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Abstract 

In the past decade, both research community and industry have witnessed the 

rapid development of unmanned aerial vehicle (UAV) and its wide 

applications in different kinds of missions. In this thesis, the issues involved in 

the mission planning of UAVs for city surveillance have been studied. In this 

thesis, the research includes two major parts. 

Firstly, a mission planning system is developed that generates mission 

plans for a group of fixed-wing UAVs with on-board Gimbaled cameras to 

provide continuous surveillance over an urban area. Given the map including 

terrain and buildings in the target area, a two-stage approach is employed to 

solve the problem. In the first stage, a set of camera locations called the 

vantage set is generated that provides complete coverage of the target area. In 

the second stage, one or several UAVs are determined to collectively share the 

vantage set and their individual paths are generated to carry out the continuous 

surveillance duty. In both stages, evolutionary algorithms are developed to 

search for the optimal solution. During the search, realistic constraints such as 

the flying capabilities of UAVs and collision avoidance are imposed to 

guarantee the feasibility of the final result. 

Secondly, the problem of perching location selection (as part of perch-

and-stare surveillance mission) for rotary-wing UAVs in a GPS-denied 

environment is studied. In this kind of mission, a UAV is dispatched to perch 

on a roof of a building to keep surveillance on a given target. The tasks are (1) 

to select a perching location form the existing offline map of the target for the 

UAV, and (2) to identify the selected perching position from the reconstructed 
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online map (in the form of 3D point cloud) and check its feasibility for landing. 

Two algorithms, one offline and one online, have been developed to deal with 

these two tasks, respectively. For offline perching location selection, a set of 

realistic geometric constraints are considered, including the dimension of the 

UAV, position of on-board camera, landing area requirement, slope of roof, 

camera range, and line of sight from candidate perching location to the target. 

For online perching location identification, the online reconstructed map in the 

form of 3D point cloud (covering the selected perching location) is assumed 

available. The roof contours are firstly extracted and constructed. They are 

then matched with the offline map to locate the selected perching location. 

Finally, the feasibility of the landing zone (around the landing location) is 

evaluated.  

The proposed algorithms to UAV surveillance mission planning (fixed-

wing and rotary-wing) have been implemented and tested. It represents an 

important step towards achieving autonomous planning in UAV surveillance 

missions. 
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CHAPTER 1   

INTRODUCTION 

An unmanned aerial vehicle (UAV) is a kind of aircraft without a pilot. It can 

be remotely controlled or fly autonomously (Yanushevsky 2011). It is usually 

equipped with different kinds of devices performing data capture, navigation, 

fly control, and all kinds of missions. The most popular UAVs are classified 

into two categories: fixed-wing UAVs and rotary-wing UAVs, as shown in 

Figure 1.1. 

  
(a) A fixed-wing UAV (b) A rotary-wing UAV 

Figure 1.1 Commonly used UAVs 

Over the past decade, both research and industry communities have 

witnessed the rapid development of UAV and its wide application in different 

kinds of missions, for its advantages of light weight, low cost, high 

manoeuvrability, and so on. In military applications, UAVs can be utilized for 

missions such as enemy target attack, ground convoy protection, boundary 

loitering, etc. In civil applications, UAVs can be used in geological survey, 

city monitoring, search and rescue, agriculture, even in logistics. One of the 

important missions, both military and civil, is city surveillance. For example, a 

UAV can be used to fly over an enemy city to collect military intelligence. A 
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UAV can also be deployed to monitor a region/target continuously in urban 

environment to detect crime. 

In this chapter, the applications of UAVs are firstly briefly introduced, 

followed by a more detailed description of their applications in city 

surveillance. Then, by reviewing the state-of-the-art research of UAVs in city 

surveillance, the motivation of the thesis is presented. Furthermore, the 

research objectives and scope are descripted in details. Finally, the 

organization of the thesis is outlined. 

1.1. Unmanned Aerial Vehicle (UAV) and Its Applications 

The first UAV was invented in England in 1917. Almost thirty years later, the 

V-1 UAV was created and used to attack civil targets in World War Ⅱ. In 

1995, the Ryan Firebee was produced to carry out reconnaissance task in 

American army. Since the War in Afghanistan, as the rapid development of 

electronic information technology and aeronautical engineering, the 

applications of UAVs have been on a rise in both military and civil missions.  

  
(a) UAV in attack (b) UAV in spraying work 

Figure 1.2 Examples of UAV applications 

In military scenarios, UAVs can be used in convey protection for 

ground vehicles (Ding et al. 2010). Some fixed-wing UAVs were designed to 

load weapons to execute attack mission (Min et al. 2013) as shown in Figure 
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1.2a. In civil scenarios, existing and potential applications of UAVs include 

surveillance, structure inspection, aerial photography, exploration, search and 

rescue, etc. In agriculture, UAVs have been used to do spraying work (Huang 

et al. 2008) as shown in Figure 1.2b. Compared to the manual spraying, using 

UAVs can protect farmers from poison in the pesticide. In addition, UAVs can 

obtain high-resolution image of the farm land, contributing to monitoring the 

farmland and acquiring the vegetation growth status. Exploration and mining 

is another important application area of UAVs, as the mineral resources are 

usually located in areas such as mountains, deserts, deep sea, etc. Some fixed-

wing UAVs also serve in meteorological reconnaissance work (Lin and Lee 

2008). For example, UAVs can be launched into the eye of the typhoon to 

collect data for scientific researches. In civil engineering, UAVs with payload 

can undertake the job of architecture construction (Willmann et al. 2012). 

Some researchers even proposed the idea to use UAVs in autonomous 

logistics (Dogo et al. 2011). Recently, Amazon planned to use UAVs to 

perform express delivery service and some preliminary tests have been carried 

out. 

1.2. Application of UAVs in City Surveillance 

One important task among all the applications of UAVs is city surveillance, 

which has drawn increasing attentions recently. In city surveillance mission, 

UAVs are widely used to conduct target searching, target tracking, or 

information gathering. In such a mission, the UAV equipped with different 

kinds of sensors are dispatched to cover an area, which is called continuous 

surveillance. For example, in (Flint et al. 2002, Tisdale et al. 2009), the 
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problem was investigated for a team of UAVs to search for a stationary target. 

UAVs are also used to track moving ground targets in urban area (Kim and 

Kim 2008). In such kind of missions, the fixed-wing UAVs are more suitable 

than rotary-wing UAVs due to longer endurance and higher flying speed, etc. 

However, there are also some challenges to be faced. For example, airport is 

indispensable for fixed-wing UAVs to take off and land. In addition, the 

planned flying path of the UAV should meet the criteria of the dynamic 

constraints such as turning radius, climbing/diving angle, etc. Moreover, 

hazard cannot be ignored when the UAV is dispatched to do surveillance in an 

enemy city. 

On the other hand, in urban security management, there exist some 

regions/targets that are difficult to reach but need to be monitored 

continuously, such as traffic accident spot, and communal facilities to be 

inspected. In such situations, a UAV can be deployed to reach the target 

region and land at a feasible spot, preferably on roof of buildings. Its on-board 

camera can then be used to monitor the target and send information back to the 

control station. This kind of mission is called perch-and-stare surveillance, 

during which GPS is usually unavailable. Besides, UAVs are also dispatched 

to conduct remote inspection, such as industrial plant inspection (Fumagalli et 

al. 2012), power line inspection (Wang et al. 2010), etc. In such applications, 

the perching location for the UAV is to be selected, and the object should be 

within the view of the UAV. Rotary-wing UAVs are more suitable for such 

missions due to its smaller size and more flexible flying abilities. For example, 

no substantial landing/take-off area is required for a rotary-wing UAV for the 

sake of its vertical take-off and landing ability. In addition, its hovering ability 
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and its small size make it well suitable to land on the roof of a building to 

perform the perch-and-stare mission. Challenges cannot be avoided in such 

mission, for example, there are lots of buildings or other objects blocking the 

line of sight. In addition, GPS is often denied in the urban environment, so a 

map is to be built by the sensors onboard the UAV. However, the available 

sensors are limited by the payload of the rotary-wing UAV. 

1.3. State-of-the-art of Researches on UAV in City Surveillance 

1.3.1. Coverage path planning for continuous city surveillance with 

fixed-wing UAVs 

In continuous city surveillance mission, the route of the UAV needs to be 

planned from one site to another, minimizing the path length or completion 

time, while satisfying various constraints, such as collision avoidance, time 

window, visiting sequence and so on. This kind of problem is called UAV 

path planning, which has drawn much attention. 

The UAV path planning problem is similar to the travelling salesman 

problem (TSP) in vehicle route planning, except that the UAVs are subject to 

flying constraints. If more than one UAV is used in surveillance mission, the 

cooperation and task allocation need to be considered. This kind of problem is 

called multi-UAV path planning, which is similar to the multi-travelling 

salesman problem (MTSP). Some researchers considered additional 

constraints, such as time window (Lum and Rysdyk 2008), different tasks 

(Bertuccelli et al. 2004), and so on. This kind of more complicated problem is 

similar to the vehicle routing problem (VRP). A method of mixed integer 
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linear program (MILP) was developed to solve the problem of UAV VRP with 

time window (Weinstein and Schumacher 2007). 

In the case of threat existence in the target area, the problem is termed 

as threat-aware path planning. There are various kinds of threat, such as 

enemy radars, missiles, or terrain obstacles. Sometimes, UAVs fly close to the 

terrain of the target area, where there are some aerial obstacles, such as 

mountains. In such a situation, a collision-free path needs to be generated. 

Some researchers utilized evolutionary algorithm to optimize the path without 

terrain collision (Hasircioglu et al. 2008). Others used graph-based method to 

find feasible paths (Shanmugavel et al. 2010). However, in other situations, 

the UAV must penetrate into the threat area, and it is impossible to avoid the 

threat totally. To deal with this kind of problem, the probabilistic model was 

proposed to evaluate the threat (Pfeiffer et al. 2005). The optimization of the 

path is a trade-off between threat and flying time. The mathematical model of 

threat from enemy radar was utilized to guide the planning of stealthy path 

(May et al. 2010). 

In other missions, a UAV is tasked to cover a target area to collect 

information. In such mission, sensor coverage is a critical problem. There are 

always buildings with relatively high densities, bringing about occlusion to 

sensor coverage. Such problem is called “coverage path planning”, which has 

also drawn much attention. Much reported works focused on the 

decomposition of target area with pre-defined path pattern. Some researchers 

proposed the algorithm of Boustrophedon Cellular Decomposition (De 

Carvalho et al. 1997), where the robot move back and forth to cover the whole 

area. Others utilized similar approach to cover target areas with complex 
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topology (Oksanen and Visala 2009, Li et al. 2011). Ahmadzadeh et al. (2008) 

proposed to optimize the UAV path aiming at maximizing the coverage area in 

critical time interval, where there was a fixed camera on-board the UAV, and 

the field of view was a quadrilateral changing with the UAV posing angle. 

Some researchers considered the 3D structure of the target area, where 

the line of light from the UAV to some ground points may be occluded by 

buildings (Jakob et al. 2010). UAVs with on-board Gimbaled camera were 

also utilized in city surveillance for 3D urban structure coverage (Cheng et al. 

2008). In our previous research, a problem of continuous coverage on an urban 

area with a group of UAVs has been investigated. The problem was 

decomposed into two stages. In the first stage, a set of camera locations are 

determined to cover the whole urban area. In the second stage, the optimal 

path was fitted to the go through all the camera locations (Geng et al. 2013). In 

their work, the camera is assumed to be facing downward. If the camera with 

pan-tilt ability is implemented, a more optimized solution will be needed for 

this problem. In addition, there is potential hazard threat, such as missiles and 

enemy radars, in city surveillance mission.  

1.3.2. Landing location selection for rotary-wing UAVs in perch-

and-stare mission 

In the perch-and-stare mission, the UAV is dispatched to perch on a spot to 

conduct enduring reconnaissance on a target region. In the mission, the most 

important task is to select a location for landing. The selection problem can be 

categorized into two types, offline selection and online selection. In offline 

selection, an existing 3D map of the target region (such as google map or 
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OpenStreetMap) is available, and the major task is to select a perching 

position for the UAV in the map. The map usually has a large coverage, but 

the accuracy is not high enough. In addition, the dynamic process of landing is 

not taken into consideration. On the other hand, in online selection, the UAV 

is assumed hovering above the landing location (selected in offline selection). 

The task is to identify this selected landing position from the map constructed 

in real time based on the data collected by the sensor on-board the UAV. The 

range of the map is limited, but the map consists of detailed 3D structures of 

the surrounding environment. As the map is updated dynamically, the online 

landing location selection process is carried out iteratively during the landing 

process of the UAV. 

 Offline perching location selection for rotary-wing UAVs 

In the perch-and-stare mission, different kinds of criteria for perching location 

selection have been proposed, which can be categorized into two groups, 

geometric criteria and mission criteria. Here are some commonly used 

geometric criteria. For example, the landing location should be large enough 

without too much slope and roughness and absence of obstacles (Takahashi et 

al. 2013). Others calculated static stability for helicopter based on gravity 

distribution (Scherer et al. 2012). While, mission criteria depend on individual 

tasks. Park et al. (2015) utilized energy consumption as a criterion in indoor 

landing site selection for quadrotor. Mejias, Fitzgerald et al. (2009) considered 

gliding distance and human injuries avoidance in forced landing task for fixed 

wing UAV. 
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 Online landing location selection for rotary-wing UAVs 

There have been much reported works on the problem of online autonomous 

landing location selection for UAVs. Different kinds of sensors have been 

used and different types of landing locations were addressed. Based on the 

types of on-board sensor and landing location, the related works can be 

classified as follows: 

(1) Landing on a known stationary target in a GPS available environment. 

Shakernia et al. (2002) developed a system to guide a rotary-wing 

UAV to land on a designed target. The landing target is predesigned as 

a piece of paper with monochrome blocks. The navigation is carried 

out based on the signal from the GPS and IMU. Threshold and corner 

detection are implemented to identify the position of the landing target. 

The major drawback is that the landing target detection algorithm can 

only be applied for certain targets with grayscale images. Kim et al. 

(2003) added barometer to estimate the height of the UAV besides the 

GPS receiver, as GPS signal is sometimes missing, e.g., in the case of 

occlusions. Data from other sensors, such as IMU are often combined 

to constrain the drift of GPS estimation (George and Sukkarieh 2005). 

The accuracy comparison of landing with and without IMU 

compensation demonstrated the positive effect of IMU. Rackliffe et al. 

(2011) combined geographic information system (GIS) information 

with sensor data to construct a probability map, then the feasible 

landing site can be selected based on the map. 

(2) Landing on a known stationary target with camera in GPS-denied 

environment. Some researchers used a camera to guide the helicopter 
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to land on a helipad marker (Saripalli et al. 2003). The colour image is 

converted to binary by thresholding. The algorithm is restricted by the 

constraints that the camera is fixed downward and perpendicular to the 

ground, and the assumption that the intensity value between the helipad 

and the surrounding environment is large enough. In most marker 

based landing algorithms, the intrinsic camera parameters are 

calibrated and fixed before the mission. In (Santamaria-Navarro and 

Andrade-Cetto 2013), the authors utilized uncalibrated camera to 

estimate the position of the UAV and guide the landing of the UAV. 

The focal length is estimated by building a relation between the camera 

and the frame of the landing target. Verbandt et al. (2014) developed a 

new marker detection algorithm for autonomous landing of VTOL 

UAVs based on edge detection and adapted Hough transform, and a 

binary classifier is trained based on support vector machine to verify 

the robustness against varying conditions on occlusion, sharpness, and 

lighting. The experiments on a quadrotor UAV demonstrated its ability 

for precision landing on a circular landmark. Other researchers utilized 

monocular camera to simulate the stereo vision by collecting images 

along one direction parallel to the ground (Sereewattana et al. 2014). 

Four different colour circles made up the marker, the positions of 

which were extracted by Hough transform. The height of the UAV is 

determined by stereo vision algorithm. However, the assumption of 

fixed camera direction may not be guaranteed. Different types of 

markers can be utilized for vision tracking in autonomous landing of 

UAV, such as a pattern of several LEDs, a Bayer pattern of table tennis 
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balls, or a “H” shape landing pad (Masselli et al. 2014). Flying 

experiments were conducted to compare the three types of landing 

pads. All the three methods have the comparable accuracy. 

(3) Landing on an unknown target in GPS allowed environment. In 

(Scherer et al. 2012), a system was developed to conduct hazard 

detection and avoidance during the landing of a UAV. The system 

consists of a GPS receiver, a monocular camera, and a laser altimeter. 

Structure from motion algorithm is applied to create the terrain map 

from the image sequences collected by the single camera. Once a safe 

site is detected in the terrain map, the UAV is guided to the site by the 

GPS and laser altimeter. The accuracy of landing is good, however, the 

laser altimeter is very heavy that it can only be applied on a full scale 

helicopters. 

(4) Landing on an unknown area with camera in GPS-denied environment. 

Garcia-Pardo et al. (2002) used a single colour camera to detect safe 

landing places, based on the idea that the contrast at the boundary of 

obstacles is higher than flat areas. The implementation of the algorithm 

is restricted by its assumption that the terrain is flat. Theodore et al. 

(2006) introduced a vision based autonomous landing system for 

rotary-wing UAV. The algorithm was developed for terrain map 

reconstruction and landing zone detection. Flight trials were conducted 

on Yamaha RMAX helicopter. The terrain map is constructed by 

determining the disparities between features in two consecutive images 

collected by stereo camera. The optimal landing point can be selected 

from the map and the point is tracked during the descent of the UAV. 
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Some researchers utilized stereo camera to guide the UAV to land on 

an unknown area (Park et al. 2015). The flatness map is constructed 

from the depth image collected by the stereo vision system. Others 

proposed to use a single downward looking camera and an IMU for 

landing spot selection for micro UAV (Forster et al. 2015), in which a 

2D elevation map is constructed by triangulate images from multiple 

views using recursive Bayesian estimation. 

(5) Landing on an unknown area with laser range finder in GPS-denied 

environment. Whalley et al. (2009) presented a system of low altitude 

navigation and landing for helicopter UAVs. The algorithm for 

navigation is based on quasi 3D A* route planning approach. The 

landing site selection is based on the map constructed by the 3D point 

cloud collected by the LiDAR on-board the UAV. Fly tests have been 

carried out on a Yamaha RMAX helicopter. Sevcik et al. (2010) 

explored the problem of landing site detection and selection in the 

environments obscured by smoke for UAV with a laser range finder. 

The terrain map was constructed from the point cloud collected by the 

laser. Then, the irregularly spaced terrain map was converted to a 

regularly spaced DEM, which is separated into a slope map and a 

roughness map in a further step. Finally, the most suitable landing zone 

is selected based on the two maps. The algorithm was tested offline 

with the collected data by the UAV. It was found that the existence of 

smoke has bad effect on the performance of landing zone detection. 

For most realistic applications, there are no markers to guide the UAV 

to land. In addition, GPS signal is also not available in many scenarios. Laser 
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range finder can build a relatively high resolution map than camera, so laser is 

more suitable for achieving accurate landing. In the perch-and-stare 

surveillance mission, the UAV is tasked to land on a preselected roof spot to 

keep a line of sight to a target. So the landing location is not only selected 

from the online collected data, but also should be matched with the preselected 

location from offline perching location selection. Based on our knowledge, 

there has been no reported work on solving such a problem and providing a 

complete solution for online landing location selection and matching with 

offline map. 

1.4. Research Motivation 

Based on the above literature study in the area of UAV surveillance mission 

planning, the following research gaps have been identified, which become the 

focus of the research effort presented in this thesis. 

For the mission of continuous surveillance with fixed-wing UAVs, the 

problem of coverage path planning of UAV has been investigated. Some 

researchers planned an occlusion-aware path for a UAV with a sensor pointing 

downward to covering an urban target area. Others considered path planning 

of UAV with gimbaled camera for maximizing coverage in wiled area. 

However, no researches have combined both the two issues together. That is to 

say, there’s lack of research on the problem of coverage planning of fixed-

wing UAV with gimbaled camera in an urban area with hazard existence. 

For the perch-and-stare surveillance mission with rotary-wing UAVs, 

there are some researches on the problem of offline perching location selection 

in urban area. In the selection, some geometric criteria and mission criteria are 
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considered. For the mission criteria, none of the researches considered the line 

of sight condition in the selection of the UAV perching location in urban 

environment. 

Although there have been much reported work regarding online 

landing location selection for rotary-wing UAVs, there is a lack of a complete 

solution on the integration of landing location selection and registration with 

offline map. 

1.5. Research Objectives and Scope 

1.5.1. Research objectives 

The following specific research objectives are proposed in this study: 

(1) To develop a solution algorithm of optimal flying path planning for 

fixed-wing UAVs with an on-board Gimbaled camera to cover any 

given urban area (in the form of 3D map) with hazard existence. 

(2) To develop a solution algorithm for selecting feasible perching 

locations on building roofs from an offline 3D map for a rotary-wing 

UAV in the perch-and-stare mission. 

(3) To develop a solution algorithm for online landing location 

identification and feasibility checking for a rotary-wing UAV in the 

perch-and-stare mission. For landing location identification, 

registration between online collected point data with offline should be 

achieved. 

1.5.2. Research scope 
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For fixed-wing UAV flying path planning, the following research scope is 

covered: 

(1) In order to cover the whole urban environment, a set of vantage points 

are to be generated. 

(2) At each vantage point, the optimal view direction is to be calculated. 

(3) The sequence of the UAVs visiting the vantage points is to be 

determined.  

(4) Smooth and continuous flying paths are to be fitted. 

For rotary-wing UAV offline perching location selection, the following 

research scope is covered: 

(1) A set of realistic perching location selection criteria are proposed. 

(2) The algorithm of line of sight check is developed. 

For rotary-wing UAV online landing location selection and registration, the 

following research scope is covered: 

(1) The method of filtering online collected point cloud is developed. 

(2) The method of extracting roof contour is proposed. 

(3) The algorithm of registration between the online collected 3D point 

cloud with the offline map is developed. 

(4) The criteria of online landing location evaluation is proposed and 

demonstrated. 

1.6. Organization of the Thesis 

In the remaining chapters of the thesis, each one covers a topic of the research 

objectives. Here’s a brief overview:  
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Chapter 2 is focused on the problem of fixed-wing UAV path planning. 

In the problem, a realistic urban environment with hazard existence is 

modelled, and the method of path planning for covering the whole area is 

developed. 

Chapter 3 solves the problem of landing location selection for rotary-

wing UAV within an offline map to keep a line of sight to a target.  

Chapter 4 developed a complete solution of online landing location 

selection for rotary-wing UAV based on 3D point cloud and 2½D map.  

Chapter 5 draws the conclusions based on the works discussed in the 

thesis and gives suggestions for possible future work. 
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CHAPTER 2  

COVERAGE PATH PLANNING FOR 

CONTINUOUS CITY SURVEILLANCE WITH 

FIXED-WING UAVS IN HAZARDOUS 

ENVIRONMENT 

In military missions, collecting enemy intelligence is an important but 

dangerous task. To reduce casualties, UAVs are often dispatched to conduct 

surveillance missions instead of scouts. In this kind of mission, the deployed 

UAVs usually fly over a target area and collect information with on-board 

sensing equipment, such as camera. The objective is to cover the whole target 

area and make sure that each point on the surface of the target area is captured. 

In this mission, factors to be considered include flying duration, the sensing 

ability of the on-board equipment, the distribution of enemy military facilities, 

etc. Such surveillance mission is illustrated in Figure 2.1. 

 

Figure 2.1 UAV surveillance mission 
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2.1. Background 

Nowadays, UAVs are widely used for surveillance tasks. The purpose of 

surveillance could be tracking of ground targets (Chen and Dawson 2006, 

Kang and Hedrick 2009), information gathering and classification at certain 

locations (Quigley et al. 2005, Zhang et al. 2013), or to provide continuous 

surveillance coverage over a certain area. Coverage of an area with robots in 

general was first studied by (Zelinsky et al. 1993) over a grid in 2D space with 

a method based on the distance transform path planning. In (Savla et al. 2007), 

vehicles following Dubins path, a popular 2D path formation for UAVs, are 

guided to provide complete coverage of an area with path planning method 

derived from those intended for the disk covering problem. When UAVs are 

considered, a certain level of analogy with the 2D model can be built with a 

series of simplifications, e.g., the target area is flat, the camera faces 

downward and the UAV flies at a fixed altitude. Some works under these 

assumptions can be found in (Berger et al. 2009, Jones 2009).  

In real-life surveillance tasks, especially those over urban environment, 

the line of sight between the sensor and a ground point of interest (POI) might 

be blocked by terrain or building. Because of this occlusion effect, more 

realistic camera models are provided in (Jakob et al. 2010, Kim and Crassidis 

2010). In these works, the field of view (FOV) of a sensor on-board a UAV is 

modelled as a cone facing downward. Any point inside the cone and with a 

direct line of sight to the sensor is considered as visible. A more realistic 

model is to consider the pan-tilt capability of the sensor. In this way, the 

camera’s axis can be optimized for better performance, e.g., maximum 

coverage. 
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2.2. Related Works 

2.2.1. Coverage path planning for UAV 

In (Sujit and Beard 2007), multiple UAVs are deployed in a task to explore an 

unknown region with obstacles. A dynamical map is created for planning 

paths in real time, considering the constraints of turning radius, sensor range, 

and communication range. Maza and Ollero (2007) investigated the problem 

of covering an area in searching for possible objects by a group of UAVs with 

Gimbaled camera. The searching areas are partitioned and the paths are 

predefined to follow a zigzag pattern. Özalp and Sahingoz (2013) planned 

optimal path for UAV within a simulated 3D environment with threatening 

radars. 

2.2.2. Path smoothing 

In the UAV path planning problem, a critical sub-problem is path 

representation, which can be categorized into two types. The first group is 

composite path by connecting simple geometric elements, such as straight 

lines and arcs, tangentially. A typical example is the use of Dubins paths, 

which are widely used for 2D problems (Nigam and Kroo 2008, Jakob et al. 

2010). For this kind of path, the UAV’s capability constraints can be 

incorporated in path planning easily. The major drawback is that the paths are 

only C
1
continuous, which brings about difficulty for control execution. The 

other type of representation contains spline-based paths, which are inherently 

C
2
 continuous (Nikolos et al. 2003), such as Bezier curve (Macharet et al. 

2010), B-spline curve (Berglund et al. 2003), etc. In our problem, C
2
 

continuous path is also to be used, which is represented by B-spline curves. 



Chapter 2 Coverage Path Planning for Continuous City Surveillance with Fixed-wing UAVs 

in Hazardous Environment 

20 

 

2.3. Concepts Defining 

2.3.1. The city model 

The city environment is modelled in a simplified manner by including only 

terrain and buildings. The terrain is represented in the form of digital elevation 

map (DEM), and the buildings are described as simple geometry objectives, 

such as cuboid, cylinder, dome, and regular prism. The hazard points are either 

on top of the buildings or on the ground. The whole city surface is discretized 

into a set of sampled surface points (sPs). Figure 2.2 shows an example city 

model, where the red dots represent the hazard points, and blue points the 

surface points. 

 

Figure 2.2 City model in coverage path planning 

2.3.2. The camera model 

The camera on-board a UAV takes pictures at a certain frequency with a 

certain angle of view (AOV) γv, which is the angular extent of a given scene 

that is imaged by the camera. The range of AOV is called the angle of 

coverage, as shown in Figure 2.3a. The UAV camera can be rotated to adjust 

its orientation. For a given surface point sP (x, y, z), a possible camera position 

cP that covers sP is on a hemi-sphere centred at sP, determined by four 
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parameters (R, α, β, θ), as shown in Figure 2.3b and 2.3c, respectively. The 

procedure for randomly generating a possible camera configuration is as 

follows: 

(1) A hemisphere with radius R (Rmin ≤ R ≤ Rmax) is generated, centred at 

sP, where Rmax is the maximum detection range of camera and Rmin is 

the minimum safety distance to avoid collision to surface. Secondly, a 

point cP on the hemisphere is randomly generated with two angles, 

elevation angle α (0 ≤ α ≤ αmax), and azimuth angle β (0 ≤ β ≤ 2π), 

where αmax is the maximum elevation angle. 

(2) Feasibility checking. If the line (cP-sP) does not interfere with 

buildings, cP is considered feasible. 

(3) Determination of the optimal view orientation. The optimal view 

orientation is defined as the one when the coverage area reaches the 

maximum. The angle θ between view direction (cP-sP) and the optimal 

view orientation (cP-G) can be calculated as: 
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However, when θ=α, as shown in Figure 2.3d, sP is at the camera’s 

AOV’s boundary, which is vulnerable to camera distortion. To avoid 

this, the optimal value of θoptimal is set as: 
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where, θ0 is set between 1˚~2˚ as a safety factor. 
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Figure 2.3 Gimbaled camera configuration 
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A camera configuration vP (x, y, z, α, β, θ) is considered feasible if the 

following conditions are satisfied: 

(1) Line (cP-sP) is inside the AOV; 

(2) Line (cP-sP) does not interfere with buildings or any other objects; 

(3) The distance of (cP-sP) is within the range [Rmin, Rmax]. 

As shown in Figure 2.3e, sP3 is outside the AOV, sP1 is blocked by the 

building, only sP2 is feasible. 

2.4. The Overall Approach 

A feasible UAV flying path is one that the integration of the coverage points at 

each instance equals to the set of all the sampled sPs. Since it is difficult to 

find the optimal path directly, the problem is decomposed into two sub-

problems: waypoints determination and path planning. As the UAVs are 

tasked to cover all the sPs, not only the coordinates of waypoints on the path 

are to be determined, the camera view direction at each waypoint also needs to 

be determined. A feasible set of waypoints is a set of camera configurations 

vPs (called the vantage set) satisfying the following conditions: 

(1) The combination of the coverage at each vP equals to all the surface 

points sPs; 

(2) Each vP is unique; 

(3) The coverage set of any vP cannot be fully covered by any other 

camera configurations. 

However, the problem of finding an optimal vantage set is still difficult, so it 

is decomposed further into two sub-steps: 
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(1) View direction generation for each surface points: For each sP, the 

possible camera position (cP) covering sP is assumed on the 

hemisphere centred at sP with a radius R (R is within a feasible range 

but not fixed), e.g., cP1, cP2, and cP3 in Figure 2.4a. If there is no 

hazard point in the area, the direction that covers the largest number of 

surface points (including sP) will be selected as the optimal view 

direction. If there are hazard points in the area, the cP that results in the 

minimum threat will be selected to form the optimal view direction. 

Therefore, for each sPi, an optimal view direction (vDi) is identified. 

The collection of vDs for all the sampled surface points form a vD set. 

Building

cPi1 cPi2

cPi3

sPi

vPi1 vPi2

vPi3

 
(a) Possible camera positions 

Building

vP1

vP2

vP3
vP4

vP5

sP1 sP2 sP4sP3

sP5

 
(b) Coverage selection 

Figure 2.4 Possible camera positions and coverage 
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(2) Generation of vantage set: In this step, an optimal set of camera 

positions, called the vantage set, i.e., vPs, are to be identified based on 

the given vD set. As shown in Figure 2.4b, since not all the vPs are 

needed to cover all the sPs, an optimal subset is to be determined. The 

basic requirements for the vantage set are: (i) each sP is covered, (ii) 

the visiting sequence of vPs is fixed, and (iii) the UAV flying 

capability constraints are satisfied. As for the optimization objective, 

there are two scenarios: 

a) If there are no hazard points in the area, the objective is to 

minimize the total estimated path length; 

b) If there are hazard points in the area, the objective is to minimize 

the accumulated threat. 

Based on the analysis above, the overall approach is summarized as 

follows: 

(1) Given a set of discrete surface points sPs, for each sPi, the optimal 

camera view direction (vDi) to cover it is identified. The collection of 

vDs for all the sampled surface points form a vD set. 

(2) Given a vD set, an optimal vantage set vPs is to be selected for the vD 

set, and the visiting sequence to the vantage points are to be 

determined. In addition, the 3D flying path is fitted to the sequenced 

vantage points. 
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2.5. Determination of the View Direction 

As the Gimbaled camera can be rotated to adjust its orientation, there are 

countless camera configurations covering a given sP (within a certain distance 

range). The objective is to find the optimal camera configuration for each sP. 

2.5.1. Fitness of vantage set 

The criteria to evaluate any camera configuration consist of two aspects: 

(1) The total number of surface point covered; 

(2) The distance to each hazard point. 

If there is no hazard point in the city, the fitness function is simply total 

number of surface point covered. Otherwise, the fitness function is the sum of 

distance to each hazard point. Therefore, the fitness function is given as: 

 
,

,
M

ii

N no hazard
F

d hazard exist


 


 (2-3) 

where N is the total number of surface point covered, M is the total number of 

hazard points, and di is the distance to i-th hazard point. 

2.5.2. Method to generate the optimal view direction 

For each sP, a corresponding cP is to be determined. As there are three 

parameters (R, α, β) to be calculated, the solution space is of high complexity. 

A simplified method is adopted here to randomly generate a radius, and then 

the two angles are selected with the best fitness. As the parameters to be 

optimized are angles of the view direction, it is quite convenient to model the 

angles as particles of particle swarm optimization (PSO), and the update rule 

of the particle can be applied elegantly, which makes PSO to be a quite 
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suitable algorithm for this problem. Here, the two angles are selected using a 

parallel asynchronous PSO method. 

A certain number of camera angle configurations are initialized as 

particles, and their positions are updated to find the global best particle with 

the maximum fitness. A particular view direction (α, β) is represented as a 

particle position xi (i = 1, 2, …, N), where N represents the number of particles. 

The change of view direction is represented as a particle velocity vi. The 

fitness of a particle is calculated using Equation (2-3). The pseudo code for 

this method is as follows: 

Initialize 𝑁 particles with random positions and velocities, initialize the 

previous best position (pbest) of each particle and the global best position 

(gbest) 

Do 

    For each particle 

Calculate particle fitness with Equation (2-3) 

If the current particle fitness is better than the particle’s previous best 

fitness, set the current position as the pbest  

Choose the particle with the best fitness value of all the particles as 

the gbest 

Update particle position and velocity with Equation (2-4) 

    End For 

If the fitness function changes very little in 10 iterations or reach the 

maximum iteration 

End Do 

Output the global best position as the solution 

 

The randomly initialized particles are updated at each iteration k. 

Denote the position of the i-th particle at iteration k as 𝒙𝒊
𝒌, the previous best 

position of a particle as 𝒙𝒊
𝒑𝒃𝒆𝒔𝒕

, and the global best position of all the particles 

as 𝒙𝒈𝒃𝒆𝒔𝒕. 𝒙𝒊
𝒌 updates its position according to the fitness of 𝒙𝒊

𝒑𝒃𝒆𝒔𝒕
 and 𝒙𝒈𝒃𝒆𝒔𝒕 
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through moving towards 𝒙𝒊
𝒑𝒃𝒆𝒔𝒕

 and 𝒙𝒈𝒃𝒆𝒔𝒕. As the particles are on a sphere, 

the shortest path of the particle is to move along the great circles of the sphere. 

As shown in Figure 2.5a, 𝒙𝒊
𝒌  moves along the great circle (green circle) 

determined by 𝒙𝒊
𝒌−𝟏 , 𝒙𝒊

𝒌  and the centre sP. After it reaches an intermediate 

position 𝒙𝒊
𝒊𝒏𝒕𝒆𝒓𝟏, it moves towards 𝒙𝒊

𝒑𝒃𝒆𝒔𝒕
 along the great circle (blue circle) 

determined by 𝒙𝒊
𝒌 , 𝒙𝒊

𝒑𝒃𝒆𝒔𝒕
 and the centre sP. After it reaches another 

intermediate position 𝒙𝒊
𝒊𝒏𝒕𝒆𝒓𝟐, it moves towards 𝒙𝒈𝒃𝒆𝒔𝒕 to 𝒙𝒊

𝒌+𝟏 along the great 

circle (the orange circle) determined by 𝒙𝒊
𝒊𝒏𝒕𝒆𝒓𝟐, 𝒙𝒈𝒃𝒆𝒔𝒕 and the centre sP. The 

final result is that 𝒙𝒊
𝒌 moves to a new position 𝒙𝒊

𝒌+𝟏 along the great circle (the 

red circle) determined by 𝒙𝒊
𝒌, 𝒙𝒊

𝒌+𝟏 and the centre sP.  

As the calculation is quite complex, a simplified update rule is used, 

that is, the two parameters (α, β) of the particle are updated separately. Particle 

𝒙𝒊
𝒌  updates its position according to 𝒙𝒊

𝒌−𝟏 , 𝒙𝒊
𝒑𝒃𝒆𝒔𝒕

, and 𝒙𝒈𝒃𝒆𝒔𝒕 . Figure 2.5b 

shows how to update 𝒙𝒊
𝒌 according to 𝒙𝒊

𝒑𝒃𝒆𝒔𝒕
. Denote 𝒙𝒊

𝒌 = (𝛼𝑘 , 𝛽𝑘), 𝒙𝒊
𝒑𝒃𝒆𝒔𝒕

=

(𝛼𝑝𝑏 , 𝛽𝑝𝑏), and 𝒙𝒊
𝒊𝒏𝒕𝒆𝒓𝟏 = (𝛼1, 𝛽1), the particle updates 𝛼𝑘  to approach 𝛼𝑔𝑏 , 

and updates 𝛽𝑘 to approach 𝛽𝑔𝑏. As a result, 𝛼1 = 𝑟1 ∗ (𝛼𝑝𝑏 − 𝛼𝑘), 𝛽1 = 𝑟2 ∗

(𝛽𝑝𝑏 − 𝛽𝑘). The update according to 𝒙𝒊
𝒌−𝟏, and 𝒙𝒈𝒃𝒆𝒔𝒕 are in a similar way. So, 

the update rule is: 

     1

1 1 2 2 *w c R c R         

 

k k pbest gbest

i i i i i i

i i i

v x x x x x x

x x v
 

(2-4) 

where R1 and R2 are row vectors, the element of which are random numbers in 

the range of [0, 1], w, c1 and c2 are weights to determine the contribution of 

𝒙𝒊
𝒌−𝟏, 𝒙𝒊

𝒑𝒃𝒆𝒔𝒕
 and 𝒙𝒈𝒃𝒆𝒔𝒕. 
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(b) Simplified update rule 

Figure 2.5 PSO update of a particle 

2.5.3. Numerical tests 

A simple numerical experiment has been carried out to test the method of view 

direction determination. The size of the city to be reconnoitred is 4m×4m, and 

surface points are sampled with an interval of 2m. In the scenario with hazard, 

there is one hazard point located at position with coordinate of (1, 1). Table 
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2.1 shows the parameters used in the numerical experiment. In this experiment, 

50 view directions (α, β) are initialized as particles randomly. 

Table 2.1 Parameters in view direction determination 

Camera 

γv Rmin Rmax αmax 

45° 10m 300m 50° 

PSO for vantage point initialization 

Number of particles  Max iteration θ0 

50 50 3° 

 

The results of view direction determination are shown in Figure 2.6. In 

the scenario without hazard, it is obvious that each camera selects the direction 

where they can cover the most surface points. As shown in Figure 2.6a, each 

camera cover 4 surface points, which can also be verified by mathematic 

calculation analytically. However, in the scenario with hazard, each camera 

selects the direction where they can avoid the hazard most. As shown in 

Figure 2.6b, the cameras are located at the farthest position to avoid hazard 

under the condition that they cover their own surface point respectively. 

  

(a) View directions without hazard (b) View directions with hazard 

Figure 2.6 Results of view direction determination 

2.5.4. Comparison of the PSO and the brute-force method 

A numerical experiment has been carried out to compare the PSO method with 

the brute-force search method (BFS), a general method to solve problems 
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systematically enumerating all possible candidates for the solution. The size of 

the city to be reconnoitred is 20m×20m, and surface points are sampled with 

an interval of 0.67m. The city is shown in Figure 2.7, with four buildings 

(colour blocks) and two possible hazard points (red square). Table 2.2 shows 

the parameters used in the numerical experiment. Here, the BFS is to sample 

some positions in the solution space uniformly, and calculate the fitness for 

each position to find the best solution. As the position on the hemi-sphere is 

determined by two parameters, α (0< α < αmax) and β (0 < β < 2π), the position 

sampling is carried out as follows: 

(1) Generate n longitude circles (see Figure 2.8, the colour circles) each 1 

radian on the hemi-sphere; 

(2) Generate n positions (see Figure 2.8, the pink points) each 1 radian on 

the longitude circles; 

The total sample position number is 𝑁 = ∑ 𝑛 × cos(𝑖/𝑛)
𝑖≤𝛼𝑚𝑎𝑥
𝑖=0 . In the 

experiment, n=16 and n=32 are chosen to do sampling, as a result, the total 

sample number are 1182 and 4687, respectively.  

Table 2.2 Parameters in comparison tests between PSO and BFS 

Camera 

γv Rmin Rmax αmax 

45° 10m 300m 50° 

PSO method 

Number of particles Max iteration 

50 50 
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Figure 2.7 City environment for comparison test of PSO and BFS 
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Figure 2.8 Position sampling of BFS 

 

Figure 2.9 Comparison of priority between PSO and BFS 

Table 2.3 Comparison of computation time between PSO and BFS 

 No hazard With hazard 

PSO 16.7 s 1.6 s 

Brute-force search with 1182 sample 768.5 s 21.8 s 

Brute-force search with 4687 sample 19598 s 491.8 s 
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Table 2.4 Comparison of average fitness between PSO and BFS 

 No hazard With hazard 

PSO 15.81 76.09 

Brute-force search with 1182 sample 15.64 62.31 

Brute-force search with 4687 sample 15.65 62.76 

 

The computation time of the two methods are shown in Table 2.3. And 

the compare of solution quality is shown in Table 2.4. The average of the 

fitness of all the surface points is listed for different methods in the scenario 

with/without hazard. Figure 2.9 shows the superior percentage of the two 

methods, comparing the computation result of PSO v.s. BFS in the scenario 

without and with hazard. The PSO method has a higher superior percentage 

than BFS method. In addition, Table 2.4 shows that the PSO method has 

higher computation efficiency than the BFS method, especially in the scenario 

without hazard. As can be seen from Table 2.3, the computation time of the 

BFS method grows quadratically as the increase of surface points, which is 

tens, even hundreds times more than that of the PSO method. 

2.5.5. Convergence performance test of the PSO method 

Furthermore, an experiment was carried out to test the convergence 

performance of the PSO method. Here, the city and parameters are the same as 

that in section 2.5.4 (see Figure 2.7). Figure 2.10 shows the fitness record of 

PSO method with the growth of computation iteration (the fitness has been 

normalized to the range [0, 1]). In both the scenario without hazard (see Figure 

2.10a) and with hazard (see Figure 2.10b), the particle fitness and global 
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fitness grows with the iteration. The global fitness converges eventually, and 

the particle fitness approaches global fitness gradually. 

 
(a) Fitness without hazard 

 
(b) Fitness with hazard 

Figure 2.10 Record of particle fitness and global fitness for PSO 

2.6. Determination of Vantage Set and Visiting Sequence 

Given a covering vD set with n vDs, the objective is to find an optimal set of 

vantage points (vPs, called vantage set) that covers all the sPs with the best 

fitness. In this process, the visiting sequence of the vPs is also determined. For 

each vP, the camera angle (α, β, θ) is already determined. However, the 

distance between vP and sP is yet to be fixed. As shown in Figure 2.11, the 

covering vP set consists of [vP1, vP2, …, vPi, …, vPn], where, the distances 

between vPi and sPi (i = 1, 2, …, n) can be adjusted along the view directions. 

This problem consists of two parts, vantage set generation and visiting 
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sequence determination. The problem of visiting sequence determination can 

be converted to a TSP (for single UAV surveillance) or MTSP (for multiple 

UAV surveillance) problem. 
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Figure 2.11 Determination of vantage set and visiting sequence 

2.6.1. Fitness function for UAV path 

(1) Fitness function without the existence of hazard 

If there is no hazard point, the criteria to evaluate a solution consist of three 

factors:  

a) The estimated total path length l of the vantage set; 

b) The turning radius Rt of the UAV should be no smaller than minimum 

turning radius Rt,min; 

c) The climbing/diving angle θC,D should be no larger than maximal 

climbing/diving angle θC,D,max. 

Therefore, given a vantage set with n cameras [vP1, vP2, …, vPi, …, vPn], 

there are n edges to form a feasible path. The fitness function is given as: 
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where li,i+1 is the edge length between the camera position vPi and vPi+1, θi,i+1 

is the climbing/diving angle of edge li,i+1. 

(2) Fitness function with the existence of hazard 

If there are hazard points, the criteria to evaluate a solution consist of three 

factors:  

a) The sum of multiplication of exposure time and distance to each 

hazard point; 

b) The turning radius Rt of the UAV should be no smaller than minimum 

turning radius Rt,min; 

c) The climbing/diving angle θC,D should be no larger than minimum 

climbing/diving angle θC,D,max. 

Therefore, given a camera configuration set with n camera positions [vP1, 

vP2, …, vPi, …, vPn], there are 𝑛 edges to form a feasible path. There are two 

criteria to evaluate the fitness of a path, the accumulated hazard on each edge 

or the minimal distance to each edge. As shown in Figure 2.12a and Figure 

2.12b, vPi and vPi+1 are two adjacent camera locations of a UAV, H is a 

hazard point, T is a waypoint on the line vPi - vPi+1, during the time of UAV 

traveling from vPi to vPi+1, the accumulated hazard is an integration of hazard 

function     
4

h x k S x  on the line vPi - vPi+1. S(x) is the function of x with 

parameters (S1, S2, li,i+1). Figure 2.12c shows the fitness of minimal distance to 
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each edge, where di,j is the distance of hazard point Hj  to edge li,i+1. The 

fitness function is as follows: 

minimize: 
  

, 1

41 1 0

i ilM n

j i

k
dx

S x
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where 𝑙𝑖,𝑖+1  is the edge length between cameras 𝒗𝑷𝒊  and 𝒗𝑷𝒊+𝟏 , 𝜃𝑖  is the 

climbing/diving angle of edge 𝑙𝑖,𝑖+1. 
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(a) Accumulated 

hazard on an edge 

(b) Accumulated hazard on a 

path 

(c) Minimum distance on a 

path 

Figure 2.12 Fitness for path of UAV in scenarios with hazard 

2.6.2. Method to generate vantage set 

(1) GA based Vantage Point Initialization 

A genetic algorithm (GA) base method is used to generate the vantage set. A 

feasible solution is a group of camera positions covering all sPs, represented 

as a chromosome consisting of N genes, and each gene represents a camera 

position covering some sPs. Suppose there are N sPs, a camera position is 

initialized right above each sP (xi, yi, zi) with a random distance between Rmin 

and Rmax. In the proposed method, a camera position is initialized as a point 
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along the line between sP and its candidate camera position, with the 

determined (α, β), as shown in Figure 2.13. 

Randomized 

camera distance 

and on/off status

Building
Building R

m
a
x

R
m

in

 

Figure 2.13 Vantage point initialization 

(2) Vantage Set Selection 

The initial population is randomly split into two groups and conducted 

reproduction, including cross-over and mutation. The cross-over operator 

works as follows: 

Do 

Select randomly one of the parents based on probability proportional to 

their fitness values; 

Identify the camera position of the selected parent that covers the most 

uncovered surface points (of the child solution) and place into the child 

solution; 

If each ground point with the child solution is covered; 

End Do 

 

 

gi gj
have

 
(a) Camera replacement mutation (b) Camera configuration mutation 

Figure 2.14 GA mutation operator 
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The mutation operator consists of camera replacement mutation and 

camera configuration mutation, as shown in Figure 2.14. Camera replacement 

mutation is to replace two cameras with one, which can cover the union of the 

effective coverage of the two previous cameras. Camera altitude mutation is to 

adjust the distance of camera position to reduce the height deviation as long as 

the effective coverage is not affected. The effective coverage is defined as the 

sPs covered only by one camera. 

2.6.3. Method to determine path sequence 

Here, a branch and bound algorithm is utilized to obtain the path sequence of a 

vantage set. Given a camera configuration set with n cameras [vP1, vP2, …, 

vPi, …, vPn], there are n×(n-1) possible path segments. Given a vantage set, a 

table of edge cost for possible path segments is generated, as shown in  

Table 2.5. 

Table 2.5 Edge cost for possible path segments 

  vP1 vP2 … vPi … vPn 

vP1 -- l1,2 … l1,i … l1,n 

vP2 l2,1 -- … l2,i … l2,n 

… … … -- … … … 

vPi li,1 li,2 … -- … li,n 

… … … … … -- … 

vPn ln,1 ln,2 … ln,i … -- 

 

Considering the constraints of minimum climbing/diving angle θC,D,max, 

the edges with larger θC,D will be set with a positive infinite edge cost. After 

checking for all the edges, the table is updated. In addition, considering the 

constraints of minimum turning radius Rt,min, the adjacent edges with smaller 
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turning radius R cannot be selected in the same path sequence. For three 

adjacent points (vPi-1, vPi, vPi+1), the turning radius constraint is checked as 

follows (see Figure 2.15).  

(1) Project the three points onto the horizontal plane, and connect vPi-1 

- vPi, vPi - vPi+1. 

(2) Draw circle O1 with radius Rt,min, tangential with line vPi-1 - vPi at 

point vPi. 

(3) Draw circle O2 with radius Rt,min, tangential with line vPi-1 - vPi and 

circle O1, denote the tangent point with line vPi - vPi+1 is vPi+1,c, the 

critical point to determine whether satisfy the turning radius 

constraints. 

(4) If vPi+1,c is located between vPi and vPi+1, turning radius constraint 

is satisfied. 

Denote the length of line segment vPi - vPi+1 as li,i+1, and the angle 

between vPi-1 - vPi and vPi - vPi+1 is θi,i+1, the condition of satisfying the 

turning radius constraint is li,i+1 ≥ Rt,min×(2×sinδ+sinθi,i+1), where δ = arccos(1-

cosθi,i+1). Another table is generated to save the turning angle check result of 

all possible path segments. The check result is used during the process of next 

edge selection. Table 2.6 shows an example of the turning angle check result 

for the edges containing the node vP1. 
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(b) Scenario b 

Figure 2.15 The check of turning radius constraint 

Table 2.6 Example for result of turning angle check 

  l1,2 l1,3 … l1,i … l1,n 

l2,1 -- Yes … Yes … No 

l3,1 Yes -- … Yes … No 

… … … -- … … … 

li,1 Yes Yes … -- … Yes 

… … … … … -- … 

ln,1 No No … Yes … -- 

 

2.6.4. Numerical tests 

A numerical experiment has been carried out to test the method of vantage set 

generation. The size of the city to be reconnoitered is 4m×4m, and surface 

points are sampled each 2m. Table 2.7 shows the parameters used in the 

numerical experiment. In the scenario with the existence of hazard, there is 

one hazard point located at position of (1, 1). Here, the fitness function of 

minimal distance is used. As shown in Figure 2.16a, the directions of cameras 

are given. There are four cameras located on the boundary of the terrain, each 
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covering two surface points outside. Another four cameras cover four surface 

points respectively. The last camera covers two surface points, including the 

center point.  

Table 2.7 Parameters in determination of vantage set and visiting sequence 

Camera 

γv Rmin Rmax αmax 

45° 10m 300m 50° 

UAV flying capability 

Max climbing/diving angle Min turning angle 

45° 10m 

GA for Vantage Set Generation 

Random mutation probability No. of max offspring 

10% 600 

 

 
(a) Camera directions 

  
(b) Camera position (no hazard) (c) Camera position (with hazard) 

Figure 2.16 Numerical result of vantage set generation 
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The results of vantage set generation without the existence of hazard 

and with hazard are shown in Figure 2.16b and Figure 2.16c, respectively. As 

can be seen from Figure 2.16b, in the scenario without hazard, the vantage set 

with the least path length is selected, that is the four cameras located inside. 

However, in the scenario with hazard, the other five cameras are selected, for 

they are located further to the hazard point, resulting a less accumulated 

hazard. 

2.7. Comprehensive Simulation Tests 

A numerical experiment has been carried out to test the whole method 

for coverage path planning of UAVs. The size of the city to be reconnoitred is 

20m×20m, and surface points are sampled each 0.67m. Table 2.8 shows the 

parameters used in the numerical tests. The number of vantage points and total 

path length are affected by the available number of UAVs and the condition 

whether there is hazard or not. Here, an experiment is carried out, and the city 

environment of the experiment is shown in Figure 2.17, with four buildings 

(colour blocks) and two possible hazard point (red square). The surface points 

are represented by green points. In the scenario with hazard, the fitness 

function of minimal distance is used. The results are shown in Table 2.9 and 

Figure 2.18. As shown in Figure 2.18, all the surface points are covered by 

vantage points. The surface points covered by vantage points are shown as 

green dots. The average convergence time of PSO algorithm is 764s. The 

numerical results show that when there’s hazard in the city, the UAVs will 

tend to fly far from the city to reduce danger. 
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Table 2.8 Parameters in comprehensive tests for coverage path planning 

Camera 

γv Rmin Rmax αmax 

45° 10m 300m 50° 

PSO for vantage point initialization 

Number of particles Max iteration θ0 

50 50 3° 

UAV flying capability 

Max climbing/diving angle Min turning angle 

30° 45° 

GA for vantage set generation 

Random mutation probability No. of max offsprings 

10% 600 

 

 

Figure 2.17 City environment of the experiment for coverage path planning 

Table 2.9 Numerical experiment results for a simple city 

 Without hazard With hazard 

No. of UAVs 1 2 1 2 

No. of vantage points 6 7 6 7 

Total path length/m 24 48 54 82 
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(a) One UAV no hazard (b) Multi UAV without hazard 

  
(c) One UAV with hazard (d) Multi UAV with hazard 

Figure 2.18 Computation result of a simple city under different conditions 

Another experiment deals with a much more complex case to test the 

efficiency of the algorithm. As shown in Figure 2.19a, the city model consists 

of a number of buildings over the uneven terrain, therefore occlusion occurs 

often. The sPs are also shown in the figure. Figure 2.19b and Figure 2.19c 

show the obtained cPs in scenarios without and with hazard existence, 

respectively. Two radar sites are present in Figure 2.19c. Clearly, the obtained 

cPs are clustered around the periphery of the area, with tilted view directions. 
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(a) A more complex city environment for coverage path planning 

  
(b) Camera positions (no hazard) (c) Camera positions (with hazard) 

Figure 2.19 Determined view direction in a complex city environment 

Taking the sP at the centre of the area for example, the identified cP 

without and with hazard are shown in Figure 2.20a and Figure 2.20b, 

respectively. The sPs inside the circles are covered by the respective cP. The 

effect of the fitness function is clearly shown: (1) no hazard existence, cP is 

close to the centre; (2) with hazard existence, cP is far away from the centre. 

The evolvement of the best particle fitness in both the two scenarios are shown 

in Figure 2.21a and Figure 2.21b, respectively. Clearly, convergence has been 

achieved in both cases. The mission scenario presented in Figure 2.19 is taken 

to test the GA-based search algorithm for stage II (vantage set and visiting 
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sequence determination). The UAV flying capability attributes and parameters 

used in GA are given in Table 2.7. 

Cam Axis

Cam Position

Point to cover

 

Point to cover

Cam Position

Cam Axis

 
(a) Camera position (no hazard) (b) Camera position (with hazard) 

Figure 2.20 The obtained cP for a single sP 

 

(a) Fitness without hazard existence 

 
(b) Fitness with hazard existence 

Figure 2.21 The fitness evolvement of the global best particle 
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(a) Top down view of the result 

 
(b) Side view of the result 

 
(c) Convergence record without hazard 

Figure 2.22 Path planning results in a complex environment without hazard 
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(a) Top down view 

 
(b) Side view 

 
(c) Convergence record with hazard 

Figure 2.23 Path planning results in a complex environment with hazard 
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Table 2.10 Performance comparison in a complex environment  

 Without hazard With hazard 

No. of vantage points 15 16 

Total path length/m 62 91 

Computation time/s 334 1007 

 

The GA-based algorithm in stage II was tested in two scenarios, 

without hazard and with hazard. Only one UAV is used for the mission. The 

cPs obtained without hazard (see Figure 2.19a) and with hazard (see Figure 

2.19b) are the input for the stage II. The flying paths, together with the 

coverage of each cP in the vantage set, are shown in Figure 2.22 and Figure 

2.23, respectively. The convergence records are shown in Figure 2.22c and 

Figure 2.23c (red: best fitness, green: average fitness). The performance 

indicators for both the two scenarios are summarized in Table 2.10. It can be 

clearly seen that the fitness function is reasonable for the optimization. 

Specifically, in the scenario without hazard, the optimization goes towards the 

shortest path; while, in the scenario with hazard, the resulted path is kept far 

from the hazard points. 

2.8. Summary 

In this chapter, the fixed-wing UAV surveillance mission planning problem 

has been addressed. The problem is modelled with more realism by 

considering the presence of hazard points and the pan-tilt capability of the on-

board camera. A heuristic is developed to find the optimal view directions 

regarding to each pair of camera position and surface point. Following this 

heuristic, the optimal camera configuration is determined for each surface 

point by a PSO-based algorithm. To construct for the optimal vantage set with 

GA-based algorithm, the corresponding optimal flying paths for each 
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candidate solution are constructed for accurate fitness evaluation. The 

effectiveness of the proposed methods has been demonstrated with the case 

studies. 
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CHAPTER 3   

OFFLINE PERCHING LOCATION SELECTION 

FOR ROTARY-WING UAV IN URBAN 

ENVIRONMENT 

In this chapter, an offline perching location selection algorithm is developed 

for rotary-wing UAV to monitor a target, either a point of interest (POI) or a 

face of interest (FOI). Here, a FOI can be either a horizontal rectangular face 

or a vertical rectangular face. The selection algorithm is designed in such a 

way that the task is completed in two steps, preliminary selection and precise 

selection. In the preliminary selection stage, geometric constraints, including 

the UAV dimension, camera focus range, roof area, and roof slope, are applied 

to identify all the feasible roofs for the UAV to land on. In the precise 

selection stage, line-of-sight check is carried out for each edge of the feasible 

roofs to determine the feasible landing locations on it. Finally, a set of top 

ranked landing locations are selected based on the distance to the target to be 

viewed. 

3.1. Background 

In the perch-and-stare mission, as shown in Figure 3.1, a rotary-wing UAV 

flies to the target area and perches on the roof of a building to conduct 

enduring reconnaissance on a point of interest (POI) or face of interest (FOI). 

The overall flowchart of this perching mission is shown in Figure 3.2. The 
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perching mission is divided into two steps. In the first step, the mission target 

is to select a perching location in the offline map. In the second step, after the 

deployed UAV navigates to the area above the preselected perching location, 

the LiDAR on-board the UAV collects a 3D point cloud of the surrounding 

environment (containing the preselected location). Subsequently, the roofs in 

the point cloud are to be extracted and then matched with the offline map to 

identify the corresponding zone in the point cloud of preselected perching 

location. Finally, the identified zone of the landing location and its 

surrounding area on the roof are checked to determine whether it is feasible 

for landing. 

In the offline selection mission, due to the low resolution of the offline 

map, the roofs of buildings are assumed to be flat, thus the roughness of the 

roofs are not to be considered. The requirement for a feasible perching roof is 

that it has sufficient area and a limited slope. In addition, as the on-board 

camera has a limited focus range, the perching location must be within a 

certain distance to the target POI or FOI. Generally speaking, locations close 

to the edges of roofs are the candidate perching locations. These edges are 

called perching edges. 

Given the whole map (2½D or 3D) of the target area, the roof edges 

that are within a certain distance to the POI or FOI can be considered as 

candidate perching edges. As shown in Figure 3.3, the position of the on-board 

camera is usually at the front of the UAV with an elevation of hc from the base 

of the UAV. Considering the distance threshold and the line of sight 

constraints, the effective landing area is near the frontier of the building roof. 

Therefore, only the roof edges of buildings are considered for perching 
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locations. The candidate roofs can be obtained by shrinking the original 

building roofs inside by a safety distance ds and rising by a camera elevation 

hc. The scenarios with the target being a POI, horizontal FOI (h-FOI), and 

vertical FOI (v-FOI) are shown in Figure 3.3a, b and c, respectively. 

POI

UAV

 

Figure 3.1 Perch-and-stare mission 

Offline map Point cloud collected online 

Matching between online 

data with offline map

Perching location 

selected offline

Online landing location 

evaluation 

Extracted roof

 

Figure 3.2 Perching mission flowchart 
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(a) Candidate perching location for POI 
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(b) Candidate perching location for h-FOI 
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(c) Candidate perching location for v-FOI 

Figure 3.3 Candidate perching location 

3.2. The Offline City Map 

Initially, the city map is given in the OpenStreetMap (OSM) format, which is 

a kind of 2D map with polygonal contours of objectives, including buildings, 
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roads, and others. An OSM map can be visualized with the software JOSM 

(see Figure 3.4a). To make use of the OSM map for perching location 

selection, it is preprocessed and converted to 2½D form that contains 

buildings only. The roofs are extracted from the OSM map with given heights 

(see Figure 3.4b). The vertexes of roofs are then stored in counterclockwise 

sequence (see Figure 3.4c). Finally, the obtained candidate perching edges are 

stored with the coordinates of edge corners (see Figure 3.4d). 

  
(a) OSM visualized by JOSM (b) Roof top extraction 

  
(c) Building vertices (d) Candidate roofs 

Figure 3.4 OSM map pre-processing 

3.3. Preliminary Perching Location Selection 

After the OSM map pre-processing is completed, the perching locations are to 

be selected, which is carried out in two steps: preliminary selection and 

precise selection. In the preliminary selection, only roofs within the camera 

range and satisfying the area and slope constraints are selected. The 

constraints for a feasible perching edge are as follows: 
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(1) The minimal distance di (i = 1, 2, …, n) from the POI to a candidate 

roof edge should not exceed dmax,  the maximum sensor range. In the 

case of FOI, the distance should be measured from each corner point of 

the FOI. For the example shown in Figure 3.5a, only B1, B2, B3, B4, and 

B7 are within the range of dmax, which are thus retained for further 

checking; 

(2) The area of a candidate roof Ai must be larger than the minimal 

required landing area Amin for the UAV, as shown in Figure 3.5; 

(3) The slope of a candidate roof, θs,i, must not exceed, θs,max, the 

maximum allowable landing slope angle of the UAV, θs,i is defined as 

the angle between the normal vector of the roof and the z-axis 

(pointing upwards), as shown in Figure 3.5. For the scenario of FOI, 

the angle between the normal of FOI and the line of sight (from centre 

of FOI to a perching point) should not exceed a threshold (less than 

90°), such as 85°. As shown in Figure 3.5b, only B3 and B4 satisfy this 

constraint. 

On the other hand, the line of sight (LOS) from the perching point to 

the target should not be occluded (Figure 3.5a). The LOS constraint is not 

considered here and will be checked in the precise selection stage. 
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(a) Constraints for POI 
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(b) Constraints for FOI 

Figure 3.5 Slope and LOS condition 

3.4. Precise Perching Location Selection 

In precise selection, the LOS constraint is to be checked for each candidate 

perching edge to confirm its feasibility and then the perching locations are 

selected. Since the implementation procedures for the scenarios of POI and 

FOI are quite different, they are described separately in the following sections. 
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3.4.1. Line of sight check for POI 

The LOS check process for a POI (e.g., P in Figure 3.6) is as follows: each 

candidate perching edge (CPE), e.g., AB in Figure 3.6, and P form a view-

triangle. Intersection of the view-triangle with any objects in the environment 

is then checked and the “visible” portion of this CPE is determined, if any. All 

the identified visible edge portions are considered feasible perching edges 

(FPEs). For each candidate edge, the intersection check is carried out in three 

steps: 

(1) The whole 3D map is projected onto the X-Y plane, intersection 

between the projected view-triangle (e.g., ΔABP in Figure 3.6) and 

objects is then checked. If no intersection exists, the whole edge is 

defined “visible”; otherwise, go to next step. 

(2) For each intersected object, intersection is checked between each of its 

lateral faces (e.g., polygon MNST in Figure 3.6) and ΔABP. The 

intersection segment is determined (segment CD in Figure 3.6). 

Subsequently, the blocked portion of AB can be determined (e.g., 

segment AE in Figure 3.6). 

(3) After all the intersected objects are checked, the complementary set of 

the union of all the blocked portion of the CPE is determined as the 

visible portion of it. 

For triangle-polygon intersection determination in step (2), a new 

method is proposed, which is described as follows. As shown in Figure 3.7, 

ΔABP is within plane 𝜋1 , and polygon MNST is within plane𝜋2 . The 

intersection line of the two planes is l. Then, intersection of polygon MNST 

and l can be determined as CC´ (Schneider and Eberly 2002). Similarly, 
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intersection between ΔABP and l can be determined as DD´. Finally, the 

overlapped portion of CC´ and DD´, i.e., CD in this case, can be determined as 

the intersection segment of ΔABP and polygon MNST. 
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Figure 3.6 LOS check for POI 
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Figure 3.7 Triangle-polygon intersection 

3.4.2. Line of sight check for FOI 

As for the scenario of FOI, we found that the visible portion of a CPE cannot 

be determined exactly using analytical methods. Therefore, each CPE is firstly 

discretized into a set of candidate perching points (CPPs) as shown in Figure 

3.8. The line of sight from each CPP to the FOI is then checked to determine 

whether the CPP is a feasible perching point (FPP). This is done by 
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conducting intersection check between the lateral faces of the view-pyramid 

(formed by the CPP and the 4 corner points of the FOI, as shown in Figure 3.8) 

and any objects in the environment. If there is no intersection, this CPP is 

considered as a FPP. For each CPP, the intersection check is carried out as 

follows: 

(1) Check whether the CPP is facing the positive side of the FOI (e.g., 

MNST in Figure 3.8) defined by its unit normal vector (n). The angle 

between n and the LOS to the 4 corner points of MNST is calculated. 

If all the angles are in the range of [95, 180], the CPP is consider a 

“facing point” (e.g., C1). Otherwise, it is considered as a “blocked 

point” (e.g., C2) and dropped. 

(2) The whole 3D map is projected onto X-Y plane. Then intersection 

between the projected view-pyramid and objects is checked. If no 

intersection exists, the CPP is considered a FPP; otherwise, go to next 

step. 

(3) For each intersected object, intersection is checked between each of its 

lateral faces (e.g., EFGH) and each lateral face of the view-pyramid. If 

any intersection occurs, this CPP is deemed infeasible and dropped. 

After all the intersected objects are visited and no intersection exists, 

this CPP is considered a FPP. 
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Figure 3.8 Feasibility check for CPPs 

For triangle-polygon intersection determination in step (3), a new 

method is proposed, which is described as follows. As shown in Figure 3.7, 

ΔABP is within plane 𝜋1 , and polygon MNST is within plane 𝜋2 . The 

intersection line of the two planes is l. Then, intersection of polygon MNST 

and l can be determined as CC´ (Schneider and Eberly 2002). Similarly, 

intersection between ΔABP and l can be determined as DD´. Finally, the 

overlapped portion of CC´ and DD´, i.e., CD in this case, can be determined as 

the intersection segment of ΔABP and polygon MNST. 

After the feasible perching edges are determined, the top 3 best 

perching locations are to be selected. The corners of the perching edge are 

preferred for the convenience of recognition. The perching locations are 

ranked by the distance to the target to be viewed, and the top 3 locations with 

the smallest distance will be selected. 
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3.5. Numerical Experiments 

The offline perching location selection algorithm (for POI and FOI, 

respectively) has been implemented with JAVA, and the results can be viewed 

in MATLAB environment. In this section, several testing cases are presented 

to show the efficacy of the algorithm. In the tests, the parameter settings of the 

UAV system and target are shown in Table 3.1. 

Table 3.1 Parameter Settings in offline perching location selecton 

Parameters Target type 

POI h-FOI v-FOI 

UAV dimensions (m) 1× 1× 0.5 

Map size (m) 787× 665 

Camera height (m) 0.5 

Camera range (m) 50 

Safety distance ds (m) 1 

Target position (m) (320, 360, 0) (590, 370, 0) 

(595, 370, 0) 

(595, 375, 0) 

(590, 375, 0) 

(275, 430, 0) 

(285, 430, 0) 

(285, 430, 5) 

(275, 430, 5) 

Edge discretization 

interval de, i (m) 

N/A 1 1 

 

The input 2½D map as shown in Figure 3.9, consists of around 1000 

buildings, which are represented by prisms. Three types of target are used in 

the tests, i.e., point of interest (POI), horizontal face of interest (h-FOI), and 

vertical face of interest (v-FOI). A POI is a point represented by its x-y-z 

coordinates (the red dot in Figure 3.10a). An h-FOI is a rectangular facet 

facing up on the ground, represented by its 4 corner points forming an anti-

clockwise loop (the red rectangle in Figure 3.10b). A v-FOI is a rectangular 

facet on the façade of an object, represented by its 4 corner points forming an 

anti-clockwise loop (the red rectangle in Figure 3.10c). Its normal vector 

(pointing out) can be obtained using the right-hand rule. The x-y-z coordinates 
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of the POI, the corners of the h-FOI, and v-FOI are shown in Table 3.1, 

respectively. 

 
(a) Top down view 

 
(b) Isometric view 

Figure 3.9 The 2½D Map of the environment 
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POI

 
(a) Scenario 1 - a POI 

h-FOI

 
(b) Scenario 2 - an h-FOI 

v-FOI

 
(c) Scenario 3 - a v-FOI 

Figure 3.10 Three scenarios in the tests 

3.5.1. Scenario 1 - case with a POI 

Figure 3.10a shows the scenario with a POI. After running the perching 

location selection algorithm, the results are shown in Figure 3.11. The black 

circle in Figure 3.11a is centred at the POI and its radius is the camera range. 

The roofs within this circle are thus selected as candidates. Subsequently, the 

roof edges of these candidates are shrunk inwards by the safety distance ds to 
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finally form the candidate perching edges (the green contours). This is the end 

of preliminary selection stage. 

2
nd

 3
rd

 

1
st
 

FPE

POI

CPE

 
(a) Top down view 
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(b) Isometric view 

Figure 3.11 Test result for scenario-1 

The precise selection is then carried out by checking each candidate 

perching edge. As a result, the feasible perching edges (FPEs) are determined 

(see the blue segments in Figure 3.11). Finally, the three top ranked perching 

points are selected from the FPEs based on the criteria (shown as red boxes in 

the enlarged views in Figure 3.11a). The total computation time for both the 

preliminary and precise selection is 116ms (on a workstation with 3.2 GHZ 

CPU and 16GB RAM). 

3.5.2. Scenario 2 - case with an h-FOI 

Figure 3.10b shows the scenario with an h-FOI in which the h-FOI is placed at 

a different position. After running the offline perching location selection 

algorithm, the results are shown in Figure 3.12. 
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(a) Top down view 
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h-FOI

 
(b) Isometric view 

Figure 3.12 Test result for scenario-2 

The black circle in Figure 3.12a shares the centre with the h-FOI and 

its radius is the camera range. The roofs within this circle are thus selected as 

candidates. Subsequently, the roof edges of these candidates are shrunk 

inwards by the safety distance ds to finally form the candidate perching edges 

(the green contours). The green dots are the result of discretization of the 

candidate perching edges. After the precise selection is completed, the feasible 

perching points (FPPs) are determined and shown in blue. Finally, the three 

top ranked perching points are selected from the FPPs based on the criteria. 

They are shown in red in the enlarged views in Figure 3.12a. The total 

computation time for both preliminary and precise selection is 871ms (on a 

workstation with 3.2 GHZ CPU and 16GB RAM). More experiments have 

been carried out to test how the computation time increases with the decrease 

of edge discretization interval de, i. The testing result is shown in Table 3.2. 
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Table 3.2 Computation cost test in the scenario with h-FOI 

Edge discretization interval de, i (m) Computation time (ms) 

1 871 

0.5 1129 

0.2 1999 

0.1 3334 

0.01 20533 

 

3.5.3. Scenario 3 - case with a v-FOI 

Figure 3.10c shows the scenario with a v-FOI in which the v-FOI is placed at a 

different position. After running the offline perching location selection 

algorithm, the results are shown in Figure 3.13. 

Again, the black circle in Figure 3.13a shares the centre with the v-FOI 

and its radius is the camera range. The roofs within this circle are thus selected 

as candidates. Subsequently, the roof edges of these candidates are shrunk 

inwards by the safety distance ds to finally form the candidate perching edges 

(the green contours). The green dots are the result of discretization of the 

candidate perching edges. After the precise selection is completed, the feasible 

perching points (FPPs) are determined and shown in blue. Finally, the three 

top ranked perching points are selected from the FPPs based on the present 

criteria. They are shown in red in the enlarged views in Figure 3.13a. The total 

computation time (on a workstation with 3.2 GHZ CPU and 16GB RAM) for 

both preliminary and precise selection is 521ms. More experiments have been 

carried out to test how the computation time increases with the decrease of 

edge discretization interval de, i. The testing result is shown in Table 3.3. 
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(a) Top down view 
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(b) Isometric view 

Figure 3.13 Test result for scenario-3 

Table 3.3 Computation cost test in the scenario with v-FOI 

Edge discretization interval de, i (m) Computation time (ms) 

1 521 

0.5 616 

0.2 781 

0.1 1109 

0.01 3506 

 

3.6. Summary 

This chapter addresses the perching location selection problem for rotary-wing 

UAVs in an off-line mode. Both geometric constraints and mission constraints 

are considered in the selection procedure, including camera range, roof area, 

slope, and line of sight (LOS). The output from the selection is either FPEs 

(for a POI) or FPPs (for FOI). Finally, the top 3 ranked perching locations are 

identified from the FPEs or FPPs. The algorithm has been implemented and 

tested with fairly realistic complex problems with satisfactory performance. 

  



Chapter 4 Online Landing Location Selection for Rotary-wing UAV in A GPS-denied Urban 

Environment 

73 

 

CHAPTER 4  

ONLINE LANDING LOCATION SELECTION FOR 

ROTARY-WING UAV IN A GPS-DENIED URBAN 

ENVIRONMENT 

In this chapter, an online landing location selection algorithm is developed for 

rotoray-wing UAV in a GPS-denied urban environment. Before a UAV carries 

out a perch-and-stare mission, the landing location (on roof of a building) is 

already preselected in the 2½D map of the urban environment. The UAV is 

expected to navigate based on the google map to reach the target region, 

somewhat above the preslected landing location/roof. The 3D point cloud of 

the target region is then collected using a downward-facing 2D LiDAR 

onboard the UAV. The proposed online algorithm should be able to extract the 

roof contours from the point cloud, and then match them with the offline 2½D 

map to locate the preselected perching location. Finally, the landing feasibility 

of the preselected perching location is evaluated. This chapter introduces a 

new solution to the problem of UAV perch-and-stare mission, which consists 

of two tasks. The first task is to identify the preselected landing location from 

the point cloud. And the second task is to check the feasibility of the location 

for landing. In the first task, the 3D point cloud is firstly converted to an image. 

And a new rotation invariant matching algorithm is proposed to match the two 

images with not so sufficient amount of features. Finally, experiments are 

carried out to demonstrate the effectiveness of the algorithms. 
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In the perch-and-stare mission, the whole online algorithm is carried 

out onboard the UAV. Limited by the power of the on-board processor and the 

flight duration of the UAV, the point cloud processing should be completed in 

real time, for example, in several seconds. Therefore, the efficiency of the 

algorithm is quite critical. Although quite a lot of algorithms have been 

developed for the point cloud processing and roof contour extraction, the low 

efficiency makes them not applicable in the mission. 

Template matching (Briechle and Hanebeck 2001) can be used to 

match the images with not enough features. Nonetheless, this method is not 

rotation invariant. The prerequisite that two input images have the same 

orientation cannot be assured in our problem. In addition, some feature 

matching algorithms, such as SIFT (Lowe 2004) and SURF (Bay et al. 2006), 

are rotation invariant. However, there are not enough features for matching in 

the input images of our problem. Therefore, new algorithms have to be 

developed in order to solve the aforementioned limitations. In this study, the 

following is to be done: 

 Based on preliminary knowledge about the environment, some 

heuristic constraints are to be implemented to conduct point cloud 

filtering. 

 A rotation invariant template matching algorithm is developed for 

matching the extracted contour and the offline map. 

 

4.1. Background 

In our perch-and-stare mission, a 2½D map of the urban environment (mainly 

buildings) is available in which a preselected landing location is specified. The 
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UAV is expected to navigate based on the google map to reach the target 

region. When the UAV hovers over the target region, an on-board 2D LiDAR 

is usually employed to scan across the region underneath the UAV. The 

collected data are then converted to 3D point cloud in the same frame. The 

proposed online UAV landing location selection algorithm takes over from 

here. The task is to (1) identify the preselected landing location from the 3D 

point cloud and (2) check the vicinity of this location to determine its 

feasibility for landing. 

To our knowledge, there is no reported work towards a unified solution 

to directly address this kind of problem. In this work, we propose the 

following steps to process the point cloud for accomplishing task (1): 

(i)  Data filtering 

(ii)  Roof contour extraction 

(iii) Registration of extracted roof contours with the 2½D map 

As for task (2), the landing feasibility of the identified location can be 

determined by checking the area, slope, and surface roughness of its vicinity 

zone. In the problem, a rotary-wing UAV with a size of around 1m×1m×0.5m 

is employed. The 2D LiDAR is mounted looking downward from the UAV, 

and keeps tilting at a frequency of 1Hz between ±40°. Its maximal detected 

range is 30m. The basic assumptions in our problem are listed as follows: 

 The offline map is available and the landing zone has been preselected 

on the offline map. 
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 The UAV can navigate to the preselected landing zone, and collect 2D 

laser scans containing the preselected landing location with the on-

board 2D LiDAR. 

 The collected 2D laser scans have been fused to a 3D point cloud. 

 The parameters to be determined are as follows: the relative position (x, 

y) of the point cloud within the offline map, and the heading 

orientation. 

The flowchart for the proposed 3D point cloud processing is as shown 

in Figure 4.1. 

Offline 2½D map3D point cloud of each 

preselected landing location

1. Point cloud filtering: 

Altitude range filtering; Slope  

filtering; Euclidean clustering

2. Rooftop contour extraction 

(data format: binary image)

3. Landing zone identification 

and evaluation

4. Feasibility check: slope, 

roughness

 

Figure 4.1 Flowchart for the perching mission 

4.2. Related Works 

For each step in the mission of online landing location selection, the related 

works will be reviewed in this section. Based on these reported research works, 

our proposed methods will be presented. 
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4.2.1. Point cloud filtering 

The data obtained from the 2D LiDAR are a set of unordered, irregular 3D 

point cloud, which is difficult to analyse. It is necessary to build a topology 

relationship between the points. Some researchers proposed to regularize the 

point cloud into a digital elevation map (DEM) (Alharthy and Bethel 2002), 

where the points can be located by their indices. The DEM can then be 

regarded as a grey level image, so the methods of image segmentation can 

always be adopted to process the DEM. However, processing error is 

inevitable in conversion from point cloud to DEM, which will degenerate the 

accuracy of roof contour extraction. Some researchers proposed to organize 

the point cloud with the k-d tree structure (Wald and Havran 2006). 

Region growing method was proposed to segment the point cloud, 

which is based on the idea of connecting the pixels with the homogenous 

characteristics. The process of the method is to select a small area as the initial 

seed and then combine the pixels around the seed gradually until it satisfies 

the pre-defined stopping criteria (Tóvári and Pfeifer 2005). However, the 

computation efficiency of region growing method is too low for 

implementation in online point cloud processing. 

4.2.2. Roof contour extraction 

In online landing location selection, the ideal landing location is roof. Given 

the 3D point cloud collected by the 2D LiDAR, the roofs are to be detected 

and the contours are to be extracted. In the literature, Tong et al. (2004) 

proposed to use the property of neighbourhood to determine boundary points. 

A point is determined as boundary point if the difference between the two 



Chapter 4 Online Landing Location Selection for Rotary-wing UAV in A GPS-denied Urban 

Environment 

78 

 

largest eigenvalues of its neighbours exceeds a threshold. However, the 

algorithm is too sensitive since the distribution of points is not always 

consistent. Belton and Lichti (2006) proposed a new algorithm that if the 

position difference between a point with the centroid of neighbour is large 

enough, it is determined as a boundary point. 

4.2.3. Registration between point cloud and image 

In our mission, the input data consist of two parts. The offline map is an image, 

however, the online collected data are 3D point cloud. Registration is therefore 

to be carried out between the two different types of data. Vasile et al. (2006) 

proposed an algorithm to align colour imagery to 3D laser data. They 

proposed to derive pseudo-intensity images from laser data and match them 

with the colour images. This algorithm requires the knowledge of sun position 

to derive a 3D sun-ray tracing model. However, such model is quite sensitive 

to the weather and the luminous intensity, which is the major drawback of this 

algorithm. Meanwhile, Mastin et al. (2009) proposed to use mutual 

information as a metric to measure the similarity between the 2D LiDAR data 

and optical images. They considered the joint entropy among three attributes, 

LiDAR detection probability, LiDAR elevation, and image illuminance. 

However, the algorithm requires small direction deviation between the two 

input data sets. 

The prerequisites of the above-mentioned methods of direct 

registration between point cloud and image cannot be satisfied in our mission. 

If the point cloud is converted to an image, then the methods of image 

matching can be utilized. 
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One of the widely used techniques in image matching is feature 

matching, which finds the correspondence between two images by detecting 

and matching features in the two images. Harris and Stephens (1988) proposed 

the Harris feature to detect corners in images. The intensive computation cost 

of Harris feature restricts their implementations. Rosten and Drummond (2006) 

proposed high-speed detector called FAST feature. However, it is not rotation 

invariant. Lowe (2004) proposed a scale and rotation invariant feature called 

SIFT by computing a set of sub-octave Difference of Gaussian filters and 

creating a histogram of all the gradient orientations. Subsequently, Bay et al. 

(2006) proposed SURF feature to speed up the SIFT. 

On the other hand, template matching is also an important technique, 

which compares portions of the images with another to find similarity between 

the two images (Briechle and Hanebeck 2001). There’s no requirement to 

extract features for template matching, so it can be implemented in the cases 

of images without enough features. A basic prerequisite of template matching 

is that the orientations of the two images should be in accordance. So the 

major drawback of the algorithm is not rotation invariant. 

4.2.4. Landing location evaluation 

Given the data describing the terrain in a certain region, the feasibility of the 

landing location is to be evaluated according to some criteria. Most works 

used the slope and roughness to determine whether a site is suitable for 

landing (Johnson et al. 2002, Johnson et al. 2005, Serrano 2006). Johnson et al. 

proposed to track the image collected by the camera, and extract the features 

to evaluate landing location. Serrano utilized the method of plane fitting to 
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extract the feature to evaluate the surface. Some researchers also considered 

landing location size and the distance to the nearest non-feasible point 

(Takahashi et al. 2013). They firstly converted the LiDAR data into a grid map 

by interpolation, then used a circle window to search feasible landing locations, 

and finally used fuzzy logic to rank the potential landing locations. Other 

researchers even considered the contact condition and stability of aircraft in 

selecting landing location (Scherer et al. 2012). The evaluation consists of two 

stages, rough evaluation and fine evaluation. In the rough evaluation stage, the 

area was divided into regular cells and the cells eligible for slope and 

roughness criteria were evaluated in the next stage continuously. Then the skid 

contact area and pose angle on terrain were calculated with discrete landing 

orientation of the aircraft. However, as the map is divided into cells artificially, 

some feasible landing location may not be considered. 

4.3. Point Cloud Filtering 

As the collected 3D point cloud includes not only points of the preselected 

roof, but also the points belonging to the environment surrounding the roof, in 

order to extract the contour of the roof, the point cloud is to be filtered first. 

Point cloud filtering is not a trivial problem, and no general method can deal 

with all this kind of problems well. In our mission, since there is some 

preliminary knowledge about the environment, some heuristic constraints can 

be implemented to conduct point cloud filtering. The basic heuristics proposed 

in this study are as follows: 



Chapter 4 Online Landing Location Selection for Rotary-wing UAV in A GPS-denied Urban 

Environment 

81 

 

 The estimated height of a preselected roof from the ground is known. 

Considering the measuring noises of laser, the height range of the 

points representing the roofs can be bounded. 

 The slope of the preselected roofs should be under certain threshold. 

 The points sufficiently near to each other can be considered to belong 

to the same object. So the point cloud can be separated into different 

clusters based on the distance constraint. 

 The area of the preselected roof is above certain range, so the isolated 

points occupying not sufficient area should be excluded from the 

point cloud. 

Based on the heuristics above, the point cloud filtering algorithm is 

proposed as follows (refer to Figure 4.2 for illustration): 

(1) Altitude range filtering: Given the point cloud set as shown in Figure 

4.2a, assume the height of preselected roof is between hmin and hmax, the 

points out of the range is filtered out (see Figure 4.2b). 

(2) Slope filtering: The point cloud is organized with k-d tree structure 

(Wald and Havran 2006). For each point, the neighbour points within 

certain radius are determined as nearest neighbours (see Figure 4.3a). 

And PCA method (Pauly et al. 2002) is utilized to calculate the local 

normal of the point (λ0, λ1, λ2) and its projection on each axis (a, b, c) 

(see Figure 4.3b). The inclination angle of a plane is defined as 

Equation (4-1). The points with inclination angle larger than the 

threshold 45° is removed (see Figure 4.2c). 
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(3) Euclidean clustering: The points are separated into several clusters 

based on the Euclidean distances, and the clusters with points less than 

certain threshold nmin are removed (Rusu 2010) (see Figure 4.2d). 

1

2 2 2
cos 45p

a

a b c
   

 

 (4-1) 

 

 
 

 

 
 

 
(a) Original point cloud (b) After altitude range filtering 

 
 

 

 

(c) After slope filtering (d) After clustering 

Figure 4.2 Point cloud filtering process 

 
(a) Point neighbors 

 
 (b) PCA method 

Figure 4.3 Point normal calculation 
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4.4. Roof Contour Extraction 

The point cloud obtained after point cloud filtering represents the roofs. Then, 

the landing conditions of which are to be evaluated. In order to check whether 

the roofs are the preselected ones, the point cloud is to be registered with the 

offline map. As the offline map includes contour of roofs, the most 

straightforward method is to extract the roof contour from the point cloud, and 

match it with the offline map. The proposed method is described as follows: 

1) The 3D point cloud is projected onto the X-Y plane (see Figure 4.4a). 

2) The points representing roof boundaries are extracted (see Figure 

4.4b). The method of α-hull (Akkiraju et al. 1995) is utilized to extract 

roof boundary. α-hull is a generalized concept of convex hull, with a 

parameter αh to control the radius of searching next boundary point 

(see Figure 4.5). 

3) The point cloud is converted to a binary image (see Figure 4.4c) with 

certain resolution res, in which “1” represent the boundary of roof, and 

“0” others. 

  
(a) Point cloud representing 

roofs 

(b) Points consisting of roof 

boundaries 

 
(c) Image representing roofs 

Figure 4.4 Contour extraction from point cloud 
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Figure 4.5. Boundary evolution of α-hull 

Subsequently, the coordinate boundary of the 3D point cloud is 

determined as (xmin, xmax) and (ymin, ymax). The k-th point of the contour (rowk, 

colk) is determined as the following equations: 
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(4-2) 

 

where mc and nc are the width and height of image representing the extracted 

contours. 

4.5. Landing Zone Localization 

The image of extracted contours is to be matched with the offline 2D map to 

locate the landing zone. The input data are binary images with not enough 

features for utilizing feature-based matching algorithms (e.g., SIFT and 

SURF). Template matching can be used to match the images with not enough 

features. Nonetheless, this method is not rotation invariant. The prerequisite 

that two input images have the same orientation is not available in our 

problem. So a kind of measurement of the image orientation needs to be 
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defined to align the two input images. Image moments (a kind of weighted 

average of the image pixels' intensities) can be utilized to determine the 

orientation of images. The second order central moments represent the 

intensity distribution of an image (Liao and Pawlak 1996). Then a new 

algorithm called moment-based template matching is proposed. The image of 

extracted contours is defined as template Ic, in which the value of the pixels 

represented building boundaries is 1. The offline map with preselected landing 

location is defined as reference Ir. The outline of the algorithm is as follows 

(refer to Figure 4.6 for illustration): 

(1) The minimal bounding circle of the image of extracted contours Ic is 

determined with a centre C and a radius r, and Ic is trimmed with the 

minimal bounding circle. 

(2) The main orientation θc of Ic is determined, and Ic is rotated along the 

main orientation, resulting a new image called template It. 

(3) The similarity is measured between the template It and the reference Ir 

by a sliding window. At each window position (i, j), the reference Ir is 

trimmed by a circle with a radius r, generating an image Iij. 

(4) The main orientation θij of the trimmed image Iij is determined.  

(5) The correlation between the template It and the trimmed image Iij is 

calculated, the correlation value is determined as 𝛾𝑖𝑗 

(6) All the correlation values make up a correlation matrix γ. The 

trimmed image on the position (𝑝𝑖 ,𝑝𝑗) with the peak value of γ is 

extracted as the matched part. 

The flowchart of the algorithm is shown in Figure 4.6. The details of 

these processing steps are given in the following sections. 
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Figure 4.6 Flowchart of moment-based template matching 

4.5.1. Template trimming 

The image of extracted contours Ic is a binary image, in which the value of the 

pixels representing contours of buildings is 1. Ic is to be trimmed to generate a 

template It. The minimal bounding circle Cb surrounding all the pixels with 

value of 1 (defined as effective pixel) is to be determined first. This is a typical 

minimal enclosing circle problem, which is defined as Equation (4-3) as: 

( , , )
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In Equation (4-3), point (x, y) is the centre of Cb, and r is the radius, n 

is the number of effective pixels, (ak, bk) is the column and row number of the 

k
th

 effective pixel. The algorithm is as follows: 

1) The convex hull h (e.g., the green hull in Figure 4.7b) of all the 

effective pixels is determined by the divide and conquer algorithm 

(Watt and Watt 2000). 

2) The optimal circle is determined as the bounding circle of the convex 

hull of all the effective pixels (Elzinga and Hearn 1972) (e.g., the red 

circle in Figure 4.7c). 

3) Ic is to be trimmed by the circle Cb. The pixels out of the range (x-

r/2≤ak≤ x+r/2, y-r/2≤bk≤ y+r/2) are removed (see Figure 4.7d), 

generating a template It (see Figure 4.7e). 

Ic

 

h

Ic

 
(a) The image of extracted 

contours 

(b) Convex hull of effective 

pixels 

Cb

h

Ic

 
Cb

h

Ic

 
(c) Minimal enclosing circle of 

effective pixels 

(d) Trimming 

It

 
(e) Resulted template 

Figure 4.7 Template trimming 
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4.5.2. Main orientaiton determination 

Image moment has been utilized in image analysis over the past few decades, 

which is defined as: 

( , )p q

pqm x y f x y dxdy    
(4-4) 

 

where p, q = 1, 2, …, ∞. 

The second order moment (inertia moment) depicts the mass 

distribution property of image (Liao and Pawlak 1996). The angle of the 

principal axis θp (-45°≤ θp ≤45°) (see Figure 4.8) nearest to the x axis can be 

determined as follows: 

  

2 2

20 00 10 00

2

10 00 10 01 00

2 2

20 00 01 00

1tan 2 2

a m m m m

b m m m m m

c m m m m

b a c 

 

  

 

 
 

(4-5) 

 

where m00, m01, m10, m11, are the moments of an image. The main orientation 

of the template can be determined as θp,t ( see Figure 4.9). 

 

Figure 4.8 The principal axis of an image 
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(a) Template (b) Main orientation for template 

Figure 4.9 Main orientation determination 

4.5.3. Reference trimming 

The template It (Figure 4.9a) is compared to the reference Ir (see Figure 4.10a) 

using a sliding window (see Figure 4.10b). At each window position (i, j), the 

pixels of the reference Ir within the range (i-r/2 ≤ ak ≤ i+r/2, j-r/2 ≤ bk ≤ j+r/2) 

are extracted, generating a new image Iij (e.g., the image within the green box 

in Figure 4.10b). Then, the pixels in Iij out of the circle with radius r and 

centre (i, j) (see the red circle in Figure 4.10b) is set as 0. The main orientation 

of Iij is determined as θp,ij (see Figure 4.10d). 

  
(a) Reference (b) Extraction and trimming 
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(c) Trimmed part (d) Main orientation 

determination 

Figure 4.10 Main orientation determination and template rotation 

4.5.4. Similarity measure 

At each window position (i, j), after trimming of the reference, the similarity 

between It (Figure 4.11a) and Iij (Figure 4.11b) is to be measured. There are 

different techniques to measure the similarities, including Sum of Absolute 

Differences (SAD), Sum of Squared Differences (SSD), Maximum Absolute 

Difference (MaxAD), and so on. Here, the normalized cross correlation (NCC) 

of two images 𝛾𝐼 is utilized to measure the similarity (Lewis 1995), which is 

defined as follows: 
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 (4-6) 

 

where Tab and Nab are the value of the pixels at position (a, b) of It and Iij, T

and N are the average values of the pixels in It and Iij. Finally, the template is 
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rotated to align the two images both at main orientation (see Figure 4.11a and 

Figure 4.11b). As θp,t and θp,ij are within the range (-45°, 45°), there are four 

possible matched orientations between the two images (see Figure 4.11c), i.e., 

(θp,t - θp,ij), (θp,t - θp,ij + 90°), (θp,t - θp,ij + 180°), (θp,t - θp,ij -90°). The 

orientation with the largest similarity is selected, and the NCC value 𝛾𝑖𝑗 is 

recorded. At each window position (i, j), one NCC value 𝛾𝑖𝑗 is determined, 

making up a NCC matrix (see Figure 4.12a). Then, the partial image within 

with peak NCC is extracted as the matched part (see Figure 4.12c). Finally, the 

template is rotated to align with the extracted part (see Figure 4.12d). 

In order to assess the matching result, two criteria of successful 

matching are proposed: 

(1) rap: The difference between peak value and average value in the NCC 

matrix. 

(2) rfspd: The difference between peak value and second peak value. 

The two criteria are defined as follows: 
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 (4-7) 

 

where 𝛾𝑖,𝑗 is the NCC value at window position (i, j), 𝛾𝑝 is the peak value, and 

𝛾𝑘
𝑙  is the k-th local maximum. If the matching result meets all the three criteria, 

the matching is considered as successful. 
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θp,t

Ic

 

θp, ij
Iij

 
(a) Main orientation of template (b) Main orientation of trimmed 

reference 

 
(c) Rotated template with four different orientations 

 
(d) Selected orientation with the largest similarity 

Figure 4.11 Similarity measure and orientation selection 
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(a) NCC matrix (b) Matched position 

 

 
(c) Matched part (d) Rotated template according to the 

map  

Figure 4.12 Matching result 

4.5.5. Testing of the matching method 

An experiment has been carried out to test the algorithm of moment-based 

template matching. In the experiment, the offline map is collected from the 

OpenStreetMap. As shown in Figure 4.13a, the map is part of the campus in 

National University of Singapore. The map is firstly processed by two steps 

for matching. The first step is to convert to a binary image with 224×352 

pixels (see Figure 4.13b). Then, open morphology is applied to the binary 

image, generating an offline map (see Figure 4.13c). The contour image to be 

matched with this map is shown in Figure 4.14 and the desired result for 

matching is shown in Figure 4.15. 
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(a) Map collected from OpenStreetMap 

 
(b) Convert to binary image 

 
(c) Offline map generated after open morphology 

Figure 4.13 Pre-processing of the offline map 
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Figure 4.14 Contour image for matching 

 

Figure 4.15 Desired result for matching 

The matching procedure and the intermediate results are shown in 

Figure 4.16. The input contour image for matching is a binary image with 

101×84 pixels (see Figure 4.16a). After trimming, the image has 57×57 pixels 

(see Figure 4.16b), and its main orientation is determined as θp,t =16.9°, 106.9°, 

-163.1°, -73.1° (see Figure 4.16c). The correlation matrix is shown in Figure 

4.16d, and the matched position is located as (15, 47). 
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(a) Contour image for matching (b) Contour after trimming 

 

(c) Four main orientations 

 

(d) Correlation matrix and selected matching position 

Figure 4.16 Test result for moment based template matching algorithm 

4.5.6. Determination of Successful Matching  

In order to determine the two proposed criteria of successful matching, a 

numerical experiment is carried out. The offline map is shown in Figure 4.17. 

The template to be matched is shown in Figure 4.18b, which is applied scale 

error. The scale of the template is varied within [0.8, 1.2] at an interval of 

0.008, generating 50 samples (see Figure 4.18). The matching algorithm is 

tested with the 50 samples, and the results for the two criteria are shown in 

Figure 4.19.  From the result, the matching criteria is set conservatively as rpa 

= 70%, and rfspd= 20%, respectively. 
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Figure 4.17 Offline map for matching criteria test 

   
(a) Scale=0.8 (b) Template  (c) Scale=1.2 

Figure 4.18 The template applied scale error 

 

Figure 4.19 The evolution of matching result with scale error 

4.6. Landing Zone Evaluation 

In the offline map, the landing zone is preselected according to the size of 

UAV, safety distance to the edge of the roof, etc (see Figure 4.20b). The pixel 
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position of the v-th corner of the preselected landing zone in the offline map Ir 

is (rowv,r, colv,r). After matching between the reference Ir (offline map) and the 

template It (see Figure 4.20a), the matched positon and orientation of the 

template within the map is determined as (rowm, colm) and θp,m. 

The next step is to locate the landing zone in the template It (see Figure 

4.20c). The corresponding pixel positon of the v-th corner of the preselected 

landing zone in the template (rowv,t, colv,t) is determined as follows: 
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where, (𝑚𝑐, 𝑛𝑐) is the position of the centre pixel of the image. Then, the v-th 

corner of the landing zone in the point cloud is further identified in the point 

cloud (see Figure 4.20d) as follows: 
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Finally, the feasibility of the landing zone is evaluated. To evaluate the 

landing zone, the points within the zone are extracted. Then, a plane 

(ax+by+cz+d=0) is fitted to the points. Whether the landing zone is feasible for 

landing is evaluated by two criteria: inclination angle of the fitted plane λp and 

roughness σp (standard deviation of the distance from the points to the plane) 

as follows: 
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Assume the image size of template and map are (m1, n1) and (m2, n2) 

respectively, the computation time is proportional to m1×n1× (m2-m1)×(n2-n1). 

As the image size of template is generally much smaller than the map, that is, 

m1 << m2, and n1 << n2, so the computation time is approximately proportional 

to the pixel number of the map. So the complexity of the algorithm is O(n). 

 

 
(a) Rotated template (b) Map with preselected landing zone 

  
(c) Landing zone in 

template 

(d) Landing zone in the point cloud 

Figure 4.20 Landing zone identification 

4.7. Numerical Experiments 

Two numerical experiments have been carried out to test the developed 

algorithm. The point cloud data in both experiments were collected using a 
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simulation environment called Unity3D. In the environment, a city model of 

over 1000 buildings has been built, as shown in Figure 4.21. In the first 

experiment, there’s one preselected landing location, it is to be determined 

whether it is feasible for landing by the algorithm. In the second experiment, 

there are multiple preselected landing locations. It is expected to determine the 

feasibility of all the landing locations and select the best one. 

 
(a) The city model in Unity3D 

UAV

Laser 

Scans

Roof

 
(b) Hovering and data collection 

Figure 4.21 City model and data collection 
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In the first experiment, one landing location is preselected at the roof 

corner of one building (see Figure 4.22a). The 3D model of the target area is 

shown in Figure 4.22b. The collected point cloud (see Figure 4.22c) consists 

of 8,725 points, the average interval of which is 0.55m. The total running time 

is 0.75s. In altitude filtering step (see Figure 4.22d), the points outside the 

range (5m, 20m) are filtered. Then, the normal of the remaining points are 

estimated, in which the neighborhood size of a point is set as 16. The points 

with slope larger than 45° are filtered out (see Figure 4.22e). After clustering, 

the clusters with less than 80 points are removed, only one cluster is remaining 

(see Figure 4.22f). In boundary extraction (see Figure 4.22g), the αh is set as 2. 

Then, the contour is converted to an image with a resolution of 0.1m/pixel (see 

Figure 4.22h). After matching, the matched location of the contour in the 

offline map is at the pixel (221, 367), and the orientation displacement of the 

contour is 1° relative to the offline map (see Figure 4.22i). Finally, the 

feasibility of the landing zone is checked (Figure 4.22j). The inclination angle 

is 0.9° and the roughness is 3.9mm. So it is considered feasible for landing. 

The running time of each step is shown in Table 4.2. 
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(a) 2D map with preselected landing location 

 
(b) 3D model 
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(c) Input point cloud 

 
 

 
(d) Altitude filtering 

 
(e) Slope filtering 

 
(f) Clustering 



Chapter 4 Online Landing Location Selection for Rotary-wing UAV in A GPS-denied Urban 

Environment 

104 

 

 
(g) Roof boundary 

 
(h) Roof contour 

 
(i) Landing location in roof contour 

 
(j) Landing location in point cloud 

Figure 4.22 Process of the first numerical experiment 

In the second experiment (see Figure 4.23), three landing locations are 

preselected at the roof corners of three buildings (see Figure 4.23a). The 3D 

model of the target area is shown in Figure 4.23b. The collected point cloud 

(see Figure 4.23c) consists of 33,609 points, the average interval of which is 

0.48m. The total running time is 1.19s. The parameters are set as the same in 

the first experiment, such as altitude range, neighbourhood size, and the slope 

threshold, etc. After matching, the matched location of the contour in the 

offline map is at the pixel (210, 553), and the orientation displacement of the 

contour is 0° relative to the offline map (see Figure 4.23i). Finally, the 

feasibility of all the three landing zones is checked (see Figure 4.23j), and the 
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results are shown in Table 4.1. After comparison, the 1
st
 landing zone is 

selected as the landing location for the UAV. 

The two experiments are carried out on a computer with a processor of  

“Inter(R) Xero(R) CPU e3-1225 v3 @ 3.2GHz”, memory of 8GB, 64-bit 

operating system, Ubuntu 12.04, libpcl 1.7, libopencv 2.4.13. The computation 

time for all the steps of the algorithm is shown in Table 4.2. 

Table 4.1 Landing zone feasibility evaluation 

Landing criteria 
Landing zone 

1
st
 2

nd
 3

rd
 

Inclination angle λp /° 13.1 48.3 52.9 

Roughness σp / mm 12.5 117 102 

Feasibility Feasible Infeasible Infeasible 

 

Table 4.2 Computation time for the two experiments 

Experiment 1 2 

Point cloud size 8725 33609 

Read point cloud 0.031683 s 0.116011 s 

Altitude filtering 0.003500 s 0.024929 s 

Slope filtering  0.004619 s 0.043820 s 

Clustering 0.001707 s 0.017379 s 

Contour extraction 0.004561 s 0.044232 s 

Contour matching 0.695662 s 0.741771 s 

Evaluation 0.000116 s 0.000424 s 

Total 0.741848 s 0.988566 s 

 

 
(a) 2D map with preselected landing location 
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(b) 3D model 

 
 

 
(c) Input point cloud 

 
(d) Altitude filtering 

 
(e) Slope filtering 

 
(f) Clustering 
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(g) Roof boundary 

 
(h) Roof contour 

 
(i) Landing location in roof contour 

 
(j) Landing location in point cloud 

Figure 4.23 Process of the second numerical experiment 

4.8. Analyzation of the parameters in the experiment 

All the parameters in the experiments are tunable. In the step of altitude range 

filtering, it is assumed that we have some knowledge of the building height 
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range in the certain region. The value (5m, 20m) is set only for this experiment. 

The larger the range is chosen, the more points are included in the point cloud 

after the altitude range filtering, resulting more computation time, in addition, 

points not belonging to roofs may be included, such as ground, cars, and other 

objects. Too small range may cut off some points belonging to the roofs.  

In the step of clustering, the threshold values nmin for Euclidean 

clustering is set as 80, which means the clusters with less than 80 points are 

not considered as possible roofs. If nmin is set too small, points not belonging 

roofs may be included in point cloud after the clustering. If nmin is set too large, 

possible roofs may be cut off.  

In the step of slope filtering, for each point, a plane is fitted to its 

neighbors. The slope of the plane is checked. If the slope is larger than a 

certain threshold, the point is considered as not feasible. The threshold angle 

can be adjusted. In this experiment, 45° is selected because the plane steeper 

than 45° is considered as walls, the plane slope smaller than 45° is considered 

as roof. The larger the threshold angle, the more points are included in the 

point cloud after the slope filter. Too large threshold angle may bringing 

points belonging walls, while, too small threshold angle may cut off points 

belonging roofs. 

In the step of boundary extraction, αh controls the shape of the resulted 

boundary of the roof contour. Larger αh results in more structured boundary 

and less number of contours. If αh goes to infinity, the alpha hull becomes the 

convex hull, that is, only generate one contour. 
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In the step of landing zone evaluation, the two criteria p and p are 

evaluated to prevent the UAV to roll over when it lands on the roof. The 

specific parameters are to be tuned based on different scenarios. 

4.9. Summary 

This chapter addresses the problem of online landing location identification 

and feasibility evaluation for rotary-wing UAV. In the selection procedure, the 

point cloud obtained by laser scanner is filtered, and the contour of the roof is 

extracted, which is then matched with the offline 2D map to locate the 

preselected landing point/zone. The main contribution is that the algorithms of 

point cloud filtering and landing location extraction can be implemented in 

real time, which makes it feasible for on-board running on UAV. The major 

difference between our algorithms with other landing location selection 

algorithms is that we match the online extracted roof contour with an offline 

map to locate the landing point/zone. The matching algorithm guarantees high 

accuracy of selected landing location, which is of great importance. The main 

limitation in the online landing location selection is that the point cloud 

filtering algorithm is based on some heuristics. For example, the height range, 

inclination angle and roughness of the feasible landing locations are utilized to 

do point cloud filtering. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

The main objective of this thesis is to further the research in UAV mission 

planning in city surveillance. In this chapter, the research will be summarized 

for the thesis and possible recommendations for future work will be presented. 

5.1. Conclusions 

The specific issues addressed in this thesis are: (1) coverage path planning for 

fixed-wing UAV city surveillance in hazard environment; (2) offline perching 

location selection by a rotary-wing UAV for surveillance on a target; (3) 

online landing location identification and feasibility evaluation by a rotary-

wing UAV in a GPS-denied environment. 

 Coverage path planning for continuous city surveillance with fixed-

wing UAVs in hazardous environment 

The problem of coverage path planning for continuous city 

surveillance fixed-wing UAVs in hazardous environment has been addressed. 

In this problem, a realistic hazardous urban environment model was built, 

including terrain and buildings. The camera on-board the UAV is modelled 

with the pan-tilt ability. The flying paths of the UAVs to cover the whole 

urban area are planned with the proposed algorithms. A two stage approach is 

applied to achieve a sub-optimal solution. In the first stage, one camera 

position and attitude is determined for each surface point in the urban area, 

making up a vantage set. The best camera attitude is determined by a PSO 
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algorithm. In the second stage, the optimal subset is selected from the vantage 

set to cover the whole surface area and flying paths are fitted for UAVs. A 

GA-based algorithm is proposed to select the optimal subset. The flying path 

is fitted with B-spline curve, and realistic constraints are considered in path 

fitting, such as turning radius, climbing/diving angle. Two kinds of fitness 

functions are considered for scenarios with and without hazard existence. 

 Offline perching location selection by a rotary-wing UAV for 

surveillance on a target 

A problem of offline perching location selection by a rotary-wing 

UAV for surveillance on a target has been solved. Realistic constraints are 

considered in perching location selection, including both geometric constraints 

and mission constraints. Geometric constraints includs camera range, roof area, 

and roof slope. The mission constraints is to keep a line of sight from the 

perching location to the target to be viewed. The feasible perching locations 

can be selected by the proposed algorithms. 

 Online landing location selection by a rotary-wing UAV in a GPS-

denied environment 

The problem of landing location identification and feasibility 

evaluation for rotary-wing UAV is addressed. The 3D point cloud collected by 

a 2D LiDAR on-board the UAV is filtered first, then the roof contours are 

extracted and matched with the offline map to identify the presected landing 

zone. Finally, the feasibility for landing is evaluated. The point coud is 

converted to an image to be registrated to the offline map. A new rotation-

invariant template matching method is proposed to match images without 
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enough features. Second order image moment is utilized to determine the main 

orientation of the image. 

5.2. Recommendation for Future Work 

Limitations cannot be avoided in the thesis, which may lead to some possible 

recommendations for future work. 

First, for coverage path planning of fixed-wing UAVs in continuous 

city surveillance mission, the recommendations are as follows: (1) Model 

more types of hazard, such as missiles, cannon, moving radar vehicle, etc. (2) 

Directly use GA method to find optimal vantage set, without a pre-selection of 

view directions. (3) Consider more realistic constraints, such as flying duration, 

different depots for UAVs, different UAV capabilities. 

Second, for offline perching location selection by a rotary-wing UAV 

for surveillance on a target, the recommendations are: (1) Model more 

complex urban environment, including trees, uneven terrain, irregular objects, 

etc. (2) Consider more complex models of the target to be viewed. 

Finally, for online landing location selection by a rotary-wing UAV in 

a GPS-denied environment, the possible directions are: (1) The matching 

algorithm needs to be improved to be robust to scale of image; (2) Apply 

pattern recognition to determine the load bearing ability of the landing 

locations.(3) Improve the algorithms of point cloud filtering to remove the 

heuristics. 
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