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Summary

In this thesis, we present a series of results about parameter estimation the-

ory for optical systems. The thesis is subdivided into three parts. The first

part concerns the problem of parameter estimation from a noisy optome-

chanical system. We derive analytic expressions for the Cramér-Rao lower

bound on the estimation errors, and apply various estimation techniques to

experimental data to estimate the parameters of an optomechanical system,

including force-noise power, mechanical resonance frequency, damping rate

and measurement noise power. The analytic results should be valuable to

optomechanical experiment designs.

In the second part, we propose a theoretical framework for the esti-

mation of spectral parameters with quantum dynamical systems, deriving

simple analytic results for quantum limits to the estimation errors in terms

of power spectral densities, such that they can be readily applied to optics

and optomechanics experiments. To illustrate our theory, we analyze a

recent experiment of continuous optical phase estimation and demonstrate

that the experimental performance using homodyne detection is close to our

quantum limit. We further propose a spectral photon counting method that

can beat homodyne detection and attain quantum-optimal performance in

low signal-to-noise regime.

The last part is dedicated to the field of optical imaging. Here we study

the problem of two-dimensional localization of two incoherent optical point

sources from the perspective of quantum estimation theory. We obtain

vii



the fundamental limit to the estimation of the Cartesian components of

the centroid and separation of the sources. We propose two measurement

schemes that asymptotically attain the quantum Cramér-Rao bound for

both components of the separation over many trials.
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Chapter 1

Introduction

Quantum mechanics is a fascinating source of probabilistic and statistical

models. Isolated from outside, a quantum system evolves according to

the Schrödinger’s equation. At the instance the quantum system comes to

contact with outside world (for example, when measurement is performed),

the system state makes a random jump to a new state and gives an outcome

with a certain probability distribution.

For many decades, the quantum randomness had been hard to observe

owing to technological limitations. Recent spectacular technological de-

velopments for microscopic and quantum systems have, however, made

the probabilistic nature of quantum measurement increasingly relevant to

modern technology. Quantum metrology, in particular, promises much

more sensitive parameter estimation than that offered by conventional tech-

niques. To realize this, it is necessary to study the estimation theory for

classical and quantum systems.

Estimation theory studies the inference of parameters from noisy exper-

imental data. The strategy for finding the estimated parameters from the

data is called an estimator [1, 2]; while an experimental design is for choos-

ing the measurements used for the estimation. In classical systems, the

noise comes from technological imperfections, while in quantum mechan-
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ics, the noise is inherent. Regardless of the origin of the noise, the goal here

and of estimation theory is to minimize the estimation error, defined as the

difference between the estimate and the parameter, given a noise model.

The key aim is to find a combination of estimator and experimental design

that gives us a more precise estimate, using fewer measurement trials or

shorter measurement time. To achieve this, we need a method in evaluating

the size of the estimation error. We focus here on the mean-square error,

a commonly used criterion in estimation theory.

In this thesis, we derive analytic expressions for fundamental lower

bounds on the mean-square estimation error. On the topic of optical spec-

troscopy, we derive an asymptotic form of the bounds in terms of power

spectral densities, such that they can be applied to optomechanics [3] and

optics experiments. We analyze real experiments and compare the re-

sults with our bounds. On the topic of imaging, we derive the quantum

bound for estimating the centroid and separation of two incoherent optical

point sources. We also propose two experimental designs that approach

the bound.

1.1 Outline of the Thesis

This thesis is organized as follows.

In Chapter 2, we give a brief review on key ideas and theories used in

this thesis.

In Chapter 3, we develop a statistical framework used to study the

problem of parameter estimation from a noisy optomechanical system. We

obtain analytically a lower bound on the estimation errors and discuss the

details of various estimators applied to the experimental data.

In Chapter 4, we focus on the parameter estimation of the spectral

parameters of a classical stochastic process coupled to a quantum dynamical

2



system. We derive analytically the fundamental limits in terms of the

power spectral densities and investigate measurement and data analysis

techniques that approach the limits.

In Chapter 5, we tackle the problem of optical imaging resolution, chal-

lenging the long-standing Rayleigh’s criterion. We obtain the quantum

limit for estimating the Cartesian components of the centroid and separa-

tion of two incoherent optical point sources. We also propose two linear-

optics based measurements that approach the bound for the estimation of

separation parameters once the centroid has been located.

In the final chapter, we close with the concluding remarks and possible

future research works.

3
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Chapter 2

Theoretical Background

We assume that the reader is familiar with the basics of quantum mechan-

ics, probability theory, random processes, and mathematics concepts such

as Fourier transform and matrix operation. For quantum mechanics, one

may read the sections on operators and states in Refs. [4, 5, 6]. Basic

concepts about probability theory and random processes can be found in

Ref. [7]. For a more advanced text on probability theory, Probability Theory

by Jaynes and Bretthorst [8] is a great reference.

2.1 Background on Measurement Theory

We begin with a discussion of some elementary notions of measurement of

a classical system followed by an introduction to quantum measurement

theory.

2.1.1 Classical measurement theory

A classical system can be described by a set of system variables, also known

as system configuration. The set of all possible values of the system vari-

ables forms the configuration space S. For example, there is a classical

system that can be described by a single system variable X, the config-

uration space S would be R, where R is the real line. We define the

5



state of this classical system as the probability distribution of X on S.

The probability distribution that a discrete variable X has the value x is

PX(x) = Pr[X = x] and the state is represented by the function PX(x) for

all possible x ∈ S. If X is a continuous variable, probability density PX(x)

is given by PX(x)dx = Pr[x < X < x + dx] [9]. More generally, X could

be a vector of discrete or continuous random variables.

As we have defined earlier, the state of a system describes an observer’s

knowledge about the system variables. Unless the probability distribution

is zero for all except one particular configuration in S, the state is a state

of uncertainty (or incomplete knowledge). Note that different observers

can assign a different state to a system if they have a different knowledge

about it. This is possible as long as all the different states are consis-

tent (where there is at least one configuration which every state assigns a

nonzero probability). This ensures that there is at least one configuration,

that describes the system, every observer agrees on.

With the definition of state explained, we can now consider measure-

ment of a classical system. If a measurement of X is perfect, the observer

would have its value, say x′. The state is a state of certainty (or complete

knowledge) about this variable. The probability distribution for discrete

variable X is given by

P (x) = δxx′ , (2.1)

where δxx′ is the Kronecker delta; or for continuous variable X

P (x) = δ(x− x′) (2.2)

where δ(x− x′) is the Dirac function. Now suppose that the measurement

is taken through an apparatus with system variable Y . By some physical

processes, the apparatus variable Y is correlated to system variable X of

6



interest and is measured. For a given value of system variable, say x, there

is a probability distribution for the measurement result y, P (y|x), which

defines the measurement and is known as the conditional probability of

y given x. In order to determine how the state of the classical system

(about X) changes when the value y is obtained from the measurement,

we introduce the concept of conditional state of the system or a-posteriori

state, P (x|y). For discrete case, Bayes’ theorem gives the a-posteriori state

as

P (x|y) =
P (y|x)P (x)

P (y)
, (2.3)

where P (x) is the system state prior to making the measurement and

P (y) =
∑
x

P (y|x)P (x) (2.4)

is the marginal distribution of y irrespective of the value of x. For contin-

uous variables,

P (x|y) =
P (y|x)P (x)

P (y)
, (2.5)

where

P (y) =

∫
S

dxP (y|x)P (x). (2.6)

The system state after taking the measurement is given by P (x|y).

To conclude this section, for the situation of having complete knowledge

about a classical system, the results of any ideal measurements on the

system are deterministic. If the measurement is less ideal or there is lack of

complete knowledge about the system, the state after measurement is given

by Bayes’ theorem. In the next section, we discuss the different situation

in quantum mechanics.

7



2.1.2 Quantum measurement theory

In the formulation of quantum mechanics, a quantum state vector |ψ〉 is

described as a vector in a complex vector space known as Hilbert space. If

{|φn〉}, n = 0, 1, . . . is an orthonormal basis for this vector space, the state

vector can be written as

|ψ〉 =
∑
n

cn|φn〉, (2.7)

for some complex coefficients cn with normalization
∑

n |cn|2 = 1. The

probability of getting the nth outcome in an experiment is given by |cn|2.

This uncertainty about future measurement outcomes is fundamental to

quantum mechanics theory. However, this quantum state vector is not a

quantum analogy of the state of a classical system described in the previous

section, as it does not represent our knowledge of the quantum system but

the probabilistic nature of quantum mechanics. More precisely, it is called

the quantum superposition.

Instead, the quantum version of state that represents our knowledge

about a system is the quantum density operator ρ̂ [5, 9]. For example,

suppose a system may be found in state vector |ψ0〉 with probability p0

and |ψ1〉 with probability p1(= 1 − p0), to the observer the state is given

by ρ̂ = p0|ψ0〉〈ψ0| + p1|ψ1〉〈ψ1|. Generally, the quantum density operator

is given by

ρ̂ =
∑
n

pn|ψn〉〈ψn|, (2.8)

where {|ψn〉} is a spanning set of normalized state vectors, each has a

corresponding probability pn. This mixture of states is known as a mixed

8



state; while a pure state is a state with density operator

ρ̂ = |ψ〉〈ψ|. (2.9)

Using the definition in Eq. (2.8) and nonnegativity property of proba-

bility function, a density operator ρ̂ must be Hermitian, such that

ρ̂† = ρ̂, (2.10)

where Ô† denotes the Hermitian conjugate of Ô. Similar, ρ̂ is positive-

semidefinite, where its expectation

〈φ|ρ̂|φ〉 ≥ 0, (2.11)

for any state vector |φ〉. Also, ρ̂ is of trace 1, which follows from the fact

that probabilities sum to one. A density operator ρ̂ describes a pure state

if and only if

ρ̂2 = ρ̂. (2.12)

Similar to classical states, different observers may assign different den-

sity operators ρ̂i to the same system based on their knowledge. Consistency

is ensured if each different state from all the observers is a mixture of a

pure state |ψ〉〈ψ| and some other states. Note that, although we treat the

quantum state as a representation of our knowledge about a system, it is

actually our knowledge about the outcomes of future measurements on the

system.

Projective measurements

The traditional description of measurement in quantum mechanics is in

terms of projective measurements. Let Ô be an observable with non-

9



degenerate eigenvalues Om,m = 1, 2, . . . with corresponding eigenvectors

|φm〉, i.e.

Ô|φm〉 = Om|φm〉, m = 1, 2, . . . . (2.13)

Alternatively, we write

Ô =
∑
m

OmP̂m, m = 1, 2, . . . (2.14)

where

P̂m = |φm〉〈φm| (2.15)

associated with eigenvalue Om is the projection operator onto the subspace

of corresponding eigenstate |φm〉 of Ô. For an observable with degenerate

eigenvalue Om, we let P̂m be a projection operator onto the subspace of

eigenstates associated with the eigenvalue.

A system prepared in pure state |ψ〉 can be expressed as a superposition

of the eigenstates |φi〉 using Eq. (2.7), since the set {|φi〉} is a complete

basis of the Hilbert space:-

|ψ〉 =
∑
m

cm|φi〉, m = 1, 2, . . . . (2.16)

The eigenvalues Om are the possible outcomes of the measurement, with

corresponding probabilities

Pr[Om] = |〈φm|ψ〉|2 = |cm|2. (2.17)

After the measurement, if the outcome is Om then the system is in pure

state |φm〉. Any repeated measurement will give the same result Om.

A mixed state with density operator ρ̂ given by Eq. (2.8) is a statistical

10



ensemble of pure states |ψn〉 with probabilities pn. Hence, the probability

of getting measurement outcome Om for the mixed state is

Pr[Om] =
∑
n

pn × Pr[Om, |ψn〉]

=
∑
n

pn|〈φm|ψn〉|2, (2.18)

where Pr[Om, |ψn〉] is the probability of getting outcome Om for pure state

|ψn〉. We define outcome probability

Pr[Om] ≡ tr(ρ̂P̂m), (2.19)

where tr is the trace of operator. Using cyclic property of trace operation

(e.g. tr(ÂB̂Ĉ) = tr(B̂ĈÂ) = tr(ĈÂB̂)), one can show that

Pr[Om] = 〈φm|ρ̂|φm〉

=
∑
n

pn|〈φm|ψ〉|2, (2.20)

which gives the same result as Eq. (2.18).

The density operator after the measurement is

ρ̂′ =
P̂mρ̂P̂m

tr(ρ̂P̂m)
(2.21)

for measurement result Om. However, if one wishes to describe the un-

conditional state of the system, ignoring the measurement outcome, the

density operator is

ρ̂′ =
∑
m

P̂mρ̂P̂m. (2.22)

From what we have discussed, in quantum mechanics the results of

measurements are generally statistical. One of the aims of quantum mea-

11



surement theory is to be able to specify the probability of a particular

measurement result and the state of the system immediately after the mea-

surement, given the initial state of a system.

Generalized measurements

Although useful, projective measurements are inadequate in describing

quantum measurements, as in a real-world experiment scientists never mea-

sure a system directly. Instead, the system-of-interest interacts with a

probe or apparatus, and the scientists observe the effect of the system on

the probe. For example, in photodetection there is simply no photon re-

mains after the measurement. The state of photons is not projected into

some other states post measurement as predicted in projective measure-

ment. Hence, there is a need for a more general description of quantum

measurements.

Suppose the initial state of the system is given by pure state |ψ〉, and

the probe has initial state |η〉. The initial combined state which describes

the system and probe is

|Ψ〉 = |η〉|ψ〉. (2.23)

Let the combined state interacts for time t, under a unitary evolution op-

erator Ût, the combined state becomes

|Ψ′〉 = Ût|η〉|ψ〉, (2.24)

which cannot be written in the factorized form of Eq. (2.23).

The scientist observer measures projectively the probe, so that the op-

erator |m〉〈m| ⊗ Î acts on the combined state. The set {|m〉} forms an

orthonormal basis for the probe Hilbert space and identity operator Î is in

12



the system Hilbert space. The combined state after measurement is

|Ψ′′〉 =
|m〉〈m|Ût|η〉|ψ〉

N , (2.25)

where N is the normalization constant. The state can be written as [9]

|Ψ′′〉 = |m〉M̂m|ψ〉
N , (2.26)

where measurement operator M̂m = 〈m|Ût|η〉 acts only in the system

Hilbert space. And the system state immediately after the measurement

is M̂m|ψ〉. Therefore, we can formulate the postulate for generalized mea-

surements [5].

Postulate (measurements). Quantum measurements are described by

a collection {M̂m} of measurement operators. These are operators acting

on the Hilbert space of system being measured. The index m refers to the

measurement outcomes that may occur in the experiment. If the state of

the quantum system is |ψ〉 (or ρ for mixed state) immediately before the

measurement then the probability that result m occurs is given by

Pr[m] = 〈ψ|M̂ †
mM̂m|ψ〉 or Pr[m] = tr(ρ̂M̂ †

mM̂m), (2.27)

and the state immediately after the measurement is

|ψ′〉 =
M̂m|ψ〉√
〈ψ|M̂ †

mM̂m|ψ〉
or ρ̂′ =

M̂mρ̂M̂
†
m

tr(M̂ †
mM̂mρ̂)

. (2.28)

As shown in Eq. (2.27), the probabilities are given by the expectation

of another operator,

Êm = M̂ †
mM̂m, (2.29)
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known as effect or probability operator, and is defined in terms of the

measurement operator. The set of {Em} constitutes a positive-operator

valued measure (POVM) on the space of measurement results m [9, 10].

Properties of POVM

The measurement operators satisfy the completeness relation

∑
m

M̂ †
mM̂m = Î (2.30)

from the fact that the outcome probabilities add up to unity. Hence, we

have {Êm} of a POVM sum to the identity operator:

∑
m

Êm = Î, Êm = M̂ †
mM̂m. (2.31)

Similarly, the projection operators of Eq. (2.15) also sum to the identity,

∑
m

P̂m = Î, P̂m = |φm〉〈φm|, (2.32)

as {|φm〉} is an orthonormal basis of the Hilbert space they act in.

We can view POVM as a generalization of projective measurement. The

main difference is that the elements of a POVM, Êm, are not orthogonal

in general; while the set of projector operators has the following property:-

P̂mP̂n = P̂mδmn. (2.33)

This implies that the total number of elements in the POVM, M can be

greater than the dimension of the Hilbert space. It follows from the defi-

nition given by Eq. (2.29), the operators Êm are positive-semidefinite. In

fact, there are only two restrictions on {Êm} as a POVM [9]. First, they

must be positive-semidefinite operators. Second, they must be a resolution

of the identity for the system Hilbert space, i.e. Eq. (2.31).
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2.2 Background on Parameter Estimation The-

ory

Many quantities of interest in physics are not directly accessible. For ex-

ample, in quantum mechanics quantities like entanglement and purity do

not correspond to proper quantum observables. Facing these situations sci-

entists have to resort to indirect measurement, inferring the values of these

quantities from measurement of other observables. Hence, there is a need

for a theory on parameter estimation.

In this section, we develop the basic ideas in classical and quantum

estimation theory.

2.2.1 Parameter estimation theory

The goal of parameter estimation theory is to estimate the value of a pa-

rameter vector θ = (θ1, θ2, . . . , θm)> ∈ Rm based on the data Y acquired by

observing a system. The acquired data has a random component and its

distribution depends on the true value of θ. We consider the cases where

Y takes discrete or continuous values over a domain Y . In discrete case,

the domain Y = {Yi : i ∈ N} is a countable set of discrete values Yi ∈ Rn;

while in the continuous case, the domain Y = Rn.

The observation data y = (y1, y2, . . . , yn)> are random variables with

joint probability density function,

PY (y|θ) = PY (y1, y2, . . . , yn|θ1, θ2, . . . , θm), (2.34)

depends on parameters θ1, θ2, . . . , θm. The estimate θ̌ = (θ̌1, θ̌2, . . . , θ̌m)> is

a function

θ̌ = θ̌(y), (2.35)
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of the observation data and takes values in Rm. The function describes a

strategy for finding the estimates from the data and is known as estima-

tor [1, 2].

An estimator is unbiased when its expected value is equal to the true

value of the parameter,

EY
[
θ̌(Y )|θ

]
= θ, (2.36)

where

EY [g(y)|θ] =
∑
Y
g(y)PY (y|θ) (2.37)

for discrete case, and

EY [g(y)|θ] =

∫
Y

dnyg(y)PY (y|θ) (2.38)

for continuous case. A biased estimate has nonzero bias given by

b = EY [θ̌(y)|θ]− θ. (2.39)

To find the optimum strategy in constructing an estimator, we need to

introduce a concept of loss function. A loss function or cost function is a

function expressing the cost of estimating θ as θ̌(y) [1, 2]. The value of a

loss function is random as it depends on the outcome of random variable

θ̌(y). For single parameter or m = 1, a common loss function is the squared

error,

C = (θ̌ − θ)2. (2.40)

For multiple parameters, one may adopt loss functions, for example,

C =
m∑
i=0

m∑
j=0

gij(θ̌i − θi)(θ̌j − θj). (2.41)
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where gij is the ij-element of a positive-definite matrix, or,

C ′ =
m∑
i=0

(θ̌i − θi)2, (2.42)

a special case where g is the identity matrix. Most of the optimum estima-

tors are constructed such that their expected loss is minimum.

2.2.2 Examples of estimators

In this section, we introduce some common estimators which we study in

detail in the following three chapters. First is the most commonly studied

estimator, the maximum-likelihood (ML) estimator.

Maximum-likelihood (ML)

To apply ML estimator [1, 2], we first specify the joint probability density

function PY (y|θ) given by Eq. (2.34) for all observations. ML estimates

the set of parameters θML by finding value of θ that maximizes the log-

likelihood function lnPY (y|θ):

θ̌ML = arg max
θ

lnPY (y|θ). (2.43)

The main advantage of ML estimator is its efficiency, it achieves the

Cramér-Rao lower bound (which we introduce in Sec. 2.2.3) on mean-square

estimation error asymptotically [2]. However, in practice it might be diffi-

cult to derive or computationally expensive to evaluate.

Expectation-Maximization (EM) Algorithm

In ML estimation, we need to solve Eq. (2.43) for maxima which typically

involves the derivatives of the likelihood function. However, there are cases

where the equations involved cannot be solved directly and simultaneously.

The Expectation-Maximization (EM) algorithm [2, 11, 12] can significantly
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simplify this task if there exists hidden data Z that results in simplified

expressions for P (Z|Y, θ) and P (Y, Z|θ).

Starting with a trial θ = θ0, the EM algorithm iteratively applies the

following two steps:

1. Expectation step: Consider the estimated log-likelihood function

Q(θ, θk) ≡
∫

dZP (Z|Y, θk) lnP (Y, Z|θ), (2.44)

where the superscript k is an index denoting the EM algorithm iter-

ation.

2. Maximization step: By maximizing Q(θ, θk), we find a new estimate

θk+1 for the next iteration, i.e.

θk+1 = arg max
θ
Q(θ, θk). (2.45)

The iteration is halted if the difference or relative difference between θk

and θk+1 is smaller than a preset threshold value, and the EM estimate

θ̌EM takes the value of the final θk+1. In general, EM algorithm converges

to a local optimum and there is no guarantee of global convergence [2].

Techniques, such as random restart, could be useful for EM algorithm in

escaping convergence to a local optimum.

Radiometer

For a more specific problem of estimating the amplitude A of the spectrum

of a stationary process with power spectral density (PSD) in the form of

SY (ω) ≡ lim
T→∞

E
[

1

T

∣∣∣∣ ∫ T/2

−T/2
dty(t) exp(iωt)

∣∣∣∣2] (2.46)

= AS(ω) +R, (2.47)
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where R is the power of an additive white noise. The ‘radiometer’ estimator

described in Ref. [13] gives

Ǎrad = G

[ ∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′y(t)h(t− t′)y(t′)−B

]
. (2.48)

Function h(t− t′) filters y(t′) before correlating the results with y∗(t), and

G and B are the parameters chosen to enforce the unbiased condition:

G =

[
T

∫ ∞
−∞

dω

2π
H(ω)S(ω)

]−1

, (2.49)

B = T

∫ ∞
−∞

dω

2π
H(ω)R, (2.50)

H(ω) =

∫ ∞
−∞

dth(t) exp(−iωt). (2.51)

Radiometer estimator is easy to implement, however, it is a single param-

eter estimator while other three estimators are for multiple parameters.

Whittle

The assumption of stationary processes and a long observation time T

(relative to all other time scales in the problem) is known as the SPLOT

assumption. In cases that likelihood function PY is complicated, there will

be difficulty in deriving the ML estimate. The Whittle estimator [14] ex-

ploits the SPLOT assumption to simplify the likelihood function. Consider

a real discrete-time series

{y(tk); k = 0, 1, . . . , K − 1}, tk = kδt, (2.52)

with zero-mean Gaussian statistics conditioned on parameter θ. Define the

discrete Fourier transform as

Ym =
δt√
T

K−1∑
k=0

y(tk) exp(iωmtk), ωm =
2πm

T
, (2.53)
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with integer m. Since y(tk) is real, Ym = Y ∗K−m. In the SPLOT case, it can

be shown that the positive components {ym; 0 < m < K/2} are indepen-

dent complex Gaussian random variables with means zero and variances

SY (ωm|θ) [12, 14]. This means that the log-likelihood function can be ap-

proximated as

lnP (Y |θ) ≈ A−
∑

0<m<K/2

[
lnSY (ωm|θ) +

|Ym|2
SY (ωm|θ)

]
, (2.54)

where A is independent of θ. Whittle estimator is then given by

θ̌W = arg min
θ
f(θ). (2.55)

where

f(θ) =
∑

0<m<K/2

[
lnSY (ωm|θ) +

|Y m|2
SY (ωm|θ)

]
. (2.56)

As Whittle likelihood is an approximation to the log-likelihood func-

tion, the efficiency of Whittle estimator depends on how exact this approx-

imation is. Similar to ML estimator, Whittle estimator is asymptotically

efficient [12] and typically less computational expensive.

2.2.3 Cramér-Rao (CR) lower bound

A useful figure of merit for evaluating an estimator performance is the

mean-square estimation error matrix Σ,

Σ ≡ EY {[θ̌(Y )− θ][θ̌(Y )− θ]>}. (2.57)
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The Cramér-Rao (CR) bound gives a lower bound on the mean-square

estimation error matrix for any unbiased estimator θ̌ [2, 10]:

Σ ≥ j−1(PY ), (2.58)

where the matrix inequality means that Σ− j−1 is positive-semidefinite, or

u>(Σ− j−1)u ≥ 0, (2.59)

for any real column vector u. Note that the observation Y has probability

distribution PY (y|θ) dependent on parameter vector θ given by Eq. (2.34),

the classical Fisher information matrix j(PY ) characterizes the information

in Y about θ. The Fisher information matrix is a m×m matrix, given by

j(PY ) = EY
{
∇[lnPY (Y |θ)]∇>[lnPY (Y |θ)]|θ

}
, (2.60)

where

∇ ≡
(
∂

∂θ1

,
∂

∂θ2

, . . . ,
∂

∂θm
,

)>
. (2.61)

Proof: Given any estimator θ̌, assuming unbiased condition defined in

Eq. (2.36), we have

∫
Y

dny(θ̌ − θ)PY (y|θ) = 0. (2.62)

Differentiate with respect to θi, i = 1, 2, . . . ,m,

∫
Y

dny(−I)PY (y|θ) +

∫
Y

dny(θ̌ − θ)∇>PY (y|θ) = 0, (2.63)
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where I is an m×m identity matrix and ∇ is defined in Eq. (2.61). As the

probability density PY (y|θ) is normalized, we have

∫
Y

dny(θ̌ − θ)∇>PY (y|θ) = I,∫
Y

dnyPY (y|θ)(θ̌ − θ)∇> lnPY (y|θ) = I. (2.64)

Introduce arbitrary real column vectors u and v of the same dimension as

θ, multiply Eq. (2.64) from the left by u> and from the right by v,

∫
Y

dny[
√
PY (y|θ)u>(θ̌ − θ)][∇> lnPY (y|θ)v

√
PY (y|θ)] = u>v. (2.65)

We square the equation and by the Cauchy-Schwarz inequality,

|u>v|2 ≤
∫
Y

dnyPY (y|θ)|u>(θ̌ − θ)|2
∫
Y

dny|∇> lnPY (y|θ)v|2PY (y|θ)

= (u>Σu)(v>jv), (2.66)

where Σ is given by Eq. (2.57) and j is given by Eq. (2.60). Choosing

v = j−1u, we have inequality

u>Σu ≥ u>j−1u, (2.67)

for any arbitrary column vector u, proving the CR lower bound.

Apart from Eq. (2.60), the Fisher information matrix has a second form:

j(PZ) = −EY [∇∇> lnPY (Y |θ)|θ], (2.68)

since we have

∇∇> lnPY (Y |θ) = −[∇ lnPY (Y |θ)][∇> lnPY (Y |θ)] +
∇∇>PY (Y |θ)
PY (Y |θ) ,

(2.69)
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and expectation

EY
[∇∇>PY (Y |θ)

PY (Y |θ)

]
= ∇∇>

∫
Y

dnyPY (Y |θ) = 0. (2.70)

In the asymptotic limit, ML estimation can attain the CR bound [12],

so the bound is a meaningful indicator of estimation error. An efficient

estimator is an estimator that saturates the CR bound. In this case, ML

estimators are asymptotically efficient estimators.

2.2.4 Quantum estimation theory

In Sec. 2.1.2, we saw that in quantum mechanics the outcomes of measure-

ments are random variables even when one has complete knowledge of the

state. Here, we are concerned with estimating the classical parameter that

is used in preparing the state.

Let ρ̂ = ρ̂(θ) be the density operator of a quantum system depending

on an unknown vector parameter θ. Consider the estimation of θ from the

quantum measurement outcome Y on ρ̂. The probability density of Y is

given by

PY (Y |θ) = tr[Ê(Y )ρ̂(θ)], (2.71)

where Ê(Y ) is the POVM that characterizes the statistics of the quan-

tum measurement [9, 10]. Quantum estimation theory seeks POVMs that

maximize the Fisher information, and minimize estimation errors.

The simplest way to characterize an estimation error is to use the esti-

mation error covariance matrix. However, it is not easy to derive a POVM

that minimize the errors, therefore, we find a lower bound for this esti-

mation error covariance matrix for all possible POVMs in the following

section.
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2.2.5 Quantum Cramér-Rao (QCR) bound

Let ρ̂ be the θ-dependence density operator that describes a quantum sys-

tem and Ê(Y ) be the POVM that models the quantum measurement on

the system, the outcome Y of the measurement has probability distribution

PY (y) given by Eq. (2.71).

Given an estimate θ̌(Y ) of θ, the estimation error covariance matrix Σ,

Σµν ≡ E
{[
θ̌µ(Y )− θµ

] [
θ̌ν(Y )− θν

]}
, (2.72)

E[g(y)] ≡
∫

dyPY (y)g(y). (2.73)

In the case of unbiased estimator, defined in Eq. (2.36), Σ is bounded by

the classical and quantum CR bounds [1, 10, 15, 16],

Σ ≥ j−1 ≥ J−1. (2.74)

Here, the inequalities mean that matrices Σ− j−1, Σ− J−1 and j−1 − J−1

are positive-semidefinite. Matrix j is the classical Fisher information ma-

trix defined in Eq. (2.60) and matrix J is the quantum Fisher information

(QFI) matrix.

Proof: We follow closely the method used by Helstrom [10]. For unbi-

ased estimator with probability density given by Eq. (2.71),

∫
Y
dny(θ̌µ − θµ) tr[Ê(Y )ρ̂] = 0. (2.75)

Differentiate with respect to θν ,

∫
Y
dny(θ̌µ − θµ) tr[Ê(Y )

∂ρ̂

∂θν
] = δµν , (2.76)

making use of the fact that the probability density integrates to unity.
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Introduce the symmetric logarithmic derivative (SLD) operator L̂ν as the

Hermitian operator satisfying the equation

∂ρ̂

∂θν
=

1

2
(L̂ν ρ̂+ ρ̂L̂ν), (2.77)

Eq. (2.76) becomes

Re{tr[
∫
Y
dny(θ̌µ − θµ)ρ̂L̂νÊ(Y )]} = δµν , (2.78)

by swapping the trace and integration operation, and using the property

of Hermitian operators B̂1, B̂2, . . . , B̂n,

tr(B̂1B̂2 . . . B̂n) = [tr(B̂n . . . B̂2B̂1)]∗, (2.79)

where c∗ denotes complex conjugate of a complex number c. Let u =

(u1, u2, . . . um)> and v = (v1, v2, . . . vm)> be two arbitrary real column vec-

tors, multiply Eq. (2.78) by the real number uµvν and sum over µ and ν,

we obtain

Re{tr[
∫
Y
dnyAρ̂Ê(Y )B̂]} = u>v, (2.80)

where

A =
m∑
µ=1

uµ(θ̌µ − θµ),

B̂ =
m∑
ν=1

vνL̂ν . (2.81)

Before we continue, it can be easily shown that the Cauchy-Schwarz
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inequality

tr[ρ̂

∫
Y

dnyĈ†Ê(Y )Ĉ] tr[ρ̂

∫
Y

dnyD̂†Ê(Y )D̂] ≥
∣∣ tr[ρ̂∫

Y
dnyD̂†Ê(Y )Ĉ]

∣∣2,
(2.82)

for any Ĉ and D̂. The proof follows from the expansion of

tr[ρ̂

∫
Y

dny(Ĉ − λD̂)†Ê(Y )(Ĉ − λD̂)] ≥ 0 (2.83)

for complex λ, and Hermitian ρ̂ and Ê(Y ). Finally, set

λ =

∫
Y dnyD̂†Ê(Y )Ĉ∫
Y dnyD̂†Ê(Y )D̂

. (2.84)

Squaring both sides of Eq. (2.80), we have

(u>v)2 ≤
∣∣ tr[ρ̂∫

Y
dnyAÊ(Y )B̂]

∣∣2
≤ tr[ρ̂

∫
Y
dnyAÊ(Y )A] tr[ρ̂

∫
Y
dnyB̂Ê(Y )B̂]

= [

∫
Y
dnyA2P (Y |θ)] tr[ρ̂B̂B̂]

= (u>Σu)(v>Jv) (2.85)

where

Jµν =
1

2
tr[ρ̂(L̂µL̂ν + L̂νL̂µ)], (2.86)

and the second inequality is given by the Cauchy-Schwarz inequality. As u

and v are arbitrary real vectors, we can choose u = Jv. The result is

Σ ≥ J−1. (2.87)

The second part of the inequalities relating classical and quantum Fisher
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information was proven by Braunstein and Caves [17] for scalar θ. It can

be generalized for multiple parameters by transforming

∂

∂θ
→ uµ

∂

∂θµ
, (2.88)

where u is any real vector of the same dimension as vectorial parameter θ.

From Eq. (2.71) and applying Eq. (2.77), we have

uµ
∂PY (y|θ)
∂θµ

= tr[Ê(Y )uµ
∂ρ̂

∂θµ
] = Re{tr[Ê(Y )uµL̂µρ̂]},[

uµ
∂PY (y|θ)
∂θµ

]2

≤ | tr[Ê(Y )uµL̂µρ̂]|2

=
∣∣∣ tr [√ρ̂

√
Ê(Y )

√
Ê(Y )uµL̂µ

√
ρ̂
]∣∣∣2

≤ tr
[√

ρ̂Ê(Y )
√
ρ̂
]

tr
[√

ρ̂uµL̂µÊ(Y )L̂νuν
√
ρ̂
]
, (2.89)

where the second inequality makes use of Cauchy-Schwarz inequality. With

cyclic property of trace,

uµ
∂PY (y|θ)
∂θµ

∂PY (y|θ)
∂θν

uν ≤ PY (y|θ)uµ tr
[
E(Y )L̂ν ρ̂L̂µ

]
uν , (2.90)

uµjµνuν ≤ uµ tr
[
ρ̂L̂µL̂ν

]
uν . (2.91)

Since u can be any vector, we obtain matrix inequality

j ≤ J. (2.92)

Recent theoretical studies in quantum parameter estimation have proved

the existence of a POVM that attains the QCR bound for scalar parameter

estimation [18, 19], though the quantum bound may not be attainable for

vectorial parameter.

Apart from the SLD given by Eq. (2.77), there is another way of defining

the derivatives of the quantum density operator ρ̂. The right logarithmic
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derivative operators L̂j is defined by [10, 20]

∂ρ̂

∂θν
= ρ̂L̂ν = L̂†ν ρ̂. (2.93)

These non-Hermitian operators L̂j may not exist for some density opera-

tors. The alternative form of the quantum bound is

u†Σu ≥ u†A−1u, (2.94)

where u is an arbitrary complex vector and

Aµν = tr(ρ̂L̂µL̂ν). (2.95)

However, in this thesis we will focus solely on the QCR bound based

on the SLD. We will present a series of results about parameter estimation

theory for optical systems in the following three chapters.
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Chapter 3

Parameter Estimation with

Optomechanical Systems

In this chapter, we introduce a statistical framework to study the problem

of parameter estimation from a noisy optomechanical system. This problem

is especially relevant to the recent optomechanics experiments reported in

Refs. [21, 22]. We derive analytic expressions for the CR lower bound on

the estimation errors in term of PSD of the signal in Sec. 3.4, and apply

various estimation techniques to the experimental data to estimate the

parameters of an optomechanical system in Sec. 3.6, including force-noise

power, mechanical resonance frequency, damping rate and measurement

noise power. The analytic results provide convenient expressions of the

estimation errors as a function of system parameters and measurement

time, and should be valuable to optomechanical experiment designs. This

chapter is based on the work published in Ref. [23].

3.1 Motivation

Recent spectacular advances in optomechanical oscillators [3] for force-

sensing applications enable ultra-sensitive force measurements of charge,

single spin, mass, acceleration and magnetic field [24, 25, 26, 27, 28]. These
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advances in experimental physics allow scientists to study quantum light-

matter interactions in macroscopic structures [29, 30], hence pave way

towards new technologies for quantum information science and quantum

metrology [31, 32, 33, 34].

While thermal and measurement noises impose major limitations to the

accuracy of mechanical force sensors, the higher quality and lower mass

optomechanical oscillators with increased force sensitivity [21] has higher

sensitivity to their environment. This introduces additional noises that can

cause fluctuations in system parameters such as effective oscillator temper-

ature and mechanical resonance frequency. For optomechanical technology

to continue to advance, there is a need to develop methods that can char-

acterize, monitor and control these new noise sources, along with thermal

and measurement noises.

3.2 Experiment

Before we develop our theoretical model and statistical framework, we first

describe the experiment presented in Ref. [22]. The setup of the micro-

toroidal cavity optomechanical system consists of a room temperature mi-

crotoroidal resonator that supports simultaneously mechanical modes and

whispering gallery optical modes. The excited mechanical mode is sensi-

tive to external forces, having fundamental frequency Ωm = 40.33 MHz,

damping rate γ = 23 kHz, and effective mass of meff = 7 ng. A shot-noise

limited 1550 nm laser was coupled evanescently into the whispering gallery

mode of the microtoroid via a tapered optical fiber, permitting ultra-precise

readout of the mechanical displacement. The excitation of the mechanical

mode induces phase fluctuations on the transmitted light which is measured

by shot-noise limited homodyne detection.

To specifically demonstrate power estimation, a small incoherent elec-
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Figure 3.1: Conceptual schematics of the experiment. A mechanical oscil-
lator with thermal noise and applied signal acting on it.

trostatic gradient force is applied to the mechanical oscillator by a nearby

electrode driven with a white-noise signal [35] as depicted in Fig. 3.1. The

measurement record is acquired from the homodyne signal by electronic

lock-in detection which involves demodulation of the photocurrent at the

mechanical resonance frequency to allow real time measurement of the

slowly evolving quadratures of motion, denoted by I(t) and Q(t) where

x(t) = I(t) cos Ωmt + Q(t) sin Ωmt. The room temperature thermal fluctu-

ations of the mechanical mode are observed with a signal-to-noise ratio of

37 dB and calibrated via the optical response to a known reference modu-

lation [36].

The resulting force sensitivity will depend on the specific protocol used

to extract the information from the measurement record. Here we evaluate

the force sensitivity of the three parameter estimation protocols presented

in Sec. 3.5 relative to the CR lower bound on estimation error introduced

in Sec. 2.2.3.

3.3 Theoretical Model

As the measurement record can be expressed in the form of

x(t) =
1

2
[I(t)− iQ(t)] exp(iΩmt) +

1

2
[I(t) + iQ(t)] exp(−iΩmt), (3.1)
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we let y(t) = I(t) + iQ(t) be the new complex measurement record.

We model the mechanical mode of the oscillator using a simple linear

Gaussian model. z(t) is the complex analytic signal of the mechanical-mode

displacement with the following equation of motion:-

dz(t)

dt
= −γz(t) + iΩz(t) + ξ(t), (3.2)

where Ω is the mechanical resonance frequency relative to Ωm, γ is the

damping rate and ξ(t) is the stochastic force as a sum of the thermal noise

and the signal. ξ(t) is assumed to be a complex zero-mean white Gaussian

noise with power A and covariance function

E[ξ(t)ξ∗(t′)] = Aδ(t− t′), (3.3)

E[ξ(t)ξ(t′)] = 0. (3.4)

The measurements can be modeled in continuous time as

y(t) = Cz(t) + η(t), (3.5)

where C is a real parameter and η(t) is the measurement noise, assumed to

be a complex white Gaussian noise with power R and covariance function

E[η(t)η∗(t′)] = Rδ(t− t′), (3.6)

E[η(t)η(t′)] = 0. (3.7)

We further assume that the parameters

θ = (Ω, γ, A, C,R)> (3.8)

are constant in time, such that z(t), ξ(t), y(t) and η(t) are stationary stochas-
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tic processes given θ. In particular, y(t) has a PSD given by

SY (ω|θ) = lim
T→∞

E
[

1

T

∣∣∣∣ ∫ T/2

−T/2
dty(t) exp(−iωt)

∣∣∣∣2]
= AS(ω) +R. (3.9)

S(ω) =
C2

(ω − Ω)2 + γ2
. (3.10)

Although this simple model suffices to describe the experiment, it is not

difficult to generalize our entire formalism to describe more complicated

dynamics and colored noise [1]. This can be done by generalizing z(t) to a

vector of state variables for more mechanical and optical modes, Eq. (3.2)

to a vectoral equation of motion, and the parameters (Ω, γ, A, C,R) to

matrices that describe the coupled-mode dynamics and the noise statistics.

3.4 Review of CR Lower Bound

We now consider the estimation of θ defined in Eq. (3.8) from our mea-

surement data Y given by Eq. (3.5). Let the estimate be θ̌(Y ) and the

probability density of Y be PY (y|θ). The mean-square estimation error

matrix Σ is defined in Eq. (2.57),

Σ ≡ EY
{

[θ̌(Y )− θ][θ̌(Y )− θ]>|θ
}
. (3.11)

Assuming θ̌ satisfies the unbiased condition, the CR lower bound on Σ is

Σ ≥ j−1(PY ), (3.12)

where j(PY ) is the Fisher information matrix. For dynamical systems,

e.g. Y of Eq. (3.5), j(PY ) might be difficult to evaluate directly using the

definition given by Eq. (2.60) or Eq. (2.68).

It turns out that the Fisher information matrix can be related to the
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Bhattacharyya distance in hypothesis testing problem. Bhattacharyya dis-

tance between two probability densities P (x|θ) and P (x|θ′) is [37]

B(θ, θ′) = − ln ρ, (3.13)

where ρ is the Bhattacharyya coefficient between the two probability den-

sities

ρ ≡
∫

dx
√
P (x|θ)P (x|θ′). (3.14)

Taylor series of ρ(θ′) = exp[B(θ, θ′)] at θ is the power series

ρ = exp[B(θ, θ′)]|θ′=θ + (θ′ − θ)>[−(∇B) exp(−B)]θ′=θ

+
1

2
(θ′ − θ)>[−(∇∇>B) exp(−B) + (∇B)(∇)> exp(−B)]θ′=θ

× (θ′ − θ) + . . . , (3.15)

where

θ ≡ (θ1, θ2, . . . )
>,

∇ ≡
(
∂

∂θ1

,
∂

∂θ2

, . . .

)>
. (3.16)

From the definitions in Eqs. (3.13) and (3.14), it can be shown that the value

of B(θ, θ) is zero and ∇B(θ, θ′)|θ′=θ is a zero vector. Assuming Einstein

summation convention from here onwards, we have for θ′ = θ + εu

ρ(θ, θ + εu) = 1− ε2

2
uµ[(∇∇>B)θ′=θ]µνuν + o(ε2) (3.17)

where ε is a scalar, u = (u1, u2, . . . )
> is any real vector with the same

dimension with θ, and o(ε2) denotes terms asymptotically smaller than ε2.
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Similarly, it is also known that [13, 37]

∫
dx
√
PX(x|θ)PX(x|θ + εu) = 1− ε2

8
uµjµν(PX)uν + o(ε2), (3.18)

by expanding the left-hand side with Taylor’s series and applying the def-

inition of the Fisher information in Eq. (2.68). Applying Eqs. (3.17) and

(3.18) to left-hand and right-hand sides of Eq. (3.14) respectively, and com-

paring the ε2 terms on both sides, we obtain

j(PX) = 4∇∇>B(θ, θ′)|θ′=θ. (3.19)

In the case of SPLOT assumption, the Bhattacharyya distance is known

to be [2]

lim
T→∞

1

T
B(θ, θ′) =

1

2

∫ ∞
−∞

dω

2π
ln
SX(ω|θ) + SX(ω|θ′)
2
√
SX(ω|θ)SX(ω|θ)

, (3.20)

where SX(ω|θ) is the PSD of signal x(t) given θ. For a complex signal y(t),

Eq. (3.20) needs to be modified. This can be done by assuming that y(t)

is band-limited in [−πb, πb] and considering a real signal x(t) given by

x(t) ≡ y(t) exp(iω0t) + y∗(t) exp(−iω0t), (3.21)

where ω0 is a carrier frequency assumed to be greater than πb. We then

have

SX(ω|θ) = SY (ω − ω0|θ) + SY (−ω − ω0|θ). (3.22)

Using this expression in Eq. (3.20) leads to the expression for the Bhat-

tacharyya distance

lim
T→∞

1

T
B(θ, θ′) =

∫ πb

−πb

dω

2π
ln
SY (ω|θ) + SY (ω|θ′)
2
√
SY (ω|θ)SY (ω|θ)

(3.23)
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where y(t) is a complex signal.

3.4.1 Fisher information

In Sec. 3.3, measurement record y(t) in the linear Gaussian model is a

realization of a stationary process given θ, so the Fisher information matrix

for the estimation of θ from Y = {y(t) : −T/2 ≤ t ≤ T/2} in the SPLOT

case can be obtained by combining Eqs. (3.19) and (3.23):

j(PY ) = 4T∇∇>
∫ πb

−πb

dω

2π
ln
SY (ω|θ) + SY (ω|θ′)
2
√
SY (ω|θ)SY (ω|θ)

∣∣∣∣
θ′=θ

, (3.24)

where the PSD SY (ω|θ) is given by Eq. (3.9). Although the preceding

formalism is applicable to the estimation of any of the parameters, in the

following we focus on the force noise power, A. The CR bound on the

mean-square error ΣA is

ΣA ≡ E
{[
Ǎ(Y )− A

]2 ∣∣θ} ≥ j−1
A (3.25)

jA = T

∫ πb

−πb

dω

2π

S2(ω)

[AS(ω) +R]2
, (3.26)

assuming SPLOT condition. This bound allows us to study the efficiency

of the estimators introduced in the next section.

3.5 Parameter Estimation Algorithms

3.5.1 Averaging

We first consider the estimator used in Refs. [21, 22]

Ǎavg = G

∫ T/2

−T/2
dt|y(t)|2, (3.27)

G =

[
T

∫ πb

−πb

dω

2π
S(ω)

]−1

. (3.28)
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The rationale for this simple averaging estimator is that, in the absence of

measurement noise, R = 0, it is an unbiased estimate for T →∞:

lim
T→∞

EY
(
Ǎavg|θ, R = 0

)
= A. (3.29)

However, the unbiasedness breaks down in the presence of measurement

noise, and we are therefore motivated to find a better estimator.

3.5.2 Radiometer

The radiometer estimator in Sec. 2.2.2 can be generalized for complex vari-

ables. The result is

Ǎrad = G

[∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′y∗(t)h(t− t′)y(t′)−B

]
, (3.30)

where y(t) is now complex, h(t − t′) is a filter function, G and B are

parameters chosen to enforce the unbiased condition. For T →∞,

G =

[
T

∫ πb

−πb

dω

2π
H(ω)S(ω)

]−1

, (3.31)

B = T

∫ πb

−πb

dω

2π
H(ω)R, (3.32)

H(ω) =

∫ ∞
−∞

dth(t) exp(−iωt). (3.33)

The averaging estimator Ǎavg given by Eq. (3.27) is a special case of ra-

diometer estimator.

The mean-square error has the asymptotic expression

lim
T→∞

ΣAT = G2

∫ πb

−πb

dω

2π
H2(ω)S2

Y (ω|θ). (3.34)

This expression coincides with the CR bound given by Eqs. (3.25) and
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(3.26) if we choose

H(ω) =
S(ω)

[DS(ω) +R]2
(3.35)

and D happens to be equal to A. For any other value of D, the radiometer

is suboptimal.

3.5.3 EM algorithm

In order to apply the iterative EM algorithm introduced in Sec. 2.2.2 to

our model in Sec. 3.3, we consider a complex discrete-time Gauss-Markov

model

zj+1 = fzj + wj, (3.36)

yj = czj + vj, j = 0, 1, . . . , J. (3.37)

In general, zj and yj can be column vectors, and f and c are matrices.

wj and vj are complex independent zero-mean Gaussian random variables

with covariances given by

E(wjw
†
k) = qδjk, E(wjw

>
k ) = 0, (3.38)

E(vjv
†
k) = rδjk, E(vjv

>
k ) = 0, (3.39)

where q and r are covariance matrices. The parameters of interest θ are the

components of f, c, q and r. The EM algorithm for a real Gauss-Markov

model in Refs. [2, 12, 38] is generalized for complex variables here. Treating
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Z as the hidden data, we have

− lnP (Y, Z|θ) =
J−1∑
j=0

(zj+1 − fzj)†q−1(zj+1 − fzj) + J ln det q

+
J∑
j=0

(yj − czj)†r−1(yj − czj) + (J + 1) ln det r +A,

(3.40)

where A does not depend on θ and is discarded. To compute the estimated

log-likelihood function Q(θ, θk) of Eq. (2.44), we need estimate

žkj ≡ E(zj|Y, θk), (3.41)

and we define

ε ≡ zj − žkj , (3.42)

Πk
j ≡ E(εkj ε

k†
j |Y, θk), (3.43)

Πk
j,j−1 ≡ E(εkj ε

k†
j−1|Y, θk). (3.44)

Using the Rauch-Tung-Striebel (RTS) smoother [2, 38], we can compute

these; starting with stationary initial conditions for ž+k
−1 and Π+k

−1, the

smoother consists of a forward Kalman filter:-

ž−kj = fkž+k
j−1, (3.45)

Π−kj = fkΠ+k
j−1f

k† + q, (3.46)

K+k
j = Π−kj ck†(ckΠ−kj ck† + rk)−1, (3.47)

ž+k
j = ž−kj +K+k

j (yj − ckž−kj ), (3.48)

Π+k
j = (I −K+k

j ck)Π−kj (I −K+k
j ck)† +K+k

j rkK+k†
j , (3.49)
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until j = J , and a backward propagation:-

žkJ = ž+k
J , (3.50)

Πk
J = Π+k

J , (3.51)

Kk
j = Π+k

j fk†(Π−kj+1)−1, (3.52)

žkj = ž+k
j +Kk

j (žkj+1 − ž−kj+1), (3.53)

Πk
j = Π+k

j −Kk
j (Π−kj+1 − Πk

j+1)Kk†
j , (3.54)

Πk
j,j−1 = Πk

jK
k†
j−1, (3.55)

until j = 0. Applying Eqs. (3.41)–(3.44) into Eq. (3.40), we can then write

Q(θ, θk) as

−Q(θ, θk) = Tr[q−1(Φk − fΨk† −Ψkf † + fΘkf †) + J ln q

+ r−1(Υ− cΞk† − Ξkc† + c∆kc†) + (J + 1) ln r], (3.56)

where Tr is the trace of a matrix,

Φk ≡
J∑
j=1

(žkj ž
k†
j + Πk

j ), (3.57)

Ψk ≡
J∑
j=1

(žkj ž
k†
j−1 + Πk

j,j−1), (3.58)

Θk ≡
J−1∑
j=0

(žkj ž
k†
j + Πk

j ), (3.59)

Υ ≡
J∑
j=0

yjy
†
j , (3.60)

Ξk ≡
J∑
j=0

yj ž
k†
j , (3.61)

∆k ≡
J∑
j=0

(žkj ž
k†
j + Πk

j ). (3.62)
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Maximizing Q(θ, θk) given by Eq. (3.56) with respect to θ, we find new

estimates

fk+1 = Ψk(Θk)−1, (3.63)

ck+1 = Ξk(∆k)−1, (3.64)

qk+1 =
1

J
[Φk −Ψk(Θk)−1Ψk†], (3.65)

rk+1 =
1

J + 1
[Υ− Ξk(∆k)−1Ξk†]. (3.66)

The iteration process is repeated till a prescribed threshold is reached. The

complex EM algorithm turns out to be the same as the real version with

all transpose operations > replaced by conjugate transpose †.

The problem may become ill-conditioned if there are too many unknown

parameters and multiple ML solutions exist [2, 12, 39], so we choose a

parameterization with known q:

f = exp[(iΩ− ω)δt], (3.67)

c = C

√
A

1− exp(−2γδt)

2γδt
, (3.68)

q = δt, (3.69)

r =
R

δt
, (3.70)

where δt is the sampling period. With the EM estimates f̌EM, čEM, and

řEM and assuming that δt and C are known by independent calibrations,

we can retrieve estimates of Ω, γ, A, and R:

Ω̌EM =
arg f̌EM

δt
, (3.71)

γ̌EM = − ln |f̌EM|
δt

, (3.72)

ǍEM =
č2

EM

C2

2γ̌EMδt

1− exp(−2γ̌EMδt)
, (3.73)

ŘEM = řEMδt. (3.74)
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The same algorithm is also applicable to the quantum Gauss-Markov

model [9], as the RTS smoother is equivalent to the linear quantum smoother

[40, 41, 42]. The possibility of using the EM algorithm for quantum systems

is also mentioned in Ref. [43].

3.6 Experimental Data Analysis

3.6.1 Procedure

There are two records of experimental data, one with thermal noise in ξ(t)

and one with additional applied white noise in ξ(t), leading to a different A

for each record, denoted by A(0) and A(1). Each record contains Jmax + 1 =

3, 750, 001 points of y
(n)
j . With a sampling frequency b = 1/δt = 15 MHz,

the total time for each record is Tmax = Jmaxδt = 0.25 s. From independent

calibrations, we also obtain C = 2.61× 10−2 (fN/
√

Hz)−1.

To investigate the errors with varying T , we divide each record into

slices of records with various T , resulting in M(T ) = floor(Tmax/T ) num-

ber of trials for each T . Using a desktop computer (Intel Core i7-2600

CPU@3.4GHz with 16GB RAM) and Matlabr we apply each of the three

estimators in Sec. 3.5 to each trial to produce an estimate Ǎ
(n)
m,l(T ), where m

denotes the trial and l denotes the estimator. The EM iteration is stopped

when the fractional difference between the current estimate of A and the

previous value is less than 10−7. For the averaging and radiometer estima-

tors, true values for Ω, γ, and R are needed, and since we do not know them,

we estimate them by applying the EM algorithm to the whole records. This

is reasonable because Tmax � 4 ms ≥ T , and we expect θ̌
(n)
EM(Tmax) to be

much closer to the true values θn than the short-time estimates. The EM

algorithm for each T , on the other hand, does not use θ̌
(n)
EM(Tmax) at all and

produces its own estimates each time. The parameter D in Eq. (3.35) of

radiometer estimator is taken to be Ǎ
(0)
EM(Tmax).
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The estimation errors are computed by

Σ
(n)
l (T ) =

1

M(T )

M(T )∑
m=1

[
Ǎ

(n)
m,l(T )− A(n)

]2

, (3.75)

and compared with the SPLOT CR bound j−1
A of Eq. (3.26) by assuming

θ(n) = θ̌
(n)
EM(Tmax). Note that the estimation error in general contains two

components:

Σ =
1

M

M∑
m=1

(Ǎm − Ā)2 + (Ā− A)2, (3.76)

where

Ā ≡ 1

M

M∑
m=1

Ǎm (3.77)

is the sample mean of the estimate. The first component is the sample

variance, and the second component is the square of the estimate bias with

respect to the true value A. Unlike Refs. [21, 22], our error analysis is able

to account for the bias component more accurately by referencing with the

much more accurate EM estimates.

3.6.2 Results

Applied to the two records, the EM algorithm produces the following esti-

mates listed in Table 3.1. The algorithm takes ≈ 3.3 hours to run for each

record. These values are then used as references to analyze the estimators

at shorter times.

Figure 3.2 plots the root-mean-square errors

√
Σ

(n)
l (T ) and the SPLOT

CR bound j
−1/2
A versus time T in log-log scale. The two plots show very

similar behavior. A few observations can be made:

1. The averaging estimator is more accurate than the radiometer for
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Figure 3.2: Root-mean-square force-noise-power estimation errors and the
asymptotic CR bound versus time in log-log scale. (a) The force contains
thermal noise only. (b) The force contains thermal noise and an applied
noise.

44



Table 3.1: Estimates of θ taken to be true values of θ, by applying the EM
algorithm to the whole records (Tmax).

Estimates Values

Â
(0)
EM(Tmax) = 2.4748/C2 3.64× 103 fN2 Hz−1

Ω̂
(0)
EM(Tmax) −1.8582× 104 rad s−1

γ̂
(0)
EM(Tmax) 5.5730× 104 rad s−1

R̂
(0)
EM(Tmax) 1.4532× 10−13 Hz−1

Â
(1)
EM(Tmax) = 2.6926/C2 3.96× 103 fN2 Hz−1

Ω̂
(1)
EM(Tmax) −1.8668× 104 rad s−1

γ̂
(1)
EM(Tmax) 5.6156× 104 rad s−1

R̂
(1)
EM(Tmax) 1.4703× 10−13 Hz−1

short times but becomes much worse for longer times. We cannot

explain the short-time errors because our analytic results rely on the

long-time limit. The large long-time errors can be attributed to the

bias and suboptimality of the averaging estimator.

2. The radiometer beats the averaging estimator and approaches the CR

bound for longer times. This is consistent with our SPLOT analysis,

as we have chosen D = Ǎ
(0)
EM(Tmax) and the radiometer should be

near-optimal.

3. The EM estimator beats the other estimators at all times and follows

the CR bound more closely, even though we allow the averaging and

radiometer estimators to have the unfair advantage of accessing more

accurate values of Ω, γ, and R. This may be explained by the fact

that the EM algorithm is formulated to perform ML estimation on

discrete measurements for any finite T , unlike the other estimators

that rely only on asymptotic arguments.

4. The EM estimator takes a much longer time to compute (computation

time ≈ 200 s for one trial with J + 1 = 60, 001 points and T = 4 ms)

than the other estimators (≈ 0.3 ms for the averaging estimator,

≈ 16 ms for the radiometer). If computation time is a concern,

the radiometer estimator may be preferred, though its performance
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Figure 3.3: Raw spectra s
(n)
Y (ω) of the measurement records y

(n)
j in log scale.

In both records, there exists a second weaker resonance peak denoted by
solid arrow. At higher frequencies region, the flat noise floor of the data
rolls off (dotted arrow). (Left) Record 0: Thermal noise only. (Right)
Record 1: Thermal + applied noise.

depends heavily on the accuracy of the other assumed parameters,

and the EM method can still be useful for estimating such parameters

in offline system identification.

To gain further insight into the finite gap between the errors and the

CR bound, in Fig. 3.3 we plot the raw spectrum of y
(n)
j , defined as

s
(n)
Y (ω) ≡ 1

Tmax

∣∣∣∣∣δt
Jmax∑
j=0

y
(n)
j exp(iωjδt)

∣∣∣∣∣
2

. (3.78)

The figures show that for both records our model does not exactly match

the experiment in two ways:

1. The data shows a second weaker resonance peak.

2. The noise floor of the data rolls off at higher frequencies due to the

presence of an RF notch filter in the experiment prior to data acqui-

sition.

Despite the mismatch, our results are in reasonable agreement with the

theory. To further improve the estimation accuracy, the weaker resonance

can be modeled by including another mode in our linear Gaussian model,
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while the noise-floor roll-off may be removed by a whitening filter before

applying the estimators.

3.7 Outlook

We investigate parameter estimation for an optomechanical system, fo-

cusing on unbiased and ML estimators and the CR bound. For detection

applications [44] with uncertain parameters, the ML estimator can form the

basis of more advanced hypothesis testing techniques, such as the general-

ized likelihood-ratio test [2]. The assumption of static parameters means

that the presented techniques are most suited to system identification pur-

poses. For sensing applications, the parameters are often time-varying, and

Bayesian estimators, such as the extended and unscented Kalman filters for

continuous variables [38], the generalized-pseudo-Bayesian and interacting-

multiple-model algorithms for finite-state dynamical hypotheses [45], and

particle filtering [46], may be more suitable.

Since the Gauss-Markov model often remains valid for quantum sys-

tems [9], a quantum extension of our study is straightforward. This means

that the presented techniques are potentially useful for future quantum

sensing and system identification applications, such as optomechanical force

sensing [47, 48, 49, 50] and atomic magnetometry [40, 51]. We expect our

parametric methods to lead to more accurate quantum sensing and control

than robust quantum control methods [51, 52], which may be too conserva-

tive for the highly controlled environment of typical quantum experiments.

There also exist quantum versions of the CR bound that impose fundamen-

tal limits to the parameter estimation accuracy for a quantum system with

any measurement [10, 53, 54], and it may be interesting to explore how

close the classical bounds presented here can get to the quantum limits.

The continued improvement of optomechanical devices for applications
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and fundamental science requires precise engineering of the mechanical res-

onance frequency, dissipation rate and effective mass. This necessitates a

deep understanding of how these mechanical properties depend on various

materials and fabrication techniques. The mechanical resonance frequency

is easily predicted via a numerical eigenmode analysis using the geometry

of the structure and the Young’s modulus of the material. However, it is

much more challenging to predict the level of mechanical dissipation, where

numerical models are not as well established and multiple decay channels

usually exist. Effective experimental characterization of such dissipation

channels requires high precision force estimation to accurately quantify

the oscillators coupling to the environment. This is critical to advancing

optomechanics in applications such as quantum memories and quantum in-

formation [55, 56]. A more immediate application for high precision force

estimation is that of temperature sensing and bolometry where small rel-

ative changes of the signal power are of interest, for example, in detecting

submillimeter wavelengths in radio astronomy [57] or even to search for low

energy events in particle physics [58]. Given the demonstrated success of

our statistical techniques, we envision them to be similarly useful for all

these applications.
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Chapter 4

Estimation of Spectral

Parameters with Quantum

Dynamical Systems

In this chapter, we propose a theoretical framework for estimation of spec-

tral parameters with quantum dynamical systems, proving the fundamental

limits to estimation errors and investigating measurement and data analysis

techniques that approach the limits. The key result is a simple analytic ex-

pression of the limits in terms of basic PSDs in the problem, such that they

can be readily applied to optics and optomechanics [3] experiments. To il-

lustrate our theory, we analyze a recent experiment of continuous optical

phase estimation and demonstrate that the experimental performance us-

ing homodyne detection is close to our quantum limit. We further propose

a spectral photon counting method that can beat homodyne detection and

attain quantum-optimal performance for weak modulation and a coherent-

state input. The advantage is especially significant when the signal-to-noise

ratio (SNR) is low, thus demonstrating the importance of quantum-optimal

measurements and coherent optical information processing in the low-SNR

regime. The results are reported in Ref. [59].
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4.1 Motivation

Recent spectacular development of theory and experiment, especially in

optomechanics, suggests that quantum noise will soon be the major lim-

iting factor in many metrological applications [60]. Many tasks in op-

tomechanics force sensing, including thermometry, estimation of stochastic

gravitational-wave background [61], and testing-spontaneous-wavefunction-

collapse [62, 63], involve the spectrum analysis of a stochastic force. The ef-

fect of quantum noise on such tasks has also been of recent interest [62, 63].

Therefore, to study the quantitative effect of experimental design on estima-

tion accuracy, it is important to use a rigorous statistical inference frame-

work to investigate the parameter estimation error. While there exist many

theoretical studies of quantum parameter estimation for thermometry (see,

for example, Refs. [64, 65, 66, 67, 68]), their application to more complex

dynamical systems with broadband measurements such as optomechanics

remains unclear.

4.2 Quantum Metrology

Consider a quantum dynamical system with Hamiltonian Ĥ(X, t) as a func-

tional of a c-number hidden stochastic process X(t), such as a classical

force. Also, assume that the prior probability measure of X(t) depends on

an unknown vectorial parameter θ.

4.2.1 Review of parameter estimation theory

Let Y be the quantum measurement outcome and θ̌(Y ) be an estimate

of θ given Y . The mean-square estimation error matrix Σ is defined in

Eq. (2.57),

Σµν ≡ EY {[θ̌µ(Y )− θµ][θ̌ν(Y )− θν ]}. (4.1)
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Given a quantum system, let ρ̂ = ρ̂(θ) be a θ-dependent density opera-

tor and Ê(y) be the POVM that models the measurement, such that the

observation probability measure

PY (y|θ) = tr[Ê(y)ρ̂(θ)]. (4.2)

For dynamical systems, ρ̂(θ) can be obtained using the principles of pu-

rification and deferred measurements [5, 53, 54, 69]. For the purpose of

spectrum-parameter estimation, we model ρ̂ as

ρ̂(θ) = EX|θ
{
Û [X,T ]|ψ〉〈ψ|Û †[X,T ]

}
, (4.3)

where Û [X,T ] = T exp{−(i/~)
∫ T

0
dtĤ[X, t]} is the unitary time-ordered

exponential of Ĥ with total evolution time T , |ψ〉 is the initial quantum

state, and the expectation is with respect to the hidden process X(t), the

prior probability measure of which depends on θ. θ is called hyperparameter

in this context [70].

In Sec. 2.2.5, we see that for any POVM, a QCR bound states that

Σ ≥ j−1(PY ) ≥ J−1(ρ̂), (4.4)

where j(PY ) is the classical Fisher information matrix with respect to PY

and J(ρ̂) is the QFI matrix with respect to the SLD of ρ̂ [10, 15, 71].

4.2.2 Extended convexity of QCR bound

While quantum parameter estimation bounds for dynamical systems have

been studied previously in the context of low-dimensional systems such as

qubits (see, for example, Refs. [72, 73, 74]), J is much more difficult to

evaluate analytically for multimode high-dimensional dynamical systems

under continuous measurements. To proceed, we will exploit a recently
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discovered property of J known as the extended convexity [75], which states

that

J(ρ̂) ≤ J{σ̂, PZ} ≡ EZ|θ [J(σ̂)] + j(PZ), (4.5)

where {σ̂, PZ} is any ensemble of ρ̂ with elements σ̂ and mixing probability

measure PZ such that ρ̂(θ) = EZ|θ[σ̂(Z|θ)]. Ref. [75] proves J ≤ J for one

parameter but assumes a POVM attaining j = J that may not exist [76].

To prove J ≤ J , here we use instead the strong concavity of Uhlmann

fidelity [5]. Let {σ̂, PZ} be an ensemble for ρ̂(θ) such that

ρ̂(θ) =

∫
dzPZ(z|θ)σ̂(z|θ). (4.6)

Define the Uhlmann fidelity as

F [ρ̂, ρ̂′] ≡ tr[

√√
ρ̂ρ̂′
√
ρ̂]. (4.7)

The strong concavity states that [5]

F [ρ̂(θ), ρ̂(θ′)] ≥
∫

dz
√
PZ(z|θ)PZ(z|θ′)× F [σ̂(z|θ), σ̂(z|θ′)]. (4.8)

Ref. [5] proves this property for a discrete z, but the proof also applies to

continuous z if we purify PZ in the form
∫

dz
√
PZ(z)|z〉 with continuous

eigenket |z〉 that satisfies 〈z|z′〉 = δ(z − z′). To relate F to J , we use the

fact [18]

F [ρ̂(θ), ρ̂(θ + εu)] = 1− ε2

8
uµJµν(ρ̂)uν + o(ε2), (4.9)

where ε is a scalar, u is any real vector with the same dimension as θ, and

o(ε2) denotes terms asymptotically smaller than ε2. We have derived earlier
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in Eq. (3.18), relating Bhattacharyya coefficient with j,

∫
dz
√
PZ(z|θ)PZ(z|θ + εu) = 1− ε2

8
uµjµν(PZ)uν + o(ε2). (4.10)

Expanding F [ρ̂(θ), ρ̂(θ′)] and F [σ̂(z|θ), σ̂(z|θ′)] in Eq. (4.8) using Eq. (4.9),

applying Eq. (4.10) to the right-hand side of Eq. (4.8), and comparing the

ε2 terms on both sides, we obtain

uµJµν(ρ̂)uν ≤ uµ{EZ|θ[Jµν(σ̂)] + jµν(PZ)}uν . (4.11)

Since this holds for any u, we obtain the matrix inequality in Eq. (4.5).

The classical simulation technique proposed in Ref. [77] can be regarded as

a special case of extended convexity when J(σ̂) = 0.

4.2.3 Tighter bounds

To compute simple analytic results for dynamical systems, we make further

assumptions. Assume that X(t) is zero-mean, Gaussian, and stationary,

with a PSD given by

SX(ω|θ) ≡
∫ ∞
−∞

dτEX|θ[X(t)X(t+ τ)] exp(iωτ). (4.12)

And for the quantum system, we assume Hamiltonian of the form

Ĥ = Ĥ0 − Q̂X(t), (4.13)

where Q̂ is the quantum generator and Ĥ0 is the rest of the Hamiltonian.

For example, in the context of optical phase modulation (see Sec. 4.3),

X(t) is the phase modulation on the optical beam and Q̂ is proportional to

the photon-flux operator. For mechanical force measurements, X(t) can be

the classical force on a mechanical oscillator and Q̂ is the quantum position
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operator. In the case of linear optomechanical system [3], a modified purifi-

cation technique can transform the Hamiltonian in the interaction picture

and produce a possible tighter bound in terms of the optical statistical

alone [54, 59].

As the extended convexity holds for any ensemble of ρ̂, tighter bounds

can be obtained by choosing the ensemble meticulously. To transform the

original ensemble {σ̂x, PX} into a new ensemble {σ̂z, PZ}, we define a new

stochastic process Z(t) by

X(t) =

∫ ∞
−∞

dτg(t− τ |θ)Z(τ), (4.14)

where g is an impulse-response function to be chosen later. ρ̂ can now be

expressed as

ρ̂(θ) = EZ|θ
{
Û [g ∗ Z, T ]|ψ〉〈ψ|Û †[g ∗ Z, T ]

}
, (4.15)

where ∗ denotes convolution. We choose

σ̂z = Û [g ∗ Z, T ]|ψ〉〈ψ|Û †[g ∗ Z, T ], (4.16)

and we have an ensemble {σ̂z, PZ} for ρ̂, which is parameterized by g.

Assuming the Hamiltonian in Eq. (4.13), it can be shown that [53, 78]

Jµν =
4

~2

∫ T

0

dt

∫ T

0

dt′KQ(t, t′)

∫ ∞
−∞

dτ
∂g(t− τ |θ)

∂θµ
Z(τ)

×
∫ ∞
−∞

dτ ′
∂g(t′ − τ ′|θ)

∂θν
Z(τ ′), (4.17)

whereKQ(t, t′) is the quantum covariance of the generator in the Heisenberg

picture, defined as

KQ(t, t′) ≡ Re
[
〈ψ|∆Q̂(t)∆Q̂(t′)|ψ〉

]
, (4.18)
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∆Q̂(t) ≡ Q̂(t)− 〈ψ|Q̂(t)|ψ〉, (4.19)

Q̂(t) ≡ Û †(X, t)Q̂Û(X, t). (4.20)

We now assume that KQ(t, t′) is independent of X(t); such an assumption is

commonly satisfied in optical-phase-modulation and linear optomechanical

systems. The expected J(σ) becomes

EZ|θ[Jµν(σ̂z)] =
4

~2

∫ T

0

dt

∫ T

0

dt′KQ(t, t′)

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′KZ(τ, τ ′|θ)

×
[
∂g(t− τ |θ)

∂θµ

] [
∂g(t′ − τ ′|θ)

∂θν

]
(4.21)

where

KZ(τ, τ ′|θ) ≡ EZ|θ[Z(τ)Z(τ ′)] (4.22)

is the prior covariance of Z(t). Assume further that the quantum statistics

of ∆Q(t) are stationary, with a PSD given by

SQ(ω) ≡
∫ ∞
−∞

dτKQ(t, t+ τ) exp(iωτ). (4.23)

Defining a transfer function as

G(ω|θ) ≡
∫ ∞
−∞

dtg(t|θ) exp(iωt). (4.24)

restricting G to be nonzero for all frequencies of interest. Note that the

PSD of Z(t) is SX/|G|2, making the SPLOT assumption, Eq. (4.21) can

be rewritten as

EZ|θ[Jµν(σ̂z)] = T

∫ ∞
−∞

dω

2π

4SQSX
~2

∂ lnG

∂θµ

∂ lnG

∂θν
(4.25)

The Fisher information j(PZ) can be obtained by substituting Eq. (3.20)
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into Eq. (3.19). The result is

jµν(PZ) =
T

2

∫ ∞
−∞

dω

2π

1

S2
Z

∂SZ
∂θµ

∂SZ
∂θν

(4.26)

= T

∫ ∞
−∞

dω

2π

1

2

∂

∂θµ

(
ln

SX
|G|2

)
∂

∂θν

(
ln

SX
|G|2

)
. (4.27)

Combining Eqs. (4.25) and (4.27) according to Eq. (4.5), we obtain

uµJµνuν = T

∫ ∞
−∞

dω

2π

[
4SQSX

~2
|λ|2 +

1

2
(Λ− λ− λ∗)2

]
, (4.28)

where

λ ≡ uµ
∂ lnG

∂θµ
, (4.29)

Λ ≡ uµ
∂ lnSX
∂θµ

. (4.30)

Since Eq. (4.28) is quadratic with respect to λ, the λ and thus G that

minimizes Eq. (4.28) for each u can be found analytically by taking its

derivatives with respect to the real and imaginary parts of λ and setting

them to zero. This gives

λ =
Λ

2 + 4SQSX/~2
, (4.31)

and a variational upper bound on the QFI matrix,

J ≤ J̃ , (4.32)

which elements are given by

J̃µν = T

∫ ∞
−∞

dω

2π

(∂ lnSX/∂θµ)(∂ lnSX/∂θν)

2 + ~2/SQSX
. (4.33)

Note that the quantum state |ψ〉 need not be Gaussian for the result to

hold.
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For continuous optical phase modulation [9, 48, 49, 50], SX is the phase

PSD and SQ/~2 is the photon-flux PSD. For mechanical force measurement,

SX is the classical force PSD and SQ is the mechanical position PSD.

For linear cavity optomechanics, using the interaction-picture purification

technique, SX is the PSD of the forced displacement and SQ is proportional

to the cavity photon number PSD [59]. The frequency-domain integral

given by Eq. (4.33), together with the matrix inequalities

Σ ≥ j−1 ≥ J−1 ≥ J̃ −1 (4.34)

that follow from Eqs. (4.4) and (4.32), represent a novel form of uncertainty

relations and indicate a nontrivial interplay between the classical noise

characterized by SX and a frequency-domain SNR given by SQSX/~2 in

bounding the estimation error and the Fisher information quantities.

Note also that J̃ is proportional to the total time T , as are all the Fisher

information quantities we derive here and in Chapter 3. This suggests

that a longer observation time can improve the parameter estimation, as is

well known in statistics [12] but missed by some of the previous quantum

studies [62, 63].

4.3 Continuous Optical Phase Modulation

Consider the optics experiment depicted in Fig. 4.1(a) or (b). An external

stochastic source X(t), such as a moving mirror or an electro-optic mod-

ulator, modulates the phase of a continuous optical beam, which is then

measured to obtain information about the source. The Hamiltonian is

Ĥ = ~Î(t)X(t), (4.35)
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Y (t)
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Q̂

X(t)
Q̂

X(t)

Figure 4.1: (a) and (b) Optical phase modulation, where X(t) is the phase
modulation and Q̂ is proportional to photon flux. (c) Adaptive homodyne
detection.

where Î(t) is the photon-flux operator, SI(ω) = SQ(ω)/~2 is the photon-

flux PSD, and SX(ω|θ) is the source PSD. The quantum limit given by

Eq. (4.33) becomes

J̃µν = T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2 + 1/(SISX)
, (4.36)

where ∂µ ≡ ∂/∂θµ.

4.3.1 Homodyne detection

We can compare our bound with the Fisher information for homodyne de-

tection, a standard experimental phase measurement method [9, 48, 49, 50],

as illustrated in Fig. 4.1(c). If the mean field is strong, and the modula-

tion is weak or tight phase locking is achieved, the output process can be
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linearized as

Y (t) ≈ X(t) + η(t), (4.37)

where η(t) is the phase-quadrature noise. As discussed in Sec. 3.3, if η

is Gaussian and stationary with PSD Sη(ω) such that Y is also Gaussian

and stationary, the information j[P
(hom)
Y ] can be computed analytically [13].

Using Eq. (4.26), the result with the SPLOT assumption is

jµν [P
(hom)
Y ] = T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2(1 + Sη/SX)2
. (4.38)

The classical CR bound Σ ≥ j−1[P
(hom)
Y ] is asymptotically attainable for

long T using ML estimation [12].

With the quadrature uncertainty relation Sη(ω)SI(ω) ≥ 1/4 for the

optical beam [79], the optimal homodyne information j̃ is

j[P
(hom)
Y ] ≤ j̃, (4.39)

and

j̃µν = T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2 + 1/(SISX) + 1/(8S2
IS

2
X)
. (4.40)

We can compare this homodyne limit with the quantum limit in Eq. (4.36);

the expressions are similar, apart from an extra factor of 1/(8S2
IS

2
X) that

makes the homodyne limit strictly worse than our quantum limit, especially

if SISX is small.

4.3.2 Spectral photon counting

Although Eq. (4.34) sets rigorous lower bounds on the estimation error

Σ, there is no guarantee the existence of a measurement that can attain
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Figure 4.2: (a) Spectral photon counting with a diffraction grating and a
lens. (b) Spectral photon counting with an optical ring-resonator array.

the final bound J̃ −1. Inspired by Ref. [68], we propose a photon count-

ing method which we name spectral photon counting. It consists of a

conventional optical spectrometer with photon counting for each spectral

mode [80, 81]. For the phase spectral parameter estimation problem with

weak modulation and a coherent-state input, this method turns out to have

an information j[P
(spc)
Y ] coincides with J̃ for all parameters.

The first step of spectral photon counting is the coherent optical Fourier

transform via a dispersive optical element, such as a diffraction grating or

a prism and a Fourier-transform lens [80] as depicted in Fig. 4.2(a), or an

array of optical ring resonators with different resonant frequencies coupled

to a cross grid of waveguides [82] as depicted in Fig. 4.2(b). The second

step is a measurement of the photon numbers in the spectral modes, and

the final step is a ML estimation of θ from the spectral photon counting

results.
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Let the positive-frequency electric field at the input of the phase mod-

ulator be

Ê(+)(t) = Â(t) exp(−iΩt), (4.41)

where Â(t) is an annihilation operator for the slowly varying envelope with

commutation relation

[Â(t), Â†(t′)] = δ(t− t′) (4.42)

and Ω is the optical carrier frequency. With a strong mean field α ≡

〈ψ|Â(t)|ψ〉 and weak phase modulation, the output field can be linearized

as

B̂(t) ≈ Â(t) + iαX(t). (4.43)

To model the optical Fourier transform, we follow Shapiro [80] to express

each frequency mode in terms of the mode annihilation operator as

b̂m = (1/
√
T )

∫ T

0

dtB̂(t) exp(iωmt), (4.44)

with sideband frequencies ωm = 2πm/T , m ∈ {. . . ,−2,−1, 0, 1, 2, . . . },

and [b̂m, b̂
†
n] = δmn. Assuming α to be time-constant,

b̂m ≈ âm + iαxm, (4.45)

where âm is the Fourier transform of Â(t) and xm is that of X(t) in the

same way as b̂m.

The strong mean field is contained in the m = 0 mode only, and if

the spectrum of xm is wide, negligible information is lost if we neglect the

m = 0 mode. The other modes are coherent states for a given displacement
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iαxm if the input beam is a coherent state [80]. For a given xm, the photon-

counting distribution for n̂m ≡ b̂†mb̂m in each mode is therefore Poissonian

with mean |α|2|xm|2 and independent from one another.

Since X(t) is a hidden stochastic process, we must average the Pois-

sonian distribution over the prior of X(t) to obtain the final likelihood

function. For a Gaussian X(t) with the SPLOT assumption, {xm;m >

0} are independent complex Gaussian random variables with variances

SX(ωm|θ) [12], but since X(t) is real, the sidebands are symmetric with

xm = x∗−m. This means that, averaged over x, the photon numbers at

opposite sideband frequencies become correlated.

To simplify the analysis, suppose that, for each m > 0, we sum the

pair of measured photon numbers nm and n−m at opposite sidebands and

use a reduced set of measurement record {Nm ≡ nm + n−m;m > 0} for

estimation. It can be shown that each Nm is also Poissonian conditioned

on the mean 2|α|2|xm|2, but now they remain independent from one another

in the set after averaging over {xm;m > 0}.

With xm being complex Gaussian and Nm being conditionally Poisso-

nian with mean 2|α|2|xm|2, it can be shown that the marginal distribution

of Nm is a Bose-Einstein distribution with mean number [79]

N̄m = 2|α|2SX(ωm|θ), (4.46)

and probability

P (m)
n (nm|θ) =

1

N̄m + 1

(
N̄m

N̄m + 1

)nm

. (4.47)

The classical Fisher information for each P
(m)
n is given by Eq. (2.60),

jµν [P
(m)
n ] =

∑
nm

P (m)
n

∂ lnP
(m)
n

∂θµ

∂ lnP
(m)
n

∂θν
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=
∂N̄m

∂θµ

∂N̄m

∂θν

∑
nm

P (m)
n

[
∂ lnP

(m)
n

∂θµ

]2

=
∂N̄m

∂θµ

∂N̄m

∂θν

1

N̄m(N̄m + 1)
. (4.48)

The Fisher information j(P
(spc)
Y ) is obtained by summing the classical in-

formation from each mode,

j[P
(spc)
Y ] =

∑
m>0

j[P (m)
n ],

jµν [P
(spc)
Y ] =

∑
m>0

(∂ ln N̄m/∂θµ)(∂ ln N̄m/∂θν)

1 + 1/N̄m

, (4.49)

which leads to

jµν [P
(spc)
Y ] = T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2 + 1/(NSX)
, (4.50)

if we use the SPLOT assumption to replace
∑

m>0 with T
∫∞

0
dω/(2π) [10]

and use the symmetry of the integrand to replace T
∫∞

0
dω/(2π) with

(T/2)
∫∞
−∞ dω/(2π). N denotes the average input photon flux. Since SI(ω) =

N for a coherent state, Eq. (4.50) coincides with the quantum bound

in Eq. (4.36). Comparing Eq. (4.50) with the homodyne limit given by

Eq. (4.40), we can expect that spectral photon counting becomes signifi-

cantly better than homodyne detection when NSX is small.

4.3.3 Ornstein-Uhlenbeck spectrum analysis

For a more specific example, consider the experiments in Refs. [48, 49],

which can be modeled as the continuous-optical-phase-modulation prob-

lem depicted in Fig. 4.1(b), with adaptive homodyne detection depicted in

Fig. 4.1(c) and X(t) given by an Ornstein-Uhlenbeck process with PSD

SX(ω|θ) =
2θ1θ2

ω2 + θ2
2

, (4.51)
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where θ1 = EX|θ[X2(t)] is the area under SX and θ2 is the spectral width.

The experimental SI can be assumed to be constant for all frequencies of

interest, and the quantum limit given by Eq. (4.36) on the estimation of θ1

and θ2 can be computed analytically:

J̃11 =
θ2T

8θ2
1

C√
1 + C/2

,

J̃22 =
2T

θ2

1 + C/4

C

(
1 + C/4√
1 + C/2

− 1

)
,

J̃12 = J̃21 =
T

2θ1

(
1 + C/4√
1 + C/2

− 1

)
, (4.52)

where

C ≡ 8θ1SI
θ2

= 4SISX(0|θ) (4.53)

is an SNR quantity. For comparison, the homodyne limit given by Eq. (4.40)

is

j̃11 =
θ2T

8θ2
1

C2

(1 + C)3/2
,

j̃22 =
2T

θ2

1

C

[
(1 + C/2)(1 + 5C/4 + C2/8)

(1 + C)3/2
−
(

1 +
C

4

)]
,

j̃12 = j̃21 =
T

2θ1

[
1 + 3C/2 + C2/4

(1 + C)3/2
− 1

]
. (4.54)

For homodyne detection, C is an upper limit on the ratio between the peak

of SX and the homodyne noise floor Sη in the frequency domain.

Fig. 4.3 plots the quantum (J̃ −1) and homodyne (j̃−1) bounds on the

estimation errors Σ11 and Σ22 versus C. Both plots show similar behaviors,

and the C � 1 and C � 1 limits are of special interest. In the high-SNR
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Figure 4.3: Log-log plots of the homodyne limit j̃−1 (dashed line, given
by the inverse of Eq. (4.54)) and quantum limit J̃ −1 (solid line, given by
the inverse of Eq. (4.52)) on the mean-square estimation errors versus an
SNR quantity C ≡ 8θ1SI/θ2. (Left): limits on normalized Σ11 (in unit of
θ2

1/(θ2T )), (Right): limits on normalized Σ22 (in unit of θ2/T ). No mea-
surement can achieve an error below the quantum limit (the “forbidden”
region), and no homodyne measurement can achieve an error below the ho-
modyne limit. For C � 1, the limits approach constants, while for C � 1
the homodyne limit has significantly worse error scaling.

regime (C � 1), both J̃ −1 and j̃−1 approach a C-independent limit:

lim
C→∞

J̃ −1 = lim
C→∞

j̃−1 =
2

θ2T

 θ2
1 −θ1θ2

−θ1θ2 θ2
2

 , (4.55)

and the homodyne performance is near-quantum-optimal. This asymptotic

behavior is different from that of the bounds for single-parameter estima-

tion, as both 1/J̃µµ and 1/j̃µµ scale as C−1/2 and decrease indefinitely for

increasing C. The matrix bounds thus demonstrate the detrimental effect

of having two unknown parameters that act as noise to each other. The

C-independent limits also suggest that, once an experiment is in the high-

SNR regime, no significant improvement can be made by increasing SI and

reducing the noise floor via photon-flux increase, squeezing, or changing

the measurement method.

In the low-SNR regime (C � 1), on the other hand, it can be shown

65



that

J̃ −1 ≈ 8

θ2T
C−1

θ2
1 0

0 2θ2
2

 , (4.56)

j̃−1 ≈ 16

θ2T
C−2

 θ2
1 θ1θ2

θ1θ2 2θ2
2

 , (4.57)

where the homodyne bounds on Σ11 and Σ22 diverge from the quantum

bounds by a large factor of 2/C � 1. The diverging bounds demonstrate

the importance of quantum-optimal measurement in the low-SNR limit: at

least for a coherent-state input and weak modulation, the quantum-optimal

performance of spectral photon counting can exhibit a superior error scaling

and offer significant improvements over homodyne detection.

4.4 Experimental Data Analysis

To compare our theory with actual experimental performance, we analyze

the data from the experiment reported in Ref. [48], which is in a high-

SNR regime (C ≥ 23.5) where the adaptive homodyne performance is

expected to be close to our quantum limit. We focus on the experiment with

coherent states and not the one with squeezed states reported in Ref. [49],

as Eq. (4.55) implies that squeezing offers insignificant improvement in this

high-SNR regime. The details of our statistical data analysis are described

in Sec. 4.4.1, and the experimental estimation errors are plotted in Fig. 4.4,

together with the quantum limit given by the inverse of J̃ in Eq. (4.52)

and the homodyne limit given by the inverse of j̃ in Eq. (4.54). The plots

demonstrate estimation errors close to both the homodyne limit and the

fundamental quantum limit, despite experimental imperfections such as

imperfect phase locking.

The experiment reported in Ref. [48] used a beam where its phase is

66



10
1

10
2

10
3

10
0

10
1

 Error Bounds versus SNR

 

 
Experimental
Homodyne limit
Quantum limit

10
1

10
2

10
3

10
0

10
1

 Error Bounds versus SNR

 

 
Experimental

Homodyne limit

Quantum limit

C ≡ θ1SI /θ2

C ≡ θ1SI /θ2

θ1

θ2

Σ
1
1
θ 2
T
/
θ2 1

Σ
22
T
/
θ 2

Figure 4.4: Log-log plots of the experimental mean-square estimation error
Σ of Eq. (4.64) with error bar V of Eq. (4.65), the theoretical homodyne
limit j−1 and the quantum limit J̃ versus the SNR quantity C ≡ 8θ1SI/θ2.
(Top) Experimental Σ11 = {4.0± 1.2, 2.0± 0.6, 2.0± 0.6, 4.4± 1.1} (in unit
of θ2

1/(θ1T )) versus C = {23.5, 64.8, 113, 254}. (Bottom) Experimental
Σ22 = {8.7± 3.2, 4.4± 1.6, 5.2± 1.7, 6.4± 1.4} (in unit of θ2

1/(θ1T )) versus
C of the same value.
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modulated with an Ornstein-Uhlenbeck signal X(t) depicted in Fig. 4.1(b).

The phase-modulated beam was measured by adaptive homodyne detection

described in Sec. 4.3.1 and depicted in Fig. 4.1(c). The experiment used

four different mean photon fluxes and for each photon flux Nk, Mk traces

of X(t) and Mk traces of Y (t) were recorded as listed in Table 4.1. Each

trace of Y (t) was obtained using a different feedback gain for the filter in

the phase-locked loop, such that the phase locking might not be optimal.

The original purpose of varying the feedback gains was to demonstrate the

existence of an optimal filter for phase estimation in Ref. [48], but it is

appropriate for our present analysis, as θ1, θ2 and the optimal filter are

supposed to be unknown.

Table 4.1: The mean photon fluxes Nk and the number of records Mk for
the experiment

Experiments Mean photon flux (Nk) Number of records (Mk)
k = 1 1.315× 106 s−1 21
k = 2 3.616× 106 s−1 23
k = 3 6.327× 106 s−1 24
k = 4 1.418× 107 s−1 27

We assume further that the phase locking remained tight even if the

filter was suboptimal, such that we can still use the linearized model

Y (t) = sin[X(t)− X̌(t)] + η(t) + X̌(t) ≈ X(t) + η(t), (4.58)

where X̌(t) is the feedback phase modulation on the local oscillator. Com-

parisons of the experimental X(t) with X̌(t) show that E[X(t)− X̌(t)]2 .

0.3 and the linearized model is thus reasonable. In Sec. 4.4.2, we describe

further calibrations that ensure Eq. (4.58) is accurate. Most metrologi-

cal experiments, such as gravitational-wave detectors, deal with extremely

weak phase modulation, so the linearized model is expected to be even

more accurate in those cases.
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4.4.1 Procedure

In the last chapter, we perform the ML estimation for any observation

time T using an EM algorithm [12, 23]. However, numerical simulations

suggest that in this case it is safe to use Whittle estimator [14] given by

Eq. (2.56) which is faster. For discrete-time measurement record {y(tk)}

where tk = kδt, k = 0, 1, . . . , K−1, Whittle method approximates the like-

lihood function under SPLOT assumption, up to a θ-independent additive

constant A:

lnPY ≈ A−
∑

0<m<L/2

[
lnSY (ωm|θ) +

|Ỹm|2
SY (ω|θ)

]
, (4.59)

where Ỹm is the discrete Fourier transform of y defined in Eq. (2.53). Ap-

proximate ML estimation can then be performed by Fourier-transforming

the time series into {Ỹm} and finding the parameters that maximize Eq. (4.59).

We use Matlabr and its fft and fminunc functions to implement this pro-

cedure on the same desktop PC used in previous chapter. With T = 0.01 s

for each Y (t) trace, we expect the SPLOT assumption to be reasonable.

We also perform numerical simulations throughout our analysis to ensure

that our SPLOT and unbiased-estimator assumptions are valid and our

results are expected.

To prevent technical noise and model mismatch at higher frequencies

from contaminating our analysis, we consider only the spectral components

up to 6 × 105 rad/s ∼ 10θ2, rather than the full measurement bandwidth

π/δt = π × 108 rad/s. To estimate the true parameters more accurately,

we apply the Whittle method to the collective record of all
∑

kMk = 95

experimental X(t) traces, assuming the spectrum given by Eq. (4.51), and

obtain

θ1 = 0.1323
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θ2 = 5.909× 104 rad/s. (4.60)

We take these to be the true parameters, as the estimates from such a large

number of X(t) traces are expected to be much more accurate than those

from each Y (t) trace.

We apply the Whittle method to each Y (t) trace and evaluate the es-

timation errors by comparing the estimates with the true parameters. For

each photon flux we assume a noise floor that is estimated from high-

frequency data, and then we estimate θ using spectral components of Y up

to ω = 6× 105 rad/s. Let the resulting estimates be

{θ̌(mk)
µk ;µ = 1, 2; k = 1, 2, 3, 4;mk = 1, . . . ,Mk}, (4.61)

where µ is the index for the two parameters, k is the index for the photon

fluxes, and mk is the index for the traces, and let the squared distance of

each estimate from the true parameter be

ε
(mk)
µk ≡ (θ̌

(mk)
µk − θµ)2. (4.62)

ε
(mk)
µk can be regarded as an outcome for a random variable εµk, so we can

use the sample mean

ε̄µk ≡
1

Mk

Mk∑
mk=1

ε
(mk)
µk (4.63)

to estimate the expected error

Σµµ = EY (εµk). (4.64)

To find the deviation of the sample mean ε̄µk from the expected value, we
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use an unbiased estimate of the variance of εµk, that is,

Vµk ≡
1

Mk − 1

Mk∑
mk=1

(ε
(mk)
µk − ε̄µk)2, (4.65)

and divide it by the number of samples Mk. Our final results {ε̄µk ±√
Vµk/Mk;µ = 1, 2; k = 1, 2, 3, 4} are plotted in normalized units in Fig. 4.4.

4.4.2 Data recalibration

In the experiment described in Ref. [48], calibration procedures were used

to convert applied and measured voltages to the various physical quantities

defined throughout Ref. [48]. In the course of analyzing that experimental

data for the purpose of the new estimation task described here, we found

that the data gives non-negligible bias in the estimation of θ1. It turns

out that the original calibration of experimental data was not accurate

enough for the new task of estimating θ1 (note that θ2 is robust against

this inaccuracy). The systematic calibration error had insignificant effects

on the phase estimation task in Ref. [48] – making the estimate slightly

worse than it would have been without the bias but generally within the

uncertainty of the experiment as reported in Ref. [48]. The bias might have

been caused by non-linearity or saturation of electronic circuits during the

calibration phase of the experiment or long timescale drift. For our purpose

here, we refine the calibration of the data from Ref. [48] so that we can

achieve an accurate estimate. To do this fairly and independently, we

use two extra data sets (k = 5, 6), which were not shown in Ref. [48]

but recorded by the same experimental setup with different experimental

parameters. Mean photon fluxes of these data sets are N5 = 6.198×106 s−1

and N6 = 5.986 × 106 s−1. Number of traces are M5 = 24 and M6 = 24.

Note that we use these “training” data only for the purposes of refining the

experimental calibration. We apply the Whittle method to the two extra
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data sets to obtain the true θ1 from the collective record of X(t), and a

mean value of the estimated θ1 from the collective record of Y (t) traces

using the coarse calibration from Ref. [48]. We determine that a refined

calibration factor of 0.8945 is required to cancel the unwanted bias in the

estimate of θ1 for the extra data sets k = 5, 6. We then apply the refinement

factor to Y (t) of the original data sets (k = 1 to 4). By this method, we can

refine the calibration of the original data presented in Ref. [48] by making

use of independent, but contemporaneously recorded data.

4.5 Discussion

We have presented three key results: a measurement-independent quantum

limit to the estimation of spectral parameters, the optimality of spectral

photon counting, and an experimental data analysis. The quantum limit

applies to a wide range of experiments and is particularly relevant to op-

tomechanics, where the spectrum parameters of a stochastic force are often

of interest to metrological applications [61, 62, 63, 83]. The proposed spec-

tral photon counting method will be useful whenever the problem can be

modeled as weak phase modulation of a coherent state and the SNR is low.

Most metrological experiments, including gravitational-wave detectors, in-

volve extremely weak phase modulation and low SNR. So the potential

improvement over homodyne or heterodyne detection without the need of

squeezed light is an important discovery. Our experimental data analysis

further demonstrates the relevance of our theory to current technology and

provides a recipe for future spectrum-analysis experiments.

There are many interesting potential extensions of our theory. Although

quantum baths can often be modeled classically, a generalization of our for-

malism to account for nonclassical baths will make our theory applicable

to an even wider range of experiments. A generalization for nonstationary
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processes and finite observation time will be valuable for the study of unsta-

ble systems, which are potentially more sensitive than stable systems [84].

Tighter quantum limits that explicitly account for decoherence may be

derived by applying the techniques in Refs. [54, 77, 85]. A Bayesian for-

mulation that removes the unbiased-estimator assumption should be pos-

sible [1, 53, 54, 86, 87]. A more detailed study of our theory in the context

of optomechanics can serve as an extension of Refs. [62, 63] and enable a

more rigorous analysis of quantum limits to testing wavefunction-collapse

models. Application of our theory to spin systems will provide a more

rigorous foundation for stochastic magnetometry [88].

The actual performance of spectral photon counting depends on the

bandwidth and spectral resolution of the Fourier-transform device, as well

as the quantum efficiency and dark counts of the photodetectors in practice.

While a more detailed analysis of such practical concerns is needed before

one can judge the realistic performance of spectral photon counting with

current technology, the large potential improvement in the low-SNR regime

indicates the fundamental importance of coherent optical information pro-

cessing for sensing applications and should motivate further technological

advances in coherent quantum optical devices [89, 90]. In the high-SNR

regime, on the other hand, our theory and experimental data analysis sug-

gest that current technology can already approach the quantum limits with

homodyne or even heterodyne detection. In this regime, our quantum limit

primarily serves as a no-go theorem, proving that no other measurement

can offer significant improvement. The challenge for actual metrological

experiments will be to reach the high-SNR regime for weak signals, in

which case our theory should serve as a rigorous foundation to guide future

experimental designs.
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Chapter 5

Imaging

In this chapter, we reconsider the problem of resolution in the field of

optical imaging from the perspective of quantum estimation theory using

the QCR lower bound [10, 15].

Rayleigh’s criterion for resolution of two incoherent point sources [91]

has been the most accepted criterion for optical resolution since its for-

mulation in year 1879. In the past few decades, advances in far-field

super-resolution techniques in microscopy [92, 93, 94] (see Ref. [95] for

a review) enable us to sidestep Rayleigh’s limit. Still, as they require that

nearby sources are not emitting at the same time, those technologies do

not challenge Rayleigh’s criterion fundamentally for independently emit-

ting sources; see Appendix A for details.

Here we study the problem of two-dimensional localization of two in-

coherent optical point sources. In Sec. 5.3, we obtain the fundamental

limit for the estimation of the Cartesian components of the centroid and

separation of the sources, and compare the QCR bound with the classical

limit for direct imaging method. We propose two measurement schemes

which asymptotically attain the QCR bound for both components of the

separation over many trials in Sections 5.4 and 5.5.

This chapter is based on the preprint listed in Ref. [96]
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5.1 Motivation

Being rooted in the optical measurement technology of its era, Rayleigh’s

criterion neglects the discrete and stochastic nature of the photodetection

process. By adopting a stochastic framework, the studies [97, 98, 99] gave a

modern formulation of the criterion for two sources radiating independently

and incoherently. Using the CR bound of classical estimation theory [1],

they showed that the localization accuracy of any unbiased estimator based

on image-plane photon counting deteriorates rapidly on approaching sub-

Rayleigh separations.

Following a preliminary study of the fundamental localization limit in

Ref. [100], Tsang et al. [101] obtained the quantum limit on localizing

two incoherent optical point sources in one-dimensional imaging. Their

quantum bound is independent of separation and shows no deterioration

when the two sources are closer than the conventional Rayleigh limit of the

imaging system. Similar conclusions were reproduced using a semiclassical

photodetection theory under a Poisson model [102]. In Ref. [101], a linear

optical measurement – SPADE (SPAtial-mode DEmultiplexing)—was also

proposed and shown to attain the QCR bound for any separation. Another

measurement scheme proposed in Ref. [103]—SLIVER (Super Localization

by Image inVERsion) interferometry—approaches the QCR bound for sub-

Rayleigh separations.

Motivated by the work in Refs. [101, 102, 103], we study the problem

of two-dimensional localization of two incoherent optical point sources. We

first obtain the full 4-parameter quantum Fisher information matrix char-

acterizing the precision of estimating all four (transverse) Cartesian coor-

dinates of the two sources. We then focus on estimating the separations

in the x and y directions, which the QCR bounds are shown to be inde-

pendent of. Recent theoretical studies in quantum parameter estimation

proved the existence of a POVM [10, 15] that achieves the QCR bound for
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estimation of a single parameter [18, 19], though the quantum bound may

not be attainable for two or more parameters. Here we propose two mea-

surement schemes which asymptotically attain the QCR bound for both

components of the separation over many trials. The first is an extension

of the SLIVER scheme for estimating both separation parameters and ap-

proaches the QCR bound for small values of source separation. The second

is a two-dimensional version of the SPADE scheme that attains the bound

regardless of the distance between the two sources.

5.2 Source and System Model

We first lay out the source and imaging system model used in this study, the

former being identical to that in Ref. [101]. We assume that two incoherent

optical point sources with equal intensities are located on the object plane.

Far-field radiation from these sources is collected at the entrance pupil of

an optical imaging system such as a microscope or telescope. We assume

that the paraxial approximation is valid for the field propagation from ob-

ject plane to entrance pupil and consider a single polarization only. We

further assume that the radiation from the sources is quasi-monochromatic

and excites only a single temporal mode in order to focus on the spa-

tial aspects of the resolution problem. We assume also that the imaging

system is spatially-invariant [104], and that the image-plane coordinates

(x, y) have been divided by the magnification factor and that ψ(x, y) is the

two-dimensional point-spread function (PSF) of the optical system satisfy-

ing the normalization condition
∫∞
−∞ dx

∫∞
−∞ dy|ψs(x, y)|2 = 1 on the image

plane.

Given two incoherent optical point sources with equal intensities located

at coordinates (X1, Y1) and (X2, Y2) on the object plane, we assume the two

sources are weak enough so that the probability ε of one or the other source
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(but not both) emitting one photon satisfies

ε� 1. (5.1)

We further assume that the probability of together emitting more than one

photon is negligible. Under the above assumptions, the quantum density

operator of the optical field on the image plane can be written as [101]

ρ̂ = (1− ε)|vac〉〈vac|+ ε

2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|), (5.2)

where |vac〉 denotes the vacuum state and states {|ψs〉}2
s=1 are given by

|ψs〉 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy ψs(x, y)|x, y〉, s = 1, 2, (5.3)

with the wavefunctions

ψs(x, y) = ψ(x−Xs, y − Ys), s = 1, 2, (5.4)

and |x, y〉 denotes the state with one photon in the mode corresponding to

position (x, y) alone such that 〈x, y|x′, y′〉 = δ(x− x′)δ(y − y′).

Eq. (5.2) means that a photon arrives with equal probability ε/2 from

either of the two sources. If a photon arrives from the first source, it is

in the state |ψ1〉 with wavefunction ψ1(x, y); if it comes from the other

source, it is in state |ψ2〉 with wavefunction ψ2(x, y). The two states are

not orthogonal in general, with overlap

δ ≡ 〈ψ1|ψ2〉 =

∫ ∞
−∞

dx

∫ ∞
−∞

dyψ∗1(x, y)ψ2(x, y) 6= 0. (5.5)

The parameters we are interested in estimating are the four components
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Figure 5.1: An illustration of the focused image of two point sources cen-
tered at (X1, Y1) and (X2, Y2). The shading indicates the approximate
extent of the PSFs.

of the vector

θ ≡ (X̄, Ȳ , dX , dY )>, (5.6)

consisting of the centroid vector

(X̄, Ȳ ) = [(X1, Y1) + (X2, Y2)]/2, (5.7)

and the separation vector

(dX , dY ) = (X2, Y2)− (X1, Y1), (5.8)

as depicted in Fig. 5.1.

We also make a realistic simplifying assumption on the (possibly complex-

valued) PSF ψ(x, y) of the imaging system, namely that it is symmetric

about the origin (or inversion-symmetric), viz.,

ψ(x, y) = ψ(−x,−y). (5.9)

This assumption is satisfied for most imaging systems of interest, includ-

ing spatially-invariant systems whose entrance aperture is rectangular or

(hard or apodized) circular in shape [104], and is more general than the
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assumption of a circularly-symmetric PSF used in Ref. [103]. Although the

PSF may be complex-valued, the overlap δ is always real-valued. Using the

definition of δ in Eq. (5.5), we have

δ∗ =

∫ ∞
−∞

dx

∫ ∞
−∞

dyψ∗(x−X2, y − Y2)ψ(x−X1, y − Y1)

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′ψ∗(x′ − dX
2
, y′ − dY

2
)ψ(x′ +

dX
2
, y′ +

dY
2

) (5.10)

as we shift the coordinates, such that the centroid (X̄, Ȳ ) of Eq. (5.7) is

the new origin. The terms dX and dY are defined by Eq. (5.8). Using the

assumption, ψ(x, y) is symmetric about the origin, we have

δ∗ =

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′ψ∗(−x′ + dX
2
,−y′ + dY

2
)ψ(−x′ − dX

2
,−y′ − dY

2
)

=

∫ ∞
−∞

dx′′
∫ ∞
−∞

dy′′ψ∗(x′′ +
dX
2
, y′′ +

dY
2

)ψ(x′′ − dX
2
, y′′ − dY

2
)

= δ, (5.11)

where in the second equality we apply a change of variables x′′ = −x′ and

y′′ = −y′. Since the conjugate of δ is equal to itself, we show that δ is

real-valued.

5.3 Quantum Limit on Two-source Localiza-

tion

5.3.1 Review of the QCR bound

Let ρ̂ = ρ̂(θ) be the density operator of a quantum system depending on

an unknown vector parameter θ = (θ1, θ2, . . . )
>. Consider the estimation

of θ from the quantum measurement outcome Y on M copies of ρ̂. The
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probability distribution of Y is given by

P (Y ) = tr[Ê(Y )ρ̂⊗M ], (5.12)

where Ê(Y ) is the POVM that characterizes the measurement and ρ̂⊗M de-

notes the tensor product of M copies of ρ̂. The estimation error covariance

matrix Σ defined in Eq. (2.58) is bounded by the classical and quantum

CR bound:

Σ ≥ j−1 ≥ J−1, (5.13)

which means that matrices Σ − j−1, Σ − J−1 and j−1 − J−1 are positive-

semidefinite. j is the classical Fisher information matrix given by Eq. (2.60)

and J is the QFI matrix which can be expressed in terms of the SLD

operators {L̂µ} as

Jµν = Mtr
L̂µL̂ν + L̂νL̂µ

2
ρ̂. (5.14)

If ρ̂ is diagonalized in an orthogonal basis {|en〉}, viz.,

ρ̂ =
∑
n

Dn|en〉〈en|, (5.15)

L̂µ, can be expressed as [16]

L̂µ =
∑
m,n

Dm+Dn 6=0

2

Dm +Dn

〈em|
∂ρ̂θ
∂θµ
|en〉|em〉〈en|. (5.16)

5.3.2 Quantum Fisher information (QFI) matrix for

two-source localization

We now consider the problem of estimation of the centroid and separation

vectors for two incoherent point sources under the model of Section 5.2.

Assuming the quantum density operator of Eq. (5.2) and the inversion-
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symmetry of the PSF (Eq. (5.9)), the QFI matrix J can be evaluated using

Eqs. (5.14) and (5.16).

We first diagonalize ρ̂ as in Eq. (5.15), including enough eigenvectors

to span the combined support of ρ̂ and {∂ρ̂/∂θµ}. The partial derivatives

of ρ̂ with respect to the object-plane source coordinates Xµ and Yµ are

∂̂ρ

∂Xµ

=
∂D1

∂Xµ

|e1〉〈e1|+
∂D2

∂Xµ

|e2〉〈e2|+
(
D1

∂|e1〉
∂Xµ

〈e1|+D2
∂|e2〉
∂Xµ

〈e2|+ H.c

)
,

(5.17)

∂̂ρ

∂Yµ
=
∂D1

∂Yµ
|e1〉〈e1|+

∂D2

∂Yµ
|e2〉〈e2|+

(
D1

∂|e1〉
∂Yµ
〈e1|+D2

∂|e2〉
∂Yµ
〈e2|+ H.c.

)
,

(5.18)

for µ = 1, 2, where H.c. denotes the Hermitian conjugate.

After some algebra it can be shown that a possible set of eigenvectors

of ρ̂ is

|e0〉 = |vac〉, (5.19)

|e1〉 =
1√

2(1− δ)
(|ψ1〉 − |ψ2〉), (5.20)

|e2〉 =
1√

2(1 + δ)
(|ψ1〉+ |ψ2〉), (5.21)

|e3〉 =
1

c3

[
∆kX(|ψ1X〉+ |ψ2X〉) + r+∆kY (|ψ1Y 〉+ |ψ2Y 〉)

− 2(γX + r+γY )√
2(1− δ)

|e1〉
]
, (5.22)

|e4〉 =
1

c4

[
∆kX(|ψ1X〉+ |ψ2X〉)− r+∆kY (|ψ1Y 〉+ |ψ2Y 〉)

− 2(γX − r+γY )√
2(1− δ)

|e1〉
]
, (5.23)

|e5〉 =
1

c5

[
∆kX(|ψ1X〉 − |ψ2X〉) + r−∆kY (|ψ1Y 〉 − |ψ2Y 〉)

+
2(γX + r−γY )√

2(1 + δ)
|e2〉
]
, (5.24)
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|e6〉 =
1

c6

[
∆kX(|ψ1X〉 − |ψ2X〉)− r−∆kY (|ψ1Y 〉 − |ψ2Y 〉)

+
2(γX − r−γY )√

2(1 + δ)
|e2〉
]
, (5.25)

where δ is given by Eq. (5.5),

|ψ1X〉 ≡
1

∆kX

∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ(x−X1, y − Y1)

∂X1

|x, y〉, (5.26)

|ψ2X〉 ≡
1

∆kX

∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ(x−X2, y − Y2)

∂X2

|x, y〉, (5.27)

|ψ1Y 〉 ≡
1

∆kY

∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ(x−X1, y − Y1)

∂Y1

|x, y〉, (5.28)

|ψ2Y 〉 ≡
1

∆kY

∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ(x−X2, y − Y2)

∂Y2

|x, y〉, (5.29)

∆k2
X ≡

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∣∣∣∣∂ψ(x, y)

∂x

∣∣∣∣2 , (5.30)

∆k2
Y ≡

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∣∣∣∣∂ψ(x, y)

∂y

∣∣∣∣2 , (5.31)

γX ≡
∫ ∞
−∞

dx

∫ ∞
−∞

dy ψ∗(x− dX , y − dY )
∂ψ(x, y)

∂x
, (5.32)

γY ≡
∫ ∞
−∞

dx

∫ ∞
−∞

dy ψ∗(x− dX , y − dY )
∂ψ(x, y)

∂y
, (5.33)

a ≡
∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ∗(x, y)

∂x

∂ψ(x, y)

∂y
, (5.34)

as ≡
∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ∗(x, y)

∂x

∂ψ(x− dX , y − dY )

∂y
, (5.35)

b2
X ≡

∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ∗(x−X1, y − Y1)

∂X1

∂ψ(x−X2, y − Y2)

∂X2

, (5.36)

b2
Y ≡

∫ ∞
−∞

dx

∫ ∞
−∞

dy
∂ψ∗(x−X1, y − Y1)

∂Y1

∂ψ(x−X2, y − Y2)

∂Y2

, (5.37)

r± ≡
[

∆k2
X ± b2

X − γ2
X/(1∓ δ)

∆k2
Y + b2

Y − γ2
Y /(1∓ δ)

]1/2

exp

[
−i arg

(
a± as −

γXγY
1∓ δ

)]
,

(5.38)

and normalization constants,

c3 ≡ 2

√
∆k2

X + b2
X −

γ2
X

1− δ + |r+|
∣∣∣∣a+ as −

γXγY
1− δ

∣∣∣∣, (5.39)

c4 ≡ 2

√
∆k2

X + b2
X −

γ2
X

1− δ − |r+|
∣∣∣∣a+ as −

γXγY
1− δ

∣∣∣∣, (5.40)
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c5 ≡ 2

√
∆k2

X − b2
X −

γ2
X

1 + δ
+ |r−|

∣∣∣∣a− as − γXγY
1 + δ

∣∣∣∣, (5.41)

c6 ≡ 2

√
∆k2

X − b2
X −

γ2
X

1 + δ
− |r−|

∣∣∣∣a− as − γXγY
1 + δ

∣∣∣∣. (5.42)

The eigenvalues of ρ̂ (Dn corresponding to |en〉) are

D0 = 1− ε, D1 =
ε

2
(1− δ), D2 =

ε

2
(1 + δ),

D3 = D4 = D5 = D6 = 0. (5.43)

To verify the orthogonality of {|en〉}, n = 1, . . . , 6, we first realize that

〈e1|e2〉, (〈ψ1X |+ 〈ψ2X |)(|〈ψ1X〉−|ψ2X〉) and (〈ψ1Y |+ 〈ψ2Y |)(|〈ψ1Y 〉−|ψ2Y 〉)

are equal to zero. Then we show that

(〈ψ1X |+ 〈ψ2X |)(|〈ψ1Y 〉 − |ψ2Y 〉) = 0,

(〈ψ1Y |+ 〈ψ2Y |)(|〈ψ1X〉 − |ψ2X〉) = 0,

〈e1|(|ψ1X〉 − |ψ2X〉) = 〈e1|(|ψ1Y 〉 − |ψ2Y 〉) = 0, (5.44)

and

〈e2|(|ψ1X〉+ |ψ2X〉) = 〈e2|(|ψ1Y 〉+ |ψ2Y 〉) = 0, (5.45)

by using the fact that ψ(x, y) is symmetric about the origin (see Eq. (5.9)).

With these conditions, we prove that

1. |e1〉 is orthogonal to both |e5〉 and |e6〉,

2. |e2〉 is orthogonal to both |e3〉 and |e4〉,

3. |e3〉 is orthogonal to both |e5〉 and |e6〉, and

4. |e4〉 is orthogonal to both |e5〉 and |e6〉.

Next, the value of r+ is chosen such that 〈e3|e4〉 = 0 and the value of
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r− such that 〈e5|e6〉 = 0. Finally, the last terms in |e3〉, |e4〉, |e5〉, and

|e6〉 given by Eqs. (5.22)–(5.25) are chosen to ensure that |e3〉 and |e4〉 are

orthogonal to |e1〉, and |e5〉 and |e6〉 are orthogonal to |e2〉.

With an orthogonal basis {|en〉} that diagonalizes ρ̂ in Eqs. (5.19)–

(5.25), the SLDs in Eq. (5.16) with respect to the derivatives in Eqs. (5.17)

and (5.18) can be expressed as:-

L̂(X)
µ =

∑
n,m

Dn+Dm 6=0

2

Dn +Dm

〈en|
∂ρ

∂Xµ

|em〉|en〉〈em| =
∑
n,m

L(X)
µ,nm|en〉〈em|,

L̂(Y )
µ =

∑
n,m

Dn+Dm 6=0

2

Dn +Dm

〈en|
∂ρ

∂Yµ
|em〉|en〉〈em| =

∑
n,m

L(Y )
µ,nm|en〉〈em|,

(5.46)

for µ = 1, 2, with Hermitian matrices

L(X)
µ,nm =

(
L(X)
µ,mn

)∗
and L(Y )

µ,nm =
(
L(Y )
µ,mn

)∗
, µ = 1, 2, (5.47)

the nonzero and unique elements of which are found to be

L(X)
1,11 = −L(X)

2,11 = γX/(1− δ), L(Y )
1,11 = −L(Y )

2,11 = γY /(1− δ),

L(X)
1,12 = L(X)

2,12 = γXδ/
√

1− δ2, L(Y )
1,12 = L(Y )

2,12 = γY δ/
√

1− δ2,

L(X)
1,13 = −L(X)

2,13 = c3/[2
√

2(1− δ)], L(Y )
1,13 = −L(Y )

2,13 = c3/[2r+

√
2(1− δ)],

L(X)
1,14 = −L(X)

2,14 = c4/[2
√

2(1− δ)], L(Y )
1,14 = −L(Y )

2,14 = −c4/[2r+

√
2(1− δ)],

L(X)
1,15 = L(X)

2,15 = c5/[2
√

2(1− δ)], L(Y )
1,15 = L(Y )

2,15 = c5/[2r−
√

2(1− δ)],

L(X)
1,16 = L(X)

2,16 = c6/[2
√

2(1− δ)], L(Y )
1,16 = L(Y )

2,16 = −c6/[2r−
√

2(1− δ)],

L(X)
1,22 = −L(X)

2,22 = −γX/(1 + δ), L(Y )
1,22 = −L(Y )

2,22 = −γY /(1 + δ),

L(X)
1,23 = L(X)

2,23 = c3/[2
√

2(1 + δ)], L(Y )
1,23 = L(Y )

2,23 = c3/[2r+

√
2(1 + δ)],

L(X)
1,24 = L(X)

2,24 = c4/[2
√

2(1 + δ)], L(Y )
1,24 = L(Y )

2,24 = −c4/[2r+

√
2(1 + δ)],

L(X)
1,25 = −L(X)

2,25 = c5/[2
√

2(1 + δ)], L(Y )
1,25 = −L(Y )

2,25 = c5/[2r−
√

2(1 + δ)],
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L(X)
1,26 = −L(X)

2,26 = c6/[2
√

2(1 + δ)], L(Y )
1,26 = −L(Y )

2,26 = −c6/[2r−
√

2(1 + δ)].

(5.48)

In terms of the centroid and separation parameters θ of Eq. (5.6), the

SLDs are

L̂ = L̂(X)
1 + L̂(X)

2 , L̂2 = L̂(Y )
1 + L̂(Y )

2 ,

L̂3 =
L̂(X)

2 − L̂(X)
1

2
, L̂4 =

L̂(Y )
2 − L̂(Y )

1

2
. (5.49)

Substitute Eqs. (5.43), (5.46), and (5.49), into Eq. (5.14) to evaluate the

QFI. The QFI matrix in terms of θ defined in Eq. (5.6) is found to be

J = N



4 (∆k2
X − γ2

X) 4 [Re(a)− γXγY ] 0 0

4 [Re(a)− γXγY ] 4 (∆k2
Y − γ2

Y ) 0 0

0 0 ∆k2
X Re(a)

0 0 Re(a) ∆k2
Y


, (5.50)

where N = Mε is the average photon number collected over M trials, ∆kX ,

∆kY , γX , γY and a are defined in Eqs. (5.30)–(5.34), and Re(z) denotes

the real part of z. The terms ∆kX and ∆kY are related to the spatial

spectral width of the PSF in x- and y-direction, respectively and, along

with a, are independent of the source parameters θ. γX and γY depend

on the separation coordinates (dX , dY ) but not on the centroid coordinates

(X̄, Ȳ ). Thus, J as a whole is independent of (X̄, Ȳ ), as may be expected

from our assumption of a spatially-invariant imaging system. Note that

J has a block-diagonal form with respect to the centroid and separation

coordinate pairs, and that the matrix elements related to the estimation

errors of separations dX and dY —J33 and J44—are independent of (dX , dY )

as well.

The QFI matrix can be simplified further for the case of a circularly-
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symmetric PSF ψ(x, y) for which

∆kX = ∆kY ≡ ∆k. (5.51)

Furthermore, as the circularly-symmetric ψ(x, y) is also symmetric along

y-axis, viz., ψ(x, y) = ψ(−x, y), the integrand of a

∂ψ∗(x, y)

∂x

∂ψ(x, y)

∂y
= −∂ψ

∗(−x, y)

∂x

∂ψ(−x, y)

∂y
. (5.52)

Hence, upon integration in the xy-plane, the term a vanishes. The QFI

matrix J becomes

J = N



4 (∆k2 − γ2
X) −4γXγY 0 0

−4γXγY 4 (∆k2 − γ2
Y ) 0 0

0 0 ∆k2 0

0 0 0 ∆k2


. (5.53)

5.3.3 Comparison to direct imaging

The QCR bound can be compared with the classical CR bound of the

conventional direct imaging method. For direct imaging measurement, the

statistics is expressed in terms of the mean intensity [101]

Λ(x, y) =
1

2

[
|ψ1(x, y)|2 + |ψ2(x, y)|2

]
, (5.54)

such that classical Fisher information matrix

j(dir)
µν = N

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

Λ(x, y)

∂Λ(x, y)

∂θµ

∂Λ(x, y)

∂θν
. (5.55)

For any PSD ψ(x, y), let

I(x, y) ≡ |ψ(x, y)|2 (5.56)
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be the intensity point spread function. We assume that the centroid (X̄, Ȳ )

is located at the origin and we estimate the separation parameter η =

(dX , dY )>. The mean intensity in Eq. (5.54) becomes

Λ(x, y) =
1

2

[
I

(
x+

dX
2
, y +

dY
2

) + I(x− dX
2
, y − dY

2

)]
, (5.57)

For small dX and dY , we can expand Λ(x, y) to the second order to obtain

Λ(x, y) = I(x, y) +
d2
X

8

∂2I(x, y)

∂x2
+
dXdY

4

∂2I(x, y)

∂x∂y
+
d2
Y

8

∂2I(x, y)

∂y2
+ o(d2),

(5.58)

where o(d2) denotes terms asymptotically smaller than d2
X , dXdY , and d2

Y .

Substituting this equation into Eq. (5.55), we have the Fisher information

matrix j(dir) in terms of η:-

j
(dir)
11 =

N

16

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

[
dX

∂2I(x, y)

∂x2
+ dY

∂2I(x, y)

∂x∂y

]2

+ o(d2),

j
(dir)
22 =

N

16

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

[
dX

∂2I(x, y)

∂x∂y
+ dY

∂2I(x, y)

∂y2

]2

+ o(d2),

j
(dir)
12 =

N

16

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

[
dX

∂2I(x, y)

∂x2
+ dY

∂2I(x, y)

∂x∂y

]
×
[
dX

∂2I(x, y)

∂x∂y
+ dY

∂2I(x, y)

∂y2

]
+ o(d2). (5.59)

These expressions can be further simplified for circularly symmetric PSD

ψ(x, y), thus circularly symmetric intensity I(x, y). The Fisher information

matrix becomes

j
(dir)
11 =

N

16
(d2
Xκ1 + d2

Y κ2), (5.60)

j
(dir)
22 =

N

16
(d2
Xκ2 + d2

Y κ1), (5.61)

j
(dir)
12 =

N

16
dXdY (κ1 + κ2). (5.62)
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where

κ1 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

[
∂2I(x, y)

∂x2

]2

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

[
∂2I(x, y)

∂y2

]2

,

κ2 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

[
∂2I(x, y)

∂x∂y

]2

. (5.63)

Note that κ1, κ2 > 0 as I(x, y) is nonnegative. The second equality is due

to circularly symmetry property of I(x, y); while the two terms

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

∂2I(x, y)

∂x2

∂2I(x, y)

∂x∂y
= 0

and ∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

I(x, y)

∂2I(x, y)

∂x∂y

∂2I(x, y)

∂y2
= 0

as their integrands have odd parity of the form g(x, y) = −g(−x, y), hence,

the integrations in the xy-plane result in zero. This parity follows from the

fact that I(x, y) is symmetric about y-axis (since it is circularly symmetry),

viz., I(x, y) = I(−x, y), which leads to

∂2I(x, y)

∂x∂y
= −∂

2I(−x, y)

∂x∂y
. (5.64)

For direct imaging method, the CR bound terms related to the estimation

of separation dX and dY are

{[j(dir)]−1}11 =
16

N

d2
Xκ2 + d2

Y κ1

(d2
X − d2

Y )2κ1κ2

,

{[j(dir)]−1}22 =
16

N

d2
Xκ1 + d2

Y κ2

(d2
X − d2

Y )2κ1κ2

, (5.65)

which approach infinity as dX , dY → 0.

To illustrate the above results, we assume a circular Gaussian PSF of
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Figure 5.2: Quantum (1/J33) and classical ({[j(dir)]−1}11) CR bound versus
normalized separation dX/σ for a circular Gaussian PSD of Eq. (5.66). The
classical bounds are plotted for different value of dY /σ = 0, 0.1, 0.2. The
bounds are normalized with respect to the quantum value 4σ2/N .

the form

ψ(x, y) =

(
1

2πσ2

)1/2

exp

(
−x

2 + y2

4σ2

)
. (5.66)

The PSF-dependent terms are now

∆k =
1

2σ
, κ1 =

3

2σ4
, and κ2 =

1

4σ4
. (5.67)

Eq. (5.65) becomes

{[j(dir)]−1}11 =
4σ2

N

8(dX/σ)2 + 48(dY /σ)2

3[(dX/σ)2 − (dY /σ)2]2
,

{[j(dir)]−1}22 =
4σ2

N

48(dX/σ)2 + 8(dY /σ)2

3[(dX/σ)2 − (dY /σ)2]2
, (5.68)

and Fig. 5.2 plots the QCR bound 1/J33 given by Eq. (5.53) and the CR

bound {[j(dir)]−1}11 for the estimation of dX as function of separation pa-

rameters dX and dY . From the symmetry in Eqs. (5.68), the CR bound for
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the estimation of dY — {[j(dir)]−1}22 — displays the same trend. The plot

shows a huge divergence of the CR bound for direct imaging method from

the quantum limit as dX decreases; while the QCR bound stays constant

regardless of separation. This means that a considerable improvement can

be obtained if a quantum-optimal measurement can be implemented.

In Sections 5.4 and 5.5, we discuss concrete measurement schemes to si-

multaneously estimate the separation parameters η = (dX , dY )>. For these

schemes, we assume that the centroid (X̄, Ȳ ) has already been located, and

compare their performance to the quantum bound obtained in Sec. 5.3.2.

5.4 Super Localization by Image Inversion

(SLIVER) Interferometry

We now propose a two-stage interferometric scheme for estimation of dX

and dY adapting the SLIVER scheme of Ref. [103]. The scheme is analyzed

in the framework of quantum theory under weak-source condition; while the

analysis in Ref. [103] is of semiclassical photodetection theory [105, 106].

Assuming that the centroid of the sources is imaged at the origin of

image-plane coordinates, the images of the sources are centered at∓1
2
(dX , dY )

in the image plane. The quantum density operator of Eq. (5.2) is thus

ρ̂ = (1− ε1 − ε2)|vac〉〈vac|+ ε1|ψ1〉〈ψ1|+ ε2|ψ2〉〈ψ2|, (5.69)

where ε1 and ε2 are the source intensities for source 1 and 2, respectively,

|vac〉 denotes the vacuum state and states {|ψs〉}2
s=1 are given by Eq. (5.3)

with the wavefunctions

ψ1(x, y) = ψ

(
x+

dX
2
, y +

dY
2

)
, (5.70)

ψ2(x, y) = ψ

(
x− dX

2
, y − dY

2

)
. (5.71)
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Figure 5.3: A proposed schematic of 2-stage SLIVER. The input field
Ê(x, y) is separated into symmetric (ÊS) and antisymmetric (ÊX) com-
ponents with respect to reflection about the y-axis. The ÊX component
impinges upon a bucket photodetector. The ÊS component is separated
again into symmetric and antisymmetric (ÊY ) components with respect to
reflection about the x-axis, and the ÊY component impinges upon a sec-
ond bucket detector. These field transformations are realized by the extra
reflection at an appropriately aligned plane mirror in one arm of the bal-
anced Mach-Zehnder interferometers. The set of binary outcomes – g(1),
g(2) and g(3) – observed in the detectors over a series of M measurements is
processed to give estimates ďX and ďY of the components of the separation.
The letters A and B illustrate the reflection of the field.

In this section, we relax the assumption of Sec. 5.2 that the two sources

are of equal strength.

The scheme consists of two stages as illustrated in Fig. 5.3. The first

stage involves the separation of the input field Ê(x, y) into antisymmetric

(Ê1) and symmetric (ÊS) parts with respect to reflection about the y-axis.

The symmetric and antisymmetric field components can be obtained by

splitting the input field Ê(x, y) using a 50-50 beamsplitter, inverting the x-

coordinates of the field (i.e., reflecting the field about the y-axis) from one

output and recombining the two beams at a second 50-50 beamsplitter.

The optics of the first stage thus consists of a balanced Mach-Zehnder
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interferometer with an extra reflection at an appropriately aligned plane

mirror in one arm. Consider the quantum treatment of beamsplitter input-

output relations, the output field operators are given by

Ê1(x, y) =
1

2
{[Ê(x, y)− Ê(−x, y)] + [V̂1(x, y) + V̂1(−x, y)]}, (5.72)

ÊS(x, y) =
1

2
{[Ê(x, y) + Ê(−x, y)] + [V̂1(x, y)− V̂1(−x, y)]}, (5.73)

where V̂1(x, y) is the input vacuum field operator at the open port of the

first beamsplitter. At the antisymmetric output port with the field pattern

of Eq. (5.72), an on-off non-spatially-resolving (bucket) detector is placed to

distinguish between no photon and one photon. The measurement outcome

g(1) is binary – zero if the detector does not click and one if it does.

In the second stage, the output beam ÊS(x, y) of the symmetric port

is used as input to a second interferometer which similarly splits the field

into antisymmetric (Ê2) and symmetric (Ê3) components with respect to

reflection about the x-axis. The output field operators are given by

Ê2(x, y) =
1

2
{[ÊS(x, y)− ÊS(x,−y)] + [V̂2(x, y) + V̂2(x,−y)]}, (5.74)

Ê3(x, y) =
1

2
{[ÊS(x, y) + ÊS(x,−y)] + [V̂2(x, y)− V̂2(x,−y)]}, (5.75)

where V̂2(x, y) is the input vacuum field operator at the open port of the

first beamsplitter in this stage. The output fields Ê2 and Ê3 of this stage

impinge upon two individual on-off bucket detectors to give measurement

outcomes g(2) and g(3), respectively. Similar to the previous stage, binary

outcomes g(2) and g(3) – 0 if the corresponding detector does not click and

1 if it does – are recorded.
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5.4.1 Detection probabilities

The expected photon number at the rth detector is tr(ρ̂N̂r) where the

total-photon-number operator

N̂r =

∫ ∞
−∞

dx

∫ ∞
−∞

dyÊ†r(x, y)Êr(x, y), r = 1, 2, 3. (5.76)

Our assumption of negligible probability for multiple photon emission events

ensures that at most one photon will impinge upon any of the three pho-

todetectors. There are no valid cases of having more than one detector

clicks; in the event of a detector clicks, only one photon impinges upon it.

Therefore, there are only four mutually exclusive measurement outcomes:

Probability P (0) corresponds to the case where no photon detected in any

of the three detectors and probability P (r) corresponds to the case where

only the rth detector clicks, viz.,

P (0) = Pr[g(1) = 0, g(2) = 0, g(3) = 0],

P (1) = Pr[g(1) = 1, g(2) = 0, g(3) = 0],

P (2) = Pr[g(1) = 0, g(2) = 1, g(3) = 0],

P (3) = Pr[g(1) = 0, g(2) = 0, g(3) = 1]. (5.77)

Since either zero or one photon arrives at each detector, the probability of

only the r-th detector clicks is equal to the expected photon number at the

r-th detector,

P (r) = tr(ρ̂N̂r) (5.78)

=
∑
s=1,2

εs〈Ψs|N̂r|Ψs〉, (5.79)
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where εs is given by Eq. (5.69) and the states

|Ψs〉 = |ψs〉|0〉1|0〉2, s = 1, 2. (5.80)

as the single-photon source states defined in Eq. (5.69) augmented with

vacuum states in the beam-splitter open port modes V̂1(x, y) and V̂2(x, y).

To evaluate tr(ρ̂N̂r), from Eqs. (5.72)–(5.76) we need

〈Ψs|Ê†(x, y)Ê(x′, y′)|Ψs〉, (5.81)

〈Ψs|Ê†(x, y)V̂1(x′, y′)|Ψs〉, (5.82)

〈Ψs|Ê†(x, y)V̂2(x′, y′)|Ψs〉, (5.83)

〈Ψs|V̂ †1 (x, y)V̂1(x′, y′)|Ψs〉, (5.84)

〈Ψs|V̂ †1 (x, y)V̂2(x′, y′)|Ψs〉, (5.85)

〈Ψs|V̂ †2 (x, y)V̂2(x′, y′)|Ψs〉, s = 1, 2, (5.86)

for arbitrary (x, y) and (x′, y′). Eq. (5.81) is the only nonzero term as

V̂1(x, y) and V̂2(x, y) are in vacuum.

To evaluate Eq. (5.81), we first consider an arbitrary orthogonal basis

{|ϕq〉}∞q=0 and define operator âq as the annihilation operator that reduces

the occupation number of the state |ϕq〉 by 1. The image field operator

Ê(x, y) can be expanded as

Ê(x, y) =
∞∑
q=0

âqϕq(x, y), (5.87)

where

ϕq(x, y) = 〈x, y|ϕq〉, (5.88)
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and state |x, y〉 is defined in Sec. 5.2. Using the following expression for âq,

âq =

∫ ∞
−∞

dx

∫ ∞
−∞

dyÊ(x, y)ϕ∗q(x, y), (5.89)

and the commutation relation [Ê(x, y), Ê†(x′, y′)] = δ(x− x′)δ(y − y′), we

have commutation relation

[âp, â
†
q] =

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′ϕ∗p(x, y)ϕq(x
′, y′)

× [E(x, y), E†(x′, y′)]

=

∫ ∞
−∞

dx

∫ ∞
−∞

dyϕ∗p(x, y)ϕq(x, y)

= δpq, (5.90)

where δpq is the Kronecker delta.

We can choose an orthogonal basis {|ϕq〉} such that

|ϕ0〉 = |ψ1〉, (5.91)

where the state |ψ1〉 is given by Eq. (5.3). Hence, the field operator becomes

Ê(x, y) = â0ψ1(x, y) +
∞∑
q=1

âqϕq(x, y), (5.92)

where wavefunction ψ1(x, y) is given by Eq. (5.4). Similarly, we can have

another orthogonal basis {|ϕ′q〉} such that

|ϕ′0〉 = |ψ2〉, (5.93)

and the field operator is given by

Ê(x, y) = â′0ψ2(x, y) +
∞∑
q=1

â′qϕ
′
q(x, y), (5.94)
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where state |ψ2〉 is defined in Eq. (5.3) and wavefunction ψ2(x, y) is given

by Eq. (5.4). The operators âp and â′q do not necessarily commute with

one another and the state |ϕp〉 might not be orthogonal to |ϕq〉, for all

p, q. Using the expansion of Ê(x, y) in Eqs. (5.92) and (5.94) and the

commutation relation in Eq. (5.90), we can show that

〈Ψs|Ê†(x, y)Ê(x′, y′)|Ψs〉 = ψ∗s(x, y)ψs(x
′, y′), s = 1, 2. (5.95)

Using this along with Eqs. (5.72)–(5.76) to evaluate Eq. (5.78) results

in

P (1) =
ε

2
(1− δx),

P (2) =
ε

4
(1 + δx − δy − δ),

P (3) =
ε

4
(1 + δx + δy + δ), (5.96)

and no-click probability P (0) = 1− ε. Here, ε = ε1 + ε2 is the total source

intensity,

δx =

∫ ∞
−∞

dx

∫ ∞
−∞

dy ψ∗(x, y)ψ(x− dX , y), (5.97)

δy =

∫ ∞
−∞

dx

∫ ∞
−∞

dy ψ∗(x, y)ψ(x, y − dY ), (5.98)

and δ is defined Eq. (5.5).

5.4.2 Fisher information matrix for SLIVER

The Fisher information matrix j(SLI) for the separation vector η = (dX , dY )>

using SLIVER is given by

j(SLI)
µν =

3∑
r=1

P (r)
∂ lnP (r)

∂ηµ

∂ lnP (r)

∂ην
, µ, ν = 1, 2. (5.99)
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Using Eqs. (5.99) and (5.96), we evaluate the Fisher information matrix

and it has elements

j
(SLI)
11 =

ε

2

[
1

1− δx

(
∂δx
∂dX

)2

+
1

2(1 + δx − δy − δ)

(
∂δx
∂dX

− ∂δ

∂dX

)2

+
1

2(1 + δx + δy + δ)

(
∂δx
∂dX

+
∂δ

∂dX

)2
]
,

j
(SLI)
22 =

ε

4

[
1

1 + δx − δy − δ

(
∂δy
∂dY

+
∂δ

∂dY

)2

+
1

1 + δx + δy + δ

(
∂δy
∂dY

+
∂δ

∂dY

)2
]
,

j
(SLI)
12 = j

(SLI)
21

=
ε

4

[
1

1 + δx + δy + δ

(
∂δx
∂dX

+
∂δ

∂dX

)(
∂δy
∂dY

+
∂δ

∂dY

)
− 1

1 + δx − δy − δ

(
∂δx
∂dX

− ∂δ

∂dX

)(
∂δy
∂dY

+
∂δ

∂dY

)]
. (5.100)

We illustrate the above results for a circular Gaussian PSF as in Eq. (5.66).

The PSF-dependent quantities appearing in the Fisher information are

δ = δxδy,

δx = exp

(
− d

2
X

8σ2

)
, δy = exp

(
− d2

Y

8σ2

)
,

∂δ

∂dX
= δy

∂δx
∂dX

,
∂δ

∂dY
= δx

∂δy
∂dY

,

∂δx
∂dX

= − dX
4σ2

exp

(
− d

2
X

8σ2

)
,

∂δy
∂dY

= − dY
4σ2

exp

(
− d2

Y

8σ2

)
. (5.101)

In this example, the Fisher information matrix j(SLI) has elements

j
(SLI)
11 =

ε

1− exp(−d2
X/4σ

2)

d2
X

16σ4
exp

(
− d

2
X

4σ2

)
,

j
(SLI)
22 =

ε[1 + exp(−d2
X/8σ

2)]

2[1− exp(−d2
Y /4σ

2)]

d2
Y

16σ4
exp

(
− d2

Y

4σ2

)
,

j
(SLI)
12 = j

(SLI)
21 = 0. (5.102)
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As dX , dY → 0, the matrix elements approach

j
(SLI)
11 → ε∆k2 = J33,

j
(SLI)
22 → ε∆k2 = J44, (5.103)

where ∆k2 = (4σ2)−1. The Fisher information elements j
(SLI)
11 and j

(SLI)
22 of

Eq. (5.102) are plotted as a function of separation parameters dX and dY

in Fig. 5.4. The total source strength ε = 2× 10−3 photons. The plots are

normalized to ε∆k2, the values of J33 and J44. We see that the maximum

values of j
(SLI)
11 and j

(SLI)
22 , attained at dX = dY = 0, are equal to the value of

QCR bound as shown in Eq. (5.103). Fig. 5.4(a) suggests that the Fisher

information on dX – j
(SLI)
11 – remains unchanged despite variation in dY ,

while the Fisher information on dY – j
(SLI)
22 – depends on values of both dX

and dY as depicted in Fig. 5.4(b). This asymmetry is a consequence of us

estimating dX in the first stage of the scheme and dY in the second.

A simpler non-cascaded version of the scheme may be envisaged in

which the input field Ê(x, y) is split using a 50:50 beamsplitter, and the

two outputs are used to separately estimate dX and dY . Though it treats

the separation components symmetrically, such a setup can only approach

half of the QCR bound for each component due to the energy splitting. On

the other hand, in the cascaded scheme given here, if dX ≈ 0, ÊX(x, y) ≈ 0,

and ÊS(x, y) ≈ Ê(x, y), so that the first stage taps only a small fraction of

the available energy (the energy loss is zero if dX = 0). This enables dY to

be estimated in the second stage with little loss of energy to the first stage,

and allows approaching the QCR bound for sub-Rayleigh separations.
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Figure 5.4: The (classical) Fisher information matrix j(SLI) for the SLIVER
scheme as a function of the source separation (dX , dY ). (a) Fisher informa-

tion for x-separation j
(SLI)
11 . (b) Fisher information for y-separation j

(SLI)
22 .

The plots are normalized with respect to the value ε∆k2 of J33 and J44.
The quantum bound is attained at dX = dY = 0 as illustrated in (a) and
(b). The circular Gaussian PSF of Eq. (5.66) is assumed, with the total
source strength ε = 2× 10−3 photons.
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5.5 Two-dimensional Spatial-mode Demul-

tiplexing (SPADE)

We now generalize the SPADE scheme of Ref. [101] to the estimation of

the vector separation. In the derivation of the QFI matrix J in Sec. 5.3, we

worked in the orthonormal basis {|en〉;n = 0, . . . , 6} given by Eqs. (5.19)–

(5.25).

Now consider the discrete Hermite-Gaussian (HG) basis {|φqr〉; q, r =

0, 1, . . . } for the one-photon subspace, where

|φqr〉 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy φqr(x, y)|x, y〉, (5.104)

φqr(x, y) =

(
1

2πσXσY

)1/2
1√

2q+rq!r!
Hq

(
x√
2σX

)
×Hr

(
y√
2σY

)
exp

(
− x2

4σ2
X

− y2

4σ2
Y

)
, (5.105)

Hq and Hr are the Hermite polynomials [107], and q, r = 0, 1, . . . . Consider

the POVM consisting of the projections

Ŵ0 = |vac〉〈vac|, (5.106)

Ŵ1(q, r) = |φqr〉〈φqr|, q, r = 0, 1, . . . . (5.107)

We further assume that the PSF is circular Gaussian as in Eq. (5.66).

The image-plane field in Eq. (5.2) is scaled in one direction with a series of

mirrors such that the PSF is now of the elliptical Gaussian form

ψ′(x, y) =

(
1

2πσXσY

)1/2

exp

(
− x2

4σ2
X

− y2

4σ2
Y

)
(5.108)

= φ00(x, y), (5.109)

where σX = σ, σY = sσ and s is the scaling factor. The above POVM, if

performed on the resulting density operator ρ′, has the outcome probabili-
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ties

P0 ≡ tr(Ŵ0ρ̂
′) = 1− ε, (5.110)

P1(q, r) ≡ tr[Ŵ1(q, r)ρ̂′] (5.111)

=
ε

2

(
|〈φqr|ψ′1〉|2 + |〈φqr|ψ′2〉|2

)
. (5.112)

If (X̄, Ȳ ) = (0, 0), the wavefunctions become

ψ′1(x, y) = ψ′
(
x+

dX
2
, y +

sdY
2

)
, (5.113)

ψ′2(x, y) = ψ′
(
x− dX

2
, y − sdY

2

)
, (5.114)

and the overlaps in Eq. (5.112) are

|〈φqr|ψ′1〉|2 =

∣∣∣∣∫ ∞
−∞

dx

∫ ∞
−∞

dy φ∗qr(x, y)φ00

(
x+

dX
2
, y +

sdY
2

)∣∣∣∣2 , (5.115)

|〈φqr|ψ′2〉|2 =

∣∣∣∣∫ ∞
−∞

dx

∫ ∞
−∞

dy φ∗qr(x, y)φ00

(
x− dX

2
, y − sdY

2

)∣∣∣∣2 . (5.116)

Evaluate the integrals using properties of Hermite polynomials, we have

|〈φqr|ψ′1〉|2 = |〈φqr|ψ′2〉|2 = exp(−Q−R)
QqRr

q!r!
, (5.117)

where

Q =
d2
X

16σ2
, R =

d2
Y

16σ2
. (5.118)

As the two integrals are equal, the probability

P1(q, r) = ε exp(−Q−R)
QqRr

q!r!
(5.119)

is valid even if the two sources have unequal intensities. The Fisher in-

formation matrix for the HG-basis measurement on η = (dX , dY )> can be
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found using Eq. (2.60), with elements

j
(HG)
11 =

∞∑
q,r=0

P1(q, r)

[
∂

∂dX
lnP1(q, r)

]2

(5.120)

=
ε

Q

(
∂Q

∂dX

)2

=
ε

4σ2
= J33, (5.121)

j
(HG)
22 =

∞∑
q,r=0

P1(q, r)

[
∂

∂dY
lnP1(q, r)

]2

(5.122)

=
ε

R

(
∂R

∂dY

)2

=
ε

4σ2
= J44, (5.123)

j
(HG)
12 = j

(HG)
21 = 0, (5.124)

which equals the QFI matrix given by Eq. (5.53). This proves that the

above measurement scheme using the HG basis is optimal for a Gaussian

PSF.

A quadratic-index fiber can support the HG mode profiles [108]. To

measure in the HG basis, the optical field is coupled into an elliptical

multi-mode fiber supporting the modes in Eq. (5.105). Choosing the scal-

ing factor s carefully (for example, an irrational number), each mode will

have a distinct propagation constant βqr along propagation direction z.

On the other hand, a cylindrical fiber will result in degenerate propagation

constant for modes of same order (q + r). Each mode in the elliptic fiber

is then coupled to different single-mode waveguides of specific propaga-

tion constant via evanescent coupling as illustrated in Fig. 5.5. The phase

matching condition ensures that only one mode from the elliptic fiber is

coupled to each waveguide, which are then detected using individual photon

counter in the far-field.
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Figure 5.5: A proposed schematic of a multimode-fiber SPADE. The scaled
field of Eq. (5.108) is coupled into an elliptical multimode fiber. With
evanescent coupling, each mode is coupled to a single-mode waveguide of
specific propagation constant and led to a photon counter. The photon
counter at the end of the multimode fiber captures any remaining photon
in the higher-order or leaky modes.

5.6 Monte-Carlo Analysis of SLIVER and

SPADE

To demonstrate that the two schemes can perform as predicted by their

CR bounds, we study Monte-Carlo simulations of the mean-square error

(MSE) for SLIVER and SPADE. The circular Gaussian PSF of Eq. (5.66)

is assumed. Each MSE is computed by averaging over 105 Monte-Carlo

runs.

5.6.1 Monte-Carlo analysis of SLIVER

In M trials, consider direct detection of Ê1(x, y), Ê2(x, y) and Ê3(x, y) us-

ing three on-off bucket detectors as in Fig. 5.3. The measurement record

consists of the bitstrings (g
(1)
1 , g

(1)
2 , . . . , g

(1)
M ), (g

(2)
1 , g

(2)
2 , . . . , g

(2)
M ), and

(g
(3)
1 , g

(3)
2 , . . . , g

(3)
M ), where g

(1)
m , g

(2)
m and g

(3)
m are zero (one) if the correspond-

ing detector did not click (clicked) in the m-th trial.

The total numbers of clicks observed in the three detectors over M
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measurements are, respectively,

G(1) =
M∑
m=1

g(1)
m , G(2) =

M∑
m=1

g(2)
m , G(3) =

M∑
m=1

g(3)
m , (5.125)

and the total number of detected photons L = G(1) + G(2) + G(3). For

estimation error analysis we can condition on L, which is obtained after

an experiment, instead of the average photon number N ; the QCR bounds

for the estimation of dX and dY become 4σ2/L. The ML estimators for dX

and dY can be shown to be

ď
(SLI)
X =


2σ

√
−2 ln

(
1− 2G(1)

L

)
if 2G(1)

L
< 1,

2σ otherwise,

ď
(SLI)
Y =


2σ

√
−2 ln

(
1− 2G(2)

L−G(1)

)
if 2G(2)

L−G(1) < 1,

2σ otherwise.

(5.126)

The second case for both ď
(SLI)
X and ď

(SLI)
Y is necessary because the logarithm

function ln(z) in the equations for the estimators is undefined for z ≤

0. The estimators are set to an arbitrary value if the argument of the

logarithm goes negative, which happens with a probability tending to zero

as L increases.

Figures 5.6 and 5.7 show the simulated MSEs of the ML estimators

in Eq. (5.126). The simulated MSEs are plotted relative to the minimum

value of the CR bound for that L at dX = dY = 0. Fig. 5.6 plots the

MSE of estimator ď
(SLI)
X as a function of x-separation for dY = 0, the ML

estimator beats the CR bound for dX/σ < 0.1 due to the biasedness of the

estimator. The MSE of estimator ď
(SLI)
Y as a function of y-separation for

dX = 0 is virtually identical to that of Fig. 5.6 and is not shown. This

behavior is expected as ÊS(x, y) = Ê(x, y) if dX = 0.

Fig. 5.7 explores the dependence of the MSE of the ML estimators on
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Figure 5.6: Simulated mean-square errors of SLIVER with ML estimator
of Eq. (5.126). MSE of estimator ď

(SLI)
X as a function of the separation in

x-direction for L = 20, 40, 100 photons and dY = 0.

the separations dX and dY for L = 100 photons, with the corresponding

CR bounds for the relevant separations are shown. Fig. 5.7(a) shows the

simulated MSE of estimator ď
(SLI)
X as a function of dX , for dY = 0, 0.74σ,

and 1.5σ. We see that both the estimator and the CR bound show little

dependence on the separation dY . Fig. 5.7(b) plots the simulated MSE of

estimator ď
(SLI)
Y against dY for the case of dX = 0, 0.74σ, and 1.5σ. As dX

increases, the CR bound increases along with the MSE of the estimator.

5.6.2 Monte-Carlo analysis of SPADE

After M trials of the SPADE measurement of Sec. 5.5, the total number

L of detected photons is known, and for estimation error analysis we can

condition on L instead of the average photon number N . Then the QCR

bounds for estimation of dX and dY become 4σ2/L.

Each photon collected by the imaging system triggers precisely one

photon detector indexed by the HG mode index (q, r). Let the mode excited

by the l-th photon be denoted (ql, rl), for 1 ≤ l ≤ L. The maximum

likelihood estimators for dX and dY can be shown to be

ď
(SPA)
X = 4σ

√
HX

L
, ď

(SPA)
Y = 4σ

√
HY

L
. (5.127)
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Figure 5.7: Simulated mean-square errors of SLIVER with ML estimator
of Eq. (5.126) for different values of dX and dY for L = 100 photons.
The corresponding CR bounds are included in the plots for comparison.
(a) MSE of estimator ď

(SLI)
X as a function of the separation in x-direction

for dY /σ = 0, 0.74, 1.5. (b) MSE of estimator ď
(SLI)
Y as a function of the

separation in y-direction for dX/σ = 0, 0.74, 1.5.
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Figure 5.8: Simulated mean-square errors of SPADE with ML estimator of
Eq. (5.127). (a) MSE of estimator ď

(SPA)
X as a function of the separation in

x-direction for L = 20, 40, 100 photons. (b) MSE of estimator ď
(SPA)
Y as a

function of the separation in y-direction for L = 20, 40, 100 photons.

where HX =
∑L

l=0 ql and HY =
∑L

l=0 rl. Fig. 5.8(a) and (b) show the

results for the MSE of the ML estimators for dX and dY in Eq. (5.127) for

L = 20, 40, 100 photons. The ML estimators beat the CR bounds in the

estimation of dX and dY for small separations. The errors remain less than

twice the CR bounds for any separations.

5.7 Discussion

In this study, we have calculated the QCR bound for locating two weak

incoherent optical point sources on a two-dimensional plane using imaging
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systems with inversion-symmetric point-spread functions. The key result

is that, in stark contrast to direct imaging [99, 101], the bounds on the

mean-square error of the x- and y-separations are independent of the vector

separation between the two sources.

We have also proposed and analyzed two measurement schemes – the

extended SLIVER and SPADE schemes – for simultaneously estimating

the components of the separation, whose classical CR bounds approach the

quantum bounds for sub-Rayleigh separations (SLIVER) or all separations

if the PSF is Gaussian (SPADE). Monte-Carlo simulations show that the

two schemes have MSEs no larger than twice predicted by the quantum

limits for small source separation.

The extended SLIVER scheme given here does not employ an image

inversion device (see, e.g., Refs. [109, 110]), which was required in the

scheme of Ref. [103]. Thus, each interferometer stage may be technically

simpler to implement than the original SLIVER. However, the original

scheme is tailored to estimation of the magnitude d =
√
d2
X + d2

Y of the

separation and is likely to be superior for that purpose than the two-stage

scheme, as supported by the simulations in Sec. 5.6.

In both measurement schemes, we have assumed that the centroid po-

sition is known. If that knowledge is unavailable, a portion of the light can

be used for image-plane photon counting to determine the centroid position

before performing either of the schemes as detailed in Ref. [101].

Our analysis here can be extended in various directions. On the theo-

retical side, our quantum Fisher information calculations can be extended

to sources of arbitrary strength employing the Gaussian-state model [111,

112]. The study of sub-Rayleigh imaging can also be generalized to sources

emitting light in more general quantum states [112]. In principle, it can

also be extended to multiple sources, although finding near-optimal mea-

surement schemes is likely to be challenging. On the practical side, it is

109



important to study the performance of SLIVER and SPADE in non-ideal

cases, e.g., if the centroid is not aligned to the optical axis in both schemes,

or in the presence of non-unity coupling efficiency in SPADE, and for un-

equal detection efficiencies of the detectors.
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Chapter 6

Concluding Remarks

6.1 Conclusion

In this thesis, we have obtained a series of results on the application of pa-

rameter estimation theory to optical spectroscopy and imaging problems.

In Chapter 3, we have analyzed in detail the problem of parameter esti-

mation from a noisy optomechanical system. We have found analytically

the CR lower bound on the estimation errors in the long-time limit, and

compared it with the errors of averaging, radiometer, and EM estimators

in the estimation of the force noise power. When applied to experimental

data, we have found that EM algorithm has the lowest error and follows the

CR bound most closely. We hope that our analytic results will be valuable

to optomechanical experiment design, and EM algorithm will be useful to

system identification problems.

In Chapter 4, we have found that a property of the QFI matrix, ex-

tended convexity, is useful in deriving analytical expressions for the quan-

tum limit to the estimation error for dynamical systems. The result is a

simple expression in terms of basic PSDs. We have applied the analysis to

a continuous optical phase estimation experiment and demonstrated that

homodyne detection performed in the experiment, when the SNR is high,
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is close to our quantum limit. We have further proposed a spectral photon

counting method that can attain the quantum limit when the SNR is low.

In the last chapter, we have shown that ideas from parameter estimation

theory can be extended to the resolution problem in optical imaging. We

have obtained the QCR bound for the estimation errors of the Cartesian

components of the centroid and separation of two incoherent point sources.

We have found that the quantum limit is independent of separation, in

contrast with conventional wisdom. We have proposed two measurement

schemes that asymptotically attain the quantum bound for both compo-

nents of the separation, assuming a known centroid position.

6.2 Future Works

During the investigation of parameter estimation of optomechanical system

in Chapter 3, we have assumed that the parameters are constant in time.

For applications of optomechanics in sensing and control, there is a need

to develop estimation theory for time-varying parameters, and Bayesian

estimators may be a suitable candidate to explore. Recently, optomechan-

ical devices have found exciting application in many fields in physics and

engineering. Given demonstrated success of our estimation of the mechani-

cal resonance frequency, dissipation rate and effective mass, we could apply

our statistical techniques to improve optomechanical design in applications,

such as ultra-sensitive, high bandwidth accelerometers and force sensors,

wavelength converters and tunable optical filters.

In the study of parameter estimation error for dynamical systems, we

have modeled our bath classically. A possible future work would be to

account for nonclassical baths and make our theory applicable for a wider

range of applications. Another possible direction is to study the proposed

spectral photon counting method as it offers a large potential improvement
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compared to homodyne detection in the low SNR regime. More analyses are

required to study its performance in actual experimental settings. One of

the key limitations to its experimental adaption will be the implementation

of counting in each spectral mode. The experimental performance will be

dependent on the spectral resolution of chosen dispersive optical element

and losses in every spectral mode. As analytical results of our theory are

in terms of basic PSDs, they can be applied to optics and optomechanics

experiments, with applications in optical sensing and gravitational-wave

astronomy.

Although extensive study has been done to understand the fundamental

limit in resolving two incoherent point sources, this study has assumed a

weak-source condition. While such approximation is valid, e.g., for as-

tronomical observations at optical and infrared wavelengths, there is a

need to derive the quantum limits to the source separation problem for

intense sources, e.g., in the microwave and far-infrared regimes, and for

laser sources. As the quantum theory for resolution is in early stage, for

future applications in imaging, we need to build on the success of this study

and extend its scope. One important research direction would be the exten-

sion of this work to resolving n ≥ 3 optical point sources. There are a few

interesting cases, for example, the clustering of optical point sources into

different regions and uneven photon emission of those point sources. Also,

we have not considered the effect of noises on the quantum Cramér-Rao

bound for the estimation of the separation between two sources, a more

detailed analysis of such practical but important concern is needed. There

are two possible sources of noise, the first kind is background noise and the

second kind is from noisy imaging system. For experimental works, there

are currently a few proof-of-concept demonstrations. As we have started to

understand the origin of the additional Fisher information, we can better

design measurement schemes to extract the whole information from the
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light. The designs should take into account of implementation with only

linear-optical elements and limit introduction of noise during measurement.

I would foresee that it has applications in astronomy, notably binary-star

observation, and single-molecule fluorescence microscopy.
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Appendix A

Super-resolution Microscopy

We have studied the quantum limit for two-dimensional resolution of two

incoherent optical point sources and found that the limit is well below

conventional Rayleigh resolution limit in Chapter 5. It seems fair that

we discuss the recent advances in super-resolution techniques in optical

microscopy, marked by the award of the 2014 Nobel Prize in Chemistry to

Eric Betzig, Stefan Hell and William E. Moerner ‘for the development of

super-resolved fluorescence microscopy’. In general, these super-resolution

microscopy techniques circumvent the Rayleigh resolution limit of optical

microscopy, and do not challenge the limit directly. We will explain this in

the next few paragraphs.

Techniques such as scanning near-field optical microscope (SNOM) [113]

and hyperlens [114] realized with multilayer metamaterial are the examples

of near-field super-resolution microscopy. SNOM works by raster scanning

the image surface at a distance much smaller than optical wavelength and

should be considered as a type of scanning probe microscopy as its resolu-

tion is limited by the probe/aperture size. Hyperlens aims to project the

near field into the far field, hence both propagating and evanescent fields

could be image. Currently, hyperlens is implemented with metamaterial

which result in high loss. Another disadvantage of hyperlens is the place-
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ment of detector close to the sample, which is not always possible in every

application. Our proposal has the advantage that only far-field information

is needed.

For far-field super-resolution microscopy, we have stimulated emission

depletion (STED) microscopy [94] which depletes fluorescent molecules in

specific regions while keeping a sub-Rayleigh-size center spot active. Image

forming is again by raster scan technique which is time consuming.

Single-molecule based fluorescent microscopy is another family of far

field super-resolution microscopy. Given that a single fluorescent molecule

could be detected [93] and with high localization [115], Betzig proposed

to resolve two closely-spaced molecules if they could be activated individ-

ually [92]. The idea was extended into large number of fluorophores by

stochastically activate sparse subset of fluorophores, such that the PSFs of

activated fluorophores do not overlap. This method is known as photoac-

tivated localization microscopy (PALM) [116] or stochastic image recon-

struction microscopy (STORM) [117], and it sidesteps Rayleigh criterion

by not imaging point sources with overlapping PSFs at the same moment.

To challenge Rayleigh criterion, an imaging technique should resolve

point sources with overlapping PSFs and separation less than full width at

half maximum of the PSF. Although the above techniques are ingenious,

they require careful control of the source and do not challenging Rayleigh’s

criterion fundamentally. In comparison, our study focuses on the resolution

of two optical point sources of sub-Rayleigh separations which the current

state-of-the-art optical imaging techniques could not resolve and shows that

the separation could be estimated with constant error. In Appendix B.2,

we discuss recent experimental demonstrations for our proposed imaging

methods.
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Appendix B

Recent Advances in Quantum

Theory of Two-source

Localization

In Chapter 5 of this thesis, we have made the assumption of weak-source

model, given by Eq. (5.2), such that the probability of both sources emitting

one photon is negligible for the two incoherent point sources localization

problem. While this thesis remains focus on theoretical treatment based

on the assumption, we would like to discuss about a recent theoretical

paper [111] on the estimation of separation between two thermal point

sources and experimental demonstrations reported in the past few months.

B.1 Thermal Point Sources

Recently, the incoherent two-source resolution problem was extended for

estimating the one-dimensional separation of two thermal point sources of

arbitrary strength [111]. The model considered consists of two incoherent

thermal point sources imaged by a spatially-invariant unit-magnification

imaging system. The QCR bound for estimating the separation d of the

two sources was derived. Assuming the PSF ψ(x) of the imaging system is
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an even function, the QFI

Jd = N∆k2 − γ2 N2(N + 2)

(N + 2)2 − δ2N2
(B.1)

where N is the average photon number collected,

∆k2 =

∫ ∞
−∞

dx

∣∣∣∣∂ψ(x)

∂x

∣∣∣∣2 , (B.2)

δ =

∫ ∞
−∞

dxψ∗(x− d)ψ(x), (B.3)

γ =

∫ ∞
−∞

dxψ∗(x− d)
∂ψ(x)

∂x
. (B.4)

We notice that the first term in Eq. B.1 is independent of the separation

parameter and is identical to the one-dimensional QCR bound in Ref. [101].

It is also similar to the quantum limit we have derived earlier, and could

be extended for two-dimensional separation parameter (dX , dY ). The key

result is that for a small separation, Jd of Eq. (B.1) approaches the quantum

bound of weak-source model:

lim
d→0

Jd = N∆k2. (B.5)

Hence, the Rayleigh resolution limit is similarly evaded for localization of

two thermal point sources.

B.2 Review of Recent Experiments

We have proposed two potential measurement methods in Chapter 5 –

two-dimensional SPADE and extended SLIVER – that could achieve the

quantum resolution limit. In the past few months, there have been four

proof-of-concept experiments [118, 119, 120, 121] reported.

1. The experiment reported in Ref. [118] was based on SLIVER scheme.

The test sources were created from a laser-illuminated single-mode
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optical fiber whose output is separated by a polarizing beamsplitter.

2. For sub-Rayleigh precision in separation measurement, Ref. [119]

proposed detecting light in higher-order transverse electromagnetic

modes (TEMs). The experiment was performed by means of het-

erodyne detection with the local oscillator in the desired TEM. The

incoherent sources were created by placing a white paper library card

before double slits illuminated by a single laser, and the card was

moved in transverse plane to achieve averaging over the incoherent

light statistics.

3. The experiment reported in Ref. [120] was based on binary SPADE [101]

which has full performance of SPADE for small separation distance.

They proposed a different experimental implementation, Super-resolved

Position Localization by Inversion of Coherence along an Edge (SPLICE).

The image filed was projected into a mode orthogonal to the funda-

mental TEM, the separation distance was deduced from the ratio

between projection and total field. The light source was a heralded

single-photon source, one photon was used for heralding while the

other was split at 50-50 fiber-splitter and out coupled to free space.

4. Ref. [121] reported a quantum-optimal measurements on two inco-

herent point sources generated with a high-frequency-switched digi-

tal micromirror chip illuminated by a laser source. The experiment

scheme was based on SPADE where light is measured in different

HG basis. The projections onto zeroth- and first-order modes were

performed with a spatial light modulator in the amplitude mode.

All four experiments report separation estimation error lower than pre-

dicted by Rayleigh criterion.
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Appendix C

List of Publications

1. Shan Zheng Ang, Glen I. Harris, Warwick P. Bowen, and Mankei

Tsang, “Optomechanical parameter estimation,” New Journal of Physics

15,103028 (2013).

We tackled the problem of estimating system parameters from a noisy

optomechanical system using a statistical framework. The estimation

error of the proposed expectation-maximization algorithm follows fun-

damental error limit given by Cramér-Rao bound closely, and is lower

than the commonly used averaging estimator.

2. Shilin Ng, Shan Zheng Ang, Trevor A. Wheatley, Hidehiro Yonezawa,

Akira Furusawa, Elanor H. Huntington, and Mankei Tsang, “Spec-

trum analysis with quantum dynamical systems,” Phys. Rev. A 93,

042121 (2016).

We tackled the problem of estimating spectrum parameters of a clas-

sical stochastic process coupled to a quantum dynamical system. As

quantum noise is becoming a major limiting factor in this problem, a

quantum limit to the accuracy of parameter estimation is required to

understand such systems.

3. Shan Zheng Ang, Ranjith Nair, and Mankei Tsang, “Quantum limit

for two-dimensional resolution of two incoherent optical point sources,”
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arXiv:1606.00603 [quant-ph].

In this paper, we studied the problem of two-dimensional optical res-

olution in the framework of parameter estimation theory. We found

that the quantum Cramér-Rao bound for estimation error of sepa-

ration between two incoherent point sources is well below the con-

ventional Rayleigh resolution limit. We proposed two linear-optics

measurement schemes that approach the quantum limit at small sep-

aration.
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