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Abstract

Robust decision making is ubiquitous in real-world applications in machine learn-

ing, operations research and finance, etc., due to the uncertainty and noise in

practical data coming from measurement errors or malicious attacking. Robust

optimization and distributionally robust optimization are two popular techniques

in robust decision making. Robust optimization treats uncertain parameters by

defining uncertainty sets consisting of their possible realizations and solving solu-

tions with the worst-case realizations, while distributionally robust optimization

takes the advantages of prior distributional knowledge about uncertain param-

eters by constructing ambiguity sets that are assumed to include the true dis-

tributions of uncertain parameters and computes solutions by minimizing the

worst-case expected cost over the distributions in the ambiguity sets.

In this thesis, we first investigate the computational aspects of distributionally

robust chance constrained optimization with non-linear uncertainties, and apply

these robust decision making techniques in machine learning both theoretically

and algorithmically, i.e., we provide a new robustness interpretation of a broad

range of Lasso-like algorithms and regularized SVMs. Second, we study op-

timization with unknown parameters, which generalizes both stochastic linear

optimization and linear bandits. We tackle it from a dynamic perspective –

the decision maker can make a tentative decision, collect feedbacks about the

decision and fine tune the decision – and develop two algorithms based on the

epsilon-decreasing strategy and the upper confidence bound strategy, respec-

tively. Finally, we study principal component analysis with noisy or incomplete

data, and propose three robust principal component analysis algorithms that are

able to handle outlying observation with solid theoretical guarantees.
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Chapter 1
Introduction

In the last few years, we have witnessed the rise of the big data era – numerous artificial

intelligent systems have been created to help people make decisions by extracting implicit

meaningful information from a large amount of data collected from internet applications,

consumer behavior analytics, financial systems and computational biology. Prominent ex-

amples include recommendation systems, stock market predictions and disease diagnosis.

A nonnegligible fact is that practical data inevitably contains uncertainty, noise and even

outliers due to spurious readings, measurement errors, malicious attacking or mislabeling.

Substantial research indicates that ignoring the uncertainty and noise can significantly de-

grade the performance of artificial intelligent systems and lead to unreliable predictions or

bad decisions. This thesis focuses on handling uncertain and noisy data in machine learning

and decision making problems, which mainly includes two parts: 1) robust optimization for

tackling uncertainties in machine learning problems, especially in regression and classifica-

tion, and 2) robust dimensionality reduction algorithms typically used for data preprocessing

in regression or classification to improve prediction accuracy.

Robust optimization has become a popular and widely applied technique for handling un-

certainties in optimization problems. The key ingredient of this approach is to define the

uncertainty sets consisting of possible realizations of the uncertain parameters in optimiza-

tion and solve it with the worst-case realizations of the parameters. Previous work showed

that robust optimization problems can be computationally tractable and yield more reliable

results than the corresponding non-robust ones if the uncertainty sets are selected prop-

erly. When the uncertainty sets are chosen poorly, robust optimization can lead to overly

conservative solutions or even be intractable. To ease the problem of “overly-conservative”,

1
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distributionally robust optimization is a proper choice for decision-making by taking the

advantages of prior distributional knowledge about parameters. This model assumes that

the probability distribution of a certain parameter belongs to an ambiguity set containing all

the distributions that are compatible with the prior information extracted by the decision

maker and finds solutions by minimizing the worst-case expect cost over the distributions

in the ambiguity set.

Regression and classification are two fundamental techniques in machine learning, whose

goals are estimating prediction rules from the observed samples and the corresponding out-

puts by minimizing an empirical loss function such that with high probability the prediction

for a new sample is close to its true output as much as possible. The observed samples usu-

ally contain noisy or missing attributes, which make regression and classification become

decision-making problems with uncertain parameters. Therefore, robust optimization and

distributionally robust optimization can be applied to mitigate the impact of the noisy

samples.

In this thesis, we first investigate the computational aspects of distributionally robust chance

constrained optimization problems that have successfully modeled robust support vector

machine (SVM) and portfolio optimization under uncertainty. Previous research mainly

focused on the case where the constraints are linear in both of the decision variables and the

uncertain parameters. We instead consider the case where the constraints can be non-linear

in the decision variable, and in particular to the uncertain parameters.

Second, by applying robust optimization and distributionally robust optimization to regres-

sion and classification problems, we provide a robustness interpretation of widely applied

Lasso-like algorithms, e.g., group Lasso and fused Lasso, and establish the connection be-

tween regularized SVMs and the distributionally robust optimization framework. For clas-

sification, we also develop an axiomatic framework by proposing a set of salient properties

on loss functions and then propose the coherent loss function, revealing a new interpretation

for robust SVMs.

Third, we consider the case where the prior information about the uncertainty sets in ro-

bust optimization is not available to the decision maker. Specifically, we study optimization
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problems with unknown parameters and develop several algorithms for solving them in an

online learning fashion. Unlike robust optimization where the unknown parameters lie in

some known uncertainty sets, we assume that no prior knowledge about the parameters is

available but the feasibility of each constraint can be evaluated at any given measurement

point. We show that this problem is a generalized version of stochastic linear optimiza-

tion and linear bandit problems, and derive the finite time bounds on the regret and the

constraint violation for the proposed algorithms.

Finally, besides regression and classification, we study another widely applied technique in

machine learning and data analysis – principal component analysis (PCA). It is well known

that PCA is notoriously fragile to outlying observations – its performance can dramatically

degrade in the presence of even few corrupted samples due to the quadratic error criterion

used. In order to handle outliers, we propose: 1) a unified framework for making a wide range

of PCA-like algorithms – including the standard PCA, sparse PCA and non-negative sparse

PCA, etc. – robust when facing a constant fraction of arbitrarily corrupted outliers; 2) two

novel computationally efficient non-convex outlier-robust PCA algorithms with capability

of exactly recovering the low-dimensional subspace spanned by the uncorrupted samples;

3) a unified paradigm of online robust PCA via online mirror descent by designing “robust

gradients” in the dual space for mirror descent.

1.1 Optimization with Uncertain Parameters

Numerous real-world problems can be modeled as the following mathematical optimization

problem:

Minimize:x f(x)

Subject to: g(x, ξ) ≤ 0,

(1.1)

where x ∈ Rn is the decision variable, ξ ∈ Rk is a vector of the parameters of this problem

and g(·, ·) ∈ Rm includes all the constraint functions. In real-world applications, problem

parameters usually contain uncertainties due to measurement errors or noisy observation. In

the seminal papers [BTN98, BTN99], Ben-Tal and Nemirovski pointed out that one cannot
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ignore the situations where an acceptable solution should be feasible for all realizations of the

parameters and even a small violation of the constraints can lead to meaningless solutions.

More specifically, suppose that some prior knowledge about the uncertain parameter ξ is

available to the decision maker, i.e., ξ belongs to a known uncertainty set U ⊆ Rk, then the

key technique in robust optimization is considering the robust counterpart which is given

by the following semi-infinite constraint:

g(x, ξ) ≤ 0, ∀ξ ∈ U ⇐⇒ sup
ξ∈U

g(x, ξ) ≤ 0 (1.2)

The advantages of constraint (1.2) are: 1) it robustifies the constraint in (1.1), in the sense

that decision variable x is feasible for all the realizations of ξ ∈ U ; 2) it is computationally

tractable for a wide range of real-world applications when the uncertainty set is chosen

properly; and 3) the uncertainty set is constructed more easily than the distribution of the

uncertain parameters from a practical perspective.

This robust counterpart scheme for mathematical programming has been extensively stud-

ied in recent decades. In the papers [BTN98, BTN99, BTN00, BTNR02], Ben-Tal and

Nemirovski showed that the robust formulations for linear programming (LP), quadratic

programming (QP), second order cone programming (SOCP) with ellipsoidal or polyhedral

uncertainty sets are tractable, i.e., they can be solved in polynomial time. Bertsimas and

Sim [BS03, BS04] proposed a new robust approach for linear programming that is able to

adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of

constraint violations. Although the robust counterpart is polynomial time solvable, it is

more computationally expensive than the nominal problem, e.g., robust LP becomes SOCP

and robust SOCP becomes semidefinite programming (SDP). To reduce its computational

cost, Bertsimas and Sim [BS06] developed a relaxed robust counterpart for general conic

optimization that preserves the computational complexity of the corresponding nominal

problem and guarantees the feasibility of the robust solution with a certain probability.

Besides LP, QP and SOCP, El Ghaoui et.al [EL97, EOL98] studied robust SDP problems

and robust least square problems.

Although robust optimization has beauty for theoretical analysis and simplicity for practi-
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cal use, it may lead to overly conservative solutions when the uncertainty set is designed

poorly. Its another weakness is that it is difficult to cope with the prior knowledge about

the distributions of problem parameters. In contrast with robust optimization, stochastic

programming is a framework for handling uncertainties by taking prior distributional knowl-

edge into account, e.g., [BL97, Pre95, KW94]. Suppose that parameter ξ has distribution

P, then stochastic programming involves the following constraint

Eξ∼P[g(x, ξ)] ≤ 0, (1.3)

which guarantees that the expectation constraint should hold. Unfortunately, although the

constraint function is convex when g(x, ξ) is convex w.r.t. x, it is quite computationally

challenging to solve it. One possible approach for handling (1.3) is using Monte Carlo

approximations [SdM00] which are often computationally costly. Another challenging prob-

lem is that in practice distribution P is difficult to estimate given only a limited information

about parameter ξ.

In order to address these issues, a robust formulation for stochastic programming called

distributionally robust optimization was proposed. Scarf [Sca58] was among the first re-

searchers to investigate distributionally robust optimization. Similar to robust optimization

that defines an uncertainty set over problem parameter ξ, distributionally robust optimiza-

tion defines a set of probability distributions P called ambiguity set that is assumed to

include the true distribution P of parameter ξ, and then solve the problem with the worst-

case realization in P. The following is the distributionally robust counterpart:

sup
P∈P

Eξ∼P[g(x, ξ)] ≤ 0. (1.4)

In practice, the ambiguity set P can be constructed from existing domain knowledge or

statistical analysis, e.g., estimating the mean and covariance from observed data and taking

all the distributions with the estimated mean and covariance as P. This model has been

extensively studied in recent years, e.g., [CE06, ZKR11, WKS13, DY10, GS10]. Delage

et al. [DY10] proposed a new ambiguity set taking into account the knowledge of the dis-

tribution support and of a confidence region for its mean and its second moment matrix
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and applied this model to solve data-driven problems where the knowledge of ξ can be de-

rived from the historical data. Wiesemann et al. [WKS13] developed a unified framework

for modeling distributionally robust optimization problems by standardizing ambiguity sets

that contain all distributions with prescribed conic representable confidence sets and with

mean values residing on an affine manifold. Goh et al. [GS10] proposed a simple LDR model

to tractably approximate linear distributionally robust optimization problems.

Another paradigm for handling stochastic problem parameters is the celebrated chance

constraint approach which has the following formulation:

Pξ[g(x, ξ) ≤ 0] ≥ p, (1.5)

for some value p ∈ (0, 1). (1.5) ensures that the constraint holds with probability at least p.

Chance constraints were first proposed by Charnes and Cooper [CC59], and since then there

has been considerable work, e.g., Miller and Wagner [MW65], Prékopa [Pré70], Delage and

Mannor [DM10], and many others. Similar to stochastic programming, it is usually difficult

to accurately estimate the distribution of ξ in practical applications and optimization prob-

lems involving chance constraints are notoriously hard to solve, even when g(·, ·) is bilinear

and the distribution ξ is uniform [NS06]. The only known tractable case of this formulation

is when g(·, ·) is bilinear and ξ follows a radial distribution [CG06, AG03]).

To overcome these problems, distributionally robust chance constrained approach has been

proposed, e.g., [CG06, EI06, DY10, ZKR11]. In this approach, similar to distributionally

robust optimization, the distribution of the uncertain parameter is assumed to belong to a

given set P. Constraint (1.5) is then replaced with the following constraint

inf
µ∈P

Pξ∼µ[g(x, ξ) ≤ 0] ≥ p, (1.6)

which requires that for all possible probability distributions of the stochastic uncertainty,

the chance constraint must hold. This approach also brings in computational advantages,

e.g., Cheung et al. [CSW12] developed safe tractable approximations of chance constrained

affinely perturbed linear matrix inequalities. Calafiore and El Ghaoui [CG06] showed that
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when f(·, ·) is bilinear and P is characterized by the mean and the variance, (1.6) can

be converted into a tractable second order cone constraint. Most previous results on the

tractability of (1.6) are restricted to the case that g(·, ·) is bilinear. One exception is that

Zymler et al. [ZKR11] showed that (1.6) is tractable when g(x, ξ) is linear in the decision

variable x and quadratic or piecewise linear in ξ. To the best of our knowledge, the general

non-linear case is largely untouched. In Chapter 2, we show that (1.6) is tractable when g(·, ·)

concave-quasiconvex and establish a connection between (1.6) and a robust optimization

formulation using a deterministic uncertainty model.

In recent decades, many researchers have applied the robust optimization framework in

machine learning problems such as classification and regression, e.g., [BGJ+04, LEBJ03,

SBS06, BTBBN11, Bha04, BPS04, TG07, GR06, XCM09, XCM10, LCG12, SAEK15]. For

regression with noisy training samples, the standard learning algorithms can be robusti-

fied by directly applying robust optimization or distributionally robust optimization. Xu et

al. [XCM10] showed that the standard Lasso – the l1 regularized linear regression – is equiva-

lent to a robust linear regression formulation and such robustness interpretation implies the

sparsity and the consistency of the standard Lasso. Shafieezadeh-Abadeh et al. [SAEK15]

proposed a distributionally robust approach to logistic regression by using the Wasserstein

distance to construct a ball in the space of probability distributions centered at the uniform

distribution on the training samples, and showed that the proposed formulation is tractable

and takes the popular regularized logistic regression problems as its special cases.

Inspired by the success of the standard Lasso, many regularization schemes were proposed

to select solutions with more general sparse-like structures. For example, domain knowledge

may indicate that the solution is group sparse, i.e., features can be grouped, and the features

belonging to one group is likely to be either all non-active or all active. A prominent algo-

rithm proposed to enforce this sparse-like structure is the group Lasso formulation [YL06],

where the regularization term is the sum of the ℓ2-norms of the different groups of features.

Other examples of Lasso-like algorithms include the fused Lasso [TSR+05] that encourages

sparsity of the coefficients and also sparsity of their differences, the sparse group Lasso

[FHT10] that encourages solutions that are sparse at both the group and individual fea-

ture levels. Although the standard Lasso has been extensively studied from the robustness
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perspective [XCM10], the connection between robust optimization and other Lasso-like al-

gorithms such as fused Lasso and group Lasso is still unclear. In Chapter 3, we develop a

unified robust linear regression model and show that it is equivalent to a general regular-

ization framework to encourage sparse-like structure that contains group Lasso and fused

Lasso as specific examples, which provides a robustness interpretation of these widely ap-

plied Lasso-like algorithms, and allows us to construct novel generalizations of Lasso-like

algorithms by considering different uncertainty sets.

For classification, the existing robust formulations take one of the two approaches. The

first approach treats the problem from the robust optimization perspective similar to robust

regression. Xu et al. [XCM09] established a strong connection between robust optimization

and regularized SVMs and provided a robustness interpretation for the success of regularized

SVMs. Globerson et al. [GR06] applied the robust optimization formulation to construct

classifiers that are robust to deletion of features in test data. The second approach is

based on the chance constraints or distributionally robust chance constraints. Lanckriet

et al. [LEBJ03] considered a binary classification problem where the mean and the covari-

ance of the samples are assumed to be known and then developed a robust classification

approach by minimizing the worst-case misclassification probability of future samples via

imposing distributionally robust chance constraints on linear decision rules. Shivaswamy

et al. [SBS06] proposed a robust formulation for SVM with chance constraints and showed

that the proposed formulation can be converted into a second order cone program.

A natural question hence emerges: does there exist a universal formulation that can unify

all these approaches and inspire new algorithms? In Chapter 4, we show that robust clas-

sification via the distributionally robust optimization formulation gives a positive answer,

and provide a new distributionally robust optimization interpretation for regularized SVMs

which allows us to design new algorithms that are robust to feature corruption. In Chap-

ter 5, we revisit the empirical loss minimization paradigm for classification and propose a

new loss function called the coherent loss function defined by a set of salient properties on

functions for classification. We show that the proposed approach yields a strictly tighter ap-

proximation to the empirical classification error than any convex cumulative loss approach,

and provide a new interpretation for robust SVMs from the “coherent loss” perspective.
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1.2 Optimization with Unknown Parameters

Recall that in robust optimization, we consider the following optimization problem

Minimize:x f(x)

Subject to: g(x, ξ) ≤ 0,

where ξ ∈ Rk is a vector of the problem parameters which is assume to belong to a known

uncertainty set U . But in some practical applications, we do not always have the exact

knowledge about parameter ξ or its uncertainty set U . In other words, the constraints

imposed on decision variable x can be unknown in real-world problems. For example, the

network flow problems, which are usually used to model traffic in a road system, packet flow

through network and circulation with demands, can be formulated as linear optimization

problems. The decision makers who are trying to find the maximum flow or the minimum

cost flow do not always exactly know the capacities or costs of all the edges in the network,

e.g., the decision makers do not know the traffic condition in all the roads before they

determine the flow of vehicles through a transport network until those vehicles run on their

roads and give the traffic report. This kind of examples can be easily duplicated in many

applications in machine learning, operations research and finance.

Consider a simpler optimization problem where the constraints are linear w.r.t. x, namely,

Minimize:x f(x)

Subject to: A⊤x ≤ b, x ∈ S,
(1.7)

where f(·) is the cost function, S is a closed convex set, and A,b are the parameters of the

linear constraint. We assume that f(·) and S are known but A,b are unknown. To the

best of our knowledge, this problem has not been explored yet. The most related problems

are stochastic linear optimization and contextual linear bandit problems, which attempt to

solve the following optimization problem in the online setting:

Minimize:x c⊤x

Subject to: x ∈ S,
(1.8)
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where the cost vector c is assumed to be unknown. Clearly, by introducing a new decision

variable β and converting Problem (1.8) into its epigraph form

Minimize:x,β β

Subject to: c⊤x ≤ β, x ∈ S,

we know that Problem (1.8) is indeed a special case of Problem (1.7), which implies this

problem has a close relationship with the literature of online learning.

The classical multi-armed bandit problem is one of the basic problems in online learning,

where in each of T rounds a learner selects one of K arms (forming a discrete set S)

and subsequently receives a reward independently drawn from an unknown distribution

associated with the selected arm. The goal of the learner is to choose a sequence of arms

to maximize the cumulated rewards over the T rounds. This problem has been extensively

studied in decades, e.g., [Lai87, Agr95, ACBF02, CBL06, PCA07, BSSM08, MS11]. An

extension of the classical multi-armed bandit problem is the contextual multi-armed bandit

problem in which each arm associates with a d-dimensional feature vector called “context”

and the reward corresponding to each arm depends on the feature vectors. The set of the

feature vectors associated with the arms forms set S. The learner’s aim is to explore the

relationship between the feature vectors and rewards so that he can predict which arm

could provide best reward by examining the feature vectors. The contextual bandits setting

with linear payoff functions was first studied by [AL99, ACBF02] and further analyzed by

[CLRS11, FCGS10, AYPS11]. In this setting, we assume that there exists an unknown c

such that the expected reward for an arm given feature vector x is c⊤x. When S is very large

or even infinite, this problem is also called “stochastic linear optimization” [DKH07, DHK08,

RT08, Sha13, Sha15a]. One of the most important example is the online linear programming

problem as shown in (1.8). Different from the standard linear programming problem with

known cost vector c, the learner only observes noisy feedback about c corresponding to the

selected solution in each round.

In Chapter 6, we study Problem (1.7) with unknown constraints in the online fashion where

the learner has to select a solution in each round and then receives the corresponding
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feedback providing the information about the feasibility of the selected solution. To solve

this problem, we develop two algorithms based on the epsilon-decreasing strategys and the

upper confidence bound strategy, and provide the theoretical performance of the proposed

algorithms. Based on these results, we show that the robust linear programming problems

with unknown uncertainty sets can be solved in a data-driven manner as long as the feedback

information about the feasibility of each robust constraint for any given input is available

to the decision maker.

1.3 Principal Component Analysis with Noisy Observation

Besides regression and classification, dimensionality reduction is another fundamental tech-

nique in machine learning, mapping data from the original space onto the reduced space. It

is well-known that regression and classification can be done more accurately in the reduced

space than the original space. Principal component analysis (PCA) [Pea01] is arguably the

most widely applied dimensionality reduction method, playing a significant role in a broad

range of areas including machine learning, statistics, finance and many others. The stan-

dard PCA performs the spectral decomposition of the sample covariance matrix, selects the

eigenvectors corresponding to the largest eigenvalues, and then constructs a low dimensional

subspace based on the selected eigenvectors. It is well known that standard PCA, depend-

ing on different applications, may suffer from three weaknesses [MR14, XCM13, JL09]: 1)

PCA is notoriously fragile to outliers – indeed, its performance can significantly degrade

in the presence of even few corrupted samples, due to the quadratic error criterion used;

2) PCA cannot utilize additional information of the principal components: e.g., in certain

applications, it is known that the principal components should lie in the positive orthant;

3) its output may lack interpretability since it does not encourage sparse solutions.

In recent years, numerous robust PCA algorithms have been proposed to address the

first issue [DGK81, XY95, YW99, lTB03, Das03, XCM13, FXY12]. Among them, Xu et

al. [XCM13] successfully tackles the case where a constant fraction of samples are corrupted

in the high dimensional regime. Their proposed method is tractable, easily kernelizable, and

is able to robustly estimate the principal components even in the face of a constant fraction
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of outliers and very low signal-to-noise ratio. To address the second weakness, Montanari et

al. [MR14] recently proposed a new algorithm called non-negative PCA which handles the

case that the principal components are known to lie in the positive orthant. But similar to

the standard PCA, this algorithm is sensitive to outliers. Indeed, the estimated principal

components can be far from the true ones in the face of even few outliers. To address the

third weakness, previous works focus on a class of methods called sparse PCA that adapt

the standard PCA so that only a few of attributes of the resulting principle components

are non-zero, e.g., [VCLR13, ZHT06, SH08, JYN08, BJNP13, VL13, dEJL07, TDT10]. For

example, Vu et al. [VCLR13] proposed a convex relaxation formulation of sparse PCA based

on a semi-definite program with a Fantope constraint and established theoretical guaran-

tees in the outlier-free regime. Yet, one severe drawback of most sparse PCA algorithms is

that they are sensitive to the existence of even few outliers. This is clearly undesirable, as

in real-world applications, the existence of outliers is ubiquitous. Recently, several robust

sparse PCA have been proposed [CFF13, WC12, HRS14] to handle outliers, but all of them

are only evaluated by experiments and have no theoretical performance guarantees.

In Chapter 7, we theoretically address these issues of PCA simultaneously. Specifically,

we propose a general framework for a wide range of PCA-like algorithms to make them

provably robust to a constant fraction of arbitrary outliers. Our framework has the ca-

pability of converting a non-robust PCA-like algorithm such as non-negative PCA [MR14],

sparse PCA [VCLR13, PDK13] or non-negative sparse PCA [APD14], into its outlier-robust

variant.

Recently, borrowing ideas from compressive sensing, a prominent new approach for address-

ing the first issue has been extensively studied, which decomposes the noisy sample matrix

X into a low-rank matrix L∗ and a sparse matrix S∗ via nuclear norm minimization, e.g.,

[CR09, CLMW11, RFP10, CSPW11, XCS12]. Among them, Xu et al. [XCS12] proposed a

nuclear norm based algorithm called Outlier Pursuit to handle corrupted samples, where

they assumed that S∗ is column-wise sparse instead of entry-wise sparse. The goal of Out-

lier Pursuit is to exactly recover the column space of the low-rank matrix L∗ and identify

the nonzero columns of S∗. They proved that exact recovery can be achieved under mild

conditions depending on the incoherence of the row space of L∗ and the fraction of outliers.
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While nuclear norm based algorithms have elegant theoretical results, they can be difficult

to apply to large-scale applications due to high computational cost.

In order to reduce the computational cost, in Chapter 8, we develop two novel non-convex

algorithms for outlier-robust PCA called Outlier Rejection and Outlier Reduction, which

involve alternating between estimating the low-rank column space of L∗ and identifying

the outliers indicated by S∗. In comparison with Outlier Pursuit, the proposed algorithms

have much lower computational load, yet enjoy similar performance guarantees for the exact

recovery of the true column space.

Besides developing non-convex variants of PCA algorithms, another approach for designing

computational-efficient PCA algorithms is based on the online setting, or online PCA, where

one receives a sample sequentially and this sample vanishes after it is collected unless it

is stored in the memory, e.g., [WK08, MCJ13, ACLS12, ACS13, YX15a, Bra02, ACS13,

Sha15b]. These algorithms typically take one of the two approaches: 1) block-wise stochastic

power methods, e.g., the memory efficient PCA developed by Mitliagkas et al. [MCJ13]

performs a power iteration update on the estimated PCs once a block of new samples are

received; and 2) stochastic convex optimization, e.g., stochastic PCA proposed by Arora et

al. [ACS13] performs a matrix stochastic gradient descent when a new sample arrives. The

weakness of these algorithms is that they cannot handle outliers or missing entries existing

in the received samples.

In Chapter 9, we consider a unified paradigm on online PCA via online mirror descent – a

general framework for developing and analyzing first-order online learning algorithms, e.g.,

[SST11, SS12, OCC15]. By designing proper robust gradients used in mirror descent, we

propose new online PCA algorithms that are robust to various types of data defect such

as missing entries, corrupted attributes or outliers, and establish finite-sample performance

guarantees, which is a distinctive feature of the proposed paradigm.

1.4 Structure of the Thesis

This thesis is organized as follows:
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Chapter 2. Distributionally Robust Chance Constraints for Non-Linear Uncer-

tainties. The computational aspects of distributionally robust chance constrained optimiza-

tion are investigated in this chapter, where the uncertainty is characterized by its mean and

variance, and the constraint function is non-linear – concave in the decision variables and

quasi-convex in the uncertain parameters, in contrast to bilinear constraint functions con-

sidered in previous work. Furthermore, an equivalence relationship between distributionally

robust chance constrained optimization and robust optimization is established, which links

two broadly applied paradigms in decision making under uncertainty and extends previous

results of the same spirit in the linear case to more general cases. Finally, a generalization of

distributionally robust chance constraints called probabilistic envelope constraints is studied

in the non-linear case.

Chapter 3. A Unified Robust Regression Model for Lasso-like Algorithms. In

this chapter, a unified paradigm between robustness and regularization schemes for various

sparse-like structures containing group Lasso and fused Lasso is established via a unified

robust linear regression model. This model provides a robustness interpretation of these

widely applied Lasso-like algorithms, and forms a new way to construct novel generalizations

of Lasso-like algorithms by considering different uncertainty sets. Based on this robustness

interpretation, the sparsity and statistical consistency properties of Lasso-like algorithms

are explored from a new robustness perspective.

Chapter 4. A Distributionally Robust Optimization Interpretation For Regu-

larized SVMs. Similar to Chapter 3, a unified framework based on distributionally robust

optimization is proposed in this chapter for designing robust classification methods. This

framework establishes a close relationship with previous robust classification approaches

tackling data uncertainty using robust optimization, and provides a distributionally robust

optimization interpretation for regularized SVMs and robust SVMs.

Chapter 5. The Coherent Loss Function for Classification. The goal of classification

is to find a prediction rule leading to a small misclassification error, which can be achieved

by minimizing the cumulative loss – the sum of convex surrogates of the 0-1 loss of each

sample. In this chapter, instead of using the cumulative loss, a new loss function called
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coherence loss function is proposed by developing an axiomatic framework based on the

salient properties on loss functions for classification. This approach yields a strictly tighter

approximation to the empirical classification error than any convex cumulative loss approach

while preserving the convexity of the underlying optimization problem, and provides a new

perspective on understanding the robust formulation of SVM proposed by Shivaswamy et

al. [SBS06].

Chapter 6. Online Linear Optimization with Unobserved Constraints. In some

practical applications, the exact knowledge about the problem parameters or their cor-

responding uncertainty sets is not always available to the decision maker. To address this

issue, this chapter considers to solve optimization problems with unknown constraints. More

specifically, we investigate online linear optimization with unknown constraints, where in

each round the decision maker chooses a solution from the known decision set and subse-

quently receives some feedback information about the feasibility of her choice w.r.t. the

additional unknown constraints. This model takes stochastic linear optimization problems

and contextual linear bandit problems as its special cases. To solve it numerically, two

algorithms are proposed, namely, LPUC-ED based on the epsilon-decreasing strategy and

LPUC-UCB based on the upper confidence bound strategy. Finally, the finite time bounds

on the regret and the constraint violation of the proposed algorithms are provided.

Chapter 7. A Unified Framework for Outlier-Robust PCA-like Algorithms. From

this chapter on, we will focus on robust dimensionality reduction methods. One well-known

weakness of the standard principal component analysis is that its performance dramati-

cally degrades in the presence of even few corrupted samples. To address this issue, this

chapter proposes a unified framework for robustifying a wide range of PCA-like algorithms

when facing a constant fraction of arbitrarily corrupted outliers. This framework is inspired

by HR-PCA [XCM13], but overcomes the drawbacks of HR-PCA and has the capability

of converting a non-robust PCA-like algorithm such as non-negative PCA [MR14], sparse

PCA [VCLR13, PDK13] or non-negative sparse PCA [APD14], into its outlier-robust vari-

ant. Furthermore, it is shown that the proposed framework has solid theoretical performance

guarantees, i.e., its estimation error is upper bounded by a term depending on the intrin-

sic parameters of the data model, the underlying PCA-like algorithm and the fraction of
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outliers.

Chapter 8. Non-convex Outlier-Robust PCA. Recently, a prominent new approach

for robust PCA has been extensively studied, which tries to decompose the noisy sample

matrix into a low-rank matrix and a sparse matrix via nuclear norm minimization, e.g., Out-

lier Pursuit proposed by Xu et al. [XCS12]. The problem of nuclear norm based algorithms

is that it is difficult to apply them to large-scale applications due to high computational

cost. In this chapter, we develop two computationally efficient non-convex outlier-robust

PCA algorithms. These two algorithms can be viewed as non-convex counterparts of Outlier

Pursuit, which alternatively estimate the low-dimensional subspace spanned by the princi-

pal components and mitigate the effect of outlier samples. It is shown that they own similar

theoretical performance guarantees with much lower computational complexity compared

to Outlier Pursuit.

Chapter 9. Online PCA with Imperfect Data. Online PCA is commonly applied in

large-scale applications, where the samples are assumed to be collected sequentially. Various

online PCA algorithms have been recently developed, but most of which are fragile to even

few outliers. This chapter considers a unified paradigm on online PCA via online mirror

descent, and then provides a systematic way to develop new robust online PCA algorithms by

designing proper robust gradients in the dual space for mirror descent. Theoretical analysis

shows that the proposed algorithms from this framework have finite sample performance

guarantees.

Chapter 10. Conclusion. This chapter summarizes the thesis and discusses the future

work.



Chapter 2
Distributionally Robust Chance Constraints for

Non-Linear Uncertainties

This chapter investigates the computational aspects of distributionally robust chance con-

strained optimization problems. In contrast to previous research that mainly focused on

the linear case (with a few exceptions discussed in detail below), we consider the case where

the constraints can be non-linear to the decision variable, and in particular to the uncertain

parameters. This formulation is of great interest as it can model non-linear uncertainties

that are ubiquitous in applications. Our main result shows that distributionally robust

chance constrained optimization is tractable, provided that the uncertainty is characterized

by its mean and variance, and the constraint function is concave in the decision variables,

and quasi-convex in the uncertain parameters. En route, we establish an equivalence re-

lationship between distributionally robust chance constraint and the robust optimization

framework that models uncertainty in a deterministic manner. This links two broadly ap-

plied paradigms in decision making under uncertainty and extends previous results of the

same spirit in the linear case to more general cases. We then consider probabilistic envelope

constraints, a generalization of distributionally robust chance constraints first proposed in

Xu et al. [XCM12] for the linear case. We extend this framework to the non-linear case, and

derive sufficient conditions that guarantee its tractability. Finally, we investigate tractable

approximations of joint probabilistic envelope constraints, and provide the conditions when

these approximation formulations are tractable.

17
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2.1 Introduction

Many optimization and decision making problems, when facing stochastic parameter uncer-

tainty, can be tackled via the celebrated chance constraint paradigm. Here, a deterministic

constraint is relaxed, and instead is required to hold with a certain probability (w.r.t. the

uncertain parameter). That is, given a constraint f(x, δ) ≥ α where x denotes the deci-

sion variable, α ∈ R denotes the target value, and δ, the uncertain parameter, follows a

distribution µ, one solves:

Pδ∼µ[f(x, δ) ≥ α] ≥ p, (2.1)

for some value p ∈ (0, 1). Chance constraints were first proposed by Charnes and Cooper

[CC59], and since then there has been considerable work, e.g., Miller and Wagner [MW65],

Prékopa [Pré70], Delage and Mannor [DM10], and many others; we refer the reader to the

textbook by Prékopa [Pre95] and references therein for a thorough review.

While the chance constraint formulation is conceptually intuitive, it has two disadvantages

that limit its practical applications. First, it is usually difficult to obtain enough samples

to accurately estimate the distribution µ. Second, optimization problems involving chance

constraints are notoriously hard to solve, even when f(·, ·) is bilinear (i.e., linear in either

argument) and µ is a uniform distribution (Nemirovski and Shapiro [NS06]). Indeed, the

only known tractable case of the chance constraint formulation is when f(·, ·) is bilinear

and µ follows a radial distribution (Calafiore and El Ghaoui [CG06]; Alizadeh and Gold-

farb [AG03]).

A natural extension of the chance constraint paradigm that overcomes the above mentioned

problems is the distributionally robust chance constrained (DRCC) approach (e.g., Calafiore

and El Ghaoui [CG06], Erdogan and Iyengar [EI06], Delage and Ye [DY10], Zymler et

al. [ZKR11]). In this paradigm, the distribution of the uncertain parameter is not precisely

known, but instead, it is assumed to belong to a given set P. Constraint (2.1) is then

replaced with the following constraint

inf
µ∈P

Pδ∼µ[f(x, δ) ≥ α] ≥ p. (2.2)



2.1 Introduction 19

In words, (2.2) requires that for all possible probability distributions of the stochastic un-

certainty, the chance constraint must hold. Typically, P is characterized by the mean,

the covariance, and sometimes the support of the distribution as well, all of which can be

readily estimated from finite samples. The DRCC approach also brings in computational

advantages, e.g., Cheung et al. [CSW12] developed safe tractable approximations of chance

constrained affinely perturbed linear matrix inequalities. A celebrated result by Calafiore

and El Ghaoui [CG06] shows that when f(·, ·) is bilinear and P is characterized by the

mean and the variance, DRCC (2.2) can be converted into a tractable second order cone

constraint.

Yet, most previous results on the tractability of DRCC are restricted to the case that f(·, ·)

is bilinear, whereas not much has been discussed when f(·, ·) is non-linear. One exception

that we are aware of is Zymler et al. [ZKR11], where they showed that DRCC is tractable

when f(x, δ) is linear in the decision variable x and quadratic or piecewise linear in the

uncertainty δ. However, their method is built upon the S-lemma, and hence it is not clear

how to extend the method to more general cases. Another one is Cheng et al. [CDL13]

where they studied the knapsack problem with distributionally robust chance constraints

when f(x, δ) is piecewise linear in the uncertainty δ and provided its equivalent formulation

when the first and second moment and the support information of δ are known. To the best

of our knowledge, the general non-linear case is largely untouched.

This chapter is devoted to analyzing the tractability of DRCC (and its variants) under

general – i.e., non-linear – f(·, ·). This problem is of interest, because in many applications

the uncertainty is inherently non-linear, and cannot be modeled using a bilinear f(·, ·), e.g.,

[BS73, KT11b, ZKR12]; see Section 2.2 for a more detailed discussion. In particular, we

consider the following constraint

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p, (2.3)

where f(x, δ) is concave in x, and quasi-convex in δ. Here, following the notations from

Xu et al. [XCM12], we use (0,Σ) to denote all distributions with mean zero and variance

Σ, and let δ ∼ (0,Σ) stand for δ follows some unknown distribution µ that belongs to
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(0,Σ). Notice that DRCC is a special case of distributionally robust optimization (e.g.,

[Sca58, Dup87, Pop07, DY10]) by setting the utility function to the indicator function.

However, because the indicator function is neither convex nor concave in either argument,

previous results on the tractability of DRO do not apply in our setup.

Our first contribution, presented in Section 2.3, establishes that Constraint (2.3), when

f(·, ·) is concave-quasiconvex, is tractable. En route, we derive an equivalence relationship

between (2.3) and a robust optimization formulation using a deterministic uncertainty model

(e.g., Ben-Tal et al. [BTN98, BTN99, BTdHV12] Bertsimas and Sim [BS04]). This result

thus links the two arguably most widely used approaches in optimization under uncertainty,

and extends previous results of the same spirit for the linear case (e.g., Delage and Mannor

[DM10], Shivaswamy et al. [SBS06]).

Our second result, presented in Section 2.4, establishes the tractability of the probabilistic

envelope model in the non-linear case. The probabilistic envelope model is proposed in Xu et

al. [XCM12], based on the following observation: the chance constraint (2.1) only guarantees

that the given constraint will be satisfied with probability p or violated with the remaining

(1− p) probability, but no control is provided on the degree of violation. To overcome this,

Xu et al. [XCM12] proposed the probabilistic envelope constraint framework – essentially

a set of infinite number of chance constraints at all levels of potential violation. That is,

replace the single DRCC in (2.3) with the following

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− s] ≥ B(s), ∀s ≥ 0, (2.4)

where B(s) is a given non-decreasing and right-continuous function of s. However, only the

bilinear case has been investigated. In this chapter, we extend the probabilistic envelope

constraint to non-linear uncertainties. We prove that the optimization problem involving

the probabilistic envelope constraint (2.4) is tractable when f(·, ·) is concave-quasiconvex

and B(s) satisfies some weak conditions. Similarly as for the (single) DRCC case, we

establish a linkage between probabilistic envelope constraints and the comprehensive robust

optimization framework using a deterministic uncertainty model (Ben-tal et al. [BTBN06,

BTBB10]).
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It is worthwhile to note that the probabilistic envelope constraint is closely related to

stochastic dominance constraints in the literature of stochastic programming (Dentcheva and

Ruszczyński [DR03, DR04a, DR04b]); see Chapter 4 of the book by Shapiro et al. [SDR09]

for more details. A stochastic dominance constraint refers to a constraint of the form

X ⪰(k) Y where X and Y are random variables and ⪰(k) stands for k-th order stochastic

dominance. Thus, a probabilistic envelop constraint is indeed a first-order stochastic domi-

nance constraint with the right hand side is a random variable whose cumulative distribution

function is B(s). However, most of the literature in optimization with stochastic dominance

constraints does not address this specific case and instead focuses on the second (or higher)

order constraints case, a case that preserves convexity and is more amenable to analysis.

As we restrict our attention to this specific case, we choose to use the name “probabilistic

envelop constraint”.

Finally, we extend our results in two ways, namely, more flexible uncertainty modeling and

joint constraints. In Section 2.5, we provide tractability results for the case where the mean

and variance themselves are unknown, and the case that the mean and the support of the

distribution of the uncertain parameters are known. For more general uncertainty models

where exact results appear difficult, we provide a conservative approximation scheme based

on CVaR approximation of the chance constraints. In Section 2.6, we extend the probabilis-

tic envelope constraint formulation to its joint chance constraint counterpart. This typically

leads to a computationally challenging problem, and we adopt the CVaR approximation ap-

proach proposed by Zymler et al. [ZKR11], and show that the joint probabilistic envelope

constraint can be approximated tractably under some technical conditions.

Notation. We use lower-case boldface letters to denote column vectors, upper-case boldface

letters to denote matrices, and the transpose (superscript ⊤) of the column vectors to denote

row vectors. The all-ones vector is denoted by 1. The space of symmetric matrices of

dimension n is denoted by Sn. For any two matrices X,Y ∈ Sn, ⟨X,Y⟩ = tr(XY) denotes

the trace scalar product, and the relation X ⪰ Y (X ≻ Y) implies that X −Y is positive

semi-definite (positive definite). Random variables are always represented by δ. Finally, we

call an optimization problem tractable if it can be solved in polynomial time and call a set

tractable if it is convex and a polynomial-time separation oracle can be constructed.
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2.2 Formulation and Motivating Examples

We first propose the distributionally robust chance constraint, the probabilistic envelope

constraint and the joint probabilistic envelope constraint discussed in this chapter. For

clarity, we repeat some of the definitions given in the introduction. Given a random variable

δ and a function f(x, δ), a chance constraint places a lower-bound on the probability that

the constraint reaches a certain target, which is defined as

Distributionally Robust Chance Constraint: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p. (2.5)

As discussed above, the distributionally robust chance constraint provides protection against

noise by bounding the probability of failing to achieve a pre-defined target α. It says

nothing about what happens when, with probability at most (1 − p), the target is not

met. In particular, there is no control over the magnitude of violation of the constraint.

To overcome this shortcoming, the probabilistic envelope constraint is proposed, which can

enforce all levels of probabilistic guarantees. Given a non-decreasing function B(s), the

probabilistic envelope constraint can be written as

Probabilistic Envelope Constraint: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− s] ≥ B(s); ∀s ≥ 0. (2.6)

For example, if we want the probability of large constraint violation to decrease exponen-

tially, then we can set B(s) = 1− γ exp(−βs). Besides the individual probabilistic envelope

constraint discussed above, we propose the following joint probabilistic envelope constraint

(JPEC):

JPEC: inf
δ∼(0,Σ)

P[fi(x, δ) ≥ αi − s, ∀i = 1, · · · ,m] ≥ B(s); ∀s ≥ 0. (2.7)

Computationally, the joint envelope constraint is more complicated. A common method to

simplify it is to decompose it intom individual envelope constraints by applying Bonferroni’s

inequality. However, since Bonferroni’s inequality is not tight, this approximation method is

usually overly conservative. In this chapter, we use the worst-case CVaR method proposed
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by Zymler et al. [ZKR11] to give a tractable and tighter approximation for this joint envelope

constraint.

Although the three types of constraints (2.5), (2.6), and (2.7) above can be general, they

may not be tractable due to the non-convex feasible sets. To ensure tractability, we focus on

the “concave-quasiconvex” case, i.e., the function f is concave w.r.t. the decision variable,

and quasi-convex w.r.t. the uncertain parameters, see the following for a precise description:

Assumption 2.1. Let X and Y be two convex sets, and let f be a function mapping from

X× Y to R,

1. For each x ∈ X, the function f(x, ·) is quasi-convex and continuous on Y. For each

y ∈ Y, the function f(·,y) is concave on X.

2. The uncertainty δ is modeled as a random variable whose mean and variance are

known but its distribution is unknown. Without loss of generality, we assume the

mean is zero.

Notice that Assumption 2.1 generalizes the case where f(·, ·) is bilinear – a setup that

previous literature mainly focused on – to the non-linear case. In particular, the uncertainty

can be non-linear. Bi-linearity and non-linearity of uncertainty arises naturally in a broad

range of applications, as we demonstrate by the following examples.

Example 1: Classification Under Uncertainty

The goal of classification is to predict the unknown label y of an observed sample x. The

relationship between label y and sample x can be learned from a finite set of samples

{(xi, yi)}ni=1. For a binary classification problem where yi is chosen from {−1, 1}, we try to

construct a hyperplane (w, b) to separate the two classes, e.g., for linearly separable data set,

yi = 1 if w⊤xi + b ≥ 0 or −1 otherwise. Therefore, after hyperplane (w, b) is constructed,

the decision rule can be h(x) = sign(w⊤x + b). Support Vector Machine (SVM) [CV95] is

one of the most famous and widely applied classification algorithm. The formulation of the



2.2 Formulation and Motivating Examples 24

l1 regularized SVM is as follows:

Minimize:w,b,ξ

n∑
i=1

ξi

Subject to: yi(w
⊤xi + b) ≥ 1− ξi, ∀i = 1, · · · , n,

ξi ≥ 0, ∀i = 1, · · · , n,

∥w∥ ≤ B.

In this formulation, we assume that the observed samples {x1, · · · ,xn} are certain. When

the samples are uncertain, e.g., we suppose that the true sample x̃i follows a certain dis-

tribution with mean xi and covariance Σi for each i = 1, · · · , n, then we can apply the

following robust formulation for SVM [SBS06]:

Minimize:w,b,ξ

n∑
i=1

ξi

Subject to: inf
x̃i∼(xi,Σi)

P
[
yi(w

⊤x̃i + b) ≥ 1− ξi

]
≥ 1− κ, ∀i = 1, · · · , n,

ξi ≥ 0, ∀i = 1, · · · , n,

∥w∥ ≤ B,

which means that even for the worst-case distribution the samples should be correctly clas-

sified with probability at least 1−κ. Clearly, the distributionally robust chance constraints

above satisfy Assumption 2.1.

Example 2: Portfolio Optimization

Consider a stylized portfolio optimization problem, where an amount is to be allocated to

n stocks and held for a time period T . Denote the price of the ith stock after time T by

Si, and our goal is to maximize the Value at Risk (VaR) of the total return of the portfolio,

which leads to the following formulation, for a fixed γ ∈ (0, 1)

Maximize:x≥0,z z

Subject to: P
[∑

i

Sixi ≥ z
]
≥ 1− γ; 1⊤x = 1,
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where xi is the allocation for the ith stock. It is well believed that the true drivers of the

uncertainty in stock price is not the stock return Si itself, but instead the compounded

rates of return, i.e., Si = exp(δi) where δi is the random variable to model and analyze.

For example, the celebrated log-normal model, pioneered by Black and Scholes [BS73],

models Si as Si = exp
(
(µi − σ2i /2)T +

√
Tξi
)

where the vector ξ is Normally distributed

with mean 0 and covariance matrix Q. This can be rewritten as Si = exp(δi) where δ ∼

N ((µi − σ2i /2)T, TQ).

One common criticism of the log-normal model is that it assumes ξ to be Gaussian, whereas

empirical evidence suggests that ξ (and hence δ) is fat-tailed (e.g., Jansen and deVries [Jd91],

Cont [Con01], Kawas and Thiele [KT11a]). Since the Gaussian assumption ignores the fat

tails, it essentially leads the managers to take more risk than she is willing to accept. On the

other hand, it remains controversial about what is the most appropriate fat-tail distribution

to use in modeling returns [Fam65, Kon84, Jd91, Con01], and “this controversy has proven

hard to resolve” as Jensen and de Vries stated [Jd91]. In light of this, one possible approach

is to not commit to any distribution, but instead only require that the first two moments

match. This leads to the following problem:

Maximize:x≥0,z z

Subject to: inf
δ∼((µi−σ2

i /2)T,TQ)
P
[∑

i

exp(δi)xi ≥ z
]
≥ 1− γ; 1⊤x = 1,

(2.8)

Observe that this formulation satisfies Assumption 2.1, i.e., the constraint is linear to the

decision variable and non-linearly convex to the uncertain parameters, and the decision

variables are non-negative.

In portfolio optimization, options are another cause of non-linearity of the uncertainty

(Kawas and Thiele [KT11b], Zymler et al. [ZKR12]). Suppose for each stock, the investor

is allowed to purchase an European call option at the price of ci per unit, which gives her

the right to buy a unit of stock i at time T with the strike price pi. Thus, denote the stock

return as Si, the return of this option is max(Si − pi, 0), since the investor will execute the
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option if and only if Si > pi. The portfolio optimization problem is thus formulated as

Maximize:x≥0,y≥0,z z

Subject to: P
[∑

i

(
Sixi +max(Si − pi, 0)yi

)
≥ z
]
≥ 1− γ;∑

i

(xi + ciyi) = 1,

where y is the investment of the European call options. Notice that the constraints are

non-linear, yet convex to Si. Indeed, following the previous argument, we may further

model Si = exp(δi), and require that the first two moments of δ are known. This makes the

probabilistic constraint again satisfy Assumption 2.1.

Example 3: Transportation Problem

Solving multi-stage optimization problems may also result in non-linearity of uncertainty

and decision variables. We illustrate this using a transportation decision problem. Given a

directed graph G = (V, E), and let S ⊂ V be the set of source nodes, and D ⊂ V be the set

of destination nodes, with S
∩
D = ∅. One can think of each node in S as a supplier, and

each node in D as a consumer.

The decision to make contains two stages: in the first stage, the decision maker needs to

decide the required flow of each source node and each destination node, i.e, s(i) for i ∈ S

and d(j) for j ∈ D. One can think of this as deciding how much amount of good to order

from each supplier, and how much to sell to each client. Certain linear constraints on the

required flow are imposed: for example, the total supply equals to the total demand, and

they must be larger than a minimum demand L, i.e.,
∑

i∈S s(i) =
∑

j∈D d(j) ≥ L.

In the second stage, after all the ordered goods are produced by the suppliers, the decision

maker needs to decide how to transport these goods, i.e., the flow on the network from

sources to destinations, by solving a minimum cost flow problem given si and dj . This can

be formulated as a linear program, where the decision variable f(u, v) is the flow from node
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u to node v:

Minimize:
∑

(u→v)∈E

δ(u, v)f(u, v)

Subject to:
∑

(u→v)∈E

f(u, v)−
∑

(v→u)∈E

f(v, u) = 0 ∀u ̸∈ S
∪

D;

∑
(u→v)∈E

f(u, v)−
∑

(v→u)∈E

f(v, u) = s(u) ∀u ∈ S;

∑
(u→v)∈E

f(u, v)−
∑

(v→u)∈E

f(v, u) = −d(u) ∀u ∈ D;

f(u, v) ≥ 0 ∀(u→ v) ∈ E ;

f(u, v) = 0 ∀(u→ v) ̸∈ E .

Denote the optimal value by h(s,d, δ). Suppose δ represents uncertain parameters whose

values are only revealed at stage two, then to ensure that the total transportation cost is

low with high probability, the first stage decision can be formulated using DRCC:

Maximize:s≥0,d≥0,z z

Subject to: inf
δ∼(µ,Σ)

P
[
− h(s,d, δ) ≥ z

]
≥ 1− γ;∑

i∈S
s(i) =

∑
j∈D

d(j) ≥ L.

It is easy to verify that −h(s,d, δ) is non-linearly concave w.r.t. the decision variables

(s,d) and non-linearly convex w.r.t. δ. Thus, the above transportation problem satisfies

Assumption 2.1.

2.3 The Chance Constraint Case

This section is devoted to the (individual) distributionally robust chance constraint case (2.5).

Our main theorem shows that when function f(x, δ) satisfies Assumption 2.1, then a DRCC

is equivalent to a robust optimization constraint. This bridges the two main approaches in

optimization under uncertainty, namely, stochastic programming, and robust optimization.

We then investigate the tractability of DRCC, providing sufficient conditions for the indi-
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vidual DRCC (2.5) to be tractable.

2.3.1 Equivalence to Robust Optimization

In this subsection we show that DRCC is equivalent to robust optimization by analyzing

the feasible set given by the constraint (2.5), which we denote by

S ≜ {x| inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p} = {x| sup
δ∼(0,Σ)

P[f(x, δ) < α] ≤ 1− p}.

Our main tool to analyze S is the following result from Marshall and Olkin [MO60].

Lemma 2.1. Let δ = (δ1, · · · , δk) be a random vector with E[δ] = 0, E[δδ⊤] = Σ, and

T ⊆ Rk be a closed convex set. Then we have

P[δ ∈ T ] ≤ 1

1 + θ2
,

where θ = infy∈T
√

y⊤Σ−1y, and the equality can always be attained.

Notice that one technical difficulty that we face to apply Lemma 2.1 is that the set {δ|f(x, δ) <

α} may not be closed. Hence we extend Lemma 2.1 to the case where T is not necessarily

closed:

Lemma 2.2. Let T ⊆ Rk be a convex set. Denote θ = infy∈T
√

y⊤Σ−1y. Then we have

sup
δ∼(0,Σ)

P[δ ∈ T ] =
1

1 + θ2
.

Proof. When T is empty, we have supδ∼(0,Σ) P[δ ∈ T ] = 0. On the other hand, θ =

infy∈T
√

y⊤Σ−1y = +∞ which implies 1/(1 + θ2) = 0. Hence the lemma holds.

When T is non-empty, T has a non-empty relative interior. Let x0 be a point in the relative

interior of T . Let T be the closure of T , and for 0 ≤ λ < 1 define T (λ) by

T (λ) = {λ(x− x0) + x0|x ∈ T}.
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Thus, we have T (λ) is closed, convex, and T (λ) ⊆ T . Define

θ = inf
y∈T

√
y⊤Σ−1y, θ = inf

y∈T

√
y⊤Σ−1y, θ(λ) = inf

y∈T (λ)

√
y⊤Σ−1y,

and hence θ(λ) ≥ θ ≥ θ. On the other hand, for any x ∈ T , one can construct a sequence

xi → x such that xi ∈ θ(λi) for some {λi}∞i=1, by the definition of T (λ). Thus, since y⊤Σ−1y

is a continuous function of y, we have infλ∈[0,1) θ(λ) ≤ θ, which implies infλ∈[0,1) θ(λ) = θ.

By Lemma 2.1, the following inequalities hold for 0 ≤ λ < 1 since T (λ) and T are both

closed convex sets:

1

1 + θ(λ)2
= sup

δ∼(0,Σ)
P[δ ∈ T (λ)] ≤ sup

δ∼(0,Σ)
P[δ ∈ T ] ≤ sup

δ∼(0,Σ)
P[δ ∈ T ] =

1

1 + θ
2 .

Since supλ∈[0,1)
1

1+θ(λ)2
= 1

1+θ
2 , we have

sup
δ∼(0,Σ)

P[δ ∈ T ] = sup
δ∼(0,Σ)

P[δ ∈ T ]

which establishes the lemma.

Now we are ready to present the main result of this subsection.

Theorem 2.1. Suppose f(x, ·) is quasi-convex for every x ∈ X and f(·,y) is concave for

every y ∈ Y, and let p ∈ (0, 1) and set r = p/(1 − p), then the feasible set S of the

DRCC (2.5) is convex and admits

S = {x|∀y such that y⊤Σ−1y < r ⇒ f(x,y) ≥ α}.

If f(x, ·) is further assumed to be continuous for every x ∈ X, then the distributionally

robust chance constraint infδ∼(0,Σ) P[f(x, δ) ≥ α] ≥ p is equivalent to

f(x,y) ≥ α, ∀y ∈ Ω ≜ {y|y⊤Σ−1y ≤ r}.

Proof. Since f(x, ·) is quasi-convex for each x ∈ X, the set Tx ≜ {y|f(x,y) < α} is convex
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for fixed x. Then from Lemma 2.2, the feasible set of the constraint (2.5) satisfies

S ≜ {x| inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p} = {x| sup
δ∼(0,Σ)

P[f(x, δ) < α] ≤ 1− p}

= {x| sup
δ∼(0,Σ)

P[δ ∈ Tx] ≤ 1− p} (a)
= {x| inf

y∈Tx

y⊤Σ−1y ≥ r}

= {x| inf
f(x,y)<α

y⊤Σ−1y ≥ r} = {x|∀y such that f(x,y) < α⇒ y⊤Σ−1y ≥ r}

= {x|∀y such that y⊤Σ−1y < r ⇒ f(x,y) ≥ α},

where (a) holds by Lemma 2.2. Since f(·,y) is concave for every y, we know that S is

convex, as the property is preserved under arbitrary intersection. Hence we proved the first

part: S = {x|∀y such that y⊤Σ−1y < r ⇒ f(x,y) ≥ α}.

To show the second part, further notice that p ∈ (0, 1) implies r > 0. Thus we have

S = {x|f(x,y) ≥ α, ∀y such that y⊤Σ−1y ≤ r},

where the equality holds because for each x ∈ X, f(x,y) and y⊤Σ−1y are both continuous

in y so that we can replace “<” by “≤” without effect on S.

Thus the probabilistic uncertainty model is linked to the deterministic set based uncertainty

model of robust optimization (e.g., Ben-Tal and Nemirovski [BTN98, BTN99], Bertsimas

and Sim [BS04]). This result is in the spirit of past work that has linked chance constraints

to robust optimization in the linear case (e.g., Delage and Mannor [DM10], Shivaswamy et

al. [SBS06]).

Interestingly, based on the above theorem, we can establish an equivalence relationship

between the distributionally robust chance constraint and the Worst Case Conditional Value

at Risk (WCCVaR) in the convex case, which recovers a result first shown in [ZKR11] using

a different proof.

Corollary 2.1. Suppose f(x, ·) is convex and continuous for every x ∈ X, then for p ∈

(0, 1),

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p⇔ sup
δ∼(0,Σ)

CVaR1−p(−f(x, δ)) ≤ −α.
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In the most general case, i.e., f(x, δ) is quasi-convex, the equivalence shown in Corollary

2.1 does not hold. Consider a constraint with a random variable δ:

inf
δ∼(0,σ)

P[f(x, δ) ≥ α] ≥ 0.5.

We now construct a function f(x, δ) that is quasi-convex but not convex w.r.t. δ. In partic-

ular, we construct f(x, δ) that is decreasing (hence quasi-convex) and concave w.r.t. δ, such

that the DRCC above holds but the constraint on the worse-case CVaR does not hold. For

simplicity, denote −f(x, ·) by L(·) and let α = −σ. Define L(·) as follows:

L(x) =


σ, x ≤

√
σ;

x2, x >
√
σ.

It can be easily shown that the constraint infδ∼(0,σ) P[L(δ) ≤ σ] ≥ 0.5 holds. Consider a

uniform distribution over the interval [−
√
3σ,

√
3σ] which has mean 0 and variance σ. By

simple computation, we can see that CVaR0.5(L(δ)) > σ w.r.t. this uniform distribution

when σ = 1.

2.3.2 Tractability of Individual DRCC

In this subsection we investigate the tractability of DRCC. We first provide sufficient con-

ditions for optimization problems involving chance constraint (2.5) with function f(x, δ)

being tractable. We then show that for the special case where f(x, δ) = g(δ)⊤x and g(δ) is

linear or convex quadratic, we can convert (2.5) to an equivalent semi-definite constraint.

Theorem 2.2. If function f(x, δ) satisfies Assumption 2.1, set Ψ ⊆ X is tractable and

p ∈ (0, 1), then the following optimization problem

Minimize:x∈Ψ cTx

Subject to: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p
(2.9)

can be solved in polynomial time, if (i) for any fixed δ the super-gradient of f(·, δ) can
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be evaluated in polynomial time; and (ii) for any fixed x ∈ Ψ the following optimization

problems on y can be solved in polynomial time,

Minimize:y f(x,y)

Subject to: yTΣ−1y ≤ p

1− p
.

(2.10)

Proof. By Theorem 2.1, the feasible set S of the constraint (2.5) is given by

S = {x|f(x,y) ≥ α, ∀y such that y⊤Σ−1y ≤ p

1− p
}.

To establish the theorem, it suffices to construct a polynomial-time separation oracle for S

(Grötschel et al. [GLS88]). A “separation oracle” is a routine such that for x∗, it can be

verified in polynomial time that (a) whether x∗ ∈ S or not; and (b) if x∗ ̸∈ S, a hyperplane

that separates x with S.

We now construct such a separation oracle. To verify the feasibility of x∗, notice that x∗ ∈ S

if and only if the optimal value of the optimization problem (2.10) is greater than or equal

to α, which can be verified by solving Problem (2.10) directly. By assumption, this can be

done in polynomial time.

If x∗ ̸∈ S, then by solving Problem (2.10), we can find in polynomial time y∗ such that

f(x∗,y∗) < α. Because f(x,y) is concave in x for each y ∈ Y, for any x ∈ S, the following

holds

f(x∗,y∗) +∇xf(x
∗,y∗)⊤(x− x∗) ≥ f(x,y∗) ≥ α.

Thus, the hyperplane separating x∗ from the feasible set S is the following

f(x∗,y∗) +∇xf(x
∗,y∗)⊤(x− x∗) ≥ α,

which can be generated in polynomial time since the super-gradient of x can be obtained

in polynomial time.

We now consider the special case that f(x, δ) = g(δ)⊤x and each component gi(δ) of g(δ)

is either quadratic convex or linear.
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Corollary 2.2. If f(x, δ) = g(δ)⊤x and satisfies Assumption 2.1 and each component of

g(δ) is a convex quadratic or linear function, i.e., it has the form gi(δ) = δ⊤Giδ+p⊤
i δ+qi,

where pi ∈ Rn, qi ∈ R and Gi ∈ Sn is a symmetric semi-definite matrix (Gi is zero if gi(δ)

is linear), then the following optimization problem

Minimize:x∈Ψ c(x)

Subject to: inf
δ∼(0,Σ)

P[g(δ)⊤x ≥ α] ≥ p
(2.11)

where p ∈ (0, 1), is equivalent to

Minimize:x∈Ψ,β≥0 c(x)

Subject to:


βΣ−1 +G(x) 1

2P (x)

1
2P (x)

⊤ Q(x)− βp
1−p

 ⪰ 0,
(2.12)

where G(x) ≜
∑n

i=1 xiGi, P (x) ≜
∑n

i=1 xipi, and Q(x) ≜
∑n

i=1 xiqi − α.

Notice that G(x), P (x) and Q(x) are all linear functions of x, and hence the semi-definite

constraint in Problem (2.12) is a linear matrix inequality. Compare to the result by Calafiore

and El Ghaoui [CG06] which only considers the case where f(·, ·) is bilinear, the result above

holds when f(x, ·) is convex quadratic. Zymler et al. [ZKR11] showed that DRCC is tractable

when f(x, δ) is linear in x and quadratic in δ. However, their method is built upon S-lemma,

and hence it is not clear how to extend the method to more general cases. Our formulation

needs stronger conditions – f(x, ·) is convex quadratic – than [ZKR11], but the equivalent

formulation is simpler than [ZKR11].

2.4 Probabilistic Envelope Constraint

Recall that the probabilistic envelope constraint refers to the following:

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− s] ≥ B(s); ∀s ≥ 0. (2.13)
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Here, s represents allowed magnitude of constraint violation, and B(s) is the probabilistic

guarantee associated with a constraint violation no more than s. Hence, B(s) ∈ (0, 1) for

all s ≥ 0, and is assumed to be non-decreasing without loss of generality.

When f(x, δ) is bilinear, the envelope constraint (2.13) is shown to be equivalent to a

comprehensive robust constraint, and proved to be tractable under mild technical conditions

in Xu et al. [XCM12]. We consider in this section the tractability of (2.13) where f(x, δ)

satisfies Assumption 2.1. For convenience of exposition, we rewrite (2.13) to an equivalent

formulation as shown in the following lemma.

Lemma 2.3. If B(s) : R+ 7→ (0, 1) is a non-decreasing function that is continuous from

the right, then the probabilistic envelope constraint (2.13) is equivalent to

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0. (2.14)

Here t(r) ≜ B−1( r
1+r ) and B−1(x) is defined as

B−1(x) ≜


inf{y ≥ 0|B(y) ≥ x} if ∃y such that B(y) ≥ x;

+∞ otherwise.

Furthermore, t(·) is non-decreasing, t(0) = 0, limr↑+∞ t(r) = +∞, and t(·) is continuous at

the neighborhood of 0.

Hence in the sequel, we analyze the probabilistic envelope constraint (2.14) instead of (2.13).

The following theorem shows that a probabilistic envelope constraint is equivalent to a com-

prehensive robust constraint proposed in Ben-Tal et al. [BTBN06], Ben-Tal et al. [BTEN09]

and Ben-Tal et al. [BTBB10]. This thus extends previous results for affine cases in Xu et

al. [XCM12] to general f(·, ·) satisfying Assumption 2.1.

Theorem 2.3. Suppose t : R+ 7→ [0,+∞) is non-decreasing, t(0) = 0, limr↑+∞ t(r) = +∞

and continuous at the neighborhood of 0. Then if function f(x, δ) satisfies Assumption 2.1,

the probabilistic envelope constraint

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0 (2.15)



2.4 Probabilistic Envelope Constraint 35

is equivalent to the comprehensive robust constraint

f(x,y) ≥ α− t(∥y∥2
Σ−1), ∀y ∈ Rn. (2.16)

Proof. Define the feasible set of (2.15) as S. For any fixed r ≥ 0, we have

S(r) =

{
x| inf

δ∼(0,Σ)
P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r

}
= {x|∀y such that y⊤Σ−1y < r ⇒ f(x,y) + t(r) ≥ α}.

by Lemma 2.3 and Theorem 2.1. Thus, we have

S =

{
x| inf

δ∼(0,Σ)
P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0

}
= {x|∀y such that y⊤Σ−1y < r ⇒ f(x,y) + t(r) ≥ α; ∀r ≥ 0}.

Notice that without loss of generality, we can neglect the case r = 0 in the right hand side,

as {y|y⊤Σ−1y < 0} = ∅. Thus we have

S = {x|∀y such that y⊤Σ−1y ≤ r ⇒ f(x,y) + t(r) ≥ α; ∀r ≥ 0},

where in the last equality we use the fact that ∀x ∈ X, f(x,y) and y⊤Σ−1y are both

continuous in y, we can replace “<” by “≤” without effect on S as long as {y⊤Σ−1y < r}

is non-empty. By continuity of t(r) at r = 0, we further have

S = {x|∀(y, r) such that y⊤Σ−1y ≤ r ⇒ f(x,y) + t(r) ≥ α}.

The second equality holds because there exists no y such that y⊤Σ−1y ≤ r when r < 0 so

that the constraint r ≥ 0 can be removed. Hence the probabilistic envelope constraint is

equivalent to

f(x,y) + t(r) ≥ α, ∀(y, r) such that ∥y∥2
Σ−1 ≤ r. (2.17)

Notice that (2.17) is equivalent to constraint (2.16) by monotonicity of t(·).

It is known that comprehensive robust optimization generalizes robust optimization (e.g.,
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Ben-Tal et al. [BTBN06], Ben-Tal et al. [BTEN09] and Ben-Tal et al. [BTBB10]). Indeed, if

t(·) is taken to be an indicator function, i.e., t(r) = 0 for r ∈ [0, c] and +∞ for r > c, the

formulation (2.16) recovers the standard robust optimization formulation with the ellipsoidal

uncertainty set Ω = {y|y⊤Σ−1y ≤ c}. On the other hand, while robust optimization

guarantees that the constraint is not violated for any realization of the uncertain parameters

in the set Ω, it makes no guarantees for realizations outside that set. In contrast, the

comprehensive robust optimization formulation allows us to choose different functions t(·),

in order to provide different levels of protection for different parameter realizations, as

opposed to the “all-or-nothing” view of standard robust optimization.

We now investigate the tractability of probabilistic envelope chance constraints. We first

consider the general case where f(x, δ) is an arbitrary “concave-quasiconvex” function. The

following theorem is essentially an envelope constraint counterpart of Theorem 2.2.

Theorem 2.4. If t(·) satisfies the conditions in Theorem 2.3, f(x, δ) satisfies Assumption

2.1 and set Ψ ⊆ X is tractable, then the optimization problem with a linear objective function

and the probabilistic envelope constraint (2.13):

Minimize:x∈Ψ c⊤x

Subject to: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0

(2.18)

can be solved in polynomial time if (1) one can provide the super-gradient of f(x, δ) at x

for fixed δ in polynomial time, and (2) for any fixed x the following optimization problems

can be solved in polynomial time:

Minimize:y,r f(x,y) + t(r)

Subject to: y⊤Σ−1y ≤ r.

(2.19)

Proof. By Theorem 2.3, the feasible set S can be rewritten as

S = {x|∀(y, r) such that y⊤Σ−1y ≤ r ⇒ f(x,y) + t(r) ≥ α}.

Similar to the proof of Theorem 2.2, we construct a separation oracle to prove tractability.
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In order to verify the feasibility of a given x∗, notice that x∗ ∈ S if and only if the optimal

objective value of the optimization problem (2.19) is greater than or equal to α, which can be

verified by directly solving Problem (2.19). By assumption, this can be done in polynomial

time.

If x∗ ̸∈ S, then by solving Problem (2.19), we can find in polynomial time (y∗, r∗) such that

f(x∗,y∗) + t(r∗) < α. Because f(x,y) is concave in x for each y ∈ Y, for any x ∈ S, we

have

f(x∗,y∗) +∇f(x∗,y∗)⊤(x− x∗) + t(r∗) ≥ f(x,y∗) + t(r∗) ≥ α.

Hence the hyperplane separating x∗ from the feasible set S is the following:

f(x∗,y∗) +∇f(x∗,y∗)⊤(x− x∗) + t(r∗) ≥ α, (2.20)

which can be generated in polynomial time since the super-gradient of x can be obtained

in polynomial time. This completes the proof.

Our next result states that when f(x, δ) = g(δ)⊤x and gi(δ) is quadratic, (2.14) can be

converted to a semi-definite constraint.

Corollary 2.3. Suppose t(·) satisfies the conditions in Theorem 2.3 and is convex, f(x, δ) =

g(δ)⊤x satisfies Assumption 2.1 and Ψ ⊆ X is tractable, then if each component gi(δ) of

g(δ) is linear or convex quadratic as in Corollary 2.2, the optimization problem (2.18) is

equivalent to

Minimize:x∈Ψ,β≥0 c⊤x

Subject to:


βΣ−1 +G(x) 1

2P (x)

1
2P (x)

⊤ Q(x)− t∗(β)

 ⪰ 0
(2.21)

where t∗(β) is the conjugate function of t(r), i.e., t∗(β) ≜ supr≥0 (βr − t(r)); and P (·),

G(·), Q(·) are defined as in Corollary 2.2. Furthermore, the optimization problem (2.18)

with a linear objective function and the probabilistic envelope constraint can be solved in

polynomial time if for any β ≥ 0 the following optimization problem on r can be solved in



2.5 Chance Constraints: Beyond Mean and Variance 38

polynomial time:

Minimize:r≥0 t(r)− βr. (2.22)

In particular, when t(r) is a convex function, the optimization problems (2.19) and (2.22)

are both convex and can be solved efficiently.

2.5 Chance Constraints: Beyond Mean and Variance

Thus far we have studied the setup that models unknown parameters as following an am-

biguous distribution with known mean and covariance. In this section we extend our results

to some other models of uncertain parameters – this includes the case where the mean and

the covariance themselves are unknown and can only be estimated from data; and the case

where other information of the uncertain parameter (e.g., the support) may be available.

Specifically, we first show that the chance constraint (2.5) and the probabilistic envelope

constraint (2.6) with uncertain mean and covariance are still tractable. Then we deal with

the case where the mean and support of the uncertain parameter are known. Finally, we ap-

ply distributionally robust optimization to make a conservative approximation for constraints

(2.5) and (2.6) when additional information on the uncertain parameter is available.

2.5.1 Uncertain Mean and Covariance

We first study the uncertain mean and covariance case. This model of ambiguity was first

proposed and studied in [DY10] for distributionally robust optimization, and was also in-

vestigated for linear chance constraints in [XCM12]. We formulate the robust counterparts

of the distributionally robust chance constraint (2.5) and the probabilistic envelope con-

straint (2.6) where the mean and covariance themselves are uncertain, and then show that

optimization problems with these constraints are tractable under mild conditions. Based

on Theorem 2.1 and Theorem 2.3, we can easily obtain the following corollaries. Corollary

2.4 and Corollary 2.5 show that the DRCC and the probabilistic envelope constraint with

unknown mean and covariance is equivalent to a set of (infinitely many) deterministic con-

straints. Note that the uncertainty sets U and S can be arbitrary. Corollary 2.6 shows the
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tractability of probabilistic envelope constraints.

Corollary 2.4. If function f(x, δ) satisfies Assumption 2.1, then for p ∈ (0, 1) the chance

constraint

inf
δ∼(µ,Σ),µ∈U ,Σ∈S

P[f(x, δ) ≥ α] ≥ p, (2.23)

is equivalent to the constraint f(x,y + µ) ≥ α, ∀y ∈ Rn,µ ∈ U and Σ ∈ S such thatΣ y

y⊤ p
1−p

 ⪰ 0, where U and S are the uncertainty sets of mean µ and covariance Σ,

respectively.

Corollary 2.5. Suppose t : R+ 7→ [0,+∞) is non-decreasing, t(0) = 0, limr↑+∞ t(r) = +∞

and is continuous at the neighborhood of zero. Then if function f(x, δ) satisfies Assumption

2.1, the probabilistic envelope constraint

inf
δ∼(µ,Σ),µ∈U ,Σ∈S

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0, (2.24)

is equivalent to the constraint

inf
µ∈U

f(x,y + µ) ≥ α− t( inf
Σ∈S

∥y∥2
Σ−1), ∀y ∈ Rn, (2.25)

where U and S are the uncertainty sets of mean µ and covariance Σ, respectively.

Corollary 2.6. Under the conditions of Corollary 2.5, an optimization problem with a linear

objective function and the probabilistic envelope constraint (2.24) can be solved in polynomial

time if one can provide the super-gradient of f(x, δ) at x for fixed δ in polynomial time,

and for any fixed x the following optimization problem can be solved in polynomial time:

Minimize: f(x,y + µ) + t(r)

Subject to:

Σ y

y⊤ r

 ⪰ 0

Σ ∈ S, µ ∈ U .

(2.26)

From Corollary 2.6 we see that if t(·) is convex, and U ⊆ Rn and S ∈ Sn×n
+ are both convex

sets, then the optimization problem (2.26) is a SDP problem which can be solved efficiently.
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The tractability result of the chance constraint (2.23) is a special case of Corollary 2.6,

namely, t(r) = 0 and r = p
1−p .

2.5.2 Known Mean and Support

We now investigate the case where the mean and the support of the uncertain parameter δ

are known. We show that the corresponding robust chance constraint can be reformulated

as a set of infinitely many deterministic constraints, and is tractable under mild technical

conditions. Unfortunately, it seems that these results can not be easily extended to the

probabilistic envelope constraint case, which is hence left for future research.

Theorem 2.5. Suppose the mean µ and support S of the uncertain parameter δ are known

and S is a closed convex set. If f(x, ·) is continuous and quasi-convex for every x ∈ X, then

for p ∈ (0, 1], the chance constraint

inf
δ∼(µ,S)

P[f(x, δ) ≥ α] ≥ p, (2.27)

is equivalent to

f(x, δ1) ≥ α, ∀δ1, δ2 such that (1− p)δ1 + pδ2 − µ = 0, δ1 ∈ S, δ2 ∈ S. (2.28)

Theorem 2.6. If f(x, ·) is quasi-convex and continuous for every x ∈ X and f(·,y) is

concave for every y ∈ Y, the mean µ and support S of the uncertain parameter δ are

known, and S is a closed convex set, then for 0 < p ≤ 1, the optimization problem with a

linear objective function and a chance constraint (2.27):

Minimize: c⊤x

Subject to: inf
δ∼(µ,S)

P[f(x, δ) ≥ α] ≥ p
(2.29)

can be solved in polynomial time if (1) one can provide the super-gradient of f(x,y) at x

for fixed y in polynomial time, and (2) for any fixed x the following optimization problems
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can be solved in polynomial time:

Minimize:δ1,δ2 f(x, δ1)

Subject to: (1− p)δ1 + pδ2 − µ = 0

δ1, δ2 ∈ S.

(2.30)

Proof. From Theorem 2.5 we know that the chance constraint is satisfied if and only if the

optimal value of (2.30) is greater than or equal to α. Thus, the theorem can be proved

following a similar argument as the proof of Corollary 2.6.

2.5.3 Conservative Approximation

For general sets of ambiguous distributions, optimization problems involving chance con-

straints are notoriously hard to solve. Recall that CVaR provides a conservative approxi-

mation of chance constraints (Nemirovski et al. [NS06]) , which allows us to apply DRO to

approximately solve such problems. For completeness, we give the following lemma which

is an extension of Nemirovski et al. [NS06]:

Lemma 2.4. Suppose that D is the ambiguity set of distributions of the uncertain parameter

δ, then the chance constraint

sup
P∈D

P[f(x, δ) ≥ 0] ≤ p, (2.31)

can be conservatively approximated by

−tp+ γ ≤ 0, sup
P∈D

EP[[f(x, δ) + t]+] ≤ γ, (2.32)

where 0 ≤ p ≤ 1, t ∈ R and γ ∈ R are decision variables, and [x]+ = max{x, 0}. Here, by

“conservative approximation” we mean that any solution that satisfies (2.32) also satisfies

(2.31).

Wiesemann et al. [WKS13] proposed a unified framework for modeling and solving distribu-
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tionally robust optimization problems by introducing standardized ambiguity sets

D =

P ∈ P0(Rm,Rn) :
EP[Aδ +Bµ] = b

P[(δ,µ) ∈ Ci] ∈ [pi, pi], ∀i ∈ I

 , (2.33)

where P represents a joint probability distribution of the random vector δ ∈ Rm appearing in

the constraint function f(x, δ) and some auxiliary random vector µ ∈ Rn, with A ∈ Rk×m,

B ∈ Rk×n, b ∈ Rk, I = {1, · · · , I}, pi, pi ∈ [0, 1] and Ci are the confidence sets.

Applying Theorem 1 and 5 in [WKS13], the constraint supP∈D EP[[f(x, δ) + t]+] ≤ γ can

be reformulated as a semi-infinite constraint system. For succinctness, we only present the

conservative approximation of the chance constraints when pi = pi = 1 and |I| = 1 to

illustrate our approach.

Theorem 2.7. If the ambiguity set P can be converted into

D =

{
P ∈ P0(Rm,Rn) : EP[Aδ +Bµ] = b, P[(δ,µ) ∈ C] = 1

}

by the lifting theorem (Theorem 5 in [WKS13]) where g(·) is a convex function, then the

chance constraint infP∈P P[f(x, δ) ≥ α] ≥ p with p ∈ (0, 1) can be conservatively approxi-

mated by

(Aδ +Bµ)⊤β ≥ max

[
−λ, α− f(x, δ) +

b⊤β

1− p
+

pλ

1− p

]
, ∀(δ,µ) ∈ C (2.34)

where β, λ,x are decision variables. Furthermore, the optimization problem with a linear

objective function and the constraint (2.34) can be solved in polynomial time if (1) one can

provide the super-gradient of f(x,y) at x for fixed y in polynomial time, and (2) for any

fixed (x,β, λ) the following optimization problems

Minimize:δ,µ (Aδ +Bµ)⊤β + λ

Subject to: (δ,µ) ∈ C,
(2.35)
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and
Minimize:δ,µ (Aδ +Bµ− b

1− p
)⊤β − pλ

1− p
+ f(x, δ)

Subject to: (δ,µ) ∈ C,
(2.36)

can be solved in polynomial time.

Proof. From Theorem 1 in [WKS13] and Lemma 2.4, the conservative approximation for-

mulation can be easily obtained. The proof of the tractability result is similar to that of

Corollary 2.6, and hence omitted.

We now extend this result to the probabilistic envelope constraint case.

Theorem 2.8. Suppose t : R+ 7→ [0,+∞) is convex, non-decreasing and continuous at the

neighborhood of zero, and t(0) = 0, limr↑+∞ t(r) = +∞. If the ambiguity set D satisfies the

condition in Theorem 2.7, the probabilistic envelope constraint infP∈D P[f(x, δ) ≥ α−t(r)] ≥

r/(1 + r), ∀r ≥ 0 can be conservatively approximated by

(Aδ +Bµ)⊤β ≥

max
[
−λ, α− f(x, δ)− t(r) + (1 + r)b⊤β + rλ

]
, ∀(δ,µ) ∈ C, r ≥ 0.

(2.37)

Furthermore, the optimization problem with a linear objective function and this probabilistic

envelope constraint can be solved in polynomial time if one can provide the super-gradient

of f(x,y) at x for fixed y in polynomial time, and for any fixed (x,β, λ) the following

optimization problems:

Minimize:δ,µ,r (Aδ +Bµ)⊤β + λ

Subject to: (δ,µ) ∈ C, r ≥ 0,

(2.38)

and
Minimize:δ,µ,r [Aδ +Bµ− (1 + r)b]⊤β + f(x, δ) + t(r)− rλ

Subject to: (δ,µ) ∈ C, r ≥ 0.

(2.39)

can be solved in polynomial time.

Proof. From Theorem 2.7, the probabilistic envelope constraint can be conservatively ap-
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proximated by

0 ≤ min
r≥0

max
β,λ

min
(δ,µ)∈C

(Aδ +Bµ)⊤β−

max
[
−λ, α− f(x, δ)− t(r) + (1 + r)b⊤β + rλ

]
,

(2.40)

Furthermore, by switching “min” and “max”, this can be conservatively approximated by

(2.37). Then following a similar proof as that of Corollary 2.6, we obtain the tractability

result to complete the proof.

2.6 Joint Chance Constraint

In this section we investigate the case of joint probabilistic envelope constraint (2.7) which

can be reformulated as (from Lemma 2.3)

inf
δ∼(0,Σ)

P[fi(x, δ) ≥ αi − t(r), ∀i = 1, . . . ,m] ≥ r

1 + r
; ∀r ≥ 0, (2.41)

where t(r) = B−1(r/(1+r)). The optimization problem with the constraint (2.41) is usually

intractable (e.g., Nemirovski and Shapiro [NS06]; Zymler et al. [ZKR11]), even when f(x, δ)

is a bi-linear function, and approximation schemes are often used to tackle them. The

most straightforward method to approximate the constraints (2.41) is to decompose them

into several individual probabilistic envelope constraints using Bonferroni’s inequality (see

below for details). A notable advantage of the Bonferroni approximation is that it is easy

to implement and requires no assumptions on the function fi(x, δ).

However, the Bonferroni approximation can be overly conservative. Zymler et al. [ZKR11]

proposed a tighter approximation method called worst-case CVaR approximation that out-

performs other methods including the Bonferroni approximation (e.g. Nemirovski and

Shapiro [NS06] and Chen et al. [CSST10]). In the rest of the section, we extend both

the Bonferroni approximation and worst-case CVaR methods to JPEC. We also investigate

the tractability of the two approximation schemes for fi(x, δ) satisfying Assumption 2.1.
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2.6.1 The Bonferroni Approximation

The Bonferroni approximation for the joint probabilistic envelope constraint (2.41) can be

easily derived from Bonferroni’s inequality. From Theorem 2.2 and Theorem 2.4, we know

that the optimization problem with a set of probabilistic envelope constraints generated by

the Bonferroni approximation method is tractable, under mild technical conditions. More

specifically we have the following theorem:

Theorem 2.9. Let t : R+ 7→ [0,+∞) be a non-decreasing function such that t(0) = 0 and

limr↑+∞ t(r) = +∞, and ϵ be a constant vector such that
∑m

i=1 ϵi = 1 and ϵ ≥ 0. The

Bonferroni approximation of the joint probabilistic envelope constraint (2.41) which has the

form

inf
δ∼(0,Σ)

P[fi(x, δ) ≥ αi − t(r)] ≥ 1− ϵi
(1 + r)

; ∀r ≥ 0, ∀i = 1, . . . ,m. (2.42)

is tractable if for each i, (1) one can provide the super-gradient of fi(x, δ) at x for fixed δ

in polynomial time, and (2) for any fixed x the following optimization problem can be solved

in polynomial time:

Minimize:y,r fi(x,y) + t(r)

Subject to: y⊤Σ−1y ≤ r + 1

ϵi
− 1.

(2.43)

Proof. Let r′ = (1 + r)/ϵi − 1, then we have r′/(1 + r′) = 1 − ϵi/(1 + r). Let t′(r′) ≜ t(r),

then we apply Theorem 2.4 to complete the proof.

2.6.2 The Worst-case CVaR Approximation

Zymler et al. [ZKR11] developed a new approximation scheme for robust joint chance con-

straints termed Worst-case CVaR approximation. In this subsection we extend the worst-

case CVaR approximation to JPEC (2.41). In contrast to the rest of the chapter, we focus

on the linear-quadratic uncertainty case, namely, f(x, δ) is linear in x for any fixed δ and

quadratic (possibly non-convex) in δ for each x ∈ X. Then (2.41) can be rewritten respec-
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tively as:

inf
δ∼(0,Σ)

P[δ⊤Qi(x)δ + yi(x)
⊤δ + y0i (x) + t(r) ≤ 0, ∀i = 1, . . . ,m] ≥ r

1 + r
; ∀r ≥ 0; (2.44)

where Qi(x), y0i (x) and yi(x) are all linear functions for i = 1, · · · ,m. Zymler et al. [ZKR11]

provided the Worst-case CVaR approximation for the following robust joint chance con-

straint

inf
δ∼(0,Σ)

P[δ⊤Qi(x)δ + yi(x)
⊤δ + y0i (x) ≤ 0, ∀i = 1, . . . ,m] ≥ p. (2.45)

Theorem 2.10. [ZKR11] Let A ≜ {α ∈ Rm|α > 0}. For any fixed x and α ∈ A, the

feasible set of the worst-case CVaR approximation for the constraint (2.45) is

ZJCC(α) =



x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

β + 1
1−p⟨Ω,M⟩ ≤ 0, M ⪰ 0

M−

 αiQi(x)
1
2αiyi(x)

1
2αiyi(x)

⊤ αiy
0
i (x)− β

 ⪰ 0

∀i = 1, . . . ,m



, (2.46)

where Ω = diag(Σ, 1).

Indeed, Zymler et al. [ZKR11] showed that the approximation quality of the worst-case

CVaR is controlled by the parameter α and that the approximation becomes exact if α

is chosen optimally. Notice that ZJCC(α) contains semi-definite constraints, and hence

provides a tractable approximation to robust joint chance constraint. We now extend this

methodology to the joint probabilistic envelope constraints (2.44). From Theorem 2.10, the
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feasible set of the constraint (2.44) can be approximated as

ZP (α) =



x ∈ Rn :

For any r ≥ 0 we have

∃(β,M) ∈ R× Sk+1,

β + (r + 1)⟨Ω,M⟩ ≤ 0, M ⪰ 0

M−

 αiQi(x)
1
2αiyi(x)

1
2αiyi(x)

⊤ αi(y
0
i (x)− t(r))− β

 ⪰ 0

∀i = 1, . . . ,m



. (2.47)

Notice that in contrast to (2.46), (2.47) is defined through uncountably many sets of con-

straints, and hence we need the following theorem to establish the tractability of the set

ZP .

Theorem 2.11. Fix α ∈ A. The optimization problem with a linear objective function and

the feasible set ZP (α) in (2.47) can be solved in polynomial time if for any fixed x, the

following optimization problem can be solved in polynomial time:

min
Yi⪰0,r≥0

− tr(
m∑
i=1

αiYiBi) + t(r)
m∑
i=1

αitr(YiE)

s.t.
m∑
i=0

Yi = (r + 1)Ω, tr(E
m∑
i=1

Yi) = 1,

(2.48)

where Bi =

 Qi(x)
1
2yi(x)

1
2yi(x)

⊤ y0i (x)

 and E =

0 0

0 1

 .

Interestingly, Theorem 2.11 provides a tractability result for individual probabilistic envelope

constraint.

Corollary 2.7. If each component fi(·) of f(·) is quadratic (and possibly non-convex), the

optimization problem with a linear objective function and the probabilistic envelope constraint

(2.6) can be solved in polynomial time if for any fixed x, the following optimization problem
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can be solved in polynomial time:

min
Y⪰0,r≥0

− tr(YB) + t(r)

s.t. Y = (r + 1)Ω, tr(EY) = 1,

(2.49)

where B =

 Q(x) 1
2y(x)

1
2y(x)

⊤ y0(x)

 and E =

0 0

0 1

 .

Proof. When m = 1, α can be chosen as α = 1 without effect on the optimal solution of

(2.48). Then (2.48) can be simplified as (2.49).

Notice that Corollary 2.7 does not require that fi(·) is a convex quadratic function, and

hence, subject to the price of a more complex formulation, is more general than Corollary 2.3

that investigates the probabilistic envelope constraint under convex quadratic uncertainty.

2.7 Simulation

In this section we illustrate two proposed approaches – chance constraint (2.5) and prob-

abilistic envelope constraint (2.6) using the synthetic transportation problem discussed in

Section 2.2.

We consider the transportation problem where the graph G is a bi-parti graph between

sources and destinations, i.e., V = S
∪

D and E = {(s→ d)|s ∈ S, d ∈ D}. Let m = |S| and

n = |D|, then the unit cost δ is an m × n matrix, and the transportation problem can be

rewritten as

Maximize:s≥0,d≥0 z

Subject to: inf
δ∼P

P
[
− h(s,d, δ) ≥ z

]
≥ 1− γ;

1⊤ms = 1⊤nd ≥ L,

where δ ∈ Rm×n, 1m and 1n are the all-one vectors with dimension m and n respectively.



2.7 Simulation 49

The function h(s,d, δ) is defined by

h(s,d, δ) = Minimize:F∈Rm×n tr⟨δ,F⟩

Subject to: F⊤1m = d, F1n = s, F ≥ 0.

By Theorem 2.2, one can solve this transportation problem by MATLAB and CVX [GB11].

We consider the case where there are 10 suppliers and 3 consumers, and the least demand

L = 80. The mean Mij and the variance Σij of the transportation cost δij are set to

100 + 0.1
√

3(i− 1) + j and 5/
√

3(i− 1) + j, respectively. Then the transportation costs

related to suppliers and consumers with lower serial numbers have smaller means but larger

variances, i.e., lower mean cost but more risky.

Our first goal is to minimize the total cost to some fixed confidence parameter γ. Figure

2.1 shows the resulting allocations for different γ. As expected, small γ leads to more
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Figure 2.1: The transportation problem: the resulting allocations for different guarantees
γ = 0.1− 0.8.

conservative allocations which tend to select supplies with higher mean costs and smaller

variances, while large γ leads to less conservative allocations which select suppliers with

lower mean costs and larger variances.

In this example, the algorithm takes about 40 seconds on a desktop PC with Intel i7 3.4GHz

CPU and 8G memory. The computational time for solving the transportation problems of

different numbers of suppliers is reported in Table 2.1. For a large-scale problem, i.e. the
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Number of suppliers 10 50 100 200 500 1000

Running time (min) 0.88 3.33 4.01 6.21 15.16 34.78

Table 2.1: The running time for solving the transportation problem with different numbers
of suppliers.

number of suppliers is 1000, our algorithm finds the result in about 30 minutes. From

the table, it appears that the computation time scales roughly linearly with respect to the

number of suppliers. Note that one can use commercial solvers such as CPLEX instead of

CVX to implement this algorithm, which is typically more computationally efficient.

Using the same notations, the transportation problem with probabilistic envelope constraints

can be formulated as

Maximize:s,d z

Subject to: inf
δ∼P

P
[
− f(s,d, δ) ≥ z − s

]
≥ B(s);

1⊤ms = 1⊤nd ≥ D;

s,d ≥ 0.

Our second goal is to minimize the total cost subject to a decaying probabilistic envelope

B(s) = 1 − 1/(1 + b
√
s+ a/b2) which implies t(r) = max{(r2 − a)/b2, 0} by Lemma 2.3.

We choose a = 1 and b = 0.1, 1.0, 10.0, giving different rates of decay for the probability the

constraint is violated at level s for each s. Based on Theorem 2.4, we can easily solve this

problem. Figure 2.2 shows the resulting allocations. Clearly, larger b corresponds to a more
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Figure 2.2: The transportation problem: the resulting allocations for decay rates b =
0.1, 1.0 and 10.0.



2.8 Proofs of the Main Results 51

risk averse attitude towards large constraint violation so that the resulting allocation is more

conservative and tends to choose suppliers with larger mean costs and smaller variances.

2.8 Proofs of the Main Results

2.8.1 Proof of Corollary 2.1

For clarity, we denote −f(x, δ) and −α by Lx(δ) and β, respectively. Since f(x, δ) is convex

w.r.t. δ for fixed x, Lx(δ) is a concave function. Then the equivalence to establish can be

rewritten as

sup
δ∼(0,Σ)

P[Lx(δ) > β] ≤ 1− p⇔ sup
δ∼(0,Σ)

CVaR1−p(Lx(δ)) ≤ β.

It is well known that supδ∼(0,Σ) CVaR1−p(Lx(δ)) ≤ β ⇒ supδ∼(0,Σ) P[Lx(δ) > β] ≤ 1 − p.

Besides, supδ∼(0,Σ) P[Lx(δ) > β] > 1 − p ⇔ supδ∼(0,Σ) VaR1−p(Lx(δ)) > β, hence we only

need to show that supδ∼(0,Σ) CVaR1−p(Lx(δ)) > β ⇒ supδ∼(0,Σ) VaR1−p(Lx(δ)) > β.

Since supδ∼(0,Σ) CVaR1−p(Lx(δ)) > β, then there exists a probability distribution P with

zero mean, covariance Σ, and CVaR1−p(Lx(δ)) > β when δ ∼ P. Decompose P = µ1 +

µ2 where the measure µ1 constitutes a probability of p and the measure µ2 constitutes a

probability of 1− p, and that Lx(y1) ≤ Lx(y2) for any y1 and y2 that belong to the support

of µ1 and µ2 respectively. By the CVaR constraint, we have (
∫
δ Lx(δ)dµ2)/(1− p) > β.

We now construct a new probability P as follows: let µ′2 be a measure that put a probability

mass of 1 − p on
∫
δ δdµ2/(1 − p), i.e., the conditional mean of µ2, and let P = µ1 + µ′2.

Observe that P is a probability measure whose mean is the same as that of P. Moreover,

notice that µ2/(1− p) is a probability measure, by concavity of Lx(·) we have that

Lx(

∫
δ
δdµ2/(1− p)) ≥ (

∫
δ
Lx(δ)dµ2)/(1− p) > β,

which implies that VaR1−p(Lx(δ)) > β for δ ∼ P̄.

We now show that this also implies that supδ∼(0,Σ) VaR1−p(Lx(δ)) > β. Denote the covari-
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ance w.r.t P̄ by Σ̄ and recall that both P and P̄ are zero mean, then

Σ− Σ̄ =

∫
δ
δδ⊤dP−

∫
δ
δδ⊤dP̄

=

∫
δ
δδ⊤dµ1 +

∫
δ
δδ⊤dµ2 −

∫
δ
δδ⊤dµ1 −

∫
δ
δδ⊤dµ′2

=

∫
δ
δδ⊤dµ2 − (1− p)

[∫
δ δdµ2

1− p

] [∫
δ δdµ2

1− p

]⊤
=

∫
δ

{
δ −

[∫
δ δdµ2

1− p

]}{
δ −

[∫
δ δdµ2

1− p

]}⊤

dµ2 ⪰ 0,

where the third equality is due to the definition of µ′2. Note that from the construction of

P̄, we have supδ∼(0,Σ̄) P[Lx(δ) > β] > 1− p. Denote the set {δ|Lx(δ) > β} by Tx. First, we

consider the case where Σ̄ is full rank. From Lemma 2.2, we have infy∈Tx y
⊤Σ̄

−1
y < r ≜

p/(1− p). Since Σ̄ ⪯ Σ and Σ̄ is full rank, infy∈Tx y
⊤Σ−1y ≤ infy∈Tx y

⊤Σ̄
−1

y < r, which

implies that supδ∼(0,Σ) P[Lx(δ) > β] > 1− p, which establishes the theorem.

The case where Σ̄ is not full rank requires additional work, as Lemma 2.2 or Theorem 2.1

can not be applied directly. Consider the spectral decomposition Σ̄ = QΛQ⊤ and denote

the pseudo inverse of Σ̄ by Σ̄
+. Suppose that the top d diagonal entries of Λ are non-zero.

Let Qd be the submatrix of Q by selecting the first d columns of Q and Λd be the top d×d

submatrix of Λ. Denote the column space of Σ̄ by C, and let Q ≜ {z|z = Q⊤
d δ, ∀δ ∈ Tx∩C}.

Since there is no uncertainty in C⊥ w.r.t P̄,

sup
z∼(0,Λd)

P[z ∈ Q] = sup
δ∼(0,Σ̄)

P[δ ∈ Tx ∩ C] = sup
δ∼(0,Σ̄)

P[δ ∈ Tx] > 1− p.

From Lemma 2.2, we have infz∈Q z⊤Λ−1
d z < r. In other words, there exists z ∈ Q such that

z⊤Λ−1
d z < r, which implies that y⊤Σ̄

+
y < r for y ≜ Qdz. From the Schur complement,

since Σ ⪰ Σ̄ ⪰ 0, (I−Σ̄Σ̄
+
)y = 0 and r−y⊤Σ̄

+
y = r−z⊤Λ−1

d z > 0, we have

Σ y

y⊤ r

 ⪰

 Σ̄ y

y⊤ r

 ⪰ 0. Hence infy∈Tx y
⊤Σ−1y < r, which implies that supδ∼(0,Σ) P[Lx(δ) > β] >

1− p.
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2.8.2 Proofs for Section 2.3.2

Proof of Corollary 2.2:

By Theorem 2.1, the feasible set S = {x|x⊤g(y) ≥ α, ∀y⊤Σ−1y ≤ r} where r = p/(1 −

p). Hence, determining whether x ∈ S is equivalent to determining whether the inner

optimization problem min{y⊤Σ−1y≤r} x
⊤g(y) − α ≥ 0. Rewrite the left hand side as an

optimization problem on y:

Minimize: y⊤G(x)y + P (x)⊤y +Q(x)

Subject to: y⊤Σ−1y ≤ r,

(2.50)

by substituting gi(δ) = δ⊤Giδ + p⊤
i δ + qi. To prove Corollary 2.2, we need the following

two results.

Lemma 2.5. Fix x. The optimal value of the optimization problem (2.50) equals that of

the following SDP:

Maximize:β≥0,t t, subject to:

βΣ−1 +G(x) 1
2P (x)

1
2P (x)

T Q(x)− t− βr

 ⪰ 0. (2.51)

Proof. The dual problem of (2.50) is: maxβ≥0miny y⊤G(x)y+P (x)⊤y+Q(x)+βy⊤Σ−1y−

βr. By taking minimum over y and the Schur complement, this can be reformulated as the

SDP (2.51). Notice that there exists y such that y⊤Σ−1y < r since r > 0, hence Slater’s

condition is satisfied for (2.50), and the strong duality holds.

Thus, x ∈ S if and only if the optimal value of problem (2.50) is greater than or equal to 0.

This means we can convert the constraint in S into a feasibility problem as follows:

Lemma 2.6. Under the conditions of Corollary 2.2, and let r = p/(1 − p), we have the

constraint

inf
δ∼(0,Σ)

P[g(δ)⊤x ≥ α] ≥ p, (2.52)
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is equivalent to the following problem

Exist: β ≥ 0, s.t.:

βΣ−1 +G(x) 1
2P (x)

1
2P (x)

⊤ Q(x)− βr

 ⪰ 0. (2.53)

Proof. 1. Equation (2.52) ⇒ Equation (2.53): When Inequality (2.52) holds, the optimal

value t of (2.50) must be greater than or equal to 0. So from Equation (2.51), we have

βΣ−1 +G(x) 1
2P (x)

1
2P (x)

T Q(x)− βr

 ⪰

βΣ−1 +G(x) 1
2P (x)

1
2P (x)

T Q(x)− t− βr

 ⪰ 0. (2.54)

2. Equation (2.53) ⇒ Equation (2.52): Since the feasibility problem is solvable, t = 0

must be a feasible solution of (2.51), which implies Inequality (2.52).

Lemma 2.6 immediately implies Corollary 2.2.

2.8.3 Proofs of Results in Section 2.4

Proof of Lemma 2.3:

We now show that the constraints (2.13) and (2.14) are equivalent.

1. (2.13) ⇒ (2.14): Since limy→+∞B(y) may not converge to 1, we define B−1(x) = +∞

when {y ≥ 0|B(y) ≥ x} = ∅. Then if r/(1 + r) is not in the range of B(s), we have

t(r) = +∞ so that the constraint (2.14) is always satisfied. Otherwise, suppose that

y∗ = t(r) = inf{y ≥ 0|B(y) ≥ r/(1 + r)}, then we have

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] = inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− y∗] ≥ B(y∗) ≥ r

1 + r
.

2. (2.14) ⇒ (2.13): Since B(y∗) ∈ [0, 1) for any y∗ ≥ 0, there exists r∗ such that B(y∗) =

r∗

1+r∗ . From the definition of t(r), we have y∗ ≥ t(r∗) = inf{y ≥ 0|B(y) ≥ r∗/(1+r∗)}.
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Hence the following inequality holds

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− y∗] ≥ inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r∗)] ≥ r∗

1 + r∗
= B(y∗).

Furthermore, t(·) is non-decreasing since both r/(1 + r) and B(·) are non-decreasing. By

definition of t, B(0) ≥ 0 leads to t(0) = 0; and B(s) < 1 for all s > 0 leads to B−1(1) = +∞

and hence limr↑+∞ t(r) = +∞. Also, B(0) > 0 implies for some ϵ > 0, B(0) ≥ ϵ, and hence

t(ϵ) = 0. Thus, t(·) is continuous at a neighborhood of 0.

Proof of Corollary 2.3:

The feasible set S = {x| infδ∼(0,Σ) P[g(δ)⊤x ≥ α− t(r)] ≥ r
1+r ; ∀r ≥ 0} admits

S
(a)
= {x|∀(y, r) such that y⊤Σ−1y ≤ r ⇒ g(y)⊤x ≥ α− t(r)}

= {x| min
{y,r|y⊤Σ−1y≤r}

g(y)⊤x+ t(r)− α ≥ 0},

where (a) holds by Theorem 2.3. As each component gi(y) of g(y) is linear or quadratic,

i.e., gi(y) = y⊤Giy + p⊤
i y + qi, for fixed x the inner optimization problem

min
{y,r|y⊤Σ−1y≤r}

g(y)⊤x+ t(r)− α

can be rewritten as:

Minimize:r≥0,y y⊤G(x)y + P (x)⊤y +Q(x) + t(r)

subject to: y⊤Σ−1y − r ≤ 0,

(2.55)

where G(x) ≜
∑n

i=1 xiGi, P (x) ≜
∑n

i=1 xipi, and Q(x) ≜
∑n

i=1 xiqi − α. Thus, in order

to analyze S, we need to analyze the optimization problem (2.55). We have the following

lemma:

Lemma 2.7. For any fixed x, the optimal value of problem (2.55) is equivalent to that of
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the following:

Maximize:β≥0,η η, subject to:

βΣ−1 +G(x) 1
2P (x)

1
2P (x)

⊤ Q(x)− t∗(β)− η

 ⪰ 0, (2.56)

where t∗(x) is the conjugate function of t(r) defined as t∗(x) = supr≥0 (xr − t(r)).

Proof. By the Schur complement and the strong duality of problem (2.55) (Slater’s condition

holds by picking r = 1 and y = 0), one can easily obtain this lemma.

From Lemma 2.7, the constraint infδ∼(0,Σ) P[g(δ)⊤x ≥ α−t(r)] ≥ r
1+r , ∀r ≥ 0, is equivalent

to a constraint that the optimal value of the optimization problem (2.56) is non-negative.

Thus, x belongs to the feasible set of the envelope constraint if and only if α = 0 is a feasible

solution of (2.56), for the same x. This means we can remove the −α term from (2.56).

That is, when each component gi(·) of g(·) is linear or quadratic, the envelope constraint is

equivalent to the following feasibility problem:

exist: β ≥ 0, s.t.:

βΣ−1 +G(x) 1
2P (x)

1
2P (x)

⊤ Q(x)− t∗(β)

 ⪰ 0. (2.57)

Hence the optimization problem (2.18) is equivalent to (2.21), which proves the first part of

the Theorem.

To prove the second part of the Theorem, it suffices to show that Problem (2.21) can be

solved in polynomial time. We show this by constructing a polynomial time separation

oracle. For any (β,x), if the optimization problem (2.22) can be solved in polynomial

time, which implies t∗(β) can be computed in polynomial time, then it can be verified in

polynomial time whether the constraint in (2.21) is satisfied or not, and hence the feasibility

of (β,x) can be determined in polynomial time. Moreover, if (β0,x0) is infeasible and let r0

be the optimal solution of the problem (2.22) (by assumption r0 can be found in polynomial
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time), then we have

β0Σ−1 +G(x0)
1
2P (x0)

1
2P (x0)

⊤ Q(x0) + t(r0)− β0r0

 ̸⪰ 0,

and we can find in polynomial time (e.g., by SVD) a vector (y⊤
0 , 1) such that

(y⊤
0 , 1)

β0Σ−1 +G(x0)
1
2P (x0)

1
2P (x0)

⊤ Q(x0) + t(r0)− β0r0


y0

1


=(y⊤

0 Σ
−1y0 − r0)β0 + y⊤

0 G(x0)y0 + P (x0)
⊤y0 +Q(x0) + t(r0) < 0.

Notice that for any feasible solution (β,x), we must have

(y⊤
0 Σ

−1y0 − r0)β + y⊤
0 G(x)y0 + P (x)⊤y0 +Q(x) + t(r0) ≥ 0.

Hence we have a separating hyperplane.

2.8.4 Proofs for Section 2.5

Proof of Corollary 2.6:

As before, we construct a separation oracle to prove tractability. In order to verify the

feasibility of a given x∗, from Corollary 2.5 we know that x∗ is feasible if and only if the

optimal value of the optimization problem (2.26) is greater than or equal to α, which can be

verified by directly solving Problem (2.26). By assumption, this can be done in polynomial

time.

If x∗ is not feasible, then we can find in polynomial time (y∗, r∗,µ∗,Σ∗) such that f(x∗,y∗+

µ∗) + t(r∗) < α. Because f(x,y + µ) is concave in x for fixed y and µ, for any feasible x,

we have

f(x∗,y∗ + µ∗) +∇f(x∗,y∗ + µ∗)⊤(x− x∗) + t(r∗) ≥ f(x,y∗ + µ∗) + t(r∗) ≥ α.
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Hence the hyperplane separating x∗ from the feasible set is the following:

f(x∗,y∗ + µ∗) +∇f(x∗,y∗ + µ∗)⊤(x− x∗) + t(r∗) ≥ α, (2.58)

which can be generated in polynomial time since the super-gradient of x can be obtained

in polynomial time.

Proof of Theorem 2.5:

If f(x, δ) ≥ α for all δ ∈ S, the constraints (2.27) and (2.28) are satisfied, so we only need

to consider the case where there exists δ ∈ S such that f(x, δ) < α. Note that (2.27) is

equivalent to supδ∼(µ,S) P[f(x, δ) < α] ≤ 1− p, then we can apply the following lemma:

Lemma 2.8. If the conditions in Theorem 2.5 hold and {δ : f(x, δ) < α} is nonempty,

then

sup
δ∼(µ,S)

P[f(x, δ) < α] ≤ 1− p (2.59)

is equivalent to

1− p ≥



supθ,δ1,δ2 θ

such that θδ1 + (1− θ)δ2 = µ,

0 ≤ θ ≤ 1,

f(x, δ1) < α,

δ1, δ2 ∈ S.

(2.60)

Proof. Since µ ∈ S and {δ : f(x, δ) < α} is not empty, the optimization problem in

(2.60) is always feasible. To show the equivalence of (2.59) and (2.60), one needs to

prove that the optimal objective value θ∗ of the optimization problem in (2.60) equals

ζ = supδ∼(µ,S) P[f(x, δ) < α].

The first step is to show θ∗ ≤ ζ: Since f(x, ·) is continuous for fixed x ∈ X and S is

a closed convex set, for any ϵ > 0 there exists a feasible solution (δ′1, δ
′
2, θ

′) such that

|θ′ − θ∗| < ϵ. Construct a probability distribution P′(x) such that δ = δ′1 with probability
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θ′ and δ = δ′2 with probability 1 − θ′, then we have P′ ∈ (µ,S). By construction we have

θ′ ≤ P′[f(x, δ) < α] ≤ ζ where the second inequality holds from P′ ∈ (µ,S). Thus we have

θ∗ ≤ ζ as ϵ can be arbitrarily small.

The second step is to prove θ∗ ≥ ζ: Consider any probability distribution P̄ ∈ (µ,S), and

define θ̄ = P̄[f(x, δ) < α], δ̄1 = EP̄[δ|f(x, δ) < α] and δ̄2 = EP̄[δ|f(x, δ) ≥ α]. We then

have δ̄1θ̄+ δ̄2(1− θ̄) = µ, f(x, δ̄1) < α and δ̄1, δ̄2 ∈ S, or equivalently (δ̄1, δ̄2, θ̄) is a feasible

solution of the optimization problem in (2.60). Thus, we must have P̄[f(x, δ) < α] = θ̄ ≤ θ∗,

which implies that θ∗ ≥ ζ = supδ∼(µ,S) P[f(x, δ) < α]. Therefore, (2.59) is equivalent to

(2.60).

From the equivalence shown in Lemma 2.8, we consider the following feasibility problem

parameterized by θ ∈ [0, 1], denoted Fθ:

exist: δ1, δ2

such that: θδ1 + (1− θ)δ2 = µ,

f(x, δ1) < α,

δ1, δ2 ∈ S.

Then we have that for any 0 ≤ θ1 ≤ θ2 ≤ 1, Fθ2 being feasible implies Fθ1 being feasible.

To see this, let (δ∗1, δ
∗
2) be a feasible solution to Fθ2 . Hence we have θ2δ∗1 + (1− θ2)δ

∗
2 = µ.

Let δ′2 be such that

µ− δ′2 = (µ− δ∗2)×
(1− θ2)θ1
(1− θ1)θ2

.

Since θ2 ≥ θ1, we have that δ′2 is on the line segment between µ and δ∗2, and hence belongs

to S by its convexity. Furthermore, it is easy to check that (δ∗1, δ
′
2) is feasible to Fθ1 .

Thus, constraint (2.60) (and equivalently the chance constraint (2.27)) is equivalent to

F1−p+ε infeasible for all ε > 0, i.e.,

δ2 = −1− p+ ε

p− ε
(δ1 − µ) + µ ̸∈ S, ∀f(x, δ1) < α and δ1 ∈ S.
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This further implies F1−p is infeasible, i.e.,

δ2 = −1− p

p
(δ1 − µ) + µ ̸∈ S, ∀f(x, δ1) < α and δ1 ∈ S. (2.61)

To see this, we only need to show that F1−p being feasible implies that F1−p+ε is feasible

for some ε > 0. Suppose that there exists δ∗1 ∈ S such that δ∗2 = −1−p
p (δ∗1 − µ) + µ ∈ S

and f(x, δ∗1) < α. By continuity of f(x, ·), we have that for a sufficiently small η > 0,

f(x, δ′1) < α where δ′1 ≜ (1− η)δ∗1 + ηµ. Note that δ′1 ∈ S and there exists ε > 0 such that

−1−p+ε
p−ε (δ′1 − µ) + µ ∈ S, which implies that F1−p+ε is feasible.

Finally, the constraint (2.61) can be rewritten as

0 < min
δ1,δ2

∥(1− p)δ1 + pδ2 − µ∥2 s.t. f(x, δ1) < α, δ1 ∈ S, δ2 ∈ S, (2.62)

which is equivalent to (2.28). Therefore, the theorem follows.

2.8.5 Proofs of Results in Section 2.6

Proof of Theorem 2.11:

The constraints in ZP (2.47) requires that for any r ≥ 0, we can find β and M to satisfy

β+(r+1)⟨Ω,M⟩ ≤ 0 and the other (m+1) semi-definite constraints. This is equivalent to

requiring that the following optimization problem has an optimal value less than or equal to

0 (notice that for any r ≥ 0, finding β and M to satisfy the (m+1) semi-definite constraints

itself is trivial):

max
r≥0

min
M⪰0,β

β + (r + 1)⟨Ω,M⟩

s.t. M−

 αiQi(x)
1
2αiyi(x)

1
2αiyi(x)

⊤ αi(y
0
i (x)− t(r))− β

 ⪰ 0 ∀i = 1, . . . ,m.

(2.63)
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We analyze this requirement using duality. In order to find the dual problem of (2.63), it is

more convenient for us to analyze the following problem:

min
r≥0

max
M⪰0,β

− β − (r + 1)⟨Ω,M⟩

s.t. M−

 αiQi(x)
1
2αiyi(x)

1
2αiyi(x)

⊤ αi(y
0
i (x)− t(r))− β

 ⪰ 0 ∀i = 1, . . . ,m.

(2.64)

Consider the dual problem, the “max" part in (2.64) is equivalent to

L(r) = min
λi≥0

max
β,M

− β − (r + 1)⟨Ω,M⟩+
m∑
i=1

λiλmin(M− Si + βE) + λ0λmin(M),

(2.65)

where the function λmin(X) denotes minimum eigenvalue of matrix X, and Si ≜ αiBi −

αit(r)E. Further note that the function λmin(X) is equivalent to the following optimization

problem: minY⪰0,tr(Y)=1 tr(YX). Thus (2.65) is equivalent to

L(r) = min
λi≥0

max
β,M

min
{Yi|tr(Yi)=1,Yi⪰0}

−β−(r+1)⟨Ω,M⟩+tr(λ0Y0M)+

m∑
i=1

tr(λiYi(M− Si + βE)).

Notice that for any fixed λ, the objective function is continuous, convex w.r.t. (Yi)
m
i=0 and

concave w.r.t. (β,M). Moreover, the feasible set of (Yi)
m
i=0 is compact and does not depend

on (β,M). Hence Sion’s minimax theorem applies, and we have

L(r) = min
λi≥0

min
{Yi|tr(Yi)=λi,Yi⪰0}

max
β,M

−
m∑
i=1

tr(YiSi)+⟨M,
m∑
i=0

Yi−(r+1)Ω⟩+β(⟨E,
m∑
i=1

Yi⟩−1).

Taking maximum over β andM , we have that L(r) is equivalent to the following optimization

problem with variables Yi and λi:

L(r) = min
λi≥0

min
{Yi|tr(Yi)=λi,Yi⪰0}

−
m∑
i=1

tr(αiYi(Bi − t(r)E))

s.t.
m∑
i=0

Yi = (r + 1)Ω, tr(E
m∑
i=1

Yi) = 1.

By taking minimum over λi, minr≥0 L(r) can be further reformulated as (2.48). Hence from

the analysis above, we know that (2.64) is equivalent to (2.48). To complete the proof, we
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construct a separation oracle of ZP based on (2.48). Given x, if the optimization problem

(2.48) can be solved in polynomial time, then it can be verified whether x ∈ ZP or not in

polynomial time since x is feasible if and only if the optimal value of (2.48) is greater than

or equal to 0. Furthermore, if x ̸∈ ZP , let the optimal solution of (2.48) be (r0, {Y0
i }), then

we have −
∑m

i=1 tr(αiY
0
iBi) + t(r0)

∑m
i=1 αitr(Y

0
iE) < 0 since x ̸∈ ZP . On the other hand,

for any x ∈ ZP , the following inequality must be satisfied

−
m∑
i=1

tr(αiY
0
iBi) + t(r0)

m∑
i=1

αitr(Y
0
iE) ≥ 0,

which implies that a separating hyperplane can be generated in polynomial time.

2.9 Chapter Summary

The distributionally robust chance constraint formulation has been extensively studied. Yet,

most previous work focused on the linear constraint function case. In this chapter, motivated

by applications where uncertainty is inherently non-linear, we investigate the computational

aspects of distributionally robust chance constrained optimization problems for the general

function case. We show that the distributionally robust chance constrained optimization is

tractable, provided that the uncertainty is characterized by its mean and variance, and the

constraint function is concave-quasiconvex. This significantly expands the range of decision

problems that can be modeled and solved efficiently via the DRCC framework. Along the

way, we establish a relationship between the DRCC framework and robust optimization

model, which links the stochastic model and the deterministic model of uncertainty. We

then consider probabilistic envelope constraints, a generalization of distributionally robust

chance constraint first proposed in Xu et al. [XCM12], and extend this framework to the

non-linear case, and obtain conditions that guarantee its tractability. Finally, we discuss

two extensions of our approach, provide approximation schemes for JPEC, and establish

conditions to ensure these approximation formulations are tractable.



Chapter 3
A Unified Robust Regression Model for Lasso-like

Algorithms

We develop a unified robust linear regression model and show that it is equivalent to a general

regularization framework to encourage sparse-like structure that contains group Lasso and

fused Lasso as specific examples. This provides a robustness interpretation of these widely

applied Lasso-like algorithms, and allows us to construct novel generalizations of Lasso-like

algorithms by considering different uncertainty sets. Using this robustness interpretation,

we present new sparsity results, and establish the statistical consistency of the proposed

regularized linear regression. This work extends a classical result from [XCM10] that relates

standard Lasso with robust linear regression to learning problems with more general sparse-

like structures, and provides new robustness-based tools to understand learning problems

with sparse-like structures.

3.1 Introduction

In this chapter we establish a unified relationship between robustness and regularization

schemes for various sparse-like structures, in the context of linear regression. Linear regres-

sion aims to find a vector β such that y ≈ Xβ, for a given matrix X ∈ Rn×m and vector

y ∈ Rn. From a learning perspective, each row of X represents a training sample, and the

corresponding element of y is the target value or response of this observed sample. Each

column of X corresponds to a feature, and the objective of linear regression is to obtain a

set of weights so that the weighted sum of the feature values approximates the target value.

63
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Regularized linear regression framework – where one finds the solution that minimizes a

weighted combination of the residual norm and a certain regularization term, e.g., [TA77,

Tib96] – is now a standard practice in machine learning and statistics for linear regression.

Among different regularization schemes, the ℓ1 regularized linear regression, also termed

Lasso [Tib96, CDS99, EHJT04], is increasingly popular due to its tendency to select sparse

solutions. Indeed, Lasso has been extremely successful in the high-dimensional regime, as it

allows recovering the true solution β∗ where the samples are significantly outnumbered by

the dimensionality by exploiting sparse structure of β∗. Extensive effort has been made to

explain the success of Lasso, e.g., [Tro06, Don06, Wai09, BRT09, Zha09], among which, one

interesting result from [XCM10] showed that the success of Lasso is due to its robustness.

In particular, they showed that Lasso is equivalent to a robust linear regression formulation,

and such robustness interpretation implies the sparsity and the consistency of Lasso.

Inspired by the success of Lasso, numerous regularization schemes were proposed to select

solutions with more general sparse-like structures. For example, domain knowledge may

indicate that the solution is group sparse, i.e., features can be grouped, and the features

belonging to one group is likely to be either all non-active (corresponding to the regressor

having zero coefficients), or all active. One example of group sparsity appears is measuring

gene expression, where experiments show that selecting a few genes that belong to the same

functional groups can lead to increased interpretability of the predictive signature [RZD+07].

A prominent algorithm proposed to enforce this sparse-like structure is the group Lasso

formulation [YL06], where the regularization term is the sum of the ℓ2-norms of the different

groups of features, also called the ℓ1/ℓ2-norm. This formulation leads to a sparse selection

of the groups of features. Other examples of Lasso-like algorithms include the fused Lasso

[TSR+05] that encourages sparsity of the coefficients and also sparsity of their differences,

the sparse group Lasso [FHT10] that encourages solutions that are sparse at both the group

and individual feature levels, and many others.

This chapter attempts to explain the success of those Lasso-like algorithms in a unified way.

Our approach is largely inspired by [XCM10] – we analyze these algorithms based on their

robustness properties. In specific, our first result states that a wide range of regularized

linear regression problems including the aforementioned ones, all have equivalent robust
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regression reformulations. This provides a robustness re-interpretation of a class of regu-

larized linear regression formulations for sparse-like structured solutions, and generalizes

similar results of standard Lasso showed in [XCM10]. Moreover, our robustness interpre-

tation leads to new formulation and new analysis. We derive new regularization variants

of Lasso-like algorithms by considering different uncertainty sets of the robust linear re-

gression formulation. We then present new sparsity results for the group Lasso, as well as

proofs of consistency of Lasso-like algorithms, all based on the robustness interpretation.

Since robustness is a geometric concept, our approach gives new analysis and new geometric

intuition compared to previous methods.

Notations. We use lower-case boldface letters to denote column vectors and upper-case

boldface letters to denote matrices. The operator vectorizing a matrix by stacking its

columns is denoted by vec(·). For simplicity, we use ∥X∥p to denote the ℓp-norm of vec(X),

e.g. ∥X∥2 is the Frobenius norm ∥X∥F , and ∥X∥∗p to denote its dual norm. We denote the

set {1, · · · ,m} as [m] and call a subset g of [m] a group. The identity matrix is denoted by

I, the ith element of vector x is denoted by xi, and the ith column of matrix ∆ is denoted

by ∆i. For vector x and group g, we denote xg as the vector whose ith element is xi if i ∈ g

or 0 otherwise. Similarly, for matrix ∆ and group g, we denote ∆g as the matrix whose ith

column is ∆i if i ∈ g or 0 otherwise.

3.2 Unified Robust Framework

This section presents the main result of this chapter – there exists a strong relationship

between robust linear regression and several widely applied variants of Lasso.

3.2.1 Preliminary

We start by briefly review the result from [XCM10] that connects standard Lasso with robust

regression. Robust linear regression considers the case that the observed data is corrupted by

some (potentially malicious) disturbance. To protect against such disturbance, the following
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min-max formulation is typically solved:

min
β∈Rm

{max
∆∈U

∥y − (X+∆)β∥p}, (3.1)

where U is the uncertainty set, or the set of admissible disturbances of the observed ma-

trix X. [XCM10] showed that the robust optimization above is equivalent to the ℓ1-norm

regularized linear regression (standard Lasso) when the uncertainty set is defined by feature

wise norm constraints:

Theorem 3.1 ([XCM10]). The robust regression problem (3.1) with the uncertainty set

U = {(δ1, · · · , δm)|∥δi∥2 ≤ ci, i = 1, · · · ,m},

for given ci ≥ 0, is equivalent to the following ℓ1-norm regularized regression problem:

min
β∈Rm

{∥y −Xβ∥2 +
m∑
i=1

ci|βi|}.

It turns out Theorem 3.1 not only provides a new insight of Lasso from a robustness per-

spective, but is also a powerful tool to analyze the sparsity and consistency of Lasso, see

[XCM10] for details.

3.2.2 Main Results

Given the success of the robust interpretation of Lasso, it is natural to ask whether different

Lasso-like formulations such as the group Lasso or the fused Lasso can also be reformulated

as robust linear regression problems by selecting appropriate uncertainty sets. We provide

in this section an affirmative answer. To illustrate our general result, we first consider

the overlapping group Lasso proposed in [YL06]. The following theorem shows that it is

equivalent to a robust linear regression problem:

Theorem 3.2. Let the uncertainty set be

U = {∆(1) + · · ·+∆(t)|∥∆(i)
gi ∥2 ≤ cgi and ∥∆(i)

gci
∥2 = 0, ∀i ∈ [t]}, (3.2)
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where matrix ∆(i) ∈ Rn×m,
∪t

i=1 gi = [m] and gci = [m]\gi, then the robust regression (3.1)

with U is equivalent to

min
β∈Rm

{∥y −Xβ∥2 +
t∑

i=1

cgi∥βgi∥2}. (3.3)

The regression formulations we consider slightly differ from the more widely used ones, as

we minimize the norm of the error, rather than the squared norm. It is known that these

two coincide up to a change of the regularization coefficient since the empirical error terms

and the regularization terms we discuss are all convex.

Note that the groups defined in Theorem 3.2 are allowed to overlap. Theorem 3.2 shows

that the group Lasso formulation is equivalent to the robust linear regression where the

admissible disturbance is given by the norm constraints on each group gi, as opposed to

constraints on each feature in Theorem 3.1. Observe that by taking each feature as one

group, Theorem 3.2 immediately implies Theorem 3.1.

We now present our main result that connects variants of Lasso-like algorithms with the

robust linear regression framework. Consider the following uncertainty set:

U = {∆(1)W1 + · · ·+∆(t)Wt|∀i ∈ [t], ∀g ∈ Gi, ∥∆(i)
g ∥p ≤ cg}, (3.4)

where matrix Wi ∈ Rm×m is fixed, Gi is the set of the groups, and cg provides the norm

bound of group g of the disturbance. Notice that Gi may contain more than one groups,

and two different groups g1, g2 ∈ Gi are allowed to overlap, i.e., g1 ∩ g2 ̸= ∅. It is easy to

see that such set contains the uncertainty set considered in Theorem 3.2 as a special case,

i.e. Gi = {gi, gci } for i ∈ [t]. The next theorem shows that such uncertainty set provides

a unified framework that “encodes” the ridge regression and many variants of Lasso-like

algorithms.

Theorem 3.3. The robust regression problem (3.1) with the uncertainty set (3.4) is equiv-

alent to the convex regularized linear regression problem:

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ}. (3.5)
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Proof. For any fixed β, we have

max
∆∈U

∥y − (X+∆)β∥p =max
∆∈U

∥y −Xβ −
t∑

i=1

∆(i)Wiβ∥p

≤∥y −Xβ∥p +max
∆∈U

t∑
i=1

∥
m∑
j=1

(Wiβ)j∆
(i)
j ∥p

≤∥y −Xβ∥p +max
∆∈U

t∑
i=1

m∑
j=1

|(Wiβ)j |∥∆(i)
j ∥p.

For clarity, denote

α(i) ≡ [sign((Wiβ)1) · ∥∆(i)
1 ∥p, · · · , sign((Wiβ)m) · ∥∆(i)

m ∥p]⊤.

From the definition of the uncertainty set U , we know that ∥∆(i)
g ∥p ≤ cg for any i ∈ [t] and

g ∈ Gi. Thus, ∥α(i)
g ∥p = ∥∆(i)

g ∥p ≤ cg, and we have

∥y −Xβ∥p +max
∆∈U

t∑
i=1

m∑
j=1

|(Wiβ)j |∥∆(i)
j ∥p =∥y −Xβ∥p +max

∆∈U

t∑
i=1

α(i)⊤Wiβ

≤∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ.

On the other hand, let

α
(i)
0 = argmax∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ

and

u =


y−Xβ

∥y−Xβ∥p if ∥y −Xβ∥p ̸= 0

any vector with unit ℓp norm otherwise

and then let

∆(i) = −u ·α(i)
0

⊤
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From the definition above, we know that ∥∆(i)
g ∥p = ∥α(i)

g ∥p ≤ cg. Thus, we have

max
∆∈U

∥y − (X+∆)β∥p ≥∥y − (X+

t∑
i=1

∆(i)Wi)β∥p

=∥y −Xβ + u

t∑
i=1

α
(i)
0

⊤
Wiβ∥p

=∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ,

which establishes the theorem.

Indeed, the regularized linear regression (3.5) is a generalization for Lasso. By setting t,

Gi, Wi and cg to appropriate values, (3.5) can be reduced as standard Lasso, group Lasso,

fused Lasso, trend filtering, among others.

Corollary 3.1 (Ridge Regression). Suppose that t = 1, p = 2, W1 = I, G1 = {[m]} and

cg = c, then the robust regression problem (3.1) is equivalent to

min
β∈Rm

{∥y −Xβ∥2 + c∥β∥2}. (3.6)

Ridge regression has been well studied. It shrinks the regression coefficients β1, · · · , βm

by penalizing their sizes (in terms of ℓ2-norm) to control the complexity of the regression

model.

Corollary 3.2 (Standard Lasso). Suppose that t = 1, W1 = I, G1 = {{1}, · · · , {m}} and

ci = c{i}, then the robust regression problem (3.1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
m∑
i=1

ci|βi|}. (3.7)

The main difference between the ridge regression and the standard Lasso is that the Lasso

penalizes the ℓ1-norm of the coefficients. The Lasso’s ability to recover sparse solutions has

been extensively explored, and has found wide applications in statistics, signal processing,

computer vision, bioinformatics, to name a few.

Corollary 3.3 (Non-overlapping Group Lasso). Suppose that t = 1, W1 = I, G1 =
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{g1, · · · , gk} and gi ∩ gj = ∅ for any i ̸= j, then the robust regression problem (3.1) is

equivalent to

min
β∈Rm

{∥y −Xβ∥p +
k∑

i=1

cgi∥βgi∥
∗
p}. (3.8)

The non-overlapping group Lasso is an extension of the standard Lasso, where non-overlapping

group structure of features is known as the prior information. In particular, features are

partitioned into known groups, and one seeks solutions that select few non-zero groups.

Different from Lasso, group Lasso does not encourage sparsity inside each group.

Corollary 3.4 (Overlapping Group Lasso [JOV09]). Suppose that t = 1, W1 = I, G1 =

{g1, · · · , gk}, and
∪k

i=1 gi = [m], then the robust regression problem (3.1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p + min∑
vgi=β, supp(vgi )⊆gi

k∑
i=1

cgi∥vgi∥∗p}. (3.9)

Different from the overlapping group Lasso formulation (3.3) proposed in [YL06] that en-

courages solutions whose supports are in the complement of a union of groups (i.e, many

groups are all zero), Formulation (3.9) tends to select solutions whose support is contained

in a union of potentially overlapping groups. This is motivated by applications in bioin-

formatics, e.g., predicting the class of a tumor from gene expression measurements with

microarrays, and simultaneously select a few genes to establish a predictive signature. Fig-

ure 3.1 illustrates the difference between two group Lasso formulations.

Figure 3.1: Preferred solutions of the two group Lassos. Hatched regions indicates non-
zero coefficients and unhatched regions indicates zero coefficients. (a) Predefined groups of
the coefficient β; (b) One solution that [YL06] tends to select; (c) One solution that [JOV09]
tends to select.

Corollary 3.5 (Fused Lasso [TSR+05]). Suppose that t = 2, G1 = G2 = {{1}, · · · , {m}},
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and

W1 = I, W2 =



1 −1 0 · · · 0

0 1 −1 · · · 0

...
. . . . . . . . .

...

0 · · · 0 1 −1

0 · · · 0 0 0


,

then the robust regression problem (3.1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
m∑
i=1

ci|βi|+
m−1∑
i=1

c′i|βi − βi+1|}, (3.10)

where ci and c′i are the “c{i}”s corresponding to the uncertainty sets of G1 and G2, respec-

tively.

The fused Lasso is motivated by protein mass spectroscopy and gene expression profiling.

After estimating an order of data and putting correlated data near one another, solving

it not only encourages sparsity in the coefficients β1, · · · , βm but also encourages sparsity

in their differences, which implies that it tends to select a sparse solution in which nearby

coefficients are similar to each other.

Corollary 3.6 (Sparse Group Lasso [FHT10]). Suppose that t = k + 1,
∪k

i=1 gi = [m]

and gci = [m] \ gi. Let Wi = I, Gi = {gi, gci }, cgci = 0 for i ∈ [k], and let Wk+1 = I,

Gk+1 = {{1}, · · · , {m}}, then the robust regression problem (3.1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
k∑

i=1

cgi∥βgi∥
∗
p +

m∑
i=1

ci|βi|} (3.11)

where ci is equal to c{i}.

The sparse group Lasso blends the standard Lasso with the group Lasso, and encourages

solutions that are sparse at both the group and the individual feature levels. Notice that

Equation (3.11) is equivalent to the elastic net [ZH05] when k = 1 and p = 2.

Corollary 3.7 (Generalized Lasso [TT11]). Suppose that t = 1, W1 = D, G1 = {{1}, · · · , {m}},
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and c{i} = λ, then the robust regression problem (3.1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p + λ∥Dβ∥1}. (3.12)

By making various choices of D, the generalized Lasso can be reformulated as well-known

problems in the literature: trend filtering [KKBG09], etc.

Remark. While the inner maximization of the robust linear regression problem (3.1) over

the uncertainty set (3.4) is non-convex, Theorem 3.3 shows that it can be solved efficiently

as it is equivalent to a convex optimization problem (3.5). In particular, by strong duality,

the optimization problem (3.5) is equivalent to

min
β,v

(i)
g

∥y −Xβ∥p +
t∑

i=1

∑
g∈Gi

cg∥v(i)
g ∥∗p

s.t.
∑
g∈Gi

∥v(i)
g ∥∗p = Wiβ, ∀i ∈ [t]

A(i)
g v(i)

g = 0, ∀i ∈ [t], ∀g ∈ Gi,

where v
(i)
g ∈ Rm is a decision variable and A

(i)
g ∈ R(m−|g|)×m is a constant matrix defined as

A
(i)
g = (ei1 , · · · , eik)⊤ where k = m−|g|, {i1, · · · , ik} = gc, and ei is the ith unit base vector.

This is a linear constrained convex optimization problem which can be solved efficiently using

off-the-shelf methods. In addition, for special case such as the non-overlapping group Lasso,

more scalable codes are available, e.g., [MGB08, RF08].

Proofs of the corollaries

To prove the corollaries shown above, we require the following lemma.

Lemma 3.1. If any two different groups gp and gq in Gi in the uncertainty set U (3.4) are

non-overlapping for i = 1, · · · , t, which means gp ∩ gq = ∅, then the optimization problem
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(3.5) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p} (3.13)

Proof. Since any two different groups gp and gq in Gi are non-overlapping, we have

t∑
i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ =

t∑
i=1

∑
g∈Gi

max
∥α(i)

g ∥p≤cg

α(i)
g (Wiβ)g =

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p

(3.14)

Hence the lemma holds.

By using Theorem 3.3 and Lemma 3.1, we have

1. Proof of Corollary 3.1: G1 = {[m]} satisfies the condition of Lemma 3.1, so we have

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
∑
g∈G1

c∥βg∥∗2 = c∥β∥2. (3.15)

2. Proof of Corollary 3.2: G1 = {{1}, · · · , {m}} satisfies the condition of Lemma 3.1,

then
t∑

i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
∑
g∈G1

cg∥βg∥∗p =
m∑
i=1

ci|βi|. (3.16)

3. Proof of Corollary 3.3: G1 = {g1, · · · , gk} satisfies the condition of Lemma 3.1, so we

have
t∑

i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
k∑

i=1

cgi∥βgi∥
∗
p. (3.17)

4. Proof of Theorem 3.2: Gi = {gi, gci } satisfies the condition of Lemma 3.1 and cgci = 0,

so that

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
k∑

i=1

(cgi∥βgi∥
∗
p + cgci ∥βgci

∥∗p) =
k∑

i=1

cgi∥βgi∥
∗
p. (3.18)
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5. Proof of Corollary 3.4: The dual problem of the optimization problem

min∑
vgi=β, supp(vgi )⊆gi

k∑
i=1

cgi∥vgi∥∗p

can be formulated as

max
α

min
∀i,supp(vgi )⊆gi

{
k∑

i=1

cgi∥vgi∥∗p −α⊤
k∑

i=1

vgi +α⊤β}

=max
α

{α⊤β + min
∀i,supp(vgi )⊆gi

{
k∑

i=1

cgi∥vgi∥∗p −α⊤
givgi}}

=max
α

{α⊤β − max
∀i,supp(vgi )⊆gi

{
k∑

i=1

α⊤
givgi − cgi∥vgi∥∗p}}

= max
∀i,∥αgi∥≤cgi

α⊤β

(3.19)

Since the constraints in the primal problem satisfy Slater’s condition, the strong du-

ality holds. From the duality and the condition in Corollary 3.4, we have

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ}

= min
β∈Rm

{∥y −Xβ∥p + max
∀g∈G1,∥αg∥p≤cg

α⊤β}

= min
β∈Rm

{∥y −Xβ∥p + min∑
vgi=β, supp(vgi )⊆gi

k∑
i=1

cgi∥vgi∥∗p}.

(3.20)

6. Proof of Corollary 3.5: From Theorem 3.2 and Lemma 3.1, we have

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
∑
g∈G1

cg∥βg∥∗p +
∑
g∈G2

c′g∥(W2β)g∥∗p

=

m∑
i=1

ci|βi|+
m−1∑
i=1

c′i|βi − βi+1|.

(3.21)

7. Proof of Corollary 3.6: By using the proofs of Corollary 1 and Corollary 3, we can

obtain Corollary 3.6.

8. Proof of Corollary 3.7: G1 = {{1}, · · · , {m}} satisfies the condition of Lemma 3.1.
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Since t = 1, c{i} = λ and W1 = D, we have

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
∑
g∈G1

λ∥(Dβ)g∥∗p =
m∑
i=1

λ|(Dβ)i| = λ∥Dβ∥1. (3.22)

3.3 General Uncertainty Sets

As discussed above, we assume that the disturbance of each group is bounded individually,

then the robust linear regression (3.1) can be reformulated as the regularized linear regression

(3.5) which is a generalized formulation for Lasso-like algorithms. In this section, we provide

a more generalized formulation of the uncertainty set.

Consider the following uncertainty set Û :

Û = {∆(1)W1 + · · ·+∆(t)Wt | c ∈ Z; ∀i ∈ [t], ∀g ∈ Gi, ∥∆(i)
g ∥p ≤ cg}, (3.23)

where Gi is the set of groups of disturbance ∆(i), c is the vector whose elements are the

norm bounds cg of all the groups contained in G1, · · · , Gt, e.g. c = (cg1 , · · · , cgn), and Z is

the feasible set of c. If Z has only one element, then Û is equivalent to the uncertainty set

U which is defined as (3.4) where cg is fixed. Hence, the set Û is a very general formulation,

and provides us with significant flexibility in designing uncertainty sets and equivalently new

regression algorithms. In particular, we consider Z given by a set of convex constraints, i.e.,

Z = {z ∈ Rk|fi(z) ≤ 0, ∀i ∈ [q]; z ≥ 0}, (3.24)

where each fi(z) is a convex function and k =
∑t

i=1 |Gi| (|Gi| is the cardinality of Gi), and

Z has non-empty relative interior.

Under these assumptions, we have the following theorem showing that the robust regression

problem (3.1) with uncertainty set Û can be converted to a tractable convex optimization

problem.
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Theorem 3.4. The robust regression problem with the uncertainty set (3.23)

min
β∈Rm

{max
∆∈Û

∥y − (X+∆)β∥p}

is equivalent to

min
λ∈Rq

+,κ∈Rk
+,β∈Rm

{∥y −Xβ∥p + υ(λ,κ,β)} (3.25)

where

υ(λ,κ,β) = max
c∈Rk

{
t∑

i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ + κ⊤c−
q∑

i=1

λifi(c)}.

Furthermore, the equivalent optimization problem (3.25) is convex and tractable.

Proof. From the definition of Û , we have

max
∆∈Û

∥y − (X+∆)β∥p

=max
c∈Z

max
∀i,∀g∈Gi,∥∆

(i)
g ∥p≤cg

∥y − (X+∆)β∥p

=∥y −Xβ∥p +max
c∈Z

t∑
i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ

=∥y −Xβ∥p + max
c|c≥0;fi(c)≤0

t∑
i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ

=∥y −Xβ∥p + min
λ∈Rq

+,κ∈Rk
+

max
c∈Rk

{
t∑

i=1

max
∀g∈Gi,∥α

(i)
g ∥p≤cg

α(i)⊤Wiβ + κ⊤c−
q∑

i=1

λifi(c)}

=∥y −Xβ∥p + min
λ∈Rq

+,κ∈Rk
+

υ(λ,κ,β)

(3.26)

Hence we establish the theorem by taking minimum over β on both sides. Now we show

the optimization problem is convex and tractable. we first prove that υ(λ,κ,β) is a convex
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function of λ,κ,β. Since

υ(λ,κ,β) = max

c ∈ Rk,

∀i, g ∈ Gi, ∥α
(i)
g ∥p ≤ cg

{
t∑

i=1

α(i)⊤Wiβ + κ⊤c−
q∑

i=1

λifi(c)}

= max

c ∈ Rk,

∀i, g ∈ Gi, ∥α
(i)
g ∥p ≤ cg

µ(λ,κ,β).

(3.27)

For fixed c and α
(i)
g , µ(λ,κ,β) is a linear function of λ,κ,β. Thus υ(λ,κ,β) is convex,

which implies the optimization problem is convex. By choosing parameter γ, the optimiza-

tion problem can be reformulated as

min ∥y −Xβ∥p

s.t. υ(λ,κ,β) ≤ γ

λ ∈ Rp
+,κ ∈ Rk

+,β ∈ Rm

To show the problem is tractable, it suffices to construct a polynomial-time separation oracle

for the feasible set S (Grötschel et al. [GLS88]). A separation oracle is a routine such that

for a solution (λ0,κ0,β0), it can find, in polynomial time, that (a) whether (λ0,κ0,β0)

belongs to S or not; and (b) if (λ0,κ0,β0) ̸∈ S, a hyperplane that separates (λ0,κ0,β0)

with S.

To verify the feasibility of (λ0,κ0,β0), notice that (λ0,κ0,β0) ∈ S if and only if the optimal

value of the optimization problem (3.27) is smaller than or equal to γ, which can be verified

in polynomial time. If (λ0,κ0,β0) ̸∈ S, then by solving (3.27), we can find in polynomial

time c0,α
(i)
0 such that

t∑
i=1

α
(i)
0

⊤
Wiβ + κ⊤c0 −

q∑
i=1

λifi(c0) > γ.

which is the hyperplane separates (λ0,κ0,β0) with S.

One interesting implication of Theorem 3.4 is that by choosing “proper” uncertainty sets, we

can simplify (3.25) and obtain new regularized linear regression formulations. We provide
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some examples to illustrate this in the rest of this section. The notations used follow those

in Theorem 3.3.

Corollary 3.8. Suppose that the uncertainty set Û = {∆|∃ c ∈ Rm such that c ≥ 0 and ∥cgi∥∗q ≤

si, ∀i ∈ [k]; ∥∆j∥ ≤ cj , ∀j ∈ [m]}, then the equivalent linear regularized regression problem

is

min
β∈Rm

{∥y −Xβ∥p +
k∑

i=1

si∥βgi∥q},

where ∥ · ∥∗q is the dual norm of ∥ · ∥q,
∪k

i=1 gi = [m], and gi ∩ gj = ∅ for i ̸= j.

Proof. From Theorem 3.3 and Theorem 3.4, we have

min
λ∈R+,κ∈Rm

+

υ(λ,κ,β) = min
λ∈R+,κ∈Rm

+

max
c∈Rm

{
m∑
i=1

(κi + |βi|)ci −
k∑

i=1

λi(∥cgi∥∗q + si)}.

Define rgi as the vector whose jth elements is κj+ |βj | for all j ∈ gi, then the equation above

is equivalent to

min
λ∈R+,κ∈Rm

+ |∥rgi∥q≤λi,∀i∈[k]
λ⊤s =

k∑
i=1

si∥βgi∥q,

which establishes the corollary.

This corollary interprets arbitrary norm-based regularizers for the non-overlapping group

Lasso from a robust regression perspective. By choosing different norms that bound cgi

for i ∈ [k], different regularization terms are obtained, which implies that the effect of the

regularization term of Lasso is selecting a proper uncertainty set of the observed matrix.

For the overlapping group Lasso [YL06], the same result holds by adding more disturbances

to the overlapping columns of the observed matrix.

Corollary 3.9. Let g1, · · · , gt be t groups such that
∪t

i=1 gi = [m], and ∆̄i be a n × m

matrix whose columns except the ith one are all zero. Suppose that cgi is a |gi| dimen-

sion vector whose elements give the norm bound of ∆̄j for j ∈ gi, e.g. ∥∆̄j∥2 ≤ cjgi, and

c = (cg1 , · · · , cgt). We define the uncertainty set as Û = {
∑t

i=1

∑
j∈gi ∆̄j |∃c such that c ≥

0 and ∥cgi∥∗q ≤ si,∀i ∈ [t]; ∥∆̄j∥2 ≤ cjgi , ∀i ∈ [t], ∀j ∈ gi}, then the equivalent linear regular-
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ized regression problem is

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

si∥βgi∥q},

where ∥ · ∥∗q is the dual norm of ∥ · ∥q.

Proof. From Theorem 3.3 and Theorem 3.4, we have

min
λ∈R+,κ∈Rm

+

υ(λ,κ,β) = min
λ∈R+,κ∈Rm

+

max
c∈Rm

{
t∑

j=1

∑
i∈gj

(κi + |βi|)ci −
t∑

i=1

λi(∥cgi∥∗q + si)}.

Define rgi as the vector whose elements are κj + |βj | for j ∈ gi, then the equation above is

equivalent to

min
λ∈R+,κ∈Rm

+ |∥rgi∥q≤λi,∀iin[t]
λ⊤s =

t∑
i=1

si∥βgi∥q,

which establishes the theorem.

We now consider a polytope uncertainty set in which there exists an additional constraint

bounding the total disturbance besides the norm bound for disturbance on each group.

Corollary 3.10. Suppose that Û = {
∑t

i=1∆
(i) | ∃ 0 ≤ c ≤ s :

∑t
i=1 ci/si ≤ θ; ∥∆(i)

gi ∥p ≤

ci, ∥∆(i)
gci
∥p = 0, ∀i ∈ [t]}, then the equivalent linear regularized regression problem is as

follows

min
β,λ

∥y −Xβ∥p +
t∑

i=1

[si∥βgi∥
∗
p − λ]+ + λθ

s.t. λ ≥ 0

(3.28)

where [x]+ = max{x, 0}.

Proof. From Theorem 3.2 and Theorem 3.4, we have

υ(λ,κ,β) = max
c

t∑
i=1

ci(∥βgi∥
∗
p −

λ

si
) + (κ− λ̄)⊤c+ λ̄

⊤
s+ λθ.

Thus, υ(λ,κ,β) = λ̄
⊤
s+ λθ and κi = λ̄i + λ/si − ∥βgi∥

∗
p, ∀i ∈ [t], which implies that the



3.4 Sparsity 80

robust regression is equivalent to

min
β,λ

∥y −Xβ∥p + λ̄
⊤
s+ λθ

s.t. ∥βgi∥
∗
p − λ/si ≤ λ̄i, ∀i ∈ [t],

λ ≥ 0, λ̄ ≥ 0,

which is also equivalent to (3.28).

Notice that when θ = t, the above formulation reduces to the overlapping group Lasso. On

the other hand, when θ = 0, it is equivalent to the linear least square problem. Hence, this

formulation allows us to control the desired group sparsity level using only one parameter

θ .

3.4 Sparsity

The standard Lasso’s ability to recover spare solutions has been extensively studied [CDS99,

FN03, CRT06, Tro04, Tro06], and the sparsity properties of the group Lasso have also been

explored [HHM09, HZM09, Per11]. These results typically take one of two approaches

– treating the problem from either a statistical or optimization perspective. In this sec-

tion, we investigate the sparsity properties of the robust regression and equivalently non-

overlapping/overlapping group Lasso from a robust optimization perspective, and provides

a geometric interpretation for sparsity. We consider first the overlapping group Lasso.

Theorem 3.5. For the overlapping group Lasso

min
β∈Rm

{∥y −Xβ∥2 + c
t∑

i=1

∥βgi∥2}

where
∪t

i=1 gi = [m], if there exists I ⊂ [t] such that for an orthonormal base V of

span({Xj , j ∈ [m] \
∪

i∈I gi} ∪ {y}), we have ∥VV⊤Xgi∥2 ≤ c for i ∈ I, then any op-

timal solution β∗ satisfies that β∗
gi = 0 for i ∈ I.
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Proof. From Theorem 3.2, we know that the overlapping group Lasso is equivalent to

min
β

max
∆∈U

∥y − (X+∆)β∥2, (3.29)

where the uncertainty set U is as follows

U = {
t∑

i=1

∆(i) | ∀i, ∥∆(i)
gi ∥2 ≤ c and ∥∆(i)

gci
∥2 = 0}.

Recall that it is allowed that gi ∩ gj ̸= ∅ for i ̸= j. We define group ĝi as

ĝi =


gi i ∈ I;

gi −
∪

j∈I gj i ̸∈ I,

and consider the following uncertainty set

Û = {
t∑

i=1

∆(i) | ∀i, ∥∆(i)
ĝi
∥2 ≤ c and ∥∆(i)

ĝci
∥2 = 0},

then we have Û ⊆ U since ĝi ⊆ gi,∀i ∈ [t]. Thus,

min
β

max
∆∈Û

∥y − (X+∆)β∥2 ≤ min
β

max
∆∈U

∥y − (X+∆)β∥2. (3.30)

Let X̄ be a matrix whose ith column is

X̄i =


Xi i ̸∈

∪
j∈I ĝj

Xi −VV⊤Xi i ∈
∪

j∈I ĝj ,

(3.31)

then from the condition ∥VV⊤Xĝi∥2 ≤ c for i ∈ I, we have ∥(X − X̄)ĝi∥2 ≤ c for i ∈ I.

Now let

Ū = {∆(1) + · · ·+∆(t) | ∥∆(i)
ĝi
∥2 ≤ c and ∥∆(i)

ĝci
∥2 = 0 for i ̸∈ I; ∥∆(i)∥2 = 0 for i ∈ I},
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and consider the following robust regression problem

min
β

max
∆∈Ū

∥y − (X̄+∆)β∥2,

which is equivalent to

min
β

{∥y − X̄β∥2 + c
∑
i̸∈I

∥βĝi∥2}. (3.32)

We denote the optimal solution of (3.32) as β̄
∗. From the definition of X̄, we know that

each column of X̄ĝi for i ∈ I is orthogonal to the span of {Xĝi , i ̸∈ I} ∪ {y}. Hence by

changing β̄
∗
ĝi to 0 for all i ∈ I, the minimizing objective does not increase. This implies

that the optimal solution β̄
∗ satisfies that β̄

∗
gi = 0 for i ∈ I.

We now prove that β̄∗ is also the optimal solution of the overlapping group Lasso. We first

show that
min
β

max
∆∈Ū

∥y − (X̄+∆)β∥2 ≤min
β

max
∆∈Û

∥y − (X+∆)β∥2

≤min
β

max
∆∈U

∥y − (X+∆)β∥2.
(3.33)

For any X, X̄ (defined by (3.31)) and ∆̄ ∈ Ū such that ∥(X − X̄)ĝi∥p ≤ c for i ∈ I, there

exists ∆ ∈ Û such that X̄+∆̄ = X+∆, which implies {X̄+∆̄|∆̄ ∈ Ū} ⊆ {X+∆|∆ ∈ Û}.

Thus, Inequality (3.33) holds. On the other hand, since β̄
∗
gi = 0 for i ∈ I, we have

max
∆∈Ū

∥y − (X̄+∆)β̄
∗∥2 =max

∆∈Û
∥y − (X+∆)β̄

∗∥2

=max
∆∈U

∥y − (X+∆)β̄
∗∥2,

(3.34)

then for an arbitrary β, the following inequality holds

max
∆∈U

∥y − (X+∆)β̄
∗∥2 ≤ max

∆∈U
∥y − (X+∆)β∥2,

which implies that β̄
∗ is the optimal solution of the overlapping group Lasso. Hence we

establish the theorem.

Theorem 3.5 gives a geometric interpretation of the sparsity properties of the overlapping

group Lasso based on its robustness. Indeed, it shows that a set of groups of features all
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receive zero weight if there exists an admissible perturbation of each group which makes their

features orthogonal to the other ones. As a special case, if the groups are non-overlapping

(i.e., gi∩ gj = ∅ for i ̸= j), we have the following theorem that shows the sparsity properties

of the non-overlapping group Lasso.

Corollary 3.11. If there exists I ⊂ [t] such that for an orthonormal base V of span({Xgj , j ̸∈

I} ∪ {y}), we have ∥VV⊤Xgi∥2 ≤ c for i ∈ I, then any optimal solution β∗ of the non-

overlapping group Lasso 3.8 satisfies that β∗
gi = 0 for i ∈ I.

3.5 Consistency

In this section, we investigate the statistical properties of the regularized linear regression

formulation (3.5), and show that it is asymptotically consistent by using the robust prop-

erties derived from its equivalence with the robust linear regression (3.1). The proofs of

our results largely follow the same framework proposed in [XCM10]. The main idea of the

proofs is as follows: We show that the robust optimization formulation (3.1) can be seen to

be the maximum expected error with respect to a class of probability measures. This class

includes a kernel density estimator, and using this, we can prove that the regularized linear

regression is consistent. However, because the uncertainty set we consider is more compli-

cated than the one investigated in [XCM10] (which corresponds to the standard Lasso), the

construction of the class of probability measures is more involved.

Using the same notation, we define Ḡi = {g ∈ Gi|cg ̸= 0} and assume that
∪t

i=1 Ḡi = [m],

i.e., each feature is contained in at least one group to ensure that all features are regularized.

We restrict our discussion to the case that Wi = I for i ∈ [t] and cg for each group g equals

either
√
ncn (n is the number of the samples) or 0, and establish the statistical consistency

of the regularized linear regression (3.5) from a distributional robustness argument. Let P

be a probability measure with bounded support that generates i.i.d. samples (bi, r
⊤
i ), and

has a density f(·). Denote the set of the first n samples by Sn and define

β(cn, Sn) = argmin
β


√√√√ 1

n

n∑
i=1

(bi − r⊤i β)
2 +

t∑
i=1

max
∀g∈Ḡi,∥α

(i)
g ∥2≤cn

α(i)⊤β

 ,
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β(P ) = argmin
β

{√∫
b,r

(bi − r⊤i β)
2dP (b, r)

}
.

Thus, β(cn, Sn) is the solution to the regularized linear regression (3.5) with the tradeoff

parameter set to
√
ncn, and β(P ) is the “true" optimal solution. We have the following

consistency results.

Theorem 3.6. Let {cn} be such that cn ↓ 0 and limn→∞ n(cn)
m+1 = ∞. Suppose there

exists a constant H such that ∥β(cn, Sn)∥2 ≤ H almost surely. Then

lim
n→∞

√∫
b,r

(bi − r⊤i β(cn, Sn))
2dP (b, r) =

√∫
b,r

(bi − r⊤i β(P ))
2dP (b, r),

almost surely.

Here is the sketch of the proof. We first show that the equivalent robust regression (3.1)

over the training data is equal to the worst-case expected generalization error among a set

of distributions. Then, we show that such set of distributions includes a kernel density

estimator for the true (unknown) distribution of the samples. Finally, using the fact that

the kernel density estimator converges to the true density function almost surely when cn ↓ 0

and limn→∞ n(cn)
m+1 = ∞, we can prove the consistency.

In the first step of the above proof, the set of distributions is the union of classes of distri-

butions corresponding to disturbance in hyper-rectangle Borel sets Z1, · · · , Zn centered at

(bi, r
⊤
i ) with lengths depending on cn and the constraints on the uncertainty set ∆. Since

in [XCM10], only the constraint that the norm of each column of ∆ is bounded is consid-

ered, such Borel sets can be easily constructed for the standard Lasso. In contrast, in this

chapter, we consider the case where ∆ =
∑t

i=1∆
(i) and the constraints are imposed on

feature groups ∆
(i)
g for g ∈ Gi. Since two groups gi and gj may have overlapping elements,

this case is much more general than [XCM10] and the construction of the Borel sets is more

difficult. Yet, we can still show that such Borel sets can be constructed, and the kernel

density estimator is included in the set of distributions formed by the constructed Borel

sets.

Indeed, the assumption that ∥β(cn, Sn)∥2 ≤ H in Theorem 3.6 can be removed, and the

consistency result still holds. Notice that Theorem 3.6 implies that standard Lasso, group
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Lasso and sparse group Lasso are all asymptotically consistent. Follow the same road map

but with more involved analysis, one can show that that fused Lasso is also asymptotically

consistent.

Proof of consistency

Recall that the uncertainty set considered in this chapter is

U = {∆(1)W1 + · · ·+∆(t)Wt | ∀i, ∀g ∈ Gi, ∥∆(i)
g ∥2 ≤ cg} (3.35)

where Gi is the set of the groups of ∆(i) and cg gives the bound of ∆(i)
g for group g. We

denote Ḡi and Ḡc
i as the set {g ∈ Gi|cg ̸= 0} and Gi − Ḡi, respectively. In this theorem, we

restrict our discussion to the case that Wi = I for i = 1, · · · , t and the bound cg of ∆(i)
g for

each group g equals
√
ncn or 0, so the uncertainty set can be rewritten as

U = {∆(1) + · · ·+∆(t) | ∀i, ∀g ∈ Ḡi, ∥∆(i)
g ∥2 ≤

√
ncn} (3.36)

Note that the constraint ∥∆∥2 ≤
√
ncn can be reformulated as the union of several element-

wise constraints. Denote D = {D|
∑

i

∑
j D

2
ij = nc2n, Dij ≥ 0} (we call an element D ∈ D

decomposition), then we have

{∆ | ∥∆∥2 ≤
√
ncn} =

∪
D∈D

{∆ | ∀i, j, |∆ij | ≤ Dij}.

Similarly, the uncertainty set {∆ | ∥∆g∥2 ≤
√
ncn} is equivalent to

∪
D∈Dg

{∆ | ∀i,∀j ∈ g, |∆ij | ≤ Dij},

where Dg = {D|
∑

i

∑
j∈gD

2
ij = nc2n, Dij ≥ 0}. After the constraints of the uncertainty sets

are decomposed into element-wise constraints, the set {X+∆(1) + · · ·+∆(t)} can also be

represented by an element-wise way. The notation is a little complicated so we first consider

three simple cases:
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• One uncertainty set ∆ such that ∥∆∥2 ≤ c: for fixed D ∈ D, we have {Xij +∆ij} =

[Xij −Dij , Xij +Dij ].

• Two uncertainty sets ∆(1) and ∆(2) such that ∥∆(1)∥2 ≤ c and ∥∆(2)∥2 ≤ c: for fixed

D(1) ∈ D and D(2) ∈ D, we have {Xij+∆
(1)
ij +∆

(2)
ij } = [Xij−D(1)

ij −D(2)
ij , Xij+D

(1)
ij +

D
(2)
ij ].

• One uncertainty set ∆ and two overlapping groups p and q such that ∥∆p∥2 ≤ c and

∥∆q∥2 ≤ c: for fixed P ∈ Dp and Q ∈ Dq, we have

{Xij +∆ij} =



[Xij − Pij , Xij + Pij ] j ∈ p, j ̸∈ q

[Xij −Qij , Xij +Qij ] j ̸∈ p, j ∈ q

[Xij −min{Pij , Qij}, Xij +min{Pij , Qij}] j ∈ p, j ∈ q

Thus, if the decomposition D ∈ Dg for each ∆
(i)
g is fixed, we have {Xij + ∆

(1)
ij + · · · +

∆
(t)
ij } = [Xij − γij , Xij + γij ] where γij is determined by the decomposition Ds. Since the

number of the elements of ∆
(i)
g is less than or equal to mn (m is the feature dimension

and n is the number of samples), there exists a decomposition D for each ∆
(i)
g such that

[Xij − cn√
m
, Xij +

cn√
m
] ⊆ [Xij − γij , Xij + γij ]. We now prove the theorem.

Proposition 3.1. [XCM10] Given a function h : Rm+1 7→ R and Borel sets Z1, · · · , Zn ⊆

Rm+1, let

Pn = {µ ∈ P | ∀S ⊆ {1, · · · , n} : µ(
∪
i∈S

Zi) ≥ |S|/n}.

The following holds

1

n

n∑
i=1

sup
(bi,ri)∈Zi

h(bi, ri) = sup
µ∈Pn

∫
Rm+1

h(bi, ri)dµ(bi, ri).

Step 1: Using the notation above, we first give the following corollary:
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Corollary 3.12. Given y ∈ Rn, X ∈ Rn×m, the following equation holds for any β ∈ Rm,

∥y−Xβ∥2+
√
n

m
cn+

t∑
i=1

max
∀g∈Ḡi,∥α

(i)
g ∥2≤

√
ncn

α(i)⊤β = sup
µ∈P̂(n)

√
n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′)

(3.37)

Here,

P̂(n) =
∪

S={D(i)
g }|D(i)

g ∈Dg ,∀i,g∈Ḡi

Pn(X,S,y, cn)

Pn(X,S,y, cn) = {µ ∈ P | Zi = [yi −
cn√
m
, yi +

cn√
m
]×

m∏
j=1

[Xij − γij , Xij + γij ];

∀S ⊆ {1, · · · , n} : µ(
∪
i∈S

Zi) ≥ |S|/n},

where γij depends on the “decomposition” set S.

Proof. The right hand side of Equation (3.37) is equal to

sup
S={D(i)

g }|∀i,g∈Ḡi,D
(i)
g ∈Dg

{
sup

µ∈Pn(X,S,y,cn)

√
n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′)

}
.

From Theorem 3.2, we know that the left hand side is equal to

sup
∀i,g∈Gi,∥δy∥2≤

√
n
m
cn,∥∆(i)

g ∥2≤
√
ncn

∥y + δy − (X+∆)β∥2

= sup
∀i,g∈Gi,D

(i)
g ∈Dg

 sup
∥δy∥22≤

n
m
c2n,|∆

(i)
g |≤D

(i)
g

∥y + δy − (X+∆)β∥2


= sup

∀i,g∈Gi,D
(i)
g ∈Dg

√√√√ n∑
i=1

sup
(bi,ri)∈[yi−cn/

√
m,yi+cn/

√
m]×

∏m
j=1[Xij−γij ,Xij+γij ]

(bi − r⊤i β).

Furthermore, applying Proposition 3.1 yields

√√√√ n∑
i=1

sup
(bi,ri)∈[yi−cn/

√
m,yi+cn/

√
m]×

∏m
j=1[Xij−γij ,Xij+γij ]

(bi − r⊤i β)

=

√
sup

µ∈P(X,S,y,cn)
n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′)

= sup
µ∈P(X,S,y,cn)

√
n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′)
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which proves the corollary.

Step 2: As [XCM10], we consider the following kernel estimator given samples (bi, ri)
n
i=1,

hn(b, r) = (ncm+1)−1
n∑

i=1

K(
b− bi, r− ri

c
)

where K(x) = I[−1,1]m+1(x)/2m+1, and c =
cn√
m
.

(3.38)

Observe that the estimated distribution above belongs to the set of distributions

Pn(X,S,y, cn) = {µ ∈ P | Zi = [yi −
cn√
m
, yi +

cn√
m
]×

m∏
j=1

[Xij − γij , Xij + γij ];

∀S ⊆ {1, · · · , n} : µ(
∪
i∈S

Zi) ≥ |S|/n}

and hence belongs to P̂(n) =
∪

S={D(i)
g }|D(i)

g ∈Dg ,∀i,g∈Ḡi
Pn(X,S,y, cn).

Step 3: Combining the last two steps, and using the fact that
∫
b,r |hn(b, r)− h(b, r)|d(b, r)

goes to zero almost surely when c ↓ 0 and ncm+1 ↑ ∞ or equivalently cn ↓ 0 and ncm+1
n ↑ ∞.

Now we prove consistency of robust regression.

Proof. Let f(·) be the true probability density function of the samples, and µ̂n be the

estimated distribution using Equation (3.38) given Sn and cn, and denote its density function

as fn(·). The condition that ∥β(cn, Sn)∥2 ≤ H almost surely and P has a bounded support

implies that there exists a universal constant C such that

max
b,r

(b− r⊤β(cn, Sn))
2 ≤ C

almost surely.
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By Corollary 3.12 and µ̂n ∈ P̂ (n), we have

√∫
b,r
(b− r⊤β(cn, Sn))2dµ̂n(b, r)

≤ sup
µ∈P̂ (n)

√∫
b,r
(b− r⊤β(cn, Sn))2dµn(b, r)

=

√
n

n

√√√√ n∑
i=1

(bi − r⊤i β(cn, Sn))
2 +

t∑
i=1

max
∀g∈Ḡi,∥α

(i)
g ∥2≤cn

α(i)⊤β +
1√
m
cn

≤
√
n

n

√√√√ n∑
i=1

(bi − r⊤i β(P ))
2 +

t∑
i=1

max
∀g∈Ḡi,∥α

(i)
g ∥2≤cn

α(i)⊤β +
1√
m
cn

Notice that,
∑t

i=1max∀g∈Ḡi,∥α
(i)
g ∥2≤cn

α(i)⊤β+ 1√
m
cn converges to 0 as cn ↓ 0 almost surely,

so the right-hand side converges to
√∫

b,r(b− r⊤β(P ))2dP (b, r) as n ↑ ∞ and cn ↓ 0 almost

surely. Furthermore, we have

∫
b,r
(b− r⊤β(cn, Sn))

2dP (b, r)

≤
∫
b,r
(b− r⊤β(cn, Sn))

2dµ̂n(b, r) + max
b,r

(b− r⊤β(cn, Sn))
2 ·
∫
b,r

|fn(b, r)− f(b, r)|d(b, r)

≤
∫
b,r
(b− r⊤β(cn, Sn))

2dµ̂n(b, r) + C

∫
b,r

|fn(b, r)− f(b, r)|d(b, r),

where the last inequality follows from the definition of C. Notice that
∫
b,r |fn(b, r) −

f(b, r)|d(b, r) goes to zero almost surely when cn ↓ 0 and ncm+1
n ↑ ∞. Hence the theo-

rem follows.

As mentioned above, the assumption that ∥β(cn, Sn)∥2 ≤ H in Theorem 7 can be removed,

then we have

Theorem 3.7. Let {cn} converge to zero sufficiently slowly. Then

lim
n→∞

√∫
b,r

(bi − r⊤i β(cn, Sn))
2dP (b, r) =

√∫
b,r

(bi − r⊤i β(P ))
2dP (b, r)

almost surely.

To prove this theorem, we establish the following lemma first.

Lemma 3.2. Partition the support of P as V1, · · · , VT such that the l∞ radius of each set
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is less than cn√
m

. If a distribution µ satisfies

µ(Vt) = #((bi, r
⊤
i ) ∈ Vt)/n; t = 1, · · · , T, (3.39)

then µ ∈ P̂ (n).

Proof. Let Zi = [yi − cn√
m
, yi +

cn√
m
]×
∏m

j=1[Xij − cn√
m
, Xij +

cn√
m
], recall that Xij is the jth

element of ri. Notice that the l∞ radius of Vt is less than cn√
m

, we have

(bi, r
⊤
i ) ∈ Vt ⇒ Vt ⊆ Zi.

Therefore, for any S ⊆ {1, · · · , n}, the following holds

µ(
∪
i∈S

Zi) ≥ µ(
∪
Vt|∃i ∈ S : (bi, r

⊤
i ) ∈ Vt)

=
∑

t|∃i∈S:(bi,r⊤i )∈Vt

µ(Vt) =
∑

t|∃i∈S:(bi,r⊤i )∈Vt

#((bi, r
⊤
i ) ∈ Vt)/n ≥ |S|/n.

Hence µ ∈ Pn(X,S,y, cn) which implies µ ∈ P̂ (n).

Partition the support of P into T subsets such that the l∞ radius of each set is less than

cn√
m

. Denote P̃(n) as the set of probability measures satisfying Equation (3.39). Hence

P̃(n) ⊆ P̂(n) by Lemma 1. Further notice that there exists a universal constant K such

that ∥β(cn, Sn)∥2 ≤ K/cn due to the fact that the square loss of the solution β = 0 is

bounded by a constant only depends on the support of P . Thus, there exists a constant

C such that maxb,r (b− r⊤β(cn, Sn))
2 ≤ C/c2n. Follow a similar argument as the proof of

Theorem 6, we have

sup
µ∈P̃(n)

√∫
b,r
(b− r⊤β(cn, Sn))2dµn(b, r)

≤
√
n

n

√√√√ n∑
i=1

(bi − r⊤i β(P ))
2 +

t∑
i=1

max
∀g∈Ḡi,∥α

(i)
g ∥2≤cn

α(i)⊤β +
1√
m
cn

(3.40)
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and∫
b,r
(b− r⊤β(cn, Sn))

2dP (b, r)

≤ inf
µn∈P̃(n)

{∫
b,r
(b− r⊤β(cn, Sn))

2dµn(b, r) + max
b,r

(b− r⊤β(cn, Sn))
2

∫
b,r

|fµn(b, r)− f(b, r)|d(b, r)
}

≤ sup
µn∈P̃(n)

∫
b,r
(b− r⊤β(cn, Sn))

2dµn(b, r) + 2C/c2n inf
µn∈P̃(n)

∫
b,r

|fµn(b, r)− f(b, r)|d(b, r),

here fµ stands for the density function of a measure µ. Notice that P̃(n) is the set of

distributions satisfying Equation (3.39), hence infµn∈P̃(n)

∫
b,r |fµn(b, r) − f(b, r)|d(b, r) is

upper-bounded by
∑T

t=1 |P (Vt)−#((bi, r
⊤
i ) ∈ Vt)|/n, which goes to zero as n increases for

any fixed cn. Therefore,

2C/c2n inf
µn∈P̃(n)

∫
b,r

|fµn(b, r)− f(b, r)|d(b, r) → 0,

if cn ↓ 0 sufficiently slow. Combining this with Inequality (3.40) proves the theorem.

3.6 Chapter Summary

In this chapter, we investigated a unified approach to explain the success of algorithms that

encourage various sparse-like structures based on the concept of robustness. In particular,

we considered robust linear regression where the perturbations are constrained with respect

to each group of features, and show that this formulation is equivalent to a regularized

linear regression framework that contains several widely used Lasso-like algorithms such

as fused Lasso. This hence provides a robustness based interpretation of such algorithms.

Moreover, we established sparsity property and statistical consistency of group Lasso from

this robustness perspective. The main thrust of this work is to extend a classical result that

relates standard Lasso with robust linear regression [XCM10] to learning problems with

more general sparse-like structures. Achieving this makes it possible to understand these

problems by analyzing the respective uncertainty sets, and will eventually enable us to

design new algorithms to specific learning tasks that has superior performance than existing

approaches.



Chapter 4
A Distributionally Robust Optimization

Interpretation For Regularized SVMs

Distributionally robust optimization (DRO) is an effective framework for decision-making

under uncertainty. It is topical in operation research but has not attracted much attention

in the machine learning community yet. In this chapter, we present a unified framework

using DRO for designing robust classification methods that generalize well to test data by

handling uncertainties in training data. Indeed, we show that previous robust classification

approaches tackling data uncertainty using robust optimization fits in the DRO framework.

Based on this framework, we provide a DRO interpretation for regularized SVMs and pro-

pose new novel robust classification algorithms which are robust to feature corruption in

test data.

4.1 Introduction

This chapter considers classification problems under uncertainties. The presence of un-

certainty and noise in real world classification tasks is inevitable due to sampling errors,

measurement errors, etc. Take face recognition as an example: face images submitted

to a face recognition system may contain salt and pepper noise or illumination changes

due to hardware failures or external disturbances [Bov05]. Similarly, in the optical char-

acter recognition problem, characters of the same label may have small variations due

to translations, rotations or slanted versions [LJB+95]. For standard classification algo-

rithms such as the Support Vector Machine (SVM) [CV95], the generalization performance

92
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is guaranteed when training and testing samples (noisy or not) are drawn i.i.d., but not

when training samples contain large outliers or testing samples are corrupted. Therefore,

many studies have proposed classification algorithms aiming to handle uncertainties, and

showed that better performance can be achieved than the classifiers that ignore the uncer-

tainty [vdMCTW13, SBS06, BTBBN11, BGJ+04].

These works typically take one of two approaches. The first approach treats the problem

from the robust optimization perspective. [XCM09] established a strong connection between

robust optimization and regularized SVMs and provided a robustness interpretation for

the success of regularized SVMs. [GR06] applied the robust optimization formulation to

construct classifiers that are robust to deletion of features in test data. The second approach

tackles data uncertainty using chance constraints. [SBS06] considered two cases: 1) the first

and second moments of the uncertainty are known, and 2) the uncertainty follows a Gaussian

distribution. They showed that SVMs with chance constraints under these two cases can be

converted into a second order cone program. Beyond these two cases, [BTBBN11] considered

some more sophisticated and hence less conservative chance constraint formulations and

provided a convex second order cone program relaxation.

Recently, a new approach for handling uncertainty in test data is proposed in [vdMCTW13].

To develop predictors that generalize well to test data, the authors trained a classifier using

infinitely many training data obtained from corrupting the existing finite training examples

with a fixed noise distribution. Based on this idea, the robust predictors can be solved

by minimizing the expected value of the loss function under the corruption distribution.

However, there are two drawbacks of this approach: 1) the precise distribution of the noise

is usually unknown; 2) one of the widely used cost functions for classification – hinge loss – is

not considered.

A natural question hence emerges: does there exist a “universal” formulation that can unify

all these approaches, overcome their shortcomings, and inspire new algorithms? In this

chapter, we show that the distributionally robust optimization (DRO) formulation provides

a positive answer. There are three advantages of applying the DRO formulation to handle

uncertainties: 1) The robust optimization formulation [XCM09] and the “expected value”
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formulation [vdMCTW13] turn to be two special cases of the DRO formulation by special-

izing one of the DRO’s “key points” – ambiguity set of distributions of uncertainties; 2) the

hinge loss can be applied in the DRO formulation, which leads to a DRO interpretation

of SVMs; 3) it encourages new robust classification algorithms by selecting different loss

functions and ambiguity sets. Our robust classifiers are derived from this DRO perspec-

tive, i.e., via directly requesting robustness in the formulation, rather than designing new

regularization terms to handle noises as in [HZH11], [MT13] and many others.

In particular, under the unifying umbrella of distributionally robust optimization, we make

the following contributions. We first show that the DRO formulation with the hinge loss and

the mean absolute deviation (MAD) ambiguity set is equivalent to the regularized SVM. We

then propose a novel learning algorithm which is robust to corruption of features. Finally,

we study robust classification via distributionally robust chance constraints.

Notation. We use lower-case boldface letters to denote column vectors and upper-case

boldface letters to denote matrices and use ◦ to denote the element-wise multiplication

operation. For simplicity, we denote the set {1, · · · , N} by [N ] and use ∥ · ∥p to denote the

ℓp-norm, and ∥ · ∥∗p to denote its dual norm. The identity matrix is denoted by I and the

indicator function is denoted by 1[·]. Besides, [x]+ ≜ max{x, 0}. x̃i ∼ P means random

variable x̃i follows distribution P.

4.2 Preliminaries of DRO

Distributionally robust optimization is a framework for decision-making under uncertainty

where the uncertain data is governed by an unknown probability distribution. DRO has been

extensively studied in the operation research community for many years [DY10, WKS13,

Sca58, GS10]. Mathematically, DRO considers the minimization problem

min
x

sup
P∈D

Ez̃∼P[v(x, z̃)], (4.1)

where x is the decision vector, v(·) is the cost function and z̃ is the random vector with

an unknown distribution P which is known to belong to a set of probability distributions
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D, termed “ambiguity set”. This formulation means that one wants to minimize the worst

case expected cost over the choice of a distribution in the ambiguity set. This formulation

overcomes two shortcomings of the standard stochastic programming (SP) approach for

handling uncertainties: 1) SP can often be computationally difficult, and 2) the estimation

of the true distribution is usually imprecise due to limited information about the stochastic

variables.

The general setup we consider is as follows: we are given N training samples {(xi, yi)}Ni=1

where xi ∈ Rn and yi ∈ {−1, 1}, and the loss function is L(x, y;θ) where θ is the classifier

to learn. The training samples x are noisy, hence we consider the following distributionally

robust optimization formulation for the classification problem:

min
θ

N∑
i=1

sup
P∈D(xi)

Ex̃i∼PL(x̃i, yi;θ) (4.2)

where D(xi) is the ambiguity set of probability distributions of the ith training sample and

x̃i is a random variable following distribution P ∈ D(xi). Formulation (4.2) hence minimizes

the worst case expected loss over the choice of possible distributions of the training samples.

By specifying different ambiguity sets D and different loss functions, we can obtain different

classification algorithms. Two widely used ambiguity sets in literature are the following:

D =

{
P : P[z̃ ∈ S] = 1, (E[z̃]− µ0)

⊤Σ−1
0 (E[z̃]− µ0) ≤ γ1,E[(z̃− µ0)

⊤(z̃− µ0)] ≤ γ2Σ0

}
,

D = {P : EP[|z̃−m|] ≤ f for m, f ∈ Rn} . We focus on the MAD ambiguity set in this chap-

ter due to its computational efficiency. As we will see below, the constraint

sup
P∈D(xi)

Ex̃i∼PL(x̃i, yi;θ) ≤ ξi

can be reformulated as linear constraints when L(x, y;θ) is the hinge loss and D is MAD.

In contrast, if D is the first type of ambiguity set, this constraint can be reformulated as

semi-definite constraints. While SDP formulation can be solved in polynomial time, it is not

suitable for machine learning problems due to poor scalability. Recall that the distribution

of the noise z̃i belongs to D. We consider two types of noise: “additive noise” where the true
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sample x̃i = xi+ z̃i, and “multiplicative noise” where x̃i = xi ◦ z̃i. As we study classification

problems, we mainly consider the hinge loss.

Before concluding this section, we briefly explain the intuitive reason why DRO works for

machine learning problems. Recall that in supervised learning, the ultimate goal is to min-

imize expected error w.r.t. the generative distribution, whereas we only have the empirical

distribution of the training samples, which is indeed an approximation of the generative dis-

tribution. Thus, solving DRO accounts for the difference between the distribution we want

to solve, and the distribution we have access to, and hence intuitively controls overfitting.

And thus it is not surprising that, as we show below, the standard regularization schemes

to control overfitting often have equivalent DRO re-formulations.

4.3 DRO Interpretation for Regularized SVMs

In this section, we consider a DRO formulation with hinge loss function and “additive

noise”, and show that this formulation is equivalent to the standard regularized SVM. We

remark that [XCM09] has shown that a robust optimization formulation is equivalent to the

regularized SVM when the training samples are non-separable. While this result coincides

with ours at a high level, our result holds regardless of whether the samples are separable

or not.

Theorem 4.1. The distributionally robust formulation for SVM

min
w,b

1

N

N∑
i=1

sup
P∈D

Ez̃∼P[1− yi(w
⊤(xi + z̃) + b)]+ (4.3)

is equivalent to the following regularized SVM

min
w,b

1

N

N∑
i=1

[1− yi(w
⊤(xi +m) + b)]+ + f⊤|w|, (4.4)

when the ambiguity set D is the mean absolute deviation D = {P : EP[|z̃−m|] ≤ f} . Fur-
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thermore, if D = {P : EP[|z̃−m|] ≤ f and f ∈ F} , then (4.3) is equivalent to

min
w,b

1

N

N∑
i=1

[1− yi(w
⊤(xi +m) + b)]+ + sup

f∈F
f⊤|w|, (4.5)

where |w| stands for taking the absolute value of each element in w.

Proof. See Section 4.7.

This theorem provides a distributional robustness based interpretation for regularized SVMs:

suppose that the true sample xi + z̃ follows an unknown distribution belonging to a known

ambiguity set, then regularization of SVMs is indeed a direct result of minimizing the worst-

case expected hinge loss error. Moreover, a large value of fi means the ith feature is heavily

corrupted and hence not reliable, which implies that the corresponding weight wi should

be set to a small value. This is consistent with the regularized formulation (4.4), where wi

tends to be small if fi is very large. Various different regularized classification algorithms,

including the standard SVM, can be obtained by selecting a different ambiguity set D.

Corollary 4.1. The distributionally robust formulation (4.3) is equivalent to

min
w,b

1

N

N∑
i=1

[1− yi(w
⊤xi + b)]+ + α∥w∥p + β∥w∥q,

when D = {P ∈ P0 : EP[|z̃|] ≤ f , f ∈ F} , where F = {f : f = f1 + f2, ∥f1∥∗p ≤ α, ∥f2∥∗q ≤ β}.

Proof. From Theorem 4.1, the regularization term in (4.5) becomes

sup
f :f=f1+f2,∥f1∥∗p≤α,∥f2∥∗q≤β

f⊤|w| = sup
f1,f2:∥f1∥∗p≤α,∥f2∥∗q≤β

f⊤1 |w|+ f⊤2 |w| = α∥w∥p + β∥w∥q.

Hence we obtain this corollary.

4.4 Robustness to Corruption of Features

The previous section considers the “additive noise”. We now turn to discuss the “multiplica-

tive noise”, and use it to develop learning algorithms robust to corruption of features. Our
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approach is inspired by [GR06], where the authors proposed a robust-optimization based ap-

proach to develop classifiers that are robust to deletion of features in test data. In contrast,

we generalize this approach to incorporate distribution information using the DRO frame-

work. There are two advantages to incorporate distribution information: First, the features

in test data may not be completely deleted. Instead, they may be magnified or shrunk

due to measurement errors, for example due to changes of illumination in computer vision

applications. Second, even if the features are completely deleted, we may still obtain certain

distribution information. For example, in the “pepper noise” model considered in [GR06],

each feature is deleted with probability K/n. Thus, it is clear that the expected value of

this multiplicative noise is K/n, a piece of distribution information that one can make use

of. More precisely, we consider the following DRO formulation to develop classifiers that

are robust to multiplicative disturbances of features in test data:

min
w,b

N∑
i=1

sup
P∈D

Ez̃∼P[1− yi(w
⊤(xi ◦ z̃) + b)]+ +

1

2C
∥w∥22. (4.6)

Here D is ambiguity set of probability distributions of disturbance. Observe that (4.6)

reduces to the robust optimization approach [GR06] when the ambiguity set D is {P :

P(Z) = 1} where Z ≜ {z|z ∈ {0, 1}n,1⊤z = n − K} and K is the maximum number of

deleted features. We now consider a more general ambiguity set D where the support and

expectation of a certain linear transformation of the multiplicative noise are bounded.

Theorem 4.2. If the ambiguity set D = {P : EP[Az̃] ≥ v and P[0 ≤ z̃ ≤ t] = 1} where

A ∈ Rp×n, v ∈ Rp and t ≥ 0, then the distributionally robust optimization problem (4.6) is

equivalent to

min
w,b,λi,φi,βi

N∑
i=1

max{1− yi((w ◦ t)⊤xi + b) + t⊤λi, t
⊤φi}+

N∑
i=1

(At− v)⊤βi +
1

2C
∥w∥22

s.t. λi +A⊤βi ≥ yi(w ◦ xi),φi +A⊤βi ≥ 0, ∀i ∈ [N ]

λi ≥ 0,φi ≥ 0,βi ≥ 0, ∀i ∈ [N ]

Proof. See Section 4.7.

Thus, we obtain a more general scheme to handle multiplicative noise. Based on the appli-
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cations, we can select proper A, v and t to develop classifiers that generalize well to test

data. For instance, the next corollary considers the ambiguity set where the expectation of

the multiplicative noise for each feature is bounded below by 1 −K/n. Observe that this

set contains the “pepper” noise model [GR06].

Corollary 4.2. If the ambiguity set D = {P : EP[z̃] ≥ (1 − K
n )1 and P[0 ≤ z̃ ≤ 1] = 1},

then the distributionally robust optimization problem (4.6) is equivalent to

min
w,b,λi,βi

N∑
i=1

max{1− yi(w
⊤xi + b) + ∥λi∥1, 0}+

N∑
i=1

K

n
∥βi∥1 +

1

2C
∥w∥22

s.t. λi + βi ≥ yi(w ◦ xi),λi ≥ 0,βi ≥ 0, ∀i ∈ [N ].

(4.7)

Furthermore, its dual problem is a quadratic programming problem

min
α,ri

C

2
∥

N∑
i=1

yixi ◦ (αi1− ri)∥22 −
N∑
i=1

αi

s.t. 0 ≤ α ≤ 1,

N∑
i=1

yiαi = 0,

ri ≤
K

n
1, 0 ≤ ri ≤ αi1, ∀i ∈ [N ].

(4.8)

Suppose that (α∗, r∗i ) is the optimal solution to the dual problem, then the primal optimal

solution of w is w∗ = C
∑N

i=1 yixi ◦ (α∗
i 1− r∗i ).

Proof. See Section 4.7.

4.5 Robust Classification via Chance Constraints

Besides robust optimization and distributionally robust optimization, chance constraint is

another classical approach for handling uncertainty, which requires that a stochastic con-

straint is satisfied with a certain probability. A straight-forward formulation of chance
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constrained SVM is as follows:

min
w,b,ξ

1

2
∥w∥22 + C

N∑
i=1

ξi

s.t. P[yi(w⊤x̃i + b) ≤ 1− ξi] ≤ κi, ∀i ∈ [N ]

ξi ≥ 0, ∀i ∈ [N ],

(4.9)

where x̃i is a random variable whose distribution is known. Yet, chance constrained opti-

mization problems are notoriously difficult to solve, also the distribution of the uncertainty

is often not exactly known. A natural way to extend chance constraints and avoid its

intractability is to replace the chance constraint with distributionally robust chance con-

straint:

sup
P∈D(xi)

P[yi(w⊤x̃i + b) ≤ 1− ξi] ≤ κi, ∀i ∈ [N ]. (4.10)

In words, we require that the worst-case probability (under a class of distributions) of

the constraint being satisfied is above a given threshold. [SBS06] studied this formulation

where the mean and variance of x̃i are known and show that it can be reformulated as a

SOCP. However, their result can not extend to the case where other useful information such

as the support of x̃i is available. In this section, we propose a DRO-based conservative

approximation for the constraint (4.10).

Lemma 4.1. Suppose that f : Rm × Rn → R and D is the ambiguity set of distributions,

then the chance constraint

sup
P∈D

P[f(x, z̃) ≥ 0] ≤ α (4.11)

can be conservatively approximated by


− tα+ γ ≤ 0

sup
P∈D

EP[[f(x, z̃) + t]+] ≤ γ,
(4.12)

where t ∈ R, γ ∈ R and x ∈ Rn are decision variables. Here, conservative approximation

means that any solution satisfies (4.12) also satisfies (4.11).
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Proof. For any t > 0, we have

sup
P∈D

P[f(x, z̃) ≥ 0] = sup
P∈D

P[tf(x, z̃) ≥ 0]

= sup
P∈D

EP[1(tf(x, z̃) ≥ 0)] ≤ sup
P∈D

EP[[1 + tf(x, z̃)]+].

Thus, inft>0{supP∈D EP[[1 + tf(x, z̃)]+] − α} ≤ 0 implies Inequality (4.11). By changing t

to 1/t, we have the following inequality

inf
t>0

{−tα+ sup
P∈D

EP[[t+ f(x, z̃)]+]} ≤ 0.

Note that since 0 ≤ α ≤ 1, −tα+ supP∈D EP[[t+ f(x, z̃)]+] is always greater than or equal

to 0 if t ≤ 0, so that the inequality above can be rewritten as

inf
t∈R

{−tα+ sup
P∈D

EP[[t+ f(x, z̃)]+]} ≤ 0.

Therefore, we obtain the constraints (4.12).

Using Lemma 4.1, we have the following theorem which generalizes the results in [SBS06].

Interestingly, this also provides a distributionally robust optimization interpretation of a

certain kind of regularized SVMs.

Theorem 4.3. If 0 < κi ≤ 1 and the ambiguity set D(xi) = {P : EP[|x̃i − xi|] ≤ f and f ∈ F},

then the classification problem (4.9) with constraint (4.10) can be conservatively approxi-

mated by

min
1

2
∥w∥22 + C

N∑
i=1

ξi

s.t. ξi ≥ 1− yi(w
⊤xi + b) +

1

κi
sup
f∈F

f⊤|w|, ∀i ∈ [N ]

ξi ≥ 0, ∀i ∈ [N ].

Proof. See Section 4.7.
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4.6 Experiments

We conducted several experiments using both synthetic and real data sets to evaluate our

classification algorithms. For real datasets (UCI [AN07] and MNIST [LJB+95]), the feature

values are normalized to [−1, 1].

The experiments were conducted on synthetic data, “breast cancer” data from UCI and

“MNIST”, to evaluate our classification algorithm proposed in Section 4.4. The synthetic

data is generated as follows: The training, validation and test data are uniformly drawn

from [−10, 10]n and the labels are assigned according to a logistic regression rule p(y =

1|x) ∝ exp(rw⊤x)/(1 + exp(rw⊤x)) where n = 20, r = 1 and w is a sparse vector whose

element is uniformly drawn from [−1, 1] with probability 25% or 0 otherwise. For synthetic

data, we draw 200 training samples, 400 validation samples, and 2000 test samples. For

UCI datasets, we use 50, 20 and 30 percent of data as training data, validation data and

test data, respectively. For MNIST dataset, we randomly choose 200 and 600 samples

from the training samples as the training data and validation data. Besides, all the test

data are corrupted by some multiplicative noise (e.g., illumination changes) whose mean

is 1 − α and support is [0, 1], in particular, the noise is uniformly drawn from [0, 1 − α]

with probability α, or uniformly drawn from [1 − α, 1] otherwise. Similar as [WKS13],

the validation data is also corrupted by the same noise and used to determine the best

parameters. The parameters of the algorithms are selected by cross-validation (parameter

K in FDROP and DROFD is chosen from 1 to n). We repeated the experiments 20 times

and computed the average classification errors. Figure 4.1(a) shows the simulation results
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Figure 4.1: The classification errors of SVM, MCF QUA, MCF LOG, FDROP and
DROFD: the x-axis is the corruption level α = K/n. (a) Simulation results. (b) “Breast
cancer”. (c) “MNIST”
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on synthetic data in which we compare our method (DROFD) with standard SVM, FDROP

[GR06] and MCF algorithms with quadratic loss and logistic loss [WKS13]. Clearly, our

method outperforms all these methods, which shows that that DROFD is more robust to

disturbance of features. Figure 4.1(b)(c) show the results of real data from which shows

that DROFD has smaller classification error especially when corruption level α is large.

4.7 Proofs of Technical Results

Recall that distributionally robust optimization concerns the following formulation

sup
Q∈P

EQ[v(x, z̃)] ≤ w, (4.13)

where x is the decision vector, and z̃ is the random vector with distribution Q that belongs

to an ambiguity set P. Although this constraint is intractable in general, it may become

computationally tractable under specific assumptions about the ambiguity set P and the

constraint function v. For example, [WKS13] consider the following ambiguity set

P =

P ∈ P0(RP ,RQ) :
EP[Az̃+Bũ] = b

P[(z̃, ũ) ∈ Ci] ∈ [pi, pi], ∀i ∈ I

 , (4.14)

where P represents a joint probability distribution of random vector z̃ ∈ RP and some

auxiliary random vector ũ ∈ RQ, and A ∈ RK×P , B ∈ RK×Q, b ∈ RK , I = {1, · · · , I} and

pi, pi ∈ [0, 1]. The confidence sets Ci are defined by

Ci =
{
(z,u) ∈ RP × RQ : Ciz+Diu ⪯Ki ci

}
, (4.15)

where C ∈ RLi×P , D ∈ RLi×Q, ci ∈ RLi and Ki are proper cones.

[WKS13] requires that the ambiguity set P satisfies the following conditions:

(C1) The confidence set CI is bounded and has probability one, that is, pi = pi = 1;

(C2) There is a probability distribution P ∈ P such that P[(z̃, ũ) ∈ Ci] ∈ (pi, pi) whenever
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pi < pi;

(N) For all i, i′ ∈ I and i ̸= i′, we have either Ci ⋐ Ci′ , Ci′ ⋐ Ci or Ci ∩ Ci′ = ∅;

where A ⋐ B means set A is strictly included in set B or A is contained in the interior of

B.

Under these assumptions, they showed the following theorems:

Theorem 4.4. (Theorem 5, [WKS13]) Let f ∈ RP and g : RP → RQ be a function with a

conic representable K-epigraph, and consider the ambiguity set

P ′ =

P ∈ P0(RP ) :
EP[g(z̃)] ⪯K f

P[z̃ ∈ Ci] ∈ [pi, pi], ∀i ∈ I


as well as the lifted ambiguity set

P =


P ∈ P0(RP ,RQ) :

EP[ũ] = f

P[g(z̃) ⪯K ũ] = 1

P[z̃ ∈ Ci] ∈ [pi, pi], ∀i ∈ I


which involves the auxiliary random vector ũ ∈ RQ. We then have that (i) P ′ =

∏
δ̃ P and

(ii) P can be reformulated as an instance of the standardized ambiguity set (4.14).

Theorem 4.5. Assume that the conditions (C1), (C2) and (N) hold and that the constraint

function v(x, z) is convex in z. Then, the distributionally robust constraint (4.13) is satisfied

for the ambiguity set (4.14) if and only if the semi-infinite constraint system

b⊤β +
∑
i∈I

[piκi − piλi] ≤ w,

[Az+Bu]⊤β +
∑

i′∈A(i)

[κi′ − λi′ ] ≥ v(x, z),∀(z,u) ∈ Ci, i ∈ I
(4.16)

is satisfied by some β ∈ RK and κ,λ ∈ RI
+, where A(i) = {i} ∪ {i′ ∈ I : Ci ⋐ Ci′}.
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4.7.1 Proof of Theorem 4.1

Proof. From the lifting theorem (Theorem 4.4), the mean absolute deviation ambiguity set D

can be rewritten as D = {P ∈ P0(Rn,Rn) : EP[|ũ|] = f ,P[(z̃, ũ) ∈ C] = 1} where C = {(z,u) :

|z−m| ≤ u}. Since the hinge loss function is convex in z̃ and the mean absolute deviation

satisfies the conditions (C1), (C2) and (N), then from Theorem 4.5, the optimization problem

(4.3) is equivalent to

min
1

N

N∑
i=1

εi

s.t. f⊤βi + αi ≤ εi, ∀i ∈ [N ]

β⊤
i u+ αi ≥ max{1− yi(w

⊤(xi + z) + b), 0}, ∀(z,u) ∈ C, ∀i ∈ [N ].

For simplicity, let C = (I,−I)⊤, D = (−I,−I)⊤ and c = (m⊤,−m⊤)⊤ where I is the n× n

identity matrix. Then for each i ∈ [N ], the constraints can be rewritten as


f⊤βi + αi ≤ εi

β⊤
i u+ αi ≥ max{1− yi(w

⊤(xi + z) + b), 0}, ∀Cz+Du ≤ c.

or equivalently


f⊤βi + αi ≤ εi

β⊤
i u+ αi ≥ 0, ∀Cz+Du ≤ c

β⊤
i u+ αi ≥ 1− yi(w

⊤(xi + z) + b), ∀Cz+Du ≤ c.

The last two constraints can be reformulated as (for clearness, we ignore the subscript i)


− α ≤ min

z,u
β⊤u s.t. Cz+Du ≤ c

1− y(w⊤x+ b)− α ≤ min
z,u

β⊤u+ yw⊤z s.t. Cz+Du ≤ c.
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From the duality, we have


α ≥ c⊤λ,C⊤λ = 0,β +D⊤λ = 0,λ ≥ 0

1− y(w⊤x+ b)− α ≤ −c⊤v,β +D⊤v = 0, yw +C⊤v = 0,v ≥ 0,

which is equivalent to


α ≥ 0,β ≥ 0

1− y(w⊤x+ b)− α ≤ yw⊤m,β +D⊤v = 0, yw +C⊤v = 0,v ≥ 0,

Combine with the first constraint f⊤β + α ≤ ε, we have



1− y(w⊤(x+m) + b) ≤ ε− f⊤β

β +D⊤v = 0

yw +C⊤v = 0

ε− f⊤β ≥ 0

v ≥ 0

By eliminating β, we have



1− y(w⊤(x+m) + b) ≤ ε+ f⊤D⊤v

yw +C⊤v = 0

ε+ f⊤D⊤v ≥ 0

v ≥ 0

Then let v = (v⊤
1 ,v

⊤
2 )

⊤ and ν = v1 + v2 where v1,v2 ∈ RP , the constraints above can be

rewritten as 

1− y(w⊤(x+m) + b) ≤ ε− f⊤(v1 + v2)

yw = v2 − v1

ε ≥ f⊤(v1 + v2)

v1,v2 ≥ 0
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Since ν + yw = 2v2 ≥ 0 and ν − yw = 2v1 ≥ 0, we have


1− y(w⊤(x+m) + b) ≤ ε− f⊤ν

− ν ≤ w ≤ ν

ε ≥ f⊤ν

which is also equivalent to (since f ≥ 0)


1− y(w⊤(x+m) + b) ≤ ε− f⊤|w|

ε− f⊤|w| ≥ 0.

Therefore, (4.3) is equivalent to the regularized SVM (4.4).

If D = {P ∈ P0(Rn) : P ∈ D(f) and f ∈ F} where D(f) = {P ∈ P0(Rn) : EP[|z̃−m|] ≤ f},

(4.3) is equivalent to

min
w,b

1

N

N∑
i=1

sup
f∈F

sup
P∈D(f)

Ez̃∼Pmax{1− yi(w
⊤(xi + z̃) + b), 0}. (4.17)

From the proof above, we know that (4.17) is equivalent to

min
w,b

1

N

N∑
i=1

sup
f∈F

{max{1− yi(w
⊤(xi +m) + b), 0}+ f⊤|w|}. (4.18)

Hence (4.3) is equivalent to (4.5).

4.7.2 Proof of Theorem 4.2

Theorem 4.6. If the ambiguity set D = {P : EP[Az̃] ≥ v and P[0 ≤ z̃ ≤ t] = 1} where

A ∈ Rp×n, v ∈ Rp and t ≥ 0, then the distributionally robust optimization problem (4.6) is
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equivalent to

min

N∑
i=1

max{1− yi((w ◦ t)⊤xi + b) + t⊤λi, t
⊤φi}+

N∑
i=1

(At− v)⊤βi +
1

2C
∥w∥22

s.t. λi +A⊤βi ≥ yi(w ◦ xi),φi +A⊤βi ≥ 0, ∀i ∈ [N ]

λi ≥ 0,φi ≥ 0,βi ≥ 0, ∀i ∈ [N ]

(4.19)

Furthermore, its dual problem is a quadratic programming problem:

min
C

2
∥

N∑
i=1

yixi ◦ (αit− ri)∥22 −
N∑
i=1

αi

s.t. 0 ≤ α ≤ 1,
N∑
i=1

yiαi = 0,A(ri + ξi) ≤ At− v, ∀i ∈ [N ]

0 ≤ ri ≤ αit, 0 ≤ ξi ≤ (1− αi)t, ∀i ∈ [N ]

(4.20)

Suppose that (αi, ri, ξi) is the optimal solution, then we have w = C
∑N

i=1 yixi ◦ (αit− ri).

Proof. Replace z̃ by t− z̃, then the optimization problem (4.6) can be reformulated as

min
w,b

N∑
i=1

sup
P∈D

Ez̃∼Pmax{1− yi(w
⊤(xi ◦ (t− z̃)) + b), 0}+ 1

2C
∥w∥22, (4.21)

and the ambiguity set D can be rewritten as

D = {P ∈ P0(Rn) : EP[Az̃] ≤ At− v and P[0 ≤ z̃ ≤ t] = 1}.

From the lifting theorem (Theorem 4.4), the ambiguity set D can be rewritten as D =

{P ∈ P0(Rn,Rp) : EP[ũ] = At − v and P [Az̃ ≤ ũ] = 1 and P[0 ≤ z̃ ≤ t] = 1}, which is

equivalent to {P ∈ P0(Rn,Rp) : EP[ũ] = At− v and P[Az̃ ≤ ũ,0 ≤ z̃ ≤ t] = 1}. Since the

constraint function is convex in z̃ and D satisfies the conditions (C1), (C2) and (N), then
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from Theorem 4.5, (4.21) is equivalent to

min

N∑
i=1

εi

s.t. (At− v)⊤βi + αi ≤ εi, ∀i ∈ [N ]

β⊤
i u+ αi ≥ max{1− yi(w

⊤(xi ◦ (t− z)) + b), 0}, ∀Az ≤ u,0 ≤ z ≤ t, ∀i ∈ [N ].

For each i ∈ [N ], the constraints above can be rewritten as (we ignore the subscript i for

clearness)


(At− v)⊤β + α ≤ ε

β⊤u+ α ≥ 0, ∀Az ≤ u,0 ≤ z ≤ t

β⊤u+ α ≥ 1− y((w ◦ x)⊤(t− z) + b), ∀Az ≤ u,0 ≤ z ≤ t.

The last two constraints can be reformulated as
− α ≤ min

z,u
β⊤u s.t. Az ≤ u,0 ≤ z ≤ t

1− y((w ◦ t)⊤x+ b)− α ≤ min
z,u

β⊤u− y((w ◦ x)⊤z) s.t. Az ≤ u,0 ≤ z ≤ t.

From the duality, we have


α− t⊤φ ≥ 0,φ+A⊤β ≥ 0, β ≥ 0,φ ≥ 0

α ≥ 1− y((w ◦ t)⊤x+ b) + t⊤λ,λ+A⊤β ≥ y(w ◦ x),λ ≥ 0,β ≥ 0.

Combine with the first constraint (At− v)⊤β + α ≤ ε, we have



ε ≥ t⊤φ+ (At− v)⊤β

ε ≥ 1− y((w ◦ t)⊤x+ b) + t⊤λ+ (At− v)⊤β

λ+A⊤β ≥ y(w ◦ x)

φ+A⊤β ≥ 0,

λ ≥ 0,φ ≥ 0,β ≥ 0.

Hence (4.6) is equivalent to (4.19).
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The Lagrangian L of the optimization problem (4.19) is as follows:

L =
1

2C
w⊤w +

N∑
i=1

εi +

N∑
i=1

(At− v)⊤βi +

N∑
i=1

αi(1− yi((w ◦ t)⊤xi + b) + t⊤λi − εi)+

N∑
i=1

δi(t
⊤φi − εi) +

N∑
i=1

r⊤i (yi(w ◦ xi)− λi −A⊤βi)−

N∑
i=1

ξ⊤i (φi +A⊤βi)−
N∑
i=1

(v⊤
1iλi + v⊤

2iφi + v⊤
3iβi),

where αi ≥ 0, δi ≥ 0, ri ≥ 0, ξi ≥ 0 and v1i,v2i,v3i ≥ 0. To obtain the minimum of L, ones

can compute the derivatives w.r.t the primal variables

∂L

∂ϵi
=

N∑
i=1

(1− αi − δi) = 0

∂L

∂βi

=

N∑
i=1

(At− v −Ari −Aξi − v3i) = 0

∂L

∂b
=

N∑
i=1

yiαi = 0

∂L

∂λi
=

N∑
i=1

(αit− ri − v1i) = 0

∂L

∂φi

=

N∑
i=1

(δit− ξi − v2i) = 0

∂L

∂w
=

1

C
w −

N∑
i=1

αiyi(t ◦ xi) +
N∑
i=1

yi(ri ◦ xi) = 0.

Since t ≥ 0, δi ≥ 0 and v1i,v2i,v3i ≥ 0, we have

0 ≤ α ≤ 1,

N∑
i=1

yiαi = 0,

A(ri + ξi) ≤ At− v, ∀i ∈ [N ]

0 ≤ ri ≤ αit, ∀i ∈ [N ],

0 ≤ ξi ≤ (1− αi)t, ∀i ∈ [N ],

and w = C
∑N

i=1 yixi ◦ (αit− ri).
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4.7.3 Proof of Corollary 4.2

From Theorem 4.2, when t = 1, A = I and v = (1− K
n )1, the optimization problem (4.19)

can be reformulated as

min

N∑
i=1

max{1− yi(w
⊤xi + b) + ∥λi∥1, ∥φi∥1}+

N∑
i=1

K

n
∥βi∥1 +

1

2C
∥w∥22

s.t. λi + βi ≥ yi(w ◦ xi), ∀i ∈ [N ]

φi + βi ≥ 0, ∀i ∈ [N ]

λi ≥ 0,φi ≥ 0,βi ≥ 0, ∀i ∈ [N ],

which implies that φi = 0. Thus, we obtain (4.7).

By substituting t = 1, A = I and v = (1− K
n )1 into (4.20), we can obtain its dual problem

min
C

2
∥

N∑
i=1

yixi ◦ (αi1− ri)∥22 −
N∑
i=1

αi

s.t. 0 ≤ α ≤ 1,

N∑
i=1

yiαi = 0,

ri + ξi ≤
K

n
1, ∀i ∈ [N ]

0 ≤ ri ≤ αi1, ∀i ∈ [N ],

0 ≤ ξi ≤ (1− αi)1, ∀i ∈ [N ],

which implies that ξi = 0, so that we obtain (4.8).

4.7.4 Proof of Theorem 4.3

Proof. Let D(f) = {P ∈ P0(Rn) : EP[|z̃|] ≤ f}, we first consider the constraint

sup
P∈D(f)

EP[[1− ξ − y(w⊤(x+ z̃) + b) + t]+] ≤ ε.
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Follow the proof of Theorem 4.1, it can be shown that this constraint is equivalent to


f⊤β + α ≤ ε

β⊤u+ α ≥ 0, ∀ − u ≤ z ≤ u

β⊤u+ α ≥ 1− ξ − y(w⊤(x+ z) + b) + t, ∀ − u ≤ z ≤ u,

which can be reformulated as

f⊤β + α ≤ ε

− α ≤ min
z,u

β⊤u s.t. − u ≤ z ≤ u

1− ξ − y(w⊤x+ b) + t− α ≤ min
z,u

β⊤u+ yw⊤z s.t. − u ≤ z ≤ u.

By duality and simple calculation, we have



− β ≤ w ≤ β

α ≥ 0

α ≤ ε− f⊤β

α ≥ 1− y(w⊤x+ b) + t− ξ,

or equivalently 
ε ≥ f⊤|w|

ξ ≥ 1− y(w⊤x+ b) + t+ f⊤|w| − ε.

Hence the constraints supP∈D(x) EP[[1 − ξ − y(w⊤x̃ + b) + t]+] ≤ γ and −tκ + γ ≤ 0 are

equivalent to 
γ ≥ sup

f∈F
f⊤|w|

ξ ≥ 1− y(w⊤x+ b) + (
1

κ
− 1)γ + sup

f∈F
f⊤|w|

Since 0 < κ ≤ 1, the constraints above are equivalent to ξ ≥ 1−y(w⊤x+b)+ 1
κ supf∈F f⊤|w|,

so that we obtain this theorem.
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4.8 Chapter Summary

In this chapter, we presented a new framework for robust classification based on distribu-

tionally robust optimization, and showed that distributionally robust optimization can be

a powerful tool to design robust classification algorithms that appropriately handle uncer-

tainties in training and testing data. In particular, we provided a distributionally robust

optimization interpretation for the regularized SVM, i.e., the DRO formulation with the

hinge loss and the mean absolute deviation ambiguity set is equivalent to the regularized

SVM. We then proposed a new robust classification algorithm that is robust to feature

corruption of test data and developed a new robust formulation for classification based on

distributionally robust chance constraints.



Chapter 5
The Coherent Loss Function for Classification

A prediction rule in classification that aims to achieve the lowest probability of misclas-

sification involves minimizing over a non-convex, 0-1 loss function, which is typically a

computationally intractable optimization problem. To address the intractability, previous

methods consider minimizing the cumulative loss – the sum of convex surrogates of the 0-1

loss of each sample. We revisit this paradigm and develop instead an axiomatic framework

by proposing a set of salient properties on functions for classification and then propose the

coherent loss approach, which is a tractable upper-bound of the empirical classification error

over the entire sample set. We show that the proposed approach yields a strictly tighter ap-

proximation to the empirical classification error than any convex cumulative loss approach

while preserving the convexity of the underlying optimization problem, and this approach

for binary classification also has a robustness interpretation which builds a connection to

robust SVMs.

5.1 Introduction

The goal of supervised learning is to predict an unobserved output value y from an observed

input x. This is achieved by learning a function relationship y ≈ f(x) from a set of observed

training examples {(yi,xi)}mi=1. The quality of predictor f(·) is often measured by some loss

function ℓ(f(x), y). A typical statistical setup in machine learning assumes that all training

data and testing samples are i.i.d. samples drawn from an unknown distribution µ, and the

goal is to find a predictor f(·) such that the expected loss E(y,x)∼µℓ(f(x), y) is minimized.

114
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Since µ is unknown, the expected loss is often replaced by the empirical loss

Lemp(f) ≜
1

m

m∑
i=1

ℓ(f(xi), yi). (5.1)

Minimizing Lemp(f), as well as numerous regularization based variants of it, is one of the

fundamental cornerstones of statistical machine learning, e.g., [VL63, VC91, PRMN04].

This chapter focuses on binary classification problems, where y ∈ {−1,+1}. A point (y,x)

is correctly predicted if sign(f(x)) = y, and its classification error is given by the 0-1 loss

ℓ(f(xi), yi) = 1(y ̸= sign(f(x)) = 1(yf(x) ≤ 0). Due to the non-convexity of the indicator

function, minimizing the empirical classification error
∑

i 1(yif(xi) ≤ 0) is known to be NP-

hard even to approximate [ABSS97, BDEL03]. A number of methods have been proposed to

mitigate this computational difficulty, all based on the idea that to minimize the “cumulative

loss”, which is the sum of individual losses given by,

Lϕ(f) ≜
1

m

m∑
i=1

ϕ(yf(x))

where ϕ(·) is a convex upper bound of the classification error 1(yf(x) ≤ 0). For example,

AdaBoost [FS97, FHT00, SS99] employs the exponential loss function exp(−yf(x)), and

Support Vector Machines (SVMs) [BGV92, CV95] employ a hinge-loss function max{1 −

yf(x), 0}.

In this chapter we revisit this paradigm, and introduce a notion termed coherent loss, as

opposed to cumulative loss used in the conventional approach. Briefly speaking, instead of

using an upper bound of the individual classification error (the 0-1 loss), we propose to use

a tractable upper bound of the total empirical classification error for the whole training set.

That is, we look for Φ : ℜm 7→ ℜ such that

Φ(c1, · · · , cm) ≥ 1

m

m∑
i=1

1(ci ≤ 0), ∀(c1, · · · , cm) ∈ ℜm.

Intuitively, since coherent loss functions are more general than cumulative loss functions,

one may expect to obtain a tighter and still tractable bound of the empirical classification

error via coherent loss function. We formalize this intuition in this chapter. Specifically,
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our contributions include the followings.

In Section 5.2, we consider a principled approach by formalizing the salient properties of

functions, termed as coherent classification loss functions, that could be used to quantify the

performance of a classification rule. These functions have dual-representations which enable

us to identify the minimal coherent classification loss function, which, loosely speaking,

is the coherent classification loss function that best approximates the 0-1 loss, which also

achieves a tighter bound of the empirical classification error than any convex cumulative

loss. We show that optimizing this function is equivalent to a convex optimization problem,

and hence tractable.

In Section 5.3, we consider an equivalent form of the coherent loss function and then pro-

vide several applications of this loss function in classification problems. We remark that a

tighter approximation of the 0-1 loss can potentially reduce the impact of outliers on the

classification accuracy. Cumulative loss function may significantly deviate from the 0-1 loss

when c ≪ 0. Consequently, a misclassified outlier can incur a huge loss, and prevents an

otherwise perfect prediction rule from being selected. This sensitivity can be mitigated by

a tighter approximation.

Section 5.4 provides a statistical interpretation of minimizing the coherent loss function.

Section 5.5 reports the experimental results which show that our classification method

outperforms the standard SVM when additional constraints are imposed on the decision

function.

Notations: We use boldface letters to represent column vectors, and capital letters for

matrices. We reserve e for special vectors: ei is the vector whose i-th entry is 1, and the

rest are 0; eN , where N is an index set, is the vector that for all i ∈ N , the corresponding

entry equals 1, and zero otherwise; en ∈ ℜn is the vector with all entries equal to 1. The

i-th entry of a vector x is denoted by xi. We use [c]+ to denote max{0, c} and 1[·] to denote

the indicator function, and let Pn be the set of all n × n permutation matrices and In be

the n× n identity matrix.
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5.2 Coherent Classification Loss Function

We now propose the notion of coherent classification loss functions based on an axiomatic

approach. Along the way, we show the existence of a “tight” coherent classification loss

function which can achieve better approximation of the empirical classification error than

any convex cumulative loss. The definition of the coherent classification loss function is mo-

tivated from analyzing the salient properties of functions used to quantify the performance

of a classification rule. A natural approach is to elicit these properties from the classification

error. Specifically, given u1, · · · , um where ui the “decision value” of the ith sample, e.g.

ui = yif(xi), we suppose that these m samples are divided into n groups G = {G1, · · · ,Gn}

satisfying that

Gi ̸= ∅, Gi ⊆ {1, · · · ,m}, and
n∪

i=1

Gi = {1, · · · ,m}.

Denote by S the set of all feasible groups G. We define the classification error ϱ : ℜm×S 7→

[0, 1] as follows:

ϱ(u1, . . . , um,G) =
1

n

n∑
i=1

1[uj < 0, ∃j ∈ Gi]. (5.2)

The definition of ϱ(·, ·) ensures that the classification error is nonzero as long as there exists

a group so that one of its samples has a negative decision value. Clearly, when Gi = {i},

(5.2) is reduced to the classical zero-one loss function:

ϱ(u1, . . . , um) =
1

m

m∑
i=1

1[ui < 0], (5.3)

where the input G is ignored for notational simplicity. We will next propose a set of proper-

ties and that functions endowed with these properties are known as coherent classification

loss functions.

5.2.1 Salient Properties and Representation Theorem

We elicit the five salient properties from the classification error as follows. Consider ρ(·, ·) :

ℜm × S → [0, 1].

Property 1 (Complete classification). ρ(u,G) = 0 if and only if u ≥ 0.
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Complete classification essentially says if every sample is correctly classified, then it is

optimal.

Property 2 (Misclassification avoidance). If u < 0, then ρ(u,G) = 1.

This property states that if all samples are misclassified, then it is the worst classification

and hence ρ(·, ·) achieves the maximal value.

Property 3 (Monotonicity). If minj∈Gi uj ≥ minj∈Gi wj for all i = 1, · · · , n, then ρ(u,G) ≤

ρ(w,G).

Monotonicity requires that if a decision better classifies every group of samples, then it is

more desirable. When Gi = i, this property simply means that u ≥ v implies ρ(u) ≤ ρ(v).

Property 4 (Order invariance). For any permutations π of {1, · · · ,m} and τ of {1, · · · , n},

let G̃τ(i) = {π(j) : j ∈ Gi} for i = 1, · · · , n and ũ = (uπ(1), · · · , uπ(m))
⊤, then we have

ρ(u,G) = ρ(ũ, G̃).

Order invariance essentially states that the order of the samples does not matter. This is

natural in the classification problem, since each sample is drawn i.i.d., and is treated equally.

Property 5 (Scale invariance). For all α > 0, ρ(αu,G) = ρ(u,G).

Scale invariance is a property that the classification error function satisfies. It essentially

means that changing the scale does not affect the preference between classifiers. While it

may be debatable whether scale invariance is as necessary as other properties, indeed as we

show later in this section, this property can be relaxed.

Definition 5.1 (Coherent Classification Loss). A function ρ(u,G) : ℜm × S → [0, 1] is

a coherent classification loss function (CCLF) if it satisfies Property 1 to 5, and is quasi-

convex and lower semi-continuous w.r.t. u.

Here, quasi-convexity and semi-continuity are introduced to for tractability. Our first result

is a (dual) representation theorem of any CCLF. We need the following definition first.

Definition 5.2 (Admissible Class). A class of sets Vk ⊆ ℜn parameterized by k ∈ [0, 1] is

called admissible class, if they satisfy the following properties:

1. For any k ∈ [0, 1], Vk is a closed, convex cone, and is order invariant. Here, being

order invariant means that v ∈ V implies Pv ∈ V for any P ∈ Pn;
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2. k ≤ k′ implies Vk ⊆ Vk′;

3. V1 = cl(limk↑1Vk) and V0 = limk↓0Vk.

4. V1 = ℜn
+;

5. For any λ > 0, we have λen ∈ V0.

Theorem 5.1 (Representation Theorem). A function ρ(·, ·) is a CCLF if and only if it can

be written as

ρ(u,G) = 1− sup{k ∈ [0, 1] : sup
v∈Vk

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤}, (5.4)

for an admissible class {Vk}. Here sup over an empty set is set as 0.

Proof. We sketch the proof and leave the details in the appendix. The “if” part is relatively

easy, by checking that any function ρ(u,G) = 1 − sup{k ∈ [0, 1] : supv∈Vk
(−v⊤ũ) ≤

0, ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤} for some admissible class {Vk} satisfies all properties

required for a CCLF.

The “only if” part requires more work. We want to show that given a function ρ(·, ·) which

is a CCLF, it can be represented as (5.4) for some admissible class {Vk}. The proof consists

of three steps: We first show that ρ(·, ·) can be represented as ρ(u,G) = 1− sup{k ∈ [0, 1] :

supv∈Vk
(−v⊤ũ) ≤ 0, ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)

⊤}, for some {Vk}, not necessarily

admissible. This essentially follows from a result in [BS09]. We then show that we can

replace Vk by a class of closed, convex, order-invariant, cones Vk. Specifically, we can

pick Vk ≜ cl(cc(or(Vk))), where or(·) (respectively cc(·)) is the minimal order invariant

(respectively, convex cone) superset. Finally we show that {Vk} is admissible, by checking

that all properties in Definition 5.2 are satisfied, to complete the proof.

5.2.2 Minimal Coherent Classification Loss Function

This section shows that among all CCLF functions that upper-bound the classification error,

there exists a minimal (i.e., best) one.
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Theorem 5.2. Define ρ(·, ·) : ℜm × S 7→ [0, 1] as follows

ρ(u,G) =
max{t :

∑t
i=1 ũ(i) < 0}
n

,

where ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤, {ũ(i)} is a permutation of {ũi} in a non-decreasing

order, and max over an empty set is taken as zero. Then the following holds.

1. ρ(·, ·) is a CCLF, and is an upper-bound of the classification error, i.e., ρ(u,G) ≥

ϱ(u,G), ∀u ∈ ℜm.

2. Let Vk ⊂ ℜn satisfy that if k = 0, then Vk = conv {λen|λ > 0}; and if s
n < k ≤ s+1

n

for s = 0, · · · , n− 1, then

Vk = conv {λeN | ∀λ > 0, ∀N : |N | = n− s} ,

where N is an index set. Then {Vk} is an admissible class corresponding to ρ(·, ·).

3. ρ(·, ·) is the tightest CCLF bound. That is, if ρ′(·, ·) is a CCLF function and satisfies

ρ′(u,G) ≥ ϱ(u,G) for all u ∈ ℜm, then ρ′(u,G) ≥ ρ(u,G) for all u ∈ ℜm.

Proof. We provide a sketch of the proof and leave the details to the appendix. Claim 1

is relatively straightforward. It is also easy to see that Vk is an admissible set. So one

only needs to show that Vk is the set corresponding to ρ(·, ·), to establish Claim 2. To

show Claim 3, we let {V′
k} be an admissible class corresponding to ρ′(·, ·), and show that

λeN ∈ V′
k, which further implies Vk ⊆ V′

k. This establishes claim 3.

We next show that scale invariance can be relaxed. Indeed, for any quasi-convex upper

bound of classification error that satisfies other properties, the minimal CCLF is a tighter

bound.

Theorem 5.3. Let ρ̂(u,G) : ℜm × S 7→ [0, 1] be a quasi-convex function w.r.t. u that

satisfies complete classification, misclassification avoidance, monotonicity, order invariance,

and that ρ̂(u,G) ≥ ϱ(u,G). Then there exists a CCLF ρ(·, ·) such that

ϱ(u,G) ≤ ρ(u,G) ≤ ρ(u,G) ≤ ρ̂(u,G), ∀u ∈ ℜm and G ∈ S.
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Proof. We sketch the proof. The main idea is to construct such a function

ρ(u,G) ≜ lim
ϵ↓0

[min
γ>0

ρ̂((u+ ϵ)/γ,G)],

and show that ρ(·, ·) is a CCLF and ρ̂(u,G) ≥ ρ(u,G) ≥ ϱ(u,G). Finally, since ρ(·, ·) is the

minimal CCLF, this completes the proof.

One important property of ρ(·, ·) is that it achieves better approximation of the empirical

classification error than any convex cumulative loss.

Theorem 5.4. If f(·) is a convex function and an upper bound of the 0-1 loss function,

then for any u = (u1, · · · , um) and G ∈ S, we have ϱ(u,G) ≤ ρ(u,G) ≤ 1
n

∑n
i=1 f(ũi) where

ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤.

Proof. Without loss of generality, assume (ũ1, · · · , ũm) are in a non-decreasing order. Let

p ≜ max{i : ũi < 0} and q ≜ max{t :
∑t

i=1 ũi < 0}, then
∑q

i=1 ũi =
∑p

i=1 ũi +
∑q

i=p+1 ũi <

0. Since f(·) is convex and f(x) ≥ 1[x ≤ 0], there exists k ≤ 0 such that f(x) ≥ max{kx+

1, 0} (this can be done for example by taking k as a subgradient of f(x) at x = 0). If k = 0,

then 1
n

∑n
i=1 f(ũi) ≥ 1 ≥ ρ(u,G), the theorem holds. Otherwise k < 0, we have

n∑
i=1

f(ũi) ≥
p∑

i=1

(kũi + 1) +
n∑

i=p+1

f(ũi) = p+ k

p∑
i=1

ũi +
n∑

i=p+1

f(ũi)

> p− k

q∑
i=p+1

ũi +
n∑

i=p+1

f(ũi) ≥ p+

q∑
i=p+1

(f(ũi)− kũi).

Note that ũi ≥ 0 for i = p+ 1, · · · ,m, then if ũi ≥ − 1
k , f(ũi)− kũi ≥ −kũi ≥ 1. Otherwise

f(ũi)− kũi ≥ kũi +1− kũi = 1. Hence, p+
∑q

i=p+1(f(ũi)− kũi) ≥ p+ (q− p) = q. By the

definition of ρ(u,G), the theorem holds.

5.2.3 Optimization With the Coherent Loss Function

We now discuss the computational issue of optimization of the minimal CCLF ρ(·, ·). Indeed,

we show that this can be converted to a tractable convex optimization problem. Specifically,
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for fixed G, we consider the following problem on variables (u,w):

min ρ(u,G)

s.t. fj(u,w) ≤ 0, j = 1, · · · , k,
(5.5)

where fj(·, ·) are convex functions. We have the following theorem.

Theorem 5.5. Assume that all the feasible solutions (u,w) to Problem 5.5 satisfy that

u > 0 or u ̸≥ 0. Let (s∗, t∗, h∗) be an optimal solution to the following optimization

problem:

min
h,s,t

1

n

n∑
i=1

[1−min
j∈Gi

sj ]+

s.t. hfj(s/h, t/h) ≤ 0, j = 1, · · · , k;

h > 0.

(5.6)

Then (s∗/h∗, t∗/h∗) is an optimal solution to Problem (5.5).

Proof. We provide a sketch of the proof. We first show that the level set of Problem (5.5),

i.e., Ui ≜ {(u,w) : ρ(u) ≤ 1− i/n; fj(u,w) ≤ 0, ∀j} for i = 1, · · · , n, equals the following

{(u,w)| ∃d :

n∑
i=1

[d−min
j∈Gi

uj ]+ ≤ (n− i+ 1)d and fj(u,w) ≤ 0, ∀j.}

This can be proved by applying the Theorem 5.2, and then using duality of linear program.

This set can further be shown equivalent to the feasible set of

n∑
i=1

[1−
minj∈Gi uj

d
]+ ≤ (m− i+ 1) (5.7)

fj(u,w) ≤ 0, j = 1, · · · , k.

Thus, finding the optimal solution to Problem (5.5) is equivalent to solve the following

problem

min

m∑
i=1

[1−
minj∈Gi uj

d
]+

s.t. fj(u,w) ≤ 0, j = 1, · · · , n;

d > 0.

(5.8)
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Then let h = 1/d, s = hu and t = hw, the theorem is established.

Notice that hfj(s/h, t/h) is the perspective function of fj(·, ·), and is hence jointly convex

to (h, s, t) [BV04]. Thus, Problem (5.6) is equivalent to a tractable convex optimization

problem.

5.3 Equivalent Formulation and Applications

From Theorem 5.5, when there is no (u,w) such that u ≥ 0 and fj(u,w) ≤ 0 for j =

1, · · · , k, Problem (5.5) is equivalent to minimizing the following optimization problem:

min Φ(u,G)

s.t. fj(u,w) ≤ 0, j = 1, · · · , k,
(5.9)

where Φ(u,G) is defined by

Φ(u,G) ≜ min
γ>0

1

n

n∑
i=1

[1−min
j∈Gi

uj/γ]+. (5.10)

From this formulation, we also show, from another perspective, that minimizing the coherent

loss function is equivalent to minimizing a “tighter” upper bound of the 0-1 loss function,

or in other words, the coherent loss function achieves better approximation of the empirical

classification error than any convex cumulative loss.

Theorem 5.6. Let ϕ : ℜ 7→ ℜ+ be a non-increasing, convex function that satisfies

ϕ(c) ≥ 1(c ≤ 0), ∀c ∈ ℜ.

For all u ∈ ℜm, let ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤, then we have

1

n

n∑
i=1

1(ũi ≤ 0) ≤ Φ(u,G) ≤ 1

n

n∑
i=1

ϕ(ũi).

Proof. Recall that the hinge-loss ϕ∗1(c) ≜ [1 − c]+ is the tightest convex bound of 0-1 loss

which has a derivative (or sub-gradient) −1 at c = 0 (e.g., [SS02]). That is, if a convex
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function ϕ(·) satisfies ϕ(c) ≥ 1(c ≤ 0), ∀c, and also satisfies −1 ∈ ∂ϕ(0), then ϕ∗1(c) ≤ ϕ(c)

for all c. Similarly, ϕ∗γ(c) ≜ max[1 − c/γ]+ is the tightest convex bound of 0-1 loss with a

derivative −1/γ at x = 0. Since ϕ(·) is non-increasing, it can not have positive derivative

at c = 0. Thus, Φ(·, ·) is a tighter bound than any non-increasing, convex cumulative loss

functions.

When G = {{1}, {2}, · · · , {m}}, Problem (5.9) is equivalent to the following convex opti-

mization problem

min
h,s,t

1

m

m∑
i=1

[1− si]+

s.t. hfj(s/h, t/h) ≤ 0, j = 1, · · · , n;

h > 0,

(5.11)

which can be solved efficiently. We now provide some applications of the proposed coherent

loss function.

At first, we illustrate with an example, that the proposed coherent loss function can be more

robust to outliers. Let u1,u2 ∈ ℜ100 be the followings: u1 = (−1000, 1000, 1000, · · · , 1000),

and u2 = (+1,−1,+1,−1, · · · ,+1,−1). In this case, u2 appears to be a less favorable

classification since 50% of samples are misclassified. It is easy to check that u1 incurs a

much larger hinge-loss than u2, even though only one sample is misclassified. In contrast,

the coherent loss of u1 is no more than 0.02 (take γ = 1/1000), and that of u2 is at least

0.5 (since 50% samples are misclassified, and the coherent loss is an upper bound). Thus,

the coherent loss is more robust in this example, partly because it better approximates the

0-1 loss, and hence is less affected by large outliers. See Figure 5.1.

Example: linear SVM

We illustrate the proposed method with the linear classification problem, and in particular,

the linear Support Vector Machines algorithm (SVMs) [BGV92, CV95, SS02]. Given m

training samples (yi,xi)
m
i=1, the goal is to find a hyperplane that correctly classify as many
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Figure 5.1: Illustration of the effect of outliers to the cumulative loss vs the coherent loss.
Here, w1 has a margin u1, and w2 has a margin u2. The cumulative loss approach will pick
w2, where the proposed method will pick w1, which is a better classification.

training samples as possible with a large margin, which leads to the following formulation:

min
1

m

m∑
i=1

1[yi(w
⊤xi + b) ≤ 0]

s.t. ∥w∥2 ≤ C

(5.12)

for a given C > 0. Since the objective function is non-convex, Problem (5.12) is an in-

tractable problem. Hence, SVM uses the hinge-loss function ϕ∗1(c) = [1 − c]+ as a convex

surrogate.

Following the proposed coherent loss function approach, we minimize the 0-1 loss function

with margin a ≥ 0: 1
m

∑m
i=1 1[yi(w

⊤xi + b) ≤ a] and replace this objective function by the

coherent loss function ρ(u) where ui = yi(w
⊤xi + b)− a (Margin a makes the condition in

Theorem 5.5 hold, and the approximation of this 0-1 loss function by using the hinge-loss

function still leads to the standard SVM). Then we obtain the following formulation,

min
w,b,γ>0

1

m

m∑
i=1

[1− (yi(w
⊤xi + b)− a)/γ]+

s.t. ∥w∥2 ≤ C.

(5.13)
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As discussed above, we can change variables h = 1/γ, ŵ = w/γ and b̂ = b/γ, and simplify

Formulation (5.13) as the following:

min
ŵ,b̂,h>0

1

m

m∑
i=1

[1 + ah− yi(ŵ
⊤xi + b̂)]+

s.t. ∥ŵ∥2 ≤ hC.

An interesting thing is that this formulation is also equivalent to the robust formulation of

SVM [SBS06], which provides another interpretation for the coherent loss function.

Proposition 5.1. Problem (5.13) is equivalent to the following optimization problem:

min
w,b,ξ

m∑
i=1

ξi

s.t. inf
x̃i∼(xi,I)

P[yi(w⊤x̃i + b) ≥ 1− ξi] ≥ 1− κ, i = 1, · · · ,m,
(5.14)

where x̃i ∼ (xi, I) denotes a family of distributions which have a common mean xi and

covariance I, and κ = a2/(a2 + C2).

Proof. Theorem 1 in [SBS06] shows that Problem 5.14 is equivalent to

min
w,b,ξ

m∑
i=1

ξi

s.t. yi(w
⊤x̃i + b) ≥ 1− ξi + γ∥w∥2, i = 1, · · · ,m,

ξi ≥ 0, i = 1, · · · ,m,

where γ =
√
κ/(1− κ). When κ = a2/(a2 + C2), we have γ = a/C, which implies that the

formulation above is equivalent to

min
w,b,ξ

m∑
i=1

[1 +
a

C
∥w∥2 − yi(w

⊤x̃i + b)]+.

Therefore, by moving a
C ∥w∥2 into the constraint, we obtain this result.

We next consider the case where one may like to impose additional constraints on w. For

instance, if the first feature is measured from a less reliable source, then an ideal classification
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rule should discount the importance of the first feature, by imposing a constraint like |w1| ≤

0.001. Thus, the linear classification problem becomes

min
w,b

1

m

m∑
i=1

1[yi(w
⊤xi + b) ≤ a]

s.t. ∥w∥2 ≤ C

Aw ≤ d.

Using the coherent loss to replace the objective function, and simplifying the resulting

formulation, we obtain the following second order cone program

min
ŵ,b̂,h>0

1

m

m∑
i=1

[1 + ah− yi(ŵ
⊤xi + b̂)]+

s.t. ∥ŵ∥2 − Ch ≤ 0

Aŵ ≤ dh.

Finally, we remark that the coherent loss approach can be kernelized, since a representation

theorem [SS02] still holds if the coherent loss function is used.

Example: Multi-class SVM

The coherent loss function can also be applied in multi-class classification problems. The

main idea of previous approaches [LS06, LLW04, CS02] of multi-class SVMs is solving one

single regularization problem by imposing a penalty on the values of fy(x)−fz(x) for sample

(x, y) where fy(·) and fz(·) are decision function for class y and z, respectively. Suppose that

the training samples are drawn from k different classes and the decision function fy(x) =

w⊤
y x+ by for each y = 1, · · · , k. Consider the following 0-1 loss penalty formulation:

min
fi

1

m

m∑
i=1

1

[
min

z∈[k],z ̸=yi
{fyi(xi)− fz(xi)} ≤ a

]
s.t. Gi(wi) ≤ C, i = 1, · · · , k

k∑
i=1

fi = 0,
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where
∑k

i=1 fi = (
∑k

i=1wi,
∑k

i=1 bi), Gi(·) is convex (e.g. Gi(·) = ∥ · ∥2) and margin a ≥ 0,

then we can apply the coherent loss function approach to make an approximation:

min
fi,γ>0

1

m

m∑
i=1

[
1−

minz∈[k],z ̸=yi{fyi(xi)− fz(xi)} − a

γ

]
+

s.t. Gi(wi) ≤ C, i = 1, · · · , k
k∑

i=1

fi = 0,

which can be simplified as the following:

min
f̂i,h>0

1

m

m∑
i=1

[
1 + ah+ max

z∈[k],z ̸=yi
{f̂z(xi)− f̂yi(xi)}

]
+

s.t. hGi(ŵi/h) ≤ hC, i = 1, · · · , k
k∑

i=1

f̂i = 0,

where f̂i(x) = ŵ⊤
i x+ b̂i. Clearly, this is a convex optimization problem and can be solved

efficiently.

5.4 Statistical Interpretation

In this section, we provide a statistical interpretation of minimizing the coherent loss func-

tion. As standard in learning theory, we assume that the training samples are drawn i.i.d.

from an unknown distribution P, and the goal is to find a predictor f(·) such that the

classification error of f given below is as small as possible:

L(f(·)) = E(x̃,ỹ)∼P[I(f(x̃), ỹ)].

Here (x̃, ỹ) ∼ P means sample (x̃, ỹ) follows the distribution P, and I(f(x̃), ỹ) = 1[ỹf(x̃) ≤

0]. Recall that when G = {{1}, {2}, · · · , {m}}, minimizing the coherent loss function is
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equivalent to minimizing the following function

Φ(u) = min
γ>0

1

m

m∑
i=1

ϕγ(ui),

where ϕγ(u) = [1 − u/γ]+. Let η(x) = P[ỹ = 1|x̃ = x] be the probability that sample x

belongs to the first class, then the optimal Bayes error L∗ = L(2η(·)− 1). We now develop

an upper bound of the difference between L(f(·)) and L∗ by using similar techniques in

[Zha04].

For fixed γ, denote the expected loss of f(·) w.r.t ϕγ(·) by

Qγ(f(·)) = E(x̃,ỹ)∼P[ϕγ(ỹf(x̃))],

and define two quantities

Qγ(η, f) = ηϕγ(f) + (1− η)ϕγ(−f), ∆Qγ(η, f) = Qγ(η, f)−Qγ(η, f
∗
γ (η)),

where f∗γ (η) = argminf Qγ(η, f). By simple calculation, we know that f∗γ (η) = sign(2η−1)γ

when ϕγ(u) = [1− u/γ]+. Then we have the following lemma.

Lemma 5.1. For γ > 0, we have ∆Qγ(η, 0) = |2η − 1|.

Proof. From the definition of Qγ(η, f) and ∆Qγ(η, f), we have

∆Qγ(η, f) =η(ϕγ(f)− ϕγ(f
∗
γ (η))) + (1− η)(ϕγ(−f)− ϕγ(−f∗γ (η)))

=η[1− f/γ]+ + (1− η)[1 + f/γ]+ − η[1− sign(2η − 1)]+ − (1− η)[1 + sign(2η − 1)]+

=η[1− f/γ]+ + (1− η)[1 + f/γ]+ − 1 + |2η − 1|.

This implies that ∆Qγ(η, 0) = |2η − 1|.

By applying Lemma 5.1, we can bound the classification error of f(·) w.r.t ϕγ(·) in terms

of Ex̃∆Qγ(η(x̃), f(x̃)).



5.4 Statistical Interpretation 130

Theorem 5.7. For any γ > 0 and any measurable function f(x), we have

L(f(·))− L∗ ≤ Ex̃∆Qγ(η(x̃), f(x̃)) = Ex̃[Qγ(η(x̃), f(x̃)) + |2η(x̃)− 1| − 1].

Proof. By definition of L(·), it is easy to verify that

L(f(·))− L(2η(·)− 1) =Eη(X)≥0.5,f(X)<0(2η(X)− 1) + Eη(X)<0.5,f(X)≥0(1− 2η(X))

≤E(2η(X)−1)f(X)≤0|2η(X)− 1|.

From Lemma 5.1, i.e., ∆Qγ(η, 0) = |2η − 1|, we have

L(f(·))− L∗ ≤ E(2η(x̃)−1)f(x̃)≤0∆Qγ(η(x̃), 0).

To complete the proof, since ∆Qγ(η, f) = Qγ(η, f) − Qγ(η, f
∗
γ (η)), it suffices to show that

Qγ(η(x), 0) ≤ Qγ(η(x), f(x)) for all x such that (2η(x) − 1)f(x) ≤ 0. To see this, we

consider three scenarios:

• η > 0.5: We have f∗γ (η) = sign(2η − 1)γ > 0. In addition, (2η − 1)f ≤ 0 implies

f ≤ 0. Since 0 ∈ [f, f∗γ (η)] and the convexity of Qγ(η, f) w.r.t. f , we have Qγ(η, 0) ≤

max{Qγ(η, f), Qγ(η, f
∗
γ (η))} = Qγ(η, f).

• η < 0.5: In this case we have f∗γ (η) < 0 and f ≥ 0, which leads to 0 ∈ [f∗γ (η), f ], which

implies Qγ(η, 0) ≤ max{Qγ(η, f), Qγ(η, f
∗
γ (η))} = Qγ(η, f).

• η = 0.5: Note that f∗γ = 0, which implies that Qγ(η, 0) ≤ Qγ(η, f) for all f .

From the proof of Lemma 5.1, we have ∆Qγ(η, f) = Qγ(η, f) + |2η − 1| − 1. Hence the

theorem holds.

Corollary 5.1. For any measurable function f(x),

L(f(·))− L∗ ≤ min
γ>0

Ex̃[Qγ(η(x̃), f(x̃)) + |2η(x̃)− 1| − 1]. (5.15)

Proof. Since Theorem 5.7 holds for any γ > 0, we obtain this corollary.

For samples {xi, yi}mi=1, since η(xi) = yi ∈ {1,−1}, the empirical estimation of the bound in
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(5.15) is Φ(u) = minγ>0
1
m

∑m
i=1 ϕγ(ui) where ui = yif(xi), which implies that minimizing

the coherent loss function is equivalent to minimizing the empirical bound of the difference

between L(f(·)) and L∗.

5.5 Simulation

We report some numerical simulation results in this section to illustrate the proposed ap-

proach. Besides the regularization constraints (e.g. ∥w∥ ≤ C for binary-class SVMs and

∥wi∥ ≤ C, i = 1, · · · , k for multi-class SVMs), we consider the case where additional linear

constraints are also imposed on the coefficient w. For clarity, we choose a simple additional

constraint ∥Aw∥∞ ≤ T to compare the performance of the cumulative loss formulation

(SVM) and our coherent loss formulation (CCLF) for binary-class and multi-class classifica-

tion, where A = [Ik,0] ∈ Rk×n. In other words, the constraint ensures that the maximum

of the first k elements of w is bounded by T . We now compare their performance under

two cases: 1) k is fixed, T varies; 2) T is fixed, k varies.

Three binary-class datasets “Breast cancer”, “Ionosphere” and “Diabetes”, and two multi-

class datasets “Wine” and “Iris” from UCI [AN07] are used, where we randomly pick 50%

as training samples, 20% as validation samples, and the rest as testing samples. For the

cumulative loss formulation approach, parameter C is determined by cross-validation. For

the coherent loss formulation approach, parameter C is fixed while parameter a is deter-

mined by cross-validation. For each T , we repeated the experiments 20 times and com-

puted the average classification errors. To solve the resulting optimization problems, we use

CVX [GB11, GB08], and Gurobi [GO13] as the solver.

Figure 5.3 shows the simulation results under fixed k. Clearly, when additional constraints

are imposed, it appears that the coherent loss approach consistently outperforms the cu-

mulative loss approach. When T is small, the cumulative loss approach performs much

worse. When T becomes large, its performance can be close to the coherent loss approach.

Figure 5.2 provides the results under fixed T , which shows that the coherent loss and cu-

mulative loss approaches have similar performance when k/n is small but the coherent loss
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Figure 5.2: Performance comparison of cumulative loss approach vs coherent loss approach
where bound T is fixed and the fraction k/n varies from 0.0 to 1.0. Left and right columns
report the classification errors for the two cases T = 0.1 and T = 0.3.

approach outperforms the cumulative loss approach when k/n is large. We believe that

these phenomena are due to the fact that the coherent loss is a better approximation for

the empirical classification error.

5.6 Proofs of Technical Results

5.6.1 Proof of Theorem 5.1

Proof. Step 1 – the “if” part. Given a function ρ(u,G) = 1−sup{k ∈ [0, 1] : supv∈Vk
(−v⊤ũ) ≤

0, ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤} for some admissible class {Vk}, we show that ρ(·, ·)

satisfies all properties required for a CCLF.

Step 1.1 – Complete Classification: If u ≥ 0, then by V1 = ℜn
+ we have that v⊤ũ ≥ 0

for all v ∈ V1, which implies that supv∈V1
(−v⊤ũ) ≤ 0. Hence ρ(u,G) = 0. Conversely, if

u ̸≥ 0, without loss of generality we assume that there exists j ∈ G1 such that uj < 0, then
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Figure 5.3: Performance comparison of cumulative loss approach vs coherent loss approach.
Left and right columns report the classification errors for the two cases k = 0.8n and k = n
(recall that k and n are the numbers of the rows and columns of matrix A, respectively).
The four rows, from top to bottom, report results for Breast Cancer, Ionosphere, Diabetes,
Wine and Iris, respectively.
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we have

sup
v∈V1

(−v⊤ũ) = sup
v∈ℜm

+

(−v⊤ũ) ≥ −e⊤1 ũ > 0.

This inequality, combined with V1 = cl(limk↑1Vk), leads to that ∃δ > 0 such that

sup
v∈V1−δ

(−v⊤ũ) > 0,

which implies that ρ(u,G) > 0. This shows that ρ(·, ·) satisfies complete classification.

Step 1.2 – Misclassification avoidance: Fix u such that u < 0 which implies ũ < 0.

Since e ∈ V0, we have

sup
v∈V0

(−v⊤ũ) ≥ −e⊤ũ > 0.

Hence ρ(u,G) = 1. Thus, ρ(·, ·) satisfies misclassification avoidance.

Step 1.3 – Monotonicity: Note that minj∈Gi uj ≥ minj∈Gi wj for all i = 1, · · · , n implies

ũ ≥ w̃. Then for any k ∈ [0, 1], since Vk ⊆ V1 = ℜn
+, we have that −v⊤ũ ≤ −v⊤w̃ for any

v ∈ Vk. Thus,

sup
v∈Vk

(−v⊤w̃) ≤ 0 =⇒ sup
v∈Vk

(−v⊤ũ) ≤ 0.

Hence ρ(u,G) ≤ ρ(w,G). Thus, ρ(·, ·) satisfies monotonicity.

Step 1.4 – Order & scale invariance: Order invariance follows directly from the fact

that Vk is order invariant for all k. Scale invariant holds because for α > 0 and k ∈ [0, 1],

sup
v∈Vk

(−v⊤u) ≤ 0 ⇐⇒ sup
v∈Vk

(−v⊤αu) ≤ 0.

Step 1.5 – Quasi-convexity: To show quasi-convexity in u, let c = max(ρ(u,G), ρ(w,G))

and without loss of generality assume c < 1 since otherwise the claim trivially holds. Thus

we have that for any ϵ > 0

sup
v∈V1−c−ϵ

(−v⊤ũ) ≤ 0 and sup
v∈V1−c−ϵ

(−v⊤w̃) ≤ 0,
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which implies that for α ∈ [0, 1]

sup
v∈V1−c−ϵ

{−v⊤[αũ+ (1− α)w̃]} ≤ 0.

Recall that ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤ and w̃ = (minj∈G1 wj , · · · ,minj∈Gn wj)

⊤. Let

y = αu+(1−α)w and ỹ = (minj∈G1 yj , · · · ,minj∈Gn yj)
⊤. Then we have ỹ ≥ αũ+(1−α)w̃

which implies that

sup
v∈V1−c−ϵ

{−v⊤ỹ} ≤ sup
v∈V1−c−ϵ

{−v⊤[αũ+ (1− α)w̃]} ≤ 0.

Thus, we have ρ(αu1 + (1 − α)u2,G) ≤ c since ϵ can be arbitrarily close to 0. The quasi-

convexity holds.

Step 1.6 – Lower semi-continuity: We show that ρ(u∗,G) ≤ lim infi ρ(ui,G) for ui
i→

u∗. Let c > lim infi ρ(ui,G), then there exists an infinite sub-sequence {uij} such that

ρ(uij ,G) < c. That is

−v⊤ũij ≤ 0; ∀v ∈ V1−c, ∀j.

Note that uij → u∗, hence

−v⊤ũ∗ ≤ 0; ∀v ∈ V1−c,

i.e., ρ(u∗,G) ≤ c. Since c can be arbitrarily close to lim infi ρ(ui,G), the semi-continuity

follows.

Step 2 – the “only if” part. Given a function ρ(·, ·) which is a CCLF, we show that it

can be represented as

ρ(u,G) = 1− sup{k ∈ [0, 1] : sup
v∈Vk

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤},

for some admissible class {Vk}. This consists of three steps. We first show that ρ(·, ·) can

be represented as

ρ(u,G) = 1− sup{k ∈ [0, 1] : sup
v∈Vk

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤},
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for some {Vk}. Here {Vk} is not necessarily admissible, but satisfies Vk ⊆ Vk′ for all

k ≤ k′. We then show that we can replace Vk by a class of closed, convex, order-invariant,

cones Vk. Finally we show that {Vk} is admissible to complete the proof.

Step 2.1: The representability of ρ(·, ·) follows from the following lemma which is a variant

of Theorem 2 in [BS09].

Lemma 5.2. Given a CCLF ρ(·, ·), then there exists {Vk} that satisfies Vk ⊆ Vk′ for all

k ≤ k′, such that

ρ(u,G) = 1− sup{k ∈ [0, 1] : sup
v∈Vk

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤}.

Proof. We recall the definition of the collective satisfying measure in [BS09].

Definition 5.3. Let U be the set of random variables on the probability space (Ω,F ,P).

A function ρ(·) : U → [0, 1] is a collective satisfying measure if the following holds for all

U,U ′ ∈ U .

1. If U ≥ 0, then ρ(U) = 1;

2. If U < 0, then ρ(U) = 0;

3. If U ≥ U ′ then ρ(U) ≥ ρ(U ′);

4. limα≥0 ρ(U + α) = ρ(U);

5. If λ ∈ [0, 1], then ρ(λU + (1− λ)U ′) ≥ min(ρ(U), ρ(U ′));

6. If λ > 0, then ρ(λU) = ρ(U).

We now consider U – a special set of random variables defined on the probability space

(Ω,F ,P) with Ω = {1, · · · ,m}. Note that each random variable U : Ω 7→ ℜ can be

represented as a vector u ∈ ℜm where ui = U(i). Let G be a partition of the set {1, · · · ,m},

namely, G = {G1, · · · ,Gn} satisfying that

Gi ̸= ∅, Gi ⊆ {1, · · · ,m},
n∪

i=1

Gi = {1, · · · ,m}.
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We define another random variable Ũ on probability space (Ω̃, F̃ , P̃) with Ω̃ = {1, · · · , n}

by taking Ũ(i) = minj∈Gi ui. The mapping from U to Ũ is denoted by g, i.e., Ũ = g(U,G).

Let ρ̂(·) be a collective satisfying measure on U that satisfies all the properties given by

Definition 5.3 and another property that for all U,U ′ ∈ U , if Ũ ≥ Ũ ′, then ρ̂(U) ≥ ρ̂(U ′).

Theorem 5.8. The collective satisfying measure ρ̂(·) can be represented as

ρ̂(U) = sup{k ∈ [0, 1] : sup
Q∈Qk

EQ(−Ũ) ≤ 0, Ũ = g(U,G)},

for a class of sets of probability measures Qk satisfying Qk ⊆ Qk′ for k ≤ k′.

Proof. Let X be a random variable on probability space (Ω̃, F̃ , P̃). For k ∈ [0, 1], we define

µk(X) = inf{a : ρ̂(X̂ + a) ≥ k for some r.v. X̂ such that X = g(X̂,G)}. (5.16)

Then we have

ρ̂(U) = sup{k : µk(Ũ) ≤ 0, k ∈ [0, 1]}. (5.17)

To verify this equality, note that

sup{k : µk(Ũ) ≤ 0, k ∈ [0, 1]}

=sup{k : ∃a ≤ 0, Û such that ρ̂(Û + a) ≥ k and Ũ = g(Û ,G)}

=sup{ρ̂(Û + a) : a ≤ 0, Ũ = g(Û ,G)}

=sup{ρ̂(Û) : Ũ = g(Û ,G)}

where the last equality holds due to the monotonicity of ρ̂(·). Since Ũ = g(Û ,G) and

Ũ = g(U,G), by the additional property of ρ̂(·) given above, we have ρ̂(U) = ρ̂(Û). Hence

(5.17) holds. We next verify that µk(·) defined by (5.16) is a coherent risk measure. Recall

the definition of coherent risk measure:

Definition 5.4. Let U be the set of random variables on the probability space (Ω,F ,P). A

function µ(·) : U → ℜ is a coherent risk measure if the following holds for all X,Y ∈ U .

1. If X ≥ Y then µ(X) ≤ µ(Y );
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2. If c ∈ ℜ, then µ(X + c) = µ(X)− c;

3. If λ ∈ [0, 1], then µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y );

4. If λ > 0, then µ(λX) = λµ(X).

We now verify that µk satisfies these properties. For random variables X and Y , let X̂

and Ŷ be any random variables satisfying that X = g(X̂,G) and Y = g(Ŷ ,G). If X ≥ Y ,

then by the property of ρ̂(·), we have ρ̂(X̂) ≥ ρ̂(Ŷ ), which implies µk(X) ≤ µk(Y ). Hence

Property 1 holds. Property 2 can be easily seen from the definition of µk(·). For Property

3, note that for all ϵ > 0, we have

ρ̂(X̂ + µk(X) + ϵ) ≥ k, ρ̂(Ŷ + µk(Y ) + ϵ) ≥ k.

On the other hand, since ρ̂ is quasi-concave, we have

ρ̂(λ(X̂+µk(X))+ (1−λ)(Ŷ +µk(Y ))+ ϵ) ≥ min{ρ̂(X̂+µk(X)+ ϵ), ρ̂(Ŷ +µk(Y )+ ϵ)} ≥ k.

(5.18)

Now consider special X̂ and Ŷ such that X̂(i) = X(j) for i ∈ Gj and Ŷ (i) = Y (j) for i ∈ Gj .

Clearly, these X̂ and Ŷ are the “smallest”, namely, for all X̃ and Ỹ such that X = g(X̃,G)

and X = g(Ỹ ,G), we have X̃ ≥ X̂ and Ỹ ≥ Ŷ . This implies

µk(λX + (1− λ)Y ) = inf{a : ρ̂(Ẑ + a) ≥ k for some r.v. Ẑ such that λX + (1− λ)Y = g(Ẑ,G)}

≤ inf{a : ρ̂(λX̂ + (1− λ)Ŷ + a) ≥ k}

≤λµk(X) + (1− λ)µk(Y ),

where the last inequality follows from (5.18). For the last property, note that for λ > 0,

µk(λX) = inf{a : ρ̂(λX̂ + a) ≥ k for some r.v. X̂ such that λX = g(λX̂,G)}

= inf{λa : ρ̂(λX̂ + λa) ≥ k for some r.v. X̂ such that λX = g(λX̂,G)}

= inf{λa : ρ̂(X̂ + a) ≥ k for some r.v. X̂ such that X = g(X̂,G)}

=λµk(X).
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Hence µk(·) is a coherent risk measure. It is known that coherent risk measure µk(·) can be

written in the form

µk(X) = sup
Q∈Qk

EQ(−X)

for a family of generating measures Qk. By combining this formula with (5.17), Theorem

5.8 can be obtained.

We now turn to the proof of Lemma 5.2. Given a CCLF ρ(·, ·), for fixed G, we define

ρ : U 7→ ℜ as following

ρ(U) = 1− ρ(u,G); where ui = U(i), i = 1, · · · ,m.

It is straightforward to check that ρ(·) has all the properties of the collective satisfying

measure ρ̂(·). Thus, Theorem 5.8 states there exists a class of sets of probability measure

Qk such that

1− ρ(u) = ρ(U) = sup{k ∈ [0, 1] : sup
Q∈Qk

EQ(−Ũ) ≤ 0, Ũ = g(U,G)}.

Note that any probability measure Q on Ω̃ = {1, · · · , n} can be represented by a vector

v ∈ ℜn such that vi = Q(i). Thus EQ(−Ũ) = −v⊤ũ where v and ũ are the vector form for

Q and Ũ respectively. Hence we have there exists Vk such that

ρ(u) = 1− sup{k ∈ [0, 1] : sup
v∈Vk

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤}.

Note that for k ≤ k′, Vk ⊆ Vk′ since Qk ⊆ Qk′ . This concludes the proof of Lemma 5.2.

Step 2.2: We construct the admissible class {Vk} as follows. Define V̂k ≜ cl(cc(or(Vk))).

Then we let Vk ≜ V̂k for k ∈ (0, 1), and V0 ≜
∩

k∈(0,1) V̂k, and V1 ≜ cl(
∪

k∈(0,1) V̂k). Here

or(·) (respectively cc(·)) is the minimal order invariant (respectively, convex cone) superset,

defined as

or(S) = {Pv : P ∈ Pn,v ∈ S}, cc(S) = {
k∑

i=1

λivi|k ∈ N,vi ∈ S, λi ≥ 0},
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where Pn is the set of all n× n permutation matrices. Let

ρ′(u,G) = 1− sup{k ∈ [0, 1] : sup
v∈V̂k

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤},

and observe that Vk ⊆ V̂k, hence ρ(u) ≤ ρ′(u). To show that ρ(u) ≥ ρ′(u), it suffices to

show that for any k, ϵ and ũ, the following holds,

sup
v∈Vk

(−v⊤ũ) ≤ 0 =⇒ sup
v∈V̂k−ϵ

(−v⊤ũ) ≤ 0.

Note that supv∈Vk
(−v⊤ũ) ≤ 0 implies ρ(u) ≤ 1 − k. Hence by order invariance of ρ(·, ·),

we have

sup
v∈Vk−ϵ

sup
P∈Pn

(−v⊤Pũ) ≤ 0,

which is equivalent to

sup
v∈or(Vk−ϵ)

(−v⊤ũ) ≤ 0.

By definition of cc(·) and the continuity of −v⊤ũ w.r.t. v, this leads to

sup
v∈cl(cc(or(Vk−ϵ)))

(−v⊤ũ) ≤ 0.

Therefore we have ρ(u,G) = ρ′(u,G). Finally note that V̂k ⊆ V̂k′ for k ≤ k′, which leads

to the following

sup
v∈V̂0

(−v⊤ũ) ≤ sup
v∈

∩
k∈(0,1) V̂k

(−v⊤ũ) ≤ sup
v∈V̂ϵ

(−v⊤ũ),

sup
v∈V̂1−ϵ

(−v⊤ũ) ≤ sup
v∈

∪
k∈(0,1) V̂k

(−v⊤ũ) ≤ sup
v∈V̂1

(−v⊤ũ).

By definitions of V0 and V1, together with the fact (due to continuity)

sup
v∈cl(

∪
k∈(0,1) V̂k)

(−v⊤ũ) = sup
v∈

∪
k∈(0,1) V̂k

(−v⊤ũ),
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we conclude that

ρ(u,G) = 1− sup{k ∈ [0, 1] : sup
v∈Vk

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤}.

Step 2.3: Now we check that {Vk} is indeed admissible. Property 1-3 are straightforward

from the definition of Vk. To see that V0 is closed, recall that the intersection of a class of

closes sets is close.

We next show Property 4: V1 = ℜn
+. By definition of V1, we have

lim
k→1

sup
v∈Vk

(−v⊤ũ) = sup
v∈V1

(−v⊤ũ).

Hence ρ(u) = 0 if and only if supv∈V1
(−v⊤ũ) ≤ 0. Therefore, by the property of complete

classification we have the following

sup
v∈V1

(−v⊤ũ) ≤ 0 ⇐⇒ ũ ≥ 0 ⇐⇒ u ≥ 0. (5.19)

Denote the dual cone of a cone C by C∗ and recall that for any k, Vk is a closed convex

cone, hence we have

(V∗
1)

∗ = V1.

The definition of dual cone states that

V∗
1 = {u : u⊤v ≥ 0, ∀v ∈ V1},

which combined with Equation (5.19) implies that V∗
1 = ℜn

+. Since ℜm
+ is self-dual, we have

V1 = ℜn
+.

We now turn to Property 5. Fix k > 0. Consider u = −em, which means ũ = −en.

By misclassification avoidance, ρ(u,G) = 1, which means there exists v ∈ Vk such that
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v⊤ũ < 0, i.e.,
∑n

i=1 vi > 0. Define a permutation matrix P ∈ Pn:

P =



0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · ·

0 0 0 · · · 1

1 0 0 · · · 0


Thus, by order invariance of Vk, Ptv ∈ Vk for t = 0, · · · , n− 1. By convexity, this implies

1
n

∑n−1
t=0 Ptv ∈ Vk. Note that 1

n

∑n−1
t=0 Ptv = [ 1n

∑n
i=1 vi]e

n, thus

∑n
i=1 vi
n

en ∈ Vk.

Since
∑n

i=1 vi > 0 and Vk is a cone, we have λen ∈ Vk for all λ ≥ 0 and k > 0. By definition

of V0, this implies λen ∈ V0.

5.6.2 Proof of Theorem 5.2

Proof. Claim 1: We check that all conditions of Definition 5.1 are satisfied by ρ(·). The

only condition needs a proof is the semi-continuity. Consider a sequence uj → u0, and

let t0 = max{t :
∑t

i=1 ũ
0
(i) < 0}. Without loss of generality we let ũ01 ≤ ũ02 ≤, · · · ,≤ ũ0n.

Thus we have that
∑t0

i=1 ũ
0
i < 0. This implies that lim supj

∑t0

i=1 ũ
j
i < 0, which further

leads to lim infj(max{t :
∑t

i=1 ũ
j
(i) < 0}) ≥ t0. Hence lim infj ρ(u

j ,G) ≥ ρ(u0,G), which

established the semi-continuity. Thus, we conclude that ρ(·) is a CCLF. Further, observe

that max{t :
∑t

i=1 ũ(i) < 0} ≥
∑n

i=1 1(uj < 0, ∃j ∈ Gi), which established the first claim.

Claim 2: It is straightforward to check that Vk satisfies all conditions of Definition 5.2,

and hence is an admissible set. Thus, we proceed to show that Vk is an admissible set

corresponding to ρ(·), i.e., to show

ρ(u) = 1− sup{k ∈ [0, 1] : sup
v∈Vk

(−v⊤ũ) ≤ 0, ũ = (min
j∈G1

uj , · · · ,min
j∈Gn

uj)
⊤}.

Fix a u ∈ ℜm. If u ≥ 0, then we have ρ(u) = 0, as well as supv∈V1
(−v⊤ũ) ≤ 0, and hence
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the equivalence holds trivially. Thus we assume u ̸≥ 0, and let t0 = max{t :
∑t

i=1 ũ(i) < 0}.

By definition we have

V1−t0/n = conv
{
λeN ′ : λ > 0, |N ′| = t0 + 1

}
.

Note that by definition of t0

min
|N ′|=t0+1

∑
i∈N ′

ũi ≥ 0,

which implies that

sup
v∈{eN′ :|N ′|=t0+1}

(−v⊤ũ) ≤ 0.

This leads to

sup
v∈V1−t0/n

(−v⊤ũ) ≤ 0. (5.20)

On the other hand for arbitrarily small ϵ > 0, by definition

V1−t0/n+ϵ = conv
{
λeN : λ > 0, |N | = t0

}
.

Because minN :|N |=t0
∑

i∈N ũi < 0, we have

sup
v∈V1−t0/n+ϵ

(−v⊤ũ) > 0.

Combining with Equation (5.20) we established the second claim.

Claim 3: Let ρ′(·) be a CCLF satisfying that ρ′(u,G) ≥ ϱ(u,G) for all u ∈ ℜm, and let

{V′
k} be its corresponding admissible set. Thus, it suffices to show that Vk ⊆ V′

k for all k.

This holds trivially for k = 0, since ρ′(u,G) = 1 for all u < 0 implies that λen ∈ V′
0. When

k > 0, let s/n < k ≤ (s + 1)/n for some integer s. Then, since V′
k is an order-invariant

convex cone, it suffices to show that e[1:n−s] ∈ V′
k to establish the third claim. Consider u∗

such that ũ∗ = −e[1:n−s]. Then, by ρ′(u∗,G) ≥
∑

i 1(ũ
∗
i < 0)/n = 1− s/n > 1− k, we have

sup
v∈V′

k

(−v⊤ũ∗) > 0 =⇒ ∃v∗ ∈ V′
k :

n−s∑
i=1

v∗i > 0.
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Define a permutation matrix P:

P =

 P1 0(n−s)×s

0(n−s)×s 0s×s,


where P1 is a (n− s)× (n− s) matrix:

P1 =



0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · ·

0 0 0 · · · 1

1 0 0 · · · 0


Thus, by order invariance of V′

k, P
tv∗ ∈ V′

k for t = 0, · · · , n − s − 1. By convexity, this

implies 1
n−s

∑n−s−1
t=0 Ptv∗ ∈ V′

k. Note that 1
n−s

∑n−s−1
t=0 Ptv∗ = 1

n−s [
∑

i∈[1:n−s] v
∗
i ]e[1:n−s],

thus ∑n−s
i=1 v

∗
i

n− s
e[1:n−s] ∈ V′

k.

Since
∑n−s

i=1 v∗i
n−s is positive, and V′

k is a cone, we have e[1:n−s] ∈ V′
k, which completes the

proof.

5.6.3 Proof of Theorem 5.3

Proof. We prove the theorem by constructing such a function ρ(·, ·). To do this, first consider

ρ̃ : Rm × S 7→ [0, 1] defined as

ρ̃(u,G) = min
γ>0

ρ̂(u/γ,G).

Then it is easy to check that ρ̃(·) satisfies complete classification, misclassification avoidance,

monotonicity, order invariance, and scale invariance. To see that ρ̃(u,G) ≥ ϱ(u,G), note

that if ũ, i.e., ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤, has t negative coefficients, then for any
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γ > 0, ũ/γ also has t negative coefficients, which means

ρ̂(u/γ,G) ≥ t/n.

Taking minimization over γ, we have ρ̃(u,G) ≥ ϱ(u,G) holds. Finally, we show quasi-

convexity of ρ̃(·). Fix u1, u2, and α ∈ [0, 1], let γ1, γ2 be ϵ-optimal, i.e.,

ρ̂(ui/γi,G) ≤ ρ̃(ui,G) + ϵ, i = 1, 2.

Since ρ̂(u, ,G) is quasi-convex w.r.t. u, we have

ρ̂(
αu1 + (1− α)u2

αγ1 + (1− α)γ2
,G) = ρ̂(

αγ1
αγ1 + (1− α)γ2

· u1

γ1
+

(1− α)γ2
αγ1 + (1− α)γ2

· u2

γ2
,G)

≤ max{ρ̂(u1

γ1
,G), ρ̂(u2

γ2
,G)}

which implies

ρ̃(αu1 + (1− α)u2,G) ≤ρ̂(
αu1 + (1− α)u2

αγ1 + (1− α)γ2
,G) ≤ max{ρ̂(u1

γ1
,G), ρ̂(u2

γ2
,G)}

≤max{ρ̃(u1,G), ρ̃(u2,G)}+ ϵ.

Hence ρ̃(·)(u,G) is quasi-convex w.r.t. u. Note that the only property that is not satisfied

is the semi-continuity. To handle this, define ρ : Rm × S 7→ [0, 1] as

ρ(u,G) = lim
ϵ↓0

ρ̃(u+ ϵem,G)

Because of monotonicity of ρ̃(·), ρ(·, ·) is well-defined. In addition, it can be shown that ρ(·, ·)

is lower-semicontinuous. Complete classification, misclassification avoidance, monotonicity,

order invariance, scale invariance, and quasi-convexity all follows easily from the fact that

same property holds for ρ̃(·). Thus, ρ(·, ·) is a CCLF w.r.t. m. Next, we show that

ρ̂(u,G) ≥ ρ(u,G) ≥ ϱ(u,G).



5.6 Proofs of Technical Results 146

The first inequality holds due to ρ̂(u,G) ≥ ρ̃(u,G) ≥ ρ̃(u+ ϵem, ,G). The second inequality

holds because for any u, there exists ϵ > 0 small enough such that ϱ(u+ ϵem,G) = ϱ(u,G).

Thus, taking limit over ρ̃(u + ϵem,G) ≥ ϱ(u + ϵem,G) establishes the second inequality.

Recall that ρ̄(u,G) is the minimal CCLF, we establish the lemma by

ϱ(u,G) ≤ ρ̄(u,G) ≤ ρ(u,G).

5.6.4 Proof of Theorem 5.5

Proof. To prove Theorem 5.5, we start with establishing the following lemma. Observe that

ρ(u,G) only takes value in {0, 1n ,
2
n , · · · , 1}.

Lemma 5.3. The level set of Problem (5.5), i.e., Ui ≜ {(u,w) : ρ(u,G) ≤ 1− i
n ; fj(u,w) ≤

0, ∀j} for i = 1, · · · , n, equals the following

{(u,w) : ∃d such that
n∑

i=1

[d−min
j∈Gi

uj ]+ ≤ (n− i+ 1)d; fj(u,w) ≤ 0, ∀j.}

Proof. Let ũ = (minj∈G1 uj , · · · ,minj∈Gn uj)
⊤. From Property 2 of Theorem 5.2, we have

that Ui equals to the feasible set of the following program

sup
v∈Vi/n

(−v⊤ũ) ≤ 0; fj(u,w) ≤ 0, j = 1, · · · , k.

Recall that Vi/n = conv {λeN |λ > 0, |N | = n− i+ 1} we have that supv∈Vi/n
(−v⊤ũ) ≤ 0

is equivalent to

inf
v:0≤v≤e,e⊤v=n−i+1

v⊤ũ ≥ 0,

which left-hand-side by duality theorem is equivalent to the following optimization problem
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on (c, d)

Maximize:
n∑

i=1

ci + (n− i+ 1)d

Subject to: ci + d ≤ ũi, ci ≤ 0, i = 1, · · · , n.

Thus we have u ∈ Ui if and only if there exists c, d, and w such that

e⊤c+ (n− i+ 1)d ≥ 0;

c+ de ≤ ũ;

c ≤ 0;

fj(u,w) ≤ 0, j = 1, · · · , k.

Note that this can be further simplified, since optimal ci = −[d− ũi]+, as

n∑
i=1

[d− ũi]+ ≤ (n− i+ 1)d (5.21)

fj(u,w) ≤ 0, j = 1, · · · , k.

This establishes the lemma.

Now we turn to prove Theorem 5.5. When all feasible solutions u,w, i.e., fj(u,w) ≤ 0 for

all j = 1, · · · , k, satisfy that u > 0 or u ̸≥ 0, we only need to consider the feasible solutions

to (5.21) with d > 0. Hence the feasible set to Problem (5.21) is equivalent to that of

n∑
i=1

[1− ũi/d]+ ≤ (n− i+ 1)

fj(u,w) ≤ 0, j = 1, · · · , k.

Thus, finding the optimal solution to Problem (5.5) is equivalent to solve the following

Minimize:
n∑

i=1

[1− ũi/d]+

Subject to: fj(u,w) ≤ 0, j = 1, · · · , k;

d > 0. (5.22)
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By a change of variable where we let h = 1/d, s = hu, t = hw, this is equivalent to

Minimize:
n∑

i=1

[1−min
j∈Gi

sj ]+

Subject to: hfj(s/h, t/h) ≤ 0, j = 1, · · · , k;

h > 0.

Hence Theorem 5.5 is established.

5.7 Chapter Summary

In this chapter, we revisit the standard cumulative-loss approach in dealing with the non-

convexity of the 0-1 loss function in classification, namely minimizing the sum of convex

surrogates for each sample. We propose the notion of coherent loss, which is a tractable

upper-bound of the total classification error for the entire sample set. This approach yields a

strictly tighter approximation to the 0-1 loss than any cumulative loss, while preserving the

tractability of the resulting optimization problem. The formulation obtained by applying

the coherent loss to binary classification also has a robustness interpretation, which builds a

strong connection between the coherent loss and robust SVMs. Finally, we remark that the

coherent loss approach has favorable statistical properties and the simulation results show

that it can outperform the standard SVM when additional constraints are imposed.



Chapter 6
Online Linear Optimization with Unobserved

Constraints

We consider online linear programming with unobserved constraints (LPUC) – a generaliza-

tion of stochastic linear optimization – where in each round a learner chooses a solution and

subsequently receives some feedback about the feasibility of the selected solution w.r.t. the

unknown constraints, e.g., indicating which constraint is violated or how much the solution

deviates from the feasibility set. To tackle this problem, we develop two algorithms, namely,

LPUC-ED based on the epsilon-decreasing strategy and LPUC-UCB based on the upper

confidence bound strategy, and derive finite time bounds on the regret and the constraint

violation. Numerical experiments show satisfactory empirical performance of the proposed

algorithms and validate our theoretical results.

6.1 Introduction

Linear programming (LP), which optimizes a linear objective subject to linear equality and

linear inequality constraints, is undoubtedly the most extensively studied and widely applied

optimization formulation and has been applied in machine learning, operations research,

finance, and beyond. A vanilla LP problem can be readily solved via the simplex method or

interior point methods, when the objective function and the constraints are known to the

decision maker [BT97]. In many cases, however, such exact knowledge may not be available.

Optimization under uncertainty is a fast growing research field, and classical methods such

as stochastic programming [BL97] and robust optimization [BTN98] take a static view –

149
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some historical observations of the parameters are given, based on which the decision maker

attempts to obtain a decision. In this paper, we tackle LPUC from a dynamic perspective:

the decision maker can make a tentative decision, collect feedback information about the

decision, and fine tune the decision, essentially solving the LP problem via trial and error.

We motivate our setup using the following example. Network flow problems, often used to

model traffic in a road system, packet flow through network and circulation with demands,

etc., can be formulated as LP problems. The decision maker who aims to find the maximum

flow or the minimum-cost flow does not always know the capacities or costs of all the edges

in the network exactly. To see this, imagine a decision maker who determines how to

dispatch vehicles on a transportation network, it is not surprising that she does not know

the precise traffic condition in each and every road when she makes the decision. Instead,

such information is available only when these vehicles are on the roads (and can then provide

accurate traffic reports). The goal of this paper is then to develop methods to leverage such

post-decision information to obtain near optimal solutions in a learning fashion.

Specifically, we study linear programming problems with unknown constraints (LPUC). To

gather the information about the unknown constraints, we consider an online setting where

the decision maker or learner selects a solution in each round and then receives corresponding

feedbacks providing information about the feasibility of the selected solution. As an example,

consider that routers forward data packets through a data network and observe packet delays

due to congestion (i..e, flows exceed the edge capacities). The goal is to find solutions close

to the optimal solution of the unknown LP. Without loss of generality, we assume that

the objective function is known because otherwise we can convert the original problem

into its epigraph form [BV04]. This model generalizes both stochastic linear optimization

[DHK08, RT08] and multi-armed bandit problems [FCGS10], allowing to tackle a broad

class of problems. The main complicating factor in this model is that the selected solutions

are not always feasible to the original problem due to the unobserved constraints. To the

best of our knowledge, this problem has not been explored yet.

To tackle this problem, we develop two algorithms – LPUC-ED based on the epsilon-

decreasing strategy [KP00] and LPUC-UCB based on the upper confidence bound strategy
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[ACBF02, AMS09, FCGS10, AYPS11]. We measure their performance using two metrics

simultaneously, namely, regret – the difference between the learner’s cumulated cost and

the cost of the optimal strategy, and constraint violation – an indicator of level of con-

straint violation over the T rounds. We show that the regret and constraint violation of

LPUC-ED are O(dT
2
3 log T ) and O(dT

2
3 ) respectively, whereas those of LPUC-UCB are

both O(d
√
T log T ). LPUC-UCB achieves a better regret than LPUC-ED and matches

the lower bound of the linear bandit problem [DHK08] up to a logarithmic factor, but is

computationally more demanding than LPUC-ED.

Notations: We use boldface lower-case letters to represent column vectors and capital

letters for matrices, and use [c]+ to denote max{0, c}. For matrix M, ∥M∥2 denotes its

spectral norm. We use e1, · · · , ed to represent the standard basis of Rd and define ed+1 ≜ 0

for convenience, and use Sd−1(B) to denote the unit sphere {x ∈ Rd : ∥x∥2 = B}.

6.2 Related Work

LPUC can be viewed as a generalized version of stochastic linear optimization and linear

bandits. In the classical multi-armed bandit problem, in each of T rounds, the learner selects

one of K arms and subsequently receives a reward independently drawn from an unknown

distribution associated with the selected arm. The goal of the learner is to choose a sequence

of arms to maximize the cumulated rewards over the T rounds. This problem has been

extensively studied for decades, e.g., [Lai87, ACBF02, CBL06, PCA07, BSSM08, MS11],

and various efficient algorithms based on upper confidence bound (UCB) or Thompson

sampling (TS) have been proposed, e.g., [Agr95, ACBF02, CL11, AG12].

An extension of the classical multi-armed bandit problem is the contextual multi-armed

bandit problem in which each arm associates with a d-dimensional feature vector called

“context” and the reward corresponding to each arm depends on the associated feature

vector. The learner’s aim is to explore the relationship between the feature vectors and

rewards so that she can predict which arm could provide best reward by examining the

feature vectors. The contextual bandits setting with linear payoff functions was studied by
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[AL99, ACBF02] and further analyzed by [CLRS11, FCGS10, AYPS11]. In this setting, the

learner competes with the set of all linear predictors on the feature vectors, e.g., we assume

that there exists an unknown parameter c such that the expected reward for an arm given

feature vector x is c⊤x.

When S – the set of the feature vectors associated with the arms – is very large or even

infinite, this problem is also called “stochastic linear optimization” [DKH07, DHK08, RT08,

Sha13, Sha15b]. One of the most important examples is online linear programming, in which

the aim is to minimize the cost function c⊤x with the constraint x ∈ S where S is specified

by known linear inequality constraints. Different from the linear programming problem

with known cost vector c, the learner only observes noisy feedback about c corresponding

to the value of the objective for the selected solution. Compared with the previous work,

this paper considers online linear programming with additional unknown constraints besides

x ∈ S and tries to find its optimal solution instead of only minimizing the regret.

6.3 Problem Setting

Consider the following linear programming problem:

min c⊤x, s.t. A⊤x ≤ b, x ∈ S, (6.1)

where c ∈ Rd, A ∈ Rd×m, b ∈ Rm, and S is a convex polytope. This paper concerns to find

its optimal solution in the case that A and b are unknown but c is known, and assumes

that for any input x ∈ S the system provides us some feedback about A⊤x− b indicating

how much x deviates from the feasibility set.

6.3.1 Learning Model

More generally, we consider to solve a sequence of linear programming problems {P1, · · · ,PT }.

For each t, Pt has the following formulation:

min c⊤x, s.t. A⊤x ≤ b, x ∈ St, (6.2)
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where St is a convex polytope and A,b, c are shared for all t. Let x∗(t) be the optimal

solution of Pt. Clearly, when St = S, Problem (6.2) is reduced to (6.1). We suppose that

the constraint parameters A,b are unknown, and tackle this problem in the following online

setting. In each round t, the learner receives linear program Pt and chooses a solution x(t)

for Pt. After x(t) is submitted, she receives the corresponding feedback r(t) whose ith entry

ri(t) = f(a⊤i x(t)− bi) + ξi(t), where ai is the ith column of A, ξi(t) is a random noise with

mean 0 and f(·) is a non-decreasing function. Without loss of generality, we assume that

f(0) = 0. The goal of the learner is to find the optimal solution of Pt as t grows.

If the cost vector c in Problem (6.2) is also unknown, one can convert Problem (6.2) into

its epigraph form. This means that the problem studied in this paper is more general than

linear stochastic bandits discussed in [DHK08, RT08, FCGS10] in which c is unknown and

no additional constraints such as A⊤x ≤ b are imposed. More specifically, recall that in

linear stochastic bandit problems, the learner has to choose an action x(t) given decision set

St in the tth round and then receives feedback r(t) = c⊤x(t) + ξ(t) where ξ(t) is a random

noise. This is equivalent to that she selects a solution {x(t), β(t)} of the following linear

programming problem

min β, s.t. c⊤x− β ≤ 0, x ∈ St,

and subsequently observes feedback r(t) = c⊤x(t) − β(t) + ξ(t). Therefore, the linear

stochastic bandit problem is indeed a special case of our setting.

The feedback ri(t) = f(a⊤i x(t) − bi) + ξi(t) has been considered in the generalized linear

bandit model proposed by [FCGS10]. They showed that this model has a strong connection

with the generalized linear models and allows to model various feedback structures. For

example, the simplest choice of f(·) is f(x) = x, leading to the linear bandit feedback.

When only the signs of a⊤i x(t) − bi are revealed in each round, namely, the system tells

us which constraints are violated for solution x(t), one suitable choice is f(x) = (exp(x)−

1)/(exp(x)+ 1) which is an approximation of the sign function. With this kind of feedback,

they generalized the linear multi-armed bandit to the non-linear case and developed a new

algorithm called GLM-UCB.
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6.3.2 Assumptions

This problem is hard to solve if there are no assumptions on decision sets St, noise ξi(t)

and function f(·). In order to achieve meaningful empirical and theoretical results, we make

the following assumptions. Roughly speaking, we assume that 1) St is bounded, 2) ξi(t) is

supported on a bounded interval and has mean 0, 3) f(·) is strictly increasing, and 4) the

constraint in (6.2) is feasible and regular.

Assumption 6.1. For any t = 1, · · · , T , Problem (6.2) is always feasible, i.e., St ∩ {x :

A⊤x ≤ b} ≠ ∅, and there exists constants L and B so that ∥x∥2 ≤ L for any x ∈ St and

[−B,B]d ⊆ St.

Note that when the intersection of sets St for t = 1, · · · , T is nonempty, the assumption

[−B,B]d ⊆ St can be always satisfied by shifting St. Since the objective function and the

constraints in (6.2) are linear, this assumption can be made without loss of generality.

Assumption 6.2. The function f(·) is continuously differentiable, Lipschitz continuous

with constant lµ, and satisfies cµ = infx∈
∪T

t=1 St,(a,b)∈
∪m

i=1 Ai

df(z)
dz

∣∣∣
z=a⊤x−b

> 0.

Here Ai represents the admissible sets for ai and bi, i.e., (ai, bi) ∈ Ai. Assumption 6.2

implies that function f(·) has an inverse, which means a⊤i x(t) − bi can be evaluated via

measuring f(a⊤i x(t)− bi).

Assumption 6.3. Random variables ξi(t) for i = 1, · · · ,m are i.i.d. with mean 0 and

support [−R,R].

Actually, when ξi(t) is a R-sub-Gaussian random variable, our results can still hold.

Assumption 6.4. The constraint A⊤x ≤ b, x ∈ St is regular, i.e., b is an interior point

of {A⊤x+ z : x ∈ St, z ∈ Rm
+} where Rm

+ denotes the non-negative orthant in Rm.

The “regular” assumption implies that this constraint is still feasible when A or b has some

small perturbation.
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6.3.3 Performance Metric

Recall that the desirable solutions should be approximately feasible and optimal at the same

time. To measure “optimality”, we consider the following absolute regret (or regret for short):

Regret(T ) =
T∑
t=1

|c⊤x(t)− c⊤x∗(t)|,

which is different from the traditional regret that sums c⊤x(t)−c⊤x∗(t) without taking their

absolute values. The reason why we use the absolute regret is as follows. In the linear bandit

problem where decision set St is given and there are no additional unobserved constraints,

it is guaranteed that c⊤x(t) ≥ c⊤x∗(t) for all t. This is not the case in our setting however,

due to the existence of the additional unknown constraint A⊤x ≤ b, that is, c⊤x(t) can

be much less than c⊤x∗(t) because the precise information about the feasibility of x(t) is

not available to the learner so that x(t) can be infeasible w.r.t. the unknown constraint,

resulting in a lower cost than c⊤x∗(t) and making the traditional regret meaningless as the

sum contains both positive and negative terms.

To measure “feasibility”, we define the following metric called constraint violation indicating

the level that constraint A⊤x ≤ b is violated:

Violation(T ) =
m∑
i=1

T∑
t=1

[a⊤i x(t)− bi]+.

Measuring constraint violation is necessary because playing an infeasible solution may have

additional penalties in practical applications, e.g., congestion and delays. Therefore, our

aim is to design policies with both the regret and constraint violation growing sub-linearly

in T .

6.4 Two Algorithms: LPUC-ED and LPUC-UCB

We first provide a naive sampling approach to solve this problem. In the first T − 1 rounds,

the learner randomly draws x(t) from decision sets St regardless of whether constraint

A⊤x(t) ≤ b are satisfied or not, and then uses these selected solutions x(t) and the cor-
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responding feedbacks to estimate A and b. Finally, in the T th round, he solves (6.2) with

the obtained estimation of A and b and takes its optimal solution as x(T ). One example of

this approach is shown in Algorithm 6.1 where we assume that f(x) = x. We will show in

Algorithm 6.1: Naive sampling approach

Input : Vector c ∈ Rd, bounded sets St, parameter B.

1 for t = 1 to T − 1 do

2 Draw x(t) from Sd−1(B) uniformly at random;

3 Play x(t) and receive r(t);

4 end

5 Let Σ̂ = 1
T−1

∑T−1
t=1 x(t)x(t)⊤ and calculate Â = Σ̂

−1∑T−1
t=1 x(t)r(t)⊤ and

b̂ = − 1
T−1

∑T−1
t=1 r(t);

6 Play x(T ) – the optimal solution of Problem (6.2) with A = Â and b = b̂.

the next section that although this algorithm can guarantee |c⊤x(T )− c⊤x∗(T )| = O( 1√
T
),

both of its regret and constraint violation can be Ω(T ). This happens because there is no

tradeoff between “exploitation” and “exploration” – making good decisions and probing more

information about the constraints, e.g., the first T − 1 rounds make the regret grow linearly

in T , where all x(t) are randomly drawn from Sd−1(B) to explore A and b.

One possible approach to make a good balance between exploitation and exploration is as

follows. In each round, with some probability p the learner tries to explore more information

about the constraints, while with probability 1− p he chooses the optimal solution of (6.2)

with the current estimates of A and b. Based on this idea, we propose Algorithm 6.2 – linear

programming with unobserved constraints via the epsilon-decreasing strategy (LPUC-ED)

(“epsilon-decreasing” means the exploration probability p decreases as t grows).

In the tth round, the first step of Algorithm 6.2 is to estimate A and b based on the

information (x(1), · · · ,x(t−1), r(1), · · · , r(t−1)) obtained before round t. For convenience,

we let y(t) = (x(t)⊤,−1)⊤ and define several useful quantities:

Mt ≜
t−1∑
k=1

y(k)y(k)⊤, gt(z) ≜
t−1∑
k=1

f(z⊤y(k))y(k), (6.3)
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and

gi
t ≜

t−1∑
k=1

ri(k)y(k), ∀i = 1, · · · ,m.

Suppose that the admissible set for (ai, bi) is Ai which is known. The new estimates of ai

and bi in round t can be computed by solving the following optimization problem:

ai(t), bi(t) = arg min
(a,b)∈Ai

∥gt((a⊤, b)⊤)− gi
t∥M−1

t
. (6.4)

As discussed in [FCGS10], this problem can be easily solved via Newton’s method.

The second step is to select proper x(t) by solving Problem (6.2) with the current estimates

of A and b as shown in (6.5), which involves two issues: 1) Problem (6.5) is not always

feasible since ai(t) and bi(t) are not identical to ai and bi, and 2) the feedback corresponding

to x(t) conveys less new information about A and b as x(t) becomes closer to x∗(t), which

means exploration is required. To address these two issues, we sample x(t) from the uniform

distribution on Sd−1(B) to explore more information about A and b when Problem (6.5) is

infeasible or η̃(t) – a Bernoulli random variable with parameter p(t) – equals 1.

We prove in the next section that the regret and the constraint violation for Algorithm 6.2

are at most O(dT
2
3 log T ) and O(dT

2
3 ), respectively. Then the question is: Can we obtain a

regret bound better than O(dT
2
3 log T )?

To achieve a better regret bound, we develop Algorithm 6.3 – Linear programming with

unobserved constraints via UCB (LPUC-UCB) – that chooses x(t) by solving a non-convex

optimization problem as shown in (6.6) without explicitly exploring the information about

the constraints via sampling x(t) from Sd−1(B).

In general, it is difficult to find the global optimal solution of Problem (6.6) due to the

non-convexity of its constraints. But in some special cases, e.g., f(·) is convex or St is

discrete, it can be solved efficiently. When f(·) is convex, Problem (6.6) is a DC (difference

of convex functions) programming problem that can be solved by many DC algorithms

[HN99, AT05, MTA10] proposed in recent years. The DC algorithms have been successfully

applied to a large number of non-convex optimization problems to which they quite often

find global optimal solutions efficiently. When St is a finite discrete set, one can solve (6.6)
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Algorithm 6.2: Linear programming with unobserved constraints via the epsilon-

decreasing strategy (LPUC-ED)

Input : Cost vector c ∈ Rd, decision sets St.

1 Play e1, · · · , ed+1 and receive r(1), · · · , r(d+ 1);

2 for t = d+ 2 to T do

3 Calculate Mt and gi
t for i ∈ [m];

4 Compute ai(t), bi(t) for i ∈ [m] via solving (6.4);

5 Compute the optimal solution x̂(t) of the following linear program:

min c⊤x

s.t. ai(t)
⊤x ≤ bi(t), ∀i ∈ [m],

x ∈ St.

(6.5)

6 Set variable η(t) to

η(t) =


η̃(t), Problem (6.5) is feasible,

1, otherwise

where η̃(t) is drawn from Bernoulli distribution with success probability

p(t) ∝ 1/t1/3;

7 Play x(t) = [1− η(t)]x̂(t) + η(t)x̃(t) and receive r(t), where x̃(t) follows the

uniform distribution on Sd−1(B);

8 end

by evaluating each element in St, i.e., selecting the one that is feasible and has the smallest

objective value. In the next section, we show that the regret bound and the constraint

violation of Algorithm 6.3 are O(d
√
T log T ).

Note that in each round, both of Algorithm 6.2 and Algorithm 6.3 require to solve Problem

(6.4) to update the estimates of A and b, which could have high computational cost when
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Algorithm 6.3: Linear programming with unobserved constraints via UCB (LPUC-

UCB)

Input : Cost vector c ∈ Rd, decision sets St and parameter θ(t).

1 Play e1, · · · , ed+1 and receive r(1), · · · , r(d+ 1);

2 for t = d+ 2 to T do

3 Calculate Mt and gi
t for i ∈ [m];

4 Compute ai(t), bi(t) for i ∈ [m] via solving (6.4);

5 Solve the optimization problem:

min c⊤x

s.t. f(ai(t)
⊤x− bi(t)) ≤ θ(t)∥y∥M−1

t
, i ∈ [m],

y = (x⊤,−1)⊤,

x ∈ St,

(6.6)

and denote the optimal solution by x̂(t);

6 Play x(t) = x̂(t) and receive r(t);

7 end

d and T are large. By following the idea in [AYPS11], we propose Algorithm 6.4 to accel-

erate these two algorithms. Instead of computing ai(t), bi(t) in each round, Algorithm 6.4

recomputes them only when det(Mt) increases by a constant factor 1 + γ. It can be shown

that (6.4) only needs to be solved O(log T ) times and hence saves computation.

6.5 Regret Bound and Constraint Violation

We now provide the upper bounds for the regret and the constraint violation of Algorithms

6.2, 6.3 and 6.4. Before the main theorems are given, we first show that the naive sampling

approach is not able to achieve sub-linear regret.

Proposition 6.1. Under Assumptions 6.1-6.4, the followings hold: 1) for δ > 0, when T is
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Algorithm 6.4: Accelerated LPUC

Input : Cost vector c ∈ Rd, decision sets St, and parameter γ > 0.

1 Play e1, · · · , ed+1 and receive r(1), · · · , r(d+ 1);

2 for t = d+ 2 to T do

3 Compute Mt and gi
t for i ∈ [m];

4 if det(Mt) > (1 + γ) det(Mt−1) then

5 Update ai(t), bi(t) for i ∈ [m] via solving (6.4);

6 end

7 Run steps (4), (5) and (6) in Algorithm 6.2;

8 Run steps (4) and (5) in Algorithm 6.3;

9 end

large enough, x(T ) generated by Algorithm 6.1 satisfies |c⊤x(T )−c⊤x∗(T )| = O(
√

md
T log md

δ )

with probability at least 1− 3δ, and 2) there exists an instance of Problem (6.2) so that the

regret and the constraint violation of Algorithm 6.1 are both Ω(T ).

In the following parts, we assume that the decision sets St are convex polytopes, under

which Problem (6.2) is a standard linear programming problem. We will discuss the case

where St are bounded convex sets in the next section. Theorem 6.1 provides the upper

bounds for the regret and the constraint violation of Algorithm 6.2.

Theorem 6.1. Under Assumptions 6.1-6.4, there exist constants c, c1, c2, c3 so that for

0 < δ < 1, when

θ(t) ≜ c1lµR

cµ

√
d log

2m(L2 + 1)t

δd
,

and

T ≥ T0 ≜ c2

(
lµRd

c2µ

√
m log

m3/2

cµδ

)3

,

with probability at least 1 − 2δ − cT−9 the regret and the constraint violation of Algorithm
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6.2 satisfy

Regret(T ) ≤ 2T0L∥c∥2+

c3

[
θ(T )

√
md

cµ
+ L∥c∥2

]
T 2/3

√
log T ,

Violation(T ) ≤ (T0 + c3T
2/3)

m∑
i=1

(L∥ai∥2 + |bi|)+

10mθ(T )

cµ

√
dT log T .

Remark. The proof can be found in the appendix which also shows that if all the feasible

sets of Problem (6.2) for t = 1, · · · , T contain Sd−1(B), the term c3T
2/3 in the upper bound

of Violation(T ) can be removed, which leads to a O(d
√
T log T ) constraint violation.

The following theorem demonstrates the theoretical performance guarantee of Algorithm

6.3.

Theorem 6.2. Under Assumptions 6.1-6.4, there exist constants c1, c2 so that for 0 < δ < 1,

when

θ(t) =
c1lµR

cµ

√
d log

2m(L2 + 1)t

δd
, T > d+ 1,

with probability at least 1−2δ the regret and the constraint violation of Algorithm 6.3 satisfy

Regret(T ) ≤ 2(d+ 1)L∥c∥2 +
c2θ(T )∥c∥2

cµ

√
dT log T ,

Violation(T ) ≤ (d+ 1)

m∑
i=1

(L∥ai∥2 + |bi|)+

20mθ(T )

cµ

√
dT log T .

Remark. Theorem 6.2 states that the upper bounds for the regret and the constraint

violation of Algorithm 6.3 are at most O(d
√
T log T ). We will show in the next section that

this is also true when St are bounded convex sets. [DHK08] have proved that the regret for

the linear bandit problem with arbitrary compact decision sets has a Ω(d
√
T ) lower bound.

Since the problem discussed here is a general form of the linear bandit problem, the upper

bounds achieved by Algorithm 6.3 are nearly optimal, i.e., they match the lower bound up

to a logarithmic factor.
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The next theorem shows the regret bounds achieved by Algorithm 6.4 are essentially the

same as those for Algorithms 6.2 and 6.3.

Theorem 6.3. Denote by R(T ) and V (T ) the upper bounds for the regret and the constraint

violation of Algorithm 6.2 (or Algorithm 6.3), then the regret and the constraint violation of

Algorithm 6.4 corresponding to Algorithm 6.2 (or Algorithm 6.3) are at most
√
1 + γR(T )

and
√
1 + γV (T ), respectively.

6.6 Extension to General Cases

The previous sections mainly focus on studying the linear programming problem with un-

known constraints when decision sets St are convex polytopes and the additional constraints

are linear. We now consider several extensions:

Case 1: Decision sets St are discrete, each of which contains K elements, namely, St =

{xt,1, · · · ,xt,K} for t = 1, · · · , T . In this case, one can directly apply Algorithm 6.3 since

the optimal solution of (6.5) can be efficiently solved by evaluating each element in St and

selecting the one that is feasible and has the smallest objective value.

Case 2: Decision sets St are closed bounded convex sets beyond convex polytopes. Actually,

our algorithms are still workable when St are arbitrary compact sets. But Problems (6.5)

and (6.6) become much harder to solve if St are non-convex, so only convex decision sets

are considered here.

Case 3: The linear constraint A⊤x ≤ b in Problem (6.2) is replaced by A⊤ϕ(x) ≤ b where

A and b are unknown while mapping ϕ : Rd → Rdϕ is known. Note that the constraints

considered here is more general than those of linear programming. Suppose that one wants

to minimize a linear cost function with the following robust linear constraints:

(ai + δ)⊤x ≤ bi, ∀δ ∈ U , ∀i = 1, · · · ,m,

where parameter δ is uncertain and U is the corresponding uncertainty set. Under the

setting described in Section 6.3.1, for solution x(t) chosen in the tth round, we assume that
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the feedback corresponding to x(t) is r(t) = (r1(t), · · · , rm(t)) where

ri(t) = max
δ∈U

f((ai + δ)⊤x(t)− bi) + ξi(t),

i.e., r(t) reveals the information about the feasibility of x(t) under the robust linear con-

straints. Different uncertainty sets lead to different functions ϕ(·):

Example 1: When the uncertainty set U = {δ : ∥δ∥ ≤ λ}, the robust linear constraints

become

max
∥δ∥≤λ

{(ai + δ)⊤x} ≤ bi, ∀i = 1, · · · ,m.

For each i = 1, · · · ,m, we have

max
∥δ∥≤λ

{(ai + δ)⊤x} ≤ bi ⇔ a⊤i x+ max
∥δ∥2≤λ

δ⊤x ≤ bi ⇔ a⊤i x+ λ∥x∥∗ ≤ bi,

where ∥ · ∥∗ is the dual norm of ∥ · ∥. Therefore, the robust linear constraints are equivalent

to a⊤i x + λ∥x∥∗ ≤ bi for i = 1, · · · ,m. Suppose that parameters ai, bi and the “radius” of

the uncertainty set λ are unknown, we can define ϕ(x) = (x⊤, ∥x∥∗)⊤.

Example 2: When U = {δ : |δi| ≤ λi, ∀i = 1, · · · , d}, the robust linear constraints are

equivalent to

max
−λ≤δ≤λ

{(ai + δ)⊤x} ≤ bi, ∀i = 1, · · · ,m,

where λ = (λ1, · · · , λd)⊤. Thus, for each i = 1, · · · ,m, we have

a⊤i x+ max
−λ≤δ≤λ

δ⊤x ≤ bi

⇔ a⊤i x+ min
µ≥0,ν≥0

max
δ

{δ⊤x+ µ⊤(λ− δ) + ν⊤(λ+ δ)} ≤ bi

⇔ a⊤i x+ λ⊤(µ+ ν) ≤ bi, ∃µ ≥ 0,ν ≥ 0 such that x+ ν = µ

⇔ a⊤i x+ λ⊤(x+ 2ν) ≤ bi, ∃ν ≥ [−x]+

⇔ (ai + λ)⊤x+ 2λ⊤[−x]+ ≤ bi,

where [−x]+ = ([−x1]+, · · · , [−xd]+)⊤. If parameters ai, bi and λ are unknown, we can

take ϕ(x) = (x⊤, [−x]⊤+)
⊤.
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Example 1 and Example 2 show that the robust linear programming problems with unknown

uncertainty sets can be solved in a data-driven way as long as one can obtain the feedback

information about the feasibility of each robust constraint for any given input.

We now consider the first case where decision sets St = {xt,1, · · · ,xt,K} for some finite

number K. Note that the initialization step (Step 1) in Algorithm 6.2 or Algorithm 6.3 is

no longer available since there is no guarantee that e1, · · · , ed+1 belong to St. Therefore, in

the first d + 1 rounds, we draw samples from St uniformly at random instead of choosing

e1, · · · , ed+1.

To achieve meaningful regret bounds, we assume that there exists a constant c0 > 0 so that

Md+1 computed according to (6.3) satisfies λmin(Md+1) ≥ c0. Conditioned on this Md+1,

we provide the following theorem which provides the performance guarantee for Algorithm

6.3 in this case.

Theorem 6.4. Suppose that Assumptions 6.2 and 6.3 hold and St is a finite set, i.e.,

St = {xt,1, · · · ,xt,K}, satisfying that Problem (6.2) with St is feasible and ∥x∥2 ≤ L for any

x ∈ St. Then there exist constants c so that for 0 < δ < 1, when

θ(t) =
clµR

cµ

√
d log

2m(L2 + 1)t

δ
, T > d+ 1,

with probability at least 1−2δ the regret and the constraint violation of Algorithm 6.3 satisfy

Regret(T ) =
T∑
t=1

c⊤x(t)− c⊤x∗(t) ≤ 2(d+ 1)L∥c∥2,

Violation(T ) ≤ (d+ 1)

m∑
i=1

(L∥ai∥2 + |bi|)+

20mθ(T )

cµ

√
dT log T .

Note that the regret defined in Theorem 6.4 differs from the regret considered in the previous

sections, because when St is discrete, the gap between x(t) and x∗(t) can be quite large even

when both of ai(t) and bi(t) are close to ai and bi respectively. As discussed in Section

6.3.1, Algorithm 6.2 can also be applied to solve the online linear bandit problem, leading

to a O(d
√
T log T ) regret bound, implied by Theorem 6.4.
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For the second case where decision sets St are bounded and convex, Theorem 6.5 states that

Algorithms 6.2 and 6.3 can obtain the same upper bounds for the regret and the constraint

violation as those in Theorems 6.1 and 6.2.

Theorem 6.5. Under Assumptions 6.1-6.4, when the decision sets St are convex, Theorem

6.1 and Theorem 6.3 still hold.

We now consider the third case where the linear constraint A⊤x ≤ b in Problem (6.2) is

replaced by A⊤ϕ(x) ≤ b. For the sake of analysis, we make the following assumptions:

Assumption 6.5. For t = 1, · · · , T , the feasible set of Problem (6.2) is nonempty, i.e.,

St ∩ {x : A⊤ϕ(x) ≤ b} ̸= ∅.

Assumption 6.6. For i = 1, · · · ,m, a⊤i ϕ(x)−bi is a convex function in x for any (ai, bi) ∈

Ai, and there exists vector x̄ ∈ Rd such that a⊤i ϕ(x̄) < bi.

Assumption 6.7. For t = 1, · · · , T , there exists a constant L such that ∥ϕ(x)∥2 ≤ L for

any x ∈ St.

Assumption 6.6 ensures that Problem (6.2) is a convex optimization problem, and the

constraint a⊤i ϕ(x) − bi has a strictly feasible point. Obviously, Example 1 and Example 2

discussed above satisfy this assumption.

For notational simplicity, we let y(t) = (ϕ(x(t))⊤,−1)⊤ for t = 1, · · · , T and y = (ϕ(x)⊤,−1)⊤.

In order to solve this problem, we make a slight modification to Algorithm 6.3, namely, we

change the constraints in (6.6) into

f(ai(t)
⊤ϕ(x)− bi(t)) ≤ θ(t)∥y∥M−1

t
, ∀i ∈ [m],

where Mt can be calculated according to (6.3) using these y(t). Then Theorem 6.6 provides

the performance guarantee for the modified version of Algorithm 6.3:

Theorem 6.6. Under Assumptions 6.2-6.3 and 6.5-6.7, there exists constant c so that for

0 < δ < 1, when

θ(t) =
clµR

cµ

√
dϕ log

2m(L2 + 1)t

δ
,

the upper bounds of the regret and constraint violation for the modified version of Algorithm

6.3 are the same as those in Theorem 6.2 with d = dϕ.



6.7 Experiments 166

This problem can also be solved by applying Algorithm 6.2 if we can sample “good” points

from decision sets St. Suppose that for t = 1, · · · , T , there exist set T ⊆ St and distribution

D over T such that for samples x1, · · · ,xn drawn from distribution D independently, there

exists constant c so that the following holds with high probability: λmin(
1
n

∑n
i=1 yiy

⊤
i ) ≥ c

where yi = (ϕ(xi)
⊤,−1)⊤. Then we make the following changes to Algorithm 6.2: 1) the

constraints in (6.5) are replaced with

ai(t)
⊤ϕ(x) ≤ bi(t), ∀i ∈ [m],

and 2) x̃(t) are sampled according to D instead of the uniform distribution on Sd−1(B).

Theorem 6.7. Under Assumptions 6.2, 6.3 and 6.5-6.7, the upper bounds of the regret

and constraint violation for the modified version of Algorithm 6.2 are the same as those in

Theorem 6.1 with d = dϕ.

6.7 Experiments

In this section, we investigate the empirical performance of our algorithms on synthetic

data. The linear programming problems are randomly generated as follows: 1) cost vector

c is sampled from [−1, 1]d uniformly at random, 2) b is uniformly drawn from [0, 2]m, 3)

each column of A is sampled from Sd−1(1) uniformly at random, and 4) ξ(t) is set to 0.01µ

where µ follows the standard Gaussian distribution N (0, I). We let Ai – the admissible set

for ai and bi – be [−5, 5]d+1 and St – the decision set in round t – be [−5, 5]d. We repeat

each test 10 times and report the average results.

In the experiments, Problem (6.4) is solved via the L-BFGS-B algorithm [BLN95]. For

LPUC-ED, p(t) and B are set to 0.1/t3 and 5, respectively. For LPUC-UCB, in the tth

round, the non-convex optimization problem (6.6) is solved by two steps: 1) we compute x̃t

– the optimal solution of (6.6) with θ(t) = 0 (if x̃t does not exist, x̃t is set to xt−1), and

2) by taking x̃t as the initial solution, we use the SciPy optimization package [JOP+ ] to

solve (6.6) with θ(t) = 0.01
√
log t. In the initialization step, one can also uniformly draw

20 samples from Sd−1(B) and then play these samples in the first 20 rounds, which leads to
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better performance.

In the first experiment, the linear programming problem is generated with d = 10 and m =

20. We compare the acceleration versions of LPUC-ED and LPUC-UCB with parameter

γ = 0.01. The empirical performance is measured by three quantities: the regret, the

constraint violation and the estimation error. The estimation error is the difference between

the true optimal solution x∗ of (6.2) and the average of the solutions up to time T , namely,

∥x∗ − 1
T

∑T
i=1 x(T )∥2.

For input x(t), we consider two different feedbacks: 1) linear feedback ri(t) = a⊤i x(t) −

bi + ξi(t), and 2) sign feedback ri(t) = −1 if a⊤i x(t) − bi ≤ 0 or 1 otherwise. The sign

feedback only indicates which constraint is violated, e.g., observing congestion or delays in

the network. In the algorithms, we use f(x) = (exp(x) − 1)/(exp(x) + 1) to approximate

the sign function. Figures 6.1(a) and 6.1(b) show the empirical performance of LPUC-ED

and LPUC-UCB. Obviously, their regrets and constraint violations are sub-linear in T , and

LPUC-UCB has a significantly better performance than LPUC-ED. This is consistent with

our theoretical analysis, i.e., the regret and the constraint violation of LPUC-ED are O(T
2
3 )

due to the sampling procedure for exploration, while those of LPUC-UCB are O(
√
T ) since

it implicitly does the exploration by solving (6.6). From the estimation errors we observe

that x̄ = 1
T

∑T
i=1 x(T ) converges to x∗ as T goes to infinity.
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Figure 6.1: We compare the empirical performance of LPUC-ED and LPUC-UCB. (a)
Linear feedback r(t) = A⊤x(t)−b+ξ(t) for any x(t). (b) Sign feedback r(t) = sign(A⊤x(t)−
b). (c)(d) The regret and the constraint violation against dimension d with linear feedbacks.

In the second experiment, we investigate the performance of LPUC-ED and LPUC-UCB for
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different d and m. In particular, d = 5, 10, 15, 20, 25 and m = d. The linear programming

problems are generated with these d and m. For any input x(t), the feedback ri(t) is

a⊤i x(t) − bi + ξi(t). Figures 6.1(c) and 6.1(d) show the regrets and constraint violations

for LPUC-ED and LPUC-UCB when d varies from 5 to 25. We observe that both of the

regret and constraint violation grow nearly linearly in d. Similar to the first experiment,

LPUC-UCB clearly outperforms LPUC-ED.

The third experiment solves a maximum flow problem with unknown edge capacities. The

structure of the network is shown in Figure 6.2, which contains two terminal nodes and 10

layers of internal nodes where each layer has 3 nodes. Each terminal node is fully connected

to the nodes in the closest layer with edge capacity 10. The edges between the nodes in

one layer and those in the next layer are formed with probability 0.2, whose capacities

are uniformly drawn from integers 1 − 10. We assume that the capacities are unavailable

to the decision maker. For any input flow f , suppose that fi runs through edge i whose

capacity is ui, the decision maker receives a piecewise-linear feedback ri = max{fi − ui, 0},

namely, the delay is reported if the edge is jammed. In LPUC-ED and LPUC-UCB, we set

f(x) = x exp(5x)/(1 + exp(5x)) to approximate this piecewise-linear feedback. Figure 6.2

shows their empirical performance. Clearly, their regrets and the constraint violations are

sublinear in T .
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Figure 6.2: A maximum flow problem with unknown edge capacities. The graph contains
two terminal nodes and 10 layers of internal nodes.

6.8 Proofs of Technical Results

Before the main proofs are shown, we first provide several useful lemmas.

Lemma 6.1. Suppose z1, · · · , zn are independently drawn from the uniform distribution

over the sphere Sd−1(B). Let yi ≜ (z⊤i ,−1)⊤ and Y ≜
∑n

i=1 yiy
⊤
i . Then the following
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inequality holds with probability at least 1− 2d exp(− cn
d2
):

min{nB
2

4d
,
n

2
} ≤ λmin(Y), λmax(Y) ≤ max{3nB

2

4d
,
3n

2
},

where c is a universal constant.

Proof. Since zi is drawn from the uniform distribution over Sd−1(B), we have E[zi] = 0 and

E[ziz⊤i ] =
B2

d I. Define Zi ≜ ziz
⊤
i and Z̄ ≜ E[ziz⊤i ], then we have

∥Zi − Z̄∥2 ≤ B2 +
B2

d
≤ 2B2

and

∥E[(
n∑

i=1

Zi − nZ̄)2]∥2 = ∥E[(
n∑

i=1

Zi)
2]− n2Z̄2∥2

= n∥E[Z2
i + Zi

∑
j ̸=i

Zj ]− nZ̄2∥2

= n∥E[∥zi∥2 · Zi]− Z̄2∥2

= n∥B2Z̄− Z̄2∥2

≤ nB4

d
(1− 1

d
) ≤ nB4

d
.

By the matrix Bernstein inequality, the following inequality holds for all β ≥ 0:

P[∥
n∑

i=1

Zi −
nB2

d
I∥2 ≥ β] ≤ 2d exp(− β2/2

nB4/d+ 2B2β/3
).

By setting β = nB2

2d , we have

nB2

2d
≤ λmin(

n∑
i=1

Zi), λmax(

n∑
i=1

Zi) ≤
3nB2

2d
(6.7)

holds with probability at least 1− 2d exp(− n
16d). Similarly, note that

∥zi∥2 = B, ∥E[(
n∑

i=1

zi)
⊤(

n∑
i=1

zi)]∥2 = nB2.
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By the matrix Bernstein inequality, for all β ≥ 0,

P[∥
n∑

i=1

zi∥2 ≥ β] ≤ (d+ 1) exp(− β2/2

nB2 +Bβ/3
).

Therefore, when β = min{nB2

4d ,
1
2n}, we have

∥
n∑

i=1

zi∥2 ≤ min{nB
2

4d
,
1

2
n} (6.8)

holds with probability at least

1− (d+ 1)max{exp(−nmin{B2, 1}
64d2

), exp(− n

8B(B + 1)
)}.

Recall that

Y =
n∑

i=1

yiy
⊤
i =

 ∑n
i=1 Zi −

∑n
i=1 zi

−
∑n

i=1 z
⊤
i n

 .

We define

Q1 ≜

∑n
i=1 Zi 0

0 n

 , Q2 ≜

 0 −
∑n

i=1 zi

−
∑n

i=1 z
⊤
i 0

 ,

then from the Weyl’s inequality,

λmin(Q1) + λmin(Q2) ≤ λmin(Y) ≤ λmin(Q1) + λmax(Q2).

From Inequalities (6.7) and (6.8), there exists constant c so that min{nB2

4d ,
n
2 } ≤ λmin(Y) ≤

max{3nB2

4d , 3n2 } holds with probability at least 1− 2d exp(− cn
d2
).

Similarly, we can prove that min{nB2

4d ,
n
2 } ≤ λmax(Y) ≤ max{3nB2

4d , 3n2 }.

Lemma 6.2. Suppose z1, · · · , zn are independently drawn from the uniform distribution

over the sphere Sd−1(B) and η1, · · · , ηn are independently drawn from Bernoulli distribution

where the success probability of ηi is pi = 1/i1/3 for i = 1, · · · , n. Define yi ≜ (z⊤i ,−1)⊤

and Y ≜
∑n

i=1 ηiyiy
⊤
i , then we have

λmin(Y) ≥ c1min{B
2

d
, 1}n2/3
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holds with probability at least

1− 2max{d exp(−c2n
2/3

d2
), exp(−c3n1/3)},

where c1, c2, c3 are universal constants.

Proof. Note that E[
∑n

i=1 ηi] =
∑n

i=1
1

i1/3
, so there exist constants c1 and c2 such that

c1n
2/3 ≤ E[

∑n
i=1 ηi] ≤ c2n

2/3. By Hoeffding’s inequality,

P[|
n∑

i=1

ηi − E[
n∑

i=1

ηi]| ≥ β] ≤ 2 exp(−2β2

n
).

By taking β = 1
2c1n

2/3, we have

1

2
c1n

2/3 ≤
n∑

i=1

ηi ≤ (
1

2
c1 + c2)n

2/3

holds with probability at least 1 − 2 exp(−c3n1/3). Then this lemma can be obtained by

following the proof of Lemma 6.1.

Lemma 6.3. [Rob77] The linear system

A⊤x ≤ b, x ∈ S

is regular, i.e., b is an interior point of {A⊤x + z : x ∈ S, z ∈ Rm
+}, if and only if there

exists some constant ρ > 0 such that for any Â, b̂ with max{∥A− Â∥2, ∥b− b̂∥2} < ρ, the

system

Â⊤x ≤ b̂, x ∈ S

is solvable.

Lemma 6.4. [Ren94] If the linear programming problem (6.1) and its dual problem are both

feasible, then the following statement is true: there exists some constant ρ so that for any
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Â, b̂, ĉ with ∆ ≜ max{∥A− Â∥2, ∥b− b̂∥2, ∥c− ĉ∥2} < ρ, we have

|opt(Â, b̂, ĉ)− opt(A,b, c)|

≤∥Â−A∥2 ·
∥b∥2 + ∥b̂− b∥2

ρ−∆
· ∥c∥2 + ∥ĉ− c∥2

ρ−∆
· max{∥A∥2, ∥b∥2, ∥c∥2}

ρ

+∥b̂− b∥2 ·
∥c∥2 + ∥ĉ− c∥2

ρ−∆
· max{∥A∥2, ∥b∥2, ∥c∥2}

ρ

+∥ĉ− c∥2 ·
∥b∥2 + ∥b̂− b∥2

ρ−∆
· max{∥A∥2, ∥b∥2, ∥c∥2}

ρ
,

where opt(·) denotes the optimal value of a certain linear program.

Lemma 6.5. [Ren94] If the linear programming problem (6.2) and its dual problem are

both feasible, then there exists some constant ρ depending on A,b, c so that for any feasible

solution x̂ of linear system A⊤x ≤ b̂,x ∈ St, there exists a feasible solution x̃ of (6.2)

satisfying

∥x̂− x̃∥2 ≤ ρ∥b̂− b∥2.

Lemma 6.6. [AYPS11] Let {Ft}∞t=1 be a filtration. Let {ηt}∞t=1 be a real-valued stochastic

process such that ηt is Ft-measurable and ηt is conditionally R-sub-Gaussian for some R ≥ 0.

Let {xt}∞t=1 be a Rd valued stochastic process such that xt is Ft−1-measurable. Assume that

V is a d× d positive definite matrix. For any t ≥ 0, define

V̄t = V +
t∑

k=1

xkx
⊤
k , yt =

t∑
k=1

ηkxk,

then for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∥yt∥2V̄−1
t

≤ 2R2 log

(
det(V̄t)

1/2 det(V)1/2

δ

)
.

Lemma 6.7. Suppose that x1, · · · ,xn ∈ Rd and ∥xk∥2 ≤ L for k = 1, · · · , n. Let Mt =

M+
∑t

k=1 xkx
⊤
k for some positive definite matrix M, then

det(Mt) ≤
(
tr(M) + tL2

d

)d

.

Proof. Let λ1, · · · , λd be the eigenvalues of Mt. Note that det(Mt) =
∏d

k=1 λk and tr(Mt) =
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∑t
k=1 λk, by the inequality of arithmetic and geometric means, we have

det(Mt) ≤
(
tr(Mt)

d

)d

=

(
tr(M) +

∑t
k=1 ∥xk∥22

d

)d

≤
(
tr(M) + tL2

d

)d

.

Hence the lemma holds.

6.8.1 Proof of Proposition 6.1

Proof. We first show that |c⊤x(T ) − c⊤x∗(T )| = O( 1√
T
). Since r(t) = A⊤x(t) − b + ξ(t)

and x(t) are drawn from Sd−1(B) uniformly at random for t = 1, · · · , T − 1, we have

E[b̂] = b, and E[Σ̂] =
B2

d
I.

Note that |ri(t) + bi| ≤ |a⊤i x(t)|+ |ξi(t)| ≤ B∥ai∥2 +R. Then by the Hoeffding’s inequality,

for any i = 1, · · · ,m, the following inequality holds:

P[|b̂i − bi| ≥ β] ≤ 2 exp(− (T − 1)β2

(maxiB∥ai∥2 +R)2
).

For any constant δ > 0, let D = (maxiB∥ai∥2 +R) and β = D
√

1
T−1 log

m
δ , then

|b̂i − bi| ≤ D

√
1

T − 1
log

m

δ

holds with probability at least 1− 2δ
m . By the union bound,

∥b̂− b∥2 ≤ D

√
m

T − 1
log

m

δ
.

holds with probability at least 1− 2δ.

On the other hand, from the definition of Â, we know that

âi − ai = Σ̂
−1

[
1

T − 1

T−1∑
t=1

(bi + ξi(t))x(t)],
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which implies

∥âi − ai∥2 ≤ λmin(Σ̂)−1∥ 1

T − 1

T−1∑
t=1

(bi + ξi(t))x(t)∥2.

From Inequality (6.7), we know that B2

2d ≤ λmin(Σ̂) ≤ 3B2

2d holds with probability at least

1− 2d exp(−T−1
16d ). Define yi(t) = (bi + ξi(t))x(t), then by the matrix Bernstein inequality,

P[∥ 1

T − 1

T−1∑
t=1

yi(t)∥2 ≥ β] ≤ (d+ 1) exp

(
− (T − 1)β2/2

(b2i +R2)B2/d+ (|bi|+R)β/3

)
≤ (d+ 1) exp

(
− (T − 1)β2/2

2(|bi|+R)2B2/d+ (|bi|+R)β/3

)
.

Let G = maxi |bi|+R and

β = 3BG

√
1

d(T − 1)
log

(d+ 1)m

δ
,

then when T − 1 ≥ 1
4B2d log

(d+1)m
δ , we have

∥ 1

T − 1

T−1∑
t=1

(bi + ξi(t))x(t)∥2 ≤ β

holds with probability at least 1− δ
m . By the union bound, with probability at least 1− δ

the following inequality holds for all i = 1, · · · ,m:

∥âi − ai∥2 ≤
6G

B

√
d

T − 1
log

(d+ 1)m

δ
,

which implies

∥Â−A∥2 ≤
6G

B

√
md

T − 1
log

(d+ 1)m

δ
.

Thus, by applying Lemma 6.3 and Lemma 6.4, when T is large enough, i.e., for constant ρ,

T − 1 ≥ 4max{D, 6G/B}
ρ2

·md log (d+ 1)m

δ
,

we have

|c⊤x(T )− c⊤x∗(T )| = O(

√
md

T
log

md

δ
) ≈ O(

1√
T
).
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We now prove that there exists an instance of Problem (6.2) so that the regret and the

constraint violation of Algorithm 6.1 are Ω(T ). Consider the following linear programming

problem:

min −x

s.t. 2x ≤ 1, x ∈ [−1, 1],

which means that c = −1, A = 2, b = 1 and St = [−1, 1]. Obviously, for t = 1, · · · , T , the

optimal solutions x∗(t) are always 0.5. When B = 1, x(t) is draw from {−1, 1} with equal

probability, implying that |c⊤x(t) − c⊤x∗(t)| equals 0.5 or 1.5 with equal probability and

[A⊤x(t)− b]+ equals 0 or 1 with equal probability. Thus, it can be easily verified that

Regret(T ) ≥
T−1∑
t=1

|c⊤x(t)− c⊤x∗(t)| = Ω(T ),

Violation(T ) ≥
T−1∑
t=1

[A⊤x(t)− b]+ = Ω(T ).

Hence we obtain this proposition.

6.8.2 Proof of Theorem 6.1

Proof. In the following proofs, the constants may change from line to line. For convenience,

let āi = (a⊤i , bi)
⊤, āi(t) = (ai(t)

⊤, bi(t))
⊤ and let x̄ = (x⊤,−1)⊤ for any x ∈ Rd.

When t ≥ d+ 2, from the definition of Mt, we have

Mt =

d+1∑
k=1

y(k)y(k)⊤ +

t−1∑
k=d+2

y(k)y(k)⊤.

Let M ≜
∑d+1

k=1 y(k)y(k)
⊤. Since y(k) = (Be⊤k ,−1)⊤ for k ≤ d + 1, one can easily verify

that det(M) = B2d.

Since f(·) is Lipschitz continuous (Assumption 6.2), we have

|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤ lµ|(āi(t)− āi)
⊤x̄|.
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Since f(·) is continuously differentiable (Assumption 6.2), ∇gt(·) is continuous. Therefore,

gt(āi(t))− gt(āi) = Gt(āi(t)− āi)

where Gt =
∫ 1
0 ∇gt(sāi(t) + (1− s)āi)ds. Note that

∇gt(z) =
t−1∑
k=1

∇f(z⊤y(k)) · y(k)y(k)⊤

and ∇f(z⊤y(k)) ≥ cµ (Assumption 6.2), we have

Gt ⪰ cµMt ≻ 0,

which implies

|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤ lµ|(āi(t)− āi)
⊤x̄|

= lµ|x̄⊤G−1
t (gt(āi(t))− gt(āi))|

≤ lµ
cµ

∥x̄∥M−1
t
∥gt(āi(t))− gt(āi)∥M−1

t
.

From Step 3 of Algorithm 6.2 which estimates A and b by solving Problem (6.4), we know

that

∥gt(āi(t))− gi
t∥M−1

t
≤ ∥gt(āi)− gi

t∥M−1
t
.

Therefore,

|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤
2lµ
cµ

∥x̄∥M−1
t
∥gi

t − gt(āi)∥M−1
t

≤ 2lµ
cµ

∥x̄∥M−1
t
∥

t−1∑
k=1

ξi(k)y(k)∥M−1
t
.

(6.9)

We now bound ∥
∑t−1

k=1 ξi(k)y(k)∥M−1
t

. Note that

∥
t−1∑
k=1

ξi(k)y(k)∥M−1
t

≤ ∥
d+1∑
k=1

ξi(k)y(k)∥M−1
t

+ ∥
t−1∑

k=d+2

ξi(k)y(k)∥M−1
t

≤ ∥
d+1∑
k=1

ξi(k)y(k)∥M−1 + ∥
t−1∑

k=d+2

ξi(k)y(k)∥M−1
t
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where the last inequality holds because Mt ⪰ M ≻ 0. Recall that for k ≤ d + 1, y(k) =

(Be⊤k ,−1)⊤ (notice that we define ed+1 ≜ 0), we have

d+1∑
k=1

ξi(k)y(k) = (Bξi(1), Bξi(2), · · · , Bξi(d),−
d+1∑
k=1

ξi(k))
⊤,

and

M =

d+1∑
k=1

y(k)y(k)⊤ =



B2 0 · · · −B

0 B2 · · · −B
...

...
. . .

...

−B −B · · · d+ 1


.

By simple calculation, one can obtain

M−1 =
1

B2



2 1 · · · B

1 2 · · · B

...
...

. . .
...

B B · · · 1


.

Then we have

∥
d+1∑
k=1

ξi(k)y(k)∥2M−1 =

d∑
k=1

ξi(k)
2 +

(
d∑

k=1

ξi(k)

)2

+

2

(
d∑

k=1

ξi(k)

)(
d+1∑
k=1

ξi(k)

)
+

1

B2

(
d+1∑
k=1

ξi(k)

)2

Since ξi(1), · · · , ξi(d + 1) are independently drawn from [−R,R] with mean 0, by the Ho-

effding’s inequality, for δ > 0

|
d∑

k=1

ξi(k)|, |
d+1∑
k=1

ξi(k)| ≤ cR

√
d log

m

δ
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holds with probability at least 1− δ
m , where c is a universal constant. Therefore,

∥
d+1∑
k=1

ξi(k)y(k)∥M−1 ≤
√
dR2 + c(3 +

1

B2
)R2d log

m

δ

≤cR
√
d log

m

δ
.

(6.10)

The next step is to bound ∥
∑t−1

k=d+2 ξi(k)y(k)∥M−1
t

. Lemma 6.6 states that for any δ > 0,

the following inequality holds with probability at least 1− δ
m ,

∥
t−1∑

k=d+2

ξi(k)y(k)∥2M−1
t

≤ 2R2 log

(
m det(Mt)

1
2 det(M)

1
2

δ

)
.

By Assumption 6.1, i.e., ∥x∥2 ≤ L for any x ∈ St, and Lemma 6.7, we have det(Mt) ≤(
tr(M)+t(L2+1)

d+1

)d+1
. Therefore,

∥
t−1∑

k=d+2

ξi(k)y(k)∥2M−1
t

≤ 2R2

[
log

m

δ
+ d logB + d log

(
B2 + 1 +

t(L2 + 1)

d+ 1

)]
. (6.11)

By combining Inequalities (6.10) and (6.11), we know that there exists constant c such that

the following inequality holds with probability at least 1− 2δ
m :

∥
t−1∑
k=1

ξi(k)y(k)∥M−1
t

≤ cR

√
d

[
log

m

δ
+ log

(
B2 + 1 +

t(L2 + 1)

d

)]

≤ cR

√
d

[
log

m

δ
+ log(L2 + 1) + log

(
1 +

t

d

)]
≤ cR

√
d log

2m(L2 + 1)t

δd
,

(6.12)

where the last two inequalities hold since L ≥ B and t > d.

Let θ(t) = clµR
cµ

√
d log 2m(L2+1)t

δd , then from Inequalities (6.9) and (6.12), we have

|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤ θ(t)∥x̄∥M−1
t

(6.13)

holds for i = 1, · · · ,m with probability at least 1− 2δ.
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When x̄ = (z,−1)⊤ with z = ai(t)−ai

∥ai(t)−ai∥2 , Inequality (6.13) implies

|f(ai(t)⊤z− bi(t))− f(a⊤i z− bi)| ≤ θ(t)

√
2

λmin(Mt)
.

Similarly, when x̄ = (0⊤,−1)⊤, we have

|f(−bi(t))− f(−bi)| ≤ θ(t)

√
1

λmin(Mt)
.

Then by Assumption 6.2, we have

|f(ai(t)⊤z− bi(t))− f(a⊤i z− bi)| ≥ cµ|∥ai(t)− ai∥2 + bi − bi(t)|

and

|f(−bi(t))− f(−bi)| ≥ cµ|bi(t)− bi|.

Therefore,

max{∥ai(t)− ai∥2, |bi(t)− bi|} ≤ 3θ(t)

cµ

√
1

λmin(Mt)
. (6.14)

In order to bound the right hand side of (6.14), we need to provide a lower bound of

λmin(Mt). Recall that x(t) = [1−η(t)]x̂(t)+η(t)x̃(t) for t ≥ d+2. Let ŷ(t) = (x̂(t)⊤,−1)⊤

and ỹ(t) = (x̃(t)⊤,−1)⊤, then

Mt =
d+1∑
k=1

y(k)y(k)⊤ +
t−1∑

k=d+2

y(k)y(k)⊤

≥
t−1∑

k=d+2

[(1− η(t))ŷ(t)ŷ(t)⊤ + η(t)ỹ(t)ỹ(t)⊤]

≥
t−1∑

k=d+2

η(t)ỹ(t)ỹ(t)⊤.

Since η̃(t) is drawn from Bernoulli distribution with success probability p(t) ∝ 1
t1/3

and x̃(t)

follows the uniform distribution on Sd−1(B), by Lemma 6.2, when t > d+ 1,

λmin(Mt) ≥ c1min

{
B2

d
, 1

}
t2/3 (6.15)



6.8 Proofs of Technical Results 180

holds with probability at least

1− 2max

{
d exp(−c2t

2/3

d2
), exp(−c3t1/3)

}

for constants c1, c2 and c3. Thus, there exists constant c4 such that when t ≥ c4d
3 log3 t, In-

equality (6.15) holds with probability at least 1− c5
t−10 . Then by the union bound, Inequality

(6.15) holds for all t such that T ≥ t ≥ c4d
3 log3 t with probability at least 1− c5

T−9 .

By Inequalities (6.14) and (6.15), there exists constant c6 such that

max{∥ai(t)− ai∥2, |bi(t)− bi|} ≤ c6θ(t)
√
d

cµt1/3
,

which implies

∥A(t)−A∥2 ≤
c6θ(t)

√
md

cµt1/3
, ∥b(t)− b∥2 ≤

c6θ(t)
√
md

cµt1/3
. (6.16)

By Lemma 6.3 and Lemma 6.4, there exists constant ρ so that when

max{∥A(t)−A∥2, ∥b(t)− b∥2} ≤ ρ

2
,

Linear program (6.5) is feasible and

|c⊤x̂(t)− c⊤x∗(t)| ≤ c7max{∥A(t)−A∥2, ∥b(t)− b∥2},

where c7 is a constant depending on A,b, c and ρ. Thus, from the upper bounds of ∥A(t)−

A∥2 and ∥b(t)− b∥2 as shown in (6.16), we know that when t
θ(t)3

≥
(
2c6

√
md

cµρ

)3
,

|c⊤x̂(t)− c⊤x∗(t)| ≤ c7θ(t)
√
md

cµt1/3
. (6.17)

Let T0 be the minimum value of t such that t
θ(t)3

≥
(
2c6

√
md

cµρ

)3
and t

log3 t
≥ c4d

3, one can
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easily verify that there exists constant c8 so that

T0 ≤ c8

(
lµRd

c2µ

√
m log

m3/2

cµδ

)3

.

Then by applying Inequality (6.17), we can develop an upper bound of the regret. Since

U ≜ 2L∥c∥2 is an upper bound for |c⊤x(t)− c⊤x∗(t)|, we have

Regret(T ) =
T0∑
t=1

|c⊤x(t)− c⊤x∗(t)|+
T∑

t=T0+1

|c⊤x(t)− c⊤x∗(t)|

≤ T0U +

T∑
t=T0+1

η(t)|c⊤x̃(t)− c⊤x∗(t)|+
T∑

t=T0+1

[1− η(t)]|c⊤x̂(t)− c⊤x∗(t)|

≤ [T0 +

T∑
t=1

η(t)]U +

T∑
t=T0+1

[1− η(t)]|c⊤x̂(t)− c⊤x∗(t)|

≤
[
T0 + c9T

2/3
]
U +

T∑
t=1

c7θ(t)
√
md

cµt1/3

≤ 2T0L∥c∥2 +

[
c7θ(T )

√
md

cµ
+ c9L∥c∥2

]√
T 4/3 log T

holds with probability at least 1− 2δ − cT−9 for some constant c.

We now show the upper bound of “constraint violation”. For the ith constraint, we have

Violationi(T ) =

T0∑
t=1

[a⊤i x(t)− bi]+ +

T∑
t=T0+1

[a⊤i x(t)− bi]+

≤
T0∑
t=1

[a⊤i x(t)− bi]+ +

T∑
t=T0+1

[ai(t)
⊤x(t)− bi(t)]++

T∑
t=T0+1

[a⊤i x(t)− bi − ai(t)
⊤x(t) + bi(t)]+

≤ T0(L∥ai∥2 + |bi|) +
T∑

t=T0+1

η(t)[ai(t)
⊤x̃(t)− bi(t)]+

T∑
t=T0+1

|a⊤i x(t)− bi − ai(t)
⊤x(t) + bi(t)|

≤ (T0 + c9T
2/3)(L∥ai∥2 + |bi|) +

T∑
t=T0+1

|ā⊤i x̄(t)− āi(t)
⊤x̄(t)|
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By Assumption 6.2 and Inequality (6.13),

|ā⊤i x̄(t)− āi(t)
⊤x̄(t)| ≤ 1

cµ
|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤

θ(t)

cµ
∥x̄∥M−1

t
(6.18)

As shown in [CLRS11],

T∑
t=1

∥x̄(t)∥M−1
t

≤ 5
√

(d+ 1)T log T ≤ 10
√
dT log T ,

implying that
T∑

t=T0+1

|ā⊤i x̄(t)− āi(t)
⊤x̄(t)| ≤ 10θ(T )

cµ

√
dT log T .

Therefore, we have

Violationi(T ) = (T0 + c9T
2/3)(L∥ai∥2 + |bi|) +

10θ(T )

cµ

√
dT log T .

Hence we obtain this theorem.

6.8.3 Proof of Theorem 6.2

Proof. From the proof of Theorem 6.1, we know that

|[f(āi(t)⊤x̄)]+ − [f(ā⊤i x̄)]+| ≤|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤ θ(t)∥x̄∥M−1
t

(6.19)

holds for all i = 1, · · · ,m with probability at least 1− δ, where θ(t) = clµR
cµ

√
d log 2m(L2+1)t

δd ,

āi = (a⊤i , bi)
⊤, āi(t) = (ai(t)

⊤, bi(t))
⊤ and x̄ = (x⊤,−1)⊤.

Recall that Step 4 of Algorithm 6.3 needs to solve Problem (6.6). By Inequality (6.19), for

any feasible solution x of Problem (6.2), i.e., f(ā⊤i x̄) ≤ 0, we have

f(āi(t)
⊤x̄) ≤ f(ā⊤i x̄) + θ(t)∥x̄∥M−1

t
≤ θ(t)∥x̄∥M−1

t
,

which implies that x is also a feasible solution of Problem (6.6). Hence w.h.p. the regret
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bound satisfies

Regret(T ) =
d+1∑
t=1

|c⊤x(t)− c⊤x∗(t)|+
T∑

t=d+2

|c⊤x(t)− c⊤x∗(t)|

≤ (d+ 1)∥c∥2∥x(t)− x∗(t)∥2 +
T∑

t=d+2

|c⊤x(t)− c⊤x∗(t)|

≤ 2(d+ 1)L∥c∥2 +
T∑

t=d+2

|c⊤x(t)− c⊤x∗(t)|.

In order to bound |c⊤x(t)− c⊤x∗(t)|, we consider the following linear program:

min c⊤x

s.t. f(a⊤i x− bi) ≤ 2θ(t)∥x̄(t)∥M−1
t
, ∀i ∈ [m],

x ∈ St.

(6.20)

We denote the optimal solution of (6.20) by x̂. By Inequality (6.19), with probability at

least 1− δ, x(t) satisfies that

f(ā⊤i x̄(t)) ≤ f(āi(t)
⊤x̄(t)) + θ(t)∥x̄(t)∥M−1

t
≤ 2θ(t)∥x̄(t)∥M−1

t

for all i = 1, · · · ,m. Therefore, x(t) is a feasible solution of (6.20). Recall that any feasible

solution of (6.2) is also a feasible solution of (6.6). Thus,

c⊤x̂ ≤ c⊤x(t) ≤ c⊤x∗(t).

By Lemma 6.5, there exists a feasible solution x̃ of (6.2) and a constant c1 so that

∥x̂− x̃∥2 ≤ c1f
−1(2θ(t)∥x̄(t)∥M−1

t
).
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Thus, we have

|c⊤x(t)− c⊤x∗(t)| ≤ |c⊤x̂− c⊤x∗(t)|

= c⊤x∗(t)− c⊤x̃+ c⊤x̃− c⊤x̂

≤ c⊤x̃− c⊤x̂

≤ c1θ(t)∥c∥2
cµ

∥x̄(t)∥M−1
t

for some constant c1. Recall that
∑T

t=1 ∥x̄(t)∥M−1
t

≤ 10
√
dT log T as shown in [CLRS11],

we have

Regret(T ) ≤ 2(d+ 1)L∥c∥2 +
T∑

t=d+2

c1θ(t)∥c∥2
cµ

∥x̄∥M−1
t

≤ 2(d+ 1)L∥c∥2 +
c1θ(T )∥c∥2

cµ

√
dT log T .

For the “constraint violation”, by Assumption 6.2 and Inequality (6.13), we have

Violationi(T ) =
d+1∑
t=1

[a⊤i x(t)− bi]+ +
T∑

t=d+2

[a⊤i x(t)− bi]+

≤
d+1∑
t=1

[a⊤i x(t)− bi]+ +
T∑

t=d+2

[ai(t)
⊤x(t)− bi(t)]++

T∑
t=d+2

[a⊤i x(t)− bi − ai(t)
⊤x(t) + bi(t)]+

≤ (d+ 1)(L∥ai∥2 + |bi|) +
T∑

t=d+2

2θ(t)

cµ
∥x̄∥M−1

t
,

≤ (d+ 1)(L∥ai∥2 + |bi|) +
20θ(T )

cµ

√
dT log T

holds w.h.p., where c is a constant. Hence we obtain this theorem.

6.8.4 Proof of Theorem 6.3

Lemma 6.8. [AYPS11] Let A, B and C be positive semi-definite matrices such that A =

B+C. Then we have that

sup
x̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

We now prove Theorem 6.3.
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Proof. We use the same notation as that in the proof of Theorem 6.1 and let τ(t) = max{τ :

τ ≤ t, det(Mτ ) > (1 + γ) det(Mτ−1)}. Then we have that,

|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤ lµ|(āi(t)− āi)
⊤x̄|

≤ lµ|(āi(t)− āi)
⊤M

1
2
t M

− 1
2

t x̄|

≤ lµ∥(āi(t)− āi)
⊤M

1
2
t ∥2∥x̄∥M−1

t
.

By Lemma 6.8 and the definition of τ(t),

(āi(t)− āi)
⊤Mt(āi(t)− āi) ≤ (āi(t)− āi)

⊤Mτ(t)(āi(t)− āi) ·
det(Mt)

det(Mτ(t))

= (āi(τ(t))− āi)
⊤Mτ(t)(āi(τ(t))− āi) ·

det(Mt)

det(Mτ(t))

≤ (1 + γ)(āi(τ(t))− āi)
⊤Mτ(t)(āi(τ(t))− āi)

which implies that

∥(āi(t)− āi)
⊤M

1
2
t ∥2 ≤

√
1 + γ∥(āi(τ(t))− āi)

⊤M
1
2

τ(t)∥2.

Then from the proof of Theorem 6.1, we know that

(āi(t)− āi)
⊤Mt(āi(t)− āi) ≤

√
1 + γθ(t)∥x̄∥M−1

t
.

Finally, we can obtain this theorem by following the proofs of Theorem 6.1 or Theorem

6.2.

6.8.5 Proofs in Section 6.6

Theorem 6.8. Consider the following convex optimization problem

min f(x)

s.t. gi(x) ≤ 0, ∀i = 1, · · · ,m,

x ∈ X ,
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where f(·), gi(·) are convex functions, X is a nonempty convex set and X ⊆ ∩idom(gi) ∩

dom(f). If its optimal value is finite and the Slater’s condition is satisfied, namely, there

exists a vector x̄ ∈ X such that gi(x̄) < 0 for all i = 1, · · · ,m, then there is no duality gap

and the set of dual optimal solutions is nonempty and bounded.

Proof. The proof of this theorem is standard. For clearness and completeness, we provide

its proof here. Consider the set V = {(u, w) : g(x) ≤ u, f(x) ≤ w,x ∈ X} and denote by f∗

the optimal value. Since f∗ is optimal, the vector (0, f∗) is not in the interior of V. Thus,

by the supporting hyperplane theorem, there exists a hyperplane passing through (0, f∗)

and supporting V, namely, there exists (µ, µ0) with (µ, µ0) ̸= 0 such that

µ⊤u+ µ0w ≥ µ0f
∗, ∀(u, w) ∈ V, (6.21)

which implies that µ ≥ 0 and µ0 ≥ 0. Suppose that µ0 = 0, then µ ̸= 0 and

inf
(u,w)∈V

µ⊤u ≥ 0. (6.22)

On the other hand, since µ ≥ 0 and µ ̸= 0, by the definition of V, we have

inf
(u,w)∈V

µ⊤u = inf
x∈X

µ⊤g(x) ≤ µ⊤g(x̄) < 0,

which contradicts with (6.22). Hence µ0 > 0. Let µ̃ = µ/µ0, Inequality (6.21) implies

inf
(u,w)∈V

µ̃⊤u+ w ≥ f∗.

Therefore, h(µ̃) = infx∈X f(x) + µ̃⊤g(x) ≥ f∗ which implies that the dual optimal value

h∗ ≥ f∗. On the other hand, by the weak duality h∗ ≤ f∗, we have h∗ = f∗ and µ̃ is a dual

optimal solution. For any dual optimal solution µ̃, we have

h∗ = inf
x∈X

f(x) + µ̃⊤g(x) ≤ f(x̄) + µ̃⊤g(x̄) ≤ f(x̄) + max
i
gi(x̄) · ∥µ̃∥1.

Thus, we have ∥µ̃∥1 ≤ f(x̄)−h∗

mini{−gi(x̄)} = f(x̄)−f∗

mini{−gi(x̄)} .
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Lemma 6.9. Denote by P(δ) the following optimization problem

min f(x)

s.t. gi(x) ≤ δi, ∀i = 1, · · · ,m,

x ∈ X ,

and denote by opt(δ) its optimal value. Then if P(0) satisfies the conditions of Theorem

6.8 and δ ≥ 0, we have opt(0)− opt(δ) ≤ c∥δ∥∞ for some constant c depending on P(0).

Proof. Since P(0) satisfies the conditions of Theorem 6.8 and δ ≥ 0, P(δ) also satisfies

these conditions. Let µ̃ be the dual optimal solution of P(0). By the strong duality shown

in Theorem 6.8,

opt(δ) = max
µ≥0

min
x∈X

f(x) + µ⊤g(x)− µ⊤δ

≥ min
x∈X

f(x) + µ̃⊤g(x)− µ̃⊤δ

= opt(0)− µ̃⊤δ.

Therefore, opt(0)− opt(δ) ≤ ∥µ̃∥1∥δ∥∞. Since ∥µ̃∥1 is bounded, we obtain this lemma.

Lemma 6.10. For A ∈ Rn×m, b ∈ Rm, function ϕ(·) : Rd → Rn, and nonempty set X , if

there exists x̄ ∈ X such that A⊤ϕ(x̄) < b, then there exists a constant ρ so that

Â⊤ϕ(x) ≤ b̂, x ∈ X

is always strictly feasible whenever max{∥âi−ai∥2, |b̂i− bi|} < ρ where ai and âi are the ith

columns of A and Â, respectively.

Proof. By the assumption above, a⊤i ϕ(x̄) < bi for all i = 1, · · · ,m. Note that for any âi

and b̂i, â⊤i ϕ(x̄) < b̂i holds as long as (âi − ai)
⊤ϕ(x̄)− (b̂i − bi) < bi − a⊤i ϕ(x̄). Therefore, if

max{∥âi − ai∥2, |b̂i − bi|} <
bi − a⊤i ϕ(x̄)

2
min{1, 1

∥ϕ(x̄)∥2
},

x̄ is a feasible solution of â⊤i ϕ(x̄) < b̂i. Then by taking ρ = mini
bi−a⊤

i ϕ(x̄)
2 min{1, 1

∥ϕ(x̄)∥2 },
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we obtain this lemma.

Lemma 6.11. Denote by P(δ) the following optimization problem

min f(x)

s.t. gi(x) ≤ δi, ∀i = 1, · · · ,m,

x ∈ X ,

and denote by opt(δ) its optimal value. If P(0) satisfies the conditions of Theorem 6.8,

then there exist constant ρ and vector x̄ ∈ X which only depend on P(0) so that for any

∥δ∥∞ ≤ ρ, the following inequality holds

|opt(δ)− opt(0)| ≤ 2|f(x̄)− opt(0)|
mini{−gi(x̄)}

· ∥δ∥∞.

Proof. Since P(0) satisfies the Slater’s condition, there exists x̄ ∈ X so that gi(x̄) < 0 for

i = 1, · · · ,m. Thus, for any δ such that ∥δ∥∞ ≤ ρ ≜ 1
2 mini |gi(x̄)|, P(δ) is feasible and

satisfies the Slater’s condition.

Let µ0 and µδ be the dual optimal solutions of P(0) and P(δ), respectively. Then from

Theorem 6.8, we know that

opt(δ) = max
µ≥0

min
x∈X

f(x) + µ⊤g(x)− µ⊤δ

≥ min
x∈X

f(x) + µ⊤
0 g(x)− µ⊤

0 δ

= opt(0)− µ⊤
0 δ,

and
opt(0) = max

µ≥0
min
x∈X

f(x) + µ⊤g(x)

≥ min
x∈X

f(x) + µ⊤
δ g(x)− µ⊤

δ δ + µ⊤
δ δ

= opt(δ) + µ⊤
δ δ.



6.8 Proofs of Technical Results 189

Theorem 6.8 also shows that

µ0 ≤
f(x̄)− opt(0)
mini{−gi(x̄)}

, µδ ≤ f(x̄)− opt(δ)
mini{−gi(x̄) + δi}

.

When opt(δ) ≤ opt(0),

|opt(δ)− opt(0)| ≤ ∥µ0∥1∥δ∥∞.

When opt(δ) > opt(0),

|opt(δ)− opt(0)| ≤max{∥µ0∥1, ∥µδ∥1} · ∥δ∥∞

≤∥µ0∥1∥δ∥∞max{1, mini |gi(x̄)|
mini{|gi(x̄)|+ δi}

}.

Recall that ∥δ∥∞ ≤ 1
2 mini |gi(x̄)|, then

|opt(δ)− opt(0)| ≤ 2∥µ0∥1∥δ∥∞.

Hence we obtain this lemma.

Lemma 6.12. Denote by P(A,b) the following optimization problem

min f(x)

s.t. A⊤ϕ(x) ≤ b,

x ∈ X ,

(6.23)

where f(·) is a convex function, X is a bounded convex set, and for i = 1, · · · ,m, ai –

the ith column of A – satisfies that ai ∈ A for some set A such that a⊤ϕ(x) is a convex

function in x for any a ∈ A. Let opt(A,b) be the optimal value of Problem (6.23). If there

exists a constant L such that ∥ϕ(x)∥2 ≤ L for any x ∈ X and Problem (6.23) satisfies the

Slater’s condition, then there exist constants ρ and c so that for any Â and b̂ satisfying that

max{∥ai − âi∥2, |b̂i − bi|} < ρ and âi ∈ A for i = 1, · · · ,m, the following inequality holds

|opt(Â, b̂)− opt(A,b)| ≤ c[∥b̂− b∥∞ + Lmax
i

∥âi − ai∥2].
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Proof. By Lemma 6.10, there exists constant ρ1 such that when max{∥ai− âi∥2, |b̂i− bi|} <

ρ1, P(Â, b̂) is feasible and satisfies the Slater’s condition. Let x̂ be the optimal solution of

P(Â, b̂). Since

A⊤ϕ(x̂) ≤ b+ (b̂− b− (Â−A)⊤ϕ(x̂)),

by Lemma 6.11, we know that there exists constants ρ2 and c such that when ∥b̂− b∥∞ +

∥(Â−A)⊤ϕ(x̂)∥∞ < ρ2, the following inequality holds

|opt(Â, b̂)− opt(A,b)| ≤ c[∥b̂− b∥∞ + ∥(Â−A)⊤ϕ(x̂)∥∞].

By the assumption that there exists a constant L such that ∥ϕ(x)∥2 ≤ L for any x ∈ X , we

have

∥(Â−A)⊤ϕ(x̂)∥∞ ≤ max
i

{∥âi − ai∥2∥ϕ(x̂)∥2} ≤ max
i

{L∥âi − ai∥2}.

Then by taking ρ = min{ρ1, ρ2
L+1}, we obtain this lemma.

Proof of Theorem 6.4

We use the same notations as that in the proof of Theorem 6.1. Equation (6.9) shows that

for any x̄,

|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤
2lµ
cµ

∥x̄∥M−1
t
∥

t−1∑
k=1

ξi(k)y(k)∥M−1
t
.

Since Mt ⪰ Md+1 ≻ 0,

∥
t−1∑
k=1

ξi(k)y(k)∥M−1
t

≤ ∥
d+1∑
k=1

ξi(k)y(k)∥M−1
d+1

+ ∥
t−1∑

k=d+2

ξi(k)y(k)∥M−1
t
.

Recall that λmin(Md+1) ≥ c0 > 0 and {y(1), · · · ,y(d + 1)} are fixed conditioned on

{x(1), · · · ,x(d+ 1)}.

Since ∥y(k)∥2 ≤
√
L2 + 1, |ξi(k)| ≤ R and

∥
d+1∑
k=1

ξi(k)y(k)∥M−1
d+1

= ∥
d+1∑
k=1

ξi(k)M
− 1

2
d+1y(k)∥2,

by the matrix Bernstein inequality, one can easily verify that for 0 < δ < 1 there exists a
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constant c such that

∥
d+1∑
k=1

ξi(k)y(k)∥M−1
d+1

≤ cR

√
d log

md

δ

holds with probability at least 1− δ
m .

By Lemma 6.6 and Lemma 6.7, we have that for any δ > 0, with probability at least 1− δ
m ,

∥
t−1∑

k=d+2

ξi(k)y(k)∥2M−1
t

≤ 2R2

[
log

m

δ
+ d log c0 + d log

(
L2 + 1 +

t(L2 + 1)

d+ 1

)]
.

Therefore,

∥
t−1∑
k=1

ξi(k)y(k)∥M−1
t

≤ cR

√
d log

md

δ
+ d log

(
L2 + 1 +

t(L2 + 1)

d+ 1

)

≤ cR

√
d log

md

δ
+ d log

2t(L2 + 1)

d

= cR

√
d log

2mt(L2 + 1)

δ
.

Then let θ(t) = clµR
cµ

√
d log 2mt(L2+1)

δ , we have

|f(āi(t)⊤x̄)− f(ā⊤i x̄)| ≤ θ(t)∥x̄∥M−1
t
.

By following the proof of Theorem 6.2, we know that

Regret(T ) =
d+1∑
t=1

c⊤x(t)− c⊤x∗(t) +

T∑
t=d+2

c⊤x(t)− c⊤x∗(t)

≤ (d+ 1)∥c∥2∥x(t)− x∗(t)∥2 ≤ 2(d+ 1)L∥c∥2,

and

Violationi(T ) ≤ (d+ 1)(L∥ai∥2 + |bi|) +
20θ(T )

cµ

√
dT log T

hold with probability at least 1− δ.
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Proofs of Theorems 6.5, 6.6 and 6.7

These theorems can be easily proved by applying Lemmas 6.9-6.12 and following the same

procedures of the proofs of Theorem 6.1, Theorem 6.2 and Theorem 6.4.

6.9 Chapter Summary

We proposed two algorithms LPUC-ED and LPUC-UCB to solve the online linear program-

ming problem with unobserved constraints which generalized the stochastic linear optimiza-

tion problem studied by [DHK08]. Both of the algorithms have sublinear bounds on the

regret and the constraint violation. The numerical experiments demonstrated their good

empirical performance and validated our theoretical results. For future work, we will try to

develop algorithms that achieve O(
√
T log T ) bounds and are computationally efficient.



Chapter 7
A Unified Framework for Outlier-Robust PCA-like

Algorithms

We propose a unified framework for making a wide range of PCA-like algorithms – including

the standard PCA, sparse PCA and non-negative sparse PCA, etc. – robust when facing

a constant fraction of arbitrarily corrupted outliers. Our analysis establishes solid perfor-

mance guarantees of the proposed framework: its estimation error is upper bounded by a

term depending on the intrinsic parameters of the data model, the selected PCA-like algo-

rithm and the fraction of outliers. Our experiments on synthetic and real-world datasets

demonstrate that the outlier-robust PCA-like algorithms derived from our framework have

outstanding performance.

7.1 Introduction

Principal component analysis (PCA) [Pea01], arguably the most widely applied dimension

reduction method, plays a significant role in data analysis in a broad range of areas including

machine learning, statistics, finance, biostatistics and many others. The standard PCA per-

forms the spectral decomposition of the sample covariance matrix, selects the eigenvectors

corresponding to the largest eigenvalues, and then constructs a low dimensional subspace

based on the selected eigenvectors. It is well known that standard PCA, depending on

different applications, may suffer from three weaknesses [MR14, XCM13, JL09]: 1) PCA

is notoriously fragile to outliers – indeed, its performance can significantly degrade in the

presence of even few corrupted samples, due to the quadratic error criterion used; 2) PCA

193
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cannot utilize additional information of the principal components: e.g., in certain applica-

tions, it is known that the principal components should lie in the positive orthant; 3) its

output may lack interpretability since it does not encourage sparse solutions.

Many efforts have been made to mitigate these weaknesses of PCA. In recent years, numerous

robust PCA algorithms have been proposed to address the first issue [DGK81, XY95, YW99,

lTB03, Das03, XCM13, FXY12]. Among them, [XCM13] successfully tackles the case where

a constant fraction of samples are corrupted in the high dimensional regime. Their proposed

method, termed HR-PCA (which stands for High-dimensional Robust PCA), is tractable,

easily kernelizable, and is able to robustly estimate the principal components even in the

face of a constant fraction of outliers and very low signal-to-noise ratio. To overcome the

computational issue of HR-PCA, Feng et al. [FXY12] proposed a deterministic approach

(DHR-PCA) that dramatically reduces the computational work. However, neither HR-PCA

nor DHR-PCA deals with the last two weaknesses mentioned above.

To address the second weakness, [MR14] recently proposed a new algorithm called non-

negative PCA which handles the case that the principal components are known to lie in the

positive orthant, and showed that near-optimal non-negative principal components can be

extracted in nearly linear time. But similar to the standard PCA, this algorithm is sensitive

to outliers. Indeed, the estimated principal components can be far from the true ones in

the face of even few outliers.

To address the third weakness, previous works focus on a class of methods called sparse

PCA that adapt the standard PCA so that only a few of attributes of the resulting prin-

ciple components are non-zero, e.g., [VCLR13, ZHT06, SH08, JYN08, BJNP13, VL13,

dEJL07, TDT10]. Some of these methods are based on non-convex optimization formu-

lations [JTU03, MWA05] while others use ℓ1-norm regularization [ZHT06]. Recently, Vu et

al. [VCLR13] proposed FPS – a convex relaxation formulation of sparse principal subspace

estimation based on a semi-definite program with a Fantope constraint and established the-

oretical guarantees in the outlier-free regime. Yet, one severe drawback of most sparse PCA

algorithms is that the output can be sensitive to the existence of even few outliers. This

is clearly undesirable, as in real-world applications, the existence of outliers is ubiquitous.
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Recently, several robust sparse PCA have been proposed [CFF13, WC12, HRS14] to han-

dle outliers, but all of them are only evaluated by experiments and have no theoretical

performance guarantees.

This chapter is the first attempt to theoretically address these issues of PCA simultaneously.

In specific, we propose a general framework for a wide range of PCA-like algorithms to

make them provably robust to a constant fraction of arbitrary outliers. Our framework

is inspired by HR-PCA [XCM13, FXY12], but overcomes the drawbacks of HR-PCA and

has the capability of converting a non-robust PCA-like algorithm such as non-negative

PCA [MR14], sparse PCA [VCLR13, PDK13] or non-negative sparse PCA [APD14], into

its outlier-robust variant.

The analysis of our proposed framework is novel and different from that of HR-PCA. We

analyze its performance using two performance metrics: the subspace distance and the

expressed variance. We show that the subspace distance between its estimated principal

components and the ground-truth under the spiked model can be upper bounded by a term

depending on the parameters of the spike model, the selected PCA-like algorithm and the

fraction of outliers. The analysis of subspace distance in the presence of outliers is new to

the best of our knowledge. Moreover, while the analysis of expressed variance for HR-PCA

exists in literature, our analysis of the expressed variance of this framework is more general,

in that it shows that maximal robustness can be achieved for a wide range of PCA-like

algorithms besides HR-PCA. Our numerical experiments results show that when outliers

exist, the outlier-robust PCA-like algorithms developed from our framework outperform

their non-robust counterparts considerably.

Notation. We use lower-case boldface letters to denote column vectors and upper-case

boldface letters to denote matrices. In this chapter, ∥M∥2 is the spectral norm, ∥M∥∗ is the

nuclear norm, ∥M∥1 is the element-wise ℓ1 norm, ∥M∥∞ is the element-wise infinity norm,

and ∥M∥F is the Frobenius norm. We use ∥M∥0 to denote the number of non-zero entries in

M, and use subscript (·) to represent order statistics of a random variable. For example, let

v1, · · · , vn ∈ R, then v(1), · · · , v(n) is a permutation of v1, · · · , vn in a non-decreasing order.

For matrix X, the first k singular values of X are denoted by λ1(X), · · · , λk(X).
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7.2 Unified Framework for Outlier-Robust PCA

In this section, we present our framework for outlier-robust PCA-like algorithms. We first

describe the problem setup and necessary assumptions, and then show the details of the

algorithm along with the key intuition underlying it.

7.2.1 Problem Setup

Suppose there are n samples Y = {y1, · · · ,yn ∈ Rp} which consist of t authentic samples

z1, · · · , zt ∈ Rp and n− t outliers o1, · · · ,on−t ∈ Rp. The outliers are arbitrary. We denote

the fraction of outliers by ρ = (n− t)/n and assume that ρ < 0.5. The authentic samples zi

are generated according to zi = Axi+ni where xi ∈ Rd are i.i.d. samples of a random vector

x with mean 0 and variance Id and ni are independent realizations of standard Gaussian

N (0, Ip). The matrix A ∈ Rp×d and the distribution of x (denoted by ν) are unknown.

The covariance of z is denoted by Σ. Since z = Ax + n, Σ = E[zz⊤] = AA⊤ + Ip. We

denote the one-dimensional marginal of ν along direction v ∈ Sd by ν̄v, and assume that

ν̄v({0}) < 0.5 for all v ∈ Sd and it is sub-Gaussian, i.e., there exists θ > 0 such that

ν̄v((−∞, x]∪ [x,+∞)) ≤ exp(1−x2/θ) for all x > 0. Clearly, both assumptions are satisfied

if ν is Gaussian.

We make the following two assumptions: 1) A is full row rank and n > d. This essentially

means the intrinsic dimension of the authentic samples (ignoring the noise) is indeed d. 2)

The projection Π(k) = U(k)U(k)⊤ onto the subspace spanned by the eigenvectors U(k) of

Σ corresponding to its k largest eigenvalues satisfies ∥Π(k)∥0 ≤ β2, where ∥Π(k)∥0 is the

number of nonzero entries of Π(k). Our goal is to approximately recover Π(k) even though

the samples contain a non-negligible fraction of arbitrary outliers. For convenience, we let

Π ≜ Π(k) in the following sections. In the followings, “with high probability” means with

probability at least 1− cmax{p−10, n−10} for some constant c.
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7.2.2 General Formulation of PCA-like Algorithms

Many kinds of PCA-like algorithms have been proposed in recent decades, e.g., sparse PCA

[ZHT06, PDK13], non-negative PCA [MR14], etc., which play a significant role in machine

learning, computer vision, statistics and data analysis. In this section, we consider a general

formulation as shown below for a wide range of these algorithms:

max
X∈C

⟨Σ̂,X⟩ − µ∥X∥1, (7.1)

where Σ̂ is the empirical sample covariance matrix, C includes the constraints imposed on

X, and µ is the weight of the regularization term. Typically, µ is less than a certain universal

constant. To see that this formulation can model most PCA-like algorithms proposed in

literature, let k be the number of the principal components one wants to extract and F(k)

be the set {X : 0 ⪯ X ⪯ Ip, tr(X) = k} which includes the matrices that lie in the convex

hull of all feasible projection matrices. Thus, the following algorithms are all equivalent to

Formulation (7.1) for appropriate k, C and µ:

1. Standard PCA [Pea01]: k = d, C = F(k) and µ = 0;

2. Non-negative PCA [MR14]: k = 1, C = {uu⊤ : ∥u∥2 ≤ 1,u ≥ 0} and µ = 0;

3. Sparse PCA [PDK13]: k = 1, C = {uu⊤ : ∥u∥0 ≤ γ, ∥u∥2 ≤ 1} and µ = 0;

4. Fantope projection and selection (FPS) [VCLR13]: k = d, C = F(k) and µ ≍
√

log p
n ;

5. Non-negative sparse PCA [APD14]: k = 1, C = {uu⊤ : ∥u∥0 ≤ γ, ∥u∥2 ≤ 1,u ≥ 0}

and µ = 0;

6. Large-scale sparse PCA [ZE11]: k = 1, C = {X : X ⪰ 0, tr(X) = 1}, µ > 0.

Since the feasible set C in (7.1) may be non-convex, the global optimum of (7.1) may not

be achievable. Therefore, there are two important issues: 1) whether a PCA-like algorithm

can probably find an optimal or near-optimal solution of (7.1), and 2) whether its solution

converges to the ground truth. We call the PCA-like algorithms that can find optimal or

near-optimal solutions of (7.1) “workable” algorithms, formally defined as:

Definition 7.1. A PCA-like algorithm is (η, γ)-workable if there exist positive numbers
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η ≤ 1 and γ ≤ p such that with high probability its output X̂ satisfies ∥X̂∥0 ≤ γ2 and

⟨Σ̂, X̂⟩ − µ∥X̂∥1 ≥ (1− η)
[
⟨Σ̂,Π⟩ − µ∥Π∥1

]
.

Note that η indicates the accuracy of the solution X̂, e.g., η = 0 means X̂ is optimal, while

η = 0.5 means the cost value corresponding to X̂ is half of the optimum. Parameter γ

bounds the sparsity of X̂. For the first five algorithms mentioned above, previous works

have proved that all of these algorithms are workable. In particular, η = 0, γ = p for

standard PCA and FPS, 0 < η < 1, γ = p for non-negative PCA, and 0 < η < 1, γ ≪ p

for sparse PCA and non-negative sparse PCA. For large-scale sparse PCA, no performance

guarantees are known, but our experiments show that this algorithm can still be put into

our framework to achieve robustness.

7.2.3 Outlier-Robust PCA-like Algorithms

Our framework is inspired by HR-PCA [XCM13]. Therefore, before presenting its details,

we briefly explain the intuition behind HR-PCA. HR-PCA iteratively performs PCA to

compute principal components (PCs) and then randomly removes one point with a prob-

ability proportional to its magnitude after projected on the found PCs. HR-PCA works

for the following intuitive reasons. In each iteration, a PC is computed either due to true

samples which implies it is a “good” direction; or due to large outliers in which case the

random removal scheme will remove an outlier with high probability. Thus, for at least one

iteration, the algorithm will find a good direction, say wt. Among all the directions found

in the algorithm, the final output of HR-PCA is the one with the largest Robust Variance

Estimator (RVE). RVE measures the projection variance of the (n − t̂)-smallest points: A

large RVE means that that many of the points have a large variance in this direction, while

a small RVE indicates otherwise. This makes sure that the final output is close to wt, and

hence a good direction. A variant of HR-PCA is called deterministic HR-PCA or DHR-PCA

[FXY12]. Instead of removing one point, DHR-PCA decreases the weights of all samples

according to their magnitudes after projected on the found PCs in each iteration to reduce

computational cost.
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Algorithm 7.1: Outlier-robust PCA-like algorithm

Input : Contaminated sample-set Y = {y1, · · · ,yn} and parameters k, T , t̂, µ.

Output: The estimated principal components.

1 Initialize: s = 0, Opt = 0; ŷi = yi and αi = 1 for i = 1, · · · , n;

2 for s = 1 to T do

3 Compute the weighted empirical covariance matrix Σ̂ = 1
n

∑n
i=1 αiŷiŷ

⊤
i ;

4 Solve the PCA-like problem 7.1 and denote the output by X̂;

5 If V t̂(X̂) > Opt, let Opt = V t̂(X̂) and X∗ = X̂, where

V t̂(X̂) ≜ 1
t̂

∑t̂
i=1⟨yy⊤, X̂⟩(i);

6 Update αi = (1− ⟨yiy
⊤
i ,X̂⟩

max{i|αi ̸=0}⟨yiy⊤
i ,X̂⟩

)αi;

7 end

8 Perform SVD on X∗ and denote the top k eigenvectors by w∗
1, · · · ,w∗

k;

9 Return w∗
1, · · · ,w∗

k and X∗.

HR-PCA and DHR-PCA only focus on making standard PCA robust to outliers but say

nothing about whether it is possible to improve the robustness of non-negative PCA or

sparse PCA. In this chapter, we propose a more general framework as shown in Algorithm

7.1 for developing outlier-robust PCA-like algorithms. In Algorithm 7.1, the weighted co-

variance matrix acts as a robust covariance estimator [Rou85, RD98, CH00], and V t̂(X)

is the Robust Variance Estimator which is defined as V t̂(X) ≜ 1
t̂

∑t̂
i=1⟨yy⊤,X⟩(i), where

y ∈ Y = {y1, · · · ,yn}. Intuitively, the term ⟨yy⊤,X⟩ imitates the magnitude of y after it

is projected on the column subspace of X, so this RVE measures the projection variance

similar to the one in HR-PCA. As we show below, a PCA-like algorithm becomes outlier-

robust if it is integrated into this general robustness framework. For example, DHR-PCA

can be easily deduced from this framework by solving the standard PCA in Step 3.
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7.3 Theoretical Guarantees

We now present the performance guarantees of Algorithm 7.1 with a (η, γ)-workable PCA-

like algorithm. Typically, there are two ways to measure the performance of PCA-like

algorithms [XCM13, VCLR13]. The first one, termed the subspace distance (S.D.), measures

the distance between the subspace spanned by the estimated PCs and the subspace spanned

by the true PCs. The second one, termed the expressed variance (E.V.), measures the

portion of the signal Ax being expressed by the estimated principle components. Formally,

we have:

Definition 7.2. Let M1,M2 be two symmetric matrices and M1,M2 be their respective

k-dimensional principal subspaces, then the subspace distance is S.D. ≜ sinΘ(M1,M2).

Definition 7.3. The expressed variance of w1, · · · ,wk is defined as E.V. ≜
∑k

i=1 w
⊤
i AA⊤wi∑k

i=1 λi(AA⊤)
.

Notice that a smaller S.D. or a larger E.V. indicates a more desirable solution. Also, S.D.

≥ 0 and E.V. ≤ 1 with equality achieved when the vectors w1, · · · ,wk span the same space

as the true PCs. Thus, to provide performance guarantees of the proposed algorithms, we

lower bound the expressed variance as well as upper bound the subspace distance for the

output. This is different from [XCM13] and [FXY12] which only analyzed the expressed

variance (of HR-PCA and DHR-PCA respectively).

To analyze the performance of Algorithm 7.1, the following “tail weight” function the first

appeared in [XCM13] is required.

Definition 7.4. ([XCM13]) For any γ ∈ [0, 1] and v ∈ Sd, let δγ ≜ min{δ ≥ 0|ν̄v([−δ, δ]) ≥

γ} and γ−ν = ν̄v((−δ, δ)). Then the “tail weight” functions Vv is defined as follows:

Vv(γ) ≜ lim
ϵ↓0

∫ δγ−ϵ

−δγ+ϵ
x2ν̄v(dx) + (γ − γ−ν )δ

2
r .

We define V+(γ) ≜ supv∈Sd
Vv(γ) and V−(γ) ≜ infv∈Sd

Vv(γ). In the following subsections,

we assume that the feasible set C in (7.1) is a subset of F(k) – the convex hull of all the

feasible projection matrices. This is not a restrictive condition. Indeed all the algorithms

listed in Section 7.2.2 except large-scale sparse PCA meet this condition.
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7.3.1 Upper Bound of Subspace Distance

We first bound the subspace distance for Algorithm 7.1. The following lemma relates the

subspace distance with the Frobenius norm of X∗ − Π so that we only need to bound

∥X∗ −Π∥F .

Lemma 7.1. [VCLR13] If M is the principal d-dimensional subspace of Σ and M∗ is the

principal k-dimensional subspace of X∗, then

sinΘ(M,M∗) ≤
√
2∥X∗ −Π∥F .

In the following parts, we let δk(AA⊤) ≜ λk(A)2 − λk+1(A)2 and let

f(B) = min
{
2B∥A∥22 + c1τ, γB∥A∥22 + c2γ(d∥A∥2 + 1)

}
,

where τ = max{ p
n , 1} and c is a universal constant. Notice that f(B) is upper bounded by

2B∥A∥22 + c1 when p = O(n) and by γB∥A∥22 + c2γ(d∥A∥2 + 1) when p = Ω(n) and γ ≪ p

for some constants c1 and c2. Therefore, in the high dimensional case where p ≫ n, when

sparse PCA algorithms are applied, i.e., γ ≪ p, f(B) can still be small, compared with p
n .

We now provide our first main theorem which states that the output X̂ in Step 3 will be

close to the true projection matrix after a certain number of iterations.

Theorem 7.1. Suppose that ρ < 0.5 and log p ≤ n, then there exists a finite number s ≤ n

such that the output Xs of the PCA-like algorithm in the sth stage satisfies the following

inequality with high probability,

∥Xs −Π∥F ≤ R(µ) +
√
k min
1≥κ>2ρ

√
f(B1) + ηβB0

δk(AA⊤)
, (7.2)

where

R(µ) ≜


8(γ[ϵ0(∥A∥22+1)−µ]++µβ)

δk(AA⊤)
, µ ̸= 0

min

{
8ϵ0γ(∥A∥22+1)

δk(AA⊤)
, 2

√
ϵ1k(∥A∥22+1)

δk(AA⊤)

}
, µ = 0,

ϵ0 = c0

√
log p
n , ϵ1 = c1

√
p
n , B0 = c2(∥A∥22+1), B1 = κ+1−V−(1− ρ

κ(1−ρ))+ϵ0+c3

(
d log3 n

n

) 1
4 ,
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and c0, c1, c2, c3 are universal constants.

Remark. The upper bound of ∥Xs−Π∥F involves three terms: 1) R(µ): R(µ) is related to

the weight of the regularization term in (7.1). A positive µ can encourage sparse solutions.

From the formulation of R(µ), we know that setting µ to ϵ0(∥A∥22 + 1) when µ is non-zero

leads to a tighter bound. 2) f(B1): B1 involves ρ – the fraction of outliers, and decreases

when ρ decreases. Clearly, B1 → 0 when ρ, d log3 n
n and log p

n converge to zero. 3) ηβB0: This

term contains η, i.e., the accuracy of the selected PCA-like algorithm. When the optimal

solution of (7.1) can be achieved, this term becomes zero.

Theorem 7.1 tells us that a good solution Xs can be generated for some iteration s. However,

such s is not specified. Thus, one can not take Xs as the output; instead, one can choose a

solution that is close to Xs as the output. In Algorithm 7.1, the solution with the maximal

RVE is selected as the final output X∗. Other methods can also be applied in practical

applications based on specific information. The following theorem provides the estimation

error of X∗.

Theorem 7.2. Suppose that ρ < 0.5 and log p ≤ n, the following holds with high probability,

∥X∗ −Π∥F ≤

√
2 [(dB2 + kB4)λ1(A)2 + kf(B3)]

δk(AA⊤)
, (7.3)

where B2 is the right hand side of (7.2),

B3 = 2− V−(
t̂

t
)− V−(

t̂− ρn

t
) + c0

(
d log3 n

n

) 1
4

,

B4 = min{c1
√

p
n , c2γ

√
log p
n }, and c0, c1, c2 are universal constants.

Remark. This upper bound contains three terms: 1) B2 is the upper bound of ∥Xs−Π∥F

as shown in Theorem 7.1. 2) B3 involves ρ and parameter t̂, which becomes small when

ρ decreases and t̂ approaches t. 3) B4 converges to zero as p
n → 0 or γ

√
log p
n → 0. To

achieve consistency, one should ensure that p
n → 0 for the standard PCA where γ = p, and

γ2 log p
n → 0 for sparse PCA where γ ≪ p.

The following corollaries provide more interpretable bounds of the subspace distance for the
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standard PCA, FPS and sparse PCA discussed in Section 7.2.2.

Corollary 7.1. Suppose that ρ < 0.5 and log p ≤ n, then when the PCA-like algorithm is

the standard PCA [Pea01], the following holds with high probability,

∥X∗ −Π∥F ≤

√
4d(B2 +B3 + ϵ)λ1(A)2 + cdτ

λd(A)2
, (7.4)

where

B2 = 2

√
ϵd(λ1(A)2 + 1)

λd(A)2
+ min

1≥κ>2ρ

√
2dB1λ1(A)2 + cdτ

λd(A)2
,

B1 is defined in Theorem 7.1, B3 is defined in Theorem 7.2, ϵ = c1

√
p
n , τ = max{ p

n , 1} and

c, c0, c1 are universal constants.

The standard PCA imposes no constraint on the sparsity of its solution, so when the ambient

dimension p grows faster than the sample number n, the bound in Corollary 7.1 will go to

infinity. One way to encourage sparsity is to impose a “soft” constraint which upper bounds

the l1-norm of the solution, e.g., FPS.

Corollary 7.2. Suppose that ρ < 0.5 and log p ≤ n, then when the PCA-like algorithm is

FPS [VCLR13], the following holds with high probability,

∥X∗ −Π∥F ≤

√
4d(B2 +B3 + ϵ1)λ1(A)2 + cdτ

λd(A)2
, (7.5)

where

B2 =
ϵ0(λ1(A)2 + 1)β

λd(A)2
+ min

1≥κ>2ρ

√
2dB1λ1(A)2 + cdτ

λd(A)2
,

B1 is defined in Theorem 7.1, B3 is defined in Theorem 7.2, ϵ0 = c0

√
log p
n , ϵ1 = c1

√
p
n ,

τ = max{ p
n , 1} and c, c0, c1 are universal constants.

Notice that p cannot grow faster than nλd(A)2

d due to the existence of outliers, but the first

term in B2 in Corollary 7.2 involves log p
n instead of p

n , which is much smaller than that

in Corollary 7.1. Thus, the soft constraint is helpful if the true solution is indeed sparse.

When the selected PCA-like algorithm has a “hard” constraint on the sparsity, e.g., the ones

proposed by [PDK13] and [APD14], p can grow much faster than n.

Corollary 7.3. Suppose that ρ < 0.5 and log p ≤ n, then when γ ≥ β and the PCA-like
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algorithm is sparse PCA [PDK13] or non-negative sparse PCA [APD14], the following holds

with high probability,

∥X∗ −Π∥F ≤

√
2 [(dB2 + βB3 + βϵ0)λ1(A)2 + cβ(dλ1(A) + 1)]

δ1(AA⊤)
, (7.6)

where

B2 =
ϵ0(λ1(A)2 + 1)β

δ1(AA⊤)
+

√
γ min

1≥κ>2ρ

√
B1λ1(A)2 + c(dλ1(A) + 1) + ηB0

δ1(AA⊤)
.

B0, B1 are defined in Theorem 7.1, B3 is defined in Theorem 7.2, ϵ0 = c0

√
log p
n , and c, c0

are universal constants.

Recall that Σ = AA⊤ + Ip. The bound shown in Corollary 7.3 can be finite regardless of

the magnitude of the existing outliers, e.g., when d, β
√

log p
n , (B1 + B3 + η)γ, γ

λ1(A) and
λ1(Σ)

λ1(Σ)−λ2(Σ) are bounded from above.

7.3.2 Lower Bound of Expressed Variance

[XCM13] and [FXY12] provided lower bounds of E.V. when the standard PCA is selected

in Algorithm 7.1. We now show that E.V. can be bounded from below when other PCA-like

algorithm of form (7.1) (and workable) are used in Algorithm 7.1. Let H∗ ≜ ⟨AA⊤,X∗⟩

and H ≜ ⟨AA⊤,Π⟩, then we have the following theorem.

Theorem 7.3. Suppose that ρ < 0.5. For any κ, there exists a constant c such that the

following inequalities hold w.h.p,

E.V ≥
(1− η)V−

(
t̂
t −

ρ
1−ρ

)
V−
(
1− ρ

κ(1−ρ)

)
(1 + κ)V+

(
t̂
t

)
− c

V+(0.5)

[(
kmin{τ, γς}

H

) 1
2

+

(
d log3 n

n

) 1
4

]

−2(1− η)µβ
√
k

V+( t̂t)H
−max{1− λk(X

∗), λk+1(X
∗)},

(7.7)

where τ = max{ p
n , 1} and ς = max{ log p

n , 1}.
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As discussed in Section 7.2.2, X∗ has the form X∗ = uu⊤ for the standard PCA, non-

negative PCA [MR14], sparse PCA [PDK13] and non-negative sparse PCA [APD14], which

implies that the last term in (7.7) vanishes for these four algorithms when k = 1. But for

FPS [VCLR13], this term may not be zero. The following lemma shows that it can converge

to zero under certain circumstances.

Lemma 7.2. Suppose that S is a sequence of matrices such that for any Sn ∈ S, Sn ∈ Sp×p
+

and λd(Sn)− λd+1(Sn) ≥ δ > 0. Let

Xn ≜ arg max
X∈F(d)

⟨Sn,X⟩ − µn∥X∥1,

then if µn → 0 as n → +∞ and pd3/2 = o( 1
µn

), we have λd(Xn) → 1 and λd+1(Xn) → 0

as n ↑ +∞.

The following result shows the asymptotic bound of the expressed variance in which we

assume that the last term in (7.7) converges to zero as n goes to infinity. This condition

holds for all the algorithms mentioned above.

Theorem 7.4. (Asymptotic Bound): Consider a sequence of {Yi, di, ni, pi, µi, βi, γi}, where

the asymptotic scaling satisfies

ni ↑ +∞, lim
i↑+∞

log pi
ni

≤ +∞, lim
i↑+∞

min{pi/ni, γi}∑k
j=1 λj(Ai)2

↓ 0,

ni

di log
3 ni

↑ +∞,
di∑k

j=1 λj(Ai)2
↓ 0, µiβi ↓ 0,

Let ρ∗ = lim sup ρi ≤ 0.5 and suppose t̂ > 0.5n, then if λk(X∗) → 1 and λk+1(X
∗) → 0 as

ni ↑ +∞, the following holds in probability when i ↑ +∞,

lim inf
i

E.V ≥ (1− η)max
κ

V−
(
1− ρ∗

(1−ρ∗)κ

)
V−
(

t̂
t −

ρ∗

1−ρ∗

)
(1 + κ)V+

(
t̂
t

) .

Furthermore, if µ̄v({0}) = 0 for all v ∈ Sd, then the breakdown point is ρ∗ = 0.5.

Corollary 7.4. Under the settings of the above theorem, the following holds in probability
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for some constant C when i ↑ +∞,

lim inf
i

E.V ≥ (1− η)

[
V−( t̂t)− C

√
θρ∗ log(1/2ρ∗)

V+( t̂t)

]
.

7.3.3 Complexity

Recall that Algorithm 7.1 is an iterative algorithm that solves a PCA-like algorithm in each

iteration. Theoretically, the number of iterations required to generate a good solution is

bounded by n. But in practice, one can stop the algorithm at any time as long as the output

of the robust variance estimator is good enough. We will show in the experiments that 5-10

iterations are sufficient to achieve a good solution. Since the time and space complexity of

Algorithm 7.1 mainly depends on performing the selected PCA-like algorithm, this means

the computational cost of Algorithm 7.1 is about 5-10 times higher than the non-robust

PCA-like algorithm – robustness is not a free lunch, but you don’t pay much.

7.4 Experimental Results

In this section, we show that our framework indeed makes PCA-like algorithms more robust

to outliers. We refer to the selected PCA-like algorithm in Step 3 in Algorithm 7.1 as A and

consider four algorithms induced from our framework: 1) OR-PCA: A is the standard PCA.

OR-PCA has been extensively studied in [XCM13]. 2) OR-SPCA: A is FPS [VCLR13]

to encourage sparse solutions. 3) Nonnegative OR-SPCA: A is non-negative sparse PCA

[APD14]. 4) Large-scale OR-SPCA: A is the algorithm proposed by [ZE11] which is able to

handle high dimensional data. Although this algorithm has no performance guarantees, it

does work well in the experiments.

Firstly, we illustrate the performance of OR-PCA and OR-SPCA via numerical results on

synthetic and real data. For synthetic data, we generate matrix A via the following three

steps: 1) randomly generate sparse orthogonal matrices U ∈ Rp×d and V ∈ Rd×d such

that ∥U∥2,0 = β where ∥U∥2,0 is the number of non-zero rows in U; 2) generate a diagonal

matrix S whose diagonal entries are drawn from (a) the uniform distribution over [1, 2] or
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(b) the chi-square density x−0.5e−0.5x
√
2Γ(0.5)

where x is chosen from 0.05 to 0.05d using step-size

0.05; 3) finally, let A = USV⊤. The t authentic samples zi are generated by the function

zi = Axi + ni where xi ∼ N (0, Id), ni ∼ N (0, σ2Ip). A ρ fraction outliers oi are generated

with a uniform distribution over [−c, c]p where c is a constant.

We make a comparison between OR-PCA, OR-SPCA, FPS and ROB-SPCA. ROB-SPCA is

developed based on [HRS14], which uses ROBPCA [HRB05] to estimate the robust sample

covariance and then applies FPS to compute the principal components. The performance

is evaluated by the “expressed variance” and “sparsity”. The sparsity is defined by

Sparsity ≜ |(i, j) : |Xij | > 0.001|/p2,

where X is the projection matrix generated by each algorithm.

In the first experiment, we compare the performance of each algorithm when ρ varies while

the other parameters are fixed. The parameters for generating test data are set as follows:

d = 10, σ = 0.05, β = 0.3p. Parameter T and t̂ for OR-PCA and OR-SPCA are set to 10

and ρn, respectively. Parameter µ for FPS and OR-SPCA is 0.2
√

log p
n . For each parameter

setup, we report the average results of 10 tests. Figures 7.1 and 7.2 show the performance of

these four algorithms. Clearly, FPS easily breaks down, even when there exists only a small

fraction of outliers. ROB-SPCA breaks down when ρ is larger than 0.25. Actually, most of

robust PCA algorithms based on ROBPCA do not work well when the fraction of outliers

exceeds 0.25 [XCM13]. One can also observe that OR-PCA and OR-SPCA are much more

robust than the other two algorithms, and OR-SPCA can generate more sparse solutions

than OR-PCA without significant decrease in the expressed variance, which implies that

our framework has the capability of converting a non-robust SPCA algorithm, e.g., FPS,

into a robust one.

In the second experiment, we investigate the number of the iterations required in Algorithm

7.1 to achieve good performance. We take OR-SPCA as an example. Figure 7.3 shows

the effect of the number of iterations on the expressed variance and sparsity for OR-SPCA

under three cases that p = 600, p = 800 and p = 1000, from which we observe that only

5 iterations are required for OR-SPCA to generate acceptable results in all three cases.
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Figure 7.1: The performance of OR-PCA, OR-SPCA, ROB-SPCA and FPS under (a)
p = 500, n = 300, c = 5 and (b) p = 1000, n = 300, c = 5. The singular values of A are
uniformly drawn from [1, 2].

Empirically, we observe that 5-10 iterations are enough for Algorithm 7.1 to compute good

results in practical applications. Hence in the following experiments on real data, parameter

T is set to 10.

In the third experiment, we show the performance of OR-SPCA, OR-PCA and FPS on a

real dataset of 600 samples in which 75% of samples are drawn from MNIST [LJB+95] and

25% of samples are drawn from the CBCL face image dataset [Sun96]. We take the digit

images as the authentic samples and the face images as the outliers. Each image in this

dataset is converted into a vector with dimension 784. Figure 7.4 shows the leading ten

principal components extracted by FPS, OR-PCA and OR-SPCA. It can be observed that

OR-SPCA can generate more interpretable results than OR-PCA, i.e., each PC corresponds

to some strokes. Notice that the principal components extracted by OR-SPCA are more

reliable than FPS. For example, the third principal component extracted by FPS clearly

mixes digits with faces, which is obviously unreliable.

Secondly, we evaluate the performance of the non-negative OR-SPCA on the real world



7.4 Experimental Results 209

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

ρ

E
xp

re
ss

e
d

 V
a

ri
a

n
ce

 

 

FPS

ROB−SPCA

OR−PCA

OR−SPCA

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

ρ

E
xp

re
ss

e
d

 V
a

ri
a

n
ce

 

FPS

ROB−SPCA

OR−PCA

OR−SPCA

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

ρ

S
p

a
rs

it
y

 

 

FPS

ROB−SPCA

OR−PCA

OR−SPCA

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

ρ

S
p

a
rs

it
y

 

 

FPS

ROB−SPCA

OR−PCA

OR−SPCA

(a)

(b)

Figure 7.2: The performance of OR-PCA, OR-SPCA, ROB-SPCA and FPS under (a)
p = 500, n = 300, c = 5 and (b) p = 1000, n = 300, c = 5. The singular values of A are
drawn from the chi-square density.
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Figure 7.3: The effect of the number of iterations on the expressed variance and sparsity.
n, ρ and c are fixed: n = 300, ρ = 0.1, c = 5.

dataset constructing by mixing 2429 images in the CBCL face image dataset with 125 digit

images randomly drawn from the MNIST dataset. We take the face images as the authentic

samples and the digit images as the outliers. Each image in this dataset is converted into a

vector with dimension 361. We compare non-negative OR-SPCA with non-negative SPCA.

Figure 7.5 shows the sample images and the five leading PCs computed by non-negative

SPCA and non-negative OR-SPCA. Clearly, non-negative SPCA fails in the face of these
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(a)

(b)

(c)

(d)

Figure 7.4: We plot the leading ten PCs extracted by OR-PCA, FPS and OR-SPCA. (a)
shows a couple of sample images. (b), (c) and (d) show the results of OR-PCA, FPS and
OR-SPCA, respectively.

“digit” outliers, while non-negative OR-SPCA can still extract good principal components

that are close to the ones generated by applying non-negative SPCA on the clean data, i.e.,

2429 face images only.

(a) (b)

(c) (d)

Figure 7.5: We plot (a) five samples in the dataset, (b) the five leading PCs extracted
by non-negative SPCA on the clean data (2429 face images), and the five leading PCs
extracted by (c) non-negative SPCA and (d) non-negative OR-SPCA on the dirty data
(2429 face images plus 125 outliers).

Finally, we use the NYTimes news article dataset from the UCI Machine Learning Repos-

itory [FA10], which contains 300000 articles and a dictionary of 102660 unique words, to

illustrate the performance of Algorithm 7.1 on large-scale data. 3000 random vectors whose

entries are randomly drawn from the uniform distribution with support [0, 100] are added

into the NYTimes dataset, which are taken as outliers. We choose large-scale SPCA (LS-

SPCA) proposed by [ZE11] as A and compare the corresponding large-scale OR-SPCA

(LS-OR-SPCA) with it. Table 7.1 provides the leading two sparse PCs in which the first

two columns shows the two leading PCs extracted by LS-SPCA on the dataset without

outliers, and the other four columns presents the leading PCs extracted by LS-SPCA and

LS-OR-SPCA on the dataset with outliers. The ground truth is obtained by performing

large-scale sparse PCA on the clean data. Clearly, the results of LS-SPCA are meaning-
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Table 7.1: The words associated with the leading two sparse principal components ex-
tracted by large-scale SPCA and large-scale OR-SPCA.

Ground-truth LS-SPCA LS-OR-SPCA

1st PC 2st PC 1st PC 2st PC 1st PC 2st PC

million point site fire percent team

percent play summer scientist company player

business team contract oil million season

company season system prices market game

market game person district money play

less when outliers exist, whereas LS-OR-SPCA can generate quite similar results to the

ground-truth where the first PC is about business and the second PC is about sports.

7.5 Proofs of Section 7.3.1

Lemma 7.3. (Lemma 3.1, [VCLR13]) Let Σ be a symmetric matrix and Π be the projection

onto the subspace spanned by the eigenvectors of Σ corresponding to its k largest eigenvalues

λ1 ≥ λ2 ≥ · · · . If δ = λk(Σ)− λk+1(Σ) > 0, then

δ

2
∥Π−X∥2F ≤ ⟨Σ,Π−X⟩

for all X satisfying 0 ⪯ X ⪯ I and tr(X) = k.

Lemma 7.4. The event E(s) is true for some 1 ≤ s ≤ s0 where s0 =
ρn(1+κ)

κ .

Proof of Lemma 7.4

Proof. If E(s) is false, then

∑
i∈Z

αi(s)⟨yiy
⊤
i ,Xs⟩ <

1

κ

∑
i∈O

αi(s)⟨yiy
⊤
i ,Xs⟩.
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Let ∆αi ≜ ⟨yiy
⊤
i ,X̂⟩

max{i|αi ̸=0}⟨yiy⊤
i ,X̂⟩

αi, if
∪s0

s=1 E(s) is false, we have

s0∑
s=1

∑
i∈Z

∆αi(s) <
1

κ

s0∑
s=1

∑
i∈O

∆αi(s).

From the algorithm, at least one α is eliminated in each iteration. Thus, we have

s0∑
s=1

n∑
i=1

∆αi(s) ≥ s0,

which implies that
s0∑
s=1

∑
i∈Z

∆αi(s) +

s0∑
s=1

∑
i∈O

∆αi(s) ≥ s0.

Hence
1

κ

s0∑
s=1

∑
i∈O

∆αi(s) +

s0∑
s=1

∑
i∈O

∆αi(s) ≥ s0.

Note that ρn ≥
∑s0

s=1

∑
i∈O ∆αi(s), then ρn ≥ κs0

1+κ , so s0 ≤ ρn(1+κ)
κ .

Proof of Theorem 7.1

Proof. Note that for any 1 ≤ s̄ ≤ s, the event E(s̄) is false, which implies that

∑
i∈Z

αi(s̄)⟨yiy
⊤
i ,Xs̄⟩ <

1

κ

∑
i∈O

αi(s̄)⟨yiy
⊤
i ,Xs̄⟩,

Thus, we have ∑
i∈Z

∆αi(s̄) <
1

κ

∑
i∈O

∆αi(s̄).

Since αi(s) = 1−
∑s−1

k=1∆αi(k),

∑
i∈Z

αi(s) = t−
∑
i∈Z

s−1∑
k=1

∆αi(k) > t− 1

κ

s−1∑
k=1

∑
i∈O

∆αi(k) ≥ t− ρn

κ
.
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Hence for any X ∈ F(k), we have

∑
i∈Z

αi(s)⟨yiy
⊤
i ,X⟩ −

t−ρn/κ∑
i=1

⟨zz⊤,X⟩(i)

=

t−ρn/κ∑
i=1

(αj(i)(s)− 1)⟨zj(i)z⊤j(i),X⟩+
t∑

i=t−ρn/κ+1

αj(i)(s)⟨zj(i)z⊤j(i),X⟩

≥
t−ρn/κ∑
i=1

(αj(i)(s)− 1)⟨zz⊤,X⟩(t−ρn/κ) +

t∑
i=t−ρn/κ+1

αj(i)(s)⟨zz⊤,X⟩(t−ρn/κ)

=

(∑
i∈Z

αi − (t− ρn

κ
)

)
⟨zz⊤,X⟩(t−ρn/κ) ≥ 0.

(7.8)

Since Xs is the optimal solution of the PCA-like algorithm and event E(s) is true, we have

1

n
⟨

n∑
i=1

αi(s)yiy
⊤
i ,Xs⟩ − µ∥Xs∥1

≥(1− η)

[
1

n
⟨

n∑
i=1

αi(s)yiy
⊤
i ,Π⟩ − µ∥Π∥1

]

≥(1− η)

[
1

n
⟨
∑
i∈Z

αi(s)yiy
⊤
i ,Π⟩ − µ∥Π∥1

]

≥ 1

n
⟨
∑
i∈Z

αi(s)yiy
⊤
i ,Π⟩ − µ∥Π∥1 − η

(
µ+ ∥ 1

n

∑
i∈Z

αi(s)yiy
⊤
i ∥∞

)
∥Π∥1

and
1

n
⟨

n∑
i=1

αi(s)yiy
⊤
i ,Xs⟩ − µ∥Xs∥1

=
1

n
⟨
∑
i∈Z

αi(s)yiy
⊤
i ,Xs⟩+

1

n
⟨
∑
i∈O

αi(s)yiy
⊤
i ,Xs⟩ − µ∥Xs∥1

≤1 + κ

n
⟨
∑
i∈Z

αi(s)yiy
⊤
i ,Xs⟩ − µ∥Xs∥1.

Denote
(
µ+ ∥ 1

n

∑
i∈Z αi(s)yiy

⊤
i ∥∞

)
∥Π∥1 by B, we have

1

n
⟨
∑
i∈Z

αi(s)yiy
⊤
i ,Xs −Π⟩ − µ∥Xs∥1 + µ∥Π∥1 +

κ

n
⟨
∑
i∈Z

αi(s)yiy
⊤
i ,Xs⟩+ ηB ≥ 0.
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Since Inequality 7.8 holds and 0 ≤ αi ≤ 1,

1

n
⟨
∑
i∈Z

yiy
⊤
i ,Xs⟩ −

1

n

t−ρn/κ∑
i=1

⟨zz⊤,Π⟩(i) − µ∥Xs∥1 + µ∥Π∥1 +
κ

n
⟨
∑
i∈Z

yiy
⊤
i ,Xs⟩+ ηB ≥ 0

or equivalently,

1

n
⟨

t∑
i=1

ziz
⊤
i ,Xs −Π⟩ − µ∥Xs∥1 + µ∥Π∥1 +

κ

n
⟨

t∑
i=1

ziz
⊤
i ,Xs⟩+

1

n

ρn/κ∑
i=1

⟨zz⊤,Π⟩[i] + ηB ≥ 0

Let ∆ = Xs −Π and W = 1
t

∑t
i=1 ziz

⊤
i −Σ, then

⟨W +Σ,∆⟩ − nµ

t
∥Π+∆∥1 +

nµ

t
∥Π∥1 + κ⟨W +Σ,Xs⟩+

1

t

ρn/κ∑
i=1

⟨zz⊤,Π⟩[i] +
nηB

t
≥ 0.

Since −⟨Σ,∆⟩ ≥ δ
2∥∆∥2F where δ = λk(Σ)− λk+1(Σ) (Lemma 7.3), we have

⟨W,∆⟩−nµ
t
∥Π+∆∥1+

nµ

t
∥Π∥1+κ⟨W+Σ,Xs⟩+

1

t

ρn/κ∑
i=1

⟨zz⊤,Π⟩[i]+
nηB

t
≥ δ

2
∥∆∥2F . (7.9)

For simplicity, we let

T = κ⟨W +Σ,Xs⟩+
1

t

ρn/κ∑
i=1

⟨zz⊤,Π⟩[i] +
nηB

t
.

We first consider the case that µ ̸= 0. Since ⟨W,∆⟩ ≤ ∥W∥∞∥∆∥1 and n ≥ t ≥ 0.5n,

[∥W∥∞ − µ]+∥∆∥1 + µ∥∆∥1 − µ∥Π+∆∥1 + µ∥Π∥1 + T ≥ δ

4
∥∆∥2F .

Let N be the subset of indices of the nonzero entries of Π, since ∥Π∥0 ≤ β2 and ∥∆N∥1 ≤

β∥∆N∥F ≤ β∥∆∥F ,

∥∆∥1 − ∥Π+∆∥1 + ∥Π∥1 = ∥∆N∥1 − ∥ΠN +∆N∥1 + ∥ΠN∥1 ≤ 2∥∆N∥1.

Also note that ∆ has at most γ2 + β2 non-zero entries, so ∥∆∥1 ≤
√
γ2 + β2∥∆∥F ≤

2γ∥∆∥F . Thus,

2(γ[∥W∥∞ − µ]+ + µβ)∥∆∥F + T ≥ δ

4
∥∆∥2F ,
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which implies that

∥∆∥F ≤ 8(γ[∥W∥∞ − µ]+ + µβ)

δ
+ 2

√
T

δ
≤

8(γ[c0ζ
√

log p
n ∥Σ∥2 − µ]+ + µβ)

δ
+ 2

√
T

δ
,

where the last inequality follows from Lemma 7.17.

We now consider the case that µ = 0, then (7.9) becomes ⟨W,∆⟩ + T ≥ δ
2∥∆∥2F . Since

⟨W,∆⟩ ≤ min{∥W∥∞∥∆∥1, ∥W∥2∥∆∥∗} ≤ 2min{γ∥W∥∞∥∆∥F , k∥W∥2}, ∥∆∥F should

satisfy that

2min{γ∥W∥∞∥∆∥F , k∥W∥2}+ T ≥ δ

2
∥∆∥2F .

By simple calculation, we have

∥∆∥F ≤ min{8γ∥W∥∞
δ

, 2

√
k∥W∥2

δ
}+2

√
T

δ
≤ min{

8c0γζ
√

log p
n ∥Σ∥2
δ

, 2

√√√√c1kζ
√

p
n∥Σ∥2
δ

}+2

√
T

δ
,

where the last inequality follows from Lemma 7.13 and Lemma 7.17. Hence we have ∥∆∥F ≤

R(µ) + 2
√

T
δ where

R(µ) =


8(γ[c0

√
log p
n

(∥A∥22+1)−µ]++µβ)

δ , µ ̸= 0

min

{
8c0γ

√
log p
n

(∥A∥22+1)

δ , 2

√
c1k

√
p
n
(∥A∥22+1)

δ

}
, µ = 0.

We ignore ζ in R(µ) because it’s a constant.

We now bound T . Notice that ∥Π∥∗ ≤ k and ∥Π∥1 ≤ β∥Π∥F ≤ βk, from Lemma 7.16, the

following inequality holds with high probability,

1

n

n−n̄∑
i=1

⟨zz⊤,Π⟩[i] ≤ kmin
{
2
(
1− V−(n̄/n) + ϵ(d)

)
∥A∥22 + cτ,

β
[(
1− V−(n̄/n) + ϵ(d)

)
∥A∥22 + cϕ(1 + ζd∥A∥2)

]}
.

Since t ≥ 0.5n, there exist constants c1, c2 such that ∥W +Σ∥2 ≤ 2(1 + c1θ
√

d
n)∥A∥22 + cτ

and ∥W∥∞ ≤ c0ζ
√

log p
n (∥A∥22 + 1) hold with high probability (Lemma 7.14 and Lemma
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7.17). Hence

⟨W +Σ,Xs⟩ ≤ min{∥W +Σ∥2∥Xs∥∗, ∥W +Σ∥∞∥Xs∥1}

≤kmin

{
2

(
1 + c1θ

√
d

n

)
∥A∥22 + cτ, γ

(
1 + c0ζ

√
log p

n

)(
∥A∥22 + 1

)}

where the last inequality follows from ∥Xs∥∗ ≤ k and ∥Xs∥1 ≤ γ∥Xs∥F ≤ γk. Also notice

that 0 ≤ αi(s) ≤ 1 and ∥Π∥1 ≤ β∥Π∥F = βk, we have

nηB

t
≤ ηβk

(
2µ+ ∥1

t

∑
i∈Z

yiy
⊤
i ∥∞

)
≤ ηβk

(
2µ+

(
c0ζ

√
log p

n
+ 1

)
∥Σ∥2

)
.

Let B′
0 ≜ 2µ+

(
c0ζ
√

log p
n + 1

)
(∥A∥22+1), since µ is less than some universal constant and

log p ≤ n, there exists constant c2 such that B0 ≜ c2(∥A∥22 + 1) ≥ B′
0. Let ϵ0 ≜ c0ζ

√
log p
n ,

ϵ1 ≜ ϵ0 + ϵ(d) + c1θ
√

d
n . Since d < n, ϵ1 ≤ ϵ0 + c1

(
d log3 n

n

) 1
4 . Since ζ is a constant, we have

κ ≤ 1, β ≤ γ and log p ≤ n,

T = kmin
{
2B1∥A∥22 + cτ, γB1∥A∥22 + cγ(d∥A∥2 + 1)

}
+ ηβkB0,

where B1 = κ + 1 − V−(1 − ρ
κ(1−ρ)) + ϵ1. By minimizing T over κ, we can obtain this

theorem.

Proof of Theorem 7.2

Proof. Under the conditions of Theorem 7.2, the conditions of Theorem 7.1 are satisfied, let

∆ = Xs−Π, W = 1
t

∑t
i=1 ziz

⊤
i −Σ, and f(B) = min

{
2B∥A∥22 + cτ, γB∥A∥22 + cγ(d∥A∥2 + 1)

}
then w.h.p

∥∆∥F ≤ R(µ) +
√
k min
1≥κ>2ρ

√
f(B1) + ηβB0

δ
≜ B2.

From the Algorithm, we know that

1

t̂

t̂∑
i=1

⟨zz⊤,X∗⟩(i) ≥
1

t̂

t̂∑
i=1

⟨yy⊤,X∗⟩(i) ≥
1

t̂

t̂∑
i=1

⟨yy⊤,Xs⟩(i) ≥
1

t̂

t̂−ρn∑
i=1

⟨zz⊤,Xs⟩(i).
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Hence we have

1

t

t∑
i=1

⟨ziz⊤i ,X∗⟩ − 1

t

t−t̂∑
i=1

⟨zz⊤,X∗⟩[i] +
1

t

t−t̂+ρn∑
i=1

⟨zz⊤,Xs⟩[i] ≥
1

t

t∑
i=1

⟨ziz⊤i ,Xs⟩

⇒⟨W +Σ,X∗⟩+ 1

t

t−t̂∑
i=1

⟨zz⊤,X∗⟩[i] +
1

t

t−t̂+ρn∑
i=1

⟨zz⊤,Xs⟩[i] ≥ ⟨W +Σ,Xs⟩.

let T ≜ 1
t

∑t−t̂
i=1⟨zz⊤,X∗⟩[i] + 1

t

∑t−t̂+ρn
i=1 ⟨zz⊤,Xs⟩[i] and ∆∗ ≜ X∗ − Π. Note that Σ =

AA⊤ + Ip, from Lemma 7.3, we have

⟨W,∆∗ −∆⟩+ ∥AA⊤∥F ∥∆∥F + ∥∆∥∗ + T ≥ δ

2
∥∆∗∥2F ,

where δ = λk(Σ)−λk+1(Σ). Since ∥∆∗∥∗ ≤ ∥X∗∥∗+∥Π∥∗ ≤ 2k, ∥AA⊤∥F =
√∑d

i=1 λi(AA⊤)2 ≤

d∥A∥22 and ∥∆∥F ≤ B2, we have

∥∆∗∥F ≤
√

2

δ
(⟨W,∆∗ −∆⟩+ dB2∥A∥22 + T + 2k).

We first bound the term ⟨W,∆∗ −∆⟩. Notice that

⟨W,∆∗ −∆⟩ ≤ min{∥W∥2(∥∆∗∥∗ + ∥∆∥∗), ∥W∥∞(∥∆∗∥1 + ∥∆∥1)}.

Since ∥∆∗∥∗ ≤ 2k and ∥∆∗∥1 ≤ ∥X∗∥1 + ∥Π∥1 ≤ γ∥X∗∥F + β∥Π∥F ≤ k(γ + β) ≤ 2kγ (∆

has similar inequalities), we have

⟨W,∆∗ −∆⟩ ≤ 4kmin{∥W∥2, γ∥W∥∞}.

From Lemma 7.13, there exists constant c2 such that ∥W∥2 ≤ c1ζ
√

p
n∥Σ∥2 = c1ζ

√
p
n(∥A∥22+

1) holds with high probability, where ζ = max{θ, 2}. From Lemma 7.17, ∥W∥∞ ≤

c2ζ∥Σ∥2
√

log p
n = c2ζ

√
log p
n (∥A∥22+1) holds for constant c2. LetB4 ≜ 4ζmin{c1

√
p
n , c2γ

√
log p
n },

then

∥∆∗∥F ≤
√

2

δ
[(dB2 + kB4)∥A∥22 + T + 2k + kB4].
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For term T , we follow the same proof of Theorem 7.1. The following inequality holds w.h.p,

T ≤ kmin
{
2B3∥A∥22 + cτ, γB3∥A∥22 + cγ(d∥A∥2 + 1)

}
,

where B3 = 2− V−( t̂t)− V−( t̂−ρn
t ) + ϵ(d). Hence we have

∥∆∗∥F ≤
√

2

δ

[
(dB2 + kB4)∥A∥22 + kmin {2B3 + cτ, γB3 + cγ(d∥A∥2 + 1)}

]
,

which establishes this theorem.

7.6 Proofs in Section 7.3.2

Let H∗ ≜ ⟨AA⊤,X∗⟩, Hs ≜ ⟨AA⊤,Xs⟩ and H ≜ ⟨AA⊤,Π⟩. In order to bound E.V, we

first bound |H∗ −
∑k

i=1w
∗
i
⊤AA⊤w∗

i |, and then bound H∗/H. This involves the following

steps:

1. Bound |H∗ −
∑k

i=1w
∗
i
⊤AA⊤w∗

i |.

2. Bound the robust variance estimator of the the authentic samples by applying the

concentration inequalities (Theorem 7.7, Theorem 7.8 and Theorem 7.9, i.e. bounding

1
t

∑t̄
i=1 |w⊤z|2(i).

3. Show that with high probability, the algorithm finds a “good” solution within a

bounded number of steps and then show that the “good” solution in previous step

is close to the optimal solution and the final solution of our algorithm is close to this

“good” solution.

Step 1

Lemma 7.5. For any X ∈ Rp×p such that 0 ⪯ X ⪯ Ip and tr(X) = k, let w1, · · · ,wk be

the top k eigenvectors of X, then

∣∣∣∣∣⟨AA⊤,X⟩ −
k∑

i=1

wi
⊤AA⊤wi

∣∣∣∣∣ ≤ max{1− λk(X), λk+1(X)} · tr(AA⊤),
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where λk is the kth largest eigenvalue of X.

From this lemma, we have E.V{w∗
1, · · · ,w∗

k} ≥ H∗

H
−max{1− λk(X), λk+1(X)}.

Step 2

From Theorem 7.7, Theorem 7.8, Theorem 7.9 and Lemma 7.17, the following inequalities

hold with high probability for constant c, c1 and c2:

(I) sup
w∈Sp

1

t

t∑
i=1

(w⊤ni)
2 ≤ cτ,

(II) sup
w∈Sd

∣∣∣∣∣1t
t∑

i=1

(w⊤xi)
2 − 1

∣∣∣∣∣ ≤ c1θ

√
d

n
≜ ϵ0,

(III) sup
w∈Sd

∣∣∣∣∣1t
t̄∑

i=1

|w⊤x|2(i) − V( t̄
t
)

∣∣∣∣∣ ≤ c2t(1 + ϵ0)
√
d log n/n

t− t̄
∧ c2θ

1
2d

1
4 (log n)

3
4n−

1
4 ≜ ϵ1(

t̄

t
),

(IV ) ∥1
t

t∑
i=1

nin
⊤
i ∥∞ ≤ cς,

where τ = max{ p
n , 1} and ς = max{

√
log p
n , 1}. When t̄ = t, we can indeed sharpen the

result of (III) by applying (II), so let ϵ1(1) = ϵ0. We have the following theorem:

Theorem 7.5. There exists a constant c such that the following inequalities hold w.h.p,

∥X1/2A∥2F
(
V−(

t̄

t
)− ϵ1(

t̄

t
)

)
− 2∥X1/2A∥F

√
(1 + ϵ0)ckmin{τ, γς}

≤1

t

t̄∑
i=1

⟨zz⊤,X⟩(i)

≤∥X1/2A∥2F
(
V+(

t̄

t
) + ϵ1(

t̄

t
)

)
+ 2∥X1/2A∥F

√
(1 + ϵ0)ckmin{τ, γς}+ ckmin{τ, γς},

for any t̄ ≤ t and X ∈ F(k).

Step 3

Suppose that a “good” solution Xs is found at stage s (0 ≤ s ≤ s0), namely event E(s)

is true. We can bound H∗/H by leveraging the relationship between Xs and Π and the

connection between X∗ and Xs.
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Lemma 7.6. If ∥Π∥0 ≤ β2 and E(s) is true for s ≤ s0, there exists a constant c such that

the following inequalities hold w.h.p,

(1 + ϵ0)Hs + 2
√

(1 + ϵ0)ckmin{τ, γς}Hs + ckmin{τ, γς}

≥1− η

κ+ 1

[(
V−(1− ρ

(1− ρ)κ
)− ϵ1(1−

ρ

(1− ρ)κ
)

)
H − 2

√
(1 + ϵ0)ckmin{τ, γς}H − 1

1− ρ
µβ

√
k

]
.

Lemma 7.7. Fix t̂ ≤ t, there exists constant c such that the following inequalities hold

w.h.p, (
V+(

t̂

t
) + ϵ1(

t̂

t
)

)
H∗ + 2

√
(1 + ϵ0)ckmin{τ, γς}H∗ + ckmin{τ, γς}

≥
(
V−(

t̂− ρn

t
)− ϵ1(

t̂− ρn

t
)

)
Hs − 2

√
(1 + ϵ0)ckmin{τ, γς}Hs.

Theorem 7.6. Suppose ∥Π∥0 ≤ β2 and ρ ≤ 0.5. For any κ, there exists a constant c such

that the following inequalities hold w.h.p,

H∗

H
≥
V−
(
t̂
t −

ρ
1−ρ

)
V−
(
1− ρ

κ(1−ρ)

)
(1 + κ)V+

(
t̂
t

) − 10

V+(0.5)

(
ckmin{τ, γς}

H

)1/2

−c{θ
1
2d

1
4 (log

3
4 n)n−

1
4 ∨ θ[(1 + κ)/κ]

3
2 (log

3
2 n)n−

1
2 }

V+(0.5)
− 2µβ

√
k

V+( t̂t)H

Proof of Lemma 7.5

Proof. Since 0 ⪯ X ⪯ Ip, we have

∣∣∣∣∣⟨AA⊤,X⟩ −
k∑

i=1

wi
⊤AA⊤wi

∣∣∣∣∣ ≤ ∥AA⊤∥∗ · ∥X−
k∑

i=1

wiw
⊤
i ∥2

=tr(AA⊤) · ∥
k∑

i=1

(λi − 1)wiw
⊤
i +

p∑
i=k+1

λiwiw
⊤
i ∥2 = tr(AA⊤) ·max{1− λk(X), λk+1(X)}.

Hence we obtain this lemma.

Proof of Lemma 7.2

Proof. Let S = Sn, µ = µn and ∆ = Bn − An, then ⟨S,∆⟩ ≥ 0 and ⟨S,∆⟩ ≤ µ∥Bn∥1 −

µ∥An∥1 ≤ µ∥Bn∥1. Since tr(Bn) = d and Bn ⪰ 0, ∥Bn∥1 ≤ p∥Bn∥F = p
√
d. Then we have



7.6 Proofs in Section 7.3.2 221

0 ≤ ⟨S,∆⟩ ≤ µp
√
d. Since An,Bn ∈ Fd,

0 ≤ tr(S∆) ≤ µp
√
d, 0 ⪯ Bn −∆ ⪯ Ip, tr(∆) = 0.

By SVD decomposition, S = QΛQ⊤ where Q is an orthogonal matrix and Λ is a diagonal

matrix. Let ∆̄ = Q⊤∆Q, then,

0 ≤ tr(Λ∆̄) ≤ µp
√
d, 0 ⪯ Σ− ∆̄ ⪯ Ip, tr(∆̄) = 0,

where Σ =


Id 0

0 0

. Thus, 0 ≤
∑p

i=1 λi∆̄ii ≤ µp
√
d and

0 ≤ ∆̄ii ≤ 1 for 1 ≤ i ≤ d,

−1 ≤ ∆̄ii ≤ 0 for d+ 1 ≤ i ≤ p,

which implies that
∑p

i=d+1 |∆̄ii| ≤ µp
√
d

δ (otherwise,
∑p

i=1 λi∆̄ii ≥
∑p

i=1 λd∆̄ii + |λd −

λd+1|
∑p

i=d+1 |∆ii| > µp
√
d). Since tr(∆̄) = 0, we also have

∑d
i=1 ∆̄ii ≤ µp

√
d

δ . Let ∆̄ =
∆1 −D

−D⊤ −∆2

, then 0 ⪯


Id −∆1 D

D⊤ ∆2

 ⪯ Ip, which implies that ∆1 ⪰ 0 and ∆2 ⪰ 0.

Hence
∥∆̄∥2F =∥∆1∥2F + ∥∆2∥2F + 2∥D∥2F

≤tr(∆1)
2 + tr(∆2)

2 + 2

d∑
i=1

p∑
j=d+1

D2
ij

≤2

(
µβ

√
d

δ

)2

+ 2

d∑
i=1

p∑
j=d+1

|(1− ∆̄ii)∆̄jj |

≤2

(
µβ

√
d

δ

)2

+ 2
d∑

i=1

p∑
j=d+1

|∆̄jj |

≤2

(
µβ

√
d

δ

)2

+ 2
µpd3/2

δ
.
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Thus, ∥An − Bn∥2F = ∥Q∆̄Q⊤∥2F = ∥∆̄∥2F ≤ 2
(
µp

√
d

δ

)2
+ 2µpd3/2

δ → 0 as µ → 0 when

pd3/2 = o( 1µ).

Proof of Theorem 7.5

Proof. For an arbitrary w ∈ Sp, let j(i) be permutations of {1, · · · , n} such that (w⊤xj(i))
2

is non-decreasing. Thus,

1

t

t̄∑
i=1

⟨zz⊤,X⟩(i) ≤
1

t

t̄∑
i=1

tr
(
(Axj(i) + nj(i))

⊤X(Axj(i) + nj(i))
)

=
1

t

t̄∑
i=1

tr
(
x⊤
j(i)A

⊤XAxj(i) + 2n⊤
j(i)XAxj(i) + n⊤

j(i)Xnj(i)

)

≤1

t

t̄∑
i=1

x⊤
j(i)A

⊤XAxj(i) +
2

t

t̄∑
i=1

⟨X1/2Axj(i),X
1/2nj(i)⟩+

1

t

t∑
i=1

⟨X1/2ni,X
1/2ni⟩

≤∥A⊤XA∥∗ · ∥
1

t

t̄∑
i=1

xj(i)x
⊤
j(i)∥2 +

2

t

t∑
i=1

∥X1/2Axi∥2 · ∥X1/2ni∥2 +
1

t

t∑
i=1

∥X1/2ni∥22

Since ∥A⊤XA∥∗ = ∥X1/2A∥2F and the Cauchy-Schwarz inequality holds, we have

1

t

t̄∑
i=1

⟨zz⊤,X⟩(i) ≤∥X1/2A∥2F · sup
w∈Sd

1

t

t̄∑
i=1

(w⊤x)2(i)+

2

√√√√1

t

t∑
i=1

∥X1/2Axi∥22 ·

√√√√1

t

t∑
i=1

∥X1/2ni∥22 +
1

t

t∑
i=1

∥X1/2ni∥22

≤∥X1/2A∥2F · sup
w∈Sd

1

t

t̄∑
i=1

(w⊤x)2(i)+

2∥X1/2A∥F

√√√√ sup
w∈Sd

1

t

t∑
i=1

(w⊤xi)2 ·

√√√√1

t

t∑
i=1

∥X1/2ni∥22 +
1

t

t∑
i=1

∥X1/2ni∥22

Note that

1

t

t∑
i=1

∥X1/2ni∥22 = ⟨X, 1
t

t∑
i=1

nin
⊤
i ⟩ ≤min{∥X∥∗ · ∥

1

t

t∑
i=1

nin
⊤
i ∥2, ∥X∥1 · ∥

1

t

t∑
i=1

nin
⊤
i ∥∞}

≤min{k∥1
t

t∑
i=1

nin
⊤
i ∥2, γk∥

1

t

t∑
i=1

nin
⊤
i ∥∞}.
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Then from (I)(II)(III)(IV), we have w.h.p

1

t

t̄∑
i=1

⟨zz⊤,X⟩(i) ≤ ∥X1/2A∥2F
(
V+(

t̄

t
) + ϵ1(

t̄

t
)

)
+2∥X1/2A∥F

√
(1 + ϵ0)ckmin{τ, γς}+ckmin{τ, γς}.

We now compute the lower bound. For an arbitrary w ∈ Sp, let k(i) be permutations of

{1, · · · , n} such that ⟨zk(i)z⊤k(i),X⟩ is non-decreasing, then

1

t

t̄∑
i=1

⟨zz⊤,X⟩(i) =
1

t

t̄∑
i=1

x⊤
k(i)A

⊤XAxk(i) +
2

t

t̄∑
i=1

n⊤
k(i)XAxk(i) +

1

t

t̄∑
i=1

n⊤
k(i)nk(i)

≥⟨X, 1
t
A

t̄∑
i=1

x⊤
k(i)xk(i)A

⊤⟩ − 2

t

t∑
i=1

∥X1/2Axi∥2 · ∥X1/2ni∥2

Perform SVD on X, we have X =
∑p

i=1 αiviv
⊤
i , then

⟨X, 1
t
A

t̄∑
i=1

x⊤
k(i)xk(i)A

⊤⟩ =
p∑

j=1

αj

t

t̄∑
i=1

(v⊤
j Axk(i))

2

≥
p∑

j=1

αj

t

t̄∑
i=1

(v⊤
j Ax)2(i) ≥ ∥v⊤

j A∥22 ·
p∑

j=1

αj

t

t̄∑
i=1

(
v⊤
j A

∥v⊤
j A∥2

x)2(i)

Then from Lemma 7.8 and Lemma 7.9 (Note that we assume v⊤
j A ̸= 0 in the last inequality.

We ignore the case that v⊤
j A = 0 since the bound holds trivially),

1

t

t̄∑
i=1

⟨zz⊤,X⟩(i)

≥
p∑

j=1

αj∥v⊤
j A∥22

(
V−(

t̄

t
)− ϵ1(

t̄

t
)

)
− 2∥X1/2A∥F

√
(1 + ϵ0)ckmin{τ, γς}

=tr(A⊤ ·
p∑

j=1

αjvjv
⊤
j ·A)

(
V−(

t̄

t
)− ϵ1(

t̄

t
)

)
− 2∥X1/2A∥F

√
(1 + ϵ0)ckmin{τ, γς}

=∥X1/2A∥2F
(
V−(

t̄

t
)− ϵ1(

t̄

t
)

)
− 2∥X1/2A∥F

√
(1 + ϵ0)ckmin{τ, γς}

Hence the theorem holds.
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Proof of Lemma 7.6

Proof. Since E(s) is true, we have
∑

i∈Z αi(s)⟨yiy
⊤
i ,Xs⟩ ≥ 1

κ

∑
i∈O αi(s)⟨yiy

⊤
i ,Xs⟩, which

implies that

(κ+1)
∑
i∈Z

αi(s)⟨yiy
⊤
i ,Xs⟩ ≥

n∑
i=1

αi(s)⟨yiy
⊤
i ,Xs⟩ ≥ (1−η)

(
n∑

i=1

αi(s)⟨yiy
⊤
i ,Π⟩ − nµ∥Π∥1

)
,

where the last inequality holds because Xs is the (1 − η)-optimal solution of the PCA-like

algorithm at stage s. Note that ∥Π∥1 ≤ β∥Π∥F = β
√

tr(Π2) = β
√
k, then

1

t

t∑
i=1

⟨ziz⊤i ,Xs⟩ ≥
1

t

∑
i∈Z

αi(s)⟨yiy
⊤
i ,Xs⟩

≥1− η

κ+ 1

(
1

t

n∑
i=1

αi(s)⟨yiy
⊤
i ,Π⟩ − n

t
µβ

√
k

)

≥1− η

κ+ 1

1

t

t−ρn/κ∑
i=1

⟨ziz⊤i ,Π⟩(i) −
n

t
µβ

√
k

 ,

where the last inequality follows from Equation (7.8). From Theorem 7.5, the following

inequality holds w.h.p,

(1 + ϵ0)Hs + 2
√

(1 + ϵ0)ckmin{τ, γς}Hs + ckmin{τ, γς}

≥1− η

κ+ 1

[(
V−(

t− ρn/κ

t
)− ϵ1(

t− ρn/κ

t
)

)
H − 2

√
(1 + ϵ0)ckmin{τ, γς}H − n

n− ρn
µβ

√
k

]
=
1− η

κ+ 1

[(
V−(1− ρ

(1− ρ)κ
)− ϵ1(1−

ρ

(1− ρ)κ
)

)
H − 2

√
(1 + ϵ0)ckmin{τ, γς}H − 1

1− ρ
µβ

√
k

]
.

Hence we obtain this lemma.

Proof of Lemma 7.7

Proof. Since |O| = |Y\Z| = ρn, we have

t̂−ρn∑
i=1

⟨zz⊤,X∗⟩(i) ≤
t̂∑

i=1

⟨yy⊤,X∗⟩(i) ≤
t̂∑

i=1

⟨zz⊤,X∗⟩(i).
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Since X∗ is the final output of this algorithm, V t̂(X
∗) ≥ V t̂(Xs). Thus,

1

t̂

t̂∑
i=1

⟨zz⊤,X∗⟩(i) ≥ V t̂(X
∗) ≥ V t̂(Xs) ≥

1

t̂

t̂−ρn∑
i=1

⟨zz⊤,Xs⟩(i).

Then from Theorem 7.5, the following inequality holds w.h.p,

(
V+(

t̂

t
) + ϵ1(

t̂

t
)

)
H∗ + 2

√
(1 + ϵ0)ckmin{τ, γς}H∗ + ckmin{τ, γς}

≥
(
V−(

t̂− ρn

t
)− ϵ1(

t̂− ρn

t
)

)
Hs − 2

√
(1 + ϵ0)ckmin{τ, γς}Hs.

Therefore, this lemma holds.

Proof of Theorem 7.6

Proof. Recall that with high probability E(s) is true for s ≤ s0 and notice that we can

assume ϵ0 ≤ 1 for large enough n. From Lemma 7.6 and Lemma 7.7, since H ≥ H∗ and

H ≥ Hs, the following inequalities hold w.h.p,

1− η

κ+ 1

[(
V−(1− ρ

(1− ρ)κ
)− ϵ1(1−

ρ

(1− ρ)κ
)

)
H − 2

√
(1 + ϵ0)ckmin{τ, γς}H − 1

1− ρ
µβ

√
k

]
≤(1 + ϵ0)Hs + 2

√
(1 + ϵ0)ckmin{τ, γς}H + ckmin{τ, γς},

and

(
V−(

t̂− ρn

t
)− ϵ1(

t̂− ρn

t
)

)
Hs ≤

(
V+(

t̂

t
) + ϵ1(

t̂

t
)

)
H∗+4

√
(1 + ϵ0)ckmin{τ, γς}H+ckmin{τ, γς}.

By re-organization, we have

1 + κ

1− η
(1 + ϵ0)Hs ≥

(
V−(1− ρ

(1− ρ)κ
)− ϵ1(1−

ρ

(1− ρ)κ
)

)
H − 2κ+ 4

1− η

√
(1 + ϵ0)ckmin{τ, γς}H−

µβ
√
k

1− ρ
− 1 + κ

1− η
ckmin{τ, γς}

(
V−(

t̂− ρn

t
)− ϵ1(

t̂− ρn

t
)

)
Hs ≤

(
V+(

t̂

t
) + ϵ1(

t̂

t
)

)
H∗+

4

√
(1 + ϵ0)ckmin{τ, γς}H + ckmin{τ, γς}.
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Let ϵ1 = c2θ
1
2d

1
4 (log n)

3
4n−

1
4 . Since ϵ1( t̂−ρn

t ) ≤ ϵ1 and ϵ1( t−s0
t ) ≤ ϵ1, we have

H∗

H
≥
(1− η)

(
V−(1− ρ

(1−ρ)κ)− ϵ1

)(
V−( t̂t −

ρ
1−ρ)− ϵ1

)
(1 + κ)(1 + ϵ0)

(
V+( t̂t) + ϵ1

) −

(2κ+ 4)
(
V−( t̂t −

ρ
1−ρ)− ϵ1

)√
(1 + ϵ0)ckmin{τ, γς}

(1 + κ)(1 + ϵ0)
(
V+( t̂t) + ϵ1

) H
−1/2

−
4(1 + κ)(1 + ϵ0)

√
(1 + ϵ0)ckmin{τ, γς}

(1 + κ)(1 + ϵ0)
(
V+( t̂t) + ϵ1

) H
−1/2 −

(
V−( t̂t −

ρ
1−ρ)− ϵ1 + 1 + ϵ0

)
ckmin{τ, γς}

(1 + ϵ0)
(
V+( t̂t) + ϵ1

) H
−1

−
(1− η)µβ

√
k

1−ρ

(1 + κ)(1 + ϵ0)
(
V+( t̂t) + ϵ1

)H−1
.

Note that the last term

(1− η)µβ
√
k

1−ρ

(1 + κ)(1 + ϵ0)
(
V+( t̂t) + ϵ1

)H−1 ≤
(1− η)µβ

√
k

1−ρ

V+( t̂t)
H

−1 ≤ 2(1− η)µβ
√
k

V+( t̂t)
H

−1
.

Since ϵ0 = c1θ
√

d
n = ϵ0, ϵ1(

t̄
t) =

c2t(1+ϵ0)
√

d logn/n

t−t̄ ∧ c2θ
1
2d

1
4 (log n)

3
4n−

1
4 , and Vv(κ)−Vv(κ−

ϵ) ≤ Cθϵ log ϵ by Lemma 7.10, we can follow the proof of Theorem 2 in [XCM13] and obtain

that the following inequality holds w.h.p,

H∗

H
≥
(1− η)V−

(
t̂
t −

ρ
1−ρ

)
V−
(
1− ρ

κ(1−ρ)

)
(1 + κ)V+

(
t̂
t

) − 10

V+(0.5)

(
ckmin{τ, γς}

H

)1/2

−c{θ
1
2d

1
4 (log

3
4 n)n−

1
4 ∨ θ[(1 + κ)/κ]

3
2 (log

3
2 n)n−

1
2 }

V+(0.5)
− 2(1− η)µβ

√
k

V+( t̂t)H
.

Hence this theorem holds.
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Proof of Corollary 7.4

Proof. When κ > 1, the corollary holds trivially. Hence, fix κ ≤ 1. From Theorem 7.4, we

have

lim inf
k

E.V{w∗
1, · · · ,w∗

k}

≥ (1− η)max
κ

V−
(
1− ρ∗

(1−ρ∗)κ

)
1 + κ

×

V−
(
t̂
t −

ρ∗

1−ρ∗

)
V+
(
t̂
t

)


≥ (1− η)max
κ

 1

1 + κ
−
Cθ ρ∗

(1−ρ∗)κ log (1−ρ∗)κ
ρ∗

1 + κ

×

V−
(
t̂
t

)
V+
(
t̂
t

) −
Cθ ρ∗

1−ρ∗ log
1−ρ∗

ρ∗

V+
(
t̂
t

)


≥ (1− η)max
κ

[
1− κ− Cθρ∗

κ
log

1

2ρ∗

]
×

V−
(
t̂
t

)
V+
(
t̂
t

) −
Cθρ∗ log 1

2ρ∗

V+
(
t̂
t

)


≥ (1− η)max
κ

[
1− κ− Cθρ∗

κ
log

1

2ρ∗

]
×

1− Cθρ∗ log 1
2ρ∗

V−
(
t̂
t

)
×

V−
(
t̂
t

)
V+
(
t̂
t

)
≥ (1− η)max

κ

1− κ−

1

κ
+

1

V−
(
t̂
t

)
Cθρ∗ log

1

2ρ∗

×
V−
(
t̂
t

)
V+
(
t̂
t

)
≥ (1− η)max

κ

1− κ−
Cθρ∗ log 1

2ρ∗

κV−
(
t̂
t

)
×

V−
(
t̂
t

)
V+
(
t̂
t

) .
The second inequality is due to Lemma 7.10 and V−(1) = 1. The third inequality is due

to ρ∗ < 0.5 and κ ≤ 1. The sixth inequality holds because κ ≤ 1 and V−
(
t̂
t

)
≤ 1. Taking

κ =
√
θρ∗ log 1

2ρ∗ , we can obtain this corollary.

7.7 Additional Lemmas

Concentration Results for Isotropic Random Vectors

Lemma 7.8. (Lemma 2, [XCM13]) For any 0 ≤ a1 < a2 < a3 ≤ 1 and v ∈ Sd, we have

Vv(a2)− Vv(a1)

a2 − a1
≤ Vv(a3)− Vv(a2)

a3 − a2
.
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Lemma 7.9. (Lemma 3, [XCM13]) 1) For any a ∈ [0, 1] and v ∈ Sd, we have Vv(a) ≤ a.

2) For any 0 ≤ a1 < a2 ≤ 1 and v ∈ Sd, we have

Vv(a2)− Vv(a1) ≤
a2 − a1
1− a1

.

Lemma 7.10. For any 1 > ϵ > 0 and κ ∈ [ϵ, 1] and v ∈ Sd, we have Vv(κ)− Vv(κ− ϵ) ≤

Cθϵ log(1/ϵ).

Proof. By monotonicity, it suffices to prove the result for κ = 1. Notice that for K ≥ 2θ,

Vv(1)− Vv(1− ϵ)

≤ϵK2 + Ex∼µ̄v [x
2 · 1(x > K)]

=ϵK2 +

∫ ∞

K2

Px∼µ̄v [x
2 > z]dz

≤ϵK2 +

∫ ∞

K2

exp(1− z/θ)dz

=ϵK2 + e0θ exp(−K2/θ)

Let K2 = θ log(1/ϵ), then we have Vv(1)− Vv(1− ϵ) ≤ Cθϵ log(1/ϵ).

Theorem 7.7. (Theorem 7(I), [XCM13]) Suppose random vector ni ∼ N (0, Ip). Let τ ≜

max{p/n, 1}. There exist a universal constant c > 0 such that with high probability,

sup
w∈Sp

1

t

t∑
i=1

(w⊤ni)
2 ≤ cτ.

Theorem 7.8. There exists an absolute constant C > 0, such that with high probability,

sup
v∈Sd

| 1
n

n∑
i=1

(v⊤xi)
2 − 1| ≤ Cθ

√
d

n
.

Proof. The proof depends on the following Lemma (Lemma 14 in [LW12]).

Lemma 7.11. If X ∈ Rn×d is a zero-mean sub-Gaussian matrix with parameters (Σ, σ2),

then for any fixed (unit) vector v ∈ Rd and any t > 0, we have

P[|∥Xv∥22 − E[∥Xv∥22]| > nt] ≤ 2 exp

(
−cnmin

(
t2

σ4
,
t

σ2

))
,
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for a universal constant c.

Consider matrix Z ∈ Rn×d where the ith row is x⊤
i , then for any fixed (unit) vector v ∈ Rd

and any t > 0, there exists a universal constant c such that

P[|∥Zv∥22 − E[∥Zv∥22]| > nt] ≤ 2 exp

(
−cnmin

(
t2

θ2
,
t

θ

))
.

Let A be a 1/3 cover of Sd, then for any v ∈ Sd, there is some u ∈ A such that ∥u−v∥2 ≤ 1/3.

It is known that |A| ≤ 9d. Define ψ(v1,v2) = |v⊤
1

(
Z⊤Z
n − E[Z⊤Z]

n

)
v2|, then we have

sup
v∈Sd

ψ(v,v) ≤ max
u∈A

ψ(u,u) + 2 sup
v∈Sd

ψ(v − u,u) + sup
v∈Sd

ψ(v − u,v − u).

Since ∥u− v∥2 ≤ 1
3 , we have

sup
v∈Sd

ψ(v,v) ≤ max
u∈A

ψ(u,u) + (
2

3
+

1

9
) sup
v∈Sd

ψ(v,v).

Hence supv∈Sd
ψ(v,v) ≤ 9

2 maxu∈A ψ(u,u). By the lemma above and the union bound,

P[ sup
v∈Sd

ψ(v,v) > t] ≤ P[
9

2
max
u∈A

ψ(u,u) > t] ≤ 9d · 2 exp
(
−cnmin

(
t2

θ2
,
t

θ

))
.

Thus, we have

P[ sup
v∈Sd

| 1
n

n∑
i=1

(v⊤xi)
2 − 1| > t] ≤ 2 exp

(
−c1nmin

(
t2

θ2
,
t

θ

)
+ c2d

)
.

Let the right hand side be d−10, then t = Cθ
√

d
n for constant C and large enough n.

Lemma 7.12. With high probability, the following holds uniformly over n̄ ≤ n and v ∈ Sd,∣∣∣∣∣ 1n
n̄∑

i=1

[v⊤x]2(i) − Vv(n̄/n)

∣∣∣∣∣ ≤ Cn
√
d log n/n

n− n̄
,

for a universal constant C.

Proof. The proof is similar to the proof of Theorem 11 [XCM13]. We just need to replace

V with Vv.
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Theorem 7.9. With high probability, the following holds uniformly over n̄ ≤ n and v ∈ Sd,∣∣∣∣∣ 1n
n̄∑

i=1

[v⊤x]2(i) − Vv(n̄/n)

∣∣∣∣∣ ≤ Cmax

{
θ

√
d

n
, θ1/2d1/4(log n)3/4n−1/4

}
,

for a universal constant C.

Proof. Follow the proof of Corollary 5 in [XCM13]. As shown above, Theorem 7.8 and

Lemma 7.12 hold w.h.p. Under the condition of Theorem 7.8 and Lemma 7.12, we define

n0

n0 = (1−Θ(θ−1/2d1/4n−1/4 log−1/4 n))n.

If n̄ ≤ n0, then Lemma 7.12 leads to

∣∣∣∣∣ 1n
n̄∑

i=1

[v⊤x]2(i) − Vv(n̄/n)

∣∣∣∣∣ ≤ Cθ1/2d1/4(log n)3/4n−1/4.

If n̄ > n0, we have
1

n

n̄∑
i=1

[v⊤x]2(i) − Vv(n̄/n)

≤

∣∣∣∣∣ 1n
n∑

i=1

[v⊤x]2(i) − 1

∣∣∣∣∣+ |1− Vv(n̄/n)|

≤C1θ

√
d

n
+ C2θ

n− n0
n

log
n

n− n0

≤Cmax

{
θ

√
d

n
, θ1/2d1/4(log n)3/4n−1/4

}
.

On the other hand,

Vv(n̄/n)−
1

n

n̄∑
i=1

[v⊤x]2(i)

≤Vv(n̄/n)−
1

n

n0∑
i=1

[v⊤x]2(i)

≤

∣∣∣∣∣ 1n
n0∑
i=1

[v⊤x]2(i) − Vv(n0/n)

∣∣∣∣∣+ |Vv(n0/n)− Vv(n̄/n)|

≤C1
n
√
d log n/n

n− n0
+ C2θ

n− n0
n

log
n

n− n0

≤Cθ1/2d1/4(log n)3/4n−1/4.



7.7 Additional Lemmas 231

Hence this theorem holds.

Concentration Results for Non-isotropic Random Vectors

Lemma 7.13. There exists a constant c > 0 such that with high probability,

sup
v∈Sp

∣∣∣∣∣1t
t∑

i=1

(v⊤zi)
2 − v⊤Σv

∣∣∣∣∣ ≤ cζ∥Σ∥2
√
p

n
.

Proof. Recall that z = [A, Ip]u where u is a sub-gaussian random variable with mean zero

and variance Ip+d. Denote (A, Ip)
⊤ by Ā, since Ā⊤Ā = Σ and d ≤ p, then with high

probability

sup
v∈Sp

∣∣∣∣∣1t
n∑

i=1

(v⊤zi)
2 − v⊤Σv

∣∣∣∣∣ = sup
v∈Sp

∣∣∣∣∣1t
n∑

i=1

((Āv)⊤u)2 − v⊤Ā⊤Āv

∣∣∣∣∣
≤ sup

v∈Sp∩{v:Āv ̸=0}
∥Ā⊤Ā∥2 ·

∣∣∣∣∣ 1n
n∑

i=1

((Āv)⊤u)2

∥Āv∥2
− 1

∣∣∣∣∣ ≤ ∥Σ∥2 · sup
q∈Sp+d

∣∣∣∣∣ 1n
n∑

i=1

(q⊤u)2 − 1

∣∣∣∣∣
≤cζ∥Σ∥2

√
p

n
.

Lemma 7.14. Let τ ≜ max{p/n, 1}. There exists a constant C > 0 such that with high

probability,

sup
v∈Sp

1

t

t∑
i=1

(v⊤zi)
2 ≤ 2∥A∥22(1 + c1θ

√
d

n
) + c2τ.
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Proof. Consider the following inequalities

sup
v∈Sp

1

t

t∑
i=1

(v⊤zi)
2 = sup

v∈Sp

1

t

t∑
i=1

(v⊤(Axi + ni))
2

≤ sup
v∈Sp

1

t

t∑
i=1

(v⊤Axi)
2 + sup

v∈Sp

1

t

t∑
i=1

(v⊤ni)
2 + sup

v∈Sp

2

t

t∑
i=1

(v⊤Axin
⊤
i v)

≤2

(
sup
v∈Sp

1

t

t∑
i=1

(v⊤Axi)
2 + sup

v∈Sp

1

t

t∑
i=1

(v⊤ni)
2

)

=2

(
sup

v∈Sp∩{v:A⊤v ̸=0}
∥v⊤A∥22 ·

1

t

t∑
i=1

(
v⊤Axi

∥v⊤A∥2
)2 + sup

v∈Sp

1

t

t∑
i=1

(v⊤ni)
2

)

≤2∥A∥22(1 + c1θ

√
d

n
) + c2τ

where the last inequality follows from Theorem 7.7 and Theorem 7.8.

Lemma 7.15. Let τ ≜ max{p/n, 1}. There exists a universal constant c such that with

high probability the following holds uniformly over n̄ ≤ n,

sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤z|2[i] ≤ 2∥A∥22

(
1− V−(n̄/n) + c1θ

√
d

n
+ c2θ

1/2d1/4(log n)3/4n−1/4

)
+ cτ.

Proof. Consider the following inequalities

sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤z|2[i] = sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤(Ax+ n)|2[i]

≤2

(
sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤Ax|2[i] + sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤n|2[i]

)
.

Note that

sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤Ax|2[i] ≤ sup
v∈Sp∩{v:A⊤v ̸=0}

∥AA⊤∥2 ·
1

n

n−n̄∑
i=1

∣∣∣∣ v⊤Ax

∥v⊤A∥2

∣∣∣∣2
[i]

=∥AA⊤∥2 · sup
v∈Sd

∣∣∣∣∣ 1n
n∑

i=1

|v⊤x|2 − 1

n

n̄∑
i=1

|v⊤x|2(i)

∣∣∣∣∣
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From Theorem 7.8 and Theorem 7.9, we know that

sup
v∈Sd

∣∣∣∣∣ 1n
n∑

i=1

|v⊤x|2 − 1

n

n̄∑
i=1

|v⊤x|2(i) − (1− Vv(n̄/n))

∣∣∣∣∣
≤ sup

v∈Sd

∣∣∣∣∣ 1n
n∑

i=1

|v⊤x|2 − 1

∣∣∣∣∣+ sup
v∈Sd

∣∣∣∣∣ 1n
n̄∑

i=1

|v⊤x|2(i) − Vv(n̄/n)

∣∣∣∣∣
≤c1θ

√
d

n
+ c2max

{
θ

√
d

n
, θ1/2d1/4(log n)3/4n−1/4

}
,

which implies that

sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤Ax|2[i] ≤ ∥A∥22 ·

(
1− V−(n̄/n) + c1θ

√
d

n
+ c2θ

1/2d1/4(log n)3/4n−1/4

)
.

(7.10)

Similarly, for the term supv∈Sp

1
n

∑n−n̄
i=1 |v⊤n|2[i], since n ∼ N (0, Ip), from Theorem 7.7 we

have

sup
v∈Sp

1

n

n−n̄∑
i=1

|v⊤n|2[i] ≤ sup
v∈Sp

1

n

n∑
i=1

|v⊤n|2 ≤ cτ.

Hence we obtain this theorem.

Lemma 7.16. With high probability the following holds uniformly over n̄ ≤ n for every

matrix X ∈ Rp×p,

1

n

n−n̄∑
i=1

⟨zz⊤,X⟩[i] ≤ min
{[

2
(
1− V−(n̄/n) + ϵ(d)

)
∥A∥22 + cτ

]
∥X∥∗ ,

[(
1− V−(n̄/n) + ϵ(d)

)
∥A∥22 + cϕ(1 + ζd∥A∥2)

]
∥X∥1

}
,

where ϵ(d) = c1θ
√

d
n + c2θ

1/2d1/4(log n)3/4n−1/4, τ = max{1, pn}, ϕ = max{1,
√

log p
n } and

c, c1, c2 are universal constants.

Proof. Let {k(i)} be the indices of the largest n− n̄ values of ⟨zz⊤,X⟩, then

1

n

n−n̄∑
i=1

⟨zz⊤,X⟩[i] = ⟨ 1
n

n−n̄∑
i=1

zk(i)z
⊤
k(i),X⟩

≤min

{
∥ 1
n

n−n̄∑
i=1

zk(i)z
⊤
k(i)∥∞∥X∥1, ∥

1

n

n−n̄∑
i=1

zk(i)z
⊤
k(i)∥2∥X∥∗

}
.
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Notice that ∥ 1
n

∑n−n̄
i=1 zk(i)z

⊤
k(i)∥2 can be bounded by Lemma 7.15, so we only need to bound

∥ 1
n

∑n−n̄
i=1 zk(i)z

⊤
k(i)∥∞. We have

∥ 1
n

n−n̄∑
i=1

zk(i)z
⊤
k(i)∥∞

≤∥ 1
n

n−n̄∑
i=1

Axk(i)x
⊤
k(i)A

⊤∥∞ + ∥ 1
n

n−n̄∑
i=1

nk(i)n
⊤
k(i)∥∞ + ∥ 2

n

n−n̄∑
i=1

Axk(i)n
⊤
k(i)∥∞

≤∥ 1
n

n−n̄∑
i=1

Axk(i)x
⊤
k(i)A

⊤∥2 + ∥ 1
n

n∑
i=1

|ni||ni|⊤∥∞ + 2d∥A∥∞∥ 1
n

n∑
i=1

|xi||ni|⊤∥∞.

Let P ≜ 1
n

∑n
i=1 |ni||ni|⊤ and Q ≜ 1

n

∑n
i=1 |xi||ni|⊤, then

Pij =
1

n

n∑
k=1

|nkinkj | ≤
2

n

n∑
k=1

(n2
ki + n2

kj), Qij =
1

n

n∑
k=1

|xkinkj | ≤
2

n

n∑
k=1

(x2
ki + n2

kj).

Since xki is a zero-mean sub-Gaussian random variable and nki is a standard Gaussian

random variable, from Proposition 5.16 [Ver12]

P

[∣∣∣∣∣ 1n
n∑

k=1

n2
ki − 1

∣∣∣∣∣ > t

]
≤ 2 exp(−c1min{nt2, nt}), and

P

[∣∣∣∣∣ 1n
n∑

k=1

x2
ki − 1

∣∣∣∣∣ > t

]
≤ 2 exp(−c2min{nt

2

θ2
,
nt

θ
})

for universal constant c1, c2. There exists c (may change from line to line) so that when

t = c
√

log p
n , by the union bound we have

P

[
∥P∥∞ > 1 + c

√
log p

n

]
≤ p−10, and P

[
∥Q∥∞ > ζ(1 + c

√
log p

n
)

]
≤ p−10

where ζ = max{θ, 2}. Let ϕ = max{1, log pn }, then with high probability

∥P∥∞ ≤ cϕ, and ∥Q∥∞ ≤ cζϕ.

Thus,

∥ 1
n

n−n̄∑
i=1

zk(i)z
⊤
k(i)∥∞ ≤ ∥ 1

n

n−n̄∑
i=1

Axk(i)x
⊤
k(i)A

⊤∥2 + cϕ(1 + ζd∥A∥2).

The first term on the right hand side can be bound by Equation (7.10). Hence we obtain
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this lemma.

Lemma 7.17. (Corollary 3.3, [VCLR13]) There exists a universal constant c such that with

probability at least 1− p−10,

∥ 1
n

n∑
i=1

ziz
⊤
i −Σ∥∞ ≤ cζ∥Σ∥2

√
log p

n
.

7.8 Chapter Summary

In this chapter, we proposed a unified framework for making PCA-like algorithms robust

to outliers. We provided theoretical performance analysis of the proposed framework using

both the subspace distance and the expressed variance metrics. To the best of our knowledge,

this is the first attempt to make a wide range of PCA-like algorithms provably robust

to any constant fraction of arbitrarily corrupted samples. As an immediate result, our

framework leads to robust sparse PCA and robust non-negative sparse PCA with theoretic

guarantees – the first of its kind to the best of our knowledge. The experiments show

that the outlier-robust PCA-like algorithms derived from our framework outperforms their

non-robust version and other alternatives including HR-PCA and ROB-SPCA.



Chapter 8
Non-convex Outlier-Robust PCA

We develop new efficient algorithms for outlier-robust PCA whose aim is to exactly recover

the low-dimensional subspace spanned by the uncorrupted samples and correctly identify the

corrupted samples. Our algorithms are non-convex counterparts of Outlier Pursuit proposed

by [XCS12], which alternatively estimate the low-dimensional subspace and mitigate the

effect of corruption. They have much lower computational complexity compared to Outlier

Pursuit. In particular, for a p × n input matrix, the total operations required to obtain

an estimated subspace with target rank r and estimation error ϵ is O(rnp log(1/ϵ)), which

is close to computation cost for the standard PCA. We establish theoretical performance

guarantees for the proposed algorithm on the exact recovery of the true subspace under

some mild assumptions on the fraction of the corrupted samples that are similar to those

required by Outlier Pursuit. The numerical experiments on synthetic and real-world data

illustrate their good empirical performance.

8.1 Introduction

Principal component analysis (PCA) [Pea01] is arguably the most widely applied dimen-

sionality reduction method, playing a significant role in a broad range of areas including

machine learning, statistics, finance and many others. The standard PCA is simple to im-

plement by performing the eigenvalue decomposition of the sample covariance matrix. It is

well known that PCA is sensitive to the presence of outliers, i.e., its performance degrades

significantly even with a few corrupted samples, due to the quadratic error criterion used.

The pursuit of robust PCA algorithms has consistently attracted attention in statistics and

236
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in machine learning, e.g., [DGK81, XY95, YW99, lTB03, Das03, XCM13, FXY12, YX15b].

In Chapter 7, we proposed a general framework that is tractable, computationally efficient,

and provably robustify a wide range of PCA-like algorithms including the standard PCA

and sparse PCA, even in the face of a constant fraction of samples are corrupted in the

high dimensional regime. But these algorithms cannot guarantee the exact recovery of the

subspace spanned by the true principal components.

Recently, borrowing ideas from compressive sensing, a prominent new approach for robust

PCA is to decompose the noisy sample matrix X into a low-rank matrix L∗ and a sparse

matrix S∗ via nuclear norm minimization, e.g., [CR09, CLMW11, RFP10, CSPW11]. The

seminal papers of [RFP10] and [CLMW11] showed that the exact recovery of the low-rank

and sparse matrices can be achieved under some mild conditions on the incoherence of

L∗ and the sparsity of S∗. These papers assume that the support set of S∗ is uniformly

distributed among all the sets of a certain cardinality, which is not suitable for handling

outliers where there exist some columns whose entries are all corrupted. To address this

issue, [XCS12] proposed a nuclear norm based algorithm called Outlier Pursuit to handle

corrupted samples, where they assumed that S∗ is column-wise sparse instead of entry-wise

sparse. The goal of Outlier Pursuit is to exactly recover the column space of the low-rank

matrix L∗ and identify the nonzero columns of S∗. They proved that exact recovery can

be achieved under mild conditions depending on the incoherence of the row space of L∗

and the fraction of outliers. While nuclear norm based algorithms have elegant theoretical

results, they can be difficult to apply to large-scale applications due to high computational

cost. In particular, for a p × n matrix, state-of-art numerical algorithms solving these

formulations, typically based on ALM [LCM10, CLMW11] and ADMM [BPC+10], requires

O(min{p2n, pn2}) computation per iteration.

In the last couple of years, computationally efficient robust PCA algorithms based on alter-

nating minimization techniques have drawn much attention, e.g., [NNS+14, JNS13, Har13,

ZWL15]. All these algorithms are designed to recover the low-rank matrix L∗ from X with

entry-wise sparse noise or missing entries, instead of column-wise corruption, i.e., outliers.

In this chapter, we develop two novel non-convex algorithms for outlier-robust PCA called

Outlier Rejection and Outlier Reduction, which involve alternating between estimating the
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low-rank column space of L∗ and identifying the outliers indicated by S∗. In comparison with

Outlier Pursuit [XCS12], the proposed algorithms have much lower computational load, yet

enjoy similar performance guarantees for the exact recovery of the true column space. In-

deed, for a p×n matrix L∗, the overall computational complexity of the proposed algorithms

is O(rnp log(1/ϵ)) where r is the target rank and ϵ is the estimation error, which is almost as

low as the computational complexity of the standard PCA. Moreover, if the fraction of the

outliers ρ is O( 1
µr∗2

) where r∗ is the rank of L∗ and µ is the column-incoherence parameter

that will be discussed in the following section, our algorithms guarantee to recover the true

column space with an arbitrary small error. This condition on ρ is slightly stronger than

that of Outlier Pursuit – O( 1
µr∗ ) to be specific, yet our experiments demonstrate that they

outperform Outlier Pursuit in practice.

Notations: We use boldface lower-case letters to represent column vectors and capital

letters for matrices. For matrix X, three matrix norms are used: ∥X∥2 is the spectral norm,

∥X∥F is the Frobenius norm, ∥X∥∞,2 is the largest l2 norm of the columns. Additionally,

∥X∥0,2 denotes the number of the nonzero columns of X, Xi denotes the ith column of X

and σr(X) denotes the rth largest singular value of X.

8.2 Problem Setting

The outlier-robust PCA problem we consider in this chapter is the same as studied in

[XCS12]. More specifically, suppose that we receive n samples {x1, · · · ,xn} in p-dimensional

space, where a fraction 1 − ρ of these samples lie in a r∗-dimensional true subspace of Rp

– these (1− ρ)n samples are taken as inliers, and the remaining ρn samples are arbitrarily

located – these ρn samples are taken as outliers. Our goal is to recovery the true subspace

spanned by the inlier samples.

Let X ∈ Rp×n be the data matrix formed by these n samples, each of whose columns is one

of the samples and let C be the set of indices corresponding to the outlier samples. In the

noiseless case, X can be decomposed as

X = L∗ + S∗,
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where matrices L∗ and S∗ correspond to the inlier and outlier samples, respectively. That is,

L∗
i = xi for i ̸∈ C or 0 otherwise and S∗

i = xi for i ∈ C or 0 otherwise. Thus, rank(L∗) = r∗

and ∥S∗∥0,2 = |C| = ρn. Similarly, in the noisy case, X can be decomposed as

X = L∗ + S∗ +N,

where N is any additional noise applied to the samples. Consider the singular value decom-

position of L∗

L∗ = U∗Σ∗V∗⊤,

where U∗ ∈ Rp×r∗ , V∗ ∈ Rn×r∗ and Σ∗ ∈ Rr∗×r∗ , then U∗ forms an orthonormal basis for

the true column subspace we wish to reveal. It is well known that recovering a low rank

matrix from column sparse corruption may not be well defined when the matrix is column-

sparse itself. As an extreme example, if X has only one nonzero column, then X is both

low-rank and column-sparse and hence it is impossible to identify the true column space

of L∗. To avoid such “low-rank” and “column-sparse” ambiguity, the following incoherent

assumption is made [XCS12]:

Assumption 8.1. L∗ is µ-column-incoherent, i.e., if L∗ with SVD L∗ = U∗Σ∗V∗⊤ has

(1− ρ)n nonzero columns, then

max
i

∥e⊤i V∗∥22 ≤
µr∗

(1− ρ)n
,

where {e1, · · · , en} is the standard basis of Rn.

Obviously, if V∗ is perfectly column-incoherent, i.e., V∗ has rank 1 with nonzero entries

equal to 1√
(1−ρ)n

, the incoherent parameter µ is 1, and if each column of V∗ aligns with

a coordinate axis, then µ equals (1−ρ)n
r∗ . [CR09] proved that if the samples are generated

according to some low-dimensional isometric distribution, then µ = O(max{1, lognr∗ }) with

high probability. Thus, a smaller µ means that the column support of each column of V∗

spreads out.

This condition is weaker than the incoherent conditions for matrix completion, e.g., [CR09,

CT10, Gro11, CBSW14], and robust PCA, e.g., [WPM+09, CLMW11, NNS+14], which also
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require row-incoherence, while we only need column-incoherence since our goal is to recover

the column space of L∗, instead of L∗.

8.3 Outlier Rejection and Outlier Reduction

A direct approach to recover the column space of L∗ is to solve the following optimization

problem:

min
L,S

rank(L) + λ∥S∥0,2, s.t. X = L+ S, (8.1)

and then perform SVD of the optimal solution. Note that (8.1) is intractable due to the

non-convexity of rank(·) and ∥ · ∥0,2. To address this issue, [XCS12] proposed a convex

relaxation for (8.1) called Outlier Pursuit :

min
L,S

∥L∥∗ + λ∥S∥1,2, s.t. X = L+ S, (8.2)

where ∥ · ∥∗ is the nuclear norm and ∥ · ∥1,2 denotes the sum of the l2-norm of the columns.

Under Assumption 8.1 and some mild conditions on the fraction of outlier samples, Outlier

Pursuit is guaranteed to exactly recover of the true column space. Although it owns beautiful

theoretical results, its practical applications are still limited due to its high computational

cost. In particular, (8.2) is usually solved via the augmented Lagrangian multipliers (ALM)

method [LCM10, CLMW11] or the alternating direction method of multipliers (ADMM)

method [BPC+10], either of which requires O(min{p2n, pn2}) computations in each iteration

that are unaffordable when faced with large-scale data.

In this section, we present two new computationally efficient algorithms for the outlier-

robust PCA problem. Instead of considering convex surrogates of (8.1), we formulate this

problem as the following non-convex feasibility problem: find L,S such that 1) X = L+ S,

2) L lies in the set of low-rank matrices, 3) S lies in the set of column-sparse matrices, and

4) ∥(I − LL†)L∗∥∞,2 ≤ ϵ, where L† is the pseudo-inverse of L and ϵ is a certain constant.

The last constraint relates to the estimation accuracy, ensuring that the l2-norm of each

inlier sample after projected onto the subspace orthogonal to the column space of L is less

than ϵ. In other words, it guarantees that the true column space is approximately included
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in the column space of L. Clearly, when rank(L) = r∗ and ϵ = 0, the column spaces of L

and L∗ are the same. Since L∗ is unknown, our plan is to solve solution L based on the first

three constraints while taking the last constraint as a metric for theoretical performance.

The algorithms proposed in this chapter are shown in Algorithm 8.1 and Algorithm 8.2,

namely, outlier-robust PCA via Outlier Rejection and Outlier Reduction. The intuitive

idea of our algorithms is as follows. In the preprocessing step, each nonzero column of X

is normalized to reduce the bad effect of outliers with large magnitudes. Then given the

target rank r ≥ r∗, L and S can be solved alternatively: 1) update L with fixed S, i.e.,

compute L = X− S, and 2) update S with fixed L, i.e., project each column of X onto the

subspace that is orthogonal to the subspace spanned by the top r left singular vectors of L

to determine S. Therefore, the key component of the algorithms is to construct proper S

to guarantee that the subspace spanned by the top r singular vectors of L becomes close to

the true column space after several iterations.

In Outlier Rejection, S is constructed by identifying the outlier samples revealed so far from

the training samples. More specifically, at the tth iteration, let U ∈ Rp×r consists of the top

r left singular vectors of L, then Si – the ith column of S – equals Xi if ∥(I−UU⊤)Xi∥2 > ϵ

for a certain threshold ϵ or 0 otherwise. This essentially means the samples deviating from

Ut too much are considered as outliers and removed in the next iteration. Intuitively, the

more outliers are revealed, the smaller ∥(I−UU⊤)L∗∥∞,2 becomes, and vice versa.

In Outlier Reduction, instead of removing outlier samples, it tries to reduce the residual of

each sample after projected onto the subspace spanned by U – the top r left singular vectors

of L. Specifically, at the tth iteration, if the residual Ri ≜ (I−UU⊤)Xi for the ith sample

is relatively large, namely, ∥Ri∥2 > ϵ for a certain threshold ϵ, we reduce this residual from

Xi by setting Si to Ri, or equivalently, we select S = CTϵ(X −UU⊤X) where CTϵ(·) is a

column-wise truncation operator defined as follows: For matrix Y ∈ Rp×n, CTϵ(Y) returns

a matrix with size p × n whose ith column is Yi if ∥Yi∥2 > ϵ or 0 otherwise. Since the

corruption in the contaminated samples that affect the accuracy of column space estimation

is reduced in one iteration, the resulting subspace spanned by U will become closer to the

true column space in the next iteration.
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Algorithm 8.1: Outlier Rejection

Input : Matrix X, target rank r and parameters τ, η.

Output: The estimated principal components.

1 Normalize the columns of X, i.e., Xi =
Xi

∥Xi∥2 when Xi ̸= 0;

2 Initialize L1 = X, ϵ1 = 1, T = log ϵ
log τ + 1;

3 for t = 1 to T do

4 Compute Ut – the top r left singular vectors of Lt;

5 Construct At = {i : ∥(X−UtU
⊤
t X)i∥2 > ϵt};

6 Update Lt+1 so that Lt+1,i = Xi if i ̸∈ At or 0 otherwise.

7 Set ϵt+1 = τϵt + η;

8 end

9 Return UT .

Algorithm 8.2: Outlier Reduction

Input : Matrix X, target rank r and parameters τ, η.

Output: The estimated principal components.

1 Normalize the columns of X, i.e., Xi =
Xi

∥Xi∥2 when Xi ̸= 0;

2 Initialize S1 = 0, ϵ1 = 1, T = log ϵ
log τ + 1;

3 for t = 1 to T do

4 Compute Lt = X− St;

5 Compute Ut – the top r left singular vectors of Lt;

6 Update St+1 = CTϵt(X−UtU
⊤
t X).

7 Set ϵt+1 = τϵt + η;

8 end

9 Return UT , ϵT .

In both of Algorithm 8.1 and Algorithm 8.2, threshold ϵt is a key parameter for achieving

exact recovery of the true column space with a fast convergence rate. Note that ϵt is
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updated via ϵt+1 = τϵt + η for certain constants τ < 1 and η > 0. We will discuss how

to select τ and η in the next section. Obviously, the major difference between the two

algorithms is that Outlier Rejection tries to directly identify the set of the outliers while

Outlier Reduction tends to reduce the corruption containing in the contaminated samples.

Empirically, Outlier Reduction is more robust to corruption than Outlier Rejection. For

example, our experiments show that it can recover the true column space even when each

sample contains some corrupted feature values.

Based on Algorithm 8.2, one can also recover the row space of L∗ as shown in Algorithm

8.3. The basic idea is that the outlier samples can be identified via projecting each sample

onto the column space estimated by Algorithm 8.2, which is similar to the technique applied

in Algorithm 8.1. Clearly, if all the outliers are identified and removed, one can recover the

true row space.

Algorithm 8.3: Row-space recovery

Input : Matrix X, target rank r, accuracy ϵ and parameters τ, η.

Output: The estimated projection matrix on the row space of L∗.

1 Compute UT , ϵT by running Algorithm 8.2 with input X and parameters r, τ, η

and T ≥ log ϵ/ log τ + 1;

2 Let A = {i : ∥(X−UTU
⊤
TX)i∥2/∥Xi∥2 > ϵT } and construct L so that Li = Xi if

i ̸∈ A or 0 otherwise;

3 Compute Vr – the top r right singular vectors of L;

4 Return VrV
⊤
r .

Note that each iteration in Algorithm 8.1 and Algorithm 8.2 has a O(rnp) computational

complexity because it only involves the calculation of the top r left singular vectors of

a p × n matrix. Therefore, the overall computational complexity of our algorithms is

O(rnp log ϵ/ log τ). In comparison with the Outlier Pursuit algorithm [XCS12] which re-

quires O(min{p2n, pn2}) operations in each iteration due to calculating the singular value

decomposition of a p × n matrix when it is solved via the ALM or ADMM method, our

algorithms have a much lower computational cost and hence can be applied in large-scale
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applications.

8.4 Performance Guarantees

We now provide theoretical performance guarantees for the proposed algorithms. Recall

that the columns of sample matrix X are normalized in the first step of Algorithms 8.1 and

8.2. Since this normalization step has no effect on the true column space, we assume that

each nonzero column of X is a unit vector and such normalized X satisfies Assumption 8.1.

In the following parts, we use L to denote the set of full rank p× r∗ submatrices of L∗, i.e.,

for any L ∈ L, the columns of L are linearly independent and drawn from the columns of

L∗.

Theorem 8.1 shows the performance guarantee of Algorithm 8.1 in the noiseless case, stating

that ∥(I − UTU
⊤
T )L

∗∥∞,2 can be arbitrarily small as long as the fraction of outliers is

upper bounded by a certain value depending on r∗. This means the true column space is

approximately included in the subspace spanned by UT . Especially, the exact recovery can

be achieved when target rank r equals r∗.

Theorem 8.1. Suppose that X = L∗ + S∗ where L∗ is µ-column-incoherent and has rank

r∗, and S∗ is supported on at most ρn columns. Then as long as the fraction of outliers ρ

satisfies
ρ

1− ρ
<

1

4µr∗(1 +
√
r∗/maxL∈L σr∗(L))2

, (8.3)

there exists τ ∈ [2
√

µr∗ρ
1−ρ (1+

√
r∗

maxL∈L σr∗ (L)
), 1) so that for any ϵ > 0, when r ≥ r∗ and η = 0,

the output UT of Algorithm 8.1 satisfies

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵ.

Furthermore, if r = r∗, we have

∥U∗U∗⊤ −UTU
⊤
T ∥2 ≤

√
rϵ

maxL∈L σr(L)
.

Remark 1. The term maxL∈L σr∗(L) is determined by the intrinsic property of L∗, which
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could be a constant, e.g., when Σ∗ =
√

(1− ρ)n and V∗ ∈ Rn×1 whose nonzero entries are

1√
(1−ρ)n

, one can easily verify that V∗ satisfies Assumption 8.1 and maxL∈L σr∗(L) = 1.

Remark 2. [XCS12] proved that Outlier Pursuit achieves exact recovery when ρ
1−ρ ≤

9
121µr∗ . Note that when maxL∈L σr∗(L) is a constant, the required upper bound for ρ

1−ρ

shown in (8.3) is about O(r∗) times large as that of Outlier Pursuit, which is a mild cost

in the low-rank case where r∗ is small. This highlights a tradeoff between computational

efficiency and sample complexity: while our algorithms run much faster than Outlier Pursuit,

it needs a stronger condition on the fraction of outliers. Yet, empirically, the experiments

appear to suggest that our algorithms outperform Outlier Pursuit.

Theorem 8.2 provides a performance guarantee for Algorithm 8.1 in the noisy case. The

major difference between Theorem 8.1 and Theorem 8.2 is that now parameter η need to

be set to some positive constant instead of zero due to existence of additional noise N.

Theorem 8.2. Suppose that X = L∗ + S∗ + N where L∗ is µ-column-incoherent and has

rank r∗, S∗ is supported on at most ρn columns and N is the additional noise. Then as long

as the fraction of outliers ρ satisfies

ρ

1− ρ
<

1

4µr∗(1 +
√
r∗/maxL∈L σr∗(L))2

,

there exists τ ∈ [2
√

µr∗ρ
1−ρ (1 +

√
r∗

maxL∈L σr∗ (L)
), 1] so that for any ϵ > 0, when r ≥ r∗, and η ≥

φ∥N∥∞,2, where

φ = 2

√
µr∗

1− ρ
+ 2r∗

√
µρ

(1− ρ)maxL∈L σr∗(L)2
+ 1,

the output UT of Algorithm 8.1 satisfies

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵ+ (
φ

1− τ
+ 1)∥N∥∞,2.

Furthermore, if r = r∗, we have

∥U∗U∗⊤ −UTU
⊤
T ∥2 ≤

√
r(ϵ+ ( φ

1−τ + 2)∥N∥∞,2)

maxL∈L σr(L)
.
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Remark 3. Due to existence of noise N, η should be greater than φ∥N∥∞,2 to ensure

that most of the rejected samples in each iteration are outliers. The error bound for ∥(I−

UTU
⊤
T )L

∗∥∞,2 involves the magnitude of the noise applied to each sample. If this magnitude

is not too large, our algorithm obtains good results.

Theorem 8.3 and Theorem 8.4 provide performance guarantees for Algorithm 8.2 in the

noiseless case and the noisy case, respectively. Interestingly, the guarantees for Algorithm

8.1 and Algorithm 8.2 are the same although their proofs differ (refer to the appendix).

Theorem 8.3. Suppose that X = L∗ + S∗ where L∗ is µ-column-incoherent and has rank

r∗, and S∗ is supported on at most ρn columns. Under the same conditions as Theorem 8.1,

the output UT of Algorithm 8.2 satisfies

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵ.

Furthermore, if r = r∗, we have

∥U∗U∗⊤ −UTU
⊤
T ∥2 ≤

√
rϵ

maxL∈L σr(L)
.

Theorem 8.4. Suppose that X = L∗ + S∗ + N where L∗ is µ-column-incoherent and has

rank r∗, S∗ is supported on at most ρn columns and N is the additional noise. Under the

same conditions as Theorem 8.2, the output UT of Algorithm 8.2 satisfies

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵ+ (
φ

1− τ
+ 1)∥N∥∞,2.

Furthermore, if r = r∗, we have

∥U∗U∗⊤ −UTU
⊤
T ∥2 ≤

√
r(ϵ+ ( φ

1−τ + 2)∥N∥∞,2)

maxL∈L σr(L)
.

We remark that while Algorithms 8.1 and 8.2 have same performance guarantees, their

empirical performance may differ. Algorithm 8.1 tends to identify the set of outliers while

Algorithm 8.2 prefers reducing the corruption. Consequently, Algorithm may be more robust

in practice, e.g., our experiments show that Algorithm 8.2 is able to extract the background
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for a video sequence where many sample images contain corrupted regions (foreground

objects), but Algorithm 8.1 is not capable of doing this.

The following theorem shows when Algorithm 8.3 can exactly recover the row space of L∗.

Note that we do not assume the columns of X are normalized here.

Theorem 8.5. Suppose that X = L∗+S∗ where L∗ is µ-column-incoherent and has rank r∗,

and S∗ is supported on at most ρn columns. Let L be the set of full rank p× r∗ submatrices

of L∗ after the normalization. If the fraction of outliers ρ satisfies

ρ

1− ρ
<

1

4µr∗(1 + 2
√
r∗/maxL∈L σr∗(L))2

,

and there exists constant δ > 0 so that

∥U∗U∗⊤S∗
i ∥2

∥S∗
i ∥2

≥ δ, ∀i ∈ C,

then when r = r∗, η = 0, 1 > τ ≥ 2
√

µr∗ρ
(1−ρ)(1 +

2
√
r∗

maxL∈L σr∗ (L)
) and ϵ < δ

1+
√
r∗/maxL∈L σr∗ (L)

,

the output of Algorithm 8.3 satisfies VrV
⊤
r = V∗V∗⊤.

Remark 4. The main idea behind this theorem is that since the outliers do not lie in

the true column space, they can be identified by measuring the residual ∥(I−UTU
⊤
T )Xi∥2.

When UT and U∗ are close enough, we can guarantee that ∥(I −UTU
⊤
T )Xi∥2/∥Xi∥2 ≤ ϵ

for all inlier samples while ∥(I−UTU
⊤
T )Xi∥2/∥Xi∥2 > ϵ for all outlier samples. Therefore,

the true row space can be recovered after all the outliers are removed.

8.5 Experiments

We investigate the performance of our algorithms on a variety of simulated and real-world

datasets. All the algorithms mentioned below are implemented in Python. The experiments

are conducted on a desktop PC with an i7 3.4GHz CPU and 4G memory.
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8.5.1 Synthetic Data

We first investigate the empirical performance of Outlier Rejection (Algorithm 8.1) and

Outlier Reduction (Algorithm 8.2) on synthetic data. In order to compare these two algo-

rithms with Outlier Pursuit [XCS12], we use the same scheme for generating test data as

that stated in [XCS12]. For different r∗ and number of outliers ρn, the true low-rank matrix

L∗ is generated according to L∗ = AB⊤ where matrices A ∈ Rp×r∗ and B ∈ R(n−ρn)×r∗

whose entries are independently drawn from the standard Gaussian distribution N (0, 1).

The outliers {xi : i ∈ C} are generated either randomly, where each entry of xi follows

N (0, 1), or adversarially, where each xi is an identical copy of a certain random Gaussian

vector. In the following experiments, both of p and n are set to 400, and the target rank r

and estimation error ϵ for Outlier Rejection and Outlier Reduction are set to r∗ and 10−3,

respectively. We implement Outlier Pursuit based on the algorithm shown in Section VI in

[XCS12].

In the first experiment, we study the the phase transition properties of these three algorithms

in the noiseless case. An algorithm “succeeds” if the subspace spanned by the leading r∗

left singular vectors of its output L is included in the true column space of L∗, i.e., the

projection UU⊤ onto the subspace spanned by the leading r∗ left singular vectors of L

satisfies ∥UU⊤ −U∗U∗⊤∥2 ≤ 10−3. For different rank r∗, we report the maximum number

of the outliers existing in the samples so that an algorithm can succeed. Parameters τ and

η in Algorithms 8.1 and 8.2 are set to 0.9 and 0, respectively.
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Figure 8.1: The phase transition properties of Outlier Rejection, Outlier Reduction and
Outlier Pursuit in the noiseless case. (a) Random outliers. (b) Identical outliers.
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Figure 8.1 shows the empirical performance of these three algorithms when the outliers

are generated (a) randomly and (b) adversarially. We observe that Outlier Rejection and

Outlier Reduction have similar performance on this synthetic dataset, which matches our

theoretical results that the two algorithms have same theoretical guarantees. When the

outliers are randomly generated, Outlier Rejection and Outlier Reduction succeed even when

rank r∗ = 30 and there are 100 outliers, while Outlier Pursuit can only tolerate 80 outliers

when r∗ = 30. When the outliers are adversarial, Outlier Rejection and Outlier Reduction

consistently outperform Outlier Pursuit, e.g., they can succeed when rank r∗ = 10 with 25

outliers but Outlier Pursuit fails.

In the second experiment, we compare the running time of Outlier Rejection and Outlier

Reduction as rank r∗ varies and empirically verify the condition on the fraction of outliers

ρ, i.e., ρ
1−ρ ≈ O( 1

r∗2
), as shown in Theorem 8.1 and Theorem 8.3. Each test is repeated

20 times and the average results are reported. Figure 8.2(a) plots the wall clock time
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Figure 8.2: We plot (a) the running time of Outlier Rejection and Outlier Reduction as
rank r∗ increases and (b) the relationship between rank r∗ and the largest tolerable fraction
of outliers for Outlier Reduction.

of Outlier Rejection and Outlier Reduction against r∗. These two algorithms run much

faster than Outlier Pursuit which takes around 30s to compute the solution. Clearly, their

computational time increases as rank r∗ grows, which is consistent with the fact that their

computational cost grows linearly in rank r∗. We also observe that Outlier Reduction runs

slightly slower than Outlier Rejection, as more operations are required by the truncation

operator CTϵ(·) in Outlier Reduction. Figure 8.2(b) illustrates the relationship between

rank r∗ and the largest fraction of outliers ρ so that Outlier Reduction succeeds, in which
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rank r∗ varies from 4 to 80 and two values V1 ≜ ρ
1−ρ · r∗ and V2 ≜ ρ

1−ρ · r∗2

80 are plotted.

From this figure we see that 1) V1 always decreases as r∗ grows, implying that ρ
1−ρ should

be o( 1
r∗ ), and 2) when r∗ ≥ 30, V2 becomes close to a constant, which empirically verifies

that the upper bound for ρ
1−ρ shown in Theorem 8.1 and Theorem 8.2 is tight w.r.t. r∗.

The third experiment tests the performance of Outlier Rejection, Outlier Reduction, Outlier

Pursuit and HR-PCA [FXY12] in the noisy case where the outliers are generated adversar-

ially and each entry of noise N is independently drawn from the Gaussian distribution

N (0, σ2) with σ = 0.1. Parameters τ and η for Outlier Rejection and Outlier Reduction are

set to 0.9 and 0.01, respectively. Let U be the leading r∗ left singular vector of the output L

of a certain algorithm. Figure 8.3(a) and Figure 8.3(b) plot ∥UU⊤ −U∗U∗⊤∥2 against the

number of the outliers when rank r∗ = 5, and against rank r∗ when there exist 15 outliers,

respectively. Obviously, when r∗ is relatively small, e.g., r∗ ≤ 15, our algorithms are able to
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Figure 8.3: The comparison between Outlier Rejection, Outlier Reduction and Outlier
Pursuit in the noisy case. (a) Rank r∗ = 5. (b) Outlier number is 15.

generate more accurate solutions than Outlier Pursuit and HR-PCA. When r∗ is large, e.g.,

r∗ ≥ 20, and the number of outliers is small, Outlier Pursuit and HR-PCA obtain better

results.

8.5.2 Real-world Data

We now investigate the performance of Outlier Rejection and Outlier Reduction on real-

world datasets. The goal of these experiments is to show that Outlier Rejection can be used

to identify outlier samples within the dataset and Outlier Reduction can be used to remove
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anomalous parts in each samples, e.g., extracting the background in a video.

In the first experiment, we perform Outlier Rejection on a real-world dataset of 230 digit

images drawn from MNIST [LJB+95] which contains 220 images of “1” and 10 images of “7”.

We take “1”s as the inlier samples and “7”s as the outlier samples. Each of these images is

converted into a 784-dimensional vector. The objective here is to identify all “7”s without

knowing the labels of these images. For Outlier Rejection, target rank r is 5, ϵ is set to

0.01, τ is set to 0.98 and η lies in [0.01, 0.015]. η controls the number of the outliers one

wants to detect. Typically, one can choose η = 0.012. Figure 8.4(a) and Figure 8.4(b) show

(a)

(b) (c)

Figure 8.4: We plot the leading five principal components extracted by (a) standard PCA
and (b) Outlier Rejection, and (c) the outliers identified by Outlier Rejection.

the leading five principal components extracted by standard PCA and Outlier Rejection,

respectively. Note that the principal components extracted by Outlier Rejection is more

reliable than standard PCA, e.g., the fourth principal component extracted by standard

PCA clearly mixes “1”s with “7”s. Figure 8.4(c) shows the outliers identified by Outlier

Rejection. We observe that all the “7”s and five “1”s are identified. These “1”s are identified

as the outliers because they are written in a different way from the rest of “1”s.

In the second experiment, we run Outlier Reduction with the same dataset and parameters

as discussed above. Figure 8.5(a) plots the leading five principal components extracted by

(a) (c)

(b) (d)

Figure 8.5: (a) The leading five principal components extracted by Outlier Reduction. (b)
Five “abnormal” samples. (c) Column-sparse component S. (d) Low-rank matrix L.
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Outlier Reduction. Figure 8.5(b) gives five “abnormal” samples and Figures 8.5(c), 8.5(d)

show the corresponding Si and Li computed by Step 3 and Step 5 in Algorithm 8.2. Similar

to Outlier Rejection, the results obtained by Outlier Reduction are more reliable than those

computed by standard PCA.

In the third experiment, we aim to extract the background in a video by computing the lead-

ing principal component of its frames via Outlier Reduction. We consider three benchmark

datasets – “Hall”, “Escalator” and “Lobby” – that are used for the problem of foreground-

background separation, in which the backgrounds are static and hence form low-rank com-

ponents while the foregrounds are dynamic which can be taken as noise. This experiment

shows that Outlier Reduction can still be applied and generate better results than standard

PCA although these datasets do not follow the setting discussed in Section 8.2. Parameters

ϵ, τ and η for Outlier Reduction are set to 0.01, 0.98 and 0.001, respectively. Figure 8.6

(a)

(b)

(c)

Figure 8.6: We plot the results for (a) “Hall”, (b) “Escalator” and (c) “Lobby”. The left
column shows the original frames. The middle column presents the leading PC extracted
by standard PCA. The right column gives the leading PC extracted by Outlier Reduction.

shows the leading principal components extracted by standard PCA and Outlier Reduc-
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tion. The red rectangles highlight artifacts produced by standard PCA, e.g., the shadows

of people in the middle of the pictures. Obviously, Outlier Reduction obtains much better

results.

In the final experiment, we test the effect of parameter η on the performance of Outlier

Rejection. Recall that each iteration of Outlier Rejection takes the samples whose l2-norms

are greater than threshold ϵt after projected onto the subspace orthogonal to the current

estimated principal components as outliers. Since ϵt is updated via ϵt+1 = τϵt + η where

τ < 1, we can guess that more samples will be identified as outliers as η becomes smaller. In

Figure 8.7: The dataset with 500 digit images of “1” to “5”.

this experiment, we construct a dataset containing 500 digit images of “1” to “5” where each

digit has 100 images. Figure 8.7 shows the whole dataset from which we can observe that

each digit can be written in many different ways, e.g., the first image of “1” and the sixth

image of “1”. Our goal is to identify the digit images that are written quite differently from

the others. We take these “abnormal” digit images as outliers and run Outlier Rejection
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to detect them. We set the target rank r to 10 and parameters ϵ and τ to 0.1 and 0.98

respectively.

Figure 8.8: The inlier samples detected by Outlier Rejection with η = 0.012.

Figure 8.9: The outlier samples identified by Outlier Rejection with η = 0.012.
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Figure 8.10: The inlier samples detected by Outlier Rejection with η = 0.01.

Figures 8.8 and 8.9 provide the inlier and outlier samples identified by Outlier Rejection

when η = 0.012 and Figures 8.10 and 8.11 show the results when η = 0.01. Obviously,

when η increases, more “abnormal” hand-writing digit images are extracted, and the rest

digit images look more “regular”, namely, they have similar shapes. Therefore, when the

samples lie in a low dimensional subspace, Outlier Rejection can be used to identify the

outlier samples.

8.6 Proofs of Technical Results

Before the main proofs are provided, we first give two useful lemmas.

Lemma 8.1. Suppose that S ∈ Rp×n satisfies ∥S∥0,2 ≤ ρn, then ∥S∥2 ≤
√
ρn∥S∥∞,2.



8.6 Proofs of Technical Results 256

Figure 8.11: The outlier samples identified by Outlier Rejection with η = 0.01.

Proof. By the definition of the spectral norm,

∥S∥22 = max
∥x∥2=1

∥Sx∥22 = max
∥x∥2=1

∥
∑

i:∥Si∥2 ̸=0

xiSi∥22

≤ max
∥x∥2=1

(
∑

i:∥Si∥2 ̸=0

xi∥Si∥2)2

≤ max
∥x∥2=1

(
∑

i:∥Si∥2 ̸=0

xi)
2∥S∥2∞,2

By the Cauchy-Schwarz inequality,

max
∥x∥2=1

(
∑

i:∥Si∥2 ̸=0

xi)
2 ≤ ρn.

Hence this lemma holds.

Lemma 8.2. Suppose that L ∈ Rp×n has rank r and SVD L = UΣV⊤ where U ∈ Rp×r

and V ∈ Rn×r. For r̄ ≥ r, if there exists an orthogonal matrix Ū ∈ Rp×r̄ satisfying

∥(I − ŪŪ⊤)L∥∞,2 ≤ ϵ for some constant ϵ, then there exists matrix Û ∈ Rp×(r̄−r) so that
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Ũ = [U, Û] is orthogonal, ŪŪ⊤Û = Û and ∥ŪŪ⊤ − ŨŨ⊤∥2 ≤
√
r

maxL̂∈L σr(L̂)
ϵ, where L is

the set of full rank p× r submatrices of L.

Proof. Since ∥(I − ŪŪ⊤)Li∥2 ≤ ϵ for all i, by applying Lemma 8.1, we have that for any

L̂ ∈ L,

∥(I− ŪŪ⊤)L̂∥2 ≤
√
rϵ⇔ ∥(I− ŪŪ⊤)UU⊤L̂∥2 ≤

√
rϵ

implying that

∥(I− ŪŪ⊤)U∥2 ≤
√
rϵ∥(U⊤L̂)−1∥2 =

√
rϵσr(L̂)

−1.

By the assumption that rank(U) = r and rank(Ū) = r̄ where r̄ ≥ r, we can construct

Û ∈ Rp×(r̄−r) so that Ũ = [U, Û] ∈ Rp×r̄ is orthogonal and each column of Û lies in the

column space of Ū, i.e., ŪŪ⊤Û = Û. Therefore, we have

∥(I− ŪŪ⊤)ŨŨ⊤∥2 = ∥(I− ŪŪ⊤)Ũ∥2 = ∥(I− ŪŪ⊤)U∥2 ≤
√
rϵσr(L̂)

−1.

Let Ū⊥ be the orthogonal basis of the perpendicular subspace to the one spanned by the

columns of Ū, then

∥Ū⊤
⊥Ũ∥2 ≤

√
rϵσr(L̂)

−1.

By applying Theorem 2.6.1 in [GVL96],

∥ŪŪ⊤ − ŨŨ⊤∥2 = ∥Ū⊤
⊥Ũ∥2 ≤

√
rϵσr(L̂)

−1.

Since this inequality holds for any L̂ ∈ L, we have

∥ŪŪ⊤ − ŨŨ⊤∥2 ≤
√
r

maxL̂∈L σr(L̂)
ϵ.

Hence we obtain this lemma.

Proof of Theorem 8.1

We prove this theorem using mathematical induction.
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For t = 1, since ∥Xi∥2 ≤ 1 for all i after the normalization step and ϵ1 = 1, the following

inequality holds:

∥L∗ −UtU
⊤
t L

∗∥∞,2 ≤ ∥L∗∥∞,2 ≤ ϵt.

For t > 1, suppose ∥L∗−UtU
⊤
t L

∗∥∞,2 ≤ ϵt, then our goal is to show that after one iteration

∥L∗ −Ut+1U
⊤
t+1L

∗∥∞,2 ≤ ϵt+1

for some ϵt+1 satisfying ϵt+1

ϵt
≤ τ < 1.

In the noiseless case, we have X = L∗ + S∗. Let C be the column support of S∗, then

(X−UtU
⊤
t X)i =


(I−UtU

⊤
t )S

∗
i , i ∈ C,

(I−UtU
⊤
t )L

∗
i , i ̸∈ C.

Recall that At = {i : ∥(X − UtU
⊤
t X)i∥2 > ϵt} shown in Step 4 of Algorithm 8.1. Since

∥(I−UtU
⊤
t )L

∗
i ∥2 ≤ ϵt holds for any i ̸∈ C, we have

At ⊆ C, and ∥(I−UtU
⊤
t )S

∗
i ∥2 ≤ ϵt, ∀i ∈ Ac

t ∩ C.

Recall that rank(Ut) = r, rank(U∗) = r∗ and r ≥ r∗. By applying Lemma 8.2, we can

construct Û ∈ Rp×(r−r∗) so that Ũ = [U∗, Û] is orthogonal and each column of Û lies in

the column space of Ut, i.e., UtU
⊤
t Û = Û, and

∥ŨŨ⊤ −UtU
⊤
t ∥2 ≤

√
r∗

maxL∈L σr∗(L)
ϵt.

Therefore, for any i ∈ Ac
t ∩ C,

∥(I− ŨŨ⊤)S∗
i ∥2 ≤ ∥(I−UtU

⊤
t )S

∗
i ∥2 + ∥(ŨŨ⊤ −UtU

⊤
t )S

∗
i ∥2

≤ ϵt + ∥ŨŨ⊤ −UtU
⊤
t ∥2

≤ (1 +

√
r∗

maxL∈L σr∗(L)
)ϵt.

(8.4)
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By Step 5 of Algorithm 8.1, Lt+1 is constructed as follows:

Lt+1,i =



0, i ∈ At,

L∗
i , i ∈ Ac

t ∩ Cc,

S∗
i , i ∈ Ac

t ∩ C.

Let Ŝ∗
i be a p× n matrix whose columns are 0 except that the ith column equals S∗

i , then

we have
Lt+1 = L∗ +

∑
i∈Ac

t∩C
Ŝ∗
i

= L∗ + ŨŨ⊤
∑

i∈Ac
t∩C

Ŝ∗
i + (I− ŨŨ⊤)

∑
i∈Ac

t∩C
Ŝ∗
i

= ŨR+ (I− ŨŨ⊤)
∑

i∈Ac
t∩C

Ŝ∗
i ,

where R = Ũ⊤L∗ + Ũ⊤∑
i∈Ac

t∩C
Ŝ∗
i .

For notational simplicity, we define

A = ŨR, B = (I− ŨŨ⊤)
∑

i∈Ac
t∩C

Ŝ∗
i ,

and let U be the subspace spanned by Ut+1 and U⊥ be the subspace orthogonal to U , then

∥(I−Ut+1U
⊤
t+1)A∥2 = max

∥x∥2=1
∥x⊤(I−Ut+1U

⊤
t+1)A∥2

= max

∥y∥2 = 1,y ∈ U,

∥z∥2 = 1, z ∈ U⊥,

α2 + β2 = 1

∥(αy + βz)⊤(I−Ut+1U
⊤
t+1)A∥2

≤ max
∥z∥2=1,z∈U⊥

∥z⊤(I−Ut+1U
⊤
t+1)A∥2

= max
∥z∥2=1,z∈U⊥

∥z⊤(Lt+1 −B)∥2

≤ max
∥z∥2=1,z∈U⊥

∥z⊤Lt+1∥2 + ∥B∥2

= σr+1(Lt+1) + ∥B∥2.
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Thus, by the Weyl’s inequality, we have

∥(I−Ut+1U
⊤
t+1)A∥2 ≤σr+1(A+B) + ∥B∥2

≤σr+1(A) + 2∥B∥2

=2∥B∥2,

(8.5)

where the equality holds because rank(A) = r. Note that L∗ and S∗ have disjoint column

supports, then

∥(I−Ut+1U
⊤
t+1)A∥2 = ∥(I−Ut+1U

⊤
t+1)(L

∗ + ŨŨ⊤
∑

i∈Ac
t∩C

Ŝ∗
i )∥2

= max
∥x∥2=1

∥(I−Ut+1U
⊤
t+1)(L

∗ + ŨŨ⊤
∑

i∈Ac
t∩C

Ŝ∗
i )x∥2

≥ max
∥x∥2=1

∥(I−Ut+1U
⊤
t+1)L

∗x∥2

= ∥(I−Ut+1U
⊤
t+1)L

∗∥2,

(8.6)

By Lemma 8.1 and Inequalities (8.4), (8.5) and (8.6), we have

∥(I−Ut+1U
⊤
t+1)L

∗∥2 ≤ 2
√
ρn max

i∈Ac
t∩C

∥(I− ŨŨ⊤)S∗
i ∥2

≤ 2
√
ρn · (1 +

√
r∗

maxL∈L σr∗(L)
)ϵt.

Thus, by the incoherent condition, i.e., maxi ∥e⊤i V∗∥22 ≤
µr∗

(1−ρ)n , we have

∥(I−Ut+1U
⊤
t+1)L

∗∥∞,2 = max
i

∥(I−Ut+1U
⊤
t+1)U

∗Σ∗V∗⊤ei∥2

≤ ∥(I−Ut+1U
⊤
t+1)U

∗Σ∗∥2 ·max
i

∥V∗⊤ei∥2

≤

√
µr∗

(1− ρ)n
∥(I−Ut+1U

⊤
t+1)L

∗∥2

≤ 2

√
µr∗ρ

1− ρ
(1 +

√
r∗

maxL∈L σr∗(L)
)ϵt.

(8.7)

Therefore, as long as 2
√

µr∗ρ
(1−ρ)(1 +

√
r∗

maxL∈L σr∗ (L)
) < 1 or equivalently

ρ

1− ρ
<

1

4µr∗(1 +
√
r∗/maxL∈L σr∗(L))2

,
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there exists τ < 1 so that 2
√

µr∗ρ
(1−ρ)(1 +

√
r∗

σr∗ (L̂)
) ≤ τ and

∥(I−Ut+1U
⊤
t+1)L

∗∥∞,2 ≤ τϵt = ϵt+1,

implying that

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ τT−1ϵ1 = τT−1.

By taking T ≥ log ϵ/ log τ + 1, we have

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵT ≤ ϵ.

Finally, when r = r∗, by applying Lemma 8.2, we have

∥UTU
⊤
T −U∗U∗⊤∥2 ≤

√
r

maxL∈L σr(L)
ϵT .

Hence we obtain this theorem.

Proof of Theorem 8.2

The proof is similar to the proof of Theorem 8.1. We prove this theorem using mathematical

induction.

For t = 1, since ϵ1 = 1 and ∥Xi∥2 ≤ 1 for all i after the normalization step, the following

inequality holds:

∥(I−UtU
⊤
t )(L

∗
i +Ni)∥2 ≤ ∥L∗

i +Ni∥2 ≤ ϵt.

For t > 1, suppose ∥(I −UtU
⊤
t )(L

∗
i +Ni)∥2 ≤ ϵt for i ̸∈ C, our goal is to show that after

one iteration

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2 ≤ ϵt+1

holds for some ϵt+1.
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Let C be the column support of S∗. In the noisy case, recall that X = L∗ + S∗ +N, then

(X−UtU
⊤
t X)i =


(I−UtU

⊤
t )(S

∗
i +Ni), i ∈ C,

(I−UtU
⊤
t )(L

∗
i +Ni), i ̸∈ C.

Since At = {i : ∥(X −UtU
⊤
t X)i∥2 > ϵt} and ∥(I −UtU

⊤
t )(L

∗
i +Ni)∥2 ≤ ϵt for any i ̸∈ C,

we have

At ⊆ C, and ∥(I−UtU
⊤
t )(S

∗
i +Ni)∥2 ≤ ϵt, ∀i ∈ Ac

t ∩ C. (8.8)

Recall that rank(Ut) = r, rank(U∗) = r∗ and r ≥ r∗. By Lemma 8.2, we can construct

Û ∈ Rp×(r−r∗) so that Ũ = [U∗, Û] is orthogonal and each column of Û lies in the column

space of Ut, i.e., UtU
⊤
t Û = Û, and

∥ŨŨ⊤ −UtU
⊤
t ∥2 ≤

√
r∗

maxL∈L σr∗(L)
(ϵt + ∥N∥∞,2).

We define αt =
√
r∗

maxL∈L σr∗ (L)
(ϵt + ∥N∥∞,2), then for any i ∈ Ac

t ∩ C, we have

∥(I− ŨŨ⊤)(S∗
i +Ni)∥2 ≤ϵt + ∥ŨŨ⊤ −UtU

⊤
t ∥2

≤ϵt + αt.

(8.9)

where the first inequality follows from Inequality (8.8) and ∥S∗
i + Ni∥ ≤ 1. By Step 5 of

Algorithm 8.1, Lt+1 satisfies

Lt+1,i =



0, i ∈ At,

L∗
i +Ni, i ∈ Ac

t ∩ Cc,

S∗
i +Ni, i ∈ Ac

t ∩ C.

Let Ŝ∗
i be a p×n matrix whose columns are 0 except that the ith column equals S∗

i and N̂i



8.6 Proofs of Technical Results 263

be a p× n matrix whose whose columns are 0 except that the ith column equals Ni, then

Lt+1 = L∗ +
∑

i∈Ac
t∩C

Ŝ∗
i +

∑
i∈Ac

t

N̂i

= L∗ +
∑
i∈Cc

N̂i + ŨŨ⊤
∑

i∈Ac
t∩C

(Ŝ∗
i + N̂i)+

(I− ŨŨ⊤)
∑

i∈Ac
t∩C

(Ŝ∗
i + N̂i)

= ŨR+
∑
i∈Cc

N̂i + (I− ŨŨ⊤)
∑

i∈Ac
t∩C

(Ŝ∗
i + N̂i),

where R = Ũ⊤L∗ + Ũ⊤∑
i∈Ac

t∩C
(Ŝ∗

i + N̂i).

For notational simplicity, we define

A = ŨR, B = (I− ŨŨ⊤)
∑

i∈Ac
t∩C

(Ŝ∗
i + N̂i),

and let U be the subspace spanned by Ut+1 and U⊥ be the subspace orthogonal to U , then

∥(I−Ut+1U
⊤
t+1)A∥2 = max

∥x∥2=1
∥x⊤(I−Ut+1U

⊤
t+1)A∥2

= max

∥y∥2 = 1,y ∈ U,

∥z∥2 = 1, z ∈ U⊥,

α2 + β2 = 1

∥(αy + βz)⊤(I−Ut+1U
⊤
t+1)A∥2

≤ max
∥z∥2=1,z∈U⊥

∥z⊤(I−Ut+1U
⊤
t+1)A∥2

= max
∥z∥2=1,z∈U⊥

∥z⊤(Lt+1 −B−
∑
i∈Cc

N̂i)∥2

≤ max
∥z∥2=1,z∈U⊥

∥z⊤Lt+1∥2 + ∥B∥2 + ∥N∥2

≤ 2(∥B∥2 + ∥N∥2),

(8.10)

where the last inequality follows from the Weyl’s inequality. Let Pt+1 = Ut+1U
⊤
t+1, since
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L∗ is supported on Cc, we have

∥(I−Ut+1U
⊤
t+1)A∥2 = ∥(I−Pt+1)(L

∗ + ŨŨ⊤
∑

i∈Ac
t∩C

(Ŝ∗
i + N̂i))∥2

= max
∥x∥2=1

∥(I−Pt+1)(L
∗ + ŨŨ⊤

∑
i∈Ac

t∩C
(Ŝ∗

i + N̂i))x∥2

≥ max
∥x∥2=1

∥(I−Pt+1)L
∗x∥2

= ∥(I−Ut+1U
⊤
t+1)L

∗∥2.

(8.11)

By applying Lemma 8.1 and Inequalities (8.9), (8.10) and (8.11), we have

∥(I−Ut+1U
⊤
t+1)L

∗∥2 ≤ 2
√
ρn max

i∈Ac
t∩C

∥(I−U∗U∗⊤)(S∗
i +Ni)∥2 + 2∥N∥2

≤ 2
√
ρn(ϵt + αt) + 2∥N∥2.

Thus, by the incoherent condition, i.e., maxi ∥e⊤i V∗∥22 ≤
µr∗

(1−ρ)n , for any i ̸∈ C,

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2

≤∥(I−Ut+1U
⊤
t+1)U

∗Σ∗V∗⊤ei∥2 + ∥Ni∥2

≤∥(I−Ut+1U
⊤
t+1)U

∗Σ∗∥2 ·max
i

∥V∗⊤ei∥2 + ∥Ni∥2

≤

√
µr∗

(1− ρ)n
∥(I−Ut+1U

⊤
t+1)L

∗∥2 + ∥Ni∥2

≤2

√
µr∗ρ

1− ρ
(ϵt + αt) + 2

√
µr∗

(1− ρ)n
∥N∥2 + ∥N∥∞,2

≤2

√
µr∗ρ

1− ρ
(ϵt + αt) + (2

√
µr∗

1− ρ
+ 1)∥N∥∞,2.

(8.12)

By substituting αt =
√
r∗

maxL∈L σr∗ (L)
(ϵt + ∥N∥∞,2) into (8.12), for i ̸∈ C we have

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2 ≤ 2

√
µr∗ρ

(1− ρ)
(1 +

√
r∗

maxL∈L σr∗(L)
)ϵt+

(2r∗
√

µρ

(1− ρ)maxL∈L σr∗(L)2
+ 2

√
µr∗

1− ρ
+ 1)∥N∥∞,2.
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Thus, when

2

√
µr∗ρ

(1− ρ)
(1 +

√
r∗

maxL∈L σr∗(L)
) ≤ τ < 1

and

η ≥ (2

√
µr∗

1− ρ
+ 2r∗

√
µρ

(1− ρ)maxL∈L σr∗(L)2
+ 1)∥N∥∞,2,

we have

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2 ≤ τϵt + η,

which implies that

∥(I−UTU
⊤
T )(L

∗
i +Ni)∥2 ≤ τT−1 +

1− τT−1

1− τ
η.

Therefore,

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ τT−1 +
η

1− τ
+ ∥N∥∞,2.

By taking T ≥ log ϵ/ log τ + 1, we have

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵ+
η

1− τ
+ ∥N∥∞,2.

Finally, when r = r∗, by applying Lemma 8.2 again, we obtain this theorem.

Proof of Theorem 8.3

The proof of this theorem is almost the same as the proof of Theorem 8.1.

For t = 1, since ϵ1 = 1 and ∥Xi∥2 ≤ 1 for all i after the normalization step, the following

inequality holds:

∥L∗ −UtU
⊤
t L

∗∥∞,2 ≤ ∥L∗∥∞,2 ≤ ϵt.

For t > 1, suppose that ∥L∗ − UtU
⊤
t L

∗∥∞,2 ≤ ϵt, then our goal is to show that after one

iteration

∥L∗ −Ut+1U
⊤
t+1L

∗∥∞,2 ≤ ϵt+1

holds for some ϵt+1 satisfying ϵt+1

ϵt
≤ τ < 1.
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Recall that X = L∗ + S∗, then

(X−UtU
⊤
t X)i =


(I−UtU

⊤
t )S

∗
i , i ∈ C,

(I−UtU
⊤
t )L

∗
i , i ̸∈ C.

We define A = {i : ∥(X − UtU
⊤
t X)i∥2 > ϵt}. Since ∥(I − UtU

⊤
t )L

∗
i ∥2 ≤ ϵt holds for any

i ̸∈ C, we have

A ⊆ C, and ∥(I−UtU
⊤
t )S

∗
i ∥2 ≤ ϵt, ∀i ∈ Ac ∩ C.

Recall that rank(Ut) = r, rank(U∗) = r∗ and r ≥ r∗. By applying Lemma 8.2, we can

construct Û ∈ Rp×(r−r∗) so that Ũ = [U∗, Û] is orthogonal and each column of Û lies in

the column space of Ut, i.e., UtU
⊤
t Û = Û, and

∥ŨŨ⊤ −UtU
⊤
t ∥2 ≤

√
r∗

maxL∈L σr∗(L)
ϵt. (8.13)

Therefore, for i ∈ Ac ∩ C,

∥(I− ŨŨ⊤)S∗
i ∥2 ≤ ∥(I−UtU

⊤
t )S

∗
i ∥2 + ∥ŨŨ⊤ −UtU

⊤
t )S

∗
i ∥2

≤ (1 +

√
r∗

maxL∈L σr∗(L)
)ϵt.

(8.14)

Following from Step 3 and Step 5 of Algorithm 8.2, Lt+1 satisfies

Lt+1,i =



UtU
⊤
t S

∗
i , i ∈ A,

L∗
i , i ∈ Ac ∩ Cc,

S∗
i , i ∈ Ac ∩ C.
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Let Ŝ∗
i be a p× n matrix whose columns are 0 except that the ith column equals S∗

i , then

Lt+1 = L∗ +
∑

i∈Ac∩C
Ŝ∗
i +UtU

⊤
t

∑
i∈A

Ŝ∗
i

= L∗ + ŨŨ⊤(
∑

i∈Ac∩C
Ŝ∗
i +UtU

⊤
t

∑
i∈A

Ŝ∗
i ) + (I− ŨŨ⊤)(

∑
i∈Ac∩C

Ŝ∗
i +UtU

⊤
t

∑
i∈A

Ŝ∗
i )

= ŨR+B,

where

R = Ũ⊤L∗ + Ũ⊤(
∑

i∈Ac∩C
Ŝ∗
i +UtU

⊤
t

∑
i∈A

Ŝ∗
i ),

and

B = (I− ŨŨ⊤)(
∑

i∈Ac∩C
Ŝ∗
i +UtU

⊤
t

∑
i∈A

Ŝ∗
i ).

Let αt =
√
r∗

maxL∈L σr∗ (L)
ϵt. By Inequalities (8.13) and (8.14), we have

∥B∥∞,2 ≤ max{ max
i∈Ac∩C

∥(I− ŨŨ⊤)S∗
i ∥2, max

i∈A
∥(I− ŨŨ⊤)UtU

⊤
t S

∗
i ∥2}

≤ max{ϵt + αt, ∥(I− ŨŨ⊤)UtU
⊤
t ∥2}

= max{ϵt + αt, ∥ŨŨ⊤ −UtU
⊤
t ∥2}

= ϵt + αt.

Then by applying Lemma 8.1 and Inequalities (8.5) and (8.6), we have

∥(I−Ut+1U
⊤
t+1)L

∗∥2 ≤ 2
√
ρn∥B∥∞,2 ≤ 2

√
ρn(ϵt + αt).

Thus, by the incoherent condition, i.e., maxi ∥e⊤i V∗∥22 ≤
µr∗

(1−ρ)n ,

∥(I−Ut+1U
⊤
t+1)L

∗∥∞,2 = max
i

∥(I−Ut+1U
⊤
t+1)U

∗Σ∗V∗⊤ei∥2

≤ ∥(I−Ut+1U
⊤
t+1)U

∗Σ∗∥2 ·max
i

∥V∗⊤ei∥2

≤

√
µr∗

(1− ρ)n
∥(I−Ut+1U

⊤
t+1)L

∗∥2

≤ 2

√
µr∗ρ

1− ρ
(ϵt + αt).
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Substituting αt into this inequality, we have

∥(I−Ut+1U
⊤
t+1)L

∗∥∞,2 ≤ 2

√
µr∗ρ

1− ρ
(1 +

√
r∗

maxL∈L σr∗(L)
)ϵt.

Therefore, as long as 2
√

µr∗ρ
1−ρ (1 +

√
r∗

maxL∈L σr∗ (L)
) < 1 or equivalently

ρ

1− ρ
<

1

4µr∗(1 +
√
r∗/maxL∈L σr∗(L))2

,

there exists τ < 1 so that 2
√

µr∗ρ
1−ρ (1 +

√
r∗

maxL∈L σr∗ (L))2
) ≤ τ and

∥(I−Ut+1U
⊤
t+1)L

∗∥∞,2 ≤ τϵt = ϵt+1,

which implies that

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ τT−1ϵ1 = τT−1.

By taking T ≥ log ϵ/ log τ + 1, we have

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵT ≤ ϵ.

Finally, by applying Lemma 8.2 again, we obtain this theorem.

Proof of Theorem 8.4

The proof of this theorem is almost the same as the proof of Theorem 8.2.

For t = 1, since ϵ1 = 1 and ∥Xi∥2 ≤ 1 for all i after the normalization step, the following

inequality holds:

∥(I−UtU
⊤
t )(L

∗
i +Ni)∥2 ≤ ∥L∗

i +Ni∥2 ≤ ϵt.

For t > 1, suppose that ∥(I −UtU
⊤
t )(L

∗
i +Ni)∥2 ≤ ϵt for i ̸∈ C, our goal is to prove that

after one iteration

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2 ≤ ϵt+1

holds for some ϵt+1.
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Recall that X = L∗ + S∗ +N, then

(X−UtU
⊤
t X)i =


(I−UtU

⊤
t )(S

∗
i +Ni), i ∈ C,

(I−UtU
⊤
t )(L

∗
i +Ni), i ̸∈ C.

Let A = {i : ∥(X −UtU
⊤
t X)i∥2 > ϵt}. Since ∥(I −UtU

⊤
t )(L

∗
i +Ni)∥2 ≤ ϵt for any i ̸∈ C,

we have

A ⊆ C, and ∥(I−UtU
⊤
t )(S

∗
i +Ni)∥2 ≤ ϵt, ∀i ∈ Ac ∩ C.

Recall that rank(Ut) = r, rank(U∗) = r∗ and r ≥ r∗. By Lemma 8.2, we can construct

Û ∈ Rp×(r−r∗) so that Ũ = [U∗, Û] is orthogonal and each column of Û lies in the column

space of Ut, i.e., UtU
⊤
t Û = Û, and

∥ŨŨ⊤ −UtU
⊤
t ∥2 ≤

√
r∗

maxL∈L σr∗(L)
(ϵt + ∥N∥∞,2). (8.15)

We define αt =
√
r∗

maxL∈L σr∗ (L)
(ϵt + ∥N∥∞,2), then for any i ∈ Ac

t ∩ C, we have

∥(I− ŨŨ⊤)(S∗
i +Ni)∥2 ≤ ϵt + ∥ŨŨ⊤ −UtU

⊤
t ∥2

≤ ϵt + αt.

(8.16)

where the first inequality follows from Inequality (8.8) and ∥S∗
i +Ni∥ ≤ 1. From Step 3 and

Step 5 of Algorithm 8.2, Lt+1 satisfies

Lt+1,i =



UtU
⊤
t (S

∗
i +Ni), i ∈ A,

L∗
i +Ni, i ∈ Ac ∩ Cc,

S∗
i +Ni, i ∈ Ac ∩ C.

Let Ŝ∗
i be a p × n matrix whose columns are 0 except that the ith column equals S∗

i and
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N̂i be a p× n matrix whose columns are 0 except that the ith column equals Ni, then

Lt+1 = L∗ +
∑

i∈Ac∩C
Ŝ∗
i +

∑
i∈Ac

N̂i +UtU
⊤
t

∑
i∈A

(Ŝ∗
i + N̂i)

= L∗ +
∑
i∈Cc

N̂i + ŨŨ⊤[
∑

i∈Ac∩C
(Ŝ∗

i + N̂i) +UtU
⊤
t

∑
i∈A

(Ŝ∗
i + N̂i)]+

(I− ŨŨ⊤)[
∑

i∈Ac∩C
(Ŝ∗

i + N̂i) +UtU
⊤
t

∑
i∈A

(Ŝ∗
i + N̂i)]

= ŨR+
∑
i∈Cc

N̂i +B,

where

R = Ũ⊤L∗ + Ũ⊤[
∑

i∈Ac∩C
(Ŝ∗

i + N̂i) +UtU
⊤
t

∑
i∈A

(Ŝ∗
i + N̂i)],

and

B = (I− ŨŨ⊤)[
∑

i∈Ac∩C
(Ŝ∗

i + N̂i) +UtU
⊤
t

∑
i∈A

(Ŝ∗
i + N̂i)],

then from Inequalities (8.15) and (8.16),

∥B∥∞,2 ≤ max{ϵt + αt, ∥(I−U∗U∗⊤)UtU
⊤
t ∥2}

= max{ϵt + αt, ∥U∗U∗⊤ −UtU
⊤
t ∥2}

≤ ϵt + αt.

From Lemma 8.1 and Inequalities (8.10) and (8.11), we have

∥(I−Ut+1U
⊤
t+1)L

∗∥2 ≤ 2
√
ρn∥B∥∞,2 + 2∥N∥2

≤ 2
√
ρn(ϵt + αt) + 2∥N∥2.
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Thus, by the incoherent condition, i.e., maxi ∥e⊤i V∗∥22 ≤
µr∗

(1−ρ)n , for i ̸∈ C,

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2

≤ ∥(I−Ut+1U
⊤
t+1)U

∗Σ∗V∗⊤ei∥2 + ∥Ni∥2

≤ ∥(I−Ut+1U
⊤
t+1)U

∗Σ∗∥2 ·max
i

∥V∗⊤ei∥2 + ∥Ni∥2

≤

√
µr∗

(1− ρ)n
∥(I−Ut+1U

⊤
t+1)L

∗∥2 + ∥Ni∥2

≤ 2

√
µr∗ρ

1− ρ
(ϵt + αt) + 2

√
µr∗

(1− ρ)n
∥N∥2 + ∥N∥∞,2

≤ 2

√
µr∗ρ

1− ρ
(ϵt + αt) + (2

√
µr∗

1− ρ
+ 1)∥N∥∞,2.

(8.17)

Substituting αt =
√
r∗

maxL∈L σr∗ (L)
(ϵt + ∥N∥∞,2) into this inequality, we have for i ̸∈ C,

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2 ≤ 2

√
µr∗ρ

(1− ρ)
(1 +

√
r∗

maxL∈L σr∗(L)
)ϵt+

(2r∗
√

µρ

(1− ρ)maxL∈L σr∗(L)2
+ 2

√
µr∗

1− ρ
+ 1)∥N∥∞,2.

Therefore, when

2

√
µr∗ρ

(1− ρ)
(1 +

√
r∗

maxL∈L σr∗(L)
) ≤ τ < 1

and

η ≥ (2

√
µr∗

1− ρ
+ 2r∗

√
µρ

(1− ρ)maxL∈L σr∗(L)2
+ 1)∥N∥∞,2,

we have

∥(I−Ut+1U
⊤
t+1)(L

∗
i +Ni)∥2 ≤ τϵt + η,

which implies that

∥(I−UTU
⊤
T )(L

∗
i +Ni)∥2 ≤ τT−1 +

1− τT−1

1− τ
η.

Therefore,

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ τT−1 +
η

1− τ
+ ∥N∥∞,2.
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By taking T ≥ log ϵ/ log τ + 1, we have

∥(I−UTU
⊤
T )L

∗∥∞,2 ≤ ϵ+
η

1− τ
+ ∥N∥∞,2.

Finally, when r = r∗, by applying Lemma 8.2 again, we obtain this theorem.

Proof of Theorem 8.5

Recall that r = r∗ and UT , ϵT are the outputs of Algorithm 8.2. Let L̃ ∈ Rp×n satisfy that

L̃i = L∗
i /∥L∗

i ∥2 and L be the set of full rank p× r submatrices of L̃. From Theorem 8.3, we

have that for any i ̸∈ C,
∥(I−UTU

⊤
T )L

∗
i ∥2

∥L∗
i ∥2

≤ ϵT ≤ ϵ

and

∥U∗U∗⊤ −UTU
⊤
T ∥2 ≤

√
rϵT

maxL∈L σr(L)
.

Note that for i ∈ C,

∥(I−UTU
⊤
T )S

∗
i ∥2 ≥ ∥(I−U∗U∗⊤)S∗

i ∥2 − ∥(UTU
⊤
T −U∗U∗⊤)S∗

i ∥2

≥ ∥(I−U∗U∗⊤)S∗
i ∥2 −

√
rϵT ∥S∗

i ∥2
maxL∈L σr(L)

By the assumption ∥(I−U∗U∗⊤)S∗
i ∥2/∥S∗

i ∥2 ≥ δ, we have

∥(I−UTU
⊤
T )S

∗
i ∥2

∥S∗
i ∥2

≥ δ −
√
rϵT

maxL∈L σr(L)

Therefore, as long as

ϵT ≤ ϵ <
δ

1 +
√
r/maxL∈L σr(L)

,

A is identical to C, which implies that L = L∗. Hence we obtain this theorem.
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8.7 Chapter Summary

In this chapter, we proposed two non-convex outlier-robust PCA algorithms – Outlier Rejec-

tion and Outlier Reduction and establish their performance guarantees on the exact recovery

of the true column space. We showed that the exact recovery of the true column space can

be achieved by our proposed algorithms if the fraction of outliers is O( 1
µr∗2

) where µ is the

column-incoherence parameter. Our proposed algorithms have much lower computational

cost than Outlier Pursuit and hence can be applied in large-scale applications, i.e., their

overall computational complexity is O(rnp log(1/ϵ)) where r is the target rank and ϵ is the

estimation error, which is much lower than O(min{np2, n2p}) – the computational com-

plexity of Outlier Pursuit. For future work, we aim to develop possible variants of these

algorithms so that the required condition for the exact recovery match the assumption for

Outlier Pursuit to further bridge the gap between theory and practice.



Chapter 9
Online PCA with Imperfect Data

We propose a unified paradigm on online principal component analysis via online mirror

descent with samples collected sequentially. By designing proper robust gradients in the

dual space for mirror descent, we develop and analyze novel robust online PCA algorithms

that are able to estimate the true principal components well even in the face of defect data

such as samples with missing entries, arbitrary corruption, or limited attribute observa-

tion. We establish finite sample performance guarantees for the proposed algorithms, and

conduct numerical experiments on synthetic and real-world data to demonstrate that they

outperform existing methods in practice.

9.1 Introduction

Principal component analysis (PCA) [Pea01] is a fundamental method for dimensionality

reduction, applied in a wide range of data analysis applications in machine learning, statistics

and bioinformatics, to name a few. Standard PCA extracts the principal components (PCs)

from a set of samples by computing the leading eigenvectors of the sample covariance matrix

or the leading singular vectors of the sample matrix, which is computationally expensive

and memory exhausting when faced with large-scale applications.

To address this issue, various computational-efficient PCA algorithms have been recently

developed [WK08, MCJ13, ACLS12, ACS13, YX15a, Bra02, ACS13, Sha15b], most of which

focus on an online setting where one receives a sample sequentially and this sample vanishes

after it is collected unless it is stored in the memory. These algorithms typically take one

of the two approaches: 1) block-wise stochastic power methods. For example, the memory

274
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efficient PCA/sparse PCA algorithms developed by [MCJ13] and [YX15a] perform a power

iteration update on the estimated PCs once a block of new samples are received; and 2)

stochastic convex optimization. For example, the stochastic PCA algorithm proposed by

[ACS13] performs a matrix stochastic gradient descent when a new sample arrives. The main

benefit of the latter is that it converges faster than block-wise stochastic power methods

[BDF13, Sha15b].

A second weakness of PCA, is that is is notoriously fragile to outliers or missing entries.

Many efforts have been made to mitigate this weakness, by proposing robust variants of PCA

[XY95, YW99, lTB03, Das03, XCM13, FXY12, FXMY14, YX15b]. Most of these algorithms

require either explicitly computing the covariance matrix or storing all the samples, and

hence cannot be implemented in an online manner. To our knowledge, the only existing work

on online outlier-robust PCA is [FXMY14], which is based on probabilistically admitting

each new sample depending on its variance along the current estimated PCs. This algorithm

has several limitations: 1) It requires a reasonably good initial solution. 2) It only has

asymptotic performance guarantees instead of finite-sample guarantees, and empirically the

convergence is slow. 3) It cannot handle missing entries. On the other hand, [MCJ14]

extended streaming PCA [MCJ13] to tackle samples with missing entries using an unbiased

estimator of the covariance matrix. However, their algorithm cannot handle outliers.

Beyond missing entries or outliers, another interesting setup is that the decision maker can

actively choose which entries to measure given certain budget. For example, in medical

diagnosis and DNA sequencing, measuring all attributes may be infeasible due to time and

cost limits, leading to the following question: can we efficiently estimate the true PCs when

we can only choose a fraction of attributes to observe? In the context of linear regression –

e.g., Ridge regression, Lasso and Support-vector regression – [CBSSS10] and [HK12] first

studied this limited attribute observation problem, and then [KS15] developed a distribution-

dependent sampling scheme for sampling attributes to achieve better performance. For

online PCA, however, to the best of our knowledge, this problem has not been explored yet.

In this chapter, we consider a unified paradigm on online PCA via online mirror descent

– a general framework for developing and analyzing first-order online learning algorithms,
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e.g., [SST11, SS12, OCC15]. By designing proper robust gradients used in mirror descent,

we propose new online PCA algorithms that are robust to various types of data defect such

as missing entries, corrupted attributes or outliers; we further develop efficient algorithms

for online PCA in the limited attribute observation setting. We establish finite-sample

performance guarantees, which is a distinctive feature of the proposed paradigm.

Notations: We use boldface lower-case letters to represent vectors and capital letters for

matrices. For a matrix X, ∥X∥2, ∥X∥1 and ∥X∥F denote its spectral norm, element-wise

l1-norm and Frobenius norm. For a vector x, ∥x∥p denotes its lp-norm. The inner product

between two matrices X,Y is defined by ⟨X,Y⟩ = tr(X⊤Y). For a symetric matrix X, we

use λk(X) to denote its kth largest eigenvalue. We let Sd be the set of d × d symmetric

matrices and use e1, · · · , ed to represent the standard basis of Rd.

9.2 Problem Setting

We consider the streaming data model where one receives sample points xt ∈ Rd drawn

from an unknown distribution D for t = 1, · · · , T and xt vanishes after it is collected unless

it is stored in the memory. Our goal is to extract the leading k principal components of the

received data. The standard PCA extracts principal components by solving the following

optimization problem:

max Ex∼D[⟨UU⊤,xx⊤⟩]

s.t. U⊤U = Ik, U ∈ Rd×k,

(9.1)

where each column of U represents one principal component. A typical way to reformulate

(9.1) into a convex optimization formulation is to relax the non-convex constraint U⊤U = Ik

as follows:

max Ex∼D[⟨P,xx⊤⟩]

s.t. 0 ⪯ P ⪯ Ip, tr(P) = k, P ∈ Sd,

(9.2)

where the constraint in (9.2) is called the Fantope constraint. Denote the optimal solutions

of Problems (9.1) and (9.2) by U∗ and P∗, respectively. It can be proved that if Ex∼D[xx
⊤]
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is available, then P∗ = U∗U∗⊤, i.e., P∗ is the projection matrix onto the subspace spanned

by the leading k principal components [OW92].

In the online setting where a learner has to choose an estimate Pt of P∗ after receiving a

new sample, the theoretical performance of online PCA is usually measured by the regret –

the difference between the learner’s total cost and the cost of the optimal strategy:

regret(T ) = TEx∼D[⟨P∗,xx⊤⟩]−
T∑
t=1

E[Ex∼D[⟨Pt,xx
⊤⟩]],

where Pt is computed by a certain online PCA algorithm at time t and the outer expectation

in the second term is taken with respect to the randomness in this algorithm. It has been

shown that this regret has a lower bound Ω(
√
kT ) and the lower bound is tight, i.e., there

exists an online PCA algorithm so that regret(T ) ≤ O(
√
kT ) [NKW13].

Most of previous work assume that the complete information about sample xt is available,

namely, all attributes of xt can be observed. However, in practical applications, some

attributes of xt may be missing or corrupted because of sensor failure, or only a small subset

of the attributes of xt is to be observed due to high measurement costs. In this chapter, we

develop and analyze several online PCA algorithms for handling imperfect information.

For theoretical analysis, we make the following assumptions: 1) Samples xt are i.i.d. drawn

from an unknown distribution D and there exists constant B such that ∥xt∥22 ≤ B for every

xt. 2) The projection matrix P∗ onto the subspace spanned by the leading k eigenvectors of

Σ ≜ Ex∼D[xx
⊤] satisfies ∥P∗∥0 ≤ γ2, where ∥P∗∥0 is the number of nonzero entries of P∗

and γ ≤ d indicates the sparsity of P∗. 3) The gap between the kth and k+1th eigenvalues

of Σ, i.e., ∆k ≜ λk(Σ) − λk+1(Σ), is greater than 0. Our goal is to approximately recover

P∗ with the received samples subject to missing or corrupted entries.

We use subspace distance to measure the performance of the proposed online PCA algo-

rithms. Subspace distance measures the distance between the subspace spanned by the

estimated principal components and the subspace spanned by the true ones. Below is the

formal definition:

Definition 9.1. Let X,Y be two symmetric matrices and X ,Y be their respective k-
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dimensional principal subspaces, then the subspace distance is sinΘ(X ,Y) where Θ(X ,Y) is

the principal angle between X and Y.

For any symmetric matrix P ∈ Sd×d, the following lemma relates the subspace distance

between P∗ and P with the Frobenius norm of P∗ −P.

Lemma 9.1. [VCLR13] If M∗ is the principal k-dimensional subspace of Σ and M is the

principal k-dimensional subspace of P, then

sinΘ(M,M∗) ≤
√
2∥P∗ −P∥F .

9.3 Framework for Online Robust PCA

Online mirror descent (OMD) is a popular framework for online convex optimization [SST11,

SS12], which we use to solve the online PCA problem discussed in this chapter. Let F ⊆

{P ∈ Sd : 0 ⪯ P ⪯ Id, tr(P) = k} be a closed convex set taken as the set of feasible projection

matrices and f(·) be a closed and strongly convex function with domain F . Let f∗(·) be the

Fenchel conjugate of f(·) which is defined by f∗(Y) = supX∈F ⟨X,Y⟩−f(X), and let ∇f∗(Y)

be the subgradient of f∗(·) at Y. A well-known fact is ∇f∗(Y) = argmaxX∈F ⟨X,Y⟩−f(X)

when f(·) is strongly convex [OCC15].

Algorithm 9.1 presents the general framework for online PCA based on OMD. By selecting

different f(·) and Zt, various kinds of online PCA algorithms can be derived. For example,

suppose that Zt = xtx
⊤
t , when f(X) = 1

2∥X∥2F , we obtain MSG – a matrix stochastic gradi-

ent descent based online PCA algorithm [ACS13], and when f(X) =
∑d

i=1 λi(X) log λi(X),

we derive a matrix exponentiated gradient descent based algorithm similar to those devel-

oped by [WK08]. The theoretical performance of this framework is given by Theorem 9.1

which holds for any Zt.

Theorem 9.1. Suppose that f(·) is β-strongly convex with respect to the norm ∥ · ∥. Let

∥ · ∥∗ be the dual norm of ∥ · ∥. Then after T iterations with step size η, we have

T∑
t=1

⟨Zt,P
∗ −Pt⟩ ≤

1

η
[f(P∗) + f∗(0)] +

η

2β

T∑
t=1

∥Zt∥2∗, (9.3)
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Algorithm 9.1: A framework for robust online PCA

Input : A strongly convex function f(·), a closed convex set F and step size

η > 0.

1 Initialize Θ1 = 0;

2 for t = 1 to T do

3 Compute Pt = ∇f∗(Θt);

4 Receive Zt ∈ Sd;

5 Update Θt+1 = Θt + ηZt;

6 end

7 Return P̄ = 1
T

∑T
t=1Pt.

where P∗ is the optimal solution of (9.2).

Theorem 9.1 implies the following corollary showing that the regret bounds corresponding to

various strong convex functions with respect to the p-Schatten norm have similar relationship

with T and Zt.

Corollary 9.1. Suppose that f(X) is β-strongly convex with respect to the p-Schatten norm

∥X∥S(p) = ∥σ(X)∥p for p ≥ 1 where σ(X) is a vector containing the singular values of X

in descending order, and f∗(0) = 0. If Zt can be decomposed into Zt =
1
2(x̂tx̃

⊤
t + x̃tx̂

⊤
t ) for

some vectors x̂t and x̃t, then after T iterations with step size η =

√
2βf(P∗)∑T

t=1 E[∥x̂t∥22∥x̃t∥22]
, we

have

E[
T∑
t=1

⟨Zt,P
∗ −Pt⟩] ≤

√
2f(P∗)

∑T
t=1 E[∥x̂t∥22∥x̃t∥22]
β

,

where P∗ is the optimal solution of (9.2) and the expectation is taken with respect to the

randomness in Algorithm 9.1.

Recall that f(X) = 1
2∥X∥2F is 1/2-strongly convex w.r.t. the Frobenius norm ∥X∥F . There-

fore, when Zt = xtx
⊤
t and Ext∼D[∥xt∥42] ≤ c for constant c, we have regret(T ) = O(

√
kT ).

This bound holds when all attributes of samples xt are revealed and cannot be further im-

proved. In this case, [ACS13] proposed an efficient implementation of this algorithm whose
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memory- and computational-complexity are much lower than O(d2).

In this chapter, besides lower computational cost, we investigate another advantage of Al-

gorithm 9.1, i.e., by selecting “robust” Zt we can develop online PCA algorithms that are

able to tackle the case where the received samples have imperfect information. The main

idea is to design proper Zt so that its expectation is closed to Σ when some attributes

of the samples are corrupted or unobserved. With these Zt, the left hand side of (9.3) is

approximately TE[⟨Σ,P∗ − P̄⟩] which can be used to bound ∥P∗ − P̄∥F .

9.3.1 Missing Entries

We first consider the case where the received samples contain many missing entries. As-

sume that the true sample x̄t is drawn from distribution D and the received sample xt is

generated by erasing some entries of x̄t with a certain probability, namely, xt(i) = x̄t(i)

with probability δ or 0 otherwise for i = 1, · · · , d. Given xt, we construct Zt as follows:

Zt(q) =
1

q2
xtx

⊤
t − 1− q

q2
diag(xtx

⊤
t ) (9.4)

where parameter q ∈ [0, 1]. Note that Zt(δ) is an unbiased estimator of Σ. Theorem 9.2

shows the performance guarantee of Algorithm 9.1 with Zt = Zt(q) under this setting.

Theorem 9.2. Suppose that f(X) = 1
2∥X∥2F and Zt is computed according to (9.4) with

q ∈ [0, 1], then after T iterations with step size η =
√

kβq2

max{1,δ/q2}·2δB2T
, the output P̄ of

Algorithm 9.1 satisfies

E[∥P∗ − P̄∥2F ] ≤
2
√
kB

∆k

(√
max

{
1,
δ

q2

}
2δ

q2T
+

6|δ − q|
q2δ2

)
,

where the expectation is taken with respect to the randomness in the samples.

Obviously, Theorem 9.2 implies that this algorithm is guaranteed to converge as long as

|δ − q| decreases with T . In particular, when q = δ, the expectation of the estimation

error is O(1δ

√
k
T ). In practice, since the exact value of probability δ is usually unknown, we

propose to let q be an empirical estimate of δ as discussed in Section 9.4.
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Algorithm 9.2: Zt with entry-wise corruption

Input : Block size m and parameter ρ.

1 Receive m samples x1, · · · ,xm that form sample matrix X ∈ Rd×m whose ith

column is xi;

2 Select the smallest m− ρ entries of |X(i)| for i = 1, · · · , d, where X(i) is the ith row

of X. Denote the selected indices of X(i) by Ii;

3 Construct X̂ so that for the ith row X̂(i) we have X̂(i)(j) = X(i)(j) if j ∈ Ii or 0

otherwise;

4 Return X̂X̂⊤/m.

9.3.2 Corrupted Entries

In the previous section, the observed entries of the received samples are not corrupted by

noises or malicious attackers. In practical applications, one may face with contaminated

samples due to sensor failures, malicious attacking or other reasons. In this section, we

consider two corruption schemes – (a) “entry-wise” corruption: each entry of the received

samples is corrupted with probability q, and (b) “sample-wise” corruption: the corrupted

samples are uniformly distributed among the receive samples, i.e., with probability q the

received sample at time t is corrupted. Note that the corruption can be arbitrary. We

develop Algorithms 9.2 and 9.3 for constructing Zt to make Algorithm 9.1 robust to these

two types of corruption. Algorithms 9.2 and 9.3 accept a block of samples and truncate the

entries (resp. samples) with the largest ρ absolute-values (resp. ℓ2-norms) to zero. This

truncation operation mitigates the impact of contamination.

Recall that the number of nonzero entries of P∗ is γ2 (γ2 measures the sparsity of P∗).

Since ∥P∗∥1 ≤ γ∥P∗∥F ≤ γ
√
k, one can add an additional constraint ∥P∥1 ≤ γ

√
k into F

to encourage Algorithm 9.1 to find sparse solutions. Then when Zt used in Algorithm 9.1

is constructed by Algorithm 9.2, we have the following theorem.

Theorem 9.3. Suppose that the corrupted samples are generated according to the “entry-

wise corruption” scheme and f(X) = 1
2∥X∥2F . For any constant δ > 0, if Zt is constructed
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Algorithm 9.3: Zt with sample-wise corruption

Input : Block size m and parameter ρ.

1 Receive m samples x1, · · · ,xm and compute vi = ∥xi∥2 for i = 1, · · · ,m;

2 Select the smallest m− ρ elements of {vi}. Let I be the selected indices;

3 Construct X̂ so that X̂i = xi if i ∈ I or 0 otherwise;

4 Return X̂X̂⊤/m.

by Algorithm 9.2 with m ≥ 2(2+δ) log(dT )
δ2q

and ρ ≥ (1 + δ)mq, then with probability at least

1− 1
dT the output P̄ of Algorithm 9.1 with these Zt satisfies

E[∥P∗ − P̄∥2F ] ≤
2B

∆k

(√
2k

T
+

12ργ
√
k

m

)
(9.5)

where the expectation is taken w.r.t. the randomness in the samples.

Note that when ρ = (1+ δ)mq, the right hand side of (9.5) becomes O(
√

k
T )+

24(1+δ)Bγ
√
kq

∆k
.

Therefore, for any ϵ > 0, if q ≤ ϵ∆k

24(1+δ)Bγ
√
kϵ

, the estimation error is O(
√

k
T )+ϵ regardless of

the kind of corruption. The next theorem provides the performance guarantee for Algorithm

9.3 in the “sample-wise” corruption case.

Theorem 9.4. Suppose that the corrupted samples are generated according to the “sample-

wise corruption” scheme and f(X) = 1
2∥X∥2F . For any constant δ > 0, if Zt is constructed

by Algorithm 9.3 with m ≥ 2(2+δ) log(T )
δ2q

and ρ ≥ (1 + δ)mq, then with probability at least

1− 1
T the output P̄ of Algorithm 9.1 with these Zt satisfies

E[∥P∗ − P̄∥2F ] ≤
2B

∆k

(√
2k

T
+

6ρ
√
k

m

)
(9.6)

where the expectation is taken w.r.t. the randomness in the samples.

For any ϵ > 0, when ρ = (1 + δ)mq and q ≤ ϵ∆k

12B
√
k
, the estimation error is bounded by

O(
√

k
T ) + ϵ. Note that the upper bound for q does not depend on d or γ, which means

Algorithm 9.3 is robust to a constant fraction of outliers no matter how large dimension d
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is.

9.3.3 Limited Observation

In Section 9.3.1, the observed attributes of the received samples are determined by the data

model that the learner cannot interfere with. In other cases, e.g., medical diagnosis, the

learner is able to select which attributes to observe. This problem is an example of “learning

with limited attribute observation” [BDD98]. More formally, at time t, sample xt is drawn

from distribution D and we are able to choose s attributes (or entries) of xt we wish to

observe. The main questions are 1) which attributes do we choose to reveal? and 2) what

convergence rate for Algorithm 9.1 can we achieve given these partially observed samples?

The key to solve this problem is to construct an unbiased estimator of Σ as Zt. One

possible approach is shown in Algorithm 9.4 (without loss of generality, we assume that s is

an even number), which samples s attributes of xt under a certain distribution, constructs

two independent unbiased estimators of xt, e.g., x̂t and x̃t, and then returns 1
2(x̂tx̃

⊤
t + x̃tx̂

⊤
t )

which is an unbiased estimator of xtx
⊤
t conditioned on xt.

When applying Algorithm 9.4 to construct Zt, we need to choose a proper probability vector

q whose ith entry qi indicates the probability that xt(i) is observed. Different q can lead to

quite different performance. For example, if the attributes of xt are sampled uniformly at

random, i.e., q = (1d , · · · ,
1
d), we have the following performance guarantee.

Theorem 9.5. Suppose that f(X) is β-strongly convex with respect to the p-Schatten norm

∥σ(X)∥p for p ≥ 1 and f∗(0) = 0. If Zt is constructed by Algorithm 9.4 with q = (1d , · · · ,
1
d),

the output P̄ of Algorithm 9.1 after T iterations with step size η = s
3dB

√
2βf(P∗)

T satisfies

E[∥P∗ − P̄∥2F ] ≤
6dB

∆ks

√
2f(P∗)

βT
.

Obviously, when f(X) = 1
2∥X∥2F , the right hand side becomes O( d

∆ks

√
k
T ). Note that this

bound involves the dimension d, which means the number of samples required to achieve

an ϵ-optimal solution could be undesirably large in the high dimensional regime, as T =



9.3 Framework for Online Robust PCA 284

Algorithm 9.4: Zt under limited attribute observation

Input : Number of observed attributes s and probability vector q ∈ Rd.

1 Initialize x̂t = 0 and x̃t = 0;

2 for r = 1 to s do

3 Choose it,r ∈ [d] with probability qit,r and observe xt(it,r) – the it,rth entry of

xt;

4 if r ≤ s/2 then

5 Let x̂t = x̂t +
2

sqit,r
xt(it,r)eit,r ;

6 else

7 Let x̃t = x̃t +
2

sqit,r
xt(it,r)eit,r ;

8 end

9 end

10 Return 1
2(x̂tx̃

⊤
t + x̃tx̂

⊤
t ).

Ω( kd2

∆2
ks

2ϵ2
).

To mitigate dependence on d, we propose to sample the attributes in a distribution-dependent

manner, i.e., the attributes with larger second moments Ext∼D[xt(i)
2] are sampled with rela-

tively higher probabilities. The following theorem shows how such a strategy leads to better

theoretical performance.

Theorem 9.6. Suppose that f(X) is β-strongly convex with respect to the p-Schatten norm

∥σ(X)∥p for p ≥ 1 and f∗(0) = 0. If Zt is constructed by Algorithm 9.4 with

qi =
Ext∼D[xt(i)

2]
1
3∑d

i=1 Ext∼D[xt(i)2]
1
3

, i = 1, · · · , d, (9.7)

the output P̄ of Algorithm 9.1 after T iterations with step size

η =

√√√√√ βf(P∗)[
4B
s2

(∑d
i=1 Ext∼D[xt(i)2]

1
3

)3
+B2

]
T
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satisfies that

E[∥P∗ − P̄∥2F ]

≤ 4

∆k

√√√√√f(P∗)

[
4B
s2

(∑d
i=1 Ext∼D[xt(i)2]

1
3

)3
+B2

]
βT

.

By the power mean inequality, it can be easily verified that
(∑d

i=1 Ext∼D[xt(i)
2]

1
3

)3
≤ d2B,

which means this bound is always as good as the one shown in Theorem 9.5. In the case

where the second moments decay very fast or the samples are sparse, this bound can be

much smaller than d2B. When the second moment of xt(i) is unknown, we can use an

empirical estimate of Ext∼D[xt(i)
2] to compute q as discussed in the next section.

9.4 Unknown Parameters

In previous sections, we discuss online PCA algorithms for handling missing entries and

limited attribute observation, where some prior information about δ – the probability that

an attribute is observed – or E[xt(i)
2] – the second moments of each attribute – are required,

which may not be available in practical applications. To address this issue, we propose to

estimate δ or E[xt(i)
2] from a set of training samples before running the specific online

PCA algorithms. Given m0 training samples, δ and E[xt(i)
2] can be easily estimated by

Algorithm 9.5 and Algorithm 9.6, respectively.

With the estimates of δ and E[xt(i)
2] computed by Algorithms 9.5 and 9.6, we have the

following variants of Theorem 9.2 and Theorem 9.6.

Theorem 9.7. Suppose that f(X) = 1
2∥X∥2F and Zt is constructed by (9.4) with parameter

q computed by Algorithm 9.5 with m0 ≥ 12 log d
δd T 2α for constant α ∈ [0, 12 ], then after T

iterations with step size η =
√

kq2

8B2T
, with probability at least 1− 2

d , the output P̄ of Algorithm

9.1 satisfies

E[∥P∗ − P̄∥2F ] ≤
8B

√
k

∆kδ

(√
2

T
+

9

δ2
· T−α

)
,

where the expectation is taken with respect to the randomness in the samples.

Theorem 9.7 implies that the upper bound of E[∥P∗− P̄∥2F ] decreases with T as long as m0
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Algorithm 9.5: Estimate “missing” probability δ

Input : Block size m0.

1 Initialize s = 0;

2 for t = 1 to m0 do

3 Receive sample xt and count the number of the observed entries in xt (denoted

by nt);

4 Set s = s+ nt
d ;

5 end

6 Return s/m0.

– the number of samples for estimating δ – is Ω( log dd T 2α) where 1
2 ≥ α > 0. Therefore, a

tradeoff can be made between m0 and this upper bound, namely, using more (less) samples

to estimate δ leads to a smaller (larger) bound.

Theorem 9.8. Suppose that f(X) is β-strongly convex with respect to the p-Schatten norm

∥σ(X)∥p for p ≥ 1 and f∗(0) = 0. Let ψ1, · · · , ψd be the outputs of Algorithm 9.6 with

m0 ≥ 78d log d
s . If Zt is constructed by Algorithm 9.4 with

qi = ψ
1
3
i /

d∑
i=1

ψ
1
3
i , i = 1, · · · , d,

then after T iterations, the output P̄ of Algorithm 9.1 with step size

η =

√√√√√ βf(P∗)[
8B
s2
(
∑d

i=1 ψ
1
3
i )

3 +B2

]
T

satisfies

E[∥P∗ − P̄∥2F ] ≤
4

∆k

√√√√f(P∗)
[
12B
s2

(
∑d

i=1(E[xt(i)2] + ϵ)
1
3 )3 +B2

]
βT

,

where ϵ = 8Bd log d
3m0s

.

The upper bound of E[∥P∗ − P̄∥2F ] shown in Theorem 9.8 is slightly larger than the bound
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Algorithm 9.6: Estimate the second moment of xt(i)

Input : Block size m0 and number of observed entries s.

1 Initialize y = 0 and z = 0;

2 for t = 1 to m0 do

3 for r = 1 to s do

4 Choose it,r ∈ [d] uniformly at random and observe xt(it,r);

5 Set y(it,r) = y(it,r) + xt(it,r)
2 and z(it,r) = z(it,r) + 1;

6 end

7 end

8 Set ξ(i) = y(i)/z(i) for i ∈ [d];

9 Return ξ(i) + 2Bd log d
m0s

for i ∈ [d].

in Theorem 9.6. The gap between these two bounds exists due to the error of estimating

the second moment E[xt(i)
2].

9.5 Experiments

We now investigate the empirical performance of the proposed algorithms on a variety of

synthetic and real-world datasets. The experiments are conducted on a desktop PC with

an i7 3.4GHz CPU and 8G memory.

9.5.1 Synthetic Data

The “inlier” samples with no missing or corrupted entries are generated according to the

spike model, i.e., samples xt satisfy xt = Azt + ϵt where matrix A ∈ Rd×k is fixed, zt ∈ Rk

are independently sampled from the standard Gaussian distribution N (0, Ik) and ϵt are the

noises that are independent realizations of Gaussian distribution N (0, σ2Id) for some σ > 0.

Matrix A is generated by the following three steps: 1) Randomly generate sparse orthogonal

matrices U ∈ Rd×k and V ∈ Rk×k; 2) generate a diagonal matrix S whose diagonal entries
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Figure 9.1: Comparison between RO-PCA, MSG, Streaming PCA and Batch. The samples
are generated under δ = 0.2, d = 100, k = 10 and σ = 0.05.

are drawn from the uniform distribution over [1, 2]; 3) finally, set A = USV⊤. The empir-

ical performance is measured by two quantities – estimation error and expressed variance

[XCM13]. Let P be the output of a certain algorithm. The estimation error is defined by

∥P − P∗∥F and the expressed variance is defined by
∑k

i=1 u
⊤
i AA⊤ui/tr(AA⊤) where ui

are the eigenvectors of P. In the following experiments, we choose function f(X) = 1
2∥X∥2F .

We repeat each test 10 times and report the average results.

In the first experiment, we test the performance of the algorithm discussed in Section 9.3.1

when the observed samples contain missing entries. We compare our algorithm (RO-PCA)

with several existing algorithms: 1) Matrix stochastic gradient (MSG) [ACS13]. Actually,

it can be easily verified that MSG is equivalent to Algorithm 9.1 with Zt = xtx
⊤
t . When the

observed sample xt contains missing entries, we set these entries to zero and then perform

the MSG update. 2) Streaming PCA with missing entries [MCJ14]. This algorithm is an

extension of the memory efficient streaming PCA algorithm [MCJ13] based on the block-wise

stochastic power method. Different from streaming PCA, it estimates the sample covariance

matrix in each block by applying (9.4) that takes the “missing” probability into account. 3)

The batch PCA. This is taken as the baseline for our experiments. It stores all the samples

received from time t = 1 to T , then use (9.4) to estimate the sample covariance matrix and

finally performs the standard PCA to extract PCs. In the following experiment, we set q in

(9.4) to δ and the block size of streaming PCA to 100.

Figure 9.1 presents the results of these four algorithms when δ = 0.2, d = 100, k = 10 and

T varies from 100 to 900. Because streaming PCA requires a good estimate of the sample
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covariance matrix in each block, it needs a large number of samples (∼ 10000 samples)

to obtain acceptable results. When relatively fewer samples are received, its performance

is much worse than the other algorithms. We observe our algorithm RO-PCA achieves

comparable performance as the baseline algorithm, and clearly outperforms MSG.

The second experiment investigates the performance of Algorithms 9.2 and 9.3 when there

exist corrupted samples. In the “entry-wise corruption” case, the corrupted samples are

generated as follows. Sample xt is first generated according to the spike model discussed

above and then each entry of xt is set to ξ with probability q where ξ is sampled from [−5, 5]

uniformly at random. In the “sample-wise corruption” case, we assume that with probability

q the received sample is replaced by a random vector drawn from [−5, 5]d uniformly at

random. We compare our algorithms (RO-PCA) with MSG, online robust PCA [FXMY14]

and HR-PCA [XCM13]. HR-PCA is an offline outlier-robust PCA algorithm and is taken

as the baseline.

Figure 9.2(a) shows the performance of RO-PCA and MSG when the received samples are

entry-wise corrupted. Since HR-PCA and online robust PCA [FXMY14] can only handle

sample-wise corruption, they are not considered in this case. Obviously, MSG easily breaks

down, even when there exists only a small fraction of corruptions. RO-PCA is much more ro-

bust than MSG, which can generate meaningful results when q is less than 0.5. Figure 9.2(b)

provides the comparison between RO-PCA, MSG, online robust PCA and HR-PCA in the

sample-wise corruption case. Clearly, as q increases, the performance of MSG dramatically

decreases, while RO-PCA is much more stable, which performs similarly to HR-PCA when

q is less than 0.5 and consistently outperforms online robust PCA proposed by [FXMY14].

In the third experiment, we investigate the performance of Algorithm 9.4 when a limited

number of attributes of received sample xt can be revealed. We assume that only 40% of the

attributes of xt can be observed and xt is generated according to the spike model discussed

above where d = 500, k = 10, σ = 0.1 and A is row-sparse, e.g., the number of nonzero

rows of A is 0.3d. We compare three different attribute sampling schemes for Algorithm

9.4: 1) Uniform sampling. The attributes of each sample are sampled uniformly at random;

2) Distribution-dependent sampling with unknown second moments. The second moments
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Figure 9.2: Comparison between RO-PCA, MSG, online robust PCA [FXMY14] and HR-
PCA [XCM13] in the (a) entry-wise corruption case and (b) sample-wise corruption case.
The x-axis is the probability that an attribute or sample is corrupted. The samples are
generated under d = 500, k = 10 and σ = 0.05. Parameters T = 100, m = 100 and
ρ = 1.2mq.

of the attributes are estimated via Algorithm 9.6. Then the probability vector q used for

attribute sampling are computed according to (9.7) with these estimated second moments;

3) Distribution-dependent sampling with known second moments. The probability vector q

is directly computed by utilizing these known second moments. For clarity, we denote these

three schemes by “Uniform”, “Distribution-dependent A” and “Distribution-dependent B”,

respectively.

Figure 9.3 shows the performance of Algorithm 9.4 under the three sampling schemes. We

take Algorithm 9.1 with fully observed samples as the baseline algorithm. Clearly, the

two distribution-dependent sampling schemes outperform the uniform sampling scheme,

and the information about the second moments of the attributes are quite helpful, i.e.,

“Distribution-dependent B” has a much better performance than “Distribution-dependent

A”. This is consistent with our theoretical results shown in Theorems 9.6 and 9.8.
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Figure 9.3: Comparison between the three sampling schemes and the baseline that all the
attributes are observed.

9.5.2 Real-world Data

We now show the performance of the proposed algorithms on the MNIST dataset [LJB+95].

Each digit image is represented by a 784-dimensional vector and the grayscale values of

its pixels lie in [0, 1]. We first test our algorithms on 1000 digit images with missing or

corrupted pixels. In the “missing entries” case, each pixel of the digit images is observed

with probability q. In the “entry-wise corruption” case, for each pixel, it is corrupted by the

white pixel, i.e., its grayscale value is set to 1, with probability q. Suppose that U consists

of the estimated principal components computed by a certain algorithm from T corrupted

digit images x1, · · · ,xT and let x̂1, · · · , x̂T be the corresponding non-corrupted digit images,

then the performance of this algorithm is measured by the average representation error

1
T

∑T
i=1 ∥x̂i −UU⊤x̂i∥2.

Table 9.1 shows the average representation errors of the outputs generated by RO-PCA,

MSG and Batch when the digit images have missing pixels. Similar to the simulations,

the outputs of all the algorithms become better as the probability that a pixel is revealed

increases, and RO-PCA performs similar to Batch and outperforms MSG. Figure 9.4 il-

lustrates the empirical performance of RO-PCA and MSG when the digit images contain

corrupted pixels. Figure 9.4(a) and Figure 9.4(b) shows the leading five principal compo-

nents extracted by RO-PCA and MSG, respectively, from which we observe that RO-PCA

is more robust than MSG, i.e., the principal components extracted by MSG have more noisy

entries than those extracted by RO-PCA.
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Table 9.1: The average representation errors for different algorithms on a real dataset of
1000 digit images with missing entries.

q 0.1 0.2 0.3 0.4 0.5 0.6

MSG 6.26 5.55 5.26 5.14 5.07 5.03

RO-PCA 6.11 5.45 5.25 5.13 5.06 5.04

Batch 6.09 5.44 5.25 5.12 5.06 5.03

(a) (b)

Figure 9.4: The empirical performance of RO-PCA and MSG when the digit images are
corrupted. We plot the leading five PCs extracted by (a) RO-PCA and (b) MSG.

The next experiment tests the performance of RO-PCA on a dataset considered in [YX15b]

which mixes MNIST digit images with CBCL face images [Sun96]. We suppose that at time

t sample xt is drawn from MNIST with probability 0.8 or from CBCL otherwise and take

face images as outliers. Figure 9.5 shows the leading PCs extracted by RO-PCA and MSG.

It can be observed that RO-PCA is more reliable than MSG, e.g., the sixth PC extracted

by MSG mixes digits with faces, which is obviously unreliable.

Finally, we test the performance with Zt computed by Algorithm 9.4 when a limited number

of pixels of the received digit images can be observed. Table 9.2 shows the average repre-

sentation errors for the uniform sampling scheme and the distribution-dependent sampling

scheme as the fraction of the observed pixels varies from 0.1 to 0.9, from which we observe

that distribution-dependent sampling generates significantly better results than uniform

(a)

(b)

Figure 9.5: The leading eight PCs extracted by (a) RO-PCA and (b) MSG when the
dataset is a mixture of digit and face images.
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sampling.

Table 9.2: The average representation errors for different sampling schemes under the
limited observation setting.

Fraction 0.1 0.3 0.5 0.7 0.9

Uniform 5.953 5.110 4.828 4.749 4.683

Dependent 5.662 4.853 4.716 4.661 4.617

9.6 Proofs of Technical Results

Useful Lemmas

Lemma 9.2. (Lemma 3.1, [VCLR13]) Let Σ be a positive semidefinite matrix and Π be the

projection onto the subspace spanned by the eigenvectors of Σ corresponding to its k largest

eigenvalues λ1 ≥ λ2 ≥ · · · . If δ = λk(Σ)− λk+1(Σ) > 0, then

δ

2
∥Π−X∥2F ≤ ⟨Σ,Π−X⟩

for all X satisfying 0 ⪯ X ⪯ I and tr(X) = k.

Lemma 9.3. Suppose that Z1, · · · ,ZT ∈ Rd×d are i.i.d. random variables with E[Zt] = Σ,

and P1, · · · ,PT are generated by Algorithm 9.1 with Z1, · · · ,ZT , satisfying that

E[
T∑
t=1

⟨Zt,P
∗ −Pt]⟩ ≤ G

for some constant G. Then

E[∥P∗ − P̄∥2F ] ≤
2G

(λk(Σ)− λk+1(Σ))T
,

where P̄ = 1
T

∑T
t=1Pt and λk(Σ) is the kth largest eigenvalue of Σ.
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Proof. Since Zt is independent with Pt and E[Zt] = Σ, we have

G

T
≥ E[

1

T

T∑
t=1

⟨Zt,P
∗ −Pt⟩]

= ⟨E[Zt],P
∗⟩ − ⟨E[Zt],E[

1

T

T∑
t=1

Pt]⟩

= E[⟨Σ,P∗ − P̄⟩].

By Lemma 9.2,

E[⟨Σ,P∗ − P̄⟩] ≥ E[
1

2
(λk(Σ)− λk+1(Σ))∥P∗ − P̄∥2F ].

Hence we obtain this lemma.

Proof of Corollary 9.1

Proof. Since Zt can be decomposed into

Zt =
1

2
(x̂tx̃

⊤
t + x̃tx̂

⊤
t )

for some vectors x̂ and x̃, we have

∥Zt∥∗S(p) ≤ ∥x̂tx̃
⊤
t ∥∗S(p) = ∥σ(x̂tx̃

⊤
t )∥p = ∥x̂t∥2∥x̃t∥2.

By taking the expectation of the both sides in (9.3) and choosing

η =

√
2βf(P∗)∑T

t=1 E[∥x̂t∥22∥x̃t∥22]
,

we obtain this corollary.

Proof of Theorem 9.1

Proof. The proof follows from the standard procedure of deriving the regret bound for

online mirror descent algorithms. Let ∆t = f∗(Θt+1) − f∗(Θt). Since f(·) is a closed and
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β-strongly convex function w.r.t. ∥ · ∥, f∗(·) is 1
β -strongly smooth w.r.t. ∥ · ∥∗. Then

T∑
t=1

∆t =

T∑
t=1

[f∗(Θt + ηZt)− f∗(Θt)]

≤
T∑
t=1

[⟨∇f∗(Θt), ηZt⟩+
η2

2β
∥Zt∥2∗]

= η
T∑
t=1

[⟨Pt,Zt⟩+
η

2β
∥Zt∥2∗].

On the other hand,
T∑
t=1

∆t = f∗(ΘT+1)− f∗(Θ1)

≥ ⟨P∗,ΘT+1⟩ − f(P∗)− f∗(0)

= η
T∑
t=1

⟨P∗,Zt⟩ − f(P∗)− f∗(0),

where the inequality follows from the definition of the Fenchel conjugate. Hence we have

T∑
t=1

⟨P∗,Zt⟩ −
f(P∗) + f∗(0)

η
≤

T∑
t=1

[⟨Pt,Zt⟩+
η

2β
∥Zt∥2∗],

which implies this theorem.
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Proof of Theorem 9.2

Proof. For simplicity, let x̃t =
1
qxt, then

E[∥Zt(q)∥2F |x̄t] = E[tr((x̃tx̃
⊤
t − (1− q)diag(x̃tx̃

⊤
t ))

2)|x̄t]

= E[∥x̃t∥42 + (1− q)2
d∑

i=1

x̃t(i)
4 − 2(1− q)

d∑
i=1

x̃t(i)
4|x̄t]

= E[∥x̃t∥42 + (q2 − 1)

d∑
i=1

x̃t(i)
4|x̄t]

= E[q2
d∑

i=1

x̃t(i)
4 +

∑
i̸=j

x̃t(i)
2x̃t(j)

2|x̄t]

= E[
d∑

i=1

xt(i)
4

q2
+
∑
i̸=j

xt(i)
2xt(j)

2

q4
|x̄t]

=

d∑
i=1

x̄t(i)
4

q2
· δ +

∑
i ̸=j

x̄t(i)
2x̄t(j)

2

q4
· δ2

≤ δ

q2

d∑
i=1

x̄t(i)
4 +

δ2

q4
(B2 −

d∑
i=1

x̄t(i)
4)

where the last inequality holds since ∥x̄t∥22 ≤ B. Therefore, we have

E[∥Zt(q)∥2F |x̄t] ≤
δ2

q4
B2 +

δ

q2

d∑
i=1

x̄t(i)
4 · (1− δ

q2
)

≤ δ2

q4
B2 +max{ δ

q2
(1− δ

q2
)B2, 0}

≤ max

{
1,
δ

q2

}
δ

q2
B2.

(9.8)

Note that
E[Zt(q)|x̄t] = E[

1

q2
xtx

⊤
t − 1− q

q2
diag(xtx

⊤
t )|x̄t]

=
δ2

q2
x̄tx̄

⊤
t − δ(δ − q)

q2
diag(x̄tx̄

⊤
t ),
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which implies that Zt(δ) is an unbiased estimator of x̄tx̄
⊤
t . Then consider the following

inequalities

T∑
t=1

⟨Zt(δ),P
∗ −Pt⟩ =

T∑
t=1

⟨Zt(q),P
∗ −Pt⟩+

T∑
t=1

⟨Zt(δ)− Zt(q),P
∗ −Pt⟩

≤
T∑
t=1

⟨Zt(q),P
∗ −Pt⟩+ 2

√
k

T∑
t=1

∥Zt(δ)− Zt(q)∥F ,

where the last inequality holds because ∥P∗∥F ≤
√
k and ∥Pt∥F ≤

√
k. From the definition

of Zt(q),

∥Zt(δ)− Zt(q)∥F = ∥( 1
q2

− 1

δ2
)xtx

⊤
t − (

1− q

q2
− 1− δ

δ2
)diag(xtx

⊤
t )∥F

≤ |δ − q|(2δ + 2q − qδ)

q2δ2
∥xtx

⊤
t ∥F

≤ 3B|δ − q|
q2δ2

,

where the last inequality holds since q, δ ∈ [0, 1] and ∥xtx
⊤
t ∥F ≤ ∥x̄tx̄

⊤
t ∥F ≤ B. Then by

Theorem 9.1 and Inequality (9.8), we have

E[
T∑
t=1

⟨Zt(δ),P
∗ −Pt⟩] ≤

k

2η
+
δB2

q2
max

{
1,
δ

q2

}
· ηT +

6
√
k|δ − q|BT
q2δ2

=

√
max

{
1,
δ

q2

}
· 2δB

2

q2
· kT +

6
√
k|δ − q|BT
q2δ2

with η =
√

kq2

max{1,δ/q2}·2δB2T
. Finally, by Lemma 9.3, we have

E[∥P∗ − P̄∥2F ] ≤
2

∆k

(√
max

{
1,
δ

q2

}
· 2δB

2

q2
· k
T

+
6
√
k|δ − q|B
q2δ2

)

where ∆k = λk(Σ)− λk+1(Σ).

Proof of Theorem 9.3

Proof. At time t, suppose that we receive a block of samples x1, · · · ,xm. Since x1, · · · ,xm

may contain corrupted entries, we apply Algorithm 9.2 to construct Zt which satisfies Zt =
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X̂X̂⊤/m where X̂ is obtained by keeping the smallest m − ρ entries of each row of X

and setting the other entries to 0. Let x̄1, · · · , x̄m be the corresponding non-corrupted

samples of x1, · · · ,xm and X̄ be their sample matrix. Define Z̄t ≜ X̄X̄⊤/m, then we have

E[Z̄t] = Ex∼D[xx
⊤].

The first step of the proof is to bound ∥Zt − Z̄t∥∞ = maxi,j |Zt(i, j)− Z̄t(i, j)|. For fixed i

and j, we define three sets:

N ≜{k : X(i)(k) and X(j)(k) are non-corrupted},

C ≜{k : X(i)(k) or X(j)(k) is corrupted},

T ≜{k : X(i)(k) or X(j)(k) is trimmed to zero}.

Assume that parameter ρ is greater than the number of corrupted entries in each row of X

(we will later show this assumption holds with high probability under some mild conditions

on m), then

m|Zt(i, j)− Z̄t(i, j)| =
∑

k∈N∩T c

X̂(i)(k)X̂(j)(k) +
∑

k∈C∩T c

X̂(i)(k)X̂(j)(k)−

∑
k∈N

X̄(i)(k)X̄(j)(k)−
∑
k∈C

X̄(i)(k)X̄(j)(k)

=
∑

k∈C∩T c

X̂(i)(k)X̂(j)(k)−
∑

k∈N∩T
X̄(i)(k)X̄(j)(k)−

∑
k∈C

X̄(i)(k)X̄(j)(k)

≤ 6ρmax
i∈[d]

∥X̄(i)∥2∞,

where the last inequality holds because |C| ≤ 2ρ and |T | ≤ 2ρ. Recall that ∥x̄i∥22 ≤ B for

i = 1, · · · ,m, which implies maxi ∥X̄(i)∥2∞ ≤ maxi∈[m] ∥x̄i∥22 ≤ B. Therefore

∥Zt − Z̄t∥∞ ≤ 6ρB

m
.

The second step is applying Theorem 9.1 to show the performance guarantee of Algorithm

9.1 with these Zt. Recall that the domain set F = {P : 0 ≤ P ≤ Id, tr(P) = k, ∥P∥1 ≤ γ
√
k}
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where γ is the number of nonzero entries of P∗. Then

T∑
t=1

⟨Z̄t,P
∗ −Pt⟩ =

T∑
t=1

⟨Zt,P
∗ −Pt⟩+

T∑
t=1

⟨Z̄t − Zt,P
∗ −Pt⟩

≤
T∑
t=1

⟨Zt,P
∗ −Pt⟩+

T∑
t=1

∥Z̄t − Zt∥∞∥P∗ −Pt∥1

≤
T∑
t=1

⟨Zt,P
∗ −Pt⟩+

12Bργ
√
kT

m
.

Thus, by Theorem 9.1, we have

E[
T∑
t=1

⟨Z̄t,P
∗ −Pt⟩] ≤ E[

T∑
t=1

⟨Zt,P
∗ −Pt⟩] +

12Bργ
√
kT

m

≤ k

2η
+ η

T∑
t=1

E[∥Zt∥2F ] +
12Bργ

√
kT

m

≤ k

2η
+ ηB2T +

12Bργ
√
kT

m

where the last inequality follows from

∥Zt∥2F ≤ 1

m2
∥X̂X̂⊤∥2F ≤ 1

m2
∥X̂∥4F

=
1

m2
[

d∑
i=1

∑
j∈{j:X̂(i)(j) is not trimmed to 0}

X̂(i)(j)
2]2

≤ 1

m2
[

d∑
i=1

∑
j∈{j:X̂(i)(j) is non-corrupted}

X̂(i)(j)
2]2

≤ 1

m2
[

d∑
i=1

m∑
j=1

X̄(i)(j)
2]2

≤ 1

m2
[

m∑
j=1

∥X̄j∥22]2 ≤ B2.

Therefore, when η =
√

k
2B2T

, we have

E[
T∑
t=1

⟨Z̄t,P
∗ −Pt⟩] ≤ B

√
2kT +

12Bργ
√
kT

m
.
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Since E[Z̄t] = Σ, by Lemma 9.3, we have

E[∥P∗ − P̄∥2F ] ≤
2B

∆k

(√
2k

T
+

12ργ
√
k

m

)

where ∆k = λk(Σ)− λk+1(Σ).

The final step is to find the relationship between q, m and ρ. For the case where each entry

of the received samples is corrupted with probability q, let yj be the indicator of the jth

entry of X(i) being corrupted, i.e., yj = 1 if X(i)(j) is corrupted or 0 otherwise. By the

Chernoff bound, for all δ > 0,

P[
m∑
j=1

yj ≥ (1 + δ)mq] ≤ exp(− δ2

2 + δ
mq),

which implies that when m ≥ 2(2+δ) log(dT )
δ2q

,
∑m

i=1 yj ≤ (1 + δ)mq holds with probability

at least 1 − 1
d2T 2 . By the union bound, with probability at least 1 − 1

dT , the number of

corrupted entries in each row of sample matrix X is less than or equal to (1 + δ)mq for all

t = 1 to T .

Therefore, as long as ρ ≥ (1 + δ)mq, we can guarantee that ρ is greater than the number of

corrupted entries in each row of X with high probability. Hence this theorem is obtained.

Proof of Theorem 9.4

Proof. Similar to the proof of Theorem 9.3, suppose that we receive a block of samples

x1, · · · ,xm, some of which are corrupted. So we apply Algorithm 9.3 to construct Zt

which satisfies Zt = X̂X̂⊤/m where X̂ is obtained by keeping the smallest m − ρ samples

w.r.t. ∥ · ∥2 and setting the other columns to 0. Let x̄1, · · · , x̄m be the corresponding non-

corrupted samples of x1, · · · ,xm and X̄ be their sample matrix. Define Z̄t ≜ X̄X̄⊤/m, then

E[Z̄t] = Ex∼D[xx
⊤].



9.6 Proofs of Technical Results 301

The first step of the proof is to bound ∥Zt − Z̄t∥F . We first define the following three sets:

N ≜{k : xk is non-corrupted},

C ≜{k : xk is corrupted},

T ≜{k : xk is trimmed to zero}.

Assume that parameter ρ is greater than the number of corrupted columns of X (we will

later show this assumption holds with high probability), then

m∥Zt − Z̄t∥F = ∥
∑

k∈N∩T c

x̂kx̂
⊤
k +

∑
k∈C∩T c

x̂kx̂
⊤
k −

∑
k∈N∪C

x̄kx̄
⊤
k ∥F

= ∥
∑

k∈C∩T c

x̂kx̂
⊤
k −

∑
k∈N∩T

x̄kx̄
⊤
k −

∑
k∈C

x̄kx̄
⊤
k ∥F

≤ 3ρmax
i

∥x̄i∥22,

where the last inequality holds because |C| ≤ ρ and |T | ≤ ρ. Recall that ∥x̄i∥22 ≤ B for

i = 1, · · · ,m, then

∥Zt − Z̄t∥F ≤ 3ρB

m
.

The second step is applying Theorem 9.1 to show the performance guarantee of Algorithm

9.1 with these Zt, namely,

T∑
t=1

⟨Z̄t,P
∗ −Pt⟩ =

T∑
t=1

⟨Zt,P
∗ −Pt⟩+

T∑
t=1

⟨Z̄t − Zt,P
∗ −Pt⟩

≤
T∑
t=1

⟨Zt,P
∗ −Pt⟩+

T∑
t=1

∥Z̄t − Zt∥F ∥P∗ −Pt∥F

≤
T∑
t=1

⟨Zt,P
∗ −Pt⟩+

6Bρ
√
kT

m
.

Thus, by Theorem 9.1, we have

E[
T∑
t=1

⟨Z̄t,P
∗ −Pt⟩] ≤

k

2η
+ ηB2T +

6Bρ
√
kT

m
.
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Therefore, when η =
√

k
2B2T

, we have

E[
T∑
t=1

⟨Z̄t,P
∗ −Pt⟩] ≤ B

√
2kT +

6Bρ
√
kT

m
.

Since E[Z̄t] = Σ, by Lemma 9.3, we have

E[∥P∗ − P̄∥2F ] ≤
2B

∆k

(√
2k

T
+

6ρ
√
k

m

)

where ∆k = λk(Σ)− λk+1(Σ).

The final step is to find the relationship between q, m and ρ. Let yi be the indicator of xi

being corrupted, i.e., yi = 1 if xi is corrupted or 0 otherwise. By the Chernoff bound, for

all δ > 0,

P[
m∑
i=1

yi ≥ (1 + δ)mq] ≤ exp(− δ2

2 + δ
mq),

which implies that when m ≥ 2(2+δ) log(T )
δ2q

,
∑m

i=1 yi ≤ (1 + δ)mq holds with probability at

least 1− 1
T 2 . By the union bound, we know that with probability at least 1− 1

T the number

of corrupted samples in each block from time t = 1 to T is less than or equal to (1 + δ)mq.

Therefore, as long as ρ ≥ (1 + δ)mq, we can guarantee that ρ is greater than the number of

corrupted entries in each row of X with high probability. Hence we obtain this theorem.

Proofs of Theorem 9.5 and Theorem 9.6

Before the main proofs are given, we first provide several useful lemmas.

Lemma 9.4. The vectors x̂t and x̃t constructed by Algorithm 9.4 satisfy that

E[∥x̂t∥22|xt] = E[∥x̃t∥22|xt] =
2

s

d∑
i=1

xt(i)
2

qi
+
s− 2

s
∥xt∥22.

Proof. Recall that x̂t =
2
s

∑s/2
r=1

1
qit,r

xt(it,r)eit,r where indices it,r are independently sampled
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from [d] with probabilities qit,r . For clarity, let l = s/2, then

l2 · ∥x̂t∥22 =

(
l∑

r=1

1

qit,r
xt(it,r)eit,r

)⊤( l∑
r=1

1

qit,r
xt(it,r)eit,r

)

=

l∑
r=1

1

q2it,r
xt(it,r)

2 +
∑
r ̸=u

1

qit,rqit,u
xt(it,r)xt(it,u)e

⊤
it,reit,u .

Note that it,r and it,u are independent when r ̸= u. Thus we have

E
[

1

qit,rqit,u
xt(it,r)xt(it,u)e

⊤
it,reit,u |xt

]
= E[

1

qit,r
xt(it,r)eit,r |xt]

⊤E[
1

qit,u
xt(it,u)eit,u |xt]

= xtx
⊤
t .

Thus, E
[
l2∥x̂t∥22|xt

]
= l ·

∑d
i=1

xt(i)2

qi
+ l(l − 1)∥xt∥22, which implies that

E
[
∥x̂t∥22|xt

]
=

1

l

d∑
i=1

xt(i)
2

qi
+
l − 1

l
∥xt∥22.

By substituting l by s/2, we obtain this lemma.

We now prove Theorem 9.5 and Theorem 9.6.

Proof. By Corollary 9.1, we only need to find an upper bound of Ext∼DE[∥x̂t∥22∥x̃t∥22|xt].

By Lemma 9.4 and ∥xt∥22 ≤ B, we know that

Ext∼DE[∥x̂t∥22∥x̃t∥22|xt]

= Ext∼D

(2

s

d∑
i=1

xt(i)
2

qi
+
s− 2

s
∥xt∥22

)2


≤ Ext∼D

(2

s

d∑
i=1

xt(i)
2

qi
+
s− 2

s
B

)2
 .

(9.9)

Therefore, when qi = 1
d for all i = 1, · · · , d, we have

Ext∼DE[∥x̂t∥22∥x̃t∥22|xt] ≤
(
2d

s
B +

s− 2

s
B

)2

≤
(
3dB

s

)2

,
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where the last inequality holds since d ≥ s. Then from Corollary 9.1, we know that after T

iterations with step size η = s
3dB

√
2βf(P∗)

T , the outputs Pt of Algorithm 9.1 satisfy that

E[
T∑
t=1

⟨Zt,P
∗ −Pt⟩] ≤

3dB

s

√
2f(P∗)T

β
.

Then by applying Lemma 9.3, we obtain Theorem 9.5.

When q ̸= ( 1d , · · · ,
1
d), Inequality (9.9) becomes

Ext∼DE[∥x̂t∥22∥x̃t∥22|xt] ≤ Ext∼D

(2

s

d∑
i=1

xt(i)
2

qi
+B

)2


≤ 8

s2
Ext∼D

( d∑
i=1

xt(i)
2

qi

)2
+ 2B2

≤ 8

s2
Ext∼D

[
∥xt∥22 ·

d∑
i=1

xt(i)
2

q2i

]
+ 2B2

≤ 8B

s2

d∑
i=1

Ext∼D[xt(i)
2]

q2i
+ 2B2.

(9.10)

Since
∑d

i=1 qi = 1,
∑d

i=1
Ext∼D[xt(i)2]

q2i
is minimized when

qi =
Ext∼D[xt(i)

2]
1
3∑d

i=1 Ext∼D[xt(i)2]
1
3

, i = 1, · · · , d.

Then in this case, we have

Ext∼DE[∥x̂t∥22∥x̃t∥22|xt] ≤
8B

s2

(
d∑

i=1

Ext∼D[xt(i)
2]

1
3

)3

+ 2B2.

By Corollary 9.1, we know that after T iterations with step size

η =

√√√√√ 2βf(P∗)[
8B
s2

(∑d
i=1 Ext∼D[xt(i)2]

1
3

)3
+ 2B2

]
T

,
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the outputs Pt of Algorithm 9.1 satisfy that

E[
T∑
t=1

⟨Zt,P
∗ −Pt⟩] ≤

√√√√√2f(P∗)

[
8B
s2

(∑d
i=1 Ext∼D[xt(i)2]

1
3

)3
+ 2B2

]
T

β
.

Therefore, by applying Lemma 9.3, we obtain Theorem 9.6.

Proof of Theorem 9.7

Proof. Recall that q is calculated by Algorithm 9.5. By the Chernoff bound, the following

inequalities hold for all 0 < θ < 1,

P[qm0d ≥ (1 + θ)m0dδ] ≤ exp(− θ2

2 + θ
m0dδ),

P[qm0d ≤ (1− θ)m0dδ] ≤ exp(− θ2

2 + θ
m0dδ).

Thus, for 0 ≤ α ≤ 1
2 , θ =

1
2T

−α and m0 ≥ 12 log d
δd T 2α, we have

(1− θ)δ ≤ q ≤ (1 + θ)δ (9.11)

holds with probability at least 1− 2
d . As shown in the proof of Theorem 9.2, for η > 0,

E[
T∑
t=1

⟨Zt(δ),P
∗ −Pt⟩] ≤

k

2η
+
δB2

q2
max

{
1,
δ

q2

}
· ηT +

6
√
k|δ − q|BT
q2δ2

.

When Inequality (9.11) holds, we have

E[
T∑
t=1

⟨Zt(δ),P
∗ −Pt⟩] ≤

k

2η
+
δB2

q2
max

{
1,
δ

q2

}
· ηT +

6
√
k|δ − q|BT
q2δ2

≤ k

2η
+

B2

q2(1− θ)2
ηT +

6
√
kθ(1 + θ)BT

q3

≤ k

2η
+

4B2

q2
· ηT +

9
√
kB

2q3
· T 1−α

≤ 2B

q

√
2kT +

9
√
kB

2q3
· T 1−α,
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where the last equality holds when η =
√

kq2

8B2T
. Finally, by q ≥ (1− θ)δ ≥ 1

2δ and Lemma

9.3, we obtain this theorem.

Proof of Theorem 9.8

Before the main proof is given, we provide two useful concentration inequalities. The first

one is based on the Chernoff bound and the second one is based on the Bernstein inequality.

Lemma 9.5. Let ni be the amount of times that the ith attribute is sampled by Algorithm

9.6. Then we have
5m0s

6d
≤ ni ≤

7m0s

6d
, ∀i = 1, · · · , d

holds with probability at least 1− 2d exp(−m0s
78d ).

Proof. By the Chernoff bound, for any 0 < θ < 1 and i ∈ [d], (1− θ)m0s
d ≤ ni ≤ (1 + θ)m0s

d

holds with probability at least 1 − 2 exp(− θ2

2+θ · m0s
d ). Let θ = 1

6 , then we can obtain this

lemma by the union bound.

Lemma 9.6. Let x1, · · · , xn be i.i.d. random variables. Suppose that 0 ≤ xi ≤ B holds with

probability one for i = 1, · · · , n, then with probability at least 1− 2
d ,

E[xi]
2

− 5B log d

3n
≤ 1

n

n∑
i=1

xi ≤
3E[xi]

2
+

5B log d

3n
.

Proof. Let x̄ and σ2 be the mean and variance of x1, · · · , xn, respectively. Then by the

Bernstein inequality, for all t ≥ 0,

P[| 1
n

n∑
i=1

xi − x̄| ≥ t] ≤ 2 exp(− nt2/2

σ2 +Bt/3
),

which implies that when t ≥
√

2σ2 log d
n + 2B log d

3n , we have | 1n
∑n

i=1 xi − x̄| ≤ t holds with

probability at least 1− 2
d . Note that

σ2 = E[x2i ]− E[xi]2 ≤ E[
x2i
B2

] ·B2 ≤ x̄ ·B.
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The last inequality holds since 0 ≤ xi ≤ B. Thus,

√
2σ2 log d

n
≤
√
x̄ · 2B log d

n
≤ x̄

2
+
B log d

n
.

Therefore, by setting t = x̄
2 + 5B log d

3n , we have

x̄

2
− 5B log d

3n
≤ 1

n

n∑
i=1

xi ≤
3x̄

2
+

5B log d

3n

holds with probability at least 1− 2
d .

We now show the main proof of this theorem.

Proof. By Lemma 9.5, when m0 ≥ 78d log d
s ,

5m0s

6d
≤ z(i) ≤ 7m0s

6d
, ∀i = 1, · · · , d (9.12)

holds with probability at least 1 − 2
d . By combining this inequality with Lemma 9.6, we

know that
E[xt(i)

2]

2
− 2Bd log d

m0s
≤ ξ(i) ≤ 3E[xt(i)

2]

2
+

2Bd log d

m0s
. (9.13)

We let

ϵ =
8Bd log d

3m0s
and qi =

(ξ(i) + 3
4ϵ)

1
3∑d

i=1(ξ(i) +
3
4ϵ)

1
3

. (9.14)

From the proof of Theorem 9.6 we know that in order to derive the theoretical performance

guarantee of Algorithm 9.1, we need to find an upper bound of
∑d

i=1
E[xt(i)2]

q2i
. By (9.13) and

(9.14),
d∑

i=1

E[xt(i)
2]

q2i
≤2

d∑
i=1

ξ(i) + 3
4ϵ

q2i

=2
d∑

i=1

(ξ(i) +
3

4
ϵ) ·

(
∑d

i=1(ξ(i) +
3
4ϵ)

1
3 )2

(ξ(i) + 3
4ϵ)

2
3

≤2(

d∑
i=1

(ξ(i) +
3

4
ϵ)

1
3 )3
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By Theorem 9.1 and Inequality (9.10) in the proof of Corollary 9.1, we have

E[
T∑
t=1

⟨Zt,P
∗ −Pt⟩] ≤

1

η
f(P∗) +

η

2β
(
16B

s2
(

d∑
i=1

(ξ(i) +
3

4
ϵ)

1
3 )3 + 2B2).

Hence when

η =

√√√√ βf(P∗)[
8B
s2
(
∑d

i=1(ξ(i) +
3
4ϵ)

1
3 )3 +B2

]
T
,

the regret bound becomes

E[
T∑
t=1

⟨Zt,P
∗ −Pt⟩] ≤ 2

√√√√f(P∗)
[
8B
s2
(
∑d

i=1(ξ(i) +
3
4ϵ)

1
3 )3 +B2

]
T

β

≤ 2

√√√√f(P∗)
[
12B
s2

(
∑d

i=1(E[xt(i)2] + ϵ)
1
3 )3 +B2

]
T

β
,

where the last inequality holds since ξ(i) + 3
4ϵ ≤

3
2(E[xt(i)

2] + ϵ) by (9.13). Therefore, by

Lemma 9.3, we obtain Theorem 9.8.

9.7 Chapter Summary

In this chapter, we proposed new online PCA algorithms that are robust to partial ob-

servation or arbitrary corruption, developed a distribution-dependent sampling scheme for

estimating PCs with limited attribute observation and established their finite sample per-

formance guarantees. The experiments empirically validated their good performance.



Chapter 10
Conclusion

This thesis investigated the methodologies for decision making and machine learning prob-

lems, e.g., regression, classification and dimensionality reduction, with uncertain or noisy

data. In this chapter, we summarize the main contributions of this thesis.

Many optimization and decision making problems with stochastic uncertain parameters can

be tackled via the celebrated distributionally robust chance constraint paradigm, e.g., robust

classification via minimizing the worst-case misclassification probability of future samples,

and transportation problem with uncertain delivery costs. In Chapter 2, we addressed an

open problem of distributionally robust chance constrained problems, namely, the tractabil-

ity of distributionally robust chance constraints with non-linear constraint functions. We

showed that distributionally robust chance constraints are computationally tractable when

the uncertainty is characterized by its mean and covariance and the constraint function is

concave in the decision variables and quasi-convex in the uncertain parameters. We then

established a connection between distributionally robust chance constrained optimization

and robust optimization, and extended probabilistic envelope constraints into the non-linear

case.

In Chapters 3-5, we explored the relationship between robust/distributionally robust op-

timization and two widely applied machine learning techniques – 1) Lasso-like algorithms:

We showed that a wide range of Lasso-like algorithms including group Lasso and fused

Lasso fit in a unified robust linear regression model. This model allows us to develop new

regularization variants of Lasso-like algorithms and theoretically analyze the sparsity and

consistency properties of Lasso-like algorithms from a robustness perspective; and 2) Regu-
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larized SVMs: We developed a unified framework using distributionally robust optimization

for designing robust classification algorithms which provides a new robustness interpretation

for regularized SVMs. A new perspective on understanding the robust formulation of SVMs

is presented in Chapter 5 where we proposed the novel coherent loss approach for classifica-

tion which yields a strictly tighter approximation to the empirical classification error than

any convex cumulative loss approach.

Both of robust optimization and distributionally robust optimization require the prior knowl-

edge about the uncertain parameters such as the uncertainty sets that the parameters belong

to and the ambiguity sets that includes the true distributions of the parameters. In Chapter

6, we studied the optimization problems where such prior knowledge is unrevealed. To the

best of our knowledge, this problem has not be well explored yet. We showed that this

problem is a generalization of stochastic linear optimization and contextual linear bandit

problems, and proposed two algorithms LPUC-ED and LPUC-UCB in the online setting,

both of which own sub-linear bounds on the regret and the constraint violation.

Dimensionality reduction methods, e.g., principal component analysis, are widely applied

for preprocessing data in machine learning problems such as regression and classification.

In Chapters 7-9, we addressed the issue of standard PCA that it is fragile to the existence

of outlying observations. We proposed a unified framework for making not only standard

PCA but also PCA-like algorithms including sparse PCA and non-negative sparse PCA

robust when facing a constant fraction of arbitrarily corrupted outliers. For large-scale

applications, we developed two computationally efficient non-convex outlier-robust PCA

algorithms – Outlier Rejection and Outlier Reduction – that guarantee the exact recovery of

the low-dimensional subspace spanned by the uncorrupted samples, and a unified framework

via online mirror descent for designing online robust PCA algorithms.
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