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Abstract

This thesis studies Distributed Model Predictive ContBlAPC) of a group of discrete-
time linear systems with and without coupled dynamics orstaits. Several prob-
lems are studied: systems with coupled dynamics and systgthsndependent dy-
namics but coupled constraints. Under these situatiomsratzed MPC may be com-
putationally inefficient and more efficient approaches asirdd. For a network of
dynamically-coupled linear systems, a decoupling styafegDMPC is proposed with
the use of time-varying terminal sets. The terminal setglatermined online at every
time step according to some update law, which ensures reediessibility and stability
of the approach. Time-varying terminal sets also result iesa conservative DMPC
formulation compared with most DMPC approaches. For a mwblinear systems
with coupled constraints, this thesis proposes a DMPC agprdoased on the dual
problem of the overall MPC optimization problem. This duadigem is then solved
by the Alternating Direction Multiplier Method (ADMM) in aisdtributed manner. A
stopping criterion is proposed that allows early termiatbf the ADMM process to
reduce the computational burden within each sampling tidreder mild assumptions,
the approach is guaranteed to converge to a small neightdrbiothe optimal of the
overall MPC optimization problem. The advantage of thisrapph is that it allows the
network to be sparsely connected. To further accelerateriliee computations of the
DMPC problem, a distributed fast dual gradient algorithral$® proposed in this thesis
with the use of finite-time consensus. The accelerated apprtakes fewer iterations
to terminate and thus has a faster convergence. Recursisiifedy and exponential
stability of the closed-loop system are also ensured. Sitimn results are provided to

show the performances of the proposed DMPC approaches.
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CHAPTER

Introduction

This thesis concerns the distributed control of constahimetworked systems under the model pre-
dictive control (MPC) framework. It focuses on the desigrDi$tributed Model Predictive Con-
trol(DMPC) controller for linear systems with and withowtupled dynamics or constraints. This

chapter provides an overview of DMPC.

1.1 Background

Control theory conventionally builds mathematical mod#lslynamical systems and designs con-
trollers in a centralized fashion. Many engineering systeoch as power, water distribution, traffic
and manufacturing systems consist of a group of interadirgsystems that may transmit infor-
mation among one another. The mathematical models of tlyssenss are huge and complex and
centralized control design may be difficult. This motivatesstudy of distributed control, where the
controller elements are distributed throughout the systathconnected using communication and
monitoring networks. The advantages of distributed cdrdre that each control element requires
only local information transmission and the overall cohpr@blem is converted into several smaller
problems that can be solved efficiently. The main issue isttieadesign of the local controllers has

to guarantee the stability and performance of the overatiesy.

Distributed control of networked systems is a popular recesearch topic. In networked systems,
the internal structure of the network can impose conssaimt the design of controllers arising
from communication limitations and time-delays. The eéithrature has been devoted to the study

of decentralized control strategies on large-scale systarhere each agent has only access to its
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own local measurements and their controllers operate imdepiendent fashion, se&-{i] and

the references therein. However, these strategies asbleelonly for systems with weak local
interaction. When strong local interaction appears, systeontrolled in a independent fashion
could have poor performance and instability. For this reaigads important to take into account the
information exchanges and the synchronization protoeolee control of networked systems. One
well-known control strategy for networked systems is the BB/ which is based on the standard

MPC framework.

MPC is a powerful control technology for the control of caasied systems. It determines the
current control by solving an online optimal control prahleln large-scale systems, the centralized
MPC can lead to a huge optimal control problem in high dimamsind often seen as unrealistic and
inefficient. For these reasons, a DMPC framework is moraaalsi in dealing with large-scale or

networked systems. In DMPC, the overall optimization peabis decoupled and each local system

solves a small local optimization problem with communigasi among the systems.

Several issues should be discussed and addressed in the DiMR@ing the computational effi-
ciency of the DMPC problem and the performance of the whaleesy. The overall DMPC problem
is a high-dimension problem that requires a huge amount afong A distributed implementation
is therefore preferred for the DMPC problem. However, thepbed dynamics and constraints of
systems can cause performance deterioration in a distdbotplementation of DMPC compared to
a centralized MPC, including feasibility and stabilityuss. The next section reviews some related

past works on the control of networked systems under MP Cdvaork.

1.2 Related Works

As discussed in the previous section, distributed consralni important strategy for large-scale or
networked systems. It aims to convert a large control prokitgo a bunch of smaller problems
where the control inputs can be computed very efficientlyis Bction begins with the review of
decentralized control and distributed control. It is thelioived by an overview of existing DMPC

approaches.
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1.2.1 Decentralized Control and Distributed Control

The research on the control of large-scale or networkecesysthas a long history. Due to the
high dimensionality and complexity, it is difficult to contrsuch systems with a centralized control
scheme. To illustrate the difficulty, an example is showniguFe 1.1, where the inputs of the two
coupled subsystems are determined by a central contréercontroller requires information from

both subsystems to produce the control action.

System

X1

uq

Subsystem 1

Central
controller @

uz

Subsystem 2
X2

Figure 1.1: Centralized control architecture

For large-scale systems with special structure, it is jpésdb implement decentralized control,
where the subsystems are decoupled and the controlleresiggdd in an independent fashidr4].
Figure 1.2 shows an example of decentralized control, where each stdmayis controlled by a

local controller and there is no interaction between the lweoal controllers. Various decentral-

System
X1
Uz
Controller 1 Subsystem 1
I .
Controller 2 Subsystem 2
X2

Figure 1.2: Decentralized control architecture

ized control methods have been developed to achieve thiéitgtabthe overall system with some
performance assurance. Among these methods, the classiuhgv-based control methods are
widely used []. Other methods include the sequential desigl parameter optimizations| 7],

and overlapping decompositions{L1]. Recent research on decentralized control can be found in
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the survey papers3[12-15]. The basis of decentralized control is to break down a givemtral
control problem into manageable subproblems which are webkly related to each other and can
be solved independently. To this end, the overall feedbaik matrix is usually restricted to be
block-diagonal without considering the weak coupling. &im® special structures, it is possible
to make small adjustment, e.g. the overlapping and the beddelock-diagonal (BBD) control
laws in [4,16]. A more general decentralized control design can be foaridi]. There are also
approaches available in§-21] that impose the structural constraints arising from thecstire of
the overall system. Many of these approaches have usedrliifesix Inequalities(LMIs) to de-
velop sufficient conditions for stability. The decentratizcontrol design works well for weakly
coupled networked systems. However, in systems where theections among subsystems are
strong, the overall performance can be affected if the éogplare ignored. Due to the strong local
connections, systems controlled in a decentralized fastwoild have poor performance and even
stability issues. This means that decentralized contnobisalways suitable for networked systems.
In order to circumvent the drawbacks of decentralized abntfistributed control is widely used
in networked systems where local subsystems are stronigliede Unlike decentralized control, it
makes use of the internal structure of the overall systerh information transmission among sub-
systems. Figuré.3presents the general distributed control architectur@revthe local controllers

of the subsystems transmit information with each othethédemand for good overall performance,

System
X1
Ui
Controller 1 Subsystem 1
I
Controller 2 Subsystem 2
X2

Figure 1.3: Distributed control architecture

distributed control becomes a useful strategy for netwibdgestems. However, it is difficult to im-
pose structural constraints in general systems directliyiasvill lead to computationally intractable
problems P2-24]. In general, the controller and the structural consteaare designed in a linear
fractional transformation (LFT) framework by solving a neminimizing problem subject to infor-

mation constraints. Such constraints lead to nonconvemggattion problems which, in most of the
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case, are intractable. 12%, 26], a sufficient condition on the structure, called quadrati@riance,
is introduced to produce a tractable optimization probl&his condition is extended ir2[/] by the
use of internal quadratic invariance, which is claimed tddss conservative. Although there are a
great number of works on distributed control with struckanstraints, this is still an open research

problem.

1.2.2 Overview of Distributed Model Predictive Control

MPC is typically a centralized optimal control strategy,which the current control action is ob-
tained by solving an online finite horizon optimization aohtproblem defined by the predicted
trajectory of the plant at each sampling time. The optini@aproblem yields an optimal control
sequence and the first control in this sequence is applidatplant. Itis widely used in constrained
systems with extensive applications to various industiiems. The essential theoretical issues in
MPC include the existence of solutions to optimization calrgroblems, characterization of optimal
solution, Lyapunov stability of the optimally controllegistem, and algorithms for the computation
of optimal feedback control and optimal control sequenses,P8-31]. To achieve recursive feasi-
bility and stability, it is quite common to incorporate baherminal cost and a terminal set in the
optimization control problem3y?-34]. A detailed review on the technical properties of MPC is-pro
vided in Sectior2.2. However, in large-scale or networked systems, it is urg@aland inefficient
to solve the high-dimensional overall MPC problem online.cifcumvent this problem, DMPC is
proposed. Its aim is to achieve the attractive features o€EMPa distributed implementation. An

overview of past DMPC approaches is provided below.

There is a wide set of DMPC approaches proposed in the literakcently {5, 35-41]. These
approaches can be considered as either fully connected Ddip@rtially connected DMPC de-
pending on the topology of the communication network. Thbsé allow local controllers to have
knowledge of the state of the whole network are called fubpreected DMPC4Z. However,
fully connected systems are rare in real situations. Mostesys only have partial information
and exchange information with their neighbours. Approadbesed on this assumption are called
partially connected DMPC. Fully connected DMPC usually better performance but requires

heavy communication while partially connected has som&opaance deterioration and requires
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less communication. Of course, the former can be considesedspecial case of the latter. In net-
worked systems with weakly coupled subsystems, partiahnected DMPC can be effective with

low communication requirement and negligible performagheterioration.

DMPC can also be categorized according to different chaiédlse performance index. Some ap-
proaches are called the non-cooperative DMPC while ther®tlie called cooperative DMPC. In
the non-cooperative DMPC, each local controller only ofés its own local performance index.
On the contrary, the cooperative DMPC focuses on the globdbpnance of the entire system
rather than the local performance of each system. When theysiems are completely uncoupled,
these two strategies can have the same performance. Irajgheir performances are significantly
different. The non-cooperative DMPC is often used in systerhere subsystems are dynamically
decoupled $5, 43-46]. It can also be used for dynamically coupled systems wHhegecbupled
terms are treated as disturbances to the dynamics of thiesiggtams 4 7—49] or replaced by some
presumed fixed trajectories(]. The cooperative DMPC is frequently used in systems whebe s
systems are coupled in some forms. This cooperative syratag first introduced byHl1] and
followed by [52-54]. Generally speaking, the cooperative DMPC has betteropadnce due to
the cooperation among subsystems. In the context of garogytfie], the non-cooperative DMPC
allows the subsystems to move towards Nash equilibritions[e, 57], while the cooperative DMPC

nonetheless seeks to achieve the Pareto optimal solutipad).

In terms of information exchange, there are two differeppiey of transmission protocols, namely
non-iterative DMPC and iterative DMPC. In the non-iteratdMPC, the information is transmitted
only once and each subsystem solves its MPC problem oncénvatith sampling time3[7, 50,
59,60]. Meanwhile, in the iterative DMPC, the information can bansmitted many times and
each subsystem need to solve its MPC problem repeatedlynvegtth sampling times[L, 61-64].
Usually, the iterative DMPC requires more computations emehmunications and its control is
closer to the optimal of the centralized MPC, and hence hiasriygerformance. Additionally, some
proper stopping criterion is needed in the iterative DMP@e Ppast works use either the maximal
number of iterationst1, 61, 67] or a centralized stopping criteriold{] to ensure that the solution
is within some accuracy. However, the maximal humber oattens is a loose condition and the

centralized stopping criterion is not desirable in a distiéd implementation.
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In almost all DMPC approaches, recursive feasibility amdbiity of the overall system should be
guaranteed. Like the centralized MPC, the terminal set®fithole networked system can be used
to ensure these properties. However, due to the coupledvdgaand constraints, it is difficult to
determine the terminal set. The most convenient choiceeofetminal set is the origin of the indi-
vidual subsystemd1,65]. Less conservative approachés$,[67] use an ellipsoidal set induced from
a block diagonal Lyapunov matrix. While being a great imgroent, restricting Lyapunov matrix
to be block-diagonal is still restrictive. To the best of tnghor's knowledge, further research is

needed for computation of the terminal set of DMPC withogh#icant performance deterioration.

1.3 Motivation

Based on the review in the previous section, DMPC is an inapbitontrol strategy for constrained
networked systems and its study has not been completelprexpl The following table presents a

summary of the existing DMPC approaches according to diffeclassification attributes.

Classification attributes DMPC approaches
Topology of the communication network fuI_Iy connected
partially connected
non-cooperative
cooperative
non-iterative
iterative

Performance index

Protocol of information exchange

Table 1.1: Summary of existing DMPC approaches

In the presence of coupled dynamics and constraints, isitalde to use cooperative and iterative
DMPC to avoid significant performance deterioration. Thissis considers both the fully connected
and patrtially connected networks. The focus is placed orptréally connected network as it

has lower communication cost and is more realistic for latme networked systems. In order
to facilitate the distributed implementation, the ternhisets should be determined in a distributed
manner. For iterative algorithms, some proper stoppirtgriohn is needed to terminate the algorithm
for solving the online MPC problem. A convenient choice af #iopping criterion is the maximal

number of iterations. However, this stopping criterion émservative in most of the cases. This
thesis proposes some tight stopping criterions underrdifteMPC formulations and they are done

in a distributed manner. The close-loop behaviour of the @MRIl also be investigated and the
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comparison will be made with the centralized MPC.

1.4 Scope and Organization of the Thesis

The thesis focuses on discrete time-invariant linear syst&ith coupled dynamics and linear cou-
pled constraints. Nonlinear systems and nonconvex canistrare beyond the scope of this thesis.

The rest of this thesis is organized as follows:

Chapter 2
This chapter gives a review of some theoretical result$ydiicg basic mathematical concepts, prop-

erties of the standard MPC, ADMM and some closely relatestieny DMPC approaches.

Chapter 3
This chapter discusses developments in the area of digdlmonsensus algorithms. A review of
consensus coordination problems and multi-agent consenimization is provided. A finite-time

consensus algorithm is also proposed in this chapter.

Chapter 4

This chapter proposes a decoupling strategy for DMPC fotwar& of dynamically-coupled linear
systems with uncoupled constraints. The proposed approse$ time-varying terminal sets to
ensure feasibility and stability of the overall system. tbisited implementations of this approach
are proposed under two different cases: the network is tullynected (or when a central collector

is used); the network is connected.

Chapter 5

This chapter proposes a DMPC approach for a family of disdigte linear systems with local
(uncoupled) and global (coupled) constraints. The prapaggroach is based on the dual problem
of a MPC optimization problem involving all systems, whichthen distributedly solved using
Alternating Direction Multiplier Method (ADMM). To improg the computational efficiency, this

approach also allows early termination of the ADMM processafinite-time consensus algorithm.

Chapter 6

This chapter proposes an accelerated DMPC approach foathe groblem in Chapter 5. Similarly,
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this accelerated approach is based on the dual problem ofesaloMPC optimization problem in-
volving all systems. However, this dual problem is then edidistributively based on the Nesterov-
accelerated-gradient algorithm. Under reasonable adsumspthe approach is able to produce a

suboptimal solution and converges faster than the apprioa€hapter 5 for the same accuracy.

Chapter 7
This chapter summarizes the main contributions of thisishexsd provides possible directions for

future work.



CHAPTER

Basic Concepts and Literature Review

This chapter reviews some well-known results that areedléd the proposed DMPC approaches
in this thesis. It begins with some related mathematicakdpamind, followed by a review on MPC
and some distributed algorithms to solve the MPC prolemalBinit also provides a detailed review

on existing DMPC approaches.

2.1 Mathematical Background

This section provides some related mathematical backgrdanluding basic properties of convex

sets and convex functions, and standard definitions in giagary.

2.1.1 Convex Sets and Convex Functions

Definition 2.1. A set C is convex if the line segment between any two pointdiégs @ C, i.e.,

0x1+ (1—0)x € C,Vx1,%2 € C,V0 € [0, 1] (2.2)

Givenxy,Xp, -+ , X, @ point is called a convex combinationaf xo, - - - , X, if it can be represented
as 01Xy + Bxo + -+ + Gx, whereby + 6, +---+6=1andg >0 foralli=12,--- k. Foran
arbitrary setSin R", the convex hull can be generated fr@using the convex combination.

Definition 2.2. The convex hull of S, denotednv S, is the set of all convex combinations of points

10
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inC, or,

convS={Oix; +Bxo+---+ 6% €C,6>0,Vi=12--- k6 +6+--+6=1} (2.2)

The following theorem can be derived from the definition & tdonvex hull.

Theorem 2.1. Let S be an arbitrary set iiR". Then,convS is the smallest convex set containing S

There are some special points in a convex set that are calteglve points, whose definition is
given as follows.
Definition 2.3. Given the convex setSR", a point pe S is called an extreme point of S, if it does

not lie in any open line segment joining two points of S.

In other words, for an extreme poiptof a convex se§, p = 6x; + (1— 0)xz with x3,x; € Sand

6 € (0,1) implies thatp = x; = Xo.

One special case of convex sets is represented by polylssisal
Definition 2.4. A set SC R"is a polyhedral set if it is the intersection of a finite numbgequalities

and inequalities, e.g. S {x€ R": Ax=b,Cx< d} with Ac R™".C € RP*" b ¢ RMand de RP.

It can be easily verified that a polyhedral set is convex. Anoeal polyhedral set is often called a
polytope. The convex hull of a finite set of points is a boundelyhedral set or polytope. Given a

set of points{vy, vy, - , W}, its convex hull can be represented as
k
conv{vy, Vo, -+ Wk} = {O1vi+ Vo + - + BV : 6 > 0,i=1,2,--- K, 216‘. =1} (2.3)
i=

Although the convex hull is a polyhedral set, it is generdalifficult to convert this convex hull
form into the standard expression in Definitidml. Both expressions can be used to represent a

polyhedral set.

With the properties of convex sets, the properties of cofuagtions are also given.
Definition 2.5. Let f: S— R", where S is a nonempty convex seRih The function f is convex

(concave) on S if

f(Ox+(1—0)y) < (=) OF(X)+(1—0)f(y), ¥xyeSVeel01] (2.4)
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The function f is strictly convex (concave) on S if

f(OXx+(1-0)y) < (>) 6f(x)+(1—0)f(y), VxyeSx#y,V0 e (0,1) (2.5)

From the definitions, it can be shown that a functiois concave if and only if- f is convex. For a

differentiable functionf on S it is convex if and only if

fly)> f(x)+0f(x)T(y—x), ¥xyeS (2.6)

If fis twice differentiable or§g, it is convex if and only if

0%f(x) =0, Vxe$S (2.7)

A stronger property is called strongly convex. For a diffgi@ble functionf on S it is strongly

convex if there exists a > 0 such that

(Of(y) - O0f(x)"(y—x) > olly—x|?, VYxyeS (2.8)

If fis twice differentiable or§, it is strongly convex if there exists@ > 0 such that

2f(x) = al, VxeS (2.9)

However, if the functionf is nondifferentiable, the subgradient can be defined.
Definition 2.6. Consider a convex function:S— R", where S is a nonempty convex seRih The

vector de R" is a subgradient of f at x S if

fly)>f(x)+d" (y—x), VYyeS (2.10)

The functionf is subdifferentiable on the convex <if it has a subgradient at anye S.
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2.1.2 Graph Theory

Some standard definitions in graph theory are given nexts fasis only considers undirected
graphes.

Definition 2.7. A graph G= (V,€) is a pair of a setV of vertices and a sef of edges. Every
element of is a pair of vertices inV, e.g. £ CV x V. For any two vertices, ¥V, € V, they are
adjacent if(vy,v,) € €.

Definition 2.8. A walk in the graph G= (V,€) is a sequence of verticeg, Vs, - ,Vk such that
(vi,viy1) € Eforalli e 7ZX1. A path is a walk that visits each vertex at most once, e.¢. W for
any i# j. A closed walk is a walk wherg v v. A circle is a closed path whei@y,v;) € £.
Definition 2.9. The graph G= (V, ) is connected if there exists a path for any two vertices in the
setV.

Definition 2.10. A tree is a connected graph with no cycles.

Definition 2.11. The graph G= (V,€) is fully or completely connected if every pair of vertices ar
adjacent, e.g€ =V x V.

Definition 2.12. A node is called the central or master node in a graph if it ifaadnt to all the

other vertices.

2.2 Model Predictive Control

Mode predictive control (MPC) or receding horizon conti®@HC) is an advanced control technol-
ogy for constrained systems, with extensive applicationgatious industries. A large number of
works [28-31] have been devoted on the theoretical properties of MPQ, asistability, closed-loop

performance, and robustness. The applications of MPC cémube in [68].

Consider the discrete-time linear system

X(t+1) = AX(t) +Bu(t), t € Z§ (2.11)

X(t) e X, u(t) eU, (2.12)

wherex € R" andu € R™ are the state and control of the system ahdndU are appropriate
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constraint sets orandu respectively. The objective of the control is to steer tlaesto the origin

with the constraint.12) being satisfied at every time instant.

2.2.1 The Optimal Control Problem

The general framework of model predictive control(MPC) arll) is to solve an online finite
horizon optimization problem (FHOP) having an objectivedition with constraints on the predicted
state and predicted control for each stage of the horizggther with some appropriate end stage

constraint. Let the predicted control sequence be

U = {Ugy, Uy, UN—1t (2.13)

whereN is the horizon length and; is theit" predicted control from the current time instant et

X denote the'" predicted state and the associated predicted state segisenc
X = {Xot> Xajts "+ » X[t} (2.14)
The cost function of MPC is defined by
N—1

VN(Xt,Ut): -ZOI(X”t’u”t)_{_If(XN‘t) (2.15)

wherel(-,-) andl¢(-) are some appropriate stage cost and terminal cost. The aipiradicted

control sequence is then obtained by solving the followiktP

P(x(t)) : In(x(t) = natinVN(xt,ut)
St Xap = AX + Buy, Xop = X(t),i € Z3 7, (2.16a)

Xi‘t E>(7ui|t EU7XN‘t E>(f (216b)
whereX; is some appropriate terminal set. Let the optimal contrqueace be

uEk = {Uata u>;_|ta toe >u;i]71‘t} (217)
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Then, the MPC control law is the first control
K(X(t)) = Ugy (2.18)

After the control law is applied to systerfi.( 1), the new stat&(t + 1) can be obtained at- 1 and

P(x(t+1)) is solved again witkx(t + 1). The closed-loop system becomes
X(t+1) = Ax(t) + Bk (X(t)) (2.19)

Figure2.1presents a conceptual picture of the standard MPC scheme.

Xoit  X1c XN-1]t

u(t x(t ‘ :
() x(t + 1) = Ax(t) + Bu(t) Q) Uoe e Un-1je NIt

T
past future

Prediction horizon N

MPC A

Figure 2.1: A conceptual picture of MPC

2.2.2 The Terminal Cost and Set

The terminal coslts (X) plays an important role in the closed-loop stability 8f1©) [29]. In order

to ensure the stability, the terminal cost should satisfy
I(X,kf(X))—If(X)+If(X+) < 0,Vx € X; (2.20)

wherek; (x) is some stabilizing local control law for systeth 11) andx™ = Ax+ Bk (x). The stage

cost can be defined by

L(x,u) =[x+ [lull (2.21)
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for some appropriate weighting matric®sR > 0. The stabilizing control law and the terminal cost

are typically chosen to be
ki(x) =Kx, 1(x) = ||x]|3 (2.22)
whereP satisfies
(A+BK)"P(A+BK) —P=< —(Q+KT'RK) (2.23)

for some stabilizing< of (A,B). In the standard MPC of linear systenffsandK are often obtained

from the Algebraic Riccatti equatio®§]

P=ATPA—ATPB(BT"PB+R) 1BTPA+Q (2.24)

K=—(B"PB+R) 'BTPA (2.25)

Some terminal seX; is often used to ensure recursive feasibility of MPC. It isally chosen to be
a constraint-admissible invariant set af1) with the control lawk (X), see the definition inZ9].
As shown in B2, 70], for linear systems, the maximal constraint-admissibil@iiant set exists and

it can be easily determined.

2.2.3 Recursive Feasibility and Stability

Recursive feasibility and stability are two important pedges of MPC. Recursive feasibility means
that the feasibility of?(x(t)) implies the feasibility ofP(x(t + 1)). The basic idea is to construct
a feasible solution at time+ 1 using the solution at time SupposeP(x(t)) is feasible at time

t and the optimal control sequence obtained flB((t)) is uf = {ug,, Uy, -+ ,Uy_q,} With the
associated state sequenge= {xat,let,--- ,x;”t}. Then, by applying the control law2(19), the
new state becomest + 1) = AX(t) + Bk (x(t)) = Xjy- The control sequenc{c_uj“, e ,u;l_l‘t} will

steenxt,, toxt

1 Xy € Xt Consider thakKs is a constraint-admissible invariant séf], a feasible control
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sequence t®(x(t + 1)) can be obtained by

GO yq = {00|t+1701\t+17“' 7UN—1\t+1} = {Uatr“ 7u>|il—1|t7u>|il‘t} (2.26)

whereuy,, = Kt (X;)- The associated state sequence is

)~(t+l = {)?O\tlea l]l|t+l> T a)zN|t+l} = {X?I(.\t’ T aXKl|t?XKl+l\t} (227)

wherex;m‘t = AX +BKs (x’lim). HenceP(x(t+1)) is feasible. The stability result can be obtained
by consideringly(X) as a Lyapunov function of the closed-loop systém 9. It can be found inZ9]

thatJy(x) is decreasing along any trajectory @f19) until the state reaches the origin.

Although MPC is an effective control strategy and enjoysdyperformance, the online compu-
tational burden increases significantly when the size ofpiteblem P(x) increases. Hence, for
large-scale systems, it is necessary to implement distétbcomputation for the online MPC prob-
lem. The rest of this chapter will review some well-knowntudited algorithms that are suitable

for solving the online MPC problem, including ADMM and gradt methods.

2.3 ADMM

The alternating direction method of multipliers (ADMM) wéisst proposed in [1-73] and it is
suitable for solving structured large-scale optimizatfpoblems. Due to its strong convergence
properties 4], it is widely used in the areas of image and signal proc@skifi], machine learn-
ing [7€6] and resource allocation/f]. The wide application of ADMM then motivates extensive
theoretical studies/f, 78-83]. This section discusses the standard ADMM formulatior,dbnver-

gence results and the implementation of ADMM on distribudptimization problems.
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2.3.1 Standard ADMM Algorithm

ADMM solves optimization problems in the form of

rQizn f(x)+9(2) (2.28a)
st. Ax+Bz=c (2.28b)
xeX,ze”Z (2.28c)

whereA € RP*" B e RP*™M ce RP, X ¢ R"andZ c R™ are given. f(x) andg(z) are assumed to

be convex and subdifferentiable. The augmented Lagrarigian
1
Lo(x2Y) = 1() +0(2) +Y" (Ax+Bz—c) + 5p[|Ax+Bz—c3 (2.29)

wherey € RP is the multiplier of the constrain2(28H andp > 0 is some penalty parameter. ADMM

consists of the following iterates

Xt = arg minLp (x ¥ (2.30a)
Z*1 = arg EQiZan(xk“,z,yk) (2.30b)
Y = K p(AXHE B2 —¢) (2.30c)

Note that a coordinator is needed to collect informatiomfsoandz to update the dual variable

Under some mild assumptions, ADMM converges to an optimiaitiem [74, 78].

The convergence rate of the ADMM algorithm is also studiethaliterature . For general convex
objective functions, the best known convergence ra@i5k) [ 79, 80]. Although this convergence
rate is not so appealing, ADMM converges to modest accuracy fast in practice. Note that it
may be still slow for ADMM to converge to high accuracy. Whae bbjective function is strongly

convey, it is possible to obtain the exponential convergeate B1,83).
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2.3.2 Distributed Implementation of ADMM

One important advantage of ADMM is that it can be used as at®&ft tool in parallel and dis-
tributed optimization. This section discusses severasygf problems that allows distributed im-
plementations of ADMM. The most typical problem is the onéwé shared common variable and

M separable objectives correspondingt@gents connected over a network

XeX

min % fi(x) (2.31)

whereX C R" is a nonempty closed convex set afd R" — RU {+} is a convex function
representing the local objective function known by ageniThis problem has received a lot of
attention in the literature/4, 84-87]. A detailed review on the consensus optimization will beegi
in Section3.2. This section discusses a distributed ADMM formulationha$ tproblem. Using the

node-wise constraints2 (31) can be rewritten as a consensus problem

M
min fi (X; 2.32a
L iZl i(%) ( )
st. x=zViezM (2.32b)

For some penaltp > 0, the augmented lagrange is

M

(D)2 00 = 5 (106) 43 0 -2)+ G —21°) (2:33)

wherey; is the dual variable for the constraint—z= 0. The ADMM iterates can be given in a

distributed manner

A4 = argmint (4) + (97 05— 29 + S1x 22 (2.342)
M
L = %IZ <>4‘+1 + 1/pyik) (2.34b)

Y = i p (et - A (2.34c)
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It can be seen from2(34h that a central node is needed to updatéience, this algorithm is not
fully distributed. Consider a more general consensus prol§ ]
M
min fi (% 2.35a
{XEXi} zcRn i; I(X|) ( )

st. i —Ez=0,i e ZM (2.35b)

whereX' C R" is the local constraint set of ageintg; € {0,1}"*" is some appropriate selection
matrix such that the local variabbe corresponds to some component of the global variabie

(2.35H. The augmented Lagrangian is

M
(D)2 00 = 3 (fix) ] (6~ B2 + Glx - E2f?) (2.36)

with p > 0. The ADMM iterates becomes

X1 —arg m)i(nfi )+ )T (% —EZ) +ngi —EZ|? (2.37a)
XEXi
N
2t = arg ";ini; (- TEZ+ %PHX.!(+1 —EiZ)%) (2.37b)
Y =y p (- B2 (2.37¢)

As shown in [/4], the update of each componentobnly requires the the local variables that are

coupled with this component i2(350. When allg; are equal tdy,, (2.37) becomesZ.34).

Both the two problems above are coupled via variables. ADMM also be extended to solve
problems that are coupled via constraints. Consider thelgmo with coupled constraints ard

blocks of variables{0, 89-91]

M

min. i;fi(xi) (2.382)
M

st. ZlAixi:c (2.38b)

X € X,i e zZM (2.38¢)

whereX; € R" is a nonempty closed convex set known by agefihe direct extension of ADMM
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yields the following iterates

M M
X =arg min fy(x) + (Y) " (Asx + Ai)(l!(_c)+B”A1X1+ AX—c|? (2.393)
X1E€Xy i= 2 i=
Xt =arg] m|nfI ZA. X A
+ Z AX —c) IIZA X+ A + Z AX—c|® (2.390)
j=1+1 j=1+1
p M-1
A = arg min f () ka+l+AMxM O+ Gl y AR Al (2399
i=
Y=yt p(ZAX!‘“ —¢) (2.39d)
i=

with p > 0 andy being the dual variable of the constra'iEtAixi — ¢ =0. The firstM optimization
problems are solved sequentially over Meagents andlt:hle dual variable is updated only when all
the new local variables are received. Although this dicecgxtension of ADMM is very effective

in solving many practical problem$§%, 93], the convergence is not guaranteed generéy and is
only guaranteed under some sufficient conditicts §4]. This algorithm is also known as Gauss-
Seidel ADMM [89], because blocks are updated sequentially. In order to lngtter parallelization,

Jacobian ADMM is proposed irdl]

M M

AR argxg(rll f2(x) + (Y) T (A + ;ij'j‘ —c)+ g A + ;AjXIj( —c|? (2.40a)
J#! J#

Y =y p( ZA X — (2.40Db)

According to the discussion above, ADMM can be regarded asagegul tool of parallel and dis-
tributed computation. However, further investigation éeded when it is implemented for the MPC
formulation including the design of the stopping criteridvioreover, in the presence of coupled con-
straints, the extended ADMM formulationg.89 and .40 need information from all the agents.
This will require a central node or a fully connected netwarkl hence is conservative. To circum-

vent this problem, this thesis will propose a consensueeha$MM approach that only requires a
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connected network.

2.4 Nestrov's Fast Gradient Method

This section discusses the Nestrov's fast gradient methddding its application to the ADMM

and distributed gradient formulations.

2.4.1 Gradient and Distributed Gradient Method

Consider a differentiable convex functibn R" — R, the gradient method takes the following iterate

to minimize f (x) subject to some closed convex constraidt X
XL = B[ — O f (X9)] (2.41)

whereP[:] denote the projection onto the sétandc > 0 is some constant step-size. We assume

that[1f (x) is Lipschitz continuous with parametelin X
D) = Of )| <Llx=yll, wxyeX (2.42)

Let f* =min{f(x) : xe X}. Providedc s sufficiently small, the gradient method will convergefto
and the number of iterations to reath) — f* < £ is O(1/¢). In addition, supposé(x) is strongly

convex, the gradient method converged tawith an exponential rate, see Chapter 2%#][

Supposef (x) is the sum oM differentiable and separable objective functions in thenfof (2.31).

The iterate in 2.41) can be rewritten as
M
L =R —c ZLD fi (X)) (2.43)
i=

This formulation admits a distributed implementatié,[36, 96], where each objective function is

known by an agent and thd agents are connected by a network. Consider the gégagh(V, &)
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with the weight matriW (k) = [wij (k)], the update rule at agenis

=R S wij (k)X — i ()] (2.44)
JeNU{i}

whereN; :={j e V:(i,]) € £} and{ax} is some proper step-size sequence. The detailed discussion

can be found in Sectio®.2 with other distributed optimization algorithms.

2.4.2 Centralized Fast Gradient Method

A fast gradient method was proposed ][to accelerate the standard gradient method. The method

consists of a extrapolation step and a gradient projectiem s

Y = X B (XK — T (2.45)

X = B y< — cOf (y)] (2.46)

wherex ! = x% and B € (0,1). B« is considered as the extrapolation factor. As shown in Secti
6.9 of [9€], with proper choice ofi, the iteration complexity to reach(x) — f* < g is O(1//€)

or the cost function has the convergence @t&/k?). The choice of is

6(1—6c1)

= 2.47
Bo= "5~ (2.47)
where{ 6} satisfiesty = 61 € (0,1], and
1-61 1 2
< = <—— k>0 2.48
7o cg %S (2.48)

One choice ofisthatf_1 =6, =1 andlgfk+1 = % for all k> 0. It can be concluded by induction
k+1 k

that 6 < 1% and ;1 < 6 for all k > 0. Another choice is thal_; = 1 and6 = % for all k> 0.

Other two Nesterov fast gradient methods were proposeédnlpd with the same convergence

rate. A unified framework of fast gradient methods can beddar{101]
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2.4.3 Centralized Fast ADMM

The Nesterov’s acceleration technique can also be adapfdd¥M to solve the following problem.
The work [LOZ] proposes a Nesterov-type acceleration for the proble@g( with the convergence
rateO(l/kZ) in the case whereX = R", Z = R™, andA andB are identity matrices. Another fast
ADMM is proposed in L0 to solve the same unconstrained problefn= R" andZ = R™) for
generalA andB with the convergence ra®(1/k? + 1/k). In [104], a fast linearized ADMM was
proposed with the convergence r@¢l/k? + 1/k) for the cost and)(l/ké + 1/k) for the equality
constraint. A better convergence r&¢l1/k?) can be obtained in the work (5] on the condition
that f (x) andg(z) are strongly convex. However, for weakly convex functionestart procedure is

needed to guaranteed the convergence of this algorithr).[

2.4.4 Distributed Fast Gradient Methods

This section reviews some distributed Nesterov-type gradnethods to solve problems in the form
of (2.31). In [10€4, the authors directly incorporated the Nesterov accefegdechnique with the
distributed gradient method discussed in Secfighl ConsiderX = R" and the grapl = (V,€)

with the fixed weight matrixV = [w;;], the update rule at agenis

X =3 wyyf—aOfiy) (2.49a)
JeNU{i}
yk +1 _ k+l_|_B( k+1 k) (249b)

wherea > 0 is some fixed step-size and the extrapolation factor isode¢ B = The conver-

= k+2
gence results of this algorithm is derived on the condititwas bothf;(x) andfi(x) are Lipschitz
continuous and the step-sizeshould be sufficiently small. For the constant step-siz¢his algo-
rithm does not converge to the exact optimal solution buy tmsome neighborhood of the optimal.
The convergence rate of the cosO&L/a + a /k? +1/k?). The smaller the step-sizeis, the closer
the solution is to the optimal. However, the convergencedpell be slow for smalla. In order

to approach the exact solution, a diminishing step-sizailshbe used, e.g.ax = for some

- k+1

c > 0. However, the convergence speed will become slow for aniining step-size. As shown

in [107, 109, the convergence rate for the diminishing step-size= Wcl is O(logk/k), which is
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slower than the one with the constant step-size. The widif] falso proposed a distributed Nesterov-
type gradient method using the constant step-size andlilésta achieveD(1/k) convergence rate

with additional iteration steps. InLD7], the authors proposed a consensus-based distributed Nes-
terov gradient method that uses consensus iterations inriee loop. The convergence rate of this
method isO(1/k?), which is the the best convergence rate that Nesterov'segrachethods can
achieve. However, the number of the inner-loop consensyss gfrows with the outer-loop index,
which results in the significant increase in the number asrimiation exchanges. This thesis aims

to overcome this problem by using a inner loop with fixed nundiesteps.

2.5 Distributed Model Predictive Control

This section reviews existing DMPC approaches for a grouintefacting systems, which can be

coupled in various forms, including dynamics, cost funt$i@nd constraints.

2.5.1 Coupled Dynamics

Dynamically coupled systems can be found in the varioussasaah as power system2[ 110,
process control system& 1] and supply chain systemd17. Several DMPC approaches have
been proposed irbp, 113 114] for dynamically coupled linear time-invariant systemshwio state
and input constraints. Conditions for stability of the @ddoop system are discussed in these
approaches.1[L5 presents a min-max DMPC approach for dynamically coupledliinear time-
invariant systems with state constraints, where each sysa¢m treats the neighboring system states

as disturbances. The DMPC problem for sysidgifformulated as

minmaxJ' (x,u',v') (2.50)

Xy v

whereJ'(X',u’,V) is the performance index' andu' are the predicted state and input sequences,
andV is the disturbance sequence. Note tandVv' are subject to some proper constraints. The
stability condition is obtained by imposing the predictdates bound as constraints in the DMPC
problem. Each system broadcasts the bounds to its neiglanorst the same time receives the

bound forv' from the neighbors. Using these bounds, all the systeme $hé/min-max problem
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(2.50 to optimize performance with respect to worst-case distnces. As the solutions obtained
from the approaches above are not necessary optimal, a Dk&it@ivork is proposed irb]l, 61]
for a set of coupled linear systems to seek the optimal swutConsideM coupled linear systems
with the following overall DMPC problem
min lei.]'(x',u',u”é') (2.51)
{ulis
M . . .
wherew; > 0, ¥ w; = 1, and the state and input sequence are subject to propdrasotss All the
i=1
systems work iteratively and cooperatively towards adhiggthe overall optimal solution o2(51).

At iteration p, for all i € ZM, theit" system solves the following local problem with all the other

systems holding constant
min lei\]'(x',u',ul#"p‘l) (2.52)
u' i=

whereu!#:P-1 denotes the solutions of the other systems at itergtierl. This process is repeated
until the stopping criterion is met. However, the system§bify 61] are coupled only through the
control inputs. In 7], a decentralized approach is presented for large-scalardigal processes
subject to input constraints. Ir87], the overall model of the process is decoupled into several
(possibly overlapping) smaller models which are used faingping the local problems. Suppose
the overall modelZ.11) is decoupled intd/ submodels. For alle ZM, definex  R™ as the vector
collecting a subset of the state components@raR™ as the vector collecting a subset of the input

components
X=WT"x, u=2z"u, (2.53)

whereW € R™" andz; € R™™ are the appropriate selection matrices Withw, = I, andz z; =

Im. By the definition o' in (2.53, the following expression can be obtained

X(t+1) =WTx(t +1) = WTAX(t) + W Bu(t) (2.54)
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An approximation of the overall modet (L1) is obtained by replacing/" A andW B in (2.54) with
WTANWT andWTBZZ respectively, therefore getting the reduced submodel

X(t41) = AX (t) +B'u(t) (2.55)

whereA' = WT ANWWT andB' = WTBZZT. Using this submodel, the DMPC can be designed in-
dividually according to the standard MPC. The limitationtbis approach is that it requires the
overall system and decoupled local systems to be open-gptotically stable. Another DMPC
approach is proposed if(] for dynamically coupled nonlinear systems that are suligmdepen-
dent input constraints. Irb])], all systems exchange the predicted trajectories withr ti@ghbors
and a consistency constraint is imposed on the MPC problezndare that the systems stay close
to the predicted trajectories. Each system then solvesshldPC problem similar tol15. More
recently, [i8,49] propose the use of tube-based methoil] to deal with the dynamical coupling
among systems. The dynamical coupling is treated as therllisice that lies inside some bounded

set. The dynamics of th& system is given by

X (t+1) = Al (t) + B'U' (t) +w(t), (2.56)

wt) =Y Alxit (2.57)
(t) j;i X! (t)

whereN; denotes the neighbors of systemUsing this model, the robust MPC can be designed
for each system by the tube-based methbt]. However, in most of the approaches above, the

optimality properties have not been established and thieetod the terminal set is conservative.

2.5.2 Coupled Cost Functions

Another interesting problem is where the systems are cdupteugh the cost functions. Its applica-
tion can be found in multi-agent coordination problems gsiaupling penalty functionsL[L7,118.

A DMPC approach for multi-vehicle formation stabilizatienproposed in43], where the systems
are only coupled in the cost functions with decoupled dymranaind constraints. For each system
i, the local cost function is given in the form af(x,x ', u') wherex™' denotes the states of the

neighbors of syster LetX denote the predicted trajectory of systerthe communication among
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systems is needed so that each system can broadcast theupreptimal control trajectory to its
neighbors. The stability can be obtained on the conditian tine actual trajectory is within some
pre-specified neighborhood of the previous optimal contepéctory. At each sampling time, each
system solves

mind (X, x", u') (2.58)

ul

subject to the constraint on the distance to the predictgédiory |xX —X'|| < & for some pre-
specifiedd > 0 and other standard constraints. #%]j the DMPC approach also allows the local
cost functions to be dependent on the state and the inpubte afdighbors. Besides the states, the

inputs are also coupled in the cost functions. The stageof@sistemi can be given by
Fd,u x T u ) = 1T, ul) + Zﬂ 1 (x uf X, ul) (2.59)
JEN

wherel' (X ,u') is the local cost antl! (x,u',xI,ul) is the coupled term. Stability is achieved with
a zero terminal constraint set. The DMPC approachtif {ises an invariant set as the terminal set
and introduces an easily verifiable constraint in each sysbeensure stability of the overall system.
Similar to [43], the states are coupled in the local cost functions whitdriputs are decoupled. The
stability is discussed under two cases. Each system is dstiogily stable in the disturbance-free
case and the state of each subsystem converges to someanhigtdb of the origin asymptotically
in the non-zero disturbance case. More recently, the worksd, 67, 119 study the DMPC for a
set of linear systems with both coupled dynamics and costifums. The cost functions are coupled
only by neighboring states. The local cost function of systés given byJ;(x",u'), wherex™ is
the predicted state sequence of all the neighbors and itsaodt' is the local predictive control
sequence. Then, the overall MPC problem of allltheystems can be given by
M .

{ mfﬂ}i;Ji (xM uh) (2.60)
subject to the state and input constraints. This problenuldhoe solved by all thé/ systems in
a cooperative and distributed manner. The varighlé u'} is considered as the local variable of

systemi. Note that these local variables can overlap. These wodgoge to formulate this problem
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into the form of .35 by introducing an overall consensus variable and thenesiblgy ADMM.
This idea can be also found in a more general framework of Disl-based solution of the DMPC
problem B&]. Recursive feasibility stability is guaranteed by intnothg time-varying ellipsoidal
sets induced from a block diagonal Lyapunov matrix. Howgetés conservative to use ellipsoidal

sets as the terminal set and restrict Lyapunov matrix to dekbtliagonal for linear systems.

2.5.3 Coupled Constraints

There are also problems that the systems are linked by egupbnstraints. A robust DMPC ap-
proach is proposed irf] of a set of dynamically decoupled linear systems with cedponstraints
and bounded disturbances. The DMPC problem is solved atssawpling time in a sequential pro-
cess where the local problems are solved in a fixed sequemteam system is optimized with
all others holding constant. L& denote the set of the variables of other systems that share th
same coupled constraints with systenUsing the informatiorii, the problem solved by systeim

is denoted by subproblemgiven by

minJ x,Z2'u) (2.61)
subject to the local constraints and coupled constrairits.variables of other systems in the coupled
constraints are fixed and only the local variable is free.&uee the constraint satisfaction, commu-
nication among systems is needed and each system is retpibesiadcast its most recent optimal
trajectory to its downstream system. The overall algoritifrine M systems is implemented at each
sampling time in the following sequence: Subproblem:1Subproblem 2— --- — Subproblem
M. To handle the bounded disturbance, the tightened metlombged in 20 is also used in this
formulation. By the use of the tube-based methbi], the work [L2(] is then extended in1[21]
where only one system is optimized at each sampling timeawhé other systems use the previous
control plan. The agents thus update in a sequefee p2,--- , Pk, Pk+1,- - }, to be chosen by the
designer. Supposp =i at timet, systemi is activated and it solve2 (61) with the information
7' received from the coupled systems. In order to obtain beiterall performance,dq] further
extends the DMPC approach ih41] to promote inter-agent cooperation by designing a coepera

tive set. All the systems within the cooperating set arenoigied jointly with a weighted sum of
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local cost functions. For each systéna cooperative s&; is designed and the weighted local cost

function is given by
H(u) + 20 aij Jj (@) (2.62)
j€Ci

whered! is an artificial variable and; j > 0 is the weight. The state sequences are dropped in the
cost function for notational simplicity. Léi denote the set of the artificial variables of system
When activated, systeirsolves the following problem

minJ(u)+ Y o Ji (@ (2.63)
(u') J_; jJ;(@%)

ut oG

subject to the local and coupled constraints, similar2z&@1). As a computational improvement
of [60], the work in [L27] introduces a parallel computation scheme by permittimgsimultaneous
optimizing of local problems at each time step while maimitag robust feasibility and stability. In
this approach, a sequence of sets are desigi€®(0), /°P{(1), .-, £°PY(k),°Pt(k+1),--- }, and all

the systems iri°?'(t) are activated at time However, in all these approaches, the optimality of the

overall system still remains unclear as the optimality prtips are not explicitly pursued.



CHAPTER

Consensus Algorithms and Finite-Time Consensus

Distributed coordination of multi-agent systems has rgmbiextensive attention in recent years and
its applications can be found in various areas, includingnarmed air vehicles(UAVs)1P3, au-
tonomous underwater vehicles (AUVSY4, 125, formation control .26,127], mobile robots 2§,
and congestion control in communication network&9, to name a few. In many circumstances,
a group of agents need to reach some common agreement. Treelsgoa/n as consensus prob-
lems and they can be addressed by designing consensughatgoor protocols where the agents
negotiate and exchange information with their neighbdrs0[131]. This chapter discusses the
formulation of consensus coordination problems and naglént optimization. A finite-time con-
sensus algorithm is also proposed in this chapter. The metofdV agents can be described as a
(connected) graps = (1, &) with the vertex set = {1,2,--- M} and edge sef C V x V. The set

of neighbors of thé!" agent is denoted by := {j € V: (i, j) € £} and let|N;| denote the number

of its neighbors. The neighbors can communicate and exeharegsages with each other.

3.1 Review of Consensus Coordination Problems

The objective of the consensus problems is to drive all tlmtsgto a common state for some given
initial state. Letx, denote the state of th& agent fori € ZM. Without loss of generalityx is
assumed to be scalar. The discussion can be easily extemdbd vector case. The consensus
condition is reached ik, = X = --- = Xy. Letx:= (Xg,%,---,%u) € RM be the overall state. The

consensus can also be expressexi-agl for somec € R.

31
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A continuous-time distributed consensus protocol is inftien of [130, 132, 133
Xi(t) = % aij (X (1) —%(t)) (3.1)
JEN

whereA = [g;] denotes the weighted adjacency matrixGovith &; > 0'if (i, j) € £ anda;; =0 if
(i,]) € £. The standard adjacency matrikis defined as

1 (i,j)e€&
ajj = ) 3.2)

0 (,j)¢ge

The idea of this protocol is to drive each system to the weigldverage state of its neighbors
by local information exchange. L& := diag{d;,dy,---,dv} denote the degree matrix &f with
d = y a;j foralli e ZM. The compact form of3.1) can be expressed as

JEN;

X(t) = —Lx(t) (3.3)

whereL = D — A is known as the Laplacian matrix &. From the choice o = 'ZN aj, it can

be seen thatl = 0. The stability of the consensus protocol is usually disedsj,liyl the use of
Gersgorin disk theorem37. A brief summary of the stability results is given here. A®wn

in [132,134], 0 is a simple eigenvalue @ is a strongly connected graph, where there is a directed
path connecting any two arbitrary nodes of the grapk iff a strongly connected graph, a consensus
can be reached asymptoticallyd0, 133). However, this is only a sufficient condition. The necegsar
and sufficient condition can be found ihd7. For an undirected connected gra@e.g. a;; = a;i
forall (i, j) € £), L is symmetric and. = 0. For such a graph, the asymptotic stability is guaranteed

and the convergence rate of the consensus protocol is dettioy the second smallest eigenvalue

of L, which is also known as the algebraic connectivityCdfl135)].

The discrete-time protocol 08(1) is given as

X(t+1) =x(t)+ V'Zw aj (xj(t) —x(t)) (3.4)
JeN;
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or, in the compact form as
X(t+1) =Wxt) (3.5)

whereW = | — yL andy is considered as the step-size. In gendhak: e Y+ and @.4) is considered
as the first-order approximation d.(). If y is less than the maximum degrAe= max{d;}, W

is a row stochastic honnegative matrix\&d = 1 andl — yL is nonnegative 13(]. The stability
analysis follows similar arguments as the continuous-tiage. IfG is a strongly connected graph

and 0< y < A, a consensus can be reached asymptotically. The detailsedamund in [.30,133].

3.2 Multi-Agent Consensus Optimization

Another problem arises in distributed coordination of rirafjent systems is the consensus optimiza-
tion problem, where the goal is to optimize the sum of locaéctive functions of all the agents in
the network. Consider the following unconstrained problem

min i fi(X) (3.6)

XeRN

where f; : R" — R is a convex function that is known locally to agernly. This problem was
originally presented ing4]. Existing methods to solve this type of problems includstriiuted
subgradient algorithms3f, 86, 96], dual averaging methods $6-13¢], the augmented Lagrangian
(AL) methods [139-147 and the ADMM algorithms [43-146). The dual averaging methods have
better performance than the subgradient algorithms fosmmoth problems, although theoretically
they have the same convergence rate. In general, the AL netlunverge faster than the standard
subgradient/gradient algorithms. Among all these algorgt, the ADMM algorithms demonstrates
fast convergence in many applications. This section reviswne well-known algorithms to solve

problems in the form of3.6).
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3.2.1 Distributed Subgradient Algorithms

The framework of distributed subgradient algorithms isvamas follows. The distributed sub-
gradient algorithms are designed i#5] 86, 96] based on time-varying networks and can be ap-
plied naturally to time-invariant networks. In particylgi5] studied the unconstrained optimization
and [B6,96] studied the constrained optimization. We start with theamstrained optimization. Let
xi(t) denote the state of agentAt each timet, agenti updates its state according to the following

iterative rule B5).
M
X(t+1) = Z Wij (t)Xj (t)—ai(t)di(t) (3.7)
=1

wherew;j(t) is some weight andr(t) > 0 is a stepsize and the vectdi(t) is a subgradient of
the local objectivefi(x) at x = x;(t). Hence, the update rule is the combination of the consensus
protocol and gradient descent. Letthe time-varying gragptidnoted bys(t) := (V,£(t),W(t)) with

W(t) := [w;j (t)]. Under some proper conditions @it) [85], the distributed subgradient algorithm
with bounded subgradients and constant step-gize (3.7) has an error 0D(a + %) in the cost
aftert iterations. Hence, when— oo, the solution obtained from the algorithr®.() has a constant
error ofO(a). For the optimizedr, ag-optimal solution can be obtained @(1/£2) steps. In order

to achieve the exact solution, a diminishing step-size lshio&l used.

This algorithm can also be extended to constrained probl&mspose;(t) is constrained to lie in a
nonempty closed convex s¥tC R" which is only known to agerit The constrained problem can

be formulated as

)EQIiRQ iﬁ fi(x) (3.8a)

M
st xe )X (3.8b)

i=1

The update rule of agenbecomes
M
X(t+1) =P [Z Wij (1)X; (t) — o (t)d; (t)] (3.9
=1

The convergence of the constrained distributed subgradigorithm can also be derived. The
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details of the convergence analysis can be foun@inde, 96).

3.2.2 Dual Averaging Methods

The problem in 8.6) can also be solved by the dual averaging method. In thisoseate present
the standard centralized dual averaging method, followedshdistributed implementation. This
method is proposed inlfi7] to solve general constrained convex problems. It is thaeraled
by [149 to regularized optimization problems. Consider the carsgtimization problem

min f(X) (3.10)

xeX

whereX C R" is some nonempty convex set ahd X — R is convex(possibly nonsmooth). The
dual averaging method needs a proximal functipnX — R with /(0) = 0 andy/(x) > O for all

x € X. Y is also assumed to be strongly convex and satisfies:

W(y) > px)+ 0T (X)(y—x) + %Hy— X||2,Vx,y € X (3.11)

The dual averaging method generates a sequence of it¢rétes(t) }; , according to the following

update rule

S(t+1) = s(t) + A ()d(t), (3.12)

Xt+1)=NY (st+1),a(t)) (3.13)

whereA (t) > 0, d(t) € df(x(t)), {a(t)}i, is a non-increasing sequence of positive stepsizes, and

the projection operatdﬂi’ (,-)is
NY (s, a) ;= argmin{s’ x+ ELp(x)} (3.14)
XA ' xeX a '

There are two strategies for choosiA¢t) [147]: 1) A(t) = 1 (simple averages); A(t) = W
(weighted averages), where the dual ndfmni|.. is defined ag|d||, := m;ax{de: IIX|| <1}. The
convergence results of the dual averaging method aboveecuhd in [L47]. The distributed dual

averaging method is presented ir3}, 13 to solve optimization problems in the form &.¢) with
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the constraink € X. We consider the time-invariant undirected connectedhg@p- (V,€) with
the symmetric doubly stochastic weight matk= [w;;]. Given the non-increasing sequerncg),

each agenitupdates its state according to the following rule

S(t+1) = Z‘Wiij(t)—Fdi(t), (3.15)
JEN;
X(t+1) =NY (st+1),a(t)) (3.16)
whered;(t) € 9 fi(x(t)). This update rule uses simple averages. SWads doubly stochastic, the

convergence rate of the distributed dual averaging methearitrolled by the second largest singular

value ofW. The explicit convergence rate is studied 113]] under various types of graphes.

3.2.3 Augmented Lagrangian Methods

Another important approach to solve the consensus optilnizaroblem of 8.6) is the Augmented
Lagrangian (AL) method, which plays an important role instoained optimizationl[49. In order

to use the AL method, for a grafgh= (V,€), (3.6) is reformulated asl[39-147]

M
i fi (% 3.17
omin i; i(%) (3.172)
st x=xj,(,]) €€ (3.17b)

wherex; is the local copy ok for agenti. The augmented Lagrangian is

M
Lo(X1,%2, -+, Xm, {Aij }) = Zi fi (%) +( ; ()\iJT(Xi —Xj)+ gHXi —Xsz) (3.18)
i= J)eE

4
with Ajj being the dual variable of the constraiit- x; = 0 and the penalty parameter> 0. The
standard AL method consist of the iterates

O ) = arg min Lp(x,%, - RYRYED) (3.19)

1,X2,°++ ;XM

A=A et ), (L) e € (3.20)
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The inner loop problem is usually solved by Jacobi/Gausdebalgorithms $4, 150 where the so-
lution {xX "1} is obtained in a distributed manner. In the Jacobi algor;time values okl obtained in
iterationt remain unchanged until all the agents complete iteratipd. Agenti uses the following

update rule.

X}+1:ar9 rQian(XtLXthif“ 7XtM7{Aitj }) (321)

A=A+ Y (L) e € (3.22)

However, in the Gauss-Seidel algorithm, the valueg afre updated as soon as agenbmplete

iterationt + 1, see, e.g

thJrl =arg r)‘(“linl-p(xlatha"' ’XtM>{)\Itj}) (323)
X% = argminlp (4 xe, - Xy, {A 1) (3-24)
Xt =arg r)pMian(x‘fl,th“, o {AG ) (3.25)
A=A+ p( ) (L)) e € (3.26)

From the two formulations above, the Jacobi algorithm cainfemented in parallel while the
Gauss-Seidel algorithm can only be implemented sequinti@he convergence of the two algo-
rithms is discussed inlp(. A more detailed review of the distributed AL methods canfdnend

in [141].

3.2.4 Distributed ADMM Algorithms

The distributed ADMM algorithms have faster convergencantthe methods mentioned above,
see [L43-146]. However, the ADMM algorithm mentioned in Secti@n3.2is based on the node-
wise formulation and is not fully distributed. This sectidiscusses a fully distributed ADMM

algorithm. Consider an undirected graph- (V, £), a reformulation of§.6) is needed to implement
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the distributed ADMM

M
min fi (% 3.27a
[} {2} i; i) (3.272)

st. X =1zj,X=2zj,(,]) €& (3.27b)

wherez; is an auxiliary edge-wise variable imposing the consensusteaint on edgéi, j) € £.

This formulation is equivalent t&(6) whenG is connected. The formulatio.27) can be rewritten

by

I’QIZI’] i fi(%) (3.28a)

st AX+Bz=0 (3.28b)

wherex is the vector that collects aflx; }, zis the vector that collect§z; }, andA andB are some
matrices that capture the gra@h see [46. Hence, the standard ADMM procedure can be applied
to this problem as discussed in Sectidl@.1 Let aj; and B denote the dual variables associated
with X = z; andx; = z;j in (3.27) respectively. Using the manipulations of distributed ABIM
[145,146,151, 157, the steps in the standard ADMM can be simplified by letting

K yk
X+ X
af + B =0,af = B,z = > L (3.29)
for all (i, j) € € andk. The simplified distributed ADMM is then given by
X+ —arg minfi(x) + (2 Z‘ ai‘} -p Z‘ (le(+le())TXi +p|Ni X |12 (3.30a)
X jG i jG i
al = af + D et X (i) e g (3.30b)

2

for some penalty parametgr> 0. The convergence of the distributed ADMM follows the same
arguments of the standard ADMM ¢, 80]. In addition, if fi(x) is strongly convex for all € ZM,

an exponential convergence rate can be deritéd][and the stopping criterion can be determined
using the convergence rate. However, for general convestifums, the best-known convergence rate

is O(1/k) and it is very conservative/fl]. For this reason, some tight stopping criterion is needed
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in the case of non-strongly convex functions.

3.3 Finite-Time Consensus

As most of the consensus algorithms above only produce dsgimponvergence, it is natural to
pursue the finite-time convergence to improve the perfooman the consensus algorithm. In prac-
tice, finite-time convergence is desirable as it providgai accuracy and better robustness against
uncertainties 153]. This section begins with a reviews of some finite-time eorssis algorithms,

followed by a proposed algorithm using the minimal polynahaif the weight matrix.

3.3.1 Review of Finite-Time Consensus Algorithms

Some finite-time consensus algorithms are reviewed beldw. iork in [L54] studies the applica-
tion of non-smooth gradient descent flows of a differengdihction for finite-time consensus. By
characterizing the asymptotic convergence propertiehasfe non-smooth gradient flows, suitable
conditions are identified for finite-time convergences9] proposes a finite-time consensus algo-
rithm for discrete-time systems with time-invariant topgies using the property of the minimal

polynomial of weight matrix. A summary of this algorithm isvgn below.

We consider the consensus dynamifst 1) = WxXt) of (3.5). Suppose the minimal polynomial of
Wisq(t) :=tT +mt" 4.+ rr_1t% with T being the degree. This means, from the definition of

the minimal polynomial,

W+ W' 4 /1 =0 (3.31)

From (3.5 and @.31), it can be easily verified that

X(T) =WTx(0) = — (W™ 14 4+ 75 _11)X(0) = —(ToX(T = 1) +--- + TH_1x(0))  (3.32)

Therefore, for alt > 0, x;(t) satisfies a linear difference equation of the form

X(T+t)+ 1% (T +t—1)+- + THr_1%(t) =0 (3.33)
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This also mean that(t) can always be computed from the $&t(0),x(1),---,x (T — 1)} for all

t > 0. Using the Z-transform of the linear difference equati®s®, it can be obtained that

[xia—l) o %(1) m(O)]S

lim xi(t) = (3.34)
[1 1 1]5
where
1
1+ 1o
S=| 14mim (3.35)

T-1
1+ 5 mw
(=0

In addition, [L55 also discusses the decentralized calculation of the nahpuolynomial. In [L5€],

a framework for finite-time consensus problems is presesuedorotocols are provided for both the
bidirectional interaction case and the unidirectionatiattion case. Although more works on finite-
time consensus can be found irb[/~161], this thesis uses the minimal polynomial to establish the

finite-consensus algorithm because of its convenience ienlisity.

3.3.2 The Proposed Finite-Time Consensus Algorithm

This section derives the finite-consensus algorithm witlisingZ transform. Consider the case of
a consensus variabe= (24,7, --- ,21) € RM over the networkG satisfying (A4.3) withZ being

the scalar variable associated with tHesystem. LeL (G) be the Laplacian matrix of the network:

Li = di, the degree of node Li j = —1if (i, ) € £ and 0 otherwise. A doubly stochastic matrix
W e RP"M — | _ 1 (G) for some O< y < m can be set up with spectral radius of 1 and the
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eigenvalue of 1 is simple With\/lﬁl being both its left and right eigenvectors. Then

—1 Zz = —11T 2(0) = lim () (3.36)
{—0
wherez(-) is the state of the consensus dynamics of
Z((+1) =Wz(0) (3.37)

The last equality of §.36) holds because(¢) = s, vi‘&¢2(0) [167] is the solution of 8.37)
wherevy; is theit" eigenvalue ofV and &(¢;) is the corresponding right (left) eigenvector. Since
vi|=1,&=0= 1 and|vi| <1foralli=2--- M, limy,,2(¢) = %11Tz(0). The expression
of (3.36) can be further simplified using(37) as

lim z(¢) = lim W'z(0) = (lim W")z(0)

{—00 Z?iol Z ZH:il
= W*)z(0) = 14 3.38
([ZO TW")Z(0) [ZO Tz(() (3.38)

for someT < M. Here, the first equality of3(38) follows from the closure property &~ via the
minimal polynomial oW (t7 + rpt™ 1+ + 11t = 0) and{1o,--- , 7v_1} can be obtained from
{m,---, 1} using standard results from functions of square matrit@g[ Such a representation
is guaranteed to exist since, in the worst case, the chasditigoolynomial becomes the minimal
polynomial withT = M and the closure property follows from the well-known Cakégmilton

principle.

. T-1
Combining §.36) and 3.38 means thaﬁwlz{\ilz'(O) = S 1Z(¢), or, considering each element of
=0

this vector equation,

v Zz [z 1,2 (0) (3.39)

This equation shows that th® system can obtain the value gfs M, Z(0) by computing its con-

sensus staté(¢) for £ =0,---,T — 1 and evaluating the right hand side 6f%9. Note that thisT
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steps ofZ is obtained in a distributed manner using ifleow of (3.37), or
Z(0+1)=W"Z(0)+ waiizi(e), iezZM (3.40)
jeN;

The finite-time consensus algorithm is summarized in tHeviehg algorithm

Algorithm 3.1: Finite-time algorithm

Input: Z(0),iezM
Output: y',iezZM
Initialization: setk =0,y = 107 (0), i € ZM;
repeat
for alli € ZM (in parallel)do
ObtainZ (k+ 1) from (3.40);
Y =Y+ TeaZ (k+1)
end for
k—k+1
until k=T-1

The above development is for the case whéig a scalar. In the case whete= R" is a vector with
z2c RM7, the development fronB(36) till (3.40 holds withW replaced byV © |, where® refers
the kronecker product of two matrices.

Remark 3.1. A special case that deserves mention is that when G is a foilpected graph. The
corresponding Laplacian matrix has all entries beind except the diagonals and all the diagonals
have values M- 1. Hence, [G) = M| —117. Supposg/= . ThenW=1 —yL(G) = | — (M| —
117) = 117, This means that the characteristic polynomial of WMs*(t — 1) = 0. Since I(G)

is symmetric, all Jordan blocks in the Jordan decompositibw is of order 1. Hence, the minimal
polynomial of W isft —1) =0, or T = 2 in (3.38. This implies that¥.39 can be simplified as
limy_,w2z(¢) = (lim;_,o W")2z(0) = W2(0) = 2(1).



CHAPTER

Distributed MPC of Constrained Linear Systems with

Time-Varying Terminal Sets

4.1 Introduction

This chapter considers the Distributed Model Predictivat@s (DMPC) of a network oM systems,

each of which is of the form

Al (t) + Bl (t), 4.1)
JEZ

Xty eX, ut)eU', i=1--- .M, tez" (4.2)

wherext € R, u € R™ are the state and input of tif system Al € R"*"i s the system dynamics
relatingx and its coupled states &f, X' andU' are the corresponding state and control constraints

respectively.

The study of DMPC of network system has received consideratibntion recently and several
approaches have been proposed for its solution,1s£8¢—40, 66]. One typical approach is to treat
the Alxl wherei # | as a disturbance to tHesystem, see4[7—49, 163. Others (Chapter 7 and
11 of [40] and [164]) propose the use of the dual decomposition approach toléndahd coupled
dynamics. In these approaches, appropriate terminal reamist and terminal costs are needed; the
choices of which are also active research areas. Cleardytr@nmost conservative choice of the
terminal constraint is the originb[, 63, 65]. Less conservative approaches include the use of a
static ellipsoidal terminal set$(), 52, 53] and a time-varying ellipsoidal set induced from a block

diagonal Lyapunov matrixdp, 67]. In the latter case, each diagonal block of the Lyapunowimat

43
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also determines the terminal cost function of the corregjmansystem. In cases whevkis small or
moderate, restricting Lyapunov matrix to be block-diadaaa be restrictive. This work focuses on
such systems and proposes an approach that differs fromewieps in several distinctive ways: the
Lyapunov matrix is non-diagonal (when it exists), the terahiset is time varying and moves within
the maximal constraint admissible invariant set of the aleystem. These features are possible
under appropriate assumptions and additional compugatidhe implementation of the proposed
approach is easiest when the network is fully connected @nvehcentral collector is used. When
this is not the case, additional linear programming (LP)Yfms are needed. Fortunately, these

computations can be speeded up significantly using prepsone

This work does not address the algorithmic details for theaerical determination of the non block-
diagonal Lyapunov matrix or the consensus algorithm of tMPQ problem as they are standard in

the literature, see for examplé( and [164].

The rest of the chapter is organized as follows. This seetims with the notations needed, followed
by the next section on the review of preliminary results ad additional notations for the DMPC
problem. Sectiod.3discusses the choice of the distributed stage and termosafunctions and the
decomposition of the terminal set, including the solutioha series of LP problems. The feasibility
and stability of the overall system is shown in Sectiof Section4.5describes preprocessing steps
that result in significant saving in the computations of thees of LP. Several numerical examples,
including one for which a diagonal Lyapunov matrix does naste are provided Sectiof.6. The

last section concludes the work. All proofs are given in thpemdices.

The notations used in this chapter are as follows. Non-iegaihd positive integer sets are indicated
by Z§ andZ™" respectively witlZV := {1,2,--- M} andZM := {L,L+1,--- M}, M >L,M,L €
Z§. Similarly, Rj andR™" refer respectively to the sets of non-negative and posite number.
In is ann x n identity matrix andint(-) refers to the interior of a set. Givem > 0 andX C R"
with 0 € int(X), oX = {ox:x € X}. The p-norm ofx € R" is ||x||p while ||x\|2Q = x"Qxfor Q >

0. For a square matri®, Q > (=)0 meansQ is positive definite (semi-definite). Given a set of
vectors,c € R",i € ZM, the collection of vectors(ct,c?,---,cM) also refers to the stack vector
of [(cHT(A)T---(cT]T € RM" for notational simplicity. LetQ c ZM be an index setQ| is its

cardinality andc® := {c' : i € Q} is the collection of vectors (or stacked vector)dfwith i €
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Q. Several representations of the states and controls adedieé(t), u'(t) refer to the state and
control of thei'" system at time; X, Ul are thek'" predicted state and control of tif8 system;
x=(x2, %2, xM), u= (u, 2, --- ,uM) are the collections of andu' over theM systems; boldface

X = (X, X, -+ X4), Ul = (up,ul,---,ul,_;) are the collections of thid predicted states and predicted
controls over the horizon (of length) for theith system; in situation where the reference to time is
neededy,, U, can be written ag,, anduj,. Hencex,, =X (t) andu,, = u'(t). Additional notations

are introduced as required in the text.

4.2 Preliminaries
Combining all theM systems of4.1), the overall system is

X(t+1) = AX(t) +Bu(t), t € Z{ (4.3)

X(t) e X, ut)eU (4.4)

wherex = (x!,x2,--- ,xM) e R", u= (u},u?,--- ,uM) € R™ are the overall states and controls of the
full system withn= S v n andm= ¥;.,m m. Also, A€ R™" is a block matrix with its(i, j)
block beingAll € R"*" andB € R™™Mis a block diagonal matrix with blockg?®, B2, --- ,BM1 and

B' € R"*M_ The constraint sets of andU are
X:i=XxX?x - x XM U:=U'xU%x... xUM (4.5)

The connection among the systems is static and can be rafgdszs a network with its structure

captured in a set of pairwise indices,
D:={(i,j) : AT #£0}, (4.6)

indicating adjacency relationship among tesystems. The connection among tesystems is
assumed to be arbitrary and, hen&és not symmetric. However, the scheme proposed in this work

requires the states of systérhe communicated to all its neighbors. For this reason, défiaeet
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of neighbors of, includingi, as
Qi:={j:(i,j)eDor(j,i)e D}U{i}. 4.7)

In general,|Qi| < M. When|Q;| =M for all i € ZM, the network is fully connected in the sense
that each system is a neighbor of every other system. SeMbe variables, sets and states can be

defined based of; and its complement:

ng, := Z) nj, ng =n—ng, Q:=2z"\Q, (4.8)
j[ger

X ={x:jeQleR™, X :={x:jeq}eRM. (4.9)
The variablesi, X, x% andx@ can be extracted fromandx respectively from
U:=Flu, x:=9x x&=Ex, x¥=E'x (4.10)

whereFi € {0,1}™*™ S € {0,1}"*", El € {0,1}™ " andE' € {0,1}""" are the appropriate

selection matrices. Fromd (10) and the fact tha(E")T(E')T]T is a permutation matrix,

X =
Al =SASHT, = X,
XQ E
-1 (4.11)
E' N
X= = Hix® + H
E XQ

whereE'H! = I, .E'H' = Iy, ,EH = 0,E'H' =0.
Assumptions of the system, needed in the sequel, are givew.be
A3.1. The setX' andU',i € ZM are polytopes and contain the origin in their respectiveriots.

A3.2. There is no delay or loss of information during communicati@tween systemand all its

neighbors.
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A3.3. MatricesA andB are known to all systems.

A3.4. The set ofM systems (or nodes) with edges defined HyY forms an undirected and con-

nected graph.

Both A3.1 and A3.2 are mild assumptions and are standardresgent in DMPC. Assumption
A3.3 is needed as the models of the overall system are usedinua¢e the size of the terminal set
at timet by systemi. Assumption A3.3 may be hard to be satisfied when the netwankists of
heterogeneous systems. But in the typical case where mgtsingy are similar or are members of
only a few distinctly different classes of system, A3.3 i$ astrong assumption. Assumption A3.4
defines the scope of the systems considered in this work.dSep3.4 is violated and the set Mdf
systems has 2 or more connected components, then the applesaribed hereafter can be applied

to them individually.

As a comparison for DMPC, a centralized MPC (CMPC) problemeisded. The CMPC assumes
that the system given byt (3) is solved via a single online finite horizon optimizatioroplem of

the form

Vi (X) = minViy(x,u) = muinNzll (%, U) + £ () (4.12a)
k=0

St X1 = A%+ BU, X € X, U €U, Xy € X¢, X0 =X, k€ Z§) *

whereN is the prediction horizon:= {Xp X1 --- Xn},U:={uUp Uz --- Uy_1} are the predicted states
and inputs respectivel)X andU are those given by4(5) andX; is an appropriate terminal set. In
this setting, CMPC is like a standard MPC problem without eogstraints introduced b®; and

has the stage and the terminal costs being
| (%, Ue) = [1%cl1d+ Uil T () =[xl (4.13)
for some appropriate matric€s R, P - 0 and a scalad > 0 that satisfy

(A+BK)"P(A+BK) — P < —(Q+KT'RK) —4l, (4.14)
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for some stabilizing<. In addition,|; : X; — Ry is defined on

Xi = {xeR"Gx<1 }. (4.15)

whereXs is chosen to be the maximal constraint-admissible invagah[29, 32] in the sense that

(A+BK)x e X; andKx € U for all x € X;.

4.3 Main Results

This section presents the choices for the stage, termirst$ @nd the terminal constraints for the
individual system in a DMPC setting. A few constraint setsmeeded foK, Q, R andP due to the

network structure introduced by.(7). These are

PI:=38pP9)T, Kl :=FK(@ST, QI :=3Q(9)T, (4.16)
Po:={PeR™:P=P" P>~0,Pl =0forall j ¢ Q;, i € ZM}, (4.17)
Kp:={KeR™": K =0forall j¢Q;, ieczZM}, (4.18)
Op:={QeR™:Q=Q",Q~0, Q/=0forall j ¢ Q;, i € ZM}, (4.19)

whereF', S are the selection matrices mentioned4ril().

4.3.1 Computations ofP and K

Definition 4.1. The network system of.) with network connection given by D @f.¢) is network
feedback stabilizable if there exists akiCp such that A- BK is Schur-stable.

In the most general case, the search fir@/Cp such that4.3) is network feedback stabilizable is a
difficult problem P3]. However, some special cases are solvable, using for deatihie method of
Alternate Direction Method of Multipliers (ADMM) 4] or others. For the problem at hand, 14

can be converted into a semidefinite constraint using Samptement and by letting/ = P~* and
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Y =KW as
w WA +YTBT w \'d
AW +BY W 0 0
=0 (4.20)
W 0 (Q+dl)™ O
Y 0 0 R1

Hence, the search fda€ € Kp becomes a bilinear semidefinite optimization problem irialdes

PK,W,Y as

P,E],\I/\TY_IOQ detW) +a/[K|)2 (4.21a)
s.t.PePp, KeKp; WandY satisfy(4.20) (4.21b)
WP=1,, Y = KW (4.21c)

wherea > 0 is a tradeoff parameter between the size®/adind ||K||. The use of|K||2 in (4.219
is to prevent values dP andK from becoming unacceptably large. The numerical solughdlf
such a problem using the method of ADMM is discussed in Secliaf [74] and will not be
discussed here, except that the initial value® &f,W,Y are obtained from the solution of another
semidefinite optimization problem that is similar ta41) but with a = 0 and withoutP € Pp and

K € Kp constraints.

4.3.2 Distributed Costs

The objective of the DMPC is to produce a performance as @sggossible to that of CMPC. For
this purpose, 1eQ%, P% ¢ R"e <N R ¢ R™M*M andQ%, P% R - 0 be the weighting matrices
for theit" system and define the stage and terminal costs as

Ii(XQi , ui) — (XQi )T QQiXQi + (Ui)T Ri Ui,

(4.22)
I () = TP jezM
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wherex® is given by ¢.9). Itis easy to verify that these choices are related b3 via (4.10) since

l(x,u) : = EMIi(in,ui): ZA[XT(Ei)TQQiEiXJr(ui)TRiui]

ieZ icZ
=x"( EM(Ei)TQQiEi)X+ u'diag{R*,R?,--- ,RM}u (4.23)
i€Z
()= 5 1) =xT ENTPYE")x 4.24
t(%) i;Mf( ) (i;w( ) ) (4.24)
The connection to4.13) is complete by letting
Q:= EM(Ei)TQQiEi, R:=diag{R},R?,--- ,RM} (4.25)

i€Z
and by decomposing the obtained from 4.21) using the following convex semidefinite optimiza-

tion problem:

min — Y log de(P%) (4.26a)
{PQi}iEZM i;’v‘
s.t. ZM(Ei)TPQiEi:P, P2~ 0, P = (P)T (4.26b)
i€Z

Finally, the connection to the cost functiof.{29 of the CMPC is made by lettingy, (x% ,u') :=

N-1 . . .
s 1(xd,ul) + 1k (xq') and noting that
k=0

VNOU) = 5 W0 u) = [k 0|'<x§i,u'k>+l'f<xﬁi>1
ez ez =
Nil . . .
:k;i ;wa%,umiez It ) (4.27)
(%, Ui) It (Xn)

The problem of 4.26) is convex and, hencdP® :i € ZM} exists if a feasible solution is available.

This condition, as well as the existence of solutionb®() is now assumed.

A3.5. System 4.3) is network feedback stabilizable, and solutions to proisig4.21) and @.26)

exist.
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4.3.3 The Decoupled Terminal Set

The choice ofX; of (4.15 is useful as it results in a large domain of attraction. Hesveits
decomposition tX} x X? x --- x XM is not obvious. Furthermore, the decomposition should be
such thatX} is defined byx® only. For this purpose, this work uses a time-varymk{t) that

changes its size and location while satisfying
XHt) x XZ(t) x - x XM(t) C Xz. (4.28)
for all t. Specifically,
Xi(t) := X (€ (),r' (1)) = {xe R : [x= (1) oo < T'(1)} (4.29)

is anco-norm ball of sizer'(t) > 0 centered at' (t) € R". (Other choices oX!(t) based on the 1
or 2— norm are possible but is not discussed to focus on the main)id&hile X} (t) ¢ R™, the
value ofc'(t) is determined by (t) and others, as shown in the sequel. Related resul$ ahd
Xt are given below.

Lemma 4.1. Given c= (¢!, ¢?,---,cM), r = (r},r2,... .rM) and X of (4.15 satisfying
Xt rh) x X2(2,r2) x - x XM(EM, i) ¢ Xq (4.30)

where X (c',r') is defined by4.29. Let g, be they" row of matrix Ge R-*" of (4.15. The
following properties hold:
(i) Suppose & Xt. The largesto-norm ball, centered at ¢, such that.80) holds iswhent=-.. =

rM = p(c) wherep : X; — R{ is a continuous concave function given by

p(0) = min(1-0c)/ gy 1. (4.31)

(ii) Define hy(r,c) := 5 r'l|lg,(S)"||l1 — 1+ g,c where Sis given by ¢.10. Condition ¢.30) holds
iczZM

if and only if

h,(r,c) <0, Vye Z"- (4.32)



4.3 Main Results 52

(i) Suppose o and z= (24, 2,--- ,2") with Z € X}(c',r") for all i € ZM are given. Let

dt =S (A1 +BKHZ iezM (4.33)

J€Qi
Then ¢ = (c**,c?F, .- M) € Xs.
Property (i) of the above lemma shows a procedure to deterthi@ maximalko-ball for a given
c € X; such that 4.28 and ¢.29 hold. The necessary and sufficient condition of propenjyigi
useful for the numerical determination ofind p that ensures4(28 and @.29. The last property

of (iii) is useful to ensure recursive feasibility of DMPChdse properties are needed in the overall

DMPC scheme described in the next three subsections.

4.3.4 Online DMPC Problem

Suppose[X}(t) :i € ZM} are known such that(29 and ¢.29 are satisfied, the collective online

DMPC optimization problem is

Vi(x(t))= _ min Vi (x4l (4.34a)
N (X(1) o iE;w ¢ )
St. X = 5 Al 4B, % e XF, Ul e U, X € Xk (b), (4.34b)
J€Q;
X=X (1), X = E'%, xy =E'xy, ke zZ)t iezM (4.34c)

wherex = (Xo, X1, ,Xn) With X = (¢, --- ,XM) is the overall predicted state and a global con-
sensus variable. The individual predicted state@'fis extracted fronX via (4.349 andx® =
{x3' 5%, Xy} is the collection of theN predicted states for the neighbors of iHesystem and
itself. The numerical solution to this problem via distttibd optimization has been suggested in
several works, see for example sections 5 and 74fgdnd others [65,166. In particular, the alter-
native direction method of multipliers(ADMM) is quite pdan, see Chapter 7 ofiP] and [L64], and
this work follows the same approach. ProblefrB¢) is solved distributively via iterative computa-
tions using ADMM by having each agent solving its local pesblin parallel. Implicit assumption

here is that the ADMM algorithm has converged within the slimgperiod. Suppose the optimal
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states and controls for systdrat timet are
X(t) == {Xio|t Xil\t Xil\l\t}7 u'(t) == {Uio|t ui1|t ui|\|71|t} (4.35)
The control law for syster applied at timé, is
u'(t) = . (4.36)

The next important step for the overall DMPC approach is tapate(c' (t 4 1),r' (t + 1)) of X}(t +

1) such that4.28 remains true at time+ 1.

4.3.5 Update ofc

The computation of (t + 1) is simple. For each systemletZ (t) = x,,. The value ofc'(t +1) is

then obtained from4.33 as
ct+1)= Z) (AT + BRI, (4.37)
JEQ

Consider the case where the network is fully connected ontraecollector is available. System
i computes'(t + 1) based on the above and sends its value to the central collebtoh will then
distribute it to all other systems (or broadcast to all nbagls in the case of fully connected network).
Hencec' (t + 1) for all i is known exactly. In the case where a central collector isonesent or the
network is not fully connectedg'(t + 1) is still updated using4.37). However, since system
does not have the knowledge of the falt + 1), a more conservative (t + 1) is needed to ensure

satisfaction of4.28).

4.3.6 Update ofr!

Like the previous section, the computationrt + 1) is considered in two different cases: the first
where there is a central collector (or fully connected nekyvand the second where there is not (or
not fully connected). In the first case(t + 1) is set to beo(c(t + 1)) for all i using property (i) of

Lemma4.1 Recall thatc(t + 1) is known to every system for this case. Obviously, it follcivat
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(4.29 holds forX}(c' (t+1),r' (t+1)).

When there is no central collecta¥|t + 1) should be set at a value such th&t2g) holds for all
possible (but unknown) values oft +1). Recall that systerh computesc'(t + 1) from (4.37); it
then sendgc (t + 1),c' (t),r'(t),Z(t)) to all its neighbors and receive the same from them. With
these exchanges,

W' (t) == (e (t+1), 27 (t),c™ (1), r (1))

(4.38)
= (c® (t+ 1), X, (1), r (1))

Njts ©

is now available to systeiin or stated differently@' (t) := {c@ (t + 1), 2% (t),c® (t),r% (t)} is NOT
available to systeni. Hence, the value of (t + 1) is set to be the smallest over all admissible
@'. This can be done by setting the valuertit + 1) as the solution of the following optimization

problem,O(wi), over the unknown variablés':

_ rgl?6 N p(cit gt (4.39a)

st. ¢t = EA(HIZ +H' ) (4.39b)
Ot —EAHZD +H D) (4.39¢)

12 -8 <fl, jeq (4.39d)
hy((r% (t),F%), (¢ (t),6%)) <0, Vyez" (4.39%)

wherep(-) of (4.393 is the function given by4.31) sincect = (c®+, &%), constraints 4.39H
(and similarly ¢.399) follows from ¢ (t +1) = Eic(t + 1) = El A z(t) = EVAc (HIZ% (t) + H' 2% (1))
from (4.10), z(t) = H'Z%(t) LHZ (t) from (4.11), andAx := A+ BK. Constraint 4.399 arises
from 21 € ij(éj,fj) following the condition of property (iii) of Lemmd.1 while (4.399 is from
property (i) of Lemma4.1 to ensure the satisfaction of.80) for (r(t),F®) and (c% (t),&%).
The objective function4.399 is a concave function af¥*. Hence, the computations 6 w') is
difficult. However, there are very effective ways to overeothis difficulty and they are discussed
in section4.5. Using themy! (t + 1) andO(w') has the following properties:

Lemma 4.2. Suppose{x} (t) :i € ZM} are known such that(29) is satisfied, the optimal solution

{(X'(t),u'(t)),i € ZM} is obtained from4.34) and dt +1) = (c'(t +1),c?(t +1),--- ,M(t + 1))
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with d(t + 1) obtained from 4.37). Let r'(t + 1) be the optimal solution of @') for all i € ZM.
Then Ht+1) < p(c(t+1)) foralli € ZM and

XHt4+1) x XZ(t4+1) x--- x XMt +1) € Xg (4.40)

The above describes the overall scheme of the DMPC excefitdanitial values ofX} (c'(0),r'(0))
for alli € ZM. In the absence of additional information, the initial wesican be chosen é0) = 0

andr'(0) = p(c(0)) for all i € ZM.

4.4 Feasibility and Stability of DMPC

The results presented in this section assume implicitly (A&.1)-(A3.5) hold. For example, they
are to ensure the existenceXf, P € Pp,K € Kp and O€ int(Xs).

Theorem 4.1. Suppose there exists a feasible solution of the DMPC probfeh34) at time t. Let
c'(t+1) be updated according t@H(37); r'(t 4 1) equalsp(c(t +1)) (when central collector is used
or network is fully connected) or equals the solution ¢t of (4.39) in the absence of a central
collector (or network is not fully connected). Systen®ywith u(t) = (u(t),u?(t),--- ,u™(t)) where
u'(t) is given by 4.36) has the following results: (i) there exists a feasible tiolito the DMPC

problem at time # 1; (i) tIi%rn X(t)=0 andJiLn c(t) =0.

The above asymptotic stability result can be strengthemékei presence of a central collector or a
fully connected network.

Theorem 4.2. Suppose ¢t + 1) is updated according to4(37) and rf(t +1) is p(c(t +1)). Then,
system4.3) with u(t) = (uk(t),u?(t),--- ,u™(t)) where U(t) given by ¢.36) is exponentially stable.
Remark 4.1. When there is no central collector or network is not fully seated, additional as-
sumption is needed to guarantee exponential convergenoe.s@ch assumption, similar in nature
to (4.50) in 4.D, is that there exist > 0 and t such that k(t) > ¢ for all t > t. and for all i € ZM.
While this condition may be hard to verify, numerical sintiola shows that it typically holds, see

Example | in Sectiod.6.
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4.5 Preprocessing to Speed up the LP Computations

This section is needed only when the network is not fully emted and there is no central collec-
tor. The difficulty of computingd(w') can be circumvented by noting thatc) = mincz (1 —
9,¢)/ll9y|l1 from (4.31). Hence, the solution dd(w') is given by the minimal objective value over
L linear programming (LP) problems where each LP corresptindse choice of € Z' and having

the form
1-g,C"

_min_
@i oyl

: (4.3%) — (4.3%)} (4.41)

with ¢" = (c‘“,éﬁi*) and &+ is given by ¢.399. Since each of thé LP has the same set of
constraints, this feature can be exploited to speed up Hrelséor the minimal over the LPs. The
simplest scheme is to use the optimal solution (includirgdptimizer, the active constraints and
the inverse of the matrix of the active constraints) of oneakRhe starting feasible point for the next
LP. This scheme, Scheme 1, avoids the computation for daliféasible point under the Simplex
or Active-set-based LP solvers. The speed up is more signifi€ some preprocessing is done.
Scheme 2 includes the idea of Scheme 1 and uses a specifinsedaesolve thé LPs. For this

purpose, leg, := Hgﬁ and define the neighbors of tie LP as
N?:={j:6]G>B} icz"

for some threshold valug < 1. This adjacency information together with thel Ps as nodes
(hereafter LP and nodes are used interchangeably) formsdireated graph. Depending on the
choice off3 used, the graph may have 1 or more connected componentslgbnigens to search for
the number of connected components are a well-known proiiéenaph theory 167]. In addition,
the path from one given starting node to every other node énsime connected component of
the graph can be expressed as a hierarchical 1rféd.[ Suppose there afd, components in the
graph and each is represented as a tree with the top nodedrearpitrary LP, see Figurel The
computations of thé& LPs proceed from the starting node of any one of the trees.nWidhe LP is
computed, the next LP to be solved is based on a breadth-fidgpth-first searching order of the

hierarchical tree. In addition, the optimal solutions oflAsolved LPs are considered to determine
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the starting solution of the next LP. Specifically, suppdseltP of @.41) has been solved for all
y € M c Z- with each optimal value given b%s—ly‘iy. Let the next node following the hierarchical
tree has indeX. The starting feasible solution for td_P is obtained from the solution of the LP

with index given by
1-g/cy .
197 11

argmin{ eny

Hence, such a scheme requires the storage of the optimaiossiand related information of all
solved LPs but it speeds up the overall computational timéhfeL LP significantly, see the next

section for computational details.

Component 1 Component N,

LTS

Figure 4.1: The hierarchical trees of the LPs

4.6 Numerical Results

This section serves two purposes: to demonstrate the pafare of the DMPC approach and the
effectiveness of the speed up scheme of sectidnThe first two examples (Examples | and II) are

four-system network witi! Al B' being

0 13 02 02 1
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(a) (b)

Figure 4.2: The networked system examples

and network configurations of Figurés2aand4.2b The constraints an¥' := {x € R"| [|x||» <

10}, U’ := {Uu € R™| ||u']|e < 1} with Q% =1 andR' = 0.01l, the values oK € Kp andP € Pp,

obtained from the solution ofi(21) with & = 0.01, a = 2 andx (0) are

—-0.6939 -1.056 00147 -0.1572 0 0 0 0
—0.1418 —-0.1820 -0.7452 -1.113 Q0671 -0.0888 00671 —0.0888
0 0 —0.0136 —-0.1555 —-0.7312 —-1.084 Q0072 —-0.1299

0 0 —0.0136 —0.1555 00072 —-0.1298 -0.7312 —-1.084
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4294 —-0.3814 -1.041 Q0087 0 0 0 0

—0.3814 2267 —0.2486 01484 0 0 0 0

—1.041 -0.2486 8062 —-0.8835 -1.171 -0.1419 -1.171 -0.1419

0.0087 01484 -0.8835 4362 —-0.0152 01890 -0.0152 01890

P= )
0 0 —-1.171 -0.0152 6306 —0.6004 —-0.8061 00229
0 0 —0.1419 01890 —-0.6004 3340 00229 02237
0 0 —-1.171 -—-0.0152 —-0.8061 00229 6306 —0.6004
0 0 —0.1419 01890 00229 02237 —0.6004 3340
—2.155 —0.4146 1.395 —0.9137
x'(0) = X2(0) = X3(0) = XH0) =
1.893 2.317 1.112 —1.983

with P obtained via 4.26). The rest of the parameters até:= 10, c¢'(0) = 0,r'(0) = 0.4033 for

i =1,2,3,4. The values of' (t) and||c (t)||> against are shown in Figuré.3aand4.3brespectively.
Figure 4.3balso includes values gi(c(t)) as a comparison. As showrf(t) = r3(t) = r(t) are
much larger tham'(t), a fact resulting from system 1 having fewer neighbors thtaers. To better
apprecaite this fact, the approach is applied to the netafdfigure4.2h Note that theQ,R,P,K and

Xt are the same as before wigttt = A'* = 0 but with 1 and 4 being neighbors of each other. The
values ofrl(t), r2(t), r3(t), r4(t) andp(c(t)) of the second network are shown in Figdrd. The
value ofrl(t) is now equal tqo(c(t)) for all t, verifying the effect of connectivity on the values of

r'(t). It also shows that the proposed approach is better suitawetoorks that are well connected.

A comparison of the performances of DMPC and CMPC over seebi@ces ofx(0) is given in

Table4.1. Obviously, both approaches use the same valued,BfK andP. The performance



4.6 Numerical Results 60

is measured by (x(0)) = E x(t)TQx(t) 4+ u(t) TRut) with x(t),u(t) being the true state and con-
t=0

T
trol of the system. This measure is approximatedzJ)Hx(t)HZQ + ||lu(t)||4 for some largeT. The
t=0
performances are denoted 8§,p-(X(0)) andJgypc(X(0)) respectively and its relative difference,
I )@ . 0 . .
Ay(x) = W % 100%. As can be seen in Tablel, J5pc(X(0)) is on average 5% higher

thanJg,pc(X(0)), an expected result due to the use of a more restrifesbmpared toxs.

0.5p

0.4

0.3

0.2r

0.1r

15

(@) (b)

Figure 4.3: The individual terminal sets

0.447
0.42r
0.4}

0.381

‘#7"(//)#2(")1"3(//)7“(")1/7(6(/')) ‘
0.361

0.34f

0% R i

Figure 4.4: r(t),r2(t),r3(t),r4(t), andp(c(t)) of the second network

Xt X x3 xt Impc®) | Bupc®) | A3(X)(%)
Taos | | | osir 1113 “ees | | 6013 | se0s | 357
3toco | | | Toaa | | | -G6ase | | | o7s43 | | 1059 | 1046 | 126
] | o] [3m8] [ 9%8] we | wo | o
“33%01 | | | Toase | | | ‘ideso | | | oarse | | 401 | 1247 | 124
| |2 ]| o] | ]| e | e | om
“T306o | | | _ooas | | | —Gavar | | | 25ees | | 7632 | 7187 | 620

Table 4.1: The cost difference of DMPC and CMPC over various choices®fititial statex(0).

Several works in the literatures], 39, 66] use a block-diagondP matrix for the convenience of a

naturally decoupled terminal cost. For example, itAgerminal set in the work oféd] is of the
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form &' := {x : ||¥'||2; <r'} with r' is determined by a separate semidefinite programming proble
The choice of a block-diagon#& is obviously conservative since it may not satisfy the Lyapu
equation of 4.14), see Example Il. Even if it exists, the performance of DMP&y1be compromised
due to the restricted choices @andR. The use of block-diagona® typically results in smaller
terminal sets, compared to the proposed approach. A cosgpani the terminal sets ait= 0 using

the approach ofd6] and the proposed approach is shown in Figuie

XPN j) A —

(a) Subsystem 1 (b) Subsystem 2
& (\ & /

A\’/ L X} \\\ a /

(c) Subsystem 3 (d) Subsystem 4

Figure 4.5: The comparison of terminal set§' refers to terminal set induced by a diagoRabhile
X} is that given by the proposed approach.

Example Il has the network connection of Figdr@band theA, B matrices as given below. Note
that no block-diagonaP matrix exists that satisfiest(14) for this example wherQ% = |, and
R = 0.01l. Also, the values oK andP obtained from 4.21) with a = 2 are also indicated below.

08 025 -015 05 0.4 -05 1
All_ ALZ_ Al Bl—
-03 08 02 -05 -005 -01 1
-01 03 09 -04 -035 -02 -015 025 1
A2 A2 AZ3_ A4 B2—
05 015 01 09 035 -0.01 -05 -02 1
-04 -04 07 -01 -03 -03 1
A32_ AP A B =
-02 -02 -04 075 03 -01 1
0.3 04 01 02 -015 05 11 04 1
AM_ A2 AR A% Bt =
-0.03 03 04 05 0.1 0.5 -02 11 1
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_ —1.051 Q03137 03854 —0.6973 0 0 —0.8072 08598 _
< —0.7607 02718 —0.7058 —0.6800 07344 —-0.07826 —0.005887 —0.06570]
0 0 09479 —-0.3783 -1.134 04131 03263 05520
0.3240 —-0.4981 -0.0004079 -0.4808 -0.2830 -0.9680 —0.5707 —0.6772
_ 1165 —-4939 -6083 8710 0 0 7697 —74.88_
—4939 2689 2542  —3925 0 0 —-3179 3126
—6083 2542 1028 -9358 -8961 -—-1321 -3256 7727
o 8710 3925 -—-9358 1086 6445 1102 4894 8206
0 0 —89.61 6445 1295 1417 -1782 —4930
0 0 —-1321 1102 1417 9716 1323 —-7.280
7697 3179 -—-3256 4894 1782 1323 6775 —4859
_—74488 3126 7727 —-8206 —4930 -—-7.280 —4859 7528

The rest of this section illustrates the computation©@h') via two examples (Examples IIl and
IV). Values ofn,m, L, M and other parameters are given in Tahl2 The variablesy, nlS ,nk refer to

number of variables, number of inequality and equality taiists respectively fob(w?). Example
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Il uses the samAll as those in Example | while those of Example IV are:

—0.2568 04331 0 04071
) —0.1495 002262 04013 0 . 1
Al — ,B' =
0 0 09654 —-0.7708 1
0 0 06133 03297
0 0 0 0

~ |-01780 0 0 0
AIJ - 7j 7& I
0 02308 O 0

0 0 0 02311

Both examples have the same constraint set as Example Q#ite= | andR' = 0.01l. The adja-
cency matrices of the Examples Il and IV are the same andearetdd by{a;; } with a;; = 0 for all

(i, ]) except for

Ifl1<i<M, g =1forj=i-1i,i+1;
Ifi=1a;=1 forj=ii+1;

Ifi=M, a; =1 forj=i-1,.

For comparison purposes, the CPU time©o66v?) at timet = 0 for the various schemes are shown.
Table4.3 showsTg, T, T, T2 and their ratios foO(w?). Specifically, these variables are the CPU
times of a single LP (starting from scratch),independently LPsl. LPs using Scheme 1, and
LPs using Scheme 2 respectively. In Scheme 2, the choiceeaight LP to solve is based on the
breadth-first search method (see Sectidf). The LPs are solved by Clp.§9. As shown, the
timings of scheme 1 are about 21 - 42% time of Thevhile Scheme 2 is about 8 - 12% of. In
general, scheme 2 is about-420 times the time needed for a single LP. All numerical experits

are done on a Windows 7 PC with an Intel Core i5-3570 procemsni8GB memory.
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Examplel n [ m|M | L | B N |nl|ni |nt
" 20110/ 10| 44 |0.2| 4 [40]| 76 | 2
\Y] 40|10 10| 136| 0.3 36| 72| 200| 4

Table 4.2: Parameters of Examples Il and IV

Example Ts(s) T/Ts(s) | TH/Ts | T2/Ts
I 9.017 x 10°* 44 9.272| 3.853
v 2532x 103 136 57.32| 17.467

Table 4.3: CPU times ofO(w?) using different schemes

4.7 Conclusions

This work proposes a less conservative approach to the DM#&t@gm using two distinct features:
the terminal cost function that depends on a Lyapunov métax conforms to the structural con-
straint imposed by the network; and a terminal set that iginbtl from the maximal constraint ad-
missible invariant set of the overall system. More exadtg approach determines a time-varying
terminal set that moves within the maximal constraint adibis invariant set, changing in both size
and location at each time. When the network is fully conrgbctea central collector is used, the
terminal set can be easily computed and local exponenshlligy is achieved. If not, the compu-
tations of the terminal set require a series of linear prnognéng (LP) problems; the computations
of which can be speeded up, via a preprocessing step, schthaipproach is suitable for online

computations.
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4.A Proof of Lemma4.l:

(i) The vertices of the sefx € R": |[x— |l < B} are{c+pvi: i =1,2,3,---,2"} wherey; €
{—1,1}"1. Hence, this set lies insid¢ if and only if G(c+ Bvi) < 1, or BG(+Vv;) <1, — Gcfor
alli=1,23,---,2". SincegyVi < ||gy|/1 for all +v; whereg, is the y*" row of G, and there exists

somey; such thagy,vi = ||gy||1, it follows that

B<(1-g,0)/llgyllaVyeZ- (4.42)

which implies that the maximum value gfis min 7 (1—gy,c)/[g[2. Hence, setting® =r? =
=rM = B and the fact thafx € R": ||x— || < B} = XF(ct, 1Y) x -+ x XM(cM, rM) implies that
(4.28 and @.29 hold. Thatp(c) is a concave function follows from the fact that it is the geiise

minimum ofL affine functions ot.

(ii) Like (i), X}(c',r") C X; if and only if all its vertices are insidi;. The vertices oK} (c',r') are
{c £rlv, ji =1,2,3,---,2" wherevj, € {-1,1}"*1. Sincec' andv;, aren;-dimensional vectors,
they can be expressed mslimensional vectors usin¢S)T whereS is that given by 4.10. In

addition,
(ct+rivy,- ,MEMy;,) = Z\A(S')T(ci +rly;)

ieZ
Hence,

G (¢ +r'v;) <1, Vji=1,2,---,2" (4.43)
i€z

The y'" row of the above inequality is

igyZM(S rvj, <1—gy( )=1-g, Vjj=12-.. 2"
i€Z i€Z (4.44)

& EMrigiy(ivmglfgyc Vii=1,2,--,2"
ieZ
whereg), :=g,(S)". Consider thag),(+v;) < ||g} 1 for eachi, the following inequality is a

sufficient condition of 4.44)

zM r'llgylls < 1-gyc (4.45)

ieZ
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Noting that ¢.44) holds for all j; = 1,2,--- ,2". However, one of thes€"2inequalities is the most
binding and that happens whep is such tha’giy(ivji) = Hgiyul for eachi. If this inequality holds,
all jj=1,2,---,2"% inequalities hold. Hence4(45) is also a necessary condition @f44). Finally,

collecting over all rows of G, the necessary and sufficient condition 6#(3 becomes

> r'lloy(S)"llh < 1-gyc, Vyez" (4.46)

ieZ

(iii) The property holds sinc¥; is a constraint admissible invariant set for system= Acx,u = Kx.

4.B Proof of Lemma4.2

Since @.39H-(4.399 contains all admissible solutions @, and the fact that( 393 is the minimal

value of all admissibl&J,

ft+1):=  min  {p(c®(t+1),6%"): (43%)— (4.3%) are satisfied.
et 2% eQi pOi

< p(c(t+1),c%(t+1)) = p(c(t +1)),

wherec(t + 1) = (¢ (t+ 1),c%(t + 1)) is the true value of at timet + 1. This result implies that
XE(C (t+12),r'(t+1)) c Xi(c'(t+1),p(c(t +1)). This, together with property (i) of Lemméal
implies that ¢.40 holds.O

4.C Proof of Theorem4.1:

The proof follows standard reasoning and is therefore stijrSince ¢@.34) is a convex quadratic
programming problemVy, is strictly convex andJ andX satisfy Assumption A3.1, convergence to
the optimal solution via distributed ADMM is knowr7{]. Let the optimal states and controls of

(4.34) at timet be (x{)‘t, ,xiNlt) and(u{)‘t, ,uiNfl‘t) respectively and choose the feasible state
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and control{® (t +1),0'(t + 1) }iczm as

Ko - =X Ryt = X R = Z) (A1 +BK )X Nt (4.47)
1S

| oy ~i . ijyl
u0|t+1 U1|t7 » Unge = Unege Unegea = ) KOXG, (4.48)
1S

The last assignment oft(47) means that'(t + 1) = &, following (4.37) andZ(t) = This

Njt-+1 N\t

choice of (C'(t +1),r'(t + 1)) implies that{X}(c' (t + 1),r'(t + 1)) };cym satisfy @.40 following

Lemma4.2. In addition, u" 1 €U becausel. e U; andx

-1t 1 € X for the same reason. The

jt+
Z Kiix]

jlt+

last controlu® € U; becaus&x € U for all x € X; and (x5, , X2, - N‘t) € Xt

N—1t+1 — Nt Nt XN

sincex.

Nt € Xk(t) and that(xo‘t, R N|t) is optimal at timet. Hence,{X (t + 1), 0 (t + 1) };czm of

(4.47) and @.498) is feasible to4.34) at timet + 1.

(i) SinceV(x(t + 1)) is the optimal solution 0f4.34) while {¥ (t +1),0'(t + 1)}, is a feasible
N—-1 . ) .
solution from (i), it follows that/; (x(t +1)) < &M [kzol'(iﬁ{H, Ohge 1) +14 (K1) Summing this

expression for timé andt + 1 yields

WD) =) < § IR g1 Ohoed) + 1 RG] = 310G o) 110

i€z
= I (Rn—1it+15 On—gpe1) + 1 (K1) — 1 (Xope Yoie) — T Odwge)

—1 (Xort> Ugit) + Xt (A PA — P+ Q+ KTRK) e < —I (Xgt, Uoir) — Sl xe 13 (4.49)

where the last inequality comes fror {4). The above inequality implies th@V(x(t))} is a non-
increasing sequence bounded from below by 0. Hep\MGgx(t)) } converges. This and the bounded
from below property imply tha&ligh(mh Ugt) =0, tlm X(t)=0 andtirL\HxN‘t |2 = 0. Hence, the ori-
gin of the closed-loop DMPC system is asymptotical stabifirom @.37), tIi%rr()o (Xt |2 = 0 implies

limc(t) =0.0

t—o

4.D Proof of Theorem4.2

Assumption (A3.2) implies that @ int(X¢) which implies thatp(0) > 0 and Oc int(X#(0,p(0)) x
X2(0,p(0)) x --- x XM(0,p(0))). This, together witke(t) — O from (ii) of Theorenv.1and property
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(i) of Lemma4.1, implies that there exists a timesuch that
p(c(t)) > & and Oc int(X}H(t) x XZ(t) x --- x XM(t)) forall t >t (4.50)

for some uniforme > 0. Leto :=sup{o : aX; C X}(t) x X3(t) x --- x XM(t)}. Note thatoX is

an invariant set for systemit + 1) = (A+ BK)x(t),x(t) € X andKx(t) € U.

From (ii) of Theorem¥.1, tIim X(t) = 0 implies that there exist$ such thai(t) € oX; for allt >t'.
—»00

Hereafter, consider all> maxt,t’}. Whenx(t) € oXs,

Y iy ]
Uy = K"x

| ) £=0,- ,N—1
J€L

is a feasible control for systenfor the online DMPC problem for alle ZM; including wher? = N
sincea X C X{(t) x XF(t) x --- x X}(t). Using this choice ot }"y for all i € ZV and the corre-
spondingx';‘t, the overall cost function from4(27) can be shown to beé(x(t)) = x(t)TPx(t) where
P= Nil(Aﬁ)T (Q+KTRK)AL + (AR)TPAY. The optimal cost from the online DMPC\§ (x(t)) and
Vg,‘(x()(T)CJ) <V(x(t)) = [Ix(t)[|s- This, together, with the fact thagj(x(t)) > I(x(t),u(t)) > [x(t)[|3
means that there exists@> B > 0 such thatB|[x(t)|[3 < [Ix(t)[[4 < Wi (x(t)) < Blx(t)|[3 From
(4.49, Vg (x(t+1)) =V (x(1)) < —=I(x(t),u(t)) < —Hx(t)Hé < —BJIx(t)||3 and the above inequality
implies

VR(X(t+ 1)) =V (x()) < =BIx(1)]13 < —awi(x(t)

wherea = Q/E < 1. Hence,V(x(t +1)) < (1—a)V(x(t)), which implies [|x(t)[|3 < (1 -
a)t~t||x(f)||3 for all t > f, wheref := max{{,t'} + 1. This shows local exponential convergence
of x(t) to the origin. This result can be extended toxat the domain of attraction following (A3.1),

see for exampleZd] and [17(]. O



CHAPTER

Distributed Model Predictive Control of Linear

Discrete-Time Systems with Coupled Constraints

5.1 Introduction

This chapter considers the Distributed Model Predictivat@s (DMPC) of M discrete-time linear

dynamical systems, each of which is of the form

X(t+1)=AX(t)+BU(t), (5.1)

X(t)ex, ut) el i=1--- .M (5.2)

and all of them has to satisfy a coupled/global constrainheform

g (WX (1) + Wiu'(t)) <1p,  forallt (5.3)

wherex' U are the states and controls of tif& system respectively and' ¢ R™ U' ¢ R™ are
the corresponding constraint sets; the matrigésc RP*" and W}, € RP*™ define the coupled

constraints for alM systems andlis the p-vector of all ones.

The study of DMPC is an active area of researth B5, 38,40, 46] and one popular area is when
the systems are dynamically couple®[49, 66,88, 163 171]. However, these approaches are not
suitable for the problem above due to the complicationsrayifom (5.3). To the best of our
knowledge, DMPC approaches far.{)-(5.3) are somewhat limited. The method &f] ensures the
satisfaction of $.3) using a sequential process: one system is optimized atantith all others stay

constant; this is followed sequentially by another systerthat allM systems are optimized once

69



5.1 Introduction 70

in M time steps. Another approach is known as the cooperative Met@od (0, 121,127. While
specific details vary, the basic idea is that all systemsimiltooperating set (possibly a singleton)
are optimized jointly (or in parallel) while systems outsithe cooperating set follow their predicted
states and predicted controls. These methods optimizediodil or groups of systems sequentially.
However, the optimality of the overall system is unclear l@sytare not explicitly pursued. In
addition, these approaches require direct communicadomeng systems that are coupled By3{

which, for a large system, can impose heavy communicatiguimement .72-174].

A reasonable approach fds.()-(5.3) [84, 149 that achieves overall optimality is to solve the dual
problem involving the Lagrangian function. In this case tlagrangian function is the sum bf

separable functions except for the dual variable assatisith (5.3). This dual variable is treated as
a consensus variable in a distributed consensus optimizatbblem (DCOP). Typically, consensus

of the dual variable is ensured (Chapter 6 bfJ]) using a central/master node.

This work follows the above formulation resulting in a DC®fawever, the DCOP is solved using
the Distributed ADMM [L44, 145, 152, 175 algorithm where each system has a local copy of the
dual variable. These local copies need not reach consensumly within some fixed bound of
one another. Such an approach is used because the compalteffort of the Distributed ADMM

is high and allowing premature termination of the ADMM algfem provides for computational
expediency. Measures to handle such premature terminat@provided, together with recursive
feasibility and stability of the closed-loop system. Undesisonable assumptions, the approach is
guaranteed to converge to some small neighborhood of thalbeptimal solution so long as the
network is connected. The approach is iterative, similastteer MPC schemes.J6-179 but for

multiple systems with coupled constraints.

The rest of this chapter is organized as follows. This sactinds with a description of the notations
used. Sectiorb.2 reviews some results of the standard stand-alone MPC farghessystem and
discusses the formulation of the overall MPC problem. 8edi3 presents the proposed approach,
including the discussion of the coupled constraint, itsl demal the convergence of the distributed
ADMM algorithm. The recursive feasibility and stabilityswts are given in Sectiob.5. The per-
formance of the approach is illustrated by a numerical exanmpSection5.6 with the conclusions

given in Sectiorb.7. All proofs are given in the appendices.
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The notations used in this chapter are as follows. Non-haganhd positive integer sets are indicated
by Z§ andZ" respectively. LeM,L € Z§ with M > L. ThenZM :={1,2,--- M} andZM :=
{L,L+1,--- ,M}. Similarly, R} andR* refer respectively to the sets of non-negative and positive
real numberl, is then x n identity matrix, 1, is then-column vector of all ones (subscript omitted
when the dimension is clear) aff§ is the cardinality of the index s& Giveno > 0, X C R" with

0 € int(X) whereint(-) is the interior of a setgX = {ox: x € X}. For a square matri®, Q - (=)0
meansQ is positive definite (semi-definite). Thg-norm of x € R" is ||x||, while [|x[|3 = x" Qx
for Q = 0. Several representations of the states and controls agedex (t), u'(t) refer to the
state and control of th&" system at time; X, u}, are thek'" predicted state and predicted control
of theith systemx = (x%,%x2,--- xM), u= (ut,u?,--- ,uM) are the collections of andu' over the

M systems; boldface' = (x|, X,,---,x\), u' = (u,u;,---,u_,) are respectively the collections
of the N predicted states and predicted controls over the horizbfegth N) for theit" system;

in situation where the reference to time is needgd,uj can be written asj, andu,. Hence,

Xor =X () andug, = U (t). Additional notations are introduced as required in thé. tex

5.2 Preliminaries and Problem Formulation

This section reviews some well-known results in standardCMRd other related concepts. Consider
a stand-alone system represented by one choige=dZ™ in (5.1) with corresponding cost and

constraints being

minJ'(x,u') 1= ; (X% + U 1R ) + X[ (5.4a)
u =0
s.t.u e Uk (X) (5.4b)

whereN is the horizon lengthy' := {uf,ul,--- ,uy_;},X = {x5,%,---,X} are the predicted con-
trols and predicted states respectively satisfyihigy = A'X, + B'U, with xj = X, J(x,u') is the
standard quadratic costs parameterizedxbyu') defined by §.49. In addition,K' andP' are the
solution to the Algebraic Riccatti Equation (ARE) with wetgQ' - 0,R' = 0. Let

U = {u e R™ 5 = A +BU X =x X eX upeU Xy eTl,ezdlt}  (5.5)



5.2 Preliminaries and Problem Formulation 72

whereT]/ is some appropriate terminal set satisfying
AX eTl, K'xeU forallX T} (5.6)

with Al := A+ B')K'. The overall MPC optimization problem over th systems incorporating

(5.9 at statex = {x*,--- ,xM} is given

M
P(x): V(X):= min Y J(X.u 5.7a
(%) (%) {uuiezM}i; (x,u') (5.7a)
st. U eth(X), viezM, (5.7b)
M . . . .
Zw'xx;+w'uu;g1p, veezyt (5.7¢c)
i=

where 6.70 refers to the satisfaction of the coupled constraints el gaedicted time step of the
horizon. The conditions of5(6) on T} do not include the effect of the coupled constraint which is

given by
W =Y (W +W KX <1, ¥X €Ty, (5.8)
RGP

5.2.1 Tightening the Constraints

The formulation of $.7) and condition of $.8) are appropriate when the Distributed ADMM al-
gorithm achieves convergence at every time step. Howewerpmline verification of the conver-
gence of a distributed algorithm is numerically expens@@ensequently,5.7) and 6.8) need to be
tightened to account for errors arising from the prematarmination of the Distributed ADMM

algorithm. Specifically, the tightened constraints for7¢) and 6£.8) are
Zw'xx;whu; <(1-eM(+1)1, VezZy ! (5.9)
i=
ZW'X‘ < (1-MNg)1,, WX € T; (5.10)
i=

wherece is the error arising from the inaccurate solution of theridisted ADMM algorithm. Obvi-

ously, O< € < M—lN to ensure that & int(Tfi) in (5.10. Note that the local constraints di.{b) are
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not tightened as they are satisfied for all premature saisitisee next section for details). Corre-
spondingly, the tightened DMPC formulation is

{uifirEQM}{i;J (x,u') : (5.7b) and(5.9)}. (5.11a)

for some appropratét’fi that satisfy §.6) and 6.10. The choice oﬂ'fi is how discussed and the
following assumptions are made.
(A5.1): (A, B') is stabilizable and'(t) is measurable for alle ZM;
(A5.2): X1,U'" are polytopes containing the origins in their respectiteriors for alli € ZM;
The choice off} is chosen to be
Ti=olx}, viezM
wherex} is the maximal polytoped?] that satisfy 6.6). The choice ob}. is chosen to satisfy5(10)
and can be obtained by noting th&t10) holds if for some value of',i € ZM,

M —_— .
> (maxecox; ¥iX') <1-MNe,ve e zP (5.12)

whereW, is the /" row of matrixW'. Usinghs(v) := max{v'x: x € S}, the support function of set

Salong the direction 0¥, this last expression can be further simplified into
ZhaiX} (W) = Za'hX} (W) <1-MNeg, W eZP (5.13)
i= =

wherep is the number of rows o' andhys(v) = ohs(v) for any fixedo > 0. The expression
of (5.13 allows the determination af,i € ZM, such that%.10) holds. For example, one obvious

choice is(a},---,0M) = argmin{s™,(1-0'): (5.13)}. Let

U (X :=uk(x') whenT{ = giXi (5.14)
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and express5(9) in terms of (X,u') for eachi € ZM. The tightened DMPC formulation can be

represented as

Pe(X): Ve(X):= {ulueZM}ZIJ (xX,u) (5.15a)
st. el (x) iezM (5.15b)
_ifi(xi,ui) < b(e) (5.15¢)

whereb' (¢) :=[(1—Me)1f, (1-2Me)1], -, (1—NMe)LTTT,
fi(x,u') = Flu' + H'X (5.16)

andF' € RNPXNM Hi ¢ RNP<N gre appropriate matrices frorf.g) by rewriting X, in terms ofx

andu'. Let the feasible domain . (x) be

De :={xe R": there exists a feasibl };_;m to P¢(x)} (5.17)

5.2.2 Network Description

The next section describes the proposed Distributed ADMidrithm and for that, the description
of network of system is needed. Using standard terminoltigy,M systems is represented by
an undirected grapls = (V, &) with vertex sety = {1,2,--- M} and edge sef C V x V. The
adjacency matrix4 of G is theM x M matrix whose(i, j) entry is 1 if(i, j) € £, and 0 otherwise.
The set of neighbors of thé system isN; ;= {j € V: (i,]) € £,i # j} with d = |N;| andD =

diag{di,dz,--- ,dw }. The connection of the graph can be arbitrary so long as

(A5.3): Gis connected.
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5.3 The Proposed Algorithm

5.3.1 The Dual Form

Let A € RNP be the dual variable associated with the coupled consifaihfq. The Lagrangian of

(5.19isL({u'},A) = % Ji(xi,ui)wﬁ(g fi(x,u") —b(¢)) for all u' € &' (x),i € ZM and the dual
i=1 1

problem is

max  min L({u} 7). 5.18
A>0 {uieldi(x),icZM} ({uhA) (-18)

This dual problem is also equivalent to

M
min  ma —LHUI ) :=min gi(A 5.19
AzIO{uieui(xi),)i(eZM} ({uhA) A,Io,: Gi(A) (5.19)
where
Gi(A):= max —J(du)—AT(H,u)— 2ED) (5.20)
ueldi(x) M

Letu'(A) =arg m_a(1x) gi(A). Then, the gradient aji(A) can be shown to be (see Danskin’s Theo-
U Ui (¥

rem of [149)

DG (A) = (16U () - ) 5.21)

Note that while the optimal solution 06 (15) is unique ag' (x',u') is stictly convex ind', the optimal
solution of 6.19 may not be 1 77,179. However, as shown in the sequel, the proposed algorithm

(Algorithm 5.1) will converge to unique solution 06(15), see property (ii) of Theorers. 1
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5.3.2 The Conversion to a Consensus Optimization Problem

The above dual problem is not fully distributed becadsappears in alM systems. From A4.3,

(5.19 can be rewritten as a consensus problem with edge-wisérauris as

min ﬁgi()\i) st. Al=Al(i,))e& (5.22)

)\izo,iEZM i=

whereA' is the local copy ofA for thei system and the condition &f = Al enforces consensus
among all the local copies. This problem can be further tésvriusing a new set of variabled in

the form of
min (A st Al=w Al =w! (i,j) €€ 5.23
Azé’wi;g.( ) (i.]) (5.23)

whereA := {A1 A2 ... AMY andw:= {w : (i,]) € £}, see B4,180. Leta = {aij,(i,]) € £}
andB = {Bi,(i,]j) € £} wherea;; and S are the dual variables associated with- w/ = 0 and
Al —wil =0 respectively. Sincgi(A') is convex, this optimization problem can be solved using the
standard two-block ADMM algorithm witA andw being the two sets of variables. The augmented

Lagrangian of$.23 is

M
p(A . T —w!
wa.B) = Elg +ilee i{aj( ) (5.24)

BT =)+ A W24 S AT — w7}
for somep > 0. The standard ADMM consists of the following iterations

AR —argming, (A, W ak, B¥)

A>0
W<t = arg minCp (A 1 w,ak B
aft = af + pAT Wikt (i j) e €

BTt =B +pA Tt _wik) (i) eE
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5.3.3 Distributed ADMM Algorithm

Following the manipulations of Distributed ADMML}{I5, 146, 151, 157], the steps above can be

simplified by letting

af + B =0,af = B, wik = M (5.25)
for all (i, j) € € andk. The simplified distributed ADMM is then given by
At = arg mingi (A )+ (VTAT 4 p|Ni[[|A T2 (5.26)
ol = aff + A AI) i e g (5.27)
where
= 2% ak —pj;ﬁ()\i’k%—)\j’k) (5.28)

Using the expression @f(A') of (5.20), the minimization problem of5(26) can be rewritten as

min max {—J'(d.u) — (£ ,u) — XELTALL (RTATL pIN AT
A>0ul elfi(x) M (5.29)

:=min max ¢'(A',u
A>0u etd (x) YL

where @' (A',u') is defined implicitly above. Since'(A',u') is strictly convex inA' and strictly

concave iru', the ordering of the min and max operations can be interafig 1], yielding

Luh) = L) — ()T 5.30
ué‘z%)ﬂ%‘p()‘ u') u@%{gggn}qn{fp(/\ u)—(s) At} (5.30)
= max min{g (A",u)—(3)TA'} (5.31)
uel () Al
§>0

wheres is the multiplier associated with the constraiit> 0 and the equality of5(30) is from the
strong duality | 87 of the Lagrangian function of mirzpi (AT, u"). Foranyu' € U'(x') ands >0, the

solution of the inner minimization o&(31) is given by)\' T(f'(x u)+s— ( —v'K) which,
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when substituted intd(31), yields

u gk —arg min {J(xX.u) 4+ ——
( ) gu'eu'(x'{ ( ) 4 |N|
4>0

1) d -2 gy

Hence, the optimal' of (5.26) can be obtained in closed-form as

Ak 2p1Ni] (f (x ul,k+l) Jiktl _ % _\)1k). (5.33)

For eachi € ZM and iteratek, the control sequence is updated accordingst83). Onceu 1 is
obtained A%+ is updated according t&(33. The value of/ is then updated according t6.£9
and this process is repeated by incremenkind@he stopping condition of this ADMM process is
discussed in Sectiof.4 and suppose the process stops at iteratiofihen, the solution from the
ADMM algorithm isu' ko {u0 ,ul , u,\I 1}- Correspondingly, the MPC control law applied on

theith system is

Ki(x) = Ui e ZM (5.34)

5.3.4 Convergence of the Distributed ADMM Algorithm

To the best of authors’ knowledges.82) and 6.33 are not standard ADMM formulation and this

section discusses their convergence. Let

= _i“‘(xi,u“k)wk) ~b(e), (5:35)

AK =S (Ji(x‘ Uk — Ji(x ui*)> (5.36)

where{u™*} is the optimal solution of.15), r* is the residual of the coupled constraints @i

is the deviation of the primal objective at iteratikifrom its optimal. The following theorem states
the convergence results.

Theorem 5.1. Suppose (A5.1)-(A5.3) hold. For any=xDe, let {u'k sk AKIM | be generated by
(5.32-(5.33 and a* = {af, (i, j) € £} be generated by5(27) with A"® = 0 and o} = 0 for all

jeN andic ZM. Supposdu*}M is the optimal solution off. 15, A* is an optimal dual variable
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associated with§.159 anda* = {ajj, (i, J) € £} is an optimal dual variable of5.23. Then, the
following results hold.

(i) The sequencexk andaX converge.

(i) w"k converges tailti for all i € ZM and * converges t®.

(i) |AJX| converges t® with |AJX| < CK where
* 2 * * =
C:= A ||ka\|+5(\|ak||+||a Dlaak] + (A + 1A DT IAAK], (5.37)

Aak=ak—ak 1 AAK=AK—AkLandl = (A+D)®Inp.

(iv) u'K is feasible to §.15H) for all k, i € ZM .

In addition, the convergence rate of the distributed ADMM edso be obtained. The worst-case
O(1/k) convergence rate is given in the following theorem.

Theorem 5.2. For k > 1, let

. 1k 1 . 1 .
ﬁl,k _ = ul,é —(1-Z= ﬁl,kfl _ul,k
U T Ay

§ (5.38)
. 1 . 1 . 1.
k_ = £ (1 Idk-1 Tk

S ‘ :1§ (1 k)é‘ + k§
be the running weighted-averages of the primal iterates &) with i = 0 and&:° = 0for i € ZM.
Then, the following results hold.

(i) The sequencé||i™* —u™*||?}y_; goes to0 with the convergence rate(@) for all i € ZM .

(il) The coupled constraint is bounded by

<i_1 PAmaX(r)M a2 L2 659
_<E> (T (A+1A71) +EHG | >1Np
(iii) The primal cost error is given as
|_£J‘<xi<t>,ﬁi*>—ﬁJ‘(xi<t>,ui*>|
= = (5.40)
<ZE L (Sl Gamarmca s 12702
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From the theorem stated above, the proposed distributed MDiss a convergence rate ©f1/k),
similar to other ADMM schemesli4, 183. Hence, a stopping condition fob.32-(5.33 can be
based on some choice kf However, such a condition is well known to be very consérgdt’4].
This chapter proposes a stopping condition based‘and|AJ¥| for early termination of §.32)-
(5.33. To do so, $.159 is relaxed (but notq.150 because of (iv) of Theoref. 1) as given below.

Definition 5.1. Given anye, d > 0, the set{x,u'}M , is a (¢, 8)-relaxed solution ofg.15) if
u cu'(x),iezM, Zf'(x‘,u') —b(e) < eM1py and| Z((J'(x‘,u') —J(X,u%))| <5 (5.41)
i =

where{u"}M  is the optimal solution ofy15.

The following lemma is needed to establish the stoppingcaib.
Lemma 5.1. Supposgu*}M, is generated from5.32) in the distributed ADMM approach above,

then there exists & such that
K < eMipyand << & (5.42)

where ¥ and C¢ are those given by5(35 and (5.36) respectively. In addition{xi,uif}{\i1 is a

(g,0)-relaxed solution off.15).

5.4 The Stopping Criterion for the Distributed ADMM

The stopping criterion of the proposed Distributed ADMM sisiee results of Lemma.1. Specif-
ically, the Distributed ADMM stops at the first value kfk, such that %.42) hold. One possible
approach is use a central nod&{] to computerk andCX of (5.42) by collecting all relevant infor-
mation from each of thé1 systems. However, such a centralized approach is not besidae to
its communication requirement. This section describestiblited approach to computéandCX

of (5.42) using the finite-time average consensus algorithm in &esti3.2

The use of the finite-time average consensus algoritBr9( for the stopping condition of the
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distributed ADMM is given as follows. Recall that this stapg condition is given by%.42). Let
2(0) = f1(X,u*) + %~ BE 1t follows from (5.42) thatrk = $M,7(0) and its value can be

obtained from §.39) usingZ (0),--- ,Z(T — 1) obtained from §.40) for each system.

The case o€ is similar. From 6.37), evaluation oCX requires the values of, ||a¥||, [|AaX||, ||AX],
|AAK||, |A*]| and ||a*||. Values of||A*|| and ||a*| can be estimated using the offline procedure
given in [L77] and is not discussed here. The rest of them can be computibe isame manner
asrk. For example||AK||? = Sicom A% = Siczm 2 (0) if Z(0) := ||A"K||2 for all i € ZM. Hence,
Siczm 2 (0) is obtained from§.39) usingZ (0),--- ,Z (T — 1) following (3.40). The same is true for
laX|, |aa¥|| and ||AK||. Altogether, 5 consensus dynamics are running simultasigdar T — 1

steps for the evaluations of andCX.

The overall procedure of the distributed ADMM algorithmiaté t is summarized in the following

algorithm.

Algorithm 5.1: Consensus ADMM algorithm

Input: x,iezM
Output: u'k, i e zZM
Initialization: choosep > 0, setk =0,A'? =0 anda? =0, for all j € N;, i € ZM;
repeat
ADMM:
for alli € ZM (in parallel)do
ObtainV'X from (5.29), (U1, 8k+1) from (5.32 andA'**1 from (5.33 respectively;
Exchangel "1 with all its neighbours (those indexed fy N;);
Updatea™ via (5.27) ;
end for
k—k+1
Finite-consensus:
Set upZ (0) for r¥, [|a¥||, [[Aa], [A¥||, and||aA |
for alli € ZM (in parallel)do
ObtainZ (1),---,Z (T — 1) using @.40) and computeX andC* from (3.39).
end for
until rk < eM1,y andCk < &
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5.5 Recursive Feasibility and Stability

This section discusses the recursive feasibility and lgtabesults of the proposed DMPC formula-

tion. The overall MPC scheme is summarized in the followilggpathm.

Algorithm 5.2: The synchronous MPC controller

1: Every systeni measures it own stas(t);

2: Every systeni calls Algorithm5.1with X (t) and obtairu k) as its output.

3: Every system obtaing' (x(t)) from u"(t) via (5.34) and applyk'(x(t)) to theit" system.
4

: Wait for next sampling time, le¢t=t + 1 and go to step 1.

The next lemma pertains to a property of the terminal set efaverall system and is needed for
stability of the closed-loop MPC system.

Lemma 5.2. Let
. 1 —
e mi i = i ) I
G :=min{ay. 7 min {bi()/hg; (F)}) (5.43)

where fy; (-) is the support function of X by(¢) denotes thé'" element of te), Fi:=FK} +H!
from (5.16) with K} defined by%.44) below, and=} denotes thé" row of F'. For any % € a'X}, the

optimal solution to Algorithm 1 for thd"i system is

B U = (KX KA - K (AION XY = K (5.44)

c
=1
I
~—
s
=

with k = 1.

The recursive feasible and stability results of the progd3®IPC approach are stated in the follow-
ing theorem.

Theorem 5.3. Suppose A5.1-A5.3 hold aiifg (x(t)) of (5.15 has a feasible solution at time t and
that the MPC law of%.34) is applied to the'l' system ofg.2) for all i € ZM. Then, the following
results hold:

(i) P¢(x(t + 1)) has a feasible solution at timett 1.

(i) M, (Ji(xi (t),uk) — Ji(x (t),u‘t*)) | < &, where{ul*}M , is the optimal solution off.15).

(iii) Supposed is chosen such tha' : [[X [|& < &} Cint(a'X}) for alli € ZM whered' is as defined
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in (5.43. Then, there exists a finite timegguch that Xt;) € a'X! for all i € ZM.
(iv) Suppose the condition of (iii) holds, the closed-logptem §.1) with the MPC law $.34) is

exponentially stable.

5.6 Numerical Results

The example chosen is a four-agent system where every agerthh same dynamics & =
[1.11;0 13],B' = [1;1] and same constraink := {xX € R?: ||x|| < 10},U’":={u € R: |u'| < 1}.
The coupled constraint jst| 4 1.2|u?| +0.8|u®| + 1.5/u*| < 2.5 and can be seen as a limit to the total
amount of energy used. The valueskéfandP' obtained from the discrete-time ARE, widl = I,
andR =0.1,i € Z*, areK' = [-0.6960 — 1.0664,P' = [2.0819 — 0.2046;—0.2046 11944 for all

i € Z*. Consider the network connection of a ring aNd= 1 —0.1L(G). The minimal polynomial of
W ist3—2.4t241.88 —0.48= 0. Hence, value of of (3.39 is 3 and checking 0f{(.42) can be done
in 2 steps of 8.40). The initial conditions arex (0) = [-2.4583 11137, i € Z*, and the horizon
lengthN = 5. The performance of the proposed MPC approach is preséntsdveral choices of
g andd. The following table gives the scalé® };;« obtained from migyM,(1—o') : (5.13)}.

Note that for all these choices &f {X : ||x'||3, < 6} C a'X! of (iii) of Theorem5.3 holds.

£ o} o? o5 af
0.01 | 0.5310| 0.4371| 0.6248| 0.2964
0.005 | 0.5779| 0.4934 | 0.6623| 0.3668
0.001 | 0.6154 | 0.5385| 0.6923| 0.4231

Table 5.1: The scales of the terminal sets for different choices of

The value ofp = 0.01 and the values d?f(t) along the trajectories starting from different initialtsta
are given in the Tablé.2. Notice that fort > 5, E(t) are either 1 or 2 because the global constraints
are not active. Obviouslﬁ(t) increases whe(e, d) decreases but the increase is relatively benign:

a 10 times reduction df, d) results in a roughly 5 times increase if(t).

While a comparison with existing approachég, 50,121, 127] appears reasonable, this is not done
because the problem settings are different: only connemtddork is needed for this approach
while others need a fully connected (or a central node) nétwimounds on system performance

is guaranteed under the proposed approach but not othesteath comparison is made between
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(£,0)x103 [t=0|t=1[t=2[t=3|t=4|t=5|t=6|t=7
(10,10 238 | 243 | 197 | 269 | 2 2 2 1
(5,5) 279 | 287 | 306 | 377 | 2 2 2 1
(1,1) 400 | 874 | 452 | 433 | 184 | 2 1 1

Table 5.2: Values ofk(t) along the trajectories starting fror(0) = [—2.4583 111377 ,i=1,...4
for different choices ot andd

the results of the proposed approach and that obtained bygdb.15 with € = 0 using a single
centralized computer, known as the centralized MPC (CMB}isn. The terminal setsagx} M,

in CMPC are obtained from m{rgM,(1— o) : (5.13)} with € = 0: 0} = 0.6248 02 = 0.5497, 03 =
0.6998 ando? = 0.4372. Table5.3 shows the performances of the two approaches in terms of the
infinite LQ cost over several initiad(0): g g (X (t)[1Z; + [|u' (1)]|Z) wherex (t),ul(t),t =0,--- o

are the state and control of the closedt—I:(;)cl):plsystem stdrngx(0). Entries in Tablé.3are values

of Je.5)(X)s Jo(X) and%W, corresponding to the infinite LQ cost of the proposed apgitpa
the optimal CMPC solution (witls = 0) and the relative cost in percentage respectively. As show
the degradation in performance far, d) = (0.01,0.01) is 6.2%+ 2.5%, (¢,0) = (0.0050.005) is
2.8%+1.6% and(g, d) = (0.001, 0.001) is 0.8%+0.6%. These results suggest that 0.005 and 0.001

are sufficiently good low accuracy solution for the propoapgroach.
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X,iezM (€,6) x 1073 Je)(¥) N 5)5:2;)30&)\ %) | B
(10,10) 1250 4.27

< oiffg ) (5,5 1222 1.90 1199
(1,1) 1202 0.29
(10,10 7135 7.72

< é 2252 > (5,5) 68.79 384 66.24
(1,1) 67.11 1.31
(10,10) 127.3 6.94

< 5 8f ! > (5,5) 1225 2.87 1191
(1,1) 1196 0.49
(10,10) 1199 453

< 30113;:?1 > (5,5) 1167 1.74 1147
(1,1) 1151 0.30
(10,10 9311 4.93

( S’iggi > (5,5) 90.80 233 8874
' (1,1) 89.09 0.40
(10,10 64.56 871

( (1)%12 > (5,5) 6198 4.36 59.39
' (1,1) 50,82 0.72

Table 5.3: The cost difference of the proposed approach and the CMPGrarieus choices of the
initial statex(0).

5.7 Conclusions

A DMPC approach is proposed for a group of linear systems hital and global constraints. The
proposed approach relies on the dual problem of the overBICMroblem and uses a distributed
ADMM algorithm for its solution. This is made possible byrimlucing local copies of the dual vari-
ables in individual system and enforcing all the local cep@achieve approximate consensus value.
Provision for computational expediency is made via eanmieation of the distributed ADMM al-
gorithm where the inaccuracy depends on user-defined pseesndermination conditions based
on the these parameters are provided and is checked usintgdifite consensus algorithm. Under
mild assumptions, this approach converges to some smghineihood of the optimal so long as the
network of systems is connected. Recursive feasibility exmbnential stability of the closed-loop

system are ensured.
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5.A Proof of Theorem5.1

(i) From the first order optimality condition 05(32),

(DuiJi(Xi7ui,k+1)>T (U — U
(5.45)
+AMHTE U -0 +8 -4 > 0 v etf! (X) and vs > 0

whereA " 1 is that given by $.33. Consider §.15 and let its optimal solution béu'™ };.,m with
A* as the optimal dual variable 05.(159. The first order optimality condition o6(18), following

standard saddle point theorefyif], is

%(DU.J(X u™)) (U '*+Z OTE (U —u™) >0 vu el (X). (5.46)

Let {A™} be the optimal solution of5(23 and {y"* > 0};.,v be the optimal dual variable for the
constraintA! > 0 in (5.23 satisfying(A™)Ty"* = 0. Then

(A)T(8 —y*)>0foranys >0 (5.47)

Adding the above for=1,--- ,M to (5.46) and noting thad'* = A* for all i € ZM at the optimum

solution of 6.23) yields

M

'Z( wd (X,u)) " (U —u™) +Zi U —u")+5 —y*) >0, (5.48)

for allu' € U'(x') ands > 0. Letu' = u™ ands = y* in (5.45 fori = 1,--- ;M and adding them to
(5.489 with u' = u**+1 ands = §**1 results in
M

Oy 3 (4, ukH Ly — 0,1, ) T (U i)
2,

" (5.49)
+Zi()\i,k+1 _ A*)T (Fi(ui,k-i-l _ui*) Lkl _y|*> <0

SinceJ'(X,u') is strongly convex with respect tb, there exisiu' > 0,i € ZM such that

(DuiJi(Xi,ui’k+1) _ DuiJi(Xi,ui*))T (ui,k-'rl _ui*) > ui H(ui7k+1 —ui*)HZ.



5.A Proof of Theorem5.1 87

Using this fact in $.49) yields

uIHul,kJrl_ul*HZ < - (Al,k+l _)\*)T (ul,k+1 |*) +s|,k+l _yl* (5.50)
i; i; < )
From (6.39, F'u**! 4 §:k1 can be written as

FiukHL gkt op N ATk HiXi—i—%‘FVi’k (5.51)

Since{A™ = A*} is the optimal solution of.23 and{y" > 0};_,m is the optimal dual variable,

they satisfy the KKT of §.23)
Og(A™)+2 Y af —y* = —F'u*—H'X + +2 = 5.52
i j;ﬁ i Z‘ ij (5.52)
Hence F' (Ut —u'™) 4 1 —yi* can be written in terms ofA "™, v'¥) and{a;; : j € Ni}

Fi (u|7k+1 I*) S| k+1 yl*
:Flul‘k‘*’l_{_s"k%*l_ (Flul* +yl*)

=2p|N[APHE -2 2
ieN
Consider the definition of  of (5.29), the expression above can be rewritten as
20||Ni|[A KL 4k — 2 ZV oy
jeN;
=20||N[|ATHL 42 PAKLATK)) —2 F o
3 at- ))-23 ai

2

—pNAKE 3 A -2 Y a;
| j;‘i jEZWi !

_ZZW - iﬁ)‘*‘p.ZQ(Ai’k+1+)\j’kH—)\i"k—Aj’k)

—2p|IN; H)\|k+1+2 Z‘ < okt p()\i,k+l_)\j,k+l)>
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where the second equality is from the updatex,bﬁn (5.27). Using this in 6.50 yields
uert w2 <
2

_ ()\|7k+1_)\*)T 2 (ak—i-l *_)_|_p ()\I7k+1+)\j,k+l_)\l7k_)\j7k)
i; ];‘. N N ];‘.

Consider the two terms on the right-hand side558). The first is

(5.53)

1]

:ZLZ‘ (Ai’k+1 _A j7k+1) (allj-&-l aiﬁ)
JG i

k+l k+l *
p ZI Z‘ Ij Ij aij)
jeN

:p(akJrl ak) (akJrl a*)

1 k *
“(lat —a |~ fla* — a4 ot —ak?) (5.54)

2 21 )\I k+1 * k+l —a* )
jeN;

where the second last equality is fromZ7) and the last equality is due to the equaliay-b)" (a—
c) = 3/la—b||2— ||c—b||2+ 3||a—c||2. The second term of(53 is
0 A|k+l A|k+l Aj,k+l_)\i,k_Aj,k)
>3
:p(Ak+l_A*)Tr(Ak+l —Ak)
%(H/\"“—/\*H%— IAK=A%[E+ AR - AK2) (5.55)
wherel = (A+D)® InpandA™ = Iy ® A*. Combining £.53, (5.54) and £.55) yields

1. « w12, Pk 2
=t —a¥| +§H/\ AR

1. « 2, Pk 2 &l 2
<Slak—at P+ SIA A= S g ut - (5.56)

1. k ki2 Pk k|12
=t —aX| —EHI\ AN

Sincesla "t —a*||?+ §||]A*"* —A~|Zis lower bounded by 0, the following three conditions must



5.A Proof of Theorem5.1 89

hold: u"**1 —u"* converges to 0g“*1 — ak converges to 0 andikt1 — A X converges to 0.
(i) Convergence ofrX is already shown in (i). To show convergencerbto 0, consider the opti-
mality condition 6.45) of (5.32) and the fact thall (X, u') — J' (X ,uik+1) > (0,1 (¥, uk+1)) T (U —
UK+, it yields

Ji (Xi ’ui) _ Ji (Xi ’ ui,k+1)

(5.57)
FARYT(E i _yikly 1 d gkl > 0

for allu' € U (X) ands > 0. By lettingu' = u"* ands = y'*, we can obtain

Ji(Xi,Ui*) —J (X Ul’k+1)

()\I k+l) (F (ul* I,k—',-l) +yl* —Si’k+1) >0
which can also be rewritten as

Ji(Xi,Ui*) J (X ul,k+l)
+ (A *)T(Fi(ui* _ui,k-i-l) +yl* o Si’k+1)

+()\i7k+1_)\*)T(F|( i |k+1)+y| k+1) 0

By using the same treatment on the second term as in the pf¢)f we arrive at the following

inequality

AJk+1+Z Ik+l I*)+§',k+l_yi*)

< %(akJrl_ak)T(akJrl_a*) _p(Ak+1_A*)T|:(Ak+1_Ak)
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M
Consider§.52 andy 3 ajj =0,
|

=1jeN

<

()\ *)T(Fi(ui’k+l _ui*) _|_§',k+l _yl*)

El\ll/lz Il

()\ ) (fI(X u|k+l) g,kJrl_%_zj;ﬁaﬁ)

—~
>-a

)Trk+l

Consider the saddle point condition &f {8, we know that
AJk+l—|—()\*)Trk+lZAJk+1—|—()\*)T Zfl(xl,ul’k+1)—b(5) ZO
i=
Therefore, we can get

—(A *)Trk—i-l < AJk+1 < —(A *)Trk+1_ %(ak—i-l_a*)TAak+1_p(Ak—i-l_A*)Tr_(Mk—i-l) (558)

From (.33, (5.27) and the fact thalz aftt =0,
i= leN,

<

pk+l (f (X ul k+l) é,kJrl_ %)

2p’NMIk+1+2 -p (Ai’k—l—Aj’k))
PILALPY

M= [_Mz [

(ZZ‘ k+l+p%)\lk+l A]k“rl )\Ik )\jk))

jeEN

=PI ® Inp) T (A —2AK) (5.59)

The convergence dfA "}le implies that{r"}ﬁ":l converges to 0.

(iii) It follows from (5.58) that

AT > —[IAT|fir (5.60)

. 2 . .
AL A+ S aak @ a4 A AT MY (5.6
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Hence,
2 —
AT < A+ Sk —a - p AT T M (5.62)

which implies thatAJ<t| < C<*1. From the convergence Ak} ,, {a*}2_,, {u"}> , and

{rk}_,  bothAJK andC* go to 0 ask — .

(iv) This result follows directly from%.32). O

5.B The proof of Theorem5.2

(i) Summing up .56 up tok, we can obtain

k

¢ i |2 2 0
uHU" —uT < -+ HA —A7|E

fMg

k 2 k *
—ar|* - HA —A%||
Hence, from the convexity,

Mok e 1 k M 0 i
pE a2 < S Y e -
i= V=T

1. 50 2, Pyo0 )2
< _ Ll _ <
< e a2+ £ A0 -2

Note thata® = 0 andA® =

o2 < (Sl P+ £ )

(ii) Note that 6.57) can be rewritten as

Ji(Xi,Ui*) —J (X Ul’k+1) —I—AT(Fi(Ui* |k+1)+y| k+l)

+()\i,k+l_)\)T(Fi(ui* |k+1)_|_y| k+l) 0
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for anyA. Consider the same treatment used in the proof of propeé)ytyf(Theorem5.1, we have

M

Z(\]i(xi’uLk-&-l) J(x u'*)+)\( (|k+1 |*) gkl _ yu*)>

i=
1.« . P 1k 1. . P i1k
<—|a*-a H2+§H/\ —AE-Zla" —a HZ—EHA ToAlE

Im ®A. Applying the same reasoning, we can obtain

Z)\

:)\T (Zi(f (UI k+l )+ § k+l) b(€)>

whereA =

I k+1 I*) § k+1 yl*)

Therefore, we can get that

z(JI(XI,ﬁl’k)—JI(XI7UI*)) —I—ATFk

B " 11 (5.63)
|f Ty = Znp*l2 B 2

3 3 (Fu) -3 ) + 3T < ¢ (Sae Blalg )

whererk = z (f1(@'K,x) 4+ &%) —b. Following the choice ofA in [151], let A = A* +7%/||F¥|.
|_
Consider the saddle point condition &f {8 and the fact thatA*)T§ > 0 for alli € ZM, we know

that
| <JI(XI,ﬁ|’k)—JI(XI,UI*))—|—()\*)Trk
» y (5.64)
> (J'(x',ﬁ'k) J(X u'*))+(A*)T (_Zf'(ﬁ'k,x')—b(s)>20
Hence,
s 12 1 1/1 .2, P 2
1P < (a4 5B < & (S1alP+ SanadrlAR)
1/1
<% (Z1a P+ Bmadr oM )
1/1
< (31012 Samar ML+ 13°))2)
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wherel’ = (A+ D). Therefore,

S fi@*,x)-b< i(fi(ﬁ”‘,xi) +8%) —Db(e)

1/1
<% (F10° 12+ Bama ML+ 12707 ) 2

(iif) From (5.64) in (ii), we know that

M

; <Ji(xi,ﬁi,k) _Ji(xi’ui*))

> <_ﬁ<f‘<n“,x‘> 18k - b(s))

> =[] _;(f'(ﬁ"kax') +8%) —b(e)]

From (.63, we can observe that

o 1/1 P
< k = Zup*112 L M 2
<A+ (Sla i+ S )

o 1/1 o)
< skt - = [ a2 2 Puaz
<@+ ||+k(pua H +2\|M|r)

2+

1
<EE L (S amar oz 1272

which proves the result in (jii)d

5.C Proofof Lemmab.1

The existence df for the stated conditions follows from the convergence‘aind|AJX| of properties
(ii) and (iii) of Theorem5.1. Properties (iii) of Theoren®.1 also impIies\AJE] <9oif CES 0.

_ Y - -
Also, r¥ < eM1py impliesrk — 5 sk < M1,y ass® > 0 for all i € ZM. It further implies that
i1

Mo - M - M
s fi(X,u*) —b(g) < eM1py sincerk— 5 sk = 5 fi(x,u*) —b(g). O
i=1 i=1 i=1
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5.0 Proofof Lemmab.2

By definition of hgyi, F/X < max, gy Fly = hgiy (F}) = 0'hy (F}) for anyx € a'X; and any
¢ € ZNP. This fact, together witlo' < ﬁbg(e)/hX}(F;') from the definition of{d};_,m, implies
% —FiX > 0. Sinced'X} C giX}, Kix € U (xX) from (5.5), (5.6) and 6.14). Hence, wherk = 0,
(Kix, 2&) _ Fixiy js a feasible solution to5(32 because/® = 0 from the initialization,i € ZM.
SinceK' andP' are obtained from AREK)\x' is the optimal solution td' (x,u'). Therefore, the
solution whenk = 0 is u'! = Kix, andst = 2 _ F'x' for all i € ZM. Using these values in
(5.39 and 6.33), it can be shown from5(16) thatr! = z (f'(X,Khx) +s1) —b(e) = z (FixX +

i=1
,(v') F'x') +b(e) =0andA’ = 0 for alli € ZM. This means thad ! =A1 - A0 =0 andAa® =
al — a® = 0 following the update ofr via (5.27). Hence,r! = 0 andC! = 0 and Algorithm5.1

terminates ak = 1. O

5.E Proof of Theorem5.3

(i) As given by 6.34), let E(t) be the stopping iteration of the Algorithinlat timet and the solution
of (5.32 be uk®) = u := {Upys Uy~ Uy 1} Denote the associated state sequence| as
(X Xy Xy} for all i € ZM. Since{u}; are the output of Algorithn®.1, {(X (t),u)}iczm
satisfy the stopping condition 05(42) and is a(¢, d)-relaxed solution o, (x(t)), or from (.35,
they satisfy

Zf b(e) < eM1py (5.65)

Rewriting f'(x (t),uf) andb(€) back in terms ofx, ,

i
107" N\t} and{u()lt, 1|t’ ~,Uy_gt (note

that f'(x'(t),ul) — b are simplified expression 05(9)), (5.65 is equivalent to
_Zw'xx;‘t + WUy < (1—eM(£41))1p+eM1p = (1—eMO)L,, VEe Zy (5.66)
1=

For alli € ZM, let a feasible control to thi& system at + 1 be chosen as

N i i i i iy
G 1= {015 O g5+ 5 Ongea 3= {Uge g5 Un g, K - (5.67)
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and the associated state sequence

o gl i i N i i | RiKiy
%1 = {Ro o Ryesns > R = e X X (A +BIKXg et

It follows from this choice ofl_; and 6.66) that

Z Wik 1+ Wil 1 = Z Wiy, 1 + Pullpy g < (1—EM(140))1p, Ve € 7y ~2 (5.68)
I= 1=

and where/ =N —1, (5.69)

21(\IJ'XX'N|t + WK%y = 'ZLLIJXIN“ < (1-€eMN)1, (5.70)
1= 1=

where the last inequality follows the fact thxi}‘t € glXl and 6.10 (with T{ = g} X!). In addi-
tion, lj"e‘t+1 eU' for ¢ e Z§ 2 sinceuiHm € U' because of (iv) of Theorer.1. The last control,

€ U' becauseq, € o;X; and o;X; satisfies §.6). The constraints of;;

_ iy
= KX 1 ©

i
u NIt

N-1[t+1
X ezt andx*N‘t+1 ¢ giXi} follow similar argument. These properties implils; € /(X (t +

1)),i € ZM and{0l, ,}M, is a feasible solution ¢ (x(t +1)).
(ii) This result follows from Lemmé. 1since{x (t),u*xV}M_ is a(e, 5)-relaxed solution oP, (x(t)).

(iii) Let Ve(x(t)) = M, I'(X (t),u*) (where{ui*}M , is the optimal solution ofF.15) be the Lya-
punov function of the closed-loop system &f1) with inputu' (t) = uidk(t) given by 6.34). When

Algorithm 5.1 terminates at timé, ut := ui and the stopping condition 0542 states that

!_;J'(X' (1)) = Ve(x(t))| < & (5.71)

Letﬁ{+l be as defined in5(67) of property (i) above, it follows from the standard argumierMPC,

J(X (t+1),0,1) = I O),u) = =X ()l = U O 1 + Xy + 1K X 1Z
+ HAiKXil\l\tlevi - HXiI\I\tHIZDi

= —|IX (1)l — Iu' ®) 1z (5.72)

where the last equality is from the fat, P' satisfy the Algebraic Riccatii Equation 04 )TP'Al —
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—(Q +K'RK). Sinceli_; may not be the optimal att 1,

M

t+1) <21J (420 = 3 (JOOU) - KOl ~ W01 )

<Ve(x(t)) +0 - ZlHXi (011G = Ve(x(1)) +6(t) (5.73)

where the equality condition follows fron® (72 and the last inequality is due t6.71). From the
stated condition, choose aly> 0 such that{x : ||| < 8+ &} C d'X;. Consider the following
two cases for.73: 6(t) < —€ for allt and 6(t) > —& for at least ond. Supposed(t) < —&
for all t, then lim_. Ve (X(t)) becomes negative and leads to a contradiction of non-négabif
Ve (X(t)). Suppose there exists onalenoted by such thaB(ts) > —Z or ¥iczm ||X (tf)HZQi
This implies tha|X (tf)||%; < 5+ which, together with(X : ||| < &+ &} C 0'X;, implies that
X (t¢) € o' Xl for alli € ZM.

<O+E.

(iv) Property (iii) states that a finite exists such that'(tf) € E‘X}, i € ZM. When this happens, it
follows from Lemmas.2thatk' (x(t;)) = K'X (t¢) and the closed-loop system becormés; 4 1) =
Al X (). Sincex (t¢ 4 1) € a'X} for anyx (t¢) € ' X} from (5.6). As a resultx (t +1) = Al X (t)

for allt > t¢ and the closed-loop system is exponentially stafle.



CHAPTER

A Distributed Fast Dual Gradient Algorithm for
Distributed Model Predictive Control with Coupled

Constraints

6.1 Introduction

This chapter proposes an accelerated DMPC approadh fiscrete-time linear dynamical systems,
given by 6.1)-(5.3). Like the approach in Chapter 5, this approach also sohesltial problem of
the overall MPC problem and converts the dual problem intGstilbduted consensus optimization
problem (DCOP). In Chapter 5, the ADMM is used for the DCOFofem. However, the ADMM
can have slow convergence for highly accurate solutionss Wwhrk is motivated by the need for
a faster solution of the DCOP problem on a connected netwark rfecessarily fully connected)
and is a distributed implementation of the standard stémikeaNestrov gradient method T, 99).
The Nestrov gradient method for single MPC can be foundLif6[177]. The distributed Nestrov
gradient implementations of DCOP have appeareh[107] but not for MPC. For distributed im-
plementations, each system has a local copy of the dualblaridn [LO€], a constant step-size
update for the iterates is used but such a choice does nakeermwvergence to the optimal consen-
sus variable. The work oflp7] uses an inner loop for better convergence of the consersiable.
However, the number of consensus steps in the inner loopsgwath the index of the outer loop
and this leads to a significant increase in the informatiasharges. Similar tol[07], this chapter
uses several consensus steps in the inner-loop to achievmtisensus of the local copies. How-
ever, the number of consensus steps is fixed and does not gtbuwhe outer-loop index. Despite

this, the computations of the proposed approach can be biglarhe-scale problems. This issue

97
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is minimized by having premature termination of the propoapproach. Convergence of the pro-
posed approach under the premature termination conditigrether with recursive feasibility and
stability of the closed-loop system are provided. Undesoeable assumptions, the approach con-
verges faster than the ADMM approactBf] for the same accuracy. An important difference of this
work to [185 is that the local copies of the dual variable reach exacsensus while the approach
of [185 achieves only approximate consensus at each iteratiois. f@&ture, together with the per-
mature termination consideration allows the proposedagubr to generate a solution whose cost
is upper bounded by the optimal cost and to have a simplifiggpgtg condition. A comparison
with [185] using an example is also provided. Not accounting for tlierination exchanges, the
results from this and other examples show that the numbedeiattions needed to reach the same
accuracy by the proposed approach is about 30% to 50% of ¢eated by the ADMM approach
of [185.

The rest of this chapter is organized as follows. Secfichreviews the dual formulation of the
overall MPC problem. Sectiob.3 presents the proposed approach and its convergence r&hats
recursive feasibility and stability results are given irc&m 6.5. The performance of the approach
is illustrated by a numerical example in Secti®s with the conclusions given in Sectidh?7. The
proofs are given in the appendices. The notations usedsrctiapter follows those in Chapter 5.

Additional notations are introduced as required in the. text

6.2 Preliminaries

This section reviews the dual problem of the overall MPC faob(.15. Let A € RNP be the dual
variable associated with the coupled constraini%g. The Lagrangian of5.15 is £L({Uu'},A) =
Mo Mo . o

s J(xu)+AT(s fi(X,u') —b(e)) for allu' € U (x'),i € ZM and the dual problem is

i=1 i=1

D(x,A 6.1
nete) o0
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where®(x,A) =  min L({u'},A). This dual problem is also equivalent to
{u'eld'(x),ieZM}

M
i —L{uY A) = A 6.2
R“E'Q{Uiew'}lf"},’few} ({u'},A) 5“,9, gi(A) (6.2)
where
(A) = I AT (X U — =22, 6.3
gl( ) u'g[?&))g) (X7 ) ( (X7 ) M ) ( )

Letu'(A) = arg me(lx Gi(A). Then, it can be verified thagi(A) is convex and the gradient of
U Ui (X

g(A)isOgi(A) = —(fI(X,u'(A))— Wg)) (see Danskin’s Theorem 0f49). In addition, 0gi(A) is
Lipschitz continuous with Lipschitz constaHi,—, wherey; > 0 is such thaﬂﬁi\]i(xi,ui) > Ll for

all X andu' (see [L0(]). Let Ly = maX.zm{ ”Fui,”z

}. Note that while the optimal solution 06 (15) is

unique as)'(¥',u') is stictly convex inu', the optimalA of (6.2) may not be {77,179. Let

A(X) = {A : A is an optimal solution of6.1)} (6.4)

be the collection of all possible optimal Despite the nonuniquenessxfthe proposed algorithm

(Algorithm 5.1) will converge to an unique solution db (L5, see Theorerd.L

6.3 The Main Results

This section discusses the proposed distributed fast dadient algorithm. The overall problem

(5.15 is considered as the primal problem.
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6.3.1 Distributed Fast Dual Gradient Algorithm

M
The standard stand-alone Nesterov gradient algorithm9g, 177] for miny~o 5 gi(A) of (6.2
i=1
consists of the following iterates
A=Ak a0(8 L —(AkK—AkD (6.5a)

M
Atk b Ogi (A 6.5b
A= 12 5 De (k) (6.5b)
Bcrr = (\/ 6 +462 - 67)/2 (6.5¢)

where[x], = max{0,x}, andA 1 =A% =0and6_; = 6y = 1 are the needed initializations. From

(6.50, the sequencéfy} satisfies [ 77]

1— 61 _i ;9 1 and6 k— (6.6)

2
9k+1

Note that 6.5b) requires the gradients from &l systems. In order to implement a fully distributed
computation, each systeimmakes a local copy ok, A'. Correspondingly, §.59 and §.5h) are

replaced by

A= ARG (Y — (AT — AL i e ZM (6.7a)

AbktL — (5 Z()\"‘ )>]+, ViezM (6.7b)

where(gi(A™¥) = —(fi(x,G*) — &) with

ik =arg min J(¢,u)+ AT (F(xu) - @). (6.8)
ueld(x) M
For alli € ZM, let
' K , . .
W= 6F 3 010 = (L- 89+ 6" (69)
=)

wheretl"~1 = 0 andii' ¥ is obtained from.8). Note that 6.7b) requires the quantit@ bk _ L—lg Ogi (A iv"))

from alli € ZM and, hence, is not fully distributed. To handle this prohlée finite-time consensus
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M. .

algorithm mentioned in Sectioh3.2is used to compute the quantiy ¥ ()\"k — Lingi (/\'vk)) in
iZ1

(6.70). Specifically, for each e ZM, introduce variablg' (¢, k) with

Y(0.K): A'k—igmg.m ) (6.10)

Y (C+1,K) =Wy (2,k) + Zw Wiyl (¢,k), (ezZi2 (6.11)
ieN
whereT is the order of the minimal polynomial ¥ and ¢.11) is thei" component of the consensus
T-1 . M .. ~.
dynamics given byd.37. From @.39, T Ty'(L,k) =& 5 (/\'vk— Lingi (A'v")) for all i € ZM.
(=0 i=1
With this property, §.7b) is replaced by

T-1

Akl — [;} WK, iezM (6.12)

This process is then repeated by incremenkingfhe stopping criterion of this distributed fast dual
gradient algorithm is discussed in Sectibdand suppose it terminates at iteratiorThen, the solu-
—, k —, k

tion from this algorithm ik = {ug ,u;", - u,\I 1}, as defined byg.9), i € ZM. Correspondingly,

the MPC control law applied on th& system is

K'(X) = J i czM (6.13)

6.3.2 Convergence Analysis

The convergence results of the distributed fast dual gnh@ilgorithm are discussed in this section.
The convergence to an optimal dual solution is stated aswsll

Lemma 6.1. For any x€ D, let {AK AiKIM_ pe generated from6(7a) and (.75 with A1 =

A0 =0. Then, for any\* € A(x ) the following results hold.

(i) For any k> 0, the objectiveizlgi (A1) is bounded by

L M 62
< =P (6.14)

M , M
0<3 g™ -5 a(r")
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(ii) Let Ak := Atk—1 gL (Ak — Aik-1) for all k > 0 and i€ ZM. The sequencé) ¥} satisfies
M —_
ZH)\"I(H—)\*HZ < M|]A%|1? (6.15)
i=

(iii) Consider the sequencegd"*}M; and {u"*}M | generated from@.8) and (6.8) respectively. For

any k> 0, the coupled constraint usingt"*}M , satisfies the inequality

_if%x‘ﬂ’k)—bs (4“”(“(”@259”“”) np (6.16)

Property (iii) of Lemma6.1 provides the decreasing upper bound on the violation of thupled
constraint. On the basis of the convergence of the dualhlatizhe primal convergence result is
stated in the following theorem, which is a modification oebhem 5 in [L77].

Theorem 6.1. For any x& D;, suppose{u'* M | is the optimal solution oP¢(x). Then, for any

k>0andA* € A(x), it holds that

2 L
(\/?kilng‘M ” _ZIJ Z (X, u*) <0 (6.17)

6.3.3 Primal Suboptimality and Feasibility

As mentioned before, a premature termination conditiorseduo reduce the computational load
for the solution of §.1). For this purpose, the relaxed solution 6f1(5) is defined as follows.

Definition 6.1. Given anye > 0, the set{x,u'}M , is ae-relaxed solution of%.15) if
uecu(x),iezM, Zf'(x‘,u')—b(e)geMle (6.18)

where{u™}M  is the optimal solution off.15). In addition, for anye, & > 0, the set{x,u'}M  is a

(g,0)-suboptimal solution ofy. 15 if it is a &-relaxed solution and

M

_Z((Ji(xi,ui) ~J(x,u") <6 (6.19)

The following lemma discusses the existence of the subapsaiution.
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Lemma 6.2. For any xc D, let {i"*}M, and {u"}M, be generated froms(8) and (6.9) respec-
tively. Then, it holds that:
(i) there exists a finite k such théx' ,u"<}M . is a (&,0)-suboptimal solution off15);

(i) {x,u"kK}M is a(e,0)-suboptimal if and only if it is &-relaxed solution.

Proof of Lemma6.2: (i) Sinceli"® € ¢4 (xX) for all i € ZM andk from (6.8), it holds that™* € /' (x')
for all i € ZM andk. From property (i) of Lemmab.1, there always exits & such that §.18) is
satisfied.

(i) The equivalence between tlie, 0)-suboptimal solution and therelaxed solution follows from

Definition 6.1 and Theoren®.1. O

The next theorem shows the existence af-@elaxed solution ensures the recursive feasibility of
(5.19.

Theorem 6.2. Suppose{x,u'}M, is a e-relaxed solution of .15 as defined by Definitio.1
with u' = {uj,uf,---,u_,} for all i € ZM. Let the state sequence associated with this solution be
{0, X, ) 3, X = AlX + Blug andu ™ = {u},--- ,ul,_,,K'x} foralli € ZM. Then, the following
results hold.

(i) {u™}M, is a feasible solution t& (x").

(i) Consider the solution dP¢(x*) and Iet{ﬁ‘v"}i’\il be generated front(8) and (6.9) with the states

{X+}M .. Then, there exists a finite k such tHat" , u"k}M . is ae-relaxed solution off.15).

6.4 The Overall DMPC Scheme

The overall DMPC scheme is now presented in this sectiost,Eiproper stopping criterion for the
distributed fast dual gradient algorithm is needed. Thisditon is based on the results of Lemma
6.2. Specifically, the algorithm terminates at the fistienoted a%, such that &-relaxed solution
is achieved. Following DefinitioB.1, the stopping criterion correspondsgi fi(x,u"k) —b(g) <

i=

eEM1pn. This condition should be checked in a fully distributed mem Again, the finite-time
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consensus algorithm in Secti@rB.2is used. For eachc ZM, introduce the variablé (¢, k) with

Z(0,k) : = fi(x,u") — % (6.20)
Z(0+1,k) =W"Z(¢,k) + waijzj (6,k), (ezb? (6.21)
jEN;

T-1 T-1 Mo
The stopping criterion is satisfied if 17,2 (¢,k) <eas § 1,2((,k) = <z fi(x, k) — b(s)>
(=0 =0 i=1
for alli € ZM. The distributed fast dual gradient algorithm with the @riiime consensus is summa-

rized in Algorithm6. L

Algorithm 6.1: Distributed fast dual gradient algorithm

Input: X,iezM
Output: @k, i e zZM
Initialization: setk=0,u""1=0,A""1 =29 =0andb_; = 6 =1, for alli € ZM;
repeat
for alli € ZM (in parallel)do
ObtainA* andii** from (6.79 and 6.8) respectively;
Perform the finite-consensus stepsaril(l) with y (0,k) being given in 6.10);
ObtainA+1 from (6.12);
end for
Set upZ (0,k) usingu™ which is defined in§.9), i € ZM
for alli € ZM (in parallel)do
ObtainZ (1,k),---,Z(T — 1,k) using 6.20 and 6.21);
end for
O = (/6 +462 - 67)/2;
okl
until eZo 1,2 (0,k) <&

The overall procedure of the DMPC algorithm is summarizedlgorithm 6.2.

Algorithm 6.2: The overall DMPC algorithm

1: Attimet, every systeni measures it own staté(t);

2: Every systeni calls Algorithm5.1with X (t) and obtairtXV) as its output.

3: Every system obtaing' (x(t)) from u"(!) via (6.13 and applyk'(x(t)) to theit" system.
4

: Wait for next sampling time, ldt=1t + 1 and go to step 1.
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6.5 Recursive Feasibility and Stability

This section discusses the recursive feasibility and lgtabesults of the proposed DMPC formula-
tion. The next lemma pertains to a property of the terminabséhe overall system and is needed
for stability of the closed-loop MPC system.

Lemma 6.3. Let
) 1 —
= ._ H i = H . 1
G :=min{og, 1 min {bi(e) /h (F))}} (6.22)

where fy; (-) is the support function of X by(¢) denotes thé'" element of te), Fi:=FK}+H!
from (5.16) with K} defined by.23 below, andF] denotes thé!" row of F'. For any % € a'X!, the

optimal solution to Algorithn®.1 for the f" system is
0% = (G5 T ) = (KX KA+ KT (ALON 20} = KX (6.23)

with k = 0.

The recursive feasible and stability results of the progd3®IPC approach are stated in the follow-
ing theorem.

Theorem 6.3. Suppose A5.1-A5.3 hold aiifd (x(t)) of (5.15 has a feasible solution at time t and
that the MPC law of §.13 is applied to the'l' system ofg.2) for all i € ZM. Then, the following
results hold.

(i) P¢(x(t +1)) has a feasible solution at timett1.

(i) Forallt >0, TM, (Ji(xi (1), @Oy — Ji(x (t),u‘t*)) < 0, where{u*}M  is the optimal solution
of (5.15.

(i) The closed-loop systen (1) with the MPC law 6.13) is exponentially stable.

Remark 6.1. It can be shown that the true LQ cost is upper bounded by theigiesl cost of the

initial state. For any x¢ D, let the infinite true LQ cost associated with the control [@aL3) be

o M

I =t;Z(HXi (OIS + 1K' (xO)1Z) (6.24)
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where X0) = x and X(t + 1) = A'X (t) + B'k' (x(t)) for all i € ZM. From (6.49),

M

Ve(x(t+2)) < Vo) = 3 (IX Ol + I (O] ) (6.25)

which, when summed up from=t0 to «, implies that F(x) < Vg(x). This gives a performance

bound for the infinite LQ cost of the closed-loop system.

6.6 Numerical Results

The example chosen is a four-agent system where every agesists of two coupled water tanks
[186. The target is to regulate the water levels to some giveareeices with a limited total input
flow rate. As shown in Figuré.1, d is the input flow andy, andh), are the water levels for system
i. Suppose the targeted water levels Eifeand ﬁ‘z with the steady input flovg' "of systemi. Let

X, = h, —hi, x, = h, —h, andu' = g — § fori e Z*.

T

h Ma’j m @j m @ﬂ Wf @ﬂ

4 s

Figure 6.1: The water tanks system

Given the parameteri?d'l =1,h, =0.64,§ =0.3,i € Z*, alinearized and discretized model is given

by

_ 0.8750 01250 | 03 |
X(t+1) = X (t) + u(t),iez*

0.1250 08047 0

All the agents have the same local constraktits= {x' € R?: |x;| < 1,|%,| < 0.64} andU' := {u' €
R : |u'| < 0.3}. Suppose the maximal total input flow rate is 2, the couplatstraint can be given

4 4 4 : .
by 3 d <2, whichimplies thaty u' <2— 3 § = 0.8. The values oK' andP' obtained from the
i=1 i=1 i=1
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discrete-time ARE, witlQ' = 10l, andR =1,i € Z*, are

| | 317459 98300
K'= < ~1.7916 —0.7337> P=
9.8300 563415

for all i € Z4. Consider the network connection of a ring akid= |1 — 0.1L(G). The minimal poly-
nomial ofW ist3 — 2.4t +1.88 — 0.48= 0. Hence, value of of (3.39 is 3 and the finite-time con-
sensus in%.39 can be obtained 2 steps. The initial conditions af¢0) = [-0.3241 — 0.59777,
x2(0) = [0.4390 — 0.46677, x3(0) = [-0.4391 —0.58187, x*(0) = [~0.5337 — 0.43477 and
the horizon lengthN = 8. The performance of the proposed DMPC approach is pretdote
several choices of and the comparison is made between the results of the prb@Eym®oach
and that obtained by solvingb.(15 with € = 0 using a single centralized computer, known as
the centralized MPC (CMPC) solution. The terminal sgagX!}M, in CMPC are obtained from
min{yM,(1-0"):(5.13)} with e = 0: gl = 0.6667,i € Z*. Consider the case gf=0.01 in DMPC.

The overall input is shown in Figui@ 2.

0 5 10 . 15 20 25

Figure 6.2: The overall input trajectories:DMPEE 0.01) and CMPC

The following table gives the real LQ co3f (x(0))(as defined in Remark 1) for different choices
of &. The values 0f g} };cz«, obtained from mifiyM,(1— ¢') : (5.13)}, are also shown in Table
6.1 It can be seen that the performance of the DMPC approaclss ¢b that of CMPC because
they have similar overall input trajectories and the degtiad in cost is less than2% even in the
case ofe = 0.01. The fact thadg’(x(0)) is upper bounded by (x(0)) can also be verified in Table
6.1
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£ 0.01 | 0.005| 0.001
ol,icZ* | 04533| 0.56 | 0.6453
Ve(x(0)) | 6187 | 6126 | 60.95
J2(x(0)) | 6099 | 60.91 | 60.89

Table 6.1: The values o8 (x(0)) for different choices of

A comparison between the proposed approach and the ADMMebapproach in185 is made.
The number of iterations of this proposed approach at éadbng the trajectories is denoted by
ke (t) := k(t) + 1, whose values are shown in Talil€. The number of iterations of the ADMM-
based approach, denoted ky(t) is also shown in this table. Notice that for 7, k(t) becomes 0
because the global constraints are not active. It can befem®rthe Table6.2 that the number of
iterations needed to reach the same accuracy by the propppechch is about 30% to 50% of that
needed by the ADMM-based approach. The number of commimmsateeded i$2T — 1)k (t) for

this approach ana‘EA(t) for the ADMM-based approach. The number of optimizationbfgms
solved at each time instantis Ep(t) by the proposed approach aﬁﬂ(t) by the ADMM-based
approach. Although2T — 1)Ep(t) andTEA(t) may be close and this approach may even require

more communications in some cases, this approach solves tgimization problems.

£ [t=0[t=1[t=2[t=3[t=4[t=5|t=6]|t=7
B 001 | 23 | 21 | 19 | 16 | 13 | 9 1 1
ke(t) [ 0005| 24 | 25 | 23 | 20 | 17 | 12 | 1 1

0001 49 | 50 | 48 | 46 | 42 | 30 | 6 1
- 001 | 88 | 88 | 72 | 67 | 71 | 74 | 94 | 1
ka(t) | 0.005| 96 | 96 | 80 | 79 | 79 | 83 | 105 | 1

0.001| 120 | 120 | 112 | 106 | 108 | 115 | 131 | 1

Table 6.2: The number of iterations along the trajectories startiogifx(0) for different choices of
€

For the rest of this section, results of the proposed appréacproblem 6.2) are compared with
those obtained using other distributed algorithms in tieediure: the distributed subgradient(D-SG)
algorithm of [L87] and the distributed Nesterov gradient(D-NG) algorithnj@i6, 107]. Although
[107] also proposed an algorithm that has a better convergeneghan D-SG and D-NG, it is
unclear if it can be extended to constrained problems. Herrdason, the comparison is only
made with D-SG and D-NG. Consider the DMPC probleinl) with € = 0.01 and the initial

statex(0). The proposed approach and D-NG use the weighted runningge@ X in (6.9) to
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compute the primal cost after each iteration as shown initlyo 5.1, while D-SG uses the latest
the primal variabldi"X in (6.8). As the stepsize affects the performance of D-SG and D-N@es
reasonable stepsizes are chosens after a few trieﬂsarmﬁ for D-SG; Q1 andg1 for D-NG.

The convergence curves of these algorithms are shown imd<ig8i It can be seen that the propose

approach converges faster than these two algorithms.

621

o
=
&)1

——The proposed approach
—D-NG:0.1

- - -D-NG:5/(k+1)
—D-SG:0.2

- - -D-SG:7/(k+1)

Primal cost

o
-

60'50 200 400 i 600 800 1000

Figure 6.3: Convergence curves of different distributed algorithms

6.7 Conclusions

A novel DMPC approach is proposed for a group of linear systeiith local and global constraints.
The proposed approach relies on the dual problem of the IbWP&L problem and uses a distributed
fast dual gradient algorithm for its solution. This is madssgible by introducing local copies of the
dual variables in individual system and enforcing all thealocopies to achieve consensus at each
iteration. Provision for computational expediency is madeearly termination of the proposed
algorithm where the inaccuracy depends on the prescrilmdtian of the coupled constraint. Ter-
mination condition is checked using a finite-time conseragerithm. Under mild assumptions, a
suboptimal solution of the overall MPC problem can be oletdiso long as the network of systems
are connected. Recursive feasibility and exponentiallgtabf the closed-loop system are ensured.
The performance of the proposed approach is demonstrateddiank networked system with a
limited total input flow rate. Compared to the ADMM-based rggeh of the same problem, this
approach achieves convergence of about 2 to 3 times faslénarkes fewer quadratic optimiza-
tion solvers, but may require more communications amongesys This communication issue is
minimized by the use of a finite-time consensus based on thamai polynomial extracted from

the network. Comparisons of convergence results are alse mih the distributed subgradient al-
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gorithm and distributed Nesterov gradient algorithm. Ithbzases, the proposed method has faster

convergence.
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6.A Proof of Lemma6é.1
(i) The problem 6.2) can be rewritten as

M
AizrgilQZM i;g. (A" stAT=Ac= A (6.26)

M .
which is equivalent to ngzig(/\), whereg(A) == 5 gi(A),A =(ALA2-.- AM)yandQ={A >0:
€ i=1

Al =2A2=... =AM}, Then, 6.79-(6.7b) can be written in a compact form
A=Ak g(e L - (Ak— Ak Y (6.27a)
AR A< Limg(,\ ) (6.27b)
g

It can be easily verified thdilg(A ) is Lipschitz continuous with the constalg. For anyA > 0,
from Proposition 6.9.2 ing8] and the fact thalgh @ A € Q, it holds that

)\lk+l g +9k2 9 AI()\ )\IE 9k2 M ||)\|k+l )\HZ LgMekZH)\HZ
IXEESE T /Z 300 2, 2
(6.28)
where
ik = APk g ATk ATk (6.29)
NN A)=g(A)+0g (A)(A—A) (6.30)

LetA in (6.289 be anyA* € A(x). The the first inequality off.14) holds becausg* is a minimizer
of (6.2) and the second inequality.(L4) holds due to the fact thati(A*,A ") < gi(A*) from the
convexity ofgi(-).

(i) The inequality .15 follows from (6.29) becauscia%gi (ALK —E gi(A*) > 0andal (A%, AHK) <
gi(A").

(iii) Some intermediate results are needed to pravéd). Using the auxiliary variable\ K =

Akl g LAtk Aik-1y )iktl can be written ad k1 = g ATkt — A1K) L ATk This, together



6.A Proof of Lemma6.1 112
with A% = ATk 1 g(6Y — 1)(A* — A1), implies that
)\i,k-i-l _5\i,k _ ek()Ti,k-i-l _)\i,k) - ek(ek—ll - 1)(Ai’k N ALk—l)
_ ek()Ti,k-i-l _)\_i,k) (6.31)

Now, we can proveq.16). Consider thah k1 = A 2k+1 —

i Ty (LK) = & Z ¥ (0,K), it implies that
(=0 i=1

M

— AMK+1 gndga ikl —

;Alkﬂ S Z)“k 1 (Zlfi(xi,ﬁi,k)_b(e))

Using 6.31), (6.32 can be rewritten as

1 o
)\Ik+l> )\Ik 9 1_( f'(XI,
i; Zl Lg

which implies that

¥kt e g1l
Akl g1t
i; [Zl C g £

%) — b))

fl(x,a") —b(e))

Using 6.6) and 6.9), the inequality above can be again rewritten

GZZAIK+1> Zlfl I_Ik
gl

T-1
[T Wy (6K =
=

(6.32)

(6.33)

(6.34)

(6.35)

From (6.15), we can know thafA *+1 — A*|| < /M||A*|| for all i € ZM, which from||A <+ — 3% >
_ _ M —. M —
[APKEL —||A* || implies that|| A%+ < (v/M + 1)||[A*||. Consider thaf| 3 APk < 5 [|ATKFL.
i=1 i=1

Therefore, from§.35), we can get that

—|| Zf Il < &) ZI/\"‘”H < BEMVM+1)[A7]

(6.36)

This, together with6, < % andH[z fi(xX, U ) —b(e)], || > H[g fi(x,u"k) —b(€)] ||, implies

(6.16. O
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6.B Proof of Theorem6.1:

Considerg; (A™K) = —J'(x, @) — (AH)T(f1(x,a*) — %) and Ogi (ATK) = —(F1(x,d) — 2&)
for all i € ZM andk > 0. For anyA > 0 in (6.29), it can be shown thaki (A, A1K) = —J1(xi i) —
AT(FI(X,ak) — %) where the notation'(-,-) is given in §.30). Substitute this intod.28), it

yields
Mo k Moo L b(e) LM 62
) hk+1 2 -1 (V1N Trfifd 4.0\ 9 k 2
;gl()\ )+9k;)94 i;(J(x,u )HAT(F0E07) ——27))) < = Al (6.37)
by dropping the quadratic term on the right-hand side. Qlamgb.9) and the fact that
2 hle g i i k
6 6, -y J(X,u") > F JX,u",
k[ZO ‘ i; i=
(6.37) implies
M . Mo S LM B2
> 90 + 3 (LI AT a0 < SRR eae)
i= =
LetA =0in (6.39. It holds that
g(A™M)+ 5 I, ) <0 (6.39)
280y

M .
From 6.1 and 6.2), it can be easily verify from the dual problerd.{) that 'z gi(APKH) >

Mo
—P(x,A%) = — 3 J(X,u"*) since ALK = A2k — ... = AMKFL - Using 6 < %5, the second
iZ1

inequality of 6.17) holds. Now let us consider the proof of the first inequalitf@®17). Note that

M

i;Ji(Xiﬂ) L{u*},27) Zf' u) — be))

> q><x7A*>—<A*>T<,zlf'<xiﬂ7k>—b<s>>

J (X u) — Zlf' k) —b(e)) (6.40)

I
<
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Consider the following inequalities

(/\*)T(_Z1 fl(x,u") —b(e)) < (/\*)T[_Zif'(x'ﬂ"‘) —b(e)l+
< II)\*IIH[Zl F(x, ) —b(e)]4 |

< BLM(VM+1)[A%2

where the last inequality is fron6(36). This inequality, together with6(40, implies the first
inequality of 6.17). O

6.C Proof of Theorem6.2
(i) Since{x,u'}M is ag-relaxed solution, it satisfies
uecu'(®),iezM, Zf'(x‘,u')—b(s)glepN (6.41)
i=

Rewriting f'(X,u’) and b(¢) back in terms of{x,x;,---,x\} and {uh,u},---,uy 4} (note that

fi(x,u") — b are simplified expression 05(9)), (6.41) is equivalent to
Zw'xx;‘t +WU < (1-eM(04+1)1p+eMlp = (1-eM((+ 1)L, VEcZy ' (6.42)
i=

For alli € ZM, let a feasible control to thi&' system at next time instant be chosen as

U= U ug U g = U W U KO (6.43)
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and the associated state sequefg, X", X\ } := {X,%,, - Xy, (AT + B'K)xy }. It follows

from this choice oli* and 6.42) that

Zw'xx'; +Wu = Zw;x;+1 +WU 4 < (1-eM(1+0)1p, Ve e 782 (6.44)
i=

and wher¢ =N -1,
M

Z(LIJ;X'N + W K'xy) = ZquXIN < (1-€eMN)1, (6.45)
i= i=
where the last inequality follows the fact théf € g1 X} and 6.10 (with T} = o} X!). In addition,
u,t €U for ¢ € Z§ 2 sinceu), , € U' because of.41). The last controlyy , = KXy, € U’ because
X, € giX} and gl X! satisfies §.6). The constraints of," € X,¢ € Z)~ andx| € gl X!} follow
. . Mo
similar argument. These properties impligs € /(X ), i€ ZMand 3 f'(x*,u) < b(e).
iZ1

(i) This result follows from Lemma.2 sincex™ € D,. O

6.D Proof of Lemma6.3

By definition of hgiy;, F)X < maxczixi Fly = hgixi (F)) = a'hy; (F}) for anyx' € a'X} and any
¢ € ZNP. This fact, together witto' < ﬁbg(e)/hx}(lz_g‘) from the definition of{d"};.;w, implies
% —FX > 0. Sinced'X} C gl X}, KixX e U (X) from (5.5), (5.6) and 6.14). Hence, wherk = 0,
KiX is a feasible solutionto  minJ'(x',u'), i € ZM. SinceK' andP' are obtained from ARB(\X

el (X)
is the optimal solution to midf (x,u'). Therefore, the solution wheki= 0 is G"° = Kix for all
ul

i € ZM. This suggests thaf® = K\x' and f'(x,K}\x') — % < 0 foralli € ZM, which means that

{x,u"0}M is ae-relaxed solution and Algorithri.1terminates ak = 0. O

6.E Proof of Theorem6.3

(i) Consider thee-relaxed solutior{x (t),0**0}M  at timet. Letu} := {Us Uy Uy g} = T

with the associated predictive state sequexice- {x‘0|t,x ,xil\m} for all i € ZM. Define the

i
1/t

shifted predicted sequence at next time instnt = {u} ., ,ul_;,,K'x, }, i € ZM. From prop-

erty (i) of Theorem6.2, it suggests tha{0{+1}{\":1 is a feasible solution t@®.(x(t + 1)) because
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X(t+1) =AX(t)+B u‘oIt using the control lawd.13).
(i) This result holds sincéx (t),lT’E(t)}Pil is a(&,0)-upper-relaxed solution @ (x(t)) forallt > 1.
(iii) Let Ve(x(t)) = M, J'(X (t),u*) (where{ul*}M , is the optimal solution off.15)) be the Lya-

k(t)

punov function of the closed-loop system &f1) with input u' (t) = Gg given by 6.13. When

Algorithm 5.1 terminates at timg, k) = u; and it follows property (iii) of Theorens.2

iﬂx‘ (1),uf) — Ve(x(t)) <0 (6.46)

Using the same shifted shifted control sequedgq at timet + 1 as defined in (i), it follows from

the standard argument in MPC,

JO¢(E+1),8.0) = (K (0,6) = =X (O) g = [1u (V)
o e 1K X e+ 1Ak e 1B = [

= —|IX ()]l — Iu' V)1 (6.47)

where the last equality is from the fat, P' satisfy the Algebraic Riccatii Equation 04 )TP'Al —

P = —(Q +KRK?). Sincefy, ; may not be the optimal att 1,

M M

Ve(X(t+1)) < _;J%x‘ (t+1),00,1) = > (T4 ), 0) = IK Ol — I (0% )
M . .
=Ve(x(t) - 5 (I O + U ®117) (6.48)
M .
gvs<x<t>>—zlux' ®1% (6.49)

where the equality condition follows fron®47) and the last inequality is due t6.46). Therefore,

X! (t) goes to 0 ag — o for all i € ZM. This means that there exists a firtitesuch thaw (t;) € o' X}

for all i € ZM. When this happens, it follows from Lemn@a3 that k' (x(t¢)) = K'X (t;) and the
closed-loop system becomggt + 1) = Al X' (ts). Sincex (t¢ +1) € a'X!} for any X (t¢) € a'X!
from (5.6). As aresultx (t +1) = Al X (t) for all t >ty and the closed-loop system is exponentially

stable.O



CHAPTER

Conclusions and Future Work

This chapter summarizes the main contributions of thisishexsd provides possible directions for

future work.

7.1 Contributions of This Thesis

A summary of the main contributions is presented below. Tist fiontribution of this thesis is
a DMPC approach for a network of dynamically-coupled linsgstems. This approach is less
conservative compared with the existing DMPC approacheause of the choices of the terminal

cost and the terminal set.

e Unlike other DMPC approaches, where the terminal cost fanctepends on a block diagonal
Lyapunov matrix, this approach uses a terminal cost fundiiat depends on a non-block

diagonal Lyapunov matrix that conforms to the structuradstmaint imposed by the network.

e The terminal set is obtained from the maximal constraintiadilie invariant set of the overall
system. More exactly, the approach determines a timesgutgrminal set that moves within
the maximal constraint admissible invariant set, changinoth size and location at each

time.

e The computation of the time-varying terminal set dependtheriopology of the communica-
tion network. When the network is fully connected or a cdrtadlector exists, the terminal
set can be easily computed and local exponential staldliachieved. If the network is only
connected without a central collector, the computationthefterminal set require a series

of linear programming (LP) problems; the computations ofclittan be speeded up, via a
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preprocessing step, so that the approach is suitable foreoobmputations. In this case, the

overall closed-loop system can only be guaranteed to besyically stable.

The second contribution of this thesis is a DMPC approacha fgmoup of linear systems with local

and global constraints.

e In most previous DMPC approaches for the same setting, tlimality properties of the
overall system are not explicitly pursued. This approaeible to achieve the optimality of the
overall MPC problem within some prescribed accuracy. Thmoissibly because the approach
is based on the dual problem of the overall MPC problem, wiictolved by a distributed
ADMM algorithm. The distributed implementation is made gibte by introducing local
copies of the dual variables in individual system and eriigrell the local copies to achieve
consensus value. One important property of this distrib®MM formulation is that it

converges fast to modest accuracy.

e Besides the distributed formulation, this approach alsp@ses a stopping criterion that al-
lows early termination of the distributed ADMM algorithm et the inaccuracy depends on
the violation of the coupled constraint and the primal cegt. gl he characterization of the vio-
lation of the coupled constraint and the primal cost gapvsrgfrom the sequences generated

from the distributed ADMM algorithm.

e The stopping criterion based on the violation of the couplaaktraint and the primal cost gap

is provided and is checked using a finite-time consensusitigo

e Under mild assumptions, the DMPC converges to some smalhherhood of the optimal so
long as the network of systems is connected. Recursivebigsand exponential stability of

the closed-loop system are ensured.

The last contribution of this thesis is an accelerated ibligied dual gradient algorithm for DMPC
of a group of linear systems with coupled constraints. Tharadvantage of this approach is that

it converges faster than the ADMM-based approach.

e Similar to the ADMM-based approach, this approach als@setin the dual problem of the
overall MPC problem. The dual problem is then solved by aiblisted fast dual gradient

algorithm. Unlike the ADMM-based approach, the local cepié the dual variables in this
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approach reach the consensus at each iteration due to tlo¢ aimite-time consensus algo-

rithm.

e Another improvement of this approach is that the stoppiitgrion is based on the violation of
the coupled constraint. There is no requirement to chechriingal cost gap. This is possibly
because the overall cost function is upper bounded by thmapbverall cost function at each
iteration. Again, this approach uses a finite-time consemdgorithm to check the stopping

criterion.

e Under mild assumptions, a suboptimal solution of the oV@&&C problem can be obtained
so long as the network of systems is connected. It is showherexperiment that this ap-

proach converges 2-3 times faster than the ADMM-based appro

7.2 Future Work

Several possible directions for the future research oftti@sis are outlined below.

7.2.1 Stabilization with Structural Constraints

The stabilization of linear systems with arbitrary struatuconstraints is a fundamental problem.
The stabilizability of(A,B) is not enough to ensure the solution of a stabilizihghat conforms

to the structural constraint imposed by the communicatietwark. For arbitrary structural con-
straints, it is generally difficult to establish the necegsnd sufficient condition for existence of
the structural stabilizing<. In the thesis, the numerical solution of the struct¢ak obtained by
solving the bilinear optimization problerd.1) using ADMM, as shown in Chapter 4. However,
the solution is not guaranteed sineedl) is nonconvex. The work of this thesis can be extended to
discuss the theoretical and numerical solution of the &iratstabilizingK. In addition, it is also

more desirable to solvel(21) in a distributed manner for large-scale systems.
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7.2.2 Disturbance and Transmission Errors

Throughout the thesis, all systems are assumed to be frastoflthnce and the information trans-
mission among systems is perfect. One direction of the dutesearch is to extend the formulations

of this thesis to the disturbed case where the systems ahe &itm

X(t+1) = Ax(t) +Bu(t) +w(t), teZ, (7.1)

wherew(t) is the disturbance. The robust MPC can be used if the distogb&s assumed to be

bounded by

w(t) e W (7.2)

whereW is a bounded convex polyhedral set. In practice, there iaywncertainty in the transmis-
sion, such as time-delay, transmission breakdown, andnvtion errors. The DMPC approaches
in this thesis should be adapted to account for these prabl&ire difficulty is to achieve recursive

feasibility and stability under these situations.

7.2.3 Time-Varying Communication

This thesis only considers static and fixed networks. Moreglications arise when the topology of
the network is time-varying. Distributed control under ¢éiarying network is a popular topic and
has applications in areas such as unmanned air vehicleg)}J&fmation control, and congestion
control in communication networks. The work of this thegia be extended in the direction of time-
varying networks. As far as the author can see, conditiorth@ronnectivity of the time-varying

network is needed to ensure recursive feasibility and Igtabf the overall system. This may need

results in consensus and optimization in multi-agent tragsing network $5, 86, 96].
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