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Summary

We consider continuous-review inventory models with general quantity-dependent

setup costs. The demand processes of the inventory models are modeled as Brownian

motions with a positive drift. The inventory level can be adjusted by a positive amount

at any time and the lead time of each order is zero. Each order incurs a proportional

cost and a setup cost that is a step function of the order quantity. We further assume that

the holding cost is a general convex function of the inventory level. By a lower bound

approach, we obtain optimal ordering policies for three continuous-review inventory

models: (a) an inventory model without backlogs under the long-run average cost crite-

rion; (b) an inventory model without backlogs under the discounted cost criterion; (c)

an inventory model with backlogs under the discounted cost criterion. Since the smooth

pasting technique does not apply when the setup cost is quantity-dependent, we propose

a four-step procedure to obtain optimal policy parameters for the inventory models. To

cope with the quantity-dependent setup cost and upward adjustments, we provide a com-

parison theorem under the discounted cost criterion. With this comparison theorem, we

can prove the global optimality within a tractable subset of admissible policies.

Keywords: continuous-review inventory models; inventory control; impulse control;

quantity-dependent setup cost; free boundary problems; (s, S) policy.
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Chapter 1

Introduction

This thesis explores optimal ordering policies for continuous-review single-product

Brownian inventory models with quantity-dependent setup costs. In this chapter, we

introduce existing inventory models with quantity-dependent setup cost and show the

limitations of these works in Section 1.1. Based on the limitations discussed in Section

1.1, the objectives and contributions of this thesis are specified in Section 1.2. Section

1.3 outlines the organization of this thesis.

1.1 Motivation

Because of the prosperity of commercial society, most enterprises involve in the man-

agement of inventories in the face of a diverse collection of factors, e.g., cost patterns,

modes of shipment and methods of delivery to customers. Due to this phenomenon, in-

ventory management has received considerable attention in the literature. Silver (1981)

states that inventory management attempts to cope with three main questions: (i) How

often should the inventory status be determined? (ii) When should an order be placed?

(iii) How large should the replenishment order be? Inventory models can be divided into

periodic-review models and continuous-review models according to frequency of inven-

tory inspection. In periodic-review inventory models, managers can adjust the inventory

level only at discrete times. In contrast, the inventory level can be adjusted at any time
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in continuous-review inventory models. In this thesis, we consider continuous-review

inventory models.

The objectives of inventory management include cost minimization, profit maxi-

mization, maximization of rate of return on stock investment, maximization of chance of

survival, ensuring flexibility of operation and determination of a feasible solution (Silver,

1981). The majority of the inventory management literature focuses on investigating the

optimal control policies that minimize the cost of inventory systems. The optimal poli-

cies specify when to order and how large each order should be. During the procedure of

constructing the optimal policy that minimizes the cost of inventory systems, managers

face a trade-off between different types of costs. There are two types of costs that are

related to inventory decision making procedure: the replenishment cost and the holding

and shortage cost. The replenishment cost consists of the setup cost and the proportional

cost for each order. The holding and shortage cost refers to the holding cost, when there

are products in stock and the shortage cost, when there are backlogs. In the existing liter-

ature, inventory models, including both periodic-review models and continuous-review

models, assume a constant setup cost or a monotone piecewise constant setup cost. The

optimal inventory control policies have not been completely characterized for the inven-

tory models with the monotone piecewise constant setup cost (Lippman, 1969; Chao

and Zipkin, 2008; Zhou et al., 2009). Furthermore, the setup cost for each order in the

real world arises from different activities and thus may not be a monotone function of

the order quantity. A general step function of the ordering quantity is more appropriate

to model the setup cost. Next, we will examine some existing periodic-review inventory

models and continuous-review inventory models with different setup cost structures.

Classical inventory models usually assume a fixed setup cost when placing an order

or starting a production run to replenish the inventory. For periodic-review single-product

inventory models, Scarf (1960) and Iglehart (1963) prove the well known result that an

ordering policy of the (s, S) type attains the optimality when the setup cost is constant

for any order quantity.
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The constant setup cost assumption may not be practical. To generalize this assump-

tion, one may model the setup cost as a step function. In some cases, the setup cost

increases as the ordering quantity grows. For example, if the setup cost consists of trans-

portation fees only, the number of trucks needed grows as the shipping amount increases,

thus resulting in the rise of the setup cost. Assuming that the capacity of a vehicle is Q

and the fixed cost for each vehicle is K0, then the ordering setup cost is a non-decreasing

step function of the order quantity ξ which is specified by

K(ξ) = K0 · d
ξ

Q
e. (1.1)

The study of stochastic inventory models with such a setup cost can be traced back

to Lippman (1969). In this paper, Lippman considers a periodic-review single-product

stochastic inventory model with a nondecreasing and subadditive ordering cost function.

The author proves the existence of optimal ordering policies for both finite-horizon prob-

lem and infinite-horizon problem. However, the optimal ordering policy that minimizes

the discounted cost is only partially characterized for both the multi-period problem

and the infinite-horizon problem: it is pointed out that at the beginning of each period,

the optimal policy is to replenish the inventory if the inventory level drops below a cer-

tain level and not to order if the inventory exceeds another level. However, the optimal

policy is not specified when the inventory is between these two levels. With the cost

structure in (1.1), Iwaniec (1979) figures out several conditions under which the optimal

policy minimizing the discounted cost is a full-batch ordering policy. In addition to full-

batch ordering policies, partial-batch ordering policies are studied in Alp et al. (2013)

and the optimal ordering policy that minimizes the long-run average cost is partially

characterized.

Chao and Zipkin (2008) consider a periodic-review single-product stochastic inven-

tory model with another type of monotone quantity-dependent setup cost function

K(ξ) = K0 · 1{ξ∈(C,∞)}. (1.2)
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The authors state that the setup cost in (1.2) is specified in supply contracts and could

be interpreted as the cost of disruption for the suppliers, such as finding more trucks,

arranging extra processing capacity, persuading other customers to postpone orders and

so on. This setup cost structure is imposed by the supplier in the supply contract in

order to prevent irregular larger orders. Under such a supply contract, no setup cost is

incurred if the ordering quantity does not exceed the contract volume C. However, the

buyer is charged a setup cost K0 if the order quantity exceeds the contract volume C.

The authors partially characterize the optimal ordering policy for their periodic-review

system and propose an effective heuristic policy under both discounted and average

cost criterion. The optimal order policy is not specified when the starting inventory

level was in a certain interval. Caliskan-Demirag et al. (2012) consider a stochastic

periodic-review single-product inventory model with several cost structures derived from

a nondecreasing quantity-dependent setup cost function

K(ξ) =
n∑
i=1

Ki · 1{ξ∈(Ci−1,Ci]}, (1.3)

where ξ is the order quantity, Ki ≤ Ki+1 and C0 = 0. The setup cost structure (1.3)

includes the cost structure (1.1) and (1.2) as special cases. However, they only provide

partial characterization of the optimal ordering policy for the finite-horizon problem.

The optimal policy is not specified for a certain interval.

Contrary to the increasing setup cost structure, setup cost may also decline as the

order size increases. To explore the economies of scale, suppliers often encourage buyers

to order more by providing shipping discounts or free shipping for large orders. Such

promotions indeed increase additional sales. In Lewis et al. (2006), the authors also point

out that customers are sensitive to shipping charges and promotions for large orders are

effective to generate more profits. Zhou et al. (2009) consider a periodic-review single-

product stochastic inventory system with a setup cost function

K(ξ) = K0 · 1{ξ∈(0,C)}. (1.4)
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Assuming a linear holding and shortage cost function, the authors provide the optimal

inventory control policy and its structural properties for the single-period model and

propose a heuristic policy for the multi-period inventory system. Zhou et al. (2009)

provide numerical results, but the authors do not provide complete characterization of

the optimal policy for the multi-period inventory system.

In existing inventory models with quantity-dependent setup cost, such as (1.1)-(1.4),

the optimal policies are not completely characterized (Lippman, 1969; Chao and Zipkin,

2008; Zhou et al., 2009; Caliskan-Demirag et al., 2012; Alp et al., 2013). Furthermore,

the existing setup cost structures in (1.1)-(1.4) are all monotone with respect to the order

quantity. However, the setup cost may not be a monotone function of the order quan-

tity. In practical inventory systems, setup cost arises from different activities, such as

transportation, loading and unloading, equipment installation and so on. As a result, the

setup cost may not be monotone with respect to the order quantity. For example, when

the inventory manager orders more, quantity discounts are offered for the transportation

fees (Zhou et al., 2009) and labor fees, however, are charged more (Caliskan-Demirag

et al., 2012). To the best of our knowledge, He et al. (2015) is the first and only study

that completely characterizes the optimal ordering policy for an inventory system with

quantity-dependent setup cost. Furthermore, the authors consider a general step setup

cost structure in the continuous-review single-product Brownian inventory system. How-

ever, He et al. (2015) only consider an inventory model with complete backlogs under

the long-run average cost criterion. There are no studies about what type the optimal

order policies will be under the no-backlog scenario or under the discounted cost cri-

terion. Since backlogs are not acceptable in some industries (Ormeci et al., 2008), it

is necessary to investigate the the optimal order policies for the inventory system with

quantity-dependent setup cost under the no-backlog scenario. Moreover, when the inter-

est rate is considered, it is more appropriate to apply the discounted cost criterion rather

than the long-run average cost criterion.

In this thesis, we consider continuous-review inventory models due to the technical

advantage of continuous-review models over periodic-review models. Since the order-

5



ing cost function may be neither convex nor concave, it is difficult to identify the cost

structures that can be preserved through dynamic programming. However under the

continuous-review model and Brownian demand process, we can obtain the optimal

policy by solving a Brownian control problem, which is more tractable than solving

a dynamic programming for the periodic-review inventory problem under a quantity-

dependent setup cost.

1.2 Objectives and Contributions

This thesis considers a continuous-review single-product inventory model with a general

step setup cost function

K(ξ) =
M∑
i=1

Ki · 1{ξ∈(Qi,Qi+1)} +
M−1∑
i=1

(Ki ∧Ki+1) · 1{ξ=Qi+1}, (1.5)

where

0 = Q1 < Q2 < · · · < QM−1 < QM < QM+1 =∞,

Ki > 0 for i = 1, 2, ...,M ,

Ki 6= Ki+1 for i = 1, 2, ...,M − 1.

See Figure 1.1 for an example of the general setup cost function (1.5) with M = 5.

In addition to the quantity-dependent setup cost, we further assume a general convex

holding and shortage cost and a proportional cost. Our objective is to extend the results

of He et al. (2015) to no-backlog cases and discounted cost criterion cases. The specific

objectives of this research are to:

(a) Investigate the optimal inventory control policy for the continuous-review inven-

tory system with the general setup cost and without backlogs under the long-run

average cost criterion.
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Figure 1.1: An example of the general setup cost K(ξ) in (1.5) with M = 5.

(b) Investigate the optimal inventory control policy for the continuous-review inventory

system with the general setup cost and without backlogs over the infinite horizon

under the discounted cost criterion.

(c) Investigate the optimal inventory control policy for the continuous-review inventory

system with the general setup cost and with backlogs allowed over the infinite

horizon under the discounted cost criterion.

The main difference between He et al. (2015) and our thesis is that we discuss two

discounted cost models. The technical proof under the discounted cost model is quite

different from the proof under the average cost model adopted by He et al. (2015).

In this thesis, we prove the optimality of an (s, S) policy with s = 0 for the average-

cost inventory model and the discounted-cost inventory model without backlogs by the

lower-bound approach. A similar no-backlog assumption was made in Harrison et al.

(1983) and Ormeci et al. (2008). In addition, we prove that the optimal policy for the

discounted-cost inventory model with backlogs is of the (s, S) type if the initial inventory

level is non-negative by the lower-bound approach.

In this thesis, we follow the lower-bound approach which was first proposed in

Harrison et al. (1983), while there are new issues arising from our models. The lower-

bound approach is a two-step self-contained method. In the first step, we establish a lower
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bound theorem, also known as a verification theorem, for all admissible policies. The

lower bound theorem under the long-run average cost criterion, Theorem 3.2, shows that

if a function f and a constant γ jointly satisfy several conditions, the constant γ will be

a lower bound for the cost incurred by any admissible policy. The lower bound theorems

under the discounted cost criterion, Theorems 4.2 and 5.2, state that if a function f

satisfies several conditions, f(x) will be the lower bound for the cost incurred by an

arbitrary admissible policy with initial inventory level x. The lower bound under the

long-run average cost criterion does not depend on the initial inventory level while the

lower bound under the discounted cost criterion does. This is because the cost of the

initial order will not influence the long-run average cost, but it will affect the discounted

cost. We derive the lower bound theorems by Itô’s formula as in Harrison et al. (1983),

Ormeci et al. (2008) and Dai et al. (2013a,b). The Brownian inventory models in these

papers allow both downward and upward adjustments, and thus the optimal policies

are expected to be control band policies. Under control band policies, the controlled

inventory level is restricted to a finite interval and the value function (or the relative

value function under long-run average cost criterion) is Lipschitz continuous. With

this fact, they can assume f to be Lipschitz continuous. This assumption allows them to

prove the lower bound theorem by solely relying on Itô’s formula. However only upward

adjustments are allowed in our models. The optimal policies of our models are expected

to be (s, S) policies under which the value function is not Lipschitz continuous. Without

the Lipschitz assumption, Wu and Chao (2013) and Yao et al. (2015) establish the lower

bound theorem for a subset, rather than for all admissible policies. Thus the proposed

(s, S) policies in these papers are optimal among the same subset of admissible policies.

To tackle this issue, He et al. (2015) propose a comparison theorem under the long-

run average cost criterion. In this thesis, we prove the comparison theorem under the

discounted cost criterion. Theorems 4.3 and 5.3 state that for any admissible policy, we

can find an admissible policy with a finite order-up-to bound whose discounted cost is

either less than or arbitrarily close to the discounted cost under the given policy. Namely,

if a policy is optimal among policies with order-up-to bound, it must be optimal among
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all admissible policies. With an order-up-to bound, we do not require f to be Lipschitz

continuous to prove the lower bound theorem by Itô’s formula.

In the second step, we seek a policy whose discounted cost attains the lower bound.

The main difference between the lower bound approach for inventory models with con-

stant setup cost (Ormeci et al., 2008; Dai et al., 2013a,b) and the lower bound approach

for inventory models with quantity-dependent cost in this thesis lies in this step. For

Brownian inventory models with constant setup cost, the optimal (s, S) policies are ob-

tained by imposing smoothness conditions at the the reorder level and the order-up-to

level, known as smooth pasting conditions (Bather, 1966; Sulem, 1986; Bar-Ilan and

Sulem, 1995). However for the our Brownian models with quantity-dependent setup

cost, the difference between the reorder level and the order-up-to level is confined to

an interval from Qi to Qi+1 when the setup cost is Ki. With this constraint, the smooth

pasting conditions may not hold at the optimal reorder level and the optimal order-up-to

level. Instead of imposing the smooth pasting conditions, we construct a procedure to

find the optimal policy parameters by examining the monotonicity of discounted cost,

which is illustrated in Sections 3.5, 4.5 and 5.5 respectively.

The contributions of this paper are in two aspects. Firstly, we obtain optimal policies

for the continuous-review inventory models with quantity-dependent setup cost structure

under no-backlog cases and discounted cost criterion cases. We provide an explicit four-

step procedure for calculating the optimal parameters. Although the obtained optimal

policies are for continuous-review inventory models, these policies can serve as near-

optimal solutions for the periodic-review models. Secondly, we provide comparison

theorems under the discounted cost criterion. With this comparison theorem, we prove

the optimality of (s, S) policies within a tractable subset of admissible policies instread

of all admissible policies. The proof of the comparison theorem under the discounted

cost criterion is different from the proof under the average cost criterion in He et al.

(2015) because the time points of incurred costs do not affect the long-run average cost

but the time points may affect the discounted cost. To prove the comparison theorem
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under the discounted cost criterion, we establish a new comparison scheme and let the

cost difference go to zero by taking the up-to-bound to infinity.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, we will provide a review of the related

literature. We explore an optimal inventory control policy that minimizes the long-run

average cost under no-backlog scenario in Chapter 3, an optimal inventory control pol-

icy that minimizes the discounted cost under no-backlog scenario in Chapter 4 and an

optimal inventory control policy that minimizes the discounted cost with backlogs and

non-negative initial inventory level in Chapter 5.
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Chapter 2

Literature Review

In this chapter, we provide a literature review of optimal policies for different inven-

tory models. In Section 2.1, we review optimal policies for periodic-review inventory

models with a constant setup cost. Section 2.2 provides a review of optimal policies

for periodic-review models with a piecewise constant setup cost. Finally, we look into

optimal policies for continuous-review inventory models with a constant setup cost in

Section 2.3.

2.1 Periodic-Review Inventory Models with a Constant

Setup Cost

The earliest studies of inventory policies for dynamic periodic-review inventory models

can be traced back to Arrow et al. (1951), Arrow (1958) and Scarf (1960). Scarf (1960)

is the first to prove that the optimal ordering policy for an n-period dynamic inventory

system can be specified by n pairs {(si, Si) : i = 1, ..., n}. Scarf (1960) assumes that

an ordering cost consists of a constant setup cost and a proportional cost and that the

holding and shortage cost is convex. The author introduces the concept of K-convexity

to tackle dynamic inventory problems. This study is regarded as a milestone in the the-

ory of inventory control. Based on the study of Scarf (1960), Iglehart (1963) proves the

optimality of (s, S) policies for the infinite-horizon problem and Veinott (1966) solves
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Scarf’s problem under a weaker assumption about the one-period expected cost. Ben-

soussan et al. (1983) provide a rigorous formulation of the problem with non-stationary

but stochastic independent demand.

Instead of assuming a linear ordering cost, Porteus (1971) examines a concave in-

creasing ordering cost function in a dynamic periodic-review inventory model. Assum-

ing that the demand of each period is an i.i.d. random variable that has a one-sided Polya-

density, the author proves that a generalized (s, S) policy is optimal for the n-period

problem by generalizing K-convex and quasi-convex functions to quasi-K-convex func-

tions. Porteus (1972) extends the optimality of a generalized (s, S) policy to a dynamic

periodic-review inventory model when the probability densities of demand are uniform

or convolutions of a finite number of uniform and\or one-sided Polya densities. Lu and

Song (2014) characterize the optimal policy for a periodic-review inventory model with

an ordering cost, which consists of a fixed cost and a piecewise linear convex variable

cost.

To tackle demand fluctuations caused by external factors such as business cycles

and new substitutes, Sethi and Cheng (1997) consider an inventory model in which the

distribution of demand is determined by a Markov chain. The authors consider a fixed

ordering setup cost and demonstrate that (s, S) policies are optimal for this general-

ized model. Sethi and Cheng further incorporate some realistic constraints, such as no

ordering periods and storage and service level constraints, and prove that the optimal

policies for the extended models are of the (s, S) type. The Markovian demand and

the constraints incorporated in the constrained inventory models bridge gaps between

theoretical inventory models and practical inventory systems.

Instead of assuming a single class of demand, Veinott (1965) studies a multi-period

inventory model in which there are several classes of demand for a single product in each

period. The author proposes an optimal rationing policy with critical inventory levels

that minimizes the discounted cost. Topkis (1968) considers a single-product inventory

model with lost sales and n classes of stochastic demand of different importance. Topkis

characterizes the optimal rationing policy that minimizes the expected costs, including
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holding costs, ordering costs, penalty costs for unsatisfied demand and salvage value.

Evans (1968) extends the analysis to an inventory model with two different classes

of demand. Kaplan (1969) and Frank et al. (2003) examine the rationing policy for

periodic-review inventory models with two priority demand classes and backlogs. Hung

et al. (2012) extend the analysis to inventory systems with multiple demand classes and

backlogs.

In the classical inventory model in Scarf (1960), the author provides the optimal

inventory policies when the lead time is constant. The constant lead time assumption

is not always practical in the real world. Hadley and Whitin (1963) point out that it

is of great difficulty to handle the stochastic lead time. A fundamental problem of the

dynamic programming formulation for periodic-review inventory model with stochastic

lead time is that a multi-dimensional state vector is required in order to keep track of

outstanding orders. The curse of dimensionality is a serious issue when the state vector

is in high dimensions. Instead of using a stochastic process to represent the random

lead times (Arrow, 1958; Agin, 1966), Kaplan (1970) builds a probabilistic model for

arrivals of outstanding orders. The author demonstrates how a multi-dimensional min-

imization problem can be reduced to an one-dimensional problem in a finite-horizon

periodic-review inventory model. Ehrhardt (1984) extends a finite-horizon problem to an

infinite-horizon problem and proves the optimality of (s, S) policies under the assump-

tion that the distribution of lead time for a given order is independent of the number and

sizes of outstanding orders. Furthermore, the author provides an efficient algorithm for

calculating the parameters of the optimal (s, S) policy. Song and Zipkin (1996) incorpo-

rate a Markovian model of exogenous supply system in their periodic-review inventory

model. In this model, the replenishment lead time evolves over time. The optimal pol-

icy is shown to be of the (s, S) type but the parameters of the optimal policy change

dynamically. Muharremoglu and Yang (2010) extend the stochastic lead time inventory

models by considering a broader class of lead time processes including all existing lead

time models.
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In a competitive retail environment, excess demand may be partially lost rather than

completely backlogged. Gruen et al. (2002) examine customers response to stockouts

across eight retail categories and show that only 15% of customers will wait for re-

plenishment when they observe stockouts and the remaining 85% will choose to buy a

substitute or do not buy any product. Thus lost-sales inventory models might be more

practical than backlogged inventory models. The studies of periodic-review lost-sales

inventory models can be traced back to Bellman et al. (1955). In this paper, the authors

consider a special case when the lead time equals to an review period and only con-

sider an ordering cost and a penalty cost. Karlin and Scarf (1958) extend Bellman’s

inventory model by incorporating a holding cost and positive lead time. Morton (1969)

further extends Karlin’s results and derives the bounds of the optimal policy. Under a

similar inventory model, Zipkin (2008) derives new bounds of the optimal policy by

transforming state variables. In addition, Zipkin (2008) extends the analysis to several

significant variations of the basic inventory model, including inventory models with

capacity constraints, stochastic lead time and multiple demand classes separately. The

periodic-review inventory models in the above-mentioned papers all assume a zero setup

cost. A comprehensive review of lost-sales inventory models is done by Bijvank and Vis

(2011).

For inventory systems in the real world, there might be some constraints imposed

by some endogenous or exogenous factors. Beesack (1967) consider a finite-horizon

periodic-review dynamic inventory model with a stockout constraint. This stockout con-

straint states that the ratio of the expected amount of stockouts to the expected demand

over the finite-horizon cannot exceed a predetermined fraction. The optimal control pol-

icy is obtained by dynamic programming combined with a Lagrange multiplier. Shaox-

iang and Lambrecht (1996), Gallego and Scheller-Wolf (2000) and Shaoxiang (2004)

examine periodic-review inventory models with a supply capacity contract and a fixed

setup cost. Partial characterizations of the optimal policies are provided in these three

papers.
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2.2 Periodic-review Inventory Models with a Piecewise

Constant Setup Cost

Instead of assuming a constant setup cost for any order quantity, many researchers con-

sider quantity-dependent setup costs in periodic-review dynamic inventory models.

Setup cost structure in (1.1) is a reasonable setup cost function in many cases. For

example, the transportation cost can be modeled as (1.1) when products are delivered

to customers by vehicles. Lippman (1969) considers a single-product periodic-review

dynamic inventory model with a nondereasing and subadditive setup cost shown in

(1.1). Lippman obtains a two-parameter optimal policy for the one-period model, but he

only provides a partial characterization of the optimal policy for the multi-period model.

Under the same setup cost structure, Iwaniec (1979) specifies the conditions under which

the optimal policy is a full-batch ordering policy. The full-batch ordering policy is first

studied by Veinott (1965). Under these conditions, Iwaniec proves that the sequence of

critical numbers associated with the optimal full-batch ordering policy is bounded and

nondecreaasing. Furthermore, the author specifies the limiting value that characterizes

the optimal full-batch ordering policy for the infinite-horizon problem. Alp et al. (2013)

consider a similar inventory model but allow partial-batch ordering flexibility in their

inventory model. By introducing an alternative cost-accounting scheme, the authors

provide a complete characterization of the optimal policy for the one-period problem,

but they partially characterize the optimal policy for the infinite-horizon problem and

propose two computationally efficient heuristic policies. Alp et al. (2003) provide a

generalization of this problem but with deterministic demand and stochastic lead time.

In some inventory systems, the setup cost is defined in a supply contract signed

after negotiations between suppliers and customers. Henig et al. (1997) examine the

inventory control policies for a periodic-review inventory model with an ordering cost

that is zero if the order quantity below a predetermined contract volume and linear in

the excess quantity portion. Chao and Zipkin (2008) consider a same model but with a

setup cost shown in (1.2). This setup cost can be interpreted as the cost of disruption
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for the suppliers as well as additional administrative costs with extra order quantities.

The optimal policy for this inventory model is partially characterized and an effective

heuristic policy is proposed. Zhou et al. (2009) consider a setup cost structure, under

which customers are offered free shipping if the order quantity exceeds a certain quantity

specified by suppliers. This setup cost structure may appear in e-commerce in which

there is intense competition among the companies. Zhou et al. (2009) characterize the

structural properties of the optimal policy for the single-period problem and propose a

heuristic policy for the multi-period problem. The heuristic policy is demonstrated to be

close to the optimal policy.

In some practical periodic-review inventory systems, the incurred setup cost may

be a function of the order quantity in the previous period. Toy and Berk (2006) show

that a process can be kept warm till next production period if the previous order size

exceeds a threshold and otherwise is cold. The warm process allows manufacturers to

avoid the setup cost for the current period. A similar warm/cold setup cost structure in

food and other industries is discussed in Robinson and Sahin (2001). Caliskan-Demirag

et al. (2013) consider a periodic-review inventory model with stochastic demand and a

setup cost

K(ξ) = K0u(ξ)u(R− q),

where ξ is the order quantity of current period, q is the order quantity of the previous

period, R is a threshold value and u(x) = 1 if x > 0 and 0 otherwise. Assuming a

proportional cost and a linear holding and shortage cost, the authors partially characterize

the optimal control policy and propose two heuristic policies.
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2.3 Continuous-review Inventory Models with a Con-

stant Setup Cost

There are several reasons for examining continuous-review inventory models. Browne

and Zipkin (1991) list several reasons from the perspective of inventory management.

Zipkin (1986) points out that continuous-review models lead to easy calculation of key

performance measures. He et al. (2015) point out that it is more tractable to solve a

Brownian control problem than to solve a dynamic program for the periodic-review

inventory problem under a quantity-dependent setup cost.

Brownian inventory models have received considerable attention in the literature.

Brownian demand processes in continuous-time inventory models are analogous to i.i.d.

normally distributed demands in periodic-review inventory models. Bather (1966) is

the first to introduce the Brownian inventory models. Assuming a convex holding and

shortage cost along with an ordering cost that consists of a proportional cost and a

fixed setup cost, the author demonstrates that the optimal policy for the average-cost

inventory model with zero lead time is of the (s, S) type. Based on this pioneering

paper, a lot of studies have extended this fundamental Brownian inventory model to

more general scenarios but all under a constant setup cost assumption except for He et al.

(2015). Sulem (1986) discusses an inventory model with a piecewise linear holding and

shortage cost and zero lead time under the discounted cost criterion. Benkherouf (2007)

considers a similar inventory model with a generalized holding and shortage cost h(·)

with four conditions. The optimal policies are proved to be of the (s, S) type for these

two inventory models. Feng and Muthuraman (2010) provide a computational method

for solving impulse control problems with zero lead time. Bensoussan et al. (2005)

and Benkherouf and Bensoussan (2009) consider a model with a demand process as a

mixture of a Brownian motion and a compound Poisson process and demonstrate the

optimal policy is of the (s, S) type. Except Feng and Muthuraman (2010) utilizing a

computational method, the optimal policies of the inventory models considered in above

papers are obtained by solving a set of quasi-variational inequalities (QVIs) derived
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from the Bellman equation as well as the boundary conditions imposed on the reorder

level and the order-up-to level. These boundary conditions are known as smooth pasting

conditions. A comprehensive account of smooth pasting and its applications is provided

by Dixit (1993).

Harrison et al. (1983) prove the optimality of a control band policy (q,Q, S) for

an inventory system whose demand is a drifted Brownian motion. The discounted-cost

inventory model discussed in this paper allows both upward adjustments and downward

adjustments and does not allow backlogs. In this paper, the authors adopt a two-step

lower bound approach to prove the optimality of the control band policy and to obtain the

optimal parameters. Compared to the QVI method, the lower bound approach provides

a self-contained proof and thus becomes a widely used method for solving Brownian

control problems. The technique of smooth pasting is also used in the lower bound

approach to obtain the optimal policy. By the lower bound approach, Ormeci et al.

(2008) tackle the average cost case directly, without vanishing the discount rate as in the

previous literature. The authors further extend the optimality of the control band policy

for the bounded inventory level control problem and the constrained order quantity

control problem with Lagrangian relaxation techniques. The costs considered in both

papers include an ordering cost, consisting of a fixed setup cost and a proportional cost,

and a linear holding and shortage cost. Dai et al. (2013a,b) extend the optimality of the

control band policy to a similar Brownian inventory model but with a convex holding

and shortage cost under the average cost criterion and the discounted cost criterion

respectively. Assuming that only upward adjustments are allowed, Yao et al. (2015)

prove the optimality of (s, S) policies for a Brownian inventory model with a concave

ordering cost by the lower bound approach. Wu and Chao (2013) apply the lower bound

approach to examine a Brownian inventory model with production capacity constraints

and prove the optimality of (s, S) policies.

Studies of stochastic lead time in continuous-review inventory models can be traced

back to Zipkin (1986). In this paper, Zipkin examines both stationary and limiting dis-

tributions of the inventory level and the inventory position under a stochastic lead time
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assumption with no order crossing. However, the the author does not specify the optimal

policy. Johansen and Thorstenson (1993) consider an inventory model with lead times

following a gamma distribution. Kulkarni and Yan (2012) examine an inventory system

in which the demand rate is modeled as a finite state continuous time Markov chain

and with stochastic lead time. The authors provide algorithms for computing the best

(r,Q) policy. Song et al. (2010) consider a single-item (r,Q) inventory system with a

compound-Poisson demand process. The authors demonstrate how the optimal policy

parameters as well as the long-run average cost changes in response to the changes of

the distribution of lead time. Muthuraman et al. (2014) prove the optimality of (s, S)

policy and obtain the limiting distribution of the inventory level for a Brownian inventory

model with stochastic lead time by the QVI method.
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Chapter 3

Optimal Policy Under the Long-Run

Average Cost Criterion Without

Backlogs

In this chapter, we follow the two-step lower bound approach to obtain an optimal policy

for a continuous-review inventory model without backlogs under the long-run average

cost criterion. The optimal policy is an (s, S) policy with s = 0 and we use (0, S) policy

to represent it in this thesis. In particular, Section 3.1 presents the continuous-review

inventory model and assumptions of cost functions. In Section 3.2, we present the main

results of this chapter. In Section 3.3, we establish a lower bound for the long-run average

cost incurred by any admissible policy. We compute the long-run average cost under a

(0, S) policy in Section 3.4. In Section 3.5, we demonstrate how to select the optimal

(0, S) policy and prove the optimality of it. In Section 3.6, we provide a numerical

analysis of the optimal (0, S) policy.

3.1 Model and Assumptions

Consider a continuous-review inventory system whose inventory level at time t ≥ 0 is

denoted by Z(t). We assume that the inventory system does not allow backlogs, which

implies that the inventory controller is obliged to maintain Z(t) ≥ 0 for all t ≥ 0. We
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further assume that all demands must be satisfied and the lead time for each order is

zero. Let D(t) and Y (t) be the cumulative demand quantity and the cumulative order

quantity during time [0, t], respectively. In our Brownian control model, only upward

adjustments are allowed. Then, the inventory level at time t ≥ 0 is given by

Z(t) = x−D(t) + Y (t),

where x is a non-negative real number. We set Z(0−) = x and interpret x as the initial

inventory level. We assume that the cumulative demand quantity process D = {D(t) :

t ≥ 0} is a Brownian motion starting form D(0) = 0 with positive drift µ > 0 and

variance σ2. Namely, the process D can be represented as

D(t) = µt− σB(t),

where B = {B(t) : t ≥ 0} is a standard Brownian motion defined on a filtered

probability space (Ω,F ,F,P) with filtration F = {F(t) : t ≥ 0}. Then, by the definition

of D(t), the inventory level at time t is given by

Z(t) = X(t) + Y (t), (3.1)

where

X(t) = x− µt+ σB(t) (3.2)

can be interpreted as the inventory level in the absence of control and it is a Brownian

motion starting from X(0) = x with drift −µ and variance σ2.

An inventory order policy is specified by the cumulative order quantity process

Y = {Y (t) : t ≥ 0}. An ordering policy is said to be admissible if the ordering policy

Y satisfies:
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(i) for each sample path ω, Y (ω, ·) is a nondecreasing function that is right continuous

on [0,∞) and has left limits on (0,∞);

(ii) Y (t) ≥ 0 for all t ≥ 0;

(iii) Process Y is adapted to the filtration F, namely Y (t) is F(t) measurable for all

t ≥ 0.

Let U denote the set of all admissible policies. The controller of the inventory system

can control the inventory level by replenishing the inventory by any admissible policy

Y ∈ U . For any t ≥ 0, Y (t−) is the left limit at time t and let Y (0−) = 0 by convention.

Then the controlled inventory level Z(t) is right continuous on [0,∞) and has left limits

on (0,∞). At any time t ≥ 0, the controller can replenish the inventory by any desired

amount, but the controller is obliged to keep Z(t) ≥ 0 for all t ≥ 0. This obligation

implies that backlogs are not allowed in the inventory. For any admissible control policy

Y , a time point t is said to be an order time if ∆Y (t) := Y (t)− Y (t−) > 0. Let N(t)

be the cardinality of the set

{u ∈ [0, t] : ∆Y (u) = Y (u)− Y (u−) > 0}.

We allow an order at time t = 0. With initial inventory level Z(0−) = x, the inventory

level after the initial order can be represented by Z(0) = x+ Y (0), where Y (0) can be

positive or zero.

Two types of costs are incurred in this continuous-review inventory system: the

inventory holding cost and the ordering cost. The inventory holding cost is incurred at a

rate h(z) when the inventory level is z. Since the controller is required to keep Z(t) ≥ 0

for t ≥ 0, h is defined on [0,∞). In the inventory model of this chapter, we assume the

inventory holding cost rate function satisfies the following assumption.

Assumption 1. h(·) satisfies

(A1) h(·) is convex and h(0) = 0;

(A2) h(·) is continuously differentiable on [0,∞);
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(A3) h′(z) > 0 for z ≥ 0 ;

(A4) h(·) is polynomially bounded, i.e., there exist positive constants ai > 0, i = 0, 1

and a positive integer n such that h(z) ≤ a0 + a1z
n for all z ≥ 0.

An ordering cost is incurred whenever an order is placed and this cost is a function

of the order quantity ξ > 0. When an order with quantity ξ > 0 is placed, it incurs a

setup cost of K(ξ) > 0 and a proportional cost of kξ with proportional cost rate k > 0.

Let φ(ξ) denote the ordering cost with order quantity ξ. Then φ(ξ) is given by

φ(ξ) = K(ξ) + k · ξ. (3.3)

Since K(ξ) > 0 for ξ > 0, we only need to consider policies with N(t) < ∞ for any

t > 0. Otherwise, the total cost would be infinite during the time interval [0, t]. Namely,

we only need to consider the policies that order finite times in any finite time interval,

which implies that Y (t) is piecewise constant on each sample path. Such a policy can be

specified by a sequence of pairs {(Ti, ξi) : i = 0, 1, . . .} where Ti is the ith order time

and ξi = ∆Y (Ti) = Y (Ti)− Y (Ti−) is the quantity of the ith order. By convention, we

set T0 = 0 and let ξ0 be the quantity of the order placed at time zero. Put ξ0 = 0 if no

order is placed. Then, the ordering process Y (t) can be represented as

Y (t) =

N(t)∑
i=0

ξi.

Therefore, investigating an optimal control policy given that K(ξ) > 0 for ξ > 0 is

equivalent to exploring a sequence of order times together with corresponding ordering

quantities {(Ti, ξi) : i = 0, 1, . . .}, which turns out to be an impulse control problem for

the Brownian model.

We consider the setup cost function defined in (1.5), i.e.,

K(ξ) =
M∑
i=1

Ki · 1{ξ∈(Qi,Qi+1)} +
M−1∑
i=1

(Ki ∧Ki+1) · 1{ξ=Qi+1},
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where

0 = Q1 < Q2 < · · · < QM−1 < QM < QM+1 =∞,

Ki > 0 for i = 1, 2, . . . ,M ,

Ki 6= Ki+1 for i = 1, 2, . . . ,M − 1.

Our objective is to find an admissible inventory policy Y that minimizes the long-run

average cost

AC(x, Y ) = lim sup
t→∞

1

t
Ex
[ ∫ t

0

h(Z(u))du+

N(t)∑
i=0

(K(ξi) + k · ξi)
]
, (3.4)

where Ex is the expectation operator conditioning on the initial inventory level Z(0−) =

x.

3.2 Main Results

In this section, we present the main results of this chapter. Under the quantity-dependent

setup cost defined in (1.5), an optimal policy for the Brownian inventory model in this

chapter is a (0, S) policy with S > 0. We propose an algorithm for computing the

optimal order-up-to level.

We use U(0, S) to denote such a (0, S) policy. A (0, S) policy can be specified by

the sequence of pairs {(Ti, ξi) : i = 0, 1, . . .} as follows. With T0 = 0, the ith order is

placed at time Ti = inf{t > Ti−1 : Z(t−) = 0} for i = 1, 2, . . . and the quantity of the

ith order is given by ξi = S for i = 1, 2, . . . and

ξ0 =

 S if x = 0,

0 if x > 0.

The optimal order-up-to level S∗ can be obtained by the following algorithm.
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Step 1. For z ≥ 0 and A ∈ R, let λ = 2µ
σ2 and

gA(z) = A+
λ

µ

∫ ∞
z

h(y)eλ(z−y)dy. (3.5)

For n = 1, . . . ,M , obtain Ân and Ŝn > 0 by solving

∫ Ŝn

0

[gÂn(y) + k]dy = −Kn, (3.6)

and

gÂn(Ŝn) = −k. (3.7)

Step 2. Define

N< = {n ∈ {1, 2, . . . ,M} : Ŝn ≤ Qn},

N= = {n ∈ {1, 2, . . . ,M} : Ŝn ∈ (Qn, Qn+1)},

N> = {n ∈ {1, 2, . . . ,M} : Ŝn ≥ Qn+1},

and

S∗n =


Qn for n ∈ N<,

Ŝn for n ∈ N=,

Qn+1 for n ∈ N>.

(3.8)

Step 3. For n ∈ N=, let

A∗n = Ân.

For n ∈ N> ∪N<, obtain A∗n by solving

∫ S∗
n

0

[gA∗
n
(y) + k]dy = −Kn.
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Step 4. LetM = {1, . . . ,M}. Define

n∗ = min{n ∈M : A∗i ≤ A∗n for all i ∈M}. (3.9)

Let

S∗ = S∗n∗ , A∗ = A∗n∗ and K∗ = Kn∗ . (3.10)

In Step 1, we obtain the parameter Ŝn associated with Ân by smoothness conditions

similar with those in Bather (1966). This (0, Ŝn) policy is expected to be optimal when

the setup cost is constant at Kn. However under the quantity-dependent setup cost, a

quantity constraint is imposed on each setup cost value. Thus in Step 2 we obtain S∗n,

which is confined within the corresponding interval. We obtain the auxiliary parameter

A∗n in Step 3. Finally in Step 4, we select the optimal S∗ by picking the largestA∗n. Please

see Section 3.5 for explicit derivations.

Then (0, S∗) policy from the above algorithm is an optimal policy for our Brown-

ian inventory model. The optimality of this (0, S∗) policy is proved by the following

theorem.

Theorem 3.1. Assume the cost function h satisfies Assumption 1 and that the setup cost

is given by (1.5). Control policy U(0, S∗) obtained by Steps 1–4 is an optimal admissible

policy that minimizes the long-run average cost given by (3.4). Namely, we have

AC(x, U(0, S∗)) ≤ AC(x, Y ) for x ≥ 0 and Y ∈ U .

Moreover, the minimum long-run average cost is AC(x, U(0, S∗)) = −µA∗.

We will prove Theorem 3.1 in Section 3.5.2.
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3.3 Lower Bound Under the Long-Run Average Cost

Criterion

In this section, we propose and prove a theorem that establishes a lower bound for the

long-run average cost incurred by any admissible control policy.

Theorem 3.2. Assume that h satisfies Assumption 1. Let f(·) : [0,∞) → R be twice

continuously differentiable. Assume that there exists a positive real number γ such that

Γf(z) + h(z) ≥ γ for all z ≥ 0, (3.11)

where

Γf(z) =
1

2
σ2f ′′(z)− µf ′(z).

We further assume that

f(z1)− f(z2) ≤ K(z2 − z1) + k · (z2 − z1) for all 0 ≤ z1 < z2, (3.12)

and f ′(·) is polynomially bounded, i.e., there exist positive constants a0, a1 and a positive

integer n such that

|f ′(z)| < a0 + a1z
n for all z ≥ 0. (3.13)

Then

AC(x, Y ) ≥ γ, (3.14)

where AC(x, Y ), given by (3.4), is the long-run average cost under any admissible

control policy Y .

By Theorem 3.2, if we can find an admissible ordering policy whose long-run aver-

age cost γ satisfies the conditions in Theorem 3.2, we can conclude that this admissible
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control policy must be optimal among all admissible policies. In the lower bound ap-

proach, Theorem 3.2 is referred to as a verification theorem. In order to prove Theorem

3.2, we first need to show some technical results.

The following comparison theorem is a critical result for proving Theorem 3.2. It

implies that a policy that is optimal among the policies subject to order-up-to bounds

must be optimal among all admissible policies. Compared with the general admissible

policies, policies subject to order-up-to bounds are analytically tractable.

For m = 1, 2, . . ., let

Um = {Y ∈ U : Z(t) ≤ m for all order time t}

represent the set of admissible policies with an order-up-to bound at m.

Theorem 3.3 (Comparison Theorem). Assume that the holding cost rate function h

is nondecreasing on [0,∞) and the setup cost function K(·) is bounded. Then for any

admissible policy Y , there exists a sequence of admissible policies {Ym ∈ Um : m =

1, 2, . . .} such that

lim
m→∞

AC(x, Ym) ≤ AC(x, Y ). (3.15)

The Theorem 3.3 can be derived from Theorem 2 in He et al. (2015). Let U be the

set of all admissible policies subject to order-up-to bounds, namely,

Ū =
∞⋃
m=1

Um.

This comparison theorem implies that a policy that is optimal in U must be optimal in U .

Therefore, we only need to search all admissible policies subject to order-up-to bounds

for the optimal policy. Moreover, it is more convenient to prove the optimality among

the admissible policies subject to order-up-to bounds.

The following lemma provides three important results that are important for proving

Theorem 3.2.
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Lemma 3.1. Let f(·) : R → R be a differentiable function and Z be the inventory

process given in (3.1) with Y ∈ U . Assume there exist positive constants a0, a1 and a

positive integer n such that

|f ′(z)| < a0 + a1z
n for all z ≥ 0.

Then,

Ex[|f(Z(t))|] <∞ for t ≥ 0, (3.16)

and

Ex
[ ∫ t

0

(f ′(Z(u)))2du
]
<∞ for t ≥ 0. (3.17)

Moreover,

lim
t→∞

1

t
Ex[f(Z(t))] = 0. (3.18)

This lemma can be derived from Lemma 3 in He et al. (2015) directly.

Proof of Theorem 3.2. By Theorem 3.3, it suffices to consider an arbitrary policy Y ∈ U ,

namely it suffices to consider Y ∈ Um for a fixed positive integer m. For any Y ∈ Um,

recall that

Z(t) = x− µt+ σB(t) + Y (t).

By Itô’s formula , we have

f(Z(t)) = f(Z(0)) +

∫ t

0

Γf(Z(u))du+ σ

∫ t

0

f ′(Z(u))dB(u) +
∑

0<u≤t

∆f(Z(u))

= f(Z(0−)) +

∫ t

0

Γf(Z(u))du+ σ

∫ t

0

f ′(Z(u))dB(u) +
∑

0≤u≤t

∆f(Z(u))
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≥ f(Z(0−)) + γt−
∫ t

0

h(Z(u))du+ σ

∫ t

0

f ′(Z(u))dB(u) +
∑

0≤u≤t

∆f(Z(u))

≥ f(Z(0−)) + γt−
∫ t

0

h(Z(u))du

+σ

∫ t

0

f ′(Z(u))dB(u)−
N(t)∑
i=0

φ(ξi), (3.19)

where the first inequality follows from (3.11), the second inequality results from (3.12)

and φ is defined in (3.3). By (3.17) and Theorem 3.2.1 in Øksendal (2003), we have

Ex
[ ∫ t

0

f ′(Z(u))dB(u)
]

= 0.

Because (3.16) holds, we can take expectation on both sides of (3.19) and obtain

Ex[f(Z(t))] ≥ f(x) + γt− Ex[
∫ t

0

h(Z(u))du]− Ex[
N(t)∑
i=0

φ(ξi)]. (3.20)

Dividing both side by t and taking limit as t→∞ of both sides of (3.20), we have

AC(x, Y ) + lim
t→∞

1

t
Ex[f(Z(t))] ≥ γ.

Then by (3.18), the conclusion AC(x, Y ) ≥ γ follows. �

3.4 Long-Run Average Cost Under (0, S) Policies

In this section, we will compute the long-run average cost under any (0, S) policy,

the policy with a reorder level zero and an order-up-to level S. By the definition of

admissible policies, all (0, S) policies are in Ū , the set of admissible policies subject to

order-up-to bounds.

Theorem 3.4. For any S > 0, if there exists a twice continuously differentiable function

V (·) : [0,∞)→ R and a positive number γ such that

ΓV (z) + h(z) = γ for z ≥ 0, (3.21)
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V (S)− V (0) = −K(S)− k · S, (3.22)

V ′ is polynomially bounded. (3.23)

Then the long-run average cost under U(0, S) is given by

AC(x, U(0, S)) = γ. (3.24)

Proof. By the Itô’s formula together with (3.21), we have

V (Z(t)) = V (Z(0−)) + γt−
∫ t

0

h(Z(u))du+ σ

∫ t

0

V ′(Z(u))dB(u)

−
∑

0≤u≤t

∆V (Z(u)). (3.25)

Under the (0, S) policy with S > 0, it follows from (3.22) that ∆V (Z(u)) = −K(S)−

k · S whenever ∆Z(u) > 0 and u ≥ 0. Then (3.25) turns out to be

V (Z(t)) = V (Z(0−)) + γt−
∫ t

0

h(Z(u))du+ σ

∫ t

0

V ′(Z(u))dB(u)−
N(t)∑
i=0

φ(ξi),

where φ is given by (3.3) and ξi = S for i = 1, 2, . . . and

ξ0 =

 S if x = 0,

0 if x > 0.

By (3.17) and Theorem 3.2.1 in Øksendal (2003), we have Ex[
∫ t

0
V ′(Z(u))dB(u)] =

0. Since (3.16) holds, we can take expectation of the above equation and by dividing t

of both sides and taking limit as t→∞ , we can obtain

lim
t→∞

1

t
Ex[V (Z(t))] + AC(x, U(0, S)) = γ.

By (3.18) and (3.23), we can conclude that

AC(x, U(0, S)) = γ.
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In the following proposition, we provide the solution to equations (3.21)–(3.23).

Proposition 3.1. The solution to (3.21)–(3.23) is given by

γ =
1

S

[
µK(S) + µk · S + λ

∫ S

0

∫ ∞
z

h(y)eλ(z−y)dydz
]
, (3.26)

and

V (z) =

∫ z

0

g(y)dy for z ≥ 0, (3.27)

with

g(z) = −γ
µ

+
λ

µ

∫ ∞
z

h(y)eλ(z−y)dy, (3.28)

where λ = 2µ
σ2 . The solution V (z) given by (3.27) together with (3.28) is unique up to

addition by a constant.

Proof. The ordinary differential equation (3.21) can be rewritten as

(e−λzg(z))′ =
2

σ2
(γ − h(z))e−λz.

By integrating both sides over the interval [0, z] and dividing both sides by e−λz, we

have

g(z) = g(0)eλz +
2γ

σ2

∫ z

0

eλ(z−y)dy − 2

σ2

∫ z

0

h(y)eλ(z−y)dy

= g(0)eλz +
γλ

µ

∫ z

0

eλ(z−y)dy − λ

µ

∫ z

0

h(y)eλ(z−y)dy.

By (3.23), we have

lim
z→∞

g(z)

eλz
= 0,
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from which we can infer

g(0) =
λ

µ

∫ ∞
0

h(y)e−λydy − γλ

µ

∫ ∞
0

e−λydy.

Then, we can rewrite g(z) as follows

g(z) = −γ
µ

+
λ

µ

∫ ∞
z

h(y)eλ(z−y)dy.

Then the expression of γ in (3.26) can be derived from the equation (3.22) directly.

Remark 3.1. The relative value funtion V (z) can be interpreted as the cost disadvantage

of inventory level z relative to the reorder level 0. By the expression of g(z) in (3.28)

and the relationship between g(z) and V (z) in (3.27), we can obtain the expression for

V (z) as follows

V (z) = −γz
µ

+
λ

µ

∫ z

0

∫ ∞
0

h(u+ y)e−λududy. (3.29)

For x ≥ y, define

τ(x, y) = inf{t ≥ 0 : X(0) = x,X(t) = y},

W (x, y) = Ex
[ ∫ τ(x,y)

0
h(X(u))du

]
.

Under a (0, S) policy, τ(z, 0) defined above can be interpreted as the first order time, and

W (z, 0) can be interpreted as the expected holding and shortage cost during [0, τ(z, 0)].

By Section 15.3 in Karlin and Taylor (1981), we have

W (z, 0) =
λ

µ

∫ z

0

∫ ∞
0

h(u+ y)e−λududy.

By Theorem 5.32 in Serfozo (2009),

τ(z, 0) =
z

µ
.
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Then V (z) can be rewritten as

V (z) = W (z, 0)− γE[τ(z, 0)].

W (z, 0) is the cost disadvantage of a system starting from time zero with initial inventory

level Z(0−) = z compared to a system starting from time τ(z, 0) with initial inventory

level Z(τ(z, 0)−) = 0. γE[τ(z, 0)] can be interpreted as the cost disadvantage of a

system starting from time zero compared to a system starting from time τ(z, 0) with the

same initial inventory level. Therefore, V (z), as the difference of these two costs can be

interpreted as the relative cost disadvantage of inventory level z compared to the reorder

level zero.

3.5 Optimal Policy

For z ≥ 0, let

g0(z) =
λ

µ

∫ ∞
z

h(y)eλ(z−y)dy. (3.30)

By (3.5), we have gA(z) = g0(z) + A. Let VA(z) =
∫ z

0
gA(y)dy for z ≥ 0, where

gA(z) is given by (3.5). By Proposition 3.1, V ′A(z) is polynomially bounded on [0,∞).

Furthermore, VA(z) satisfies the differential equation

ΓVA(z) + h(z) = −µA.

For any (0, S) policy, if VA(z) further satisfies

VA(S)− VA(0) = −K(S)− k · S, (3.31)
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we can conclude by Theorem 3.4 that the long-run average cost under a (0, S) policy is

given by

AC(x, U(0, S)) = −µA. (3.32)

This conclusion implies that in order to minimize the long-run average cost under a

(0, S) policy, we should maximize the value of A without violating (3.31).

In the rest of this chapter, we need the properties of gA(z) with respect to the auxiliary

variable A for fixed z ≥ 0. To make the notation clear, for fixed z ≥ 0, let

ϕz(A) = gA(z).

Then ϕ′z(A) = 1.

In Section 3.5.1, we demonstrate how the four-step algorithm in Section 3.2 attains

the maximum value of A by selecting the (0, S∗) policy, the best policy among (0, S)

policies. In Section 3.5.2, we show that under this (0, S∗) policy, the corresponding

relative value function and the corresponding long-run average cost jointly satisfy the

conditions specified in the lower bound theorem. Thus, the (0, S∗) policy is an optimal

policy for our Brownian inventory model in this chapter.

3.5.1 The Optimal (0, S) Policy

In this subsection, we first show the monotonicity of gA(z) in Lemma 3.2, which is an

important lemma for proving subsequent lemmas. Then we identify a set of (0, S) poli-

cies {U(0, Ŝn) : n = 1, . . . ,M} by Lemma 3.3. However under the quantity-dependent

setup cost, the obtained Ŝn may not fall into an interval from Qn to Qn+1. Therefore

we obtain a set of modified (0, S) policies {U(0, S∗n) : n = 1, . . . ,M} by the process

shown in (3.8). Lemma 3.4 proves the existence of A∗n together with S∗n such that they

jointly satisfy (3.42), which is equivalent to (3.31). Finally, we select the optimal (0, S∗)

policy out of the set {U(0, S∗n) : n = 1, . . . ,M} by (3.9) and (3.10).

First of all, we prove the monotonicity of gA(z) which in defined in (3.5).
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Lemma 3.2. Assume that h satisfies Assumption 1. Then for anyA ∈ R, gA(z) is strictly

increasing in z ∈ [0,∞). Furthermore,

lim
z→∞

gA(z) =∞. (3.33)

Proof. It suffices to show g′A(z) is always positive for A ∈ R and z ≥ 0. By taking

derivative of gA(z) defined in (3.5), we obtain

g′A(z) = g′0(z) =
λ

µ

[
λeλz

∫ ∞
z

h(y)e−λydy − h(z)
]

= −λ
µ

[
eλz
∫ ∞
z

h(y)d(e−λy) + h(z)
]

=
λ

µ

∫ ∞
z

h′(y)e−λ(z−y)dy

> 0,

where the inequality follows from (A3) in Assumption 1.

Next we prove (3.33). It suffices to show lim
z→∞

g0(z) =∞. By (3.30),

lim
z→∞

g0(z) = lim
z→∞

λ
∫∞
z
h(y)e−λydy

µe−λz

= lim
z→∞

−λh(z)e−λz

−µλe−λz

= lim
z→∞

h(z)

µ

= ∞,

where the second equality follows from L’Hôpital’s Rule and the last equality follows

from (A1)–(A3) in Assumption 1.

By the following lemma, we identify a set of (0, S) policies {U(0, Ŝn) : n =

1, . . . ,M}.
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Lemma 3.3. Assume that h satisfies Assumption 1. For an arbitrary κ > 0, there exist

a unique pair (Ŝ(κ), Â(κ)) with Ŝ(κ) > 0 such that

∫ Ŝ(κ)

0

[gÂ(κ)(y) + k]dy = −κ, (3.34)

gÂ(κ)(Ŝ(κ)) = −k. (3.35)

For any 0 < κi < κj , the corresponding (Ŝ(κi), Â(κi)) and (Ŝ(κj), Â(κj)) satisfy

Ŝ(κi) < Ŝ(κj) and Â(κi) > Â(κj). (3.36)

Proof. Firstly, we show that there exists an A ∈ R such that gA(0) < −k for A ∈

(−∞, A). Define A as

A = −k − g0(0) = −k − λ

µ

∫ ∞
0

h(y)e−λydy.

By (A4) in Assumption 1, g0(0) is bounded, which further implies that A is bounded.

Therefore, gA(0) = A+g0(0) = −k. Then for any A ∈ (−∞, A), we have gA(0) < −k.

By Lemma 3.2, if A ∈ [A,∞), gA(z) > −k for z ∈ (0,∞). Thus we only need

to consider when A ∈ (−∞, A). Since (3.33) holds and gA(z) is strictly increasing

in z ∈ [0,∞), there exists a unique S(A) > 0 such that gA(S(A)) = −k for any

A ∈ (−∞, A). Furthermore, by the Implicit Function Theorem, S(A) is a continuous

function of A and the derivative S ′(A) exists, Define

Λ(A) =

∫ S(A)

0

[gA(y) + k]dy. (3.37)

Next, we prove that for any κ > 0, there exists a unique Â(κ) such that Λ(Â(κ)) =

−κ. To show the existence and uniqueness of Â(κ), it suffices to show that

Λ′(A) > 0 for A ∈ (−∞, A), (3.38)

lim
A→A

Λ(A) = 0, (3.39)
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lim
A→−∞

Λ(A) = −∞. (3.40)

Taking derivative of (3.37) with respect to A,

Λ′(A) =

∫ S(A)

0

ϕ′z(A)dy + [gA(S(A)) + k]S ′(A)

=

∫ S(A)

0

1dy

= S(A) > 0 for A ∈ (−∞, A). (3.41)

Next we show (3.39). Since gA(z) is strictly increasing in z and gA(0) = −k, we

can deduce that lim
A→A

S(A) = 0, which implies lim
A→A

Λ(A) = 0.

It remains to prove (3.40). Taking derivative of the equation gA(S(A)) = −k, i.e.,

A+
λ

µ

∫ ∞
S(A)

h(y)eλ(S(A)−y)dy = −k,

with respect to A for A ∈ (−∞, A), we have

S ′(A) = − 1

g′A(S(A))
< 0,

where the inequality follows from Lemma 3.2. Together with that S(A) > 0 for

A ∈ (−∞, A), we have lim
A→−∞

S(A) > 0. Then (3.40) follows from (3.41) and

lim
A→−∞

Λ′(A) = lim
A→−∞

S(A) > 0.

It remains to prove (3.36). By (3.34), (3.35) and the Implicit Function Theorem, the

derivatives Â′(κ) and Ŝ ′(κ) exist. Thus to prove (3.36), it suffices to show

Â′(κ) < 0 and Ŝ ′(κ) > 0.

Taking derivative of (3.34) and (3.35) with respect to κ, we can obtain

[gÂ(κ)(Ŝ(κ)) + k]Ŝ ′(κ) +

∫ Ŝ(κ)

0

[ϕ′y(Â(κ)) · Â′(κ)]dy = −1,
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and

ϕ′
Ŝ(κ)

(Â(κ)) · Â′(κ) + g′
Â(κ)

(Ŝ(κ)) · Ŝ ′(κ) = 0.

By equation (3.35) and ϕ′z(A) = 1 for z ∈ [0,∞), we can conclude that

Â′(κ) = − 1

Ŝ(κ)
< 0 and Ŝ ′(κ) = − Â′(κ)

g′
Â(κ)

(Ŝ(κ))
> 0,

where the first inequality follows from Ŝ(κ) > 0 and the second inequality follows from

Lemma 3.2.

Then if κ = Kn where n = 1, . . . ,M and let (Ŝn, Ân) denote the pair

(Ŝ(Kn), Â(Kn)), the conditions (3.34) and (3.35) are equivalent to conditions (3.6) and

(3.7) in Step 1. Then for Kn where n = 1, . . . ,M , we obtain a set of (0, S) policies

{U(0, Ŝn) : n = 1, . . . ,M}. When the setup cost is Kn, the quantity of an order is

constrained to an interval from Qn to Qn+1 (which by (1.5) might be (Qn, Qn+1),

(Qn, Qn+1], [Qn, Qn+1) or [Qn, Qn+1]). However, the obtained Ŝn might not fall into an

interval from Qn to Qn+1. In Step 2, we define S∗n in (3.8) based on the relative position

of Ŝn to the interval (Qn, Qn+1). By the definition of S∗n, we have Qn ≤ S∗n ≤ Qn+1

and 0 < S∗n < ∞ where n = 1, . . . ,M . In the following lemma, we show that given

such an S∗n, there exists a unique A∗n such that equation (3.31) holds.

Lemma 3.4. For any Kn > 0 where n = 1, . . . ,M , together with S∗n defined in (3.8),

there exists a unique A∗n ∈ R such that

∫ S∗
n

0

[gA∗
n
(y) + k]dy = −Kn. (3.42)

Furthermore,

A∗n ≤ Ân. (3.43)
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Proof. Define

Λ1(A) =

∫ S∗
n

0

[gA(y) + k]dy. (3.44)

To prove (3.42), it suffices to show that

Λ′1(A) > 0, (3.45)

lim
A→A

Λ1(A) > 0, (3.46)

lim
A→−∞

Λ1(A) = −∞. (3.47)

By taking derivative of (3.44) with respect to A, we have

Λ′1(A) =

∫ S∗
n

0

ϕ′y(A)dy =

∫ S∗
n

0

1dy = S∗n > 0,

where the inequality follows the fact that S∗n > 0.

Now, we are going to show (3.46).

lim
A→A

Λ1(A) = lim
A→A

∫ S∗
n

0

[gA(y) + k]dy

> lim
A→A

S∗n[gA(0) + k]

= 0,

where the inequality follows from Lemma 3.2 and the last equality follows from gA(0) =

−k and 0 < S∗n <∞.

Next, we are going to show (3.47).

lim
A→−∞

Λ1(A) = lim
A→−∞

∫ S∗
n

0

[gA(y) + k]dy

< lim
A→−∞

S∗n · [gA(S∗n) + k]

= −∞,
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where the inequality follows from Lemma 3.2 and the last equality follows from the fact

0 < S∗n <∞ and the definition of gA(z) in (3.5).

Finally, we prove (3.43) by contradiction. Suppose A∗n > Ân, then gA∗
n
(z) > gÂn(z)

must hold for any z ≥ 0 by the definition of gA(z) in (3.5). Since gÂn(z) ≤ −k for

z ∈ [0, Ŝn] and gÂn(z) > −k for z ∈ (Ŝn,∞),

∫ S∗
n

0

[gA∗
n
(y) + k]dy >

∫ S∗
n

0

[gÂn(y) + k]dy

≥
∫ Ŝn

0

[gÂn(y) + k]dy

= −Kn,

which contradicts with (3.42). Hence, we must have A∗n ≤ Ân.

In order to prove subsequent lemmas, we need the following lemma that shows the

properties of gA(z) at the order-up-to level S∗n of the (0, S∗n) policy.

Lemma 3.5. For n ∈ N<,

gA∗
n
(S∗n) ≥ −k. (3.48)

For n ∈ N=,

gA∗
n
(S∗n) = −k. (3.49)

For n ∈ N>,

gA∗
n
(S∗n) ≤ −k. (3.50)

Proof. For n ∈ N=, we have S∗n = Ŝn. Comparing Lemma 3.3 and Lemma 3.4, we

have A∗n = Ân. Therefore, according to Lemma 3.3, we have gA∗
n
(S∗n) = −k.

For n ∈ N<, we have Ŝn ≤ Qn = S∗n. We prove (3.48) for two cases: Ŝn = Qn = S∗n

and Ŝn < Qn = S∗n. If Ŝn = Qn = S∗n, similar to n ∈ N=, we have A∗n = Ân.
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Thus gA∗
n
(S∗n) = −k. If Ŝn < Qn = S∗n, we show (3.48) by contradiction. Suppose

gA∗
n
(S∗n) < −k, then

−Kn =

∫ S∗
n

0

[gA∗
n
(y) + k]dy <

∫ Ŝn

0

[gA∗
n
(y) + k]dy ≤

∫ Ŝn

0

[gÂn(y) + k]dy = −Kn,

where the first inequality follows from Ŝn < S∗n, gA∗
n
(S∗n) < −k and Lemma 3.2 and the

second inequality follows from (3.43). Therefore, gA∗
n
(S∗n) ≥ −k for n ∈ N<.

For n ∈ N>, we have Ŝn ≥ Qn+1 = S∗n. We prove (3.50) for two cases: Ŝn =

Qn+1 = S∗n and Ŝn > Qn+1 = S∗n. If Ŝn = Qn+1 = S∗n, similar to n ∈ N=, we have

A∗n = Ân. Thus gA∗
n
(S∗n) = −k. If Ŝn > Qn+1 = S∗n, we show (3.50) by contradiction.

Suppose gA∗
n
(S∗n) > −k, then

−Kn =

∫ S∗
n

0

[gA∗
n
(y) + k]dy <

∫ Ŝn

0

[gA∗
n
(y) + k]dy ≤

∫ Ŝn

0

[gÂn(y) + k]dy = −Kn,

where the first inequality follows from Ŝn > S∗n, gA∗
n
(S∗n) > −k and Lemma 3.2 and the

second inequality follows from (3.43).

According to the definition in of N<, N= and N> in Section 3.2, we can conclude

that sets N=, N> and N< are disjoint and N= ∪N< ∪N> = {1, 2, . . . ,M}.

Notice that for n ∈ N>∪N<, we may not have K(S∗n) = Kn by the setup cost given

in (1.5). We define

N = {n ∈ N> ∪N< : K(S∗n) = Kn},

N = {n ∈ N> ∪N< : K(S∗n) 6= Kn}.

Then N=, N and N are disjoint and N= ∪N ∪N = {1, 2, . . . ,M}.

For each S∗n, we have
∫ S∗

n

0
[gA∗

n
(y) + k]dy = −Kn by (3.42). However,

∫ S∗
n

0
[gA∗

n
(y) +

k]dy = −K(S∗n) (equivalent to (3.31)) may not hold since the equation K(S∗n) = Kn

may not hold. By the following lemma, we show that we should always have K(S∗n∗) =

Kn∗ if we select the n∗ by (3.9).
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To state the next lemma, we first define

χ(n) = max{i = 1, . . . , n− 1 : i ∈ N ∪N=} for n ∈ N<\N , (3.51)

χ(n) = min{i = n+ 1, . . . ,M : i ∈ N ∪N=} for n ∈ N>\N . (3.52)

Lemma 3.6. For each n ∈ N<\N , χ(n) defined in (3.51) exists and satisfies A∗n <

A∗χ(n); for each n ∈ N>\N , χ(n) defined in (3.52) exists and satisfies A∗n < A∗χ(n).

Proof. For each n ∈ N<\N , we prove the existence of χ(n) by contradiction. Suppose

for some n ∈ N<\N , χ(n) does not exist, namely, i /∈ N ∪ N= and K(S∗i ) 6= Ki for

i = 1, . . . , n − 1. Since K1 > 0, Lemma 3.3 implies Ŝ1 > 0 = Q1, from which we

can deduce 1 /∈ N< and n ≥ 2. n ∈ N<\N implies that Ŝn ≤ Qn = S∗n and K(S∗n) =

Kn−1 < Kn. By (3.36), we have Ŝn−1 < Ŝn ≤ Qn, which together with n−1 /∈ N ∪N=

implies n− 1 ∈ N<\N . By induction, we can obtian {1, . . . , n− 1} ⊂ N<\N , which

contradicts the fact that 1 /∈ N<. Therefore, χ(n) must exist.

For each n ∈ N<\N , we can conclude {χ(n) + 1, . . . , n} ⊂ N<\N and Kχ(n) <

· · · < Kn from above arguments. Then by (3.36), we have Ŝχ(n) < Ŝχ(n)+1 ≤ Qχ(n)+1,

which implies χ(n) ∈ N< ∪N=. By Lemma 3.2 and Lemma 3.5, we have

gA∗
χ(n)

(z) > −k for z > S∗χ(n).

By (3.8), we have S∗χ(n) < S∗n. Then,

∫ S∗
n

0

[gA∗
χ(n)

(y) + k]dy >

∫ S∗
χ(n)

0

[gA∗
χ(n)

(y) + k]dy = −Kχ(n).

Furthermore, we have

∫ S∗
n

0

[gA∗
χ(n)

(y) + k]dy = S∗nA
∗
χ(n) +

∫ S∗
n

0

[g0(y) + k]dy,
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and

∫ S∗
n

0

[gA∗
n
(y) + k]dy = S∗nA

∗
n +

∫ S∗
n

0

[g0(y) + k]dy = −K(S∗n) = −Kn−1.

We can conclude that A∗n < A∗χ(n) from the facts that Kχ(n) ≤ Kn−1 and that S∗n > 0.

Using the fact thatQM+1 =∞, we prove that χ(n) exists andAn < Aχ(n) by similar

rationales. Thus the details are omitted.

We obtain the n∗ by (3.9) and S∗, K∗ by (3.10) . Notice that by Lemma 3.6, we

always have n∗ ∈ N= ∪N , namely we always have
∫ S∗

0
[gA∗(y) + k]dy = −K(S∗). We

will prove the optimality of this (0, S∗) policy in Section 3.5.2.

3.5.2 Verification

In this subsection, we prove Theorem 3.1. Namely, we will prove that the (0, S∗) policy

obtained by the four-step algorithm in Section 3.2 is an optimal policy for our Brownian

inventory model in this chapter. To prove Theorem 3.1, we need the following technical

result.

Lemma 3.7. If K(z2 − z1) = Kn, for n = 1, 2, . . . ,M and z2 > z1 ≥ 0, then

∫ z2

z1

[gA∗(y) + k]dy ≥
∫ S∗

n

0

[gA∗
n
(y) + k]dy = −Kn. (3.53)

Proof. Consider three cases: n ∈ N=, n ∈ N< and n ∈ N>. For n ∈ N=, we have

∫ z2

z1

[gA∗(y) + k]dy ≥
∫ z2

z1

[gA∗
n
(y) + k]dy

≥
∫ z2−z1

0

[gA∗
n
(y) + k]dy

≥
∫ S∗

n

0

[gA∗
n
(y) + k]dy

= −Kn,

where the first inequality follows from A∗ ≥ A∗n, the second inequality follows from

Lemma 3.2 and the third inequality follows from Lemma 3.2 and (3.49).
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For n ∈ N<, we have z2 − z1 ≥ Qn = S∗n by (3.8). Then

∫ z2

z1

[gA∗(y) + k]dy ≥
∫ z2

z1

[gA∗
n
(y) + k]dy

≥
∫ z2−z1

0

[gA∗
n
(y) + k]dy

≥
∫ S∗

n

0

[gA∗
n
(y) + k]dy

= −Kn,

where the third inequality follows from Lemma 3.2, (3.48) and z2 − z1 ≥ S∗n.

For n ∈ N>, we have x− y ≤ Qn+1 = S∗n by (3.8). Then

∫ z2

z1

[gA∗(y) + k]dy ≥
∫ z2

z1

[gA∗
n
(y) + k]dy

≥
∫ z2−z1

0

[gA∗
n
(y) + k]dy

≥
∫ S∗

n

0

[gA∗
n
(y) + k]dy

= −Kn,

where the third inequality follows from Lemma 3.2, (3.50) and z2 − z1 ≤ S∗n.

Finally, we provide the proof of Theorem 3.1.

Proof of Theorem 3.1. Firstly, we show that AC(x, U(0, S∗)) = −µA∗ for x ≥ 0.

Namely, we need to show VA∗(·) satisfies the conditions in Theorem 3.4. By the defini-

tion of gA(z) in (3.5) together with VA(z) =
∫ z

0
gA(y)dy and Proposition 3.1, VA∗(·) is

twice continuously differentiable, V ′A∗(·) is polynomially bounded and

ΓVA∗(z) + h(z) = −µA∗ for z ≥ 0.

By Lemma 3.4 and Lemma 3.6, we have

∫ S∗

0

[gA∗(y) + k]dy = −K∗ = −K(S∗),
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which can be rewritten as

VA∗(S∗)− VA∗(0) = −K∗ − k · S∗ = −K(S∗)− k · S∗.

Therefore, we have AC(x, U(0, S∗) = −µA∗ for x ≥ 0.

To show the optimality of the (0, S∗) policy, it suffices to show that VA∗(·) together

with γ = −µA∗ satisfies all the conditions of the lower bound in Theorem 3.2. We have

already shown that VA∗(·) together with γ = −µA∗ satisfies (3.11) with equality, that

VA∗(·) is twice continuously differentiable and that V ′A∗(·) is polynomially bounded. It

remains to show (3.12). By Lemma 3.7, for z2 > z1 ≥ 0,

∫ z2

z1

[gA∗(y) + k]dy ≥ −K(z2 − z1),

which can be rewritten as

VA∗(z1)− VA∗(z2) ≤ K(z2 − z1) + k · (z2 − z1).

Therefore,

AC(x, Y ) ≥ AC(x, U(0, S∗)) for all x ≥ 0 and Y ∈ U .

Furthermore,

AC(x, U(0, S∗)) = −µA∗ for x ≥ 0.

�

3.6 Numerical Analysis

In the section, we conduct a numerical analysis of the optimal (0, S) policy in this

chapter. Furthermore, we compare this result with the result of EOQ model.
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Assume that h(z) = z2. Then (3.5) implies that

gA(z) = A+
z2

µ
+

2z

µλ
+

2

µλ2
, for z ≥ 0.

Set µ = 10, σ = 1, k = 1, M = 3 and

K(ξ) =


40 for ξ ∈ (0, 10],

50 for ξ ∈ (10, 20),

30 for ξ ∈ [20,∞).

Step 1. For n = 1, 2, 3, we obtain Ŝn and Ân; see Table 3.1.

Table 3.1: Results of Step 1

n (Qn, Qn+1) Kn Ŝn Ân
1 (0, 10] 40 8.4094 -8.1564
2 (10, 20) 50 9.0607 -9.3007
3 [20,∞) 30 7.6382 -6.9111

Step 2. From Table 3.1, we have N= = {1} and N< = {2, 3}. Thus we have S∗1 =

8.4094, S∗2 = 10 and S∗3 = 20.

Step 3. We obtain the parameter A∗n for n = 1, 2, 3; see Table 3.2.

Table 3.2: Results of Step 3

n (Qn, Qn+1) Kn S∗n A∗n
1 (0, 10] 40 8.4094 -8.1564
2 (10, 20) 50 10 -9.3838
3 [20,∞) 30 20 -15.9338

Step 4. From Table 3.2, we obtain that n∗ = 1. Therefore, (0, S∗1) with S∗1 = 8.4094 is

an optimal policy and its long-run average cost is γ∗ = −µA∗1 = 81.564.

Under the same assumption, we can obtain the optimal economic order quantity,

Q∗ = 8.4343 under the EOQ model by Perera et al. (2016). By (3.26), we can obtain the

long-run average of this EOQ policy under the Brownian inventory policy is 81.565.
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Table 3.3: Comparison of EOQ Model and Brownian Model

Model Order Quantity Cost
Brownian Model 8.4094 81.564

EOQ Model 8.4343 81.565

From Table 3.3, we conclude that we can save the long-run average cost by using

our algorithm. Although the cost difference is small under this example, the saved cost

can be huge if the units of the parameters are in millions or in billions.

48



Chapter 4

Optimal Policy Under the Discounted

Cost Criterion Without Backlogs

We have specified the optimal control policy for a Brownian inventory system without

backlogs under the long-run average cost criterion in the previous chapter. However,

when we make decisions in the practical world, the time value of money should be

considered in many cases. The rationale for this consideration is that the risk-free rate

is positive most of the time. Therefore, it is more meaningful in the economic sense

to search the optimal policy under the discounted cost criterion. In this chapter, we

follow the two-step lower bound approach to obtain an optimal control policy for the

continuous-review inventory under the discounted cost criterion. Section 4.1 presents the

continuous-review model and assumptions. In Section 4.2, we present the main results

of this chapter. In Section 4.3, we establish a lower bound for the expected infinite-

horizon discounted cost incurred by any admissible policy. We compute the expected

infinite-horizon discounted cost under a (0, S) policy in Section 4.4. In Section 4.5, we

demonstrate how to select the optimal (0, S) policy and prove the optimality of it. In

Section 4.6, we provide the proof of the Comparison Theorem, Theorem 4.3.
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4.1 Model and Assumptions

In this chapter, we consider a continuous-review inventory model that is similar to the

model in Chapter 3 but under the discounted cost criterion and a different assumption

of the holding cost rate function. To obtain the optimal policy under the discounted cost

criterion, we need different technical skills in both steps of the lower bound approach.

In the inventory model of this chapter, we also assume that backlogs are not allowed

and that the lead time for each order is zero. As in Chapter 3, let D(t) and Y (t) be the

cumulative demand quantity and the cumulative order quantity during time [0, t]. We

assume that only upward adjustments are allowed in our Brownian control model. Then,

the inventory level at time t ≥ 0 is given by

Z(t) = x−D(t) + Y (t).

The process D is given by

D(t) = µt− σB(t).

For convenience, we repeat the expression of the inventory level at time t

Z(t) = X(t) + Y (t), (4.1)

where

X(t) = x− µt+ σB(t) (4.2)

can be interpreted as the inventory level in the absence of control.

Two types of costs are incurred in this continuous-review inventory system: the

inventory holding cost and the ordering cost. The inventory holding cost is incurred at a

rate h(z) when the inventory level is z. Since the controller is required to keep Z(t) ≥ 0
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for t ≥ 0, h is defined on [0,∞). In the inventory model of this chapter, we assume that

the inventory holding cost rate function satisfies the following assumption.

Assumption 2. h(·) satisfies

(A1) h(·) is convex and h(0) = 0;

(A2) h(·) is continuously differentiable in [0,∞);

(A3) h′(z) ≥ 0 for z ≥ 0 and lim
z→∞

h′(z) > βk where β > 0 is the discount rate;

(A4) h′′(·) is polynomially bounded, i.e., there exist positive constants ai > 0, i = 0, 1

and a positive integer n such that h′′(z) ≤ a0 + a1z
n for all z ≥ 0.

An ordering cost is incurred whenever an order is placed and this cost is a function

of the ordering quantity ξ > 0. When an order with quantity ξ > 0 is placed, it incurs a

setup cost of K(ξ) > 0 given by (1.5) and a proportional cost of kξ with proportional

cost rate k > 0. Let φ(ξ) denote the ordering cost with ordering quantity ξ. Then φ(ξ)

is given by (3.3).

Since K(ξ) > 0 for ξ > 0, we only need to consider the policies with N(t) < ∞

for any t > 0. Otherwise, the total cost would be infinite in the time interval [0, t].

Then a policy can be specified by a sequence of pairs {(Ti, ξi) : i = 0, 1, . . .} where

Ti is the ith order time and ξi = ∆Y (Ti) = Y (Ti) − Y (Ti−) is the quantity of the ith

order. Therefore, investigating an optimal control policy given thatK(ξ) > 0 for ξ > 0 is

equivalent to exploring a sequence of ordering time together with corresponding ordering

quantity, {(Ti, ξi) : i = 0, 1, . . .}, which turns out be an impulse control problem for the

Brownian model.

We aim to find an admissible inventory policy Y that minimizes the expected dis-

counted cost over the infinite horizon

DC(x, Y ) = Ex
[ ∫ ∞

0

e−βth(Z(t))dt+
∞∑
i=0

e−βTi(K(ξi) + kξi)
]
, (4.3)

where the constant β > 0 is the discounted rate and Ex is the expectation operator

conditioning on the initial inventory level Z(0−) = x.
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4.2 Main Results

In this section, we present the main results of this chapter. Under the quantity-dependent

setup cost defined in (1.5), an optimal policy for the Brownian inventory model in this

chapter is a (0, S) policy with S > 0. We propose an algorithm for computing the

optimal order-up-to level. We use U(0, S) to denote a (0, S) policy. The optimal order-

up-to level S∗ can be obtained by the following algorithm.

Step 1. For z ≥ 0 and B ∈ R, let λ1 =
µ+
√
µ2+2βσ2

σ2 , λ2 =
−µ+
√
µ2+2βσ2

σ2 ,

VB(z) =
2

σ2

1

λ1 + λ2

[
− 1

λ2
2

Be−λ2z

+

∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]
. (4.4)

and

gB(z) = V ′B(z)

=
2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′(y)dy · eλ1z

+
e−λ2z

λ2

(
B + λ2

∫ z

0

eλ2yh′(y)dy
)]
. (4.5)

For n = 1, . . . ,M , obtain B̂n and Ŝn > 0 by solving

∫ Ŝn

0

[gB̂n(y) + k]dy = −Kn, (4.6)

and

gB̂n(Ŝn) = −k. (4.7)

Step 2. Define

N< = {n ∈ {1, 2, . . . ,M} : Ŝn ≤ Qn},

N= = {n ∈ {1, 2, . . . ,M} : Ŝn ∈ (Qn, Qn+1)},
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N> = {n ∈ {1, 2, . . . ,M} : Ŝn ≥ Qn+1},

and

S∗n =


Qn for n ∈ N<,

Ŝn for n ∈ N=,

Qn+1 for n ∈ N>.

(4.8)

Step 3. For n ∈ N=, let

B∗n = B̂n.

For n ∈ N> ∪N<, obtain B∗n by solving

∫ S∗
n

0

[gB∗
n
(y) + k]dy = −Kn.

Step 4. LetM = {1, . . . ,M}. Define

n∗ = min{n ∈M : B∗i ≤ B∗n for all i ∈M}. (4.9)

Let

S∗ = S∗n∗ , B∗ = B∗n∗ and K∗ = Kn∗ . (4.10)

In Step 1, we obtain the parameter Ŝn associated with B̂n by smoothness conditions

similar with those in Sulem (1986). This (0, Ŝn) policy is expected to be optimal when

the setup cost is constant at Kn. However under the quantity-dependent setup cost, a

quantity constraint is imposed on each setup cost value. Thus in Step 2 we obtain S∗n,

which is restricted to the corresponding interval. We obtain the auxiliary parameter B∗n

in Step 3. Finally in Step 4, we select the optimal S∗ by picking the largest B∗n. Please

see Section 4.5 for explicit derivations. The main difference of the algorithm in this
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section and the algorithm in Section 3.2 is that we have different function g(·). This

difference results from the discounted cost criterion adopted in this chapter.

Then the (0, S∗) policy obtained from the above algorithm is an optimal policy for

our Brownian inventory model. The optimality of this (0, S∗) policy is proved by the

following theorem.

Theorem 4.1. Assume the cost function h satisfies Assumption 2 and that the setup cost

is given by (1.5). Control policy U(0, S∗) obtained by Steps 1–4 is an optimal admissible

policy that minimizes the discounted cost given by (4.3). Namely, we have

DC(x, U(0, S∗)) ≤ DC(x, Y ) for x ≥ 0 and Y ∈ U .

Moreover, the minimum discounted cost is DC(x, U(0, S∗)) = VB∗(x) for x ≥ 0.

4.3 Lower Bound Under the Discounted Cost Criterion

In this section, we propose and prove a theorem that establishes a lower bound for the

discounted cost incurred by any admissible control policy.

Theorem 4.2. Assume that h satisfies Assumption 2. Let f(·) : [0,∞) → R be twice

continuously differentiable. Assume that

Γf(z)− βf(z) + h(z) ≥ 0 for all z ≥ 0, (4.11)

where

Γf(z) =
1

2
σ2f ′′(z)− µf ′(z).

We further assume that

f(z1)− f(z2) ≤ K(z2 − z1) + k · (z2 − z1) for all 0 ≤ z1 < z2, (4.12)
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and f ′(·) is polynomially bounded, i.e., there exist positive constants a0, a1 and a positive

integer n such that

|f ′(z)| < a0 + a1z
n for all z ≥ 0. (4.13)

Then

DC(x, Y ) ≥ f(x), (4.14)

where DC(x, Y ), given by (4.3), is the total discounted cost over the infinite horizon

under any admissible control policy Y .

By Theorem 4.2, if we can find an admissible ordering policy Y whose cost function

DC(x, Y ) satisfies the conditions of f(·) in Theorem 4.2, we can conclude that this

admissible control policy must be optimal among all admissible policies. In the lower

bound approach, Theorem 4.2 is referred to as a verification theorem. In order to prove

Theorem 4.2, we first need to show some technical results.

The following comparison theorem is a critical result for proving Theorem 4.2. It

implies that a policy that is optimal among the policies subject to order-up-to bounds

must be optimal among all admissible policies. Compared with the general admissible

policies, policies subject to order-up-to bounds are analytically tractable.

Form = 1, 2, . . ., let Um represents the set of admissible policies with an order-up-to

bound at m.

Theorem 4.3 (Comparison Theorem). Assume that the holding cost rate function h is

nondecreasing on [0,∞) and the setup cost function K(·) is bounded. Then for any

admissible policy Y , there exists a sequence of admissible policies {Ym ∈ Um : m =

1, 2, . . .} such that

lim
m→∞

DC(x, Ym) ≤ DC(x, Y ). (4.15)
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The proof of Theorem 4.3 is shown in Section 4.6. Let U be the set of all admissible

policies subject to order-up-to bounds. Theorem 4.3 implies that a policy that is optimal

in U must be optimal in U . Therefore, we only need to search all admissible policies

subject to order-up-to bounds for the optimal policy as in Chapter 3.

Proof of Theorem 4.2. By Theorem 4.3, it suffices to consider an arbitrary policy Y ∈ U ,

namely it suffices to consider Y ∈ Um for a fixed positive integer m. For any Y ∈ Um,

recall that

Z(t) = x− µt+ σB(t) + Y (t).

By Itô’s formula , we have

e−βtf(Z(t)) = f(Z(0)) +

∫ t

0

e−βu(Γf(Z(u))− βf(Z(u))du

+σ

∫ t

0

e−βuf ′(Z(u))dB(u) +
∑

0<u≤t

e−βu∆f(Z(u))

= f(Z(0−)) +

∫ t

0

e−βu(Γf(Z(u))− βf(Z(u))du

+σ

∫ t

0

e−βuf ′(Z(u))dB(u) +
∑

0≤u≤t

e−βu∆f(Z(u)) (4.16)

By (4.11) and (4.12), we have

e−βtf(Z(t)) ≥ f(x)−
∫ t

0

e−βuh(Z(u))du+ σ

∫ t

0

e−βuf ′(Z(u))dB(u)

−
N(t)∑
i=0

e−βTiφ(ξi), (4.17)

where φ is define in (3.3). By (3.17) and Theorem 3.2.1 in Øksendal (2003), we have

Ex
[ ∫ t

0

f ′(Z(u))dB(u)
]

= 0.
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Since (3.16) holds, we can take expectation on both sides of (4.17) and obtain

Ex[e−βtf(Z(t))] ≥ f(x)− Ex
[ ∫ t

0

e−βuh(Z(u))du
]
− Ex

[ N(t)∑
i=0

e−βTiφ(ξi)
]
.

By (4.13), (3.18) and taking limit as t → ∞ of both sides of the above inequality, we

can conclude that DC(x, Y ) ≥ f(x). �

4.4 Expected Discounted Cost Under (0, S) Policies

In this section, we will compute the discounted cost under any (0, S) policy, the policy

with a reorder level zero and an order-up-to level S. By the definition of admissible

policies, all (0, S) policies are in Ū , the set of admissible policies subject to order-up-to

bounds.

Theorem 4.4. For any S > 0, if there exists a twice continuously differentiable function

V (·) : [0,∞)→ R such that

ΓV (z)− βV (z) + h(z) = 0 for z ≥ 0, (4.18)

V (S)− V (0) = −K(S)− k · S, (4.19)

V ′ is polynomially bounded. (4.20)

Then,

DC(x, U(0, S)) = V (x). (4.21)

Proof. By the Itô’s formula (see (4.16)), together with (4.18) and (4.19), we have

e−βtV (Z(t)) = V (Z(0))−
∫ t

0

e−βuh(Z(u))du

+σ

∫ t

0

e−βuV ′(Z(u))dB(u)−
N(t)∑
i=0

e−βTiφ(ξi). (4.22)

57



We can take expectation on both sides of (4.22) because (3.16) holds. By (3.17) and

Theorem 3.2.1 in Øksendal (2003), we can obtain

Ex[e−βtV (Z(t))] = V (Z(0))− Ex
[ ∫ t

0

e−βuh(Z(u))du
]
− Ex

[ N(t)∑
i=1

e−βTiφ(ξi)
]

= V (Z(0))− Ex
[ ∫ t

0

e−βuh(Z(u))du
]
− Ex

[ N(t)∑
i=0

e−βTiφ(ξi)
]

+Ex[φ(ξ0)].

By (3.18), (4.20) and letting t→∞, we can obtain

DC(x, U(0, S)) = Ex[V (Z(0))] + Ex[φ(ξ0)]. (4.23)

The initial inventory level x in the inventory model of this chapter is require to be non-

negative. If x > 0, we have Z(0) = Z(0−) = x and ξ0 = 0 under the (0, S) policy.

Then by (4.23), we have DC(x, U(0, S)) = V (x). If x = 0, we have Z(0) = S and

ξ0 = S. By (4.23) and (4.19), we have DC(0, U(0, S)) = V (S)+K(S)+k ·S = V (0).

Therefore, we can conclude that DC(x, U(0, S)) = V (x).

In the following proposition, we provide the solution to equations (4.18)–(4.20).

Proposition 4.1. The solution to (4.18)–(4.20) is given by

V (z) = B0e
−λ2z +

2

σ2

1

λ1 + λ2

[ ∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]

(4.24)

for z ≥ 0, where

B0 =
1

e−λ2S − 1

{
−K(S)− k · S − 2

σ2

1

λ1 + λ2

[ ∫ S

0

e−λ2(S−y)h(y)dy

+

∫ ∞
S

eλ1(S−y)h(y)dy −
∫ ∞

0

e−λ1yh(y)dy
]}
, (4.25)

and

λ1 =
µ+

√
µ2 + 2βσ2

σ2
,

58



λ2 =
−µ+

√
µ2 + 2βσ2

σ2
.

The solution V (z) given by (4.24) together with (4.25) is unique.

Proof. Since z = λ1 and z = −λ2 are two solutions for the quadratic equation

1

2
σ2z2 − µz − β = 0,

then g1(z) = eλ1z and g2(z) = e−λ2z are two solutions for the homogeneous ordinary

differential equation (ODE)

Γg − βg = 0.

Let

w(z) = det

 g1(z) g2(z)

g′1(z) g′2(z)

 = −(λ1 + λ2)e(λ1−λ2)z

and

d1(z) =

∫ z

0

1

w(y)
g2(y)

2

σ2
h(y)dy = − 2

σ2

1

λ1 + λ2

∫ z

0

e−λ1yh(y)dy,

d2(z) = −
∫ z

0

1

w(y)
g1(y)

2

σ2
h(y)dy =

2

σ2

1

λ1 + λ2

∫ z

0

eλ2yh(y)dy.

Then the non-homogeneous ODE (4.18) has a particular solution

V0(z) = d1(z)g1(z) + d2(z)g2(z)

=
2

σ2

1

λ1 + λ2

[ ∫ z

0

e−λ2(z−y)h(y)dy −
∫ z

0

eλ1(z−y)h(y)dy
]
.

Then a general solution for (4.18) is

V (z) = A0e
λ1z +B0e

−λ2z + V0(z).
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By (4.20), we have lim
z→∞

V (z)

eλ1z
= 0, from which we can obtain

A0 =
2

σ2

1

λ1 + λ2

∫ ∞
0

e−λ1yh(y)dy.

Then V (z) is given by

V (z) = A0e
λ1z +B0e

−λ2z + V0(z)

= B0e
−λ2z +

2

σ2

1

λ1 + λ2

[ ∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]

Finally by (4.19), we can derive that B0 is given by (4.25).

4.5 Optimal Policy

By (4.4),

VB(z) =
2

σ2

1

λ1 + λ2

[
− 1

λ2
2

Be−λ2z

+

∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]
,

= B1e
−λ2z +

2

σ2

1

λ1 + λ2

[ ∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]

where

B1 = − 2

λ2
2σ

2(λ1 + λ2)
B.

By Proposition 4.1, V ′B is polynomially bounded on [0,∞). Furthermore, VB(z) satisfies

the differential equation

ΓVB(z)− βVB(z) + h(z) = 0 for z ≥ 0.
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For any (0, S) policy, if VB(z) further satisfies

VB(S)− VB(0) = −K(S)− k · S, (4.26)

we can conclude by Theorem 4.4 that the discounted cost under a (0, S) policy is given

by

DC(x, U(0, S)) = VB(x). (4.27)

For any fixed z ≥ 0, VB(z) given by (4.4) is strictly decreasing in B. Thus in order to

minimize the discounted cost under a (0, S) policy, we should maximize the value of B

without violating (4.26).

By applying integration by parts to (4.5), for z ≥ 0

gB(z) =
1

β
h′(z) +

2

σ2

1

λ1 + λ2

[ 1

λ1

∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

+
e−λ2z

λ2

(
B − h′(0)−

∫ z

0

eλ2yh′′(y)dy
)]
, (4.28)

For z ≥ 0, we have

g′B(z) =
2

σ2

1

λ1 + λ2

[
λ1

∫ ∞
z

e−λ1yh′(y)dy · eλ1z −
(
B + λ2

∫ z

0

eλ2yh′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
(
B − h′(0)−

∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
. (4.29)

In the rest of this chapter, we need to discuss properties of gB(z) with respect to the

auxiliary variable B for fixed z ≥ 0. To make the notation clear, for fixed z ≥ 0, let

ϕz(B) = gB(z).
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Then by (4.5), we have

ϕ′z(B) =
2

σ2

1

λ1 + λ2

e−λ2z

λ2

. (4.30)

In Section 4.5.1, we demonstrate how the four-step algorithm in Section 4.2 attains

the maximum value of B by selecting the (0, S∗) policy, the best policy among (0, S)

policies. In Section 4.5.2, we prove that under this (0, S∗) policy, the corresponding

discounted cost function satisfies the conditions specified by the lower bound theorem.

Thus, the (0, S∗) policy is an optimal policy for the Brownian inventory model in this

chapter.

4.5.1 The Optimal (0, S) Policy

In this subsection, we first show the monotonicity of gB(z) in Lemma 4.1, which is an

important lemma for proving subsequent lemmas. Then we identify a set of (0, S) poli-

cies {U(0, Ŝn) : n = 1, . . . ,M} by Lemma 4.2. However under the quantity-dependent

setup cost (1.5), the Ŝn may not fall into an interval from Qn to Qn+1. We obtain a set of

modified (0, S) policies {U(0, S∗n) : n = 1, . . . ,M} by (4.8). Given the S∗n, Lemma 4.3

proves the existence of B∗n such that B∗n and S∗n jointly satisfy (4.26). Finally, we select

the best (0, S∗) policy out of the set {U(0, S∗n) : n = 1, . . . ,M} by (4.9) and (4.10).

Before stating the following lemma, we first define

B = h′(0) +

∫ ∞
0

e−λ1yh′′(y)dy. (4.31)

By (A4) in Assumption 2, B is bounded.

Lemma 4.1. Assume that h satisfies Assumption 2. Then for B ∈ (−∞, B), gB(z) is

strictly increasing in z ∈ [0,∞). Furthermore,

lim
z→∞

gB(z) > k. (4.32)
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Proof. To show the monotonicity of gB(z) in z ∈ [0,∞), it suffices to show that g′B(z) >

0 in z ∈ [0,∞) for B ∈ (−∞, B). By (4.29), for any B ∈ (−∞, B), we have

g′B(z) =
2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
(
B − h′(0)−

∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
>

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
(
B − h′(0)−

∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
( ∫ ∞

0

e−λ1yh′′(y)dy −
∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy ·
(
eλ1z − e−λ2z

)
+

∫ z

0

(
eλ2y − e−λ1y

)
h′′(y)dy · e−λ2z

]
≥ 0,

where the second equality follows from the definition of B in (4.31) and the last inequal-

ity follows from Assumption 2, λ1, λ2 > 0 and z ≥ 0.

Next, we prove (4.32). By (4.5)

lim
z→∞

gB(z)

= lim
z→∞

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′(y)dy · eλ1z

+
1

λ2

(
B + λ2

∫ z

0

eλ2yh′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

lim
z→∞

[∫∞
z
e−λ1yh′(y)dy

e−λ1z
+

∫ z
0
eλ2yh′(y)dy

eλ2z

]
.

Since we have

lim
z→∞

∫∞
z
e−λ1yh′(y)dy

e−λ1z
= lim

z→∞

h′(z)

λ1
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and

lim
z→∞

∫ z
0
eλ2yh′(y)dy

eλ2z
= lim

z→∞

h′(z)

λ2

by L’Hôpital’s Rule, then

lim
z→∞

gB(z) =
2

σ2

1

λ1 + λ2

lim
z→∞

(h′(z)

λ1

+
h′(z)

λ2

)
=

1

β
lim
z→∞

h′(z)

> k,

where the last equality comes from λ1 =
µ+
√
µ2+2βσ2

σ2 and λ2 =
−µ+
√
µ2+2βσ2

σ2 , and the

inequality follows from (A3) in Assumption 2.

By the following lemma, we identify a set of (0, S) policies {U(0, Ŝn) : n =

1, . . . ,M}.

Lemma 4.2. Assume that h satisfies Assumption 2. For an arbitrary κ > 0, there exist

a unique pair (Ŝ(κ), B̂(κ)) with Ŝ(κ) > 0 such that B̂(κ) ∈ (−∞, B),

∫ Ŝ(κ)

0

[gB̂(κ)(y) + k]dy = −κ, (4.33)

gB̂(κ)(Ŝ(κ)) = −k. (4.34)

For any 0 < κi < κj , the corresponding (Ŝ(κi), B̂(κi)) and (Ŝ(κj), B̂(κj)) satisfy

Ŝ(κi) < Ŝ(κj) and B̂(κi) > B̂(κj). (4.35)

Proof. First of all, we show that if B ∈ [B,∞), gB(z) > −k for z ≥ 0. Since

g′
B

(z) =
2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
(
B − h′(0)−

∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy ·
(
eλ1z − e−λ2z

)
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+

∫ z

0

(
eλ2y − e−λ1y

)
h′′(y)dy · e−λ2z

]
≥ 0,

and

gB(0) =
1

β
h′(0) +

2

σ2

1

λ1 + λ2

[ 1

λ1

∫ ∞
0

e−λ1yh′′(y)dy +
1

λ2

(B − h′(0+))
]

=
1

β
h′(0) +

2

σ2

1

λ1 + λ2

[ 1

λ1

∫ ∞
0

e−λ1yh′′(y)dy +
1

λ2

∫ ∞
0

e−λ1yh′′(y)dy
]

≥ 0,

we can conclude that gB(z) > 0 for z ≥ 0. By (4.5), gB(z) is strictly increasing in B for

any fixed z ≥ 0, which implies that gB(z) ≥ gB(z) > 0 > −k for z ≥ 0 if B ∈ [B,∞).

Thus, we only need to consider B ∈ (−∞, B).

By (4.30), we have ϕ′0(B) > 0. By (A4) in Assumption 2, there exist c0 and c1 such

that h′(z) ≤ c0 + c1z
n+1 for all z ≥ 0, which further implies that

∫∞
0
e−λ1yh′(y)dy is

bounded. Therefore, we have

lim
B→−∞

gB(0) = lim
B→−∞

2

σ2

1

λ1 + λ2

[ ∫ ∞
0

e−λ1yh′(y)dy +
B

λ2

]
= −∞.

Together with that gB(0) ≥ 0, we can conclude that there exist a unique B̃ ∈ (−∞, B)

such that

gB̃(0) = −k. (4.36)

By Lemma 4.1 ,(4.36) and ϕ′0(B) > 0, we can conclude that for any B ∈ [B̃,∞),

gB(z) > −k for z > 0 and that for any B ∈ (−∞, B̃), there exists a unique S(B) > 0

such that

gB(S(B)) = −k.
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By the Implicit Function Theorem,S(B) is a continuous function ofB and the derivative

S ′(B) exists. For B ∈ (−∞, B̃),define

Λ(B) =

∫ S(B)

0

[gB(y) + k]dy. (4.37)

Finally, we prove that for any κ > 0, there exists a unique B̂(κ) such that Λ(B̂(κ)) =

−κ. To show the existence and uniqueness of B̂(κ), it suffices to show that

Λ′(B) > 0 for B ∈ (−∞, B̃), (4.38)

lim
B→B̃

Λ(B) = 0, (4.39)

lim
B→−∞

Λ(B) = −∞. (4.40)

Firstly, we will show (4.38). From the definition of Λ(B) in (4.37), we have

Λ′(B) =
d

dB

(∫ S(B)

0

[gB(y) + k]dy
)

=

∫ S(B)

0

ϕ′y(B)dy + [gB(S(B)) + k]S ′(B)

=

∫ S(B)

0

2

σ2

1

λ1 + λ2

1

λ2

e−λ2ydy

> 0.

By (4.36), we can conclude that lim
B→B̃

S(B) = 0. Therefore, we have

lim
B→B̃

Λ(B) = 0.

It remains to prove (4.40). Taking the derivatives of the both sides of equation

gB(S(B)) = −k, i.e.,

2

σ2

1

λ1 + λ2

[ ∫ ∞
S(B)

e−λ1yh′(y)dy · eλ1S(B)

+
e−λ2S(B)

λ2

(
B + λ2

∫ S(B)

0

eλ2yh′(y)dy
)]

= −k,
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with respect to B for B ∈ (−∞, B̃), we have

S ′(B) = − 2

σ2

1

λ1 + λ2

e−λ2S(B)

λ2

1

g′(S(B))
< 0,

where the inequality follows from Lemma 4.1. Together with that S(B) > 0 for B ∈

(−∞, B̃), we can conclude that lim
B→−∞

S(B) > 0. Then (4.40) follows from (4.38) and

lim
B→−∞

Λ′(B) = lim
B→−∞

∫ S(B)

0

2

σ2

1

λ1 + λ2

1

λ2

e−λ2ydy

= lim
B→−∞

2

σ2

1

λ1 + λ2

1

λ2
2

[1− e−λ2S(B)]

> 0.

It remains to prove (4.35). By (4.33), (4.34) and the Implicit Function Theorem, the

derivatives B̂′(κ) and Ŝ ′(κ) exist. Then to prove (4.35), it suffices to show

B̂′(κ) < 0 and Ŝ ′(κ) > 0.

Taking derivative of (4.33) and (4.34) with respect to κ, we can obtain

[gB̂(κ)(Ŝ(κ)) + k]Ŝ ′(κ) +

∫ Ŝ(κ)

0

[ϕ′y(B̂(κ)) · B̂′(κ)]dy = −1,

and

ϕ′
Ŝ(κ)

(B̂(κ)) · B̂′(κ) + g′
B̂(κ)

(Ŝ(κ)) · Ŝ ′(κ) = 0.

Then by (4.30) and (4.34), we can conclude that

B̂′(κ) = − σ2(λ1 + λ2)λ2
2

2(1− e−λ2Ŝ(κ))
< 0 and Ŝ ′(κ) = − 2

σ2

1

λ1 + λ2

1

λ2

e−λ2Ŝ(κ)B̂′(κ)

g′
B̂(κ)

(Ŝ(κ))
> 0,

where the first inequality follows from Ŝ(κ) > 0 and λ1, λ2 > 0 and the second inequal-

ity follows from Lemma 4.1 and B̂(κ) ∈ (−∞, B).
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If κ = Kn where n = 1, . . . ,M and let (Ŝn, B̂n) denote the pair (Ŝ(Kn), B̂(Kn)),

the conditions (4.33) and (4.34) are equivalent to conditions (4.6) and (4.7) in Step 1.

Then for Kn where n = 1, . . . ,M , we obtain a set of (0, S) policies {U(0, Ŝn) : n =

1, . . . ,M}. When the setup cost is Kn, the quantity of an order is constrained to an

interval from Qn to Qn+1 (which by (1.5) might be (Qn, Qn+1), (Qn, Qn+1], [Qn, Qn+1)

or [Qn, Qn+1]). However, the obtained Ŝn might not fall into an interval from Qn to

Qn+1. In Step 2, we define S∗n in (4.8) based on the relative position of Ŝn to the interval

(Qn, Qn+1). By the definition of S∗n, we have Qn ≤ S∗n ≤ Qn+1 and 0 < S∗n <∞ where

n = 1, . . . ,M . In the following lemma, we show that given such an S∗n, there exists a

unique B∗n such that equation (4.26) holds.

Lemma 4.3. For any Kn where n = 1, . . . ,M , together with S∗n defined in (4.8), there

exists a unique B∗n ∈ (−∞, B) such that

∫ S∗
n

0

[gB∗
n
(y) + k]dy = −Kn. (4.41)

Furthermore, we have

B∗n ≤ B̂n. (4.42)

Proof. Define

Λ1(B) =

∫ S∗
n

0

[gB(y) + k]dy. (4.43)

To prove (4.41), it suffices to show that

Λ′1(B) > 0, (4.44)

lim
B→B

Λ1(B) > 0, (4.45)

lim
B→−∞

Λ1(B) = −∞. (4.46)
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Firstly, we show the inequality (4.44). By taking derivative of (4.43) with regard to B,

we have

Λ′1(B) =

∫ S∗
n

0

ϕ′y(B)dy

=

∫ S∗
n

0

2

σ2

1

λ1 + λ2

1

λ2

e−λ2ydy

=
2

σ2

1

λ1 + λ2

1

λ2
2

(
1− e−λ2S∗

n
)

> 0,

where the inequality follows the fact that S∗n > 0. Then we show (4.45). By (4.36),

lim
B→B

gB(0) > gB̃(0) = −k,

which together with Lemma 4.1 and S∗n > 0 implies

lim
B→B

Λ1(B) > lim
B→B

S∗n · [gB(0) + k] > 0.

Next, we are going to show (4.46).

lim
B→−∞

Λ1(B) = lim
B→−∞

∫ S∗
n

0

[gB(y) + k]dy

< lim
B→−∞

S∗n · [gB(S∗n) + k]

= −∞,

where the inequality follows the monotonicity of gB(z) shown in Lemma 4.1 and the

last equality follows from the fact 0 < S∗n <∞ and (4.5).

Finally, we show (4.42) by contradiction. Suppose B∗n > B̂n, then gB∗
n
(z) > gB̂n(z)

must hold for any z ≥ 0 by (4.5). Since gB̂n(z) ≤ −k for z ∈ [0, Ŝn] and gB̂n(z) > −k

for z ∈ (Ŝn,∞),

∫ S∗
n

0

[gB∗
n
(y) + k]dy >

∫ S∗
n

0

[gB̂n(y) + k]dy

69



≥
∫ Ŝn

0

[gB̂n(y) + k]dy

= −Kn,

which contradicts with (4.41). Hence, we must have B∗n ≤ B̂n.

In order to prove subsequent lemmas, we need the following lemma that shows the

properties of gB(z) at the order-up-to level S∗n of the (0, S∗n) policy.

Lemma 4.4. For n ∈ N<,

gB∗
n
(S∗n) ≥ −k. (4.47)

For n ∈ N=,

gB∗
n
(S∗n) = −k. (4.48)

For n ∈ N>,

gB∗
n
(S∗n) ≤ −k. (4.49)

Proof. For n ∈ N=, we have S∗n = Ŝn. Comparing Lemma 4.2 and Lemma 4.3, we

have B∗n = B̂n. Therefore, according to Lemma 4.2, we have gB∗
n
(S∗n) = −k.

For n ∈ N<, we have Ŝn ≤ Qn = S∗n. We prove (4.47) for two cases: Ŝn = Qn = S∗n

and Ŝn < Qn = S∗n. If Ŝn = Qn = S∗n, similar to n ∈ N=, B∗n = B̂n, which further

implies gB∗
n
(S∗n) = −k. If Ŝn < Qn = S∗n, we show (4.47) by contradiction. Suppose

gB∗
n
(S∗n) < −k, then

−Kn =

∫ S∗
n

0

[gB∗
n
(y) + k]dy <

∫ Ŝn

0

[gB∗
n
(y) + k]dy ≤

∫ Ŝn

0

[gB̂n(y) + k]dy = −Kn,

where the first inequality follows from Ŝn < S∗n, gB∗
n
(S∗n) < −k and Lemma 4.1 and the

second inequality follows from (4.42). Therefore, gB∗
n
(S∗n) ≥ −k for n ∈ N<.
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For n ∈ N>, we have Ŝn ≥ Qn+1 = S∗n. We prove (4.49) for two cases: Ŝn =

Qn+1 = S∗n and Ŝn > Qn+1 = S∗n. If Ŝn = Qn+1 = S∗n, similar to n ∈ N=, B∗n =

B̂n, which further implies gB∗
n
(S∗n) = −k. If Ŝn > Qn+1 = S∗n, we show (4.49) by

contradiction. Suppose gB∗
n
(S∗n) > −k, then

−Kn =

∫ S∗
n

0

[gB∗
n
(y) + k]dy <

∫ Ŝn

0

[gB∗
n
(y) + k]dy ≤

∫ Ŝn

0

[gB̂n(y) + k]dy = −Kn,

where the first inequality follows from Ŝn > S∗n, gB∗
n
(S∗n) > −k and Lemma 4.1 and the

second inequality follows from (4.42). Therefore, gB∗
n
(S∗n) ≤ −k for n ∈ N>.

According to the definition in of N<, N= and N> in Section 4.2, we can conclude

that sets N=, N> and N< are disjoint and N= ∪N< ∪N> = {1, 2, . . . ,M}.

Notice that for n ∈ N>∪N<, we may not have K(S∗n) = Kn by the setup cost given

in (1.5). We define

N = {n ∈ N> ∪N< : K(S∗n) = Kn},

N = {n ∈ N> ∪N< : K(S∗n) 6= Kn}.

Then N=, N and N are disjoint and N= ∪N ∪N = {1, 2, . . . ,M}.

For each S∗n, we have
∫ S∗

n

0
[gB∗

n
(y) + k]dy = −Kn by (4.41). However,

∫ S∗
n

0
[gA∗

n
(y) +

k]dy = −K(S∗n) (equivalent to (4.26)) may not hold since the equation K(S∗n) = Kn

may not hold. By the following lemma, we show that we should always have K(S∗n∗) =

Kn∗ if we select the n∗ by (4.9).

To state the next lemma, we first define

χ(n) = max{i = 1, . . . , n− 1 : i ∈ N ∪N=} for n ∈ N<\N , (4.50)

χ(n) = min{i = n+ 1, . . . ,M : i ∈ N ∪N=} for n ∈ N>\N . (4.51)

Lemma 4.5. For each n ∈ N<\N , χ(n) defined in (4.50) exists and satisfies B∗n <

B∗χ(n); for each n ∈ N>\N , χ(n) defined in (4.51) exists and satisfies B∗n < B∗χ(n).
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Proof. For each n ∈ N<\N , we prove the existence of χ(n) by contradiction. Suppose

for some n ∈ N<\N , χ(n) does not exist, namely, i /∈ N ∪ N= and K(S∗i ) 6= Ki for

i = 1, . . . , n − 1. Since K1 > 0, Lemma 4.2 implies Ŝ1 > 0 = Q1, from which we

can deduce 1 /∈ N< and n ≥ 2. n ∈ N<\N implies that Ŝn ≤ Qn = S∗n and K(S∗n) =

Kn−1 < Kn. By (4.35), we have Ŝn−1 < Ŝn ≤ Qn, which together with n−1 /∈ N ∪N=

implies n− 1 ∈ N<\N . By induction, we can obtian {1, . . . , n− 1} ⊂ N<\N , which

contradicts the fact that 1 /∈ N<. Therefore, χ(n) must exist.

For each n ∈ N<\N , we can conclude {χ(n) + 1, . . . , n} ⊂ N<\N and Kχ(n) <

· · · < Kn from above arguments. Then by (4.35), we have Ŝχ(n) < Ŝχ(n)+1 ≤ Qχ(n)+1,

which implies that χ(n) ∈ N< ∪N=. By Lemma 4.1 and Lemma 4.4, we have

gB∗
χ(n)

(z) > −k for z > S∗χ(n).

By (4.8), we have S∗χ(n) < S∗n. Then

∫ S∗
n

0

[gB∗
χ(n)

(y) + k]dy >

∫ S∗
χ(n)

0

[gB∗
χ(n)

(y) + k]dy = −Kχ(n).

Furthermore, we have

∫ S∗
n

0

[gB∗
n
(y) + k]dy = −K(S∗n) = −Kn−1.

We can conclude that B∗n < B∗χ(n) from Kχ(n) ≤ Kn−1 and (4.5).

Using the fact thatQM+1 =∞, we prove that χ(n) exists andBn < Bχ(n) by similar

rationales. The details are omitted.

We obtain the n∗ by (4.9) and S∗, K∗ by (4.10) . Notice that by Lemma 4.5, we

always have n∗ ∈ N= ∪N , namely we always have
∫ S∗

0
[gB∗(y) + k]dy = −K(S∗). We

will prove the optimality of this (0, S∗) policy in Section 4.5.2.
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4.5.2 Verification

In this subsection, we prove Theorem 4.1. Namely, we will prove that the (0, S∗) policy

obtained by the four-step algorithm in Section 4.2 is an optimal policy for our Brownian

inventory model in this chapter. To prove Theorem 4.1, we need the following technical

result.

Lemma 4.6. If K(z2 − z1) = Kn, for n = 1, 2, . . . ,M and z2 > z1 ≥ 0, then

∫ z2

z1

[gB∗(y) + k]dy ≥
∫ S∗

n

0

[gB∗
n
(y) + k]dy = −Kn. (4.52)

Proof. Consider three cases: n ∈ N=, n ∈ N< and n ∈ N>. For n ∈ N=, we have

∫ z2

z1

[gB∗(y) + k]dy ≥
∫ z2

z1

[gB∗
n
(y) + k]dy

≥
∫ z2−z1

0

[gB∗
n
(y) + k]dy

≥
∫ S∗

n

0

[gB∗
n
(y) + k]dy

= −Kn,

where the first inequality follows from B∗ ≥ B∗n, the second inequality follows from

Lemma 4.1 and the third inequality follows from Lemma 4.1 and (4.48).

For n ∈ N<, we have z2 − z1 ≥ S∗n. Then

∫ z2

z1

[gB∗(y) + k]dy ≥
∫ z2

z1

[gB∗
n
(y) + k]dy

≥
∫ z2−z1

0

[gB∗
n
(y) + k]dy

≥
∫ S∗

n

0

[gB∗
n
(y) + k]dy

= −Kn,

where the third inequality follows from Lemma 4.1, (4.47) and z2 − z1 ≥ S∗n.
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For n ∈ N>, we have z2 − z1 ≤ S∗n. Then

∫ z2

z1

[gB∗(y) + k]dy ≥
∫ z2

z1

[gB∗
n
(y) + k]dy

≥
∫ z2−z1

0

[gB∗
n
(y) + k]dy

≥
∫ S∗

n

0

[gB∗
n
(y) + k]dy

= −Kn,

where the third inequality follows from Lemma 4.1, (4.49) and z2 − z1 ≤ S∗n.

Finally, we provide the proof of Theorem 3.1.

Proof of Theorem 4.1. First, we show that DC(x, U(0, S∗)) = VB∗(x) for x ≥ 0.

Namely, we need to show VB∗(·) satisfies the conditions in Theorem 4.4. By the defini-

tion of VB(z) in (4.4) and Proposition 4.1, VB∗(·) is twice continuously differentiable,

V ′B(·) is polynomially bounded and

ΓVB∗(z)− βVB∗(z) + h(z) = 0 for z ≥ 0.

By Lemma 4.3 and Lemma 4.5, we further have

∫ S∗

0

[gB∗(y) + k]dy = −K∗ = −K(S∗),

which can be rewritten as

VB∗(S∗)− VB∗(0) = −K∗ − k · S∗ = −K(S∗)− k · S∗.

Therefore, DC(x, U(0, S∗)) = VB∗(x) for x ≥ 0.

To show the optimality of the (0, S∗) policy, it suffices to show that VB∗(·) satisfies

all the conditions of the lower bound in Theorem 4.2. We have already show that VB∗

satisfies (4.11) with equality, that VB∗ is twice continuously differentiable and that V ′B∗
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is polynomially bounded. It remains to show (4.12). By Lemma 4.6, for z2 > z1 ≥ 0

∫ z2

z1

[gB∗(y) + k]dy ≥ −K(z2 − z1),

which can be rewritten as

VB∗(z1)− VB∗(z2) ≤ K(z2 − z1) + k · (z2 − z1).

Therefore,

DC(x, Y ) ≥ DC(x, U(0, S∗)) for all x ≥ 0 and Y ∈ U .

Furthermore,

DC(x, U(0, S∗)) = VB∗(x) for x ≥ 0.

�

4.6 Policies Subject to Order-up-to Bounds

We prove Theorem 4.3 in this section. Let Y be an arbitrary admissible policy that

DC(x, Y ) is finite, otherwise Theorem 4.3 holds directly. Based on this Y , we first con-

struct a policy subject to an order-up-to bound m, i.e., Ym ∈ Um, where m is a constant

positive integer. Then, we prove that {Ym ∈ Um : m = 1, 2, . . .} has a subsequence that

satisfies (4.15).

For each admissible policy Y , we would construct a policy Ym ∈ Um that incurs less

holding cost and less proportional cost. As m goes large, the discounted setup cost under

Ym should be asymptotically dominated by that under Y . Since the controller is obliged

to keep Z(t) ≥ 0, we also must make sure Zm(t) ≥ 0 under Ym. Based on Y , such a

Ym is constructed as follows. The construction of modified policy Ym follows from the

procedure in He et al. (2015).
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Let Y c
m be the continuous part of Ym. Under Ym, the inventory level at time t is

Zm(t) = X(t) + Ym(t), (4.53)

where X(t) is given by (4.2) and

Ym(t) = Y c
m(t) +

∑
0≤u≤t

∆Ym(u).

The continuous part of Ym is constructed by

Y c
m(t) =

∫ t

0

1{Z(u)≤m}dY
c(u), (4.54)

where Y c is the continuous part of Y . On each sample path, Ym can have a jump either

at a jump time of Y or at a hitting time of zero by Zm. More specifically, let Jm = {t ≥

0 : ∆Ym(t) > 0} be the set of jump times of Ym, J = {t ≥ 0 : ∆Y (t) > 0} be the jump

times of Y , and Hm = {t ≥ 0 : Zm(t−) = 0} be the set of hitting times of zero by Zm.

Then, Jm ⊂ J ∪Hm. The size of each jump of Ym is specifies as follows:

(J1) ∆Ym(t) = 0 for t ∈ J , if Zm(t−) > m/2;

(J2) ∆Ym(t) = ∆Y (t) for t ∈ J , if Zm(t−) ≤ m/2 and Zm(t−) + ∆Y (t) ≤ m;

(J3) ∆Ym(t) = m−Zm(t−) for t ∈ J , if Zm(t−) ≤ m/2 and Zm(t−) + ∆Y (t) > m;

(J4) ∆Ym(t) = Z(t)∧m for t ∈ Hm\J , where Z is the inventory process under policy

Y given in (4.1).

In other words, Ym does not make jumps when the inventory level is above m/2. If

the inventory level is belowm/2, Ym has simultaneous jumps with Y . Each simultaneous

jump takes the corresponding jump size of Y , as long as the inventory level will not

exceed m after the jump. Otherwise, the simultaneous jump will replenish the inventory

to level m. In addition, Ym will jump when the inventory level reaches zero. When the

inventory drop to zero, it will replenish the inventory level to Z(t)∧m, i.e., the minimum

value of Z(t) and m.
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The following lemma state that compared with policy Y , the modified policy Ym

maintains a lower inventory level and the keeps Zm(t) ≥ 0.

Lemma 4.7. Let Y be an admissible policy. For a fixed positive integer m, let Ym be the

policy constructed by (4.54) and (J1)–(J4). Then, Zm(t) ≤ Z(t) for all t ≥ 0 on each

sample path, where Z is the inventory process under policy Y .

Proof. It is trivial that Ym ∈ Um. Since Zm(0−) = Z(0−) = x, we can conclude that

Zm(0) ≤ Z(0) according to the construction principles (J1)− (J4). For t ≥ 0, define

τ = sup{u ∈ [0, t] : u ∈ Hm\J,∆Ym(u) > 0},

with the convention sup ∅ = 0. Then we have the relationship Zm(τ) < Z(τ) according

to (J4). If there exists some u ∈ (τ, t] such that ∆Ym(u) > 0, the jump at time u must

belong to type (J2) or type (J3), which implies that ∆Ym(u) ≤ ∆Y (u). Because Y c is

nondecreasing, it follows from (4.54) that Y c
m(t)− Y c

m(τ) ≤ Y c(t)− Y c(τ). Therefore,

Zm(t) ≤ Z(t) for all t ≥ 0.

Lemma 4.7 implies that the policy Ym incurs less holding cost and less proportional

cost. Next, we prove the comparison theorem by establishing asymptotic dominance

between the discounted cost incurred by these two policies.

Proof of Theorem 4.3. Firstly, we show that the incurred holding cost under Ym is less

than the incurred holding cost under Y . Since h is nondecreasing in [0,∞) by Assump-

tion 2, from Lemma 4.7, we have

∫ ∞
0

e−βth(Zm(t))dt ≤
∫ ∞

0

e−βth(Z(t))dt for t ≥ 0. (4.55)

Namely, the holding cost under Ym is less than the holding cost under Y .

Next, we show Ym incurs less proportional cost than Y , i.e.,

PCm[0, t] ≤ PC[0, t] for all t ≥ 0,
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where PCm[0, t] is the proportional cost under modified policy Ym during time interval

[0, t] and PC[0, t] is the proportional cost under policy Y . Before we prove this inequal-

ity, we first define some notations. Let ζ2(t), ζ3(t) and ζ4(t) represent the cumulative

quantity of (J2)-type jumps, (J3)-type jumps and (J4)-type jumps during time interval

[0, t] respectively. Then we have the relationship

Ym(t) = ζ2(t) + ζ3(t) + ζ4(t).

Furthermore, we have Ym(t) ≤ Y (t) for all t ≥ 0 by Lemma 4.7. Let ν̃i,m for i = 1, 2, . . .

represent the jumping times of positive (J4)-type jumps for constant m.For t ≥ ν̃1,m,

define η(t) as

η(t) = max{i : ν̃i,m ≤ t}.

Therefore, during time interval (ν̃η(t),m, t], there is no positive (J4)-type jumps. Accord-

ing to (J1)–(J3), (J1)-type jumps, (J2)-type jumps and (J3)-type jumps under Ym jump

simultaneously with Y and jump quantities of these three types of jumps under Ym are

less or equal to the quantities of the simultaneous jumps under Ym, which implies that

PCm(ν̃η(t),m, t], the proportional cost incurred by Ym during time interval (ν̃η(t),m, t], is

less or equal to PC(ν̃η(t),m, t], the proportional cost incurred by Y during time interval

(ν̃η(t),m, t]. Therefore,

PC[0, t]− PCm[0, t]

= PC[0, ν̃η(t),m] + PC(ν̃η(t),m, t]− PCm[0, ν̃η(t),m]− PCm(ν̃η(t),m, t]

≥ PC[0, ν̃η(t),m]− PCm[0, ν̃η(t),m].

For j = 1, 2, . . ., we show the following inequality by induction,

PC[0, ν̃j,m]− PCm[0, ν̃j,m]

≥ k[Y (ν̃j,m)− ζ2(ν̃j,m)− ζ3(ν̃j,m)− ζ4(ν̃j,m)]e−βν̃j,m . (4.56)
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For j = 1, we have ζ4(ν̃1,m−) = 0. Since for jumps under Ym of (J1) type, (J2) type and

(J3) type jumps simultaneously with Y , we have Y (ν̃1,m−)−Ym(ν̃1,m−) = Y (ν̃1,m−)−

ζ2(ν̃1,m−)−ζ3(ν̃1,m−), which is the amount of the order quantity under policy Y during

[0, ν̃1,m) exceeds the order quantity under policy Ym. Thus,

PC[0, ν̃1,m)− PCm[0, ν̃1,m) ≥ k[Y (ν̃1,m)− ζ2(ν̃1,m)− ζ3(ν̃1,m)]e−βν̃1,m .

By the fact that Y does not jump at time point ν̃1,m and that ∆ζ4(ν̃1,m) = ζ4(ν̃1,m), we

can obtain

PC[0, ν̃1,m]− PCm[0, ν̃1,m]

≥ k[Y (ν̃1,m)− ζ2(ν̃1,m)− ζ3(ν̃1,m)]e−βν̃1,m − k∆ζ4(ν̃1,m)e−βν̃1,m

= k[Y (ν̃1,m)− ζ2(ν̃1,m)− ζ3(ν̃1,m)− ζ4(ν̃1,m)]e−βν̃1,m .

Suppose (4.56) holds for i ≥ 1, we will show (4.56) holds for i+ 1.

PC[0, ν̃i+1,m]− PCm[0, ν̃i+1,m]

= PC(ν̃i,m, ν̃i+1,m]− PCm(ν̃i,m, ν̃i+1,m] + PC[0, ν̃i,m]− PCm[0, ν̃i,m]

≥ PC(ν̃i,m, ν̃i+1,m]− PCm(ν̃i,m, ν̃i+1,m]

+k[Y (ν̃i,m)− ζ2(ν̃i,m)− ζ3(ν̃i,m)− ζ4(ν̃i,m)]e−βν̃i,m

≥ PC(ν̃i,m, ν̃i+1,m]− PCm(ν̃i,m, ν̃i+1,m]

+k[Y (ν̃i,m)− ζ2(ν̃i,m)− ζ3(ν̃i,m)− ζ4(ν̃i,m)]e−βν̃i+1,m

≥ k
[
[Y (ν̃i+1,m)− Y (ν̃i,m)]− [ζ2(ν̃i+1,m)− ζ2(ν̃i,m)]

−[ζ3(ν̃i+1,m)− ζ3(ν̃i,m)]
]
e−βν̃i+1,m − k∆ζ4(ν̃i+1,m)e−βν̃i+1,m

+k[Y (ν̃i,m)− ζ2(ν̃i,m)− ζ3(ν̃i,m)− ζ4(ν̃i,m)]e−βν̃i+1,m

= k[Y (ν̃i+1,m)− ζ2(ν̃i+1,m)− ζ3(ν̃i+1,m)− ζ4(ν̃i+1,m)]e−βν̃i+1,m ,

where the second inequality follows from the fact that ν̃i+1,m > ν̃i,m and Y (t) ≥

Ym(t) = ζ2(t) + ζ3(t) + ζ4(t) for all t ≥ 0 and the third inequality follows from
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the same rationale of proving case i = 1. Therefore, (4.56) holds for all j ∈ Z+, from

which we can deduce

PC[0, t]− PCm[0, t] ≥ PC[0, ν̃η(t),m]− PCm[0, ν̃η(t),m]

≥ [Y (ν̃η(t),m)− ζ2(ν̃η(t),m)− ζ3(ν̃η(t),m)− ζ4(ν̃η(t),m)]e−βν̃η(t),m

≥ 0,

where the last inequality follows from the fact that Y (t) ≥ Ym(t) = ζ2(t) + ζ3(t) + ζ4(t)

for all t ≥ 0 and k ≥ 0. Namely the modified policy Ym incurs less proportional cost.

Finally, we consider the setup cost. When a jump of type (J2) is made by Ym, the setup

cost is equal to that incurred by the simultaneous jump of Y . Consider two consecutive

jumps of type (J3). Let τ1 and τ2 be the respective jump times with 0 ≤ τ1 < τ2. Because

X has continuous sample paths and Ym is nondecreasing, it follows from (4.53) that

X(τ1)−X(τ2) ≥ Zm(τ1)− Zm(τ2−) ≥ m/2. Let

τ3 = inf
{
u ∈ (0, τ2 − τ1] : X(τ1 + u) = X(τ1)− m

2

}
.

By the strong Markov property of Brownian motion, τ3 has the same distribution as

τ̄ = inf
{
u > 0 : −µu+ σB(u) = −m

2

}
,

where B is the standard Brownian motion. Then τ̄ is the first hitting time of −m/2 by

a Brownian motion with drift −µ. By Proposition 3.3 in Harrison (2013), the Laplace

Transform E[e−βτ̄ ] is given by

E[e−βτ3 ] = E[e−βτ̄ ] = exp
{m(µ−

√
µ2 + 2βσ2)

2σ2

}
.

Since τ2 − τ1 ≥ τ3, it follows that E[e−β(τ2−τ1)] ≤ exp
{
m(µ−
√
µ2+2βσ2)

2σ2

}
, imply-

ing the expected discounted time between two consecutive (J3) jumps is less than

exp
{
m(µ−
√
µ2+2βσ2)

2σ2

}
.
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Now consider two consecutive positive jumps of type (J4). Let τ̃1 and τ̃2 be the

respective jump times with 0 ≤ τ̃1 < τ̃2. We would like to show that there exists

some τ̃0 ∈ [τ̃1, τ̃2) such that Zm(τ̃0) > m/2. Since ∆Ym(τ̃2) > 0, we must have the

relationshipZm(τ̃2−) 6= Z(τ̃2−). IfZm(τ̃1) = Z(τ̃1) holds, τ̃0 must exist. Otherwise,Ym

can only have jumps of type (J2) during (τ̃1, τ̃2) and this yields Zm(τ̃2−) = Z(τ̃2−), a

contradiction. If Zm(τ̃1) 6= Z(τ̃1), we have Zm(τ̃1) = m and thus set τ̃0 = τ̃1. Therefore,

Zm(τ̃0) > m/2 holds for some τ̃0 ∈ [τ̃1, τ̃2). Define

τ̃3 = inf
{
u ∈ (0, τ̃2 − τ̃0] : X(τ̃0 + u) = X(τ̃0)− m

2

}
,

from which we can obtain

E[e−βτ̃3 ] = E[e−βτ̄ ] = exp
{m(µ−

√
µ2 + 2βσ2)

2σ2

}
.

Since τ̃2 − τ̃1 ≥ τ̃3 it follows that E[e−β(τ̃2−τ̃1)] ≤ exp
{
m(µ−
√
µ2+2βσ2)

2σ2

}
, imply-

ing the expected discounted time between two consecutive (J4) jumps is less than

exp
{
m(µ−
√
µ2+2βσ2)

2σ2

}
.

Let N be a positive number such that K(ξ) < N for any ξ > 0. Let νi,m for

i = 1, 2, . . . represent the jumping times of type (J3) jumps. Similarly, we use νi,m short

for νi,m(m) in our thesis. By the strong Markov property of Brownian motion and the

discussion above,

DC(x, Ym)−DC(x, Y )

≤ NEx
[ ∞∑
i=1

e−βνi,m +
∞∑
i=1

e−βν̃i,m
]

≤ N
1

1− exp
{
m(µ−
√
µ2+2βσ2)

2σ2

}(Ex[e−βν1,m ] + Ex[e−βν̃1,m ]
)
. (4.57)
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Next, we show that lim
m→∞

e−βν1,m = 0 in probability by contradiction. Suppose not, i.e.,

there exist ε1, δ1 > 0 such that for any N1 > 0, there exists m > N1,

P(Ω1,m) ≥ δ1,

where Ω1,m = {ω : e−βν1,m > ε1}. By the definition of (J3)-type jumps, ∆Y (ν1,m) ≥

m/2. Then for the sample path ω ∈ Ω1,m, the present value of the proportional cost

incurred by the jump at time ν1,m under policy Y exceeds e−βν1,m · km
2

. Hence,

DC(x, Y ) ≥ Ex[e−βν1,m ·
km

2
] ≥ km

2
Ex[e−βν1,m ] ≥ km

2
ε1 · δ1.

Since m can be arbitrarily large, we must have DC(x, Y ) =∞, a contradiction. There-

fore, we have lim
m→∞

e−βν1,m = 0 in probability. Since ν1,m > 0, e−βν1,m is bounded by 1.

Then by the Bounded Convergence Theorem, we have lim
m→∞

Ex[e−βν1,m ] = 0.

Finally, we show lim
m→∞

Ex[e−βν̃1,m ] = 0 by two steps. Let ν̂1,m represent

the first jumping time of the (J1)-type jump. In the first step, we show that

ν̃1,m ≥ min{ν1,m, ν̂1,m} for each sample path under any m > 0 by contradiction.

Suppose that ν̃1,m < min{ν1,m, ν̂1,m} for some sample path. Then there are only jumps

of type (J2) before the first positive jump of (J4) type. By the definition of (J2)-type

jumps, we have the equation Zm(ν̃1,m−) = Z(ν̃1,m−). Since ν̃1,m ∈ Hm\J , we must

have Z(ν̃1,m−) = Z(ν̃1,m) = Zm(ν̃1,m−) = 0, implying that ∆Ym(ν̃1,m) = 0, a

contradiction. In the second step, we prove that lim
m→∞

e−βν̂1,m = 0 in probability by

contradiction. Suppose not, i.e., there exist ε2, δ2 > 0 such that for any N2 > 0, there

exists m > N2,

P(Ω2,m) ≥ δ2,

where Ω2,m = {ω : e−βν̂1,m > ε2}. By the definition of (J1)-type jumps and Lemma

4.7, we have Z(ν̂1,m−) ≥ Zm(ν̂1,m−) > m/2. Then for the sample path ω ∈ Ω2,m. the

present value of the cost incurred under control policy Y during time interval [0, ν̂1,m)
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must exceed e−βν̃1,m · k(m−2x)
2

. Hence,

DC(x, Y ) ≥ Ex[e−βν̂1,m ·
k(m− 2x)

2
] ≥ k(m− 2x)

2
Ex[e−βν̂1,m ] ≥ k(m− 2x)

2
ε2 · δ2.

Since m can be arbitrarily large and the initial inventory level x is finite, we must have

DC(x, Y ) =∞, a contradiction. By the discussion above, we must have lim
m→∞

e−βν̃1,m =

0 in probability. Since ν̃1,m > 0, e−βν̃1,m is bounded by 1. Then by the Bounded Conver-

gence Theorem, we have lim
m→∞

Ex[e−βν̃1,m ] = 0.

Then by taking limsup as m→∞ of both sides of (4.57), we have

lim sup
m→∞

DC(x, Ym) ≤ DC(x, Y ).

By the Bolzano-Weierstrass theorem, {DC(x, Ym) : m = 1, 2, . . .} has a convergent

subsequence, so the inequality (4.15) holds. �
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Chapter 5

Optimal Policy Under the Discounted

Cost Criterion with Backlogs and

Non-negative Initial Inventory Level

In the previous two chapters, we have shown the optimal control policy for Brownian

inventory models without backlogs under the long-run average cost criterion and the

discounted cost criterion. However, in some inventory systems, backlogs are allowed

and the shortage cost is incurred. In this chapter, we follow the two-step lower bound

approach to obtain an optimal control policy for the continuous-review inventory model

with backlogs under the discounted cost criterion. The optimal policy for a similar inven-

tory model but under the long-run average cost criterion is discussed in He et al. (2015).

In Section 5.1, we present the continuous-review model and assumptions. Section 5.2

presents the main results of this chapter. In Section 5.3, we establish a lower bound

for the expected infinite-horizon discounted cost incurred by an arbitrary admissible

policy. We compute the expected infinite-horizon discounted cost under an (s, S) policy

in Section 5.4. In Section 5.5, we demonstrate how to select the optimal (s, S) policy

and prove the optimality of it.
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5.1 Model and Assumptions

In this chapter, we consider a continuous-review inventory model that is similar to the

model in Chapter 4 but we assume that all unsatisfied demands are backlogged. Because

we allow backlogs in the inventory system, we need to consider negative inventory level

in the both steps of the lower bound approach. Let D(t) and Y (t) be the cumulative

demand quantity and the cumulative order quantity during time [0, t]. We assume only

upward adjustments are allowed in our Brownian control model. Then the inventory

level at time t ≥ 0 is given by

Z(t) = x−D(t) + Y (t),

where x is the initial inventory level. We assume the initial inventory level is non-

negative in our model, namely x ≥ 0. We leave the x < 0 case for the future. The

process D can be represented as

D(t) = µt− σB(t).

For convenience, we repeat the expression of the inventory level at time t

Z(t) = X(t) + Y (t), (5.1)

where

X(t) = x− µt+ σB(t) (5.2)

can be interpreted as the inventory level in the absence of control. Since we assume that

all unsatisfied demands are backlogged, the inventory level at time t can be negative.

Two types of costs are incurred in this continuous-review inventory system: the

inventory holding and shortage cost and the ordering cost. The inventory holding and

shortage cost is incurred at a rate h(z) when the inventory level is z. Since we assume
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that all unsatisfied demands are backlogged, h is defined on the real line R. In the

inventory model of this chapter, we assume that the inventory holding cost rate function

h satisfies the following assumption.

Assumption 3. h(·) satisfies

(A1) h(·) is convex and h(0) = 0;

(A2) h(·) is twice continuously differentiable except at 0;

(A3) h′(z) ≤ 0 for z < 0 and lim
x→−∞

h′(x) < −βk − β max
1≤i≤M

{ Ki
Qi+1
} for x < 0;

h′(z) ≥ 0 for z > 0 and lim
x→+∞

h′(x) > kβ for x > 0, where β > 0 is the discount rate;

(A4) h′(·) and h′′(·) are polynomially bounded. Namely, there exist positive constants

ai > 0, i = 0, 1 and a positive integer n such that h′′(z) ≤ a0 + a1|z|n for all z ∈ R.

An ordering cost is incurred whenever an order is placed and this cost is a function

of the ordering quantity ξ > 0. When an order with quantity ξ > 0 is placed, it incurs a

setup cost of K(ξ) > 0 given by (1.5) and a proportional cost of kξ with proportional

cost rate k > 0. Let φ(ξ) denote the ordering cost with ordering quantity ξ. Then φ(ξ)

is given by (3.3).

Since K(ξ) > 0 for ξ > 0, we only need to consider the policies with N(t) <∞ for

any t ∈ R+, whereN(t) is cardinality of the set {u ∈ [0, t] : ∆Y (u) = Y (u)−Y (u−) >

0}. Otherwise, the total cost would be infinite in the time interval [0, t]. Then a policy

can be specified by a sequence of pairs {(Ti, ξi) : i = 0, 1, . . .} where Ti is the ith order

time and ξi = ∆Y (Ti) = Y (Ti) − Y (Ti−) is the quantity of the ith order. Therefore,

investigating an optimal control policy given that K(ξ) > 0 for ξ > 0 is equivalent to

exploring a sequence of ordering time together with corresponding ordering quantity,

{(Ti, ξi) : i = 0, 1, . . .}, which turns out be an impulse control problem for the Brownian

model.

We aim to find an admissible inventory policy Y that minimizes the expected dis-

counted cost over the infinite horizon

DC(x, Y ) = Ex
[ ∫ ∞

0

e−βth(Z(t))dt+
∞∑
i=0

e−βTi(K(ξi) + kξi)
]
, (5.3)
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where the constant β > 0 is the discounted rate and Ex is the expectation operator

conditioning on the initial inventory level Z(0−) = x > 0.

5.2 Main Results

In this section, we present the main results of this chapter. Under the quantity-dependent

setup cost defined in (1.5), an optimal policy for the Brownian inventory model with

non-negative initial inventory level in this chapter is an (s, S) policy. We propose an

algorithm for computing the optimal reorder level s and the order-up-to level S. We use

U(s, S) to denote an (s, S) policy. The optimal reorder level s∗ and order-up-to level S∗

can be obtained by the following algorithm.

Step 1. For z ∈ R and B ∈ R, put λ1 =
µ+
√
µ2+2βσ2

σ2 , λ2 =
−µ+
√
µ2+2βσ2

σ2 . Let

VB(z) =
2

σ2

1

λ1 + λ2

[
− 1

λ2
2

Be−λ2z

+

∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]
. (5.4)

gB(z) = V ′B(z)

=
2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′(y)dy · eλ1z

+
e−λ2z

λ2

(
B + λ2

∫ z

0

eλ2yh′(y)dy
)]
, (5.5)

Then

g′B(z) =
2

σ2

1

λ1 + λ2

[
λ1

∫ ∞
z

e−λ1yh′(y)dy · eλ1z

−
(
B + λ2

∫ z

0

eλ2yh′(y)dy
)
e−λ2z

]
. (5.6)

For n = 1, . . . ,M , obtain ŝn, Ŝn and B̂n by solving

∫ Ŝn
ŝn

[gB̂n(y) + k]dy = −Kn, (5.7)
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gB̂n(ŝn) = gB̂n(Ŝn) = −k, (5.8)

ŝn < Ŝn. (5.9)

Put Q̂n = Ŝn − ŝn.

Step 2. Define

N< = {n ∈ {1, 2, . . . ,M} : Ŝn − ŝn ≤ Qn},

N= = {n ∈ {1, 2, . . . ,M} : Ŝn − ŝn ∈ (Qn, Qn+1)},

N> = {n ∈ {1, 2, . . . ,M} : Ŝn − ŝn ≥ Qn+1},

and

Q∗n =


Qn for n ∈ N<,

Ŝn − ŝn for n ∈ N=,

Qn+1 for n ∈ N>.

(5.10)

Step 3. For n ∈ N=, let

s∗n = ŝn, S∗n = Ŝn, B∗n = B̂n.

For n ∈ N> ∪N<, obtain (s∗n, S
∗
n, B

∗
n) by solving


S∗n − s∗n = Q∗n,∫ S∗

n

s∗n
[gB∗

n
(z) + k]dz = −Kn,

gB∗
n
(s∗n) = gB∗

n
(S∗n).

Step 4. LetM = {1, . . . ,M}. Define

n∗ = min{n ∈M : B∗i ≤ B∗n for all i ∈M}. (5.11)

88



Let

s∗ = s∗n∗ , S∗ = S∗n∗ , B∗ = B∗n∗ and K∗ = Kn∗ . (5.12)

In Step 1, we obtain the parameters ŝn, Ŝn associated with B̂n by smoothness condi-

tions similar with those in Sulem (1986). This (ŝn, Ŝn) policy is expected to be optimal

when the setup cost is constant at Kn. However under the quantity-dependent setup cost,

a quantity constraint is imposed on each setup cost value. Thus in Step 2 we obtain s∗n

and S∗n, whose difference is confined with the corresponding interval. We obtain the

auxiliary parameter B∗n in Step 3. Finally in Step 4, we select the optimal s∗ and S∗ by

picking the largest B∗n. Please see Section 5.5 for explicit derivations. The difference

between the algorithm is this section and the algorithm in Section 4.2 is that we have

one more parameter s because the expected optimal policy in this chapter is of the (s, S)

type.

Then the (s∗, S∗) policy obtained from the above algorithm is an optimal policy for

our Brownian inventory model in this chapter. The optimality of this (s∗, S∗) policy is

proved by the following theorem.

Theorem 5.1. Assume the cost function h satisfies Assumption 3 and that the setup

cost is given by (1.5). Control policy U(s∗, S∗) obtained by Steps 1–4 is an optimal

admissible policy that minimizes the discounted cost given by (5.3) if the initial inventory

is non-negative. Namely, we have

DC(x, U(s∗, S∗)) ≤ DC(x, Y ) for x ≥ 0 and Y ∈ U .

Moreover, the minimum discounted cost is DC(x, U(s∗, S∗)) = VB∗(x) for x ≥ 0.

5.3 Lower Bound

In this section, we propose and prove a theorem that establishes a lower bound for the

discounted cost incurred by any admissible control policy.
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Theorem 5.2. Assume that h satisfies Assumption 3. Let f(·) : R→ R be continuously

differentiable with f ′ absolutely continuous. Assume that

Γf(z)− βf(z) + h(z) ≥ 0 for all z ∈ R, (5.13)

where

Γf(z) =
1

2
σ2f ′′(z)− µf ′(z).

We further assume that

f(z1)− f(z2) ≤ K(z2 − z1) + k · (z2 − z1) for all z1 < z2, (5.14)

and f ′(·) is polynomially bounded, i.e., there exist positive constants a0, a1 and a positive

integer n such that

|f ′(z)| < a0 + a1z
n for z ≥ 0, (5.15)

and

|f ′(z)| < a0 for z < 0. (5.16)

Then

DC(x, Y ) ≥ f(x), (5.17)

where DC(x, Y ), given by (5.3), is the total discounted cost over the infinite horizon

under any admissible control policy Y .

By Theorem 5.2, if we can find an admissible ordering policy Y whose cost function

DC(x, Y ) satisfies the conditions of f(·) in Theorem 5.2, we can conclude that this

control policy must be optimal among all the admissible policies. In the lower bound
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approach, Theorem 5.2 is referred as a verification theorem. In order to prove Theorem

5.2, we first need to show some technical results. Let Um represent the set of admissible

policies with order-up-to bound at m.

Theorem 5.3 (Comparison Theorem). Assume that the hold cost rate function h is

nondecreasing on [0,∞) and the setup cost function K(·) is bounded. Then for any

admissible policy Y , there exists a sequence of admissible policies {Ym ∈ Um : m =

1, 2, . . .} such that

lim
m→∞

DC(x, Ym) ≤ DC(x, Y ) for all x ∈ R. (5.18)

The proof of Theorem 5.3 follows the same rationale of Section 4.6 with Zm(t) =

Z(t) when Zm(t) < 0 shown in Lemma 8 of He et al. (2015). Let U be the set of all

admissible policies subject to order-up-to bound. Theorem 5.3 implies that a policy that

is optimal in U must be optimal in U . Therefore, we only need to search all admissible

policies subject to order-up-to bounds for the optimal policy as in Chapter 3 and in

Chapter 4.

The following lemma provides three important results that are important for proving

Theorem 5.2.

Lemma 5.1. Let f(·) : R → R be a differentiable function and Z be the inventory

process given in (5.1) with Y ∈ U . Assume there exist positive constants a0, a1 and a

positive integer n such that

|f ′(z)| < a0 + a1|z|n for all z ∈ R.

Then,

Ex[|f(Z(t))|] <∞ for t ≥ 0, (5.19)
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and

Ex
[ ∫ t

0

(e−βsf ′(Z(s)))2ds
]
<∞ for t ≥ 0. (5.20)

Moreover,

lim
t→∞

Ex[e−βt|f(Z(t)) · 1{Z(t)≥0}|] = 0. (5.21)

This lemma can be derived form Lemma 3 in He et al. (2015) directly.

Proof of Theorem 5.2. By Theorem 5.3, it suffices to consider an arbitrary policy Y ∈ U .

For any Y ∈ Um, recall that

Z(t) = x− µt+ σB(t) + Y (t).

By Itô’s formula , we have

e−βtf(Z(t)) = f(Z(0)) +

∫ t

0

e−βs(Γf(Z(s))− βf(Z(s))ds

+σ

∫ t

0

e−βsf ′(Z(s))dB(s) +
∑

0<s≤t

e−βs∆f(Z(s))

= f(Z(0−)) +

∫ t

0

e−βs(Γf(Z(s))− βf(Z(s))ds

+σ

∫ t

0

e−βsf ′(Z(s))dB(s) +
∑

0≤s≤t

e−βs∆f(Z(s)).

By (5.13) and (5.14), we have

e−βtf(Z(t)) ≥ f(x)−
∫ t

0

e−βsh(Z(s))ds+ σ

∫ t

0

e−βsf ′(Z(s))dB(s)

−
N(t)∑
i=0

e−βTiφ(ξi). (5.22)

By (5.20) and Theorem 3.2.1 in Øksendal (2003),

Ex
[ ∫ t

0

e−βsf ′(Z(s))dB(s)
]

= 0.
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Since (5.19) holds, we can take expectation on both sides of (5.22) and obtain

Ex[e−βtf(Z(t))] ≥ f(x)− Ex[
∫ t

0

e−βsh(Z(s))ds]− Ex[
N(t)∑
i=0

e−βTiφ(ξi)].

Taking limit as t→∞ of both the sides of the above inequality, we have

lim inf
t→∞

Ex[e−βtf(Z(t))] + lim inf
t→∞

Ex[
∫ t

0

e−βsh(Z(s))ds+

N(t)∑
i=0

e−βTiφ(ξi)] ≥ f(x).

It follows from (5.3) that

lim inf
t→∞

Ex[e−βtf(Z(t))] +DC(x, Y ) ≥ f(x). (5.23)

If lim inf
t→∞

Ex[e−βtf(Z(t))] ≤ 0, then DC(x, Y ) ≥ f(x) follows from (5.23). If

lim inf
t→∞

Ex[e−βtf(Z(t))] > c for a positive constant c, we show that DC(x, Y ) = ∞,

from which the conclusion DC(x, Y ) ≥ f(x) follows.

When lim inf
t→∞

Ex[e−βtf(Z(t))] > c, it follows from (5.21) that

lim inf
t→∞

Ex[e−βtf(Z(t)) · 1{Z(t)<0}] > c,

and thus there sufficiently large tc such that for t > tc we have

Ex[e−βtf(Z(t)) · 1{Z(t)<0}] >
1

2
c.

By (5.16), there exists a real number d0 such that |f(z)| < a0|z|+d0 for z < 0. Therefore,

for t > tc we must have

Ex[|Z(t)|] > ceβt − 2d0

2a0

. (5.24)

By the assumption that h is convex and h′(z) > 0 for z > 0 and (A3) in Assumption 3,

we can find positive constants d1 > 0 and d2 > 0 such that h(z) ≥ d1|z| − d2 for all
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z ∈ R. Therefore,

Ex
[ ∫ ∞

0

e−βth(Z(t))dt
]
≥ Ex

[ ∫ ∞
0

e−βtd1|Z(t)|dt
]
− d2/β,

where by (5.24) and Tonelli’s theorem, the right side must be positive infinite. Hence,

DC(x, Y ) ≥ f(x) follows from that DC(x, Y ) =∞.

5.4 Expected Discounted Cost Under (s, S) Policies

In this section, we will compute the discounted cost under any (s, S) policy. Under an

(s, S) policy, the controller replenishes the inventory level to the order-up-to level S

immediately when it drops below or equal to the reorder level s. By the definition of

admissible policies, all (s, S) policies are in Ū , the set of admissible policies subject to

order-up-to bounds.

Theorem 5.4. For any (s, S) ∈ R2, if there exists a twice continuous differentiable

function V (·) : R→ R and positive constants a0, a1 and a positive integer n such that

ΓV (z)− βV (z) + h(z) = 0, for z ∈ R (5.25)

V (S)− V (s) = −K(S − s)− k · (S − s), (5.26)

|V ′(z)| < a0 + a1z
n, for z ≥ 0. (5.27)

Then, the total discounted cost under an (s, S) policy with initial inventory level x is

given by

DC(x, U(s, S)) =

 V (x) for x ∈ (s,∞),

V (S) +K(S − x) + k · (S − x) for x ∈ (−∞, s].
(5.28)

Proof. By Itô’s formula (see (5.22)) together with (5.25) and (5.26), we have

e−βtV (Z(t)) = V (Z(0)) + σ

∫ t

0

e−βtV ′(Z(s))dB(s)
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−
∫ t

0

e−βth(Z(s))ds−
N(t)∑
i=1

e−βTiφ(ξi). (5.29)

By (5.20) and Theorem 3.2.1 in Øksendal (2003), we have

Ex
[ ∫ t

0

e−βsf ′(Z(s))dB(s)
]

= 0.

We can take expectation of both sides of (5.29) because (5.19) holds. By taking expecta-

tion of (5.29) and taking limit as t→∞, we have

lim
t→∞

Ex[e−βtV (Z(t))] +DC(x, U(s, S)) = V (Z(0)) + Ex[φ(ξ0)]. (5.30)

Under an (s, S) policy, we have

|V (Z(t))| ≤ |V (Z(t)) · 1{Z(t)≥0}|+ max{|V (z)| : (s ∧ 0) ≤ z ≤ 0}.

The first term in (5.30), lim
t→∞

Ex[e−βtV (Z(t))] = 0 follows from (5.21). Together with

the fact that max{|V (z)| : (s ∧ 0) ≤ z ≤ 0} is bounded, (5.30) can be reduced to

DC(x, U(s, S)) = V (Z(0)) + Ex[φ(ξ0)]. (5.31)

By the definition of (s, S) policies, if x ∈ (s,∞), Z(0) = Z(0−) = x and ξ0 = 0.

Then by (5.31), we have

DC(x, U(s, S)) = V (x).

If x ∈ (−∞, s], Z(0) = S and ξ0 = S − x by the definition of (s, S) policies. Then by

(5.31), we have

DC(x, U(s, S)) = V (S) +K(S − x) + k · (S − x).
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Proposition 5.1. The solution to (5.25)–(5.27) is given by

V (z) = B0e
−λ2z +

2

σ2

1

λ1 + λ2

[ ∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]
, (5.32)

where

B0 =
1

e−λ2S − e−λ2s
{
−K(S − s)− k · (S − s)− 2

σ2

1

λ1 + λ2

[ ∫ S

0

e−λ2(S−y)h(y)dy

−
∫ s

0

e−λ2(s−y)h(y)dy +

∫ ∞
S

eλ1(S−y)h(y)dy −
∫ ∞
s

eλ1(s−y)h(y)dy
]}
, (5.33)

and

λ1 =
µ+

√
µ2 + 2βσ2

σ2
,

λ2 =
−µ+

√
µ2 + 2βσ2

σ2
.

The solution V (z) given by (5.32) together with (5.33) is unique.

Proof. By the proof of Proposition 4.1, (5.32) is the solution to (5.25) and (5.27). By

(5.26), we can derive that B0 is given by (5.33).

5.5 Optimal Policy

By (5.4),

VB(z) =
2

σ2

1

λ1 + λ2

[
− 1

λ2
2

Be−λ2z

+

∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]

= B1e
−λ2z +

2

σ2

1

λ1 + λ2

[ ∫ z

0

e−λ2(z−y)h(y)dy +

∫ ∞
z

eλ1(z−y)h(y)dy
]

where

B1 = − 2

λ2
2σ

2(λ1 + λ2)
B.
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By Proposition 5.1, V ′B(z) is polynomially bounded on [0,∞). Furthermore, VB(z) sat-

isfies the differential equation

ΓVB(z)− βVB(z) + h(z) = 0 for z ∈ R.

For any (s, S) policy, if VB(z) further satisfies

VB(S)− VB(s) = −K(S − s)− k · (S − s), (5.34)

we can conclude by Theorem 5.4 that the discounted cost under an (s, S) policy is given

by

DC(x, U(s, S)) =

 VB(x) for x ∈ (s,∞),

VB(S) +K(S − x) + k · (S − x) for x ∈ (−∞, s].
(5.35)

For any fixed z ∈ R, VB(z) given by (5.4) is strictly decreasing in B. Thus in order to

minimize the discounted cost under an (s, S) policy, we should maximize the value of

B without violating (5.34).

By applying integration by parts to (5.5),

gB(z) =

1
β
h′(z) + 2

σ2
1

λ1+λ2
·
[

1
λ1

(
h′(0+)− h′(0−)

+
∫ 0

z
e−λ1yh′′(y)dy +

∫∞
0
e−λ1yh′′(y)dy

)
eλ1z

+ 1
λ2

(
B − h′(0−) +

∫ 0

z
eλ2yh′′(y)dy

)
e−λ2z

]
, for z < 0,

1
β
h′(0+) + 2

σ2
1

λ1+λ2
·
[

1
λ1

∫∞
0
e−λ1yh′′(y)dy

+ 1
λ2

(
B − h′(0+)

)]
, for z = 0,

1
β
h′(z) + 2

σ2
1

λ1+λ2
·
[

1
λ1

∫∞
z
e−λ1yh′′(y)dy · eλ1z

+ 1
λ2

(
B − h′(0+)−

∫ z
0
eλ2yh′′(y)dy

)
e−λ2z

]
, for z > 0.

(5.36)
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Furthermore, by applying integration by parts to (5.6),

g′B(z) =

2
σ2

1
λ1+λ2

[(
h′(0+)− h′(0−) +

∫ 0

z
e−λ1yh′′(y)dy +

∫∞
0
e−λ1yh′′(y)dy

)
eλ1z

−
(
B − h′(0−) +

∫ 0

z
eλ2yh′′(y)dy

)
e−λ2z

]
, for z < 0,

2
σ2

1
λ1+λ2

[ ∫∞
z
e−λ1yh′′(y)dy · eλ1z

−
(
B − h′(0+)−

∫ z
0
eλ2yh′′(y)dy

)
e−λ2z

]
, for z ≥ 0.

(5.37)

Then, we can obtain

g′′B(z) =

2
σ2

1
λ1+λ2

[
λ1

(
h′(0+)− h′(0−) +

∫ 0

z
e−λ1yh′′(y)dy +

∫∞
0
e−λ1yh′′(y)dy

)
eλ1z

+λ2

(
B − h′(0−) +

∫ 0

z
eλ2yh′′(y)dy

)
e−λ2z

]
, for z < 0,

2
σ2

1
λ1+λ2

[
λ1

∫∞
z
e−λ1yh′′(y)dy · eλ1z

+λ2

(
B − h′(0+)−

∫ z
0
eλ2yh′′(y)dy

)
e−λ2z

]
, for z ≥ 0.

(5.38)

In the rest of this chapter, we need to discuss properties of gB(z) with respect to the

auxiliary variable B for fixed z ∈ R. To make the notation clear, for fixed z ∈ R, let

ϕz(B) = gB(z).

Then by (5.5), we have

ϕ′z(B) =
2

σ2

1

λ1 + λ2

e−λ2z

λ2

. (5.39)

In Section 5.5.1, we demonstrate how the four-step algorithm in Section 5.2 attains

the maximum value of B by selecting the (s∗, S∗) policy, the best policy among (s, S)

policies. In Section 5.5.2, we prove that under this (s∗, S∗) policy, the corresponding

discounted cost function satisfies the conditions specified by the lower bound theorem

if the initial inventory level is non-negative. Thus, this (s∗, S∗) should be an optimal

policy for the Brownian inventory model in this chapter.
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5.5.1 The Optimal (s, S) Policy

In this subsection, we first specify an interval for the auxiliary variable B and discuss

the properties of the boundaries of the interval in Lemma 5.2. Within this interval, we

show the property of gB(z) in Lemma 5.3, which is an important lemma for proving

subsequent lemmas. After showing some technical results in Lemma 5.4 and Lemma 5.5,

we identify a set of (s, S) policies {U(ŝn, Ŝn) : n = 1, . . . ,M} by Lemma 5.6. However

under the quantity-dependent setup cost (1.5), the order quantity under U(ŝn, Ŝn), Q̂n =

Ŝn− ŝn, may not fall into an interval fromQn toQn+1. Thus, we obtain a set of modified

(s, S) policies {U(s∗n, S
∗
n) : n = 1, . . . ,M} by (5.10). Given the Q∗n obtained by (5.10),

Lemma 5.7 proves the existence and uniqueness of (s∗n, S
∗
n, B

∗
n) such that they jointly

satisfy (5.34). Finally, we select the optimal (s∗, S∗) policy out of the set {U(s∗n, S
∗
n) :

n = 1, . . . ,M} by (5.11) and (5.12).

Let

B = h′(0−)−
∫ 0

−∞
eλ2yh′′(y)dy and B = h′(0+) +

∫ ∞
0

e−λ1yh′′(y)dy. (5.40)

Lemma 5.2. For B and B defined in (5.40), we have

B < 0 < B.

Proof. By Assumption 3, we have h′(0−) ≤ 0 and
∫ 0

−∞ e
λ2yh′′(y)dy ≥ 0. Then by

(5.40), we have B ≤ 0. If
∫ 0

−∞ e
λ2yh′′(y)dy < 0, we have the strict inequality B < 0.

Otherwise if
∫ 0

−∞ e
λ2yh′′(y)dy = 0, it suffices to show that h′(0−) < 0, which implies

that B < 0. Since
∫ 0

−∞ e
λ2yh′′(y)dy = 0, we must have h′′(z) = 0 for z ∈ (−∞, 0).

Together with (A3) in Assumption 3, we have h′(0−) < −kβ < 0. Thus B < 0. The

conclusion 0 < B follows from the same rationale and the proof is omitted.

In the next lemma, we show the monotone intervals of gB(z).
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Lemma 5.3. For B ∈ (B,B), there exists a unique z∗(B) such that


g′B(z) < 0 for z < z∗(B),

g′B(z) = 0 for z = z∗(B),

g′B(z) > 0 for z > z∗(B).

(5.41)

In particular, z∗(B) ∈ (−∞, 0). Furthermore,

lim
z→−∞

gB(z) =∞ and lim
z→∞

gB(z) > k. (5.42)

Proof. We first prove (5.41) for two cases: B ∈ (B, h′(0−)) andB ∈ [h′(0−), B). Note

that B ≤ h′(0−) by the definition of B in (5.40). Without loss of generality, we assume

that these two intervals are nonempty.

(i) For B ∈ (B, h′(0−)). Since
∫ 0

z
eλ2yh′′(y)dy is continuous and decreasing for

z ∈ (−∞, 0), there exists an x1 ∈ (−∞, 0) such that

B = h′(0−)−
∫ 0

x1

eλ2yh′′(y)dy. (5.43)

Note that x1 may be not unique. With any x1 that satisfies (5.43), we next prove that

g′′B(z) > 0 for z ∈ (−∞, x1], (5.44)

lim
z→−∞

g′B(z) = −∞, (5.45)

lim
z↑x1

g′B(z) > 0 and (5.46)

g′B(z) > 0 for z ∈ (x1,∞), (5.47)

which together imply that there exists a unique z∗(B) such that (5.41) holds and z∗(B) <

x1 < 0.

We first prove (5.44). For z ∈ (−∞, x1], we have

B − h′(0−) +

∫ 0

z

eλ2yh′′(y)dy =

∫ x1

z

eλ2yh′′(y)dy ≥ 0, (5.48)
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and

h′(0+)− h′(0−) +

∫ 0

z

e−λ1yh′′(y)dy +

∫ ∞
0

e−λ1yh′′(y)dy

= B − h′(0−) +

∫ 0

z

e−λ1yh′′(y)dy

> 0, (5.49)

where the inequality follows from B > 0 and h′(0−) ≤ 0. Therefore, the definition of

g′′B(z) in (5.38) and inequalities (5.48)–(5.49) together imply that (5.44) holds.

Secondly we prove (5.45). We have

lim
z→−∞

g′B(z)

e−λ2z

=
2

σ2

1

λ1 + λ2

lim
z→−∞

[h′(0+)− h′(0−) +
∫ 0

z
e−λ1yh′′(y)dy +

∫∞
0
e−λ1yh′′(y)dy

e−(λ1+λ2)z

−(B − h′(0−) +

∫ 0

z

eλ2yh′′(y)dy)
]

=
2

σ2

1

λ1 + λ2

[
lim

z→−∞

∫ 0

z
e−λ1yh′′(y)dy

e−(λ1+λ2)z
− (B −B)

]
=

2

σ2

1

λ1 + λ2

[
lim

z→−∞

h′′(z)

(λ1 + λ2)e−λ2z
− (B −B)

]
= − 2

σ2

1

λ1 + λ2

(B −B)

< 0,

where the second equality follows from the fact that
∫∞

0
e−λ1yh′′(y)dy <∞ by Assump-

tion 3, the third equality follows from L’Hôpital’s Rule and the last equality follows

from Assumption 3. Hence, g′B(z) is in the same order with−e−λ2z when z goes to−∞,

which implies (5.45).

Next, we check (5.46). We have

lim
z↑x1

g′B(z) =
2

σ2

1

λ1 + λ2

eλ1z
(
h′(0+)− h′(0−) +

∫ 0

x1

e−λ1yh′′(y)dy

+

∫ ∞
0

e−λ1yh′′(y)dy
)

=
2

σ2

1

λ1 + λ2

eλ1z
(
B − h′(0−) +

∫ 0

x1

e−λ1yh′′(y)dy
)
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> 0,

where the inequality follows from B > 0 and h′(0−) ≤ 0.

It remains to prove (5.47). We consider two cases: z ∈ (x1, 0) and z ∈ [0,∞). For

z ∈ (x1, 0), note that (5.49) also holds. Then the inequality (5.49) together with

B − h′(0−) +

∫ 0

z

eλ2yh′′(y)dy =

∫ x1

z

eλ2yh′′(y)dy ≤ 0

implies that (5.47) holds for z ∈ (x1, 0). For z ∈ [0,∞), we haveB < h′(0−) ≤ h′(0+).

Then

B − h′(0+)−
∫ z

0

eλ2yh′′(y)dy < 0 for z ≥ 0,

which together with the definition of g′B(z) in (5.37) implies that (5.47) holds for z ≥ 0.

(ii) For B ∈ [h′(0−), B), we will show that

g′′B(z) > 0 for z ∈ (−∞, 0), (5.50)

lim
z→−∞

g′B(z) = −∞, (5.51)

lim
z↑0

g′B(z) > 0 and (5.52)

g′B(z) > 0 for z ∈ [0,∞), (5.53)

which together imply that there exists a unique z∗(B) such that (5.41) holds and z∗(B) <

0.

Firstly, we prove (5.50). For z ∈ (−∞, 0), we first note that (5.49) also holds. Then

B − h′(0−) +

∫ 0

z

eλ2yh′′(y)dy ≥ 0,

which together with (5.49) implies that g′′B(z) > 0 for z ∈ (−∞, 0).

The proof of (5.51) is same with (5.45) in Case (i).
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Furthermore, we prove (5.52). We have

lim
z↑0

g′B(z) =
2

σ2

1

λ1 + λ2

[
h′(0+)− h′(0−) +

∫ ∞
0

e−λ1yh′′(y)dy −B + h′(0−)
]

=
2

σ2

1

λ1 + λ2

(B −B)

> 0.

We are going to prove (5.53). For z ∈ [0,∞), we have

g′B(z) =
2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
(
B − h′(0+)−

∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
>

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
(
B − h′(0+)−

∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy · eλ1z

−
( ∫ ∞

0

e−λ1yh′′(y)dy −
∫ z

0

eλ2yh′′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′′(y)dy ·
(
eλ1z − e−λ2z

)
+

∫ z

0

(
eλ2y − e−λ1y

)
h′′(y)dy · e−λ2z

]
≥ 0,

where the first inequality follows from B < B and the second equality follows from the

definition of B in (5.40).

We have finished the proof of (5.41) and z∗(B) < 0. It remains to prove (5.42).

Firstly, (5.41), (5.45) and (5.51) immediately imply that lim
z→−∞

gB(z) =∞, which is the

first part of (5.42). Furthermore, it follows from (5.5) that

lim
z→∞

gB(z)

= lim
z→∞

2

σ2

1

λ1 + λ2

[ ∫ ∞
z

e−λ1yh′(y)dy · eλ1z +
1

λ2

(
B + λ2

∫ z

0

eλ2yh′(y)dy
)
e−λ2z

]
=

2

σ2

1

λ1 + λ2

[
lim
z→∞

∫∞
z
e−λ1yh′(y)dy

e−λ1z
+ lim

z→∞

∫ z
0
eλ2yh′(y)dy

eλ2z

]
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=
2

σ2

1

λ1 + λ2

[
lim
z→∞

h′(z)

λ1

+ lim
z→∞

h′(z)

λ2

]
=

1

β
lim
z→∞

h′(z)

> k,

where the third equality follows from L’Hôpital’s Rule, the last equality follows from

λ1 =
µ+
√
µ2+2βσ2

σ2 and λ2 =
−µ+
√
µ2+2βσ2

σ2 , and the inequality follows from Assumption

3.

For B ∈ (B,B), gB(z) attains it global minimum at point z∗(B). With respect to

this minimum point z∗(B), we have the following property.

Lemma 5.4. For B ∈ (B,B), z∗(B) is continuous and strictly increasing in B. Fur-

thermore,

lim
B↑B

z∗(B) = 0 and lim
B↓B

z∗(B) = −∞.

Proof. By Lemma 5.3, z∗(B) is the solution of g′B(z) = 0. Then by the Implicit Function

Theorem, z∗(B) is continuous in B and the derivative z∗′(B) exists. By the fact that

z∗(B) < 0 shown in Lemma 5.3 and the expressions of g′B(z) in (5.6) and (5.37), z∗(B)

is the solution of

λ1

∫ ∞
z

e−λ1yh′(y)dy · eλ1z =
(
B + λ2

∫ z

0

eλ2yh′(y)dy
)
e−λ2z, (5.54)

or equivalently the solution of

(
h′(0+)− h′(0−) +

∫ 0

z

e−λ1yh′′(y)dy +

∫ ∞
0

e−λ1yh′′(y)dy
)
eλ1z

=
(
B − h′(0−) +

∫ 0

z

eλ2yh′′(y)dy
)
e−λ2z. (5.55)

Applying the Implicit Function Theorem to (5.55), we have

z∗′(B) =
2

σ2

1

λ1 + λ2

e−λ2z
∗(B)

g′′B(z∗(B))
. (5.56)
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By (5.44) and (5.50), we have

g′′B(z∗(B)) > 0,

which implies

z∗′(B) > 0. (5.57)

Define

z∗(B) = lim
B↑B

z∗(B).

Since z∗(B) < 0 for B ∈ (B,B), we have

z∗(B) = lim
B↑B

z∗(B) ≤ 0.

Suppose that z∗(B) < 0. By (5.55), we have

(B − h′(0−))(eλ1z
∗(B) − e−λ2z∗(B))

=

∫ 0

z∗(B)

(eλ2(y−z∗(B)) − e−λ1(y−z∗(B)))h′′(y)dy. (5.58)

Since z∗(B) < 0, we have

(B − h′(0−))(eλ1z
∗(B) − e−λ2z∗(B)) < 0,∫ 0

z∗(B)
(eλ2(y−z∗(B)) − e−λ1(y−z∗(B)))h′′(y)dy ≥ 0,

which contradicts with (5.58). Therefore, we have z∗(B) = lim
B↑B

z∗(B) = 0.

Next we show that

z∗(B) = lim
B↓B

z∗(B) = −∞.
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Since z∗(B) is monotone in B, the limit exists. Now suppose that z∗(B) > −∞. By

(5.55), we have

(
h′(0+)− h′(0−) +

∫ 0

z∗(B)

e−λ1yh′′(y)dy +

∫ ∞
0

e−λ1yh′′(y)dy
)
eλ1z

∗(B)

=
(
B − h′(0−) +

∫ 0

z∗(B)

eλ2yh′′(y)dy
)
e−λ2z

∗(B),

where

(
B − h′(0−) +

∫ 0

z∗(B)

eλ2yh′′(y)dy
)
e−λ2z

∗(B)

= −
∫ z∗(B)

−∞
eλ2yh′′(y)dy · e−λ2z∗(B) ≤ 0,

contradicts with that

(
h′(0+)− h′(0−) +

∫ 0

z∗(B)

e−λ1yh′′(y)dy +

∫ ∞
0

e−λ1yh′′(y)dy
)
eλ1z

∗(B)

= B − h′(0−) +

∫ 0

z∗(B)

e−λ1yh′′(y)dy > 0,

where the inequality follows from B < 0 < B. Hence, we have

lim
B↓B

z∗(B) = −∞.

The technical result shown in the following lemma is important to prove its subse-

quent lemma.

Lemma 5.5. There exists a unique B̃ ∈ (B,B) such that

gB̃(z∗(B̃)) = −k. (5.59)
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Proof. Since

dgB(z∗(B))

dB
= g′B(z∗(B))z∗′(B) + ϕ′z∗(B)(B)

= ϕ′z∗(B)(B)

=
2

σ2

1

λ1 + λ2

1

λ2

e−λ2z
∗(B) > 0,

it suffices to show that

lim
B↓B

gB(z∗(B)) < −k, (5.60)

lim
B↑B

gB(z∗(B)) > −k. (5.61)

Firstly, we will show (5.60). By Lemma 5.4 and L’Hôpital’s Rule, we have

lim
B↓B

∫ ∞
z∗(B)

e−λ1yh′(y)dyeλ1z
∗(B) = lim

z→−∞

∫ ∞
z

e−λ1yh′(y)dyeλ1z

= lim
z→−∞

h′(z)

λ1

,

which together with (5.54) implies that

lim
B↓B

(
B + λ2

∫ z∗(B)

0

eλ2yh′(y)dy
)
e−λ2z

∗(B) = lim
z→−∞

h′(z).

Then by the expression of gB(z) in (5.5), we can obtain

lim
B↓B

gB(z∗(B)) = lim
B↓B

2

σ2

1

λ1 + λ2

[ ∫ ∞
z∗(B)

e−λ1yh′(y)dy · eλ1z∗(B)

+
1

λ2

(
B + λ2

∫ z∗(B)

0

eλ2yh′(y)dy
)
e−λ2z

∗(B)
]

=
2

σ2

1

λ1 + λ2

[
lim

z→−∞

h′(z)

λ1

+ lim
z→−∞

h′(z)

λ2

]
= lim

z→−∞

h′(z)

β

< −k,

where the inequality follows from (A3) in Assumption 3.
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Finally, we prove (5.61). By Lemma 5.4 and (5.36), we have

lim
B↑B

gB(z∗(B)) =
2

σ2

1

λ1 + λ2

[ 1

λ1

(B − h′(0−)) +
1

λ2

(B − h′(0−))
]

+
h′(0−)

β

=
B

β
> 0,

where the inequality follows from B > 0.

Under the assumption that the setup cost for any order quantity is constant, Sulem

(1986) specified the necessary and sufficient conditions for the optimal (s, S) policy that

minimizes the total discounted cost. By the following lemma, we identify a set of (s, S)

policies {U(ŝn, Ŝn) : n = 1, . . . ,M} with similar conditions.

Lemma 5.6. For an arbitrary κ > 0, there exists a unique triplet (ŝ(κ), Ŝ(κ), B̂(κ)),

such that

∫ Ŝ(κ)

ŝ(κ)
[gB̂(κ)(y) + k]dy = −κ, (5.62)

gB̂(κ)(ŝ(κ)) = gB̂(κ)(Ŝ(κ)) = −k, (5.63)

ŝ(κ) < Ŝ(κ). (5.64)

In particular, B < B̂(κ) < B̃. Furthermore for any 0 < κi < κj , the corresponding

(ŝ(κi), Ŝ(κi), B̂(κi)) and (ŝ(κj), Ŝ(κj), B̂(κj)) satisfy

ŝ(κj) < ŝ(κi), Ŝ(κi) < Ŝ(κj) and B̂(κi) > B̂(κj). (5.65)

Proof. Firstly, we show that we only need to consider B ∈ (B, B̃). By Lemma 5.3

and Lemma 5.5, we have gB(z) > −k for z ∈ R if B ∈ (B̃, B). By (5.5), gB(z) is

strictly increasing in B for any fixed z ∈ R. Therefore, gB(z) > −k for z ∈ R if

B > B̃. Furthermore by Lemma 5.3 and Lemma 5.5, we have gB̃(z) > −k except

at the point z∗(B̃). Thus if B ≥ B̃, there do not exist s and S with s < S such that
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gB(s) = gB(S) = −k. If B ∈ (−∞, B], we have

B − h′(0−) +

∫ 0

z

eλ2yh′′(y)dy ≤ B − h′(0−) +

∫ 0

z

eλ2yh′′(y)dy

= −
∫ z

−∞
eλ2yh′′(y)dy

< 0 for z < 0.

Together with (5.37) and (5.49), we can conclude that g′B(z) > 0 for z < 0. Furthermore,

we have

B − h′(0+)−
∫ z

0

eλ2yh′′(y)dy ≤ B − h′(0+)−
∫ z

0

eλ2yh′′(y)dy < 0 for z ≥ 0.

Together with (5.37), we can conclude that g′B(z) > 0 for z ≥ 0. Thus if B ∈ (−∞, B],

gB(z) is strictly increasing for z ∈ R, which implies that there do not exist s and S with

s < S such that gB(s) = gB(S). Therefore, we only need to consider B ∈ (B, B̃).

By Lemma 5.3 and Lemma 5.5, for B ∈ (B, B̃), we have gB(z∗(B)) < −k. Further-

more, there exist unique s(B) and S(B) such that

s(B) < S(B) and gB(s(B)) = gB(S(B)) = −k.

By Lemma 5.3, we can conclude that s(B) < z∗(B) < S(B), g′B(s(B)) < 0 and

g′B(S(B)) > 0. By the Implicit Function Theorem, the derivatives s′(B) and S ′(B)

exist. For B ∈ (B, B̃), define

Λ(B) =

∫ S(B)

s(B)

[gB(y) + k]dy. (5.66)

Next, we prove that for any κ > 0, there exists a unique B̂(κ) such that Λ(B̂(κ)) = −κ.

To show the existence and uniqueness of B̂(κ), it suffices to show that

Λ′(B) > 0 for B ∈ (B, B̃), (5.67)

lim
B↑B̃

Λ(B) = 0, (5.68)
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lim
B↓B

Λ(B) = −∞. (5.69)

Firstly, we show (5.67). By the definition of Λ(B) in (5.66), we have

Λ′(B)

=

∫ S(B)

s(B)

ϕ′y(B)dy + [gB(S(B)) + k]S ′(B)− [gB(s(B)) + k]s′(B)

=

∫ S(B)

s(B)

2

σ2

1

λ1 + λ2

1

λ2

e−λ2ydy

> 0.

Since gB(z∗(B̃)) = −k, we can conclude that lim
B↑B̃

s(B) = lim
B↑B̃

S(B) = z∗(B̃). There-

fore, we have

lim
B↑B̃

Λ(B) = 0.

It remains to prove (5.69). Since we have lim
B↓B

z∗(B) = −∞ by Lemma 5.4 and

s(B) < z∗(B), then lim
B↓B

s(B) = −∞. Taking derivatives of the both sides of equa-

tion gB(S(B)) = −k, i.e.,

2

σ2

1

λ1 + λ2

[ ∫ ∞
S(B)

e−λ1yh′(y)dy · eλ1S(B)

+
e−λ2S(B)

λ2

(
B + λ2

∫ S(B)

0

eλ2yh′(y)dy
)]

= −k,

with respect to B for B ∈ (B, B̃), we have

S ′(B) = − 2

σ2

1

λ1 + λ2

e−λ2S(B)

λ2

1

g′(S(B))
< 0, (5.70)

which implies that lim
B↓B

S(B) > −∞. Then (5.69) follow from (5.67) and

lim
B↓B

Λ′(B) = lim
B↓B

∫ S(B)

s(B)

2

σ2

1

λ1 + λ2

1

λ2

e−λ2ydy

= lim
B↓B

2

σ2

1

λ1 + λ2

1

λ2
2

[e−λ2s(B) − e−λ2S(B)]
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= ∞.

It remains to prove (5.65). By (5.62), (5.63) and the Implicit Function Theorem, the

derivatives s′(κ), S ′(κ) and B′(κ) exist. Then to prove (5.65), it suffices to show

s′(κ) < 0, S ′(κ) > 0, and B′(κ) < 0.

Taking derivatives of (5.62) and (5.63) with respect to κ, we can obtain

[gB̂(κ)(Ŝ(κ)) + k]Ŝ ′(κ)− [gB̂(κ)(ŝ(κ)) + k]ŝ′(κ) +

∫ Ŝ(κ)

ŝ(κ)

[ϕ′y(B̂(κ)) · B̂′(κ)]dy = −1,

and

ϕ′
Ŝ(κ)

(B̂(κ)) · B̂′(κ) + g′
B̂(κ)

(Ŝ(κ)) · Ŝ ′(κ) = 0,

ϕ′ŝ(κ)(B̂(κ)) · B̂′(κ) + g′
B̂(κ)

(ŝ(κ)) · ŝ′(κ) = 0,

Then by (5.39) and (5.63), we can conclude that

B̂′(κ) = − σ2(λ1 + λ2)λ2
2

2(e−λ2ŝ(κ) − e−λ2Ŝ(κ))
< 0,

ŝ′(κ) = − 2

σ2

1

λ1 + λ2

1

λ2

e−λ2ŝ(κ)B̂′(κ)

g′
B̂(κ)

(ŝ(κ))
< 0,

Ŝ ′(κ) = − 2

σ2

1

λ1 + λ2

1

λ2

e−λ2Ŝ(κ)B̂′(κ)

g′
B̂(κ)

(Ŝ(κ))
> 0,

where the first inequality follows from ŝ(κ) < Ŝ(κ) and λ1, λ2 > 0, the second inequal-

ity follows from g′
B̂(κ)

(ŝ(κ)) < 0 and the third inequality follows form g′
B̂(κ)

(Ŝ(κ)) >

0.

If κ = Kn where n = 1, . . . ,M and let (ŝn, Ŝn, B̂n) denote the triplet

(ŝ(Kn), Ŝ(Kn), B̂(Kn)) and z∗n denote z∗(B̂(Kn)), the conditions (5.62)–(5.64) are

equivalent to conditions (5.7)–(5.9) in Step 1. Then for κ = Kn where n = 1, . . . ,M ,

we can obtain a set of (s, S) policies {U(ŝn, Ŝn) : n = 1, . . . ,M} by Lemma 5.6.
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When the setup cost is Kn, the quantity of an order is constrained to an interval from Qn

to Qn+1 (which by (1.5) might be (Qn, Qn+1), (Qn, Qn+1], [Qn, Qn+1) or [Qn, Qn+1]).

However, the order quantity for each order under the obtained (ŝn, Ŝn) policy, Ŝn − ŝn,

might not fall into an interval from Qn to Qn+1. In Step 2, we define Q∗n in (5.10) based

on the relative position of Ŝn − ŝn to the interval (Qn, Qn+1). By the definition of Q∗n,

we have Qn ≤ Q∗n ≤ Qn+1 and 0 < Q∗n < ∞ where n = 1, . . . ,M . In the following

lemma, we show that given such an Q∗n, there exists a unique triplet (s∗n, S
∗
n, B

∗
n) such

that (5.34) holds.

Lemma 5.7. For any given Kn > 0 where n = 1, . . . ,M , together with Q∗n defined in

(5.10), there exists a unique triplet (s∗n, S
∗
n, B

∗
n) with s∗n < S∗n such that

S∗n − s∗n = Q∗n, (5.71)∫ S∗
n

s∗n

[gB∗
n
(z) + k]dz = −Kn, (5.72)

gB∗
n
(s∗n) = gB∗

n
(S∗n). (5.73)

Furthermore, we have s∗n < 0 and

B < B∗n ≤ B̂n. (5.74)

Proof. Since we have proved that gB(z) is strictly increasing in z when B ∈ (−∞, B]

and that gB(z) ≥ −k for z ∈ R when B ∈ [B̃,∞) in the proof of Lemma 5.6, we only

need consider when B ∈ (B, B̃). For n ∈ N=, Q∗n = Ŝn − ŝn. Put s∗n = ŝn, S∗n = Ŝn

and B∗n = B̂n. Then by Lemma 5.6, the triplet (s∗n, S
∗
n, B

∗
n) satisfies (5.71)–(5.73). Next,

we consider two cases: n ∈ N> and n ∈ N>.

(i) For n ∈ N>, we have Q∗n = Qn+1 by (5.10). By Lemma 5.3, for any B ∈ (B, B̃)

and given Qn+1 > 0, there exist unique s1(B) and S1(B) with s1(B) < S1(B) and

S1(B)− s1(B) = Qn+1 such that gB(s1(B)) = gB(S1(B)). Then we can conclude that

s1(B) < z∗(B) < S1(B) by Lemma 5.3 and that the derivatives s′1(B) and S ′1(B) exist
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by the Implicit Function Theorem. Define

Λ1(B) =

∫ S1(B)

s1(B)

[gB(y) + k]dy. (5.75)

It suffices to show

Λ1(B̂n) ≥ −Kn, (5.76)

lim
B↓B

Λ1(B) < −Kn, (5.77)

Λ′1(B) > 0. (5.78)

Firstly, we will show (5.76). By Lemma 5.6,we have gB̂n(ŝn) = gB̂n(Ŝn) = −k. To-

gether with Lemma 5.3, the fact that gB̂n(s1(B̂n)) = gB̂n(S1(B̂n)) and that Ŝn − ŝn ≥

Qn+1, we can conclude that ŝn ≤ s1(B̂n) < S1(B̂n) ≤ Ŝn. Then by Lemma 5.3 and

Lemma 5.6,

Λ1(B̂n) =

∫ S1(B̂n)

s1(B̂n)

[gB̂n(y) + k]dy

≥
∫ Ŝn

ŝn

[gB̂n(y) + k]dy

= −Kn.

Next, we will show (5.77). By Lemma 5.3, we have

lim
B↓B

Λ1(B) < Qn+1 · [lim
B↓B

gB(S1(B)) + k] ≤ Qn+1 · [lim
B↓B

gB(z∗(B) +Qn+1) + k].

It suffices to show that

lim
B↓B

gB(z∗(B) +Qn+1) < −k − Kn

Qn+1

.

By definition of gB(z) in (5.5), we have

lim
B↓B

gB(z∗(B) +Qn+1)
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= lim
B↓B

2

σ2

1

λ1 + λ2

[ ∫ ∞
z∗(B)+Qi+1

e−λ1yh′(y)dy · eλ1(z∗(B)+Qn+1)

+
1

λ2

(
B + λ2

∫ z∗(B)+Qn+1

0

eλ2yh′(y)dy
)
e−λ2(z∗(B)+Qn+1)

]
. (5.79)

For the first term in (5.79), we have

lim
B↓B

∫ ∞
z∗(B)+Qn+1

e−λ1yh′(y)dy · eλ1(z∗(B)+Qn+1)

= lim
z→−∞

∫∞
z+Qn+1

e−λ1yh′(y)dy

e−λ1(z+Qn+1)

= lim
z→−∞

h′(z +Qn+1)

λ1

,

where the first equality follows from Lemma 5.4 and the second equality is due to

L’Hôpital’s Rule. For the second term in (5.79), by (5.37) the fact that g′(z∗(B) +

Qn+1) > 0 and the expression of g′B in (5.6), we have

lim
B↓B

1

λ2

(
B + λ2

∫ z∗(B)+Qn+1

0

eλ2yh′(y)dy
)
e−λ2(z∗(B)+Qn+1)

< lim
B↓B

λ1

λ2

∫ ∞
z∗(B)+Qn+1

e−λ1yh′(y)dy · eλ1(z∗(B)+Qn+1)

= lim
z→−∞

h′(z +Qn+1)

λ2

.

Therefore, we have

lim
B↓B

gB(z∗(B) +Qn+1) < lim
z→−∞

h′(z +Qn+1)

β

< −k − Kn

Qn+1

,

where the last inequality follows from (A3) in Assumption 3.

Finally, we prove (5.78). Taking derivatives of the both sides of (5.75) with respect

to B, we have

Λ′1(B) =

∫ S1(B)

s1(B)

ϕ′y(B)dy + [gB(s1(B)) + k]s′1(B)− [gB(S1(B)) + k]S ′1(B)
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=

∫ S1(B)

s1(B)

2

σ2

1

λ1 + λ2

1

λ2

e−λ2ydy

> 0,

where the second equality follows from gB(S1(B)) = gB(s1(B)) and S1(B) = s1(B) +

Qn+1.

(ii) For n ∈ N<, we have Q∗n = Qn by (5.10). By Lemma 5.3, for any B ∈ (B, B̃)

and given Qn > 0, there exist unique s2(B) and S2(B) with s2(B) < S2(B) and

S2(B) − s2(B) = Qn such that gB(s2(B)) = gB(S2(B)). Then we can conclude

thats2(B) < z∗(B) < S2(B) by Lemma 5.3 and that the derivatives s′2(B) and S ′2(B)

exist by the Implicit Function Theorem. Define

Λ2(B) =

∫ S2(B)

s2(B)

[gB(y) + k]dy. (5.80)

It suffices to show

Λ′2(B) > 0, (5.81)

Λ2(B̂n) ≥ −Kn, (5.82)

lim
B↓B

Λ2(B) < −Kn. (5.83)

Firstly, we prove (5.81). Taking derivatives of the both sides of (5.80) with respect to B,

we have

Λ′2(B) =

∫ S2(B)

s2(B)

ϕ′y(B)dy + [gB(s2(B)) + k]s′2(B)− [gB(S2(B)) + k]S ′2(B)

=

∫ S2(B)

s2(B)

2

σ2

1

λ1 + λ2

1

λ2

e−λ2ydy

> 0,

where the second equality follows from gB(S2(B)) = gB(s2(B)) and S2(B) = s2(B) +

Qn.
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Nest, we will show (5.82). By Lemma 5.6,we have gB̂n(ŝn) = gB̂n(Ŝn) = −k.

Together with Lemma 5.3, the fact that gB̂(s2(B̂n)) = gB̂(S2(B̂n)) and that Ŝn − ŝn ≤

Qn, we have s2(B̂n) ≤ ŝn < Ŝn ≤ S2(B̂n). Then by Lemma 5.3 and Lemma 5.6,

Λ2(B̂n) =

∫ S2(B̂n)

s2(B̂n)

[gB̂n(y) + k]dy

≥
∫ Ŝn

ŝn

[gB̂n(y) + k]dy

= −Kn.

Finally, we will show (5.83). As in the proof of Lemma 5.6, for B ∈ (B, B̃) there

exist unique s(B) and S(B) such that s(B) < S(B) and gB(s(B)) = gB(S(B)) = −k.

Next, we show that there exists a unique B́ ∈ (B, B̂n] such that S(B́) − s(B́) = Qn.

By the definition of s(B) and S(B), we have s(B̂n) = ŝn and S(B̂n) = Ŝn. Then

S(B̂n) − s(B̂n) = Ŝn − ŝn ≤ Qn. By (5.70) and lim
B↓B

s(B) < lim
B↓B

z∗(B) = −∞,

we have lim
B↓B

(S(B) − s(B)) = ∞. Taking derivatives of the both sides of equation

gB(s(B)) = −k with respect to B for B ∈ (B, B̃), we have

s′(B) = − 2

σ2

1

λ1 + λ2

e−λ2S(B)

λ2

1

g′(s(B))
> 0, (5.84)

where the inequality follows from g′(s(B)) < 0. Therefore, we have S ′(B)− s′(B) > 0

forB ∈ (B, B̃). Then there there exists a unique B́ ∈ (B, B̂n] such that S(B́)−s(B́) =

Qn. Namely, gB́(s3(B́)) = gB́(s3(B́) + Qn) = −k. Therefore, s2(B́) = s(B́) and

S2(B́) = S(B́). By the definition of gB in (5.5) and B́ ≤ B̂n, we have gB́(z) ≤ gB̂n(z)

for z ∈ R. Then by gB̂n(ŝn) = gB̂n(Ŝn) = −k and gB́(s2(B́)) = gB́(S2(B́)) = −k, we

have

s2(B́) ≤ ŝn < Ŝn ≤ S2(B́).
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Therefore,

Λ2(B́) =

∫ S2(B́)

s2(B́)

[gB́(y) + k]dy

≤
∫ Ŝn

ŝn

[gB́(y) + k]dy

≤
∫ Ŝn

ŝn

[gB̂n(y) + k]dy

= −Kn,

which together with (5.81) implies (5.83).

In order to prove subsequent lemmas, we need the following lemma that shows the

properties of gB(z) at the reorder level s∗n and the order-up-to level S∗n of the (s∗n, S
∗
n)

policy.

Lemma 5.8. For n ∈ N<,

gB∗
n
(s∗n) = gB∗

n
(S∗n) ≥ −k. (5.85)

For n ∈ N=,

gB∗
n
(s∗n) = gB∗

n
(S∗n) = −k. (5.86)

For n ∈ N>,

gB∗
n
(s∗n) = gB∗

n
(S∗n) ≤ −k. (5.87)

Proof. For n ∈ N=, we have s∗n = ŝn, S∗n = Ŝn. Comparing Lemma 5.6 and Lemma

5.7, we have B̂n = B∗n. Then by Lemma 5.6, we have gB∗
n
(s∗n) = gB∗

n
(S∗n) = −k.

For n ∈ N<, we have Ŝn − ŝn ≤ Qn. We prove (5.85) for two cases: Ŝn − ŝn = Qn

and Ŝn − ŝn < Qn. If Ŝn − ŝn = Qn, similar to n ∈ N=, we have B̂n = B∗n, which

further implies gB∗
n
(s∗n) = gB∗(S∗n) = −k. If Ŝn − ŝn < Qn = S∗n − s∗n, we have

B∗n ≤ B̂n by Lemma 5.7. Then by Lemma 5.3, Lemma 5.4, ŝn < z∗(B̂n) < Ŝn and
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s∗n < z∗(B∗n) < S∗n, we have s∗n < ŝn < Ŝn < S∗n. We will prove (5.85) by contradiction.

Suppose gB∗
n
(s∗n) = gB∗

n
(S∗n) < −k, we have

−Kn =

∫ S∗
n

s∗n

[gB∗
n
(y) + k]dy <

∫ Ŝn

ŝn

[gB∗
n
(y) + k]dy ≤

∫ Ŝn

ŝn

[gB̂n(y) + k]dy = −Kn,

where the first equality follows from (5.72), the first inequality follows from Lemma 5.3,

the second inequality follows from the fact B∗n ≤ B̂n and the last equality follows from

(5.62). Therefore, gB∗
n
(s∗n) = gB∗

n
(S∗n) ≥ −k for n ∈ N<.

For n ∈ N>, we have Ŝn − ŝn ≥ Qn+1. We prove (5.87) for two cases: Ŝn −

ŝn = Qn+1 and Ŝn − ŝn > Qn+1. If Ŝn − ŝn = Qn+1, similar to n ∈ N=, we have

B̂n = B∗n, which further implies gB∗
n
(s∗n) = gB∗(S∗n) = −k. If Ŝn − ŝn > Qn+1, we

have S∗n − s∗n = Qn+1 < Ŝn − ŝn. By Lemma 5.3, Lemma 5.4, ŝn < z∗(B̂n) < Ŝn and

s∗n < z∗(B∗n) < S∗n, we have ŝn < s∗n < S∗n < Ŝn. Then by Lemma 5.3 and B∗n ≤ B̂n,

we have gB∗
n
(S∗n) = gB∗

n
(s∗n) < gB∗

n
(ŝn) ≤ gB̂n(ŝn) = −k.

According to the definition of N<, N= and N> in Section 5.2, we can conclude that

sets N=, N> and N< are mutually disjoint and N= ∪N< ∪N> = {1, 2, . . . ,M}.

Notice that for n ∈ N> ∪ N<, we may not have K(Q∗n) = Kn by the setup cost

given in (1.5). We define

N = {n ∈ N> ∪N< : K(Q∗n) = Kn},

N = {n ∈ N> ∪N< : K(Q∗n) 6= Kn}.

Then N=, N and N are mutually disjoint and N= ∪N ∪N = {1, 2, . . . ,M}.

For each S∗n, we have
∫ S∗

n

s∗n
[gB∗

n
(y) + k]dy = −Kn by (5.72). However,

∫ S∗
n

s∗n
[gB∗

n
(y) +

k]dy = −K(Q∗n) (equivalent to (5.34)) may not hold since the equation K(Q∗n) = Kn

may not hold. By the following lemma, we show that we should always have K(S∗n∗) =

Kn∗ if we select the n∗ by (5.11).

To state the next lemma, we first define

χ(n) = max{i = 1, . . . , n− 1 : i ∈ N ∪N=} for n ∈ N<\N , (5.88)
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χ(n) = min{i = n+ 1, . . . ,M : i ∈ N ∪N=} for n ∈ N>\N . (5.89)

Lemma 5.9. For each n ∈ N<\N , χ(n) defined in (5.88) exists and satisfies B∗n <

B∗χ(n); for each n ∈ N>\N , χ(n) defined in (5.89) exists and satisfies B∗n < B∗χ(n).

Proof. For each n ∈ N<\N , we prove the existence of χ(n) by contradiction. Suppose

for some n ∈ N<\N , χ(n) does not exist, namely, i /∈ N ∪ N= and K(Q∗i ) 6= Ki

for i = 1, . . . , n − 1. Since K1 > 0, Lemma 5.6 implies Q̂1 > 0 = Q1, from which

we can deduce 1 /∈ N< and n ≥ 2. For n ∈ N<\N , we have Q̂n ≤ Qn = Q∗n and

K(Q∗n) = Kn−1 < Kn. By (5.65), we have Q̂n−1 < Q̂n ≤ Qn, which together with

n−1 /∈ N ∪N= implies n−1 ∈ N<\N . By induction, we can obtain {1, . . . , n−1} ⊂

N<\N , which contradicts the fact that 1 /∈ N<. Therefore, χ(n) must exist.

For each n ∈ N<\N , we can conclude {χ(n) + 1, . . . , n} ⊂ N<\N and Kχ(n) <

· · · < Kn from above arguments. Then by (5.65), we have Q̂χ(n) < Q̂χ(n)+1 ≤ Qχ(n),

which implies that χ(n) ∈ N< ∪N=. By Lemma 5.3 and Lemma 5.8, we have

gB∗
χ(n)

(z) > −k for z < s∗χ(n) and z > S∗χ(n).

By (5.10), we have Q∗χ(n) < Q∗n. Then we have s∗n < s∗χ(n) < S∗χ(n) < S∗n. Therefore,

∫ S∗
n

s∗n

[gB∗
χ(n)

(y) + k]dy >

∫ S∗
χ(n)

s∗
χ(n)

[gB∗
χ(n)

(y) + k]dy = −Kχ(n).

Furthermore, we have

∫ S∗
n

s∗n

[gB∗
n
(y) + k]dy = −K(S∗n) = −Kn−1.

We can conclude that B∗n < B∗χ(n) from Kχ(n) ≤ Kn−1 and (5.5).

Using the fact that QM+1 = +∞, we prove that χ(n) exists and Bn < Bχ(n) by

similar rationales. The details are omitted.
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We obtain the n∗ by (5.11) and s∗, S∗, B∗, K∗ by (5.12) . Notice that by Lemma

5.9, we always have n∗ ∈ N= ∪ N , namely we always have
∫ S∗

s∗
[gB∗(y) + k]dy =

−K(S∗ − s∗). We will prove the optimality of this (s∗, S∗) policy in Section 5.5.2.

5.5.2 Verification

In this subsection, we prove Theorem 5.1. Namely, we will prove that the (s∗, S∗) policy

obtained by the four-step algorithm in Section 5.2 is an optimal policy for our Brownian

inventory model in this chapter. To prove Theorem 5.1, we need the following technical

result.

Lemma 5.10. Assume that cost function h satisfies Assumption 3. If K(z2 − z1) = Kn,

for n ∈ 1, 2, . . . ,M and z2 > z1, then

∫ z2

z1

[gB∗(y) + k]dy ≥
∫ S∗

n

s∗n

[gB∗
n
(y) + k]dy = −Kn.

Proof. By Lemma 5.3, for any B ∈ (B,B) and any constant Q ∈ (0,+∞), there exist

unique α1(Q), α2(Q) with α2(Q)−α1(Q) = Q such that gB(α1(Q)) = gB(α2(Q)) and

 gB(z) < gB(α1(Q)) for z ∈ (α1(Q), α2(Q)),

gB(z) > gB(α1(Q)) for z /∈ [α1(Q), α2(Q)],
(5.90)

For any z2 > z1, letting Q = z2− z1, we can get α1(z2− z1) and α2(z2− z1). Therefore,

for any B ∈ (B,B) and z2 > z1, we have

∫ z2

z1

[gB(y) + k]dy =

∫
[z1,z2]∩[α1(z2−z1),α2(z2−z1)]

[gB(y) + k]dy

+

∫
[z1,z2]∩[α1(z2−z1),α2(z2−z1)]c

[gB(y) + k]dy

≥
∫

[z1,z2]∩[α1(z2−z1),α2(z2−z1)]

[gB(y) + k]dy

+[gB(α1(z2 − z1)) + k]v([z1, z2] ∩ [α1(z2 − z1), α2(z2 − z1)]c)

=

∫
[z1,z2]∩[α1(z2−z1),α2(z2−z1)]

[gB(y) + k]dy

+[gB(α1(z2 − z1)) + k]v([z1, z2]c ∩ [α1(z2 − z1), α2(z2 − z1)])
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≥
∫

[z1,z2]∩[α1(z2−z1),α2(z2−z1)]

[gB(y) + k]dy

+

∫
[z1,z2]c∩[α1(z2−z1),α2(z2−z1)]

[gB(y) + k]dy

=

∫ α2(z2−z1)

α1(z2−z1)

[gB(y) + k]dy, (5.91)

where v is the Lebesgue measure in R, the two inequalities follow from (5.90) and the

second equality follows from

v([z1, z2] ∩ [α1(z2 − z1), α2(z2 − z1)]c)

= v([z1, z2])− v([z1, z2] ∩ [α1(z2 − z1), α2(z2 − z1)])

= v([α1(z2 − z1), α2(z2 − z1)])− v([z1, z2] ∩ [α1(z2 − z1), α2(z2 − z1)]c)

= v([z1, z2]c ∩ [α1(z2 − z1), α2(z2 − z1)]).

Next, we show

∫ α2(z2−z1)

α1(z2−z1)

[gB∗
n
(y) + k]dy ≥

∫ S∗
n

s∗n

[gB∗
n
(y) + k]dy. (5.92)

The proof of the this inequality will be divided into three cases: n ∈ N=, n ∈ N< and

n ∈ N>.

For n ∈ N=, we have s∗n = ŝn < Ŝn = S∗n, which together with Lemma 5.3 and

(5.86) implies that

∫ α2(z2−z1)

α1(z2−z1)

[gB∗
n
(z) + k]dz ≥

∫ S∗
n

s∗n

[gB∗
n
(z) + k]dz.

For n ∈ N<, we have

S∗n − s∗n = Q∗n = Qn ≤ z2 − z1 = α2(z2 − z1)− α1(z2 − z1),
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which further implies

α1(z2 − z1) ≤ s∗n < S∗n ≤ α2(z2 − z1).

Together with (5.85), we have

∫ α2(z2−z1)

α1(z2−z1)

[gB∗
n
(z) + k]dz ≥

∫ S∗
n

s∗n

[gB∗
n
(z) + k]dz.

For n ∈ N>, we have

S∗n − s∗n = Q∗n = Qn+1 ≥ z2 − z1 = α2(z2 − z1)− α1(z2 − z1),

which further implies

s∗n ≤ α1(z2 − z1) < α2(z2 − z1) ≤ S∗n.

Together with (5.87), we have

∫ α2(z2−z1)

α1(z2−z1)

[gB∗
n
(z) + k]dz ≥

∫ S∗
n

s∗n

[gB∗
n
(z) + k]dz.

Therefore, for each n and z1, z2 that satisfy K(z2 − z1) = Kn, we have

∫ z2

z1

[gB∗(y) + k]dy ≥
∫ z2

z1

[gB∗
n
(y) + k]dy

≥
∫ α2(z2−z1)

α1(z2−z1)

[gB∗
n
(y) + k]dy

≥
∫ S∗

n

s∗n

[gB∗
n
(y) + k]dy

= −Kn,

where the first inequality follows from the definition of n∗ in (5.11), the second inequality

follows from (5.91) and the last inequality follows from (5.92).
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By Theorem 5.4, Lemma 5.7 and (5.11), we can conclude that DC(x, U(s∗, S∗)) =

VB∗(x) for x ≥ 0. However, VB∗ does not satisfy (5.16). Next, we will construct a

function V̄ (z) for z ∈ R such that V̄ (z) = VB∗(z) for z ≥ 0 and it satisfies (5.16).

We will also show that V̄ (z) satisfies all the conditions in Theorem 5.2 in the proof of

Theorem 5.1. The function V̄ (z) for z ∈ R is constructed by the following procedure.

By Lemma 5.3, Lemma 5.7 and (5.11), there exists s̄ < z∗(B∗) < S̄ such that gB∗(s̄) =

gB∗(S̄) = −k. By Lemma 5.3, there exist z0 < s̄ such that

∫ S̄

z0

[gB∗(y) + k]dy = 0. (5.93)

Furthermore, we have gB∗(z0) > −k and z0 < z∗(B∗) < 0. Then, function V̄ (z) is

defined as

V̄ (z) =

 VB∗(z) for z ≥ z0,

VB∗(z0) + gB∗(z0)(z − z0) for z < z0,
(5.94)

where the VB∗(z) is defined in (5.4) and gB∗(z) is defined in (5.5).

To prove that V̄ (Z) satisfies all the conditions in Theorem 5.2, we need the following

lemma.

Lemma 5.11. For B ∈ (B, B̃) and z∗(B) defined in Lemma 5.3,

h′(z∗(B)) < −βk.

Proof. By (5.55), we have

(
B − h′(0−) +

∫ 0

z∗(B)

eλ2yh′′(y)dy
)
e−λ2z

∗(B)

=
(
h′(0+)− h′(0−) +

∫ 0

z∗(B)

e−λ1yh′′(y)dy +

∫ ∞
0

e−λ1yh′′(y)dy
)
eλ1z

∗(B)

=
(
B − h′(0−) +

∫ 0

z∗(B)

eλ2yh′′(y)dy
)
eλ1z

∗(B)) > 0,
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where the second equality follows from the definition of B and the inequality follows

from B > 0 and z∗(B) < 0. Together with (5.36), we have

1

β
h′(z∗(B)) < gB(z∗(B)) < −k,

where the inequality follows form Lemma 5.5

Proof of Theorem 5.1. Firstly, we show that DC(x, U(s∗, S∗)) = VB∗(x) = V̄ (x) for

x ≥ 0. Namely, we need to show VB∗ satisfies the conditions in Theorem 5.4. By defini-

tion of VB(z) in (5.4) and Proposition 5.1, VB∗(z) is twice continuously differentiable,

V ′B(z) is polynomially bounded in [0,∞) and

ΓVB∗(z)− βVB∗(z) + h(z) = 0 for z ∈ R.

By Lemma 5.7 and Lemma 5.9, we further have

∫ S∗

s∗
[gB∗(y) + k]dy = −K∗ = −K(S∗ − s∗),

which can be rewritten as

VB∗(S∗)− VB∗(s∗) = −K∗ − k · (S∗ − s∗) = −K(S∗ − s∗)− k · (S∗ − s∗).

Since s∗ < 0, we have DC(x, U(0, S∗)) = VB∗(x) = V̄ (x) for x ≥ 0 by Theorem 5.4.

To show the optimality of the (s∗, S∗) policy if the initial inventory level x ≥ 0, it

suffices to show that V̄ (z) satisfies all the conditions of the lower bound in Theorem

5.2. By the definition of V̄ (z) in (5.94), V̄ (z) is continuously differentiable and V̄ ′(z)

is absolutely continuous. Since V̄ (z) = VB∗(z) for z ≥ 0 > z0, V̄ ′(z) is polynomial

bounded in [0,∞). In addition, for z0 ≤ z ≤ 0, V̄ ′(z) = gB∗(z) is continuous in

z ∈ [z0, 0], which implies that V̄ ′(z) is bounded in [z0, 0] and that for z < z0, V̄ ′(z) =

gB∗(z0) is a constant. Thus V̄ (z) satisfies (5.15) and (5.16).
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It remains to show V̄ (z) satisfies (5.13) and (5.14). Firstly, we show that (5.13) is

satisfied. For z ∈ R, we have

1

2
σ2V ′′B∗(z)− µV ′B∗(z)− βVB∗(z) + h(z) = 0,

which implies that ΓV̄ (z)− βV̄ (z) + h(z) = 0 for z ≥ z0. Then we have

1

2
σ2V ′′B∗(z0)− µV ′B∗(z0)− βVB∗(z0) + h(z0) = 0,

which together with V ′′B∗(z0) = g′B∗(z0) < 0 implies

−µgB∗(z0)− βVB∗(z0) + h(z0) > 0. (5.95)

For z < z0,

1

2
σ2V̄ ′′(z)− µV̄ ′(z)− βV̄ (z) + h(z)

= −µgB∗(z0)− β[VB∗(z0) + gB∗(z0)(z − z0)] + h(z)

= −µgB∗(z0)− βVB∗(z0) + h(z0)− βgB∗(z0)(z − z0) + h(z)− h(z0)

> h(z)− h(z0)− βgB∗(z0)(z − z0)

> 0,

where the first inequality follows from (5.95) and the last inequality follows from the

convexity of h, Lemma 5.11, z0 < z∗(B∗) and gB∗(z0) > −k.

Finally, we show that (5.14) is satisfied. We will show this inequality for three cases:

z2 > z1 ≥ z0, z0 > z2 > z1 and z2 ≥ z0 > z1. If z2 > z1 ≥ z0,

V̄ (z1)− V̄ (z2) = VB∗(z1)− VB∗(z2) ≤ K(z2 − z1) + k · (z2 − z1),

where the inequality follows from Lemma 5.10. If z0 > z2 > z1,

V̄ (z1)− V̄ (z2) = gB∗(z0)(z1 − z2)
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< −k · (z1 − z2)

< K(z2 − z1) + k · (z2 − z1),

where the first inequality follows from that gB∗(z0) > −k and the second inequality

follows from that K(ξ) > 0 for any ξ > 0. If z2 ≥ z0 > z1,

V̄ (z1)− V̄ (z2)

= VB∗(z0) + gB∗(z0)(z1 − z0)− VB∗(z2)

= −
∫ z2

z0

[gB∗(y) + k]dy + k · (z2 − z1) + k · (z1 − z0) + gB∗(z0)(z1 − z0)

≤ −
∫ S̄

z0

[gB∗(y) + k]dy + k · (z2 − z1) + k · (z1 − z0) + gB∗(z0)(z1 − z0)

= k · (z2 − z1) + [gB∗(z0) + k](z1 − z0)

< k · (z2 − z1)

< K(z2 − z1) + k · (z2 − z1),

where the first inequality follows from Lemma 5.3, gB∗(s̄) = gB∗(S̄) = −k and z0 < s̄

and the second inequality follows from gB∗(z0) > −k and z0 > z1.

Therefore, we have DC(x, Y ) ≥ V̄ (x) = DC(x, U(s∗, S∗)) for x ≥ 0. Namely,

(s∗, S∗) policy is an optimal policy that minimizes the total discounted cost for the Brow-

nian inventory system with non-negative initial inventory level among all the admissible

policies. �
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Chapter 6

Conclusions and Future Work

We investigated optimal control policies for three continuous-review inventory models

with general quantity-dependent setup costs.

In Chapter 3, we obtained an optimal control policy that minimizes the long-run

average cost for a continuous-review inventory model without backlogs. We proved

that a (0, S) policy is an optimal policy among all admissible policies by the lower

bound approach. This result is consistent with the optimality of the (s, S) policy for

the inventory model in He et al. (2015), but the lower barrier of the optimal policy for

our model is specified at 0. This difference can be attributed to the assumption that

the backlogs are not allowed in our model. Furthermore, we introduced a four-step

algorithm for computing the optimal order-up-to level S. In Chapter 4, we obtained

an optimal control policy that minimizes the discounted cost over the infinite horizon

for a continuous-review inventory model. The assumptions of the inventory model are

similar to the model discussed in Chapter 3 except that we assumed a slightly different

holding cost rate function. The optimal policy is also of the (0, S) type. We provided a

comparison theorem under the discounted cost criterion. With this comparison theorem,

we may examine a tractable subset of admissible policies to obtain a globally optimal

policy. Together with the comparison theorem under the long-run average cost criterion

in He et al. (2015), the lower bound method for Brownian control problems has been

improved and may be applied to more general inventory models.
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An optimal control policy that minimizes the total discounted cost for a continuous-

review inventory model with backlogs and a non-negative initial inventory level was

obtained in Chapter 5. When the initial inventory level is non-negative, it was proved

that a control policy of the (s, S) type is an optimal policy among all admissible control

policies. When the initial inventory level is negative, the optimal policy structure is

still unknown to us. The obstacle that prevents us from considering this case is the

discontinuity of the initial ordering cost resulted from the step setup cost function, which

further renders the total discounted cost function discontinuous. In the absence of the

smoothness condition, the lower bound theorem may not be applicable when the initial

inventory level is negative. A more general lower bound theorem is required for solving

this problem. We leave it to our future work.

All the inventory models in this thesis assumed only upward adjustments. However,

there are applications that require downward adjustments as well. For example, the

manager of the inventory system may sign contracts with the suppliers and these con-

tracts allow the manager to return the goods at some cost. Another example is the cash

management problem, in which the inventory of the cash can be adjusted upwards and

downwards by buying and selling risky assets. Thus, a possible extension of our models

is to consider both upward and downward adjustments in the Brownian continuous-

review inventory models with quantity-dependent setup costs. See Harrison et al. (1983),

Ormeci et al. (2008) and Dai et al. (2013a,b) for studies considering both upward and

downward adjustments in Brownian continuous-review inventory models with constant

setup costs.

In the inventory models of this thesis, we assumed demand processes to be Brownian

motions. One possible extension of our work is to apply the improved lower bound ap-

proach to more general demand processes, such as mean-reverting diffusions (Cadenillas

et al., 2010).

The lead time in our inventory models was assumed to be zero. However, delivery

lags could be random in the practice. Thus, another challenging extension is to consider

stochastic lead times in the continuous-review inventory models with quantity dependent
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setup costs. See Song et al. (2010) and Muthuraman et al. (2014) for studies considering

stochastic lead times in Brownian continuous-review inventory models with constant

setup costs.
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