vertices connected by

edges. A 2 Dimensional (2D) tile map (see Figure 2.6) can be considered as a graph

and it is commonly used for the path searching. The short black lines in Figure 2.6

denote the edges that connecting two tiles. In 4-connected map, a tile is connected

with its four neighbors, namely, up, down, left and right. In 8-connected map, a tile

is connected to four more neighbors at the corners. The most representative example

of graph searching pathfinder, A-star algorithm [27], is introduced in the 8-connected

graph as follows. In A-star, from the starting point, tiles will be assigned with cost

fA∗(n) = gA∗(n) +hA∗(n), where gA∗(n) represents the shortest cost of the path from

the starting point to vertex n, and hA∗(n) represents the estimated cost from vertex n to

the goal. For each cycle, it examines the vertex with lowest fA∗(n). The pseudo code

of A-star is given as:

28

Algorithm 1 A-star algorithm
1: Input: START , GOAL
2: Output: Shortest path from START to GOAL
3: OPEN: priority queue containing START
4: CLOSED: empty list
5: c← lowest cost item in OPEN
6: move c from OPEN to CLOSED
7: while c is not GOAL do
8: for each neighbor n of c: do
9: cost = gA∗(c) + moveCost(c, n)

10: if n already in OPEN and cost < gA∗(n) then
11: gA∗(n)← cost
12: fA∗(n)← gA∗(n) + hA∗(n)
13: n.parent← c
14: if n not in OPEN and n not in CLOSED then
15: gA∗(n)← cost
16: fA∗(n)← gA∗(n) + hA∗(n)
17: add n to OPEN
18: n.parent← c
19: c← lowest cost item in OPEN
20: move c from OPEN to CLOSED

The core of A-star algorithm is two sets, OPEN and CLOSED. The OPEN set con-

tains vertexes prepared for examining. The CLOSED set contains the vertexes need no

examination (see Figure 2.7). The OPEN set first contains the START vertex while

the CLOSED is an empty list. For each cycle, the vertex with lowest cost fA∗ (vertex

c) is pulled from the OPEN set until it happens to be the GOAL. Then c is moved from

OPEN into the CLOSED. All the neighbors connected to c is now checked. Its tempo-

rary cost value is calculated as cost = gA∗(c) + moveCost(c, n). There will be two

possible conditions. If the n is not in the OPEN set, it is added into it with its parent

set to c. If it is already in the OPEN set, we check whether it is a better solution to

travel to n through c. If not, nothing is done. Otherwise, the cost value of neighbor n is

updated with its parent set to c. The path is constructed reversely by recursively finding

parent starting from GOAL until it reaches the START (the blue dash lines in Figure

2.7). During the implementation of A-star algorithm, in order to achieve the reliable

and efficient searching, the following aspects are noticeable.

• Selecting of heuristic function hA∗(c): the heuristic function is an estimation

of future cost traveling from vertex c to the GOAL. It defines the property of

the A-star algorithm. To achieve globally optimal results, it is required that the

29

Figure 2.7: A-star path finding from one room to another
The yellow tiles are in OPEN set, and the green tiles are in CLOSED set.

estimated cost is always equal or smaller than the true value. If hA∗ is always

zero, the algorithm becomes the Dijkstra’s algorithm. On the other hand, if gA∗

is very small, then the algorithm becomes greedy search. For different tasks, the

heuristic function can be varied to improve either speed or optimality.

• Implementation of priority queue: in Algorithm 1, the OPEN set is said to be

a priority queue. It needs to return the vertex efficiently with the lowest fA∗; a

binary heap is used in our implementation with unsorted arrays.

• Introducing of hash: for each vertex, there is a need to check whether it is in the

OPEN or CLOSED set. If it is in the OPEN set, the corresponding queue item

also needs to be found for possible value modification. A linear search of time

complexity O(n) is obviously not desirable. The introducing of a pointer hash

map that allows each vertex to point to its counterpart in OPEN set could reduce

the time complexity to O(1).

Random Sampling

The graph search method is affected by the curse of dimensionality. That is, the com-

plexity of the algorithm grows exponentially with the dimension of the searching space.

30

This causes problems for traditional grid based graph search to work efficiently in

higher dimensional space. In fact, the A-star algorithm works well for 2D and semi

three dimensional (2.5D) path finding with RUAV onboard computers, but full three-

dimensional (3D) searching is too computationally intensive. In answer to this problem,

a family of randomly sampling based algorithms is developed. An RRT-based algorithm

is implemented here for its simplicity. The pseudo code of the basic RRT [26] is given in

Algorithm 2. The searching tree Tsearch starts with the root as START . For each cycle

Algorithm 2 RRT algorithm
1: Input: START , GOAL
2: Output: Path from START to GOAL
3: Tsearch: tree with one node START
4: while No node of Tsearch is in the GOAL region do
5: sampling a random point prand in the configuration space
6: find the node qn in Tsearch that is closest to prand

7: if qn and prand can be connected with a line edge without collision then
8: add prand into Tsearch with parent as qn

9: reconstruct reverse path from the node in GOAL by recursively visiting parents

of the algorithm, a random sample is picked from the space. Then its closest neighbor

node on Tsearch is retrieved. If these two points can be connected without collision,

the sampled point is added to Tsearch with its parent as the closest neighbor. However,

unlike the graph search algorithm, the basic RRT does not generate the optimal path.

Though optimal variants of RRT exist [30], its computational cost is rather high for

our purpose. Hence, a lightweight algorithm is proposed to improve the optimality of

original RRT by making two modifications: the random sampling strategy is changed

to a target biased sampling, and post-processing for cutting the optimal branch is intro-

duced. According to simulation experiments, the algorithm works reasonably well in

the cluttered environment with most obstacles having a convex shape. The pseudo code

of the modified RRT is given in Algorithm 3. For each cycle, a target biased search

is added. And for each tree growing procedure, instead of growing the branch with

full length, a shortened branch is appended. Nonetheless, due to the lack of optimality,

the resulting path consists of many unnecessary zig-zags (red lines in Figure 2.8). To

improve the path quality, a post processing is executed to find the shortest track among

the zig-zag path. Note the path is represented as a list of nodes start from START and

end with GOAL, the trimming algorithm is given as

31

Algorithm 3 Target biased RRT algorithm
1: Input: START , GOAL
2: Output: Path from START to GOAL
3: Tsearch: tree with one node START
4: while No node of Tsearch is in the GOAL region do
5: sampling a random point prand in the configuration space
6: GrowRRT(prand, Tsearch)
7: GrowRRT(GOAL, Tsearch)
8: reconstruct reverse path from the node in GOAL by recursively visiting parents
9:

10: Function GrowRRT(point, tree)
11: find the node qn in tree that is closest to the point
12: grow tree from qn towards point for a distance dist < ‖point− qn‖ resulting

node qg

13: if the newly grown branch resulted in a collision then
14: delete it
15: else
16: add qg into Tsearch with parent as qn

Algorithm 4 Trimming of zig-zag path

1: Input: Path with N nodes (N > 1)
2: Output: Pathtrim

3: Cost← a variable size list
4: Path(1).gtrim = 0
5: Path(1).parrent← NULL
6: for n from 2 to N do
7: Cost.clearMembers()
8: for i from 1 to n− 1 do
9: calculate distance from Path(i) to Path(n)

10: if connection of Path(i) to Path(n) results in collision then
11: Cost(i) =∞
12: else
13: Cost(i) = distance+ Path(i).gtrim

14: k = argmin
uk∈[1,n−1]

Cost(uk)

15: Path(n).gtrim = Cost(k)
16: Path(n).parrent← Path(k)

17: generate Pathtrim by recursively visiting parent from Path(N)

This is basically a dynamic programming process. For each node, it searches for

the shortest collision free path that traces back to START . The trimmed path is shown

as the green lines in Figure 2.8.

32

START

GOAL

Figure 2.8: RRT path finding in cluttered environment

2.2.2 Local Planner

Following the global planner, the local planner generates open loop trajectories that is

consistent with the vehicle’s dynamics. Figure 2.9 shows the simulation responses of

two different reference signals applied to a quad-rotor’s altitude controller. It illustrates

how the smoothness of reference signal would affect the final control performance. As

shown in the figure, both references have a steady state value of 12 m, i.e., the vehicle

is expected to climb to 12 m position. However, the ramp reference is much smoother

than the step one. As a result, though the same linear feedback controller is used to

track both types of references, the tracking performance is much better for smooth ramp

signal regarding smaller overshoots, shorter settling time, and more importantly, smaller

tracking error.

As mentioned in Chapter 1, one benefit for trajectory-based guidance is the ref-

erence trajectory can be examined before being adopted. However, if the generated

trajectory is not dynamically feasible and cannot be tightly tracked by the vehicle, the

trajectory-based guidance then becomes less effective. Step reference is an extreme

example of dynamically infeasible trajectory since no currently available vehicle is ca-

pable of teleportation. Besides dynamic feasibility, the local planner might bear other

requirements such as intercepting a moving target or avoiding obstacles. Therefore, the

property of the generated trajectory needs to be examined. Taking obstacle avoidance

33

time (s)
0 2 4 6 8 10 12 14 16 18 20

z
(m

)

0

5

10

15

20
Ramp response

z
ref

z

time (s)
0 2 4 6 8 10 12 14 16 18 20

z
(m

)

0

5

10

15

20
Step response

z
ref

z

Figure 2.9: Quad-rotor altitude control by tracking different references

as an example, the clearance of the trajectory is examined by assuming an asymptotic

converge with a bounded error εt. Forward simulation is less effective as it is more

time consuming. The idea of the generation-examination-tracking process is depicted

in Figure 2.10. Trajectory generation is repeatedly executed until one of them passes

through the examination module. Finally, another important task for the local planner is

to ‘follow the lead’ of the global planner. In our implementation, the trajectory is made

to stay in the vicinity of the global path and march forward along it. Two examples of

such behavior are given in Figure 2.11 and Figure 2.12. The first one guides the vehicle

following a circling square path. The second one leads vehicle on a 3D global path with

minimum jerk trajectory. For these trajectories, they are all constrained on the deriva-

tives of position, which helps to resemble the dynamics of a rotorcraft. The detail of

local planners are discussed in Chapter 3 and 4.

34

Generate
Trajectory

Trajectory
Passes
Exam?

No

Pass to Conroller

Yes

Figure 2.10: Generation-examination-tracking process for trajectory-based guidance

35

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

Global path
Trajectory

Start

Goal

(a) 2D path

Cycle(0.02s/cycle)
0 500 1000 1500 2000 2500 3000 3500

m
/s

-5

0

5
Velocity reference

v
x

v
y

Cycle(0.02s/cycle)
0 500 1000 1500 2000 2500 3000 3500

m
/s

2

-4

-2

0

2

4
Acceleration reference

a
x

a
y

(b) Velocity and acceleration

Figure 2.11: Following of 2D circling path

36

40

30

20

y(m)

10

0

-105

3D following

0
-5

x(m)

-10
-15

-20
-25

-30
-35

0

5

20

15

10

z(
m

)
Global path
Trajectory

(a) 3D path

Cycle(0.02s/cycle)
0 200 400 600 800 1000 1200

m
/s

-1

0

1

2

3

4

5
Velocity reference

Cycle(0.02s/cycle)
0 200 400 600 800 1000 1200

m
/s

2

-1.5

-1

-0.5

0

0.5

1

1.5
Acceleration reference

(b) Velocity and acceleration

Figure 2.12: Following of 3D path

37

2.3 Control Level

2.3.1 Cascaded Control Structure

In this section, a generalized control structure for RUAV is discussed. The design aims

to track translational reference as tight as possible. Translation movement is the foun-

dation for a useful vehicle. First, a generalized point mass model for rotorcraft is given

in Figure 2.13. The model is expressed in a global inertia coordinate G with the three

axises as ~xG, ~yG and ~zG respectively. Since rotorcrafts do not have wings, the main

source of lift comes from their thrust. The three major forces acting on a rotorcraft

are: combined thrust from all rotors, gravity and the air drag force. Such a model is

expressed in Equation 2.1 and 2.2.

ṗ = v

v̇ = a

a =
1

mq
(TΣ(q) + dair(vair)) + g

(2.1)

 ẋq = fq(xq, v) + gq(xq)uq

q = Cqxq

(2.2)

where p, v, a are the position, velocity and acceleration vector of the vehicle, mq is

the vehicle’s mass, TΣ, dair, g are the three main forces of combined thrust, air drag

and gravity. Then, xq is a collection of non-translational states such as the attitudes

of the vehicle, uq is the true system inputs associated with physical actuators, q is a

selected subsets of xq called controlled inner loop outputs and fq, gq are functions de-

scribing the nonlinear dynamics. Here, the dynamics governed by Equation 2.1 are

called the translational model. And the dynamics in Equation 2.2 are called the atti-

tude model as xq usually contains parameters describing the rotorcraft’s attitude. Most

rotorcrafts such has helicopters, quad-rotors and coaxials are under-actuated systems,

making them difficult to control in general. However, people notice that the attitude

dynamics of rotorcraft are much faster than its translational dynamics. Therefore, the

design of a cascaded controller utilizing the separation in time scale naturally emerged

(see Figure 2.14). The idea is to have an outer loop governing the position of vehicle

38

mg

Gx
Gy

Gz
Combined
Thrust

Air Drag

V

Vehicle

Figure 2.13: Generalized point mass model for rotorcrafts

by manipulating q. The required q (denoted as qref) is then tracked by the attitude in-

ner loop controller via uq. In other words, q is the controlled output for the inner loop

system. Nevertheless, TΣ(q) is commonly a nonlinear function. To design a proper

outer loop controller, the procedure of nonlinear dynamic inversion (NDI) is adopted.

For translational loop, the controlling target is naturally the position p. Then, one has

to repeatedly differentiate the output p until q appears. This happens when

p̈ =
1

mq
(TΣ(q) + dair(vair)) + g (2.3)

Considering the fact that vair is difficult to measure, it is treated as disturbance which

is neglected during dynamic inversion and handled by the robust controller. Thus, a

virtual control input uv is created as

uv =
1

mq
(TΣ(q)) + g (2.4)

39

Translational
 controller

Attitude
controller

Plant
dynamicsTΣ

-1
-

p,v

-

q

qref

pref,
vref,
aref uq

ψref Inner attitude loop

Outer translational loop

uv

g

m
-
dair

-

Figure 2.14: Cascaded control structure for a quad-rotor

and qref can be correspondingly found as:

qref = T−1
Σ (mq(uv − g)) (2.5)

Then the control problem is reduced to design a linear controller for a double integrator

with virtual input

p̈ = uv (2.6)

and the real desired outer loop control input can be found by Equation 2.5. Though

not all controllers are structured in this way, the proposed structure has been success-

fully implemented on various type of rotorcrafts, such as helicopters [45], quad-rotors

[46], octo-rotors [33], coaxials [47] and even unconventional vector thrust tail sitter

[48]. They share a similar translational controller since it is designed based on a double

integrator model. However, their inner loop controller varies largely due to the dif-

ferences in the inner loop dynamics described by Equation 2.2. The cascaded control

structure of a quad-rotor is shown in Figure 2.14. Note the heading angle reference of

ψref is also passed into the T−1
Σ function. This is because the q of a quad-rotor’s inner

loop has four values FΣ, φ, θ, ψ which are the total thrust magnitude, roll, pitch and

yaw angle respectively. On the other hand, the virtual input for a 3D double integrator

uv = [uvx, uvy, uvz]
T has only three values. In order to get a unique solution for q

through T−1
Σ , the value of ψ is preset with ψref .

40

2.3.2 Robust Perfect Tracking (RPT) Control

The translational controller is generalizable, and a dedicated discussion is made here

to improve its performance. As for the inner-loop controller, since the design relies on

the nonlinear dynamics of individual vehicle type, it is difficult to outline a controller to

work on all of them. Therefore, the detail discussion of inner-loop controller is omitted

in this thesis.

As mentioned previously, after the dynamic inversion, the effective translational

loop dynamics becomes a double integrator. From Equation 2.6, it is clear that the 3

degrees of freedom (DOF) of the point mass model are decoupled. Then it is natural

to design a controller for each DOF separately. Here, the RPT controller from [49] is

adopted for accuracy and robustness. Without input and states constraints, this con-

troller can track any given reference with arbitrarily fast settling time in theory. For a

linear time-invariant (LTI) system:

Σ =

ẋL = AxL +BuL + EwL

yL = C1xL +D1wL

hL = C2xL +D2uL +D22wL

(2.7)

with xL,uL,wL, yL,hL being the state, control input, disturbance, measurement and

controlled output. The RPT controller provides a dynamic measurement control law of

the form:

v̇L = Ac(ε)vL +Bc(ε)yL +G0(ε)rL + ...+Gκ−1(ε)rκ−1
L ,

uL = Cc(ε)vL +Dc(ε)yL +H0(ε)rL + ...+Hκ−1(ε)rκ−1
L ,

When a proper ε > 0 is chosen, the controller is then capable of

1. Stabilizing the closed-loop system asymptotically subjected to zero reference.

2. If eL(t, ε) is the tracking error, then for any initial condition xL0, there exists:

‖eL‖p = (
∫∞

0 |eL(t)p|dt)1/p → 0, as ε→ 0. (2.8)

41

The single-axis double integrator model can be written as:

ẋ =

 0 1

0 0

 x +

 0

1

ui, y = x (2.9)

where x =

[
p v

]
(p, v are the equivalents of p, v on a specific axis respectively),

u is the virtual input (aka. single-axis acceleration) and y stands for the single-axis

measurements. An augmented system is then formulated as

ẋaug =

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

xaug +

0

0

0

0

1

uaug

yaug = xaug

haug =

[
−1 0 0 1 0

]
xaug

(2.10)

where xaug =

[
pref vref aref p v

]T

with pref , vref , aref as the position, velocity and

acceleration references in the same axis of p, v. According to [49, 50], an linear feed

back law of the following form can be formulated as:

uaug = Faugxaug, (2.11)

where

Faug =

[
ω2

n

ε2

2ζωn

ε
1 −ω

2
n

ε2
−2ζωn

ε

]
.

The control law is achieved through performing a special coordinate decomposition

(Theorem 3.1 in [49]) on Equation 2.10, then choose a feedback matrix to stabilize the

resulting system, and finally transform the feedback matrix back to the normal coordi-

nate. And the ε becomes a design parameter for adjusting the bandwidth of the closed

loop system. ωn, ζ are the parameters that determine the desired pole locations of the

42

infinite zero structure of (2.10) through

pcharacter(sL) = s2
L + 2ζωnsL + ω2

n. (2.12)

Theoretically, it is possible to achieve arbitrarily fast response when ε is small enough.

However, due to the requirements on time-scale separation of the inner and outer loop,

it is wise to limit the bandwidth of the outer loop to be much smaller than that of the

inner loop. The design procedure of the cascaded controller can be summarized as:

1. Find inner loop controlled output q and its relationship to force TΣ.

2. Design the inner loop controller and measure the closed inner loop’s bandwidth.

3. Perform dynamic inversion to simplify the nonlinear model, find virtual input and

T−1
Σ .

4. Design the outer loop controller based on the simplified linear model with a much

smaller bandwidth compared to the inner loop.

43

2.4 Conclusion

In this chapter, an MGCS for RUAV is introduced and studied. The MGCS is designed

for the trajectory-based guidance method, where the process starts from the user speci-

fication of high-level tasks via the HMI, then a mission management system is respon-

sible for translating the user specific missions into a series of waypoints that could be

transmitted and understood by the vehicle. Then a two layer guidance module leads the

vehicle to the point of interest or follows the path of design. The first layer of guidance

is a global path planner whose main task is to examine the connectivity information of

the environment. In our design, in order to fulfill the requirement of online computation,

the dynamics of the vehicle is ignored in the global planner. Therefore, the result is a

series of connected line segments that link the vehicle to the final target. Then a local

planner produces translational reference for the vehicle’s controller based on the hint

from the global planner. After this, based on the dynamic properties of most rotorcraft

vehicles, a cascaded controller is implemented to track the reference generated by the

guidance unit. The cascade control structure is successfully implemented on various ve-

hicles. Further, the translational controller is also generalizable because the outer loop

model of the vehicle is simplified to a double integrator after dynamic inversion. The

system serves as a testbed for many other advanced control and planning algorithms.

The proposed system has been used in various competitions and projects [34, 13, 46].

In the next two chapters, trajectory generation and guidance algorithms for offline

and online scenarios would be discussed accordingly.

44

Chapter 3

Offline Trajectory Generation

Algorithm

Many applications, such as stage performance, camera trajectory planning, and SLAM

algorithm verification, require pre-planned paths with precise maneuvers. Despite the

rapid development of online trajectory generation methods, some tasks still require an

offline algorithm with human involvement. For example, only human designer is ca-

pable of planning ‘beautiful’ trajectories for UAVs to execute during an entertainment

event.

In this chapter, an offline trajectory planning algorithm is developed targeting these

purposes. Section 3.1 discusses the requirements of dynamic feasibility and its usage as

optimization constraints. Section 3.2 provides an overview of the algorithm by introduc-

ing the requirements and the mathematical tools. Problem formulation and numerical

solution to the problem are covered in Section 3.3. Finally, algorithm implementation

on RUAVs for calligraphy writing is presented in Section 3.4.

45

3.1 Dynamic Feasibility

As mentioned in Section 2.2.2, one important requirement imposed on reference tra-

jectory is the dynamic feasibility. Since the inner loop is assumed to be significantly

faster than the outer loop, a trajectory is said to be dynamically feasible enough if it

can guarantee the constraints and continuity of the combined thrust vector TΣ. From

Equation(2.3), it gives:

TΣ(q) = mq(p̈− g)− dair(vair) (3.1)

by assuming dair is continuous and vair = −v (no wind in the environment), it gives:

TΣ(q) = mq(p̈− g)− dair(−ṗ) (3.2)

To guarantee the continuity of TΣ, p is required to have at least C2 continuity which

equivalently makes the planning model as a triple integrator. For the constraints on TΣ,

conservative measures are taken:

1. Find the set of achievable combined thrust TΣ by examine the vehicle’s non-linear

model.

2. Plug the gravity g back and create Tg = {T + g | T ∈ TΣ}

3. Find a rectangular cuboid lies in the interior of Tg, where the cuboid can be

characterized by
Tminx ≤ Tgx ≤ Tmaxx

Tminy ≤ Tgy ≤ Tmaxy

Tminz ≤ Tgz ≤ Tmaxz

4. For each axis i, find amaxi, amini, vmaxi, vmini which satisfy:

Tmini ≤ m(ai − dair(−vi)) ≤ Tmaxi

for all ai ∈ [amini, amaxi], vi ∈ [vmini, vmaxi]

Through this procedure, the constraints on TΣ can be decoupled into each individual

axis and expressed as the derivatives of p. The effectiveness of our approach is proven

through various simulations and real flight experiments, which will be discussed in

46

the following sections. The advantage of the decoupled constraints lies in the planning

stage where the linear constraint is achievable. The trajectory generation would be more

difficult if the coupled constraints are involved.

47

3.2 Algorithm Overview

3.2.1 Requirement Analysis

Vehicles are usually required to travel in a smooth and stable manner. In other words,

abrupt changes of the combined thrust TΣ shall be prevented. Equation 3.1 shows the

derivatives of p shall be minimized to achieve the task.

Take derivation of Equation 2.3, the derivative of TΣ is shown to be related to the

trajectory’s jerk which is the third derivative of the p. Also, it has been proven in [11]

that the upper bound of a quad-rotor’s body angular rate is related to the magnitude

of the trajectory’s jerk. Therefore, for a smooth maneuver, a minimum jerk trajectory

is considered. Interestingly, human beings also adopt minimum jerk trajectory when

moving their limbs [51]. Combining the requirements on both dynamic feasibility and

smoothness, the trajectory needs to be:

1. At least C2 continuous.

2. Satisfying the decoupled constraints of ai ∈ [amini, amaxi], vi ∈ [vmini, vmaxi]

for each axis i.

3. Able to minimize the derivatives of the position p up to jerk.

4. Able to specify an initial and end state (commonly as hover state) for a safe

experiment.

Further, the algorithm should be as efficient as possible, since it is commonly used in

GCS and mission manager for path designing purpose. Due to the dynamics of the

targeting system (a triple integrator in this case), the dimension of the optimization

space becomes infinite if the planning variables are chosen as the inputs of the integra-

tor. Therefore, primitives are used to describe the trajectory and help to formulate the

optimization problem in finite dimension.

3.2.2 Clamped Normalized Uniform B-Spline (NUBS)

In this thesis, a clamped Normalized Uniform B-Spline (NUBS) is considered as the

primitive. By combining the optimal smoothing and interpolating method in [52, 53]

48

with a time vector optimization procedure, smooth 3D flight trajectory can be gener-

ated. The clamped spline is considered during the formulation so that the flying path

is clamped by (tangent to) the first and last legs formed by the control points to match

human intuition. An effort to add constraints on derivatives had also been made1. The

algorithm has been successfully integrated into the MGCS with multiple real flight ex-

periments.

B-spline is named after its choice of primitives, the Bezier curves which are com-

monly used for animators and motion planners. The classical definition of a B-spline is

the following recursive form:

Ni,0($) =

 1, if $i ≤ $ < $i+1,

0, otherwise.
(3.3)

Ni,ρ($) =
$ −$i

$i+ρ −$i
Ni,ρ−1($) +

$i+ρ+1 −$
$i+ρ+1 −$i+1

Ni+1,ρ−1($)

where Ni,p($) forms the base function of the generally defined B-splines and Vb =

[$0, $1, $2, ...] is the knot vector of B-splines.

NUBS is a special type of B-spline which gets its name after the normalized knot

vector. The normalized knot vector is equally segmented as [0, 1, 2, 3, . . . ,m] and the

base function of a NUBS can be written as [55]

Nj,i(s) =

1, if i = j = 0,

1− s
i

N0,i−1(s), if j = 0, i 6= 0,

s

i
Ni−1,i−1(s), if j = i > 0,

i− j + s

i
Nj−1,i−1(s) +

1 + j − s
i

Nj,i−1(s), if j = 1, ..., i− 1,

0, otherwise

(3.4)

where s is called the path parameter spanning through [0,m]. Thus, a trajectory in

1The author extended the work in [53] for the derivative-constrained trajectory based on a clamped-
spline, but later found the same method had already been covered in [54] with a more general proof.
Nevertheless, the addition of constraints on derivatives is covered for completeness.

49

3-dimensional space can then be expressed as

Sk(s) =

M∑
i=1

ciBk(s− i+ 1), ci ∈ R3, (3.5)

where

Bk(s) =

 Nk−j,k(s− j), j ≤ s < j + 1,

0, otherwise.
(3.6)

and j = 0, ..., k. Here, k represents the order of spline, M is a design parameter which

denotes the number of control points, and ci is the control point in 3-D space. The

decoupled constraints make it possible to solve the problem on each axis individually.

Further, the flight path is preferred to be clamped by the first and last legs of con-

trol points to match human intuition. With the requirement of C2 continuity, a cubic

clamped NUBS becomes our final choice. The proposed B-spline has a knot vector

as Vknot = [0, 0, 0, 0, 1, 2, 3, ...,m − 1,m,m,m,m]. An open cubic B-spline with M

control points will have a knot vector of M + 4 entries. If it becomes clamped, 6 more

control points are added for specifying the initial and end boundary conditions. Corre-

spondingly, Vknot now grows to M + 10 members with m = M + 3. For a dynamic

system, it is more important to study its property regarding the real time t instead of the

path parameter s. For the ease of further analysis and problem solving, a linear relation

between t and s is assigned as in [52]:

s

t
=
M + 3

Ttrue
= α (3.7)

where Ttrue is a tunning factor representing the total time of the trajectory. With

Equation(3.7), there is also:
ds

dt
= α (3.8)

Due to the difference in the time segmentation of Vknot among the first and last four

elements, the first and last three base functions would also be different from the others.

They can be calculated as two parts from Equation 3.3, the first part is the common base

that excludes the first three and last three elements of all the base functions. Denoted as

50

B3($), it is given by

B3($) =

1

6
$3, if $ ∈ [0, 1),

1

6
− 1

2
($ − 1)3 +

1

2
($ − 1)2 +

1

2
($ − 1), if $ ∈ [1, 2),

1

6
+

1

2
($ − 3)3 +

1

2
$ − 3)2 − 1

2
($ − 3), if $ ∈ [2, 3),

−1

6
($ − 4)3, if $ ∈ [3, 4),

0, otherwise

(3.9)

whereas the second part which consists of the first and last three bases. The first three

are:

N0,3($) =

 (1−$)3, if $ ∈ [0, 1),

0, otherwise.

N1,3($) =

$(1−$)2 +
$(4− 3$)(2−$)

8
, if $ ∈ [0, 1),

−($ − 2)3

4
, if $ ∈ [1, 2),

0, otherwise.

(3.10)

N2,3($) =

$2(−3$ + 4)

4
+
$2(3−$)

6
, if $ ∈ [0, 1),

$($ − 2)2

4
+

(3−$)(−2$2 + 6$ − 3)

6
, if $ ∈ [1, 2),

$2(−3$ + 4)

4
+
$2(3−$)

6
, if $ ∈ [2, 3),

0, otherwise.

while the last three are the reversed version of Equation 3.10:

NM+3,3($) = N2,3(−$ +M + 3),

NM+4,3($) = N1,3(−$ +M + 3), (3.11)

NM+5,3($) = N0,3(−$ +M + 3).

51

By using the base function in Equation 3.9, 3.11 and 3.10 , the clamped cubic NUBS is

given as

S3(s) =
0∑

i=−2

ciNi+2,3(s) +
M∑
i=1

ciB3(s− i+ 1) +
M+3∑
i=M+1

ciNi+2,3(s) (3.12)

Noted in 3.12, a total of M + 6 control points exist, where the first three and last three

are used to determine the boundary conditions. To simplify the expression, a new basis

symbol Γ is defined as:

Γi,3(s) =

 Ni,3(s), if i ∈ {0, 1, 2,M + 3,M + 4,M + 5},

B3(s− i+ 3), otherwise.
(3.13)

with which the clamped cubic NUBS can be written as

S3(s) =

M+5∑
i=0

τiΓi,3(s), τi = ci−2 (3.14)

where τ is a shifted representation of c.

3.3 Solving of Minimum Jerk Trajectory

3.3.1 Problem formulation

Now, the clamped spline is expressed in a single equation (Equation 3.14) which fits

the optimal smoothing and interpolating splines formulation in [53]. The formulation

gives a quadratic optimization problem for the minimum jerk trajectory. It also shares

a similar idea to the work appeared in [10] which uses polynomials. As mentioned

in Section 3.2, the independent optimization variable ci is solved on the x−, y− and

z− axis separately, the following discussion in this section assumes a single axis back

ground. The scalars c and τ represent the equivalents of c and τ on a single axis

respectively.

As in [53], if the data to be fitted is given in the following form

Ds = [d0, d1, ..., dId]T,

Dtime = [t0, t1, ..., tId]T, (3.15)

52

where Ds is a vector of one dimensional (1D) data points for which the trajectory shall

approach, Dtime is the vector of time indicating at what time each of the above data

points are reached, and Id is the length of both vectors, then the problem for achieving

the minimum jerk is equivalent to minimize the following cost function:

Js = wg

∫ ∞
−∞

j2
s (t)dt+

Id∑
i=1

(S3(αti)− di)2, (3.16)

with wg as a weighting factor, and

js(t) =

M+5∑
i=0

d3

dt3
τiΓi,3(s), τi ∈ R, (3.17)

which is the third derivative of Equation 3.14 on a single axis. However, for flight path

design, most of the time, theDtime won’t be given. And an unexperienced guess usually

gives trajectory of low quality. For example, the total execution time might be too long,

or the trajectory fails to reflect user’s design very well. In such a case, the value of

Dtime also becomes a programming variable and Algorithm 5 is used solve it.

Equation 3.16 consists of two parts, the first part stands for the cost on jerk

∫ ∞
−∞

j2
s (t)dt

and the second part represents the cost for deviating from the input data points Ds

Id∑
i=1

(S3(αti)− di)2

In [52], a quadratic cost function for minimizing second derivative is considered. Us-

ing its technique, the first part can be rewritten in the form of T Ts GsTs where Ts =

[τ0, τ1, ..., τM+5]T is called the control point vector and Gs being a square matrix with

each of its element gs at row i column j as

gs(i, j) = α5

∞∫
−∞

d3Γi,3(s)

ds3

d3Γj,3(s)

ds3
ds (3.18)

53

and the second part can be expressed as

Id∑
i=1

(S3(αti)− di)2 = (Hτ −Ds)
T(Hτ −Ds) (3.19)

and

H =

Γ0,3(αt1) Γ1,3(αt1) ... ΓM+5,3(αt1)

Γ0,3(αt2) Γ1,3(αt2) ... ΓM+5,3(αt2)

...
...

. . .
...

Γ0,3(αtI) Γ1,3(αtI) ... ΓM+5,3(αtI)

(3.20)

Note that the dimension of vector Ts and Ds are M + 6 and Id respectively. Substitute

Equations 3.19, 3.20 into 3.16, there is

Jsmin = min
Ts

{
wgT

T
s GsTs + (HTs −Ds)

T(HTs −Ds)
}

(3.21)

which is clearly a quadratic form regarding to Ts. Though not used in the software im-

plementation, a closed-form solution can be given if no other constraints are considered.

As mentioned before, the first and last three elements in Ds are used to determine the

boundary conditions. Thus part or all of their values can be calculated based on these

conditions and fixed separately. Correspondingly, Ts is separated into the pre-fixed part

TF
s and the programmable part TP

s by a transformation matrix Us as:

Us

 TF
s

TP
s

 = Ts (3.22)

Then, Equation (3.21) can be rewrite as

Jsmin = min
TP
s

 TF

s

TP
s

T

wgU
T
s GsUs

 TF
s

TP
s

+ (HUs

 TF
s

TP
s

−Ds)
T(HUs

 TF
s

TP
s

−Ds)

(3.23)

54

which can be further simplified to

Jsmin = min
TP
s

 TF

s

TP
s

T

(wgU
T
s GsUs + UT

s H
THUs)

 TF
s

TP
s

−2DT

s HUs

 TF
s

TP
s

+DT
s Ds

(3.24)

Assign matrices Rs = wgU
T
s GsUs + UT

s H
THUs, Ss = DT

s HUs and split them ac-

cording to the dimension of TF
s and TP

s , there is

Rs =

 RFF
s RFP

s

RPF
s RPP

s

 and Ss = [SF
s , S

P
s] (3.25)

Substitute Equation 3.25 into 3.24, it gives

Jsmin = min
TP
s

{
TF

s
T
RFF

s TF
s + TF

s
T
RFP

s TP
s + TP

s
T
RPF

s TF
s

+TP
s

T
RPP

s TP
s − 2SF

s T
F
s − 2SP

s T
P
s +DT

s Ds

}
(3.26)

To solve for optimal TP
s , simply taking the first derivative with respect to TP

s will yield

a closed-form solution as

TP
s
∗

= RPP
s
−1

(SP
s

T −RFP
s

T
TF

s) (3.27)

Since a clamped spline is used, the resulting flight path will always be tangent to the

first and last legs formed by the control points.

3.3.2 Quadratic Programming

Though the closed form solution can be found, real world experience tells us that it is

difficult to find the inverse of a large size matrix like RPP
s due to the numerical instabil-

ity. Nonetheless, since the problem in Equation 3.21 represents the form of a quadratic

optimization, and it is shown to be convex [52], it can be solved efficiently. Consider-

able efforts are devoted into the solving of these type of questions. Therefore, efficient

and numerically robust algorithms and packages can be adopted such as quadprog [56]

55

from Matlab or CPLEX [57] from IBM. To get a typical quadratic optimization formu-

lation, Equation 3.21 is rearranged into

Jsmin = min
Ts

{
TT

s (wgGs +HTH)Ts − 2DT
s Hτ +DT

s Ds

}
(3.28)

The cost function is naturally convex by its formulation [52]. By Equation 3.18, matrix

Gs is constructed in a way to satisfy

T Ts GsTs =

∫ ∞
−∞

j2
s (t)dt (3.29)

Because j2
s (t) is an non-negative value, therefore its integration

∫ ∞
−∞

j2
s (t)dt ≥ 0 (3.30)

always holds. With Equation 3.17, 3.29 and 3.30 there is:

T Ts GsTs =

∫ ∞
−∞

(

M+5∑
i=0

d3

dt3
τiΓi,3(s))2dt ≥ 0 (3.31)

Because Ts is just a collection of τi as Ts = [τ0, τ1, ..., τM+5]T, Equation 3.31 is equally

saying that for any real value column vector Ts, the expression

T Ts GsTs ≥ 0

holds true. Therefore,Gs is at least semi-positive definite (SPD). WhileHTH is always

SPD, for any positive value wg, the term wgGs + HTH is also SPD. Moreover, from

Equation 3.30, if ∫ ∞
−∞

j2
s (t)dt = 0

then js(t) = 0 constantly. Since js(t) stands for the jerk, the physical meaning it implies

is a trajectory without any maneuvering at all. Clearly, such trajectory is not in the area

of interest and it does not need any planning. With this in mind, Equation 3.30 now

becomes ∫ ∞
−∞

j2
s (t)dt > 0 (3.32)

56

And T Ts GsTs > 0.

The following discussion in this section focuses on limiting the derivatives of the

trajectory2.

The following 3 properties of B-spline [61] are utilized.

1. For a NUBS, its base function is always non-negative.

2. For a clamped NUBS Sρ(s) with Me control points of any order ρ, its derivative

is still a clamped NUBS with order ρ − 1 evaluated on a new set of knot vector,

which can be represented as

dSρ(s)

ds
=

Me−1∑
i=0

τρ−1
i Γi+1,ρ−1(s) (3.33)

where τρ−1 are the new control points for the reduced order B-spline and it can

be calculated as

τρ−1
i =

ρ

$i+ρ+1 −$i+1
(τρi+1 − τ

ρ
i) (3.34)

The new knot vector is gained by removing the first and last item from the original

one.

3. The initial value of a clamped B-spline equals its first control point.

Sρ(0) = τρ0 (3.35)

Therefore, for a clamped B-spline Sρ(0) with

τρ0 = τρ1 = τρ2 = · · · = τρMe−1 = τρC

according to Equation 3.34 there is

τρ−1
0 = τρ−1

1 = · · · = τρ−1
Me−2 = 0

with Equation 3.33 it gives
dSρ(s)

ds
= 0

2The discussion assumes a clamped spline. But the same method with a more general proof had already
been covered by Fujioka in [54].

57

which means the value of Sρ(s) is a constant. Further, with Equation 3.35, the following

conclusion holds

Sρ(s) =
Me−1∑
i=0

τρi Γi,ρ(s) = τρC

if τρ0 = τρ1 = τρ2 = · · · = τρMe−1 = τρC

(3.36)

From Equation.3.33, the nth derivative of Sρ(s) can be represented as

dnSρ(s)

dsn
=

Me−n∑
i=0

τρ−ni Γi+n,ρ−n(s)

Combining with Equation 3.8, the nth time derivative of Sρ(s) is then

dnSρ(s)

dtn
= αn

Me−n∑
i=0

τρ−ni Γi+n,ρ−n(s)

Since the base functions Γi+n,ρ−n(s) are always non-negative, it gives

dnSρ(s)

dtn
= αn

Me−n∑
i=0

τρ−ni Γi+n,ρ−n(s) ≥ αn
Me−n∑
i=0

τCΓi+n,ρ−n(s)

if τρ−ni ≥ τC, ∀i ∈ [0,Me − n]

With Equation 3.36, it is equivalent as

dnSρ(s)

dtn
= αn

Me−n∑
i=0

τρ−ni Γi+n,ρ−n(s) ≥ αnτC

if τρ−ni ≥ τC, ∀i ∈ [0,Me − n]

(3.37)

Therefore, if the nth time derivative of the clamped NUBS Sρ(s) is to be limited be-

tween S(n)
max and S(n)

min, the sufficient condition is

S
(n)
min ≤ α

nτρ−ni ≤ S(n)
max, ∀i ∈ [0,Me − n] (3.38)

With the result in Equation 3.38, the last job is to find τρ−ni for the nth derivative.

In case of a clamped cubic NUBS in Equation 3.14, taking the first time derivative

58

of the B-spline trajectory yields

dS3(s)

dt
=

M+4∑
i=0

ηiΓi+1,2(s) (3.39)

where

ηi = α
3

$i+4 −$i+1
(τi+1 − τi) with η, τ ∈ R3 (3.40)

For ease of analysis, scalar η is denoted as the equivalent of η on a single axis andEs =

[η0, η1 . . . ηM+4]T denotes a vector of η on that corresponding axis. By substituting $

with the knot vector of the clamped cubic NUBS Vknot, matrix that project Ts into Es

is formed as

Ks = α

−3 3 0 0 . . . 0 0 0 0

0 −3
2

3
2 0 0 . . . 0 0 0

0 0 −1 1 0 0 . . . 0 0

0 0 0 −1 1 0 0 . . . 0

...
. . .

...

0 0 . . . 0 0 −1 1 0 0

0 0 0 . . . 0 0 −3
2

3
2 0

0 0 0 0 . . . 0 0 −3 3

which gives

Es = KsTs (3.41)

By taking derivation on Equation (3.39), it arrives at

d2S3(s)

dt2
=

M+3∑
i=0

γiΓi+2,1(s) (3.42)

Here

γi = α
2

$′i+3 −$′i+1

(ηi+1 − ηi) (3.43)

59

where $′ is the knot vector by removing the first and last members from Vknot for

clamped cubic NUBS. In fact, it is the knot vector for a clamped quadratic NUBS and

can be written in the form of [0, 0, 0, 1, 2, 3, . . .]. Again, scalar γ is denoted as the

equivalent of γ on a single axis and Λs = [γ0, γ1 . . . γM+3]T denotes a vector of γ on

that corresponding axis. Substituting the new knot vector, the matrix

K ′s = α

−2 2 0 0 . . . 0 0 0 0

0 −1 1 0 0 . . . 0 0 0

0 0 −1 1 0 0 . . . 0 0

0 0 0 −1 1 0 0 . . . 0

...
. . .

...

0 0 . . . 0 0 −1 1 0 0

0 0 0 . . . 0 0 −1 1 0

0 0 0 0 . . . 0 0 −2 2

can be derived with

Λs = K ′sEs (3.44)

With Equation 3.44 and 3.41, a transformation between Ts and Λs is made possible:

Λs = K ′sKsTs (3.45)

≡ LTs

60

where matrix L is

L = α2

6 −9 3 0 . . . 0 0 0 0

0 3
2
−5
2 1 0 . . . 0 0 0

0 0 1 −2 1 0 . . . 0 0

0 0 0 1 −2 1 0 . . . 0

...
. . .

...

0 0 . . . 0 1 −2 1 0 0

0 0 0 . . . 0 3
2
−5
2 1 0

0 0 0 0 . . . 0 6 −9 3

.

Then, the velocity constraints can be projected into the space of control points vector

Ts as

Ṡ3min ≤ KsiTs ≤ Ṡ3max, ∀i = {0, 1, ...,M + 4}, (3.46)

whereKsi denotes the ith row ofKs. The acceleration constraints then can be projected

into the constraints of control points vector Ts as

S̈3min ≤ LiTs ≤ S̈3max, ∀i = {0, 1, ...,M + 3}, (3.47)

where Li denotes the ith row of L.

For the boundary conditions, one should fix part or all of the first and last three

elements of Ts. This is formed as linear equality constraint

AeqTs = beq (3.48)

For example, if the vehicle is to start and end at a hover state, the first three control

points shall be equal, and the last three control points shall also be equal.

Equations 3.28, 3.46, 3.47 and 3.48 form a typical convex quadratic programming

problem which can be solved numerically in an efficient manner [58]. In Figure 3.1, it

shows a single axis solution with derivative constraints.

61

Cycle (0.02s/cycle)
0 100 200 300 400 500 600 700 800 900

m

0

50

100

150

200

Position

Cycle (0.02s/cycle)
0 100 200 300 400 500 600 700 800 900 1000

m
/s

0

10

20

30
Velocity

Cycle (0.02s/cycle)
0 100 200 300 400 500 600 700 800 900 1000

m
/s

2

-5

0

5
Acceleration

Figure 3.1: B-spline trajectory: Limit acceleration 5 m/s2 and velocity 20 m/s

3.3.3 Time Vector Optimization

For many cases, the vector Dtime is not explicitly given. And it becomes necessary to

generate the time vector Dtime while iteratively minimizing the jerk trajectory. Similar

idea can be found in [10] with an implementation on polynomials. Let Υi = ti+1 − ti,

which stands for the time difference between two adjacent members of Dtime, a new

optimization problem is formulated as

min
D$

f$(D$), with D$ = [Υ0 . . .ΥId−1] s.t. Υi > 0. (3.49)

A gradient descent method can be utilized for solution. The gradient of function f$ is

calculated by small perturbation method

∇f$ =
f$(D$ + hg$)− f$(D$)

h
(3.50)

where h is a small number at the level of 10−6, g$ is a perturbation vector. With the nu-

merically obtained gradient, the gradient descent method is performed using backtrack

line search. Unlike the discussion in previous section, here the optimization includes

62

all three axis, though they are still done separately. Denote Ds = [Dsx, Dsy, Dsz] as a

3D version of Ds in Equation 3.15, and Ts = [Tsx, Tsy, Tsz] as a 3D version of Ts. The

algorithm for performing time vector optimization is given as

Algorithm 5 Optimization for time segmentation
1: Input: D$ini , Ds,Stepini

2: Output: D∗$, T∗s
3: D$ ← D$ini

4: (f$,Ts) = QOptimize(D$,Ds)
5: while Terminal condition not satisfied do
6: grad = Perturbe(D$,Ts)
7: StepLength = Stepini

8: for i from 1 to K do
9: Dnew

$ = D$ + StepLength · grad
10: (fnew

$,Tnew
s) = QOptimize(Dnew

$,Ds)
11: if fnew

$ ≤ f$ − StepLength · grad · grad′ then
12: f$ = fnew

$

13: D$ ← Dnew
$

14: Ts ← Tnew
s

15: BREAK
16: else
17: StepLength = StepLength · 0.9
18: D∗$ ← D$

19: T∗s ← Ts

20:

21: Function (f$,Ts) = QOptimize(D$,Ds)
22: (fx, Tsx) = QuadConvexOptimize(D$, Dsx, Constraintx)
23: (fy, Tsy) = QuadConvexOptimize(D$, Dsy, Constrainty)
24: (fz, Tsz) = QuadConvexOptimize(D$, Dsz, Constraintz)

25: f$ = fx + fy + fz +Ktime

Id−1∑
i=0

Υi

26: Ts = [Tsx , Tsy , Tsz]

Here, the function QuadConvexOptimize() solves for the single axis optimization

problem presented in Section 3.3.2. Its output are the minimum values of cost func-

tion (fx, fy, fz) and the corresponding control point vectors (Tsx , Tsy , Tsz). Whereas

function Perturbe() is an numerical implementation of Equation 3.50. Using the pro-

posed algorithm, the trajectory is further smoothed over the time vector, and the cost

from each axis is also combined. To start the search process, an initial guess of Ts

can be set by equally split the time. The algorithm is capable to provide the smooth

3D flight trajectory. An example of such trajectory flying through several 3D way-

points performing zig-zag climbing and spiral maneuver is given in Figure 3.2. In this

63

example, only the position of the waypoint is given. Due to the dynamics of the ro-

torcraft, the horizontal and vertical constraints differ from each other. The horizontal

constraints are vhmax = 12m/s, ahmax = 2m/s2 whereas the vertical constraints are

vvmax = 1.5m/s, avmax = 0.8m/s2. On the other hand, there are missions only re-

quire the vehicle to reach an endpoint but with no end state velocity and acceleration

constraints. It can be achieved by adjusting the equality constraints. An example is

given in Figure 3.3 where the maximum horizontal velocity is changed to 5m/s. In

Figure 3.4, it shows a 2D flight path where the end state is not constrained. The flight

path is clamped (tangent to) the first and last legs formed by the control points following

human intuition.

−100
−50

0
50

100
150

0

50

100

150

200

0

20

40

60

80

x(m)

y(m)

z(
m

)

(a) Flight path

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−100

0

100

200

cycle(0.02s/cycle)

m

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

0

20

cycle(0.02s/cycle)

m
/s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

cycle(0.02s/cycle)

m
/s

2

ax

ay

az

x
y
z

vx

vy

vz

(b) Trajectory

Figure 3.2: 3D Trajectory obtained through time vector optimization

64

3.3.4 Reconstructing of Trajectory

After solving the trajectory optimization problem and obtaining the corresponding Ts
∗

for each axis, the trajectory needs to be re-constructed through Equation 3.14. Like the

optimization, the reconstruction is done separately for each axis. But the base functions

are defined recursively, it would be inefficient to reconstruct all the base functions and

evaluate the trajectory. Here, the de Boor’s algorithm (see Algorithm 6) is adopted for

its ability to generate discretized trajectory of arbitrary frequency [60].

Algorithm 6 de Boor’s algorithm

1: Input: Path parameter so, knot vector Vknot, control point vector Ts, order ko

2: Output: Value of Sko(so)
3: k = The largest number satisfy Vknot(k) ≤ s0

4: X(:, 1) = Ts(k − ko + 1 : k, 1)
5: for n from 1 to ko do
6: for m from n to ko do
7: Nm = so − Vknot(k − ko +m)
8: if Nm == 0 then
9: weight = 0

10: else
11: cs = Vknot(k +m− n+ 1)− Vknot(k − ko +m)

12: weight =
Nm

cs

13: X(m,n) = (1− weight) ·X(m− 1, n− 1) + weight ·X(m,n− 1)

14: Sko(so) = X(ko, ko)

Note this algorithm translates the recursive definition of B-spline into cascaded

loops. For the case of 3D splines, the algorithm is executed separately on each axis.

Since Sko(so) is defined on the path parameter, to acquire the reference states regarding

to time, Equation 3.7 is considered. The trajectory is now redefined as Sko(αto) where

so = αto. Sometimes, the derivatives of the trajectory are also needed, the control

points defined in Equation 3.41 and 3.44 can be used together with the clamped NUBS

of reduced order to achieve the desired derivatives.

65

−120
−100

−80
−60

−40
−20

0
20

40
60

40
60

80
100

120

140
160

180
10

20

30

40

x(m)
y(m)

z(
m

)

(a) Flight path

0 500 1000 1500 2000 2500
−200

0

200

cycle(0.02s/cycle)

m

0 500 1000 1500 2000 2500
−5

0

5

10

cycle(0.02s/cycle)

m
/s

0 500 1000 1500 2000 2500
−2

0

2

cycle(0.02s/cycle)

m
/s

2

ax

ay

az

vx

vy

vz

x
y
z

(b) Trajectory

Figure 3.3: Flight mission with end position constraint only

66

−150 −100 −50 0 50 100
0

50

100

150

200

250

x(m)

y(
m

)

Control points
Waypoints
Flight path

(a) Flight path

0 1000 2000 3000 4000 5000 6000 7000
−200

0

200

400

cycle(0.02s/cycle)

m

0 1000 2000 3000 4000 5000 6000 7000
−1

0

1

cycle(0.02s/cycle)

m
/s

2

0 1000 2000 3000 4000 5000 6000 7000
−10

0

10

cycle(0.02s/cycle)

m
/s

x
y

vx

vy

ax

ay

(b) Trajectory

Figure 3.4: Flight mission with no end constraint
67

3.4 UAV Calligraphy

Due to the involvement of various optimization techniques in the proposed B-spline

method, it is mainly used for offline trajectory designing with powerful desktop com-

puters. One interesting application is to generate trajectories that guide quad-copters to

write calligraphy. The system consists of a touch screen HMI which allows the user to

draw or write and a quad-rotor carrying the Chinese calligraphy brush beneath it. To-

gether with a mission management system located on a separate desktop that connects

the HMI to the quad-rotors and a VICON positioning system for feedback control. The

quad-rotor will draw the content acquired from the HMI on a 150 cm×150 cm paper.

The quad-rotor adopted the cascaded control structure and utilize the RPT outer loop

control law in Section 2.3. The system design is adopted from the MGCS in Chapter

2. The system overview of the UAV calligraphy system is illustrated in Figure 3.5. The

human input is recorded discretely as a series of 2D points. However, they are not used

directly as the vehicle’s reference due to two reasons:

1. The human writing data sampled from the touch screen is noisy.

2. The dynamics of human’s writing does not match the one of quad-rotor. For

example, operator could write very fast on the touch screen thus creating problem

for quad-rotor to track his input directly.

In our implementation, the handwriting is first extracted and represented as a series of

waypoints. Then, the proposed B-spline trajectory generator produces the trajectory

that both fits the vehicle’s dynamics and matches the original handwriting. In order to

sample the human input, a split and merge algorithm [62] is used to extract the char-

acteristic points of handwriting. Here, characteristic points refer to the starting, ending

and turning points that forms the skeleton of each stroke. The algorithm is illustrated in

Figure 3.6 and consists of 5 steps:

1. Connect the first and last points A and B to form a straight line A−B.

2. Iterate the points between A and B, and find the point C which has the longest

distance dlongest to the line A−B.

68

Mission Management

Trajectory generation

Control

HMI

Measurement

Mission

Guidance

Control

User

Touch Screen
Computer

Ground Station
Computer

Quad-rotor

Vicon system

Figure 3.5: UAV calligraphy system

3. If the distance dlongest is smaller than a certain threshold, then points A and B

are stored as the characteristic points. Algorithm stops.

4. Else, all three points A, B and C are stored as the characteristic points. The

algorithm runs recursively for points between the line A−C and the line C −B.

5. If dlongest falls below the threshold for all line segments, then the algorithm stops.

The extracted 2D characteristic points are used as reference for the B-spline trajectory

generation algorithm. They can be considered as a 2D version of Ds in Equation 3.15

without time vector. For a smoother reference, Algorithm 5 is executed to generate the

final trajectory. In order to start the gradient descent procedure, an initial guess of time

vector is constructed by equally distributing time across D$. The resulting trajectories

that resemble the user’s handwriting are given in Figure 3.7. A comparison between

results obtained before and after time vector optimization is made in Figure 3.8.

Through time vector optimization, the cost will arrive at a new local minimum which is

smaller than the cost induced by the initial time vector. In other words, the trajectory is

69

Figure 3.6: Split-and-merge sequence on continuous line segments

further smoothen and resembles the original user input more accurately. For the case of

a vortex drawing (see Figure 3.7 and 3.8), the resulting acceleration reference (Figure

3.8) becomes much smoother after time vector optimization. In another case of writing a

Chinese character Guang, the interpolation accuracy of the generated trajectory (Figure

3.9) is improved. In the experiments of drawing reconstruction, the B-spline trajectory

generator takes about 3 to 10 seconds to interpolate the user’s input (a typical Chinese

character) on a desktop workstation. Then the quad-rotor writes the letter down by

tracking the reference. Since the dynamics of the vehicle has been well considered in

the planning stage, and the derivatives are limited to prevent pendulum effect of the

calligraphy brush, an accurate tracking performance is achieved (see Figure 3.11). The

proposed control law produces small error while countering the disturbances from the

brush touching the paper. Finally, a comparison between the user’s input, the generated

trajectory, and the final written character by quad-rotor is made in Figure 3.12. Here,

it writes the Chinese character Cheng. The above results have been published as in

author’s paper [13].

70

0.8 1 1.2 1.4 1.6 1.8 2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x/m

y/
m

User input
Reconstruct B−spline

(a) Without time re-segmentation

0.8 1 1.2 1.4 1.6 1.8 2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x/m

y/
m

User input
Reconstruct B−spline

(b) With time re-segmentation

Figure 3.7: User input and generated spline of vortex drawing

0 10 20 30 40 50
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t/s

m
/s

2

x

acc

y
acc

(a) Without time re-segmentation

0 5 10 15 20 25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t/s

m
/s

2

x

acc

y
acc

(b) With time re-segmentation

Figure 3.8: Generated spline’s acceleration of vortex drawing

1.8 2 2.2 2.4 2.6 2.8 3

1.4

1.6

1.8

2

2.2

2.4

2.6

x/m

y/
m

User input
Reconstruct B−spline

(a) Without time re-segmentation

1.8 2 2.2 2.4 2.6 2.8 3

1.4

1.6

1.8

2

2.2

2.4

2.6

x/m

y/
m

User input
Reconstruct B−spline

(b) With time re-segmentation

Figure 3.9: User input and generated spline of Chinese character Guang

71

0 10 20 30 40 50
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t/s

m
/s

2

x

acc

y
acc

(a) Without time re-segmentation

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t/s

m
/s

2

x

acc

y
acc

(b) With time re-segmentation

Figure 3.10: Generated spline’s acceleration of Chinese character Guang

0 20 40 60 80 100 120
−1

−0.5

0

1

1.5

2

Time (s)

 m

 Response
Reference

(a) x axis

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

Time (s)

 m

Response
Reference

(b) y axis

Figure 3.11: Tracking performance with real vehicle writing on paper

72

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

(a) User handwritten input

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6

0.8

1

1.2

1.4

1.6

1.8

2

x (m)

−
y

(m
)

Reference
Response

(b) Generated reference and its re-
sponse

(c) Writing result

Figure 3.12: Comparison between user input, reference and outcome

73

3.5 Conclusion

In this chapter, a minimum derivatives B-spline trajectory planning method is presented,

which produces trajectories with delicate maneuvers upon solving. This method typi-

(a) Multi drone light show

(b) UAV calligraphy

Figure 3.13: Demonstrations and stage performances

cally takes several seconds to finish with the time vector optimization. The resulting

trajectory can be examined by designers or automated algorithms to determine its fit-

ness. It becomes part of a reference generation toolbox for preparing demonstrations

and stage performances (see Figure 3.13).

Many current popular trajectory generation methods for RUAV [10, 19] require iter-

ative programming to produce derivative limited trajectory. The adopted algorithm only

needs one quadratic programming for that. And a time vector optimization process is

used to further smoothen the reference. It is also more suitable for RUAV compared to

the interpolation based method widely adopted by CNC machining [63]. For methods

74

like [63], the computational complexity would increase due to the prolonged prediction

horizon resulted from the low acceleration and jerk limits of RUAVs. Further, compared

to more traditional path following based methods, the algorithm is capable of generating

complex paths that the vehicle could track with high accuracy.

In the next chapter, online trajectory generation algorithms are presented, which

considers to use low-cost platforms to perform complex tasks.

75

76

Chapter 4

Online Trajectory Generation

Algorithm

In this chapter, online trajectory generation algorithms are covered with the special con-

sideration for low-cost platforms. They are capable of generating dynamically feasible

reference in the order of microseconds by utilizing the principals of sliding mode con-

trol (SMC). Section 4.1 introduces an online velocity reference generation algorithm

for semi-autonomous flight with its application on safe fly zone mission. The online

position reference generation method is depicted in Section 4.2 for fully-autonomous

tasks. Both sections cover discussion on command filters and the TPBVP solvers that

could ‘predict’ the future vehicle states without forward simulation.

Though many more advanced online trajectory generation algorithms exist, the cov-

ered method is more suitable for RUAVs with the limited computational power to ex-

ecute missions that need accuracy in reference tracking. For example, many indus-

trial inspection tasks require the vehicle to travel in the vicinity of obstacles and inside

user-defined safe-fly-zone, while application like camera trajectory planning requires

accurate velocity tracking.

77

4.1 Online Velocity Trajectory

4.1.1 State Constrained Sliding Mode Control

The algorithm presented in the Chapter 3 provides smooth trajectory with limited deriva-

tives. However, the involvement of numerical optimization limits its realtime applica-

tion on low-cost platforms. A typical example of such a vehicle is the K-lion quad-rotor

(see Figure 4.1). The vehicle carries less than 500 g of payload and is equipped with a

Figure 4.1: K-Lion micro quad-rotor

PixHawk flight controller [64] which has a 168 MHz Cortex M4F Central Processing

Unit (CPU). The storage system has a Random-access Memory (RAM) of 256 kB and

Read-only Memory (ROM) of 2 MB. All the operating system, sensor filtering, com-

munication, mission management and trajectory generation rely on the same onboard

computer. As a comparison, a typical laptop now equips with a 2.4 GHz quad-core

CPU, 8 GB RAM, and 1 TB of hard disk. It is very difficult to implement a numerical

optimization based trajectory generator with such a setup due to its limited ROM space.

On the other hand, the dynamics of the rotorcraft do not become simpler with the de-

creasing in size and weight. By reviewing the dynamic feasibility in Section 3.1, the

minimum requirements for the online trajectory generation algorithm are reduced to:

1. Maintain continuity on the acceleration reference.

2. Allow both the acceleration and velocity of the trajectory to be limited.

In order to implement an online and realtime trajectory generator on a micro-size ro-

torcraft such as the one in Figure 4.1, the above requirements are further simplified

78

Main control stick

Figure 4.2: A Futaba RC controller

into

|vx| ≤ vmaxx |vy| ≤ vmaxy |vz| ≤ vmaxz

|ax| ≤ amaxx |ay| ≤ amaxy |az| ≤ amaxz∣∣ujx

∣∣ ≤ ujmaxx

∣∣∣ujy

∣∣∣ ≤ ujmaxy

∣∣ujz

∣∣ ≤ ujmaxz

(4.1)

where ujx, ujy, ujz are the jerk (derivative of acceleration) on corresponding axis. Since

the jerks are now limited, the continuity of acceleration is guaranteed. With the sim-

plified requirements, a sliding mode control (SMC) based trajectory generator is devel-

oped. The proposed algorithm is capable of achieving velocity command tracking while

using the minimum amount of computational power.

This section focuses on generating the trajectory that tracks the user’s velocity com-

mand. This is commonly referred to a semi-auto flight mode among the Radio Control

(RC) hobby community. A commonly used RC flight controller is shown in Figure

4.2. The joysticks pointed by red arrows are the main control sticks that are responsible

for sending commands to the vehicle at high frequency (typically more than 40 Hz).

Commonly, the commands sent by the controller are given as the reference to the inner

loop’s controlled outputs. For the operator to fly the rotorcraft in such a mode, a con-

stant visual feedback on the vehicle’s attitude is needed. Otherwise, tasks like hovering

or path following become impossible. On the contrary, if the control sticks commands

are mapped to velocity reference, a more user-friendly flight experience is achieved.

For straight line flying, a simple pull or push to the control stick is enough. Whereas

for hovering, just leaving the control stick at zero position will do the trick. In such a

79

mode, the operator could focus more on controlling the onboard pieces of equipment

to process actual tasks. With the control structure in Section 2.3 and the feasibility re-

quirements in Section 4.1.1, it is obvious that the trajectory generator is subjected to

both input and state constraints. Considering the computational limitations, an SMC

based trajectory generation technique is adopted. Consider a SISO double integrator

system described by

v̇ = a

ȧ = uj

(4.2)

where v stands for velocity, a stands for acceleration and uj is the jerk. The trajectory

generation law needs to provide reference trajectory that steers the v to some

vref ∈ [−vmax, vmax]

while satisfying

−amax ≤ a ≤ amax

−ujmax ≤ uj ≤ ujmax

To fulfill this objective, a discontinuous control law from [65] is defined as

uj(t) =

−ujmax if (v, a) ∈ S1 ∪ (S4 ∩ S5) ∪ S7

ujmax if (v, a) ∈ S2 ∪ (S3 ∩ S6) ∪ S8

(4.3)

80

Figure 4.3: Plot of regions 1 to 8

where

S1 , {(v, a) : a ≥ amax}

S2 , {(v, a) : a ≤ −amax}

S3 , {(v, a) : a ≤ amax}

S4 , {(v, a) : a ≥ −amax}

S5 , {(v, a) : v +
a |a|

2ujmax

> vref}

S6 , {(v, a) : v +
a |a|

2ujmax

< vref}

S7 , {(v, a) : v +
a |a|

2ujmax

= vref and a > 0}

S8 , {(v, a) : v +
a |a|

2ujmax

= vref and a < 0}

The regions S1 to S8 can also be represented graphically, as illustrated in Figure 4.3.

From Figure 4.3, it is clear that S7 and S8 forms a sliding mode. The purpose of the

control law is then to steer the system onto the sliding mode. The proof on stability

and convergence is given in [65]. Though the control law seems complex, the physical

meaning it implies is rather straight forward, which can be summarized as

1. If the acceleration a violate its constraints. Manipulate uj to bring it inside. This

stands for the region S1 and S2.

81

2. From the current state, simulate steering the acceleration down to zero, and check

the resulting end velocity which is denoted as vend. And it can be expressed as

vend = v +
a |a|

2ujmax

If vend > vref , it means even the acceleration is steered to zero immediately, the

resulting end velocity is too large. In order to decrease the end velocity, control

action uj = −ujmax should be taken providing the acceleration does not violate

its constraints (not to violate condition 1). This result stands for the region S4∩S5.

If vend < vref , it means the resulting end velocity is too small. Therefore, control

action uj = ujmax should be taken to increase the end velocity providing the

acceleration does not violate its constraints. This result stands for the region

S3 ∩ S6.

Finally, if vend = vref , it implies the correct control action is just to steer the

acceleration to zero. Hence the value of uj depends on the current acceleration

which stands for region S7 and S8.

Once the physical meaning is fully understood, an efficient implementation of the con-

trol law is proposed. To minimize the consumption of CPU resources, instead of scan-

ning through S1 to S8 and searching the correct region that system belongs to, the

algorithm adopts a nested checking procedure.

Algorithm 7 State constrained SMC for double integrator
1: Input: vref , amax, ujmax, v, a
2: Output: u∗j

3: vend = v +
a |a|

2ujmax
4: acruise = sign(vref − vend) · amax

5: u∗j = ujmax · sign(acruise − a)

Line 3 calculates the end velocity and differentiate whether the current state is in S5

or S6. Line 4 determines the desired acceleration target acruise. Since acruise is limited,

it effectively checks the region of S1 to S4. Note if vref = vend then acruise = 0, the

regions S7 and S8 are inspected by the last line of the code.

The simulation results of the proposed implementation are shown in Figure 4.4

82

and Figure 4.5 with amax = 2 and ujmax = 2. In Figure 4.4, a system with initial

acceleration violating the state constraint has been successfully stabilized by bring it to

v = 0, a = 0. In Figure 4.5, a system starts at v = 0, a = 0 is steered to v = 5, a = 0.

All the state and input constraints are fulfilled with our implementation.

v
0 1 2 3 4 5

a

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

State plot

t
0 1 2 3 4 5 6

m
/s

-2

0

2

4

6
Velocity

t
0 1 2 3 4 5 6

m
/s

2
-4

-2

0

2

4
Acceleration

Figure 4.4: Velocity trajectory: initial acceleration violate limits

v
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

a

-1

-0.5

0

0.5

1

1.5

2

2.5

State plot

t
0 0.5 1 1.5 2 2.5 3 3.5 4

m
/s

0

2

4

6
Velocity

t
0 0.5 1 1.5 2 2.5 3 3.5 4

m
/s

2

-1

0

1

2

3
Acceleration

Figure 4.5: Velocity trajectory: steering to velocity target other than zero

4.1.2 Velocity Command Filter

Due to the requirement on system robustness, Algorithm 7 is modified into a command

generator (command filter) rather than an outer loop controller.

The relationship between the command generator and the controller is shown in

Figure 4.7. The command generator takes in the raw user command and generates

dynamically feasible trajectories that can be tracked by the controller. A reference gov-

ernor is responsible for checking the feasibility of the trajectory, resetting or modifying

the user input when necessary. For example, if the human operator leads the vehicle to

83

time(s)
0 5 10 15 20 25 30 35 40

v(
m

/s
)

-10

-5

0

5

10
Velocity response

UserInput
Response

time(s)
0 5 10 15 20 25 30 35 40

a(
m

/s
2
)

-10

-5

0

5

10
Acceleration response

(a) Without command generator

time(s)
0 5 10 15 20 25 30 35 40

v(
m

/s
)

-10

-5

0

5

10
Velocity response

UserInput
Response

time(s)
0 5 10 15 20 25 30 35 40

a(
m

/s
2
)

-10

-5

0

5

10
Acceleration response

(b) With command generator

Figure 4.6: Tracking of velocity reference

Command
Generator ControllerUser input

Reference
Governor

Vehicle

Command
Reference Input

Measurements

Input

Figure 4.7: Command generating system

fly out of the safety mission zone, his command will be overwritten to avoid a safety

hazard. The reference governor is discussed in detail in Section 4.1.5 and 4.2.4. The

command generator is given in Algorithm 8. It is quite similar to Algorithm 7 except

the usage of internal states (pI, vI and aI) that turns the system into a filter. Function

ForwardSimulate() generates filtered reference for position, velocity and acceleration

(prft, vrft, arft respectively) using an internal triple integrator model at a predefined

sampling time tsamp. The advantages of utilizing the command generator are:

1. It results in a smoother flight experience by generating a continuous and lim-

ited acceleration profile. Figure 4.6 illustrates the simulation results of velocity

reference tracking based on a quad-rotor outer loop model. In Figure 4.6(a) the

user input is passed directly to the vehicle’s velocity controller whereas in Figure

4.6(b) it is filtered by the command generator. Though the tracking performance

is acceptable for both cases, the acceleration response without command filter

suggests a sudden change on TΣ when the user switches the velocity command.

84

Algorithm 8 State constrained velocity command generator
1: Input: vref , amax, ujmax, v, a, p, tsamp

2: Output: prft vrft arft

3: if !Initialized then
4: vI = v
5: pI = p
6: aI = a
7: Initialized = TRUE;

8: vend = vI +
aI |aI|
2ujmax

9: acruise = sign(vref − vend) · amax

10: u∗j = ujmax sign(acruise − aI)
11: (pI, vI, aI) = ForwardSimulate(pI, vI, aI, u

∗
j , tsamp)

12: prft ← pI

13: vrft ← vI

14: arft ← aI

On the other hand, the one with command filter provides reference profile with

limited acceleration and jerk, implying a smooth transform on TΣ.

2. It generates not only velocity but also position and acceleration reference, which

helps to improve the performance of RPT control. Moreover, it means the same

controller discussed in Section 2.3 can be used for velocity command tracking

without any modification. It helps to reduce the design complexity of controller

switching.

3. It can provide future information on the vehicle’s state without forward simula-

tion. The technique is explained with details in Section 4.1.3. With this informa-

tion, various qualities of the trajectory could be examined efficiently.

Frame Translation

In real flight practice of RUAV under semi-auto mode, the operator would generate

commands for the vehicle’s velocity (in 3D space) and the heading angular rate. In

tradition, these commands are assigned in a manner which is related to the vehicle’s

heading angle. For example, when the operator commands the vehicle to fly forward,

the intention behind is flying in the same direction of vehicle’s current heading. How-

ever, since the vehicle’s position and velocity measurements are provided in the global

coordinate, a frame translation is necessary to achieve the desired result. In our im-

plementation, three coordinate systems are included. The global inertia frame G, the

85

Figure 4.8: Coordinates utilized by the system

vehicle body frame B and an intermediate frame L. Euler angles are used to define the

roll, pitch and yaw (φ, θ, ψ respectively). The rotation matrix from B to G is given by

GRB =G RL
LRB. The yaw rotation that affects the user’s control is included in GRL.

During the semi-auto flight mode, the command generator should calculate reference in

Lwhereas the translational controller does feedback control in G. Therefore, the filtered

references are first transformed through GRL before being passed to the translational

controller. Experiment with a quad-rotor (see Figure 4.9) is performed. The platform

comes with a tip-to-tip size of 1.7 m, a maximum lift-off weight of 12 kg. It could be

piloted using RC transmitter under manual/semi-auto mode or perform fully automated

mission through a handheld GCS. It possesses higher requirements on the guidance and

control system compared to other similar platforms due to the larger size and heavier

weight. Further, in the onboard implementation, techniques in Section 4.1.3 and 4.1.5

are combined into the velocity command filter so that a safe-fly-zone is guaranteed.

Flight experiment data is shown in Figure 4.10. Here, the heading angle is locked

at around 45 degrees. The RC signal in Figure 4.10 corresponds to the forward speed

command. The velocity reference shown in Figure 4.10 has already been transformed

into the global coordinate. The human RC signal is well captured by the generated

reference which is dynamically feasible and helps to improve the tracking performance.

The maximum velocity tracking error is smaller than 0.5 m/s where the highest speed

reaches 10 m/s. With the proposed algorithm, long-range-semi-auto flight becomes

86

Figure 4.9: BlackLion-168 quad-rotor

possible. The data in Figure 4.11 illustrates a 5 km flight experiment where the vehicle

cannot be visually observed.

4.1.3 Double Integrator TPBVP

For many situations, it is desirable to predict the future states of the vehicle at a given

time instance. This is traditionally achieved by forward simulation which is time-

consuming especially when the simulated time scale is long. For low-cost RUAVs,

the onboard computational power is too weak for such approach.

The solution is a TPBVP solver which generates the entire trajectory that steers a

double integrator from any initial state to the desired velocity vref with zero acceleration.

Then a feedback controller is applied to track the trajectory. And the future state is now

expressed as a tunnel around the reference with an estimated tracking error. When the

trajectory is dynamically feasible, the tracking error would be small.

87

time (s)
1050 1060 1070 1080 1090 1100 1110

v x (
m

/s
)

0

2

4

6 Reference
Response

time (s)
1050 1060 1070 1080 1090 1100 1110

v y (
m

/s
)

0

2

4

6 Reference
Response

time (s)
1050 1060 1070 1080 1090 1100 1110

R
C

 v
al

ue

0

0.5

1

Figure 4.10: Experiment data for velocity tracking

The optimization target and the constraints are described as

min
uj(t),t∈[0,T]

{
J =

∫ T
t=0 dt

}
s.t.

v(0) = v0, v(T) = vref

a(0) = a0, a(T) = 0

v̇(t) = a(t)

ȧ(t) = uj(t)

−amax 6 a(t) 6 amax, ∀t ∈ [0, T]

−ujmax 6 uj(t) 6 ujmax, ∀t ∈ [0, T]

(4.4)

For such a problem, the input of the double integrator system uj can only be chosen

between −ujmax, ujmax and 0. This strategy is often called bang-zero-bang control.

With such a choice, the acceleration profile would form a trapezoidal or wedge shape

88

t(s)
0 200 400 600 800 1000 1200 1400 1600 1800

m

0

500

1000

1500

2000

2500

3000

3500

4000

x
ref

x

y
ref

y

Figure 4.11: Experiment data for long distance flight

that consists of at most three phases as shown in Figure 4.12. The method is based

on [59] with an additional zero acceleration cruise direction considered. An efficient

implementation is given in Algorithm 9. Extension as guidance algorithms is covered

in the following sections. Denote function

Rv(t, v0, a0, uj) = v0 + a0 · t+
1

2
uj · t2

These three phases could be expressed as

• The acceleration increasing (AI) phase:

v(t) = Rv(t− 0, v0, a0, ujacc) for 0 ≤ t < t1

• The acceleration constant (AC) phase:

v(t) = Rv(t− t1, v1, da · amax, 0) for t1 ≤ t < t2,

• And the acceleration decreasing (AD) phase:

v(t) = Rv(t− t2, v2, a2, ujdec) for t2 ≤ t < t3

89

uj(t)

a(t)

t1

t2

t3

uj max

acceleration
increasing

phase

acceleration
constant
phase

acceleration
decreasing

phase

amax

∆t1 ∆t2 ∆t3

Figure 4.12: Trapezoidal acceleration profile
A trapezoidal acceleration profile, the corresponding jerk is discontinuous but

bounded.

where

da = sign(vref − v0 −
a0 |a0|
2ujmax

)

is the acceleration cruising direction.

In our implementation, the value of da can be either−1, 0, 1. This helps to resolve some

numerical issues introduced by the floating number. When da = 0, the trapezoidal pro-

file contains only the first phase. The detail can be found in Algorithm 9. Since uj can

only be −ujmax, ujmax or 0, its value is determined if its sign can be solved for each

phase. The desired acceleration during AC phase can only be amax, 0 or −amax. Then

the method in Algorithm 7 can be used to determine its value as da · amax. Correspond-

ingly, the value of uj during the AI and AD phases can be determined as

ujacc = ujmax · sign(da · amax − a0)

ujdec = ujmax · sign(0− da · amax)

With all the value of uj properly set. The task is then to find the duration of each phase.

Assume the time spent in the three phases are ∆t1, ∆t2 and ∆t3 correspondingly (see

90

Figure 4.12), it is now possible to express the velocity change of each phases as

∆vacc = a0∆t1 +
1

2
ujacc∆t

2
1

∆vdec = da · amax∆t3 +
1

2
ujdec∆t

2
3

∆vconstant = vref − v0 −∆vacc −∆vdec

(4.5)

Then, the value of ∆vacc and ∆vdec is first computed under the assumption that the

system reaches the desired d · amax and immediately steered to zero acceleration. This

process gives

∆t1 =
|da · amax − a0|

ujmax

∆t3 =
|−da · amax|

ujmax

(4.6)

Substitute Equation 4.6 into 4.5, it is then possible to calculate the value of ∆vacc,

∆vdec and ∆vconstant. If ∆vconstant > 0 and da 6= 0, the value of ∆t2 is simply

∆t2 =
∆vconstant

da · amax

When da = 0, there is ∆t2 = 0. And the time durations of all phases are found.

However, if the solved ∆t2 < 0, it implies there will be no AC phase and the desired

acceleration da · amax cannot be achieved. For this case, the acceleration profile in

Figure 4.12 will become a wedge shape (see Figure 4.13) with ∆t2 = 0. The task now

becomes to solve ∆t1, ∆t3 together with a new variable areach which represents the

reachable acceleration after AI phase. The solution to the following equations

∆t1 =
|areach − a0|

ujmax

∆t3 =
|areach|
ujmax

∆vacc = a0∆t1 +
1

2
ujacc∆t

2
1

∆vdec = areach∆t3 +
1

2
ujdec∆t

2
3

∆vacc + ∆vdec + v0 = vref

(4.7)

91

uj(t)

a(t)

t1

t2 = t1

t3

uj max

acceleration
increasing

phase

acceleration
decreasing

phase

amax

∆t1
∆t2 = 0

∆t3

areach

Figure 4.13: Wedge acceleration profile
A wedge acceleration profile, the corresponding jerk is discontinuous but bounded.

gives

areach = da ·
√
da · ujmax · (vref − v0) +

1

2
a2

0

and hence the ∆t1 and ∆t3. The pseudo code for solving double integrator TPBVP

is given in Algorithm 9. With the solved uj(t), ∆t1, ∆t2, ∆t3 and all the initial

conditions, the whole trajectory can be reconstructed using piecewise polynomials.

To demonstrate the method’s capability, a comparison between the state trajectory

obtained through solving the TPBVP and forward simulation is shown in Figure 4.14

and 4.15. In Figure 4.14, the trajectories start from v0 = 1, a0 = 1 with amax = 2 and

ujmax = 2. In Figure 4.15, the trajectories start from v0 = −1, a0 = 4 with the same

state and input constraints which has been violated by the initial condition. In both

figures, the state trajectories from the forward simulation and the closed-form solution

resemble each other (provide the frequency of the forward simulation is high enough).

The time consumption of acquiring a future state through TPBVP solving is always

constant since the TPBVP gives the entire state transfer policy. On the other hand, the

forward simulation takes more time when the predicted state is further into the future.

For applications that require the prediction of states in the far future, like safety zone

flight and obstacle avoidance, the realtime performance would be difficult to achieve

92

Algorithm 9 Velocity target TPBVP solver
1: Input: v0, a0 ,amax ,ujmax, vref

2: Output: t1,t2,t3,j1,j3

3: vend = v0 +
a0 |a0|
2ujmax

4: da = sign(vref − vend)

5: acruise = da · amax

6: ∆t1 ← abs(acruise − a0)/ujmax

7: ujacc ← ujmax · sign(acruise − a0)

8: v1 ← v0 + a0 ·∆t1 + 0.5 · ujacc ·∆t
2
1

9: ∆t3 ← abs(−acruise)/ujmax

10: ujdec ← ujmax · sign(−acruise)

11: v̄3 ← acruise ·∆t3 + 0.5 · ujdec ·∆t
2
3

12: v̄2 ← vref − v1 − v̄3

13: if da = 0 then

14: ∆t2 ← 0

15: else

16: ∆t2 ← v̄2/acruise

17: if ∆t2 < 0 then

18: acruise ← da ·
√
da · ujmax · (vref − v0) + 0.5 · a2

0

19: ∆t1 ← abs(acruise − v0)/ujmax

20: ∆t2 ← 0

21: ∆t3 ← abs(−acruise)/ujmax

22: t1 ← ∆t1

23: t2 ← ∆t1 + ∆t2

24: t3 ← ∆t1 + ∆t2 + ∆t3

93

v
0.5 1 1.5 2 2.5

a

0

0.5

1

1.5

State plot

(a) Forward simulation

v
0.5 1 1.5 2 2.5

a

0.2

0.4

0.6

0.8

1

1.2

1.4

State plot

(b) Closed form solution

Figure 4.14: Comparison between forward simulation and TPBVP: no constraints vio-
lation

v
-2 -1 0 1 2 3 4

a

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

State plot

(a) Forward simulation

v
-2 -1 0 1 2 3 4

a

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
State plot

(b) Closed form solution

Figure 4.15: Comparison between forward simulation and TPBVP: initial state violate
constraints

if the forward simulation approach is adopted. A comparison between solving TPBVP

and forward simulation is given in Table 4.1. Both the velocity and position trajectory

are compared. It shows clearly the forward simulation takes more time as the predicted

state grows further into the future.

4.1.4 Time Synchronization

For multi-dimensional cases, the simplest way is to calculate the trajectories using Al-

gorithm 9 for each dimension separately. However, it is sometimes desired for the

velocity of each dimension to reach the target value at the same time. This is referred as

the time synchronization problem. As in [59], the idea is to prolong each dimension’s

reaching time to a common value. According to [66], the reaching time for a dimension

94

Table 4.1: Time consumption of predicting a future state

TPBVP (Velocity) FS (Velocity) TPBVP (Position) FS (Position)

State after 5 s <1 µs 120 µs <3 µs 400 µs
State after 15 s <1 µs 350 µs <3 µs 1200 µs
State after 30 s <1 µs 690 µs <3 µs 2430 µs

FS: Forward Simulation

with zero final acceleration can be extended to any value as long as it is larger than the

minimum reaching time. Therefore, the steps of synchronizing all dimensions can be

written as

1. Calculate the trajectory using Algorithm 9 for each dimension separately.

2. Find the dimension with longest reaching time tfl.

3. Extend other dimension’s reaching time to tfl.

Now, an algorithm is needed to extend a given trajectory’s reaching time. When the

reaching time is prolonged, all acceleration profile will become trapezoidal shaped and

the acceleration at its AC phase aco needs to be found. By solving the following equa-

tions using results in [67]

∆t1 =
|aco − a0|
ujmax

∆t3 =
|aco|
ujmax

∆vacc = a0∆t1 +
1

2
ujacc∆t

2
1

∆vdec = aco∆t3 +
1

2
ujdec∆t

2
3

∆vconstant = vref − v0 −∆vacc −∆vdec

∆t2 =
∆vconstant

da aco

∆t1 + ∆t2 + ∆t3 = tfl

(4.8)

95

the value of aco is found to be

aco =

1

2
da(b−

√
b2 − 4da · ujmax∆v − 2a2

0) if tfl < tlim

d3
a∆v − d2

aa
2
0/2ujmax

da · tfl − a0/ujmax

if tfl ≥ tlim

(4.9)

where

∆v = vref − v0

b = amax · tfl + da · v0

tlimP =
∆v

a0
+
da · a0

2ujmax

tlim =

tlimP if tlimP ≥ 0

∞ if tlimP < 0

with the value of aco it is now possible to find the values of ∆t1, ∆t2 and ∆t3 through

Equation 4.8. As for j1 and j3, they can be written as

j1 = ujmax · sign(aco − a0)

j3 = ujmax · sign(−aco)

And a trajectory can be easily reconstructed through the piecewise polynomials with

the value of ∆t1, ∆t2, ∆t3, j1, j3 and all the initial conditions. An example of a system

with three dimensions reaching their target velocity at the same time is shown in Figure

4.16. In this figure, each dimension starts with different initial conditions, has different

constraints and their target velocities are 10 m/s, 20 m/s and 30 m/s respectively.

4.1.5 Safe Fly Zone

Consider a mission which should be performed in a safety zone, where the zone is

surrounded by tall buildings or trees. A fail-safe mechanism is required to prevent the

user issuing commands which may potentially take the vehicle outside the zone and

crash into the buildings. To achieve this, a simple MPC structure is adopted. The idea

can be described as

96

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

t(s)

m
/s

Velocity

0 1 2 3 4 5 6 7
0

1

2

3

4

5

t(s)

m
/s

2

Acceleration

Figure 4.16: Time synchronized velocity trajectory

1. Predict the state reached by following the operator’s velocity command for a short

Th seconds.

2. From the state in Step 1, immediately drop the velocity to zero and calculate the

stop position.

3. Extract the trace of the vehicle through Step 1 and 2.

4. If the trace is outside the safety zone, the operator’s command is nullified and

replaced with a zero velocity command.

Here, the Th is a tuning variable that helps to control the cautiousness of the vehicle. The

trajectory of the vehicle during Step 1 and 2 can be obtained by Algorithm 9 whereas the

trace is acquired through sampling the position trajectory into a series of line segments.

To check whether the trace is outside the safety zone, each line segment is searched

for intersection with the safety zone polygon. Here, it is not necessary to find the

exact location of the intersection, only its existence matters. Since the polygon is also

constructed with a series of line segments, the task is now to check the existence of

intersection between two line segments. Efficient method in Algorithm 10 is adopted.

97

Algorithm 10 Intersection test for two line segments

1: Input: line segment (A,B) and (C,D) where A,B,C,D are 2D points
2: Output: isIntersect
3: isIntersect = ccw(A,C,D)! = ccw(B,C,D) and ccw(A,B,C)! =

ccw(A,B,D)
4:

5: Function isCCW = ccw(P1, P2, P3)
6: isCCW = (P3.y − P1.y)(P2.x− P1.x) > (P2.y − P1.y)(P3.x− P1.x)

Further, the algorithm is also used to help determine whether the end point is inside

the safety zone through the ray casting method. Finally, divide and conquer methods

can be used to reduce the time complexity of searching if the safety zone polygon is

complex.

Simulation experiment of the vehicle stopped by the safe zone boundary is given.

In Figure 4.17, the deceleration trace of the vehicle is shown. And in Figure 4.18,

the RC controller’s command is compared with the generated reference and vehicle’s

response. From 105 s, the vehicle starts to decelerate to avoid crossing the safe fly zone

boundary while the user still issues full speed forward velocity command. The issued

command is overwritten by the guidance system and steers the vehicle to stop in front

of the boundary.

Figure 4.17: Safe fly zone: vehicle trace

98

time (s)
65 70 75 80 85 90 95 100 105 110 115

R
C

 v
al

ue

0

0.2

0.4

0.6

0.8

1

Body frame forward velocity RC command

time (s)
65 70 75 80 85 90 95 100 105 110 115

R
C

 v
al

ue

-0.5

0

0.5

1
Heading angle RC command

(a) RC inputs

t(s)
65 70 75 80 85 90 95 100 105 110 115

m

-100

-50

0

50

100
Position

x
ref

x

y
ref

y

t(s)
65 70 75 80 85 90 95 100 105 110 115

m
/s

-15

-10

-5

0

5

10
Velocity

v
x ref

v
x

v
y ref

v
y

(b) Vehicle response

Figure 4.18: Safe fly zone: commands and response

99

4.2 Online Position Trajectory

4.2.1 Position Command Filter

Though the semi-auto flight mode is popular among RC community, many other appli-

cations require fully autonomous flight based on pre-planned missions. As discussed in

Chapter 2, the mission is usually specified by combinations of waypoints which consists

of a position in the global coordinate and the corresponding tasks. To execute a given

mission, the basic element is to guide the vehicle to a specific point of interest. Unlike

the semi-auto mode, velocity command is no longer provided, and the algorithm shall

generate all acceleration, velocity and position reference. One dimensional case is first

illustrated where the optimization target and constraints are given as

min
uj(t),t∈[0,T]

{
J =

∫ T
t=0 dt

}
s.t.

p(0) = p0, p(T) = pref

v(0) = v0, v(T) = 0

a(0) = a0, a(T) = 0

ṗ(t) = v(t)

v̇(t) = a(t)

ȧ(t) = uj(t)

−vmax 6 v(t) 6 vmax, ∀t ∈ [0, T]

−amax 6 a(t) 6 amax, ∀t ∈ [0, T]

−ujmax 6 uj(t) 6 ujmax, ∀t ∈ [0, T]

(4.10)

The problem is similar to the one in Equation 4.4 except that the dynamic constraints

now describe a triple instead of a double integrator with extra limitation on its veloc-

ity. Though the TPBVP solver (see Section 4.2.5) can be used to solve the problem, a

flight mission might encounter constantly changing target, such as the following of a

moving ground vehicle. A position command filter which only generates the next cycle

reference is proposed to save computational power. Let Algorithm 9 be denoted as a

function

(t1, t2, t3, j1, j3) = VelParamGen(v0, a0, amax, ujmax, vref) (4.11)

100

And express the piecewise polynomial describing the trajectory returned by Algorithm

9 as a function

(psp, vsp, asp) = StateExam(v0, a0, p0, t1, t2, t3, j1, j3, tsp) (4.12)

whereas its inputs are the initial states, parameters to restore the control value uj(t) and

a specific time tsp; outputs are the position, velocity and acceleration at the given time

tsp. Here, v0, a0, p0 are the initial velocity, acceleration and position; t1, t2, t3 are the

time of AI, AC and AD phases; j1, j3 are the jerk input during AI and AD phases. Then,

the pseudo code for the state constrained position command filter can be illustrated by

Algorithm 11.

Algorithm 11 State constrained position command filter
1: Input: p0, v0, a0, vmax, amax, ujmax, tsamp, pref

2: Output: u∗j , arft, vrft, prft

3: if !Initialized then
4: pI = p0

5: vI = v0

6: aI = a0

7: Initialized = TRUE
8: (t1, t2, t3, j1, j3) = VelParamGen(vI, aI, amax, ujmax, 0)
9: (psp, vsp, asp) = StateExam(vI, aI, pI, t1, t2, t3, j1, j3, t3)

10: if psp > pref + pδ then
11: vcruise = −vmax

12: else if psp < pref − pδ then
13: vcruise = vmax

14: else
15: vcruise = 0

16: (t1, t2, t3, j1, j3) = VelParamGen(vI, aI, amax, ujmax, vcruise)
17: (pI, vI, aI) = StateExam(vI, aI, pI, t1, t2, t3, j1, j3, tsamp)
18: uj∗ = j1
19: arft = aI

20: vrft = vI

21: prft = pI

The idea behind Algorithm 11 can be described as: try slowing down to full stop

from the current state immediately, if it stops before the target psp < pref − pδ, then the

desired velocity vcruise shall be positive; if it overshoot the target psp > pref +pδ, vcruise

shall be negative; otherwise, vcruise is zero. Here the pδ is a small positive value added to

prevent chattering caused by discretization. Its value is much smaller than the practical

accuracy of the vehicle. With the desired velocity, Algorithm 9 is utilized to generate

101

2
0

-2

v
-4

State plot

-6-2

-1

a

0

1

0

10

20

30

-10
2

p

t(s)
0 2 4 6 8 10 12

p(
m

)

0

20

40
Position

t(s)
0 2 4 6 8 10 12

v(
m

/s
)

-5

0

5
Velocity

t(s)
0 2 4 6 8 10 12

a(
m

/s
2
)

-2

0

2
Acceleration

Figure 4.19: Position trajectory: all initial states within constraints

5

0

v

State plot

-5-2

0

a

2

50

40

30

20

10
4

p

t(s)
0 2 4 6 8 10 12

p(
m

)
0

50
Position

t(s)
0 2 4 6 8 10 12

v(
m

/s
)

-5

0

5
Velocity

t(s)
0 2 4 6 8 10 12

a(
m

/s
2
)

-5

0

5
Acceleration

Figure 4.20: Position trajectory: initial acceleration violates constraints

the references arft, vrft and prft after a short sampling period tsamp. Moreover, due to

the constraints on velocity and the minimum time optimization target, the magnitude of

vcruise is always chosen to be vmax when it is not zero. Some examples of executing the

proposed command generator algorithm are given in Figure 4.19, 4.20 and 4.21. For all

cases, the state constraints and the target position are the same as ujmax = 2, amax =

2, vmax = 5, pref = 0. In Figure 4.19, the initial condition is a0 = 0, v0 = 0, p0 = 30,

the resulting trajectories successfully steer the system to its target without violating any

of the constraints. In Figure 4.20, the initial condition is a0 = 4, v0 = 0, p0 = 30 which

violates the acceleration constraint. Nevertheless, the resulting trajectory still manages

to fulfill the task. Further, the acceleration has been brought down from its initial value

into the region of constraint and no longer leaves it anymore. In Figure 4.21, the initial

condition is a0 = 4, v0 = −6, p0 = 30 which violates both velocity and acceleration

constraints. Like the case in Figure 4.20, both velocity and acceleration are lead into

the constraint region while the state trajectory marching towards its target.

102

2
0

-2

v
-4

State plot

-6-2

0

a

2

20

0

25

30

15

10

5

4

p

t(s)
0 1 2 3 4 5 6 7 8 9 10

p(
m

)

0

20

40
Position

t(s)
0 1 2 3 4 5 6 7 8 9 10

v(
m

/s
)

-10

0

10
Velocity

t(s)
0 1 2 3 4 5 6 7 8 9 10

a(
m

/s
2
)

-5

0

5
Acceleration

Figure 4.21: Position trajectory: initial acceleration and velocity both violate constraints

Finally, an example is given to illustrate the usage of Algorithm 11 as command

filter for multiple positional inputs (see Figure 4.22). No matter how far away the target

position is, the trajectory always steers the system towards its goal while fulfilling the

state and input constraints. Algorithm 11 might cause small overshoot at the end of

the trajectory, but the overshoot is very small given the typical RUAV’s state limits.

With ujmax = 5, amax = 5, vmax = 10, the proposed algorithm is estimated to use

around 3.84 µs1 for each cycle on the flight controller with the 168 MHz Cortex M4F

CPU. Though a rough estimation, considering the translational controller usually works

at 50–200 Hz, the computational burden added to the system by the position command

filter is minor.

4.2.2 Geometric Path Following by Coordinate Projection

Many tasks require the following of 2D geometric paths such as environment recon-

struction, aero filming, and industrial inspection. During the process, the altitude of the

vehicle is allowed to be changed independently regarding its horizontal position. In this

subsection, a coordinate projection method is proposed for this purpose.

Single Segment Path

Considering the case in Figure 4.23, a vehicle is to follow the line segment formed by

two waypoints WPi and WPi+1 with an arbitrary initial condition. A new coordinate

1The actual profiling is done on the laptop with an Intel I5-3340M CPU at 2.7GHz. The cycle time on
the laptop is 0.12 µs. Scaling the time according to CPU frequency (2.7GHz to 168MHz) with a possible
overhead, the cycle time on the flight controller is roughly estimated as 3.84 µs.

103

t(s)
0 5 10 15 20 25 30 35 40

p(
m

)

-20

0

20

40
Position

UserInput
Response

t(s)
0 5 10 15 20 25 30 35 40

v(
m

/s
)

-10

-5

0

5

10
Velocity

t(s)
0 5 10 15 20 25 30 35 40

a(
m

/s
2
)

-5

0

5
Acceleration

Figure 4.22: Filtered reference for position command

W is built with its origin at WPi and its x− axis pointing towards WPi+1. With this

coordinate, the path following problem can be solved by

1. Transfer all the vehicle’s initial states into coordinateW .

2. In the x− axis, steer the vehicle to xref = ‖WPi −WPi+1‖.

3. In the y− axis, steer the vehicle to yref = 0.

4. For each axis, the position command filter or the position TPBVP solver (Section

4.2.5) can be executed individually.

The resulting simulation trajectory of the vehicle following a single line segment path

using the position command filter is illustrated in Figure 4.24. As shown in the figure,

the reference converges to the straight line path from its initial position and stops at

waypoint 1. Further, if the vehicle is on a point to point mission and is to stop at each

point, only the reference along the x− axis is planned while the y− axis reference is

104

Vehicley Waypoint_i+1

Waypoint_i

x

Xref

Yref

Figure 4.23: Coordinates during following 2D path

x(m)
-25 -20 -15 -10 -5 0 5 10 15 20 25

y(
m

)

0

5

10

15

20

25

30

35

40
Trace of vehicle

Path
VechileTrace

Waypoint0

Waypoint1

t(s)
0 5 10 15

v(
m

/s
)

-2

0

2

4

6
Velocity

v
x

v
y

t(s)
0 5 10 15

a(
m

/s
2
)

-2

-1

0

1

2
Acceleration

a
x

a
y

Figure 4.24: Outcome of line segment path following algorithm

always zero which saves computational power.

Multi Segment Path

On the other hand, the mission might consist of a series of connected line segments.

If the above method is applied directly, the vehicle will enter hovering state at each

waypoint. It can be overcome with switching to the next line segment before a full

stop. The switching criteria can be defined by users, such as a reaching distance. Once

the distance from the vehicle to a waypoint is smaller than the reaching distance, it

automatically switches to the next line segment. Alternatively, if the switching criteria

is not set, the following steps can be used to achieve a fast fly-by via each waypoint.

105

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

x(m)

y(
m

)

Line segments
Reference
Response

0 5 10 15 20 25 30 35 40
−20

−10

0

10

20

30

40

m

time (s)

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

4

6

8

m
/s

time (s)

v
xref

v
x

v
yref

v
y

x
ref

x
y

ref

y

Figure 4.25: Following of complex path using the position command filter

1. Simulate an immediate braking (reduce speed to 0) along x− axis. Denote the

stop position as pstopx.

2. Check whether pstopx is very close to overshoot the target xref .

3. If it does, immediately switch to the next line segment.

The proposed strategy makes it more efficient to follow a path consists of many seg-

ments (see simulation results in Figure 4.25). The vehicle now can take the fly-by

approach instead of hovering at each waypoint. The method can also be used to design

curved path reference.

Circle and Spiral Path

By projecting the vehicle into a polar frame around a virtual center, a circle or spiral

path can be easily generated. The limits on angular speed, angular acceleration and an-

gular jerk shall be calculated so that they do not violate the vehicle’s dynamic. Again,

the position command filter or the position TPBVP solver can be adopted for the polar

coordinate. Further, the coordinate projection idea can be combined with traditional

path following methods and allow the vehicle to determine its heading angle automati-

cally while accepting online specified speed command. This is helpful in tasks like the

racing event filming.

Reference Designing Toolbox

With the coordinate projection method as the base, and combining the B-spline trajec-

tory generator, the velocity command filter, the position command filter, a jerk limited

106

TPBVP solver [68], the author implemented a reference designing toolbox for planning

and visualizing trajectory. It allows the user to input a series of waypoints and adjust-

ing the smoothness of the trajectory as well as the maximum flying velocity. It serves

as a useful tool for developing and testing various guidance, control and localization

algorithms as well as platforms.

Real Flight Experiment

Here, four different real flight experiments are covered to demonstrate the tracking per-

formance. Flight A and B show the vehicle’s performance in combined missions. Flight

C and D show the vehicle’s performance during fast flight and among strong wind dis-

turbances. The combined mission is shown in Figure 4.26. The tracking performance

is shown in Figure 4.27 while the data is analyzed in Table 4.2. In flight experiment

A, sub-meter path following performance is achieved with smaller top speed. While

in flight experiment B, a small deviation from the circular path is maintained during

high speed flight. Though the combined missions are generated before flight using the

above reference designing toolbox, its execution could be interrupted and rearranged at

any moment by online trajectory generation. The idea of realtime path modification is

further extended to an obstacle avoidance system in Chapter 5.

−15
−10

−5
0

5
10

15
20

25

−25

−20

−15

−10

−5

0

5

10

15

10

15

20

25

30

35

40

45

x
y

z

Flight
Reference

(a) Flight A

−100

−80

−60

−40

−60
−50

−40

−30
−20

−10
0

10

10

15

x
y

z

Flight
Reference

(b) Flight B

Figure 4.26: Complex mission: vehicle trace

Fast flight and disturbance rejection experiments are shown in Figure 4.28. The ex-

periment data is shown in Figure 4.29. The data analysis is shown in Table 4.3. In flight

107

0 50 100 150 200 250 300 350
−60

−40

−20

0

20

40

s

m

0 50 100 150 200 250 300 350
−2

−1

0

1

2

3

s

m
/s

xref

x
yref

y
zref

z

vxref

vx
vyref

vy
vzref

vz

(a) Flight A

0 20 40 60 80 100 120 140 160
−120

−100

−80

−60

−40

−20

0

20

s

m

0 20 40 60 80 100 120 140 160
−10

−5

0

5

10

s

m
/s

xref

x
yref

y
zref

z

vxref

vx
vyref

vy
vzref

vz

(b) Flight B

Figure 4.27: Complex mission: reference and response

108

Table 4.2: Experiment data of complex mission

Flight A Flight B

Wind speed ≈2 m/s ≈4 m/s
Top speed 2.7 m/s 8 m/s
Max of velocity error norm 0.6 m/s 1.12 m/s
Max of position error norm 0.9 m 3.26 m
Average of velocity error norm 0.13 m/s 0.41 m/s
Average of position error norm 0.23 m 1.74 m
Circle path max deviation (2D) 0.4 m 1.22 m
Circle path max deviation (3D) 0.41 m 1.31 m

−100 0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

x

y

Reference
Flight

(a) Flight C

20 40 60 80 100 120 140 160 180

−40

−20

0

20

40

60

80

x

y

Flight
Reference

(b) Flight D

Figure 4.28: Fast flight and wind disturbance: vehicle trace

C, the vehicle traveled along a straight flight path with a maximum speed of 20 m/s and

resulted in very small tracking and path deviation error. In flight D, the vehicle cov-

ered a square path with top speed of 10 m/s subject to very strong wind disturbances.

Thanks to a well-designed control law and a dynamically feasible reference trajectory,

performance is ensured even under the disturbance created by the wind and air drag dur-

ing fast speed flight. In the experiments, better performance is achieved compared to

several traditional techniques reported in [69]. As shown in the fast flight experiment, it

effectively prevents the overshooting of path end through online generation of reference

command. The reference is limited up to jerk which implies smoother flight under fre-

quent maneuvering compared to acceleration limited method [14]. State transition from

arbitrary initial state is also enabled instead of selecting trims and maneuvers from a

library of precomputed motion primitives [70]. The cost is less aggressive maneuvers.

Predefined mission with online issued speed command is also possible. In Figure

4.30, the vehicle is made to follow horse track to film racing events. The flight path is

109

0 10 20 30 40 50 60 70 80 90 100 110
−500

0

500

1000

s

m

0 10 20 30 40 50 60 70 80 90 100 110
−20

−15

−10

−5

0

5

s

m
/s

vxref

vx
vyref

vy
vzref

vz

xref

x
yref

y
zref

z

(a) Flight C

480 500 520 540 560 580 600 620 640 660 680
−200

−100

0

100

200

s

m

480 500 520 540 560 580 600 620 640 660 680
−10

−5

0

5

10

s

m
/s

vxref

vx
vyref

vy
vzref

vz

xref

x
yref

y
zref

z

(b) Flight D

Figure 4.29: Fast flight and wind disturbance: reference and response

110

Table 4.3: Experiment data of fast flight with disturbance rejection

Flight C Flight D

Wind speed ≈5 m/s ≈12 m/s
Top speed 20 m/s 10 m/s
Max of velocity error norm 0.55 m/s 1.37 m/s
Max of position error norm 1.42 m 2.84 m
Average of velocity error norm 0.17 m/s 0.28 m/s
Average of position error norm 0.59 m 0.67 m
Straight path max deviation (2D) 0.95 m 2.8 m
Straight path max deviation (3D) 1.0 m 2.81 m

predefined by a series of waypoints, but the marching speed is controlled by the user

to catch up with the horses. The maximum vehicle speed during the process reaches

24 m/s (80% of the theoretical max speed) with an average of position error norm

around 2.97 m. To my best knowledge, it is one of the fastest following-type mission

performed by a quadrotor. The tracking performance is reasonably good considering

the extreme flight speed and the frequent maneuvering for target following.

−200 −100 0 100 200 300

50

100

150

200

250

300

350

400

450

x

y

Reference
Flight

0 20 40 60 80 100 120
−400

−200

0

200

400

600

s

m

0 20 40 60 80 100 120
−40

−20

0

20

40

s

m
/s

xref

x
yref

y
zref

z

vxref

vx
vyref

vy
vzref

vz

Figure 4.30: Mission with user controlled speed

4.2.3 Following Moving Ground Target

The method used to follow a geometric path could also be used to track a moving

ground target. The idea comes from the target aiming guidance. A new coordinate

system D is built by connecting the LOS between the vehicle to the target (see Figure

4.31). The task to follow the moving target can be decomposed in D. In the x− axis,

xref is set as the distance between target and vehicle whereas on the y− axis yref is

zero. Then the position command filter can be executed on each axis to generate the

111

Vehicle

y

x

Target

Figure 4.31: LOS coordinate system connecting vehicle to target

desired reference trajectory. An simulated example depicting the vehicle following a

ground target moving in C shape path is shown in Figure 4.32. The proposed method

cannot follow a moving target with zero position tracking error. But it is not crucial

for tasks like monitoring and inspection. To achieve zero position error, an interception

calculation is needed as introduced in [38].

4.2.4 Reference Governor

A common problem for all trajectory tracking control is the handling of saturation.

Though the methods presented in this section could limit the possibility of saturation

due to dynamically infeasible reference, the saturation could still happen due to system

malfunction, extra strong disturbance or actuator damage. In such a case, the reference

provided by command generator must be reset to guarantee the input saturation is not

violated. Based on the controller design in Figure 2.14, an reference governor is intro-

duced and illustrated in Figure 4.33. From Equation 2.11, the controller’s output before

the saturation can be expressed as

uout = aref +Kp(pref − p) +Kv(vref − v) (4.13)

where

Kp = Faug(1)

Kv = Faug(2)

112

x(m)
-50 -40 -30 -20 -10 0 10 20 30 40

y(
m

)

10

20

30

40

50

60

70

Target trace

Vehicle trace

t(s)
0 5 10 15 20 25 30

p(
m

)

-50

0

50

100
Position

p
x

p
y

target
x

target
y

t(s)
0 5 10 15 20 25 30

v(
m

/s
)

-5

0

5

10
Velocityv

x

v
y

t(s)
0 5 10 15 20 25 30

a(
m

/s
2
)

-2

0

2
Accelerationa

x

a
y

Figure 4.32: Following a moving ground target

113

Translational
 controller TΣ

-1
-

p,v

-
pref,
vref,
aref

g

m
-
dair

Command
generator

Reference
governor

User input
uout usat

Figure 4.33: Reference governor with translational controller

Denote the saturated value of uout as usat, the task is then to design an Algorithm to

reset the value of pref , vref when the saturation is triggered. Consider the following case,

if a vehicle at hovering is suddenly blown away by strong wind which causes its input

saturation. The desired strategy is to counter the disturbance with maximum effort and

return to its desired point with constrained states when disturbance is reduced. With the

presented situation in mind, the following algorithm is developed. Firstly, it is needed

to find the value of

β =

β1 0 0

0 β2 0

0 0 β3

such that

pd = β(pref − p) + p

vd = β(vref − v) + v

ad = βaref

(4.14)

would satisfy

usat = ad +Kp(pd − p) +Kv(vd − v) (4.15)

Subtract Equation 4.15 from 4.13, the value of β on each individual axis i can be cal-

culated as

βi =
usati

uouti
(4.16)

The value of β is then used to reset the command generator’s internal states. Note that

when β = 03×3, the output from translational controller is 0. Further, when β = I3×3,

the value of uout will not be modified. To reset the command generator’s internal state

114

x(m)
-250 -200 -150 -100 -50 0 50 100 150

y(
m

)

0

50

100

150

200

250

300

350
Vehicle trace

t(s)
0 10 20 30 40 50 60 70 80

v(
m

/s
)

-10

-8

-6

-4

-2

0

2

4

6
Velocity

v
x

v
y

Figure 4.34: Disturbance rejection with reference governor

pI = [pIx, pIy, pIz]
T, vI = [vIx, vIy, vIz]

T and aI = [aIx, aIy, aIz]
T, the method of back

calculation for integrator anti windup can be utilized here as

pI = pI − kβ1(I3×3 − β)(pI − p)

vI = vI − kβ2(I3×3 − β)(vI − v)

aI = aI − kβ3(I3×3 − β)aI

where kβ1,2,3 ∈ [0, 1] are design parameters. Though lacking theoretical proof, the

possible benefit of the reference governor is depicted using simulation as in Figure

4.34 and 4.35. In the simulation, a vehicle is performing a path following task with

its max velocity set as 5 m/s for both x− and y− axis, a strong wind gust starts at

11 s and ends at 33 s blows the vehicle away from the tracked path. For the case with

reference governor, the vehicle returns to its desired path with a limited velocity around

5 m/s which is desired for the onboard sensors and measurement units. For the case

without reference governor, the vehicle returns to the path with a maximum speed of

32 m/s (combining 2 axes) which could cause the measurement unit to fail. In the

real flight scenario, a simpler practice is to limit the magnitude of pI − p by having

pI−p = Clim · pI−p
‖pI−p‖ when ‖pI − p‖ > Clim. Here, the Clim is the limited magnitude.

The reference governor helps to limit the control input and saved the vehicle during

the AVIC Cup 2015 competition when the position reference suddenly jump due to the

mission manager malfunction.

115

x(m)
-250 -200 -150 -100 -50 0 50 100 150

y(
m

)

0

50

100

150

200

250

300

350
Vehicle trace

t(s)
0 10 20 30 40 50 60 70 80

v(
m

/s
)

-10

-5

0

5

10

15

20

25

30
Velocity

v
x

v
y

Figure 4.35: Disturbance rejection without reference governor

4.2.5 Triple Integrator TPBVP

Like the case in Section 4.1.5, sometimes it is desirable to know the whole trajectory

without performing the forward simulation. From Equation 4.10, this is equivalent to

find a TPBVP solver for a triple integrator. As proved in [66], such problem could be

solved using seven motion segments where each of them can be described as

Rp(t, p0, v0, a0, uj) = p0 + v0 · t+
1

2
a0 · t2 +

1

6
uj · t3

These seven segments can be categorized into

1. Velocity increasing (VI) phase.

2. Velocity constant (VC) phase.

3. Velocity decreasing (VD) phase.

A typical 3-phase-7-segment trajectory is illustrated in Figure 4.36. For each segment,

the value of uj is either ujmax, −ujmax or 0. The VI and VD phases would each takes

at most 3 segments while the VC phase owns the remaining 1 segment. As shown in

Figure 4.13 and 4.12, for each velocity changing phase, the acceleration profile could

either be wedge (W) or trapezoidal (T) shaped. The trajectory in Figure 4.36 has a T-T

type acceleration profile. Based on the shape of the acceleration profile, a decision tree

method is proposed in [59, 66] to solve the TPBVP.

116

t1 t2 t3 t4 t5 t6 t7

p0

-amax

0

amax

vmax

pref

Δ t1 Δ t2 Δ t3 Δ t4 Δ t5 Δ t6 Δ t7

Figure 4.36: 7 segments of the point to point maneuver

Decision Tree Method

The decision tree method [59, 66] is first covered for completeness. A direct bisection

method designed to reduce memory space consumption is discussed later. To solve the

TPBVP, the first step is to determine the cruise direction by simulating an immediate

brake from the current state. The braking trajectory can be solved using Algorithm 9 by

setting the reference velocity to 0. The resulting stopping point pstop is compared with

the target pref to determine the cruise direction

dp = sign(pref − pstop)

Then, the desired cruise velocity is

vcruise = dp · vmax

Using its value, first try steer the system to vcruise and immediately slowing down to

zero speed. The resulting trajectory contains no VC phase and hence called zero-cruise

profile. Since vcruise is known, phase VI and VD can be solved through Algorithm 9 and

the distance traversed during each phase (denoted as ∆pinc and ∆pdec correspondingly)

can be obtained. Finally, the duration of cruising phase can be found as

tcruise =
pref − p0 −∆pinc −∆pdec

vcruise

117

If tcruise ≥ 0, our work is done, the whole position trajectory can be reconstructed as

1. VI phase: steer velocity to vcruise.

2. VC phase: constant velocity vcruise and holds for tcruise seconds.

3. VD phase: steer velocity down to 0.

where the trajectories of VI and VD phases are already solved during constructing the

zero-cruise profile.

However, if tcruise < 0 which means vcruise cannot be achieved, an intermediate

state needs to be found to connect the VI and VD phases. The aim is to provide the final

trajectory by solving the following equations

ak = ak−1 + ujk∆tk k = 1...7

vk = vk−1 + ak−1∆tk +
1

2
ujk∆t

2
k k = 1...7

a7 = 0

v7 = 0

∆t4 = 0

p7 = p0 +
∑7

k=1Rp(∆tk, vk−1, ak−1, ujk)

(4.17)

where the variables ak, vk and pk stands for the acceleration, velocity and position

reached after segment k respectively. ∆tk is the duration of the kth segment (see Figure

4.36). The value of ujk within kth segment is determined by

uj = [±, 0,±, 0,−, 0,+] · dp · ujmax

The signs of uj depend on

• The shape of acceleration profile, being either W-W, W-T, T-W or T-T type.

• The sign of peak accelerations during VI and VD phases. If they have the same

sign, it will result in a double deceleration profile and the first VI phase becomes

a VD phase. Otherwise, it results in a canonical profile as in Figure 4.36.

There are eight different acceleration profiles based on the classification on its shapes

(W-W, W-T, T-W or T-T) and canonical types (canonical or double deceleration). For

118

each cases, unique solution to Equation 4.17 exists. The strategy is to find uj by qual-

itatively deciding the acceleration profile among the eight possible cases and solve

Equation 4.17. To determine the correct acceleration profile, the starting point is the

previously computed zero-cruise profile. Since the vcruise can no longer be reached, a

velocity vreach with smaller magnitude needs to be found. It can be achieved by de-

creasing the integral of a(t) during the VI phase, i.e. by reducing the area covered by

the piecewise acceleration profile in VI phase. To maintain a fixed final velocity, the

same amount of area has to be removed from the velocity decreasing phase. Hence, to

find the correct case, a decision tree is build to prune the acceleration profile repeatedly

into the next shorter profile until the resulting end position p7 no longer overshoot the

target. The pruning process is described by the following Algorithm from [59]

Algorithm 12 Pruning of canonical profile
1: Compute the area ∆vacc and ∆vdec of which needs to be cut from velocity increas-

ing and decreasing phase to transform the shape of acceleration profile.
2: Remove the smaller area from both phases and yield the next shorter profile case

according a decision tree in Figure 4.37(a).
3: if The resulting stop point p7 leads to an overshoot then
4: Continue
5: else
6: The previous case is the correct one.
7: Break

8: Solve Equation 4.17 numerically by substituting correct parameters obtained from
the profile shape.

Once the correct case is obtained, a unique set of equations can be found with all

signs fixed, then the solution can be computed numerically. On the other hand, if the

zero-cruise profile ends with double deceleration. The pruning happens by shifting the

area from the first VD phase into the second VD phase. The decision tree of pruning a

double deceleration profile is given in Figure 4.37(b). A comparison between the state

trajectories obtained from the TPBVP solver and the forward simulation is made. In

Figure 4.38, a triple integrator is set with initial and final conditions v0 = 1, a0 =

2, p0 = 1.5, pf = 0, constrained by amax = 0.8, ujmax = 2, vmax = 2. The state

trajectories obtained from the TPBVP solver and the forward simulation resembles each

other (provided the frequency of forward simulation is high enough).

119

T-T

T-W W-T

W-W

full stop

(a) Canonical decision tree

X-T

X-W

X-T

X-W

X-T

(b) Double deceleration decision tree

Figure 4.37: Decision trees for selecting the correct case
W: wedge shape, T: trapezoidal shape, X: ether T or W

2
1

0

v
-1

State plot

-2-1

0

a

1

8

6

4

2

0
2

p

(a) TPBVP solver

4
2

0

v
-2

State plot

-4-1

0

a

1

6

4

2

0

8

2

p

(b) Forward simulation

Figure 4.38: State trajectory obtained by triple integrator TPBVP solver and the forward
simulation

Direct Bisection Search Method

The solving of TPBVP is made very efficient through the decision tree. A dedicated

solver (Reflexxes motion library [68]) is built by the author of [66]. However, the

method by [59] suffers from numerical problem, and the Reflexxes library is difficult

to be used directly in our low-cost flight controller (PixHawk) due to its memory space

limitation. Therefore, the author proposed a direct bisection method to reduce the mem-

ory space consumption at the expense of less functions2 compared to the Reflexxes

motion library. Using the function definitions in Equation 4.11 and 4.12, the method

is described in Algorithm 13. The main idea of our approach can be summarized as

follows: Starting from the zero-cruise profile, track its first phase (VI for canonical

2The implemented onboard library only covers 1 DOF situation.

120

zero-cruise profile, VD for double deceleration zero-cruise profile) for tpb seconds then

immediately steer the velocity down to zero. If the stop point overshoots the target, then

tpb is reduced. Alternatively, if it undershoots the target, tpb needs to be increased. The

value of tpb is adjusted through bisection.

In Algorithm 13, line 3–6 calculates the cruise direction and the desired cruise ve-

locity. Line 7–12 solve the zero-cruise profile and check whether a cruise phase exists.

If so, the cruise time is obtained through line 13. Otherwise, a bisection search (line 16–

29) on tpb is performed. For each bisection cycle, the first phase of a zero-cruise profile

is executed for tpb seconds (line 21) and the system is steered to full stop immediately

(line 22–23). The resulting stop point is compared with the target to determine the bi-

section direction (line 24–27). If the error between these two points is small enough,

the search terminates. The adjusting of tpb is through the bisection between 0 and

the duration of first phase from the zero-cruise profile. For the canonical profile, if the

time duration of the first VI phase is reduced, so will be the vreach. This is equivalent to

reducing area from both VI and VD phases. Similarly, for double deceleration profile,

if the duration of the first VD phase is reduced, the second VD phase spends more effort

on deceleration. This is the same as an area shifting from the first phase to the second

phase.

Using the outputs from Algorithm 13, the trajectory could be reconstructed at any

given time t. The reconstruction is split into three different phases:

1. When 0 ≤ t < tpb, the trajectory is described by

StateExam(v0, a0, p0, t1a, t2a, t3a, j1a, j3a, t).

2. When tpb ≤ t < tcruise + tpb, the trajectory is described by

StateExam(vcruise, 0, ppb, 0, tcruise, 0, 0, 0, t− tpb)

where

(ppb, vpb, apb) = StateExam(v0, a0, p0, t1a, t2a, t3a, j1a, j3a, tpb).

3. When tcruise + tpb ≤ t, the trajectory has two cases. If tcruise > 0, it is then

written as

121

Algorithm 13 Triple integrator TPBVP solver, bisection method
1: Input: p0, v0, a0, vmax, amax, ujmax, pref

2: Output: t1a, t2a, t3a, j1a, j3a, t1b, t2b, t3b, j1b, j3b, tpb, vcruise, tcruise

3: (t1, t2, t3, j1, j3) = VelParamGen(v0, a0, amax, ujmax, 0)

4: (psp, vsp, asp) = StateExam(v0, a0, p0, t1, t2, t3, j1, j3, t3)

5: dp = sign(pref − psp)

6: vcruise = dp · vmax

7: (t1a, t2a, t3a, j1a, j3a) = VelParamGen(v0, a0, amax, ujmax, vcruise)

8: (pf , v, a) = StateExam(v0, a0, p0, t1a, t2a, t3a, j1a, j3a, t3a)

9: (t1b, t2b, t3b, j1b, j3b) = VelParamGen(vcruise, 0, amax, ujmax, 0)

10: (pfb, v, a) = StateExam(vcruise, 0, pf , t1b, t2b, t3b, j1b, j3b, t3b)

11: tcruise = 0

12: if sign(pfb − pref) · dp ≤ 0 then

13: tcruise =
|pref − pfb|
vcruise

14: tpb = t3a

15: else

16: tcruise = 0

17: tH = t3a

18: tL = 0

19: for counter = 1 : N do

20: tpb = (tH + tL)/2

21: (ppb, vpb, apb) = StateExam(v0, a0, p0, t1a, t2a, t3a, j1a, j3a, tpb)

22: (t1b, t2b, t3b, j1b, j3b) = VelParamGen(vpb, apb, amax, ujmax, 0)

23: (pfb, v, a) = StateExam(vpb, apb, ppb, t1b, t2b, t3b, j1b, j3b, t3b)

24: if sign(pfb − pref) · dp < 0 then

25: tL = tpb

26: else

27: tH = tpb

28: if |pfb − pref | < ε then

29: break

122

Table 4.4: Comparison between decision tree and direct bisection method

Decision Tree Direct bisection

Average solving time 2.2 µs 2.4 µs
Size of library file 5072 kB 931 kB
Size of exe file 281 kB 19 kB

StateExam(vcruise, 0, p1b, t1b, t2b, t3b, j1b, j3b, t− (tcruise + tpb))

where

p1b = ppb + vcruise · tcruise.

On the other hand, if there is no cruising phase, it is described by

StateExam(vpb, apb, ppb, t1b, t2b, t3b, j1b, j3b, t− (tcruise + tpb)).

A comparison between the direct bisection method and the decision tree method

from [68] is made. The problem is set to solve a single axis TPBVP. The maximum

velocity is set as 10, the maximum acceleration is 1.5 and the maximum jerk is 1.0. The

target point is always set as the origin. The initial condition covers p0 ∈ [−20, 20], v0 ∈

[−20, 20], a0 ∈ [−10, 10] with a 0.05 increment. 256 million trajectories are generated

using both methods. The comparison is conducted on a Windows 10 (64 bit) desktop

computer with the Intel I5-4670 CPU running at 3.4 GHz. The resulting file size, and

the average solving time are given in Table 4.4. Though slower than the decision tree

method, the proposed approach reduces the file size and makes it easier to be used on

hardware with tight memory space. The stability of the direct bisection method is also

examined during this process. Though it passes all the tests, a mathematical proof of

convergence still lacks. Following the technique in [59], a safety mechanism shall be

added to utilize the acceleration limited trajectory in case the direct bisection method

failed to give an answer.

Time Synchronization

If the vehicle is required to reach a certain 3D point at the same time, a time synchro-

nization between the three axis is needed. The idea is straightforward, find the axis with

longest reaching time and prolong the reaching time of other two axises. Moreover,

the inoperative time region described in [66] shall be considered during selecting the

123

longest reaching time. The increase in reaching time is done by reducing the magnitude

of vreach and filling up the resulting gap between the stop point and pref by creating

a VC cruise phase. Like the one-dimensional example, decision trees can be built to

obtain the final trajectory as in [66]. However, bisection method might also be used.

First, the vreach is initialized as vcruise, then the following bisection searching steps is

executed

1. Calculate the distance traveled during reaching vreach from current state and from

vreach to zero. Denote this traveled distance as ∆preach and the total time con-

sumed as treach.

2. Calculate the time of VC phase as tcruise =
pref −∆preach − p0

vreach
.

3. Calculate the total time of consumption as ttot = treach + tcruise

4. If tcruise < 0 or ttot < tf , reduce the magnitude of vreach through bisection.

5. If ttot > tf , increase the magnitude of vreach through bisection.

A time synchronized trajectory among three axis is shown in Figure 4.39. The initial

conditions are p0 = [0, 1, 3], v0 = [−0.6, 0, 3], a0 = [0, 0.8, 0.4], the position target

is pref = [2, 5, 9] and the constraints are vmax = [5, 3, 1], amax = [1, 2, 0.5], ujmax =

[1.5, 3, 1]. Though the initial conditions, end target and constraints on each axis are all

different, a time synchronized target reaching is achieved.

124

t(s)
0 5 10 15

p(
m

)

-5

0

5

10

15

p
x

p
y

p
z

(a) Position

t(s)
0 5 10 15

v(
m

/s
)

-1

0

1

2

3

4

v
x

v
y

v
z

(b) Velocity

t(s)
0 5 10 15

a(
m

/s
2
)

-1

-0.5

0

0.5

1

1.5

a
x

a
y

a
z

(c) Acceleration

Figure 4.39: Time synchronized solution of triple integrator TPBVP

125

4.3 Conclusion

Online trajectory generation algorithms are proposed in this chapter with special con-

sideration for platforms with low computational power. The online velocity command

filter handles the RC transmitter command while producing dynamically feasible refer-

ence to the translational controller. The online position command filter is designed to

provide state constrained reference that guides the vehicle in fully-autonomous mode.

They are utilized in competitions and demonstrations (see Figure 4.40). Further, the jerk

(a) Auto water collection (b) UAV powerline inspection

Figure 4.40: Applications utilize the command generators

limited TPBVP solvers are also discussed. This is helpful for analyzing the whole tra-

jectory in real time. The double integrator TPBVP has been successfully implemented

on a safe-fly-zone application. On the other hand, in order to reduce the memory space

consumption, a direct-bisection method is proposed to solve the triple integrator TP-

BVP. The result is a smaller file than the one provided by [68], and it is easier to be

programmed onto the PixHawk flight controller.

In the next Chapter, the details of the obstacle-strewn environment guidance system

are presented with real flight experiment data.

126

Chapter 5

Guidance in Obstacle-Strewn

Environment

For unmanned vehicles to operate safely, the ability to navigate through the obstacle-

strewn environment is crucial. It is the key to many other higher level tasks, such as

flocking, exploration, and search-rescue mission. Moreover, in most cases, the clut-

tered environment is unknown until it is in the range of the vehicle’s onboard sensors.

Therefore, a vehicle must be able to perform sensor-guided-sensor-guarded guidance

in such scenario to pursue its target while avoiding possible collisions. Again, the tra-

jectory led guidance system in Chapter 2 can be utilized to solve the presented issue.

A new perception module is introduced as a sub-system of the navigator unit. Its task

is to translate the sensor information into data structures that could be understood and

utilized by the guidance system. The approaches to the perception and guidance phases

vary mainly due to the difference in vehicle types, sensors, targeted environments, and

applications. In this chapter, let us focus on developing a trajectory generation based

guidance system for RUAV in GPS-denied and obstacle-strewn environments.

Most successful obstacle avoidance strategies see their usage in ground vehicles and

robots. Unfortunately, these algorithms are hard to be implemented directly to RUAVs

due to limited payload and computational power. Therefore, an algorithm that consumes

less memory and CPU time need to be developed, which is the subject of study in this

chapter.

To save memory usage, a rolling map structure is used to handle the infinitely large

127

environment with limited memory space. The online position trajectory generator pre-

sented in Section 4.2.5 is used to achieve a reliable and efficient planning. Further, an

algorithm is proposed to split the guidance problem into a series of TPBVPs so that the

vehicle could travel smoothly on its way to the target.

The rest of the chapter is organized as follows: In Section 5.1, the hardware sys-

tem and platform are introduced. The selection and construction of hardware heavily

affect the design of the algorithm. Section 5.2 presents the perception module and

the algorithms for analyzing the environment, whereas Section 5.3 discusses the vari-

ous algorithms utilized in the guidance level, which are capable of generating smooth

trajectories in real time to lead the vehicle to fly through obstacles in the unknown en-

vironment1. The experimental results and analysis are given in Section 5.4. Finally, the

extension of the algorithm to relaxed formation and flocking of multiple RUAVs in the

obstacle-strewn environment is discussed.

1Some figures are adopted from author’s paper [33] for illustration purpose

128

5.1 System and Platform

Fuselage

The platform adopted to develop the obstacle-strewn environment guidance method is

a BlackLion-068 octocopter shown in Figure 5.1. It utilizes an X8 configuration which

consists of 8 motors mounted on an ‘X’ shaped frame with four sets of clockwise (CW)

and counter-clockwise (CCW) rotating propellers. The two motors on the same arm

have the same direction of rotation.

Figure 5.1: The X8 configuration octo-copter BL-068

The overall dimension is 26 cm in height and 68 cm from tip-to-tip including the

propeller protection. The bare platform weighs about 1 kg including motors, propellers,

and protections while the maximum lift-off weight is around 4 kg. The compact size

and large payload of the UAV make it an idea platform to test various algorithms.

Sensors and Avionics

The platform comes with an attitude loop flight controller, an Intel Next Unit of Com-

puting (NUC) computer with Intel I5 CPU running Robot Operating System (ROS). A

TeraRanger One distance sensor with a maximum range of 14 m and accuracy of±2 cm

is used for height measurement. A 30 m Hokuyo laser range finder is mounted on top

of the vehicle for 2D environment sensing.

With the setup of sensors, the author designed obstacle avoidance algorithm focus-

ing on flat surface maneuver for maximum safety. Also, due to the extra onboard NUC

129

which largely increase the onboard memory, more freedom is given to the algorithm

design. For example, in solving position trajectory (triple integrator) TPBVP, the deci-

sion tree method [68] is preferred over direct bisection method since it is not worthy of

sacrificing CPU time to conserve memory space now.

Mission System

The MGCS of the platform follows the structure proposed in Chapter 2. The arrange-

ment of MGCS modules to system hardwares is shown in Figure 5.2. The GCS serves as

Mission manager

Guidance system

Control system

Navigator +
Perception

Waypoint

Reference

Input

States

Environment

GCS

Flight
controller

NUC

States &
Environment data

Figure 5.2: System design and module assignment

the mission planner to transfer task waypoints to the vehicle. The guidance, navigation

and perception algorithm are realized on the NUC due to their relative high computa-

tional requirement while a dedicated flight controller running realtime OS guarantees

the performance of the reference tracking.

130

5.2 Environment Perception

In this section, let us first discuss the localization and mapping methods to harvest the

environmental information as an efficient data structure which could be utilized by the

guidance system. The major tasks of the perception module are

• Localization of vehicle

• Generation of environmental map

which falls into the region of SLAM technique. SLAM is commonly used by vehicles in

the GPS-denied environment. Its implementation depends on the equipped sensor such

as RGB-D camera or laser range finder. SLAM with RGB-D camera was first covered

in [71] and improved by [72]. By matching sparse visual features associate with depth

information to obtain an initial estimate of the relative frame transformation, which is

then refined by using iterative closest point (ICP). On the other hand, 2D laser range

finder provides more accurate distance measurements in a 2D plane. SLAM with 2D

laser data have been extensively studied. Open source packages like GMapping [73] and

Hector-SLAM [74] are both capable for indoor environments. Algorithms describing

SLAM in the forest like environment are covered in [34]. In this thesis, Hector-SLAM

is used for the indoor environment. But the mapping process is heavily modified to

suit our needs for keeping and analyzing the environment information. To facilitate an

efficient planning, the map data structure should be able to

1. Efficiently determine the distance between a given point to its closest obstacle.

2. Evaluate a given trajectory by its clearness to the obstacle.

The former is used to check the distance between vehicle and obstacles at any given

moment, whereas the second one is used for collision prediction and trajectory selec-

tion.

The task is to guide the vehicle safely to its target in the cluttered environment

rather than reconstruct the map. Therefore, a grid based rolling map is chosen to store

the world information. It is essentially a grid map but allowing information to exceed

the map’s boundary and re-enter through the other side. Algorithm 14 illustrates the

transformation from a real world position to the gird coordinate in the rolling map.

131

Occupancy Map: Black means
occupied, white means unoccupied

EDT: The darker the color, the closer to an
obstalce.

Cost Map: The lighter the color, the
higher the cost.

Figure 5.3: Cost map generation process.

Algorithm 14 Mapping from real position to rolling map grid
1: Input: Real world position p
2: Output: Grid on rolling map g
3: pdiscret ← floor((p−Origin)/GridSize+ 0.5);
4: g ← positiveModulo(pdiscret,MapSize)

TheOrigin stands for global coordinate’s origin point and it is mapped to the grid posi-

tion (0, 0, 0). The width of each grid is denoted as GridSize and the positiveModulo()

function performs the rolling action by shifting point outside the map’s boundary to its

positive modulo position in the map. MapSize denotes the total grid number on each

axis, it must be larger than the vehicle’s sensor range otherwise for each scan the infor-

mation will lose its continuity. Each grid g is represented by three integer g.x, g.y, g.z

to express its position in the grid map. Every data point captured by the laser scanner

is first transformed from the vehicle’s body fame B to the global coordinate G and then

into the gird position through Algorithm 14.

During the map building, each grid is given a cost value based on its closeness to

an obstacle. First, a method based on the Euclidean distance transformation (EDT) [75]

is used to obtain the distance map. It runs a filter either through the whole map or

around each obstacle grid to calculate the needed distance information. With the dis-

tance information, a cost value could be assigned to each grid. The process is illustrated

in Figure 5.3. The leftmost figure shows an occupancy map which carries only binary

information. The middle figure demonstrates an EDT process, the darker the grid, the

closer it is to an obstacle. In the rightmost figure, the cost value is assigned to each

grid based on a Gaussian function (The higher the grid’s cost value, the closer it is to an

obstacle).

132

Unkown
Area

Obstacles

Empty
Area

Figure 5.4: A cost map generated by laser scanner.

Figure 5.4 shows a typical grid map obtained from laser data with cost already

assigned. The obstacle center has a cost of 300 and the grids around it have costs

based on Gaussian function. In Figure 5.4, according to the cost value, the area can be

classified into three types: the obstacles with high values, the empty area which has cost

value close to zero and the unknown area with a medium cost. For convenience, the cost

value of each grid is denoted as cost(g) and the distance to its nearest obstacle is written

as EDT(g). The resulting map can be directly used for graph-based searches, such as

the A-star algorithm. For onboard implementation, the EDT is performed around each

newly added obstacle with an effective radius that is larger than the size of the vehicle.

Another problem of mapping are the moving obstacles. If the sensed obstacles are

projected onto the map and accumulated forever, a moving object would leave its trace

like a wall in the grid map. This would block the open path and render the map useless.

Common solution to the problem is to reduce the cost value of each grid gradually

through every scan as

cost(g) = cost(g) · kg

where 0 < kg < 1. The history information of the map is slowly washed away including

133

the trace left by moving obstacles. However, it also cleans the history information of

static obstacles. To solve this problem, it is noticed for sensors like cameras, sonars, and

laser scanners, they could only detect LOS object. And the space between the sensor

and the data point is always empty. Therefore, it is desired to clean these areas or at least

lower their cost value. To find all grids on the line segment connecting the sensor and

the data point, the voxel traversal method [76] is implemented in Algorithm 15. Here,

the function point2grid() in line 3 and 4 represents Algorithm 14. For a line segment

Algorithm 15 Voxel traversal
1: Input: 2 points pstart, pend

2: Output: Grids covered by the line segment, L
3: g0 ← point2grid(pstart)
4: g1 ← point2grid(pend)
5: StepX ← sign(g1.x− g0.x)
6: StepY ← sign(g1.y − g0.y)
7: Dx← abs(g1.y − g0.y)
8: Dy ← abs(g1.y − g0.y)
9: tDeltaX ← 2Dy

10: tDeltaY ← 2Dx
11: tMaxX ← Dy
12: tMaxY ← Dx
13: g ← g0

14: loop
15: L.append(g)
16: if g.x = g1.x and g.y = g1.y then
17: break

18: if tMaxX < tMaxY then
19: g.x← g.x+ StepX
20: else
21: g.y ← g.y + StepY

with end points pstart, pend, the algorithm returns a list of girds L that is covered by it.

Since it is a rolling map, there exists no boundary and the algorithm only terminates

when it reaches the line segment’s end.

Finally, the procedures for mapping the environment is given in Algorithm 16.

134

Algorithm 16 Mapping

1: Input: List of obstacles Obsl, sensor position ps

2: Output: Grid map Map with distance information
3: Obslfit ← empty list
4: OccMap← empty grid map with all member initialized as FALSE
5: for each Obstacle Obs ∈ Obsl do
6: if OccMap(point2grid(Obs.position)) = FALSE then
7: Obslfit.append(Obs)
8: OccMap(point2grid(Obs.position)) = TRUE
9: for each Obstacle Obs ∈ Obslfit do

10: Grids← VoxelTraversal(ps, Obs.position)
11: for each Grid g ∈ Grids do
12: Map(g)← UNOCCUPIED
13: for each Obstacle Obs ∈ Obslfit do
14: Map(point2grid(Obs.position))← OCCUPIED
15: DistanceTransform(Map)

In line 5–8, the algorithm first performs a discrete filtering on its input by projecting

the raw data point into the grids. If two data points fall into the same grid, the later one is

ignored. The procedure largely reduces the amount of data points. Then in line 9–12, the

empty area between sensor and the obstacle is cleaned through voxel traversal. Finally,

all the obstacle points are added back with the distance information around them. With

the updated map, it becomes easy to check the distance of any point (including the

vehicle’s current position) to the closest obstacle by just accessing the corresponding

grid’s cost value.

On the other hand, in order to evaluate the clearness of a trajectory, it is turned into

foot print which is a list of grids the vehicle covers when following the trajectory. This

involves the size and orientation of the vehicle. Luckily, for an X shaped octo-copter

with a similar width, length and height, it could be treated as a sphere in 3D or a circle

in 2D with radius rv. Note rv must be the longest distance from the center of the vehicle

to its edge. For a trajectory St to be collision free, it is required

Distmin(St) = min
g∈Gs

{
EDT (g)− rv

}
> 0

where Gs is the list of grids covered by St. An approximation method is then utilized

to extract Gs. Since the trajectory could be in the form of polynomials, splines or even

experience data, a general solution to exactly find the trace of the trajectory on the

135

grid map is time-consuming. In our implementation, all trajectories are approximated

by a series of line segments, which is acquired by sampling the original trajectory at

discrete time instances followed by a split and merge method. Afterward,Gs is obtained

by voxel traversal for each line segment. The process of finding Gs is illustrated in

Algorithm 17.

Algorithm 17 Trajectory to grids
1: Input: Trajectory St

2: Output: List of grids covered by St, Gs

3: Plist ← DiscreteSampling(St)
4: Llinseg ← Split&merge(Plist)
5: for each Line segment ∈ Llinseg do
6: Gs.append(VoxelTraversal(Line segment))

Here, the Plist stands for the list of points in the configuration space generated

through time sampling, and Llinseg is a list of line segments returned by the split and

merge process. The advantage of the voxel traversal algorithm over traditional Bresen-

ham’s method is reflected in this stage. With Bresenham’s algorithm, it does not return

all the grids covered by the line segment and leads to weaker checking condition. The

difference between Bresenham’s algorithm and the adopted one is highlighted in Fig-

ure 5.5. Note the adopted algorithm returns all the grids under the line segment while

Figure 5.5: Comparison between Bresenham’s algorithm
The adopted algorithm provides more safety by returning all grids covered by the line

segment.

136

Bresenham’s algorithm ignores those covered only a little. This might be dangerous if

the ignored grid happens to be an obstacle. Lastly, by checking the cost value of each

grid g ∈ Gs, one could determine the safeness of the trajectory and the closest distance

to any obstacles. It helps efficient planning and checking in the guidance level.

137

5.3 Planning and Guidance

5.3.1 Problem Overview

The problem of guidance in the obstacle-strewn environment, like many other engi-

neering issues, can be written in the form of mathematical optimization. For a linear

time-invariant discrete-time system

 xk+1 = Axk + Buk

yk = Cxk
(5.1)

where A,B and C are system matrix, xk, uk and yk are the state, input and output of

the system at time step k respectively. Denoting U = [u0,u1,u2, · · · ,uN−1], our task

can be described as

min
U

{
J(U) = xN ′PxN +

N−1∑
k=0

(x′kQxk + u′kRuk)

}
s.t.

x0 = xstart

xN = xgoal

xk+1 = Axk + Buk

yk = Cxk

xmin 6 xk 6 xmax, ∀k ∈ [0, N]

umin 6 uk 6 umax, ∀k ∈ [0, N − 1]

x /∈ O, ∀k ∈ [0, N]

(5.2)

where xstart, xgoal are the initial and end states of the vehicle which correspond to the

current state and target in our problem. The O is a subset of the configuration space that

is related to obstacles and human set boundaries.

Until now, there is no explicit solution to the presented optimization problem. The

best effort includes numerical methods, but its performance is subjected to the non-

convexity of the optimization space and complexity of the dynamics. Furthermore,

direct solution to these large dimension problems usually suffers from the numerical

instability and could potentially generate a control sequence that would damage the

hardware. Consequently, double validation of the resulting control sequences is needed

138

and further increases the computational burden. In this work, a two-step approach is

adopted to simplify and solve the optimization problem. Though, the global optimality

is no longer guaranteed, satisfying performance is achieved with real vehicle experi-

ments.

5.3.2 Task Decomposition

Our guidance system consists of a global planner and a trajectory generator as pre-

sented in Chapter 2. The global planner extracts the connectivity information from the

environment with ignored system dynamics whereas the trajectory planner focuses on

producing the dynamically feasible reference for the controller. Since the rotorcraft is

holonomic and capable of moving in all directions, it is simplified as a checker model

on the grid map with relatively low speed (smaller than 5 m/s). For a 2D map case, the

checker could move from one grid to all of its eight neighbors at left, right, up, down,

top left, bottom left, top right and bottom right or moving in straight lines. With all

the simplifications and assumptions, the classical A-star algorithm or the modified RRT

algorithm presented in Section 2.2.1 can be used to generate a safe path way consists of

a series of line segments. Since a 2D sensor is adopted, the A-star method is preferred.

A typical path way is shown in Figure 5.6.

With the path way acquired, dynamically feasible trajectories need to be designed.

The most popular method [10] generates trajectory through a polynomial spline repre-

sentation and quadratic optimization. The advantage of this approach lies in its ability

to handle the multiple key frames problem directly. Here, a key frame means an equality

constraint in the form of xk = xchosen for the optimization problem in Equation 5.2. To

produce collision free solution, key frames are positioned along the path way to force the

trajectory to stay close-by. The algorithm in Chapter 3 illustrates the formulation of op-

timization problem using B-splines and the UAV calligraphy example demonstrates the

following of a geometric shape by assigning key-frames. The method usually produces

high-quality trajectories with the minimum jerk or minimum snap property. However,

its performance is limited by the quality of quadratic program solver. In this thesis, the

triple integrator TPBVP solver is adopted with a receding horizon control (RHC) strat-

egy to generate dynamically feasible trajectory. The end velocity and acceleration of

139

Trajectory

Safe
pass
way

Vehicle

End
state
point

Figure 5.6: Safe path way and generated trajectory
The safe pass way is shown as green line segments. The end state point is picked

around the last point stay line-on-sight to the start point.

each TPBVP are always zero. A continuous non-stop maneuver is achieved by switch-

ing to a new trajectory before reaching the end of the current one. However, if the algo-

rithm fails due to unexpected reason, the vehicle will at least stop with a safe hover. This

is commonly referred as model predictive equilibrium point control (MPEPC) strategy

and frequently used for vehicle path planning [77]. Further, the generated trajectory

should always stay in the vicinity of the safe path way. Here, the synchronization tech-

niques [66, 78] can be applied to prevent large deviation from the safe path way. Also,

the geometric path following technique in Section 4.2.2 can be used. A rotated coordi-

nate is created based on the safe path way’s location and orientation (see Figure 5.7).

By solving TPBVP in the rotated axises x′− and y′− independently, a trajectory that

converges to the safe path way is achieved. The target position is chosen around the end

point of the safe path way’s first segment. The procedures involved in each guidance

140

x

y

x'

y'
Start
point

End
point

Safe
pass
way

y

Start
point

End
point

Safe
pass
way

Figure 5.7: Trajectory generated independently on each axis in global frame vs rotated
frame

cycle are

1. Update the environment information.

2. Generate safe path way through the global planner.

3. Formulate TPBVP along the first line segment of the safe path way.

4. Solve the TPBVP for reference trajectory.

5. Check whether the trajectory is safe, if not, randomly sample for an evasion tra-

jectory.

6. Start tracking the new trajectory.

The above steps are repeated every tm seconds with tm shorter than the full time du-

ration of the trajectory. With a new plan generated that frequently, the computational

burden is heavy. Moreover, due to the nature of the proposed TPBVP solver, constant

switching of trajectory could decrease the tracking control performance during aggres-

sive maneuver because of the discontinuity on the jerk.

141

5.3.3 Event Triggered Trajectory Switching

To improve the trajectory quality and save computational resources, an event triggering

guidance strategy is proposed. Unlike the MPEPC which plans and adopts new refer-

ence every time, it only switches to new trajectory when certain conditions are satisfied.

The pseudo code for event triggered guidance is given in Algorithm 18. The current

Algorithm 18 Event triggered guidance cycle

1: lastTarget← CurrentPosition
2: loop
3: if Goal reached then
4: break

5: if CT is invalid then
6: ET ← ETSearching()
7: CT ← ET
8: else
9: if CT is in deceleration phase then

10: PathWay ← A ∗ Searching(lastTarget)
11: EndState← localTargetSearch(PathWay)
12: P ← randomSample(EndState)
13: MinDist← 0
14: for each point p ∈ P do
15: PT ← BVPS(CurrentState, p)
16: Dist← MinDistToObstacle(PT)
17: if Dist > MinDist then
18: if PT is valid then
19: CT← PT
20: MinDist← Dist
21: lastTarget← p

trajectory is denoted asCT , a possible trajectory as PT and the emergency trajectory as

ET . The lastTarget records the last end point for TPBVP which is also the beginning

of connectivity search. During each cycle, the algorithm first exams the availability of

current trajectory (line 5–7). If it is not collision free, an evading trajectory is searched

and the vehicle immediately switch to it. Otherwise, if the current trajectory also hap-

pens to enter the deceleration phase, it switches to a newly generated trajectory. Firstly,

the safe path way is obtained through connectivity search. Then a localTargetSearch()

is performed to find the end point of the safe path way’s first segment. A random sam-

pling is performed around this end point to produce a list of sampled points. For each

sampled point, a trajectory is generated and the one with maximum clearance is adopted

(line 12–21). The BVPS() function stands for the position trajectory TPBVP solver

142

Safe pass way

First end point

First trajectory

Second end point

Second
trajectory

First
switching
point

Second
switching
point

Third end point
Third
trajectory

Decleration
phase

Decleration
phase

Figure 5.8: Event based trajectory switching
Step 1 (left): Safe pass way is generated, the first end point is picked around the first
sharp turn. Step 2 (middle): vehicle starts to pick new end point when it is about to
enter the deceleration phase of the first trajectory. Step 3 (right): by repeating the

process in Step 2, vehicle could reach its target.

whereas the MinDistToObstacle() checks the minimum distance from a trajectory to

any obstacle. By this algorithm, the planning is performed only under two conditions

1. The current trajectory is not collision free.

2. The current trajectory is about to finish and comes to hover.

which dramatically reduces the times of planning and reference switching. To consider

the tracking error, the validity of trajectory reference depends on

1. Whether itself is collision-free.

2. Whether the vehicle’s tracking response is collision-free.

To check the condition 2, the vehicle’s tracking response needs to be predicted. When

the tracking error is small, it could be done using experience formula. Otherwise, a

fast forward simulation is conducted. Further, during the validity verification process

in line 5, the radius used for collision checking is larger than the actual vehicle size

rv so that it is safe under the assumption of tracking error. In line 18, the checking

radius is even larger than that in line 5, so that the adopted trajectory in line 19 will

not become invalid in line 5 due to small tracking error. The process of the proposed

trajectory switching method is illustrated in Figure 5.8. In case that CT is invalid,

ETSearching() is performed to acquire an evading trajectory. The searching process

143

is illustrated in Algorithm19. During evading trajectory searching, trajectories aimed

Algorithm 19 Avoiding trajectory searching algorithm
1: Success← FALSE
2: PathWay ← A ∗ Searching(currentPosition)
3: EndState← localTargetSearch(PathWay)
4: P ← randomSample(EndState)
5: MinDist← 0
6: for each point p ∈ P do
7: PT ← BVPS(CurrentState, p)
8: Dist← MinDistToObstacle(PT)
9: if Dist > MinDist then

10: if PT is valid then
11: CT ← PT
12: MinDist← Dist
13: lastTarget← p
14: Success← true

15: if Success = FALSE then
16: Increase acceleration and jerk limit
17: Prs ← randomSample(currentPosition)
18: for each point p ∈ Prs do
19: PT ← BVPS(CurrentState, p)
20: if PT is valid then
21: CT ← PT
22: break

23: Decrease acceleration and jerk limit

to the target but also away from collision (line 2–14) are first examined. Note that the

beginning of connectivity search is now the vehicle’s current position instead of the last

end point of TPBVP. If these trajectories are not applicable, the vehicle is possibly in

a dangerous situation. The limit on jerk and acceleration is increased to allow a more

aggressive maneuver and the vehicle focuses purely on obstacle avoidance (line 15 –

23). With Algorithm 19, the vehicle now possesses the capability of handling obstacles

that suddenly appear (or captured by the sensor), and dynamic obstacles such as other

RUAVs or human beings.

A comparison between the event triggered and the RHC strategy is made. The RHC

method is executed at 5 Hz, and planning path from the vehicle’s current position at each

cycle. For each trial, the testing scenario is to guide the vehicle from the same starting

point to the same end point in the same simulation environment for both strategies.

The comparison is made through several trials with different start and end points. The

resulted position and velocity profiles are given in Figure 5.9, and the averaged data

144

of target reaching time and CPU consumption is given in Table 5.1. For reference, the

simulation environment’s 2D map is shown in Figure 5.10.

Table 5.1: Comparison between event triggered switch and RHC

Event trigger RHC

Number of planning 6 71
Number of switching 4 71
Target reaching time 13.3 s 15.7 s
Average planner cycle time 6.1 ms 21.7 ms

As shown in Figure 5.9, the trajectory produced by RHC method consists of more

unnecessary wobbling in its velocity profile. This is due to the lack of energy conser-

vation term in the TPBVP formulation and the frequent switching of trajectory. On

the other hand, the proposed method generates smoother trajectory and reaches the tar-

get faster. The average planner cycle time is also smaller using our method (see Table

5.1). Because the planning routine is executed only when triggered which leaves most

planner cycles only run the perception routine.

Though the performance of RHC method could be improved by introducing more

complicated cost function and optimization tools, these algorithms increase the compu-

tational burden and system complexity. On the other hand, the RHC strategy (EPMPC

method) is more suitable for dealing with the fast changing environment or task (like

flying among many moving obstacles) at lower flight speed. Thus it is remained as an

working option in the guidance module.

The TPBVP solver used in this method could also be substituted with any other

algorithms as long as the resulting trajectory is dynamically feasible. In general, solving

TPBVP is much faster than calculating the whole trajectory, thus more suitable to be

used in an unknown environment with the realtime requirement.

5.3.4 Multiple Waypoint Mission Management

With the proposed guidance system, multiple waypoint missions like searching and

exploration is made possible. During the implementation of the indoor exploration

system on the real vehicle, the following two problems need to be solved.

1. Sometimes, due to the lack of environmental knowledge, the mission manage-

145

0 200 400 600 800 1000 1200
8

10

12

14

16

18

20

22

24

cycle(0.02s)

m

RHC x
RHC y
TS x
TS y

0 200 400 600 800 1000 1200
−0.5

0

0.5

1

1.5

2

cycle(0.02s)

m
/s

RHC vx

RHC vy

TS vx

TS vy

(a) Trail 1

0 200 400 600 800 1000 1200
5

10

15

20

25

30

cycle(0.02s)

m

RHC x
RHC y
TS x
TS y

0 200 400 600 800 1000 1200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

cycle(0.02s)

m
/s

RHC vx

RHC vy

TS vx

TS vy

(b) Trail 2

0 200 400 600 800 1000 1200
5

10

15

20

25

30

cycle(0.02s)

m

RHC x
RHC y
TS x
TS y

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

cycle(0.02s)

m
/s

RHC vx

RHC vy

TS vx

TS vy

(c) Trail 3

0 200 400 600 800 1000 1200
6

8

10

12

14

16

18

20

cycle(0.02s)

m

RHC x
RHC y
TS x
TS y

0 200 400 600 800 1000 1200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

cycle(0.02s)

m
/s

RHC vx

RHC vy

TS vx

TS vy

(d) Trail 4

Figure 5.9: The RHC based strategy compared to the proposed trajectory switching
(noted as TS) algorithm.

146

Figure 5.10: Simulation environment’s 2D map for comparison between event triggered
and RHC strategy.

ment system could allocate a waypoint that is entirely blocked by the obstacle.

The vehicle needs to know when to give up on such waypoint and head to the

next one.

2. The laser scanner only sees the forward 270 degrees of view thus it is dangerous

for the vehicle to fly backward. The vehicle always needs to fly in a direction

where it is covered by the laser scanner.

For the first problem, it is necessary to check whether a certain waypoint is reachable or

not. This is done easily through the A-star search since it guarantees an optimal solution

when any of them exists. If Algorithm 1 terminates while the CLOSED set does not

contain the desired waypoint, then the specific waypoint cannot be reached. The mission

management system then either give up on this waypoint or rewrite its position. The

second problem is done by aligning the vehicle’s heading direction towards its TPBVP

end point. However, sometimes the vehicle might determine to reverse its direction

suddenly, and the heading might fail to respond with enough speed. In this condition,

the vehicle first find a safe position within its sensor range, create a temporary waypoint,

fly to the waypoint and finally perform a hover turn to the desired direction. The hover

turn mechanism is governed by a state machine so that the vehicle could resume its

normal mission after the hover turn. An example of multi-waypoint exploration mission

147

consists of 3 waypoints is presented in Figure 5.11. The red squares are the targets 1–3

and the blue curve is the trace of the vehicle. Upon reversing of the marching direction,

the mission management system directs a hover turn to make sure flying in sensor-

covered area. Also, target 1 falls inside a square pillar thus cannot be reached. The

mission management system then rewrites this target to a reachable position. In Figure

Target 1

Target 2

Target 3

Figure 5.11: Exploration mission with multiple waypoints.

5.12, the result of map reconstruction in the 2014 IMAV competition fly-off is shown

[79]. During the competition, the RUAV needs to identify objects while traveling in an

office-like environment with many obstacles. The proposed guidance system is utilized

in the competition, and the vehicle successfully explored the area and traveled to all the

defined rooms.

148

Figure 5.12: Result of map reconstruction in the IMAV competition fly-off

5.4 Flight Experiment

The experiment is performed by the BL-068 platform in an indoor clustered environ-

ment as depicted in Figure 5.13. In such an environment, the vehicle is guided safely

Figure 5.13: Experiment environment consists of pillars and other obstacles.

to fly through waypoints. Experiment data from real flight is presented in Figure 5.14

and 5.15. Figure 5.14 shows a typical avoidance maneuver adopted by the vehicle. The

final target is 10 meters in front of the vehicle but blocked by an obstacle in between.

149

(a) Avoidance trajectory (b) Tracking control performance

Figure 5.14: Normal avoidance situation

The maximum speed of the vehicle is more than 1.6 m/s during the flight. Figure 5.15

shows an emergent avoidance behavior. It was triggered by a faulty estimation of the

obstacle location and caused the vehicle to fly too close to a pillar. When the vehicle

realized the situation, it took emergent avoidance and prevented the collision. In this

case, the avoidance trajectory is found without the need of increasing acceleration and

jerk limit.

(a) Avoidance trajectory (b) Tracking control performance

Figure 5.15: Emergent avoidance

Beyond this test, which covers a GPS-less-forest-like environment, the proposed

method is applied to various competitions and demonstrations. In Figure 5.16(a), it

demonstrates the vehicle’s capability of avoiding pedestrians by producing evading tra-

jectory. Figure 5.16(c) shows the vehicle flying through a 90 cm wide door which is not

much wider than the vehicle itself. Finally, Figure 5.16(b) and (d) shows the vehicle

working in the indoor office like environment. In this kind of environment full of non-

150

(a) Avoid dynamic obstacle (b) Fly in narrow corridor

(c) Fly through narrow door (d) Fly in indoor office

Figure 5.16: Obstacle avoidance applications in various environment

convex obstacles, the global planning is crucial to prevent the vehicle from being stuck

at the local minimum point. Finally, an indoor patrol mission is simulated as shown in

Figure 5.17. The simulated vehicle is capable of covering the whole building without

collision.

Figure 5.17: UAV patrol in simulated environment.

151

5.5 Relaxed Formation and Flocking

5.5.1 Relaxed Formation among Obstacles

In this Section, the usage of the proposed guidance method in multi agent case is dis-

cussed (also covered in author’s paper [80]). Firstly, let us define the task to be

1. Vehicles need to form certain formation in the cluttered environment with arbi-

trary given initial states.

2. Vehicles need to move through the cluttered environment while trying to maintain

the formation.

Since the vehicle cannot form the exact desired formation while moving in the obstacle-

strewn environment, this behavior is named relaxed formation.

Using common sensors such as laser scanner, camera, and radar, it is easy to obtain

the relative position of an obstacle, but rather difficult to obtain its accurate velocity

since the later one involves classification and clustering. Therefore, a rough estimation

of the neighbor agent’s future route is done by increasing the cost value of its possible

reaching area. Then the guidance method presented in the previous section is used to

steer the vehicle towards its final goal. As shown in Figure 5.18, agent 0 first estimates

the possible reaching area of its two neighbors (the shaded area), and assign the area

with high-cost value. With the proposed A-star searching algorithm, the generated safe

path way will naturally avoid the shaded area. Thus agent zero chooses the dashed path

instead of squeezing through the incoming neighbors. In Figure 5.19, two simulated

RUAV agent are trying to exchange their position in a cluttered environment. A sharp

turn in agent 2’s trajectory is resulted when it gave way to agent 1. Behavior such as

reciprocal dance is not triggered in our case due to the existence of the global planner.

The process is accomplished with no communication among agents.

A relaxed leader-follower formation is realized by continually change the follower’s

goal according to leader’s position. Like in Figure 5.20, the follower (agent 0) is trying

to stay on the left down corner to the leader (agent 1). When moving through obstacle-

strewn environment, agent 0 then performs target tracking and collision avoidance all

at the same time. It breaks out from the formation automatically when it is needed.

152

Agent 1

Vm_1
Vm_2

Agent 2

Static Obstacle

Target Point

Possible reaching area of Agent 1

Possible reaching area of Agent 2

Agent 0

Figure 5.18: Possible reaching area of moving neighbor agent

Agent 1

Target Point

Agent 0

dy

dx

Obstacle

Figure 5.20: Follower trying to maintain the formation while performing obstacle avoid-
ance

153

Figure 5.19: The trajectory of 2 agents exchanging their position in cluttered environ-
ment

Figure 5.21: Leader follower moving formation in cluttered environment

In Figure 5.21, the trajectory of simulated 2-vehicle leader-follower formation fly-

ing through obstacles is illustrated. The follower (in red trajectory) is trying to stay at

154

the bottom-left corner of the leader (in blue trajectory) and that is the reason for it to

reverse its direction at the beginning. The formation is broken down when they passed

through the cluttered area and reformed immediately once given a chance.

5.5.2 Tandem Flocking

Simulation on a tandem flocking of multiple vehicles in an unknown forest environ-

ment is performed (also covered in author’s paper [81]). The leader is responsible for

finding ways to the final target while the followers walk behind each other one by one

in a line. Each RUAV is equipped with an additional camera to detect and estimate its

corresponding leader’s relative position. The strategy of tandem flocking in cluttered

environment goes as follows

1. The team leader flies towards its final target position through path planning and

obstacle avoidance.

2. Each follower detects and estimates the position of its corresponding leader via

the vision system.

3. A series of the corresponding leader’s position are kept, and the instant target

of the follower is selected among these positions. The instant target maintains

a pre-specific distance to the latest known position of the leader which ensures

cohesion and separation.

4. For each follower, flies towards the instant target while avoiding collision.

Since the camera comes with limited view angle, the heading of each follower always

aims towards its own leader. Through out the process, the vehicles act independently

and asynchronously from each other. A simulation of 6 vehicles flying in forest like

environment is conducted. The maximum velocity of the leader is set as vmaxx =

vmaxy = vmaxz = 1 m/s; whereas the maximum velocity of the follower is slightly

higher as vmaxx = vmaxy = vmaxz = 1.5 m/s so it could catch up the leading vehicle.

In the global frame, the start positions of the leader is at (46, 7) while its destination

is at (20, 44). The start position of the 5 followers are (50, 7), (55, 7), (59, 7), (63, 7)

and (67, 7) respectively as shown in Figure 5.22. Here UAV 1 is the leader and UAV

155

2–6 are the followers. The distance from the instant target to the latest known position

of its corresponding leader is set as 3m. Figure 5.22 also illustrates the traces of the

6 vehicles during the flocking , where the red cubes represent the sensed obstacles

and the numbers 1–6 denotes the initial position of each vehicle. Figure 5.23 shows

the position and velocity trajectory of the 6 vehicles, the velocity references are well

bounded considering the measurement units’ limitation while the position references

show the vehicles are away from each other avoiding mutual collision.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

654321
Start

X−axis (m)

Target

Y
−

ax
is

 (
m

)

Figure 5.22: Trace of vehicles during flocking

0 10 20 30 40 50 60
0

20

40

60

time (s)

po
si

tio
n xr

ef
 (

m
)

0 10 20 30 40 50 60
0

20

40

60

time (s)

po
si

tio
n yr

ef
 (

m
)

0 10 20 30 40 50 60

0.6

0.8

1

1.2

1.4

1.6

time (s)

po
si

tio
n zr

ef
 (

m
)

UAV
1

UAV
2

UAV
3

UAV
4

UAV
5

UAV
6

(a) Position

0 10 20 30 40 50 60

−1

0

1

time (s)

ve
lo

ci
ty

xr
ef

 (
m

/s
)

0 10 20 30 40 50 60

−1

0

1

time (s)

ve
lo

ci
ty

yr
ef

 (
m

/s
)

0 10 20 30 40 50 60

−1

0

1

time (s)

ve
lo

ci
ty

zr
ef

 (
m

/s
)

UAV
1

UAV
2

UAV
3

UAV
4

UAV
5

UAV
6

(b) Velocity

Figure 5.23: Reference trajectories during flocking

156

5.6 Conclusion

In this chapter, the author presents a guidance system that allows the vehicle to fly

through obstacles. The proposed guidance system utilizes the structure of MGCS pre-

sented in Chapter 2. The overall planning problem is decomposed into a series of jerk

limited TPBVP through the global planner. The verification and examination of the

trajectory are based on a grid-based representation of the environment which facilitates

O(1) search of nearest obstacle distance. Moreover, to achieve the non-stop maneu-

ver, an EPMPC strategy and the improved event triggered based trajectory switching

method are proposed. In the event triggered method, a new cycle of planning is trig-

gered only if the current trajectory is no longer safe, or the vehicle is about to stop.

The proposed guidance system is tested under various environments with efficient and

stable performance. It also handles dynamic obstacles by producing evading trajectory

in realtime.

Further, the situation of multiple vehicle formation is discussed. Due to the usage

of global planner which searches the connectivity information of the map, the proposed

method helps to reduce the phenomenon related to local minimum and reciprocal danc-

ing. Avoidance between agents and relaxed formation are demonstrated with simulation

in the obstacle-strewn environment. Our approach does not require accurate neighbor

information which makes it more straight forward for engineering implementation.

Finally, the guidance system can be improved by utilizing more efficient global

planner, or TPBVP solver considering more optimization targets. Each submodule,

the perception unit, the global and local planner can be modified without affecting the

others. Thus it also serves as an excellent testbed for different SLAM, motion planning,

cluster classification and vision algorithms.

157

158

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, the author presented a successful approach to conduct trajectory leaded

RUAV guidance and control in various scenarios. The major contribution lies at the

implementation of the reference generation and guidance algorithms covered in Chap-

ter 3 and 4, the guidance system in obstacle-rich environment covered in Chapter 5,

and the MGCS. By solving convex quadratic programming, the B-spline based algo-

rithm generates complicated trajectories through a time vector optimization, which are

proved to be suitable for RUAVs with complex dynamics. Various performance and

demonstrations are made possible by this algorithm, including the UAV calligraphy

performance in 2014 Singapore Airshow and the multi-drone light show at Gardens by

the Bay in 2016. Though still lacks the efficiency to be implemented on microproces-

sors like the flight controller of the micro quad-rotor in Figure 4.1, it is fast enough to

be used on laptops for easy designing of the trajectory. On the other hand, in Chapter

4, online reference generation algorithms targeting inexpensive hardware are covered.

The velocity reference generator is mainly used for semi-auto flying and utilized in ap-

plications like safe fly zone. The position reference generator is proposed for waypoint

based guidance. With these algorithms, dynamically feasible reference could be gen-

erated in realtime for precise tracking control. The cascaded controller is then capable

of giving accurate tracking performance in real flight experiment, which is crucial for

tasks like aero filming and close inspection. These online reference generators are very

159

efficient, when used as command filter, a cycle can be finished in micro-second level

even with low-power CPU like the Cortex M4F. Though the computational cost is in-

creased when the TPBVP solver is involved (especially with direct bisection method),

sub-millisecond performance can still be achieved with just a normal laptop.

With these trajectory generation tools, the author also proposed a guidance strategy

to be used in the obstacle-rich environment. In Chapter 5, systematic introductions are

given to each sub-module of the approach. The perception module translates the envi-

ronmental information into the data structure that could be utilized by various planning

and verification algorithms. The guidance module decomposes the task into a series

of TPBVP. And the continuous movement can be achieved by an EPMPC strategy or

the improved event triggered trajectory switching method. The proposed approach also

considers the dynamic obstacles through rapid evasion trajectory searching. Finally,

multiagent formation and flocking algorithm are built based on the proposed guidance

system. To verify the generality and performance of our approach, experiments are con-

ducted in environments that vary from forest to indoor office, with or without dynamic

obstacles.

The author also implemented an MGCS for the experiment. An HCI translates the

human input to waypoint based missions and uploads them to the vehicle wirelessly.

The guidance system utilizes the above-mentioned methods to produce the dynamically

feasible reference for the low-level controller. A control scheme is then proposed for

general rotorcrafts. The MGCS is proven successful through various performances and

competitions. Furthermore, it also serves as a testbed for different kinds of vehicles and

algorithms in many other research projects.

160

6.2 Future Works

Possible improvements or extensions can be categorized into two major aspects. First,

more sophisticated motion planning could be considered. Secondly, with inter-vehicle

communication, a protocol based multiagent cooperation could be realized.

6.2.1 Towards Smarter Motion Planning

Through our study and experiment, the author found that the bottleneck of many robotic

applications is a reliable online motion planning system, which can handle complex sys-

tem dynamics and the capricious environment. Due to the difference in vehicle model,

targeting scenario, a flexible, efficient and general solution is yet to be developed for

motion planning problems. Conventional methods, which utilize dynamic program-

ming, sampling search, numerical optimization or switching control, are prone to these

problems. On the other hand, human beings are well suitable for a broad range of mo-

tion planning tasks, such as climbing, running and driving vehicles. The author thus

proposes a possible structure that could be used by vehicles with different dynamics

and targeting environments (see Figure 6.1). In this system, the key module will be the

motion library, the motion optimizer, the controller and the reflection unit. The motion

library stores a series of trajectories and is responsible for selecting the most appropri-

ate one based on the measurements. The optimizer then utilizes the selected trajectory

as an initial condition to execute an optimization process to fulfill various constraints

based on the measurements. Then a controller, possibly dedicated to the selected tra-

jectory from motion library would actuate the final system. Moreover, a reflection unit

is introduced to handle events with fast dynamics.

Take ping-pong as an example. When the player learns a new move set such as

forehand smash, a new nominal trajectory is added to the motion library. Then he might

spend many hours training with this forehand smash movement to make sure he could

hit an incoming ball at any angle, speed and spinning condition. This is equivalent

as training of a neural network to perform the motion optimization. In the ping-pong

example, the motion optimizer is responsible for adjusting the nominal smash move-

ment so it could intercept the ball at the correct angle. The more training the player

takes, the more input conditions the neural network could handle, and hence the better

161

the player performs the smash movement. Finally, if the player finds the ping-pong is

coming towards his face with high speed, the reflection unit is turned on to avoid the

ball. During this short period, the reflection unit takes over the body controller directly.

To build this motion planning system, the nominal trajectory in motion library could

be obtained through solving complex non-linear optimization problems offline. Then a

neural network is established through simulated training to adjust the nominal trajectory

efficiently. Finally, the reflection unit acts like an event-triggered control system to take

over the actuator when necessary.

6.2.2 Towards Smarter Multi-vehicle System

To coordinate multiple vehicles, we have to solve

1. Construction of a synchronized coordinate system.

2. Establishment of a distributed traffic control protocol to enable efficient collision

avoidance.

3. Implementation of a mission management protocol to facilitate online coopera-

tion.

The first issue is to find a unified coordinate so that the vehicles could share their sensed

information and target region. For example, if agent 0 finds a POI in its local coordinate

system, it needs to broadcast the POI’s location to other vehicles. However, since all

other vehicles work in their local coordinate system, to correctly interpret this POI, they

need to know their relative position to agent 0. Current available solutions are

1. Utilizing a third party measurement system such as GPS, Vicon, and UWB, to

localize all the agents. These systems either have limitations on working envi-

ronment or require the setup of multiple ground calibration unit.

2. Directly measuring neighbor agent’s position using onboard sensors. This ap-

proach requires complex vision segmentation or classification algorithms which

are still open problems.

Another possible approach is to utilize the features in SLAM algorithm to synchronize

each vehicle’s local coordinate. Assume that a set of common features can be captured

162

by two vehicles, a coordinate synchronization could be accomplished by communicat-

ing the feature’s descriptor and its location in each vehicle’s local coordinate. This

approach requires no extra setup and is suitable for all environments. Further, since

all agents are already running onboard SLAM, the feature comparison and mutual syn-

chronization could be done without using too much onboard computational power.

The second issue is to establish an unobstructed traffic for the multiagent cooper-

ation. If all the vehicles utilize a trajectory based guidance system, it is possible to

employ a protocol to exchange the future trajectory among vehicles efficiently. With

this information, planning could be more efficient. If each vehicle could be classified

by several properties such as weight, mission type or remaining energy, it is possible

to design a function to assign priority levels to each vehicle distributively. With other

vehicles’ future trajectories and priority levels, a distributed traffic control system could

be designed to determine whether an agent should give way to its neighbors. A similar

strategy is common among human drivers, whenever a driver sees an ambulance with

alarm on, s/he then steers his vehicle away from the future path of the ambulance.

The third issue requires a discrete mission management system to handle various

events during the cooperative process. For example, in a search-rescue mission, the

system handles the behavior change between search and rescue.

163

Mission

Motion library

Motion optimizer

System

Measurement Reflection

Global planner

Controller

Figure 6.1: A possible motion planning structure for different systems

164

Bibliography

[1] M. S. Grewal, L. R. Weill, and A. P. AndrJay, Global Positioning Systems, Inertial

Navigation, and Integration. John Wiley & Sons, Inc, Hoboken, New Jersey,

United States, 2007.

[2] J. A. Farrell, Aided Navigation: GPS with High Rate Sensors. McGraw-Hill, Inc,

2008.

[3] C. S. Draper, W. Wrigley, G. Hoag, R. H. Battin, E. Miller, A. Koso, A. L. Hop-

kins, and W. E. Vander Velde, “Apollo guidance and navigation,” tech. rep., Instru-

mentation Laboratory, Massachusetts Institute of Technology, Cambridge, MA,

United States, 1965.

[4] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” tech.

rep., The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United

States, 1992.

[5] E. C. Stewart, “Application of statistical theory to beam-rider guidance in the pres-

ence of noise II: modified wiener filter theory,” tech. rep., Ames Aeronautical Lab,

National Advisory Committee for Aeronautics, Moffett Field, CA, United States,

1955.

[6] V. Rajasekhar and A. G. Sreenatha, “Fuzzy logic implementation of proportional

navigation guidance,” Acta Astronautica, vol. 46, no. 1, pp. 17–24, Jan 2000.

[7] C. L. Lin and H. W. Su., “Intelligent control theory in guidance and control system

design: an overview,” Proceedings of the National Science Council, Republic of

China. Part A, vol. 24, pp. 15–30, 2000.

165

[8] S. Park, J. Deyst, and J. How, “A new nonlinear guidance logic for trajectory track-

ing,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference

and Exhibit, Rhode Island, United States, Aug 2004.

[9] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector field path

following for miniature air vehicles,” IEEE Transactions on Robotics, vol. 23,

no. 3, pp. 519–529, Jun 2007.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control

for quadrotors,” in Proceedings of the 2011 IEEE International Conference on

Robotics and Automation, Shanghai, China, pp. 2520–2525, May 2011.

[11] M. Hehn and R. D’Andrea, “Real-Time Trajectory Generation for Quadrocopters,”

IEEE Transactions on Robotics, vol. 31, no. 4, pp. 877–892, Aug 2015.

[12] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient algo-

rithm for state-to-state quadrocopter trajectory generation and feasibility verifica-

tion,” in Proceedings of the 2013 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, Tokyo, Japan, pp. 3480–3486, Nov 2013.

[13] S. K. Phang, S. Lai, F. Wang, M. Lan, and B. M. Chen, “Systems design and

implementation with jerk-optimized trajectory generation for UAV calligraphy,”

Mechatronics, vol. 30, pp. 65–75, September 2015.

[14] G. M. Hoffmann, S. L. Waslander and C. J. Tomlin, “Quadrotor helicopter tra-

jectory tracking control,” in Proceedings of the AIAA Guidance, Navigation and

Control Conference and Exhibit, Hawaii, United States, Aug 2008.

[15] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “A prototype

of an autonomous controller for a quadrotor UAV,” in Proceedings of the 2007

European Control Conference, Kos, Greek, pp. 4001–4008, July 2007.

[16] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a quadrotor he-

licopter,” in Proceedings of the 16th Mediterranean Conference on Control and

Automation, Ajaccio, France, pp. 1258–1263, June 2008.

166

[17] T. J. Koo and S. Sastry, “Differential flatness based full authority helicopter control

design,” in Proceedings of the 38th IEEE Conference on Decision and Control,

Phoenix, United States, vol. 2, pp. 1982–1987, Dec 1999.

[18] A. Bry, C. Richter and N. Roy, “Polynomial trajectory planning for aggressive

quadrotor flight in dense indoor environments,” in Proceedings of the 16th Inter-

national Symposium on Robotics Research, Singapore, pp. 649–666, Dec 2013.

[19] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free trajectories for

quadrotor flight in unknown cluttered environments,” in Proceedings of the 2016

IEEE International Conference on Robotics and Automation, Stockholm, Sweden,

pp. 1476–1483, May 2016.

[20] W. V. Loock, G. Pipeleers, and J. Swevers, “Time-optimal quadrotor flight,”

in Proceedings of the 2013 European Control Conference, Zurich, Switzerland,

pp. 1788–1792, July 2013.

[21] M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of quadrotor

systems using time-optimal control,” Autonomous Robots, vol. 33, no. 1, pp. 69–

88, Mar 2012.

[22] Y. K. Hwang and N. Ahuja, “A potential field approach to path planning,” IEEE

Transactions on Robotics and Automation, vol. 8, no. 1, pp. 23–32, Feb 1992.

[23] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance

for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3,

pp. 278–288, Jun 1991.

[24] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-

time multi-agent navigation,” in Proceedings of the 2008 IEEE International Con-

ference on Robotics and Automation, Pasadena, United States, pp. 1928–1935,

May 2008.

[25] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “ Engineering Route Planning

Algorithms,” Algorithmics of Large and Complex Networks: Design, Analysis,

and Simulation, pp. 117–139, Springer, Berlin Heidelberg, Jun 2009.

167

[26] S. M. Lavalle, J. J. Kuffner, and Jr., “Rapidly-exploring random trees: Progress

and prospects,” Algorithmic and Computational Robotics: New Directions,

pp. 293–308, A K Peters/CRC Press, Apr 2000.

[27] P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for the Heuristic De-

termination of Minimum Cost Paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100–107, July 1968.

[28] A. Stentz, “Optimal and Efficient Path Planning for Partially Known Environ-

ments,” IEEE Transactions on Robotics, vol. 21, no.3, pp. 354–363, June 2005.

[29] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain,”

in Proceedings of the 1994 IEEE International Conference on Robotics and Au-

tomation, San Diego, United States, pp. 203–220, May 2005.

[30] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-

ning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894,

May 2011.

[31] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion

planning using the RRT*,” in Proceedings of the 2011 IEEE International Confer-

ence on Robotics and Automation, Shanghai, China, pp. 1478–1483, May 2011.

[32] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (BIT*):

Sampling-based optimal planning via the heuristically guided search of implicit

random geometric graphs,” in Proceedings of the 2015 IEEE International Con-

ference on Robotics and Automation, Seattle, United States, pp. 3067–3074, May

2015.

[33] S. Lai, K. Wang, H. Qin, J. Q. Cui, and B. M. Chen, “A robust online path planning

approach in cluttered environments for micro rotorcraft drones,” Control Theory

and Technology, vol. 14, no. 1, pp. 83–96, Feb 2016.

[34] J. Q. Cui, S. Lai, X. Dong, and B. M. Chen, “Autonomous navigation of uav in

foliage environment,” Journal of Intelligent & Robotic Systems, pp. 1–18, Oct

2015.

168

[35] A. Datta, B. Roget, D. Griffiths, G. Pugliese, J. Sitaraman, J. Bao, L. Liu, and

O. Gamard, “Design of a martian autonomous rotary-wing vehicle,” Journal of

aircraft, vol. 40, no. 3, pp. 461–472, May–Jun 2003.

[36] “Pd-100 black hornet prs.” http://www.proxdynamics.com/pcroducts/pd-100-

black-hornet-prs, 2012.

[37] F. Wang, P. Liu, S. Zhao, B. M. Chen, S. K. Phang, S. Lai, T. Pang, B. Wang,

C. Cai, and T. H. Lee, “Development of an unmanned helicopter for vertical re-

plenishment,” Unmanned Systems, vol. 03, no. 01, pp. 63–87, Jan 2015.

[38] M. W. Mueller, M. Hehn, and R. D’Andrea, “A Computationally Efficient Mo-

tion Primitive for Quadrocopter Trajectory Generation,” IEEE Transactions on

Robotics, vol. 31, pp. 1294–1310, Dec 2015.

[39] B. Yu, X. Dong, Z. Shi, and Y. Zhong, “Formation control for quadrotor swarm

systems: Algorithms and experiments,” in Proceedings of the 32nd Chinese Con-

trol Conference, Xi’an, China, pp. 7099–7104, Jul 2013.

[40] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-free tra-

jectories for a quadrocopter fleet: A sequential convex programming approach,” in

Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Vilamoura, Portugal, pp. 1917–1922, Oct 2012.

[41] J. Chen, K. Su, and S. Shen, “Real-time safe trajectory generation for quadrotor

flight in cluttered environments,” in Proceedings of the 2015 IEEE International

Conference on Robotics and Biomimetics, Zhuhai, China, pp. 1678–1685, Dec

2015.

[42] M. Harada, H. Nagata, J. Simond, and K. Bollino, “Optimal trajectory generation

and tracking control of a single coaxial rotor UAV,” in Proceedings of the AIAA

Guidance, Navigation, and Control Conference, Boston, United States, Aug 2013.

[43] QGC development team, “Qgroundcontrol opensource ground control station

project,” website http://qgroundcontrol.org/.

169

[44] A. Zelinsky, “A mobile robot exploration algorithm,” IEEE Transactions on

Robotics and Automation, vol. 8, no. 6, pp. 707–717, Dec 1992.

[45] K. Peng, G. Cai, B. M. Chen, M. Dong, K. Y. Lum, and T. H. Lee, “Design

and implementation of an autonomous flight control law for a UAV helicopter,”

Automatica, vol. 45, no. 10, pp. 2333–2338, 2009.

[46] F. Wang, K. Wang, S. Lai, S. K. Phang, B. M. Chen, and T. H. Lee, “An efficient

UAV navigation solution for confined but partially known indoor environments,”

in Proceedings of the 11th IEEE International Conference on Control Automation,

Taichung, Taiwan, China, pp. 1351–1356, Jun 2014.

[47] F. Lin, K. Z. Y. Ang, F. Wang, B. M. Chen, T. H. Lee, B. Yang, M. Dong, X. Dong,

J. Cui, S. K. Phang, B. Wang, D. Luo, K. Peng, G. Cai, S. Zhao, M. Yin, and

K. Li, “Development of an unmanned coaxial rotorcraft for the darpa uavforge

challenge,” Unmanned Systems, vol. 01, no. 02, pp. 211–245, 2013.

[48] K. Wang, Y. Ke and B. M. Chen, “Development of autonomous hybrid UAV U-

Lion with VTOL and cruise flying capabilities,” Proceedings of the 2016 IEEE

International Conference on Advanced Intelligent Mechatronics, Banff, AB, pp.

1053–1060, 2016.

[49] T. H.Lee, B. M. Chen and V. Venkataramanan, Hard Disk Drive Servo Systems,

2nd Edition, Springer, New York, 2006.

[50] B. M. Chen, Robust and H∞ Control, Springer, New York, 2000.

[51] T. Flash and N. Hogans, “The coordination of arm movements: An experimentally

confirmed mathematical model,” Journal of neuroscience, vol. 5, pp. 1688–1703,

1985.

[52] H. Kano, H. Nakata and C. F. Martin, “Optimal curve fitting and smoothing using

normalized uniform B-splines: a tool for studying complex systems”, Applied

Mathematics and Computation, vol. 159, no. 1, pp. 96-128, 2005.

170

[53] H. Kano, H. Fujioka and C. F. Martin, “Optimal smoothing and interpolating

splines with constraints”, Applied Mathematics and Computation, vol. 218, no. 5,

pp. 1831-1844, 2011

[54] H. Fujioka and H. Kano, “ Control theoretic B-spline smoothing with constraints

on derivatives”, IEEE 52nd Annual Conference on Decision and Control, Firenze,

Italy, 2013.

[55] K. Takayama and H. Kano, “A new approach to synthesizing free motions of

robotic manipulators based on the concept of unit motion”, IEEE Transactions

on Systems, Man and Cybernetics, vol. 25, no. 3, pp. 453-463, 1995.

[56] “Matlab Mathworks, Inc.” http://www.mathworks.com/

[57] “IBM ILOG CPLEX Optimizer IBM, Inc.” https://www-

01.ibm.com/software/commerce/optimization/cplex-optimizer/

[58] J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series in Opera-

tions Research and Finicial Engineering, 2nd Edition, Springer, 2006.

[59] R. Haschke, E. Weitnauer, H. Ritter, “On-line planning of time-optimal, jerk-

limited trajectories,” IEEE/RSJ International Conference on Intelligent Robots

and Systems, Nice, France, pp. 3248 – 3253, 2008.

[60] C. de Boor, A Practical Guide to Splines, Springer, New York, 1978.

[61] C. K. Shene, Lecture notes on Introduction to computing with Geometry,

https://www.cs.mtu.edu/ shene/COURSES/cs3621/NOTES/, Michigan Techno-

logical University, 2011.

[62] G. A. Borges and M. J. Aldon, “A split-and-merge segmentation algorithm for line

extraction in 2d range images, Proceedings of the 15th International Conference

on Pattern Recognition, Barcelona, Spain, pp. 441-444, 2000.

[63] F. Lange and A. Albu-Schffer, ”Path-Accurate online trajectory generation for

jerk-limited industrial robots,” IEEE Robotics and Automation Letters, vol. 1, no.

1, pp. 82–89, Jan 2016.

171

[64] L. Meier, P. Tanskanen, F. Fraundorfer and M. Pollefeys, “PIXHAWK: A system

for autonomous flight using onboard computer vision,” 2011 IEEE International

Conference on Robotics and Automation, Shanghai, pp. 2992–2997, 2011.

[65] M. Rubagotti and A. Ferrara, “Second order sliding mode control of a perturbed

double integrator with state constraints,” in Proceedings of the 2010 American

Control Conference, Baltimore, United States, pp. 985–990, June 2010.

[66] T. Kroger and F. M. Wahl, “Online trajectory generation: Basic concepts for

instantaneous reactions to unforeseen events,” IEEE Transactions on Robotics,

vol. 26, no. 1, pp. 94–111, Feb 2010.

[67] F. Ramos, M. Gajamohan, N. Huebel, and R. DAndrea, “Time-Optimal Online

Trajectory Generator for Robotic Manipulators,” Institute for Dynamics Systems

and Control, ETH, Zurich, Feb. 2013.

[68] T. Kroger, “Opening the door to new sensor-based robot applications – The Re-

flexxes Motion Libraries,” in Proceedings of 2011 IEEE International Conference

on Robotics and Automation, Shanghai, pp. 1–4, 2011.

[69] P. Vlez, N. Certad and E. Ruiz, “Trajectory Generation and Tracking Using the

AR.Drone 2.0 Quadcopter UAV,” in Proceedings of 2015 12th Latin American

Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics, Uberlandia,

pp. 73–78, 2015.

[70] C. L. Bottasso, D. Leonello and B. Savini, “Path Planning for Autonomous Ve-

hicles by Trajectory Smoothing Using Motion Primitives”, IEEE Transactions on

Control Systems Technology, vol. 16, no. 6, pp. 1152–1168, Nov 2008.

[71] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using

kinect-style depth cameras for dense 3d modeling of indoor environments,” The

International Journal of Robotics Research, vol. 31 no. 5 pp. 647–663, Apr 2012.

[72] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, RGB-D Mapping: Using

Depth Cameras for Dense 3D Modeling of Indoor Environments, pp. 477–491,

Springer, Berlin Heidelberg, 2014.

172

[73] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping

with rao-blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23,

no. 1, pp. 34–46, Feb 2007.

[74] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A flexible and scal-

able slam system with full 3d motion estimation,” in Proceedings of 2011 IEEE

International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan,

pp. 155–160, Nov 2011.

[75] P. F. Felzenszwalb and D. P.Huttenlocher, “Distance transforms of sampled func-

tions,” Theory of Computing, vol. 8, no. 19, pp. 415–428, 2012.

[76] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray tracing,” in

Proceedings of the 1987 European Association for Computer Graphics, Amster-

dam, Netherlands, pp. 3–10, Aug 1987.

[77] J. J. Park, C. Johnson, B. Kuipers,“Robot navigation with model predictive equi-

librium point control,” Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, Vilamoura, pp. 4945–4952, 2012.

[78] T. Kroger, “Online Trajectory Generation: Straight-Line Trajectories,” in IEEE

Transactions on Robotics, vol. 27, no. 5, pp. 1010–1016, 2011.

[79] J. Cui, S. K. Phang, K. Ang, F. Wang, X. Dong, Y, Ke, S. Lai, K. Li, X. Li,

F. Lin, J. Lin, P. Liu, T. Pang, B. Wang, K. Wang, Z. Yang and B. M. Chen,

“Drones for coorperative search and rescue in post-disaster situation,” Proceedings

of the Cybernetics and Intelligent Systems, Robotics, Automation and Mechatron-

ics, Angkor Wat, Cambodia, pp. 167–174, Aug 2015.

[80] S. Lai, J. Cui and B. M. Chen, “Relaxed formation in cluttered environments using

rotor-craft UAV,” Proceedings of the 2015 10th Asian Control Conference, Kota

Kinabalu, pp. 1–6, May 2015.

[81] F. Liao, J.Wang, R. Teo, Y. Hu, S. Lai, J. Cui, F. Lin, “Vision-based Autonomous

Flocking Of Uavs In Unknown Forest Environment,” Proceedings of the 12th In-

ternational Conference On Control & Automation, Kathmandu, Nepal, pp. 892–

897, Jun 2016.

173

174

Chapter 7

List of Author’s Publication

Journals

1. S. K. Phang, S. Lai, F. Wang, M. Lan and B. M. Chen, “Systems design and

implementation with jerk-optimized trajectory generation for UAV calligraphy,”

Mechatronics, vol. 30, pp. 65–75, Jun 2015.

2. J. Cui, S. K. Phang, K. Ang, F. Wang, X. Dong, Y. Ke, S. Lai, K. Li, X. Li, J. Lin,

P. Liu, T. Pang, K. Wang, Z. Yang, F. Lin and B. M. Chen, “Search and rescue

using multiple drones in post-disaster situation”, Unmanned Systems, vol. 4, no.

1, pp. 83–96, Feb 2016.

3. F. Wang, P. Liu, S. Zhao, B. M. Chen, S. K. Phang, S. Lai, T. Pang, B. Wang, C.

Cai and T. H. Lee, “Development of an unmanned helicopter for vertical replen-

ishment,” Unmanned Systems, vol, 3, no. 1, pp. 63–87, Jan 2015

4. S. Lai, K. Wang, H. Qin, J. Q. Cui and B. M. Chen, “A robust online path plan-

ning approach in cluttered environments for micro rotorcraft drones,” Journal of

Control Theory and Technology, vol. 14, no. 1, pp. 83–96, Feb 2016.

5. M. Zhu, S. Lai, R. Boucher, B. M. Chen, X. Cheng and W. Kang, “Minimum

Time Trajectory for Helicopter UAVs: Computation and Flight Test,” Applied

Mathematical Sciences, vol. 7, no. 130, pp. 6475–6487, 2013

6. J. Q. Cui, S. Lai, X. Dong and B. M. Chen, “Autonomous navigation of UAV in

foliage environment,” Journal of Intelligent and Robotic Systems, in press.

175

Conferences

1. S. K. Phang, Fei Wang, Kangli Wang, Shupeng Lai and Ben M. Chen, “An ef-

fective method for autonomous localization and navigation in unknown indoor

environment using MAV,” Proceedings of the 2015 International Micro Air Vehi-

cle Conference and Competition, Aachen, Germany, Sep 2015.

2. J. Cui, S. K. Phang, K. Ang, F. Wang, X. Dong, Y, Ke, S. Lai, K. Li, X. Li, F.

Lin, J. Lin, P. Liu, T. Pang, B. Wang, K. Wang, Z. Yang and B. M. Chen, “Drones

for coorperative search and rescue in post-disaster situation,” Proceedings of the

Cybernetics and Intelligent Systems, Robotics, Automation and Mechatronics,

Angkor Wat, Cambodia, pp. 167–174, Aug 2015.

3. S. K. Phang, J. Cui, K. Ang, F. Wang, X. Dong, Y. Ke, S. Lai, K. Li, X. Li, F.

Lin, J. Lin, P. Liu, T. Pang, B. Wang, K. Wang, Z. Yang and B. M. Chen, “Urban

post-disaster search and rescue solutions with unmanned aircraft systems,” Pro-

ceedings of the 2015 International Conference on Electronics, Information and

Communication, Singapore, pp. 91–92, Jan 2015.

4. K. Li, R. Huang, S. K. Phang, S. Lai, F. Wang, P. Tan, B. M. Chen and T. H.

Lee, “Off-board vision odometry and control of an ultralight quadrotor MAV,”

Proceedings of the 2014 International Micro Air Vehicle Conference and Compe-

tition, Delft, The Netherlands, pp. 50–57, Aug 2014.

5. F. Wang, P. Liu, S. Zhao, B. M. Chen, S. K. Phang, S. Lai and T. H. Lee, “Guid-

ance, navigation and control of an unmanned helicopter for automatic cargo trans-

portation,” Proceedings of the 2014 Chinese Control Conference, Nanjing, China,

pp. 1013–1020, Jul 2014.

6. F. Wang, K. Wang, S. Lai, S. K. Phang, B. M. Chen and T. H. Lee, “An efficient

UAV navigation solution for confined but partially known indoor environments,”

Proceedings of the 11th IEEE International Conference on Control & Automa-

tion, Taichung, Taiwan, pp. 1351–1356, Jun 2014.

7. S. K. Phang, S. Lai, F. Wang, M. Lan and B. M. Chen, “UAV calligraphy,” Pro-

ceedings of the 11th IEEE International Conference on Control & Automation,

176

Taichung, Taiwan, pp. 422–428, Jun 2014.

8. J. Cui, S. Lai, X. Dong, P. Liu, B. M. Chen and T. H. Lee, “Autonomous navi-

gation of UAV in forest,” Proceedings of the 2014 International Conference on

Unmanned Aircraft Systems, Orlando, FL, pp. 726–733, May 2014.

9. S. Lai, J. Cui and B. M. Chen, “Relaxed formation in cluttered environments

using rotor-craft UAV,” Proceedings of the 2015 10th Asian Control Conference,

Kota Kinabalu, pp. 1–6, May 2015.

10. K. Wang, S. Lai, J. Cui, Y. Ke and B. M. Chen, “Navigation of micro air ve-

hicles with inconsistent GPS guidance and online path planning,” Proceedings

of the 2015 International Micro Air Vehicles Conference, Session 2A, Aachen,

Germany, September 2015.

11. K. Li, R. Huang, S. K. Phang, S. Lai, F. Wang, P. Tan, B. M. Chen and T. H. Lee,

“Vision-based autonomous control of an ultralight quadrotor MAV,” Proceedings

of the 2014 International Micro Air Vehicle Conference and Competition, Delft,

the Netherlands, pp. 50–57, Aug 2014.

12. F. Liao, J.Wang, R. Teo, Y. Hu, S. Lai, J. Cui, F. Lin, “Vision-based Autonomous

Flocking Of Uavs In Unknown Forest Environment,” Proceedings of the 12th In-

ternational Conference On Control & Automation, Kathmandu, Nepal, pp. 892–

897, Jun 2016.

13. F. Liao, S. Lai, Y. Hu, J. Cui, J.Wang, R. Teo, F. Lin, “3D Motion Planning

Of Uavs In Gps-denied Unknown Forest Environment,” Proceedings of the 2016

Intelligent Vehicles Symposium, Gothenburg, Sweden, pp. 246–251, Jun 2016.

14. S. Lai, K. Wang, K. Li, B. M. Chen, “Path planning of rotorcrafts in unknown

environment,” Proceedings of the 35th Chinese Control Conference, Chengdu,

China, pp. 10900–10905, Jul 2016.

15. M. Lan, S. Lai, Y. Bi, H. Qin, J. Li, F. Lin, B. M. Chen, “BIT*-based Path Plan-

ning for Micro Aerial Vehicles,” Proceedings of the 42nd Annual Conference of

IEEE Industrial Electronics Society, Florence, Italy, 2016, in press.

177

