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Abstract

This thesis studies Distributed Model Predictive Control (DMPC) of a group of discrete-

time linear systems with and without coupled dynamics or constraints. Several prob-

lems are studied: systems with coupled dynamics and systemswith independent dy-

namics but coupled constraints. Under these situations, centralized MPC may be com-

putationally inefficient and more efficient approaches are desired. For a network of

dynamically-coupled linear systems, a decoupling strategy for DMPC is proposed with

the use of time-varying terminal sets. The terminal sets aredetermined online at every

time step according to some update law, which ensures recursive feasibility and stability

of the approach. Time-varying terminal sets also result in aless conservative DMPC

formulation compared with most DMPC approaches. For a network of linear systems

with coupled constraints, this thesis proposes a DMPC approach based on the dual

problem of the overall MPC optimization problem. This dual problem is then solved

by the Alternating Direction Multiplier Method (ADMM) in a distributed manner. A

stopping criterion is proposed that allows early termination of the ADMM process to

reduce the computational burden within each sampling time.Under mild assumptions,

the approach is guaranteed to converge to a small neighborhood of the optimal of the

overall MPC optimization problem. The advantage of this approach is that it allows the

network to be sparsely connected. To further accelerate theonline computations of the

DMPC problem, a distributed fast dual gradient algorithm isalso proposed in this thesis

with the use of finite-time consensus. The accelerated approach takes fewer iterations

to terminate and thus has a faster convergence. Recursive feasibility and exponential

stability of the closed-loop system are also ensured. Simulation results are provided to

show the performances of the proposed DMPC approaches.

ii



List of Publications

Journal Papers

C.J. Ong,Z. Wang, and M. Dehghan. Model predictive control for switching system with

dwell-time restriction. IEEE Transactions on Automatic Control, accepted.

Z. Wang, C.J Ong. Distributed MPC of constrained linear systems with time-varying ter-

minal sets. Systems & Control Letters, 88: 14-23, 2016.

C.J. Ong,Z. Wang. Reducing variables in Model Predictive Control of linear system with

disturbances using singular value decomposition. Systems& Control Letters, 71: 62-68,

2014.

Conference Papers

Z. Wang, C.J Ong. Distributed model predictive control of linear discrete-time systems

with coupled constraints. In Proceedings of 55th IEEE Conference on Decision and Con-

trol, 2016, accepted.

C.J. Ong,Z. Wang, and M. Dehghan. Characterization of switching sequences on system

with dwell-time restriction for Model Predictive Control.In Proceedings of 54th IEEE Con-

ference on Decision and Control, Osaka, Japan, 2015.

Z. Wang, C.J Ong. Distributed MPC of constrained linear systems with online decoupling

of the terminal constraint. In Proceedings of the American Control Conference, Chicago,

Illinois, 2015.

iii



Contents

List of Publications ...................................................................................................iii

List of Figures ........................................................................................................... viii

List of Tables ............................................................................................................. ix

List of Algorithms .....................................................................................................x

List of Notations........................................................................................................ xi

1 Introduction 1

1.1 Background ......................................................................................................... 1

1.2 Related Works .................................................................................................... 2

1.2.1 Decentralized Control and Distributed Control...................................... 3

1.2.2 Overview of Distributed Model Predictive Control ............................... 5

1.3 Motivation .......................................................................................................... 7

1.4 Scope and Organization of the Thesis................................................................8

2 Basic Concepts and Literature Review 10

2.1 Mathematical Background ................................................................................. 10

2.1.1 Convex Sets and Convex Functions .......................................................10

2.1.2 Graph Theory ......................................................................................... 13

2.2 Model Predictive Control ................................................................................... 13

2.2.1 The Optimal Control Problem................................................................14

2.2.2 The Terminal Cost and Set .....................................................................15

2.2.3 Recursive Feasibility and Stability .........................................................16

2.3 ADMM............................................................................................................... 17

2.3.1 Standard ADMM Algorithm ..................................................................18

2.3.2 Distributed Implementation of ADMM .................................................19

2.4 Nestrov’s Fast Gradient Method ........................................................................22

iv



Contents v

2.4.1 Gradient and Distributed Gradient Method............................................22

2.4.2 Centralized Fast Gradient Method .........................................................23

2.4.3 Centralized Fast ADMM........................................................................24

2.4.4 Distributed Fast Gradient Methods ........................................................24

2.5 Distributed Model Predictive Control ................................................................25

2.5.1 Coupled Dynamics .................................................................................25

2.5.2 Coupled Cost Functions .........................................................................27

2.5.3 Coupled Constraints ...............................................................................29

3 Consensus Algorithms and Finite-Time Consensus 31

3.1 Review of Consensus Coordination Problems....................................................31

3.2 Multi-Agent Consensus Optimization ...............................................................33

3.2.1 Distributed Subgradient Algorithms ......................................................34

3.2.2 Dual Averaging Methods........................................................................35

3.2.3 Augmented Lagrangian Methods ...........................................................36

3.2.4 Distributed ADMM Algorithms.............................................................37

3.3 Finite-Time Consensus....................................................................................... 39

3.3.1 Review of Finite-Time Consensus Algorithms ......................................39

3.3.2 The Proposed Finite-Time Consensus Algorithm ..................................40

4 Distributed MPC of Constrained Linear Systems with Time-Varying Termi-

nal Sets 43

4.1 Introduction........................................................................................................ 43

4.2 Preliminaries ...................................................................................................... 45

4.3 Main Results ...................................................................................................... 48

4.3.1 Computations ofP andK ....................................................................... 48

4.3.2 Distributed Costs .................................................................................... 49

4.3.3 The Decoupled Terminal Set ...................................................................51

4.3.4 Online DMPC Problem ..........................................................................52

4.3.5 Update ofci ............................................................................................53



Contents vi

4.3.6 Update ofr i ............................................................................................53

4.4 Feasibility and Stability of DMPC.....................................................................55

4.5 Preprocessing to Speed up the LP Computations ..............................................56

4.6 Numerical Results .............................................................................................. 57

4.7 Conclusions........................................................................................................ 64

Appendix 4.A Proof of Lemma4.1: .........................................................................65

Appendix 4.B Proof of Lemma4.2: .........................................................................66

Appendix 4.C Proof of Theorem4.1: ....................................................................... 66

Appendix 4.D Proof of Theorem4.2: ....................................................................... 67

5 Distributed Model Predictive Control of Linear Discrete-Time Systems with

Coupled Constraints 69

5.1 Introduction........................................................................................................ 69

5.2 Preliminaries and Problem Formulation .............................................................71

5.2.1 Tightening the Constraints .....................................................................72

5.2.2 Network Description ..............................................................................74

5.3 The Proposed Algorithm.................................................................................... 75

5.3.1 The Dual Form ....................................................................................... 75

5.3.2 The Conversion to a Consensus Optimization Problem.........................76

5.3.3 Distributed ADMM Algorithm ..............................................................77

5.3.4 Convergence of the Distributed ADMM Algorithm ..............................78

5.4 The Stopping Criterion for the Distributed ADMM ..........................................80

5.5 Recursive Feasibility and Stability..................................................................... 82

5.6 Numerical Results .............................................................................................. 83

5.7 Conclusions........................................................................................................ 85

Appendix 5.A Proof of Theorem5.1........................................................................ 86

Appendix 5.B The proof of Theorem5.2.................................................................. 91

Appendix 5.C Proof of Lemma5.1..........................................................................93

Appendix 5.D Proof of Lemma5.2..........................................................................94

Appendix 5.E Proof of Theorem5.3........................................................................ 94



Contents vii

6 A Distributed Fast Dual Gradient Algorithm for Distribute d Model Predic-

tive Control with Coupled Constraints 97

6.1 Introduction........................................................................................................ 97

6.2 Preliminaries ...................................................................................................... 98

6.3 The Main Results ............................................................................................... 99

6.3.1 Distributed Fast Dual Gradient Algorithm.............................................100

6.3.2 Convergence Analysis .............................................................................101

6.3.3 Primal Suboptimality and Feasibility .....................................................102

6.4 The Overall DMPC Scheme ..............................................................................103

6.5 Recursive Feasibility and Stability..................................................................... 105

6.6 Numerical Results ..............................................................................................106

6.7 Conclusions........................................................................................................109

Appendix 6.A Proof of Lemma6.1...........................................................................111

Appendix 6.B Proof of Theorem6.1: .......................................................................113

Appendix 6.C Proof of Theorem6.2........................................................................114

Appendix 6.D Proof of Lemma6.3..........................................................................115

Appendix 6.E Proof of Theorem6.3........................................................................115

7 Conclusions and Future Work 117

7.1 Contributions of This Thesis.............................................................................. 117

7.2 Future Work .......................................................................................................119

7.2.1 Stabilization with Structural Constraints................................................119

7.2.2 Disturbance and Transmission Errors ....................................................120

7.2.3 Time-Varying Communication...............................................................120

References 121



List of Figures

1.1 Centralized control architecture .............................................................................. 3

1.2 Decentralized control architecture........................................................................... 3

1.3 Distributed control architecture ............................................................................... 4

2.1 A conceptual picture of MPC.................................................................................. 15

4.1 The hierarchical trees of the LPs ............................................................................. 57

4.2 The networked system examples............................................................................. 58

4.3 The individual terminal sets .................................................................................... 60

4.4 r1(t), r2(t), r3(t), r4(t), andρ(c(t)) of the second network..................................... 60

4.5 The comparison of terminal sets:E i refers to terminal set induced by a diagonal

P while Xi
f is that given by the proposed approach. .................................................61

6.1 The water tanks system ...........................................................................................106

6.2 The overall input trajectories:DMPC(ε = 0.01) and CMPC...................................107

6.3 Convergence curves of different distributed algorithms..........................................109

viii



List of Tables

1.1 Summary of existing DMPC approaches ................................................................7

4.1 The cost difference of DMPC and CMPC over various choicesof the initial state

x(0). ......................................................................................................................... 60

4.2 Parameters of Examples III and IV ......................................................................... 64

4.3 CPU times ofO(ω1) using different schemes.........................................................64

5.1 The scales of the terminal sets for different choices ofε ........................................83

5.2 Values of̄k(t) along the trajectories starting fromxi(0)= [−2.4583 1.1137]T , i =

1, ..,4 for different choices ofε andδ ..................................................................... 84

5.3 The cost difference of the proposed approach and the CMPCover various choices

of the initial statex(0). ............................................................................................85

6.1 The values ofJ∞
ε (x(0)) for different choices ofε ...................................................108

6.2 The number of iterations along the trajectories starting from x(0) for different

choices ofε ..............................................................................................................108

ix



List of Algorithms

3.1 Finite-time algorithm 42

5.1 Consensus ADMM algorithm 81

5.2 The synchronous MPC controller 82

6.1 Distributed fast dual gradient algorithm 104

6.2 The overall DMPC algorithm 104

x



List of Notations

Z
+
0 Set of non-negative integer

Z
+ Set of positive integer set

R
+
0 Set of non-negative real number

R
+ Set of positive real number

R
n n-dimensional real Euclidean space

R
n×m Set ofn×m real matrix

In n×n identity matrix

111n n-dimensional column vector of all ones

int(·) Interior of a set

Q≻ 0 Positive definite matrix

Q� 0 Positive semi-definite matrix

‖·‖p p-norm of vector

|S| Cardinality of a setS

Z
M
L {L,L+1, · · · ,M}

O∞ The maximal constraint-admissible invariant set

PS[x] Projection of a vectorx onto the setS

xi



CHAPTER 1
Introduction

This thesis concerns the distributed control of constrained networked systems under the model pre-

dictive control (MPC) framework. It focuses on the design ofDistributed Model Predictive Con-

trol(DMPC) controller for linear systems with and without coupled dynamics or constraints. This

chapter provides an overview of DMPC.

1.1 Background

Control theory conventionally builds mathematical modelsof dynamical systems and designs con-

trollers in a centralized fashion. Many engineering systems such as power, water distribution, traffic

and manufacturing systems consist of a group of interactingsubsystems that may transmit infor-

mation among one another. The mathematical models of these systems are huge and complex and

centralized control design may be difficult. This motivatesthe study of distributed control, where the

controller elements are distributed throughout the systemand connected using communication and

monitoring networks. The advantages of distributed control are that each control element requires

only local information transmission and the overall control problem is converted into several smaller

problems that can be solved efficiently. The main issue is that the design of the local controllers has

to guarantee the stability and performance of the overall system.

Distributed control of networked systems is a popular recent research topic. In networked systems,

the internal structure of the network can impose constraints on the design of controllers arising

from communication limitations and time-delays. The earlyliterature has been devoted to the study

of decentralized control strategies on large-scale systems, where each agent has only access to its

1



1.2 Related Works 2

own local measurements and their controllers operate in an independent fashion, see [1–4] and

the references therein. However, these strategies are reliable only for systems with weak local

interaction. When strong local interaction appears, systems controlled in a independent fashion

could have poor performance and instability. For this reason, it is important to take into account the

information exchanges and the synchronization protocols in the control of networked systems. One

well-known control strategy for networked systems is the DMPC, which is based on the standard

MPC framework.

MPC is a powerful control technology for the control of constrained systems. It determines the

current control by solving an online optimal control problem. In large-scale systems, the centralized

MPC can lead to a huge optimal control problem in high dimension and often seen as unrealistic and

inefficient. For these reasons, a DMPC framework is more desirable in dealing with large-scale or

networked systems. In DMPC, the overall optimization problem is decoupled and each local system

solves a small local optimization problem with communications among the systems.

Several issues should be discussed and addressed in the DMPC, including the computational effi-

ciency of the DMPC problem and the performance of the whole system. The overall DMPC problem

is a high-dimension problem that requires a huge amount of memory. A distributed implementation

is therefore preferred for the DMPC problem. However, the coupled dynamics and constraints of

systems can cause performance deterioration in a distributed implementation of DMPC compared to

a centralized MPC, including feasibility and stability issues. The next section reviews some related

past works on the control of networked systems under MPC framework.

1.2 Related Works

As discussed in the previous section, distributed control is an important strategy for large-scale or

networked systems. It aims to convert a large control problem into a bunch of smaller problems

where the control inputs can be computed very efficiently. This section begins with the review of

decentralized control and distributed control. It is then followed by an overview of existing DMPC

approaches.
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1.2.1 Decentralized Control and Distributed Control

The research on the control of large-scale or networked systems has a long history. Due to the

high dimensionality and complexity, it is difficult to control such systems with a centralized control

scheme. To illustrate the difficulty, an example is shown in Figure1.1, where the inputs of the two

coupled subsystems are determined by a central controller.The controller requires information from

both subsystems to produce the control action.

Figure 1.1: Centralized control architecture

For large-scale systems with special structure, it is possible to implement decentralized control,

where the subsystems are decoupled and the controllers are designed in an independent fashion [1–4].

Figure 1.2 shows an example of decentralized control, where each subsystem is controlled by a

local controller and there is no interaction between the twolocal controllers. Various decentral-

Figure 1.2: Decentralized control architecture

ized control methods have been developed to achieve the stability of the overall system with some

performance assurance. Among these methods, the classic Lyapunov-based control methods are

widely used [1]. Other methods include the sequential design [5], parameter optimization [6, 7],

and overlapping decompositions [8–11]. Recent research on decentralized control can be found in
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the survey papers [3, 12–15]. The basis of decentralized control is to break down a givencentral

control problem into manageable subproblems which are onlyweakly related to each other and can

be solved independently. To this end, the overall feedback gain matrix is usually restricted to be

block-diagonal without considering the weak coupling. In some special structures, it is possible

to make small adjustment, e.g. the overlapping and the bordered block-diagonal (BBD) control

laws in [4, 16]. A more general decentralized control design can be found in [17]. There are also

approaches available in [18–21] that impose the structural constraints arising from the structure of

the overall system. Many of these approaches have used Linear Matrix Inequalities(LMIs) to de-

velop sufficient conditions for stability. The decentralized control design works well for weakly

coupled networked systems. However, in systems where the connections among subsystems are

strong, the overall performance can be affected if the couplings are ignored. Due to the strong local

connections, systems controlled in a decentralized fashion could have poor performance and even

stability issues. This means that decentralized control isnot always suitable for networked systems.

In order to circumvent the drawbacks of decentralized control, distributed control is widely used

in networked systems where local subsystems are strongly related. Unlike decentralized control, it

makes use of the internal structure of the overall system with information transmission among sub-

systems. Figure1.3presents the general distributed control architecture, where the local controllers

of the subsystems transmit information with each other. In the demand for good overall performance,

Figure 1.3: Distributed control architecture

distributed control becomes a useful strategy for networked systems. However, it is difficult to im-

pose structural constraints in general systems directly asthis will lead to computationally intractable

problems [22–24]. In general, the controller and the structural constraints are designed in a linear

fractional transformation (LFT) framework by solving a norm-minimizing problem subject to infor-

mation constraints. Such constraints lead to nonconvex optimization problems which, in most of the
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case, are intractable. In [25,26], a sufficient condition on the structure, called quadraticinvariance,

is introduced to produce a tractable optimization problem.This condition is extended in [27] by the

use of internal quadratic invariance, which is claimed to beless conservative. Although there are a

great number of works on distributed control with structural constraints, this is still an open research

problem.

1.2.2 Overview of Distributed Model Predictive Control

MPC is typically a centralized optimal control strategy, inwhich the current control action is ob-

tained by solving an online finite horizon optimization control problem defined by the predicted

trajectory of the plant at each sampling time. The optimization problem yields an optimal control

sequence and the first control in this sequence is applied to the plant. It is widely used in constrained

systems with extensive applications to various industriesareas. The essential theoretical issues in

MPC include the existence of solutions to optimization control problems, characterization of optimal

solution, Lyapunov stability of the optimally controlled system, and algorithms for the computation

of optimal feedback control and optimal control sequences,see [28–31]. To achieve recursive feasi-

bility and stability, it is quite common to incorporate botha terminal cost and a terminal set in the

optimization control problem [32–34]. A detailed review on the technical properties of MPC is pro-

vided in Section2.2. However, in large-scale or networked systems, it is unrealistic and inefficient

to solve the high-dimensional overall MPC problem online. To circumvent this problem, DMPC is

proposed. Its aim is to achieve the attractive features of MPC in a distributed implementation. An

overview of past DMPC approaches is provided below.

There is a wide set of DMPC approaches proposed in the literature recently [15, 35–41]. These

approaches can be considered as either fully connected DMPCor partially connected DMPC de-

pending on the topology of the communication network. Thosethat allow local controllers to have

knowledge of the state of the whole network are called fully connected DMPC [42]. However,

fully connected systems are rare in real situations. Most systems only have partial information

and exchange information with their neighbours. Approaches based on this assumption are called

partially connected DMPC. Fully connected DMPC usually hasbetter performance but requires

heavy communication while partially connected has some performance deterioration and requires
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less communication. Of course, the former can be consideredas a special case of the latter. In net-

worked systems with weakly coupled subsystems, partially connected DMPC can be effective with

low communication requirement and negligible performancedeterioration.

DMPC can also be categorized according to different choicesof the performance index. Some ap-

proaches are called the non-cooperative DMPC while the others are called cooperative DMPC. In

the non-cooperative DMPC, each local controller only optimizes its own local performance index.

On the contrary, the cooperative DMPC focuses on the global performance of the entire system

rather than the local performance of each system. When the subsystems are completely uncoupled,

these two strategies can have the same performance. In general, their performances are significantly

different. The non-cooperative DMPC is often used in systems where subsystems are dynamically

decoupled [35, 43–46]. It can also be used for dynamically coupled systems where the coupled

terms are treated as disturbances to the dynamics of the local systems [47–49] or replaced by some

presumed fixed trajectories [50]. The cooperative DMPC is frequently used in systems where sub-

systems are coupled in some forms. This cooperative strategy was first introduced by [51] and

followed by [52–54]. Generally speaking, the cooperative DMPC has better performance due to

the cooperation among subsystems. In the context of game theory [55], the non-cooperative DMPC

allows the subsystems to move towards Nash equilibrium [40,56,57], while the cooperative DMPC

nonetheless seeks to achieve the Pareto optimal solution [40,58].

In terms of information exchange, there are two different types of transmission protocols, namely

non-iterative DMPC and iterative DMPC. In the non-iterative DMPC, the information is transmitted

only once and each subsystem solves its MPC problem once within each sampling time [37, 50,

59, 60]. Meanwhile, in the iterative DMPC, the information can be transmitted many times and

each subsystem need to solve its MPC problem repeatedly within each sampling time [51, 61–64].

Usually, the iterative DMPC requires more computations andcommunications and its control is

closer to the optimal of the centralized MPC, and hence has better performance. Additionally, some

proper stopping criterion is needed in the iterative DMPC. The past works use either the maximal

number of iterations [51, 61, 62] or a centralized stopping criterion [64] to ensure that the solution

is within some accuracy. However, the maximal number of iterations is a loose condition and the

centralized stopping criterion is not desirable in a distributed implementation.
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In almost all DMPC approaches, recursive feasibility and stability of the overall system should be

guaranteed. Like the centralized MPC, the terminal set of the whole networked system can be used

to ensure these properties. However, due to the coupled dynamics and constraints, it is difficult to

determine the terminal set. The most convenient choice of the terminal set is the origin of the indi-

vidual subsystem [51,65]. Less conservative approaches [66,67] use an ellipsoidal set induced from

a block diagonal Lyapunov matrix. While being a great improvement, restricting Lyapunov matrix

to be block-diagonal is still restrictive. To the best of theauthor’s knowledge, further research is

needed for computation of the terminal set of DMPC without significant performance deterioration.

1.3 Motivation

Based on the review in the previous section, DMPC is an important control strategy for constrained

networked systems and its study has not been completely explored. The following table presents a

summary of the existing DMPC approaches according to different classification attributes.

Classification attributes DMPC approaches

Topology of the communication network
fully connected

partially connected

Performance index
non-cooperative

cooperative

Protocol of information exchange
non-iterative

iterative

Table 1.1: Summary of existing DMPC approaches

In the presence of coupled dynamics and constraints, it it desirable to use cooperative and iterative

DMPC to avoid significant performance deterioration. This thesis considers both the fully connected

and partially connected networks. The focus is placed on thepartially connected network as it

has lower communication cost and is more realistic for large-scale networked systems. In order

to facilitate the distributed implementation, the terminal sets should be determined in a distributed

manner. For iterative algorithms, some proper stopping criterion is needed to terminate the algorithm

for solving the online MPC problem. A convenient choice of the stopping criterion is the maximal

number of iterations. However, this stopping criterion is conservative in most of the cases. This

thesis proposes some tight stopping criterions under different MPC formulations and they are done

in a distributed manner. The close-loop behaviour of the DMPC will also be investigated and the
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comparison will be made with the centralized MPC.

1.4 Scope and Organization of the Thesis

The thesis focuses on discrete time-invariant linear systems with coupled dynamics and linear cou-

pled constraints. Nonlinear systems and nonconvex constraints are beyond the scope of this thesis.

The rest of this thesis is organized as follows:

Chapter 2

This chapter gives a review of some theoretical results, including basic mathematical concepts, prop-

erties of the standard MPC, ADMM and some closely related existing DMPC approaches.

Chapter 3

This chapter discusses developments in the area of distributed consensus algorithms. A review of

consensus coordination problems and multi-agent consensus optimization is provided. A finite-time

consensus algorithm is also proposed in this chapter.

Chapter 4

This chapter proposes a decoupling strategy for DMPC for a network of dynamically-coupled linear

systems with uncoupled constraints. The proposed approachuses time-varying terminal sets to

ensure feasibility and stability of the overall system. Distributed implementations of this approach

are proposed under two different cases: the network is fullyconnected (or when a central collector

is used); the network is connected.

Chapter 5

This chapter proposes a DMPC approach for a family of discrete-time linear systems with local

(uncoupled) and global (coupled) constraints. The proposed approach is based on the dual problem

of a MPC optimization problem involving all systems, which is then distributedly solved using

Alternating Direction Multiplier Method (ADMM). To improve the computational efficiency, this

approach also allows early termination of the ADMM process via a finite-time consensus algorithm.

Chapter 6

This chapter proposes an accelerated DMPC approach for the same problem in Chapter 5. Similarly,
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this accelerated approach is based on the dual problem of an overall MPC optimization problem in-

volving all systems. However, this dual problem is then solved distributively based on the Nesterov-

accelerated-gradient algorithm. Under reasonable assumptions, the approach is able to produce a

suboptimal solution and converges faster than the approachin Chapter 5 for the same accuracy.

Chapter 7

This chapter summarizes the main contributions of this thesis and provides possible directions for

future work.



CHAPTER 2
Basic Concepts and Literature Review

This chapter reviews some well-known results that are related to the proposed DMPC approaches

in this thesis. It begins with some related mathematical background, followed by a review on MPC

and some distributed algorithms to solve the MPC prolem. Finally, it also provides a detailed review

on existing DMPC approaches.

2.1 Mathematical Background

This section provides some related mathematical background, including basic properties of convex

sets and convex functions, and standard definitions in graphtheory.

2.1.1 Convex Sets and Convex Functions

Definition 2.1. A set C is convex if the line segment between any two points in Clies in C, i.e.,

θx1+(1−θ)x2 ∈C,∀x1,x2 ∈C,∀θ ∈ [0,1] (2.1)

Givenx1,x2, · · · ,xk, a point is called a convex combination ofx1,x2, · · · ,xk, if it can be represented

asθ1x1 + θ2x2 + · · ·+ θkxk, whereθ1 + θ2+ · · ·+ θk = 1 andθi ≥ 0 for all i = 1,2, · · · ,k. For an

arbitrary setS in R
n, the convex hull can be generated fromSusing the convex combination.

Definition 2.2. The convex hull of S, denotedconvS, is the set of all convex combinations of points

10
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in C, or,

convS= {θ1x1+θ2x2+ · · ·+θkxk : xi ∈C,θi ≥ 0,∀i = 1,2, · · · ,k,θ1+θ2+ · · ·+θk = 1} (2.2)

The following theorem can be derived from the definition of the convex hull.

Theorem 2.1. Let S be an arbitrary set inRn. Then,convS is the smallest convex set containing S

There are some special points in a convex set that are called extreme points, whose definition is

given as follows.

Definition 2.3. Given the convex set S⊆ R
n, a point p∈ S is called an extreme point of S, if it does

not lie in any open line segment joining two points of S.

In other words, for an extreme pointp of a convex setS, p = θx1 +(1− θ)x2 with x1,x2 ∈ S and

θ ∈ (0,1) implies thatp= x1 = x2.

One special case of convex sets is represented by polyhedralsets.

Definition 2.4. A set S⊆R
n is a polyhedral set if it is the intersection of a finite numberof equalities

and inequalities, e.g. S= {x∈ R
n : Ax= b,Cx≤ d} with A∈R

m×n,C ∈R
p×n,b∈ R

m and d∈ R
p.

It can be easily verified that a polyhedral set is convex. A bounded polyhedral set is often called a

polytope. The convex hull of a finite set of points is a boundedpolyhedral set or polytope. Given a

set of points{v1,v2, · · · ,vk}, its convex hull can be represented as

conv{v1,v2, · · · ,vk}= {θ1v1+θ2v2+ · · ·+θkvk : θi ≥ 0, i = 1,2, · · · ,k,
k

∑
i=1

θi = 1} (2.3)

Although the convex hull is a polyhedral set, it is generallydifficult to convert this convex hull

form into the standard expression in Definition2.4. Both expressions can be used to represent a

polyhedral set.

With the properties of convex sets, the properties of convexfunctions are also given.

Definition 2.5. Let f : S→ R
n, where S is a nonempty convex set inR

n. The function f is convex

(concave) on S if

f (θx+(1−θ)y) ≤ (≥) θ f (x)+ (1−θ) f (y), ∀x,y∈ S,∀θ ∈ [0,1] (2.4)



2.1 Mathematical Background 12

The function f is strictly convex (concave) on S if

f (θx+(1−θ)y) < (>) θ f (x)+ (1−θ) f (y), ∀x,y∈ S,x 6= y,∀θ ∈ (0,1) (2.5)

From the definitions, it can be shown that a functionf is concave if and only if− f is convex. For a

differentiable functionf onS, it is convex if and only if

f (y)≥ f (x)+∇ f (x)T(y−x), ∀x,y∈ S (2.6)

If f is twice differentiable onS, it is convex if and only if

∇2 f (x) � 0, ∀x∈ S (2.7)

A stronger property is called strongly convex. For a differentiable function f on S, it is strongly

convex if there exists aσ > 0 such that

(∇ f (y)−∇ f (x))T(y−x)≥ σ‖y−x‖2, ∀x,y∈ S (2.8)

If f is twice differentiable onS, it is strongly convex if there exists aσ > 0 such that

∇2 f (x) � σ I , ∀x∈ S (2.9)

However, if the functionf is nondifferentiable, the subgradient can be defined.

Definition 2.6. Consider a convex function f: S→R
n, where S is a nonempty convex set inR

n. The

vector d∈ R
n is a subgradient of f at x∈ S if

f (y)≥ f (x)+dT(y−x), ∀y∈ S (2.10)

The function f is subdifferentiable on the convex setS if it has a subgradient at anyx∈ S.
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2.1.2 Graph Theory

Some standard definitions in graph theory are given next. This thesis only considers undirected

graphes.

Definition 2.7. A graph G= (V,E) is a pair of a setV of vertices and a setE of edges. Every

element ofE is a pair of vertices inV, e.g. E ⊆ V ×V. For any two vertices, v1,v2 ∈ V, they are

adjacent if(v1,v2) ∈ E .

Definition 2.8. A walk in the graph G= (V,E) is a sequence of vertices v1,v2, · · · ,vk such that

(vi ,vi+1) ∈ E for all i ∈ Z
k−1. A path is a walk that visits each vertex at most once, e.g. vi 6= v j for

any i 6= j. A closed walk is a walk where v1 = vk. A circle is a closed path where(vk,v1) ∈ E .

Definition 2.9. The graph G= (V,E) is connected if there exists a path for any two vertices in the

setV.

Definition 2.10. A tree is a connected graph with no cycles.

Definition 2.11. The graph G= (V,E) is fully or completely connected if every pair of vertices are

adjacent, e.g.E = V ×V.

Definition 2.12. A node is called the central or master node in a graph if it is adjacent to all the

other vertices.

2.2 Model Predictive Control

Mode predictive control (MPC) or receding horizon control (RHC) is an advanced control technol-

ogy for constrained systems, with extensive applications to various industries. A large number of

works [28–31] have been devoted on the theoretical properties of MPC, such as stability, closed-loop

performance, and robustness. The applications of MPC can befound in [68].

Consider the discrete-time linear system

x(t +1) = Ax(t)+Bu(t), t ∈ Z
+
0 (2.11)

x(t) ∈ X, u(t) ∈U, (2.12)

wherex ∈ R
n and u ∈ R

m are the state and control of the system andX andU are appropriate
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constraint sets onx andu respectively. The objective of the control is to steer the state to the origin

with the constraint (2.12) being satisfied at every time instant.

2.2.1 The Optimal Control Problem

The general framework of model predictive control(MPC) for(2.11) is to solve an online finite

horizon optimization problem (FHOP) having an objective function with constraints on the predicted

state and predicted control for each stage of the horizon, together with some appropriate end stage

constraint. Let the predicted control sequence be

uuut = {u0|t ,u1|t , · · · ,uN−1|t} (2.13)

whereN is the horizon length andui|t is theith predicted control from the current time instantt. Let

xi|t denote theith predicted state and the associated predicted state sequence is

xxxt = {x0|t ,x1|t , · · · ,xN|t} (2.14)

The cost function of MPC is defined by

VN(xxxt ,uuut) =
N−1

∑
i=0

l(xi|t ,ui|t)+ l f (xN|t) (2.15)

where l(·, ·) and l f (·) are some appropriate stage cost and terminal cost. The optimal predicted

control sequence is then obtained by solving the following FHOP

P(x(t)) : JN(x(t)) = min
uuut

VN(xxxt ,uuut)

s.t. xi+1|t = Axi|t +Bui|t ,x0|t = x(t), i ∈ Z
N−1
0 , (2.16a)

xi|t ∈ X,ui|t ∈U,xN|t ∈ Xf (2.16b)

whereXf is some appropriate terminal set. Let the optimal control sequence be

uuu∗t = {u∗0|t ,u∗1|t , · · · ,u∗N−1|t} (2.17)



2.2 Model Predictive Control 15

Then, the MPC control law is the first control

κ(x(t)) = u∗0|t (2.18)

After the control law is applied to system (2.11), the new statex(t +1) can be obtained att +1 and

P(x(t +1)) is solved again withx(t +1). The closed-loop system becomes

x(t +1) = Ax(t)+Bκ(x(t)) (2.19)

Figure2.1presents a conceptual picture of the standard MPC scheme.

Figure 2.1: A conceptual picture of MPC

2.2.2 The Terminal Cost and Set

The terminal costl f (x) plays an important role in the closed-loop stability of (2.19) [29]. In order

to ensure the stability, the terminal cost should satisfy

l(x,kf (x))− l f (x)+ l f (x
+)≤ 0,∀x∈ Xf (2.20)

wherekf (x) is some stabilizing local control law for system (2.11) andx+ =Ax+Bκ f (x). The stage

cost can be defined by

l(x,u) = ‖x‖2Q+‖u‖2R (2.21)
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for some appropriate weighting matricesQ,R≻ 0. The stabilizing control law and the terminal cost

are typically chosen to be

kf (x) = Kx, l f (x) = ‖x‖2P (2.22)

whereP satisfies

(A+BK)TP(A+BK)−P�−(Q+KTRK) (2.23)

for some stabilizingK of (A,B). In the standard MPC of linear systems,P andK are often obtained

from the Algebraic Riccatti equation [69]

P= ATPA−ATPB(BTPB+R)−1BTPA+Q (2.24)

K =−(BTPB+R)−1BTPA, (2.25)

Some terminal setXf is often used to ensure recursive feasibility of MPC. It is usually chosen to be

a constraint-admissible invariant set of (2.11) with the control lawκ f (x), see the definition in [29].

As shown in [32,70], for linear systems, the maximal constraint-admissible invariant set exists and

it can be easily determined.

2.2.3 Recursive Feasibility and Stability

Recursive feasibility and stability are two important properties of MPC. Recursive feasibility means

that the feasibility ofP(x(t)) implies the feasibility ofP(x(t + 1)). The basic idea is to construct

a feasible solution at timet + 1 using the solution at timet. SupposeP(x(t)) is feasible at time

t and the optimal control sequence obtained fromP(x(t)) is uuu∗t = {u∗0|t ,u∗1|t , · · · ,u∗N−1|t} with the

associated state sequencexxx∗t = {x∗0|t ,x∗1|t , · · · ,x∗N|t}. Then, by applying the control law (2.18), the

new state becomesx(t +1) = Ax(t)+Bκ(x(t)) = x∗1|t . The control sequence{u∗1|t , · · · ,u∗N−1|t} will

steerx∗1|t to x∗N|t ∈Xf . Consider thatXf is a constraint-admissible invariant set [29], a feasible control
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sequence toP(x(t +1)) can be obtained by

ũuut+1 := {ũ0|t+1, ũ1|t+1, · · · , ũN−1|t+1} := {u∗1|t , · · · ,u∗N−1|t ,u
∗
N|t} (2.26)

whereu∗N|t = κ f (x∗N|t). The associated state sequence is

x̃xxt+1 = {x̃0|t+1, ũ1|t+1, · · · , x̃N|t+1} := {x∗1|t , · · · ,x∗N|t ,x∗N+1|t} (2.27)

wherex∗N+1|t =Ax∗N|t +Bκ f (x∗N|t). Hence,P(x(t+1)) is feasible. The stability result can be obtained

by consideringJN(x) as a Lyapunov function of the closed-loop system (2.19). It can be found in [29]

thatJN(x) is decreasing along any trajectory of (2.19) until the state reaches the origin.

Although MPC is an effective control strategy and enjoys good performance, the online compu-

tational burden increases significantly when the size of theproblemP(x) increases. Hence, for

large-scale systems, it is necessary to implement distributed computation for the online MPC prob-

lem. The rest of this chapter will review some well-known distributed algorithms that are suitable

for solving the online MPC problem, including ADMM and gradient methods.

2.3 ADMM

The alternating direction method of multipliers (ADMM) wasfirst proposed in [71–73] and it is

suitable for solving structured large-scale optimizationproblems. Due to its strong convergence

properties [74], it is widely used in the areas of image and signal processing [75], machine learn-

ing [76] and resource allocation [77]. The wide application of ADMM then motivates extensive

theoretical studies [74,78–83]. This section discusses the standard ADMM formulation, the conver-

gence results and the implementation of ADMM on distributedoptimization problems.



2.3 ADMM 18

2.3.1 Standard ADMM Algorithm

ADMM solves optimization problems in the form of

min
x,z

f (x)+g(z) (2.28a)

s.t. Ax+Bz= c (2.28b)

x∈ X,z∈ Z (2.28c)

whereA∈ R
p×n, B∈ R

p×m, c∈ R
p, X ⊂ R

n andZ ⊂ R
m are given. f (x) andg(z) are assumed to

be convex and subdifferentiable. The augmented Lagrangianis

Lρ(x,z,y) = f (x)+g(z)+yT(Ax+Bz−c)+
1
2

ρ‖Ax+Bz−c‖22 (2.29)

wherey∈Rp is the multiplier of the constraint (2.28b) andρ > 0 is some penalty parameter. ADMM

consists of the following iterates

xk+1 = argmin
x∈X

Lρ(x,z
k,yk) (2.30a)

zk+1 = argmin
z∈Z

Lρ(x
k+1,z,yk) (2.30b)

yk+1 = yk+ρ(Axk+1+Bzk+1−c) (2.30c)

Note that a coordinator is needed to collect information from x andz to update the dual variabley.

Under some mild assumptions, ADMM converges to an optimal solution [74,78].

The convergence rate of the ADMM algorithm is also studied inthe literature . For general convex

objective functions, the best known convergence rate isO(1/k) [79,80]. Although this convergence

rate is not so appealing, ADMM converges to modest accuracy very fast in practice. Note that it

may be still slow for ADMM to converge to high accuracy. When the objective function is strongly

convex, it is possible to obtain the exponential convergence rate [81,83].
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2.3.2 Distributed Implementation of ADMM

One important advantage of ADMM is that it can be used as an effective tool in parallel and dis-

tributed optimization. This section discusses several types of problems that allows distributed im-

plementations of ADMM. The most typical problem is the one with a shared common variable and

M separable objectives corresponding toM agents connected over a network

min
x∈X

M

∑
i=1

fi(x) (2.31)

whereX ⊂ R
n is a nonempty closed convex set andfi : Rn → R∪ {+∞} is a convex function

representing the local objective function known by agenti. This problem has received a lot of

attention in the literature [74,84–87]. A detailed review on the consensus optimization will be given

in Section3.2. This section discusses a distributed ADMM formulation of this problem. Using the

node-wise constraints, (2.31) can be rewritten as a consensus problem

min
{xi∈X},z

M

∑
i=1

fi(xi) (2.32a)

s.t. xi = z,∀i ∈ Z
M (2.32b)

For some penaltyρ > 0, the augmented lagrange is

Lρ({xi},z,{yi}) =
M

∑
i=1

(

fi(xi)+yT
i (xi −z)+

ρ
2
‖xi −z‖2

)

(2.33)

whereyi is the dual variable for the constraintxi − z= 0. The ADMM iterates can be given in a

distributed manner

xk+1
i = argmin

xi∈X
fi(xi)+ (yk

i )
T(xi −zk)+

ρ
2
‖xi −zk‖2 (2.34a)

zk+1 =
1
M

M

∑
i=1

(

xk+1
i +1/ρyk

i

)

(2.34b)

yk+1
i = yk

i +ρ(xk+1
i −zk+1) (2.34c)
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It can be seen from (2.34b) that a central node is needed to updatez. Hence, this algorithm is not

fully distributed. Consider a more general consensus problem [88]

min
{xi∈Xi},z∈Rn

M

∑
i=1

fi(xi) (2.35a)

s.t. xi−Eiz= 0, i ∈ Z
M (2.35b)

whereXi ⊆ R
ni is the local constraint set of agenti, Ei ∈ {0,1}ni×n is some appropriate selection

matrix such that the local variablexi corresponds to some component of the global variablez in

(2.35b). The augmented Lagrangian is

Lρ({xi},z,{yi}) =
M

∑
i=1

(

fi(xi)+yT
i (xi −Eiz)+

ρ
2
‖xi −Eiz‖2

)

(2.36)

with ρ > 0. The ADMM iterates becomes

xk+1
i = arg min

xi∈Xi
fi(xi)+ (yk

i )
T(xi−Eiz

k)+
ρ
2
‖xi −Eiz

k‖2 (2.37a)

zk+1 = argmin
z

N

∑
i=1

(
− (yi)

TEiz
k+

1
2

ρ‖xk+1
i −Eiz‖2

)
(2.37b)

yk+1
i = yk

i +ρ(xk+1
i −Eiz

k+1) (2.37c)

As shown in [74], the update of each component ofz only requires the the local variables that are

coupled with this component in (2.35b). When allEi are equal toIn, (2.37) becomes (2.34).

Both the two problems above are coupled via variables. ADMM can also be extended to solve

problems that are coupled via constraints. Consider the problem with coupled constraints andM

blocks of variables [80,89–91]

min
{xi∈Rni }

M

∑
i=1

fi(xi) (2.38a)

s.t.
M

∑
i=1

Aixi = c (2.38b)

xi ∈ Xi, i ∈ Z
M (2.38c)

whereXi ⊂ R
ni is a nonempty closed convex set known by agenti. The direct extension of ADMM



2.3 ADMM 21

yields the following iterates

xk+1
1 = arg min

x1∈X1
f1(x1)+ (yk)T(A1x1+

M

∑
i=2

Aix
k
i −c)+

ρ
2
‖A1x1+

M

∑
i=2

Aix
k
i −c‖2 (2.39a)

...

xk+1
i = arg min

xi∈Xi
fi(xi)+ (yk)T(

i−1

∑
j=1

Aix
k+1
i +Aixi

+
M

∑
j=i+1

Aix
k
i −c)+

ρ
2
‖

i−1

∑
j=1

Aix
k+1
i +Aixi +

M

∑
j=i+1

Aix
k
i −c‖2 (2.39b)

...

xk+1
M = arg min

xM∈XM

fM(xM)+ (yk)T(
M−1

∑
i=1

Aix
k+1
i +AMxM−c)+

ρ
2
‖

M−1

∑
i=1

Aix
k+1
i +AMxM−c‖2 (2.39c)

yk+1 = yk+ρ(
M

∑
i=1

Aix
k+1
i −c) (2.39d)

with ρ > 0 andy being the dual variable of the constraint
M
∑

i=1
Aixi −c= 0. The firstM optimization

problems are solved sequentially over theM agents and the dual variable is updated only when all

the new local variables are received. Although this direction extension of ADMM is very effective

in solving many practical problems [92,93], the convergence is not guaranteed generally [94] and is

only guaranteed under some sufficient conditions [80,94]. This algorithm is also known as Gauss-

Seidel ADMM [89], because blocks are updated sequentially. In order to havebetter parallelization,

Jacobian ADMM is proposed in [91]

xk+1
i = arg min

x1∈X1
f1(x1)+ (yk)T(Aixi +

M

∑
j 6=i

A jx
k
j −c)+

ρ
2
‖Aixi +

M

∑
j 6=i

A jx
k
j −c‖2 (2.40a)

yk+1 = yk+ρ(
M

∑
i=1

Aix
k+1
i −c) (2.40b)

According to the discussion above, ADMM can be regarded as a powerful tool of parallel and dis-

tributed computation. However, further investigation is needed when it is implemented for the MPC

formulation including the design of the stopping criterion. Moreover, in the presence of coupled con-

straints, the extended ADMM formulations (2.39) and (2.40) need information from all the agents.

This will require a central node or a fully connected networkand hence is conservative. To circum-

vent this problem, this thesis will propose a consensus-based ADMM approach that only requires a
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connected network.

2.4 Nestrov’s Fast Gradient Method

This section discusses the Nestrov’s fast gradient method including its application to the ADMM

and distributed gradient formulations.

2.4.1 Gradient and Distributed Gradient Method

Consider a differentiable convex functionf :Rn→R, the gradient method takes the following iterate

to minimize f (x) subject to some closed convex constraintx∈ X

xk+1 = PX[x
k−c∇ f (xk)] (2.41)

wherePX[·] denote the projection onto the setX andc> 0 is some constant step-size. We assume

that∇ f (x) is Lipschitz continuous with parameterL in X

‖∇ f (x)−∇ f (y)‖ ≤ L‖x−y‖, ∀x,y∈ X (2.42)

Let f ∗=min{ f (x) : x∈X}. Providedc is sufficiently small, the gradient method will converge tof ∗

and the number of iterations to reachf (xk)− f ∗ ≤ ε is O(1/ε). In addition, supposef (x) is strongly

convex, the gradient method converges tof ∗ with an exponential rate, see Chapter 2 of [95].

Supposef (x) is the sum ofM differentiable and separable objective functions in the form of (2.31).

The iterate in (2.41) can be rewritten as

xk+1 = PX[x
k−c

M

∑
i=1

∇ fi(x
k)] (2.43)

This formulation admits a distributed implementation [85,86,96], where each objective function is

known by an agent and theM agents are connected by a network. Consider the graphG = (V,E)
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with the weight matrixW(k) = [wi j (k)], the update rule at agenti is

xk+1
i = PX[ ∑

j∈Ni∪{i}
wi j (k)x

k
j −αk∇ fi(x

k
i )] (2.44)

whereNi := { j ∈ V : (i, j)∈ E} and{αk} is some proper step-size sequence. The detailed discussion

can be found in Section3.2with other distributed optimization algorithms.

2.4.2 Centralized Fast Gradient Method

A fast gradient method was proposed in [97] to accelerate the standard gradient method. The method

consists of a extrapolation step and a gradient projection step

yk = xk+βk(x
k−xk−1) (2.45)

xk+1 = PX[y
k−c∇ f (yk)] (2.46)

wherex−1 = x0 andβk ∈ (0,1). βk is considered as the extrapolation factor. As shown in Section

6.9 of [98], with proper choice ofβk, the iteration complexity to reachf (xk)− f ∗ ≤ ε is O(1/
√

ε)

or the cost function has the convergence rateO(1/k2). The choice ofβk is

βk =
θk(1−θk−1)

θk−1
(2.47)

where{θk} satisfiesθ0 = θ1 ∈ (0,1], and

1−θk+1

θ2
k+1

≤ 1

θ2
k

, θk ≤
2

k+2
, k≥ 0 (2.48)

One choice ofθk is thatθ−1 = θ0 = 1 and1−θk+1

θ 2
k+1

= 1
θ 2

k
for all k≥ 0. It can be concluded by induction

thatθk ≤ 2
k+2 andθk+1 < θk for all k≥ 0. Another choice is thatθ−1 = 1 andθk =

2
k+2 for all k≥ 0.

Other two Nesterov fast gradient methods were proposed in [99, 100] with the same convergence

rate. A unified framework of fast gradient methods can be found in [101]
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2.4.3 Centralized Fast ADMM

The Nesterov’s acceleration technique can also be adapted to ADMM to solve the following problem.

The work [102] proposes a Nesterov-type acceleration for the problem (2.28) with the convergence

rateO(1/k2) in the case where,X = R
n, Z = R

m, andA andB are identity matrices. Another fast

ADMM is proposed in [103] to solve the same unconstrained problem (X = R
n andZ = R

m) for

generalA andB with the convergence rateO(1/k2+1/k). In [104], a fast linearized ADMM was

proposed with the convergence rateO(1/k2+1/k) for the cost andO(1/k
3
2 +1/k) for the equality

constraint. A better convergence rateO(1/k2) can be obtained in the work [105] on the condition

that f (x) andg(z) are strongly convex. However, for weakly convex function, arestart procedure is

needed to guaranteed the convergence of this algorithm [105].

2.4.4 Distributed Fast Gradient Methods

This section reviews some distributed Nesterov-type gradient methods to solve problems in the form

of (2.31). In [106], the authors directly incorporated the Nesterov accelerating technique with the

distributed gradient method discussed in Section2.4.1. ConsiderX = R
n and the graphG= (V,E)

with the fixed weight matrixW = [wi j ], the update rule at agenti is

xk+1
i = ∑

j∈Ni∪{i}
wi j y

k
j −α∇ fi(y

k
i ) (2.49a)

yk+1
i = xk+1

i +βk(x
k+1
i −xk

i ) (2.49b)

whereα > 0 is some fixed step-size and the extrapolation factor is set to beβk =
k−1
k+2. The conver-

gence results of this algorithm is derived on the conditionsthat both fi(x) and∇ fi(x) are Lipschitz

continuous and the step-sizeα should be sufficiently small. For the constant step-sizeα , this algo-

rithm does not converge to the exact optimal solution but only to some neighborhood of the optimal.

The convergence rate of the cost isO(1/α +α/k2+1/k2). The smaller the step-sizeα is, the closer

the solution is to the optimal. However, the convergence speed will be slow for smallα . In order

to approach the exact solution, a diminishing step-size should be used, e.g.αk =
c

k+1 for some

c > 0. However, the convergence speed will become slow for a diminishing step-size. As shown

in [107, 108], the convergence rate for the diminishing step-sizeαk =
c

k+1 is O(logk/k), which is
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slower than the one with the constant step-size. The work [109] also proposed a distributed Nesterov-

type gradient method using the constant step-size and it is able to achieveO(1/k) convergence rate

with additional iteration steps. In [107], the authors proposed a consensus-based distributed Nes-

terov gradient method that uses consensus iterations in theinner loop. The convergence rate of this

method isO(1/k2), which is the the best convergence rate that Nesterov’s gradient methods can

achieve. However, the number of the inner-loop consensus steps grows with the outer-loop index,

which results in the significant increase in the number of information exchanges. This thesis aims

to overcome this problem by using a inner loop with fixed number of steps.

2.5 Distributed Model Predictive Control

This section reviews existing DMPC approaches for a group ofinteracting systems, which can be

coupled in various forms, including dynamics, cost functions and constraints.

2.5.1 Coupled Dynamics

Dynamically coupled systems can be found in the various areas such as power systems [62, 110],

process control systems [111] and supply chain systems [112]. Several DMPC approaches have

been proposed in [59,113,114] for dynamically coupled linear time-invariant systems with no state

and input constraints. Conditions for stability of the closed-loop system are discussed in these

approaches. [115] presents a min-max DMPC approach for dynamically coupled nonlinear time-

invariant systems with state constraints, where each localsystem treats the neighboring system states

as disturbances. The DMPC problem for systemi is formulated as

min
xxxi ,uuui

max
vvvi

Ji(xxxi ,uuui,vvvi) (2.50)

whereJi(xxxi,uuui ,vvvi) is the performance index,xxxi anduuui are the predicted state and input sequences,

andvvvi is the disturbance sequence. Note thatxxxi andvvvi are subject to some proper constraints. The

stability condition is obtained by imposing the predicted state bound as constraints in the DMPC

problem. Each system broadcasts the bounds to its neighborsand at the same time receives the

bound forvvvi from the neighbors. Using these bounds, all the systems solve the min-max problem



2.5 Distributed Model Predictive Control 26

(2.50) to optimize performance with respect to worst-case disturbances. As the solutions obtained

from the approaches above are not necessary optimal, a DMPC framework is proposed in [51, 61]

for a set of coupled linear systems to seek the optimal solution. ConsiderM coupled linear systems

with the following overall DMPC problem

min
{uuui}

M

∑
i=1

wiJ
i(xxxi,uuui ,uuu j 6=i) (2.51)

wherewi ≥ 0,
M
∑

i=1
wi = 1, and the state and input sequence are subject to proper constraints. All the

systems work iteratively and cooperatively towards achieving the overall optimal solution of (2.51).

At iteration p, for all i ∈ Z
M, the ith system solves the following local problem with all the other

systems holding constant

min
uuui

M

∑
i=1

wiJ
i(xxxi ,uuui ,uuu j 6=i,p−1) (2.52)

whereuuu j 6=i,p−1 denotes the solutions of the other systems at iterationp−1. This process is repeated

until the stopping criterion is met. However, the systems in[51, 61] are coupled only through the

control inputs. In [37], a decentralized approach is presented for large-scale dynamical processes

subject to input constraints. In [37], the overall model of the process is decoupled into several

(possibly overlapping) smaller models which are used for optimizing the local problems. Suppose

the overall model (2.11) is decoupled intoM submodels. For alli ∈ ZM, definexi ∈Rni as the vector

collecting a subset of the state components andui ∈Rmi as the vector collecting a subset of the input

components

xi =WT
i x, ui = ZT

i u, (2.53)

whereWi ∈Rn×ni andZi ∈Rm×mi are the appropriate selection matrices withWT
i Wi = Ini andZT

i Zi =

Imi . By the definition ofxi in (2.53), the following expression can be obtained

xi(t +1) =WT
i x(t +1) =WT

i Ax(t)+WT
i Bu(t) (2.54)
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An approximation of the overall model (2.11) is obtained by replacingWT
i A andWT

i B in (2.54) with

WT
i AWiWT

i andWT
i BZiZT

i respectively, therefore getting the reduced submodel

xi(t +1) = Aixi(t)+Biu(t) (2.55)

whereAi = WT
i AWiWT

i andBi = WT
i BZiZT

i . Using this submodel, the DMPC can be designed in-

dividually according to the standard MPC. The limitation ofthis approach is that it requires the

overall system and decoupled local systems to be open-loop asymptotically stable. Another DMPC

approach is proposed in [50] for dynamically coupled nonlinear systems that are subject to indepen-

dent input constraints. In [50], all systems exchange the predicted trajectories with their neighbors

and a consistency constraint is imposed on the MPC problem toensure that the systems stay close

to the predicted trajectories. Each system then solves a local DMPC problem similar to [115]. More

recently, [48,49] propose the use of tube-based method [116] to deal with the dynamical coupling

among systems. The dynamical coupling is treated as the disturbance that lies inside some bounded

set. The dynamics of theith system is given by

xi(t +1) = Aii xi(t)+Biui(t)+wi(t), (2.56)

wi(t) = ∑
j∈Ni

Ai j x j(t) (2.57)

whereNi denotes the neighbors of systemi. Using this model, the robust MPC can be designed

for each system by the tube-based method [116]. However, in most of the approaches above, the

optimality properties have not been established and the choice of the terminal set is conservative.

2.5.2 Coupled Cost Functions

Another interesting problem is where the systems are coupled through the cost functions. Its applica-

tion can be found in multi-agent coordination problems using coupling penalty functions [117,118].

A DMPC approach for multi-vehicle formation stabilizationis proposed in [43], where the systems

are only coupled in the cost functions with decoupled dynamics and constraints. For each system

i, the local cost function is given in the form ofJi(xi ,x−i ,ui) wherex−i denotes the states of the

neighbors of systemi. Let x̂i denote the predicted trajectory of systemi. The communication among
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systems is needed so that each system can broadcast the previous optimal control trajectory to its

neighbors. The stability can be obtained on the condition that the actual trajectory is within some

pre-specified neighborhood of the previous optimal controltrajectory. At each sampling time, each

system solves

min
ui

Ji(x
i ,x−i ,ui) (2.58)

subject to the constraint on the distance to the predicted trajectory ‖xi − x̂i‖ ≤ δ for some pre-

specifiedδ > 0 and other standard constraints. In [35], the DMPC approach also allows the local

cost functions to be dependent on the state and the inputs of the neighbors. Besides the states, the

inputs are also coupled in the cost functions. The stage costof systemi can be given by

l i(xi ,ui ,x−i ,u−i) = l ii (xi ,ui)+ ∑
j∈Ni

l i j (xi ,ui ,x j ,u j) (2.59)

wherel ii (xi ,ui) is the local cost andl i j (xi ,ui ,x j ,u j) is the coupled term. Stability is achieved with

a zero terminal constraint set. The DMPC approach in [46] uses an invariant set as the terminal set

and introduces an easily verifiable constraint in each system to ensure stability of the overall system.

Similar to [43], the states are coupled in the local cost functions while the inputs are decoupled. The

stability is discussed under two cases. Each system is asymptotically stable in the disturbance-free

case and the state of each subsystem converges to some neighborhood of the origin asymptotically

in the non-zero disturbance case. More recently, the works in [66, 67, 119] study the DMPC for a

set of linear systems with both coupled dynamics and cost functions. The cost functions are coupled

only by neighboring states. The local cost function of system i is given byJi(xxxNi ,uuui), wherexxxNi is

the predicted state sequence of all the neighbors and its ownanduuui is the local predictive control

sequence. Then, the overall MPC problem of all theM systems can be given by

min
{xxxNi ,uuui}

M

∑
i=1

Ji(xxx
Ni ,uuui) (2.60)

subject to the state and input constraints. This problem should be solved by all theM systems in

a cooperative and distributed manner. The variable{xxxNi ,uuui} is considered as the local variable of

systemi. Note that these local variables can overlap. These works propose to formulate this problem
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into the form of (2.35) by introducing an overall consensus variable and then solve it by ADMM.

This idea can be also found in a more general framework of the ADMM-based solution of the DMPC

problem [88]. Recursive feasibility stability is guaranteed by introducing time-varying ellipsoidal

sets induced from a block diagonal Lyapunov matrix. However, it is conservative to use ellipsoidal

sets as the terminal set and restrict Lyapunov matrix to be block-diagonal for linear systems.

2.5.3 Coupled Constraints

There are also problems that the systems are linked by coupling constraints. A robust DMPC ap-

proach is proposed in [44] of a set of dynamically decoupled linear systems with coupled constraints

and bounded disturbances. The DMPC problem is solved at eachsampling time in a sequential pro-

cess where the local problems are solved in a fixed sequence and each system is optimized with

all others holding constant. Let̃ZZZ
i

denote the set of the variables of other systems that share the

same coupled constraints with systemi. Using the informatioñZZZ
i
, the problem solved by systemi

is denoted by subproblemi, given by

min
uuui

Ji(xxx
i ,Z̃ZZ

i
,uuui) (2.61)

subject to the local constraints and coupled constraints. The variables of other systems in the coupled

constraints are fixed and only the local variable is free. To ensure the constraint satisfaction, commu-

nication among systems is needed and each system is requiredto broadcast its most recent optimal

trajectory to its downstream system. The overall algorithmof theM systems is implemented at each

sampling time in the following sequence: Subproblem 1→ Subproblem 2→ ··· → Subproblem

M. To handle the bounded disturbance, the tightened method proposed in [120] is also used in this

formulation. By the use of the tube-based method [116], the work [120] is then extended in [121]

where only one system is optimized at each sampling time while the other systems use the previous

control plan. The agents thus update in a sequence,{p1, p2, · · · , pk, pk+1, · · · }, to be chosen by the

designer. Supposept = i at timet, systemi is activated and it solves (2.61) with the information

Z̃ZZ
i

received from the coupled systems. In order to obtain betteroverall performance, [60] further

extends the DMPC approach in [121] to promote inter-agent cooperation by designing a coopera-

tive set. All the systems within the cooperating set are optimized jointly with a weighted sum of
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local cost functions. For each systemi, a cooperative setCi is designed and the weighted local cost

function is given by

Ji(uuu
i)+ ∑

j∈Ci

αi j Jj(ûuu
j) (2.62)

whereûuu j is an artificial variable andαi j > 0 is the weight. The state sequences are dropped in the

cost function for notational simplicity. Let̂uuuCi denote the set of the artificial variables of systemi.

When activated, systemi solves the following problem

min
uuui ,ûuuCi

Ji(uuu
i)+ ∑

j∈Ci

αi j Jj(ûuu
j) (2.63)

subject to the local and coupled constraints, similar to (2.61). As a computational improvement

of [60], the work in [122] introduces a parallel computation scheme by permitting the simultaneous

optimizing of local problems at each time step while maintaining robust feasibility and stability. In

this approach, a sequence of sets are designed,{ℓopt(0), ℓopt(1), · · · , ℓopt(k), ℓopt(k+1), · · · }, and all

the systems inℓopt(t) are activated at timet. However, in all these approaches, the optimality of the

overall system still remains unclear as the optimality properties are not explicitly pursued.



CHAPTER 3
Consensus Algorithms and Finite-Time Consensus

Distributed coordination of multi-agent systems has received extensive attention in recent years and

its applications can be found in various areas, including unmanned air vehicles(UAVs) [123], au-

tonomous underwater vehicles (AUVs) [124,125], formation control [126,127], mobile robots [128],

and congestion control in communication networks [129], to name a few. In many circumstances,

a group of agents need to reach some common agreement. These are known as consensus prob-

lems and they can be addressed by designing consensus algorithms or protocols where the agents

negotiate and exchange information with their neighbors [130, 131]. This chapter discusses the

formulation of consensus coordination problems and multi-agent optimization. A finite-time con-

sensus algorithm is also proposed in this chapter. The network of M agents can be described as a

(connected) graphG= (V,E) with the vertex setV = {1,2, · · · ,M} and edge setE ⊂ V×V. The set

of neighbors of theith agent is denoted byNi := { j ∈ V : (i, j) ∈ E} and let|Ni| denote the number

of its neighbors. The neighbors can communicate and exchange messages with each other.

3.1 Review of Consensus Coordination Problems

The objective of the consensus problems is to drive all the agents to a common state for some given

initial state. Letxi denote the state of theith agent fori ∈ Z
M. Without loss of generality,xi is

assumed to be scalar. The discussion can be easily extended to the vector case. The consensus

condition is reached ifx1 = x2 = · · · = xM. Let x := (x1,x2, · · · ,xM) ∈ R
M be the overall state. The

consensus can also be expressed asx= c111 for somec∈ R.

31
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A continuous-time distributed consensus protocol is in theform of [130,132,133]

ẋi(t) = ∑
j∈Ni

ai j (x j(t)−xi(t)) (3.1)

whereA= [ai j ] denotes the weighted adjacency matrix ofG with ai j > 0 if (i, j) ∈ E andai j = 0 if

(i, j) 6∈ E . The standard adjacency matrixA is defined as

ai j =







1, (i, j) ∈ E

0, (i, j) 6∈ E
(3.2)

The idea of this protocol is to drive each system to the weighted average state of its neighbors

by local information exchange. LetD := diag{d1,d2, · · · ,dM} denote the degree matrix ofG with

di = ∑
j∈Ni

ai j for all i ∈ Z
M. The compact form of (3.1) can be expressed as

ẋ(t) =−Lx(t) (3.3)

whereL = D−A is known as the Laplacian matrix ofG. From the choice ofdi = ∑
j∈Ni

ai j , it can

be seen thatL111 = 0. The stability of the consensus protocol is usually discussed by the use of

Geršgorin disk theorem [132]. A brief summary of the stability results is given here. As shown

in [132,134], 0 is a simple eigenvalue ifG is a strongly connected graph, where there is a directed

path connecting any two arbitrary nodes of the graph. IfG is a strongly connected graph, a consensus

can be reached asymptotically [130,133]. However, this is only a sufficient condition. The necessary

and sufficient condition can be found in [132]. For an undirected connected graphG(e.g. ai j = a ji

for all (i, j) ∈ E), L is symmetric andL� 0. For such a graph, the asymptotic stability is guaranteed

and the convergence rate of the consensus protocol is determined by the second smallest eigenvalue

of L, which is also known as the algebraic connectivity ofG [135].

The discrete-time protocol of (3.1) is given as

xi(t +1) = xi(t)+ γ ∑
j∈Ni

ai j (x j(t)−xi(t)) (3.4)
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or, in the compact form as

x(t +1) =Wx(t) (3.5)

whereW = I − γL andγ is considered as the step-size. In general,W = e−γL and (3.4) is considered

as the first-order approximation of (3.1). If γ is less than the maximum degree∆ := maxi{di}, W

is a row stochastic nonnegative matrix asW111 = 111 andI − γL is nonnegative [130]. The stability

analysis follows similar arguments as the continuous-timecase. IfG is a strongly connected graph

and 0< γ < ∆, a consensus can be reached asymptotically. The details canbe found in [130,133].

3.2 Multi-Agent Consensus Optimization

Another problem arises in distributed coordination of multi-agent systems is the consensus optimiza-

tion problem, where the goal is to optimize the sum of local objective functions of all the agents in

the network. Consider the following unconstrained problem

min
x∈Rn

M

∑
i=1

fi(x) (3.6)

where fi : Rn→ R is a convex function that is known locally to agenti only. This problem was

originally presented in [84]. Existing methods to solve this type of problems include distributed

subgradient algorithms [85,86,96], dual averaging methods [136–138], the augmented Lagrangian

(AL) methods [139–142] and the ADMM algorithms [143–146]. The dual averaging methods have

better performance than the subgradient algorithms for nonsmooth problems, although theoretically

they have the same convergence rate. In general, the AL methods converge faster than the standard

subgradient/gradient algorithms. Among all these algorithms, the ADMM algorithms demonstrates

fast convergence in many applications. This section reviews some well-known algorithms to solve

problems in the form of (3.6).
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3.2.1 Distributed Subgradient Algorithms

The framework of distributed subgradient algorithms is shown as follows. The distributed sub-

gradient algorithms are designed in [85, 86, 96] based on time-varying networks and can be ap-

plied naturally to time-invariant networks. In particular, [85] studied the unconstrained optimization

and [86,96] studied the constrained optimization. We start with the unconstrained optimization. Let

xi(t) denote the state of agenti. At each timet, agenti updates its state according to the following

iterative rule [85].

xi(t +1) =
M

∑
j=1

wi j (t)x j (t)−αi(t)di(t) (3.7)

wherewi j (t) is some weight andαi(t) > 0 is a stepsize and the vectordi(t) is a subgradient of

the local objectivefi(x) at x = xi(t). Hence, the update rule is the combination of the consensus

protocol and gradient descent. Let the time-varying graph be denoted byG(t) := (V,E(t),W(t)) with

W(t) := [wi j (t)]. Under some proper conditions onG(t) [85], the distributed subgradient algorithm

with bounded subgradients and constant step-sizeα in (3.7) has an error ofO(α + 1
αt ) in the cost

aftert iterations. Hence, whent→ ∞, the solution obtained from the algorithm (3.7) has a constant

error ofO(α). For the optimizedα , aε-optimal solution can be obtained inO(1/ε2) steps. In order

to achieve the exact solution, a diminishing step-size should be used.

This algorithm can also be extended to constrained problems. Supposexi(t) is constrained to lie in a

nonempty closed convex setXi ⊆ R
n which is only known to agenti. The constrained problem can

be formulated as

min
x∈Rn

M

∑
i=1

fi(x) (3.8a)

s.t. x∈
M⋂

i=1

Xi (3.8b)

The update rule of agenti becomes

xi(t +1) = PXi

[
M

∑
j=1

wi j (t)x j(t)−αi(t)di(t)

]

(3.9)

The convergence of the constrained distributed subgradient algorithm can also be derived. The
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details of the convergence analysis can be found in [85,86,96].

3.2.2 Dual Averaging Methods

The problem in (3.6) can also be solved by the dual averaging method. In this section, we present

the standard centralized dual averaging method, followed by its distributed implementation. This

method is proposed in [147] to solve general constrained convex problems. It is then extended

by [148] to regularized optimization problems. Consider the convex optimization problem

min
x∈X

f (x) (3.10)

whereX ⊆ R
n is some nonempty convex set andf : X → R is convex(possibly nonsmooth). The

dual averaging method needs a proximal functionψ : X→ R with ψ(0) = 0 andψ(x) ≥ 0 for all

x∈ X. ψ is also assumed to be strongly convex and satisfies:

ψ(y)≥ ψ(x)+∇ψT(x)(y−x)+
1
2
‖y−x‖2,∀x,y∈ X (3.11)

The dual averaging method generates a sequence of iterates{x(t),s(t)}∞
t=0 according to the following

update rule

s(t +1) = s(t)+λ (t)d(t), (3.12)

x(t +1) = Πψ
X (s(t +1),α(t)) (3.13)

whereλ (t) > 0, d(t) ∈ ∂ f (x(t)), {α(t)}∞
t=0 is a non-increasing sequence of positive stepsizes, and

the projection operatorΠψ
X (·, ·) is

Πψ
X (s,α) := argmin

x∈X
{sTx+

1
α

ψ(x)} (3.14)

There are two strategies for choosingλ (t) [147]: 1) λ (t) = 1 (simple averages); 2)λ (t) = 1
‖d(t)‖∗

(weighted averages), where the dual norm‖ · ‖∗ is defined as‖d‖∗ := max
x
{dTx : ‖x‖ ≤ 1}. The

convergence results of the dual averaging method above can be found in [147]. The distributed dual

averaging method is presented in [137,138] to solve optimization problems in the form of (3.6) with
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the constraintx ∈ X. We consider the time-invariant undirected connected graph G = (V,E) with

the symmetric doubly stochastic weight matrixW := [wi j ]. Given the non-increasing sequenceα(t),

each agenti updates its state according to the following rule

si(t +1) = ∑
j∈Ni

wi j sj(t)+di(t), (3.15)

xi(t +1) = Πψ
X (si(t +1),α(t)) (3.16)

wheredi(t) ∈ ∂ fi(xi(t)). This update rule uses simple averages. SinceW is doubly stochastic, the

convergence rate of the distributed dual averaging method is controlled by the second largest singular

value ofW. The explicit convergence rate is studied in [137] under various types of graphes.

3.2.3 Augmented Lagrangian Methods

Another important approach to solve the consensus optimization problem of (3.6) is the Augmented

Lagrangian (AL) method, which plays an important role in constrained optimization [149]. In order

to use the AL method, for a graphG= (V,E), (3.6) is reformulated as [139–142]

min
x1,x2,··· ,xM

M

∑
i=1

fi(xi) (3.17a)

s.t. xi = x j ,(i, j) ∈ E (3.17b)

wherexi is the local copy ofx for agenti. The augmented Lagrangian is

Lρ(x1,x2, · · · ,xM,{λi j }) =
M

∑
i=1

fi(xi)+ ∑
(i, j)∈E

(

λ T
i j (xi −x j)+

ρ
2
‖xi −x j‖2

)

(3.18)

with λi j being the dual variable of the constraintxi − x j = 0 and the penalty parameterρ > 0. The

standard AL method consist of the iterates

(xt+1
1 ,xt+1

2 , · · · ,xt+1
M ) = arg min

x1,x2,··· ,xM
Lρ(x1,x2, · · · ,xM ,{λ t

i j }) (3.19)

λ t+1
i j = λ t

i j +ρ(xt+1
i −xt+1

j ),(i, j) ∈ E (3.20)
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The inner loop problem is usually solved by Jacobi/Gauss-Seidel algorithms [84,150] where the so-

lution {xt+1
i } is obtained in a distributed manner. In the Jacobi algorithm, the values ofxt

i obtained in

iterationt remain unchanged until all the agents complete iterationt +1. Agenti uses the following

update rule.

xt+1
i = argmin

xi
Lρ(x

t
1,x

t
2,xi , · · · ,xt

M ,{λ t
i j }) (3.21)

λ t+1
i j = λ t

i j +ρ(xt+1
i −xt+1

j ),(i, j) ∈ E (3.22)

However, in the Gauss-Seidel algorithm, the values ofxt
i are updated as soon as agenti complete

iterationt +1, see, e.g

xt+1
1 = argmin

x1
Lρ(x1,x

t
2, · · · ,xt

M ,{λ t
i j }) (3.23)

xt+1
2 = argmin

x2
Lρ(x

t+1
1 ,x2, · · · ,xt

M,{λ t
i j }) (3.24)

...

xt+1
M = argmin

xM
Lρ(x

t+1
1 ,xt+1

2 , · · · ,xM ,{λ t
i j }) (3.25)

λ t+1
i j = λ t

i j +ρ(xt+1
i −xt+1

j ),(i, j) ∈ E (3.26)

From the two formulations above, the Jacobi algorithm can beimplemented in parallel while the

Gauss-Seidel algorithm can only be implemented sequentially. The convergence of the two algo-

rithms is discussed in [150]. A more detailed review of the distributed AL methods can befound

in [141].

3.2.4 Distributed ADMM Algorithms

The distributed ADMM algorithms have faster convergence than the methods mentioned above,

see [143–146]. However, the ADMM algorithm mentioned in Section2.3.2is based on the node-

wise formulation and is not fully distributed. This sectiondiscusses a fully distributed ADMM

algorithm. Consider an undirected graphG= (V,E), a reformulation of (3.6) is needed to implement
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the distributed ADMM

min
{xi},{zi j }

M

∑
i=1

fi(xi) (3.27a)

s.t. xi = zi j ,x j = zi j ,(i, j) ∈ E (3.27b)

wherezi j is an auxiliary edge-wise variable imposing the consensus constraint on edge(i, j) ∈ E .

This formulation is equivalent to (3.6) whenG is connected. The formulation (3.27) can be rewritten

by

min
xxx,zzz

M

∑
i=1

fi(xi) (3.28a)

s.t. Axxx+Bzzz= 0 (3.28b)

wherexxx is the vector that collects all{xi}, zzz is the vector that collects{zi j }, andA andB are some

matrices that capture the graphG, see [146]. Hence, the standard ADMM procedure can be applied

to this problem as discussed in Section2.3.1. Let αi j andβi j denote the dual variables associated

with xi = zi j and x j = zi j in (3.27) respectively. Using the manipulations of distributed ADMM

[145,146,151,152], the steps in the standard ADMM can be simplified by letting

αk
i j +β k

i j = 0,αk
i j = β k

ji ,z
k
i j =

xk
i +xk

j

2
, (3.29)

for all (i, j) ∈ E andk. The simplified distributed ADMM is then given by

xk+1
i = argmin

xi
fi(xi)+ (2 ∑

j∈Ni

αk
i j −ρ ∑

j∈Ni

(xk
j +xk

j))
Txi +ρ |Ni|‖xi‖2 (3.30a)

αk+1
i j = αk

i j +
ρ
2
(xk+1

i −xk+1
j ),(i, j) ∈ E (3.30b)

for some penalty parameterρ > 0. The convergence of the distributed ADMM follows the same

arguments of the standard ADMM [79, 80]. In addition, if fi(xi) is strongly convex for alli ∈ Z
M,

an exponential convergence rate can be derived [146] and the stopping criterion can be determined

using the convergence rate. However, for general convex functions, the best-known convergence rate

is O(1/k) and it is very conservative [74]. For this reason, some tight stopping criterion is needed
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in the case of non-strongly convex functions.

3.3 Finite-Time Consensus

As most of the consensus algorithms above only produce asymptotic convergence, it is natural to

pursue the finite-time convergence to improve the performance of the consensus algorithm. In prac-

tice, finite-time convergence is desirable as it provides higher accuracy and better robustness against

uncertainties [153]. This section begins with a reviews of some finite-time consensus algorithms,

followed by a proposed algorithm using the minimal polynomial of the weight matrix.

3.3.1 Review of Finite-Time Consensus Algorithms

Some finite-time consensus algorithms are reviewed below. The work in [154] studies the applica-

tion of non-smooth gradient descent flows of a differentiable function for finite-time consensus. By

characterizing the asymptotic convergence properties of these non-smooth gradient flows, suitable

conditions are identified for finite-time convergence. [155] proposes a finite-time consensus algo-

rithm for discrete-time systems with time-invariant topologies using the property of the minimal

polynomial of weight matrix. A summary of this algorithm is given below.

We consider the consensus dynamicsx(t +1) =Wx(t) of (3.5). Suppose the minimal polynomial of

W is q(t) := tT +π0tT−1+ · · ·+πT−1t0 with T being the degree. This means, from the definition of

the minimal polynomial,

WT +π0W
T−1+ · · ·+πT−1I = 0 (3.31)

From (3.5) and (3.31), it can be easily verified that

x(T) =WTx(0) =−(π0W
T−1+ · · ·+πT−1I)x(0) =−(π0x(T−1)+ · · ·+πT−1x(0)) (3.32)

Therefore, for allt ≥ 0, xi(t) satisfies a linear difference equation of the form

xi(T + t)+π0xi(T + t−1)+ · · ·+πT−1xi(t) = 0 (3.33)
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This also mean thatxi(t) can always be computed from the set{xi(0),xi(1), · · · ,xi(T− 1)} for all

t ≥ 0. Using the Z-transform of the linear difference equation (3.33), it can be obtained that

lim
t→∞

xi(t) =

[

xi(T−1) · · · xi(1) xi(0)

]

S

[

1 · · · 1 1

]

S

(3.34)

where

S=
























1

1+π0

1+π0+π1

...

1+
T−1
∑
ℓ=0

πℓ
























(3.35)

In addition, [155] also discusses the decentralized calculation of the minimal polynomial. In [156],

a framework for finite-time consensus problems is presentedand protocols are provided for both the

bidirectional interaction case and the unidirectional interaction case. Although more works on finite-

time consensus can be found in [157–161], this thesis uses the minimal polynomial to establish the

finite-consensus algorithm because of its convenience and simplicity.

3.3.2 The Proposed Finite-Time Consensus Algorithm

This section derives the finite-consensus algorithm without usingZ transform. Consider the case of

a consensus variablezzz= (z1,z2, · · · ,zM) ∈ R
M over the networkG satisfying (A4.3) withzi being

the scalar variable associated with theith system. LetL(G) be the Laplacian matrix of the network:

Lii = di , the degree of nodei; Li, j = −1 if (i, j) ∈ E and 0 otherwise. A doubly stochastic matrix

W ∈ RM×M = I − γL(G) for some 0< γ ≤ 1
maxi{di} can be set up with spectral radius of 1 and the



3.3 Finite-Time Consensus 41

eigenvalue of 1 is simple with1√
M

111 being both its left and right eigenvectors. Then

1
M

111
M

∑
i=1

zi(0) =
1
M

111111Tzzz(0) = lim
ℓ→∞

zzz(ℓ) (3.36)

wherezzz(·) is the state of the consensus dynamics of

zzz(ℓ+1) =Wzzz(ℓ) (3.37)

The last equality of (3.36) holds becausezzz(ℓ) = ∑M
i=1 vi

ℓξiζ T
i zzz(0) [162] is the solution of (3.37)

wherevi is the ith eigenvalue ofW andξi(ζi) is the corresponding right (left) eigenvector. Since

|v1|= 1, ξ1 = ζ1 =
1√
M

111 and|vi |< 1 for all i = 2, · · · ,M, limℓ→∞ zzz(ℓ) = 1
M111111Tzzz(0). The expression

of (3.36) can be further simplified using (3.37) as

lim
ℓ→∞

zzz(ℓ) = lim
ℓ→∞

Wℓzzz(0) = ( lim
ℓ→∞

Wℓ)zzz(0)

= (
T−1

∑
ℓ=0

τℓWℓ)zzz(0) =
T−1

∑
ℓ=0

τℓzzz(ℓ) (3.38)

for someT ≤M. Here, the first equality of (3.38) follows from the closure property ofW∞ via the

minimal polynomial ofW (tT +π0tT−1+ · · ·+πT−1t0 = 0) and{τ0, · · · ,τT−1} can be obtained from

{π0, · · · ,πT−1} using standard results from functions of square matrices [162]. Such a representation

is guaranteed to exist since, in the worst case, the characteristic polynomial becomes the minimal

polynomial with T = M and the closure property follows from the well-known Caley-Hamilton

principle.

Combining (3.36) and (3.38) means that1M111∑M
i=1 zi(0) =

T−1
∑
ℓ=0

τℓzzz(ℓ), or, considering each element of

this vector equation,

1
M

M

∑
i=1

zi(0) =
T−1

∑
ℓ=0

τℓzi(ℓ) (3.39)

This equation shows that theith system can obtain the value of1
M ∑M

i=1 zi(0) by computing its con-

sensus statezi(ℓ) for ℓ = 0, · · · ,T−1 and evaluating the right hand side of (3.39). Note that thisT
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steps ofzi is obtained in a distributed manner using theith row of (3.37), or

zi(ℓ+1) =Wii zi(ℓ)+ ∑
j∈Ni

Wi j zj(ℓ), i ∈ Z
M (3.40)

The finite-time consensus algorithm is summarized in the following algorithm

Algorithm 3.1: Finite-time algorithm

Input: zi(0), i ∈ Z
M

Output: yi , i ∈ Z
M

Initialization: setk= 0, yi = τ0zi(0), i ∈ Z
M;

repeat

for all i ∈ Z
M (in parallel)do

Obtainzi(k+1) from (3.40);

yi = yi + τk+1zi(k+1)

end for

k← k+1

until k=T-1

The above development is for the case wherexi is a scalar. In the case wherezi ∈Rη is a vector with

zzz∈ R
Mη , the development from (3.36) till ( 3.40) holds withW replaced byW⊗ Iη where⊗ refers

the kronecker product of two matrices.

Remark 3.1. A special case that deserves mention is that when G is a fully connected graph. The

corresponding Laplacian matrix has all entries being−1 except the diagonals and all the diagonals

have values M−1. Hence, L(G) = MI −111111T . Supposeγ = 1
M . Then W= I − γL(G) = I − 1

M (MI −

111111T) = 1
M111111T . This means that the characteristic polynomial of W is tM−1(t−1) = 0. Since L(G)

is symmetric, all Jordan blocks in the Jordan decompositionof W is of order 1. Hence, the minimal

polynomial of W is t(t − 1) = 0, or T = 2 in (3.38). This implies that (3.38) can be simplified as

limℓ→∞ zzz(ℓ) = (limℓ→∞Wℓ)zzz(0) =Wzzz(0) = zzz(1).



CHAPTER 4
Distributed MPC of Constrained Linear Systems with

Time-Varying Terminal Sets

4.1 Introduction

This chapter considers the Distributed Model Predictive Control (DMPC) of a network ofM systems,

each of which is of the form

xi(t +1) = ∑
j∈ZM

Ai j x j(t)+Biui(t), (4.1)

xi(t) ∈ Xi, ui(t) ∈U i, i = 1, · · · ,M, t ∈ Z
+ (4.2)

wherexi ∈Rni , ui ∈Rmi are the state and input of theith system,Ai j ∈Rni×nj is the system dynamics

relatingxi and its coupled states ofx j , Xi andU i are the corresponding state and control constraints

respectively.

The study of DMPC of network system has received considerable attention recently and several

approaches have been proposed for its solution, see [15,36–40,66]. One typical approach is to treat

the Ai j x j where i 6= j as a disturbance to thei system, see [47–49, 163]. Others (Chapter 7 and

11 of [40] and [164]) propose the use of the dual decomposition approach to handle the coupled

dynamics. In these approaches, appropriate terminal constraints and terminal costs are needed; the

choices of which are also active research areas. Clearly, and the most conservative choice of the

terminal constraint is the origin [51, 63, 65]. Less conservative approaches include the use of a

static ellipsoidal terminal sets [50, 52, 53] and a time-varying ellipsoidal set induced from a block

diagonal Lyapunov matrix [66,67]. In the latter case, each diagonal block of the Lyapunov matrix

43
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also determines the terminal cost function of the corresponding system. In cases whereM is small or

moderate, restricting Lyapunov matrix to be block-diagonal can be restrictive. This work focuses on

such systems and proposes an approach that differs from the previous in several distinctive ways: the

Lyapunov matrix is non-diagonal (when it exists), the terminal set is time varying and moves within

the maximal constraint admissible invariant set of the overall system. These features are possible

under appropriate assumptions and additional computations. The implementation of the proposed

approach is easiest when the network is fully connected or when a central collector is used. When

this is not the case, additional linear programming (LP) problems are needed. Fortunately, these

computations can be speeded up significantly using preprocessing.

This work does not address the algorithmic details for the numerical determination of the non block-

diagonal Lyapunov matrix or the consensus algorithm of the DMPC problem as they are standard in

the literature, see for example [40] and [164].

The rest of the chapter is organized as follows. This sectionends with the notations needed, followed

by the next section on the review of preliminary results of and additional notations for the DMPC

problem. Section4.3discusses the choice of the distributed stage and terminal cost functions and the

decomposition of the terminal set, including the solutionsof a series of LP problems. The feasibility

and stability of the overall system is shown in Section4.4. Section4.5describes preprocessing steps

that result in significant saving in the computations of the series of LP. Several numerical examples,

including one for which a diagonal Lyapunov matrix does not exist, are provided Section4.6. The

last section concludes the work. All proofs are given in the appendices.

The notations used in this chapter are as follows. Non-negative and positive integer sets are indicated

by Z
+
0 andZ+ respectively withZM := {1,2, · · · ,M} andZM

L := {L,L+1, · · · ,M},M ≥ L, M,L ∈

Z
+
0 . Similarly, R+

0 andR+ refer respectively to the sets of non-negative and positivereal number.

In is ann× n identity matrix andint(·) refers to the interior of a set. Givenσ > 0 andX ⊂ R
n

with 0 ∈ int(X), σX = {σx : x ∈ X}. The p-norm of x ∈ R
n is ‖x‖p while ‖x‖2Q = xTQx for Q≻

0. For a square matrixQ, Q≻ (�)0 meansQ is positive definite (semi-definite). Given a set of

vectors,ci ∈ R
n, i ∈ Z

M, the collection of vectors,(c1,c2, · · · ,cM) also refers to the stack vector

of [(c1)T(c2)T · · · (cn)T ]T ∈ R
Mn for notational simplicity. LetΩ ⊂ ZM be an index set,|Ω| is its

cardinality andcΩ := {ci : i ∈ Ω} is the collection of vectors (or stacked vector) ofci with i ∈
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Ω. Several representations of the states and controls are needed: xi(t), ui(t) refer to the state and

control of theith system at timet; xi
k, ui

k are thekth predicted state and control of theith system;

x= (x1,x2, · · · ,xM), u= (u1,u2, · · · ,uM) are the collections ofxi andui over theM systems; boldface

xxxi =(xi
0,x

i
1, · · · ,xi

N), uuui =(ui
0,u

i
1, · · · ,ui

N−1) are the collections of theN predicted states and predicted

controls over the horizon (of lengthN) for the ith system; in situation where the reference to time is

needed,xi
k, ui

k can be written asxi
k|t andui

k|t . Hence,xi
0|t = xi(t) andui

0|t = ui(t). Additional notations

are introduced as required in the text.

4.2 Preliminaries

Combining all theM systems of (4.1), the overall system is

x(t +1) = Ax(t)+Bu(t), t ∈ Z
+
0 (4.3)

x(t) ∈ X, u(t) ∈U (4.4)

wherex= (x1,x2, · · · ,xM) ∈ R
n, u= (u1,u2, · · · ,uM) ∈ R

m are the overall states and controls of the

full system withn = ∑i∈ZM ni andm= ∑i∈ZM mi. Also, A ∈ R
n×n is a block matrix with its(i, j)

block beingAi j ∈R
ni×nj andB∈R

n×m is a block diagonal matrix with blocks{B1,B2, · · · ,BM} and

Bi ∈ R
ni×mi . The constraint sets ofX andU are

X := X1×X2×·· ·×XM, U :=U1×U2×·· ·×UM (4.5)

The connection among the systems is static and can be represented as a network with its structure

captured in a set of pairwise indices,

D := {(i, j) : Ai j 6= 0}, (4.6)

indicating adjacency relationship among theM systems. The connection among theM systems is

assumed to be arbitrary and, hence,A is not symmetric. However, the scheme proposed in this work

requires the states of systemi be communicated to all its neighbors. For this reason, definethe set
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of neighbors ofi, including i, as

Ωi := { j : (i, j) ∈D or ( j, i) ∈D}∪{i}. (4.7)

In general,|Ωi | < M. When|Ωi | = M for all i ∈ Z
M, the network is fully connected in the sense

that each system is a neighbor of every other system. Severalother variables, sets and states can be

defined based onΩi and its complement:

nΩi : = ∑
j∈Ωi

n j , nΩi
:= n−nΩi , Ωi := Z

M\Ωi, (4.8)

xΩi : = {x j : j ∈Ωi} ∈ R
nΩi , xΩi := {x j : j ∈Ωi} ∈R

nΩi . (4.9)

The variablesui ,xi ,xΩi andxΩi can be extracted fromu andx respectively from

ui := F iu, xi := Six, xΩi = Eix, xΩi = E
i
x (4.10)

whereF i ∈ {0,1}mi×m, Si ∈ {0,1}ni×n, Ei ∈ {0,1}nΩi×n and E
i ∈ {0,1}nΩi

×n are the appropriate

selection matrices. From (4.10) and the fact that[(Ei)T(E
i
)T ]T is a permutation matrix,

Ai j = SiA(Sj)T ,









xΩi

xΩi









=









Ei

E
i









x,

x=









Ei

E
i









−1







xΩi

xΩi









:= H ixΩi +H
i
xΩi

(4.11)

whereEiH i = InΩi
,E

i
H

i
= InΩi

,EiH
i
= 0,E

i
H i = 0.

Assumptions of the system, needed in the sequel, are given below.

A3.1. The setsXi andU i, i ∈ Z
M are polytopes and contain the origin in their respective interiors.

A3.2. There is no delay or loss of information during communication between systemi and all its

neighbors.
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A3.3. MatricesA andB are known to all systems.

A3.4. The set ofM systems (or nodes) with edges defined by (4.7) forms an undirected and con-

nected graph.

Both A3.1 and A3.2 are mild assumptions and are standard requirement in DMPC. Assumption

A3.3 is needed as the models of the overall system are used to estimate the size of the terminal set

at timet by systemi. Assumption A3.3 may be hard to be satisfied when the network consists of

heterogeneous systems. But in the typical case where most systems are similar or are members of

only a few distinctly different classes of system, A3.3 is not a strong assumption. Assumption A3.4

defines the scope of the systems considered in this work. Suppose A3.4 is violated and the set ofM

systems has 2 or more connected components, then the approach described hereafter can be applied

to them individually.

As a comparison for DMPC, a centralized MPC (CMPC) problem isneeded. The CMPC assumes

that the system given by (4.3) is solved via a single online finite horizon optimization problem of

the form

V∗N(x) = min
uuu

VN(xxx,uuu) := min
uuu

N−1

∑
k=0

l(xk,uk)+ l f (xN) (4.12a)

s.t. xk+1 = Axk+Buk,xk ∈ X,uk ∈U,xN ∈ Xf ,x0 = x, k∈ Z
N−1
0

whereN is the prediction horizon,xxx := {x0 x1 · · · xN}, uuu := {u0 u1 · · · uN−1} are the predicted states

and inputs respectively,X andU are those given by (4.5) andXf is an appropriate terminal set. In

this setting, CMPC is like a standard MPC problem without anyconstraints introduced byΩi and

has the stage and the terminal costs being

l(xk,uk) = ‖xk‖2Q+‖uk‖2R, l f (xN) = ‖xN‖2P (4.13)

for some appropriate matricesQ,R,P≻ 0 and a scalarδ > 0 that satisfy

(A+BK)TP(A+BK)−P�−(Q+KTRK)−δ In (4.14)
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for some stabilizingK. In addition,l f : Xf → R0 is defined on

Xf := {x∈R
n|Gx≤ 111L}. (4.15)

whereXf is chosen to be the maximal constraint-admissible invariant set [29, 32] in the sense that

(A+BK)x∈ Xf andKx∈U for all x∈ Xf .

4.3 Main Results

This section presents the choices for the stage, terminal costs and the terminal constraints for the

individual system in a DMPC setting. A few constraint sets are needed forK,Q,R andP due to the

network structure introduced by (4.7). These are

Pi j : = SiP(Sj)T , K i j := F iK(Sj)T , Qi j := SiQ(Sj)T , (4.16)

PD : = {P∈R
n×n : P= PT ,P≻ 0,Pi j = 0 for all j /∈Ωi, i ∈ Z

M}, (4.17)

KD : = {K ∈R
m×n : K i j = 0 for all j /∈Ωi, i ∈ Z

M}, (4.18)

QD : = {Q∈R
n×n : Q= QT ,Q≻ 0, Qi j = 0 for all j /∈Ωi , i ∈ Z

M}, (4.19)

whereF i,Si are the selection matrices mentioned in (4.10).

4.3.1 Computations ofP and K

Definition 4.1. The network system of (4.3) with network connection given by D of (4.6) is network

feedback stabilizable if there exists a K∈ KD such that A+BK is Schur-stable.

In the most general case, the search for aK ∈KD such that (4.3) is network feedback stabilizable is a

difficult problem [23]. However, some special cases are solvable, using for example, the method of

Alternate Direction Method of Multipliers (ADMM) [74] or others. For the problem at hand, (4.14)

can be converted into a semidefinite constraint using Schur complement and by lettingW = P−1 and
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Y = KW as



















W WAT +YTBT W YT

AW+BY W 000 000

W 000 (Q+δ In)−1 000

Y 000 000 R−1



















� 0 (4.20)

Hence, the search forK ∈ KD becomes a bilinear semidefinite optimization problem in variables

P,K,W,Y as

min
P,K,W,Y

−log det(W)+α‖K‖2 (4.21a)

s.t. P∈ PD, K ∈ KD; W andY satisfy(4.20) (4.21b)

WP= In, Y = KW (4.21c)

whereα > 0 is a tradeoff parameter between the sizes ofW and‖K‖. The use of‖K‖2 in (4.21a)

is to prevent values ofP andK from becoming unacceptably large. The numerical solvability of

such a problem using the method of ADMM is discussed in Section 9 of [74] and will not be

discussed here, except that the initial values ofP,K,W,Y are obtained from the solution of another

semidefinite optimization problem that is similar to (4.21) but with α = 0 and withoutP∈ PD and

K ∈ KD constraints.

4.3.2 Distributed Costs

The objective of the DMPC is to produce a performance as closeas possible to that of CMPC. For

this purpose, letQΩi , PΩi ∈ R
nΩi×nΩi ,Ri ∈ R

mi×mi andQΩi , PΩi ,Ri ≻ 0 be the weighting matrices

for the ith system and define the stage and terminal costs as

l i(xΩi ,ui) = (xΩi )TQΩi xΩi +(ui)TRiui ,

l i
f (x

Ωi ) = (xΩi )TPΩi xΩi , i ∈ Z
M

(4.22)



4.3 Main Results 50

wherexΩi is given by (4.9). It is easy to verify that these choices are related to (4.13) via (4.10) since

l(x,u) : = ∑
i∈ZM

l i(xΩi ,ui) = ∑
i∈ZM

[xT(Ei)TQΩi Eix+(ui)TRiui ]

= xT( ∑
i∈ZM

(Ei)TQΩi Ei)x+uTdiag{R1,R2, · · · ,RM}u (4.23)

l f (x) : = ∑
i∈ZM

l i
f (x

Ωi ) = xT( ∑
i∈ZM

(Ei)TPΩi Ei)x (4.24)

The connection to (4.13) is complete by letting

Q := ∑
i∈ZM

(Ei)TQΩi Ei, R := diag{R1,R2, · · · ,RM} (4.25)

and by decomposing theP obtained from (4.21) using the following convex semidefinite optimiza-

tion problem:

min
{PΩi }i∈ZM

− ∑
i∈ZM

log det(PΩi ) (4.26a)

s.t. ∑
i∈ZM

(Ei)TPΩi Ei = P, PΩi ≻ 0, PΩi = (PΩi )T (4.26b)

Finally, the connection to the cost function (4.12a) of the CMPC is made by lettingV i
N(xxx

Ωi ,uuui) :=
N−1
∑

k=0
l i(xΩi

k ,ui
k)+ l i

f (x
Ωi
N ) and noting that

VN(xxx,uuu) = ∑
i∈ZM

V i
N(xxx

Ωi ,uuui) = ∑
i∈ZM

[
N−1

∑
k=0

l i(xΩi
k ,ui

k)+ l i
f (x

Ωi
N )]

=
N−1

∑
k=0

∑
i∈ZM

l i(xΩi
k ,ui

k)

︸ ︷︷ ︸

l(xk,uk)

+ ∑
i∈ZM

l i
f (x

Ωi
N )

︸ ︷︷ ︸

l f (xN)

(4.27)

The problem of (4.26) is convex and, hence,{PΩi : i ∈ ZM} exists if a feasible solution is available.

This condition, as well as the existence of solution of (4.21) is now assumed.

A3.5. System (4.3) is network feedback stabilizable, and solutions to problems (4.21) and (4.26)

exist.
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4.3.3 The Decoupled Terminal Set

The choice ofXf of (4.15) is useful as it results in a large domain of attraction. However, its

decomposition toX1
f ×X2

f × ·· · ×XM
f is not obvious. Furthermore, the decomposition should be

such thatXi
f is defined byxΩi only. For this purpose, this work uses a time-varyingXi

f (t) that

changes its size and location while satisfying

X1
f (t)×X2

f (t)×·· ·×XM
f (t)⊂ Xf . (4.28)

for all t. Specifically,

Xi
f (t) := Xi

f (c
i(t), r i(t)) = {x∈ R

ni : ‖x−ci(t)‖∞ ≤ r i(t)} (4.29)

is an∞-norm ball of sizer i(t) ≥ 0 centered atci(t) ∈ R
ni . (Other choices ofXi

f (t) based on the 1−

or 2− norm are possible but is not discussed to focus on the main idea.) While Xi
f (t) ⊂ R

ni , the

value ofci(t) is determined byxΩi (t) and others, as shown in the sequel. Related results ofXi
f and

Xf are given below.

Lemma 4.1. Given c= (c1,c2, · · · ,cM), r = (r1, r2, · · · , rM) and Xf of (4.15) satisfying

X1
f (c

1, r1)×X2
f (c

2, r2)×·· ·×XM
f (cM, rM)⊂ Xf (4.30)

where Xi
f (c

i , r i) is defined by (4.29). Let gγ be theγ th row of matrix G∈ R
L×n of (4.15). The

following properties hold:

(i) Suppose c∈ Xf . The largest∞-norm ball, centered at c, such that (4.30) holds is when r1 = · · ·=

rM = ρ(c) whereρ : Xf → R
+
0 is a continuous concave function given by

ρ(c) = min
γ∈ZL

(1−gγc)/‖gγ‖1, (4.31)

(ii) Define hγ(r,c) := ∑
i∈ZM

r i‖gγ(Si)T‖1−1+gγc where Si is given by (4.10). Condition (4.30) holds

if and only if

hγ(r,c) ≤ 0, ∀γ ∈ Z
L (4.32)
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(iii) Suppose c, r and z= (z1,z2, · · · ,zM) with zi ∈ Xi
f (c

i , r i) for all i ∈ Z
M are given. Let

ci+ = ∑
j∈Ωi

(Ai j +BiK i j )zj i ∈ Z
M (4.33)

Then c+ := (c1+,c2+, · · · ,cM+) ∈ Xf .

Property (i) of the above lemma shows a procedure to determine the maximal∞-ball for a given

c ∈ Xf such that (4.28) and (4.29) hold. The necessary and sufficient condition of property (ii) is

useful for the numerical determination ofc andρ that ensures (4.28) and (4.29). The last property

of (iii) is useful to ensure recursive feasibility of DMPC. These properties are needed in the overall

DMPC scheme described in the next three subsections.

4.3.4 Online DMPC Problem

Suppose{Xi
f (t) : i ∈ Z

M} are known such that (4.28) and (4.29) are satisfied, the collective online

DMPC optimization problem is

V∗N(x(t)) = min
{xxxΩi ,uuui}i∈ZM , x̄̄x̄x

∑
i∈ZM

V i
N(xxx

Ωi ,uuui) (4.34a)

s.t. xi
k+1 = ∑

j∈Ωi

Ai j x j
k+Biui

k, xi
k ∈ Xi, ui

k ∈U i, xi
N ∈ Xi

f (t), (4.34b)

xi
0 = xi(t), xΩi

k = Eix̄k, xΩi
N = Ei x̄N, k∈ Z

N−1
0 , i ∈ ZM (4.34c)

wherex̄̄x̄x = (x̄0, x̄1, · · · , x̄N) with x̄k = (x̄1
k, · · · , x̄M

k ) is the overall predicted state and a global con-

sensus variable. The individual predicted state ofxΩi
k is extracted from ¯x̄x̄x via (4.34c) andxxxΩi =

{xΩi
0 ,xΩi

1 , · · · ,xΩi
N } is the collection of theN predicted states for the neighbors of theith system and

itself. The numerical solution to this problem via distributed optimization has been suggested in

several works, see for example sections 5 and 7 of [74] and others [165,166]. In particular, the alter-

native direction method of multipliers(ADMM) is quite popular, see Chapter 7 of [40] and [164], and

this work follows the same approach. Problem (4.34) is solved distributively via iterative computa-

tions using ADMM by having each agent solving its local problem in parallel. Implicit assumption

here is that the ADMM algorithm has converged within the sampling period. Suppose the optimal
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states and controls for systemi at timet are

xxxi(t) := {xi
0|t xi

1|t · · · xi
N|t}, uuui(t) := {ui

0|t ui
1|t · · · ui

N−1|t} (4.35)

The control law for systemi, applied at timet, is

ui(t) = ui
0|t . (4.36)

The next important step for the overall DMPC approach is to compute(ci(t +1), r i(t +1)) of Xi
f (t +

1) such that (4.28) remains true at timet +1.

4.3.5 Update ofci

The computation ofci(t +1) is simple. For each systemi, let zi(t) = xi
N|t . The value ofci(t +1) is

then obtained from (4.33) as

ci(t +1) = ∑
j∈Ωi

(Ai j +BiK i j )x j
N|t . (4.37)

Consider the case where the network is fully connected or a central collector is available. System

i computesci(t +1) based on the above and sends its value to the central collector which will then

distribute it to all other systems (or broadcast to all neighbors in the case of fully connected network).

Hence,ci(t +1) for all i is known exactly. In the case where a central collector is notpresent or the

network is not fully connected,ci(t + 1) is still updated using (4.37). However, since systemi

does not have the knowledge of the fullc(t +1), a more conservativer i(t +1) is needed to ensure

satisfaction of (4.28).

4.3.6 Update ofr i

Like the previous section, the computation ofr i(t +1) is considered in two different cases: the first

where there is a central collector (or fully connected network) and the second where there is not (or

not fully connected). In the first case,r i(t +1) is set to beρ(c(t +1)) for all i using property (i) of

Lemma4.1. Recall thatc(t +1) is known to every system for this case. Obviously, it followsthat
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(4.28) holds forXi
f (c

i(t +1), r i(t +1)).

When there is no central collector,r i(t + 1) should be set at a value such that (4.28) holds for all

possible (but unknown) values ofc(t + 1). Recall that systemi computesci(t + 1) from (4.37); it

then sends(ci(t + 1),ci(t), r i(t),zi(t)) to all its neighbors and receive the same from them. With

these exchanges,

ω i(t) :=
(
cΩi (t +1),zΩi (t),cΩi (t), rΩi (t)

)

=
(
cΩi (t +1),xΩi

N|t ,c
Ωi (t), rΩi (t)

)
(4.38)

is now available to systemi, or stated differently,ω i(t) := {cΩi (t +1),zΩi (t),cΩi (t), rΩi (t)} is NOT

available to systemi. Hence, the value ofr i(t + 1) is set to be the smallest over all admissible

ω i . This can be done by setting the value ofr i(t +1) as the solution of the following optimization

problem,O(ω i), over the unknown variablesω i :

min
ĉΩi+,ẑΩi ,ĉΩi ,r̂Ωi

ρ(cΩi+, ĉΩi+) (4.39a)

s.t. cΩi+ = EiAK(H
izΩi +H

i
ẑΩi ) (4.39b)

ĉΩi+ = E
i
AK(H

izΩi +H
i
ẑΩi ) (4.39c)

‖ẑj − ĉ j‖∞ ≤ r̂ j , j ∈Ωi (4.39d)

hγ ((r
Ωi (t), r̂Ωi ),(cΩi (t), ĉΩi ))≤ 0, ∀γ ∈ Z

L (4.39e)

whereρ(·) of (4.39a) is the function given by (4.31) sincec+ = (cΩi+, ĉΩi+), constraints (4.39b)

(and similarly (4.39c)) follows fromcΩi (t+1) =Eic(t+1) =EiAKz(t) =EiAK(H izΩi (t)+H
i
zΩi (t))

from (4.10), z(t) = H izΩi (t)+H
i
zΩi (t) from (4.11), andAK := A+BK. Constraint (4.39d) arises

from ẑj ∈ X j
f (ĉ

j , r̂ j) following the condition of property (iii) of Lemma4.1 while (4.39e) is from

property (ii) of Lemma4.1 to ensure the satisfaction of (4.30) for (rΩi (t), r̂Ωi ) and (cΩi (t), ĉΩi ).

The objective function (4.39a) is a concave function of ˆcΩi+. Hence, the computations ofO(ω i) is

difficult. However, there are very effective ways to overcome this difficulty and they are discussed

in section4.5. Using them,r i(t +1) andO(ω i) has the following properties:

Lemma 4.2. Suppose{Xi
f (t) : i ∈ Z

M} are known such that (4.28) is satisfied, the optimal solution

{(xxxi(t),uuui(t)), i ∈ Z
M} is obtained from (4.34) and c(t + 1) = (c1(t + 1),c2(t + 1), · · · ,cM(t + 1))
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with ci(t + 1) obtained from (4.37). Let ri(t + 1) be the optimal solution of O(ω i) for all i ∈ Z
M.

Then ri(t +1)≤ ρ(c(t +1)) for all i ∈ Z
M and

X1
f (t +1)×X2

f (t +1)×·· ·×XM
f (t +1)⊂ Xf (4.40)

The above describes the overall scheme of the DMPC except forthe initial values ofXi
f (c

i(0), r i(0))

for all i ∈ Z
M. In the absence of additional information, the initial values can be chosen asci(0) = 0

andr i(0) = ρ(c(0)) for all i ∈ Z
M.

4.4 Feasibility and Stability of DMPC

The results presented in this section assume implicitly that (A3.1)-(A3.5) hold. For example, they

are to ensure the existence ofXf , P∈ PD,K ∈ KD and 0∈ int(Xf ).

Theorem 4.1. Suppose there exists a feasible solution of the DMPC problemof (4.34) at time t. Let

ci(t+1) be updated according to (4.37); r i(t+1) equalsρ(c(t+1)) ( when central collector is used

or network is fully connected) or equals the solution of O(ω i) of (4.39) in the absence of a central

collector (or network is not fully connected). System (4.3) with u(t) = (u1(t),u2(t), · · · ,um(t)) where

ui(t) is given by (4.36) has the following results: (i) there exists a feasible solution to the DMPC

problem at time t+1; (ii) lim
t→∞

x(t) = 0 and lim
t→∞

c(t) = 0.

The above asymptotic stability result can be strengthened in the presence of a central collector or a

fully connected network.

Theorem 4.2. Suppose ci(t +1) is updated according to (4.37) and ri(t +1) is ρ(c(t +1)). Then,

system (4.3) with u(t) = (u1(t),u2(t), · · · ,um(t)) where ui(t) given by (4.36) is exponentially stable.

Remark 4.1. When there is no central collector or network is not fully connected, additional as-

sumption is needed to guarantee exponential convergence. One such assumption, similar in nature

to (4.50) in 4.D, is that there existε > 0 and tε such that ri(t) ≥ ε for all t ≥ tε and for all i∈ Z
M.

While this condition may be hard to verify, numerical simulation shows that it typically holds, see

Example I in Section4.6.
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4.5 Preprocessing to Speed up the LP Computations

This section is needed only when the network is not fully connected and there is no central collec-

tor. The difficulty of computingO(ω i) can be circumvented by noting thatρ(c) = minγ∈ZL(1−

gγc)/‖gγ‖1 from (4.31). Hence, the solution ofO(ω i) is given by the minimal objective value over

L linear programming (LP) problems where each LP correspondsto one choice ofγ ∈ZL and having

the form

min
ẑΩi ,ĉΩi ,r̂Ωi

{1−gγ ĉ+

‖gγ‖1
: (4.39b)− (4.39e)} (4.41)

with ĉ+ = (cΩi+, ĉΩi+) and ĉΩi+ is given by (4.39c). Since each of theL LP has the same set of

constraints, this feature can be exploited to speed up the search for the minimal over theL LPs. The

simplest scheme is to use the optimal solution (including the optimizer, the active constraints and

the inverse of the matrix of the active constraints) of one LPas the starting feasible point for the next

LP. This scheme, Scheme 1, avoids the computation for an initial feasible point under the Simplex

or Active-set-based LP solvers. The speed up is more significant if some preprocessing is done.

Scheme 2 includes the idea of Scheme 1 and uses a specific sequence to solve theL LPs. For this

purpose, let ˆgγ := gγ
‖gγ‖2 and define the neighbors of theith LP as

Ng
i := { j : ĝT

j ĝi ≥ β}, i ∈ Z
L

for some threshold valueβ < 1. This adjacency information together with theL LPs as nodes

(hereafter LP and nodes are used interchangeably) forms an undirected graph. Depending on the

choice ofβ used, the graph may have 1 or more connected components. The algorithms to search for

the number of connected components are a well-known problemin Graph theory [167]. In addition,

the path from one given starting node to every other node in the same connected component of

the graph can be expressed as a hierarchical tree [168]. Suppose there areNL components in the

graph and each is represented as a tree with the top node beingan arbitrary LP, see Figure4.1. The

computations of theL LPs proceed from the starting node of any one of the trees. When one LP is

computed, the next LP to be solved is based on a breadth-first or depth-first searching order of the

hierarchical tree. In addition, the optimal solutions of ALL solved LPs are considered to determine
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the starting solution of the next LP. Specifically, suppose the LP of (4.41) has been solved for all

γ ∈ Π ⊂ Z
L with each optimal value given by1−gγcγ

‖gγ‖1 . Let the next node following the hierarchical

tree has indexℓ. The starting feasible solution for theℓ LP is obtained from the solution of the LP

with index given by

argmin{1−gT
ℓ cγ

‖gT
ℓ ‖1

: γ ∈Π}

Hence, such a scheme requires the storage of the optimal solutions and related information of all

solved LPs but it speeds up the overall computational time for the L LP significantly, see the next

section for computational details.

 
Component 1 Component NL 

Figure 4.1: The hierarchical trees of the LPs

4.6 Numerical Results

This section serves two purposes: to demonstrate the performance of the DMPC approach and the

effectiveness of the speed up scheme of section4.5. The first two examples (Examples I and II) are

four-system network withAii ,Ai j , Bi being

Aii =









1.1 1

0 1.3









,Ai j =









0 0.1

0.2 0.2









,Bi =









1

1









, j 6= i



4.6 Numerical Results 58

 
2 3 

4 1 

(a)

 
2 3 

4 1 

(b)

Figure 4.2: The networked system examples

and network configurations of Figures4.2aand4.2b. The constraints areXi := {xi ∈ R
ni | ‖xi‖∞ ≤

10}, U i := {ui ∈ R
mi | ‖ui‖∞ ≤ 1} with QΩi = I andRi = 0.01I , the values ofK ∈ KD andP∈ PD,

obtained from the solution of (4.21) with δ = 0.01,α = 2 andxi(0) are

K =



















−0.6939 −1.056 0.0147 −0.1572 0 0 0 0

−0.1418 −0.1820 −0.7452 −1.113 0.0671 −0.0888 0.0671 −0.0888

0 0 −0.0136 −0.1555 −0.7312 −1.084 0.0072 −0.1299

0 0 −0.0136 −0.1555 0.0072 −0.1298 −0.7312 −1.084



















,
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P=







































4.294 −0.3814 −1.041 0.0087 0 0 0 0

−0.3814 2.267 −0.2486 0.1484 0 0 0 0

−1.041 −0.2486 8.062 −0.8835 −1.171 −0.1419 −1.171 −0.1419

0.0087 0.1484 −0.8835 4.362 −0.0152 0.1890 −0.0152 0.1890

0 0 −1.171 −0.0152 6.306 −0.6004 −0.8061 0.0229

0 0 −0.1419 0.1890 −0.6004 3.340 0.0229 0.2237

0 0 −1.171 −0.0152 −0.8061 0.0229 6.306 −0.6004

0 0 −0.1419 0.1890 0.0229 0.2237 −0.6004 3.340







































,

x1(0) =









−2.155

1.893









,x2(0) =









−0.4146

2.317









,x3(0) =









1.395

1.112









,x4(0) =









−0.9137

−1.983









with PΩi obtained via (4.26). The rest of the parameters are:N = 10, ci(0) = 0, r i(0) = 0.4033 for

i = 1,2,3,4. The values ofr i(t) and‖ci(t)‖2 againstt are shown in Figure4.3aand4.3brespectively.

Figure4.3b also includes values ofρ(c(t)) as a comparison. As shown,r2(t) = r3(t) = r4(t) are

much larger thanr1(t), a fact resulting from system 1 having fewer neighbors than others. To better

apprecaite this fact, the approach is applied to the networkof Figure4.2b. Note that theQ,R,P,K and

Xf are the same as before withA41 = A14 = 0 but with 1 and 4 being neighbors of each other. The

values ofr1(t), r2(t), r3(t), r4(t) andρ(c(t)) of the second network are shown in Figure4.4. The

value ofr1(t) is now equal toρ(c(t)) for all t, verifying the effect of connectivity on the values of

r i(t). It also shows that the proposed approach is better suited for networks that are well connected.

A comparison of the performances of DMPC and CMPC over several choices ofx(0) is given in

Table 4.1. Obviously, both approaches use the same values ofQ,R,K and P. The performance
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is measured byJ∞(x(0)) =
∞
∑

t=0
x(t)TQx(t)+u(t)TRu(t) with x(t),u(t) being the true state and con-

trol of the system. This measure is approximated by
T
∑

t=0
‖x(t)‖2Q + ‖u(t)‖2R for some largeT. The

performances are denoted byJ∞
DMPC(x(0)) andJ∞

CMPC(x(0)) respectively and its relative difference,

∆J(x) =
J∞
DMPC(x)−J∞

CMPC(x)
J∞
CMPC(x)

×100%. As can be seen in Table4.1, J∞
DMPC(x(0)) is on average 5% higher

thanJ∞
CMPC(x(0)), an expected result due to the use of a more restrictedXi

f compared toXf .

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

t

 

 

r1(t)

r2(t), r3(t), r4(t), ρ(c(t))

(a)

0 5 10 15
0

0.1

0.2

0.3

0.4

t

 

 

||c1(t)||2
||c2(t)||2
||c3(t)||2
||c4(t)||2

(b)

Figure 4.3: The individual terminal sets

0 5 10 15
0.32

0.34

0.36

0.38

0.4

0.42

0.44

t

 

 

r1(t), r2(t), r3(t), r4(t), ρ(c(t))

Figure 4.4: r1(t), r2(t), r3(t), r4(t), andρ(c(t)) of the second network

x1 x2 x3 x4 J∞
DMPC(x) J∞

CMPC(x) ∆J(x)(%)
[

−2.155
1.893

] [

−0.4146
2.317

] [

1.395
1.112

] [

−0.9137
−1.983

]

601.3 580.6 3.57
[

0.5204
−2.1969

] [

1.3889
1.8441

] [

1.1516
−0.6396

] [

3.1703
0.7843

]

1059 1046 1.26
[

1.4281
2.3855

] [

−1.6044
0.7639

] [

2.1066
2.5045

] [

−0.5404
−2.5454

]

1258 1228 2.38
[

−2.3817
−3.3901

] [

2.8344
1.6336

] [

2.4512
−1.7680

] [

0.2687
0.6759

]

1401 1247 12.4
[

−1.1407
1.3046

] [

−1.9217
2.3264

] [

−3.0906
0.6680

] [

3.8166
−3.6878

]

1105 1096 0.794
[

−2.5408
−1.5982

] [

−1.8774
−0.9442

] [

1.1081
−0.4147

] [

0.5736
2.5888

]

763.2 718.7 6.20

Table 4.1: The cost difference of DMPC and CMPC over various choices of the initial statex(0).

Several works in the literature [37, 39, 66] use a block-diagonalP matrix for the convenience of a

naturally decoupled terminal cost. For example, theith terminal set in the work of [66] is of the
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form E i := {xi : ‖xi‖2Pii ≤ r i} with r i is determined by a separate semidefinite programming problem.

The choice of a block-diagonalP is obviously conservative since it may not satisfy the Lyapunov

equation of (4.14), see Example II. Even if it exists, the performance of DMPC may be compromised

due to the restricted choices ofQ andR. The use of block-diagonalP typically results in smaller

terminal sets, compared to the proposed approach. A comparison of the terminal sets att = 0 using

the approach of [66] and the proposed approach is shown in Figure4.5.

(a) Subsystem 1 (b) Subsystem 2

(c) Subsystem 3 (d) Subsystem 4

Figure 4.5: The comparison of terminal sets:E i refers to terminal set induced by a diagonalP while
Xi

f is that given by the proposed approach.

Example II has the network connection of Figure4.2band theA,B matrices as given below. Note

that no block-diagonalP matrix exists that satisfies (4.14) for this example whenQΩi = I , and

Ri = 0.01I . Also, the values ofK andP obtained from (4.21) with α = 2 are also indicated below.

A11 =








0.8 −0.25

−0.3 0.8







,A12 =








−0.15 0.5

0.2 −0.5







,A14 =








0.4 −0.5

−0.05 −0.1







,B1 =








1

1








A21 =








−0.1 0.3

0.5 0.15







,A22 =








0.9 −0.4

0.1 0.9







,A23 =








−0.35 −0.2

0.35 −0.01







,A24 =








−0.15 0.25

−0.5 −0.2







,B2 =








1

1








A32 =








−0.4 −0.4

−0.2 −0.2







,A33 =








0.7 −0.1

−0.4 0.75







,A34 =








−0.3 −0.3

0.3 −0.1







,B3 =








1

1








A41 =








0.3 0.4

−0.03 0.3







,A42 =








0.1 0.2

0.4 0.5







,A43 =








−0.15 0.5

0.1 0.5







,A44 =








1.1 0.4

−0.2 1.1







,B4 =








1

1
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K =


















−1.051 0.3137 0.3854 −0.6973 0 0 −0.8072 0.8598

−0.7607 0.2718 −0.7058 −0.6800 0.7344 −0.07826 −0.005887 −0.06570

0 0 0.9479 −0.3783 −1.134 −0.4131 0.3263 0.5520

0.3240 −0.4981 −0.0004079 −0.4808 −0.2830 −0.9680 −0.5707 −0.6772


















P=





































116.5 −49.39 −60.83 87.10 0 0 76.97 −74.88

−49.39 26.89 25.42 −39.25 0 0 −31.79 31.26

−60.83 25.42 102.8 −93.58 −89.61 −13.21 −32.56 77.27

87.10 −39.25 −93.58 108.6 64.45 11.02 48.94 −82.06

0 0 −89.61 64.45 129.5 14.17 −17.82 −49.30

0 0 −13.21 11.02 14.17 9.716 1.323 −7.280

76.97 −31.79 −32.56 48.94 −17.82 1.323 67.75 −48.59

−74.88 31.26 77.27 −82.06 −49.30 −7.280 −48.59 75.28





































The rest of this section illustrates the computations ofO(ω i) via two examples (Examples III and

IV). Values ofn,m,L,M and other parameters are given in Table4.2. The variablesn1
v,n

1
≤,n

1
= refer to

number of variables, number of inequality and equality constraints respectively forO(ω1). Example
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III uses the sameAi j as those in Example I while those of Example IV are:

Aii =


















−0.2568 0.4331 0 0.4071

−0.1495 0.02262 0.4013 0

0 0 0.9654 −0.7708

0 0 0.6133 0.3297


















,Bi =








1

1








Ai j =


















0 0 0 0

−0.1780 0 0 0

0 0.2308 0 0

0 0 0 0.2311


















, j 6= i

Both examples have the same constraint set as Example I withQΩi = I andRi = 0.01I . The adja-

cency matrices of the Examples III and IV are the same and are denoted by{ai j } with ai j = 0 for all

(i, j) except for

If 1 < i < M, ai j = 1 for j = i−1, i, i +1;

If i = 1, ai j = 1, for j = i, i +1;

If i = M, ai j = 1, for j = i−1, i.

For comparison purposes, the CPU times ofO(ω1) at timet = 0 for the various schemes are shown.

Table4.3 showsTs,TL,T1
L ,T

2
L and their ratios forO(ω1). Specifically, these variables are the CPU

times of a single LP (starting from scratch),L independently LPs,L LPs using Scheme 1, andL

LPs using Scheme 2 respectively. In Scheme 2, the choice of the next LP to solve is based on the

breadth-first search method (see Section4.5). The LPs are solved by Clp [169]. As shown, the

timings of scheme 1 are about 21 - 42% time of theTL while Scheme 2 is about 8 - 12% ofTL. In

general, scheme 2 is about 4−20 times the time needed for a single LP. All numerical experiments

are done on a Windows 7 PC with an Intel Core i5-3570 processorand 8GB memory.
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Example n m M L β NL n1
v n1

≤ n1
=

III 20 10 10 44 0.2 4 40 76 2
IV 40 10 10 136 0.3 36 72 200 4

Table 4.2: Parameters of Examples III and IV

Example Ts(s) TL/Ts (s) T1
L /Ts T2

L /Ts

III 9.017 ×10−4 44 9.272 3.853
IV 2.532×10−3 136 57.32 17.467

Table 4.3: CPU times ofO(ω1) using different schemes

4.7 Conclusions

This work proposes a less conservative approach to the DMPC problem using two distinct features:

the terminal cost function that depends on a Lyapunov matrixthat conforms to the structural con-

straint imposed by the network; and a terminal set that is obtained from the maximal constraint ad-

missible invariant set of the overall system. More exactly,the approach determines a time-varying

terminal set that moves within the maximal constraint admissible invariant set, changing in both size

and location at each time. When the network is fully connected or a central collector is used, the

terminal set can be easily computed and local exponential stability is achieved. If not, the compu-

tations of the terminal set require a series of linear programming (LP) problems; the computations

of which can be speeded up, via a preprocessing step, so that the approach is suitable for online

computations.
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4.A Proof of Lemma 4.1:

(i) The vertices of the set{x ∈ R
n : ‖x− c‖∞ ≤ β} are{c± βvi : i = 1,2,3, · · · ,2n} wherevi ∈

{−1,1}n×1. Hence, this set lies insideXf if and only if G(c±βvi)≤ 111L or βG(±vi)≤ 111L−Gc for

all i = 1,2,3, · · · ,2n. Sincegγvi ≤ ‖gγ‖1 for all ±vi wheregγ is theγ th row of G, and there exists

somevi such thatgγvi = ‖gγ‖1, it follows that

β ≤ (1−gγc)/‖gγ‖1 ∀ γ ∈ Z
L (4.42)

which implies that the maximum value ofβ is minγ∈ZL(1−gγ c)/‖gγ‖1. Hence, settingr1 = r2 =

· · ·= rM = β and the fact that{x∈R
n : ‖x−c‖∞ ≤ β}= X1

f (c
1, r1)×·· ·×XM

f (cM , rM) implies that

(4.28) and (4.29) hold. Thatρ(c) is a concave function follows from the fact that it is the point-wise

minimum ofL affine functions ofc.

(ii) Like (i), Xi
f (c

i , r i)⊂ Xf if and only if all its vertices are insideXf . The vertices ofXi
f (c

i , r i) are

{ci ± r iv ji , j i = 1,2,3, · · · ,2ni wherev ji ∈ {−1,1}ni×1. Sinceci andv ji areni-dimensional vectors,

they can be expressed asn-dimensional vectors using(Si)T whereSi is that given by (4.10). In

addition,

(c1± r1v j1, · · · ,cM± rMv jM ) = ∑
i∈ZM

(Si)T(ci ± r iv ji )

Hence,

G ∑
i∈ZM

(Si)T(ci± r iv j i )≤ 111L,∀ j i = 1,2, · · · ,2ni (4.43)

Theγ th row of the above inequality is

±gγ ∑
i∈ZM

(Si)T r iv j i ≤ 1−gγ( ∑
i∈ZM

(Si)Tci) = 1−gγc, ∀ j i = 1,2, · · · ,2ni

⇔ ∑
i∈ZM

r igi
γ(±v j i )≤ 1−gγc ∀ j i = 1,2, · · · ,2ni

(4.44)

wheregi
γ := gγ(Si)T . Consider thatgi

γ(±v ji ) ≤ ‖gi
γ‖1 for eachi, the following inequality is a

sufficient condition of (4.44)

∑
i∈ZM

r i‖gi
γ‖1≤ 1−gγc (4.45)
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Noting that (4.44) holds for all j i = 1,2, · · · ,2ni . However, one of these 2ni inequalities is the most

binding and that happens whenv ji is such thatgi
γ(±v ji ) = ‖gi

γ‖1 for eachi. If this inequality holds,

all j i = 1,2, · · · ,2ni inequalities hold. Hence, (4.45) is also a necessary condition of (4.44). Finally,

collecting over allL rows ofG, the necessary and sufficient condition of (4.43) becomes

∑
i∈ZM

r i‖gγ (S
i)T‖1≤ 1−gγc, ∀γ ∈ Z

L (4.46)

(iii) The property holds sinceXf is a constraint admissible invariant set for systemx+ =AKx,u=Kx.

4.B Proof of Lemma4.2:

Since (4.39b)-(4.39e) contains all admissible solutions ofω i , and the fact that (4.39a) is the minimal

value of all admissibleω i,

r i(t +1) : = min
ĉΩi+,ẑΩi ,ĉΩi ,r̂Ωi

{ρ(cΩi (t +1), ĉΩi+) : (4.39b)− (4.39e) are satisfied.}

≤ ρ(cΩi (t +1),cΩi (t +1)) = ρ(c(t +1)),

wherec(t +1) = (cΩi (t +1),cΩi (t +1)) is the true value ofc at timet +1. This result implies that

Xi
f (c

i(t + 1), r i(t + 1)) ⊂ Xi
f (c

i(t + 1),ρ(c(t + 1)). This, together with property (i) of Lemma4.1

implies that (4.40) holds.✷

4.C Proof of Theorem4.1:

The proof follows standard reasoning and is therefore short. (i) Since (4.34) is a convex quadratic

programming problem,V i
N is strictly convex andU andX satisfy Assumption A3.1, convergence to

the optimal solution via distributed ADMM is known [74]. Let the optimal states and controls of

(4.34) at timet be (xi
0|t , · · · ,xi

N|t) and(ui
0|t , · · · ,ui

N−1|t) respectively and choose the feasible state
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and control{x̃xxi(t +1),ũuui(t +1)}i∈ZM as

x̃i
0|t+1 : = xi

1|t , · · · , x̃i
N−1|t+1 := xi

N|t , x̃i
N|t+1 := ∑

j∈Ωi

(Ai j +BiK i j )x j
N|t , (4.47)

ũi
0|t+1 : = ui

1|t , · · · , ũi
N−2|t+1 := ui

N−1|t , ũi
N−1|t+1 := ∑

j∈Ωi

K i j x j
N|t (4.48)

The last assignment of (4.47) means thatci(t +1) = x̃i
N|t+1 following (4.37) andzi(t) = xi

N|t . This

choice of(ci(t + 1), r i(t + 1)) implies that{Xi
f (c

i(t + 1), r i(t + 1))}i∈ZM satisfy (4.40) following

Lemma4.2. In addition,ũi
j|t+1 ∈Ui becauseui

j−1|t ∈Ui and x̃i
j|t+1 ∈ Xi for the same reason. The

last control ˜ui
N−1|t+1 = ∑

j∈Ωi

K i j x j
N|t ∈Ui becauseKx∈U for all x∈ Xf and(x1

N|t ,x
2
N|t , · · · ,xM

N|t) ∈ Xf

sincexi
N|t ∈ Xi

f (t) and that(xi
0|t , · · · ,xi

N|t) is optimal at timet. Hence,{x̃xxi(t +1),ũuui(t +1)}i∈ZM of

(4.47) and (4.48) is feasible to (4.34) at timet +1.

(ii) SinceV∗N(x(t +1)) is the optimal solution of (4.34) while {x̃xxi(t +1),ũuui(t +1)}i∈ZM is a feasible

solution from (i), it follows thatV∗N(x(t+1))≤ ∑
i∈ZM

[
N−1
∑

k=0
l i(x̃Ωi

k|t+1, ũ
i
k|t+1)+ l i

f (x̃
Ωi
N|t+1)]. Summing this

expression for timet andt +1 yields

V∗N(x(t +1))−V∗N(x(t)) ≤ ∑
i∈ZM

[l i(x̃Ωi
N−1|t+1, ũ

i
N−1|t+1)+ l i

f (x̃
Ωi
N|t+1)]− ∑

i∈ZM

[l i(xΩi
0|t ,u

i
0|t)+ l i

f (x
Ωi
N|t)]

= l(x̃N−1|t+1, ũN−1|t+1)+ l f (x̃N|t+1)− l(x0|t ,u0|t)− l f (xN|t)

=−l(x0|t ,u0|t)+xT
N|t
(
AT

KPAK−P+Q+KTRK
)
xN|t ≤−l(x0|t ,u0|t)−δ‖xN|t‖22 (4.49)

where the last inequality comes from (4.14). The above inequality implies that{V∗N(x(t))} is a non-

increasing sequence bounded from below by 0. Hence,{V∗N(x(t))} converges. This and the bounded

from below property imply that lim
t→∞

l(x0|t ,u0|t) = 0, lim
t→∞

x(t) = 0 and lim
t→∞
‖xN|t‖22 = 0. Hence, the ori-

gin of the closed-loop DMPC system is asymptotical stability. From (4.37), lim
t→∞
‖xN|t‖22 = 0 implies

lim
t→∞

c(t) = 0. ✷

4.D Proof of Theorem4.2:

Assumption (A3.2) implies that 0∈ int(Xf ) which implies thatρ(0)> 0 and 0∈ int(X1
f (0,ρ(0))×

X2
f (0,ρ(0))×·· ·×XM

f (0,ρ(0))). This, together withc(t)→ 0 from (ii) of Theorem4.1and property
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(i) of Lemma4.1, implies that there exists a timēt such that

ρ(c(t))> ε and 0∈ int(X1
f (t)×X2

f (t)×·· ·×XM
f (t)) for all t ≥ t̄ (4.50)

for some uniformε > 0. Let σ := sup{σ : σXf ⊂ X1
f (t)×X2

f (t)×·· ·×XM
f (t)}. Note thatσXf is

an invariant set for systemx(t +1) = (A+BK)x(t),x(t) ∈ X andKx(t) ∈U .

From (ii) of Theorem4.1, lim
t→∞

x(t) = 0 implies that there existst ′ such thatx(t) ∈ σXf for all t ≥ t ′.

Hereafter, consider allt > max{t̄, t ′}. Whenx(t) ∈ σXf ,

ũi
ℓ|t = ∑

j∈Ωi

K i j x j
ℓ|t , ℓ= 0, · · · ,N−1

is a feasible control for systemi for the online DMPC problem for alli ∈ ZM; including whenℓ= N

sinceσXf ⊂X1
f (t)×X2

f (t)×·· ·×XM
f (t). Using this choice of{ũi

ℓ|t}
N−1
j=0 for all i ∈ZM and the corre-

sponding ˜xi
ℓ|t , the overall cost function from (4.27) can be shown to bẽV(x(t)) = x(t)T P̄x(t) where

P̄=
N−1
∑
ℓ=0

(Aℓ
K)

T(Q+KTRK)Aℓ
K+(AN

K)
TPAN

K. The optimal cost from the online DMPC isV∗N(x(t)) and

V∗N(x(t)) ≤ Ṽ(x(t)) = ‖x(t)‖P̄. This, together, with the fact thatV∗N(x(t)) ≥ l(x(t),u(t)) ≥ ‖x(t)‖2Q
means that there exists aβ > β > 0 such thatβ‖x(t)‖22 ≤ ‖x(t)‖2Q ≤ V∗N(x(t)) ≤ β‖x(t)‖22 From

(4.49), V∗N(x(t +1))−V∗N(x(t)) ≤−l(x(t),u(t)) ≤−‖x(t)‖2Q ≤−β‖x(t)‖22 and the above inequality

implies

V∗N(x(t +1))−V∗N(x(t)) ≤−β‖x(t)‖22 ≤−aV∗N(x(t))

where a = β/β < 1. Hence,V∗N(x(t + 1)) ≤ (1− a)V∗N(x(t)), which implies ‖x(t)‖22 ≤ 1
a(1−

a)t−t̃‖x(t̃)‖22 for all t ≥ t̃, where t̃ := max{t̄ , t ′}+ 1. This shows local exponential convergence

of x(t) to the origin. This result can be extended to allx in the domain of attraction following (A3.1),

see for example [29] and [170]. ✷



CHAPTER 5
Distributed Model Predictive Control of Linear

Discrete-Time Systems with Coupled Constraints

5.1 Introduction

This chapter considers the Distributed Model Predictive Control (DMPC) ofM discrete-time linear

dynamical systems, each of which is of the form

xi(t +1) = Aixi(t)+Biui(t), (5.1)

xi(t) ∈ Xi, ui(t) ∈U i , i = 1, · · · ,M (5.2)

and all of them has to satisfy a coupled/global constraint ofthe form

M

∑
i=1

(
Ψi

xx
i(t)+Ψi

uui(t)
)
≤ 111p, for all t (5.3)

wherexi ,ui are the states and controls of theith system respectively andXi ⊂ R
ni ,U i ⊂ R

mi are

the corresponding constraint sets; the matricesΨi
x ∈ R

p×ni and Ψi
u ∈ R

p×mi define the coupled

constraints for allM systems and 111p is thep-vector of all ones.

The study of DMPC is an active area of research [15, 35, 38, 40, 46] and one popular area is when

the systems are dynamically coupled [48, 49, 66, 88, 163, 171]. However, these approaches are not

suitable for the problem above due to the complications arising from (5.3). To the best of our

knowledge, DMPC approaches for (5.1)-(5.3) are somewhat limited. The method of [44] ensures the

satisfaction of (5.3) using a sequential process: one system is optimized at a time with all others stay

constant; this is followed sequentially by another system so that allM systems are optimized once

69
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in M time steps. Another approach is known as the cooperative MPCmethod [60,121,122]. While

specific details vary, the basic idea is that all systems within a cooperating set (possibly a singleton)

are optimized jointly (or in parallel) while systems outside the cooperating set follow their predicted

states and predicted controls. These methods optimize individual or groups of systems sequentially.

However, the optimality of the overall system is unclear as they are not explicitly pursued. In

addition, these approaches require direct communicationsamong systems that are coupled by (5.3)

which, for a large system, can impose heavy communication requirement [172–174].

A reasonable approach for (5.1)-(5.3) [84,149] that achieves overall optimality is to solve the dual

problem involving the Lagrangian function. In this case, the Lagrangian function is the sum ofM

separable functions except for the dual variable associated with (5.3). This dual variable is treated as

a consensus variable in a distributed consensus optimization problem (DCOP). Typically, consensus

of the dual variable is ensured (Chapter 6 of [149]) using a central/master node.

This work follows the above formulation resulting in a DCOP.However, the DCOP is solved using

the Distributed ADMM [144, 145, 152, 175] algorithm where each system has a local copy of the

dual variable. These local copies need not reach consensus but only within some fixed bound of

one another. Such an approach is used because the computational effort of the Distributed ADMM

is high and allowing premature termination of the ADMM algorithm provides for computational

expediency. Measures to handle such premature terminationare provided, together with recursive

feasibility and stability of the closed-loop system. Underreasonable assumptions, the approach is

guaranteed to converge to some small neighborhood of the overall optimal solution so long as the

network is connected. The approach is iterative, similar toother MPC schemes [176–178] but for

multiple systems with coupled constraints.

The rest of this chapter is organized as follows. This section ends with a description of the notations

used. Section5.2 reviews some results of the standard stand-alone MPC for a single system and

discusses the formulation of the overall MPC problem. Section 5.3presents the proposed approach,

including the discussion of the coupled constraint, its dual and the convergence of the distributed

ADMM algorithm. The recursive feasibility and stability results are given in Section5.5. The per-

formance of the approach is illustrated by a numerical example in Section5.6with the conclusions

given in Section5.7. All proofs are given in the appendices.
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The notations used in this chapter are as follows. Non-negative and positive integer sets are indicated

by Z
+
0 andZ

+ respectively. LetM,L ∈ Z
+
0 with M ≥ L. ThenZM := {1,2, · · · ,M} andZM

L :=

{L,L+1, · · · ,M}. Similarly,R+
0 andR+ refer respectively to the sets of non-negative and positive

real number.In is then×n identity matrix, 111n is then-column vector of all ones (subscript omitted

when the dimension is clear) and|S| is the cardinality of the index setS. Givenσ > 0, X ⊂R
n with

0∈ int(X) whereint(·) is the interior of a set,σX = {σx : x∈ X}. For a square matrixQ, Q≻ (�)0

meansQ is positive definite (semi-definite). Theℓp-norm of x ∈ R
n is ‖x‖p while ‖x‖2Q = xTQx

for Q≻ 0. Several representations of the states and controls are needed: xi(t), ui(t) refer to the

state and control of theith system at timet; xi
k, ui

k are thekth predicted state and predicted control

of the ith system;x= (x1,x2, · · · ,xM), u= (u1,u2, · · · ,uM) are the collections ofxi andui over the

M systems; boldfacexxxi = (xi
1,x

i
2, · · · ,xi

N), uuui = (ui
0,u

i
1, · · · ,ui

N−1) are respectively the collections

of the N predicted states and predicted controls over the horizon (of length N) for the ith system;

in situation where the reference to time is needed,xi
k, ui

k can be written asxi
k|t and ui

k|t . Hence,

xi
0|t = xi(t) andui

0|t = ui(t). Additional notations are introduced as required in the text.

5.2 Preliminaries and Problem Formulation

This section reviews some well-known results in standard MPC and other related concepts. Consider

a stand-alone system represented by one choice ofi ∈ Z
M in (5.1) with corresponding cost and

constraints being

min
uuui

Ji(xi ,uuui) :=
N−1

∑
ℓ=0

(‖xi
ℓ‖2Qi +‖ui

ℓ‖2Ri )+‖xi
N‖2Pi (5.4a)

s.t.uuui ∈ U i
T(x

i) (5.4b)

whereN is the horizon length,uuui := {ui
0,u

i
1, · · · ,ui

N−1},xxxi := {xi
0,x

i
1, · · · ,xi

N} are the predicted con-

trols and predicted states respectively satisfyingxi
ℓ+1 = Aixi

ℓ +Biui
ℓ with xi

0 = xi , J(xi ,uuui) is the

standard quadratic costs parameterized by(xi ,uuui) defined by (5.4a). In addition,K i andPi are the

solution to the Algebraic Riccatti Equation (ARE) with weightsQi ≻ 0,Ri ≻ 0. Let

U i
T(x

i) := {uuui ∈ R
miN : xi

ℓ+1 = Aixi
ℓ+Biui

ℓ,x
i
0 = xi ,xi

ℓ ∈ Xi,ui
ℓ ∈U i,xi

N ∈ T i
f , ℓ ∈ Z

N−1
0 } (5.5)
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whereT i
f is some appropriate terminal set satisfying

Ai
Kxi ∈ T i

f , K ixi ∈U i for all xi ∈ T i
f (5.6)

with Ai
K := Ai +BiK i. The overall MPC optimization problem over theM systems incorporating

(5.3) at statex= {x1, · · · ,xM} is given

P(x) : V(x) := min
{uuui ,i∈ZM}

M

∑
i=1

Ji(xi ,uuui) (5.7a)

s.t. uuui ∈ U i
T(x

i), ∀i ∈ Z
M, (5.7b)

M

∑
i=1

Ψi
xx

i
ℓ+Ψi

uui
ℓ ≤ 111p, ∀ℓ ∈ Z

N−1
0 (5.7c)

where (5.7c) refers to the satisfaction of the coupled constraints at each predicted time step of the

horizon. The conditions of (5.6) on T i
f do not include the effect of the coupled constraint which is

given by

M

∑
i=1

Ψ̄ixi :=
M

∑
i=1

(Ψi
x+Ψi

uK i)xi ≤ 111p, ∀xi ∈ T i
f , (5.8)

5.2.1 Tightening the Constraints

The formulation of (5.7) and condition of (5.8) are appropriate when the Distributed ADMM al-

gorithm achieves convergence at every time step. However, the online verification of the conver-

gence of a distributed algorithm is numerically expensive.Consequently, (5.7) and (5.8) need to be

tightened to account for errors arising from the premature termination of the Distributed ADMM

algorithm. Specifically, the tightened constraints for (5.7c) and (5.8) are

M

∑
i=1

Ψi
xx

i
ℓ+Ψi

uui
ℓ ≤ (1− εM(ℓ+1))111p ∀ℓ ∈ Z

N−1
0 (5.9)

M

∑
i=1

Ψ̄ixi ≤ (1−MNε)111p,∀xi ∈ T i
f (5.10)

whereε is the error arising from the inaccurate solution of the distributed ADMM algorithm. Obvi-

ously, 0< ε < 1
MN to ensure that 0∈ int(T i

f ) in (5.10). Note that the local constraints of (5.7b) are
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not tightened as they are satisfied for all premature solutions (see next section for details). Corre-

spondingly, the tightened DMPC formulation is

min
{uuui ,i∈ZM}

{
M

∑
i=1

Ji(xi ,uuui) : (5.7b) and(5.9)}. (5.11a)

for some approprateT i
f that satisfy (5.6) and (5.10). The choice ofT i

f is now discussed and the

following assumptions are made.

(A5.1): (Ai ,Bi) is stabilizable andxi(t) is measurable for alli ∈ Z
M;

(A5.2): Xi,U i are polytopes containing the origins in their respective interiors for alli ∈ Z
M;

The choice ofT i
f is chosen to be

T i
f = σ i

εXi
f , ∀i ∈ Z

M

whereXi
f is the maximal polytope [32] that satisfy (5.6). The choice ofσ i

ε is chosen to satisfy (5.10)

and can be obtained by noting that (5.10) holds if for some value ofσ i, i ∈ Z
M,

M

∑
i=1

(

maxxi∈σ iXi
f
Ψ̄i

ℓx
i
)

≤ 1−MNε ,∀ℓ∈ Z
p (5.12)

whereΨ̄i
ℓ is theℓth row of matrixΨ̄i . UsinghS(v) := max{vTx : x∈ S}, the support function of set

Salong the direction ofv, this last expression can be further simplified into

M

∑
i=1

hσ iXi
f
(Ψ̄i

ℓ) =
M

∑
i=1

σ ihXi
f
(Ψ̄i

ℓ)≤ 1−MNε , ∀ℓ ∈ Z
p (5.13)

where p is the number of rows of̄Ψi andhσS(v) = σhS(v) for any fixedσ > 0. The expression

of (5.13) allows the determination ofσ i
ε , i ∈ Z

M, such that (5.10) holds. For example, one obvious

choice is(σ1
ε , · · · ,σM

ε ) = argmin{∑M
i=1(1−σ i) : (5.13)}. Let

U i(xi) := U i
T(x

i) whenT i
f = σ i

εXi
f (5.14)
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and express (5.9) in terms of(xi ,uuui) for eachi ∈ Z
M. The tightened DMPC formulation can be

represented as

Pε(x) : Vε (x) := min
{uuui ,i∈ZM}

M

∑
i=1

Ji(xi ,uuui) (5.15a)

s.t. uuui ∈ U i(xi) i ∈ Z
M (5.15b)

M

∑
i=1

f i(xi ,uuui)≤ b(ε) (5.15c)

wherebT(ε) := [(1−Mε)111T
p ,(1−2Mε)111T

p, · · · ,(1−NMε)111T
p]

T ,

f i(xi ,uuui) = F iuuui +H ixi (5.16)

andF i ∈ R
Np×Nmi ,H i ∈ R

Np×ni are appropriate matrices from (5.9) by rewriting xi
ℓ in terms ofxi

anduuui . Let the feasible domain ofPε(x) be

Dε := {x∈ R
n : there exists a feasible{uuui}i∈ZM to Pε(x)} (5.17)

5.2.2 Network Description

The next section describes the proposed Distributed ADMM algorithm and for that, the description

of network of system is needed. Using standard terminology,the M systems is represented by

an undirected graphG = (V,E) with vertex setV = {1,2, · · · ,M} and edge setE ⊂ V ×V. The

adjacency matrixA of G is theM×M matrix whose(i, j) entry is 1 if (i, j) ∈ E , and 0 otherwise.

The set of neighbors of theith system isNi := { j ∈ V : (i, j) ∈ E , i 6= j} with di = |Ni| andD =

diag{d1,d2, · · · ,dM}. The connection of the graph can be arbitrary so long as

(A5.3): G is connected.



5.3 The Proposed Algorithm 75

5.3 The Proposed Algorithm

5.3.1 The Dual Form

Let λ ∈R
Np be the dual variable associated with the coupled constraint(5.15c). The Lagrangian of

(5.15) isL({uuui},λ ) =
M
∑

i=1
Ji(xi ,uuui)+λ T(

M
∑

i=1
f i(xi ,uuui)−b(ε)) for all uuui ∈ U i(xi), i ∈ Z

M and the dual

problem is

max
λ≥0

min
{uuui∈U i(xi),i∈ZM}

L({uuui},λ ). (5.18)

This dual problem is also equivalent to

min
λ≥0

max
{uuui∈U i(xi),i∈ZM}

−L({uuui},λ ) := min
λ≥0

M

∑
i=1

gi(λ ) (5.19)

where

gi(λ ) := max
uuui∈U i(xi )

−Ji(xi ,uuui)−λ T( f i(xi ,uuui)− b(ε)
M

). (5.20)

Let uuui(λ ) = arg max
uuui∈U i(xi )

gi(λ ). Then, the gradient ofgi(λ ) can be shown to be (see Danskin’s Theo-

rem of [149])

∇gi(λ ) =−( f i(xi ,uuui(λ ))− b(ε)
M

) (5.21)

Note that while the optimal solution of (5.15) is unique asJi(xi ,uuui) is stictly convex inuuui, the optimal

solution of (5.19) may not be [177,179]. However, as shown in the sequel, the proposed algorithm

(Algorithm 5.1) will converge to unique solution of (5.15), see property (ii) of Theorem5.1.
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5.3.2 The Conversion to a Consensus Optimization Problem

The above dual problem is not fully distributed becauseλ appears in allM systems. From A4.3,

(5.19) can be rewritten as a consensus problem with edge-wise constraints as

min
λ i≥0,i∈ZM

M

∑
i=1

gi(λ i) s.t. λ i = λ j ,(i, j) ∈ E (5.22)

whereλ i is the local copy ofλ for the i system and the condition ofλ i = λ j enforces consensus

among all the local copies. This problem can be further rewritten using a new set of variableswi j in

the form of

min
λλλ≥0,www

M

∑
i=1

gi(λ i) s.t. λ i = wi j ,λ j = wi j ,(i, j) ∈ E (5.23)

whereλλλ := {λ 1,λ 2, · · · ,λ M} andwww := {wi j : (i, j) ∈ E} , see [84, 180]. Let ααα = {αi j ,(i, j) ∈ E}

andβββ = {βi j ,(i, j) ∈ E} whereαi j andβi j are the dual variables associated withλ i −wi j = 0 and

λ j −wi j = 0 respectively. Sincegi(λ i) is convex, this optimization problem can be solved using the

standard two-block ADMM algorithm withλλλ andwww being the two sets of variables. The augmented

Lagrangian of (5.23) is

Lρ(λλλ ,www,ααα ,βββ ) =
M

∑
i=1

gi(λ i)+
M

∑
i=1

∑
j∈Ni

{αT
i j (λ i−wi j )

+β T
i j (λ j −wi j )+

ρ
2
‖λ i−wi j‖2+ ρ

2
‖λ j −wi j‖2}

(5.24)

for someρ > 0. The standard ADMM consists of the following iterations

λλλ k+1 = argmin
λλλ≥0
Lρ(λλλ ,wwwk,αααk,βββ k)

wwwk+1 = argmin
www
Lρ(λλλ k+1,www,αααk,βββ k)

αk+1
i j = αk

i j +ρ(λ i,k+1−wi j ,k+1),(i, j) ∈ E

β k+1
i j = β k

i j +ρ(λ j,k+1−wi j ,k+1),(i, j) ∈ E
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5.3.3 Distributed ADMM Algorithm

Following the manipulations of Distributed ADMM [145, 146, 151, 152], the steps above can be

simplified by letting

αk
i j +β k

i j = 0,αk
i j = β k

ji ,w
i j ,k =

λ i,k+λ j,k

2
, (5.25)

for all (i, j) ∈ E andk. The simplified distributed ADMM is then given by

λ i,k+1 = arg min
λ i≥0

gi(λ i)+ (vi,k)Tλ i +ρ |Ni|‖λ i‖2 (5.26)

αk+1
i j = αk

i j +
ρ
2
(λ i,k+1−λ j,k+1),(i, j) ∈ E (5.27)

where

vi,k = 2 ∑
j∈Ni

αk
i j −ρ ∑

j∈Ni

(λ i,k+λ j,k) (5.28)

Using the expression ofgi(λ i) of (5.20), the minimization problem of (5.26) can be rewritten as

min
λ i≥0

max
uuui∈U i(xi )

{−Ji(xi ,uuui)− ( f i(xi ,uuui)− b(ε)
M

)Tλ i +(vi,k)Tλ i +ρ |Ni|‖λ i‖2}

:=min
λ i≥0

max
uuui∈U i(xi )

φ i(λ i ,uuui)

(5.29)

whereφ i(λ i ,uuui) is defined implicitly above. Sinceφ i(λ i ,uuui) is strictly convex inλ i and strictly

concave inuuui , the ordering of the min and max operations can be interchanged [181], yielding

max
uuui∈U i(xi)

min
λ i≥0

φ i(λ i ,uuui) = max
uuui∈U i(xi )

{max
si≥0

min
λ i
{φ i(λ i ,uuui)− (si)Tλ i}} (5.30)

= max
uuui∈U i(xi )

si≥0

min
λ i
{φ i(λ i ,uuui)− (si)Tλ i} (5.31)

wheresi is the multiplier associated with the constraintλ i ≥ 0 and the equality of (5.30) is from the

strong duality [182] of the Lagrangian function of min
λ i≥0

φ i(λ i ,uuui). For anyuuui ∈ U i(xi) andsi ≥ 0, the

solution of the inner minimization of (5.31) is given byλ i = 1
2ρ |Ni |( f i(xi ,uuui)+si− b(ε)

M −vi,k) which,
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when substituted into (5.31), yields

(uuui,k+1,si,k+1) = arg min
uuui∈U i(xi)

si≥0

{Ji(xi ,uuui)+
1

4ρ |Ni|
‖ f i(xi ,uuui)+si− b(ε)

M
−vi,k‖2} (5.32)

Hence, the optimalλ i of (5.26) can be obtained in closed-form as

λ i,k+1 =
1

2ρ |Ni|
( f i(xi ,uuui,k+1)+si,k+1− b(ε)

M
−vi,k). (5.33)

For eachi ∈ Z
M and iteratek, the control sequence is updated according to (5.32). Onceuuui,k+1 is

obtained,λ i,k+1 is updated according to (5.33). The value ofvi is then updated according to (5.28)

and this process is repeated by incrementingk. The stopping condition of this ADMM process is

discussed in Section5.4 and suppose the process stops at iterationk̄. Then, the solution from the

ADMM algorithm isuuui,k̄ := {ui,k̄
0 ,ui,k̄

1 , · · · ,ui,k̄
N−1}. Correspondingly, the MPC control law applied on

the ith system is

κ i(x) = ui,k̄
0 , i ∈ Z

M (5.34)

5.3.4 Convergence of the Distributed ADMM Algorithm

To the best of authors’ knowledge, (5.32) and (5.33) are not standard ADMM formulation and this

section discusses their convergence. Let

rk :=
M

∑
i=1

( f i(xi ,uuui,k)+si,k)−b(ε), (5.35)

∆Jk :=
M

∑
i=1

(

Ji(xi ,uuui,k)−Ji(xi ,uuui∗)
)

(5.36)

where{uuui∗} is the optimal solution of (5.15), rk is the residual of the coupled constraints and∆Jk

is the deviation of the primal objective at iterationk from its optimal. The following theorem states

the convergence results.

Theorem 5.1. Suppose (A5.1)-(A5.3) hold. For any x∈ Dε , let {uuui,k,si,k,λ i,k}Mi=1 be generated by

(5.32)-(5.33) and αααk = {αk
i j ,(i, j) ∈ E} be generated by (5.27) with λ i,0 = 0 and α0

i j = 0 for all

j ∈Ni and i∈ ZM. Suppose{uuui∗}Mi=1 is the optimal solution of (5.15), λ ∗ is an optimal dual variable
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associated with (5.15c) andααα∗ = {α∗i j ,(i, j) ∈ E} is an optimal dual variable of (5.23). Then, the

following results hold.

(i) The sequencesλλλ k andαααk converge.

(ii) uuui,k converges to uuui∗ for all i ∈ Z
M and rk converges to0.

(iii) |∆Jk| converges to0 with |∆Jk| ≤Ck where

Ck := ‖λ ∗‖‖rk‖+ 2
ρ
(‖αααk‖+‖ααα∗‖)‖∆αααk‖+ρ(‖λλλ k‖+‖λλλ ∗‖)‖Γ̄‖‖∆λλλ k‖, (5.37)

∆αααk =αααk−αααk−1,∆λλλ k = λλλ k−λλλ k−1 and Γ̄ = (A+D)⊗ INp.

(iv) uuui,k is feasible to (5.15b) for all k, i ∈ Z
M .

In addition, the convergence rate of the distributed ADMM can also be obtained. The worst-case

O(1/k) convergence rate is given in the following theorem.

Theorem 5.2. For k≥ 1, let

ũuui,k =
1
k

k

∑
ℓ=1

uuui,ℓ = (1− 1
k
)ũuui,k−1+

1
k
uuui,k

s̃i,k =
1
k

k

∑
ℓ=1

si,ℓ = (1− 1
k
)s̃i,k−1+

1
k

si,k

(5.38)

be the running weighted-averages of the primal iterates of (5.32) withũuui,0 = 0 ands̃i,0 = 0 for i ∈ZM.

Then, the following results hold.

(i) The sequence{‖ũuui,k−uuui∗‖2}∞
k=1 goes to0 with the convergence rate O(1

k) for all i ∈ Z
M .

(ii) The coupled constraint is bounded by

M

∑
i=1

f i(ũuui,k,xi)−b(ε)

≤
(

1
k

)(
ρλmax(Γ)

2
M(1+‖λ ∗‖)2+

1
ρ
‖ααα∗‖2

)

111Np

(5.39)

(iii) The primal cost error is given as

|
M

∑
i=1

Ji(xi(t),ũuui,k)−
M

∑
i=1

Ji(xi(t),uuui∗)|

≤2+‖λ ∗‖
k

(
1
ρ
‖ααα∗‖2+ ρ

2
λmax(Γ)M(1+‖λ ∗‖)2

) (5.40)
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From the theorem stated above, the proposed distributed ADMM has a convergence rate ofO(1/k),

similar to other ADMM schemes [144, 183]. Hence, a stopping condition for (5.32)-(5.33) can be

based on some choice ofk. However, such a condition is well known to be very conservative [74].

This chapter proposes a stopping condition based onrk and |∆Jk| for early termination of (5.32)-

(5.33). To do so, (5.15c) is relaxed (but not (5.15b) because of (iv) of Theorem5.1) as given below.

Definition 5.1. Given anyε ,δ > 0, the set{xi ,uuui}Mi=1 is a (ε ,δ )-relaxed solution of (5.15) if

uuui ∈ U i(xi), i ∈ Z
M,

M

∑
i=1

f i(xi ,uuui)−b(ε)≤ εM111pN and |
M

∑
i=1

(
(Ji(xi ,uuui)−Ji(xi ,uuui∗)

)
| ≤ δ (5.41)

where{uuui∗}Mi=1 is the optimal solution of (5.15).

The following lemma is needed to establish the stopping criterion.

Lemma 5.1. Suppose{uuui,k}Mi=1 is generated from (5.32) in the distributed ADMM approach above,

then there exists āk such that

r k̄ ≤ εM111pN and Ck̄ ≤ δ (5.42)

where rk̄ and Ck̄ are those given by (5.35) and (5.36) respectively. In addition,{xi ,uuui,k̄}Mi=1 is a

(ε ,δ )-relaxed solution of (5.15).

5.4 The Stopping Criterion for the Distributed ADMM

The stopping criterion of the proposed Distributed ADMM uses the results of Lemma5.1. Specif-

ically, the Distributed ADMM stops at the first value ofk, k̄, such that (5.42) hold. One possible

approach is use a central node [184] to computerk andCk of (5.42) by collecting all relevant infor-

mation from each of theM systems. However, such a centralized approach is not desirable due to

its communication requirement. This section describes a distributed approach to computerk andCk

of (5.42) using the finite-time average consensus algorithm in Section 3.3.2.

The use of the finite-time average consensus algorithm (3.39) for the stopping condition of the
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distributed ADMM is given as follows. Recall that this stopping condition is given by (5.42). Let

zi(0) = f i(xi ,uuui,k) + si,k− b(ε)
M . It follows from (5.42) that rk = ∑M

i=1zi(0) and its value can be

obtained from (3.39) usingzi(0), · · · ,zi(T−1) obtained from (3.40) for each system.

The case ofCk is similar. From (5.37), evaluation ofCk requires the values ofrk, ‖αααk‖, ‖∆αααk‖, ‖λλλ k‖,

‖∆λλλ k‖, ‖λ ∗‖ and‖ααα∗‖. Values of‖λ ∗‖ and‖ααα∗‖ can be estimated using the offline procedure

given in [177] and is not discussed here. The rest of them can be computed inthe same manner

asrk. For example,‖λλλ k‖2 = ∑i∈ZM ‖λ i,k‖2 = ∑i∈ZM zi(0) if zi(0) := ‖λ i,k‖2 for all i ∈ Z
M. Hence,

∑i∈ZM zi(0) is obtained from (3.39) usingzi(0), · · · ,zi(T−1) following (3.40). The same is true for

‖αααk‖,‖∆αααk‖ and‖λλλ k‖. Altogether, 5 consensus dynamics are running simultaneously for T − 1

steps for the evaluations ofrk andCk.

The overall procedure of the distributed ADMM algorithm at time t is summarized in the following

algorithm.

Algorithm 5.1: Consensus ADMM algorithm

Input: xi , i ∈ Z
M

Output: uuui,k̄, i ∈ Z
M

Initialization: chooseρ > 0, setk= 0, λ i,0 = 0 andα0
i j = 0, for all j ∈Ni, i ∈ Z

M;

repeat

ADMM:

for all i ∈ Z
M (in parallel)do

Obtainvi,k from (5.28), (uuui,k+1,si,k+1) from (5.32) andλ i,k+1 from (5.33) respectively;

Exchangeλ i,k+1 with all its neighbours (those indexed byj ∈Ni);

Updateαk+1
i j via (5.27) ;

end for

k← k+1

Finite-consensus:

Set upzi(0) for rk, ‖αααk‖, ‖∆αααk‖, ‖λλλ k‖, and‖∆λλλ k‖
for all i ∈ Z

M (in parallel)do

Obtainzi(1), · · · ,zi(T−1) using (3.40) and computerk andCk from (3.39).

end for

until rk ≤ εM111pN andCk ≤ δ
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5.5 Recursive Feasibility and Stability

This section discusses the recursive feasibility and stability results of the proposed DMPC formula-

tion. The overall MPC scheme is summarized in the following algorithm.

Algorithm 5.2: The synchronous MPC controller

1: Every systemi measures it own statexi(t);

2: Every systemi calls Algorithm5.1with xi(t) and obtainuuui,k̄(t) as its output.

3: Every system obtainsκ i(x(t)) from uuui,k̄(t) via (5.34) and applyκ i(x(t)) to theith system.

4: Wait for next sampling time, lett = t +1 and go to step 1.

The next lemma pertains to a property of the terminal set of the overall system and is needed for

stability of the closed-loop MPC system.

Lemma 5.2. Let

σ̄ i := min{σ i
ε ,

1
M

min
ℓ∈ZNp

{bℓ(ε)/hXi
f
(F̄ i

ℓ )}} (5.43)

where hXi
f
(·) is the support function of Xif , bℓ(ε) denotes theℓth element of b(ε), F̄ i := F iK i

A+H i

from (5.16) with Ki
A defined by (5.44) below, andF̄ i

ℓ denotes theℓth row of F̄ i. For any xi ∈ σ̄ iXi
f , the

optimal solution to Algorithm 1 for the ith system is

uuui,k̄ = {ui,k̄
0 , · · · ,ui,k̄

N−1}= {K ixi ,K iAi
Kxi , · · · ,K i(Ai

K)
N−1xi} := K i

Axi (5.44)

with k̄= 1.

The recursive feasible and stability results of the proposed DMPC approach are stated in the follow-

ing theorem.

Theorem 5.3. Suppose A5.1-A5.3 hold andPε(x(t)) of (5.15) has a feasible solution at time t and

that the MPC law of (5.34) is applied to the ith system of (5.2) for all i ∈ Z
M. Then, the following

results hold:

(i) Pε(x(t +1)) has a feasible solution at time t+1.

(ii) |∑M
i=1

(

Ji(xi(t),uuui,k̄(t))−Ji(xi(t),uuui∗
t )
)

| ≤ δ , where{uuui∗
t }Mi=1 is the optimal solution of (5.15).

(iii) Supposeδ is chosen such that{xi : ‖xi‖2Qi ≤ δ} ⊆ int(σ̄ iXi
f ) for all i ∈ZM whereσ̄ i is as defined
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in (5.43). Then, there exists a finite time tf such that xi(t f ) ∈ σ̄ iXi
f for all i ∈ Z

M.

(iv) Suppose the condition of (iii) holds, the closed-loop system (5.1) with the MPC law (5.34) is

exponentially stable.

5.6 Numerical Results

The example chosen is a four-agent system where every agent has the same dynamics ofAi =

[1.1 1;0 1.3],Bi = [1;1] and same constraintsXi := {xi ∈R
2 : ‖x‖∞ ≤ 10}, U i := {ui ∈R : |ui | ≤ 1}.

The coupled constraint is|u1|+1.2|u2|+0.8|u3|+1.5|u4| ≤ 2.5 and can be seen as a limit to the total

amount of energy used. The values ofK i andPi obtained from the discrete-time ARE, withQi = I2

andRi = 0.1, i ∈ Z
4, areK i = [−0.6960−1.0664],Pi = [2.0819−0.2046;−0.2046 1.1944] for all

i ∈Z4. Consider the network connection of a ring andW = I−0.1L(G). The minimal polynomial of

W is t3−2.4t2+1.88t−0.48= 0. Hence, value ofT of (3.39) is 3 and checking of (5.42) can be done

in 2 steps of (3.40). The initial conditions are,xi(0) = [−2.4583 1.1137]T , i ∈ Z
4, and the horizon

lengthN = 5. The performance of the proposed MPC approach is presentedfor several choices of

ε andδ . The following table gives the scales{σ i
ε}i∈Z4 obtained from min{∑M

i=1(1−σ i) : (5.13)}.

Note that for all these choices ofδ , {xi : ‖xi‖2Qi ≤ δ} ⊆ σ̄ iXi
f of (iii) of Theorem5.3holds.

ε σ1
ε σ2

ε σ3
ε σ4

ε
0.01 0.5310 0.4371 0.6248 0.2964
0.005 0.5779 0.4934 0.6623 0.3668
0.001 0.6154 0.5385 0.6923 0.4231

Table 5.1: The scales of the terminal sets for different choices ofε

The value ofρ = 0.01 and the values of̄k(t) along the trajectories starting from different initial states

are given in the Table5.2. Notice that fort ≥ 5, k̄(t) are either 1 or 2 because the global constraints

are not active. Obviously,̄k(t) increases when(ε ,δ ) decreases but the increase is relatively benign:

a 10 times reduction of(ε ,δ ) results in a roughly 2.5 times increase in̄k(t).

While a comparison with existing approaches [44,60,121,122] appears reasonable, this is not done

because the problem settings are different: only connectednetwork is needed for this approach

while others need a fully connected (or a central node) network; bounds on system performance

is guaranteed under the proposed approach but not others. Instead, comparison is made between
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(ε ,δ )×10−3 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
(10,10) 238 243 197 269 2 2 2 1
(5,5) 279 287 306 377 2 2 2 1
(1,1) 400 874 452 433 184 2 1 1

Table 5.2: Values ofk̄(t) along the trajectories starting fromxi(0) = [−2.4583 1.1137]T , i = 1, ..,4
for different choices ofε andδ

the results of the proposed approach and that obtained by solving (5.15) with ε = 0 using a single

centralized computer, known as the centralized MPC (CMPC) solution. The terminal sets{σ i
sX

i
f}Mi=1

in CMPC are obtained from min{∑M
i=1(1−σ i) : (5.13)}with ε = 0: σ1

s = 0.6248,σ2
s = 0.5497,σ3

s =

0.6998 andσ4
s = 0.4372. Table5.3 shows the performances of the two approaches in terms of the

infinite LQ cost over several initialx(0):
∞
∑

t=0

M
∑

i=1
(‖xi(t)‖2Qi +‖ui(t)‖2Ri ) wherexi(t),ui(t), t = 0, · · · ,∞

are the state and control of the closed-loop system startingfrom x(0). Entries in Table5.3are values

of J(ε ,δ )(x), Jo(x) and
|J(ε,δ )(x)−Jo(x)|

Jo(x)
, corresponding to the infinite LQ cost of the proposed approach,

the optimal CMPC solution (withε = 0) and the relative cost in percentage respectively. As shown,

the degradation in performance for(ε ,δ ) = (0.01,0.01) is 6.2%±2.5%, (ε ,δ ) = (0.005,0.005) is

2.8%±1.6% and(ε ,δ ) = (0.001,0.001) is 0.8%±0.6%. These results suggest that 0.005 and 0.001

are sufficiently good low accuracy solution for the proposedapproach.
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xi , i ∈ Z
M (ε ,δ )×10−3 J(ε ,δ )(x)

|J(ε,δ )(x)−Jo(x)|
Jo(x)

(%) Jo(x)
(
−3.288
0.4113

) (10,10) 125.0 4.27
119.9(5,5) 122.2 1.90

(1,1) 120.2 0.29
(
−1.7828
−0.6326

) (10,10) 71.35 7.72
66.24(5,5) 68.79 3.84

(1,1) 67.11 1.31
(
−3.2847

0.971

) (10,10) 127.3 6.94
119.1(5,5) 122.5 2.87

(1,1) 119.6 0.49
(

3.1377
−0.1551

) (10,10) 119.9 4.53
114.7(5,5) 116.7 1.74

(1,1) 115.1 0.30
(

2.3693
0.4091

) (10,10) 93.11 4.93
88.74(5,5) 90.80 2.33

(1,1) 89.09 0.40
(

1.5779
0.7011

) (10,10) 64.56 8.71
59.39(5,5) 61.98 4.36

(1,1) 59.82 0.72

Table 5.3: The cost difference of the proposed approach and the CMPC over various choices of the
initial statex(0).

5.7 Conclusions

A DMPC approach is proposed for a group of linear systems withlocal and global constraints. The

proposed approach relies on the dual problem of the overall MPC problem and uses a distributed

ADMM algorithm for its solution. This is made possible by introducing local copies of the dual vari-

ables in individual system and enforcing all the local copies to achieve approximate consensus value.

Provision for computational expediency is made via early termination of the distributed ADMM al-

gorithm where the inaccuracy depends on user-defined parameters. Termination conditions based

on the these parameters are provided and is checked using a finite-time consensus algorithm. Under

mild assumptions, this approach converges to some small neighborhood of the optimal so long as the

network of systems is connected. Recursive feasibility andexponential stability of the closed-loop

system are ensured.
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5.A Proof of Theorem5.1

(i) From the first order optimality condition of (5.32),

(

∇uuui Ji(xi ,uuui,k+1)
)T

(uuui −uuui,k+1)

+ (λ i,k+1)T(F i(uuui −uuui,k+1)+si−si,k+1)≥ 0 ∀ uuui ∈ U i(xi) and ∀si ≥ 0
(5.45)

whereλ i,k+1 is that given by (5.33). Consider (5.15) and let its optimal solution be{uuui∗}i∈ZM with

λ ∗ as the optimal dual variable of (5.15c). The first order optimality condition of (5.18), following

standard saddle point theorem [149], is

M

∑
i=1

(
∇uuui Ji(xi ,uuui∗)

)T
(uuui −uuui∗)+

M

∑
i=1

(λ ∗)TF i(uuui−uuui∗)≥ 0 ∀ uuui ∈ U i(xi). (5.46)

Let {λ i∗} be the optimal solution of (5.23) and{yi∗ ≥ 0}i∈ZM be the optimal dual variable for the

constraintλ i ≥ 0 in (5.23) satisfying(λ i∗)Tyi∗ = 0. Then

(λ i∗)T(si −yi∗)≥ 0 for anysi ≥ 0 (5.47)

Adding the above fori = 1, · · · ,M to (5.46) and noting thatλ i∗ = λ ∗ for all i ∈ Z
M at the optimum

solution of (5.23) yields

M

∑
i=1

(
∇uuui Ji(xi ,uuui∗)

)T
(uuui−uuui∗)+

M

∑
i=1

(λ ∗)T
(
F i(uuui−uuui∗)+si−yi∗)≥ 0, (5.48)

for all uuui ∈ U i(xi) andsi ≥ 0. Letuuui = uuui∗ andsi = yi∗ in (5.45) for i = 1, · · · ,M and adding them to

(5.48) with uuui = uuui,k+1 andsi = si,k+1 results in

M

∑
i=1

(

∇uuui Ji(xi ,uuui,k+1)−∇uuui Ji(xi ,uuui∗)
)T

(uuui,k+1−uuui∗)

+
M

∑
i=1

(λ i,k+1−λ ∗)T
(

F i(uuui,k+1−uuui∗)+si,k+1−yi∗
)

≤ 0

(5.49)

SinceJi(xi ,uuui) is strongly convex with respect touuui , there existµ i > 0, i ∈ Z
M such that

(∇uuui Ji(xi ,uuui,k+1)−∇uuui Ji(xi ,uuui∗))T(uuui,k+1−uuui∗)≥ µ i‖(uuui,k+1−uuui∗)‖2.
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Using this fact in (5.49) yields

M

∑
i=1

µ i‖uuui,k+1−uuui∗‖2≤−
M

∑
i=1

(λ i,k+1−λ ∗)T
(

F i(uuui,k+1−uuui∗)+si,k+1−yi∗
)

(5.50)

From (5.33), F iuuui,k+1+si,k+1 can be written as

F iuuui,k+1+si,k+1 = 2ρ |Ni|λ i,k+1−H ixi +
b(ε)
M

+vi,k (5.51)

Since{λ i∗ = λ ∗} is the optimal solution of (5.23) and{yi∗ ≥ 0}i∈ZM is the optimal dual variable,

they satisfy the KKT of (5.23)

∇gi(λ i∗)+2 ∑
j∈Ni

α∗i j −yi∗ =−F iuuui∗−H ixi +
b(ε)
M

+2 ∑
j∈Ni

α∗i j −yi∗ = 0 (5.52)

Hence,F i(uuui,k+1−uuui∗)+si,k+1−yi∗ can be written in terms of(λ i,k+1,vi,k) and{α∗i j : j ∈Ni}

F i(uuui,k+1−uuui∗)+si,k+1−yi∗

=F iuuui,k+1+si,k+1− (F iuuui∗+yi∗)

=2ρ‖Ni‖λ i,k+1+vi,k−2 ∑
j∈Ni

α∗i j

Consider the definition ofvi,k of (5.28), the expression above can be rewritten as

2ρ‖Ni‖λ i,k+1+vi,k−2 ∑
j∈Ni

α∗i j

=2ρ‖Ni‖λ i,k+1+2 ∑
j∈Ni

(

αk
i j −ρ(λ i,k+λ j,k)

)

−2 ∑
j∈Ni

α∗i j

=2ρ‖Ni‖λ i,k+1+2 ∑
j∈Ni

(

αk+1
i j −

ρ
2
(λ i,k+1−λ j,k+1)

)

−ρ(|Ni|λ i,k+ ∑
j∈Ni

λ j,k)−2 ∑
j∈Ni

α∗i j

=2 ∑
j∈Ni

(αk+1
i j −α∗i j )+ρ ∑

j∈Ni

(λ i,k+1+λ j,k+1−λ i,k−λ j,k)
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where the second equality is from the update ofαk
i j in (5.27). Using this in (5.50) yields

M

∑
i=1

µ i‖uuui,k+1−uuui∗‖2≤

−
M

∑
i=1

(λ i,k+1−λ ∗)T

(

2 ∑
j∈Ni

(αk+1
i j −α∗i j )+ρ ∑

j∈Ni

(λ i,k+1+λ j,k+1−λ i,k−λ j,k)

) (5.53)

Consider the two terms on the right-hand side of (5.53). The first is

2
M

∑
i=1

∑
j∈Ni

(λ i,k+1−λ ∗)T(αk+1
i j −α∗i j )

=
M

∑
i=1

∑
j∈Ni

(λ i,k+1−λ j,k+1)T(αk+1
i j −α∗i j )

=
2
ρ

M

∑
i=1

∑
j∈Ni

(αk+1
i j −αk

i j )
T(αk+1

i j −α∗i j )

=
2
ρ
(αααk+1−αααk)T(αααk+1−ααα∗)

=
1
ρ
(‖αααk+1−ααα∗‖2−‖αααk−ααα∗‖2+‖αααk+1−αααk‖2) (5.54)

where the second last equality is from (5.27) and the last equality is due to the equality(a−b)T(a−

c) = 1
2‖a−b‖2− 1

2‖c−b‖2+ 1
2‖a−c‖2. The second term of (5.53) is

ρ
M

∑
i=1

∑
j∈Ni

(λ i,k+1−λ ∗)T(λ i,k+1+λ j,k+1−λ i,k−λ j,k)

=ρ(λλλ k+1−λλλ ∗)T Γ̄(λλλ k+1−λλλ k)

=
ρ
2
(‖λλλ k+1−λλλ ∗‖2Γ̄−‖λλλ

k−λλλ ∗‖2Γ̄ +‖λλλ
k+1−λλλ k‖2Γ̄) (5.55)

whereΓ̄ = (A+D)⊗ INp andλλλ ∗ = IM⊗λ ∗. Combining (5.53), (5.54) and (5.55) yields

1
ρ
‖αααk+1−ααα∗‖2+ ρ

2
‖λλλ k+1−λλλ ∗‖2Γ̄

≤ 1
ρ
‖αααk−ααα∗‖2+ ρ

2
‖λλλ k−λλλ ∗‖2Γ̄−

M

∑
i=1

µ i‖uuui,k+1−uuui∗‖2

− 1
ρ
‖αααk+1−αααk‖2− ρ

2
‖λλλ k+1−λλλ k‖2Γ̄

(5.56)

Since 1
ρ ‖αααk+1−ααα∗‖2+ ρ

2‖λλλ k+1−λλλ ∗‖2Γ̄ is lower bounded by 0, the following three conditions must
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hold: uuui,k+1−uuui∗ converges to 0,αααk+1−αααk converges to 0 andλλλ k+1−λλλ k converges to 0.

(ii) Convergence ofαααk is already shown in (i). To show convergence ofrk to 0, consider the opti-

mality condition (5.45) of (5.32) and the fact thatJi(xi ,uuui)−Ji(xi ,uuui,k+1)≥
(
∇uuui Ji(xi ,uuui,k+1)

)T
(uuui−

uuui,k+1), it yields

Ji(xi ,uuui)−Ji(xi ,uuui,k+1)

+ (λ i,k+1)T(F i(uuui−uuui,k+1)+si−si,k+1)≥ 0
(5.57)

for all uuui ∈ U i(xi) andsi ≥ 0. By lettinguuui = uuui∗ andsi = yi∗, we can obtain

Ji(xi ,uuui∗)−Ji(xi ,uuui,k+1)

+ (λ i,k+1)T(F i(uuui∗−uuui,k+1)+yi∗−si,k+1)≥ 0

which can also be rewritten as

Ji(xi ,uuui∗)−Ji(xi ,uuui,k+1)

+ (λ ∗)T(F i(uuui∗−uuui,k+1)+yi∗−si,k+1)

+ (λ i,k+1−λ ∗)T(F i(uuui∗−uuui,k+1)+yi∗−si,k+1)≥ 0

By using the same treatment on the second term as in the proof of (i), we arrive at the following

inequality

∆Jk+1+
M

∑
i=1

(λ ∗)T(F i(uuui,k+1−uuui∗)+si,k+1−yi∗)

≤− 2
ρ
(αααk+1−αααk)T(αααk+1−ααα∗)−ρ(λλλ k+1−λλλ ∗)T Γ̄(λλλ k+1−λλλ k)
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Consider (5.52) and
M
∑

i=1
∑

j∈Ni

α∗i j = 0,

M

∑
i=1

(λ ∗)T(F i(uuui,k+1−uuui∗)+si,k+1−yi∗)

=
M

∑
i=1

(λ ∗)T( f i(xi ,uuui,k+1)+si,k+1− b(ε)
M
−2 ∑

j∈Ni

α∗i j )

=(λ ∗)T rk+1

Consider the saddle point condition of (5.18), we know that

∆Jk+1+(λ ∗)T rk+1≥ ∆Jk+1+(λ ∗)T

(
M

∑
i=1

f i(xi ,uuui,k+1)−b(ε)

)

≥ 0

Therefore, we can get

−(λ ∗)Trk+1 ≤ ∆Jk+1≤−(λ ∗)T rk+1− 2
ρ
(αααk+1−ααα∗)T∆αααk+1−ρ(λλλ k+1−λλλ ∗)T Γ̄(∆λλλ k+1) (5.58)

From (5.33), (5.27) and the fact that
M
∑

i=1
∑

j∈Ni

αk+1
i j = 0,

rk+1 =
M

∑
i=1

( f i(xi ,uuui,k+1)+si,k+1− b(ε)
M

)

=
M

∑
i=1

(2ρ |Ni|λ i,k+1+2 ∑
j∈Ni

αk
i j −ρ ∑

j∈Ni

(λ i,k+λ j,k))

=
M

∑
i=1

(2 ∑
j∈Ni

αk+1
i j +ρ ∑

j∈Ni

(λ i,k+1+λ j,k+1−λ i,k−λ j,k))

= ρ(111M⊗ INp)
T Γ̄(λλλ k+1−λλλ k) (5.59)

The convergence of{λλλ k}∞
k=1 implies that{rk}∞

k=1 converges to 0.

(iii) It follows from (5.58) that

∆Jk+1≥−‖λ ∗‖‖rk+1‖ (5.60)

∆Jk+1≤ ‖λ ∗‖‖rk+1‖+ 2
ρ
‖∆αααk+1‖‖αααk+1−ααα∗‖+ρ‖λλλ k+1−λλλ ∗‖‖Γ̄‖‖∆λλλ k+1‖ (5.61)
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Hence,

|∆Jk+1| ≤ ‖λ ∗‖‖rk+1‖+ 2
ρ
‖∆αααk+1‖‖αααk+1−ααα∗‖+ρ‖λλλ k+1−λλλ ∗‖‖Γ̄‖‖∆λλλ k+1‖ (5.62)

which implies that|∆Jk+1| ≤ Ck+1. From the convergence of{λλλ k}∞
k=1, {αααk}∞

k=1, {uuui,k}∞
k=1 and

{rk}∞
k=1, both∆Jk andCk go to 0 ask→ ∞.

(iv) This result follows directly from (5.32). ✷

5.B The proof of Theorem5.2

(i) Summing up (5.56) up tok, we can obtain

k

∑
ℓ=1

M

∑
i=1

µ i‖uuui,ℓ−uuui∗‖2 ≤ 1
ρ
‖ααα0−ααα∗‖2+ ρ

2
‖λλλ 0−λλλ ∗‖2Γ̄

− 1
ρ
‖αααk−ααα∗‖2− ρ

2
‖λλλ k−λλλ ∗‖2Γ̄

Hence, from the convexity,

M

∑
i=1

µ i‖ũuui,k−uuui∗‖2≤ 1
k

k

∑
ℓ=1

M

∑
i=1

µ i‖uuui,ℓ−uuui∗‖2

≤ 1
ρk
‖ααα0−ααα∗‖2+ ρ

2k
‖λλλ 0−λλλ ∗‖2Γ̄

Note thatααα0 = 0 andλλλ 0 = 0,

‖ũuui,k−uuui∗‖2≤ 1
k

(
1

ρµ i ‖ααα
∗‖2+ ρ

2µ i ‖λλλ
∗‖2Γ̄
)

(ii) Note that (5.57) can be rewritten as

Ji(xi ,uuui∗)−Ji(xi ,uuui,k+1)+λ T(F i(uuui∗−uuui,k+1)+yi∗−si,k+1)

+ (λ i,k+1−λ )T(F i(uuui∗−uuui,k+1)+yi∗−si,k+1)≥ 0
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for anyλ . Consider the same treatment used in the proof of property (ii) of Theorem5.1, we have

M

∑
i=1

(

Ji(xi ,uuui,k+1)−Ji(xi ,uuui∗)+λ T(F i(uuui,k+1−uuui∗)+si,k+1−yi∗)
)

≤ 1
ρ
‖αααk−ααα∗‖2+ ρ

2
‖λλλ k−λλλ‖2Γ̄−

1
ρ
‖αααk+1−ααα∗‖2− ρ

2
‖λλλ k+1−λλλ‖2Γ̄

whereλλλ = IM⊗λ . Applying the same reasoning, we can obtain

M

∑
i=1

λ T(F i(uuui,k+1−uuui∗)+si,k+1−yi∗)

=λ T

(
M

∑
i=1

( f i(uuui,k+1,xi)+si,k+1)−b(ε)

)

Therefore, we can get that

M

∑
i=1

(

Ji(xi ,ũuui,k)−Ji(xi ,uuui∗)
)

+λ T r̃k

≤1
k

k

∑
ℓ=1

M

∑
i=1

(

Ji(xi ,uuui,ℓ)−Ji(xi ,uuui∗)
)

+
1
k

k

∑
ℓ=1

λ T rℓ ≤ 1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
‖λλλ‖2Γ̄

) (5.63)

where ˜rk =
M
∑

i=1
( f i(ũuui,k,xi) + s̃i,k)− b. Following the choice ofλ in [151], let λ = λ ∗+ r̃k/‖r̃k‖.

Consider the saddle point condition of (5.18) and the fact that(λ ∗)T s̃i,k ≥ 0 for all i ∈ Z
M, we know

that

M

∑
i=1

(

Ji(xi ,ũuui,k)−Ji(xi ,uuui∗)
)

+(λ ∗)T r̃k

≥
M

∑
i=1

(

Ji(xi ,ũuui,k)−Ji(xi ,uuui∗)
)

+(λ ∗)T

(
M

∑
i=1

f i(ũuui,k,xi)−b(ε)

)

≥ 0

(5.64)

Hence,

‖r̃k‖ ≤1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
‖λλλ‖2Γ̄

)

≤ 1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
λmax(Γ)‖λλλ‖2

)

≤1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
λmax(Γ)M‖λ‖2

)

≤1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
λmax(Γ)M(1+‖λ ∗‖)2

)
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whereΓ = (A+D). Therefore,

M

∑
i=1

f i(ũuui,k,xi)−b≤
M

∑
i=1

( f i(ũuui,k,xi)+ s̃i,k)−b(ε)

≤1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
λmax(Γ)M(1+‖λ ∗‖)2

)

111Np

(iii) From (5.64) in (ii), we know that

M

∑
i=1

(

Ji(xi ,ũuui,k)−Ji(xi ,uuui∗)
)

≥−λ ∗
(

M

∑
i=1

( f i(ũuui,k,xi)+ s̃i,k)−b(ε)

)

≥−‖λ ∗‖‖
M

∑
i=1

( f i(ũuui,k,xi)+ s̃i,k)−b(ε)‖

From (5.63), we can observe that

M

∑
i=1

(

Ji(xi ,ũuui,k)−Ji(xi ,uuui∗)
)

≤‖λ‖‖r̃k‖+ 1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
‖λλλ‖2Γ̄

)

≤(1+‖λ ∗‖)‖r̃k‖+ 1
k

(
1
ρ
‖ααα∗‖2+ ρ

2
‖λλλ‖2Γ̄

)

≤2+‖λ ∗‖
k

(
1
ρ
‖ααα∗‖2+ ρ

2
λmax(Γ)M(1+‖λ ∗‖)2

)

which proves the result in (iii).✷

5.C Proof of Lemma5.1

The existence of̄k for the stated conditions follows from the convergence ofrk and|∆Jk| of properties

(ii) and (iii) of Theorem5.1. Properties (iii) of Theorem5.1 also implies|∆Jk̄| ≤ δ if Ck̄ ≤ δ .

Also, r k̄ ≤ εM111pN implies r k̄−
M
∑

i=1
si,k̄ ≤ εM111pN assi,k̄ ≥ 0 for all i ∈ Z

M. It further implies that

M
∑

i=1
f i(xi ,uuui,k̄)−b(ε)≤ εM111pN sincer k̄−

M
∑
i=1

si,k̄ =
M
∑

i=1
f i(xi ,uuui,k̄)−b(ε). ✷
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5.D Proof of Lemma5.2

By definition of hσ̄ iXi
f
, F̄ i

ℓx
i ≤ maxy∈σ̄ iXi

f
F̄ i
ℓy = hσ̄ iXi

f
(F̄ i

ℓ ) = σ̄ ihXi
f
(F̄ i

ℓ ) for any xi ∈ σ̄ iXi
f and any

ℓ ∈ Z
Np. This fact, together with̄σ i ≤ 1

M bℓ(ε)/hXi
f
(F̄ i

ℓ ) from the definition of{σ̄ i}i∈ZM , implies

b(ε)
M − F̄ ixi ≥ 0. Sinceσ̄ iXi

f ⊆ σ i
εXi

f , K i
Axi ∈ U i(xi) from (5.5), (5.6) and (5.14). Hence, whenk= 0,

(K i
Axi , b(ε)

M − F̄ ixi) is a feasible solution to (5.32) becausevi,0 = 0 from the initialization,i ∈ Z
M.

SinceK i andPi are obtained from ARE,K i
Axi is the optimal solution toJi(xi ,uuui). Therefore, the

solution whenk = 0 is uuui,1 = K i
Axi , andsi,1 = b(ε)

M − F̄ ixi for all i ∈ Z
M. Using these values in

(5.35) and (5.33), it can be shown from (5.16) that r1 =
M
∑

i=1
( f i(xi ,K i

Axi)+ si,1)−b(ε) =
M
∑

i=1
(F̄ ixi +

b(ε)
M − F̄ ixi)+b(ε) = 0 andλ i,1 = 0 for all i ∈ Z

M. This means that∆λλλ 1 = λλλ 1−λλλ 0 = 0 and∆ααα1 =

ααα1−ααα0 = 0 following the update ofααα via (5.27). Hence,r1 = 0 andC1 = 0 and Algorithm5.1

terminates at̄k= 1. ✷

5.E Proof of Theorem5.3

(i) As given by (5.34), let k̄(t) be the stopping iteration of the Algorithm5.1at timet and the solution

of (5.32) be uuui,k̄(t) := uuui
t := {ui

0|t ,u
i
1|t , · · · ,ui

N−1|t}. Denote the associated state sequence asxxxi
t =

{xi
0|t ,x

i
1|t , · · · ,xi

N|t} for all i ∈ Z
M. Since{uuui

t}Mi=1 are the output of Algorithm5.1, {(xi(t),uuui
t)}i∈ZM

satisfy the stopping condition of (5.42) and is a(ε ,δ )-relaxed solution ofPε(x(t)), or from (5.35),

they satisfy

M

∑
i=1

f i(xi(t),uuui
t)−b(ε)≤ εM111pN (5.65)

Rewriting f i(xi(t),uuui
t) andb(ε) back in terms of{xi

0|t ,x
i
1|t , · · · ,xi

N|t} and{ui
0|t ,u

i
1|t , · · · ,ui

N−1|t} (note

that f i(xi(t),uuui
t)−b are simplified expression of (5.9)), (5.65) is equivalent to

M

∑
i=1

Ψi
xx

i
ℓ|t +Ψi

uui
ℓ|t ≤ (1− εM(ℓ+1))111p+ εM111p = (1− εMℓ)111p, ∀ℓ ∈ Z

N−1
0 (5.66)

For all i ∈ Z
M, let a feasible control to theith system att +1 be chosen as

ûuui
t+1 := {ûi

0|t+1, û
i
1|t+1, · · · , ûi

N−1|t+1} := {ui
1|t ,u

i
2|t , · · · ,ui

N−1|t ,K
ixi

N|t}. (5.67)
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and the associated state sequence

x̂xxi
t+1 = {x̂i

0|t+1, x̂
i
1|t+1, · · · , x̂i

N|t+1} := {xi
1|t ,x

i
2|t , · · · ,xi

N|t ,(A
i +BiK i)xi

N|t}

It follows from this choice of̂uuui
t+1 and (5.66) that

M

∑
i=1

Ψi
xx̂

i
ℓ|t+1+Ψi

uûi
ℓ|t+1 =

M

∑
i=1

Ψi
xx

i
ℓ+1|t +Ψi

uui
ℓ+1|t ≤ (1− εM(1+ ℓ))111p, ∀ℓ ∈ Z

N−2
0 (5.68)

and whereℓ= N−1, (5.69)

M

∑
i=1

(Ψi
xx

i
N|t +Ψi

uK ixi
N|t) =

M

∑
i=1

Ψ̄xi
N|t ≤ (1− εMN)111p (5.70)

where the last inequality follows the fact thatxi
N|t ∈ σ i

εXi
f and (5.10) (with T i

f = σ i
εXi

f ). In addi-

tion, ûi
ℓ|t+1 ∈U i for ℓ ∈ Z

N−2
0 sinceui

ℓ+1|t ∈U i because of (iv) of Theorem5.1. The last control,

ûi
N−1|t+1 = K ixi

N|t ∈ U i becausexi
N|t ∈ σ i

εXi
f and σ i

εXi
f satisfies (5.6). The constraints of ˆxi

ℓ|t+1 ∈

Xi, ℓ ∈ Z
N−1
0 andx̂i

N|t+1 ∈ σ i
εXi

f follow similar argument. These properties impliesûuui
t+1 ∈ U(xi(t +

1)), i ∈ Z
M and{ûuui

t+1}Mi=1 is a feasible solution toPε(x(t +1)).

(ii) This result follows from Lemma5.1since{xi(t),uuui,k̄(t)}Mi=1 is a(ε ,δ )-relaxed solution ofPε(x(t)).

(iii) Let Vε (x(t)) = ∑M
i=1 Ji(xi(t),uuui∗

t ) (where{uuui∗
t }Mi=1 is the optimal solution of (5.15)) be the Lya-

punov function of the closed-loop system of (5.1) with input ui(t) = ui,k̄(t)
0 given by (5.34). When

Algorithm 5.1 terminates at timet, uuui,k̄(t) := uuui
t and the stopping condition of (5.42) states that

|
M

∑
i=1

Ji(xi(t),uuui
t)−Vε(x(t))| ≤ δ (5.71)

Let ûuui
t+1 be as defined in (5.67) of property (i) above, it follows from the standard argument in MPC,

Ji(xi(t +1),ûuui
t+1)−Ji(xi(t),uuui

t) =−‖xi(t)‖iQi −‖ui(t)‖2Ri +‖xi
N|t‖2Qi +‖K ixi

N|t‖2Ri

+‖Ai
Kxi

N|t‖2Pi −‖xi
N|t‖2Pi

=−‖xi(t)‖iQi −‖ui(t)‖2Ri (5.72)

where the last equality is from the factK i,Pi satisfy the Algebraic Riccatii Equation of(Ai
K)

TPiAi
K−
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Pi =−(Qi +K iRiK i). Sinceûuui
t+1 may not be the optimal att +1,

Vε(x(t +1))≤
M

∑
i=1

Ji(xi(t +1),ûuui
t+1) =

M

∑
i=1

(

Ji(xi(t),uuui
t)−‖xi(t)‖iQi −‖ui(t)‖2Ri

)

≤Vε(x(t))+δ −
M

∑
i=1

‖xi(t)‖2Qi =Vε(x(t))+θ(t) (5.73)

where the equality condition follows from (5.72) and the last inequality is due to (5.71). From the

stated condition, choose anyε̃ > 0 such that{xi : ‖xi‖2Qi ≤ δ + ε̃} ⊆ σ̄ iXi
f . Consider the following

two cases for (5.73): θ(t) < −ε̃ for all t and θ(t) ≥ −ε̃ for at least onet. Supposeθ(t) < −ε̃

for all t, then limt→∞ Vε(x(t)) becomes negative and leads to a contradiction of non-negativity of

Vε(x(t)). Suppose there exists onet, denoted byt f such thatθ(t f )≥−ε̃ or ∑i∈ZM ‖xi(t f )‖2Qi ≤ δ + ε̃ .

This implies that‖xi(t f )‖2Qi ≤ δ + ε̃ which, together with{xi : ‖xi‖2Qi ≤ δ + ε̃} ⊆ σ̄ iXi
f , implies that

xi(t f ) ∈ σ̄ iXi
f for all i ∈ ZM.

(iv) Property (iii) states that a finitet f exists such thatxi(t f ) ∈ σ̄ iXi
f , i ∈ Z

M. When this happens, it

follows from Lemma5.2thatκ i(x(t f )) = K ixi(t f ) and the closed-loop system becomesxi(t f +1) =

Ai
Kxi(t f ). Sincexi(t f +1) ∈ σ̄ iXi

f for anyxi(t f ) ∈ σ̄ iXi
f from (5.6). As a result,xi(t +1) = Ai

Kxi(t)

for all t ≥ t f and the closed-loop system is exponentially stable.✷



CHAPTER 6
A Distributed Fast Dual Gradient Algorithm for

Distributed Model Predictive Control with Coupled

Constraints

6.1 Introduction

This chapter proposes an accelerated DMPC approach forM discrete-time linear dynamical systems,

given by (5.1)-(5.3). Like the approach in Chapter 5, this approach also solves the dual problem of

the overall MPC problem and converts the dual problem into a distributed consensus optimization

problem (DCOP). In Chapter 5, the ADMM is used for the DCOP problem. However, the ADMM

can have slow convergence for highly accurate solutions. This work is motivated by the need for

a faster solution of the DCOP problem on a connected network (not necessarily fully connected)

and is a distributed implementation of the standard stand-alone Nestrov gradient method [97, 98].

The Nestrov gradient method for single MPC can be found in [176, 177]. The distributed Nestrov

gradient implementations of DCOP have appeared [106,107] but not for MPC. For distributed im-

plementations, each system has a local copy of the dual variable. In [106], a constant step-size

update for the iterates is used but such a choice does not ensure convergence to the optimal consen-

sus variable. The work of [107] uses an inner loop for better convergence of the consensus variable.

However, the number of consensus steps in the inner loop grows with the index of the outer loop

and this leads to a significant increase in the information exchanges. Similar to [107], this chapter

uses several consensus steps in the inner-loop to achieve the consensus of the local copies. How-

ever, the number of consensus steps is fixed and does not grow with the outer-loop index. Despite

this, the computations of the proposed approach can be high for large-scale problems. This issue

97
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is minimized by having premature termination of the proposed approach. Convergence of the pro-

posed approach under the premature termination condition,together with recursive feasibility and

stability of the closed-loop system are provided. Under reasonable assumptions, the approach con-

verges faster than the ADMM approach [185] for the same accuracy. An important difference of this

work to [185] is that the local copies of the dual variable reach exact consensus while the approach

of [185] achieves only approximate consensus at each iteration. This feature, together with the per-

mature termination consideration allows the proposed approach to generate a solution whose cost

is upper bounded by the optimal cost and to have a simplified stopping condition. A comparison

with [185] using an example is also provided. Not accounting for the information exchanges, the

results from this and other examples show that the number of iterations needed to reach the same

accuracy by the proposed approach is about 30% to 50% of that needed by the ADMM approach

of [185].

The rest of this chapter is organized as follows. Section6.2 reviews the dual formulation of the

overall MPC problem. Section6.3presents the proposed approach and its convergence results. The

recursive feasibility and stability results are given in Section 6.5. The performance of the approach

is illustrated by a numerical example in Section6.6with the conclusions given in Section6.7. The

proofs are given in the appendices. The notations used in this chapter follows those in Chapter 5.

Additional notations are introduced as required in the text.

6.2 Preliminaries

This section reviews the dual problem of the overall MPC problem (5.15). Let λ ∈ R
Np be the dual

variable associated with the coupled constraint (5.15c). The Lagrangian of (5.15) is L({uuui},λ ) =
M
∑

i=1
Ji(xi ,uuui)+λ T(

M
∑

i=1
f i(xi ,uuui)−b(ε)) for all uuui ∈ U i(xi), i ∈ Z

M and the dual problem is

max
λ≥0

Φ(x,λ ) (6.1)
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whereΦ(x,λ ) = min
{uuui∈U i(xi),i∈ZM}

L({uuui},λ ). This dual problem is also equivalent to

min
λ≥0

max
{uuui∈U i(xi),i∈ZM}

−L({uuui},λ ) := min
λ≥0

M

∑
i=1

gi(λ ) (6.2)

where

gi(λ ) := max
uuui∈U i(xi )

−Ji(xi ,uuui)−λ T( f i(xi ,uuui)− b(ε)
M

). (6.3)

Let uuui(λ ) = arg max
uuui∈U i(xi)

gi(λ ). Then, it can be verified thatgi(λ ) is convex and the gradient of

gi(λ ) is ∇gi(λ ) =−( f i(xi ,uuui(λ ))− b(ε)
M ) (see Danskin’s Theorem of [149]). In addition,∇gi(λ ) is

Lipschitz continuous with Lipschitz constant‖F
i‖2

µ i , whereµi > 0 is such that∇2
uuui Ji(xi ,uuui)≥ µi I for

all xi anduuui (see [100]). Let Lg = maxi∈ZM{‖F
i‖2

µ i }. Note that while the optimal solution of (5.15) is

unique asJi(xi ,uuui) is stictly convex inuuui , the optimalλ of (6.2) may not be [177,179]. Let

Λ(x) = {λ : λ is an optimal solution of(6.1)} (6.4)

be the collection of all possible optimalλ . Despite the nonuniqueness ofλ , the proposed algorithm

(Algorithm 5.1) will converge to an unique solution of (5.15), see Theorem6.1.

6.3 The Main Results

This section discusses the proposed distributed fast dual gradient algorithm. The overall problem

(5.15) is considered as the primal problem.
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6.3.1 Distributed Fast Dual Gradient Algorithm

The standard stand-alone Nesterov gradient algorithm [97, 98, 177] for minλ≥0

M
∑

i=1
gi(λ ) of (6.2)

consists of the following iterates

λ̃ k = λ k+θk(θ−1
k−1−1)(λ k−λ k−1) (6.5a)

λ k+1 = [λ̃ k− 1
Lg

M

∑
i=1

∇gi(λ̃ k)]+ (6.5b)

θk+1 = (
√

θ4
k +4θ2

k −θ2
k )/2 (6.5c)

where[x]+ = max{0,x}, andλ−1 = λ 0 = 0 andθ−1 = θ0 = 1 are the needed initializations. From

(6.5c), the sequence{θk} satisfies [177]

1−θk+1

θ2
k+1

=
1

θ2
k

,
1

θ2
k

=
k

∑
ℓ=0

θ−1
ℓ , andθk ≤

2
k+2

(6.6)

Note that (6.5b) requires the gradients from allM systems. In order to implement a fully distributed

computation, each systemi makes a local copy ofλ , λ i . Correspondingly, (6.5a) and (6.5b) are

replaced by

λ̃ i,k = λ i,k+θk(θ−1
k−1−1)(λ i,k−λ i,k−1), ∀i ∈ Z

M (6.7a)

λ i,k+1 = [
1
M

M

∑
i=1

(

λ̃ i,k− 1
Lg

∇gi(λ̃ i,k)

)

]+, ∀i ∈ Z
M (6.7b)

where∇gi(λ̃ i,k) =−( f i(xi ,ũuui,k)− b
M ) with

ũuui,k = arg min
uuui∈U i(xi )

Ji(xi ,uuui)+ (λ̃ i,k)T( f i(xi ,uuui)− b(ε)
M

). (6.8)

For all i ∈ Z
M, let

ūuui,k := θ2
k

k

∑
ℓ=0

θ−1
ℓ ũuui,ℓ = (1−θk)ūuu

i,k−1+θkũuu
i,k (6.9)

whereūuui,−1 = 0 andũuui,k is obtained from (6.8). Note that (6.7b) requires the quantity
(

λ̃ i,k− 1
Lg

∇gi(λ̃ i,k)
)

from all i ∈ZM and, hence, is not fully distributed. To handle this problem, the finite-time consensus
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algorithm mentioned in Section3.3.2is used to compute the quantity1M
M
∑

i=1

(

λ̃ i,k− 1
Lg

∇gi(λ̃ i,k)
)

in

(6.7b). Specifically, for eachi ∈ Z
M, introduce variableyi(ℓ,k) with

yi(0,k) := λ̃ i,k− 1
Lg

∇gi(λ̃ i,k) (6.10)

yi(ℓ+1,k) =Wii yi(ℓ,k)+ ∑
j∈Ni

Wi j y j(ℓ,k), ℓ ∈ Z
T−2
0 , (6.11)

whereT is the order of the minimal polynomial ofW and (6.11) is theith component of the consensus

dynamics given by (3.37). From (3.39),
T−1
∑
ℓ=0

τℓyi(ℓ,k) = 1
M

M
∑

i=1

(

λ̃ i,k− 1
Lg

∇gi(λ̃ i,k)
)

for all i ∈ Z
M.

With this property, (6.7b) is replaced by

λ i,k+1 = [
T−1

∑
ℓ=0

τℓyi(ℓ,k)]+, i ∈ Z
M (6.12)

This process is then repeated by incrementingk. The stopping criterion of this distributed fast dual

gradient algorithm is discussed in Section6.4and suppose it terminates at iterationk̄. Then, the solu-

tion from this algorithm is̄uuui,k̄ := {ūi,k̄
0 , ūi,k̄

1 , · · · , ūi,k̄
N−1}, as defined by (6.9), i ∈ZM. Correspondingly,

the MPC control law applied on theith system is

κ i(x) = ūi,k̄
0 , i ∈ Z

M (6.13)

6.3.2 Convergence Analysis

The convergence results of the distributed fast dual gradient algorithm are discussed in this section.

The convergence to an optimal dual solution is stated as follows.

Lemma 6.1. For any x∈ Dε , let {λ i,k, λ̃ i,k}Mi=1 be generated from (6.7a) and (6.7b) with λ i,−1 =

λ i,0 = 0. Then, for anyλ ∗ ∈ Λ(x), the following results hold.

(i) For any k≥ 0, the objective
M
∑

i=1
gi(λ i,k+1) is bounded by

0≤
M

∑
i=1

gi(λ i,k+1)−
M

∑
i=1

gi(λ ∗)≤
LgMθ2

k

2
‖λ ∗‖2 (6.14)
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(ii) Let λ̄ i,k := λ i,k−1+θ−1
k−1(λ

i,k−λ i,k−1) for all k ≥ 0 and i∈ Z
M. The sequence{λ̄ i,k} satisfies

M

∑
i=1

‖λ̄ i,k+1−λ ∗‖2≤M‖λ ∗‖2 (6.15)

(iii) Consider the sequences{ũuui,k}Mi=1 and{ūuui,k}Mi=1 generated from (6.8) and (6.8) respectively. For

any k≥ 0, the coupled constraint using{ūuui,k}Mi=1 satisfies the inequality

M

∑
i=1

f i(xi ,ūuui,k)−b≤
(

4M(
√

M+1)Lg‖λ ∗‖
(k+2)2

)

111Np (6.16)

Property (iii) of Lemma6.1 provides the decreasing upper bound on the violation of the coupled

constraint. On the basis of the convergence of the dual variable, the primal convergence result is

stated in the following theorem, which is a modification of Theorem 5 in [177].

Theorem 6.1. For any x∈ Dε , suppose{uuui∗}Mi=1 is the optimal solution ofPε(x). Then, for any

k≥ 0 andλ ∗ ∈ Λ(x), it holds that

−4M(
√

M+1)Lg‖λ ∗‖2
(k+2)2 ≤

M

∑
i=1

Ji(xi ,ūuui,k)−
M

∑
i=1

Ji(xi ,uuui∗)≤ 0 (6.17)

6.3.3 Primal Suboptimality and Feasibility

As mentioned before, a premature termination condition is used to reduce the computational load

for the solution of (6.1). For this purpose, the relaxed solution of (5.15) is defined as follows.

Definition 6.1. Given anyε > 0, the set{xi ,uuui}Mi=1 is a ε-relaxed solution of (5.15) if

uuui ∈ U i(xi), i ∈ Z
M,

M

∑
i=1

f i(xi ,uuui)−b(ε)≤ εM111pN (6.18)

where{uuui∗}Mi=1 is the optimal solution of (5.15). In addition, for anyε ,δ > 0, the set{xi ,uuui}Mi=1 is a

(ε ,δ )-suboptimal solution of (5.15) if it is a ε-relaxed solution and

M

∑
i=1

(
(Ji(xi ,uuui)−Ji(xi ,uuui∗)

)
≤ δ (6.19)

The following lemma discusses the existence of the suboptimal solution.
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Lemma 6.2. For any x∈ Dε , let {ũuui,k}Mi=1 and{ūuui,k}Mi=1 be generated from (6.8) and (6.9) respec-

tively. Then, it holds that:

(i) there exists a finite k such that{xi ,ūuui,k}Mi=1 is a (ε ,0)-suboptimal solution of (5.15);

(ii) {xi ,ūuui,k}Mi=1 is a (ε ,0)-suboptimal if and only if it is aε-relaxed solution.

Proof of Lemma 6.2: (i) Sinceũuui,k ∈U i(xi) for all i ∈ZM andk from (6.8), it holds that̄uuui,k ∈U i(xi)

for all i ∈ Z
M andk. From property (iii) of Lemma6.1, there always exits ak such that (6.18) is

satisfied.

(ii) The equivalence between the(ε ,0)-suboptimal solution and theε-relaxed solution follows from

Definition 6.1and Theorem6.1. ✷

The next theorem shows the existence of aε-relaxed solution ensures the recursive feasibility of

(5.15).

Theorem 6.2. Suppose{xi ,uuui}Mi=1 is a ε-relaxed solution of (5.15) as defined by Definition6.1

with uuui = {ui
0,u

i
1, · · · ,ui

N−1} for all i ∈ Z
M. Let the state sequence associated with this solution be

{xi
0,x

i
1, · · · ,xi

N}, xi+ =Aixi +Biui
0 and uuui+ = {ui

1, · · · ,ui
N−1,K

ixi
N} for all i ∈ZM. Then, the following

results hold.

(i) {uuui+}Mi=1 is a feasible solution toPε(x+).

(ii) Consider the solution ofPε(x+) and let{ūuui,k}Mi=1 be generated from (6.8) and (6.9) with the states

{xi+}Mi=1. Then, there exists a finite k such that{xi+,ūuui,k}Mi=1 is a ε-relaxed solution of (5.15).

6.4 The Overall DMPC Scheme

The overall DMPC scheme is now presented in this section. First, a proper stopping criterion for the

distributed fast dual gradient algorithm is needed. This condition is based on the results of Lemma

6.2. Specifically, the algorithm terminates at the firstk, denoted as̄k, such that aε-relaxed solution

is achieved. Following Definition6.1, the stopping criterion corresponds to
M
∑

i=1
f i(xi ,ūuui,k)−b(ε)≤

εM111pN. This condition should be checked in a fully distributed manner. Again, the finite-time
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consensus algorithm in Section3.3.2is used. For eachi ∈ Z
M, introduce the variablezi(ℓ,k) with

zi(0,k) : = f i(xi ,ūuui,k)− b(ε)
M

(6.20)

zi(ℓ+1,k) =Wii zi(ℓ,k)+ ∑
j∈Ni

Wi j zj(ℓ,k), ℓ ∈ Z
T−2
0 (6.21)

The stopping criterion is satisfied if
T−1
∑
ℓ=0

τℓzi(ℓ,k) ≤ ε as
T−1
∑
ℓ=0

τℓzi(ℓ,k) = 1
M

(
M
∑

i=1
f i(xi ,ūuui,k)−b(ε)

)

for all i ∈ Z
M. The distributed fast dual gradient algorithm with the finite-time consensus is summa-

rized in Algorithm6.1.

Algorithm 6.1: Distributed fast dual gradient algorithm

Input: xi , i ∈ Z
M

Output: ūuui,k̄, i ∈ Z
M

Initialization: setk= 0, ūuui,−1 = 0,λ i,−1 = λ i,0 = 0 andθ−1 = θ0 = 1, for all i ∈ Z
M;

repeat

for all i ∈ Z
M (in parallel)do

Obtainλ̃ i,k andũuui,k from (6.7a) and (6.8) respectively;

Perform the finite-consensus steps in (6.11) with yi(0,k) being given in (6.10);

Obtainλ i,k+1 from (6.12);

end for

Set upzi(0,k) usingūuui,k which is defined in (6.9), i ∈ Z
M

for all i ∈ Z
M (in parallel)do

Obtainzi(1,k), · · · ,zi(T−1,k) using (6.20) and (6.21);

end for

θk+1 = (
√

θ4
k +4θ2

k −θ2
k )/2;

k← k+1

until
T−1
∑
ℓ=0

τℓzi(ℓ,k)≤ ε

The overall procedure of the DMPC algorithm is summarized inAlgorithm 6.2.

Algorithm 6.2: The overall DMPC algorithm

1: At time t, every systemi measures it own statexi(t);

2: Every systemi calls Algorithm5.1with xi(t) and obtain̄uuui,k̄(t) as its output.

3: Every system obtainsκ i(x(t)) from ūuui,k̄(t) via (6.13) and applyκ i(x(t)) to theith system.

4: Wait for next sampling time, lett = t +1 and go to step 1.
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6.5 Recursive Feasibility and Stability

This section discusses the recursive feasibility and stability results of the proposed DMPC formula-

tion. The next lemma pertains to a property of the terminal set of the overall system and is needed

for stability of the closed-loop MPC system.

Lemma 6.3. Let

σ̄ i := min{σ i
ε ,

1
M

min
ℓ∈ZNp

{bℓ(ε)/hXi
f
(F̄ i

ℓ )}} (6.22)

where hXi
f
(·) is the support function of Xif , bℓ(ε) denotes theℓth element of b(ε), F̄ i := F iK i

A+H i

from (5.16) with Ki
A defined by (6.23) below, andF̄ i

ℓ denotes theℓth row of F̄ i. For any xi ∈ σ̄ iXi
f , the

optimal solution to Algorithm5.1 for the ith system is

ūuui,k̄ = {ūi,k̄
0 , · · · , ūi,k̄

N−1}= {K ixi ,K iAi
Kxi , · · · ,K i(Ai

K)
N−1xi} := K i

Axi (6.23)

with k̄= 0.

The recursive feasible and stability results of the proposed DMPC approach are stated in the follow-

ing theorem.

Theorem 6.3. Suppose A5.1-A5.3 hold andPε(x(t)) of (5.15) has a feasible solution at time t and

that the MPC law of (6.13) is applied to the ith system of (5.2) for all i ∈ Z
M. Then, the following

results hold.

(i) Pε(x(t +1)) has a feasible solution at time t+1.

(ii) For all t ≥ 0, ∑M
i=1

(

Ji(xi(t),ūuui,k̄(t))−Ji(xi(t),uuui∗
t )
)

≤ 0, where{uuui∗
t }Mi=1 is the optimal solution

of (5.15).

(iii) The closed-loop system (5.1) with the MPC law (6.13) is exponentially stable.

Remark 6.1. It can be shown that the true LQ cost is upper bounded by the predicted cost of the

initial state. For any x∈Dε , let the infinite true LQ cost associated with the control law(6.13) be

J∞
ε (x) =

∞

∑
t=0

M

∑
i=1

(‖xi(t)‖2Qi +‖κ i(x(t))‖2Ri ) (6.24)
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where x(0) = x and xi(t +1) = Aixi(t)+Biκ i(x(t)) for all i ∈ Z
M. From (6.48),

Vε(x(t +1))≤Vε(x(t))−
M

∑
i=1

(

‖xi(t)‖iQi +‖κ i(x(t))‖2Ri

)

, (6.25)

which, when summed up from t= 0 to ∞, implies that J∞ε (x) ≤ Vε(x). This gives a performance

bound for the infinite LQ cost of the closed-loop system.

6.6 Numerical Results

The example chosen is a four-agent system where every agent consists of two coupled water tanks

[186]. The target is to regulate the water levels to some given references with a limited total input

flow rate. As shown in Figure6.1, qi is the input flow andhi
1 andhi

2 are the water levels for system

i. Suppose the targeted water levels areh̃i
1 and h̃i

2 with the steady input flow ˜qi of systemi. Let

xi
1 = hi

1− h̃i
1, xi

2 = hi
2− h̃i

2 andui = qi − q̃i for i ∈ Z
4.

Figure 6.1: The water tanks system

Given the parameters:h̃i
1 = 1, h̃i

2 = 0.64, q̃i = 0.3, i ∈ Z4, a linearized and discretized model is given

by

xi(t +1) =









0.8750 0.1250

0.1250 0.8047









xi(t)+









0.3

0









ui(t), i ∈ Z
4

All the agents have the same local constraintsXi := {xi ∈R2 : |xi
1| ≤ 1, |xi

2| ≤ 0.64} andU i := {ui ∈

R : |ui | ≤ 0.3}. Suppose the maximal total input flow rate is 2, the coupled constraint can be given

by
4
∑

i=1
qi ≤ 2, which implies that

4
∑

i=1
ui ≤ 2−

4
∑

i=1
q̃i = 0.8. The values ofK i andPi obtained from the
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discrete-time ARE, withQi = 10I2 andRi = 1, i ∈ Z
4, are

K i =

(

−1.7916 −0.7337

)

,Pi =









31.7459 9.8300

9.8300 56.3415









for all i ∈ Z
4. Consider the network connection of a ring andW = I −0.1L(G). The minimal poly-

nomial ofW is t3−2.4t2+1.88t−0.48= 0. Hence, value ofT of (3.39) is 3 and the finite-time con-

sensus in (3.39) can be obtained 2 steps. The initial conditions are:x1(0) = [−0.3241−0.5977]T ,

x2(0) = [0.4390 − 0.4667]T , x3(0) = [−0.4391 − 0.5818]T , x4(0) = [−0.5337 − 0.4347]T and

the horizon lengthN = 8. The performance of the proposed DMPC approach is presented for

several choices ofε and the comparison is made between the results of the proposed approach

and that obtained by solving (5.15) with ε = 0 using a single centralized computer, known as

the centralized MPC (CMPC) solution. The terminal sets{σ i
sX

i
f}Mi=1 in CMPC are obtained from

min{∑M
i=1(1−σ i) : (5.13)}with ε = 0: σ i

s= 0.6667, i ∈Z4. Consider the case ofε = 0.01 in DMPC.

The overall input is shown in Figure6.2.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

t

4 ∑ i=
1

u
i (
t)

 

 

DMPC(cost 60.99)

CMPC(cost 60.89)

Figure 6.2: The overall input trajectories:DMPC(ε = 0.01) and CMPC

The following table gives the real LQ costJ∞
ε (x(0))(as defined in Remark6.1) for different choices

of ε . The values of{σ i
ε}i∈Z4, obtained from min{∑M

i=1(1−σ i) : (5.13)}, are also shown in Table

6.1. It can be seen that the performance of the DMPC approach is close to that of CMPC because

they have similar overall input trajectories and the degradation in cost is less than 0.2% even in the

case ofε = 0.01. The fact thatJ∞
ε (x(0)) is upper bounded byVε(x(0)) can also be verified in Table

6.1.
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ε 0.01 0.005 0.001
σ i

ε , i ∈ Z
4 0.4533 0.56 0.6453

Vε (x(0)) 61.87 61.26 60.95
J∞

ε (x(0)) 60.99 60.91 60.89

Table 6.1: The values ofJ∞
ε (x(0)) for different choices ofε

A comparison between the proposed approach and the ADMM-based approach in [185] is made.

The number of iterations of this proposed approach at eacht along the trajectories is denoted by

k̄F(t) := k̄(t)+ 1, whose values are shown in Table6.2. The number of iterations of the ADMM-

based approach, denoted byk̄A(t) is also shown in this table. Notice that fort ≥ 7, k̄(t) becomes 0

because the global constraints are not active. It can be seenfrom the Table6.2 that the number of

iterations needed to reach the same accuracy by the proposedapproach is about 30% to 50% of that

needed by the ADMM-based approach. The number of communications needed is(2T−1)k̄F(t) for

this approach andTk̄A(t) for the ADMM-based approach. The number of optimization problems

solved at each time instantt is k̄F(t) by the proposed approach and̄kA(t) by the ADMM-based

approach. Although(2T − 1)k̄F(t) andTk̄A(t) may be close and this approach may even require

more communications in some cases, this approach solves fewer optimization problems.

ε t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

k̄F(t)
0.01 23 21 19 16 13 9 1 1
0.005 24 25 23 20 17 12 1 1
0.001 49 50 48 46 42 30 6 1

k̄A(t)
0.01 88 88 72 67 71 74 94 1
0.005 96 96 80 79 79 83 105 1
0.001 120 120 112 106 108 115 131 1

Table 6.2: The number of iterations along the trajectories starting fromx(0) for different choices of
ε

For the rest of this section, results of the proposed approach for problem (6.2) are compared with

those obtained using other distributed algorithms in the literature: the distributed subgradient(D-SG)

algorithm of [187] and the distributed Nesterov gradient(D-NG) algorithm of[106,107]. Although

[107] also proposed an algorithm that has a better convergence rate than D-SG and D-NG, it is

unclear if it can be extended to constrained problems. For this reason, the comparison is only

made with D-SG and D-NG. Consider the DMPC problem (5.15) with ε = 0.01 and the initial

statex(0). The proposed approach and D-NG use the weighted running averageūuui,k in (6.9) to
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compute the primal cost after each iteration as shown in Algorithm 5.1, while D-SG uses the latest

the primal variablẽuuui,k in (6.8). As the stepsize affects the performance of D-SG and D-NG, some

reasonable stepsizes are chosens after a few trials: 0.2 and 7
k+1 for D-SG; 0.1 and 5

k+1 for D-NG.

The convergence curves of these algorithms are shown in Figure6.3. It can be seen that the propose

approach converges faster than these two algorithms.
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D−NG:0.1
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D−SG:0.2
D−SG:7/(k+1)

Figure 6.3: Convergence curves of different distributed algorithms

6.7 Conclusions

A novel DMPC approach is proposed for a group of linear systems with local and global constraints.

The proposed approach relies on the dual problem of the overall MPC problem and uses a distributed

fast dual gradient algorithm for its solution. This is made possible by introducing local copies of the

dual variables in individual system and enforcing all the local copies to achieve consensus at each

iteration. Provision for computational expediency is madevia early termination of the proposed

algorithm where the inaccuracy depends on the prescribed violation of the coupled constraint. Ter-

mination condition is checked using a finite-time consensusalgorithm. Under mild assumptions, a

suboptimal solution of the overall MPC problem can be obtained so long as the network of systems

are connected. Recursive feasibility and exponential stability of the closed-loop system are ensured.

The performance of the proposed approach is demonstrated bya 4-tank networked system with a

limited total input flow rate. Compared to the ADMM-based approach of the same problem, this

approach achieves convergence of about 2 to 3 times faster and invokes fewer quadratic optimiza-

tion solvers, but may require more communications among systems. This communication issue is

minimized by the use of a finite-time consensus based on the minimal polynomial extracted from

the network. Comparisons of convergence results are also made with the distributed subgradient al-
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gorithm and distributed Nesterov gradient algorithm. In both cases, the proposed method has faster

convergence.
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6.A Proof of Lemma 6.1

(i) The problem (6.2) can be rewritten as

min
λ i≥0,i∈ZM

M

∑
i=1

gi(λ i) s.t. λ 1 = λ 2 = · · ·= λ M (6.26)

which is equivalent to min
λλλ∈Ω

g(λλλ ), whereg(λλλ ) :=
M
∑

i=1
gi(λ i), λλλ = (λ 1,λ 2, · · · ,λ M) andΩ = {λλλ ≥ 0 :

λ 1 = λ 2 = · · ·= λ M}. Then, (6.7a)-(6.7b) can be written in a compact form

λ̃λλ
k
= λλλ k+θk(θ−1

k−1−1)(λλλ k−λλλ k−1) (6.27a)

λλλ k+1 = PΩ[λ̃λλ
k− 1

Lg
∇g(λλλ k)] (6.27b)

It can be easily verified that∇g(λλλ ) is Lipschitz continuous with the constantLg. For anyλ ≥ 0,

from Proposition 6.9.2 in [98] and the fact that 111M⊗λ ∈Ω, it holds that

M

∑
i=1

gi(λ i,k+1)−
M

∑
i=1

gi(λ )+θ2
k

k

∑
ℓ=0

θ−1
ℓ

M

∑
i=1

(gi(λ )−∆i(λ , λ̃ i,ℓ))+
Lgθ2

k

2

M

∑
i=1

‖λ̄ i,k+1−λ‖2≤ LgMθ2
k

2
‖λ‖2

(6.28)

where

λ̄ i,k := λ i,k−1+θ−1
k−1(λ

i,k−λ i,k−1) (6.29)

∆i(λ , λ̃ ) := gi(λ̃ )+∇gT
i (λ̃ )(λ − λ̃) (6.30)

Let λ in (6.28) be anyλ ∗ ∈ Λ(x). The the first inequality of (6.14) holds becauseλ ∗ is a minimizer

of (6.2) and the second inequality (6.14) holds due to the fact that∆i(λ ∗, λ̃ i,k) ≤ gi(λ ∗) from the

convexity ofgi(·).

(ii) The inequality (6.15) follows from (6.28) because
M
∑

i=1
gi(λ i,k+1)−

M
∑
i=1

gi(λ ∗)≥ 0 and∆i(λ ∗, λ̃ i,k)≤

gi(λ ∗).

(iii) Some intermediate results are needed to prove (6.16). Using the auxiliary variablēλ i,k =

λ i,k−1+θ−1
k−1(λ

i,k−λ i,k−1), λ i,k+1 can be written asλ i,k+1 = θk(λ̄ i,k+1−λ i,k)+λ i,k. This, together
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with λ̃ i,k = λ i,k+θk(θ−1
k−1−1)(λ i,k−λ i,k−1), implies that

λ i,k+1− λ̃ i,k = θk(λ̄ i,k+1−λ i,k)−θk(θ−1
k−1−1)(λ i,k−λ i,k−1)

= θk(λ̄ i,k+1− λ̄ i,k) (6.31)

Now, we can prove (6.16). Consider thatλ 1,k+1 = λ 2,k+1 = · · ·= λ M,k+1 andλ i,k+1 = [
T−1
∑
ℓ=0

τℓyi(ℓ,k)]+≥
T−1
∑
ℓ=0

τℓyi(ℓ,k) = 1
M

M
∑

i=1
yi(0,k), it implies that

M

∑
i=1

λ i,k+1≥
M

∑
i=1

λ̃ i,k+
1
Lg

(
M

∑
i=1

f i(xi ,ũuui,k)−b(ε)) (6.32)

Using (6.31), (6.32) can be rewritten as

M

∑
i=1

λ̄ i,k+1 ≥
M

∑
i=1

λ̄ i,k+θ−1
k

1
Lg

(
M

∑
i=1

f i(xi ,ũuui,k)−b(ε)) (6.33)

which implies that

M

∑
i=1

λ̄ i,k+1≥
k

∑
ℓ=1

θ−1
ℓ

1
Lg

(
M

∑
i=1

f i(xi ,ũuui,ℓ)−b(ε)) (6.34)

Using (6.6) and (6.9), the inequality above can be again rewritten

θ2
k

M

∑
i=1

λ̄ i,k+1 ≥ 1
Lg

(
M

∑
i=1

f i(xi ,ūuui,k)−b(ε)) (6.35)

From (6.15), we can know that‖λ̄ i,k+1−λ ∗‖≤
√

M‖λ ∗‖ for all i ∈ZM, which from‖λ̄ i,k+1−λ ∗‖≥

‖λ̄ i,k+1‖−‖λ ∗‖ implies that‖λ̄ i,k+1‖ ≤ (
√

M +1)‖λ ∗‖. Consider that‖
M
∑

i=1
λ̄ i,k+1‖ ≤

M
∑

i=1
‖λ̄ i,k+1‖.

Therefore, from (6.35), we can get that

1
Lg
‖[

M

∑
i=1

f i(xi ,ūuui,k)−b(ε)]+‖ ≤ θ2
k ‖

M

∑
i=1

λ̄ i,k+1‖ ≤ θ2
k M(
√

M+1)‖λ ∗‖ (6.36)

This, together withθk ≤ 2
k+2 and‖[

M
∑

i=1
f i(xi ,ūuui,k)− b(ε)]+‖ ≥ ‖[

M
∑

i=1
f i(xi ,ūuui,k)− b(ε)]+‖∞, implies

(6.16). ✷
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6.B Proof of Theorem6.1:

Considergi(λ̃ i,k) = −Ji(xi ,ũuui,k)− (λ̃ i,k)T( f i(xi ,ũuui,k)− b(ε)
M ) and ∇gi(λ̃ i,k) = −( f i(xi ,ũuui,k)− b(ε)

M )

for all i ∈ Z
M andk≥ 0. For anyλ ≥ 0 in (6.28), it can be shown that∆i(λ , λ̃ i,k) = −Ji(xi ,ũuui,k)−

λ T( f i(xi ,ũuui,k)− b(ε)
M ) where the notation∆i(·, ·) is given in (6.30). Substitute this into (6.28), it

yields

M

∑
i=1

gi(λ i,k+1)+θ2
k

k

∑
ℓ=0

θ−1
ℓ

M

∑
i=1

(Ji(xi ,ũuui,ℓ)+λ T( f i(xi ,ũuui,ℓ)− b(ε)
M

)))≤ LgMθ2
k

2
‖λ‖2 (6.37)

by dropping the quadratic term on the right-hand side. Consider (6.9) and the fact that

θ2
k

k

∑
ℓ=0

θ−1
ℓ

M

∑
i=1

Ji(xi ,ũuui,ℓ)≥
M

∑
i=1

Ji(xi ,ūuui,k),

(6.37) implies

M

∑
i=1

gi(λ i,k+1)+
M

∑
i=1

(Ji(xi ,ūuui,k)+λ T( f i(xi ,ūuui,k)− b(ε)
M

)))≤ LgMθ2
k

2
‖λ‖2 (6.38)

Let λ = 0 in (6.38). It holds that

M

∑
i=1

gi(λ i,k+1)+
M

∑
i=1

Ji(xi ,ūuui,k)≤ 0 (6.39)

From (6.1) and (6.2), it can be easily verify from the dual problem (6.1) that
M
∑

i=1
gi(λ i,k+1) ≥

−Φ(x,λ ∗) = −
M
∑

i=1
Ji(xi ,uuui∗) sinceλ 1,k+1 = λ 2,k+1 = · · · = λ M,k+1. Using θk ≤ 2

k+2, the second

inequality of (6.17) holds. Now let us consider the proof of the first inequality of (6.17). Note that

M

∑
i=1

Ji(xi ,ūuui,k) = L({ūuui,k},λ ∗)− (λ ∗)T(
M

∑
i=1

f i(xi ,ūuui,k)−b(ε))

≥Φ(x,λ ∗)− (λ ∗)T(
M

∑
i=1

f i(xi ,ūuui,k)−b(ε))

=
M

∑
i=1

Ji(xi ,uuui∗)− (λ ∗)T(
M

∑
i=1

f i(xi ,ūuui,k)−b(ε)) (6.40)
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Consider the following inequalities

(λ ∗)T(
M

∑
i=1

f i(xi ,ūuui,k)−b(ε))≤ (λ ∗)T [
M

∑
i=1

f i(xi ,ūuui,k)−b(ε)]+

≤ ‖λ ∗‖‖[
M

∑
i=1

f i(xi ,ūuui,k)−b(ε)]+‖

≤ θ2
k LgM(

√
M+1)‖λ ∗‖2

where the last inequality is from (6.36). This inequality, together with (6.40), implies the first

inequality of (6.17). ✷

6.C Proof of Theorem6.2

(i) Since{xi ,uuui}Mi=1 is aε-relaxed solution, it satisfies

uuui ∈ U i(xi), i ∈ Z
M,

M

∑
i=1

f i(xi ,uuui)−b(ε)≤ εM111pN (6.41)

Rewriting f i(xi ,uuui) and b(ε) back in terms of{xi
0,x

i
1, · · · ,xi

N} and {ui
0,u

i
1, · · · ,ui

N−1} (note that

f i(xi ,uuui)−b are simplified expression of (5.9)), (6.41) is equivalent to

M

∑
i=1

Ψi
xx

i
ℓ|t +Ψi

uui
ℓ|t ≤ (1− εM(ℓ+1))111p+ εM111p = (1− εM(ℓ+1))111p, ∀ℓ ∈ Z

N−1
0 (6.42)

For all i ∈ Z
M, let a feasible control to theith system at next time instant be chosen as

uuui+ := {ui+
0 ,ui+

1 , · · · ,ui+
N−1} := {ui

1,u
i
2, · · · ,ui

N−1,K
ixi

N}. (6.43)
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and the associated state sequence{xi+
0 ,xi+

1 , · · · ,xi+
N } := {xi

1,x
i
2, · · · ,xi

N,(A
i +BiK i)xi

N}. It follows

from this choice ofuuui+ and (6.42) that

M

∑
i=1

Ψi
xx

i+
ℓ +Ψi

uu
i+
ℓ =

M

∑
i=1

Ψi
xx

i
ℓ+1+Ψi

uui
ℓ+1≤ (1− εM(1+ ℓ))111p, ∀ℓ ∈ Z

N−2
0 (6.44)

and whereℓ= N−1,

M

∑
i=1

(Ψi
xx

i
N +Ψi

uK ixi
N) =

M

∑
i=1

Ψ̄xi
N ≤ (1− εMN)111p (6.45)

where the last inequality follows the fact thatxi
N ∈ σ i

εXi
f and (5.10) (with T i

f = σ i
εXi

f ). In addition,

ui+
ℓ ∈U i for ℓ∈ZN−2

0 sinceui
ℓ+1∈U i because of (6.41). The last control,ui+

N−1 =K ixi
N ∈U i because

xi
N ∈ σ i

εXi
f andσ i

εXi
f satisfies (5.6). The constraints ofxi+

ℓ ∈ Xi, ℓ ∈ Z
N−1
0 andxi+

N ∈ σ i
εXi

f follow

similar argument. These properties impliesuuui+ ∈ U(xi+), i ∈ Z
M and

M
∑

i=1
f i(xi+,uuui+)≤ b(ε).

(ii) This result follows from Lemma6.2sincex+ ∈ Dε . ✷

6.D Proof of Lemma6.3

By definition of hσ̄ iXi
f
, F̄ i

ℓx
i ≤ maxy∈σ̄ iXi

f
F̄ i
ℓy = hσ̄ iXi

f
(F̄ i

ℓ ) = σ̄ ihXi
f
(F̄ i

ℓ ) for any xi ∈ σ̄ iXi
f and any

ℓ ∈ Z
Np. This fact, together with̄σ i ≤ 1

M bℓ(ε)/hXi
f
(F̄ i

ℓ ) from the definition of{σ̄ i}i∈ZM , implies

b(ε)
M − F̄ ixi ≥ 0. Sinceσ̄ iXi

f ⊆ σ i
εXi

f , K i
Axi ∈ U i(xi) from (5.5), (5.6) and (5.14). Hence, whenk= 0,

K i
Axi is a feasible solution to min

uuui∈U i(xi)
Ji(xi ,uuui), i ∈ Z

M. SinceK i andPi are obtained from ARE,K i
Axi

is the optimal solution to min
uuui

Ji(xi ,uuui). Therefore, the solution whenk = 0 is ũuui,0 = K i
Axi for all

i ∈ Z
M. This suggests that̄uuui,0 = K i

Axi and f i(xi ,K i
Axi)− b(ε)

M ≤ 0 for all i ∈ Z
M, which means that

{xi ,ūuui,0}Mi=1 is aε-relaxed solution and Algorithm5.1terminates atk= 0. ✷

6.E Proof of Theorem6.3

(i) Consider theε-relaxed solution{xi(t),ūuui,k̄(t)}Mi=1 at timet. Letuuui
t := {ui

0|t ,u
i
1|t , · · · ,ui

N−1|t}= ūuui,k̄(t)

with the associated predictive state sequencexxxi
t := {xi

0|t ,x
i
1|t , · · · ,xi

N|t} for all i ∈ Z
M. Define the

shifted predicted sequence at next time instantûuui
t+1 = {ui

1|t , · · · ,ui
N−1|t ,K

ixi
N|t}, i ∈ Z

M. From prop-

erty (i) of Theorem6.2, it suggests that{ûuui
t+1}Mi=1 is a feasible solution toPε(x(t + 1)) because
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xi(t +1) = Aixi(t)+Biui
0|t using the control law (6.13).

(ii) This result holds since{xi(t),ūuui,k̄(t)}Mi=1 is a(ε ,0)-upper-relaxed solution ofPε(x(t)) for all t ≥ 1.

(iii) Let Vε (x(t)) = ∑M
i=1 Ji(xi(t),uuui∗

t ) (where{uuui∗
t }Mi=1 is the optimal solution of (5.15)) be the Lya-

punov function of the closed-loop system of (5.1) with input ui(t) = ūi,k̄(t)
0 given by (6.13). When

Algorithm 5.1 terminates at timet, uuui,k̄(t) := uuui
t and it follows property (iii) of Theorem6.2

M

∑
i=1

Ji(xi(t),uuui
t)−Vε(x(t)) ≤ 0 (6.46)

Using the same shifted shifted control sequenceûuui
t+1 at timet +1 as defined in (i), it follows from

the standard argument in MPC,

Ji(xi(t +1),ûuui
t+1)−Ji(xi(t),uuui

t) =−‖xi(t)‖iQi −‖ui(t)‖2Ri

+‖xi
N|t‖2Qi +‖K ixi

N|t‖2Ri +‖Ai
Kxi

N|t‖2Pi −‖xi
N|t‖2Pi

=−‖xi(t)‖iQi −‖ui(t)‖2Ri (6.47)

where the last equality is from the factK i,Pi satisfy the Algebraic Riccatii Equation of(Ai
K)

TPiAi
K−

Pi =−(Qi +K iRiK i). Sinceûuui
t+1 may not be the optimal att +1,

Vε(x(t +1))≤
M

∑
i=1

Ji(xi(t +1),ûuui
t+1) =

M

∑
i=1

(

Ji(xi(t),uuui
t)−‖xi(t)‖iQi −‖ui(t)‖2Ri

)

=Vε(x(t))−
M

∑
i=1

(‖xi(t)‖2Qi +‖ui(t)‖2Ri ) (6.48)

≤Vε(x(t))−
M

∑
i=1

‖xi(t)‖2Qi (6.49)

where the equality condition follows from (6.47) and the last inequality is due to (6.46). Therefore,

xi(t) goes to 0 ast→∞ for all i ∈ ZM. This means that there exists a finitet f such thatxi(t f ) ∈ σ̄ iXi
f

for all i ∈ ZM. When this happens, it follows from Lemma6.3 that κ i(x(t f )) = K ixi(t f ) and the

closed-loop system becomesxi(t f + 1) = Ai
Kxi(t f ). Sincexi(t f + 1) ∈ σ̄ iXi

f for any xi(t f ) ∈ σ̄ iXi
f

from (5.6). As a result,xi(t +1) = Ai
Kxi(t) for all t ≥ t f and the closed-loop system is exponentially

stable.✷



CHAPTER 7
Conclusions and Future Work

This chapter summarizes the main contributions of this thesis and provides possible directions for

future work.

7.1 Contributions of This Thesis

A summary of the main contributions is presented below. The first contribution of this thesis is

a DMPC approach for a network of dynamically-coupled linearsystems. This approach is less

conservative compared with the existing DMPC approaches because of the choices of the terminal

cost and the terminal set.

• Unlike other DMPC approaches, where the terminal cost function depends on a block diagonal

Lyapunov matrix, this approach uses a terminal cost function that depends on a non-block

diagonal Lyapunov matrix that conforms to the structural constraint imposed by the network.

• The terminal set is obtained from the maximal constraint admissible invariant set of the overall

system. More exactly, the approach determines a time-varying terminal set that moves within

the maximal constraint admissible invariant set, changingin both size and location at each

time.

• The computation of the time-varying terminal set depends onthe topology of the communica-

tion network. When the network is fully connected or a central collector exists, the terminal

set can be easily computed and local exponential stability is achieved. If the network is only

connected without a central collector, the computations ofthe terminal set require a series

of linear programming (LP) problems; the computations of which can be speeded up, via a

117
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preprocessing step, so that the approach is suitable for online computations. In this case, the

overall closed-loop system can only be guaranteed to be asymptotically stable.

The second contribution of this thesis is a DMPC approach fora group of linear systems with local

and global constraints.

• In most previous DMPC approaches for the same setting, the optimality properties of the

overall system are not explicitly pursued. This approach isable to achieve the optimality of the

overall MPC problem within some prescribed accuracy. This is possibly because the approach

is based on the dual problem of the overall MPC problem, whichis solved by a distributed

ADMM algorithm. The distributed implementation is made possible by introducing local

copies of the dual variables in individual system and enforcing all the local copies to achieve

consensus value. One important property of this distributed ADMM formulation is that it

converges fast to modest accuracy.

• Besides the distributed formulation, this approach also proposes a stopping criterion that al-

lows early termination of the distributed ADMM algorithm where the inaccuracy depends on

the violation of the coupled constraint and the primal cost gap. The characterization of the vio-

lation of the coupled constraint and the primal cost gap is given from the sequences generated

from the distributed ADMM algorithm.

• The stopping criterion based on the violation of the coupledconstraint and the primal cost gap

is provided and is checked using a finite-time consensus algorithm.

• Under mild assumptions, the DMPC converges to some small neighborhood of the optimal so

long as the network of systems is connected. Recursive feasibility and exponential stability of

the closed-loop system are ensured.

The last contribution of this thesis is an accelerated distributed dual gradient algorithm for DMPC

of a group of linear systems with coupled constraints. The main advantage of this approach is that

it converges faster than the ADMM-based approach.

• Similar to the ADMM-based approach, this approach also relies on the dual problem of the

overall MPC problem. The dual problem is then solved by a distributed fast dual gradient

algorithm. Unlike the ADMM-based approach, the local copies of the dual variables in this
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approach reach the consensus at each iteration due to the useof a finite-time consensus algo-

rithm.

• Another improvement of this approach is that the stopping criterion is based on the violation of

the coupled constraint. There is no requirement to check theprimal cost gap. This is possibly

because the overall cost function is upper bounded by the optimal overall cost function at each

iteration. Again, this approach uses a finite-time consensus algorithm to check the stopping

criterion.

• Under mild assumptions, a suboptimal solution of the overall MPC problem can be obtained

so long as the network of systems is connected. It is shown in the experiment that this ap-

proach converges 2-3 times faster than the ADMM-based approach.

7.2 Future Work

Several possible directions for the future research of thisthesis are outlined below.

7.2.1 Stabilization with Structural Constraints

The stabilization of linear systems with arbitrary structural constraints is a fundamental problem.

The stabilizability of(A,B) is not enough to ensure the solution of a stabilizingK that conforms

to the structural constraint imposed by the communication network. For arbitrary structural con-

straints, it is generally difficult to establish the necessary and sufficient condition for existence of

the structural stabilizingK. In the thesis, the numerical solution of the structuralK is obtained by

solving the bilinear optimization problem (4.21) using ADMM, as shown in Chapter 4. However,

the solution is not guaranteed since (4.21) is nonconvex. The work of this thesis can be extended to

discuss the theoretical and numerical solution of the structural stabilizingK. In addition, it is also

more desirable to solve (4.21) in a distributed manner for large-scale systems.
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7.2.2 Disturbance and Transmission Errors

Throughout the thesis, all systems are assumed to be free of disturbance and the information trans-

mission among systems is perfect. One direction of the future research is to extend the formulations

of this thesis to the disturbed case where the systems are of the form

x(t +1) = Ax(t)+Bu(t)+w(t), t ∈ Z+ (7.1)

wherew(t) is the disturbance. The robust MPC can be used if the disturbance is assumed to be

bounded by

w(t) ∈W (7.2)

whereW is a bounded convex polyhedral set. In practice, there is always uncertainty in the transmis-

sion, such as time-delay, transmission breakdown, and information errors. The DMPC approaches

in this thesis should be adapted to account for these problems. The difficulty is to achieve recursive

feasibility and stability under these situations.

7.2.3 Time-Varying Communication

This thesis only considers static and fixed networks. More complications arise when the topology of

the network is time-varying. Distributed control under time-varying network is a popular topic and

has applications in areas such as unmanned air vehicles(UAVs), formation control, and congestion

control in communication networks. The work of this thesis can be extended in the direction of time-

varying networks. As far as the author can see, conditions onthe connectivity of the time-varying

network is needed to ensure recursive feasibility and stability of the overall system. This may need

results in consensus and optimization in multi-agent time-varying network [85,86,96].
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[4] A.I. Zečeíc and D. D. Šiljak.Control of Complex Systems:Structural Constraints and Uncer-

tainty. Springer, 2010.

[5] M. Hovd and S. Skogestad. Sequential design of decentralized controllers. Automatica,

30(10):1601–1607, 1994.

[6] E. J. Davison and Ian J. Ferguson. The design of controllers for the multivariable robust

servomechanism problem using parameter optimization methods. IEEE Transactions on Au-

tomatic Control, 26(1):93–110, 1981.

[7] R. Scattolini and N. Schiavoni. A parameter optimization approach to the design of struc-

turally constrained regulators for discrete-time systems. International Journal of Control,

42(1):177–192, 1985.

[8] M. Ikeda, D. D. Šiljak, and D. E. White. Decentralized control with overlapping information

sets.Journal of Optimization Theory and Applications, 34(2):279–310, 1981.

[9] A. Iftar. Decentralized estimation and control with overlapping input, state, and output de-

composition.Automatica, 29(2):511–516, 1993.

[10] M. E. Sezer and D. D. Šiljak. Nestedε-decompositions and clustering of complex systems.

Automatica, 22(3):321–331, 1986.

[11] M. Hodžíc and D. D. Šiljak. Decentrahzed estimation and control withoverlapping informa-

tion sets.IEEE Transactions on Automatic Control, 31(1):83–86, 1986.

121



References 122

[12] N. R. Sandell, P. Varaiya, M. Athans, and M. G. Safonov. Survey of decentralized control

methods for large scale systems.IEEE Transactions on Automatic Control, 23(2):108–128,

1978.

[13] D. D. Šiljak. Decentralized control and computations:status and prospects.Annual Reviews

in Control, 20:131́lC141, 1996.
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