
DESIGNING A MULTI-AGENT FRAMEWORK

FOR UNMANNED AERIAL/GROUND VEHICLES

WILLSON AMALRAJ AROKIASAMI

NATIONAL UNIVERSITY OF SINGAPORE

2016

DESIGNING A MULTI-AGENT FRAMEWORK FOR

UNMANNED AERIAL/GROUND VEHICLES

WILLSON AMALRAJ AROKIASAMI

(M.Sc, NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2016

Declaration

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Willson Amalraj Arokiasami

December 3, 2016

Name : Willson Amalraj Arokiasami

Degree : Doctor of Philosophy

Supervisor(s) : Associate Professor Tan Kay Chen, Associate Professor Dipti

Srinivasan

Department : Department of Electrical & Computer Engineering

Thesis Title : Designing A Multi-Agent Framework for Unmanned Aerial/-

Ground Vehicles

Summary

This thesis focuses on developing a multi-agent framework that allows seamless

usage of Unmanned Aerial Vehicle (UAV) or Unmanned Ground Vehicle (UGV)

for the same mission. Multi-agent architectures for autonomous mobile robots

are generally mission and platform oriented. Autonomous mobile robots are

commonly employed in patrolling, surveillance, search and rescue and human-

hazardous missions. Irrespective of the differences in unmanned aerial and ground

robots, the algorithms for obstacle detection and avoidance, path planning and

path-tracking can be generalized. Service Oriented Interoperable Framework

for Robot Autonomy (SOIFRA) developed in this work is an interoperable

multi-agent framework focusing on generalizing platform-independent algorithms

for unmanned aerial and ground vehicles. SOIFRA is behaviour based and is

interoperable across unmanned aerial and ground vehicles.

As obstacle detection and avoidance are standard requirements for autonomous

operation of mobile robots, platform-independent collision avoidance algorithms

are incorporated into SOIFRA. Obstacle detection and avoidance are performed

utilizing computer vision-based algorithms, as these algorithms are generally

i

platform independent. Obstacle detection is achieved utilizing Hough trans-

form, Canny contour and LucasKanade sparse optical flow algorithm. Collision

avoidance is performed utilizing time-to-contact estimation techniques. In or-

der to demonstrate the modularity of SOIFRA, two different and well known

time-to-contact estimation algorithms, optical flow-based and expansion of object-

based time-to-contact algorithms, are utilized for collision avoidance. Collision

avoidance behaviour of SOIFRA is demonstrated through several simulation and

real-time experiments that require the robot to navigate an unknown environment

with obstacles. Experiments performed, utilizing Turtlebot, Clearpath Robotics

Husky, AR Drone and Hector-quadrotor, establish SOIFRAs interoperability

across several robotic platforms and successful incorporation of collision avoidance

behaviour into SOIFRA.

Path-planning, path-generation and following a planned path successfully

are fundamental requirements for autonomous operation of unmanned robots

as most of these robots increasingly utilized in patrolling, surveillance, search

and rescue type of missions. Though the operational principle of aerial and

ground robots are different, the algorithms for path-planning and path-following

can be generalized. Vector Directed Path Generation and Tracking (VDPGT)

developed in this work is a platform independent real-time path-generation and

path-following algorithm. VDPGT is designed to dynamically adapt the shortest

path to a destination while minimizing the tracking error. Performance of VDPGT

algorithm is studied through several simulation and real-time experiments that

require the robot to reach several waypoints where the next waypoint is available

only after reaching the current waypoint. In order to demonstrate that VDPGT

is platform independent, a mission that requires UAV and UGV to cooperatively

navigate a GPS denied environment using only computer vision algorithms and

VDPGT is conducted. Both the robots utilize VDPGT to dynamically generate

path and follow the path generated in semi as well as fully autonomous modes.

In semi-autonomous mode the UAV is controlled by a human operator and UGV

is fully autonomous. In fully-autonomous mode both the UAV and UGV are

fully autonomous. VDPGT algorithm is incorporated into SOIFRA to provide

ii

path-generation and path-following behaviours for unmanned aerial and ground

vehicles. An AR Drone and a Turtlebot are made to reach a target destination

in an unknown environment with obstacles to demonstrate the path-generation

and path-following ability of SOIFRA.

With the advancements in autonomous mobile robot technologies, scenarios

where human and autonomous mobile robots coexist are becoming realistic. To

ensure safe human-robot coexisting environments, the autonomous mobile robots

should be able to detect and avoid human collisions effectively. A biologically

inspired, human visual system based human detection and human collision

avoidance system is developed to add human collision avoidance behaviour into

SOIFRA. Mathematical models of parvo and magno channel of human retina

are combined with existing pedestrian detection algorithms such as Histogram of

Oriented Gradients (HOG) and C4 human detector (C4) to improve pedestrian

detection accuracy. The performance of the developed algorithm is analysed

through comparisons with existing state-of-the-art pedestrian detectors on MIT,

INRIA, Caltech and Daimler datasets. The proposed model is incorporated

into SOIFRA and SOIFRA’s human collision avoidance behaviour demonstrated

through a series of real-time experiments. Real-time experimental results from

AR Drone and Turtlebot demonstrate the improved performance, of the developed

algorithm, in human detection and human collision avoidance.

The platform independent collision avoidance, path-planning and path-following,

and human collision avoidance algorithms incorporated into SOIFRA increase

SOIFRA’s usefulness. Various simulation and real-time experiments conducted

demonstrate the interoperability and modularity of SOIFRA.

Keywords : Multi-agent, collision avoidance, time-to-contact, path-

generation, path-following, pedestrian detection, pedestrian

collision avoidance, UAV, UGV

iii

Acknowledgment

First and foremost, I would like to express my utmost gratitude to my parents

for their support and love, which helped me cross through many tough situations

with ease. Next I would like to thank my supervisors, Associate Professor Tan Kay

Chen and Associate Professor Dipti Srinivasan, for their guidance and support

throughout my PhD. They gave me the freedom to explore and constantly guided

me. I would also like to express my deepest gratitude towards Associate Professor

Prahlad Vadakkepat for his invaluable mentorship and support, which helped me

to grow as a person and as a researcher.

This work could not be done without the supports, encouragements and

guidance of many people. My sincere thanks also goes to my seniors Hu Jun

and Yu Qiang as well as other lab buddies who helped me and shared their

invaluable experience. I specially thank Gee Sen bong for being a good friend and

a partner in my crimes. I would also like to thank my colleagues Lim Pin, Qiu

Xin, Arrchana and Yung Siang and my juniors Zhang Chong, Sim Kuan, Gary,

Ruoxu, Weinan, Rethnaraj, Sivam, Berrak, lab officers of Control & Simulation

Lab, Mr. Zhang Hengwei and Ms. Sara for their continuous assistance in various

tasks. All these labmates have helped me at certain point in time and helped to

create a pleasant research environment.

A special thanks to Kwa Yujie, Paul Christopher who helped me with few of

my experiments and other students who worked with me for their projects.

I would like to thank Arun Kumar Chandran, Josey Mathew and Subash

Chandar Adikesavan for their support and patience. There are many others that

I have not named who have made an impact on my life and shaped me into

who I am today. My profound thanks goes to all of them. Finally, I appreciate

the Department of Electrical and Computer Engineering, National University of

Singapore (NUS) for providing me an opportunity to pursue PhD in Singapore.

iv

Contents

1 Introduction 1

1.1 Robot Control Architectures . 3

1.1.1 Deliberative and Reactive Control Architectures 4

1.1.2 Hybrid Control Architectures 5

1.1.3 Single Robot Multi-agent Architectures 6

1.1.4 Multi robot Multi-agent Architectures 7

1.2 Aim and Scope of the Thesis . 10

1.3 Literature Review . 11

1.3.1 Literature Review on Existing Collision Avoidance Techniques 11

1.3.2 Survey on Path-planning Techniques for Mobile Robots . 15

1.3.3 Survey on Path-tracking Techniques for Mobile Robots . . 20

1.3.4 Existing Vision-based Pedestrian Detection Techniques . . 24

1.4 Major Contributions . 31

1.5 Organization . 32

2 Interoperable Multi-agent Framework 34

2.1 Background . 34

2.1.1 Autonomous Agents . 34

2.1.2 Approaches for Designing Autonomous Agents 36

2.1.3 Rational Agents . 38

2.1.4 Summary . 43

2.2 Service Oriented Interoperable Framework for Robot Autonomy

(SOIFRA) . 44

v

2.2.1 Deliberative layer . 44

2.2.2 Behaviour layer and Execution layer 50

2.3 Simulation and Experimental Setup 51

2.3.1 Simulation Environment 52

2.3.2 Robots used for Simulation Experiments 53

2.3.3 Robots used for Real-time Experiments 55

2.4 Summary . 56

3 Incorporating Collision Avoidance into SOIFRA 58

3.1 Collision Avoidance for SOIFRA 58

3.1.1 Obstacle Detection in SOIFRA 59

3.1.2 Obstacle Avoidance in SOIFRA 61

3.2 SOIFRA with Collision Avoidance Behaviour 71

3.3 Demonstrating Collision Avoidance Behaviour of SOIFRA 73

3.3.1 Simulation Experiments Demonstrating Collision Avoid-

ance using SOIFRA . 74

3.3.2 Real-time Experiments Demonstrating Collision Avoidance

with SOIFRA . 78

3.4 Summary . 82

4 Real-time Path Generation and Tracking with SOIFRA 84

4.1 Vector Directed Path-Generation and Tracking (VDPGT) 85

4.1.1 Performance Evaluation of VDPGT through Simulation

Experiments . 89

4.1.2 Performance Evaluation of VDPGT through Real-time

Experiments . 91

4.2 Coordinated Vision-based Localization for Unmanned Aerial and

Ground Vehicles Utilizing VDPGT 96

4.2.1 Vision-based Localization using Aerial and Ground Robots 98

4.3 Incorporating Path-Generation and Path-Following Behaviours

into SOIFRA . 105

vi

4.4 Simulation and Real-time Experiments Demonstrating Path-Generation

and Path-following Behaviour of SOIFRA 109

4.4.1 Simulation and Real-time experimental Results for Turtlebot110

4.4.2 Simulation and Real-time Experimental Results for AR

Drone . 113

4.5 Summary . 115

5 Real-time Pedestrian Tracking, with SOIFRA, Utilizing Human

Visual Cortex Model 116

5.1 Mathematical Model of a Human Retina 117

5.1.1 Human Retina . 118

5.1.2 Photoreceptors Model . 118

5.1.3 Outer Plexiform Layer Model 119

5.1.4 Model of Parvo and Magno Channel in Inner Plexiform Layer120

5.2 Pedestrian Detection Utilizing Retina Model 121

5.2.1 Processing Information from Parvo Channel 122

5.2.2 Combining Information from Magno Channel and Parvo

Channel . 123

5.2.3 Utilizing Temporal Information for Filtering Positions of

Pedestrians Detected . 125

5.3 Performance Analysis of Human Visual Cortex Model-based Pedes-

trian Detectors . 127

5.4 Incorporating Pedestrian Detection and Avoidance Behaviour into

SOIFRA . 130

5.5 Real-time Experimental Results Demonstrating Pedestrian Detec-

tion and Avoidance using SOIFRA 132

5.5.1 Scenario – 1 . 134

5.5.2 Scenario – 2 . 135

5.5.3 Scenario – 3 . 137

5.6 Summary . 138

vii

6 Conclusion & Directions for Future Research 141

6.1 Conclusions . 141

6.2 Directions for Future Research 143

viii

List of Figures

2.1 Basic architecture of an autonomous agent [24] 35

2.2 Approaches for designing autonomous agents 36

2.3 Architecture of a deliberative agent 36

2.4 Architecture of a reactive agent 37

2.5 Architecture of a hybrid agent 39

2.6 Architecture of a simple reflex agent 40

2.7 Architecture of a model-based reflex agent 41

2.8 Architecture of a goal-based reflex agent 41

2.9 Architecture of a utility-based reflex agent 42

2.10 Architectural overview of the proposed framework (SOIFRA) . . 45

2.11 Process flow for agent goal allocation process performed by planner-

matcher . 48

2.12 System ontology . 49

2.13 Illustration of goal allocation sequence. SGM and AGT refer to sub-

goal planner-matcher and agent respectively. Agents (collaborative

and non-collaborative) register with DF agent. Planner-matcher

queries the DF agent to get a list of services offered by the agents.

If the planner-matcher requires the service of an agent, it sends a

request. The agent accepts or rejects it based on its availability

and its collaborative nature. 50

2.14 Architecture of Gazebo Simulator [51] 53

2.15 Visualization of ground robots used for simulation experiments . 54

2.16 Visualization of aerial robots used for simulation experiments . . 55

ix

2.17 Turtlebot 2.0 used for real-time experiments 55

2.18 AR Drone 2.0 used for real-time experiments 57

3.1 Process flow for obstacle detection 59

3.2 Fig.3.2c shows the optical flow vector generated from an obstacle

as the robot moves towards the obstacle and left and right optical

flow vectors generated from left side and right side of the obstacle.

Fig.3.2a and 3.2b show the image frames utilized to generate the

optical flow vectors shown in Fig.3.2c. Fig. 3.2d is an illustration

showing the line segments lji obtained for an image i. 60

3.3 Change in direction of optical flow vectors, associated with left

edge (liOl) and right edge (liOr) of the obstacle while a robot is

moving forward. The optical flow vectors from the left and right

edges do not intersect if the robot is in collision course with the

obstacle. 62

3.4 Projections of a point P onto image planes S1 and S2 62

3.5 Layout of the simulation environment showing the starting posi-

tions of robot for different simulations. A, B, C, D and E are 2m

from each other. Figs. 3.5b and 3.5c show the front and top view

of the simulation environment respectively. 65

3.6 The plots show the change in length of optical flow vector and

error in distance to the obstacle estimated utilizing TTC-OF for

various positions (A, B, D and E) shown in Fig. 3.5a. The length

of the optical flow vectors is measured in pixels 68

3.7 The plots show the change in length of optical flow vector and

error in distance to the obstacle estimated utilizing TTC-EO for

various positions (B, C, D and E) shown in Fig. 3.5a. The length

of the optical flow vectors is measured in pixels 69

3.8 Architectural overview of SOIFRA with collision avoidance. . . . 71

x

3.9 Operational sequences for obstacle detection and avoidance. AGT

and SRV, represent agent and service. The obstacle agent (Obs:AGT)

obtains video stream utilizing video:SRV service and starts de-

tecting obstacles through the obstacle detection service, det:SRV.

When an obstacle is detected, Obs:AGT initiates, TTC:SRV to

estimate distance to the obstacle. When the estimated distance

to the obstacle is less than the critical distance λ, Obs:AGT, up-

dates on the parameter server, PS:ROS. Steering agent (Str:AGT),

informs Obs:AGT after the obstacle is avoided. 73

3.10 Layout of the simulation environment (not drawn to scale). The

grey region indicates the target region and the white region indi-

cates the operational region. The mission is completed once the

robot reaches the grey target region. 74

3.11 Image of operational environment with multiple static obstacles

for simulation experiments. 75

3.12 Simulation of a mission where two ground robots and two aerial

robots use TTC-EO for obstacle avoidance. Top-view (bird’s eye

view) of the path taken by the robots is shown. Hector-quadrotor

and Husky start from A while AR Drone and Turtlebot start from

B. Each mission is carried out separately. 76

3.13 Simulation of a mission where two ground robots and two aerial

robots use TTC-OF for obstacle avoidance. Top-view (bird’s eye

view) of the path taken by the robots is shown. AR Drone and

Turtlebot start from A while Hector-quadrotor and Husky start

from B. Each mission is carried out separately. 77

3.14 Layout of the environment for real-time experiments (not drawn to

scale). The grey region indicates the target region and the white

region indicates the operational region. The mission is completed

once the robot reaches the grey target region. 78

3.15 Image of real-time operational environments with multiple static

obstacles . 78

xi

3.16 Comparison between distance to the obstacle estimated utilizing

TTC-OF and TTC-EO . 79

3.17 Top-view (bird’s eye view) of the path taken by AR Drone and

Turtlebot while completing the mission in real-time. TTC-EO

is utilized for obstacle avoidance. Each mission is carried out

separately. 80

3.18 Top-view (bird’s eye view) of the path taken by AR Drone and

Turtlebot while completing the mission in real-time. TTC-OF

is utilized for obstacle avoidance. Each mission is carried out

separately. 81

4.1 Illustration of the parameters used in VDPGT. The shaded circle

represents a robot. 85

4.2 Illustration of the parameters used in Proposition 1. 87

4.3 Sequences of path-following utilized for simulation and real-time

experiments. The robots have to start from A and end at A

following the direction specified. 90

4.4 Simulation results for Case – 1 when ground robots are utilized . 90

4.5 Simulation results for Case – 1 when aerial robots are utilized . . 91

4.6 Simulation results for Case – 2 when ground robots are utilized . 92

4.7 Simulation results for Case – 2 when aerial robots are utilized . . 92

4.8 Real-time experiment results for Case – 1 93

4.9 Real-time experiment results for Case – 2 94

4.10 Deviation from the actual path calculated for real-time experiments

on Turtlebot for Case – 1. The subplots show the deviation while

the robot moves through different waypoints. 94

4.11 Deviation from the actual path calculated for real-time experiments

on AR Drone for Case – 1. The subplots show the deviation while

the robot moves through different waypoints. 95

xii

4.12 Deviation from the actual path calculated for real-time experiments

on Turtlebot for Case – 2. The subplots show the deviation while

the robot moves through different waypoints. 96

4.13 Deviation from the actual path calculated for real-time experiments

on AR Drone for Case – 2. The subplots show the deviation while

the robot moves through different waypoints. 97

4.14 Path travelled by robots with non-zero minimum turning radius,

while making a 900 turn, utilizing VDPGT. ψtd and ψt−1
d denotes

the desired orientation at the current and previous state. 97

4.15 Top view and front view of the simulation environment 98

4.16 Sequence of steps involved in computer vision based target identi-

fication. 103

4.17 Images showing the scenario where an infeasible path is generated

when the aerial vehicle is far away from the ground robot. The

new feasible path is generated by adopting an intermediate waypoint.104

4.18 Simulation and real-time environments utilized for the experiments104

4.19 Simulation results for semi-autonomous mode 105

4.20 Simulation results for autonomous mode 105

4.21 Real-time results for semi-autonomous mode 106

4.22 Architectural overview of SOIFRA with path-generation, path-

following and collision avoidance. 107

4.23 Sequences for path-generation. AGT and ACT represent agent and

actions. The path-generation agent PG:AGT, generates a path for

the robot to follow using path-generation action gpath:ACT and

utilizes pos:ACT to monitor the current position of the robot. The

generated path is communicated to the path-follow agent PF:AGT

thorough, rostopic. If the robot crosses a transition boundary a

new path is generated. 108

xiii

4.24 Sequences for Path-following. AGT and ACT represent agent

and action respectively. The path-follow agent PF:AGT receives

the path to follow from path-generation agent PG:AGT thorough

rostopic. Position and orientation of the robot obtained through

pos:ACT and ori:ACT actions are utilized in generating control

actions for the robot. The generated control parameters are inti-

mated to the steering agent Str:AGT. 108

4.25 Operational sequences demonstrating collaboration between path-

follow agent PF:AGT and obstacle agent Obs:AGT. AGT and

ACT represent agent and action respectively. The Steering agent

Str:AGT receives inputs from PF:AGT and Obs:AGT simultane-

ously through rostopic. When there is no obstacle detected along

the robot path, PF:AGT has higher priority. Once distance to an

obstacle detected is less than the critical distance λ, Obs:AGT is

assigned the highest priority. Once obstacle is avoided, PF:AGT

regains higher priority. 110

4.26 Layout of the operational environment (not drawn to scale). The

mission is completed once the robot reaches the destination (end). 111

4.27 Simulation and experimental results for the case study undertaken

using a Turtlebot. Turtlebot moves towards the target in an

unknown environment. Distance to the obstacle is estimated

utilizing the expansion of object based time-to-contact method

(TTC-EO). 112

4.28 Simulation and experimental results for the case study undertaken

using an AR Drone. AR Drone moves towards the target in

an unknown environment. Distance to the obstacle is estimated

utilizing the expansion of object based time-to-contact method

(TTC-EO). 114

5.1 Biological architecture of a human retina 119

5.2 Overview of Rp +HOG and Rp + C4 pedestrian detectors 121

xiv

5.3 Sample outputs of HOG and Rp +HOG on MIT dataset. 123

5.4 Images processed by Magno Channel 125

5.5 Overview of pedestrian process combining output from Parvo and

Magno channel of retina. 125

5.6 Performance curves for Caltech Dataset 128

5.7 Performance curves for Daimler Dataset 129

5.8 Architectural overview of SOIFRA with collision avoidance, path-

generation, path-following and pedestrian detection and avoidance. 130

5.9 Operational sequences demonstrating collaboration between path-

follow agent, PF:AGT and pedestrian-detection agent, Ped:AGT.

AGT and ACT represent agent and action respectively. The Steer-

ing agent Str:AGT receives inputs from PF:AGT and Ped:AGT

simultaneously through rostopic. When there is no pedestrian

detected along the robot path, PF:AGT has higher priority. Once

the robot is detected to be in a collision course with a pedestrian,

Str:AGT assigns the highest priority to pedestrian avoidance. Once

the pedestrian is avoided, PF:AGT regains higher priority. 133

5.10 Layout showing the position of humans in the different scenarios of

the real-time experiments. The robots start from A, move towards

and stop at B. 134

5.11 Real-time experiments with Turtlebot and AR Drone for scenario

1 (the pedestrian is stationary while the robot is moving). The left

images are pedestrian detection outputs using HOG while right

images are outputs using Retina+HOG. 135

5.12 Path travelled by Turtlebot and AR Drone during the real-time ex-

periments and positions of pedestrian detected utilizing Retina+HOG

for scenario–1. In subfig (b), the regions where the robot does not

perform pedestrian avoidance are shown in green (for the cases

where the pedestrian is to the left/right of the robot). The robots

perform pedestrian avoidance if there are pedestrians detected in

the red region. 136

xv

5.13 Real-time experiments with Turtlebot and AR Drone for scenario

2 (the robots are moving to B from A, while the pedestrian enters

the scene at C-4 and walks towards C-5). The left images are

pedestrian detection outputs using HOG while right images are

outputs using Retina+HOG. 136

5.14 Path travelled by Turtlebot and AR Drone during the real-time ex-

periments and positions of pedestrian detected utilizing Retina+HOG

for scenario–2. The robots perform pedestrian avoidance if the

position of the detected pedestrians is in the red region of subfig (b).137

5.15 Real-time experiments with Turtlebot and AR Drone for scenario

3 (the robots are moving to B from A, while the pedestrian enters

the scene at C-4, walks towards C-2 crossing C-5). The left images

are pedestrian detection outputs using HOG while right images

are outputs using Retina+HOG. 138

5.16 Path travelled by Turtlebot and AR Drone during the real-time ex-

periments and positions of pedestrian detected utilizing Retina+HOG

for scenario–3. The robots perform pedestrian avoidance if the

position of the detected pedestrians is in the red region of subfig (b).138

5.17 HOG and Rp + HOG output from negative samples during the

real-time experiments. The black images are the output from

Rp + HOG. It can be seen clearly that Rp + HOG correctly

identifies the negative samples while HOG produces multiple false

positives from the same samples. 139

xvi

List of Tables

1.1 List of some of the famous multi-agent architectures that were

implemented and tested on real robots. 4

1.2 List of some of the multi-agent architectures that provide flexibility

and generalization among robotic systems. 8

2.1 Types of autonomous agents . 35

2.2 Turtlebot 2.0 specifications . 56

2.3 Specifications for AR Drone 2.0 57

3.1 Mean error of the distance to the obstacle estimated utilizing

TTC-OF. A, B, D and E represent the starting locations of robots

(shown in Fig.3.5a) . 67

3.2 Approximate time taken for the length of the optical flow vector

to reach 150px . 67

3.3 Mean error of the distance to the obstacle estimated utilizing

TTC-EO. B, C, D and E represent the starting locations of robots

(shown in Fig.3.5a) . 70

3.4 Approximate time taken for the error to reduce to 0.5m using

TTC-EO . 70

3.5 Comparison among mean error, mean absolute error and mean

squared error of distance to the obstacle, computed utilizing TTC-

OF and TTC-EO . 79

4.1 Exploration strategy followed by the ground robot for coordinated

vision-localization . 102

xvii

5.1 Performance measures from MIT Dataset 123

5.2 Performance measures from INRIA Dataset 124

5.3 Performance measures from Caltech Dataset 124

xviii

List of Algorithms

3.1 Algorithm for Obstacle Detection 61

4.1 Vector Directed Path Generation and Tracking Algorithm 87

5.1 Algorithm for Retina-model-based Pedestrian Detection 126

xix

List of Symbols

(ox, oy) Optical centre of the camera

Li Set of n Line segments

lij jth line segment obtained from image i

αij Angle associated with line segment lij

θt Roll angle of the robot at time t

Lipr A set containing vertical line segments that lie to the right of

the optical centre for an image i

Lipl A set containing vertical line segments that lie to the left of

the optical centre for an image i

liOr Vertical line segments that belongs to Lipr and lie closest to

the optical centre for an image i

liOl Vertical line segments that belongs to Lipl and lie closest to

the optical centre for an image i

OF iOr Optical flow vectors that are generated due to the motion of

liOr
OF iOl Optical flow vectors that are generated due to the motion of

liOl
f Focal length of the camera

t time instant

N A point on the obstacle

S Image plane

n Projection of N onto the image plane S

xx

Ze Translation of robot along Z axis

V Velocity of the robot

ys Distance from p to the focus of expansion for N

ẏs Length of the optical flow vector

E Expansion of an object

W Width of the object

dtrue True distance to the obstacle

d̂ Distance to the obstacle estimated

λ Critical distance

n Number of samples

u control action of the LQR controller

p current position of the robot

p∗ Position of the robot along the desired path

b bounded region along the desired path

vd cross-track error velocity

q11, q22 Gain parameters of Q matrix in LQR controller.

(xe, ye, ze) Representation of earth coordinate frame

(xr, yr, zr) Representation of robot coordinate frame

ws Initial location of the robot

wd Destination to be reached by the robot

wf Final destination reached by the robot

ψt Orientation of the robot in Z plane or yaw angle of the robot

εψ Minimum-acceptable-orientation difference

εd Minimum acceptable error between the destination reached

and destination to be reached by the robot

ψd Desired orientation

ψ̂d New desired orientation

ψtd Desired orientation in the current state

ψt−1
d Desired orientation in the previous state

δ Distance between the defined transition boundaries

xxi

tr Minimum turning radius

t(u, v) Target position for the ground vehicle in pixel coordinates

t(x, y) Target position for the ground vehicle in cartesian coordinates

α Weighing coefficient used for normalization

Dg Diameter of the ground robot in pixels

χ(u,v) Search space

W Width of the camera sensor

H Height of the camera sensor

pr Photoreceptor

C(pr) Adjusted luminance of the photoreceptor

R(pr) Current luminance of the photoreceptor

R0(pr) Compression parameter

L(pr) Local luminance

V0 Contribution of the static compression parameter

fs Spatial frequency

ft Temporal frequency

ph Photoreceptor network

h Horizontal cell network

Fph Spatio temporal filter of photoreceptor network

Fh Spatio temporal filter of Horizontal cell network

βph Gain of spatio temporal filter Fph

βh Gain of spatio te kkmporal filter Fh

αph High cut-off frequency

αh Low cut-off frequency

τph, τh Temporal filtering constants

CgP Local contour enhancement ability of the ganglion cells in

Parvo channel

CgM Local contour compression ability of the ganglion cells in

Parvo channel

A Amacrine cells

xxii

FgM Low pass spatial filter

Cij jth contour identified from image i

Aij Area of the contour j from image i

Athresh Minimum area of contour below which the contours will be

discarded
P i(x,y) Position of the pedestrian detected for an image i

TP(x,y)
Pedestrian tracklet

Eout Output of Euclidean distance-based filter

D̄out Output of direction-based filter

Vout Output of velocity-based filter

∆e Threshold for Euclidean distance-based filter

∆d̄ Threshold for direction-based filter

∆v Threshold for velocity-based filter

Str:AGT Steering agent

Obs:AGT Obstacle agent

PF:AGT Path-follow agent

PG:AGT Path-generation agent

Ped:AGT Pedestrian agent

str:SRV Steering service

video:SRV Video service

TTC:SRV Time-to-contact service

det:SRV Obstacle detection service

pg:SRV Path-generation service

pf:SRV Path-follow service

pda:SRV Pedestrian detection and avoidance service

ctr:ACT Actions to drive the robot

pos:ACT Actions to measure the postion of the robot

ori:ACT Actions to measure the orientation of the robot

det:ACT Actions to detect obstacles

track:ACT Actions to track obstacles

TTC:ACT Actions to compute time-to-contact the obstacles

xxiii

avd:ACT Actions to perform collision avoidance

gpath:ACT Actions to generate path

pdet:ACT Actions to detect pedestrians

xxiv

List of Acronyms

ACTRESS ACTor-based Robot and Equipments Synthetic System

ADP Agent Design Patterns

AM-CW Amplitude Modulated Continuous Wave

ARA Autonomous Mobile Robot Architecture

ARMADiCo Autonomous Robot Multi-agent Architecture with Distributed

Coordination

AuRA Autonomous Robot Architecture

BDI Belief Desire Intention

BERRA Behaviour-based Robot Research Architecture

C4 C4 human detector

CEBOT Cellular Robot System

CLARAty Coupled Layered Architecture for Robotic Autonomy

DAMN Distributed Architecture for Mobile Navigation

DP Detection Precision

DR Detection Rate

FM-CW Frequency Modulated Continuous Wave

FN False Negative

xxv

FNR False Negative Rate

FOE Focus of Expansion

FP False Positive

FPR False Positive Rate

FPPI False Positive Per Image

GPS Global Positioning System

HDRC3 Hybrid Deliberative/Reactive

HOG Histogram of Oriented Gradients

HRI Human-Robot Interface

ICA Intelligent Control Architecture

IPL Inner Plexiform Layer

IMU Inertial Measurement Unit

LBP Local Binary Pattern

LOS Line of Sight

LQR Linear Quadratic Regulator

LTG local tangent graphs

MAE Mean Absolute Error

MAS Multi-agent System

ME Mean Error

MSE Mean Squared Error

NLGL Non-linear Guidance Law

OPL Outer Plexiform Layer

xxvi

PEAS Performance measure, Environment, Actuators and Sensors

PID Proportional Integral Derivative

PLOS Pure Pursuit and Line of Sight-based Path Following

PRS-Lite Procedural Reasoning Sytem-lite

RAP Reactive Action Packages

ROI Region of Interest

ROS Robot Operating System

RRT Rapidly-Exploring Random Tree

SAR Search and Rescue

SLAM Simultaneous Localization and Mapping

SOIFRA Service Oriented Interoperable Framework for Robot Autonomy

SSS Servo, Subsumption and Symbolic

SVM Support Vector Machines

TCA Task Control Architecture

TDM Target Drives Means

TOF Time of Flight

TP True Positive

TTC time-to-contact

TTC-EO Estimating time-to-contact utilizing expansion of an obstacle

TTC-OF Estimating time-to-contact utilizing optical flow

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

xxvii

VDPGT Vector Directed Path Generation and Tracking

VF Vector Field

VFF Virtual Force Field

VOMAS Virtual Operator Multi-agent System

VTP virtual target point

xxviii

Chapter 1

Introduction

“One cannot gain anything without first giving something in return. To obtain,

something of equal value must be lost” – Edward Elric

Human society is undergoing continuous technological advancements that are

leading to our increased dependency on electromechanical systems. Electrome-

chanical systems such as robotic systems are capable of performing hazardous

tasks that are difficult for humans to perform and even mundane tasks such as

household chores. Unmanned robots are replacing humans in human hazardous

tasks such as space and undersea exploration, remote repair and maintenance.

Unmanned robots are also assisting humans in tasks such as disaster management

and military reconnaissance.

Unmanned autonomous robots are machines, capable of intelligent actions

and motions, operating without a guide or teleoperator. Unmanned robots

have achieved significant success in industrial/manufacturing setting. Robot

manipulators perform repetitive tasks such as spot welding, painting and other

tasks that require speed and superhuman precision. In-spite of the success

of robotic manipulators in industrial setting, they suffer from a fundamental

disadvantage: lack of mobility. An industrial manipulator, always bolted down

to a location, has a limited range of motion that depends on its bolted location.

In contrast, a mobile robot would be free to move throughout an area, extending

1

its usefulness. The ability of an unmanned mobile robot to move freely in an

environment, that is known or unknown, has introduced other complexities. The

dynamic nature of autonomous robot’s operating environment demands robots

with rapid online decision-making ability, fault tolerance and scalability.

Agent oriented approaches are suitable for designing unmanned autonomous

robotic systems. Agent oriented approaches break down sequential, top-down

approaches into a set of simple, distributed and decentralized processes that have

direct access to the sensors and actuators of the robot [79]. An agent is defined

as a computer system situated in an environment, capable of flexible autonomous

actions in that environment in order to meet its design objectives [58]. An agent

can be considered as a component of a software or a hardware, capable of acting

exactingly in order to accomplish tasks on behalf of its user [96]. Any software

process that exhibits the following properties is considered as an agent [142],

1. Autonomy: the ability to operate without any direct human intervention

and have control over their actions and internal state.

2. Social ability: the ability to interact with other agents and humans through

any kind of agent-communication language.

3. Reactivity: the ability to perceive their environment and respond to the

changes occurring in that environment in a timely fashion.

4. Pro-activeness: the ability to take initiative and exhibit a goal-directed

behaviour.

The activities or missions carried out by unmanned robots are generally large-

scale and complex. A single agent may not be able to provide a comprehensive

solution for these realistic problems [7]. However a group or an organization of

agents, in which each agent is highly specialized in solving an individual aspect

of the bigger problem, may be able to provide satisfactory performance. This

organization is termed as a Multi-agent System (MAS). A MAS is a loosely

coupled network of agents that work together to solve problems that are beyond

the capabilities or knowledge of individual agents [58]. The inherent modular and

2

distributed nature of a MAS offers significant advantages over other centralized

control systems such as:

• Parallelism: MAS resolve problems that arise due to limited resource

availability by exploiting the parallelism of the agents in the system. The

risk of bottleneck and single point failure, common in centralized systems,

are also avoided due to parallelism.

• System integration: Cooperating agents in MAS allows easy inter-connection

and inter-operation of multiple existing legacy systems.

• Distributed control: Knowledge acquired by spatially distributed agents in

a MAS provides distributed expertise that can be used to solve a problem

efficiently.

In addition to the above mentioned advantages MAS offers enhanced performance

of computational efficiency, reliability, extensibility, robustness, maintainability,

responsiveness and re-usability. These qualities make MAS suitable for developing

control architectures for unmanned robotic systems [57,59,74,127,129].

1.1 Robot Control Architectures

Multi-agent-based robot control architectures can follow deliberative, reactive

or hybrid design paradigms. The deliberative or hierarchical design paradigm is

the oldest, where each layer provides sub-goals to the layer below. A deliberative

architecture will include a global world model which is updated through perception.

Actions performed by robots are carried out based on the planning and reasoning

derived from the world model. Reactive agent architectures were inspired from

the idea that most of our day-to-day activities consist of routine actions rather

than abstract reasoning. This resulted in an architecture that is a collection

of behavioural schemes where cognition is reduced to a mapping of perceptual

stimuli into primitive actions. The behavioural schemes in the architecture react

to changes in the environment in a stimulus-response manner. Due to difficulties

in creating a global world model and inadequate sensors used for perceiving

3

environments, neither purely reactive nor purely deliberative architecture perform

well. Hybrid architectures are the commonly used architectures for robot control.

Hybrid architectures include the high-level reasoning (to plan actions ahead in

time) and low-level reactive capabilities (to respond to changes in real-time).

There are many hybrid robot control architectures available. Table 1.1 shows

some of the most famous architectures that were implemented and tested on

real robots. The following subsections provide an overview of these architectures

grouped into different design paradigms.

Table 1.1: List of some of the famous multi-agent architectures that were imple-
mented and tested on real robots.

Year Name

1986 Subsumption Architecture [13]
1987 Autonomous Robot Architecture - AuRA [5]
1989 ACTor-based Robot and Equipments Synthetic System Project -

ACTRESS [6]
1989 Reactive Action Packages - RAP [36]
1990 Cellular Robot System - CEBOT [40]
1991 A Three-Layer Architecture for Navigating Through Intricate Situa-

tions - ATLANTIS [41]
1992 Servo, Subsumption and Symbolic Architecture - SSS [19]
1994 Task Control Architecture - TCA [121]
1997 Distributed Architecture for Mobile Navigation - DAMN [111]
1997 Autonomous Mobile Robot Architecture - ARA [93]
1997 Saphira [68]
1998 ALLIANCE [104]
2000 Behaviour-based Robot Research Architecture - BERRA [78]
2002 Yuvuz [149]
2003 Busquets [16]
2006 Tripdal Schematic Architecture [67]
2007 Virtual Operator Muti-agent System - VOMAS [50]
2008 Autonomous Robot Mult-agent Architecture with Distributed Coor-

dination - ARMADiCo [7]
2012 A multi-robot platform for mobile robots [110]

1.1.1 Deliberative and Reactive Control Architectures

Subsumption architecture is one of the most representative architecture for

reactive architectures. Subsumption architecture is a composition of hardware

implementations with a number of levels of competence. The levels of competence

are an informal specification of a desired class of behaviours for a robot over all

4

the environments it will encounter [13]. Reactive Action Packages (RAP) [36] is

one of the most representative architecture for hierarchical control architectures.

RAP is a three layered architecture that includes planning, execution and control

components. By allowing reaction tasks to exist on the execution component

concurrently, the RAP system is able to deal with situations where the planning

system is not able to predict the events in the environment as well as respond

immediately to new incoming information.

1.1.2 Hybrid Control Architectures

Autonomous Robot Architecture (AuRA) [5] is a schema theory based multi-

agent architecture. AuRA consists of cartographic, planning, homeostatic control,

perceptual and motor subsystems. Several schemas may be active at the same

time in AuRA enabling the multi-agent architecture to provide multiple inputs

such as steering and velocity inputs to the robot at the same time. A three layer

architecture for navigating through intricate situations called ATLANTIS [41] is

an asynchronous and heterogeneous architecture. ATLANTIS integrates tradi-

tional symbolic planning into real-world embedded reactive system. ATLANTIS

is capable of handling multiple real time tasks in partially predictable noisy envi-

ronments. Servo, Subsumption and Symbolic (SSS) architecture [19] is considered

as an evolution of the subsumption architecture. SSS architecture includes servo,

subsumption and symbolic systems. In SSS architecture, 40 separate processes

operating in a loosely connected network of 24 processors form the robot con-

troller. The robot controller has a number of modules, each of them forming

small parts of the overall behaviour. Task Control Architecture (TCA) [121] has

attributes that makes it an operating system rather than an architecture. TCA

has both reactive as well as deliberative layers. TCA [111] includes a central unit

that registers all the modules that are in use and handles communication between

the modules. The low level tasks of TCA resemble behaviours. Distributed

Architecture for Mobile Navigation (DAMN) [111] consists of several modules

that concurrently share the control of the robot. The modules of DAMN architec-

ture communicate and vote for actions that satisfy objectives and against other

5

actions. Behaviour-based Robot Research Architecture (BERRA) [78] is made up

of deliberative, task execution and reactive layers. The deliberative layer includes

a Human-Robot Interface (HRI) that understands gesture and speech inputs

and a planner that decomposes data from HRI into different states. The task

execution supervisor and a localizer form the task execution layer. Behaviours

(coupling between sensors and actuators), resources and controllers form the

reactive layer. YAVUZ [149] is a modular hierarchical architecture. YAVUZ has

three operational modes: playback operation, teaching operation and manual

operation. Manual operation is utilized for teleoperation while the other two

modes are utilized for self-supervised and goal oriented autonomous operations.

Tripodal schematic control architecture [67] is also a three layered architecture

made up of deliberative, sequencing and reactive layers. Communications between

components in different layers are carried out through synchronous/asynchronous

and push/pull relations.

1.1.3 Single Robot Multi-agent Architectures

Autonomous Mobile Robot Architecture (ARA) [93] is a multi-agent architecture

for single robots. The functionalities of robots using ARA is determined by

the emergence of behaviours due to the coexistence and cooperation among

the society of agents in ARA. The agents in ARA are organized into reflexive,

reactive and cognitive categories. The agents in reflexive category take care of

the low level tasks. The agents in reactive category are in-charge of the abilities

of the mobile robot, while the agents in cognitive category decide the best ac-

tions to perform based on the knowledge about the environment. Saphira [68]

architecture consists of a deliberative and reactive layer. Planning agent of the

deliberative layer forms the core of the Saphira architecture. Planning agent is

based on Procedural Reasoning Sytem-lite (PRS-Lite) reactive planner, a system

capable of taking natural language voice commands and transforming them into

tasks. PRS-Lite is represented as parametrized state machines (activity schemas).

Each schema embodies procedural knowledge to attain an objective through

a sequence of sub-goals, perceptual checks, primitive actions and behaviours.

6

Virtual Operator Multi-agent System (VOMAS) [50] is a multi-agent architecture

capable of dynamic task switching in order to support spontaneous generation of

a task without preplanning. VOMAS has been tested on a wheelchair robot and

also for formation control. Autonomous Robot Multi-agent Architecture with

Distributed Coordination (ARMADiCo) [7] is a mobile robot control architec-

ture with distributed coordination. Introduction of new hardware and software

components may be done easily without any modifications to the existing agents.

In addition to this, the agents in ARMADiCo have the flexibility to be coded

in different programming languages and are capable of operating in different

computers.

1.1.4 Multi robot Multi-agent Architectures

ACTor-based Robot and Equipments Synthetic System (ACTRESS) [6] is a

heterogeneous multi-robot architecture for performing tasks that cannot be ac-

complished by a single robot. Negotiation mechanisms based on Contract Net and

multistage negotiation protocols were introduced to perform collaborative tasks.

Cellular Robot System (CEBOT) [40] is a collection of heterogeneous robotic

agents that are capable of assembling and disassembling by themselves. The

ability to allow complex structures to be constructed on-site and the additional

capability of reconfiguring the combined units is of great value for wide range of

applications in space-constrained environments. ALLIANCE [104] architecture is

a fault-tolerant, adaptive, distributed behaviour-based multi-robot control system.

ALLIANCE architecture can be used for missions in dynamic environments and

for complex missions composed of independent tasks. L-ALLIANCE [104] is

an extension of ALLIANCE architecture. L-ALLIANCE architecture uses rein-

forcement learning to adjust the parameters controlling the robot’s behaviours.

Both ALLIANCE and L-ALLIANCE architectures have been implemented on

robots for performing tasks such as box-pushing, puck-gathering and marching

in formation. A multi-robot platform for mobile robots [110] deals with the

foundations and methods of a middle layer that joins a multi-agent system with a

multi-robot system in a generic manner. It provides a generic software platform

7

integrating multi-agent technology and a multi-robot system.

Unmanned robots use robot control architectures to accomplish a task or

mission. Most of the times the tasks performed by unmanned robots vary

depending upon the content of the mission. But generally, the common robot

control architectures are not flexible to accommodate the variations in tasks. As

there are many types of unmanned robots available, the same mission can be

completed by utilizing different robots. Existing multi-agent /multi-robot control

architectures does not provide this functionality even though the algorithms for

the tasks performed by the robots can be generalized. This led to the development

of a separate class of multi-agent architectures that focus on introducing flexibility

and generalization among robotic systems. Table. 1.2 lists some of the well known

multi-agent architectures that focus on the above mentioned functionalities.

Table 1.2: List of some of the multi-agent architectures that provide flexibility
and generalization among robotic systems.

Year Name

2003 Coupled Layered Architecture for Robotic Autonomy - CLARAty [92]
2007 Virtual Operator Multi-agent System - VOMAS [50]
2008 Agent Design Patterns [7]
2011 Target-Drives-Means - TDM [12]
2015 Hybrid deliberative/reactive architecture - HDRC3 [26]
2015 Intelligent Control Architecture [55]

Coupled Layered Architecture for Robotic Autonomy (CLARAty) is a frame-

work for heterogeneous robot platforms with generic and reusable robotic com-

ponents [92]. One of the major goal of CLARAty is to provide a design that

allows usage of components, that are spanning across domains, to be flexible

and extensible to support various applications. CLARAty tries to provide a

framework for algorithms developed for robotic systems that can be generalized,

while maintaining the ability to easily integrate platform specific algorithms.

CLARAty provides a framework for generalized algorithms applied to rover

platforms irrespective of the implementation details.

VOMAS is a mobile robot architecture designed to rapidly change missions

through dynamic task switching or dynamic role switching. Generally in multi-

8

robot missions involving more than one robots, each robot will be assigned a

particular task to complete. If a robot is not able to perform a specific task

and if there are other robots that may be equipped with skills for that task,

VOMAS architecture allows the robots to perform a task switch. The mobile

agent considered in VOMAS architecture is a mobile software agent, a software

program, that can migrate from host to host through a network.

Agent Design Patterns (ADP) defining common features allow introduction

of new hardware and software components without modifying the architecture [7].

ADP is used as a methodological approach for designing agents. ADP simplifies

the task of creating new agents by defining common features of all the agents

in the architecture. This pattern helps by designing agent’s goals, maintaining

agent’s internal states and resource allocation.

Target Drives Means (TDM) is a behaviour-based interoperable software

framework for humanoid robots that is ready to use and allows easy adaptation

for new projects [12]. TDM focuses more on modularizing software development

for adding complex behaviors to humanoid robots. TDM provides a solution

to this in the form of a supplementary light software framework on top of an

existing module-based architecture. This reduces the level of technical knowledge

required for delivering a complex behaviour control implementations for humanoid

platforms.

Hybrid Deliberative/Reactive (HDRC3) Architecture is a distributed archi-

tecture for unmanned aircraft systems [26]. In HDRC3, the essential generic

functionalities of an UAV are isolated for effective integration of low-level (naviga-

tional subsystem, low-level control with motion planning) and high-level (mission

planning and execution) functionalities. HDRC3 has been tested on multi-rotor

platforms for several complex missions that require high autonomy.

Intelligent Control Architecture (ICA) [55], is a generic capability-oriented

architecture for autonomous marine robots. ICA enables multiple collaborating

marine vehicles to autonomously carry out underwater intervention missions.

ICA moves away from fixed mission plans and elementary diagnostics schemes to

a more robust architecture to deal with complex underwater intervention missions.

9

Service oriented computing forms the foundation for ICA. In addition to service

oriented computing, ICA includes a knowledge based database that captures the

domain specific skills of the human expert as well as the dynamic information

related to the platform and changes in the environment. The combination of the

above two components enable the robots utilizing ICA to dynamically reconfigure

and adapt itself in order to deal with changes in the operating environment.

1.2 Aim and Scope of the Thesis

Although there are research works that focus on creating multi-agent architectures

that provide flexibility and generalization among robotic systems, there are still

some open areas for exploration. Interoperability of multi-agent architectures

that allows a multi-agent architecture to utilize different types of unmanned

robotic systems has received less attention. CLARAty, HDRC3 and ICA are some

of the multi-agent architectures that focus on interoperability across unmanned

robots. These architectures focus on achieving interoperability across same type of

robots. CLARAty focuses on interoperability across ground robots, HDRC3 is for

unmanned aircraft systems and ICA targets autonomous marine robots. However,

the rapid progress in technology and increasing complexity of tasks require multi-

agent architectures that accommodates different types of robotic systems such as

UAVs and UGVs with minimal modifications. The main focus of this thesis is

to develop a multi-agent-based framework that achieves interoperability across

varied robotic platforms.

A number of algorithms developed for robotic systems can be generalized.

The algorithms for robotic systems can be utilized irrespective of their implemen-

tations on various robotic platforms. Generalizing platform independent robotic

algorithms will improve the ease-of-use of MAS especially in missions that involve

different types of robots. This thesis also focuses on providing a framework for

platform independent robotic algorithms that is interoperable across UAVs and

UGVs. Following are the two key focuses of this thesis.

• Creating a multi-agent framework that allows usage of different types of

10

robotic systems with minimal modifications. This has significant advan-

tages as it reduces the need for creating new multi-agent architectures for

completing same missions with different types of robotic systems.

• Providing a framework to utilize platform independent algorithms on UAVs

and UGVs.

This thesis aims to develop a generalized, multi-agent-based framework that

allows easy usage of UGV or UAV for same missions. The developed framework

should allow easy usage of either UAV or UGV, for various missions, with minimal

changes to the framework. The framework should also accommodate platform

independent algorithms for performing same tasks such as collision avoidance,

path-following and, pedestrian detection and avoidance using UAVs or UGVs.

1.3 Literature Review

Tasks such as collision avoidance, path-generation, path-planning, path-tracking

and pedestrian detection and avoidance are essential for autonomous operation

of unmanned aerial and ground vehicles. This section explores the existing works

related to collision avoidance, path-planning and path-tracking, and pedestrian

detection.

1.3.1 Literature Review on Existing Collision Avoidance Tech-

niques

Collision avoidance is a crucial functionality in autonomous mobile robot navi-

gation. Collision avoidance comprises of obstacle detection and avoidance in a

three dimensional environment [140]. Although simple solutions such as probes

and light beams are sufficient in recognizing obstacles in industrial environments,

mobile robots rely on techniques with higher sensing rate, longer range and high

spatial resolution [47]. Active ranging sensors are some of the popular sensors

utilized for obstacle detection. Laser range sensors have been in active use since

1976 [94]. Most of the active ranging sensors are of low cost and provide simple

11

outputs such as direct measurements of distance from the robot to the objects

nearby. This section provides an overview about the commonly utilized existing

collision avoidance techniques.

1.3.1.1 Time-of-Flight Active Ranging

Amplitude Modulated Continuous Wave (AM-CW) laser-based, Frequency Mod-

ulated Continuous Wave (FM-CW) laser-based and Time of Flight (TOF) laser-

based techniques are the three basic active laser ranging techniques. While

AM-CW lasers utilize the phase shift between emitted and received laser beam,

FM-CW utilize frequency shift of a frequency modulated laser for estimating

range. TOF lasers utilize the propagation speed of sound or an electromagnetic

wave. Though FM-CW laser-based techniques are more accurate of the three,

their design is complex. AM-CW laser-based techniques, more sensitive to ambi-

ent light, are faster and perform better in indoor environments. TOF laser-based

techniques with their capacity for long range data acquisition, are more suitable

for mobile robot applications. A SICK laser scanner is a TOF ranging laser

with a resolution of 0.5 degree with a range of 50m [80]. A major disadvantage

in using laser sensors is their sensitivity to environmental conditions as lasers

tend to be scattered due to fog or dust. The laser in TOF ranging laser can be

replaced with an ultrasonic sensor. The ultrasonic sensor transmits a packet of

ultrasonic pressure waves and measures the time taken by that wave packet to

reflect and return to the receiver [120]. Ultrasonic senors are usually utilized for

small ranges of 0.1 – 5m. Ultrasonic sensors are always used in arrays as a single

ultrasonic sensor has a slow cycle time. The accuracy of ultrasonic sensors depend

on the successful perpendicular reflection of the sound wave off the obstacle.

Measurements are error prone if the angle of incidence of the ultrasonic waves

are not perpendicular to the object. The material of the obstacle also plays an

important role in range sensing using an ultrasonic sensor. For example, materials

such as foam, fur and cloth can acoustically absorb the sound waves.

12

1.3.1.2 Active Triangulation

Active triangulation is one of the initial approaches for range sensing in mobile

robots. Sensors based on active triangulation use geometric properties manifest

in their measuring strategy to estimate the distance to objects [120]. The active

triangulation-based sensors project a known light pattern onto the environment

and the reflection of the known pattern is captured by a receiver. By combining

the information from the captured reflection pattern and known geometric values,

simple triangulation techniques are utilized to establish range measurements.

The sensor can be 1D or 2D based on the measurements captured by the receiver.

If the receiver measures the position of the reflection along a single axis, the

optical triangulation sensor is 1D and if the receiver measures the position of

the reflection along two orthogonal axes then the optical triangulation sensor

is considered 2D (structured light sensor). The resolution of the triangulation

system is directly related to the baseline (separation between the laser and the

optical centre of the camera). When the baseline increases, resolution relative to

depth of field increases as well as occurrences of occlusions and missing data. This

can be avoided by scanning both the emitted beam and the receiver optics [109].

This approach enables the projected beam to remain in focus over a large depth

of field maintaining high resolution in-spite of a short physical baseline. The

frame rate of the scanners also play a role in active triangulation as images must

be acquired and processed for each position of the beam. Projecting structured

pattern over the entire scene and estimating depth through triangulation by

processing only few images helps in overcoming the frame-rate data acquisition

problem. Although active triangulation provides an inexpensive alternative to the

laser range-finding solutions, increasing quality of the laser range finding systems

in the recent years have made active triangulation techniques less popular [120].

1.3.1.3 Motion or Speed-based Range Sensors

Motion or speed-based range sensors directly measure the relative motion between

the robot and its environment [120]. These sensors will be be able to detect

13

relative motion and estimate speed as long the object moves relative to robot’s

reference frame. Doppler effect-based sensor is one of the common motion-based

range sensor. If an electromagnetic or sound wave is transmitted and received

after reflection from an object, the measured frequency at the receiver is relative

to the speed between transmitter and receiver. Both microwaves and laser radar

systems are utilized for Doppler effect-based range sensing in autonomous robots

as well as manned trucks [141]. Both the systems have equivalent range, but

performance of laser-based sensors is reduced in environments with fog, rain and

dust.

1.3.1.4 Vision-based Sensors

Vision based obstacle detection is powerful and popular in unmanned aerial

and ground vehicles [70, 154]. Vision sensors, in close proximity, provide de-

tailed information about an environment. Appearance-based and optical-flow-

based techniques are commonly used in map-less vision-based navigation [89].

Appearance-based methods rely on basic image processing techniques to differen-

tiate the obstacles from the background. Optical-flow-based techniques utilize

apparent motion of objects in scenes [89]. Optical flow, a biologically inspired

approach for obstacle avoidance, is the pattern of apparent motion of pixels in

successive image frames [128]. The time derivative of positions of image points

in an image plane define a motion-field. Temporal change in an image sequence

constitutes the optical flow field which approximates the motion field. Optical

flow is computed using spatio-temporal intensity derivatives (differential method),

feature matching techniques (correlation approach) and velocity tuned filters

(frequency-based method) [154]. Lucas-Kanade method, a differential method for

optical flow estimation, is useful for sparse optical flow computation [81]. For

larger pixel motions, a pyramidal approach for Lucas-Kanade method is suitable,

where the standard algorithm is applied recursively to re-sized versions of the

image.

14

1.3.1.5 Obstacle Avoidance

Obstacle avoidance algorithms generate motion instructions by combining distance

to the obstacle(s) and vehicle motion information. Range sensors are often utilized

to obtain distance information from environment. Recent advancements have

made computer vision algorithms capable of estimating depth information utilizing

multiple image frames. Obstacle avoidance algorithms are of two categories: global

and local. Global approaches compute optimal robot trajectory offline, utilizing

a complete model of robot’s environment while computationally efficient local or

reactive approaches generate sub-optimal robot trajectories. Local approaches

such as bug algorithm, potential field method (PFM), virtual force field (VFF),

vector field histogram (VFH) and dynamic window approach (DWA) are fast and

computationally efficient as only a small subset of obstacles close to the robot is

considered. Bug algorithm is one of the simplest solution for obstacle avoidance.

There are two variants of bug algorithm: bug1 and bug2. In bug1, the robot

fully circles an obstacle detected and departs from the point with the shortest

distance to the goal [83]. Though this approach is inefficient, it guarantees that

the robot will reach any reachable goal. In bug2, the robot begins to follow

the obstacle’s contour, but departs immediately once the robot is able to move

towards its goal [82]. Tangent Bug is a variant of bug algorithm that allows the

robot to move efficiently using local tangent graphs (LTG) [63]. In potential

field method [66], a robot is subjected to attractive force from the target and

repulsive forces from obstacles. Virtual force field and vector field histogram are

extensions of PFM [134]. In the dynamic window approach, robot dynamics is

considered to compute admissible velocities for safe robot motions [38]. Stereo

vision is a common technique for obtaining 3D depth information from 2D planar

images [2].

1.3.2 Survey on Path-planning Techniques for Mobile Robots

Path-planning algorithms are generally classified into two categories: global path-

planning and local path-planning algorithms. Global path-planning algorithms

15

require complete information about the robot’s operating environment. The

robot’s operating environment may be represented as a continuous geometric

description, decomposition-based geometric map or a topological map. A path-

planning system transforms this continuous environmental model into a discrete

map suitable for a path-planning algorithm. Path-planning algorithms are

grouped into different sub-categories based on the manner in which this discrete

decomposition is carried out.

1.3.2.1 Roadmap Approaches for Path-planning

Roadmap approaches capture the connectivity of the robot’s free space in a

network of 1D curves or lines called roadmaps [120]. Roadmap approaches to

path-planning reduce the problem to that of a graph search by fitting a graph

to the space [44]. The main challenge for roadmap-based approaches would

be to enable the robot to reach any location in the operating environment by

utilizing a minimum number of total roads. Following are some of the common

roadmap-based approaches for path-planning.

Visibility Graph

Visibility graph path-planning is useful in cases where objects in the environment

are represented as polygons in either continuous or discrete space. This approach

builds roadmap of lines by connecting each vertex with all vertices visible from

its position. The straight lines connecting these vertices form the shortest path

between them. The performance of this method is fast when the environment

is sparse and it becomes slow and inefficient, compared to other techniques, in

densely populated environments. In addition to this the minimum-length path

tend to take the robot as close as possible to the obstacles in the robot’s path.

Alternative to this approach is Edge-sampled visibility graph that assigns multiple

vertices along edges of polyhedral approaches so that there is a minimum edge

length.

Voronoi Roadmap

Voronoi roadmap approaches tend to maximize the distance between the robot

and the obstacles in the environment. Voronoi roadmap approaches build edges

16

that are maximally distant from the obstacles and find the minimum distance

path along these edges. Since voronoi roadmap approaches maximize the distance

between the robot and the obstacles, planned paths for robots with short-range

sensors will be inefficient.

1.3.2.2 Path-planning Approaches based on Cell Decomposition

Cell decomposition techniques distinguish between geometric areas or cells that

are free and the areas that are occupied by objects. The operational mechanism

for cell decomposition path-planning is as follows [112]:

• Divide the operating region into simple connected regions. These divisions

are termed as cells.

• Identify the cells that are free of obstacles and free cells that are adjacent to

each other. These open cells that are adjacent are then connected utilizing

graphs called connectivity graphs.

• Locate the cells that contain the initial and goal states and search for a

path in the connectivity graph that joins the initial and goal cell.

• Compute a path within each cell that connects the initial and final goal

states.

Placement of the boundaries between the cells is an important aspect for

cell decomposition methods. Based on the placement of the boundaries between

the cells, cell decomposition methods are classified as exact or approximate cell

decomposition techniques. In exact cell decomposition techniques, the bound-

aries of the cells are placed as a function of the structure of the environment so

that the cell decomposition is loss-less. In approximate cell decomposition the

decomposition results in an approximation of the actual map.

Exact Cell Decomposition

In exact cell decomposition, the boundaries of the cells are decided based on the

geometric structure of the objects in the robot’s operating environment. The

decomposed cells are either completely free or completely occupied. The free

17

cells are then connected by a graph and searched using a graph search. There

are different approaches of exact cell decomposition based on the manner in

which the free cells are divided. Trapezoidal decomposition divides free cells

into trapezoidal regions [148]. Vertical lines from each of the obstacles are used

to divide the free space. A roadmap is then constructed by connecting the

midpoints of trapezoids nearby. Critical-curve-based decomposition divides free

space into critical and non-critical regions [116]. The boundaries of these regions

are piecewise polynomial curves. Cylindrical algebraic decomposition extends

critical-curve decomposition to three dimensional problems. Connected balls in

free space is an exact cell decomposition approach that deals with un-structured

obstacle fields [135]. This approach fills free space in the operating region with

overlapping balls. The main disadvantage of exact cell decomposition approaches

is that the total number of cells depend on the density and the complexity of

the objects in the environment. This has a direct effect on the computational

efficiency of the path-planning algorithm.

Approximate Cell Decomposition

Approximate cell decomposition is similar to grid-based environmental repre-

sentations. Rectanguloid cell decomposition divides the entire operating region

into rectanguloid regions [17]. Each rectanguloid are then labeled as completely

filled, partially filled or completely empty. A∗ and D∗ algorithms that search

over a square or cubic grid of unoccupied cells are the most common examples of

rectangulaoid cell decomposition. Octtree decomposition is designed to reduce

the number of points needed to represent obstacles, compared to full grid repre-

sentations [34]. Approximate-and-decompose decomposition approach is similar

to trapezoidal decomposition. The difference is that the trapezoidal regions

are replaced with rectangular mixed regions to reduce the proportion of mixed

area [44].

1.3.2.3 Potential Field Path-planning

Potential field methods for path-planning assign potential function to free space

and consider the robot as a particle that reacts to the forces due to the potential

18

field [54]. The potential field method treats the robot as a point under the

influence of an artificial potential field. The robot moves by following the field.

The goal position has the lowest potential and attracts the robot towards it,

while the obstacles repel the robots. The superposition of all forces applied on

the robot guides the robot towards its goal avoiding the known obstacles in its

path. Potential field is to be updated if new obstacle appear in the environment.

Virtual Force Field (VFF) is the oldest potential field method [29]. The goal point

is assigned a decaying function with negative minimum value and the obstacles

are assigned a decaying function with positive maximum value. The forces from

the goal and all the obstacles are added to obtain the total potential. VFF

method suffers from local minima. Arbitrary potential field method is designed

for potential fields that suffer from local minima. This method replaces gradient

descent with a search that is complete in probabilistic sense. Harmonic potential

functions utilize partial differential equations such as Laplace’s equation, Poisson’s

equation, conduction heat flow equation and approximations to Navier-Stoke’s

equation for generating paths [1,64,150]. These equations generate paths that

are smooth and have only one local minima at the goal. In extended potential

field method two additional potential field other than the artificial potential field

are utilized [65]. Rotation potential field assumes that the repulsive force is a

function of the distance from the obstacle and orientation of the robot relative

to the obstacle. This improved the wall following ability of the robot (difficult

using standard potential field methods). The task potential field filters obstacles

that should not affect the near-term potential using the current robot velocity as

reference. This improved the smoothness of the generated trajectories.

1.3.2.4 Rapidly-Exploring Random Tree (RRT)

Rapidly-Exploring Random Tree (RRT) is a real-time path-planning algorithm

[71]. RRT works by using a stochastic search over the body-centered frame of

reference and expanding a tree through a random sampling of the configuration

space [120]. RRT are suitable for handling dynamic problems with obstacles and

differential constrains. Utilizing random samples from the search space, RRT

19

grows a tree that has its root at the starting location. The feasibility of connection

with the tree is studied for each sample that is obtained. If the connection is

feasible, the sample is added as a state to the tree. The length of the connection

between the tree and the new sample is limited by a growth factor. This allows

the tree to maintain an incremental growth.

1.3.3 Survey on Path-tracking Techniques for Mobile Robots

Path-tracking is the ability of a mobile robot to follow a given trajectory. Path-

tracking is one of the important ability for a autonomous mobile robot. To be

precise, path-tracking is the determination of the desired heading for a robot,

utilizing the information such as path planned, the initial location of the robot

and its heading angle in order to accurately track the desired path [125]. Methods

to achieve path-tracking for autonomous mobile robots are generally grouped

into two categories: geometric and control theoretic.

1.3.3.1 Geometric Methods for Path-tracking

Geometric methods for path-tracking generally use a virtual target point (VTP)

to track the given paths. VTPs are look-ahead points on the desired path that

assist the path-tracking algorithm. The path-tracking algorithm drives the robot

towards VTP which eventually directs the robot onto the path. Following are

some of the geometric approaches to path-tracking .

Carrot-Chasing Algorithm

Carrot-chasing algorithm or rabbit-chasing algorithm is one of the simplest path-

tracking algorithm available [4]. The key concept of carrot-chasing algorithm is

VTP. In carrot-chasing algorithm the VTP is called as carrot. It introduces VTP

along the desired path and makes the robots to follow the VTP. The algorithm

updates the heading direction of the robot to allow it to move towards the VTP.

The robot will asymptotically approach and follow the desired path. Following is

an overview of the steps involved:

1. Initialize VTP along the path to reach a waypoint.

20

2. Determine the distance between the current location of the robot and VTP.

This distance is called the cross-track error.

3. Update the desired orientation and control input for the robot based on

the cross-track error.

This process is continued once the robot reaches a waypoint. Usually a pro-

portional controller is utilized to generate the control input. The selection of

VTP plays an important role in achieving a stable path-tracking. If the distance

between the VTP and the current position of the robot is very small, the robot

tends to overshoot the VTP (especially when the robot is moving at higher veloci-

ties) leading to more cross-track error and resulting in an oscillatory performance

in path-tracking.

Non-linear Guidance Law (NLGL)

The NLGL also utilizes VTP for path-tracking [102,103]. NLGL will always pro-

duce a lateral acceleration that is appropriate to follow a circle of any radius. In

order to decide on the control parameters to guide the robot towards the desired

path, a circle is drawn with the robot at the centre of the circle. This circle should

intersect the desired trajectory at two points. Based on the position of the robot

with respect to the intersection points, one of them is utilized as VTP on the

desired trajectory. Control parameters such as direction of acceleration is decided

and lateral commands are generated using this VTP. The main advantage of

NLGL is that it is suitable to be applied for any type of trajectory. NLGL utilizes

an approximate PID control when the robot need to follow a straight path and

anticipatory control when the desired trajectory is curved. The adaptive nature

of NLGL ensures that the robot stability is not dependent on velocity, even in

the presence of wind and other disturbances [103]. Usually the radius of the

circle will be fixed after the first VTP is decided under the assumption that a

circle with that radius will always intersect the desired trajectory. But this may

not be true in all the scenarios. In conditions where the circle does not intersect

the desired trajectory, there will be no VTP. On the other hand, if a large value

is chosen as the radius of the circle the convergence time will be longer.

21

Pure Pursuit and Line of Sight-based Path Following (PLOS)

PLOS-based path-following is a combination of pure pursuit and Line of Sight

(LOS) based navigation strategies [22, 69]. Pure pursuit approaches always work

towards determining the curvature that will take a robot from its current position

to a desired goal position. Waypoints along the desired trajectory or VTP qualify

as desired goal positions. The goal positions are usually determined similar to

the carrot-chasing algorithm. Pure pursuit algorithm defines a circle such that it

passes through the goal point and the current position of the robot. Once the

curvature required to take the robot from its current position to the next goal

position is identified, LOS guidance laws are utilized to steer the robot towards

its goal. The pure pursuit algorithm continually changes the target curvature,

always pushing the goal point forward. The combination of these guidance laws

will allows the robot to successfully follow the desired trajectory [125]. Though

PLOS path-tracking method is stable it has certain limitations. The pure pursuit

algorithm does not consider the dynamics of the robot while determining the

curvature. This may result in scenarios where a sharp turn at high speed is to

be done. In addition to this the robots tend to reach the desired paths at slow

rates [22].

Vector-Field-based Path Following

In all the above mentioned methods, the path-tracking algorithms work to

command the robot to a particular location on the desired trajectory. In vector-

field-based path following, the fundamental objective is to be on the desired

path rather than at a certain point at a particular time. Vector-field-based path

following achieves path-tracking by constructing vector fields around the desired

trajectory. Vector fields indicating the direction of flow from source to destina-

tion, for the robot to follow, are utilized in the Vector Field (VF) approach [91].

There are two modes of operation for this algorithm: one where the robot is

away from the desired trajectory and the other where the robot is closer to the

desired trajectory. The algorithm commands the robot to move towards the

desired trajectory when the robot is far away. Once the robot enters a transition

boundary (an user defined region within which the robot is considered near the

22

desired trajectory) the algorithm provides finer orientation control to accurately

follow the desired path.

1.3.3.2 Control Theory-based Path-tracking Methods

Control theory-based path-tracking methods provide an alternative to the geo-

metric path-tracking methods. Robustness to wind disturbances is one of the key

advantages of using control theory-based path-tracking methods. Proportional In-

tegral Derivative (PID) control based method is one of the commonly used control

theory-based path-tracking method. A PID controller with feedforward controller

is capable of outperforming a NLGL based controller [108]. Linear Quadratic

Regulator (LQR), sliding mode control, model predictive control, backstepping

control, gain scheduling theory, adaptive control and dynamic programming are

some of the most common control theory-based path-tracking methods.

Linear Quadratic Regulator (LQR)

The LQR control-theory-based path-following algorithm utilizes optimal control

theory to generate control effort for the robots. The final control effort generated

minimizes robot’s control effort by minimizing the cross track error and cross

track error rate [137]. The control action for a LQR is given by

u = −

p
√
| b

b− p |+ vd

√√√√2

√
| b

b− p |+ q22

 (1.1)

where, p is the position of the robot, b is a boundary similar to the transition

boundary in vector-field-based path following (explained in Section 4.1), vd is

the cross-track error velocity and q22 is the gain parameter of the Q matrix. Q

matrix is defined as a second order matrix given by

Q =

q11 0

0 q22

 (1.2)

where, q11 =| b/(b− p) |. Hence only b and q22 are the parameters to be tuned

for LQR-based path-following algorithm. Manually tuning q22 parameter may be

23

troublesome at certain cases. For example a low q22 value will allow the robot to

converge to the desired path quickly but with high control effort. On the other

hand, a high q22 value will ensure that control effort is reduced while increasing

the convergence time. Hence a value that achieves a trade-off between control

effort and convergence time is to be decided.

Sliding Mode Control

Sliding mode control based path-following algorithm generally have fast response

and good transient performance. The basic idea of a sliding mode controller

is to force the robot to restrict its motion to a manifold called the sliding

surface [45]. This is achieved by utilizing two different controls for both the sides

of the robot, to direct the system trajectories towards the manifold. The main

advantages of sliding mode control are their ability to decouple high dimensional

problems into sub-tasks with lower dimensions and robustness with regard to

parameter variations [45, 147]. The control law for the sliding mode controller is

not continuous resulting in non-unique and non-existent solutions at certain time

instances. This is avoided by utilizing a nonlinear control design.

1.3.4 Existing Vision-based Pedestrian Detection Techniques

Vision based human detection solutions are common and well researched upon.

Human detection algorithms detect human body visible in a smaller portion of

an image under different environmental conditions. Pedestrian detection is a

difficult task as there could be wide range of possible pedestrian appearance due

to changing articulated pose, clothing, lighting and background [31]. Pedestrian

detection is made up of three parts: selection of Region of Interest (ROI),

classification and tracking.

1.3.4.1 Region Of Interest Selection

ROI is usually decided based on more general low-level features or prior infor-

mation about the scene and environment. A sliding window approach, where

features are extracted from a rectangular portion of the image, is the simplest

technique to identify ROI [23,136]. Fast moving person detector utilizing Integral

24

Image and a classifier built using AdaBoost learning algorithm, a pioneer work

in pedestrian detection, utilizes sliding window approach to identify ROI [136].

Histogram of Oriented Gradients (HOG) descriptors classified utilizing a linear

SVM classifier is considered one of the best performing pedestrian detection

algorithm utilizing sliding window approach [23].

The computational cost for sliding window approach is often too high leading

to non-real-time image processing. There are many works available in the

literature that deal with improving the processing time for sliding window-

based approaches. Prior information about the target object class and known

camera geometry is used for restricting the search space thereby reducing the

computational cost. Prior information about the target object class includes

application specific constraints such as assumption of flat-ground plane, ground

plane based objects and common geometry of pedestrians (pedestrian height and

aspect ratio) [43,72,88].

Identifying motion cues using object motion is another commonly used tech-

nique for ROI identification [90,123,153]. Background subtraction is utilized for

static camera based pedestrian detection. Background subtraction generates a

binary image containing information about the moving objects in the scene. As

the name implies, background subtraction technique performs a subtraction be-

tween the current frame and the background model (containing static part of the

scene) isolating information about the moving objects in the scene [90,123,153].

In situations where the camera is moving, deviation of the observed optical flow

from the expected ego-motion flow field is computed to identify the ROI [32,105].

1.3.4.2 Classification

Classification or the process of verification follows immediately after ROI iden-

tification in pedestrian detection. In the classification stage a sub-region of a

given image is assigned to either pedestrian or non-pedestrian class, depending

on appearance models utilizing various spatial and temporal cues. Appearance

models for pedestrian verification are classified into generative and discriminative

models depending on the corresponding class posterior probabilities. The major

25

difference between generative and discriminative models lies in the methods

utilized for estimating the posterior probabilities for each of the classes.

Generative Models

Generative models utilize Bayesian approaches to infer the posterior probability

for the pedestrian classes. In generative models the appearance of the pedestrian

class are modelled in terms of their class conditional density function. Shape

cues and shape cues combined with texture models are utilized for generating

appearance models of the pedestrian classes.

1. Shape models:

Shape models learn pedestrian shape models from shape contours in the im-

ages. Shape cues are useful in reducing variations in pedestrian appearance

that arise due to changes in lighting or clothing. Shape models are discrete

as well as continuous. Discrete approaches represent the shape using a

set of exemplar shapes [31, 42, 43, 124, 131]. Modelling through exemplar

shapes reduces false classifications but requires large amount of data to

build a proper model. Continuous shape models learn class-conditional

density through a set of training shapes from manual or automatic shape

registration methods [8,30,46,62,88]. A prevalent continuous shape mod-

elling approach is to use linear shape space representations that model

class-conditional density as a single Gaussian [8]. A single linear shape space

representation, in complex scenarios, lead to many intermediate physically

implausible model instantiations. Non-linear shape space representation

approaches are capable of handling complex scenarios but require a large

number of training shapes as a result of the increased model complexity.

Most common approaches break up nonlinear shape space into piecewise

linear regions. Continuous generative models are capable of more complete

shape representations through interpolation, compared to discrete shape

models [31,46,88].

2. Combined shape and texture models:

Combined shape and texture models combine separate statistical models for

26

shape and intensity variations into one compound parametric appearance

model [20, 33]. Linear intensity models are built from shape-normalized

examples. Iterative error minimization schemes are utilized in estimating

shape and texture parameters for model fitting.

Discriminative Models

Discriminative models learn the parameters of the decision boundary between

pedestrian and non-pedestrian classes from training samples and approximate the

Bayesian maximum-a-posteriori decision. Discriminative classification techniques

aim to determine an optimal decision boundary between pattern classes in a

feature space [31]. Several classifiers such as multilayer neural networks, Support

Vector Machines (SVM) and nonlinear SVM are utilized to construct classifiers

that classify pedestrian and non-pedestrian classes. Feed-forward multilayer

neural networks implement linear discriminant functions in the non-linearly

mapped input pattern feature space [56]. Optimality of the decision boundary

is assessed by minimizing the mean squared error (error criterion). SVM, a

powerful tool to solve pattern recognition problems, maximize the margin of a

linear decision boundary (hyperplane) to achieve maximum separation between

classes [23,60]. Non-linear SVM use polynomial or radial basis function kernels

to map input samples into higher dimensional space. Non-linear SVM achieve

improved performance with significant increase in computational cost and memory

requirements [3, 101]. Machine learning meta-algorithms such as AdaBoost has

also been utilized to construct strong classifiers as a weighted linear combinations

of several weak classifiers [113]. This provides a whole cascade of increasingly

complex pedestrian detectors with high processing speed.

Recently developed pedestrian detection techniques break down the complex

appearance of the pedestrian class into manageable subparts [31, 35, 100]. In the

first phase, a mixture-of-experts strategy identifies local pose-specific pedestrian

clusters and a specialized expert classifier is trained for each subspace depending

on the pose-specific pedestrian clusters [43,143]. All the expert classifiers operate

in parallel and the output of all the expert classifiers are combined utilizing

27

ensemble approaches such as majority voting, AdaBoost, trajectory-based data

association and probabilistic shape-based weighing. In the second phase, a

component-based approach is utilized to decompose pedestrian appearance into

parts. The decomposed parts are either body parts such as head, torso and

legs or codebook representations [117, 119]. In component-based approaches,

the number of training samples required to cover a set of possible appearances

is less compared to full-body detection approaches. Furthermore, component-

based approaches are suitable for handling scenes with occlusions. Occlusion

is a common problem that affects the detection performance of the pedestrian

detectors. Component-based approaches handle occlusions if explicit interobject

occlusion reasoning is incorporated into the model [76, 117, 143]. HOG–LBP

detector, combining HOG and and Local Binary Pattern (LBP), is a human

detection approach capable of handling partial occlusions [138]. A probabilistic

pedestrian detection framework utilizing discriminative deep model for learning

visibility relationship across part detections from multiple layers is able to handle

occlusions more effectively [98].

1.3.4.3 Tracking Pedestrians

Tracking is the process of inferring trajectory-level information of a pedestrian

detected. There are three major ways in which a detected pedestrian is tracked.

Following are the three approaches:

1. A pedestrian detected is associated in each frame of the image based on

geometry and dynamics of the pedestrian, without the help of pedestrian

models.

2. Pedestrian appearance models are coupled with geometry and dynamics to

track the pedestrian.

3. Pedestrian appearance models are combined with observation density, dy-

namics and probabilistic inference of the posterior state density to track

pedestrians. Posterior state density is usually inferred by formulating it as

a recursive filtering process. Particle filters are generally utilized for this

28

process as particle filters have the ability to closely approximate complex

real-world multimodal posterior densities using sets of weighted random

samples.

Tracking multiple pedestrians across images in real-time is a major problem

in pedestrian tracking. A joint state-space involving a number of targets and

their configurations inferred in parallel is the usual approach to track multiple

pedestrians across images. The significant problem with this approach is the

increase in dimensionality of the state space with increase in number of pedestrians.

Grid-based likelihoods and sampling techniques such as Metropolis-Hastings

sampling, partitioned sampling and annealed particle filters are some of the

approaches to reduce the computational complexity. The second approach to

track multiple pedestrians in real-time limit the number of objects to one per

tracker. Multiple trackers are utilized to track multiple pedestrians in the image.

Separate rules to separate neighborhood tracks and a method for initializing a

track is to be defined for the second approach. Rules between multiple trackers

are always formulated in terms of heuristics.

Real-time Pedestrian Detection

Most of the pedestrian detection algorithms utilize computationally expensive

feature extractions or other computations that reduce their real-time performance.

A real-time pedestrian detector [27] increased the speed of the state-of-the-art

pedestrian detector by utilizing a sparsely sampled image pyramid to approximate

features at intermediate scales. C4 human detector utilizes CENTRIST features

and human contour cues to achieve real-time performance without compromising

accuracy [144]. Accelerated Feature synthesis a part-based pedestrian detection

algorithm also achieves real-time running performance [73]. A pedestrian detection

method that efficiently combines the flexibility of a part-based model with

the fast execution time of a Random Forest classifier produces quasi real-time

performance [87].

Deep Learning Models for Pedestrian Detection

In the recent years deep learning models for pedestrian detection have received

29

increased attention. A multi-stage contextual deep model simulating cascaded

classifiers is successful in pedestrian detection [151]. A joint deep learning model

for pedestrian detection is able to achieve a 9% reduction in average miss rate by

jointly learning feature extraction, deformation handling, occlusion handling and

classification components [99]. A Switchable Deep Network (SDN) automatically

learns hierarchical features, salience maps and mixture representations of different

body parts to isolate background clutter and reduce pose and viewpoint variations

while detecting pedestrians [84]. Compared to deep learning models, feature

based pedestrian detection techniques are computationally less expensive and

easier for implementation on robots.

Biologically Inspired Methods for Pedestrian Detection

As visual object recognition is one of the fundamental cognitive task for human

vision system, computer vision models that mimic human vision system have been

actively researched upon. Computer vision models of human visual cortex have

been applied for object recognition as well as pedestrian detection [52,118,152]. A

mathematical model of human retina, with properties of spatio-temporal filtering,

color-coding, non-linearity and the ability to sample, was developed to aid neuro-

biologists in their research for artificial vision [9]. The retina model indicates the

architectural as well as algorithmic principles and its advantages in developing

efficient and fast for computer vision modules for low level image processing [11,48].

The current work in this thesis describes a retina-based biologically inspired model

for pedestrian detection. The retina model is combined with existing state-of-

the-art vision-based pedestrian detection algorithms and the detector with the

best performance is utilized for human detection and avoidance system on an

aerial and ground vehicle.

1.3.4.4 Non-vision-based Techniques for Pedestrian Detection

Pedestrian detection approaches based on laser range sensor and thermal cameras

are also available in the literature. Laser-based pedestrian detection approaches

to track a moving pedestrian from a static or a very slowly moving robot, detect

humans by tracking the moving objects through a heuristic algorithm [77]. Two

30

lasers range sensors utilizing a combination of particle filters and probabilistic

data association are also utilized for tracking multiple humans [115]. Human

detection is also performed using algorithms that utilize fused data from a laser

scanner and a video camera [10,39, 75, 85]. A tilting laser scanner extracts body

features from a human in front of the robot while the images from the camera are

processed to detect the face of the human in front of the robot. Thermal camera

is also utilized to detect humans [18, 53, 133]. Though these methods provide

an alternative, vision-based pedestrian detection approaches are the widely used

approaches for pedestrian detection.

1.4 Major Contributions

The contributions of this thesis are as follows:

• The main contribution of this thesis is the development of an interoperable

multi-agent framework that allows easy usage of UAVs and UGVs for same

missions. This is the first framework exploring the interoperability across

UAVs and UGVs for same missions. Service Oriented Interoperable Frame-

work for Robot Autonomy (SOIFRA) proposed and developed is a novel

behaviour-based multi-agent framework . SOIFRA utilizes Belief Desire

Intention (BDI) architecture for developing agents. SOIFRA is modular

and made suitable for accommodating platform independent algorithms.

Behaviours that are fundamental for autonomous operation of robots such

as collision avoidance, real-time path-generation and path-following and

pedestrian detection and avoidance are incorporated into SOIFRA.

• The development of a real-time path-generation and path-following algo-

rithm (VDPGT) is another contribution. VDPGT is a geometry-based

path-generation and path-following algorithm. VDPGT is platform inde-

pendent and is useful for both UAVs and UGVs. The usability of VDPGT

is demonstrated through realistic missions that require both the aerial and

ground robots to collaborate and navigate in an unknown urban environ-

31

ment. VDPGT is incorporated into SOIFRA to provide path-generation

and path-following behaviour.

• A human visual system-based pedestrian detection and tracking algorithm

developed is another contribution. Mathematical models of Parvo and

Magno channels of human retina are combined with existing state-of-the-

art pedestrian detection techniques to achieve better pedestrian detection

performances. The performance of the retina-based pedestrian detection

algorithm is demonstrated through experiments with several pedestrian

benchmark datasets. The developed retina model-based pedestrian detec-

tion algorithm has been incorporated into SOIFRA to provide pedestrian

detection and avoidance ability. The modified framework is tested on both

UAV and UGV on multiple scenarios.

1.5 Organization

This thesis focuses on developing a multi-agent framework that is interoperable

across UAVs and UGVs. The overall thesis is organized as follows.

Chapter 2 provides an overview of SOIFRA, the interoperable multi-agent

framework developed. The architecture of SOIFRA along with a detailed expla-

nation of all the components of SOIFRA is provided. This chapter also provides

an overview of the simulation and real-time environments utilized for the experi-

ments. The configuration and specifications of the robots utilized for simulation

and real-time experiments are listed.

Chapter 3 discusses about incorporation of collision avoidance behaviour

into SOIFRA. A platform independent vision-based obstacle detection method

developed for incorporation into SOIFRA is explained in detail. In addition to this,

two methods for time-to-contact (TTC) estimation, an optical flow-based method

and an expansion of object-based method are explained. The modifications

required on SOIFRA to accommodate collision avoidance behaviour are explained

in detail. Simulation and real-time experiments utilizing the modified framework

are discussed to demonstrate the collision avoidance capability and modularity

32

of SOIFRA.

Chapter 4 deals with the incorporation of real-time path-generation and

path-following behaviours into SOIFRA. A real-time path-generation and path-

following algorithm (Vector Directed Path Generation and Tracking, VDPGT)

developed, is presented and discussed in detail. The platform independent nature

of VDPGT that is demonstrated through a series of simulation and real-time

experiments on both aerial and ground vehicles is also discussed. A realistic

mission that requires both aerial and ground vehicles to work cooperatively

is discussed to demonstrate the usability of VDPGT. Path-generation and

path-following agents that are developed and incorporated into SOIFRA are

explained in detail. The modified framework with path-generation, path-following

behaviours in addition to collision avoidance behaviour is utilized for a completing

real-time and simulation missions.

Chapter 5 is about incorporation of pedestrian detection and pedestrian

avoidance behaviour into SOIFRA. A human visual cortex model-based pedes-

trian detection and tracking algorithm developed is elaborated in detail. The

performance of the retina model-based pedestrian detector developed is studied

through several experiments on existing pedestrian benchmark datasets. The

incorporation of pedestrian agent developed to perform pedestrian detection

and avoidance is discussed in detail. Real-time experiments involving multiple

scenarios, carried out to demonstrate the pedestrian detection and avoidance

capability of SOIFRA, are also discussed.

Chapter 6 concludes this thesis. Possible future research directions are also

discussed in the chapter.

33

Chapter 2

Interoperable Multi-agent

Framework

“Miracles only occur for those with the determination to never stop trying”

– Emporio Ivankov

This chapter presents the conceptual and structural overview of Service

Oriented Interoperable Framework for Robot Autonomy (SOIFRA) a multi-

agent framework designed to be interoperable across UGV/UAV. SOIFRA is a

behaviour-based framework utilizing BDI agents.

2.1 Background

In order to understand SOIFRA effectively, it is essential to understand some of

the basic terminologies.

2.1.1 Autonomous Agents

An autonomous agent can be seen as a system that is capable of interacting

independently and effectively with its environment in order to accomplish some

pre-determined or self-generated tasks utilizing its own sensors and effectors [24].

Fig. 2.1 shows the basic architecture for an autonomous agent. The sensors receive

input from the environment and transfer the data to the cognitive module. The

34

Sensors Cognition Effectors
Sensor data Action

commands

Figure 2.1: Basic architecture of an autonomous agent [24]

cognitive module decides the actions to perform based on the sensor information

and commands the effectors accordingly.

Autonomous agents are classified based on the the degree and manner of

interaction with the real world. Situatedness and embodiment are used as

features for classifying autonomous agents. Situated agents are agents that are

situated in the world and they do not deal with abstract descriptions of the

world. Embodied agents are the agents that experience the world directly and

their actions have immediate feedback on the robots. Agents that have the

least interaction with the world are pure computer simulations that are neither

embodied nor situated. Agents that are situated but are non-embodied are

classified as software agents. For example a monitoring-and-surveillance agent at

NASA jet Propulsion Laboratory monitors inventory, planning and scheduling

equipment ordering. Since the interaction of a monitoring-and-surveillance agent

with the world is limited to sending and receiving messages, it is considered

as non-embodied. On the other hand an industrial robot is an embodied and

non-situated agent. Industrial robots are programmed to execute only a sequence

of pre-programmed actions and they do not use the information about the current

state of the environment to guide their behaviour [14,24]. Autonomous mobile

robots that perceive the environment and utilize the information obtained from

environment to guide their behaviours are considered to be both situated and

embodied.

Table 2.1: Types of autonomous agents

Situated Not situated

Embodied Mobile robots Industrial robots

Not embodied Software agents Computer simulations

35

2.1.2 Approaches for Designing Autonomous Agents

Agent architectures propose design methodologies for building autonomous agents.

An architecture determines the ways to decompose complex problems into several

sub-problems. To explain more clearly, an architecture determines the decomposi-

tion of an agent into several component modules and the interaction between the

component modules [24]. The top-down approach and the bottom-up approaches

are two of the major approaches for designing autonomous agents. In Fig. 2.2,

sub-figs. 2.2a and 2.2b show the decomposition of a mobile robot control system

using a top-down approach and bottom-up approach respectively. In the top-down

approach an agent’s cognitive capacity is modularized into several functional

components. In the top-down approach the overall design of the architecture is

finalized first and other components are added into the architecture later. On

the other hand in a bottom-up approach simple behaviours, covering complete

range from perception to action, are implemented first. Complex behaviours are

added on top of single behaviours at a later stage.

Sensors

Cognition

Perception Modelling Planning Task
Execution

Motor
Control

Actuator

(a) Top-down approach

Sensors

Understand
behaviour
of objects

Plan
changes to
the world

Identify
objects

Monitor
changes

Explore
Avoid
objects

Actuator

(b) Bottom-up approach

Figure 2.2: Approaches for designing autonomous agents

2.1.2.1 Deliberative Approach

Sensors
World
Model

Planner
Plan

Executor
Effector

high-level descriptions

Plans

Figure 2.3: Architecture of a deliberative agent

36

The deliberative approach is one of the traditional approaches for designing

agent architectures. Agents that are designed using deliberative approach are

termed as deliberative agents. Fig. 2.3 shows the basic architecture of a delibera-

tive agent. A deliberative agent contains an explicitly represented symbolic model

of the world. The decisions about the choice of actions are determined through

logical reasoning based on pattern matching and symbolic manipulation [142].

The world model is nothing but an internal description of the agent’s external

world as well as information about the capacity of the agent. World model is of

two types [24]:

1. those that only describe the current state of the agent’s environment and

2. those that include more general knowledge about other possible states and

ways of achieving these states.

The planner utilizes the descriptions provided by the world model to generate

plans for accomplishing agent’s goals. Utilizing the information about the actions

an agent can perform, the pre-conditions and effects of those actions on the

environment, the initial and goal conditions, the planner searches through the

operator sequences to identify a plan that will transform the initial state of the

agent into the goal state. The world model and the planner together form the

cognitive component of a deliberative agent architecture. The plans identified

by the planner are passed on to the plan executor. The plan executor executes

the actions detailed on the plans by utilizing several low-level routines of the

effectors.

2.1.2.2 Reactive Approach

Sensors
Stimulus
response
behaviors

Effectors

Figure 2.4: Architecture of a reactive agent

Reactive approach for designing agent architecture emerged based on the

idea that most of our day-to-day activities consist of routine actions rather

37

than abstract reasoning. Reactive agents, instead of having a world model,

have a collection of simple behavioural schemes that react to changes in the

environment in a stimulus-response fashion. Fig. 2.4 shows the basic architecture

of a reactive agent. In reactive approach behavioural decomposition receives

more attention compared to the functional decomposition carried out by the

deliberative approach. Usually in reactive approaches, the agents are constructed

adopting a pure engineering approach. The simplest behaviours are added in

first followed by the addition of more advanced behaviours. Reactive agents are

mostly situated agents that act in direct contact with the real world without

relying on the abstract descriptions included in the world model. In addition to

this, a reactive agent should also be an embodied agent, so that the agent can

react effectively.

2.1.2.3 Hybrid Approach

Hybrid approach for designing agent architectures utilize both high-level reasoning

of deliberative approach and low-level reactive capabilities from reactive approach.

Both deliberative and reactive approach to designing agents has disadvantages.

While the deliberative agents are good at cognitive tasks such as planning and

problem solving, they under perform in simpler tasks that require fast reaction

with little to no deliberation. Reactive agents are good at solving simpler problems

but lack versatility. Reactive agents under-perform in problems where knowledge

about the world has to be obtained by reasoning or from memory rather than

perception. As the weakness of reactive agents correspond closely with the

strengths of a deliberative agent (and vice versa), hybrid approaches have less

disadvantages. Hybrid approaches combine the reaction ability of reactive agents,

necessary for routine tasks, with the power of deliberation, necessary for advanced

and long term tasks. Fig. 2.5 shows a basic architecture of a hybrid agent.

2.1.3 Rational Agents

An autonomous agent is considered as a rational agent, if for each possible percept

sequence, the agent selects an action that is expected to maximize its performance

38

Sensors

Deliberative
Component

Reactive
Component

Effectors
Observations

Modification

Figure 2.5: Architecture of a hybrid agent

measure, given the evidence provided by the percept sequence and whatever

built-in knowledge the agent has [112]. While performance measure is the criteria

that determines how successful an agent is, percept sequence is the history of all

the agent percepts upto that point in time. The rational behaviour of an agent

is dependent on

• Performance measures that determine the degree of success,

• Percept sequences upto the current point of time,

• In-built knowledge about the environment and

• Actions that the agent can perform.

The problem a rationalized agent solves is characterized by Performance

measure, Environment, Actuators and Sensors (PEAS). The action performed

by a rational agent is considered as a right action, when that action causes the

agent to be most successful for the given percept sequence.

Rational agents can be classified into four categories based on the different

aspects of the environment in which the agents operate. Following are the major

classifications of a rational agent

• Simple reflex agents

• Model-based reflex agents

• Goal-based reflex agents

• Utility-based reflex agents

39

2.1.3.1 Simple Reflex Agents

Simple reflex agents only act based on their current percept. There is no detailed

knowledge base to associate and analyse every aspect of the sensor information

received. Consider an autonomous vehicle following mission. Assuming only a

vision sensor is utilized to maintain a distance to a vehicle in front, creating

a complete and detailed look-up table for every pixel on the image frame is a

highly complex task. Assuming 640 × 480 pixels of 8 bits of color and 8 bits of

intensity information at the rate of 25 fps generates approximately 15 megabytes

per second, for one hour, there needs to be 260×60×15M entries on the look-up

table. On the other hand, if the information from the images are interpreted

before decisions are made, there is no need for a complex look-up table. Simple

condition-action rules (a rule that maps a state to an action) such as breaking

when the vehicle in-front is breaking or accelerating when the vehicle in-front

is accelerating will still complete the task. Fig. 2.6 shows the architecture of a

basic reflex agent.

Environment

Agent

Sensors
Current state
of the world

Actions to
be done

Condition-
action rules

Actuators

Figure 2.6: Architecture of a simple reflex agent

2.1.3.2 Model-based Reflex Agents

The actions of a simple reflex agent is correct only when correct decisions are

made on the basis of the current percept. In most cases it is difficult to make

correct decisions only based on the current percept. For the vehicle following

problem, if the vehicle in front starts breaking, the vehicle in-front will appear

closer in the image frame compared to the previous image frame. In addition to

this if the rear light of the car in-front are not clearly visible then correct decisions

40

cannot be made. Hence it is necessary to maintain an internal state that gathers

knowledge about the world in order to make correct decisions. The internal state

should contain information about the changes in the world independent of the

agent and information about the effects of agent’s own actions on the world.

Fig. 2.7 shows the architecture of a model-based reflex agent.

Environment

Agent

Sensors
Current state
of the world

State
Evolution

in the world
Consequences

of actions

Actions to
be done

Condition-
action rules

Actuators

Figure 2.7: Architecture of a model-based reflex agent

2.1.3.3 Goal-based Reflex Agents

Environment

Agent

Sensors
Current state
of the world

State
Evolution

in the world
Consequences

of actions

Effects of
an action

Actions to
be done

Goals

Actuators

Figure 2.8: Architecture of a goal-based reflex agent

Knowledge about the current state of the environment alone is not sufficient

for making correct decisions. In the vehicle following problem, if the current

position of the vehicle in-front is lost, it will be difficult to locate the the vehicle

in the subsequent image frames without sufficient information. If the information

about the final objective or goal of the mission is known in prior, correct decisions

can be made by combining these information with the knowledge from the internal

state of the agent to generate correct actions that will satisfy the goal. These

decisions are different from the condition-action rules as decisions are made

considering the future. Fig. 2.8 shows the architecture of a goal-based reflex

agent.

41

2.1.3.4 Utility-based Reflex Agents

There can be several possible actions that can be right for a given situation

based on the information about the goal and knowledge of the internal states. In

order to arrive at a proper decision in these type of situations, utility of the next

achieved state comes into picture. Utility is considered as a function that maps a

state onto a real number that describes the associated degree of effectiveness of an

action. Utility provides a way in which the likelihood of success can be weighed

up against the importance of the goals. The agent can use these real numbers

to weigh the importance of achieving goals. Fig. 2.9 shows the architecture of a

utility-based reflex agent.

Environment

Agent

Sensors
Current state
of the world

State
Evolutions

in the world
Consequences

of actions

Effects of
an action

Effects of
a state

Actions to
be done

Utility

Actuators

Figure 2.9: Architecture of a utility-based reflex agent

2.1.3.5 Belief Desire and Intention Agents

A BDI agent is a type of bounded rational agent. BDI design approach is an

event-driven approach that provides both reactive and pro-active behaviour. It is

generally accepted that BDI agents are at a level of abstraction closer to normal

human experience. Mental attitudes such as beliefs, desires and intentions form

the architectural components of a BDI system.

• Beliefs:

Beliefs represent the informational state of an agent. It represents the

beliefs about the world and beliefs about other agents and itself. Beliefs

can be in the form of inference rules. Beliefs are different from knowledge

base as belief represents only what an agent believes and it may not be true

in all scenarios. Moreover belief of an agent may change based on future

42

events.

• Desires:

Desires represent the motivational state of an agent. Objectives of an agent

for a mission form the desires. There can be many desires for an agent. A

goal is a desire that an agent is working towards at a given point of time in

order to provide a restriction that at any point of time, the set of active

desires must be consistent.

• Intentions:

Intentions represent the deliberative state of an agent. Intentions are desires

that an agent is working towards. An agent works towards achieving its

desires by executing plans. A plan is a sequence of actions that an agent

can perform to achieve one or more of its intentions.

BDI agent approach provides a mechanism for separating the activity of selecting

a plan from the execution of currently active plans. This enables the BDI agents

to balance the time spent on choosing the plan and doing the plan.

2.1.4 Summary

Autonomous agents interact independently and effectively with their environment

to accomplish some pre-determined or self-generated tasks utilizing their sensors

and effectors. Autonomous agents follow either deliberative, reactive or hybrid

approaches for agent design. Deliberative approaches are effective in cognitive

tasks that involve complex planning and problem solving while reactive approaches

are effective in solving simple problems. Hybrid approaches combine the reaction

ability of reactive approach and deliberative ability of deliberative approach for

agent design.

A rational agent is a type of autonomous agent that always selects an action

that is expected to maximize the performance based on the evidence provided by

the percept sequence and the knowledge of the agent. Simple reflex agents, Model-

based reflex agents, Goal-based reflex agents and Utility-based reflex agents are

the four types of rational agents. Simple reflex agents act only based on their

43

current percept while model-based reflex agents act based on their knowledge

about the current state of the environment and current percept. Goal-based

reflex agents combine the information about the internal state of the agent and

the information about the goal of their mission to generate actions. Utility-based

reflex agents map a state onto a real number that describes the associated degree

of effectiveness of an action to weigh the importance of achieving goals. BDI

agents are bounded rational agents. BDI agents are at a level of abstraction closer

to normal human experience. The BDI agent approach balances the time spent

on choosing the plan and executing the plan, thereby improving the performance

of agents.

2.2 Service Oriented Interoperable Framework for Robot

Autonomy (SOIFRA)

SOIFRA framework developed is a behaviour-based interoperable framework for

autonomous unmanned aerial and ground robots. SOIFRA is made up of delib-

eration, behaviour and execution layers. Goal-generator, planner-matcher and

agents performing various services constitute the deliberation layer. Behaviour

layer comprises of agent services, orchestration and choreography of services.

Execution layer executes the actions carried out by agent services. Fig. 2.10

shows the architectural overview of SOIFRA.

2.2.1 Deliberative layer

The deliberative layer consists of goal-generator, planner-matcher and agents.

The goal-generator block generates several sub-goals to accomplish a mission. Sub-

goals are completed through pre-defined plans. For example, let us consider that

the mission goal is to steer a robot towards a target in an unknown environment

with obstacles. Goal-generator block generates two goals to achieve this mission;

a goal to detect and avoid obstacles and a goal to reach the target. Each goal is

further divided into sub-goals. For example, a goal to avoid collision is divided

into obstacle detection and obstacle avoidance while the goal to reach a target

44

Goal generator

Goal x Goal y

Planning and matching

Agent
Agent kAgent jAgent i

Orchestration

Service

Service p Service q Service r

Choreography

Action 1

Action 2

Action 3

Action 4

Action 5

Action 6

Deliberation Layer

Behaviour Layer

Execution
Layer

Figure 2.10: Architectural overview of the proposed framework (SOIFRA)

is divided into a navigation sub-goal. Sub-goals are then accomplished through

the plans generated by planner-matcher module. Planner-matcher module helps

to achieve a sub-goal by allocating agents to sub-goals based on the services

offered by the agents. Agents, formed using a BDI approach can collaborate or

act independently. Collaborative agents offer services to achieve one or more

sub-goals, while non-collaborative agents offer services to achieve only one sub-

goal. For accomplishing the mission, there needs to be a steering agent, providing

services to achieve the sub-goals, obstacle avoidance and navigation and an

Obstacle detection agent, providing obstacle detection service. Obstacle detection

agent would operate as a non-collaborative agent that offer services to achieve

one sub-goal, obstacle detection. Steering agent would need to operate as a

collaborative agent as it supports both obstacle avoidance and navigation.

45

2.2.1.1 Planner-Matcher

The planner-matcher module in the deliberation layer (Fig. 2.10) allocates agents

to sub-goals based on the plans generated. Built-in plans are used to generate

plans based on the system ontology (Fig. 2.12). At any point, based on the

prevailing states a competent pre-defined plan is retrieved from the ontological

database and executed. Fig. 2.11 shows the process flow for agent goal allocation

process performed by planner-matcher. Pre-defined plans are executed using a

sequence of queries as shown below.

• Check if the robot has a predefined plan to complete a goal. If not, notify

the planner that the system is not compatible. If it has a predefined plan,

then proceed to the next query. The formal query statement associated is

shown in Listing 2.1.

• Check if there are agents that are functionally capable of accomplishing a

goal. If not, notify the planner, that the robot is functionally not competent.

If it is functionally compatible proceed to the next query. The formal query

statement associated is shown in Listing 2.2.

• Check if the services offered by agents are used by other sub-goals. If they

are used by other sub-goals, check if the agents are collaborative. If not,

intimate the planner that compatible agents are not available. If they are

collaborative, request the agent identified for its services. The formal query

statements associated is shown in Listing 2.3 and 2.4.

SELECT? Goal? Operation? Plan

WHERE {

system:hasOperation(? Goal? Operation) ^

system:hasPlan(? Operation)

}

Listing 2.1: Search query to retrieve a pre-defined plan from ontological database

SELECT? Agents? Functional_capacity? System_competence

46

WHERE {

system:hasFunctionality(? Agent?

↪→ Functional_capacity)

}

Listing 2.2: Search query to check the functional competence of the system

SELECT? Agents? Services_not_used

WHERE {

system:hasFunctionality(? Agent?

↪→ Functional_capacity)

}

Listing 2.3: Search query to check if the agent services are used other sub-goals

SELECT? Agents? Services_used

WHERE {

system:hasFunctionality(? Agent?

↪→ Collaborative_capacity)

}

Listing 2.4: Search query to check if an agent is a collaborative agent

2.2.1.2 Agent Structure

SOIFRA framework is composed of multiple distributed and independent agents

for controlling the robot. In SOIFRA several agents are implemented to achieve

a functionally modular agent framework. Autonomous operation of agents in

a multi-agent framework requires knowledge about the environment. As world

model in an autonomous agent is a representation of knowledge, the world

model for agents in SOIFRA is made up of internal and external models. The

internal model describes the self knowledge of an agent. Information about the

internal operations and services of the agent form the internal model. Knowledge

about surroundings and knowledge in social context represent the external model.

Interactions among agents and effects of agent’s services on the environment

47

Pre-defined
plan exist

Functionally
competent

Services
assigned to
sub-goals

Collaborative
Agent

System is not
Compatible

Agent is not
functionally
competent

Allocate
goal to agent

Agent is already
allocated

to sub-goal

Goal

Yes

No

Yes

No

No

Yes

No

Yes

Figure 2.11: Process flow for agent goal allocation process performed by planner-
matcher

form the external model. Information about events in the operating environment

of an agent is obtained directly from sensors or agent’s services. Internal and

external world models form the belief of the agents in the Belief-Desire-Intention

model (BDI) based framework developed. Desire of an agent is represented by

the services and actions offered by the agent to carry-out the pre-defined plans

allocated by the planner-matcher. The directions of the planner-matcher to

achieve a sub-goal, represent agent’s intentions.

Agents in the proposed framework are implemented in C++, utilizing Robot

48

Mission
Mission

Goal

Built-in
Plans

Operation
System

Competence

Services
Feasible

Agent Func-
tionality

hasGoal

isGoalOf

isPlanOf

hasplan

isAchievedBy

isReqirementOfisOperationOf

hasReqirement

hasOperation

hasFunctionality

isFunctionalityOf

invokeService

isInvokedBy

isInvokedBy

invokeService

Figure 2.12: System ontology

Operating System (ROS) as the middle-ware. FIPA protocol is used for commu-

nication among agents. Agents register their services with a directory facilitator

agent (DF agent), enabling the planner-matcher to allocate agents to sub-goal(s).

This framework supports both collaborative and non-collaborative agents. Col-

laborative agents offer services that may be utilized to achieve single or multiple

sub-goals. Non-collaborative agents achieve only one sub-goal. Sequences of

operations by planner-matcher for allocating collaborative and non-collaborative

agents to sub-goals are illustrated in Fig. 2.13. Collaboration among agents is

achieved through a priority index. The Priority index of a collaborating agent is

updated through the parameter server of ROS, utilizing the dynamic reconfigure

package. Deadlock condition occurs when agents sharing same resource prevent

each other from accessing the resource while livelock condition occurs when

agents that act in response to the actions of another agent wait for each other

to complete. SOIFRA prevents these conditions through priority index. Using

the same mission described above as example, obstacle avoidance and navigation

agents are non-collaborative, achieving their respective sub-goals through collab-

oration with the steering agent. The steering agent assigns higher priority to the

navigation agent when collision is not detected. Priority index of the steering

49

agent changes when a collision is detected and higher priority is assigned to the

obstacle avoidance agent. Once the obstacle is avoided, priority index is updated,

resulting in navigation agent attaining higher priority.

Request

Return

Request

Return

Propose
Accept

Propose
Reject

Propose
Accept

Propose
Accept

Register

Register

1:SGM 2:SGM DF:AGT Normal:AGT Collaborative:AGT

Figure 2.13: Illustration of goal allocation sequence. SGM and AGT refer to
sub-goal planner-matcher and agent respectively. Agents (collaborative and
non-collaborative) register with DF agent. Planner-matcher queries the DF agent
to get a list of services offered by the agents. If the planner-matcher requires the
service of an agent, it sends a request. The agent accepts or rejects it based on
its availability and its collaborative nature.

2.2.2 Behaviour layer and Execution layer

Services performed by agents, and, orchestration and choreography of services

form the behaviour layer. The execution layer is the lower most layer of SOIFRA

framework. The execution layer comprises of actions performed by agents. Ser-

vices depict the functional capacity of an agent. For example an obstacle avoidance

agent will offer obstacle avoidance service, while a path-tracking agent will offer

path-tracking service. Services are executed by combining various actions per-

formed by an agent. Orchestration of services is the process where actions of an

agent are combined into a service translating to the agent’s behaviour. Orches-

tration of services plays an important role in achieving mission goal. Functional

50

decomposition of actions helps in improving agent modularity. For example the

obstacle avoidance service can have multiple actions such as obstacle tracking

and estimating time-to-contact (TTC) the obstacle. There is no restriction on

the type of algorithm to be used for completing each of the action mentioned.

For example, TTC an obstacle can be estimated through a variety of methods

(optical flow-based method, expansion of an object-based method, etc). This

algorithm to compute TTC can be replaced without affecting other actions of the

obstacle detection agent or the structure of the framework. This allows to easily

change different algorithms for same action. Each of these algorithms can be

utilized for the same mission with less changes to the framework. Choreography

of services represent communication among agents through messages. Actions

are implemented as rosnodes, while choreography of services is implemented

utilizing rostopic (named buses over which rosnodes exchanges messages). Some

of the basic actions may be required by more than one agent. For example

obstacle avoidance and navigation agents require the basic actions for controlling

the velocity and orientation of the robot. This sharing of resources is achieved

through collaboration among agents as explained in sub-section 2.2.1.2.

2.3 Simulation and Experimental Setup

ROS is used as a middle-ware in SOIFRA. ROS is a software framework for

robot software development, providing operating-system like functionality on

heterogeneous platforms. The architecture of ROS supports modularity that

allows in developing platform independent algorithsm. Gazebo a multi-robot

simulator is utilized for simulation experiments.

ROS consists of two parts, an operating system side and a package management

side. The operating system part of ROS provides tools and libraries for obtaining,

building, writing, and running code across multiple computers. ROS, initially

developed by Stanford Artificial Intelligence Laboratory in support of the Stanford

AI Robot STAIR project [106], is developed primarily at Willow Garage, a robotics

research institute [107]. ROS provides standard operating system services such

51

as hardware abstraction, low-level device control, implementation of commonly

used functionality, message passing between processes and package management.

ROS is based on a graph architecture. Nodes in ROS act as processing center.

Nodes may receive, post and multiplex sensor, control, state, planning, actuator

and other messages. ROS is similar in some aspect to robot frameworks such as

Player, YARP, Orcos, CARMEN, Orca, MOOS and Microsoft Robotics Studio as

well as an Unix system. ROS also consists of a suite of user contributed packages

(ros-pkg) that implement functionalities such as path-planning, Simultaneous

Localization and Mapping (SLAM) and perception. ROS is not a real-time OS,

though it is possible to integrate ROS in real-time with other software applications.

ROS is released under the terms of BSD license, and is an open-source software.

It is free for commercial and research use. The ros-pkg contributed packages are

licensed under a variety of open source licenses.

2.3.1 Simulation Environment

Gazebo is a multi-robot simulator that offers ways to rapidly test algorithms, de-

sign robots for complex indoor and outdoor environments and perform regression

testing using realistic scenarios. Gazebo is capable of simulating a population of

robots, sensors and objects in a three dimensional world. Gazebo generates both

realistic sensor feedback and physically plausible interactions between objects. It

includes accurate simulation of rigid-body physics. By realistically simulating

robots and environments, code designed to operate a physical robot can be exe-

cuted on an artificial version. This helps to avoid common problems associated

with hardware such as short battery life, hardware failures, and unexpected and

dangerous behaviors. Dynamics simulation, Advanced 3D graphics, sensors, robot

models, programmatic interfaces and TCP/IP communication are a few of the

primary features offered by Gazebo. Over the years Gazebo has also been used

for regression testing. The communication architecture is similar to ROS nodes.

A simulated world usually publish body-pose updates and sensor generation while

GUI consumes these messages to produce output. This mechanism allows for

introspection of a running simulation and provides a convenient mechanism to

52

control aspects of Gazebo. Fig. 2.14 shows the architecture of Gazebo simulator.

Figure 2.14: Architecture of Gazebo Simulator [51]

2.3.2 Robots used for Simulation Experiments

To prove the interoperability of SOIFRA, experiments are to be carried out

utilizing different unmanned robots performing the same mission. Both unmanned

aerial and ground vehicles are utilized for experiments. Turtlebot and Clearpath

Husky are the unmanned ground robots used while Parrot AR Drone and Hector

quadrotor are the aerial vehicles used. To achieve ROS integration with Gazebo

gazebo-ros-pkgs package is utilized. gazebo-ros-pkgs provide wrappers and around

the stand-alone Gazebo. This provides the necessary interfaces to simulate robots

in Gazebo using ROS messages, services and dynamic reconfigure.

2.3.2.1 Ground Robots

Clearpath Husky and Turtlebot are the two ground robots used for simulation

experiments. Both the robots are differential drive robots. They both utilize a

Microsoft kinect for vision. Wheel encoders and Inertial Measurement Unit (IMU)

53

are both utilized to estimate the position of the robots in robot-frame. Fig. 2.15

shows the visualization of Clearpath Husky and Turtlebot utilized for simulation

experiments. husky-gazebo packages are utilized for simulating Clearpath Husky

in Gazebo environment while turtlebot-gazebo packages are utilized for simulating

Turtlebot.

(a) Turtlebot (b) Clearpath Husky

Figure 2.15: Visualization of ground robots used for simulation experiments

2.3.2.2 Aerial Vehicles

Parrot AR Drone and Hector quadrotor are the two aerial vehicles utilized for

simulation experiments. Hector quadrotor is simulated using hector-quadrotor

package. hector-quadrotor contains packages that are related to modeling, control

and simulation of quadrotor UAV systems. AR Drone is simulated using tum-

simulator. tum-simulator mainly depends on cvg-sim-gazebo, cvg-sim-gazebo-

plugins and ardrone-autonomy. cvg-sim-gazebo contains object models, sensor

models, quadcopter models and flying environment information. cvg-sim-gazebo-

plugins contain the gazebo plugins for the quadcopter model and plugins for

sensors on the quadcopter such as IMU sensor, sonar sensor, GPS sensor, etc.

ardrone-autonomy is the official ROS driver for Parrot AR Drone. Both the aerial

vehicles utilize RGB camera plugin available in gazebo plugins for simulating

camera.

54

(a) AR Drone (b) Hector Drone

Figure 2.16: Visualization of aerial robots used for simulation experiments

2.3.3 Robots used for Real-time Experiments

One aerial vehicle (Parrot AR Drone 2.0) and one ground robot (Turtlebot 2.0)

is utilized for real-time experiments.

2.3.3.1 Turtlebot

Turtlebot is a low-cost differential drive robot based on ROS. Fig. 2.17 shows

the image of Turtlebot 2.0. Turtlebot 2.0 consists of a Kobuki robot base that

provides the base platform. The Kobuki base is then interfaced with a computer

and is controlled using ROS packages. It also has Microsoft Kinect or ASUS

Xtion PRO as vision sensor. Turtlebot is powed by a 4400 mAh Ni-Ion battery.

Table. 2.2 provides the specifications for Turtlebot 2.0.

Figure 2.17: Turtlebot 2.0 used for real-time experiments

55

Table 2.2: Turtlebot 2.0 specifications

Size and weight

External Dimensions 354 × 354 × 420 mm
Weight 6.3 kg
Wheels 76 mm

Ground Clearance 15 mm

Speed and Performance

Max. Payload 5kg
Max. Speed 0.65m/s

Max. Rotational Speed 1800/s

Sensors

Vision Sensor Microsoft Kinect
Encoders 25700 cps, 11.5 ticks/mm

Rate Gyro 1100/s factory calibrated
Auxiliary Sensors 3×forward bump, 3×cliff, 2×wheel drop

2.3.3.2 AR Drone

AR Drone is a remote controlled quadcopter manufactured and sold by Parrot.

The airframe of AR Drone is made up of nylon and carbon fiber parts. AR

Drone has six degrees of freedom. A miniaturized inertial measurement unit

is utilized to maintain roll, pitch and yaw stabilization. AR Drone’s onboard

computer is operated using Linux operating system. AR Drone can be connected

to an external computer through a self-generated Wi-Fi hotspot that follows

802.11n standard. AR Drone is powered by a 11.1 volt lithium polymer battery

that provides approximately 12 - 15 mins of flight time at a speed of 5 m/s.

ardrone-autonomy is the official ROS driver for controlling an AR Drone. The

ROS driver is based on the official AR-Drone SDK version 2.0.1. Fig. 2.18 shows

the image of AR Drone 2.0 utilized for the real-time experiments and Table. 2.3

shows the specifications of AR Drone 2.0.

2.4 Summary

This chapter provides the conceptual and structural overview of the SOIFRA

framework. In addition to presenting an overview of SOIFRA, the chapter also

helps to understand some of the essential terminologies related to agents. The

idea of autonomous agents and several approaches for designing autonomous

56

Figure 2.18: AR Drone 2.0 used for real-time experiments

Table 2.3: Specifications for AR Drone 2.0

Structure

External Dimensions 57 × 57 cm
Weight 380 g (outdoor hull) / 420g (indoor hull)

Motors

Motor 4× brushless, 14.5W, 28500rpm
Controller 4×MIPS AVS CPU

Camera

Front Camera 1080p × 720p resolution, 30fps
Bottom Camera 640p × 480p resolution, 60fps

Rate Gyro 1100/s factory calibrated

Electronics

Processor 1 GHz 32-bit ARM Cortex A8
RAM 1 GB DDR2 at 200MHz

Sensors 3-axis gyroscope, accelerometer, magnetometer,
Ultrasonic altitude sensor

agents such as deliberative, reactive and hybrid approaches are discussed. The

concept of rational agents and various types of rational agents are outlined.

Information about the simulation environment, robots utilized for simulation as

well as real-time experiments are also discussed.

57

Chapter 3

Incorporating Collision

Avoidance into SOIFRA

“Success is the sum of small efforts, repeated day in and day out”

– Robert Collier

SOIFRA is a behaviour-based multi-agent framework designed to be interoper-

able across unmanned aerial and ground vehicles and to accommodate generalized

and platform independent algorithms. As collision avoidance is highly important

in any autonomous unmanned robot mission, algorithms for obstacle detection

and obstacle avoidance are incorporated into SOIFRA. This chapter elaborates on

the collision avoidance functionality of SOIFRA while demonstrating the ability

of SOIFRA to accommodate algorithms that are independent of platforms.

3.1 Collision Avoidance for SOIFRA

Collision avoidance is the ability of the robot to detect and avoid obstacles

along its path. As SOIFRA provides a generalized framework that can support

both aerial and ground vehicles, vision-based obstacle detection techniques are

preferred because of their platform independent nature. Collision avoidance

consists of two components obstacle detection and obstacle avoidance. Each

component is elaborated separately.

58

3.1.1 Obstacle Detection in SOIFRA

Obstacle detection algorithm in SOIFRA utilizes Canny Contours, Hough Trans-

form and Optical Flow algorithms. Once it is established that the robot is

in collision course with the obstacle identified, the obstacle is tracked. The

algorithms to detect obstacle(s) is explained in this section.

Fix reference
image frame

Obtain
video stream

Obtain canny
contours

Compute
Hough

transform

Compute
optical flow

Pair line segments
obtained using

optical flow field

Locate
obstacle in
the heading

direction

Compute time
to contact

Figure 3.1: Process flow for obstacle detection

Obstacle detection is the first step in collision avoidance. The process flow

for static-obstacle detection is shown in Fig. 3.1. The simulation and real-

time environment, where the robots operate, are shown in Figs. 3.11 and 3.15

respectively. Canny contour, Hough transform and optical flow vectors are

utilized to detect obstacles. Contours in the image are identified utilizing the

Canny contour algorithm and line segments in the image are isolated using Hough

transform. The obstacle detection algorithm (Algorithm 3.1) requires the optical

centre of the camera (ox, oy) and image i at time t as its input. Let Li be set

of n line segments lij , obtained through Hough transform for image i as shown

in Fig. 3.2d (lij is the jth line segment obtained for image i). αij is the angle

associated with a line segment lij and θt is the roll angle of the robot at time t

of image i (θt, is zero for ground vehicles). Vertical edges of the objects in an

image frame i are split into Lipr and Lipl based on its location with respect to the

optical centre. If lij is to the left of the optical centre it is grouped into Lipl and

Lipr if it is to the right. liOl and liOr are the line segments lij of Lipl and Lipr, that

59

are the closest to the optical centre. OF iOl and OF iOr are the optical flow vectors

generated due to the motion of liOl and liOr with respect to time. Lucas-Kanade

Sparse optical flow algorithm is utilized for obtaining the optical flow vectors.

Obstacle to be avoided is identified utilizing the concept that optical flow vectors

from edges of an object do not intersect if the robot is in collision course with the

obstacle (Fig. 3.3). If optical flow vectors in OF iOl and OF iOr do not intersect,

then liOl and liOr are the identified as the edges of the obstacle to be avoided.

(a) Image i (b) Image i+ τ

Left OFV Right OFV

(c) Flow of optical flow vec-
tors

liOrliOl

Lipl Lipr

(Ox, Oy)

(d) Line segments lij , obtained for an image i, are shown
in red, blue and green colors. Lipl and Lipr include the line
segments that are to the left (blue) and right (red) of the
optical centre. liOl and liOl are the line segments (green)
of Lipl and Lipr, that are the closest to the optical centre.
Only line segments with αij + θt = 90◦ are shown.

Figure 3.2: Fig.3.2c shows the optical flow vector generated from an obstacle
as the robot moves towards the obstacle and left and right optical flow vectors
generated from left side and right side of the obstacle. Fig.3.2a and 3.2b show
the image frames utilized to generate the optical flow vectors shown in Fig.3.2c.
Fig. 3.2d is an illustration showing the line segments lji obtained for an image i.

60

Algorithm 3.1 Algorithm for Obstacle Detection

Input: Optical centre of the camera O(Ox, Oy), image i at time t
1: Li =

{
lij , α

i
j

}
= {{Lp} , {Le}} j = 1, . . . n, (Obtain all the line segments lij and the

angle associated with the line segments αij in the image i using Hough transform)

2: if αij + θt = 90◦ then

3: if lijx < ox then

4: Lipl =
{
lij , α

i
j

}
5: else
6: Lipr =

{
lij , α

i
j

}
7: end if
8: liOl is the lij of Lipl closest to optical centre

9: liOr is the lij of Lipr closest to optical centre

10: OF iOl and OF iOr are the optical vectors that are generated due to change in
positions of liOl and liOr with respect to time.

11: if Optical flow vectors in OF iOl and OF iOr do not intersect then
12: Obstacle is detected between liOl and liOr.
13: else
14: Obstacle is not detected.
15: end if
16: else
17: Lie =

{
lij , α

i
j

}
18: end if

3.1.2 Obstacle Avoidance in SOIFRA

Obstacle avoidance is the second phase of collision avoidance. Once it is de-

termined that the robot is in collision course with an obstacle detected, the

distance to that obstacle from the robot is estimated continuously. Distance

to the obstacle estimated based on optical flow and expansion of objects, are

explained in this section.

3.1.2.1 Estimation of Time-to-contact

Time-to-contact (TTC), a quantitative measure, is useful for obstacle avoidance.

The 3D information from optical flow fields of 2D images, extracted by time-to-

contact, is utilized for obtaining distance to obstacle(s). In order to demonstrate

that different algorithms can be utilized for same task without modifying the

framework, two different time-to-contact algorithms are utilized. Time-to-contact

is estimated utilizing optical flow and expansion of objects based methods. The

error performances of both the methods for the operational environment under

consideration are presented in Section 3.3.2. Once the time-to-contact is estimated,

61

0 50 100 150 200
Time (s)

−60

−40

−20

0

20

40

60

80
A
n
g
le
o
f
th
e
O
F
V
(d
eg
re
es
)

Change in Direction of Optical Flow Vector(OFV)

OFV from right edge

OFV from left edge

(a) Change in direction of the optical flow
vectors identified from the left and right edges
of an obstacle in collision path of the robot

0 50 100 150 200
Time (s)

−80

−60

−40

−20

0

20

40

60

A
n
g
le
o
f
th
e
O
F
V
(d
eg
re
es
)

Change in Direction of Optical Flow Vector(OFV)

OFV from right edge

OFV from left edge

(b) Change in direction of the optical flow
vectors identified from the left and right edges,
when the robot is not in collision course with
any obstacle.

Figure 3.3: Change in direction of optical flow vectors, associated with left edge
(liOl) and right edge (liOr) of the obstacle while a robot is moving forward. The
optical flow vectors from the left and right edges do not intersect if the robot is
in collision course with the obstacle.

the distance to the obstacle is obtained by,

Time-to-contact =
Distance to the obstacle

Velocity of the robot
. (3.1)

3.1.2.2 Estimating Time-to-contact Utilizing Optical Flow (TTC-OF)

S2

S1

Xe

Ze

Ye

xs2

ys2

xs1

O

ys1

∆z
Direction of travel

f

∆xs2 ∆xs1

N

n2

n1

Figure 3.4: Projections of a point P onto image planes S1 and S2

Time-to-contact an obstacle is determined utilizing translational component

of the optical flow. Time-to-contact estimation is independent of velocity of the

62

robot and distance to the surface of the obstacle [97]. Let f be the focal length of

the camera on a robot, facing the direction of motion. For N(X,Y, Z), a point on

the obstacle, n1(xs1 , ys1 , zs1) and n2(xs2 , ys2 , zs2) are projections on image planes

S1 and S2, at time instances t1 and t2 (Fig. 3.4). Robot undergoes translation

along Ze with a velocity V = −dZ
dt over a distance ∆z = z2− z1, approaching the

Focus of Expansion (FOE). From similar triangles,

ys1
f

=
Y

Z
⇒ ys1 = f

Y

Z
. (3.2)

Differentiating (3.2) with respect to time provides,

˙ys1 = f

(
Ẏ

Z

)
− fY

(
Ż

Z2

)
. (3.3)

In (3.3) Ẏ = 0, as Y does not change with time. Substituting (3.2) in (3.3) and

Ż = −V , we get

˙ys1 = −ys1
(−V
Z

)
⇒ ys1

˙ys1
=
Z

V
= TTC. (3.4)

For a point N , on the obstacle, the distance from its projection, p1, on an image

plane to the focus of expansion ys1 and length of the optical flow vector ˙ys1 ,

are required to estimate the time-to-contact (Equation 3.4). These calculated

optical quantities are adequate in estimating the time-to-contact a point N on

the obstacle.

FOE corresponds to the dynamic ambient optical array, which is a single

point in space where all the optical flow vectors should emerge. Estimating FOE

of an optical flow field is important in calculating the time-to-contact an obstacle

(Equation 3.4). FOE is estimated by discrete, differential and least-squares-based

methods, and performances of these methods are good only when the robot

is in pure translation. Theoretically, FOE is the point of intersection of two

optical flow vectors. In reality, noise and other errors arising from the steps in

computing optical flow vectors affect FOE. In this work FOE is estimated using

least squares solution (Equation 3.5 and Equation 3.6) of all the optical flow

63

vectors identified [130].

FOE = (ATA)
−1
AT b, (3.5)

A =

a00 a01

an0 an1

 , b =

b0
bn

 , (3.6)

where, for each pixel ni = (x, y) on the image, the associated optical flow vector

V = (u, v) gives ai0 = v, ai1 = u and bi = xv − yu.

3.1.2.3 Estimating Time-to-contact Utilizing Expansion of an Obsta-

cle (TTC-EO)

Visual information obtained by monitoring the expansion of an object in visual

field is utilized to obtain time-to-contact [15]. If expansion E is defined as the

rate of growth of an object in the visual field of a robot, then time-to-contact is

given by,

TTC ≡ 1

E
. (3.7)

In Fig. 3.4, W is the width of the object, zs2 is the distance between the lens

(pinhole) and the object normal to the focal plane at time t2 and, ∆z is the

distance traveled between t1 and t2. ∆xs1 and ∆xs2 are the width of the object

projected onto image planes S1 and S2 respectively. Time-to-contact at t1 is

TTC1 =
zs2
∆z

,⇒ zs2 = TTC1 ∗∆z. (3.8)

From the pinhole camera model,

∆xs1 = f
W

zs2
, ∆xs2 = f

W

zs1
= f

W

zs2 −∆z
. (3.9)

Expansion rate is given by,

E =
∆xs2 −∆xs1

∆xs1
=

∆xs2
∆xs1

− 1. (3.10)

64

Substitution of (3.8) and (3.9) in (3.10) results in

E =
1

TTC1 − 1
. (3.11)

Re-arranging (3.11),

TTC1 = (1 +
1

E
)(t2 − t1), and, (3.12)

TTC2 =
1

E
(t2 − t1), (3.13)

where, TTC2 is the time-to-contact at time t2. Further explanation on implemen-

tations of TTC-OF and TTC-EO into SOIFRA are in Section 3.3.2. Experimental

results and error performances of both the methods are shown in Fig. 3.16 and

Table 3.5 respectively.

3.1.2.4 Estimating Operating Range for TTC-OF and TTC-EO

Obstacle

10m

E

D

C

B

A

(a) Turtlebot

(b) Front View

(c) Top View

Figure 3.5: Layout of the simulation environment showing the starting positions
of robot for different simulations. A, B, C, D and E are 2m from each other.
Figs. 3.5b and 3.5c show the front and top view of the simulation environment
respectively.

Theoretically, both TTC-OF and TTC-EO should be able to provide an

65

estimate of the distance to the obstacle, irrespective of the position of the robot.

But both the methods operate only for a range beyond which the estimated

distance will be error prone. In order to identify the safe operating range for

TTC-OF as well as TTC-EO, experiments are conducted. A single aerial robot

operating in a single obstacle environment is utilized for experiments. The

aerial vehicle is made to move towards the obstacle with a constant velocity,

starting from different locations in the environment. In Fig.3.5, Fig. 3.5b and

Fig. 3.5c shows the top and front views of the operating environment. Fig. 3.5a

shows layout of positions where the aerial vehicle starts for different experiments.

Fig. 3.6 shows the error in distance to the obstacle computed and the change

in length of the optical flow vector for each experiment. In order to get a clear

picture of the error in distance to the obstacle estimated, mean error error metric

is utilized. Mean error in distance to the obstacle is computed using,

Mean error =

∑t=k
t=i (dtrue − d̂)

No. of elements in the interval
(3.14)

where, dtrue is the true distance to the obstacle and d̂ is the distance to the

obstacle estimated using time-to-contact computed and i and k denote the starting

and ending time of the interval between which the mean error is computed. Time

interval between i and k is approximately 5s. Table. 3.1 tabulates the mean error

in distance to the obstacle estimated utilizing TTC-OF.

It can be seen clearly from Fig. 3.6 that time-to-contact computed will have

a lot of fluctuations during the initial period and it settles down after some point

in time. If the plots in Fig. 3.6 are analysed, it can be found that the time taken

for this stabilization decreases as the distance to the obstacle decreases. If the

corresponding length of the optical flow vector plots are analysed, it can be found

that the approximate length of the optical flow vector around the stabilization

time for time-to-contact is 150px. Table 3.2 shows the time taken for the optical

flow vector to reach 150px when starting from the locations shown in Fig. 3.5a.

It can be seen clearly from table 3.2 that the stabilization time for time-to-

contact decreases as the distance to the obstacle decreases. The reason for this

66

Table 3.1: Mean error of the distance to the obstacle estimated utilizing TTC-OF.
A, B, D and E represent the starting locations of robots (shown in Fig.3.5a)

Time(s)
Mean Error(m)

A(10m) B(8m) D(4m) E(2m)

0-5 14.77505 22.87588 15.80010 6.23388
6-10 9.83226 14.50319 4.26219 -0.71799
11-15 0.62443 13.17127 0.48042 –
16-20 -2.43871 -0.73166 -0.69162 –
21-25 -3.75778 -4.17175 – –
26-30 -3.89701 -3.52019 – –
31-35 -4.31287 -2.79364 – –
36-40 -3.74661 -1.82093 – –
41-45 -3.03261 -1.17550 – –
46-50 -2.29101 -0.82194 – –
51-55 -1.61453 – – –
56-60 -1.03233 – – –
61-65 -0.69896 – – –

Table 3.2: Approximate time taken for the length of the optical flow vector to
reach 150px

Starting distance from the obstacle (m) Time (s)

10 30
8 20
4 10
2 2

can be understood by observing Eqn. 3.4 closely. From Eqn. 3.4 it can be found

that the length of the optical flow vector is in the denominator and when the

length of the optical flow vector is small, time-to-contact increases. Though the

aerial vehicle is moving with a constant velocity throughout, the time taken for

the length of the optical flow vector to reach 150px varies. When the obstacle

is far away from the aerial vehicle, the relative motion of the obstacle in the

image plane is too small. Similarly when the aerial vehicle is close to the obstacle

the relative motion of the obstacle in the image plane is large compared to the

previous case. This is the main reason for the difference in stabilization time for

the time-to-contact estimation. Based on these results it can be safely established

that the time-to-contact estimated using TTC-OF will be more accurate if the

robot is operated in the region where the true distance to the obstacle is less

than 5m.

67

(a
)

E
rr

o
r

in
d

is
ta

n
ce

co
m

p
u

te
d

w
h
en

ro
b

o
t

st
a
rt

s
fr

o
m

A
(b

)
E

rr
o
r

in
d

is
ta

n
ce

co
m

p
u

te
d

w
h
en

ro
b

o
t

st
a
rt

s
fr

o
m

B
(c

)
E

rr
o
r

in
d

is
ta

n
ce

co
m

p
u

te
d

w
h
en

ro
b

o
t

st
a
rt

s
fr

o
m

D
(d

)
E

rr
o
r

in
d

is
ta

n
ce

co
m

p
u

te
d

w
h
en

ro
b

o
t

st
a
rt

s
fr

o
m

E

(e
)

C
h
a
n
g
e

in
le

n
g
th

o
f

th
e

o
p
ti

ca
l

fl
ow

v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

A
(f

)
C

h
a
n

g
e

in
le

n
g
th

o
f

th
e

o
p

ti
ca

l
fl
ow

v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

B
(g

)
C

h
a
n

g
e

in
le

n
g
th

o
f

th
e

o
p

ti
ca

l
fl
ow

v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

D
(h

)
C

h
a
n
g
e

in
le

n
g
th

o
f

th
e

o
p
ti

ca
l

fl
ow

v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

E

F
ig

u
re

3
.6

:
T

h
e

p
lo

ts
sh

ow
th

e
ch

a
n

g
e

in
le

n
g
th

o
f

o
p

ti
ca

l
fl

ow
v
ec

to
r

a
n

d
er

ro
r

in
d

is
ta

n
ce

to
th

e
o
b

st
a
cl

e
es

ti
m

a
te

d
u

ti
li

zi
n

g
T

T
C

-O
F

fo
r

va
ri

ou
s

p
os

it
io

n
s

(A
,

B
,

D
a
n

d
E

)
sh

ow
n

in
F

ig
.

3.
5a

.
T

h
e

le
n

gt
h

of
th

e
op

ti
ca

l
fl

ow
ve

ct
or

s
is

m
ea

su
re

d
in

p
ix

el
s

68

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

T
im

e
(s
)

−
505

1
0

1
5

2
0

2
5

Errorindistancetotheobstacleestimated(m)

(a
)

E
rr

o
r

in
d
is

ta
n
ce

co
m

p
u
te

d
w

h
en

ro
b

o
t

st
a
rt

s
fr

o
m

B

0
1
0

2
0

3
0

4
0

5
0

T
im

e
(s
)

−
505

1
0

1
5

2
0

2
5

3
0

3
5

Errorindistancetotheobstacleestimated(m)

(b
)

E
rr

o
r

in
d

is
ta

n
ce

co
m

p
u

te
d

w
h

en
ro

b
o
t

st
a
rt

s
fr

o
m

C

0
5

1
0

1
5

2
0

2
5

3
0

T
im

e
(s
)

−
1
00

1
0

2
0

3
0

4
0

5
0

6
0

Errorindistancetotheobstacleestimated(m)

(c
)

E
rr

o
r

in
d

is
ta

n
ce

co
m

p
u

te
d

w
h

en
ro

b
o
t

st
a
rt

s
fr

o
m

D

0
1

2
3

4
5

6
7

8
9

T
im

e
(s
)

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

Errorindistancetotheobstacleestimated(m)

(d
)

E
rr

o
r

in
d

is
ta

n
ce

co
m

p
u

te
d

w
h

en
ro

b
o
t

st
a
rt

s
fr

o
m

E

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

T
im

e
(s
)

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Expansionoftheobject(px)

(e
)

C
h

a
n

g
e

in
le

n
g
th

o
f

th
e

o
p

ti
ca

l
fl

ow
v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

B

0
1
0

2
0

3
0

4
0

5
0

T
im

e
(s
)

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Expansionoftheobject(px)

(f
)

C
h

a
n

g
e

in
le

n
g
th

o
f

th
e

o
p

ti
ca

l
fl

ow
v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

C

0
5

1
0

1
5

2
0

2
5

3
0

T
im

e
(s
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Expansionoftheobject(px)

(g
)

C
h

a
n

g
e

in
le

n
g
th

o
f

th
e

o
p

ti
ca

l
fl

ow
v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

D

0
1

2
3

4
5

6
7

8
9

T
im

e
(s
)

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

Expansionoftheobject(px)

(h
)

C
h

a
n

g
e

in
le

n
g
th

o
f

th
e

o
p

ti
ca

l
fl

ow
v
ec

to
r.

R
o
b

o
t

st
a
rt

s
fr

o
m

E

F
ig

u
re

3
.7

:
T

h
e

p
lo

ts
sh

ow
th

e
ch

a
n

g
e

in
le

n
g
th

o
f

o
p

ti
ca

l
fl

ow
v
ec

to
r

a
n
d

er
ro

r
in

d
is

ta
n

ce
to

th
e

o
b

st
a
cl

e
es

ti
m

a
te

d
u

ti
li

zi
n

g
T

T
C

-E
O

fo
r

va
ri

ou
s

p
os

it
io

n
s

(B
,

C
,

D
an

d
E

)
sh

ow
n

in
F

ig
.

3.
5a

.
T

h
e

le
n

gt
h

of
th

e
op

ti
ca

l
fl

ow
ve

ct
or

s
is

m
ea

su
re

d
in

p
ix

el
s

69

Table 3.3: Mean error of the distance to the obstacle estimated utilizing TTC-EO.
B, C, D and E represent the starting locations of robots (shown in Fig.3.5a)

Time(s)
Mean Error(m)

B(8m) C(6m) D(4m) E(2m)

00.0 - 5.0 9.365 9.005 8.836 8.836
05.0 - 10.0 2.368 1.753 1.204 0.501
10.0 - 15.1 1.243 0.825 0.472 –
15.1 - 20.1 0.739 0.439 0.168 –
20.1 - 25.1 0.463 0.223 -0.000 –
25.1 - 30.2 0.286 0.086 -0.096 –
30.2 - 35.2 0.160 -0.009 – –
35.2 - 40.2 0.071 -0.078 – –
40.2 - 45.3 0.001 -0.132 – –
45.3 - 50.3 -0.053 -0.168 – –
50.3 - 55.4 -0.098 – – –
55.4 - 60.4 -0.135 – – –
60.4 - 65.5 -0.166 – – –
65.5 - 68.8 -0.088 – – –

Table 3.4: Approximate time taken for the error to reduce to 0.5m using TTC-EO

Starting distance from the obstacle (m) Time (s)

8 22.7
6 16.75
4 11.85
2 6.8

In Fig. 3.7, sub-figs. 3.7a, 3.7b, 3.7c and 3.7d show the error in distance to

the obstacle estimated using TTC-EO, when the robot starts from B, C, D and

E (shown in Fig.3.5a) respectively. From these plots it is apparent that the error

in distance to the obstacle estimated is large initially and reduces to near zero

after some time. This time taken for the error to reduce has a direct relation

with the distance of the obstacle from the robot. If the vehicle starts farther from

the obstacle the time taken for the error to reduce to 0.5m is large and the time

reduces as the robot moves closer to the obstacle, as shown in Table. 3.4. This

is because, the change expansion of the object when the robot is far away from

the obstacle is minimal compared to the change in expansion of the object when

the robot is near the obstacle. When the robot is near the obstacle, even smaller

translation towards the obstacle produces larger value of expansion, while when

the robot is further away from the obstacle, the robot has to move significantly

70

to generate the similar expansions. Based on the results obtained (Table. 3.3,

Table. 3.4 and Fig. 3.7) it can be verified that the safe operating region for the

robot while using TTC-EO would be less than 6m similar to TTC-OF.

3.2 SOIFRA with Collision Avoidance Behaviour

Goal generator

Reach a des-
tination

Detect and
avoid obstacles

Planning and matching

Agent

Obstacle
Agent

Steering
Agent

Service

Steering Service

Obstacle detection Service

Video Service TTC Service

Location

Control

Orientation

Video
stream

Track
Obstacle

Detect
Obstacle

Compute
TTC

Avoid
collision

Figure 3.8: Architectural overview of SOIFRA with collision avoidance.

Architecture of SOIFRA, a behaviour-based interoperable framework de-

veloped for autonomous unmanned aerial and ground vehicles is explained in

Section 2.2 of Chapter 2. This section explains the incorporation of collision

avoidance behaviour into SOIFRA. SOIFRA consists of goal-generator, planner-

matcher and agents in the deliberation layer, agent services in the behaviour layer

and the actions carried out by agent services on the execution layer. Though

collision avoidance is one of the important functionality for an autonomous robot,

collision avoidance can only be a sub-goal. Collision avoidance cannot be the

only goal for a robot as collision avoidance comes into picture only when the

robot is moving (under the assumption that only static obstacles are present in

the environment). Hence collision avoidance should coexist as a sub-goal with

71

another sub-goal. In order to understand the incorporation of collision avoid-

ance into SOIFRA effectively, a mission where the robot has to move towards

a target region while avoiding static obstacles is considered. Fig. 3.8 shows the

architectural overview of SOIFRA for the mission specified.

The overall goal for the mission is split into two sub-goals: a sub-goal to

detect and avoid obstacles and another sub-goal that ensures that the robot

reaches its target destination. Two agents are developed to address these sub-

goals. An agent that navigates the robot and an agent that performs obstacle

detection and avoidance. Let Str:AGT represent the steering agent that controls

the navigation of the robot and Obs:AGT represent the obstacle agent that

is responsible for obstacle detection and avoidance. Str:AGT provides steering

service (str:SRV) while Obs:AGT provides video service (video:SRV), TTC service

(TTC:SRV) and obstacle detection service (det:SRV). Str:AGT, through str:SRV,

carries out actions that drive the robot (ctr:ACT), and measure the position

(pos:ACT) and orientation (ori:ACT) of the robot. Obs:AGT executes the action

to obtain the video stream (video:ACT) through video:SRV; executes the actions

to detect (det:ACT) and track obstacle(s) (track:ACT) in collision coarse with

the robot through det:SRV. Obs:AGT also executes the actions to compute TTC

(TTC:ACT) and collision avoidance (avd:ACT) through TTC:SRV.

Let PS:ROS and topic:ROS denote the parameter server and rostopic respec-

tively. The obstacle agent, upon initiation, starts the actions for video service

and obstacle detection service and publishes the control velocity for the robot.

The steering agent subscribes to the velocity commands from the obstacle agent.

When an obstacle is detected, the obstacle agent initiates the time-to-contact

service and updates the control velocity for the robot. If the time-to-contact

service estimates that the distance to the obstacle is less than the critical distance

λ, (the minimum distance to the obstacle within which action must be taken to

avoid an obstacle) the obstacle agent updates the ROS parameter server. As a

result, the priority index of the steering agent is updated resulting in initiating

obstacle avoidance process. If the distance to the obstacle is more than the

critical distance, the robot continues to follow its previous path. The critical

72

distance, determined based on the size and linear velocity of the robot, is fixed at

2.5m for the current mission. Once the obstacle detected is avoided, the steering

agent informs the obstacle agent that the obstacle is avoided and the steering

agent allows the robot to continue to follow a straight path. This feedback allows

the obstacle agent to restart the det:SRV. Fig. 3.9 shows these sequences of

operations for obstacle detection and avoidance.

publish

publish initiate

ttc < λUpdate

initiate

Obs Avoided
Ack

subscribe initiate

Str:AGT PS:ROS topic:ROS Obs:AGT det:SRV video:SRV TTC:SRV

[ttc < λ]

loop

[ttc > λ]

Figure 3.9: Operational sequences for obstacle detection and avoidance. AGT
and SRV, represent agent and service. The obstacle agent (Obs:AGT) obtains
video stream utilizing video:SRV service and starts detecting obstacles through
the obstacle detection service, det:SRV. When an obstacle is detected, Obs:AGT
initiates, TTC:SRV to estimate distance to the obstacle. When the estimated
distance to the obstacle is less than the critical distance λ, Obs:AGT, updates
on the parameter server, PS:ROS. Steering agent (Str:AGT), informs Obs:AGT
after the obstacle is avoided.

3.3 Demonstrating Collision Avoidance Behaviour of

SOIFRA

This section presents the experiments as well as simulations of the mission

explained in the previous section, with SOIFRA. Both simulation and real-time

experiments are performed to demonstrate the interoperability and modularity of

SOIFRA in accommodating multiple platform independent algorithms. Robot’s

73

mission, as explained above, is to reach a target destination in an unknown

environment while avoiding obstacles, utilizing SOIFRA. This mission helps

to study the performance of the obstacle agent and the collaboration between

steering agent and obstacle agent. Fig.3.10 shows the layout of the simulation

environment. Fig. 3.11 and 3.15 shows the operational environments for the

simulation and real-time experiments respectively. In Fig. 3.10 white region

corresponds to robot operation region and the grey region indicates the target

region. A and B (Fig. 3.10) are the robot starting locations. Mission is completed

when the robot reaches the target region.

3.3.1 Simulation Experiments Demonstrating Collision Avoid-

ance using SOIFRA

Target region

1m 5m

1m

7.5m

2.5m

Operational region

BA

Figure 3.10: Layout of the simulation environment (not drawn to scale). The grey
region indicates the target region and the white region indicates the operational
region. The mission is completed once the robot reaches the grey target region.

Simulations are carried out utilizing two ground robots (Turtlebot and

Clearpath Husky) and two aerial robots (AR Drone and Hector-quadrotor).

Details about the robots (Turtlebot, Clearpath Husky, Hector-quadrotor and

AR Drone) utilized in simulation experiments are explained in Section. 2.3.2

of Chapter 2. Turtlebot, Clearpath Husky and Hector-quadrotor use simulated

74

Figure 3.11: Image of operational environment with multiple static obstacles for
simulation experiments.

model of Microsoft Kinect as vision sensor, while AR Drone uses a simulated

RGB camera. All the cameras produce images with 640x480 resolution. Gazebo,

a 3D simulator for robots is utilized for simulation. Gazebo offers the ability to

accurately and efficiently simulate populations of robots in complex indoor and

outdoor environments. Open Dynamics Engine (ODE), and open source high

performance library for simulating rigid body dynamics is utilized as the physics

engine.

Figs. 3.12 and 3.13 show the best results for simulations utilizing TTC-

EO and TTC-OF obstacle avoidance algorithms respectively. Each simulation

(obstacle avoidance with TTC-OF and TTC-EO) is repeated five times separately.

Figs. 3.12 and 3.13 show the X-Y plane (top-view) of the simulation environment.

The operating region is a 20x20m square as indicated in Fig. 3.10. The robots

start from starting locations A or B. Clearpath Husky and Hector-quadrotor

start from A and Turtlebot and AR Drone start from B, utilizing TTC-EO. The

positions interchange while TTC-OF is utilized for obstacle avoidance (Clearpath

Husky and Hector-quadrotor start from B and Turtlebot and AR Drone start

from A). If the robots move out of the operating region (indicated by the grey

shade), the mission is complete. The ground robots move with the same velocity

and the aerial robots move with the same velocity. The aerial robots move at

a higher velocity compared to the ground robots. The robots move forward

in a straight line path if there is no obstacle detected or if the distance to the

75

−10 −5 0 5 10
X (m)

−10

−5

0

5

10

Y
(m

)

A

B

Hector-quadrotor
Husky
AR Drone
Turtlebot

Figure 3.12: Simulation of a mission where two ground robots and two aerial
robots use TTC-EO for obstacle avoidance. Top-view (bird’s eye view) of the path
taken by the robots is shown. Hector-quadrotor and Husky start from A while
AR Drone and Turtlebot start from B. Each mission is carried out separately.

obstacle is greater than the critical distance or if the obstacle avoidance process

is completed.

Fig. 3.12 shows that all the robots avoid two obstacles before they exit the

operational region. There are differences in the path taken by the ground and

aerial robots though they follow the same direction. This is due to the inherent

differences between a ground robot and an aerial robot. Ground robots are more

stable and can turn in a stabilized manner while the aerial robots need some time

for stabilization after a turning manoeuvre. Once the distance to the obstacle

detected is less than the critical distance the robots perform a turning manoeuvre

to avoid the obstacle. If the robot has moved 0.8m from the point where a turning

manoeuvre is initiated and if there is no obstacle detected, the robot stops the

turning manoeuvre and moves forward in the same direction. The direction of

the turn depends on the position of the obstacle in the robot’s path. If the robot

senses that obstacle is located to its left, a right turn is performed and vice-versa.

76

−10 −5 0 5 10
X (m)

−10

−5

0

5

10

Y
(m

)

A

B

AR Drone
Turtlebot
Hector-quadrotor
Husky

Figure 3.13: Simulation of a mission where two ground robots and two aerial
robots use TTC-OF for obstacle avoidance. Top-view (bird’s eye view) of the
path taken by the robots is shown. AR Drone and Turtlebot start from A while
Hector-quadrotor and Husky start from B. Each mission is carried out separately.

This is the reason for different turning directions when the robots start from A

and B, though the operational environment is symmetrical.

Figs. 3.13 shows the simulation results when TTC-OF is utilized for obstacle

avoidance. Turtlebot and AR Drone start from A and Clearpath Husky and

Hector-quadrotor start from B. Figs. 3.13 shows that Clearpath Husky and AR

Drone avoid two obstacles while Turtlebot and Hector-quadrotor avoid only one

obstacle before exiting the operating region. This is due performance differences

between TTC-OF and TTC-EO in estimating the distance to the obstacle. TTC-

OF tends to have a higher error than TTC-EO and it can lead to early obstacle

avoidance, as indicated by the path traveled by Turtlebot and Hector-quadrotor.

Since the obstacle avoidance is initiated early, the robots complete their turning

manoeuvre and start moving straight early. This is the reason for different paths

taken by the Turtlebot and Hector-quadrotor.

77

3.3.2 Real-time Experiments Demonstrating Collision Avoidance

with SOIFRA

Target region

0.25m

0.5m

7m

7m

Operational region

Figure 3.14: Layout of the environment for real-time experiments (not drawn to
scale). The grey region indicates the target region and the white region indicates
the operational region. The mission is completed once the robot reaches the grey
target region.

Figure 3.15: Image of real-time operational environments with multiple static
obstacles

Fig. 3.14 shows the layout of the environment for the real time experiments.

The operational environment is 4m wide, and 14m long. Turtlebot and AR Drone

are used for real-time experiments. Details and specifications of Turtlebot and

AR Drone utilized for experiments are discussed in Section. 2.3.3 of Chapter 2.

Turtlebot uses a Microsoft Kinect as vision sensor while AR Drone utilizes its

on-board camera. /odom topic of Turtlebot (combination of wheel odometry

and IMU) is utilized for Tutlebot position estimation while localization of AR

78

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

D
is
ta
n
ce

(m
)

Utilizing optical flow

Distane computed

Actual distance

(a) Estimated utilizing optical-flow-based
time-to-contact algorithm (3.4)

0 10 20 30 40 50 60 70
Time (s)

2

3

4

5

6

7

8

9

10

D
is
ta
n
ce

(m
)

Utilizing expansion of the obstacle

Distance computed

Actual Distance

(b) Estimated utilizing expansion-of-obstacle-
based algorithm (3.7

Figure 3.16: Comparison between distance to the obstacle estimated utilizing
TTC-OF and TTC-EO

Table 3.5: Comparison among mean error, mean absolute error and mean squared
error of distance to the obstacle, computed utilizing TTC-OF and TTC-EO

True distance TTC-OF (m) TTC-EO (m)
to the obstacle(m) ME MAE MSE(m2) ME MAE MSE(m2)

4.5 - 4.0 -3.762 3.762 14.170 0.780 0.800 2.451
4.0 - 3.5 -3.255 3.255 10.625 0.801 0.801 0.797
3.5 - 3.0 -2.717 2.717 7.401 0.066 0.080 0.0104
3.0 - 2.5 -2.194 2.194 4.839 -0.073 0.073 0.063

Drone is based on its /ardrone/odometry topic (IMU). Figs. 3.17 and 3.18 show

the results for real-time experiments utilizing TTC-EO and TTC-OF obstacle

avoidance algorithms respectively. Both the robots start from the same starting

location and the starting location is changed collectively when obstacle avoidance

algorithm is changed. Turtlebot and AR Drone travel with different velocities,

velocity of AR Drone being higher. The experiments (obstacle avoidance using

TTC-OF and TTC-EO) are repeated three times separately.

Fig.3.17 shows the best experimental results when TTC-EO is utilized for

obstacle avoidance. Both Turtlebot and AR Drone start from start location (0,0)

and move forward (locations are expressed as Cartesian co-ordinates). Once the

distance to the obstacle estimated is less than the critical distance, robots undergo

turning manoeuvre (obstacle avoidance). It can be seen from Fig.3.17 that both

the robots avoid two obstacles before exiting the operation region. But AR Drone

and Turtlebot travel in different directions while avoiding the first obstacle as

79

0 2 4 6 8 10 12 14
X (m)

−2

−1

0

1

2

Y
(m

)

Turtlebot
AR Drone

Start

Direction of travel

Figure 3.17: Top-view (bird’s eye view) of the path taken by AR Drone and
Turtlebot while completing the mission in real-time. TTC-EO is utilized for
obstacle avoidance. Each mission is carried out separately.

the location of the obstacle detected is different. Non-linear movement of AR

Drone at the final stage of obstacle detection process results in different turning

direction for the AR Drone. Fig.3.18 shows the best experimental results when

TTC-OF is utilized for obstacle avoidance. Turtlebot and AR Drone start from

Start location (14,1.75) and move towards negative X-axis. AR Drone avoids two

obstacles one at (7,0) and the other at (-1.5,-2), while the turtlebot avoids one

obstacle at (7,0), before exiting the operational region. Both the robots have the

same turning direction but the obstacle avoidance process is initiated earlier for

the turtlebot. Fig. 3.16 shows the distance to the obstacle estimated utilizing

TTC-OF (Fig. 3.16a) and TTC-EO (Fig. 3.16b). It can be seen that distance to

the obstacle estimated utilizing TTC-EO follows the true distance after 4.5m,

while the distance to the obstacle estimated utilizing TTC-OF decreases closer

to 3m. Table. 3.5 shows the mean-error (ME), mean-absolute-error (MAE) and

mean-squared-error (MSE) performances of TTC-EO and TTC-OF averaged over

the three separate runs. In order to study the relation between the performance

80

0 2 4 6 8 10 12 14
X (m)

−2

−1

0

1

2

Y
(m

)

Turtlebot
AR Drone

Start

Direction of travel

Figure 3.18: Top-view (bird’s eye view) of the path taken by AR Drone and
Turtlebot while completing the mission in real-time. TTC-OF is utilized for
obstacle avoidance. Each mission is carried out separately.

of TTC-EO and TTC-OF with respect to the distance to the obstacle, the error

performances are analysed in ranges of 0.5m. The error performance measures

are calculated using the following,

ME =
1

n

∑n

i=1
(d̂− dtrue) (3.15)

MAE =
1

n

∑n

i=1
|(d̂− dtrue)| (3.16)

MSE =
1

n

∑n

i=1
(d̂− dtrue)2 (3.17)

where, n is the number of samples in the interval, d̂ is the distance to the

obstacle estimated and dtrue is the true distance to the obstacle. It can be seen

from the error measures (Table. 3.5) that TTC-EO performs better compared

to TTC-OF. This is evident from the simulation and experimental results

(Figs. 3.12, 3.13, 3.17 and 3.18). The error in distance to the obstacle estimated

utilizing TTC-OF decreases as the robot moves closer to the obstacle as explained

81

in Section. 3.1.2.4. It is noted that the ability of the canny contours algorithm

to detect the edges of the obstacle varies with respect to the lighting conditions

(inherent problem with most of the vision based algorithms). The low and high

thresholds of the canny contour algorithm needs to be changed depending on

day/night lighting conditions.

In both simulation and real-time experiments, only the time-to-contact service

is modified. The rest of the services and the framework are not affected by this

change. Similarly, the obstacle detection service may also be modified without

affecting the rest of the framework. This demonstrates the modularity of the

SOIFRA framework designed. Successful utilization of SOIFRA for collision

avoidance on different platform such as aerial vehicle (AR Drone and Hector-

quadrotor) and ground vehicle (Turtlebot and Clearpath Husky) also strengthens

the claim that SOIFRA interoperable.

3.4 Summary

This chapter discusses about the incorporation of collision avoidance behaviour

into SOIFRA. The main focus of SOIFRA framework is to generalize platform

independent algorithms for unmanned aerial and ground robots. To demonstrate

this, two obstacle avoidance algorithms (TTC-OF and TTC-EO) are utilized on

aerial as well as ground robots. Safe operating range for utilizing TTC-OF and

TTC-EO is identified as 5m through series of experiments. The behaviour based

nature of SOIFRA allows the agents to dynamically update their knowledge in real-

time leading to effective collision avoidance. Service oriented nature of SOIFRA

helps to achieve this modularity whereby a service can be replaced with other

similar services without affecting other components of the framework. Though the

control mechanisms for aerial robots and ground robots are completely different,

the algorithms and mechanisms for obstacle detection and obstacle avoidance

are generalized. SOIFRA utilizes this concept to achieve interoperability across

diverse robotic platforms such as aerial and ground robots. Interoperability

of SOIFRA is established by utilizing the framework for completing the same

82

mission on four different robotic platforms (Turtlebot, Clearpath Husky, AR

Drone and Hector-quadrotor) for simulations and two diverse robotic platforms

(Turtlebot and AR Drone) for real-time experiments. Two agents, a steering

agent, for navigating the robot and obstacle agent, for obstacle detection and

avoidance utilized are successful in completing the missions.

83

Chapter 4

Real-time Path Generation

and Tracking with SOIFRA

“The truest wisdom is a resolute determination”

– Napolean Bonaparte

Navigation strategies and robot guidance algorithms are essential for successful

autonomous operation of unmanned robots. Navigation is a process or activity

of accurately estimating a robot’s position, and planning and directing the robot

towards the planned path. Navigation is essential for autonomous mobile robots

as most of the autonomous robot missions require the robots to travel from

one location to the other safely, without any collision or without getting lost.

Localization, path-planning and path-tracking are the three essential components

of navigation. Localization is the ability of a robot to establish its own position and

orientation with respect to a frame of reference. Path-planning enables the robot

to select and identify a suitable path for it to traverse in the environment [114].

Path-tracking algorithms determine the commanded heading angle for the robot

that will enable it to accurately trace a given path [125].

Robot guidance algorithms generally provide path-planning and path-tracking

functionalities to autonomous robots. This chapter mainly focuses on adding

path-generation and path-tracking functionalities into SOIFRA. A platform

84

independent, geometry-based real-time path-tracking algorithm is developed and

incorporated in SOIFRA.

4.1 Vector Directed Path-Generation and Tracking

(VDPGT)

ye, yr

xe, xr

ze, zr

δ
ψ

ψd = tan−1 wdy−wsy
wdx−wsx

ψt = tan−1 wfy−wsy
wfx−wsxwd

wd

ws, p

(a) Scenario where a robot is within transition boundaries.

ye

xe

ze

yr

xr

zrδ

ψ̂d = tan−1 wdy−py
wdx−px

ψd
ψt

wd

ws

p

(b) Scenario where a robot crosses the transition bound-
ary. p = ws and ψd = ψ̂d, once the robot crosses a
transition boundary.

Figure 4.1: Illustration of the parameters used in VDPGT. The shaded circle
represents a robot.

Robot guidance algorithms generate path(s) from a robot’s current location

to its destination and determine the changes required in robot’s velocity, rotation

and acceleration in order to follow the path generated. The VDPGT algorithm

developed is a robot guidance algorithm, comprising of path-generation and path-

following components. VDPGT is designed to guide robots to their destinations in

the shortest path possible. Path-generation is the action of determining the path

a robot has to follow, in order to successfully reach a destination. Path-following

is the action of determining a robot’s heading angle that leads to accurate path-

85

tracking. VDPGT provides path-generation and path-following abilities for both

aerial and ground robots. Ground robots move in a two dimensional X-Y plane

while aerial robots move in a three dimensional X-Y-Z plane. Without loss of

generality, an aerial vehicle can be considered to be moving in a two dimensional

plane while there is a change in the robot’s altitude and in conditions where there

is no change in the robot’s altitude. To ensure interoperability across unmanned

aerial and ground vehicles, VDPGT achieves path-following in a two dimensional

plane (X-Y plane for a ground robot and X-Y or X-Z or Y-Z planes for aerial

vehicles).

Let xe, ye, ze and xr, yr, zr represent earth and robot co-ordinate frames

respectively (Figs. 4.1a and 4.1b). VDPGT requires initial location of the robot

ws, the destination to be reached by the robot wd, current position of the robot

p and orientation of the robot in Z plane (yaw of the robot) ψt for path-following.

A straight line connecting the source and destination is the shortest path between

them. VDPGT utilizes this concept for path-generation. A straight line between

ws and wd is the desired trajectory to follow. The desired orientation of the

robot ψd, is the angle between −→ws and −→wd. The minimum-acceptable-orientation-

difference εψ, is the minimum acceptable absolute difference between desired

orientation (ψd) and actual orientation (ψt) of the robot. Transition boundaries

are defined to ensure successful path-following. The transition boundaries are

defined parallel to the desired path, with ws as its mid-point. A robot is

considered to be away from its path if it crosses the transition boundaries defined.

δ represents the distance between the transition boundaries defined. εd is the

minimum acceptable error between destination reached and destination to be

reached by the robot.

Algorithm 4.1 shows the pseudo code of VDPGT algorithm developed. VDPGT

is made up of two loop structures. The inner loop controls the orientation and

the outer loop controls the position of the robot. The inner loop ensures that

the orientation of the robot is less than or equal to the minimum-acceptable-

orientation-difference (ψd −ψt ≤ εψ). The outer loop moves the robot forward, if

the robot’s destination is not reached. As shown in Fig. 4.1b, if the robot crosses

86

Algorithm 4.1 Vector Directed Path Generation and Tracking Algorithm

Input: initial location (wsx, wsy), destination (wdx, wdy), current location (px, py), tar-
get heading ψd, current heading ψt, minimum-acceptable-orientation-difference εψ,
distance between the transition boundaries δ such that δ/2 is less than minimum
acceptable error in destination reached and to be reached by the robot (εd).

1: ψd = tan−1(
wdy−wsy

wdx−wsx
) (Calculate the desired orientation)

2: p∗ = (p−ws)T (wd−ws)

‖wd−ws‖2
(Calculate the position of the robot along the path p∗ ∈ [0, 1])

3: while p∗ < 1 do
4: if ψd − ψt ≤ εψ then
5: Move forward
6: if | py − w1y |> δ

2 then
7: ws = p
8: update p∗

9: ψ̂d = tan(
wdy−wsy

wdx−wsx
)

10: ψd = ψ̂d
11: end if
12: else if (ψd − ψt) > 0 then
13: Turn Left
14: else
15: Turn Right
16: end if
17: end while

a transition boundary, initial position of the robot ws is reinitialized leading

to the current position of the robot p being assigned as robot’s initial location

(ws = p) and new desired orientation ψ̂d, based on new ws, being calculated.

This enables the robot to successfully move towards its destination even in the

presence of disturbances. However for the robot to successfully reach its desired

destination εψ must be small. Proposition 1 explains the reason for the small value

of parameter εψ and the condition δ
2 < εd, for a robot to reach its destination.

Proposition 1 also establishes that the error in final destination reached by the

robot is always bounded (less than εd).

ye, yr

xe, xr

ze, zr

δ

wf
wd

ws

Figure 4.2: Illustration of the parameters used in Proposition 1.

87

Proposition 1. In Fig. 4.2, if ws is starting position of the robot (or the starting

position of the robot after a reset if the robot crosses the transition boundary),

wd is the desired destination and wf is the final destination reached by the robot

utilizing Algorithm 4.1, then when Algorithm 4.1 terminates, ||wf − wd|| < εd,

where εd is the minimum acceptable error in destination reached and to be reached

by the robot.

Proof. Algorithm 4.1 terminates when p∗ = 1.

p∗ =
(p− ws)T (wd − ws)
‖ wd − ws ‖2

, (4.1)

where p is the current position of the robot.

If wf is the final position reached by the robot, then

p∗ =
(wf − ws)T (wd − ws)
‖ wd − ws ‖2

= 1 (4.2)

(wf − ws)T (wd − ws) = ‖ wd − ws ‖2 (4.3)

(wf − ws)T (wd − ws) = (wd − ws)T (wd − ws) (4.4)

(wf − ws − wd + wd)
T (wd − ws) = (wd − ws)T (wd − ws) (4.5)

((wf − wd) + (wd − ws))T (wd − ws) = (wd − ws)T (wd − ws) (4.6)

((wf − wd)T + (wd − ws)T)(wd − ws) = (wd − ws)T (wd − ws) (4.7)

(wf − wd)T (wd − ws) + (wd − ws)T (wd − ws) = (wd − ws)T (wd − ws) (4.8)

(wf − wd)T (wd − ws) = 0 (4.9)

Eqn. 4.9 implies that ∠wswdwf = 900 when Algorithm 4.1 terminates. That

is ||wf − wd|| is the perpendicular distance from wf to wd. But Algorithm 4.1

ensures that ws is reset when the perpendicular distance is more than δ
2 (line 6

in Algorithm 4.1). Hence ||wf − wd|| < εd at p∗ = 1.

Hence if δ
2 < εd, the robot will reach its destination with minimum error

in position (small ||wd − wf ||2). VDPGT is a simple real-time path-generation

88

and path-following algorithm. VDPGT is most useful in scenarios where the

next waypoint is unknown (in most of the exploration or search missions). The

simulation and experimental studies with ground and aerial robots, discussed in

sub-sections 4.1.1 and 4.1.2, demonstrate the performance of VDPGT.

4.1.1 Performance Evaluation of VDPGT through Simulation

Experiments

A Turtlebot, ClearPath Husky, Hector-quadrotor and AR Drone are utilized

for the simulation studies. All the four robots are capable of making 3600

turns with zero turning radius. Details about the robots (Turtlebot, Clearpath

Husky, Hector-quadrotor and AR Drone) used in the simulation experiments

are explained in Section 2.3.2 of Chapter 2. The robots are made to visit four

locations (waypoints) in different sequences utilizing VDPGT for path-generation

and path-following. Fig. 4.3 shows the layout of the waypoints for the simulation

experiments. Only information about the current waypoint is made known to the

robot. The next waypoint is made known only when a robot reaches a current

waypoint. Two cases of path-following sequences are studied. In both the cases

the robots start from location A and end at location A. For Case – 1 the robots

visit locations A, B, C, D and go back to A while for Case – 2, robots visit

locations A, C, B, D and go back to A. The optimal path for Case – 1 and

Case – 2 are shown in Figs. 4.3a and 4.3b. For the simulation experiments the

minimum acceptable orientation difference is set at 30, the minimum difference in

destination reached and to be reached by the robot εd and the distance between

the transition boundaries δ are set as 2m. Since VDPGT considers only two

coordinates (source and destination), each waypoint is considered as a destination.

Source and destination coordinates are re-initialized once the robots reach a

waypoint and desired orientation ψd is calculated accordingly.

4.1.1.1 Case – 1

To complete the task for Case – 1, the robots go through A (0,0) - B (7,0) - C (7,4)

- D (0,4) - A (0,0) as shown in Fig.4.3a. The robots should make a 900 turn after

89

D C

A B

(a) Case – 1

D C

A B

(b) Case – 2

Figure 4.3: Sequences of path-following utilized for simulation and real-time
experiments. The robots have to start from A and end at A following the direction
specified.

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)

Turtlebot
Actual

(a) Turtlebot

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5
Y

(m
)
Husky
Actual

(b) ClearPath Husky

Figure 4.4: Simulation results for Case – 1 when ground robots are utilized

reaching each waypoint. All the four robots utilized for the simulations have zero

turning radius. Fig.4.5, Figs. 4.4a, 4.4b, 4.5a and, 4.5b show the path travelled

by Turtlebot, Clearpath Husky, AR Drone and Hector-quadrotor respectively.

The solid line in the above mentioned figures indicate the shortest path through

the waypoints. Figs. 4.4a, 4.4b, 4.5a and, 4.5b show that the error in distance

reached and distance to be reached by the robots in each leg of travel (A-B, B-C,

C-D and D-A) is less than εd (2m). It can be seen that all the robots follow the

optimal path closely and the cross-track error is in the order of centimeters.

90

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)
AR Drone
Actual

(a) AR Drone

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)

Actual
Hector

(b) Hector-quadrotor

Figure 4.5: Simulation results for Case – 1 when aerial robots are utilized

4.1.1.2 Case – 2

To complete the task for Case – 2, the robots go through A (0,0) - C (7,4) - B

(7,0) - D (0,4) - A (0,0) as shown in Fig.4.3b. The robots are positioned at A

facing B (yaw angle is 00 when robot faces B) at the start of all the simulation

experiments. The robots have to turn approximately −300 to reach C. After

reaching C the robots have to make a 1200 turn to reach B. The robots then have

to make a 300 and −300 turns to reach D from B and A from D respectively. The

path travelled by Turtlebot, Clearpath Husky, AR Drone and Hector-quadrotor

are shown in Figs. 4.6a, 4.6b, 4.7a and, 4.7b respectively and the solid line in

these figures represent the shortest path through the waypoints. It can be seen

from the path travelled by the robots that all the robots are able to successfully

follow the shortest path through the waypoints utilizing VDPGT.

4.1.2 Performance Evaluation of VDPGT through Real-time Ex-

periments

Performance of VDPGT in real-time is studied by testing the algorithm on a

Turtlebot and an AR Drone. Details and specifications of Turtlebot and AR

Drone are elaborated in Section 2.3.3 of Chapter 2. Both the robots are subjected

to Case – 1 and Case – 2 discussed in Section 4.1.1 and are directed to reach

four destinations A(0,0), B(7,0), C(7,4) and D(0,4) utilizing VDPGT. In order

91

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)
Turtlebot
Actual

(a) Turtlebot

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)

Husky
Actual

(b) ClearPath Husky

Figure 4.6: Simulation results for Case – 2 when ground robots are utilized

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)

Actual
AR Drone

(a) AR Drone

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5
Y

(m
)

Actual
Hector

(b) Hector-quadrotor

Figure 4.7: Simulation results for Case – 2 when aerial robots are utilized

to create a real-time path exploration scenario, robot’s next destination is known

only when the robot reaches its current destination. Figs. 4.3a and 4.3b shows

the sequences of path-following for the two cases of the real-time exploration. In

both the cases the robots start from location A and end at location A. For Case

– 1 the robots visit locations A, B, C, D and go back to A while for Case – 2,

robots visit locations A, C, B, D and go back to A. For all the experiments the

minimum acceptable orientation difference is set at 30, the minimum difference in

destination reached and to be reached by the robot εd and the distance between the

transition boundaries δ are set as 2m. The performance of VDPGT algorithm is

almost identical in both simulation and real-time experiments. VDPGT considers

only two coordinates (source and destination), each waypoint is considered as a

92

destination. Source and destination coordinates are re-initialized once the robots

reach a waypoint and desired orientation ψd is calculated accordingly. Figs. 4.8

and 4.9 show the experimental results for Case – 1 and Case – 2 respectively.

It can be seen that both the Turtlebot and AR Drone follow the shortest

path (indicated by solid lines) and reach the destinations with minimal error.

However it is evident that the path travelled by a Turtlebot is smooth compared

to the path travelled by AR Drone. This difference is mainly due to the nature of

the two robots as ground robots are more stable and easier to control compared

to aerial robots. Even-though the path travelled by the aerial robot is less

smooth, Figs.4.8b and 4.9b show that the aerial robot follows the shortest path

closely with cross-track error in the order of centimeters. Figs. 4.10, 4.11, 4.12

and 4.13 show the deviation plots for Turtlebot and AR Drone while performing

Case – 1 and Case – 2 respectively. In each of these plots the subplots show

the deviation from the ideal path, as the robots move from one way-point to

the other. The deviation plots show that the maximum deviation obtained is

around 0.17m for Turtlebot and 0.8m for AR Drone (including both the cases of

real-time experiments). These deviation plots confirm that VDPGT algorithm

can generate and follow a trajectory with less than 1m error. These results

demonstrate that VDPGT can successfully be utilized on both aerial and ground

robots for path-generation and path-tracking.

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)

Actual
Turtlebot

(a) Turtlebot

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)

Actual
AR Drone

(b) AR Drone

Figure 4.8: Real-time experiment results for Case – 1

93

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)
Actual
Turtlebot

(a) Turtlebot

−1 0 1 2 3 4 5 6 7 8
X (m)

−1

0

1

2

3

4

5

Y
(m

)

Actual
AR Drone

(b) AR Drone

Figure 4.9: Real-time experiment results for Case – 2

0 10 20 30 40 50 60 70 80
Time (s)

−0.18

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

D
ev

ia
tio

n
(m

)

(a) A-B

0 20 40 60 80 100
Time (s)

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
ev

ia
tio

n
(m

)

(b) B-C

0 20 40 60 80 100 120 140 160
Time (s)

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

D
ev

ia
tio

n
(m

)

(c) C-D

0 20 40 60 80 100 120 140
Time (s)

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

D
ev

ia
tio

n
(m

)

(d) D-A

Figure 4.10: Deviation from the actual path calculated for real-time experiments
on Turtlebot for Case – 1. The subplots show the deviation while the robot
moves through different waypoints.

Both Turtlebot and AR Drone have zero minimum turning radius (tr). Both

robots are able to make 900 turns with less translation (change in x-y or x-y-z

coordinates). However there are many robots that do not have zero turning

radius. If the minimum turning radius of the robot is greater than δ/2, the robot

will be outside the transition boundary at the end of the orientation control

94

0 5 10 15 20 25 30 35 40
Time (s)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

D
ev

ia
tio

n
(m

)

(a) A-B

0 5 10 15 20 25 30 35 40
Time (s)

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

D
ev

ia
tio

n
(m

)

(b) B-C

0 10 20 30 40 50 60
Time (s)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

D
ev

ia
tio

n
(m

)

(c) C-D

0 10 20 30 40 50
Time (s)

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
ev

ia
tio

n
(m

)

(d) D-A

Figure 4.11: Deviation from the actual path calculated for real-time experiments
on AR Drone for Case – 1. The subplots show the deviation while the robot
moves through different waypoints.

loop. VDPGT then re-initializes the current location of the robot and continues

with the orientation control loop instead of moving to the translation control

loop. Fig. 4.14 shows the path-taken by robots with different turning radius

while performing 900 turn, utilizing VDPGT. It can be seen that a for a robot

with tr < δ/2, VDPGT proceeds to the transition control loop immediately after

completing the orientation control loop, while for robots with tr > δ/2, VDPGT

continues with the orientation control loop until the robot is within the transition

boundaries and ψd − ψt ≤ ε. It can also be seen that, greater the tr of a robot,

larger the time taken to complete the orientation control loop.

95

0 10 20 30 40 50 60 70 80
Time (s)

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

D
ev

ia
tio

n
(m

)

(a) A-B

0 20 40 60 80 100 120 140
Time (s)

−0.06

−0.04

−0.02

0.00

0.02

D
ev

ia
tio

n
(m

)

(b) B-C

0 20 40 60 80 100
Time (s)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

D
ev

ia
tio

n
(m

)

(c) C-D

0 20 40 60 80 100 120 140
Time (s)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

D
ev

ia
tio

n
(m

)

(d) D-A

Figure 4.12: Deviation from the actual path calculated for real-time experiments
on Turtlebot for Case – 2. The subplots show the deviation while the robot
moves through different waypoints.

4.2 Coordinated Vision-based Localization for Unmanned

Aerial and Ground Vehicles Utilizing VDPGT

Localization, the ability of an unmanned robot to know its current position with

respect to a reference, is very important for autonomous operations. The Global

Positioning System (GPS) is a satellite-based navigation system that provides

location information with respect to earth frame. GPS is one of the commonly

used localization system for outdoor environments with an accuracy of +/-4m.

However GPS signals are not available in all locations. This section is about

a task that requires unmanned robots to reach an unknown location in GPS

denied environments, similar to the conditions of search and rescue missions.

Two robots, one aerial robot and one ground robot, are utilized to complete this

task. The robots use only computer vision algorithms for localization and target

identification. Both the robots use VDPGT for real-time path-generation and

96

0 10 20 30 40 50 60 70
Time (s)

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

D
ev

ia
tio

n
(m

)

(a) A-B

0 10 20 30 40 50 60
Time (s)

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

D
ev

ia
tio

n
(m

)

(b) B-C

0 20 40 60 80 100 120
Time (s)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

D
ev

ia
tio

n
(m

)

(c) C-D

0 10 20 30 40 50 60
Time (s)

−0.24

−0.22

−0.20

−0.18

−0.16

−0.14

−0.12

−0.10

−0.08

D
ev

ia
tio

n
(m

)

(d) D-A

Figure 4.13: Deviation from the actual path calculated for real-time experiments
on AR Drone for Case – 2. The subplots show the deviation while the robot
moves through different waypoints.

−2 −1 0 1 2 3
y (m)

−2

0

2

4

6

8

10

x
(m

)

tr = 0.8m
tr = 1.2m
tr = 1.7m
tr = 2.5m
transition boundary
transition boundary

ψtd

ψt−1
d

Figure 4.14: Path travelled by robots with non-zero minimum turning radius,
while making a 900 turn, utilizing VDPGT. ψtd and ψt−1

d denotes the desired
orientation at the current and previous state.

path-following. The objective of this task is the demonstrate the effectiveness of

VDPGT in realistic missions.

97

4.2.1 Vision-based Localization using Aerial and Ground Robots

Two robots, an AR Drone and Turtlebot, are used to complete the task. Details

and specifications of Turtlebot and AR Drone are in Section 2.3.3 of Chapter 2.

The robots initially start from a location in urban setting (an environment that

has buildings), surrounded by buildings. The robots will not know their current

location. The task for these robots is to navigate and successfully come out to a

region without buildings. The aerial vehicle will fly on top providing an aerial

view of the region below using its downward facing camera. The images from

the camera are processed to identify the next possible target destination for the

robots. The task is completed once the robots reach a region where there are no

buildings nearby. Following are the assumptions made in order to narrow the

task scope.

• The initial position of robots should always be in a region where there is

a definite path for the ground robot to move (the robots should not be

placed in isolated places that has no connections with any other region).

• The initial location of the robots should be such a way that the ground

robot is always in the field of view of the bottom camera of the aerial robot.

4.2.1.1 Target Identification

(a) Top view (b) Front view

Figure 4.15: Top view and front view of the simulation environment

Fig. 4.15 shows the top view and front view of the operational environment

utilized for simulation experiments. The steps for vision-based target identification

98

will be explained based on this environment. AR Drone flying on top provides a

birds-eye-view of the environment below. AR Drone transmits the images from

its bottom camera to the Turtlebot, where the image processing takes place. The

color images provided by AR Drone are converted into greyscale images. The

next step is to identify the edges in the images. However as the robots operate in

an urban setting, there could be many edges. Hence image smoothing is carried

out before proceeding to edge detection. The greyscale images are smoothed

by applying a normalized box filter with 3 × 3 kernel. Canny Edge detection

algorithm [126] is applied on the smoothened image to identify the edges in the

image. Image thresholding is carried out to filter out unwanted edges (such as

edges arising from the tiles of the roofs). After thresholding, the images are

subjected to dilation and erosion [25] to identify the features in the processed

image. Each pixel along the edges identified are iteratively expanded using a

2× 2 kernel to connect the open edges. The dilated images are then eroded to

normalize the images. The next step is to identify the target location for the

robots to move, using the processed image from the aerial robot. Since the image

obtained is from the bottom camera of the aerial vehicle, the optical centre of the

image will always correspond to the position of the aerial vehicle (assuming that

the bottom camera is fixed at the centre of the aerial vehicle). The images from

the bottom camera of the aerial vehicle produces images with 640× 480 px, the

optical centre of the image is at 320× 240px. Based on these two information,

the target position for the robots in px will be at t(u, v) where,

tforward(u, v) = t(320px, vmin), ∀ vmin ∈ [0, 240px), (4.10)

tright(u, v) = t(umax, 240px), ∀ umax ∈ (320px, 640px], (4.11)

tleft(u, v) = t(umin, 240px), ∀ umin ∈ [0, 320px). (4.12)

The maximum of the three (tforward, tright, tleft) is chosen as the target position.

As the image matrix is not a square matrix, normalized weighting coefficients α1,

α2 and α3 are used for normalization. This normalization ensures that maximum

99

is not skewed to any side. The maximum is calculated by

ttarget = max [(α1 × tforward), (α2 × tright), (α3 × tleft)] (4.13)

In certain scenarios, the target found using Equation 4.13 may be infeasible

due to noise from the image or the pathway to that target may be blocked. This

is solved by expanding the search space χ(u,v), using a 1×Dg, where Dg is the

diameter of the ground robot. The original search space is expanded from

χ(u,v) =


tforward(u, v)

tright(u, v)

tleft(u, v)

to χ′(u,v) =


t′forward(u, v)

t′right(u, v)

t′left(u, v)

(4.14)

where,

t′forward(u, v) = t(Dg, vmin), ∀ d ∈
[
(320− Dg

2
), (320 +

Dg

2
)

]
, vmin ∈ [0, 240px),

(4.15)

t′right(u, v) = t(umax, Dg), ∀ d ∈
[
(240− Dg

2
), (240 +

Dg

2
)

]
,

umax ∈ (320px, 640px] and (4.16)

t′left(u, v) = t(umin, Dg), ∀ d ∈
[
(240− Dg

2
), (240 +

Dg

2
)

]
, umin ∈ [0, 320px).

(4.17)

The centre of 1 × Dg kernel that has the maximum distance from the optical

centre is chosen as the target position for the robots to move to. Fig. 4.17 shows

the images obtained for all the processes mentioned above and Fig. 4.16h shows

the final target position selected.

4.2.1.2 Target Localization

Once the target position in pixel coordinates is identified, the pin-hole camera

model is utilized to convert the target position into real world coordinates. The

100

intrinsic matrix of a camera, using pin-hole camera model, is defined as

K =


fx 0 x0

0 fy y0

0 0 1

 (4.18)

where, fx, fy are focal lengths of the camera and x0, y0 are principle offsets in x

and y axis respectively. For a camera with a sensor of width W and height H

that produces an image of width w and height h, the relationship between the

pixel coordinates and real-world coordinates is given by

Fx = fx ×
W

w
, (4.19)

Fy = fy ×
H

h
, (4.20)


u

v

1

 = K ×



x

y

z

1


(4.21)

Hence using eqn. 4.21 the target location in pixel coordinates t(u, v) is

converted using real-world coordinates t(x, y) through

tx = (u− x0)× z

fx
and (4.22)

ty = (v − y0)× z

fy
. (4.23)

As the aerial vehicle is always flown at a constant height from the ground z

is always known. Once the target position for the ground robot in real-world

coordinates is computed using eqns. 4.22 and 4.23, these values are utilized by

VDPGT algorithm to generate path.

It is common that the aerial vehicle may fly faster than the ground robot

leading to large difference in positions. In these scenarios, it is possible that the

101

target position identified may be obstructed for the ground robot if the shortest

path is followed (as shown in Fig. 4.17a). This problem is overcome by identifying

intermediate waypoints before proceeding to the target (as shown in Fig. 4.17b).

4.2.1.3 Modes of Operation

The robots can operate in two modes: autonomous and semi-autonomous modes.

In autonomous mode, both aerial and ground robots are fully autonomous. Both

the robots use VDPGT to move to the target location and explore the unknown

environment. On the other hand, in semi-autonomous mode, the aerial robot

is controlled by a ground operator and the ground robot moves autonomously.

Semi-autonomous mode is useful in cases where a particular area is to be explored.

The aerial robot is moved by the operator while the ground robot follows the

target positions created. Table. 4.1 shows the exploration strategies followed by

the ground robot for both autonomous and semi-autonomous modes of operations.

Table 4.1: Exploration strategy followed by the ground robot for coordinated
vision-localization

Situation Action

No obstacles in any direction (open space) Move forward
Obstruction only in front of the robot Move left
Obstruction only in left of the robot Move forward

Obstruction only in right of the robot Move forward
Obstruction in left and right of the robot Move forward
Obstruction in front and left of the robot Move right

Obstruction in front and right of the robot Move left
Obstructions in front, left and right of the robot Turn 1800 back

and move forward

4.2.1.4 Simulation and Experimental Results and Discussion

In Fig. 4.18, figs. 4.18a and 4.18b show the environments utilized for simulation

and real-time experiments respectively. Turtlebot and AR Drone are utilized for

both simulation and real-time experiments. The task for the robots in simulation

experiments is to navigate successfully out of the region with houses. The robots

should make two 900 turns to achieve the target. Fig. 4.19 shows the results

for semi-autonomous mode. Fig. 4.19a and 4.19b show the path travelled by

102

(a) Greyscale image (b) Smoothened image

(c) Canny image (d) Thresholded image

(e) Dilated image (f) Eroded image

tright

tleft
tforward

(g) Potential targets

ttarget

(h) Final target identified

Figure 4.16: Sequence of steps involved in computer vision based target identifi-
cation.

103

(a) Infeasible path generated when the
aerial robot is far away from the ground
robot

(b) Feasible path generated by adopting
intermediate waypoints

Figure 4.17: Images showing the scenario where an infeasible path is generated
when the aerial vehicle is far away from the ground robot. The new feasible path
is generated by adopting an intermediate waypoint.

(a) Simulation environment (b) Environment for real-time experiments

Figure 4.18: Simulation and real-time environments utilized for the experiments

the ground robot and change in orientation of the ground robots, operating in

semi-autonomous mode. It can be seen clearly that the ground robot is able

to follow the aerial robot and achieve the target successfully. Fig. 4.20 shows

the results when the robots are operating in autonomous mode. It can be seen

from Fig. 4.20a that the robots using VDPGT are capable of completing the task

autonomously. The real-time environment is created to replicate the operating

conditions similar to the simulation environment (conditions that require the

robots to make two 900 turns). The robots operate in semi-autonomous mode

due to hardware limitation of the aerial robot. Fig. 4.21 shows the path travelled

104

by the ground robot while successfully completing the mission in real-time. Both

the simulation and real time experiments demonstrate the usefulness of VDPGT.

0 5 10 15 20
X (m)

−2

0

2

4

6

8

10

12

Y
(m

)

Ground robot

(a) Path travelled by the ground robot

0 50 100 150 200
Time (s)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

O
ri
e
n
ta
ti
o
n
(r
a
d
ia
n
s)

Ground robot

(b) Change in orientation (Yaw angle)

Figure 4.19: Simulation results for semi-autonomous mode

X
(m
)

0

5

10

15

Y (m) 0246810

Z
(m

)

0
1

2

3

4

5

6

7

8

Ground robot

Aerial robot

(a) Path travelled by the ground robot and aerial
robot

0 50 100 150 200
Time (s)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

O
ri
e
n
ta
ti
o
n
(r
a
d
ia
n
s)

Ground robot

Aerial robot

(b) Change in orientation (Yaw angle)

Figure 4.20: Simulation results for autonomous mode

4.3 Incorporating Path-Generation and Path-Following

Behaviours into SOIFRA

Overall architecture of SOIFRA, a service oriented behaviour-based multi-agent

framework for unmanned aerial and ground vehicles, is explained in Section. 2.2

of Chapter 2. SOIFRA framework is incorporated with collision avoidance

behaviour, a basic behaviour required for autonomous operation of mobile robots,

105

0 1 2 3 4 5 6 7
X (m)

−0.5

0.0

0.5

1.0

1.5

2.0

Y
(m

)
Ground robot

(a) Path travelled by the ground robot

0 10 20 30 40 50 60 70 80 90
Time (s)

−0.5

0.0

0.5

1.0

1.5

2.0

O
ri
e
n
ta
ti
o
n
(r
a
d
ia
n
s)

Ground robot

(b) Change in orientation (Yaw angle)

Figure 4.21: Real-time results for semi-autonomous mode

as explained in Section. 3.2 of Chapter 3. This section deals with incorporating

VDPGT algorithm into SOIFRA to provide path-generation and path-following

behaviours. As explained in Section. 2.2 SOIFRA is made up of deliberation,

behaviour and execution layers. Goal generator, planner-matcher and agents

are part of deliberation layer while agent services and actions carried out by

the agents are part of behaviour and execution layer respectively. The overall

goal for this mission is to reach a specific location in an unknown environment

with obstacles. The overall goal is divided into two sub-goals. A sub-goal to

achieve collision avoidance and a sub-goal to take the robot to the target location.

Architectural overview of SOIFRA for the given mission is shown in Fig. 4.22.

The mission under consideration is similar to the mission discussed in Sec-

tion. 3.2. The requirement that the robots are to reach a specific location is the

difference between the two missions. Hence the framework for this mission can

be considered as an advancement to the framework discussed in Section. 3.2. The

steering agent (Str:AGT) navigating the robot and obstacle agent (Obs:AGT)

performing obstacle detection and avoidance are carried over for this mission.

The services offered and actions performed by Str:AGT and Obs:AGT are ex-

plained in Section. 3.2. In addition to the Str:AGT and Obs:AGT there are two

more agents that are developed to achieve this mission. An agent to generate

path and an agent to follow the generated path are the agents developed. Let

PF:AGT and PG:AGT denote the path-follow agent and the path-generation

106

Goal generator

Reach a des-
tination

Detect and
avoid obstacles

Planning and matching

Agent

Obstacle
Agent

Path-
Generation

Agent

Path-Follow
Agent

Steering
Agent

Service

Steering Service Path-follow Service TTC Service

Video Service

Obstacle detection Service

Path-generation Service

Path Generation

Location

Control

Orientation

Video stream

Detect
Obstacle

Track
Obstacle

Avoid
collision

Compute
TTC

Figure 4.22: Architectural overview of SOIFRA with path-generation, path-
following and collision avoidance.

agent respectively. PG:AGT provides path-generation service (pg:SRV) while

PF:AGT provides path-follow service (pf:SRV). PG:AGT generates the shortest

path to reach the given target in real-time utilizing the actions to generate path

(gpath:ACT) and measure the position (pos:ACT) and orientation (ori:ACT) of

the robot. Once a path is generated, PG:AGT publishes the desired orientation

ψd for the robot on rostopic. This desired orientation is subscribed by PF:AGT.

The path-follow service (pf:SRV) of PF:AGT generates the control signals that

are required to direct the robot towards the path generated by PG:AGT, utilizing

VDPGT. If the robot crosses a transition boundary while moving towards the

target destination, PG:AGT generates the new path to reach the target. The

action sequences of the path-generation and path-following operations are shown

in Fig. 4.23 and Fig. 4.24

Obstacle agent (Obs:AGT), responsible for obstacle detection and avoidance,

initiates the actions of video:SRV, TTC service (TTC:SRV) and obstacle detection

service (det:SRV). Obs:AGT utilizes TTC-EO, explained is Section. 3.1.2.3, for

107

Generate

publishsubscribe

start

loc > δ

Generate

PF:AGT topic:ROS PG:AGT gpath:ACT pos:ACT

loop

Figure 4.23: Sequences for path-generation. AGT and ACT represent agent and
actions. The path-generation agent PG:AGT, generates a path for the robot to
follow using path-generation action gpath:ACT and utilizes pos:ACT to monitor
the current position of the robot. The generated path is communicated to the
path-follow agent PF:AGT thorough, rostopic. If the robot crosses a transition
boundary a new path is generated.

update

update

publish

publish Subscribe

subscribe

PG:AGT Str:AGT topic:ROS PF:AGT pos:ACT ori:ACT

loop

Figure 4.24: Sequences for Path-following. AGT and ACT represent agent and
action respectively. The path-follow agent PF:AGT receives the path to follow
from path-generation agent PG:AGT thorough rostopic. Position and orientation
of the robot obtained through pos:ACT and ori:ACT actions are utilized in
generating control actions for the robot. The generated control parameters are
intimated to the steering agent Str:AGT.

collision avoidance. Obstacle agent (Obs:AGT) and path-follow agent (PF:AGT),

publish control velocities for the robot on rostopic. Str:AGT, once initialized, as-

signs priority index for obstacle agent and path-follow agent. Str:AGT subscribes

to the topics published by both Obs:AGT and PF:AGT, but only the action with

a higher priority is executed. Str:AGT utilizes the control velocities obtained

from PF:AGT as PF:AGT has higher priority when no obstacle is detected on

the robot’s path. The priority index for Obs:AGT is zero when distance to

108

the obstacle detected is greater than the Critical distance λ and is the highest

when distance to the obstacle is less than λ. Critical distance, the minimum

distance to the obstacle within which action must be taken to avoid an obstacle, is

determined based on the size and linear velocity of the robot, is fixed at 2.5m for

the obstacle avoidance experiments conducted. The control velocities computed

are published to control the velocity of the robot. Once ROS parameter server is

updated by Obs:AGT, (when distance to the obstacle is less than λ), Str:AGT

publishes the control velocities obtained from Obs:AGT and initiates the action

to monitor the position of the robot. Once the obstacle is avoided, the Str:AGT

informs to Obs:AGT that obstacle is avoided. The obstacle agent then updates

the PS:ROS which result in PF:AGT regaining higher priority. The sequences

for collaborative actions performed by the steering agent (Str:AGT) is shown in

Fig. 4.25.

4.4 Simulation and Real-time Experiments Demon-

strating Path-Generation and Path-following Be-

haviour of SOIFRA

This section presents the experimental and simulation results for the mission

undertaken. Robot’s mission is to reach a known destination in an unknown en-

vironment. The robot exhibits obstacle avoidance and path-following behaviours

to complete the mission. Two different robotic platforms, Turlebot and an AR

Drone are utilized to demonstrate the interoperability of SOIFRA. The opera-

tional environments for simulation and real-time experiments are same as the

environment utilized for experiments in Section. 3.3. Fig. 3.11 and Fig. 3.15 show

the operational environments for the simulation and real-time experiments while

Fig. 4.26 shows the layout (top view) of the operational environment.

The simulation and experimental results for Turtlebot and AR drone are

explained in the following subsections. The two robots complete the same mission

of reaching a destination in an unknown environment, individually. The critical

109

Update
Subscribe

Publish

Update

Subscribe

Publish

Obstacle avoided

Position

Obstacle avoided
Ack

Update
Subscribe

Publish

Publish

Publish initiate

PF:AGT Obs:AGT PS:ROS topic:ROS Str:AGT ctr:ACT pos:ACT

loop

Figure 4.25: Operational sequences demonstrating collaboration between path-
follow agent PF:AGT and obstacle agent Obs:AGT. AGT and ACT represent
agent and action respectively. The Steering agent Str:AGT receives inputs from
PF:AGT and Obs:AGT simultaneously through rostopic. When there is no
obstacle detected along the robot path, PF:AGT has higher priority. Once
distance to an obstacle detected is less than the critical distance λ, Obs:AGT is
assigned the highest priority. Once obstacle is avoided, PF:AGT regains higher
priority.

distance λ is fixed at 2.5m and the transitional boundary δ is fixed at +/-1m from

the starting point (along Y axis). Robot turns left if the obstacle is located on the

right side of the optical axis of the robot’s camera and turn right otherwise. The

robots have zero turning radius in simulation experiments, while for real-time

experiments the robots are forced to turn with non-zero turning radius.

4.4.1 Simulation and Real-time experimental Results for Turtle-

bot

Velocity of Turtlebot is fixed at 0.1m/s in simulation and in real-time experi-

ments. The Turtlebot encounters an obstacle at 5m from the starting location

in simulation and 4.5m from the starting location in the real-time experiment.

The simulation and experimental results obtained for the case study are shown

110

1m 5m

1m

7.5m

2.5m End

Start

Figure 4.26: Layout of the operational environment (not drawn to scale). The
mission is completed once the robot reaches the destination (end).

in Fig. 4.27. In Figs. 4.27a and 4.27b, the start and target denote the starting

location and the destination for the robot. The distance to the obstacle, estimated

based on expansion of object method (TTC-EO), is utilized for obstacle avoid-

ance. The robot moves towards its destination initially when there is no obstacle

(distance to the obstacle plots in Fig. 4.27 (time period 0−70s for simulation and

real-time experiments). Once the distance to the obstacle is less than λ, obstacle

avoidance algorithm is initiated (change in orientation plots in Fig. 4.27) (time

period 70− 90s for simulation and 70− 350s for real-time experiments). At the

critical distance, the obstacle to be avoided is on the left side of the optical axis

of Turtlebot’s camera. As a result, Turtlebot turns right in both simulation and

real-time experiments. As the robot crosses a transition boundary at the end of

obstacle avoidance process, the path-planning agent generates a new path. This

is evident by the change in desired orientation of the robot (desired orientation

changes from 3 to −3 radians in simulation while it changes from 0 to 0.3 in

real-time experiments). As the simulation experiment assumes that Turtlebot

has zero turning radius, the robot first changes its orientation to match the new

desired orientation and undergoes translation, while in real-time experiment,

the robot undergoes both change in orientation and translation at the same

time because of its non-zero turning radius. As explained in Algorithm 4.1, the

robot stops when it reaches the stopping criteria, p∗ > 1 is reached. Figs. 4.27a

and 4.27b show that the robot is able to follow a shorter path, avoid obstacle and

111

0 2 4 6 8
X (m)

−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4

Y
(m

) Target
Start

Obstacle

Path travelled by Turtlebot

0 10 20 30 40 50 60 70
Time (s)

2

4

6

8

10

12

D
is

ta
nc

e
to

th
e

ob
st

ac
le

(m
)

Distance to the obstacle computed

Distance computed
Actual Distance

0 50 100 150 200 250
Time (s)

−4

−3

−2

−1

0

1

2

3

4

H
ea

di
ng

di
re

ct
io

n
(r

ad
ia

n)

Change in ψd and ψt w.r.t time

Robot heading
Desired heading

40 45 50 55 60
2.6
2.8
3.0
3.2
3.4

(a) Simulation results

0 2 4 6 8 10
X (m)

−2.0
−1.5
−1.0
−0.5

0.0
0.5

Y
(m

) TargetStart
Obstacle

Path travelled by Turtlebot

0 10 20 30 40 50 60 70
Time (s)

2

3

4

5

6

7

8

9

10

D
is

ta
nc

e
to

th
e

ob
st

ac
le

(m
)

Distance to the obstacle computed

Distance computed
Actual Distance

0 100 200 300 400 500 600
Time (s)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

H
ea

di
ng

di
re

ct
io

n
(r

ad
ia

n)

Change in ψd and ψt w.r.t. time

Robot heading
Desired heading

40 45 50
2.8
3.0
3.2
3.4

(b) Results from real-time experiments

Figure 4.27: Simulation and experimental results for the case study undertaken
using a Turtlebot. Turtlebot moves towards the target in an unknown environment.
Distance to the obstacle is estimated utilizing the expansion of object based
time-to-contact method (TTC-EO).

112

reach the desired destination successfully in simulation and real-time experiments.

4.4.2 Simulation and Real-time Experimental Results for AR

Drone

AR Drone encounters an obstacle around 4.5m and 5m from its initial location in

simulation and real-time experiments respectively. AR Drone travels at 0.1m/s

in simulation and 0.65m/s in real-time experiments (observed lowest velocity

for following straight line trajectories). Fig. 4.28 shows the simulation and

experimental results for the case study. In Figs. 4.28a and 4.28b start and target

denote the starting location and destination for AR Drone. Obstacle avoidance

algorithm utilizes the distance estimated from the expansion of object based time-

to-contact method (TTC-EO). The robot moves towards its destination initially

when there is no obstacle to be avoided (distance to the obstacle plots in Fig. 4.28)

(time period 0− 20s for simulation and 0− 35s for real-time experiments). Once

the distance to the obstacle is less than λ, obstacle avoidance algorithm is initiated

(change in orientation plots in Fig. 4.28) (time period 20 − 70s for simulation

and 35− 60s for real-time experiments). At the critical distance, the obstacle

to be avoided is on the left side of the optical axis of AR Drone’s camera. As a

result, AR Drone turns right in both simulation and real-time experiments. At

the end of obstacle avoidance process, in simulation and real-time experiments,

the change in desired orientation of the robot confirms that AR Drone crosses

a transition boundary (desired orientation changes from 3.14 to −3 radians in

simulation while it changes from 0.19 to 0.05 in real-time experiments). This

results in path-planning agent generating a new path at the end of obstacle

avoidance process. As the simulation experiment assumes that AR Drone has

zero turning radius, the robot first changes its orientation to match the new

desired orientation and undergoes translation, while in real-time experiment, the

robot undergoes both change in orientation and translation at the same time

because of its non-zero turning radius. As explained in Algorithm 4.1, the robot

113

0 2 4 6 8
X (m)

−2.0
−1.5
−1.0
−0.5

0.0
0.5

Y
(m

)
Target

Start
Obstacle

Path travelled by AR Drone

0 5 10 15 20 25
Time (s)

2

4

6

8

10

12

14

D
is

ta
nc

e
to

th
e

ob
st

ac
le

(m
)

Distance to the obstacle computed

Distance computed
Actual Distance

0 20 40 60 80 100 120
Time (s)

−4

−3

−2

−1

0

1

2

3

4

H
ea

di
ng

di
re

ct
io

n
(r

ad
ia

n)

Change in ψd and ψt w.r.t. time

Robot heading
Desired heading

15 20 25
2.0
2.2
2.4
2.6
2.8
3.0

(a) Simulation results

0 2 4 6 8
X (m)

−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2

Y
(m

) TargetStart

Obstacle

Path travelled by AR Drone

10 15 20 25 30 35
Time (s)

1

2

3

4

5

6

7

8

9

10

D
is

ta
nc

e
to

th
e

ob
st

ac
le

(m
)

Distance to the obstacle computed

Distance computed
Actual Distance

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
ea

di
ng

di
re

ct
io

n
(r

ad
ia

n)

Change in ψd and ψt w.r.t time

Robot heading
Desired heading

25 30 35
2.4

2.8

3.2

(b) Results from real-time experiments

Figure 4.28: Simulation and experimental results for the case study undertaken
using an AR Drone. AR Drone moves towards the target in an unknown
environment. Distance to the obstacle is estimated utilizing the expansion of
object based time-to-contact method (TTC-EO).

114

stops when the stopping criteria, p∗ > 1 is reached. Figs. 4.28a and 4.28b show

that the robot is able to follow a shorter path, avoid obstacle and reach the

desired destination successfully in simulation and real-time experiments.

4.5 Summary

This chapter presents an platform independent, real-time path-generation and

path-following algorithm for autonomous ground and aerial vehicles. The central

focus of this chapter is to incorporate VDPGT algorithm into SOIFRA framework

to provide path-generation and path-following behaviours. The performance of

VDPGT algorithm developed is demonstrated through two separate simulation

and real-time experiments with UAV and UGV. The usefulness of VDPGT is

demonstrated by utilizing VDPGT to complete a realistic task in both simulation

and real-time experiments. Both UAV and UGV are able to localize utilizing

only computer vision techniques and successfully navigate to their destination

utilizing VDPGT.

Two agents, an agent to provide path-generation and an agent to provide

path-following functionality are developed and incorporated into SOIFRA. To

demonstrate the path-following ability of SOIFRA a mission where a robot is

to reach a specific destination, in an unknown environment, is conducted. The

real-time path-planning and tracking algorithm, VDPGT, and TTC-EO collision

avoidance algorithm are utilized on both aerial and ground robots for completing

the mission. Performance of VDPGT is demonstrated through multiple path

tracking experiments on a Turtlebot and AR Drone. The results show that the

behaviour based nature of SOIFRA allows the agents to dynamically update

their knowledge in real-time leading to effective collision avoidance and successful

path tracking. SOIFRA achieves interoperability across diverse robotic platforms

such as aerial and ground robots even though the control mechanisms for the

robots are different. This proves that SOIFRA is able to successfully incorporate

platform independent algorithms.

115

Chapter 5

Real-time Pedestrian Tracking,

with SOIFRA, Utilizing

Human Visual Cortex Model

“Effort only fully releases its reward after a person refuses to quit ”

– Napolean Hill

Unmanned robots as explained in previous chapters are robots capable of

intelligent actions and motions without any guidance from a human or teleoperator.

IRobot’s Packbot [146], Predator aircraft, Mars exploration rovers: Spirit and

Opportunity [86] and Aerosonde [49] are a few examples of autonomous robots. In

order to account for safety, autonomous robots were operated in human isolated

environments. Due to recent advancements in robotics research, autonomous

robots are increasingly utilized for various applications in environments where

human presence is unavoidable. Autonomous lawn mover [95], IRobot’s Roomba

and Scooba [61], autonomous vacuum cleaner and floor washer robots are a

few robots that attempt to relieve home-owners from some of their everyday

housework. Kiva warehouse-management system [145], Grey-Orange’s Butler

robotic system, Hope Technik’s Sesto are a some of the recently developed

Autonomous Guided Vehicles (AGV) utilized for warehouse-management. Self-

116

driving or driver-less cars, researched upon by Google, General Motors, Tesla

Motors and Ford Motors, are autonomous cars that are designed to coexist

and cooperate with humans. Autonomous industrial robots generally perform

tasks rapidly with many fast-moving parts creating an unsafe environment for

humans to coexist. Recently there are a few works that aim to improve the

cooperation between humans and autonomous robots in industrial environments

[21, 37, 139]. Autonomous robots, mobile as well as industrial manipulators,

include perception systems to actively detect humans while operating in a human

coexisting environment. Human detection and human collision prediction are

important factors to ensure safe human-robot coexisting conditions.

Pedestrian detection is the ability of a system to detect humans in the

environment through active perception. Most of the existing pedestrian detection

systems utilize vision sensors in various configurations. The vision sensors could be

based on visible light as well as infrared radiation. Pedestrian detection solutions

based on time-of-flight sensors such as radar and laser range scanners are also

available. This chapter explains about a human visual cortex-based pedestrian

detection algorithm developed, that improves the performance of existing state-of-

the-art pedestrian detectors. The developed human visual cortex-based pedestrian

detector is incorporated into SOIFRA to provide pedestrian detection ability for

UAVs and UGVs.

5.1 Mathematical Model of a Human Retina

The human visual cortex/ retina model is a biologically inspired model of human

retina. It is useful in developing efficient and fast computer vision algorithms

for low level image processing. This retina model is modified and utilized for

pedestrian detection in this work. Biological architecture of a human retina and

an overview about modelling different components of the retina are provided

in this section. Detailed explanations of the retina model utilized are discussed

in [9, 11,48].

117

5.1.1 Human Retina

A human retina is composed of different retina cells such as photoreceptors,

horizontal cells, bipolar cells, ganglion cells and amacrine cells. In Fig. 5.1,

Figs. 5.1a and 5.1b shows the biological architecture and model of a human retina

respectively. Photoreceptors are responsible for visual data acquisition and local

logarithmic compression of the image luminance. Horizontal cells integrate and

regulate input from multiple photoreceptor cells. Signals from photoreceptors or

horizontal cells are transmitted to ganglion cells through bipolar cells. Ganglion

cells transmit image–forming and non–image forming visual information from

the retina. Amacrine cells are responsible for creating functional subunits within

the ganglion cell layer enabling ganglion cells to observe a small dot moving a

small distance. Cells of retina, which are connected to each other, are separated

into two layers: the Outer Plexiform Layer (OPL) and the Inner Plexiform

Layer (IPL). Information from multiple channels of IPL layer constitutes the

output of the retina, of which Parvocellular channel (Parvo) and Magnocellular

channel (Magno) are important. Parvocellular channel, most present at the

fovea level (central vision) of the retina, is dedicated to detail extraction while

Magnocellular channel, most present outside of the fovea (peripheral vision) of

the retina, is dedicated to motion information extraction. As detail and motion

data of the same region are available in parallel, information from Parvo and

Magno channels is useful for computer vision algorithms.

5.1.2 Photoreceptors Model

Photoreceptors are involved in visual data acquisition and local logarithmic

compression of the image luminance. Photoreceptors have the ability to adjust

their sensitivity with respect to the luminance of their neighborhoods [9, 11,48].

Michaelis-Menten relation [9] normalized for a luminance range of [0, Vmax] is

118

(a) Biological architecture [48]

Fph Fh

A FgM CgM

CgP

A FgM CgM

CgP

BipON

BipOFF

input

OPL IPL

MAGNO

PARVO

(b) Model of retina

Figure 5.1: Biological architecture of a human retina

utilized to model the ability of photoreceptors.

C(pr) =

[
R(pr)

R(pr) +R0(pr)

]
Vmax +R0(pr), (5.1)

R0(pr) = V0L(pr) + Vmax(1− V0), (5.2)

where, C(pr) is the adjusted luminance of the photoreceptor pr. C(pr) depends

on the current luminance R(pr) and the compression parameter R0(pr) linked

linearly to the local luminance L(pr) of the neighborhood of the photoreceptor

pr. V0 is the contribution of a static compression parameter of the range [0,1].

Local luminance (L(pr)) is computed by applying a spatial low pass filter to the

input image, achieved through horizontal cells.

5.1.3 Outer Plexiform Layer Model

OPL is modelled as non-separable spatio-temporal filter with a spatial frequency

fs and temporal frequency ft [9,11,48]. The spatio-temporal filter, modelling the

119

cellular interactions of the OPL, is considered as a difference between the spatio-

temporal filters that model the photoreceptor network ph and the horizontal cell

network h. The transfer function of OPL filter is given as

FOPL(fs, ft) = Fph(fs, ft).[1− Fh(fs, ft)], (5.3)

Fph(fs, ft) =
1

1 + βph + 2αph.(1− cos(2πfs)) + j2πτphft
, (5.4)

Fh(fs, ft) =
1

1 + βh + 2αh.(1− cos(2πfs)) + j2πτhft
, (5.5)

where, βph and βh are gains of the spatio temporal filters Fph and Fh respectively.

αph and αh are the high and low cut-off frequencies, while τph and τh are the

temporal filtering constants. The difference between Fph and Fh, the positive

and negative parts of the difference between Ph and h images are represented by

BipON and BipOFF operators. This models the actions of bipolar cells which

divide the OPL outputs into two channels.

5.1.4 Model of Parvo and Magno Channel in Inner Plexiform

Layer

Parvocellular channel dedicated to detail extraction is mostly present in the

central visual region of the retina in IPL. Magnocellular channel mostly present

at peripheral vision of the retina in IPL, is dedicated to motion information

extraction. This subsection explains the models of both Parvocellular and

Magnocellular channels.

5.1.4.1 Paravocellular Channel

Contour information from BipON and BipOFF operators of OPL reach the

ganglion cells of the Parvo channel. These information is locally enhanced which

reinforces the contour data. This ability of the ganglion cells in Parvo channel

CgP is modelled using Michaelis-Menten law similar to the photoreceptors [122].

120

5.1.4.2 Magnocellular Channel

Magnocellular channel of IPL contains the amacrine cells that act as high pass

temporal filters. High pass temporal filtering effect is modelled utilizing a first

order filter [11].

A(Z) = bc

[
1− z−1

1− bZ−1

]
with bc = e

−∆t
τA (5.6)

where, ∆t is the discrete time step and τA is the time constant of the filter.

The amacrine cells (A) are connected to the bipolar cells and as on the Paravo

channel, perform local contrast compression (CgM) as well as act as low pass

spatial filter (FgM similar to the filters of the OPL model).

5.2 Pedestrian Detection Utilizing Retina Model

Pedestrian detection utilizing a retina model is performed by combining informa-

tion from both the Parvo and Magno channel of the retina. This section explains

how information from Parvo and Magno channel are processed and combined

to perform pedestrian detection. Retina filter is applied to the incoming images

and output from Parvo and Magno channel are processed separately.

Retina
Model

HOG
images Parvo

Magno

(a) Rp+HOG

Retina
Model

C4
images Parvo

Magno

(b) Rp + C4

Figure 5.2: Overview of Rp +HOG and Rp + C4 pedestrian detectors

121

5.2.1 Processing Information from Parvo Channel

The Parvo channel of retina is useful in extracting detailed information from

an image. The output from Parvo channel of retina model usually contains

images with locally enhanced contours. These information are combined with an

existing pedestrian detection algorithm to detect pedestrians. HOG and C4 based

pedestrian detectors are the best performing feature-based pedestrian detectors.

As HOG and C4 are two standard pedestrian detection algorithms, the processed

image from Parvo channel are combined with HOG (Rp +HOG) or C4 (Rp +C4)

pedestrian detection algorithms (Fig. 5.2). Output from Rp +HOG and Rp +C4

are compared with outputs from standard HOG and C4 algorithms. INRIA, MIT

and Caltech datasets are utilized for this comparison study. Following are the

performance measures utilized for the comparison study:

• Number of False Negatives (FN): The total number of pedestrians present

in the image, not detected,

• Number of False Positives (FP): Total number of pedestrians not present

in the image, detected,

• Number of True Positives (TP): Total number of pedestrians present in the

image, detected,

• False Positive Rate (FPR): The number of false positives (FP) divided by

the sum of number of true positives (TP) and false positives (FP),

• False Negative Rate (FNR): The number of false negatives (FN) divided

by the sum of number of true positives (TP) and false negatives (FN),

• Detection Rate (DR): The number of true positives (TP) divided by the

sum of true positives (TP) and false negatives (FN) and

• Detection Precision (DP): The number of true positives (TP) divided by

the sum of the true positives (TP) and false positives (FP).

FP, FPR and DP are not applicable for MIT database as negative samples

are not available in MIT database. Tables 5.1, 5.2 and 5.3 show the performance

122

Table 5.1: Performance measures from MIT Dataset

HOG Rp +HOG C4 Rp + C4

FN 513 143 386 279
TP 411 781 538 645

FNR 0.55519 0.15476 0.41775 0.30195
DR 0.44481 0.84524 0.58225 0.69805

of HOG, Rp +HOG, C4 and Rp + C4 pedestrian detectors on MIT, INRIA and

Caltech databases respectively. Table 5.1 highlights the significance of retina

filter for pedestrian detection. Standard HOG and C4 pedestrian detectors have

a detection rate of 0.44 and 0.58 respectively while the same algorithms when

combined with retina filter (Rp+HOG and Rp+C4) have an improved detection

rate of 0.84 and 0.69 respectively on MIT dataset. In INRIA and Caltech datasets,

generally Rp+HOG and Rp+C4 outperforms standard HOG and C4 significantly

in most cases while their performances are comparable with standard HOG and

C4 algorithms in other instances. In Fig. 5.3, sub-figs. 5.3a and 5.3c shows the

images from MIT dataset that HOG algorithm failed to detect while Figs. 5.3b

and 5.3d show the successful pedestrian detection from Rp +HOG for the same

images. This highlights the importance of local contour enhancement provided

by the Parvo channel of the retina filter in pedestrian detection.

(a) HOG (b)
Rp+HOG

(c) HOG (d)
Rp+HOG

Figure 5.3: Sample outputs of HOG and Rp +HOG on MIT dataset.

5.2.2 Combining Information from Magno Channel and Parvo

Channel

The Magno channel of retina is useful in extracting motion information from

the images. In Fig. 5.4, sub-figs. 5.4a and 5.4b show the unprocessed image

123

Table 5.2: Performance measures from INRIA Dataset

HOG Rp +HOG C4 Rp + C4

FN 138 144 148 144
FP 220 251 1 0
TP 994 988 984 988

FPR 0.18122 0.20258 0.00102 0
FNR 0.12191 0.12721 0.13074 0.12721
DR 0.87809 0.87279 0.86926 0.87279
DP 0.81878 0.79742 0.99898 1

Table 5.3: Performance measures from Caltech Dataset

HOG Rp +HOG C4 Rp + C4

FN 1361 1099 1304 925
FP 113 141 146 144
TP 4048 4310 4105 4484

FPR 0.02715 0.03167 0.03434 0.03111
FNR 0.2516 0.2031 0.2410 0.1710
DR 0.7483 0.7968 0.7589 0.8289
DP 0.9728 0.9683 0.9656 0.9688

and output from magno channel respectively. For an image i, let Cij denote the

jth contour identified in image i where j is varied from zero to total number of

contours identified (n). Algorithm proposed by Suzuki et al [126] is utilized for

contour extraction. The extracted contours are filtered based on the contour area.

Let Aij denote the area of the contour j from image i and Athresh denote the

minimum area of contour below which the contours will be discarded. Filtering

contours is necessary to limit unwanted processing. If a pedestrian is present

in the image and if there is movement from the pedestrian, it is noted that the

contour area is always above the Athresh. These contours are compared with

the output of Rp +HOG or RP + C4 to identify the pedestrians in the image.

If an output of the pedestrian detector from Parvo channel and contour from

Magno channel coincide then, that output (P i(x,y)) is confirmed as a pedestrian.

Algorithm 5.1 explains the overall process for pedestrian detection utilizing a

retina model and Fig. 5.5 is a pictorial representation of the overall process.

124

(a) Unprocessed image (b) Ouput of Magno channel

Figure 5.4: Images processed by Magno Channel

Retina
Model

HOG

Position of
Pedestrian

Filtering
positions

Contour
Detector

Filtering
Contours

images Parvo

Magno
Output

Figure 5.5: Overview of pedestrian process combining output from Parvo and
Magno channel of retina.

5.2.3 Utilizing Temporal Information for Filtering Positions of

Pedestrians Detected

The position of the pedestrian detected P i(x,y), for an image i may not be correct

always. These false positives can be identified by utilizing temporal information.

A tracklet TP(x,y)
, is utilized to store past positions of pedestrians detected to study

the temporal information. Tracklet TP(x,y)
stores positions of the pedestrians

identified for the past two seconds. To make sure only information from the recent

two seconds are utilized, older information are replaced with newer information. If

m frames are obtained in two seconds, then TP(x,y)
contains the P(x,y) information

of pedestrians identified over m image frames. Euclidean distance, direction and

velocity of the pedestrians detected are utilized to identify the outliers. Based on

the information on TP(x,y)
, thresholds for each of the outlier detector (threshold for

Euclidean distance (∆e), threshold for direction (∆d̄) and threshold for velocity

(∆v) of the pedestrian detected) are decided. The output of outlier detectors

is either 1 or 0. The outlier thresholds are updated as TP(x,y)
is updated (after

each window). Under the assumption that only one pedestrian is present in each

125

Algorithm 5.1 Algorithm for Retina-model-based Pedestrian Detection

Input: image i at time t, Threshold for contour area Athresh and tracklet TP(x,y)
contain-

ing positions of pedestrians detected for the past m image frames P j(x,y), j = 1, ..m.

1: Apply retina filter to the input image i to get Parvo output Rp and Magno Output
Rm.

2: Apply HOG or C4 to the Parvo output Rp +HOG or Rp + C4.
3: Find all contours (Cij) in Rm.

4: Compute area (Aij) of all Cij .

5: for All contours (Cij) do

6: if Aij ≥ Aithresh then

7: Cij,filtered = Cij
8: end if
9: end for

10: for All filtered contours (Cij,filtered) do

11: if Cij,filtered ∩Rp +HOG (If HOG is utilized as the standard detector) then

12: Position of pedestrian detected P i(x,y) = centroid of Cij,filtered ∩Rp +HOG.
13: end if
14: end for
15: if ||P i(x,y) − P

j
(x,y)|| ≤ δe then

16: Eout = 1
17: end if
18: if tan−1(P i(x,y), P

j
(x,y)) ≤ δd̄ then

19: D̄out = 1
20: end if

21: if
||P i

(x,y)−P
j
(x,y)

||
∆t ≤ δv,∆t = ti − tj then

22: Vout = 1
23: end if
24: if Eout and D̄out and Vout = 1 then
25: Final position of the pedestrian detected = P i(x,y)

26: add P i(x,y) to tracklet TP(x,y)

27: end if

image frame, if P i(x,y) is the position of the pedestrian detected in the current

image frame, the outlier detection is performed as follows,

Eout =


1 if ||P i(x,y) − P

j
(x,y)|| ≤ ∆e,

0 otherwise, P j(x,y) ∈ TP(x,y)
, j = 1, ..m

(5.7)

D̄out =


1 if tan−1(P i(x,y), P

j
(x,y)) ≤ ∆d̄,

0 otherwise, P j(x,y) ∈ TP(x,y)
, j = 1, ..m

(5.8)

Vout =


1 if

||P i
(x,y)
−P j

(x,y)
||

∆t ≤ ∆v,∆t = ti − tj

0 otherwise, P j(x,y) ∈ TP(x,y)
, j = 1, ..m

(5.9)

126

Eout, D̄out and Vout are the outputs of Euclidean distance-based, direction-based

and velocity-based threshold detectors. A pedestrian is considered detected only

if outputs of all the threshold detectors (Eout, D̄out and Vout) are 1.

5.3 Performance Analysis of Human Visual Cortex

Model-based Pedestrian Detectors

Performance of standard pedestrian detectors HOG and C4 pedestrian detectors

are compared with retina-model-based HOG (Retina+HOG) and retina-model-

based C4 (Retina+C4) pedestrian detectors. Caltech [28] and Daimler [31]

pedestrian benchmark datasets are utilized for the performance analysis. In both

Caltech and Daimler pedestrian datasets, scenarios such as a pedestrian walking

towards a stationary camera, camera moving towards a stationary pedestrian and

both pedestrian and camera moving towards or away from each other, are included

for analysis. True positive rate (recall), false negative rate (miss rate), positive

predictive value (precision) and True negative rate (specificity) are utilized as

performance measures for comparing the pedestrian detectors. The performance

measures are plotted against False Positive Per Image (FPPI) to analyse the

performance of the detectors across different thresholds [132]. Figs. 5.6 and 5.7

shows the performance of HOG, C4, Retina+HOG and Retina+C4 pedestrian

detectors for Caltech and Daimler pedestrian benchmark datasets respectively.

True positive rate or recall is a statistical measure of performance that

measures the proportion of positives that are correctly identified. Higher the recall

values, better the performance of the detector. Figs. 5.6a and 5.7a show the plot of

true positive rate vs false positive per image for Caltech and Daimler pedestrian

benchmark datasets respectively. In both the plots (Figs. 5.6a and 5.7a), it

can be seen that retina-model-based detectors outperform standard detectors.

In both the datasets, the highest recall value of HOG is lower than that of

Retina+HOG while the lowest recall value of HOG is significantly lower than

that of Retina+HOG. Similarly, the highest and lowest recall value of Retina+C4

is significantly higher than that of C4 in Daimler dataset while the performances

127

10
−3

10
−2

10
−1

10
0

FPPI

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
c
a
ll

HOG

Retina+HOG

C4

Retina+C
4

(a) Recall Vs FPPI

10
−3

10
−2

10
−1

10
0

FPPI

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
is
s
ra
te

HOG

Retina+HOG

C4

Retina+C
4

(b) Miss rate vs FPPI

10
−3

10
−2

10
−1

10
0

FPPI

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re
c
is
io
n

HOG

Retina+HOG

C4

Retina+C
4

(c) Precision Vs FPPI

10−3 10−2 10−1 100

FPPI

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
p
ec
ifi
ci
ty

HOG

Retina+HOG

C4

Retina+C4

(d) Specificity vs FPPI

Figure 5.6: Performance curves for Caltech Dataset

are comparable in Caltech dataset. False negative rate or miss rate is a statistical

measure of performance that measures the proportion of positives that are not

correctly identified. Lower the miss rate, better the performance of the detector.

Figs. 5.6b and 5.7b show the plot of miss rate vs false positive per image for

Caltech and Daimler pedestrian benchmark datasets respectively. In both the

datasets, retina-model-based detectors (Retina+HOG and Retina+C4) have

lower miss rates compared to standard HOG and C4 detectors. The lowest

and highest miss rate of Retina+HOG is lower than that of HOG in both the

datasets. Similarly Retina+C4 outperforms C4 in both Daimler and Caltech

datasets. Figs. 5.6c, 5.7c and Figs. 5.6d, 5.7d show the plots of precision and

specificity against FPPI in Caltech and Daimler benchmark datasets respectively.

These plots indicate that the precision and specificity of all the detectors are

comparable. This study proves that the performance of human visual cortex-

128

10
−3

10
−2

10
−1

10
0

FPPI

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
a
ll

HOG

Retina+HOG

C4

Retina+C
4

(a) Recall Vs FPPI

10
−3

10
−2

10
−1

10
0

FPPI

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
is
s
ra
te

HOG

Retina+HOG

C4

Retina+C
4

(b) Miss rate vs FPPI

10
−3

10
−2

10
−1

10
0

FPPI

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
c
is
io
n

HOG

Retina+HOG

C4

Retina+C
4

(c) Precision Vs FPPI

10−3 10−2 10−1 100

FPPI

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
p
ec
ifi
ci
ty

HOG

Retina+HOG

C4

Retina+C4

(d) Specificity vs FPPI

Figure 5.7: Performance curves for Daimler Dataset

based pedestrian detectors are better in many situations and comparable in the

rest of the situations.

Retina+HOG’s maximum recall value is greater than 0.7 and 0.8 in Caltech

and Daimler datasets while Retina+C4’s is greater than 0.6 and 0.9 for Caltech

and Daimler datasets. While the maximum recall of Retina+C4 is greater

than Retina+HOG in Daimler dataset, its lowest recall value is significantly

lower than Retina+HOG in Caltech dataset. Similarly maximum miss rate

for Retina+C4 is significantly higher than Retina+HOG in Caltech dataset

while in Daimler dataset the maximum and minimum miss rates of Retina+C4

and Retina+HOG are comparable. Specificity and precision of Retina+HOG

and Retina+C4 are comparable in both the datasets. As the performance of

Retina+HOG is consistent across datasets, Retina+HOG is incorporated into

SOIFRA and utilized for real-time pedestrian detection experiments.

129

5.4 Incorporating Pedestrian Detection and Avoid-

ance Behaviour into SOIFRA

Goal generator

Reach a des-
tination

Detect and
avoid obstacles

Detect and
avoid pedestrian

Planning and matching

Agent

Obstacle
Agent

Pedestrian
Agent

Path-
Generation

Agent

Path-Follow
Agent

Steering
Agent

Service

Steering Service Path-follow Service

Video Service

TTC Service

Pedestrian detection and avoidance Service Obstacle detection Service

Path-generation Service

Path Generation

Location

Control

Orientation

Video stream

Rp + HOG Rm

Extract position

Filter-1 Filter-2 Filter-3

Track Obstacle

Compute TTC

Detect Obstacle

Avoid Collision

Figure 5.8: Architectural overview of SOIFRA with collision avoidance, path-
generation, path-following and pedestrian detection and avoidance.

The architecture of SOIFRA, a multi-agent framework focused on achieving

robot autonomy across UAVs and UGVs, is explained in detail in Section. 2.2

of Chapter 2. SOIFRA utilizes platform independent algorithms to achieve

robot autonomy. Incorporation of collision avoidance and path-generation and

path-following ability into SOIFRA is discussed in Section. 3.2 of Chapter 3 and

Section. 4.3 of Chapter 4 respectively. This section explains the incorporation

of Retina+HOG for pedestrian detection and pedestrian avoidance behaviour

into SOIFRA. SOIFRA is a behavior based multi-agent framework made up of

deliberation, behavior and execution layers. The robots are required to reach a

specific destination in an unknown environment, avoiding pedestrians. The goal

generator module splits the mission into three sub-goals; a sub-goal to make the

robot reach a destination, a sub-goal to detect and avoid collisions and a sub-goal

130

to detect and avoid pedestrians. The planner-matcher module allocates agents

to sub-goals based on pre-defined plans retrieved from ontological database in

accordance with the prevailing states as explained in Section. 2.2. Fig. 5.8 shows

the structure of SOIFRA adopted for real-time pedestrian detection experiments.

This mission is undertaken to demonstrate the pedestrian detection and avoid-

ance capability of SOIFRA. The framework discussed in Section. 4.3 is enhanced

to include the pedestrian detection and avoidance capability. The steering agent

(Str:AGT) navigating the robot, obstacle agent (Obs:AGT) performing obstacle

detection and avoidance, path-generation agent (PG:AGT) generating paths and

path-follow agent (PF:AGT) providing path-following ability are carried over

into this framework. The services and actions performed by the above mentioned

agents are explained in Section. 3.2 and Section. 4.3. In order to provide pedes-

trian detection and avoidance capability a new agent called pedestrian agent

(Ped:AGT) is developed. Ped:AGT provides the pedestrian detection and avoid-

ance service (pda:SRV). Ped:AGT provides pedestrian detection ability utilizing

the action to detect pedestrians (pdet:ACT). pdet:ACT utilizes Retina+HOG

to detect pedestrians. The action to detect pedestrian (pdet:ACT) is a complex

action made up of several small actions such as actions to perform Rp +HOG,

Rm, extract position of the pedestrian and obtain the final position of the pedes-

trian after filtering. These actions combine to form pdet:ACT. Path-generation

and Path-follow agents PG:AGT and PF:ACT utilize VDPGT to generate and

follow paths to reach the desired destination. Obstacle agent Obs:AGT initiates

the video service (video:SRV) and TTC service (TTC:SRV) to detect and avoid

obstacles. TTC:SRV utilizes TTC-EO (explained in Section. 3.1.2.3) to estimate

the distance to an obstacle detected.

Obs:AGT, PF:AGT and Ped:AGT publish control velocities for the robot to

follow on rostopic. Upon initialization the priority index of all the collaborative

agents are assigned. As pedestrian detection and avoidance is very crucial

Ped:AGT is assigned the highest priority by default while Obs:AGT is assigned

the second highest priority. PF:AGT is assigned the lowest priority. Str:AGT

subscribes to all the three control velocities published but only utilizes the control

131

velocity from the agent with highest priority. Str:AGT utilizes the control velocity

from PF:AGT if there are no obstacles or pedestrians detected in the image.

Once a pedestrian is detected in the robot’s navigation path, Ped:AGT estimates

the position of the pedestrian detected in pixel coordinates. If the location of

the pedestrian detected is near the optical center of the camera, Ped:AGT is

assigned the highest priority and pedestrian avoidance is carried out. Unlike

collision avoidance explained in Sections. 3.2 and 4.3, the target destination

is changed 0.5m in Y-axis so that the robot does not enter the space of the

pedestrian. Direction of translation (positive Y or negative Y) is decided based

on the direction of travel of the pedestrian. Once the robot undergoes 0.5m

translation along Y-axis, the PF:AGT attains higher priority, a new path to the

new destination is generated and path-following is carried out. Fig.5.9 shows

the operational sequences for collaboration between path-follow and pedestrian

detection agents. The collision avoidance process exactly the same as explained

in Section.4.3.

5.5 Real-time Experimental Results Demonstrating

Pedestrian Detection and Avoidance using SOIFRA

Real-time experiments are carried out utilizing AR Drone and Turtlebot. Both

the robots utilize Retina+HOG to detect and avoid pedestrians in their path.

Experiments are carried out in a corridor type of environment. Three scenarios

are considered: scenario 1, where the robot is moving and the human is stationary.

Three use cases for scenario 1 are explored as follows

1. the robots are in collision course with the pedestrian,

2. the pedestrian is to the left of the robot and

3. the pedestrian is to the right of the robot.

Scenario 2, where a pedestrian walks from outside the robot’s visual region to

the front of the moving robot. Scenario 3 is a continuation from from scenario 2

132

Update
Subscribe

Publish

Update

Subscribe

Publish

Pedestrian avoided

Position

Pedestrian avoided
Ack

Update
Subscribe

Publish

Publish

Publish initiate

PF:AGT Ped:AGT PS:ROS topic:ROS Str:AGT ctr:ACT pos:ACT

loop

Figure 5.9: Operational sequences demonstrating collaboration between path-
follow agent, PF:AGT and pedestrian-detection agent, Ped:AGT. AGT and ACT
represent agent and action respectively. The Steering agent Str:AGT receives
inputs from PF:AGT and Ped:AGT simultaneously through rostopic. When
there is no pedestrian detected along the robot path, PF:AGT has higher priority.
Once the robot is detected to be in a collision course with a pedestrian, Str:AGT
assigns the highest priority to pedestrian avoidance. Once the pedestrian is
avoided, PF:AGT regains higher priority.

where the robot as well as the pedestrian is moving towards each other after the

pedestrian walks in-front of the robot. Figure 5.10 gives a pictorial representation

of the position of pedestrians for different scenarios. A is the starting point

for the robots and B is the target location. For scenario 1, pedestrians are at

C-1, C-2 and C-3 respectively. For scenario 2, the pedestrian is initially out of

the visual region. The human then appears at C-4 and moves towards C5. For

scenario 3, the pedestrian is out of the viewing region of the robot initially, and

moves towards C-2, crossing C-4 and C-5 and continues to move towards A, while

the robot is moving from A to B.

133

A

B
1m

3m

1m
1m

1m1m

Direction of Travel

C-4
C-5

C-1

C-2

C-3

Figure 5.10: Layout showing the position of humans in the different scenarios of
the real-time experiments. The robots start from A, move towards and stop at B.

5.5.1 Scenario – 1

In scenario 1, the robots are moving while the pedestrian is stationary. C-1,

C-2 and C-3 in Fig. 5.10 are the positions of stationary pedestrians while A

and B represent the starting and target locations of the robots. Experiments

for the three cases are carried out separately. Velocity of Turtlebot is fixed at

0.1m/s while the AR Drone is operated at 0.65m/s. All the agents, path-planning

(PP:AGT), path-Follow (PF:AGT), pedestrian (Ped:AGT), Obstacle (Obs:AGT)

and Steering (Str:AGT) agents are initiated at the same time. PP:AGT generates

the shortest path to reach B from A utilizing VDPGT algorithm and conveys this

path to PF:AGT thorough rostopic. PF:AGT publishes the control parameters

required for path-tracking to the Str:AGT. At the same time Ped:AGT, utilizing

pdet:ACT, estimates the location of the pedestrian. If the pedestrian is around

the centre of the image (nearer to the optical center), Str:AGT gives higher

priority to pedestrian avoidance, otherwise path-following attains higher priority.

For case-1 and case-3 where pedestrians are at C-1 and C-3, respectively, the

pedestrian avoidance should not be executed while for case-2 (C-2), pedestrian

avoidance is to be carried out before path-following sequence. Fig. 5.11a and 5.11b

show a sample output using HOG and Retina+HOG detectors from a Turtlebot

and AR Drone respectively. It can be seen from Figs. 5.11a and 5.11b that

Retina+HOG is better in eliminating false positives and accurately detecting the

pedestrian in the image. Fig. 5.12b shows the positions of pedestrians detected

134

using Retina+HOG, throughout the real-time experiments for scenario-1. It can

be seen from Fig. 5.12b that for case-1 and case-3, the position of pedestrians

estimated is not in the path-of-travel of the robot. Fig. 5.12a shows the path

travelled by both Turtlebot and AR Drone for case-2 of scenario-1. For case-2,

the Ped:AGT identifies that the robot is in collision course with the detected

pedestrian and it initiates the avoidance sequence immediately.

(a) Real-time experiments on Tutlebot.

(b) Real-time experiments on AR Drone.

Figure 5.11: Real-time experiments with Turtlebot and AR Drone for scenario
1 (the pedestrian is stationary while the robot is moving). The left images are
pedestrian detection outputs using HOG while right images are outputs using
Retina+HOG.

5.5.2 Scenario – 2

In Scenario 2, the pedestrian is initially out of the field of view of the robots.

The robots start moving to B from A. After some time, the pedestrian appears

at C-4 and continues to walk towards C-5 while the robot is moving to B from

A. Pedestrian detection agent (Ped:AGT) continually tracks the pedestrian’s

movement from C-4 to C-5. Once Ped:AGT identifies that the robot is in

collision course with the pedestrian, pedestrian avoidance is carried out. Since

the pedestrian is moving from C-4 to C-5 the pedestrian avoidance process creates

the new destination by moving the current destination by 0.5m along positive Y-

axis. Fig. 5.13a and 5.13b show the a sample output using HOG and Retina+HOG

detectors for scenario 2 for a Turtlebot and AR Drone respectively. Fig. 5.14b

shows the positions of pedestrians detected using Retina+HOG, throughout

135

0 1 2 3 4 5 6
X (m)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Y
(m

)
Turtlebot
AR Drone

(a) Path travelled by the robots. The ellipse
represents the human (top view)

0 100 200 300 400 500 600
X px

50

100

150

200

250

Y
p
x

(b) Position of the pedestrian detected and
tracked throughout the experiments.

Figure 5.12: Path travelled by Turtlebot and AR Drone during the real-time
experiments and positions of pedestrian detected utilizing Retina+HOG for
scenario–1. In subfig (b), the regions where the robot does not perform pedestrian
avoidance are shown in green (for the cases where the pedestrian is to the left/right
of the robot). The robots perform pedestrian avoidance if there are pedestrians
detected in the red region.

the real-time experiments for scenario-2. It can be seen from Fig. 5.14b that

Retina+HOG is able to detect the pedestrians as he moves from C-4 to C-5.

Fig. 5.14a shows the path travelled by Turtlebot and AR Drone. It is seen from

Fig. 5.14a that both AR Drone and Turtlebot modify their desired destination

and successfully avoid the pedestrian.

(a) Real-time experiments on Turtlebot.

(b) Real-time experiments on AR Drone.

Figure 5.13: Real-time experiments with Turtlebot and AR Drone for scenario 2
(the robots are moving to B from A, while the pedestrian enters the scene at C-4
and walks towards C-5). The left images are pedestrian detection outputs using
HOG while right images are outputs using Retina+HOG.

136

0 1 2 3 4 5
X (m)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Y
(m

)
Turtlebot
AR Drone

(a) Path travelled by the robots. The ellipse
represents the human (top view)

250 300 350 400 450 500 550 600
X px

60

80

100

120

140

160

180

200

220

240

Y
p
x

(b) Position of the pedestrian detected and
tracked throughout the experiments.

Figure 5.14: Path travelled by Turtlebot and AR Drone during the real-time
experiments and positions of pedestrian detected utilizing Retina+HOG for
scenario–2. The robots perform pedestrian avoidance if the position of the
detected pedestrians is in the red region of subfig (b).

5.5.3 Scenario – 3

Scenario 3 is similar to scenario 2, the difference being the pedestrian continuing

to move towards C-2 after reaching C-5. It can be seen from Fig. 5.16b that

the robots track the human as the human moves from C-4 to C-2 and takes

evasive action after the robot decides that the robot is in collision coarse with the

human. Fig. 5.15a and 5.15b show a sample output using HOG and Retina+HOG

detectors for a Turtlebot and AR Drone respectively as the human continues

to walk towards A from C-2. It can be seen from Figs. 5.16b and Figs. 5.16a

that Retina+HOG is able to detect pedestrians who are moving and successfully

avoid collision with the human. Fig. 5.17 compares the output from HOG and

Retina+HOG pedestrian detectors when there is no human in the scene.

Retina+HOG pedestrian detector manages to achieve relatively less false

detections compared to standard HOG in all the three scenarios. Combining

the motion information from magno channel with Rp + HOG output helps to

eliminate most of the possible false positives. In addition to this, the locally

enhanced contour information provided by parvo channel improves HOG’s de-

tection performance in scenarios where the images are less clear (for example

images in MIT dataset). Even though the computational load is more compared

137

(a) Real-time experiments on Turtlebot.

(b) Real-time experiments on AR Drone.

Figure 5.15: Real-time experiments with Turtlebot and AR Drone for scenario
3 (the robots are moving to B from A, while the pedestrian enters the scene at
C-4, walks towards C-2 crossing C-5). The left images are pedestrian detection
outputs using HOG while right images are outputs using Retina+HOG.

0 1 2 3 4 5
X (m)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Y
(m

)

Turtlebot
AR Drone

(a) Path travelled by the robots. The ellipse
represents the human (top view)

340 360 380 400 420 440 460 480 500
X px

60

80

100

120

140

160

180

200

220

Y
p
x

(b) Position of the pedestrian detected and
tracked throughout the experiment.

Figure 5.16: Path travelled by Turtlebot and AR Drone during the real-time
experiments and positions of pedestrian detected utilizing Retina+HOG for
scenario–3. The robots perform pedestrian avoidance if the position of the
detected pedestrians is in the red region of subfig (b).

to standard HOG or C4 detectors, the improved performance of Retina+HOG is

very helpful in real-time environments where the detection accuracy is crucial.

5.6 Summary

This chapter presents a human visual system-based model that is combined

with state-of-the-art pedestrian detection algorithms to achieve better pedestrian

detection accuracy. Retina model is of use when contours and image contrasts

138

(a) Sample-1

(b) Sample-2

(c) Sample-3

Figure 5.17: HOG and Rp + HOG output from negative samples during the
real-time experiments. The black images are the output from Rp +HOG. It can
be seen clearly that Rp +HOG correctly identifies the negative samples while
HOG produces multiple false positives from the same samples.

are of importance. The Parvo channel of retina, useful in extracting locally

enhanced contours or other such information, when combined with a standard

pedestrian detector such as HOG or C4 detectors achieve comparatively better

performances than standard HOG and C4 detectors. The pedestrian detection

performances from INRIA, MIT and Caltech pedestrian benchmark datasets

helps to establish the performance improvement of Rp + HOG and RP + C4

pedestrian detectors. The magno channel of retina, useful in identifying motion

information, when combined with the pedestrian detection information from the

parvo channel, the detection accuracy is improved significantly. Recall, miss rate,

precision and specificity vs FPPI plots of HOG, C4, Retina+HOG and Retina+C4

obtained from Caltech and Daimler pedestrian benchmark datasets support that

the combination of retina model with a standard pedestrian detector provides

improved performance. SOIFRA, an interoperable framework for robot autonomy,

is modified to accommodate Retina+HOG in addition to collision avoidance,

139

path-generation and following algorithms. A pedestrian agent that provides

pedestrian detection and avoidance capability is incorporated into SOIFRA. The

pedestrian detection agent utilizes Retina+HOG, a human visual cortex-based

pedestrian detector, for real-time pedestrian detection and tracking. Experiments

conducted utilizing AR Drone and Turtlebot also demonstrate that Retina+HOG

performs well in real-time scenarios. Real-time experiments are conducted for

three scenarios: a scenario where the pedestrian is stationary while the robot is

moving, a scenario where the pedestrian as well as robot is moving and a scenario

where the pedestrian enters the scene and moves towards a moving robot. In

all the scenarios the robots using Retina+HOG are successful in detecting and

avoiding the pedestrians in real-time.

140

Chapter 6

Conclusion & Directions for

Future Research

“Everyone who got where he is has had to begin where he was”

– Napolean Hill

6.1 Conclusions

The primary aim of this thesis is to develop a multi-agent framework that allows

ease of usage of both UAVs and UGVs for the same missions, with minimum

modifications. SOIFRA framework proposed in Chapter 2 is an interoperable

behaviour-based multi-agent framework that accommodates platform independent

algorithms. SOIFRA is a behaviour-based framework and several behaviours that

are fundamental for autonomous operation of UAVs and UGVs are incorporated

into SOIFRA. Collision avoidance, basic requirement for every autonomous

robot is incorporated into SOIFRA as explained in Chapter 3. Vision sensors

are utilized for obstacle detection in SOIFRA. Obstacle avoidance is carried out

by estimating the TTC an obstacle detected. Two separate experiments with

an optical flow-based TTC method and an expansion of objects-based TTC are

performed, demonstrates the modularity of SOIFRA. A mission where the robots

are required to reach a target in an unknown environment by avoiding unknown

141

obstacles carried-out successfully, demonstrates the collision avoidance capability

of SOIFRA.

Real-time path-generation and path-following ability is also incorporated into

SOIFRA as discussed in Chapter 4. VDPGT, a geometry-based real-time path-

generation and path-following algorithm developed, is incorporated into SOIFRA.

Simulation and real-time experiments conducted on aerial and ground robots

separately, successfully demonstrate the performance and platform independent

nature of VDPGT. A mission, that requires the aerial and ground robots to

collaborate and navigate a GPS denied urban environment utilizing VDPGT,

portrays the usability of VDPGT in realistic missions. Another mission that

require the robot to reach a target destination in an unknown environment

with obstacles successfully demonstrate the real-time path-generation and path-

following ability of SOIFRA.

The pedestrian detection algorithm explained in Chapter 5 is a human visual

cortex model-based pedestrian detection algorithm. This pedestrian detection al-

gorithm is incorporated into SOIFRA to add human collision avoidance behaviour.

Mathematical models of Parvo and Magno channel of human retina combined

with existing state-of-the art pedestrian detectors successfully improve the pedes-

trian detection accuracy. The improvement in pedestrian detection accuracy is

validated through several experiments on existing pedestrian benchmark datasets.

The performance of the proposed pedestrian detection algorithm incorporated

into SOIFRA is demonstrated through a series of real-time experiments where

the robots successfully detect and avoid stationary as well as moving pedestrians.

The results from simulation and real-time experiments discussed in Chapter 3,

Chapter 4 and Chapter 5 show that SOIFRA is capable of collision avoidance, real-

time path-generation and path-following and pedestrian detection abilities. The

results also prove that SOIFRA is an interoperable framework that accommodates

algorithms that work independent of the platforms utilized.

142

6.2 Directions for Future Research

Interoperable or common multi-agent frameworks for robotic systems have been

relatively less explored. This thesis aimed to solve this by developing SOIFRA

framework to provide a common framework for UAVs and UGVs. However there

are other types of robotics systems such as under water robots, unmanned surface

robots and space robots. Further studies could focus on including other robotic

systems into SOIFRA framework to extend SOIFRA’s interoperability.

SOIFRA mainly focuses on camera and vision-based algorithms to attain plat-

form independence. Further exploration on other sensors that provide platform

independence can also be looked into.

Collision avoidance, path-generation and path-following and pedestrian detec-

tion behaviours are included into SOIFRA. The collision avoidance algorithm

incorporated into SOIFRA is useful in environments where the obstacles have

definite edges. This algorithm can be further improved to include detection

mechanisms that detects all types of obstacles.

Even though the shortest path to a destination is always a straight line,

in certain scenarios following a curved trajectory could be the optimal path.

Hence VDPGT could be improved by including the capacity to generate curved

trajectories in specific situations.

The retina-model-based pedestrian detection algorithm developed can success-

fully detect multiple pedestrians. However it cannot track multiple pedestrians

in the scene. This is also a possible research direction that can be explored.

At present only basic behaviours such as collision avoidance, path-following

and pedestrian detection are incorporated into SOIFRA. More complex be-

haviours such as patrolling, foraging and evading, essential for other missions, can

be incorporated into SOIFRA. SOIFRA can be modified to accomodate multiple

robots at the same time (multi-robot system). At the present stage SOIFRA is

capable of accomodating only one robot. There can be only one obstacle agent

operating simultaneously. If there are more than one, same type agent operating

at the same time, then SOIFRA may face deadlock or livelock condition.

143

Publications Resulting from this Thesis

Published journal papers

1. W.A. Arokiasami, P. Vadakkepat, K.C. Tan and D. Srinivasan, Interoper-

able multi-agent framework for unmanned aerial/ground vehicles: towards

robot autonomy, Complex & Intelligent Systems, vol.2, no.1, pp. 45–59,

2016.

Submitted journal papers

2. W.A. Arokiasami, P. Vadakkepat, K.C. Tan and D. Srinivasan (2016). In-

teroperable Multi-Agent framework for Unmanned Aerial/Ground Vehicles

with Real-time Path-Generation and Tracking, submitted to Unmanned

Systems.

3. W.A. Arokiasami, P. Vadakkepat, K.C. Tan and D. Srinivasan (2016).

Human Visual System based pedestrian Detection and Avoidance for

Unmanned Aerial/Ground Vehicles using a Multi-agent Framework, sub-

mitted to IEEE Transactions on Cybernetics.

Conference papers

4. W.A. Arokiasami, K.C. Tan, D. Srinivasan and P. Vadakkepat (2015).

Impact of the Length of Optical Flow Vectors in Estimating Time-to-

contact an Obstacle. Proceedings of the 18th Asia Pacific Symposium on

Intelligent and Evolutionary Systems, Volume 2, Springer International

Publishing, pp. 201–213, 2015.

5. W. A. Arokiasami, P. Vadakkepat, K. C. Tan and D. Srinivasan, Vector

directed path generation and tracking for autonomous unmanned aerial/

ground vehicles, 2016 IEEE Congress on Evolutionary Computation (CEC),

Vancouver, BC, Canada, 2016, pp. 1375-1381.

144

Bibliography

[1] S. Akishita, S. Kawamura, and K. Hayashi. Laplace potential for moving

obstacle avoidance and approach of a mobile robot. In Japan-USA Sym-

posium on flexible automation, A Pacific rim conference, pages 139–142,

1990.

[2] G. Alenyà, A. Nègre, J. L. Crowley, et al. Time to contact for obstacle

avoidance. 2009.

[3] I. P. Alonso, D. F. Llorca, M. Á. Sotelo, L. M. Bergasa, P. R. de Toro,

J. Nuevo, M. Ocaña, and M. Á. G. Garrido. Combination of feature

extraction methods for svm pedestrian detection. IEEE Transactions on

Intelligent Transportation Systems, 8(2):292–307, 2007.

[4] G. Ambrosino, M. Ariola, U. Ciniglio, F. Corraro, E. De Lellis, and

A. Pironti. Path generation and tracking in 3-d for uavs. Control Systems

Technology, IEEE Transactions on, 17(4):980–988, 2009.

[5] R. C. Arkin. Towards cosmopolitan robots: Intelligent navigation in

extended man-made environments. 1987.

[6] H. Asama, A. Matsumoto, and Y. Ishida. Design of an autonomous and

distributed robot system: Actress. In IEEE/RSJ IROS, pages 283–290,

1989.

[7] B. I. Badano. A multi-agent architecture with distributed coordination for

an autonomous robot. PhD thesis, Ph. D. thesis, Universitat de Girona,

2008.

145

[8] A. Baumberg. Hierarchical shape fitting using an iterated linear filter.

Image and vision computing, 16(5):329–335, 1998.

[9] W. Beaudot. The neural information processing in the vertebrate retina: A

melting pot of ideas for artificial vision. Computer science, INPG, Grenoble,

51, 1994.

[10] N. Bellotto and H. Hu. Multisensor-based human detection and tracking for

mobile service robots. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 39(1):167–181, 2009.

[11] A. Benoit, A. Caplier, B. Durette, and J. Hérault. Using human visual

system modeling for bio-inspired low level image processing. Computer

vision and Image understanding, 114(7):758–773, 2010.

[12] V. Berenz, F. Tanaka, K. Suzuki, and M. Herink. Tdm: A software

framework for elegant and rapid development of autonomous behaviors for

humanoid robots. In Humanoid Robots (Humanoids), 2011 11th IEEE-RAS

International Conference on, pages 179–186. IEEE, 2011.

[13] R. A. Brooks. A robust layered control system for a mobile robot. Robotics

and Automation, IEEE Journal of, 2(1):14–23, 1986.

[14] R. A. Brooks. Intelligence without representation. Artificial intelligence,

47(1):139–159, 1991.

[15] N. A. Browning. A neural circuit for robust time-to-contact estimation

based on primate mst. Neural computation, 24(11):2946–2963, 2012.

[16] D. Busquets, C. Sierra, and R. L. De Màntaras. A multiagent approach to

qualitative landmark-based navigation. Autonomous Robots, 15(2):129–154,

2003.

[17] D. W. Cho. Certainty grid representation for robot navigation by a bayesian

method. Robotica, 8(02):159–165, 1990.

146

[18] G. Cielniak, A. Treptow, and T. Duckett. Quantitative performance evalua-

tion of a people tracking system on a mobile robot. In Proc. 2nd European

Conference on Mobile Robots, 2005.

[19] J. H. Connell. Sss: A hybrid architecture applied to robot navigation. In

Robotics and Automation, 1992. Proceedings., 1992 IEEE International

Conference on, pages 2719–2724. IEEE, 1992.

[20] T. F. Cootes, S. Marsland, C. J. Twining, K. Smith, and C. J. Taylor.

Groupwise diffeomorphic non-rigid registration for automatic model build-

ing. In European conference on computer vision, pages 316–327. Springer,

2004.

[21] J. A. Corrales Ramón, G. J. Garćıa Gómez, F. Torres Medina, and

V. Perdereau. Cooperative tasks between humans and robots in industrial

environments. 2012.

[22] R. C. Coulter. Implementation of the pure pursuit path tracking algorithm.

Technical report, DTIC Document, 1992.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE,

2005.

[24] P. Davidsson. Autonomous agents and the concept of concepts. Department

of Computer Science, Box 118, 221 00 Lund, Sweden,, 1996.

[25] K. Dawson-Howe. A practical introduction to computer vision with opencv.

John Wiley & Sons, 2014.

[26] P. Doherty, J. Kvarnstrom, M. Wzorek, P. Rudol, F. Heintz, and G. Conte.

Hdrc3: A distributed hybriddeliberative/reactive architecture for unmanned

aircraft systems. In Handbook of Unmanned Aerial Vehicles, pages 849–952.

Springer, 2015.

147

[27] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in

the west. In BMVC, volume 2, page 7. Citeseer, 2010.

[28] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A

benchmark. In CVPR, June 2009.

[29] R. R. dos Santos, S. d. F. P. Saramago, and V. Steffen Jr. Planejamento de

trajetória de robô autônomo através do conceito de campo potencial. 2006.

[30] M. Enzweiler and D. M. Gavrila. A mixed generative-discriminative frame-

work for pedestrian classification. In Computer Vision and Pattern Recog-

nition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[31] M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection: Sur-

vey and experiments. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 31(12):2179–2195, 2009.

[32] M. Enzweiler, P. Kanter, and D. M. Gavrila. Monocular pedestrian recogni-

tion using motion parallax. In Intelligent Vehicles Symposium, 2008 IEEE,

pages 792–797. IEEE, 2008.

[33] L. Fan, K.-K. Sung, and T.-K. Ng. Pedestrian registration in static images

with unconstrained background. Pattern Recognition, 36(4):1019–1029,

2003.

[34] B. Faverjon. Obstacle avoidance using an octree in the configuration space

of a manipulator. In Robotics and Automation. Proceedings. 1984 IEEE

International Conference on, volume 1, pages 504–512. IEEE, 1984.

[35] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively

trained, multiscale, deformable part model. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.

IEEE, 2008.

[36] J. Firby. Adaptive execution in complex dynamic domains. Unpublished

doctoral dissertation, 1989.

148

[37] F. Flacco, T. Kröger, A. De Luca, and O. Khatib. A depth space approach

to human-robot collision avoidance. In Robotics and Automation (ICRA),

2012 IEEE International Conference on, pages 338–345. IEEE, 2012.

[38] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to

collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33,

1997.

[39] J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Plötz, G. A. Fink, and

G. Sagerer. Multi-modal anchoring for human–robot interaction. Robotics

and Autonomous Systems, 43(2):133–147, 2003.

[40] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Structure decision

method for self organising robots based on cell structures-cebot. In Robotics

and Automation, 1989. Proceedings., 1989 IEEE International Conference

on, pages 695–700 vol.2, May 1989.

[41] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-world mobile robots. In AAAi, volume

1992, pages 809–815, 1992.

[42] D. M. Gavrila. A bayesian, exemplar-based approach to hierarchical shape

matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(8):1408–1421, 2007.

[43] D. M. Gavrila and S. Munder. Multi-cue pedestrian detection and tracking

from a moving vehicle. International journal of computer vision, 73(1):41–

59, 2007.

[44] C. Goerzen, Z. Kong, and B. Mettler. A survey of motion planning

algorithms from the perspective of autonomous uav guidance. Journal of

Intelligent and Robotic Systems, 57(1-4):65–100, 2010.

[45] J. Guldner and V. I. Utkin. Stabilization of non-holonomic mobile robots

using lyapunov functions for navigation and sliding mode control. In

149

Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on,

volume 3, pages 2967–2972. IEEE, 1994.

[46] T. Heap and D. Hogg. Wormholes in shape space: Tracking through discon-

tinuous changes in shape. In Computer Vision, 1998. Sixth International

Conference on, pages 344–349. IEEE, 1998.

[47] M. Hebert. Active and passive range sensing for robotics. In Robotics and

Automation, 2000. Proceedings. ICRA’00. IEEE International Conference

on, volume 1, pages 102–110. IEEE, 2000.

[48] J. Hérault and B. Durette. Modeling visual perception for image processing.

In Computational and Ambient Intelligence, pages 662–675. Springer, 2007.

[49] G. Holland, P. Webster, J. Curry, G. Tyrell, et al. The aerosonde robotic

aircraft: A new paradigm for environmental observations. Bulletin of the

American Meteorological Society, 82(5):889, 2001.

[50] H. C.-H. Hsu and A. Liu. A flexible architecture for navigation control

of a mobile robot. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 37(3):310–318, 2007.

[51] http://gazebosim.org/wiki/Architecture. Gazebo architecture.

[52] Y. Huang, K. Huang, L. Wang, D. Tao, T. Tan, and X. Li. Enhanced

biologically inspired model. In Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[53] S. Hwang, J. Park, N. Kim, Y. Choi, and I. So Kweon. Multispectral

pedestrian detection: Benchmark dataset and baseline. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[54] Y. K. Hwang and N. Ahuja. A potential field approach to path planning.

IEEE Transactions on Robotics and Automation, 8(1):23–32, 1992.

150

[55] C. C. Insaurralde and Y. R. Petillot. Capability-oriented robot architecture

for maritime autonomy. Robotics and Autonomous Systems, 67:87–104,

2015.

[56] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A

review. IEEE Transactions on pattern analysis and machine intelligence,

22(1):4–37, 2000.

[57] N. R. Jennings. Coordination techniques for distributed artificial intelligence.

Foundations of distributed artificial intelligence, pages 187–210, 1996.

[58] N. R. Jennings and K. Sycara. A roadmap of agent research and devel-

opment. Journal of Autonomous Agents and Multi-Agent Systems, pages

275–306, 1998.

[59] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research

and development. Autonomous agents and multi-agent systems, 1(1):7–38,

1998.

[60] Y. Jiang and J. Ma. Combination features and models for human detection.

In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015.

[61] J. L. Jones. Robots at the tipping point: the road to irobot roomba.

Robotics & Automation Magazine, IEEE, 13(1):76–78, 2006.

[62] M. J. Jones and T. Poggio. Multidimensional morphable models. In

Computer Vision, 1998. Sixth International Conference on, pages 683–688.

IEEE, 1998.

[63] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based globally

convergent navigation algorithm for mobile robots. In Robotics and Automa-

tion, 1996. Proceedings., 1996 IEEE International Conference on, volume 1,

pages 429–435. IEEE, 1996.

151

[64] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In

Proceedings of the fourth Eurographics symposium on Geometry processing,

volume 7, 2006.

[65] M. Khatib and R. Chatila. An extended potential field approach for

mobile robot sensor-based motions. In Proc. International Conference on

Intelligent Autonomous Systems (IAS4), 1995.

[66] O. Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. The international journal of robotics research, 5(1):90–98, 1986.

[67] G. Kim and W. Chung. Tripodal schematic control architecture for integra-

tion of multi-functional indoor service robots. Industrial Electronics, IEEE

Transactions on, 53(5):1723–1736, 2006.

[68] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti. The saphira archi-

tecture: A design for autonomy. Journal of experimental & theoretical

artificial intelligence, 9(2-3):215–235, 1997.

[69] M. Kothari, I. Postlethwaite, and D.-W. Gu. A suboptimal path planning

algorithm using rapidly-exploring random trees. International Journal of

Aerospace Innovations, 2(1):93–104, 2010.

[70] C.-H. Ku and W.-H. Tsai. Obstacle avoidance for autonomous land vehicle

navigation in indoor environments by quadratic classifier. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 29(3):416–426,

Jun 1999.

[71] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The

International Journal of Robotics Research, 20(5):378–400, 2001.

[72] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool. Dynamic 3d scene

analysis from a moving vehicle. In 2007 IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

152

[73] D. Levi, S. Silberstein, and A. Bar-Hillel. Fast multiple-part based object

detection using kd-ferns. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2013.

[74] K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang. Stable matching-

based selection in evolutionary multiobjective optimization. Evolutionary

Computation, IEEE Transactions on, 18(6):909–923, Dec 2014.

[75] L. Li, S. Yan, X. Yu, Y. K. Tan, and H. Li. Robust multiperson detection

and tracking for mobile service and social robots. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 42(5):1398–1412,

Oct 2012.

[76] Z. Lin and L. S. Davis. A pose-invariant descriptor for human detection and

segmentation. In Computer Vision–ECCV 2008, pages 423–436. Springer,

2008.

[77] M. Lindström and J.-O. Eklundh. Detecting and tracking moving objects

from a mobile platform using a laser range scanner. In Intelligent Robots

and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference

on, volume 3, pages 1364–1369. IEEE, 2001.

[78] M. Lindström, A. Orebäck, and H. I. Christensen. Berra: A research archi-

tecture for service robots. In Robotics and Automation, 2000. Proceedings.

ICRA’00. IEEE International Conference on, volume 4, pages 3278–3283.

IEEE, 2000.

[79] J. Liu and J. Wu. Multiagent Robotic Systems. CRC press, 2001.

[80] F. Lu and E. Milios. Globally consistent range scan alignment for environ-

ment mapping. Autonomous robots, 4(4):333–349, 1997.

[81] B. D. Lucas, T. Kanade, et al. An iterative image registration technique

with an application to stereo vision. In IJCAI, volume 81, pages 674–679,

1981.

153

[82] V. Lumelsky and T. Skewis. Incorporating range sensing in the robot

navigation function. Systems, Man and Cybernetics, IEEE Transactions

on, 20(5):1058–1069, 1990.

[83] V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point

mobile automaton moving amidst unknown obstacles of arbitrary shape.

Algorithmica, 2(1-4):403–430, 1987.

[84] P. Luo, Y. Tian, X. Wang, and X. Tang. Switchable deep network for

pedestrian detection. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2014.

[85] R. C. Luo, Y. J. Chen, C. T. Liao, and A. C. Tsai. Mobile robot based human

detection and tracking using range and intensity data fusion. In Advanced

Robotics and Its Social Impacts, 2007. ARSO 2007. IEEE Workshop on,

pages 1–6. IEEE, 2007.

[86] M. Maimone, Y. Cheng, and L. Matthies. Two years of visual odometry

on the mars exploration rovers. Journal of Field Robotics, 24(3):169–186,

2007.

[87] J. Marin, D. Vázquez, A. Lopez, J. Amores, and B. Leibe. Random forests

of local experts for pedestrian detection. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2592–2599, 2013.

[88] S. Munder, C. Schnorr, and D. M. Gavrila. Pedestrian detection and track-

ing using a mixture of view-based shape–texture models. IEEE Transactions

on Intelligent Transportation Systems, 9(2):333–343, 2008.

[89] L. Muratet, S. Doncieux, Y. Briere, and J.-A. Meyer. A contribution to

vision-based autonomous helicopter flight in urban environments. Robotics

and Autonomous Systems, 50(4):195–209, 2005.

[90] C. Nakajima, M. Pontil, B. Heisele, and T. Poggio. Full-body person

recognition system. Pattern recognition, 36(9):1997–2006, 2003.

154

[91] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard. Vector field

path following for miniature air vehicles. Robotics, IEEE Transactions on,

23(3):519–529, 2007.

[92] I. A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin.

Claraty and challenges of developing interoperable robotic software. In Intel-

ligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ

International Conference on, volume 3, pages 2428–2435, 2003.

[93] M. Neves and E. Oliveira. A multi-agent approach for a mobile robot control

system. In Proceedings of Workshop on Multi-Agent Systems: Theory and

Applications(MASTA97-EPPIA97)-Coimbra-Portugal, pages 1–14, 1997.

[94] D. Nitzan, A. E. Brain, and R. O. Duda. The measurement and use of

registered reflectance and range data in scene analysis. Proceedings of the

IEEE, 65(2):206–220, 1977.

[95] T. Noonan, J. Fisher, and B. Bryant. Autonomous lawn mower, Apr. 20

1993. US Patent 5,204,814.

[96] H. S. Nwana. Software agents: An overview. Knowledge Engineering

Review, 11:205–244, 1996.

[97] P. O’Donovan. Optical flow: Techniques and applications. The University

of Saskatchewan, TR, 502425, 2005.

[98] W. Ouyang and X. Wang. A discriminative deep model for pedestrian detec-

tion with occlusion handling. In Computer Vision and Pattern Recognition

(CVPR), IEEE Conference on, pages 3258–3265, 2012.

[99] W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In

The IEEE International Conference on Computer Vision (ICCV), December

2013.

[100] W. Ouyang and X. Wang. Single-pedestrian detection aided by multi-

pedestrian detection. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2013.

155

[101] C. Papageorgiou and T. Poggio. A trainable system for object detection.

International Journal of Computer Vision, 38(1):15–33, 2000.

[102] S. Park, J. Deyst, and J. P. How. A new nonlinear guidance logic for

trajectory tracking. In AIAA guidance, navigation, and control conference

and exhibit, pages 16–19, 2004.

[103] S. Park, J. Deyst, and J. P. How. Performance and lyapunov stability of a

nonlinear path following guidance method. Journal of Guidance, Control,

and Dynamics, 30(6):1718–1728, 2007.

[104] L. E. Parker. Alliance: An architecture for fault tolerant multirobot

cooperation. Robotics and Automation, IEEE Transactions on, 14(2):220–

240, 1998.

[105] R. Polana and R. Nelson. Low level recognition of human motion (or how

to get your man without finding his body parts). In Motion of Non-Rigid

and Articulated Objects, 1994., Proceedings of the 1994 IEEE Workshop

on, pages 77–82. IEEE, 1994.

[106] M. Quigley, E. Berger, A. Y. Ng, et al. Stair: Hardware and software

architecture. In AAAI 2007 Robotics Workshop, Vancouver, BC, pages

31–37, 2007.

[107] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng. Ros: an open-source robot operating system. In ICRA

workshop on open source software, volume 3, page 5, 2009.

[108] I. Rhee, S. Park, and C.-K. Ryoo. A tight path following algorithm of an

uas based on pid control. In SICE Annual Conference 2010, Proceedings

of, pages 1270–1273. IEEE, 2010.

[109] M. Rioux, F. Blais, J. Beraldin, and P. Boulanger. Range imaging sensors

development at nrc laboratories. In Interpretation of 3D Scenes, 1989.

Proceedings., Workshop on, pages 154–160. IEEE, 1989.

156

[110] S. Rockel, D. Klimentjew, and J. Zhang. A multi-robot platform for

mobile robotsa novel evaluation and development approach with multi-

agent technology. In Multisensor Fusion and Integration for Intelligent

Systems (MFI), 2012 IEEE Conference on, pages 470–477, 2012.

[111] J. K. Rosenblatt. Damn: A distributed architecture for mobile navigation.

Journal of Experimental & Theoretical Artificial Intelligence, 9(2-3):339–360,

1997.

[112] S. Russell, P. Norvig, and A. Intelligence. A modern approach. Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995.

[113] P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet

features. In Computer Vision and Pattern Recognition, 2007. CVPR’07.

IEEE Conference on, pages 1–8. IEEE, 2007.

[114] N. Sariff and N. Buniyamin. An overview of autonomous mobile robot

path planning algorithms. In 2006 4th Student Conference on Research

and Development, pages 183–188. IEEE, 2006.

[115] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers. People tracking with

mobile robots using sample-based joint probabilistic data association filters.

The International Journal of Robotics Research, 22(2):99–116, 2003.

[116] J. T. Schwartz and M. Sharir. On the piano movers’ problem i. the case of

a two-dimensional rigid polygonal body moving amidst polygonal barriers.

Communications on pure and applied mathematics, 36(3):345–398, 1983.

[117] E. Seemann, M. Fritz, and B. Schiele. Towards robust pedestrian detection

in crowded image sequences. In 2007 IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–8. IEEE, 2007.

[118] T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired

by visual cortex. In Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, volume 2, pages 994–1000.

IEEE, 2005.

157

[119] A. Shashua, Y. Gdalyahu, and G. Hayun. Pedestrian detection for driving

assistance systems: Single-frame classification and system level performance.

In Intelligent Vehicles Symposium, 2004 IEEE, pages 1–6. IEEE, 2004.

[120] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to au-

tonomous mobile robots. MIT press, 2011.

[121] R. G. Simmons. Structured control for autonomous robots. Robotics and

Automation, IEEE Transactions on, 10(1):34–43, 1994.

[122] S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, M. Meister, et al.

Adaptation of retinal processing to image contrast and spatial scale. Nature,

386(6620):69–73, 1997.

[123] M. Spengler and B. Schiele. Towards robust multi-cue integration for visual

tracking. Machine Vision and Applications, 14(1):50–58, 2003.

[124] B. Stenger, A. Thayananthan, P. H. Torr, and R. Cipolla. Model-based

hand tracking using a hierarchical bayesian filter. IEEE transactions on

pattern analysis and machine intelligence, 28(9):1372–1384, 2006.

[125] P. Sujit, S. Saripalli, and J. Borges Sousa. Unmanned aerial vehicle path

following: A survey and analysis of algorithms for fixed-wing unmanned

aerial vehicless. Control Systems, IEEE, 34(1):42–59, 2014.

[126] S. Suzuki et al. Topological structural analysis of digitized binary images

by border following. Computer Vision, Graphics, and Image Processing,

30(1):32–46, 1985.

[127] K. P. Sycara. Multiagent systems. AI magazine, 19(2):79, 1998.

[128] L. F. Tammero and M. H. Dickinson. The influence of visual landscape on

the free flight behavior of the fruit fly drosophila melanogaster. Journal of

Experimental Biology, 205(3):327–343, 2002.

[129] J.-Y. Tigli and M. Thomas. Use of multi agent systems for mobile robotics

control. In Systems, Man, and Cybernetics, 1994. Humans, Information

158

and Technology., 1994 IEEE International Conference on, volume 1, pages

588–592, 1994.

[130] M. Tistarelli, E. Grosso, and G. Sandini. Dynamic stereo in visual navi-

gation. In Computer Vision and Pattern Recognition, 1991. Proceedings

CVPR’91., IEEE Computer Society Conference on, pages 186–193, 1991.

[131] K. Toyama and A. Blake. Probabilistic tracking with exemplars in a metric

space. International Journal of Computer Vision, 48(1):9–19, 2002.

[132] D. Tran and D. A. Forsyth. Configuration estimates improve pedestrian

finding. In Advances in neural information processing systems, pages

1529–1536, 2008.

[133] A. Treptow, G. Cielniak, and T. Duckett. Real-time people tracking for

mobile robots using thermal vision. Robotics and Autonomous Systems,

54(9):729–739, 2006.

[134] I. Ulrich and J. Borenstein. Vfhˆ*: Local obstacle avoidance with look-

ahead verification. In ICRA, pages 2505–2511, 2000.

[135] N. Vandapel, J. Kuffner, and O. Amidi. Planning 3-d path networks in

unstructured environments. In Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, pages 4624–4629. IEEE, 2005.

[136] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns

of motion and appearance. International Journal of Computer Vision,

63(2):153–161, 2005.

[137] B. Wang, X. Dong, and B. M. Chen. Cascaded control of 3d path following

for an unmanned helicopter. In Cybernetics and Intelligent Systems (CIS),

2010 IEEE Conference on, pages 70–75. IEEE, 2010.

[138] X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector with partial

occlusion handling. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 32–39. IEEE, 2009.

159

[139] R. Wilcox, S. Nikolaidis, and J. Shah. Optimization of temporal dynamics

for adaptive human-robot interaction in assembly manufacturing. Robotics,

page 441, 2013.

[140] A. Willms and S. X. Yang. An efficient dynamic system for real-time

robot-path planning. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 36(4):755–766, Aug 2006.

[141] J. D. Woll. Vorad collision warning radar. In Radar conference, 1995.,

Record of the IEEE 1995 International, pages 369–372. IEEE, 1995.

[142] M. Wooldridge, N. R. Jennings, et al. Intelligent agents: Theory and

practice. Knowledge engineering review, 10(2):115–152, 1995.

[143] B. Wu and R. Nevatia. Detection and tracking of multiple, partially

occluded humans by bayesian combination of edgelet based part detectors.

International Journal of Computer Vision, 75(2):247–266, 2007.

[144] J. Wu, C. Geyer, and J. M. Rehg. Real-time human detection using contour

cues. In Robotics and Automation (ICRA), 2011 IEEE International

Conference on, pages 860–867. IEEE, 2011.

[145] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of

cooperative, autonomous vehicles in warehouses. AI magazine, 29(1):9,

2008.

[146] B. M. Yamauchi. Packbot: a versatile platform for military robotics. In

Defense and Security, pages 228–237. International Society for Optics and

Photonics, 2004.

[147] J.-M. Yang and J.-H. Kim. Sliding mode control for trajectory tracking of

nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and

Automation, 15(3):578–587, 1999.

[148] C. Yap. Algorithmic and geometric aspects of robotics, chapter algorithmic

motion planning. jt schwartz and ck yap, 1987.

160

[149] H. Yavuz and A. Bradshaw. A new conceptual approach to the design

of hybrid control architecture for autonomous mobile robots. Journal of

Intelligent and Robotic Systems, 34(1):1–26, 2002.

[150] J. S. Zelek. Dynamic path planning. In Systems, Man and Cybernetics, 1995.

Intelligent Systems for the 21st Century., IEEE International Conference

on, volume 2, pages 1285–1290. IEEE, 1995.

[151] X. Zeng, W. Ouyang, and X. Wang. Multi-stage contextual deep learning for

pedestrian detection. In Proceedings of the IEEE International Conference

on Computer Vision, pages 121–128, 2013.

[152] W. Zhang, G. Zelinsky, and D. Samara. Real-time accurate object detection

using multiple resolutions. In Computer Vision, 2007. ICCV 2007. IEEE

11th International Conference on, pages 1–8. IEEE, 2007.

[153] T. Zhao and R. Nevatia. Tracking multiple humans in complex situations.

IEEE transactions on pattern analysis and machine intelligence, 26(9):1208–

1221, 2004.

[154] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart. Mav navigation

through indoor corridors using optical flow. In Robotics and Automation

(ICRA), 2010 IEEE International Conference on, pages 3361–3368, 2010.

161

	Introduction
	Robot Control Architectures
	Deliberative and Reactive Control Architectures
	Hybrid Control Architectures
	Single Robot Multi-agent Architectures
	Multi robot Multi-agent Architectures

	Aim and Scope of the Thesis
	Literature Review
	Literature Review on Existing Collision Avoidance Techniques
	Survey on Path-planning Techniques for Mobile Robots
	Survey on Path-tracking Techniques for Mobile Robots
	Existing Vision-based Pedestrian Detection Techniques

	Major Contributions
	Organization

	Interoperable Multi-agent Framework
	Background
	Autonomous Agents
	Approaches for Designing Autonomous Agents
	Rational Agents
	Summary

	Service Oriented Interoperable Framework for Robot Autonomy (SOIFRA)
	Deliberative layer
	Behaviour layer and Execution layer

	Simulation and Experimental Setup
	Simulation Environment
	Robots used for Simulation Experiments
	Robots used for Real-time Experiments

	Summary

	Incorporating Collision Avoidance into SOIFRA
	Collision Avoidance for SOIFRA
	Obstacle Detection in SOIFRA
	Obstacle Avoidance in SOIFRA

	SOIFRA with Collision Avoidance Behaviour
	Demonstrating Collision Avoidance Behaviour of SOIFRA
	Simulation Experiments Demonstrating Collision Avoidance using SOIFRA
	Real-time Experiments Demonstrating Collision Avoidance with SOIFRA

	Summary

	Real-time Path Generation and Tracking with SOIFRA
	Vector Directed Path-Generation and Tracking (VDPGT)
	Performance Evaluation of VDPGT through Simulation Experiments
	Performance Evaluation of VDPGT through Real-time Experiments

	Coordinated Vision-based Localization for Unmanned Aerial and Ground Vehicles Utilizing VDPGT
	Vision-based Localization using Aerial and Ground Robots

	Incorporating Path-Generation and Path-Following Behaviours into SOIFRA
	Simulation and Real-time Experiments Demonstrating Path-Generation and Path-following Behaviour of SOIFRA
	Simulation and Real-time experimental Results for Turtlebot
	Simulation and Real-time Experimental Results for AR Drone

	Summary

	Real-time Pedestrian Tracking, with SOIFRA, Utilizing Human Visual Cortex Model
	Mathematical Model of a Human Retina
	Human Retina
	Photoreceptors Model
	Outer Plexiform Layer Model
	Model of Parvo and Magno Channel in Inner Plexiform Layer

	Pedestrian Detection Utilizing Retina Model
	Processing Information from Parvo Channel
	Combining Information from Magno Channel and Parvo Channel
	Utilizing Temporal Information for Filtering Positions of Pedestrians Detected

	Performance Analysis of Human Visual Cortex Model-based Pedestrian Detectors
	Incorporating Pedestrian Detection and Avoidance Behaviour into SOIFRA
	Real-time Experimental Results Demonstrating Pedestrian Detection and Avoidance using SOIFRA
	Scenario – 1
	Scenario – 2
	Scenario – 3

	Summary

	Conclusion & Directions for Future Research
	Conclusions
	Directions for Future Research

