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Summary 

In an urban city like Singapore, the majority of travels are conducted by public 

transport services especially with the increasing travel demand and limited land 

resource. Public transport ridership has been continuously increasing since past 

decades. Passengers’ travel behaviour is highly correlated with the performance 

of public transport systems. It is therefore essential to identify relevant factors 

that affect passengers’ travel behaviour in a realistic manner. This thesis focuses 

on the pre-trip route choice behaviour of passengers in the multimodal public 

transport network of Singapore. For the analysis of the problem, discrete choice 

models and disaggregate revealed preference data are adopted.  

Empirically, this thesis identifies relevant factors that affects passenger route 

choice behaviour in public transport network using revealed preference data 

from smart card and surveys. Methodologically, it formulates a new path-size 

definition to address the correlation caused by path-overlapping with special 

consideration to the unique characteristics of public transport network in dense 

urban cities, and it proposes a latent class route choice model framework to 

address the availability issues of different access/egress modes in the 

multimodal public transport network. Practically, the application on the rapid 

transit network in Singapore has translational impact on the prevailing travel 

data as it complements the missing transfer station in smart card data. It 

demonstrates how to apply route choice model and get realistic estimation of 

passenger flows on rapid transit stations and lines. 
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Chapter 1 - Introduction 

 

1.1 Research Motivation 

Public transport is by far the most efficient mode of transport, in terms of both 

land usage and energy consumption. It is effective in reducing congestion and 

environmental pollution. In large urban cities with high population density like 

Singapore, majority of the travels are conducted by public transport due to the 

increasing travel demand and limited land resource. Singapore has devoted lots 

of efforts to build its world-class transport system, and is continuously taking 

initiatives to improve/enhance the system by further integrating land-use and 

town design. Due to the extreme land scarcity and high population density in 

Singapore, public transport is and will always be the major transport mode.  

Singapore’s public transport covers a comprehensive range of mobility services, 

with mass rapid transit (MRT) serving heavy traffic corridors, Light Rail Transit 

(LRT) complementing MRT as the feeder services, and buses widely covering 

entire residential areas. According to the latest Household Interview Travel 

Survey (HITS) conducted by Singapore Land Transport Authority (LTA) in 

2012, the public transport mode share in Singapore has risen up from 59% in 

2008 to 63% in 2012 (Singapore Land Transport Authority, 2013). Public 

transport ridership has been grown by 3.7% to an average 6.36 million trips per 

day in 2013, being the ninth consecutive rise since 2005 (The Straits Times, 

2014). Despite of the high efficiency of the public transport network, challenges 

remains to further improve the public transport ridership and reduce the car 

population by providing more attractive multimodal public transport services.  
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Unlike car trips on road network, public transport trip could involve not only 

transfers among different travel modes in public transport systems, but also 

access from origin to public transport services and egress from public transport 

services to destination (Ortúzar and Willumsen, 2001). Passengers’ travel 

behaviour is highly correlated with the performance of public transport systems. 

By understanding how passenger select their routes, route choice models are 

extensively used to evaluate transportation network performance, assess 

policies’ effectiveness, appraise various intelligent transportation systems, and 

predict travel activities in future scenarios (Prato, 2009). It is therefore essential 

to understand passengers’ route choice behaviour in public transport networks 

in a realistic manner.  

However, existing literature on route choice modelling has been primarily 

concentrated on the behaviour of car drivers in road networks rather than 

passenger behaviour in public transport networks (Anderson et al., 2014). To 

fill up this gap, this thesis is dedicated to the modeling of passengers’ route 

choice behaviour in public transport network, with application to Singapore. 

1.2 Research Objectives and Scopes 

The focus of the thesis is on the pre-trip route choice behaviour of passengers 

in public transport networks. For the analysis of the problem, discrete choice 

models and disaggregate revealed preference data are adopted based on 

Singapore’s real public transport network. Efforts are made to get more accurate 

representation of route choice behaviour, proper treatment to address correlation 

among alternatives and estimation of behaviour parameters against real data. 
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The core objectives of this thesis are served through Chapter 3 to Chapter 6 with 

several specific issues to address. 

The first part of the thesis identifies and quantifies different aspects of travelling 

that affect passengers’ route choice decisions from initial boarding stop to final 

alighting stop using smart card data in Chapter 3. It empirically evaluates six 

choice set generation approaches to the multimodal public transport network in 

Singapore under a comprehensive evaluation framework. A stop-to-stop route 

choice model is estimated based on final choice set with 100% coverage against 

one data set and the model is validated by examining the prediction performance 

against another two datasets.  

Chapter 4 is devoted to proper treatment to address correlation among 

alternatives due to path overlapping. A new path-size formulation is proposed 

is presented to address the path-overlapping issue with special consideration of 

the unique characteristics of dense public transport network in urban cities. This 

formulation is comparatively analyzed and validated against different route 

choice models. 

The third part of the thesis aims at modelling a complete public transport route 

choice from origin building to destination building with multimodal access and 

egress using survey data. This study expands existing literature by considering 

the multimodality of public transport trips, not only among different public 

transport services, but also among different access/egress modes. Six possible 

access/egress modes are considered including walk, bicycle, taxi, car as driver, 

car as passenger and motorcycle, while all public transport services in Singapore 

are included. While walking and taxi can be assumed to be available to all 
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passengers, this might not be the case with other access/egress modes, 

particularly for access/egress in car as passenger. A latent class route choice 

modelling framework is proposed to address this availability issue in modelling 

passenger route choice decisions. The latent class model utilize a Logit model 

structure to examine the availability of access/egress modes depending on the 

passenger social-economic characteristics and trip characteristics. 

Conditionally on the choice set with specified modal availability in the latent 

class, the route choice decision is modelled considering both path attributes and 

passengers socio-economic characteristics. Data from household travel surveys 

is used to unveil passengers' route choice preferences in the public transport 

network. 

The last part of the thesis presents an application of route choice modeling to 

assess the performance of the rapid transit network in Singapore by combing 

both smart card and survey data. Smart card data in Singapore is comprehensive 

in terms of passenger demand coverage, but it is incomplete as there is no record 

on transfer stations. The household travel survey data in Singapore stores 

complete information of trips but it is only collected on a small fraction of 

passengers. This work first models passengers’ route choice decisions on the 

rapid transit network using travel survey data and then estimates the passenger 

boarding demand, alighting demand and transfer demand given the complete 

travel demand recorded in smart card data. It assess the performance of rapid 

transit network in Singapore in terms of passenger flows on transit service lines, 

transfer demand at stations, and probability of fail-to-board and fail-to-seat at 

important transfer station.  
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1.3 Thesis Organization 

This thesis is organized as follows: 

 Chapter 1 introduce the concept of route choice modeling, research 

objectives and scopes. 

 Chapter 2 reviews the related work on route choice modeling in 

literature, focusing especially the models and applications on public 

transport networks. 

 Chapter 3 identifies and quantifies different aspects of travelling that 

affect passengers’ route choice decisions from initial boarding stop to 

final alighting stop using smart card data 

 Chapter 3 proposes a dedicated path-size formulation to address path 

overlapping in public transport network.  

 Chapter 5 models passengers’ route choice decisions from origin 

building to destination building with multimodal access/egress. 

 Chapter 6 applies a dedicated route choice model to the rapid transit 

network in Singapore and evaluate the network performance by 

combining smart card data and survey data.  

 Chapter 7 concludes the completed work and presents directions for 

future research. 
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Chapter 2 - Literature Review 

 

In this chapter, the state of the art route choice models and applications in public 

transport network is presented. Firstly, section 2.1 presents the overview of 

route choice modeling, while Section 2.2 reviews data used for route choice 

models on public transport network. In Section 2.3, literature review on network 

representation for public transport network is presented, followed by review on 

choice set generation approaches and evaluation in section 2.4. Last, in section 

2.5, route choice models and their applications in public transport networks are 

presented. 

2.1 Route Choice Modeling Overview 

Given an origin-destination pair in a transport network, route choice models 

assess passengers’ perception on various path attributes such as in-vehicle travel 

time, waiting time, walking time, number of transfers, and etc. Route choice 

decisions are also affected by passengers’ socio-economic characteristics such 

as gender, age, income and trip purpose. Modeling route choice decisions in 

dense urban public transport network is particularly a challenging problem. On 

one hand, the high density of urban public transport network imposes 

operational constraints on route choice models for large-scale network. On the 

other hand, the number of possible paths increases in a combinatorial dimension.  

The operational constraints of large-scale network lead to a simple deterministic 

route choice model – all or nothing approach. The key assumption in this 

approach is that travelers only choose the least cost paths from origin to 

destination. Here the cost of a path is generally defined as an additive cost of 
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each link along the path. It has been widely applied in most of the traffic 

assignment models in which estimating realistic travel behaviour from real data 

is not of key interest. Despite the cost function could be defined differently, this 

approach is not able to capture the unobserved or unknown uncertainty that 

influences travelers’ decisions.  

The widely used discrete choice models, belonging to the family of random 

utility model framework, are particularly suitable to model choice behaviour 

with uncertainty including, but not limited to, household activity choice, 

destination choice, mode choice and route choice (McFadden, 2000). Taking 

route choice as an example, under this framework, travelers are assumed to 

evaluate each path alternative from origin to destination and choose the one that 

maximizes his/her utility out of a set of discrete path alternatives. The path 

utility depends on three important aspects. The first aspect represents influential 

factors that affect how passengers value a path. Influential factors not only 

include path attributes but also traveler’s socio-economic characteristics, as well 

as the choice situation. The second aspect refers to preference parameters that 

capture passengers’ preference on different influential factors. These unknown 

preference parameters can be identified through optimization techniques against 

real route choice data. The third aspect is the random term that is assumed to 

associate with each path utility. The inclusion of this random term has brought 

uncertainty into choice-making process and it influences the probability of an 

alternative being chosen from a set of alternatives. 

To achieve more realistic travel behaviour models, researchers recently focused 

on three major issues: accurate representation of actual behaviour, proper 
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treatment to address correlation between alternatives and estimation of 

behaviour parameters against real data. Frejinger (2008) presents a schematic 

overview of modeling route choices in this approach, as depicted in Figure 2-1.  

Network

Path Choice 

Observations

Path Choice Set

Address Correlation

Route Choice Model

  

Figure 2-1: Overview of route choice modeling  

Path choice behaviour observations can be obtained by conducting traditional 

travel surveys or through new ITS technologies such as Global Positioning 

System (GPS) for vehicles and smart card for passengers. As discrete choice 

model deals with disaggregated choice of individual, it is necessary to generate 

a path choice set for each path observation. Therefore, before estimating the 

parameters involved in a route choice model, the set of possible alternative paths 

are firstly generated explicitly for the examined network. This process is called 

choice set generation. In a dense urban public transport network, it is far from a 

trivial task as the number of feasible path alternatives for a given origin-

destination pair is huge. For a dense urban public transport network, path 

alternatives are highly correlated due to high degree of overlapping among paths. 

Proper handling of the correlation among alternatives is therefore essential. 
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Finally, in the route choice model, the utility function of path alternatives has to 

be properly specified and behaviour parameters will be estimated against real 

route choice observations. 

2.2 Route Choice Data 

Actual route choice data for public transport passengers is of great importance 

when assessing generated choice sets and estimating route choice models. 

However, rather few studies of passengers’ route choice behaviour on public 

transport networks using revealed preference data are available in the literature. 

One major reason is that such data is difficult to collect. It needs a lot of 

information to describe passenger selected path in public transport network, as 

the trip on public transport network is always multimodal with transfers between 

different services. Route choice data on public transport network can be 

collected by either asking passengers to describe their selected path through 

surveys, or by passive monitoring them using smart card system. 

Most of the available literature on modeling passengers’ route choice behaviour 

utilize travel survey data. Few studies on rail passenger route choice behaviour 

use route choice data collected for train users via face-to-face interviews in a 

specific train corridor in the Netherlands (Hoogendoorn-Lanser and Bovy, 2007; 

Uges et al., 2002). Anderson et al. (2014) conducted route choice survey both 

online and via telephone for the multimodal network of the Greater Copenhagen. 

The public transport modes considered in their work include bicycle, walking, 

bus, train and metro. Some other studies focus on modeling route choice 

behaviour on metro network only based on travel survey data collected at metro 

stations (Guo and Wilson, 2011; Raveau et al., 2011). Clifton and Muhs (2012) 
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presented a recent review on various approaches to collect route choice data on 

multimodal transport network though travel survey.  

There are very limited applications of smart card data for modeling route choice 

behaviour from automated fare collection system on public transport network. 

In cities that smart cards have to be tapped in and tapped out both at boarding 

of each new service line and at alighting of each service line, passengers’ route 

selection on public transport network is directly available with comprehensive 

coverage. Sun and Xu (2012) focus on analysis of travel time reliability and 

estimation of passenger route choice behaviour on the Metro network in Beijing 

using smart card data.  (Schmöcker et al., 2013) used the route choice data in 

smart card to validate the generation of choice set on public transport network. 

Kusakabe et al. (2010) apply smart card data to study passengers’ train choices 

made by railway passengers in the railway network of Japan. (Jánošíková et al., 

2014; Nassir et al., 2015) estimated stop-to-stop route choice models using 

smart card data. 

Comparing to survey data, the major drawback of smart card data is that it only 

collects route choice data on the use of public transport services and there is no 

information on access from trip origin and egress to trip destination. Besides, in 

general, there lacks information on passenger socio-economic characteristics. 

But the high spatial and temporal coverage of trips at high data accuracy of 

smart card data still makes it attractive for passenger route choice modeling. 

Trepanier et al. (2009) compare household travel survey data with smart card 

data. They showed that the smart card data is partially consistent with the travel 
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survey data and it is applicable to analyze transit behaviour if the insufficient 

parts of the data are supplemented or negligible.  

2.3 Representations of Public Transport Network 

Public Transport Network formulation for passenger route choice models can 

be categorized into two groups: frequency-based network formulation and 

schedule-based network formulation. In frequency-based network, service lines 

are assumed to operate at deterministic or dynamic frequency, whereas in 

schedule-based network, each run of each service line is considered explicitly 

according to timetable or real arrival/departure time. The following two sections 

summarize the frequency-based and schedule-based approaches for public 

transport network formulation available in literature respectively. 

2.3.1 Frequency-Based Approach 

Based on a simplified test network with few service lines serving several 

stations, Dial (1967) proposes one of the first frequency-based transit 

assignment models. The model is based on a normal network with travel time 

as link attributes, and waiting time as node attributes. Travel time is assumed to 

be the same for all links while waiting time is modeled as half the headway of 

all service line leaving the node. There are two major drawbacks of Dial’s work. 

Firstly, this network does not handle situations where service lines connect the 

same station pairs have different travel distance or travel time. Secondly, Dial 

does not address common line problem that travelers face multiple service line 

choices from his current station to the next transfer station and passengers 

prefers to board the first arriving service in order to minimize total travel time 

(Chriqui and Robillard, 1975). 
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A “route section” model was proposed by De Cea and Fernández (1993) with 

reference to the dual network representation based on Chriqui and Robillard 

(1975). The idea is that each stop-to-stop pair that can be traversed without 

change of service line is represented as a separate link, called “route section” or 

“route segments”, as illustrated in Figure 2-2. They assume that passenger will 

always board the first arriving vehicle of interest from the predetermined 

attractive service lines that leads to their destination. The expected travel time 

on each “route section” is then modeled as a function with respect to all service 

line frequencies in that “route section”. As there is no change of service line 

within each “route section”, waiting time can be considered more precisely at 

the boarding node of a “route section” only.  

1 2 3

4

5
Service Line L1

Service Line L2

1 2 3

4

5

R1 (L1,L2)

R2(L1,L2)

R3(L1)

R4 (L1,L2)

R5(L1)

R6(L2)

R7(L2)

R8(L1)

R9(L2)

Rx(Li, Lj) : Route Section x transformed from service line Li, and Lj

 

Figure 2-2: Illustration of network formulation used in De Cea and Fernández (1993) 

The major advantages of this network presentation are: 1) it addresses the 

common line issue in public transport network as all common lines serving the 

same stop pair are embedded in the same route sections and therefore, the effect 

due to common lines between stop pairs can be compensated in waiting time to 

embark on each route segment (De Cea and Fernández, 1993); 2) it should help 

to speed up the shortest path searching as route segments are created between 
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stop pairs as long as they can be reached via at least one service line without a 

transfer, regardless of their actual distance, and 3) aggregation of common 

service lines on route segment gives freedom to model the boarding behaviour 

and interactions between passengers and service vehicles in an agent-based 

simulation environment. The disadvantage of this approach is the number of 

route segments created increases quadratically with the number of stops along 

each service line. This requires larger memories for data storage. 

Under the same behaviour assumption, Nguyen and Pallottino (1988) introduce 

the concept of hyper-path in network formulation. A hyper-path is defined to be 

a sequence of paths sets connecting origin and destination. Each path set 

contains a set of paths that could be taken by passengers from station to station 

along the hyper-path and path represents part of service line associated with 

hyper-path. The probability of choosing a particular path out of a path set 

depends on the line frequencies. Similarly, Spiess and Florian (1989) illustrate 

this problem by introducing a concept called strategies that passengers adopt to 

predetermine a set of attractive service lines that lead to their destination and 

assume that passenger will always board the first arrival vehicle from the 

attractive set. Their model presents some important limitations, the major one 

being that waiting time at transfer stops is not affected by transit demand, 

neglecting the congestion effect that rises under capacity constraints. 

In recent studies, various advanced frequency-based route choice models have 

been developed to address the effect of capacity constraints on passengers’ route 

choice behaviour. Lam et al. (2002) proposed a network formulation approach 

with elastic line frequency under capacity constraints, in which the line 
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frequency is modeled as a function of passenger flows and line capacity. 

Schmöcker et al. (2008) propose the first dynamic frequency based network 

formulation for public transport networks by introducing “fail-to-board” 

probability which represents the crowding effect that in some circumstances, 

passenger is not able or willing to board the first arriving service. This is a first 

approach to dynamic frequency-based transit assignment. The network was 

constructed on a hyper-path, the cost of which is subject to fail-to-board 

probability. The approach is illustrated in a simplified test network and then 

applied to London Underground Network. Schmöcker et al. (2011) further 

incorporate “fail-to-seat” probability into their frequency-based hyper-path 

formulation. A similar concept of “fail-to-board” and “fail-to-sit” has been 

adopted by Leurent (2008). In his model, however, new arcs are added from 

each possible boarding station to each possible alighting station of each service 

line. Standing arcs and sit arcs are also added to represent different utility 

associated with standing and seating. Leurent (2009) further apply this approach 

on Paris network and claim that seat availability has a significant impact on 

perceived utility and therefore affect the line loadings. 

Despite the frequency-based approach with hyper-path concepts has been used 

by some researchers in route choice models, they are widely used in traffic 

assignment approach where route choice behaviour is not carefully extracted 

from real route choice observations. To the author’s knowledge, analysis of 

passengers’ hyper-path choice behaviour or path strategy choice is not available 

in the literature yet. There lacks of data recording passengers’ path strategy 

choices, which becomes the major hinders to this approach in analyzing choice 

behaviour. Besides, how to derive proper transport economics factors such as 
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value of time, rate of substitution from hyper-path choice behaviour still 

remains a challenging question. 

2.3.2 Schedule-Based Approach 

Schedule-based approach based on time-expanded network representation have 

been proposed for public transport systems in order to consider more coherent 

user behavioural hypotheses in relation to service characteristics since 1990s, 

especially for sub-urban networks or inter-city rail networks. The main 

advantages of time-expanded network representation are firstly, standard 

shortest path algorithm can be applied directly on the time-expanded graph, and 

secondly, congestion can be considered as increase in link impedance directly. 

Nuzzolo and Russo (1996) represent one of the earliest time-expanded 

schedule-based networks to handle low frequency services. They built a time-

expanded network model, also called diachronic network, to represent each run 

of each service line in both time and space dimension. The diachronic graph 

consists of two sub-graphs: (1) a service sub-graph representing run-based 

transit service lines according to its scheduled arrival time at each stop; and (2) 

a demand sub-graph discretizing travel demand onto time segmented nodes. On 

the service sub-graph, each station node is expanded by adding associated 

arrival node and departure node. Alighting link is added between each arrival 

nodes its associated stop node, and stop node is connected to its departure node 

via departure link. Nuzzolo et al. (2001) further modified this approach by 

formulating a diachronic graph consisting three sub-graphs: (1) a service sub-

graph (2) a demand sub-graph and (3) an access/egress sub-graph linking up 

demand sub-graph with service sub-graph, as well as creating possible transfers 
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between stops within service sub-graph. The service sub-graph is illustrated in 

Figure 2-3. They also applied the same network formulation approach to 

consider capacity constraints explicitly (Nuzzolo et al., 2012). Sumalee et al. 

(2009) represents a modified time-expanded transit service network based on 

the diachronic graph approach proposed by Nuzzolo et al. (2001) to incorporate 

dwelling time. Dwelling links representing the dwelling time of a vehicle at a 

stop are newly added, creating temporal linkage for each stop 

 

Figure 2-3: A diachronic graph representation for schedule-based network (Source: 

(Nuzzolo et al., 2001)) 

Hamdouch and Lawphongpanich (2008) present some extensions to complete 

the conventional time-expanded schedule-based network by: (1) adding walking 

links to allow passenger transferring between two nearby stations, (2) creating 

bicycling link and driving link in parallel to walking link for access, (3) 

generating waiting links to represent waiting at the station for arrival vehicle. 

Each link is associated with a capacity constraint where walking link have an 
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infinite capacity, and travel link has capacity in line with its service line or 

vehicle. Each node is also assigned a capacity cap according to the size of 

platform. First come first serve strategy is adopted during traffic simulation. 

Most recent works such as (Hamdouch et al., 2011; Zhang et al., 2010) also 

adopts time-expanded schedule-based network for public transport route choice 

modeling.  

Comparing to schedule-based approach, frequency-based approach is more 

appropriate to dense urban public transport network with high frequency 

services. It requires less detailed input data, and therefore reduces 

computational complexity. The common lines problem can be handled easily 

by frequency aggregation in frequency-based network. However, path utility 

has to be updated dynamically in order to reflect the network conditions in real 

time. While for schedule-based approach, it is more suitable for low-frequent 

services. As stated by Nguyen et al. (2001), the inherent advantage of schedule-

based networks is that they allow dynamic network description, time-expanded 

minimum path searching, and dynamic network loading procedure. 

2.4 Choice Set Generation Methods 

Only a limited number of papers describe the use of choice set generation 

approaches in public transport networks. Compared to road networks, choice set 

generation for multimodal public transport network is more complicated and 

challenging because public services only operate at fixed stops along fixed 

routes with scheduled timetables/frequencies. It therefore generates the need for 

waiting and transfers. Applications of choice set generation approaches in 

public transport networks are mainly based on choice set generation approaches 
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used in road networks with implicit or explicit modifications to account for the 

discontinuous serviceability and connectivity. Therefore, this section reviews 

the choice set generation approaches on road networks first, followed by choice 

set generation approaches in public transport networks. Literature evaluating 

choice set generation approaches are also presented. 

Note that there are also various studies using sampling of alternatives to get a 

choice set with consideration to a full choice set in discrete choice models 

(Flötteröd and Bierlaire, 2013; Frejinger et al., 2009; Lai and Bierlaire, 2015; 

Li et al., 2016) or recurving generating subsequent link choice to avoid 

generating choice set with path alternatives (Fosgerau et al., 2013; Mai, 2016; 

Mai et al., 2015). However, the former approach depends on an available full 

choice set which covers all possible alternatives while this full choice set is not 

directly available and extremely hard to enumerate in the route choice context, 

especially for large transport network, while the latter approach is still 

undergoing a method development stage and is not necessarily mature enough 

for a reliable usage in this context for behavioral analysis.  

 

2.4.1 Choice Set Generation for Road Network 

In general, current choice set generation approaches for explicitly generating 

path choice sets can be categorized into two groups: deterministic choice set 

generation approaches and stochastic choice set generation approaches. 

In deterministic choice set generation approaches, network attributes and other 

parameters remain deterministic. Choice sets are generated by iteratively 

searching for the least cost path. Several approaches are presented in the 
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literature to generate choice set deterministically. Link penalty approach and 

link elimination approaches both iteratively search for a new shortest path after 

updating the link cost on certain links. The link penalty approach increases all 

link costs along the current shortest path gradually (de la Barra et al., 1993). In 

the link elimination approach, one or more links on the shortest path/paths are 

removed, or the cost set to infinite, before searching for a new shortest path 

(Azevedo et al., 1993; Rieser-Schüssler et al., 2012). The k-shortest path 

algorithm generates the first k shortest loop-less paths from an origin to a 

destination in the network using various well-structured link elimination 

heuristics (Van der Zijpp and Fiorenzo Catalano, 2005; Yen, 1971).  

The aforementioned three approaches are all based on a fixed cost function 

during each path search. In order to address travelers’ heterogeneity on path cost 

definition, Ben-Akiva et al. (1984) proposed a labeling approach by using 

different cost functions, called labels, to identify different “shortest” paths. The 

branch & bound technique is applied to path generation as selective enumeration 

with specified constraints as a search bound. Various constraints on path 

feasibility, path logicality, path compositions, and travelers’ behaviour can be 

applied. All feasible path alternatives satisfying the constraints are generated 

between origin and destination (Prato and Bekhor, 2006). 

Stochastic choice set generation employs stochasticity in path searching from 

two approaches. One common approach, called the simulation approach, is to 

randomize network attributes from a probability distribution. During each round 

of least cost path search, the link cost in the network is drawn from a pre-

specified distribution with respect to its link cost, such as normal distribution 
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(Bekhor et al., 2006; Ramming, 2001), and truncated normal distribution 

(Carlier et al., 2003; Nielsen, 2000; Prato and Bekhor, 2007). Another stochastic 

approach is called the “Random Walk” approach. It introduces stochasticity into 

path-establishing procedure by successively selecting the next link/node based 

on a certain distribution. Starting from the origin node, the path is constructed 

by successively selecting the next link based on a Kumaraswamy distribution, 

depending on the link distance and subsequent path distance from the link to the 

destination (Frejinger et al., 2009). 

2.4.2 Choice Set Generation for Multimodal Network 

In multimodal networks, separate single mode networks are usually merged into 

a single integrated network by interconnecting different service modes via 

feasible walking links, and representing temporally discontinuous services as 

waiting links or waiting attributes on transit links. Conventional choice set 

generation approaches can then be directly applied on the integrated multi-

modal network to find path alternatives between any origin and destination. The 

k-shortest path algorithm and multi-objective shortest paths approach were 

applied to a multimodal network by Abdelghany and Mahmassani (1999). 

Florian (2004) also adopts a multi-objective shortest paths algorithm 

considering the dominancy of both time and cost based on Dijkstra’s label-

setting algorithm. Although Abdelghany and Mahmassani (1999) claimed that 

multi-objective shortest paths approach outperforms k-shortest paths approach 

in terms of coverage, which is defined as the percentage of recorded alternatives 

being available in the generated choice set, multi-objective shortest paths 
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approach is not applicable to large-scale networks as its computational 

complexity is well-known to be NP-hard with respect to network size. 

Benjamins et al. (2001) applied simulation approach to generate choice sets for 

different traveler groups in a multimodal network, with both private and public 

networks, using a normal distribution. Fiorenzo-Catalano et al. (2004) extends 

this approach on multimodal networks by introducing stochasticity into both 

link cost and travelers’ preferences. Travelers’ behavioural parameters are 

firstly randomized to generate different cost functions, following which, the link 

costs are randomized resulting in different paths being selected. Friedrich et al. 

(2001) applied the branch and bound algorithm for generating path choice sets 

on a public transport network by converting the network into a time-dependent 

network. Hoogendoorn-Lanser et al. (2007) extended Friedrich’s approach on a 

multi-modal network, with both a public transport and road network. 

2.4.3 Assessment of Choice Set Generation Methods 

As the quality of path choice set strongly influences the subsequent route choice 

model estimation, it is essential to evaluate the generated choice set by different 

approaches. However, literature on evaluating different choice set generation 

algorithms is rare. Only a few papers which evaluated various choice set 

generation approaches on the road network were found. These are described 

below. 

Bekhor et al. (2006) evaluated four choice set generation algorithms: labeling, 

link elimination, k-shortest paths and simulation on road network in Boston, 

U.S.. Coverage, computational time, cumulative distribution of choice set size 

and cumulative distribution of the number of links in the choice set were used 
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to evaluate the algorithms. This work was performed on a highway network in 

Boston, U.S., consisting of 13,000 nodes and 34,000 links, while the evaluation 

data was from a university transportation survey with 188 respondents in total. 

The coverage, which was defined as the percentage of recorded alternatives 

being available in the generated choice set, was reported to be 72% for the 

labeling approach with16 labels, 60% for link elimination approach, 57% for k-

shortest paths approach with k equals to 40, 50% for simulation approach at 48 

draws, and 84% for the combination of all approaches. The fastest 

computational time for one origin-destination (OD) pair was labeling approach 

at 32 seconds, followed by simulation approach and link elimination approach 

at a few minutes. k-shortest paths approach was reported to take more than one 

hour. 

The recent work presented by Rieser-Schüssler et al. (2012) is probably the first 

available literature evaluating different choice set generation approaches for 

large-scale road network using car trips extracted from GPS data. They 

comprehensively compared link elimination approach and simulation approach, 

by evaluating the following: the coverage, the average path size in the choice 

set indicating the degrees of overlapping among alternatives, the path distance 

variation in the choice set, computational performance in terms of route set size, 

the least cost distance, the number of non-pass nodes on the least cost path, and 

the time abort threshold which is defined as the cut-off computational time for 

generating paths for each OD pair. The evaluation data set contains around 

36,000 car trips with 2,434 ODs in Zurich, Switzerland using a Navteq road 

network with 408,636 nodes and 882,120 links. The link elimination approach 

achieves 73% coverage with a choice set size of 100 within 10 minutes, while 
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the simulation approach covers 75% of the reported trips at a computational 

time of over an hour.  

There is currently no literature available on evaluating different choice set 

generation algorithms on multimodal public transport network. 

2.5 Route Choice Models 

In this section, an overview of route choice models in general is presented. The 

merits and drawbacks of each model will be discussed and the applications of 

these models in public transport networks will be particularly presented. Other 

literature reviews on route choice models are available. Ben-Akiva and Bierlaire 

(2003) present a brief summary of using discrete choice models for route choice 

modeling. Frejinger (2008) presents route choice analysis in a static road 

network. A recent literature review by Prato (2009) reviewed the analysis of 

route choice behaviour under the framework of discrete choice models 

comprehensively. Two useful books on discrete choice models are highly 

recommended (Ben-Akiva and Lerman, 1985; Train, 2009).  

Discrete choice models can be classified based on different model structures. In 

this review, the simple Multinomial (MNL) logit model and its modification, 

Path-Size Logit that maintains the same logit structure by adding a correction 

term to the deterministic part of the utility function will be firstly introduced, 

following by Multimonimal Probit Model that captures correlation between 

alternatives in the covariance matrix of the error term in the utility function. 

Generalized Extreme Value (GEV) models which support multi-dimensional 

structure of the choice set will also be introduced, as well as Mixed logit models 

which capture heterogeneity.  
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2.5.1 Multinomial Logit  

The Multinomial Logit (MNL) model is basic and the simplest logit, which has 

the closed form of selection probability under the assumption that the error 

terms are identically and independently distributed (i.i.d.). In MNL, the 

probability of choosing path 𝑖 with path utility 𝑉𝑖 in choice set 𝐶𝑛 is expressed 

as: 

𝑃(𝑖|𝐶𝑛) =
𝑒𝑥𝑝(𝑉𝑖)

∑ 𝑒𝑥𝑝(𝑉𝑗)𝑗∈𝐶𝑛

 Eq.(2-1)  

MNL model is most commonly used in practice due to its simplicity. 

(Jánošíková et al., 2014) presented a stop-to-stop route choice model estimation 

on public transport network using MNL model based on smart card data. In this 

model, in-vehicle time, transfer walk time, number of transfers and waiting time 

were considered, while the choice set was directly inferred from smart card 

observations. (Nassir et al., 2015) analyzed the route choice behaviors from 

smart card data in Brisbane using binary logistic model, which is an MNL model 

with binary options in choice set.  

However, the assumption that the error terms are i.i.d. in MNL model does not 

valid in the context of route choice, particularly due to paths overlapping. 

Efforts have therefore been made to overcome this restriction by making a 

deterministic correction of the utility for overlapping paths. Given the 

shortcomings of the MNL model, more complicated models have therefore been 

proposed in the literature to overcome this issue. One easy and practical way is 

to add a deterministic correction term to the path utility function while 

maintaining the simple path selection structure of MNL.  
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2.5.2 Path Size Logit 

Cascetta et al. (1996) proposed the first deterministic correction to address the 

correlation between alternatives due to path overlapping. They introduced an 

attributed, called “Commonality Factor” (CF) with three types of different 

formulations to path utility function. However, the formulations of the CF 

attribute were provided without any theoretical proof on such formulations or 

which of the formulation should be used.  

Later, Ben-Akiva and Ramming (1998) proposed the Path-Size Logit (PSL) 

model in which a deterministic correction attribute “path size”(PS) was 

introduced and added to the path utility 𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝛽𝑃𝑆𝑙𝑛(𝑃𝑆𝑖𝑛) + 휀𝑖𝑛 

where𝑉𝑖𝑛 is the deterministic path utility, 휀𝑖𝑛 is the error component, and the 

correction attribute: path-size is defined as: 

𝑃𝑆𝑖𝑛 = ∑ (
𝑙𝑎
𝐿𝑖
)

1

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛𝑎∈𝛤𝑖

 Eq.(2-2) 

Where 𝑃𝑆𝑖𝑛 is the path-size of path 𝑖 in choice set 𝐶𝑛; 𝑙𝑎is the length of link 𝑎 , 

Γ𝑖 is the set of all links along path 𝑖; 𝐿𝑖 is the total length of path 𝑖; 𝛿𝑎𝑗 equals 

to 1 if link 𝑎 is on path 𝑗 and 0 otherwise. Although the idea of path-size is 

similar to the “Commonality Factor”, the derivation of path-size formulation 

was provided based on discrete choice theory for aggregate alternatives. 

Another formulation of path-size was presented by Ben-Akiva and Bierlaire 

(Ben-Akiva and Bierlaire, 1999) by considering the length of the shortest path 

in the choice set, 𝐿𝐶𝑛
∗ ,: 
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𝑃𝑆𝑖𝑛 = ∑ (
𝑙𝑎
𝐿𝑖
)

1

∑ 𝛿𝑎𝑗
𝐿𝐶𝑛
∗

𝐿𝑗𝑗∈𝐶𝑛
𝑎∈𝛤𝑖

 
Eq.(2-3) 

The major drawback of this formulation is that it will produce path-size value 

larger than 1 for unique path alternatives that are longer than the shortest path, 

which will result indifferent signs for the logarithm of the path-size in the utility 

function.  

Late, a generalized path-size formulation by adding a non-negative scaling 

parameter γ to Eq.(2-3)(Ramming, 2001)  

𝑃𝑆𝑖𝑛 = ∑ (
𝑙𝑎
𝐿𝑖
)

1

∑ 𝛿𝑎𝑗 (
𝐿𝑖
𝐿𝑗
)
𝛾

𝑗∈𝐶𝑛𝑎∈𝛤𝑖

 
Eq.(2-4) 

Note that when γ equals to 1, it is similar to the path-size formulation as in 

Eq.(2-3). Numerical demonstration has shown that this formulation has a better 

estimation result with γ set to infinity than the model with γ equals to 1. With 

large γ, this formulation can help to decrease the impact of extremely long paths 

in the choice set. For example, when a short path shares a link with an extreme 

long path, the path-size for the short path will have a positive impact on the 

utility while the PS for the long path will have a negative impact on the utility. 

Estimation results of C-Logit and PSL indicated that PSL with generalized path-

size formulation outperforms C-Logit in terms of model estimation (Ramming, 

2001).  

Frejinger and Bierlaire (Frejinger and Bierlaire, 2007) proposed a framework to 

combine deterministic attribute of path-size as in PSL and stochastic attribute 

of path overlapping in Error Component models. For the deterministic path-size, 
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they presented derivation of the path-size formulation as in Eq.(2-3), and 

provided analytical and numerical evaluation on the generalized path-size 

formulation as in Eq.(2-4). Their results concluded that the generalized path-

size formulation might produce counter intuitive results and the original 

formulation is more appropriate.  

The basic path-size formulation in Eq.(2-3) has been extended by Bovy et al. 

(2008). They provided another derivation of path-size formulation based on 

nested Logit model. Based on the derivation, they further proposed a path size 

correction factor as follows: 

𝑃𝑆𝐶𝑖𝑛 = ∑ (
𝑙𝑎
𝐿𝑖
) 𝑙𝑛∑ 𝛿𝑎𝑗

𝑗∈𝐶𝑛𝑎∈𝛤𝑖

 Eq.(2-5) 

where 𝑃𝑆𝐶𝑖𝑛 denotes the path-size correction factor of path 𝑖in choice set 𝐶𝑛. 

Note that unlike the path-size formulation in Eq.(2-3), the logarithm is taken 

inside the path-size correction factor, and therefore the utility function is 𝑈𝑖𝑛 =

𝑉𝑖𝑛 − 𝛽𝑃𝑆𝑃𝑆𝐶𝑖𝑛 + 휀𝑖𝑛.This formation is theoretically more appealing, but both 

the estimation and prediction results show similar performance to the path-size 

formulation in Eq.(2-3). 

Frejinger et al. (2009) presented an extended path-size formulation based on the 

formulation in Eq.(2-3) by including an expansion factor: 

𝐸𝑃𝑆𝑖𝑛 = ∑ (
𝑙𝑎
𝐿𝑖
)

1

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛 𝛷𝑗𝑛
𝑎∈𝛤𝑖

 Eq.(2-6) 

Where Φ𝑗𝑛 is the expansion factor defined as: 



Chapter 2 - Literature Review 

 

Page 28  

 

𝛷𝑗𝑛 = {

1if𝛿𝑎𝑗 = 1or𝑞(𝑗)𝑅𝑛 ≥ 1

1

𝑞(𝑗)𝑅𝑛
otherwise

 Eq.(2-7) 

Where 𝑞(𝑗)  is the probability of path 𝑗  being selected by sampling from 

universal choice set and 𝑅𝑛 is the total number of sampled path in choice set 𝐶𝑛. 

They presented numerical results based on synthetic data and concluded that 

this expanded path-size is remarkably better than original path-size formulation 

as unbiased parameter estimates can be obtained. However, the illustration is 

only performed using synthetic data on a small toy network. Computing the 

expansion factor is expected to be extremely intensive in large-scale network 

where the universal choice set is numerous. 

Most of the public transport route choice models either neglect the path-

overlapping issue, or directly adopt the path-size formulation in PSL model or 

C-Logit model without explicitly defining it in the public transport context 

(Anderson, 2013; de Grange et al., 2012; Guo, 2011). They are only two such 

studies exist that addressed the path-size formulation for route choice models in 

public transport networks, which are reviewed below. 

Hoogendoorn-Lanser et al. (2005) implemented a PSL model to explicitly 

address the substantial path overlap issue in multimodal transport networks. 

Based on the generalized path-size formulation in Eq.(2-5), they presented three 

types of path-size based on number of overlapped legs, travel time on 

overlapped legs, and distance on overlapped legs respectively. A leg was 

defined as a part of the path between two nodes in the network in which a single 

mode or service type is used. They estimated PSL Models based on their path-

size definition and compared the results with MNL Model using a survey data 
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for train travelers in an urbanized corridor in the Netherlands. The results 

suggested that the path-size defined using the number of legs with γ=20 

achieves substantially better results than the other definitions. However, their 

work did not focus on the mathematical background and even the exact path-

size formulation under each path-size definition is not specified in their paper. 

An extension of this work has specified the exact path-size formulations and 

proposed three path-size formulations for a route as function of path-size on 

sub-routes (Hoogendoorn-Lanser and Bovy, 2007). A route consists of home-

end, sub-route, activity-end sub-route and train-part sub-route. Three path-size 

formulations were specified: 1) path-size formulation based on length 𝐿𝑖𝑟 of 

sub-route 𝑠𝑖𝑟  and the total number 𝑁𝑛𝑎  of unique full routes using leg 𝑎 in 

choice set 𝐶𝑛 as: 

𝑃𝑆𝑖𝑟𝑛 =
1

𝐿𝑖𝑟
∑ (

𝑙𝑎
𝑁𝑛𝑎

)

𝑎∈Γ𝑖𝑟

 Eq.(2-8) 

Where Γ𝑖𝑟 is the set of legs in sub-route 𝑠𝑖𝑟; 2) PS formulation based on length 

of sub-route and the number of unique sub-routes and 3) PS formulation based 

on length of full route and the total number of unique full routes using leg. A 

MNL model and base PSL Models using the classic path-size formulation as in 

Eq.(2-2) and a set of PSL models using proposed PS formulations were 

estimated using survey data in an urbanized corridor in the Netherlands. The 

results demonstrated that PSL model with proposed PS formulations is superior 

to MNL and the base PSL, and travelers value overlap in the home end and the 

activity end of the trip negatively, whereas overlap in the train part is valued 

positively (Hoogendoorn-Lanser and Bovy, 2007). However, suggestion on 
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which proposed PS formulation to use is not given as they all achieves similar 

estimation results.  

The advantages of PSL models are 1) they are able to address correlations 

between path alternatives, more specifically, path overlapping in the context of 

route choice modeling; 2) they are simple to estimate as the closed-form logit 

structure is maintained and therefore model estimation is relatively easier. The 

limitation is that they ignore correlations due to factors other than path 

overlapping.  

2.5.3 Multinomial Probit 

Daganzo and Sheffi (1977) introduced the MNP to model route choice decisions 

by assuming the error terms are normally distributed with a joint covariance 

matrix. The main advantage of MNP is that it allows arbitral specification of 

covariance structure. However, it does not have a closed form, and thus the 

model estimation requires heavy computing time. Besides, the covariance 

matrix becomes extremely complicated when there are large number of 

alternatives in the choice set, making it almost impossible to model route choice 

decisions in dense urban network. Therefore, it is only applied in simple 

network with constraint on number of alternatives, and hasn’t been applied to 

large-scale network yet. 

Yai et al. (1997) propose a MNP model with structured covariance matrix in the 

context of route choice in the Tokyo rail network. This work considerably limits 

the number of covariance parameters to be estimated. To further reduce the 

computational complexity, they have imposed maximum three alternatives for 

each OD pair in their application.  
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2.5.4 Generalized Extreme Value 

The Generalized Extreme Value (GEV) is a family of models proposed by 

McFadden (1978) to account correlations among alternatives by assuming that 

the error terms of utility for all alternatives are jointly distributed as a 

generalized extreme value. When the correlation among alternative is zero, it 

becomes MNL. Contrary to the MNL model, the GEV models allow some 

correlations while maintaining closed form for selection probability.  

Nested Logit Model (NL), as the best known relaxation of MNL, is obtained by 

partitioning the alternatives into different subsets or nests (Williams, 1977). The 

assumptions for NL are: 1) IIA only holds for alternatives within the same nest, 

and 2) one alternative cannot exist in multiple nests. The utility 𝑈𝑖  for 

alternative 𝑖 in nest 𝐵𝑘 is: 

𝑈𝑖 = 𝑉𝑘 + 𝑉𝑘𝑖 + 휀𝑘 + 휀𝑘𝑖 Eq.(2-9) 

Where 𝑉𝑘  is the deterministic utility of selecting nest 𝐵𝑘 ; 𝑉𝑘𝑖  is the 

deterministic utility of selecting alternative 𝑖 in nest 𝐵𝑘; 휀𝑘 is the error term of 

𝑉𝑘 and 휀𝑘𝑖 is the error term of 𝑉𝑘𝑖. The selection probability of alternative 𝑖 is 

then: 

𝑃(𝑖|𝐶𝑛) =
𝑒𝑥𝑝 (

𝑉𝑖
𝜆𝑘
) (∑ 𝑒𝑥𝑝(

𝑉𝑗
𝜆𝑘
)𝑗∈𝐵𝑘 )

𝜆𝑘−1

∑ (∑ 𝑒𝑥𝑝(
𝑉𝑗
𝜆𝑙
)𝑗∈𝐵𝑙 )

𝜆𝑙
𝐾
𝑙=1

 Eq.(2-10) 

The nesting parameter 𝜆𝑖 indicates the correlation between alternatives in nest 

𝐵𝑘, and K is the total number of nests. When 𝜆𝑖 = 0 for all alternatives in choice 
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set 𝐶𝑛 , it means there is no correlation between any alternatives , and the 

equation above becomes the same as MNL.  

While NL assumes there is no overlapping between alternatives in different 

nests, the Cross Nested Logit (CNL) proposed by Vovsha (1997) relaxes this 

assumption. The selection probability of alternative 𝑖 is given by the summation 

of the probability of choosing alternative 𝑖 in each nest: 

𝑃(𝑖|𝐶𝑛) = ∑ 𝑃(𝑘)𝑃(𝑖|𝑘)

𝑖∈𝐵𝑘

 Eq.(2-11) 

Where 𝑃(𝑘) is the probability of choosing nest 𝐵𝑘 and 𝑃(𝑖|𝑘) is the conditional 

probability of choosing alternative 𝑖 in nest 𝐵𝑘: 

𝑃(𝑖|𝑘) =
(𝛼𝑖𝑘 𝑒𝑥𝑝(𝑉𝑖))

1
𝜆𝑘

∑ (𝛼𝑖𝑙 𝑒𝑥𝑝(𝑉𝑙))
1
𝜆𝑙𝐾

𝑙=1

 Eq.(2-12) 

𝑃(𝑘) =

(∑ (𝛼𝑖𝑘 𝑒𝑥𝑝(𝑉𝑖))
1
𝜆𝑘𝑖∈𝐵𝑘 )

𝜆𝑘

∑ ((𝛼𝑙𝑘 𝑒𝑥𝑝(𝑉𝑙))
1
𝜆𝑘)

𝜆𝑘
𝐾
𝑙=1

 Eq.(2-13) 

Where 𝛼𝑖𝑘 is the allocation parameter that indicates the portion of alternative 𝑖 

in nest 𝐵𝑘, under the constraint that ∑ 𝛼𝑖𝑘
𝐾
𝑘=1 = 1.  

Prashker and Bekhor (1998) adopted the CNL to model route choice decisions 

where each link of the network corresponds to a nest, and each path to an 

alternative. The allocation parameter 𝛼𝑖𝑘 of path 𝑖 in nest 𝐵𝑘 with link 𝑘 is then 

defined as a function with respect to the link length and the path length: 
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𝛼𝑖𝑘 =
𝐿𝑘
𝐿𝑖
𝛿𝑖𝑘 Eq.(2-14) 

Where 𝐿𝑘 is the length of link 𝑘 in nest 𝐵𝑘, 𝐿𝑖 is the total length of path 𝑖, and 

𝛿𝑖𝑘  is the incident dummy indicating whether link 𝑘  is along path 𝑖 . This 

application of CNL on route choice model accommodates a rich correlation 

structure due to path overlapping. However, the nesting parameters are 

extremely hard to estimate due to large amount of nests. Wen and Koppelman 

(2001) proposed to estimate the nesting coefficient as a parameterized average 

of the allocation parameter: 

𝜆𝑘 = (1 −
∑ 𝛼𝑖𝑘𝑖∈𝐶𝑛

∑ 𝛿𝑖𝑘𝑖∈𝐶𝑛

)

𝛾

 Eq.(2-15) 

where 𝛾  is a parameter to be estimated. Based on this estimation approach, 

Ramming (2001) estimated CNL using route choice data collected on a small 

network in Boston and concluded that the PSL model with the generalized 

formulation outperforms the CNL model.  

The Paired Combinatorial Logit model (PCL) is another GEV model that has 

been adopted for route choice application (Chu, 1989). It is further developed 

(Koppelman and Wen, 2000) and adapted (Prashker and Bekhor, 1998; 

Pravinvongvuth and Chen, 2005) to the route choice problem. Based on the 

CNL structure, they propose that each pair of path alternatives belongs to a nest, 

and the selection probability of path 𝑖 is then: 

𝑃(𝑖|𝐶𝑛) = ∑ 𝑃(𝑖𝑗)𝑃(𝑖|𝑖𝑗)

𝑗∈𝐶𝑛,𝑗≠𝑖

 Eq.(2-16) 
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where𝑃(𝑖𝑗) is the probability of selection path pair (𝑖, 𝑗) among all possible 

path pairs in choice set 𝐶𝑛 and 𝑃(𝑖|𝑖𝑗) is the conditional probability of selecting 

path 𝑖 from path pair (𝑖, 𝑗), where: 

𝑃(𝑖|𝑖𝑗) =

𝑒𝑥𝑝(
𝑉𝑖

1 − 𝜎𝑖𝑗
)

𝑒𝑥𝑝(
𝑉𝑖

1 − 𝜎𝑖𝑗
) + 𝑒𝑥𝑝(

𝑉𝑗
1 − 𝜎𝑖𝑗

)

 Eq.(2-17) 

𝑃(𝑖𝑗)

=

(1 − 𝜎𝑖𝑗) (𝑒𝑥𝑝 (
𝑉𝑖

1 − 𝜎𝑖𝑗
) + 𝑒𝑥𝑝(

𝑉𝑖
1 − 𝜎𝑖𝑗

))
1−𝜎𝑖𝑗

∑ ∑ (1 − 𝜎𝑝𝑞) (𝑒𝑥𝑝 (
𝑉𝑝

1 − 𝜎𝑝𝑞
) + 𝑒𝑥𝑝(

𝑉𝑞
1 − 𝜎𝑝𝑞

))

1−𝜎𝑝𝑞
𝑁
𝑞=𝑝+1

𝑁−1
𝑝=1

 
Eq.(2-18) 

where 𝜎𝑖𝑗 is the similarity coefficient between path 𝑖 and path 𝑗, and N is the 

total number of alternative in the choice set. Prashker and Bekhor (1998) has 

defined the similarity coefficient 𝜎𝑖𝑗 to be a function of path length 𝐿𝑖 and 𝐿𝑗: 

𝜎𝑖𝑗 = (
𝐿𝑖𝑗

𝐿𝑖𝐿𝑗
)

𝛾

 Eq.(2-19) 

Where 𝐿𝑖𝑗  is the overlapped length between path 𝑖  and path 𝑗 , and 𝛾  is a 

parameter to be estimated. Gliebe et. al. (1999) has modified this expression to: 

𝜎𝑖𝑗 =
𝐿𝑖𝑗

𝐿𝑖 + 𝐿𝑗 − 𝐿𝑖𝑗
 Eq.(2-20) 

The values of both similarity coefficients are constrained to be between 0 and 

1, with 0 indicates there is no common link between path 𝑖 and path 𝑗, while 1 

indicates path 𝑖 and path 𝑗 are exactly the same. The same as CNL, parameters 

are very hard to estimate due to large amount of nests. For a choice set with N 
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alternatives, there are N(N-1)/2 nests in total. There hasn’t been any application 

of CNL and PCL for route choice in large-scale network yet. 

Nuzzolo et al. (2001) present a multi-dimensional logit-based route choice 

model for a schedule-based transit network. In this model, a boarding stop needs 

to be firstly selected, followed by path selection given the selected boarding 

stop. Both the stop selection and path selection are modeled with multinomial 

logit model. This model was reinforced later by adding departure time selection 

as an additional layer on top of boarding stop selection (Nuzzolo et al., 2012). 

The departure time selection is also modeled as a multinomial logit model. The 

advantage of this multi-dimensional structure is that it reveals the selection 

behavioural that passengers tend to select departure time based on all available 

information, and then select a nearby boarding stop given the departure time, 

and lastly select a path with given departure time and boarding stop. However, 

it does not address the path overlapping issue or the possible correlation 

between alternative paths under different boarding stops.  

Hoogendoorn-Lanser and Bovy (2004) present a Hierarchical Nested Logit 

(HNL) choice model and a Multi-Nested Generalized Extreme Value (MN-

GEV) choice model to address the correlation between alternatives for the 

home-end trips and activity-end trips with given choice set obtained from survey 

data for a multimodal network. In a HNL model, correlation between 

alternatives is accounted by clustering similar alternatives into nests. However, 

one alternative can only be allocated into one nest, cross nested alternatives are 

not allowed. In contrast to the HNL model, the MN-GEV model does allow 

differences in correlation along multiple choice dimensions. The model is 
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capable of accommodating the distinct dimensions symmetrically, thus 

overcoming the strict hierarchical structure of the multilevel HNL models.  

2.5.5 Mixed Logit 

Mixed logit model is becoming a popular mathematical structure for analyzing 

choice behaviour (Hensher and Greene, 2003; McFadden and Train, 2000). 

There are two main advantages of mixed logit over other discrete choice 

structures. Firstly it is able to incorporate unobserved heterogeneity across 

agents and choice situations through randomly distributed coefficients; and 

secondly, it relaxes the IID assumptions of the MNL model by addressing 

correlations between alternatives (Ben-Akiva et al., 1993; Hess et al., 2005). 

These two advantages correspond to the two versions of mixed logit model: 1) 

Random Coefficients Logit (RCL) specification and Error Components Logit 

(ECL) specification. RCL specification incorporates correlations across 

respondents through randomly distributed coefficients, while ECL specification 

considers the correlation over alternatives through an additive error structure, 

which is also referred as logit kernel. Therefore, RCL specification is more 

appropriate to address taste heterogeneity with panel data. Although these two 

versions provide different interpretations, they are proved to be mathematically 

equivalent (Train, 2009). This review will only focus on the RCL specification. 

Revelt and Train (1998) proposed a framework to deal with data with repeated 

observations of respondents. The assumption is that user heterogeneity only 

exists among respondents and the same respondent making repeated choices are 

having the same tastes over choices. In their RCL specification, the utility of 

alternative 𝑖 perceived by decision maker 𝑛 with choice set 𝐶𝑛 is specified as: 
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𝑈𝑖𝑛 = 𝜷𝒏𝑿𝒊𝒏 + 휀𝑖𝑛 = (𝜷𝒏̅̅ ̅̅ + 𝜼𝒏)𝑿𝒊𝒏 + 휀𝑖𝑛 Eq.(2-21) 

where 𝑋𝑖𝑛 is the observed variables that relates to alternative 𝑖  and decision 

maker 𝑛, 휀𝑖𝑛 is the unobserved error term that follows iid Gumbel distribution, 

and 𝛽𝑛 is the randomized coefficients of these variables for decision maker 𝑛, 

with 𝛽𝑛̅̅ ̅ being the deterministic taste preference and 𝜂𝑛 is the randomized taste 

preference across decision makers. 𝜂𝑛  can be specified to follow certain 

distributions, and the parameters of those distributions will be estimated from 

data. Commonly specified distributions in the literatures are: normal or 

lognormal distribution (Bastin et al., 2006; Ben-Akiva et al., 1993; Bhat and 

Gossen, 2004; Grigolon et al., 2014; Revelt and Train, 1998), truncated normal 

distributions (Revelt, 1999), triangular distribution (Revelt and Train, 2000; 

Train, 2001), uniform distributions (Revelt and Train, 2000; Train, 2001), and 

Rayleigh distributions (Siikamäki, 2001). Fosgerau and Bierlaire (2007) 

proposed a practical test based on semi-nonparametric techniques to examine 

whether a specific distribution is suitable. 

Hess and Rose (2009) presented a framework to allow intra-person 

heterogeneity in mixed logit model and Hess and Train (2011) further specified 

to incorporate both inter-personal and intra-personal heterogeneity in mixed 

logit models. The utility of alternative 𝑖  perceived by decision maker 𝑛  at 

choice situation 𝑡 is specified as: 

𝑈𝑖𝑡𝑛 = 𝜷𝒏𝒕𝑿𝒊𝒏 + 휀𝑖𝑛𝑡 = (𝜷𝒏𝒕̅̅ ̅̅̅ + 𝜼𝒏 + 𝝉𝒏𝒕)𝑿𝒊𝒏 + 휀𝑖𝑛𝑡 Eq.(2-22) 

where 𝛽𝑛𝑡 is the randomized coefficients of these variables for decision maker 

𝑛 at choice situation 𝑡, 휀𝑖𝑛𝑡 is the unobserved error term that follows iid Gumbel 



Chapter 2 - Literature Review 

 

Page 38  

 

distribution, 𝛽𝑛𝑡̅̅ ̅̅  is the deterministic taste preference and 𝜂𝑛 is the randomized 

taste preference across decision makers, and 𝜏𝑛𝑡  represents the taste 

heterogeneity across choice decisions for person 𝑛.  

Most mixed logit applications do not relate the observed attributes to the 

variation of taste, but only address the heterogeneity in general. This 

relationship can be modeled by relating the distribution parameters of 𝛽𝑛 with 

observed attributes. Unfortunately, there are only few applications found in the 

literature that incorporate the observed attributes into the distribution of  𝛽𝑛 

with the mean of 𝛽𝑛 to be a function of decision maker characteristics (Bhat, 

1998, 2000). A recent work by Li et al. (2016) incorporates both observed and 

unobserved heterogeneity in route choice analysis by treating the random 

coefficients in three parts: agent specific term, OD pair specific term and choice 

situation specific term. 

Few applications of adopts the RCL specification to deal driver’s route choice 

decision with panel data (Bogers, 2009; Han et al., 2001), while Bekhor et al. 

(2002) use the ECL specification of mixed logit model to consider path 

overlapping problem.  

There is only one application of Mixed Logit in modeling route choice in public 

transport networks, and it applied mixed logit to analyze passengers’ transit 

route choice behaviour in Montreal (Eluru et al., 2012). The data used was 

obtained from a revealed preference survey conducted on university members. 

Passengers are assumed to be heterogeneous in travel time in train, total walking 

time squared and total number of transfers. Although not specified, they 

mentioned that they have interacted the total travel time with passengers’ socio-
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demographics attributes including age, gender and designation. However, the 

survey respondents are all from university including student, staff and faculty, 

which has introduced large sample bias into estimation results.  

2.5.6 Other Modeling Frameworks 

Except random utility framework, other frameworks have been used in the 

literature for modeling route choice behaviour. Models based on artificial neural 

networks (Yang et al., 1993), fuzzy logic (Henn, 2000; Rilett and Park, 2001), 

decision trees (Yamamoto et al., 2002) and other machine learning techniques 

(Chen et al., 2011; Nakayama and Kitamura, 2000; Park et al., 2007) have been 

proposed. This list of literature is not exhaustive but gives some existing 

alternatives to random utility framework. 

Hurk et al. (2015) conducted a rule-based route choice model from smart card 

data. In this model, they identified the route selection rate based on six selection 

rules, namely, 1) first departure, 2) earliest arrival, 3) last arrival, 4) least 

transfer, 5) maximum route length, and 6) selected least transfer last arrival.  

The results indicate selected least transfer last arrival path achieves highest 

coverage most consistently. However, this approach has no qualitative 

indication on passenger’s preferences over difference factors that affects path 

selection. 
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Chapter 3 – Modeling Stop-to-Stop Route Choice 

Behaviour from Smart Card Data 

 

With the expanded usage of smart cards in public transport system, massive 

information on passengers’ chosen routes becomes available with high accuracy. 

Researchers could benefit from this numerous route choice data in smart card 

by validating the choice sets and estimating route choice model parameters more 

accurately. In this chapter, a stop-to-stop route choice model using smart card 

data is presented to identify and quantify different aspects of travelling that 

affect passengers’ stop-to-stop route choice decisions in the public transport 

network of Singapore. In the choice set generation stage, it evaluates six choice 

set generation approaches, namely, 1) labeling, 2) link elimination, 3) 

simulation, 4) k-shortest path, 5) nested labeling & link elimination, and 6) 

branch & bound approaches, to the multimodal public transport network in 

Singapore. A stop-to-stop route choice model is estimated based on final choice 

set with 100% coverage against one data set and the model is validated by 

examining the prediction performance against another two datasets using the 

estimated parameters. 

 

3.1 Introduction 

Along with the wide application of fare collection system using smart card in 

public transport network, massive amounts of passengers’ actual route choices 

becomes available. Smart card data has been used in various ways in 
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transportation planning. There are three main categories of usage of smart card 

data to transit planners (Pelletier et al., 2011):  

 Strategic-level. It includes studies that relate to network planning 

(Utsunomiya et al., 2006), user behaviour studies (Agard et al., 2006; 

Bagchi and White, 2005), and travel demand forecasting (Trepanier et 

al., 2009).  

 Tactical-level. Studies at this level aim at optimizing service schedules 

(Utsunomiya et al., 2006), and deriving travel patterns (Agard et al., 

2006; Hofmann et al., 2009; Jang, 2010),  

 Operational level. At operational level, studies related to supply-and-

demand indicators (Trépanier et al., 2009), as well as improvement in 

smart card system operations (Alfred Chu and Chapleau, 2008; 

Chapleau and Chu, 2007) 

Researchers could also benefit from the numerous route choice data in smart 

card by validating the choice sets and estimating route choice model parameters 

more accurately. Despite there is no information on true origin-destination 

locations in the smart card data, the tremendous richness of passengers path 

selection from an initial boarding stop to the last alighting stop on public 

transport network serves as great data for investigating passengers’ preferences 

from their stop-to-stop route choice decisions. The stop-to-stop route choice 

behaviour is useful in real-time traffic estimation simulators in which real-time 

smart card data serves as input to the simulator and the simulator simulates 

passenger route choice decision and outputs real-time traffic prediction. 

However, few studies use smart card data in route choice modeling. There still 

lacks literature validating the generated path choice sets using smart card data 
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and understanding how passengers make their route choice decisions in public 

transport network.  

This chapter aims to identify and quantify different aspects of travelling that 

affect passengers’ stop-to-stop route choice decisions in the public transport 

network of Singapore using smart card data. It implements six choice set 

generation approaches, namely, the 1) labeling, 2) link elimination, 3) 

simulation, 4) k-shortest path, 5) nested labeling & link elimination, and 6) 

branch & bound approaches, to the multimodal public transport network in 

Singapore, and comparatively evaluates these approaches in a comprehensive 

evaluation framework. Significant efforts have been made to reach 100% 

coverage for passenger journey observations in the final choice set with detailed 

investigation on identifying possible reasons for fail-to-generate paths. Route 

choice model is estimated based on final choice set with 100% coverage against 

one data set and the model is validated by examining the prediction performance 

against another two datasets using the estimated parameters. 

The rest of the chapter is structured as follows. Section 3.2 presents the public 

transport network of Singapore examined in this thesis. In Section 3.3, the 

datasets used for evaluating choice set generation and route choice modeling are 

described. Section 3.4 describes the implementation and evaluation of the six 

choice set generation approaches for public transport network. Section 3.5 

presents the stop-to-stop route choice model with model specification, 

estimation results, perception and evaluation, as well as prediction results. 
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3.2 Network Data 

Google Transit data with stop information, service line information, service line 

frequencies and scheduled timetable for bus, MRT and LRT, was used to build 

up the network and compute link attributes such as in-vehicle travel time, 

walking time and waiting time. 

To enable direct application of various choice set generation approaches on a 

public transport network, the network representation outlined by De Cea and 

Fernández (1993) is adopted. This involves creating “route segments” covering 

all stop-to-stop combinations within the same pattern as shown in Figure 3-1 

(De Cea and Fernández, 1993).  

Rx(Li, Lj) - Route segments x transformed from service line Li, and Lj

S2S1 S3

S1 S2 S3

R1(L1)

R2(L1,L2,L3,L4,L5)
R3(L1,L6,L7,L8,L9)

Lx – Service line x, denote as Lx

L2
L1

L3L4

L5

L6 L7 L8 L9

 

Figure 3-1 Demonstration of network representation 

A route segment represents a direct connection between two stops served by at 

least one service line. All vehicle journeys that serve the route segment must 

run along the same sequence of roads. There are several advantages of this 
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network representation: 1) it addresses the common line issue in public transport 

network as all common lines serving the same stop pair are embedded in the 

same route segment and therefore, the effect due to common lines between stop 

pairs can be compensated in waiting time to embark on each route segment (De 

Cea and Fernández, 1993); 2) path overlapping issues can be easily addressed 

by computing the path-size with respect to overlapped route segment, which is 

more realistic as in public transportation networks, passengers perceive 

overlapping in terms of transfer points (Hoogendoorn-Lanser and Bovy, 2007). 

While in hyper-path approach, to the author’s knowledge, no literature has been 

found on how to handle path-overlapping among hyper-path alternatives. 3) it 

helps to speed up the shortest path searching as route segments are created 

between stop pairs as long as they can be reached via at least one service line 

without a transfer, regardless of their actual distance. In this network 

reformulation, the computational time for each shortest path search is 

proportional to the number of transfers along the path regardless of the actual 

length or traversed stops of that path. Empirical test also demonstrates the 

shortest path searching time (0.07sec) on the proposed network are generally 10 

times faster than shortest path searching time (0.69sec) on the super-Network 

presentation with separate links for different service lines and transfer between 

lines (Carlier et al., 2003); and 4) Aggregation of common service lines on route 

segment gives freedom to model the boarding behaviour and interactions 

between passengers and service vehicles in an agent-based simulation 

environment. In an agent-based supply simulator, an agent is given a set of 

attractive lines, which is the set of common lines on route segment, at each 
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transfer point derived from the selected path in the route choice model. Various 

boarding mechanisms such as first-come-first-board, board with seat only, and 

etc., could be easily applied.  

The disadvantage of this approach is the number of route segments created 

increases quadratically with the number of stops along each service line. This 

requires larger memories for data storage. However, given the fast advancement 

of computational power and data storage, it deems not to be a practical issue.  

Each stop/station in the public transport network is treated as a node in the 

network while links are route segments with direct connection between two 

stops served by at least one service line without transfer. Walking links were 

then added on to the network between all stop pairs which are less than 500 

meters away from each other, assuming a Euclidian distance. The total network 

contains 4,718 nodes, 447,432 transit route segments, and 54,486 walking links.  

In-vehicle travel time is retrieved from schedule data by selecting the scheduled 

travel time among all service lines on the route segment. Travel time on walking 

links was estimated by assuming a constant walking speed of 4km/hour for 

every passenger, with reference to the recommended pedestrian walking speed 

for most conditions by The Federal Highway Administration (Rouphail et al., 

1998). Waiting time can be calculated in several ways. If departure time of a 

passenger is given, waiting time can be computed by selecting the minimal 

waiting time with respect to scheduled bus arrival time. Here the departure time 

is the arrival time at the boarding stop. If departure time is not available, 

expected waiting time can be calculated by estimating service line frequency 
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with an assumed passenger arrival distribution. In this work, expected waiting 

time is based on the overall frequency of common service lines on the route 

segment as defined in Eq. (3-1): 

𝑡𝑤𝑎𝑖𝑡,𝑅𝑥 =
1

2∑ 𝑓𝑖𝐿𝑖∈𝑅𝑥

 Eq. (3-1) 

Where 𝑡𝑤𝑎𝑖𝑡,𝑅𝑥 denotes the expected waiting time to embark on route segment 

Rx; Li is a service line traversing on the route segment; and fi is the frequency of 

line Li. 

Note that the network configuration is specified to facilitate path choice set 

generation only. Route choice model estimation depends on the definition of 

paths which is generic in this context and could be applied to other cities directly. 

In this chapter, a path is defined as a sequence of transit legs (route segments) 

with different transport services that passenger takes from the initial boarding 

stop to the final alighting stop in the public transport network while the travel 

mode is defined as a transport service type such as Bus, rapid transit (including 

MRT, and LRT), or walk.  

3.3 Route Choice Data 

EZLink card is the contactless smart card used in the public transport network 

of Singapore. It is the dominant fare payment approach in Singapore’s public 

transit system (EZlink, 2013). Passengers have to both tap in whilst boarding a 

bus and tap out when alighting from a bus, while for MRT and LRT, passengers 

have to tap their EZlink card when entering and exiting MRT and LRT stations. 
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Around 4 million of passenger journeys on Singapore’s public transport system 

are recorded in EZlink card daily (PublicTransport@sg, 2013).  

A passenger journey in EZLink card is defined as a series of single-mode trips 

with maximum 5 transfers within 2 hours. Each transfer can take up to 45 

minutes. Previous work on analyzing public transport journeys in London using 

smart card data has suggested 45 minutes as optimal transfer thresholds for bus-

to-bus journey, and 30 minutes for the bus-to-metro and metro-to-metro transfer 

thresholds (Seaborn et al., 2009). This work has adopted such threshold with 

additional time-distance constraints to better classify the ownership of a transit 

leg to a particular passenger journey. The additional constraints are: 

 The transfer distance for each transfer should be less than 1km. 

 The total transfer time should be less than 1.2 times the sum of expected 

walking time and maximum waiting time. 

These two constraints are added by analyzing heavily detoured records in smart 

card data with manual investigation by plotting them into geographic interface 

system. These two constraints are added to filter out error journey records for 1) 

early tapping out of EZLink card, and 2) combined two journeys into one 

journey by taking advantage of the EZlink recording strategy. A recent paper 

by Robinson et al. (2014) describes the impact of imposing such constraints on 

improve the quality of smart card data.   

The major limitation of smart card is that it does not include any information on 

actual origin and destination. Due to this data limitation, all choice set 

generation approaches in this work are applied to generate stop-to-stop path 
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choice set only, where the first stop denotes the initial boarding stop of the 

passenger journey while the second stop denotes the final alighting stop of the 

passenger journeys. 

Three data sets are sampled from all the observed stop-to-stop pairs in smart 

card over the whole Singapore on 11 April 2011. As the smart card data does 

not record transfer stations between rapid transit services, it is not possible to 

estimate route choice decisions for pure MRT/LRT trips using smart card data. 

Therefore, when sampling stop-to-stop pairs, if the sampled stop-to-stop pair is 

a pure MRT/LRT trip, it is discarded and resampled until a stop-to-stop pair 

with either boarding stop or alighting stop is a bus stop is drawn. Each data set 

contains 1,000 stop-to-stop pairs. 

An interesting finding from smart card data is the high path dominancy for stop-

to-stop paths. Vast majority (around 82.8%) of stop-to-stop pairs have single 

observed path selection and there are less than 0.1% stop-to-stop pairs which 

are observed to have more than 1 dominant paths in the smart card data. Here a 

path is identified as dominant if no less than 5% of total passengers on that stop 

pair were observed to select the path and the total observed passengers on the 

stop-to-stop pair should be more than 50. Such path dominancy issue is also 

observed on the bus network in Japan (Schmöcker et al., 2013). 

3.4 Choice Set Generation 

Choice set generation is an important topic in large-scale transportation 

networks. It has computational advantages as enumeration of alternative is not 

practical in large networks, particularly if route choice has to be determined in 
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real time, such as with journey planner systems. Most importantly, the set of 

path alternatives from which passengers chose their paths helps us to better 

understand their path selection behaviour. Besides, with a pre-generated choice 

set, path overlapping issues can be explicitly handled via various theoretical 

correction approaches (Bekhor et al., 2006; Prato, 2009). An adequate choice 

set should satisfy certain basic requirements: 1) path alternatives should be 

logical. For example, path alternatives should not contain heavy detours or loops; 

2) path alternatives should be feasible in terms of time, space, service 

availability, and physical availability; 3) path alternatives should likely be 

chosen by a passenger; and 4) ideal choice set should contain at least path 

alternatives which have been observed or recorded. The composition and quality 

of generated path choice set also strongly influences subsequent parameter 

estimation in route choice model and route choice prediction (Bekhor et al., 

2006; Hoogendoorn-Lanser, 2005; Prato and Bekhor, 2006; Van der Waerden 

et al., 2004).  

3.4.1 Implementation of Methods 

In this section, six choice set generation approaches are introduced and 

implemented with special treatments to make them suitable for generating paths 

alternatives on a multimodal public transport network. For transfers on paths, 

only a single walking transfer between stops or a direct transfer at stop is 

allowed. Consecutive walks along a path is not considered as feasible. 

Particularly for stop-to-stop choice set, additional path feasibility check is 

imposed on all approaches to ensure that for each stop-to-stop path, the first link 
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should not be a walking link. Note that this specific constraint only applies to 

stop-to-stop choice set.  

3.4.1.1 Labeling Approach 

The labeling approach generated path sets by searching the least cost paths using 

different cost functions, called labels (Ben-Akiva et al., 1984). It addresses 

passengers’ heterogeneity on perceiving the least cost path between origin and 

destination. The labeling approach has not been explicitly applied on the public 

transport network in the literature. This work proposes the 10 labels tabulated 

in Table 3-1, to be used on the multimodal public transport network.  

Table 3-1 Description of implemented labels in the labeling approach 

Labels Label Description 

1 Minimal total in-vehicle travel time 

2 Minimal number of transfers 

3 Minimal walking transfer time 

4 Maximized travel on MRT 

5 Maximized travel on Bus 

6 Minimal waiting time at transfers 

7 Minimal total travel time 1 (in-vehicle +waiting + transfer walking) 

8 Minimal total travel time 2 (in-vehilce+5*waiting+3*transfer walking) 

9 Minimal total travel time 3 (in-vehilce+5*waiting+5*transfer walking) 

10 Minimal total travel time 4 (in-vehilce+5*waiting+8*transfer walking) 

 

Label 1 to 6 defines different single path attributes as "least cost" function in 

path searching. For example, label 2 - Minimal number of transfers, will 
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generate an alternative path with minimal number of transfer between initial 

boarding stop and final alighting stop. Label 7-9 weights multiple path attributes 

differently to achieve different "least cost" definitions in the path searching. In 

label 7, the least cost is defined to search for alternative path of which 

passengers perceive the in-vehicle travel time, the waiting time and walking 

time equally, while in label 8-10, the waiting time and walking time are both 

more negatively weighted than the in-vehicle time; and the waiting time is 

perceived more, equal and less negatively than the walking time respectively. 

Note that, due to the non-additive fare scheme in Singapore, minimal monetary 

cost is not examined in labeling approach. 

3.4.1.2 Link Elimination Approach 

The link elimination approach adopted in this work iteratively searches shortest 

path/paths by removing the links along the searched paths one by one. When 

each link along the first shortest path has been eliminated once, all the links 

along this path will be eliminated, and the iteration will move to the next 

generated path. The stop criterion is defined as the total number of generated 

paths, which is set as 30 in this work. Cost consists of in-vehicle travel time, 

waiting time, walking time, and transfer penalty.  

3.4.1.3 K-shortest Paths Approach 

The K-shortest paths approach of Yen (1971) is adopted in this thesis, with the 

following modifications to make it suitable for multimodal public transport 

network: 1) instead of comparing node sequences, it has been modified to 

compare link sequences for determining links to eliminate, as parallel links exist 

in our public transport network; 2) all walking links at origin are eliminated to 
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avoid generating infeasible paths. K is set to 30 in this work as the maximum 

size of observed paths is only 15 from the smart card data, which is described 

in Section 3.2.  

3.4.1.4 Simulation Approach 

In the simulation approach, in-vehicle travel time, walking time, and waiting 

time for each link are all randomly sampled from an independent and identically 

distributed normal distribution with mean equals to its original value and 

standard deviation set to 5 times of the original value. To avoid drawing a 

negative value, the absolute value is taken. 50 draws of randomized travel times 

were performed for each sample OD. The selection of sampling distribution and 

number of draws takes into consideration of the maximum size of observed 

paths, coverage, and computational time.  

3.4.1.5 Branch & Bound Approach 

The branch & bound approach can be adapted to the multimodal network by 

treating each possible transfer as a branch. This thesis implements branch & 

bound approach based on the work by Hoogendoorn-Lanser et al., (2007). 

Additionally, special treatments to path logicality, common lines and preference 

on transfers are added. Table 3-2 depicts the constraints implemented for branch 

& bound approach with newly added constraints highlighted in bold. There are 

two new logical constraints on walking leg added in the branch & bound 

approach. Constraint 2 is added because the choice set generation approaches 

are used to generated stop-to-stop path choice set. Therefore, the first leg and 

the last leg for a stop-to-stop path should be transit legs. The maximum 

allowable number of transfer for branch & bound approach is set to be five. This 
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is because computing a choice set for one stop-to-stop pair becomes practically 

infeasible (more than five hours) for certain stop-to-stop pairs when maximum 

allowed number of transfer is larger than four. This constraint was not deemed 

an issue, since more than 99.95% of the observed paths in the smart card data 

have four or less transfers. Note that this type of transfer does not include 

transfers on rapid transit network, as such transfer is not recorded in smart card 

data. 

Table 3-2 Description of implemented constraints for the branch & bound approach 

Constraints Type Constraint Description 

1 Logical Path is loopless 

2 Logical First leg or last leg is not a walking leg 

3 Logical No Consecutive walking legs 

4 Feasible Service Availability, such as there must be a service line goes to 

destination stop. 

5 Feasible Access availability, such as whether a stop can be walked from 

another stop 

6 Feasible Maximum allowable number of transfer (<=5) 

7 Behavioural Bounds on trip attributes: waiting time, walking time, in-vehicle 

time, maximal allowable number of transfers 

8 Behavioural Spatial constraints-preference on travelling in the direction of 

destination 

9 Behavioural No selection of extra transfers when there are adequate 

common lines (>=3) 

10 Behavioural In selection of transfer stops with more common lines than 

stops with fewer common lines 

11 Behavioural When there is direct service available, no selection of more 

than 1 transfer. 

12 Behavioural No selection of path with two more transfers than least 

transfer path 
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3.4.1.6 Nested Labeling & Link Elimination Approach 

The nested labeling and link elimination approach combined the searching 

heuristics of the labeling approach and link elimination approaches. It performs 

a link elimination inside each labels as defined in Table 3-1. For label 2- 

Minimal number of transfers, it will acquire a link elimination approach to find 

10 paths under the cost definition, while for all other labels, only three paths are 

to be searched by the link elimination approach in each label. This configuration 

was inspired by the significant impact of number of transfers on passengers' 

path selection. It was calibrated to achieve good coverage against the 

observations in smart card data. 

3.4.2 Evaluation of Methods 

This section proposes a comprehensive evaluation framework to qualitatively 

and quantitatively analyze choice set generation approaches and presents 

validation and evaluation results on choice set generation approaches based on 

actual route choice data collected by smart card in Singapore. The proposed 

evaluation framework can be divided into four parts: computational 

performance, coverage tests, and composition evaluation of choice sets, and 

analysis of fail-to-generate paths. All approaches were implemented in R using 

the “igraph” library for network building and shortest path searching, the “hash” 

library for building hash tables, and the “data.table” library for data storage. All 

tests were run on an Ubuntu system with Intel® Core™ i7-3770 CPU @ 

3.40GHz × 8 with 16G RAM. Only one CPU core was used. 
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3.4.2.1 Computational Performance 

Table 3-3 tabulates the mean of standard deviation of the computation time per 

stop-to-stop pair for each choice set generation approach. 

Table 3-3 Mean and standard deviation of computational time for generating choice 

set for 1 stop-to-stop pair 

choice set generation Approach 

Mean 

(sec) 

Standard Deviation 

(sec) 

Labeling Approach 13.9 2.9 

Link Elimination (N=30) 25.6 4.5 

Simulation Approach (50 draws) 45.7 9.2 

K-Shortest Path (K=30) 99.5 13.6 

Nested Labeling & Link Elimination 28.4 6.5 

B&B Approach (max no. of transfer = 5) - - 

 

The result for the B&B approach is not available on examined data set as it 

could not finish generating 200 choice sets over two weeks. It was forced to be 

terminated. As mentioned in the data set section, some stop-to-stop pairs in the 

data set can only be reached by at least four transfers. The computational time 

for the branch & bound approach is expected to increase exponentially with 

respect to the total number of transfers along the paths. An evaluation of the 

branch & bound approach on another dataset which contains fairly amount of 

paths with direct service lines has shown that it has an average running time of 

108 seconds with standard deviation of 1020 seconds. It demonstrates that the 

branch & bound approach is not practically applicable to dense public transport 

networks. The branch & bound approach is therefore not included in the rest of 
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the evaluations. All the other five choice set generation approaches are able to 

generate path alternatives in reasonable time. The labeling approach takes the 

least computational time on average while the k-shortest path approach takes 

the longest computational time.  

3.4.2.2 Coverage Test 

With full-scale records on almost all passengers’ actual path selection from 

smart card data, it becomes possible to evaluate the choice set coverage in new 

dimensions. Three coverage evaluation indexes, Passenger Journey Coverage, 

Efficient Coverage, and Passenger Path Coverage are proposed as follows: 

 Passenger Journey Coverage is defined as the percentage of passengers 

whose chosen alternative is available in the generated choice set. It takes 

passengers’ path selection into consideration. It represents the percentage of 

passengers who will choose their paths from the generated choice set by 

each approach and indicates the effectiveness of choice set generation 

approach. 

 Efficient Coverage is defined as the percentage of generated alternatives 

being a recorded alternative. It indicates how efficient the choice set 

generation approaches are in producing observed paths and not producing 

unobserved paths. 

 Passenger Path Coverage is defined as the percentage of observed paths 

being available in the generated choice set. It implies the comprehensiveness 

of alternatives in choice set generated by choice set generation approach. 

The difference between passenger journey coverage and passenger path 

coverage is that the former is a weighted version of the latter, by the number of 

passengers observed on each path. A choice set with high passenger path 
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coverage but low passenger journey coverage indicates the choice set misses 

attractive paths and it will introduce biases in model estimation. Efforts should 

be put to enhance the choice set generation to include the attractive paths. If the 

generated choice set has high passenger journal coverage but low passenger path 

coverage, it also indicates that the investigations should be carried on to the fail-

to-generated paths as they might be due to network error or path record error.  

Efficient coverage indicates how efficient the choice set generation approaches 

are, in terms of producing observed paths. For a fixed number of observed paths 

per stop-to-stop pair, efficient coverage reaches highest if the choice set 

generation approach only produce paths that are observed, while it decreases 

along with generation of unobserved paths.  

Table 3-4 Passenger journey coverage, efficient coverage and passenger path 

coverage of choice set generation approaches 

Item 
choice set generation 

approach 

Passenger 

Journey Coverage 

Efficient 

Coverage 

Passenger Path 

Coverage 

1 Labeling 96.78% 68.27% 61.11% 

2 Link elimination (N=30) 98.16% 5.72% 84.66% 

3 Simulation (50 draws) 95.74% 5.16% 60.93% 

4 K-shortest path (K=30) 98.35% 5.39% 84.72% 

5 Nested labeling & link 

elimination  98.65% 6.24% 84.94% 

6 Combined all above 

approaches 98.73% 3.13% 87.11% 

 

Passenger journey coverage is the most important as it affects the subsequent 

route choice model estimation mostly. Table 3-4 tabulates the coverage 
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evaluation indexes computed based on generated choice sets for data set 1 using 

different choice set generation approaches. In the last row, it presents the 

coverages for combined choice set in which it consolidates all paths generated 

by the labeling, link elimination, simulation, k-shortest path, and nested labeling 

& link elimination approaches. In the subsequent sections, we denote it as 

combined approach. All the approaches achieves high passenger journey 

coverage more than 95%.  

Out of the five single choice set generation approaches, the labeling approach 

achieves highest efficient coverage over 50%, almost 10 times higher than other 

approaches. It indicates the labeling approach is very efficient in terms of 

generating path that are mostly selected by passengers. Detailed investigation 

on the uncovered passenger journeys shows most of these paths are competitive 

paths, which is not able to be captured by any label. These paths have similar 

costs in each label but the selection of different transfer stops varies. This 

finding is the inspiration to the nested labeling & link elimination approach. In 

the nested labeling & link elimination approach, performing link elimination 

inside each label helps to identify paths with similar cost but different transfer 

stops. The result is promising as the nested labeling & link elimination approach 

becomes the most effective single choice set generation approach in producing 

favorable paths as it achieves highest passenger journey coverage and highest 

passenger path coverage among all single choice set generation approaches. The 

performance of the k-shortest path and link elimination approaches are most 
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comparable. They both achieve high passenger journey coverage and passenger 

path coverage, but low efficient coverage.  

Despite the simulation approach has a higher number of draws (S=50) than the 

K value in k-shortest path approach (K=30) and the N value in link elimination 

approach (N=30), its performance is the poorest. As indicated by its lowest 

efficient coverage and passenger path coverage, it generates more paths than 

other approaches with lowest coverages on observed paths. This is because the 

simulation approach generates substantial amount of non-relevant paths in 

different draws. Besides, the generated path set by the simulation approach is 

not completely reproducible due to the nature of its stochasticity. To investigate 

the variation of generated paths using the simulation approach, 200 draws from 

a normal distribution were undertaken 100 times on a stop-to-stop pair with 11 

observed alternatives. The average size of the generated choice sets is 150 with 

little fluctuation.  

 

Figure 3-2 Density distribution of number of matched paths using simulation 

approach 
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As shown in Figure 3-2, 35% of the time, it is able to find 8 observed alternatives 

whereas for more than 50% of choice sets, the matched alternatives are fewer 

than 8. Therefore, in terms of actual implementation, it is not suggested to only 

employ stochastic choice set generation approaches. Instead, if used, stochastic 

choice set generation approach should always be combined with one 

deterministic choice set generation approach to guarantee that a substantial 

amount of observed paths will be generated. 

The combined approach reaches higher passenger journey coverage and 

passenger path coverage than any single choice set generation approach. High 

passenger journal coverage indicates that the path alternatives the combined 

approach failed to generate are not frequently selected by passengers. This high 

passenger journey coverage also supports the proposed network presentation 

which aggregates the common lines into route segments and represents paths 

only in terms of transfer stops. Conventional paths with specified service line 

can be easily obtained, while maintaining the same coverage, by disaggregating 

common lines on transit legs along each path in the choice set. The 

computational time to achieve the same coverage will increase exponentially if 

common lines are not aggregated into route segments for path searching.  

3.4.2.3 Path Composition in Choice Sets 

A thorough evaluation of choice set generation approaches does not only 

consider the coverage, but also the quality of generated path sets. Composition 

evaluation helps to understand various qualities of generated choice sets, to infer 

network characteristics, and to evaluate the feasibility of choice sets for 
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subsequent route choice model estimation. The following four criteria are 

proposed to evaluate the quality of generated choice sets by each approach: 

 Size of generated path choice set 

 Diversity of path alternatives in the path choice set 

 Additional Number of transfers with respect to least transfer path 

 Variations of path attributes in path choice set 

With observed paths from smart card data, size of generated path choice set 

serves as a good indicator on whether this choice set is not suitable for route 

choice modeling. A choice set generation approach that always generate fewer 

alternatives than the observed paths might result very inaccurate prediction in 

route choice model estimation as it will exclude a lot of alternative in estimation. 

A choice set generation approach that generates extremely large size of 

alternatives will also impose computational inefficiency and potential modeling 

difficulty in route choice model estimation.  

Figure 3-3 presents density for the size of generated choice sets for all six 

approaches and compares them with the observed path choice sets. All 

approaches have explicit constraints on the maximum number of paths, out of 

which, the labeling and simulation approaches generate path alternatives that 

are much fewer than the number of labels and the specified number of draws. 

The size of the generated choice set for the rest single approaches are around 

their upper limits respectively. The labeling approach generates an extremely 

small size of choice sets which is always fewer than the observed path 
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alternatives in data set. It is therefore not suitable to adopt labeling method alone 

for route choice modeling.  

 

Figure 3-3 Density of size of generated choice sets 

Diversity of path alternatives in path choice set helps to infer network condition 

and evaluate the efficiency of choice set generation approach in generating 

diverse paths. To analytically investigate the diversity of path alternatives in the 

path choice sets, the concept of path-size which is a well-recognized correction 

term to address path overlapping among alternatives in path-size logit models 

was employed in this work (Ben-Akiva and Ramming, 1998).With the 

introduction of route segments as a non-transferred link between stops via a 

single mode in the public transport network, the following path-size definition 

is proposed to better cope with the perceived overlapping in the public transport 

network: 

𝑃𝑆𝑖𝑛 = ∑ (
𝑡𝑟
𝑇𝑖
)

1

∑ 𝛿𝑟𝑗𝑗∈𝐶𝑛𝑟∈𝛤𝑖

 Eq. (3-2) 
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Where 𝑃𝑆𝑖𝑛 is the path size of path 𝑖 for Stop-to-Stop pair 𝑛; 𝑟 is the indexed 

route segment, Γ𝑖 is the set of all route segments along path 𝑖; 𝑡𝑟 is the travel 

time on route segment 𝑟; 𝑇𝑖 is the total travel time on path 𝑖; 𝐶𝑛 denotes the set 

of path alternatives for Stop-to-Stop pair 𝑛; 𝛿𝑟𝑗equals to 1 if route segment 𝑟is 

on path 𝑗 and 0 otherwise; 𝑇𝑖 denotes the total travel time of path 𝑖. Under this 

definition, a unique path will have a path-size equal to one while for overlapped 

paths, the path-size is smaller than 1.  

 

Figure 3-4 Histogram of mean path-size value of generated choice sets 

The histogram of mean path-size value for choice sets generated by each 

approach is shown in Figure 3-4. The k-shortest paths approach generates the 
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most heavily overlapped paths in choice set as almost all the stop-to-stop pairs 

have mean path-size smaller than 0.4 while the labeling approach is producing 

a lot of diverse path in the choice sets with path-size value equal to 1.0. In 

general, the k-shortest path, link elimination, and nested labeling & link 

elimination approaches generate much more similar paths than labeling an 

simulation approach. This is expected as the searching heuristics in these 

approaches are based on eliminating one or certain links on the searched path. 

Similar paths are likely to be generated by these approaches. The reason for the 

extremely lower overlapping by the labeling approach is partially due to it is 

always trying to search path with different cost definitions, yet heavily due to 

its extreme small size of the generated choice sets. The low mean value of path 

size indicates there exists heavy degree of path overlapping in choice set and 

therefore, for such choice sets, correlation due to path overlapping must be 

addressed in route choice modeling.  

 

Figure 3-5 ECDF of additional number of transfers with respect to least transfer path 
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Additional number of transfer with respect to the path with the minimal number 

of transfer in the choice set is a good indicator of public transport path 

composition. By analyzing the EZlink card data, more than 80% of the 

passengers select paths with minimal number of transfers while passengers are 

not observed to select paths with 2 more transfers than the path with minimal 

transfer. A choice set generation approach that generates a large amount of paths 

with much more additional transfers is not considered good in producing 

relevant paths. Figure 3-5 shows the ECDF of additional number of transfers 

with respect to minimal number of transfers in each choice set. In consideration 

to the high passenger journey coverage of the nested labeling & link elimination 

approaches, it is most effective single choice set generation approach as it 

producing much fewer irrelevant alternatives than other approaches with high 

coverage.  

 

Figure 3-6 ECDF of standard deviation of total path travel time per stop-to-stop pair 
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The ECDF of the standard deviation of total travel time including waiting time, 

in-vehicle travel time and walking time is depicted in Figure 3-6. Given the 

limited number of path alternatives generated by the labeling approach, the 

standard deviation of total path travel time does not statistically meaningful for 

the labeling approach. The k-shortest paths, link elimination and nested labeling 

& link elimination approaches generate paths with less variation in travel time 

while the simulation approach produces more deviated paths in terms of total 

travel time. The results are expected as the other three approaches are all 

searching new shortest paths based on certain link elimination heuristics, it is 

likely to generate paths with only small deviations at the eliminated link.  

 

Figure 3-7 ECDF of standard deviation of total waiting time per stop-to-stop pair 

The waiting time is one key attribute in path alternatives for the public transport 

network. It also serves as a good indicator on network performance. As shown 

in Figure 3-7, paths generated by the k-shortest path, link elimination and nested 

labeling & link elimination approaches have smaller variation in waiting time 
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while the simulation approach produces paths with relatively more variant 

waiting times. It follows the same pattern as total transit time. More than 80% 

of the paths in the combined choice set are not heavily deviated to the average 

waiting time, as the 80-th percentile for all ECDFs are smaller than 10 minutes. 

It indicates that the network has a good connectivity such that there are plenty 

of path alternatives with reasonable waiting time.  

3.4.2.4 Analysis of Fail-to-generate Paths 

For the recorded 62,302 passenger journeys in data set 1, there were around two 

hundreds recorded paths with 792 passenger journeys that are failed to be 

generated by in the combined choice set. Denoting these paths as “Fail-to-

generate” paths, further investigation has been carried out to identify possible 

reasons. Three major categories of failed cases were identified and they are:  

 Algorithm deficiency 

 Network data issues 

 Abnormal recorded paths 

Algorithm deficiency exists mainly in the labeling approach. The major 

drawback of the labeling approach is that it is not able to recognize distinct path 

alterative with similar costs. It is always able to recognize the most dominant 

path in a choice set, but fails to capture less dominant paths. It is because 

majority of the most dominant path is the least cost path for several labels in the 

examined network. The labeling approach is also not able to capture paths with 

less waiting time at certain transfer stop but longer total waiting time. Although 

“least waiting time” is one label in the labeling approach, it is searching paths 
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with the least total expected waiting time. While in reality, the passenger might 

choose certain routes simply because they have least waiting time at that 

decision point. The searching heuristics in the link elimination, k-shortest path, 

and simulation approach are in favor of identifying less dominant paths neither. 

Although eventually, it would enumerate all path alternatives if stop criteria are 

relaxed to infinite, it is not practically.  

Network data issues consist of 1) missing stops along service lines, 2) missing 

service lines, 3) Erroneous scheduled travel time, 4) inaccurate walking time as 

walking time is estimated based on directly geometric distance, not representing 

actual walking time, and 5) Subjective specification of transfer penalty.  

There are five types of abnormal recorded paths found in the fail-to-generate 

paths: 

1) Path with additional transfer when the passenger is already on the most 

direct service line - which might be due to accident or intentional stop 

for certain purposes such as: grocery shopping, buying lunch or 

newspaper, and etc.;  

2) Paths contain loops;  

3) Path with transfer between stops which are more than 10 km away from 

each other – which is probably due to taking a taxi for part of the trip to 

void being late; and  

4) Path with getting off bus service line one stop earlier and walking much 

longer distance to transfer. 
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3.4.3 Final Choice Set 

The final choice sets used for route choice modeling combines all paths 

generated the labeling, link elimination with N=30, k-shortest path with k=30, 

and simulation approach with number of draws = 50 approaches, as well as 

nested link elimination and labeling approaches. As explained in Section 3.4.2.4, 

detailed investigations have been carried out to identify possible reasons for the 

observed paths that are failed to be generated. Efforts were made to increase the 

passenger journey coverage by correcting the network errors and eliminate 

abnormal paths in observations. The final choice set reaches 100% coverage 

after correcting network errors and removing abnormal paths. 

However, due to limitation of the smart card data, it is not possible to evaluate 

the complete OD path choice set as actual origins and destinations are not 

observed in smart card data. A feasible method to generate a complete origin-

to-destination path choice set based on the stop-to-stop path choice set generated 

by the choice set generation approaches could be:  

 Step 1: Generation of initial boarding stop choice set for each origin 

which includes all the stops within prefix radius distance from the origin.  

 Step 2: Generation of final alighting stop choice set for each destination 

which includes all the stops within 1km radius distance from the 

destination. 

 Step 3: Form stop pair choice set for each origin-destination pair by 

enumerating all the possible combination of initial boarding stop and 

final alighting stop.  
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 Step 4: Generation of stop-to-stop path choice set for each stop pair 

using choice set generation approaches mentioned in section 3.2. 

 Step 5: Concatenation of stop pair choice and stop-to-stop path choices 

to form origin-to-destination choice set for each origin and destination 

pair. 

This method could be easily implemented given the origins and destinations. If 

the passengers are assumed to only select initial boarding stop/final alighting 

stop which is less than 1Km always from the origin/destination, then the stop-

to-stop path choice set generated using choice set generation approaches will 

cover the same observed paths as the complete OD path choice set generated 

using method above. This is a reasonable and practical assumption. Therefore, 

in this case, applying the choice set generation approaches only to stop-to-stop 

path choice set is sufficient and more appropriate to evaluate the performance 

of these choice set generation approaches. 

3.5 Modelling Stop-to-Stop Route Choice Behavoiur 

In this work, we seek to identify and quantify the different aspects of travelling 

that affect passengers’ route choice decisions on Singapore’s public transport 

network. A random utility model is considered in this work. It is assumed that 

each passenger 𝑛 chooses a route 𝑖  with maximum possible utility level 𝑈𝑖𝑛 

among a set of available alternatives 𝐶𝑛 . The utility 𝑈𝑖𝑛  of path 𝑖  faced by 

passenger 𝑛 is defined as: 

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 휀𝑖𝑛 = 𝜷
𝑻𝑿𝒊𝒏 + 휀𝑖𝑛 Eq. (3-3) 



Chapter 3 – Modeling Stop-to-Stop Route Choice Behaviour from Smart 

Card Data 

 

Page 71  

 

Where 𝑉𝑖𝑛 is the observed utility for path 𝑖in choice situation n that is assumed 

to have a linear relationship with path attributes 𝑿𝒊𝒏 ; 𝜷  is a vector of 

coefficients that represents passenger preference on path attributes and 휀𝑖𝑛 

denotes the unobserved error components which follow i.i.d. Gumbel 

distribution. This model is a multinomial logit model. Denote it as MNL, the 

probability that path 𝑖 will be chosen by passenger n given the MNL model is 

then: 

𝑃(𝑖|𝐶𝑛) =
𝑒𝜷

𝑻𝑿𝒊𝒏

∑ 𝑒𝜷
𝑻𝑿𝒋𝒏

𝑗∈𝐶𝑛

 Eq. (3-4) 

To address the correlation between the alternative routes due to path 

overlapping, we consider Path-Size Logit (PSL) model with path size defined 

as in Eq. (3-2). In this PSL model, the logarithm of path-size is added to each 

path utility. In the PSL model, the probability of choosing path 𝑖 by passenger 

𝑛 becomes: 

𝑃(𝑖|𝐶𝑛) =
𝑒𝜷

𝑻𝑿𝒊𝒏+𝛽𝑃𝑆𝑙𝑛(𝑃𝑆𝑖𝑛)

∑ 𝑒𝜷
𝑻𝑿𝒋𝒏+𝛽𝑃𝑆𝑙𝑛(𝑃𝑆𝑗𝑛)

𝑗∈𝐶𝑛

 Eq. (3-5) 

Where 𝛽𝑃𝑆 is the coefficient to estimate against the logarithm of path-size value.  

Both MNL and PSL models are estimated with regard to the final choice set for 

dataset 1.  

3.5.1 Model Specification 

In-vehicle travel time, walking time, waiting time, and number of transfers are 

the three key path attributes that are commonly considered in public transport 



Chapter 3 – Modeling Stop-to-Stop Route Choice Behaviour from Smart 

Card Data 

 

Page 72  

 

route choice models. Fares are commonly included in route choice models if the 

fare is not collected at flat rate. It is essential when analyzing value of travel 

time. All of these attributes are expected to have negative impact on path utility 

in route choice models. Apart from these conventional attributes, other 

miscellaneous aspects such as weather (Sumalee et al., 2011), and topological 

directness of paths (Raveau et al., 2011) are also considered in the utility 

function by some modelers as well. 

The path attributes 𝑿𝒊𝒏  used in these models include the total number of 

transfers along the path, the total path cost, three time components and one mode 

specific constants. It applies to both MNL model and PSL model. This work 

considers three time components: the in-vehicle travel time, the waiting time at 

each boarding stop/station, and the walking time during transfer. All three time 

components are in unit of minutes. Note that access walk time and egress walk 

time are obviated in this work as only stop-to-stop path selection is considered 

in the public transport network. One mode specific constant indicate whether a 

path utilizes rapid transit services is also included. Mode constant indicating 

that a path is conducted on rapid transit only is not feasible in this work as smart 

card data does not record down transfers on rapid transit network and all these 

observations were exclude in the data set. Constant indicate whether a path 

utilizes Bus is therefore the only complement of the mode-specific constant for 

rapid transit and it is normalized to have zero coefficient.  



Chapter 3 – Modeling Stop-to-Stop Route Choice Behaviour from Smart 

Card Data 

 

Page 73  

 

3.5.2 Estimation Results 

Estimation results are tabulated in Table 3-5. All the estimated parameter 

coefficients are statistically significant at 95% confidence interval with 

expected right signs for both models.  

Table 3-5 Estimation results of route choice model 

Variables 
MNL PSL 

Coefficient Std.Err. t-stats Coefficient Std.Err. t-stats 

total in-vehicle time 

(min) 
-0.202 0.005 -37.6 -0.233 0.006 -37.18 

total waiting time (min) -0.382 0.010 -37.9 -0.380 0.010 -38.62 

total walking time (min) -0.836 0.012 -67.1 -0.822 0.012 -66.8 

number of transfers -5.76 0.040 -145 -5.79 0.040 -143.9 

total cost (S$) -5.62 0.464 -12.1 -4.20 0.471 -8.91 

Dummy constant if 

rapid transit is used 
6.60 0.609 10.8 6.08 0.611 9.96 

path-size NA NA NA 0.444 0.040 11.17 

       

Summary of Statistics:       

Number of observations 61996 61996 

LL(0) -238149.9 -238149.9 

LL(β) -9101.5 -9049.4 

Likelihood Ratio Test 458096.9 458201.1 

rho-squared 0.9618 0.9620 

adjusted rho-squared 0.9618 0.9620 

 

The likelihood ratio test statistics for null hypothesis that all the coefficients are 

zero, is -2(LL(0)-LL(β)), where LL(0) is the log-likelihood value of the model 

when all the coefficients are zero while LL(β) stands for the log-likelihood value 

when all the coefficients are the estimated value at convergence. It is used to 

test the null hypothesis that all the coefficients are zero. It follows chi-square 
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distribution with K degree of freedom where K is the number of parameters to 

estimate. The high rho-squared value justifies this route choice model is able to 

capture passengers’ actual path selection very well. 

As both models are performed over data set 1 for the same 1000 sampled stop-

to-stop pairs and cover the same passenger journeys, both the final log-

likelihood and the adjusted ρ2 serve as useful and direct measurements on model 

estimation accuracy. The likelihood ratio test statistics for the null hypothesis 

of generic attributes for MNL model and PSL model is much larger than the 

critical value of 7.879 at 99.5% confidence interval. It proves that the PSL 

model is superior to the base MNL model in terms of estimation accuracy. The 

higher adjusted ρ2 of PSL model supports this claim. 

3.5.3 Perceptions and Valuations 

Out of all traditional explanatory parameters, namely, in-vehicle travel time, 

waiting time, and walking time, walking time is having the most negative 

coefficient, which implies that passengers have the strongest disfavor on longer 

walking time. It might be partially because the comfort level of walking in 

Singapore is low due to the humid weather. The total in-vehicle travel time is 

having the least negative coefficient. This is partially due to the big magnitude 

of in-vehicle travel time, but it also implies that passengers do not sensitively 

perceive the differences in in-vehicle travel time as comparing to other path 

attributes. The estimated coefficient on number of transfers is the most negative 

over all choice sets implying that number of transfers has significant impact on 

passenger’s route selection. 
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The value of time for time component 𝑡 can be obtained as follows: 

𝑉𝑂𝑇𝑡 =
𝛽𝑡
𝛽𝑐𝑜𝑠𝑡

 Eq. (3-6) 

where, 𝑡 stands the time component of interest, such as time in-vehicle time, the 

walking time or the waiting time; 𝛽𝑡  is the estimated coefficient of time 

component 𝑡, 𝛽𝑐𝑜𝑠𝑡 is the estimated coefficient on travel cost. Time value is 

round 3S$ per hour for total in-vehicle travel time, 6S$/per hour for total waiting 

time, and 11S$/hour for total walking time. The walking time is more valued 

than waiting time. It indicates that passengers in Singapore are more willing to 

wait than to walk. It might be because of the hot and humid tropic weather in 

Singapore such that the walking environment is not as comfortable as waiting 

at bus stop or train station. It's worth noting that the data used in this study is 

from November. It has the most rain days in Singapore. Dislike to walk might 

be largely due to this seasonal effect as well. 

As for number of transfers, the model predicts around 24 minutes of in-vehicle 

travel time per transfer. This marginal rate of substitution for transfer is higher 

than the value obtained in the literature for other public transport networks 

(Eluru et al., 2012; Raveau et al., 2011). One reason is that obviating the access 

and egress walk reduce the number of transfers overall. It is also because the 

examined network is much larger with much better connectivity than other 

networks in the literature with around 90% of the trips conducted on this 

network have no more than two transfers.  
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The estimate of mode specified constant for rapid transit has a large positive 

coefficient. It reveals the behavioural preference on traveling on MRT or LRT 

instead of pure buses when both types of paths are available.  

3.5.4 Prediction Results 

To examine the prediction performance of the estimated route choice model, 

another two data sets: data set 2 and data set 3, are used to test the prediction 

performance for the estimated model. The choice set for each data set is 

generated using the same procedure as described in Section 3.4. Table 3-6 below 

presents the prediction results on different data sets based on behavioural 

parameters estimated in the route choice model. As shown from the table, both 

models achieve high prediction performance as indicated by the high adjusted 

rho-squared values. The PSL model always outperforms the MNL model in 

predication accuracy for both data sets by achieving the highest LL(β) and 

adjusted ρ2. 

Table 3-6 Prediction results on different data sets using estimated parameters 

Summary of Statistics: 

Data Set 2 Data Set 3 

MNL PSL MNL PSL 

Number of observations 61445 61445 58565 58565 

LL(0) -228327.8 -228327.8 -216342.2 -216342.2 

LL(β) -9037.2 -8883.6 -9226.5 -8929.7 

Likelihood Ratio Test 438581.2 438888.3 414231.5 414825.0 

rho-squared 0.9604 0.9611 0.9574 0.9587 

adjusted rho-squared 0.9604 0.9611 0.9573 0.9587 
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3.6 Summary 

This chapter presents a stop-to-stop route choice model using smart card data to 

identify and quantify different aspects of travelling that affect passengers’ stop-

to-stop route choice decisions in the public transport network of Singapore. It 

evaluates six choice set generation approaches in the multimodal public 

transport network of Singapore. The estimate stop-to-stop route choice 

behaviour is validated by examining the prediction performance against another 

two datasets using the estimated parameters. 

The contributions of this chapter are threefold. First, it implements and 

evaluates different choice set generation approaches qualitatively and 

quantitatively. Special treatments on six conventional choice set generation 

approaches were specified to make them suitable for generating choice sets in 

public transport network, and the nested labeling & link elimination is proposed 

with inspiration of the observed passenger path selection behaviours. To the 

authors’ knowledge, it might be the first to undertake experiments to examine 

variation of generated paths by the simulation approach and to apply the 

labeling approach with specified labels, and the nested labeling & link 

elimination approach in public transport network. The evaluation of choice set 

generation approaches conducted in this work is summarized in Table 3-7 with 

comparison to the two reviewed literature in section 2.4.3.  

Second, significant efforts have been made to reach 100% coverage for 

passenger journey observations in the final choice set with detailed investigation 
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on identifying fail-to-generate paths. Third, a stop-to-stop route choice model is 

estimated using large amount of actual route choice data collected by smart card 

on a large-scale urban network in an international city. Passengers’ actual route 

choice behaviours have been interpreted from the estimated model. Prediction 

accuracy is also examined based on another different datasets.  

Table 3-7 Summary of the evaluations with comparison to studies in the literature 

Reference (Bekhor et al., 2006) 
(Rieser-Schüssler 

et al., 2012) 
This work 

Network  
highway network in 

Boston, U.S. 

Road Network in 

Zurich, Switzerland 

Public Transport Network in 

Singapore 

Nodes 
13000 408636 4718 

Links 34000 882120 501918 

Data Type Survey at University GPS data Smart card data 

Total 

Observations 
188 observations 

36,000 

observations with 

2,434OD 

3,670,339 observations with 

687,199 Stop-to-Stop pairs.  

Evaluated 

choice set 

generation 

approaches 

Labeling 

Link Elimination 

K Shortest Path  

Simulation  

Link Elimination 

K Shortest Path  

Simulation 

B&B 

Labeling 

 Link Elimination  

K Shortest Path  

Simulation 

Nested Labeling & Link 

Elimination 

B&B Approach 

Common 

Evaluated 

Criteria 

Path Coverage 

Computation Time 

Size of Choice Set 

Number of Links 

Path Coverage 

Computation Time 

Path Similarity 

Path Distance 

Path Coverage 

Passenger Coverage 

Efficient Coverage 

Computation Time 

Analysis of fail-to-generated paths 

No of Transfers 

Path Total Travel Time 

Path Waiting Time 

Route Choice 

Model 

Estimation 

Estimation of Route 

Choice Models 
N.A 

Estimation of Route Choice 

Models  

Path Selection 

Prediction 
N.A N.A 

Prediction Performance on two 

sampled data sets from the whole 

observations 
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Chapter 4 - Addressing Path Overlapping for Public 

Transport Network 

 

The Path-Size Logit (PSL) aims at capturing correlations among path 

alternatives by including a correction term -path size, to the Multinomial Logit 

(MNL). Several path size formulations have been proposed in the literature and 

applied to various route choice models extensively in road networks. However, 

the path-size formulation has rarely been studied in the public transport context 

considering the special characteristics of public transport network. This chapter 

proposes a new path-size formulation for route choice modeling in public 

transport networks. The new path size formulation accounts not only the 

correlation due to overlapping of path alternatives along traversing roads, but 

also the correlation due to overlapping boarding station. The new path size 

formulation was comparatively analyzed against a MNL and a base PSL with 

direct application of existing path size formation, in route choice model 

estimation and prediction using smart card data, on the public transport network 

in Singapore. The results show that the new path size formulation has 

outperformed other models in both estimation and prediction.  

 

4.1 Introduction 

Discrete choice analysis under the random utility theory frame work is the most 

widely applied modeling tool for route choice modeling. It assumes that an 

agent has a randomized unobserved utility and the decision is always made to 

maximize this utility. Under this framework, Multinomial Logit (MNL) model 
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is the most commonly used discrete choice model in practice due to its 

simplicity. However, MNL models assume that the unobserved utilities for 

different alternatives are identically and independently distributed. This 

assumption is not valid in the context of route choice, particularly due to paths 

overlapping (Bovy and Stern, 1990). Efforts have therefore been made to 

overcome this restriction by making a deterministic correction of the utility for 

overlapping paths. One easy and practical way is to add a deterministic 

correction term to the path utility function while maintaining the simple path 

selection structure of MNL models, such as C-Logit (Cascetta et al., 1996) and 

Path-Size Logit (PSL) (Ben-Akiva and Bierlaire, 1999). These models intend to 

heuristically approximate path correlation by adding a correction term to the 

utility function subject to the degree of path overlapping. They have 

computational advantages by retaining the simple Logit structure and yet 

outperform MNL models.  

However, the existing path-size formulation has rarely been studied in the 

public transport context considering the special characteristics of public 

transport network. This chapter addresses the path overlapping in public 

transport network considering the unique characteristics of public transport 

services such as frequencies of service lines and transfers. New definition of 

path size value is proposed considering the boarding service frequencies at 

overlapped transfer stops with its detailed derivation. Furthermore it is analyzed 

using actual route choice data collected through smart card on the public 

transport network in Singapore. To the author’s knowledge, this is the first time 

that frequency is considered in the path size formulation. 
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Public transport network in Singapore is used in this work. The general 

information of this network is described in section 3.2. Majority of the bus lines 

in Singapore are served less than 10 minutes per bus in peak hours and both 

MRT and LRT are served less than 5 minutes per train throughout the day 

(SMRT, 2014a, b; Transit, 2014). Besides, there is a high degree of common 

lines at important transfer stops. Given the high frequent and intensive services 

in Singapore’s public transport network, the new path size formulation and 

subsequent route choice analysis is conducted on a frequency-based network. 

The smart card in Singapore records both passengers boarding and alighting. It 

therefore provides adequate passenger path selection data for route choice 

modeling. Stop-to-stop route choice models are applied to examine the proposed 

path size formulation for stop-to-stop path selection. This work utilizes the same 

datasets and generated choice sets as specified in Chapter 3  

The chapter is structured as follows. In section 4.2, formulation for path-size on 

public transport network is then proposed with detailed derivation. Then a set 

of route choice models including a PSL model with proposed path-size 

formulation are estimated for comparison and applied for prediction in section 

4.3. In the end, Section 4.4 concludes the chapter.  

4.2 Methodology 

In this section, the classic path-size formulation and the new frequency-based 

path-size formulation are derived with explicit definition of assumptions and 

properties in the context of public transport network. This derivation is based 

on the theory of aggregated alternative (Ben-Akiva and Lerman, 1985). 

Similarly to road networks, the definition of path overlap is based on the 
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overlapped links in the public transport networks. Particularly for public 

transport network, each link stands for a road segment from one bus stop or train 

station to its subsequent stop/station along the same service line. 

4.2.1 Derivation of Path-Size Formulation 

Given the choice set 𝐶𝑛 for an OD pair 𝑛, let 𝑙 denotes a path alternative in the 

choice set, and 𝑟 denotes link that belongs to 𝑙 . According to the theory of 

aggregate alternatives (Ben-Akiva and Lerman, 1985), the aggregate alternative 

– link 𝑟 then has a utility defined as  

𝑈𝑟𝑛 = 𝑚𝑎𝑥
𝑙∈𝐶𝑛

(𝑉𝑙𝑛
𝑟 + 휀𝑙𝑛

𝑟 ) Eq. (4-1) 

Where 𝑉𝑙𝑛
𝑟

 ires the part of deterministic utility of elementary alternative 𝑙 that 

contributes to the aggregated alternative 𝑟; 휀𝑙𝑛
𝑟 is assumed to be independently 

and identically distributed (IID) Gumbel distribution with𝜇 as positive scale 

parameter and 𝜂 as the mode of the distribution. If aggregated alternative is a 

combination of the whole elementary alternatives, 𝑉𝑙𝑛
𝑟

 is then equal to 𝑉𝑙𝑛. In 

route choice context, aggregated alternative – link 𝑟 is only a combination of 

partial elementary alternatives. 

According to the property of Gumbel distribution, if (𝑥1, 𝑥2, … , 𝑥𝐽)  are J 

independent Gumbel distributed random variables with parameter (𝜂1, 𝜇) , 

(𝜂2, 𝜇) ,…, (𝜂𝐽, 𝜇)  respectively, then max(𝑥1, 𝑥2, … , 𝑥𝐽)  is also Gumbel 

distributed with parameters: 

(
1

𝜇
𝑙𝑛∑𝑒𝜇𝜂𝑗

𝐽

𝑗=1

, 𝜇) 

Therefore, this utility 𝑈𝑟𝑛  is also a Gumbel distribution with parameters: 
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(
1

𝜇
𝑙𝑛∑𝑒𝜇𝑉𝑙𝑛

𝑟

𝐽

𝑗=1

, 𝜇) 

The utility of aggregated alternative – link r can also be written as: 

𝑈𝑟𝑛 = 𝐸 (𝑚𝑎𝑥
𝑙∈𝐶𝑛

(𝑉𝑙𝑛
𝑟 + 휀𝑙𝑛

𝑟 )) + 휀𝑟𝑛

=
1

𝜇
𝑙𝑛 ∑ 𝛿𝑟𝑙𝑒

𝜇𝑉𝑙𝑛
𝑟

𝑙∈𝐶𝑛

+ 휀𝑟𝑛 
Eq. (4-2) 

Where 휀𝑟𝑛  is iid Gumble distributed with (0, 𝜇)  and 𝛿𝑟𝑗  is the link – path 

incident value. It equals to 1 if link r is along path i, and it is 0 otherwise. 

Define the average deterministic utility 𝑉𝑟𝑛̅̅ ̅̅  of the paths using link 𝑟 as: 

𝑉𝑟𝑛̅̅ ̅̅ =
1

∑ 𝛿𝑟𝑙𝑙∈𝐶𝑛

∑ 𝛿𝑟𝑙𝑉𝑙𝑛
𝑟

𝑙∈𝐶𝑛

 Eq. (4-3) 

Under the assumption that all elementary alternatives are iid Gumbel distributed 

with the same deterministic utility for all 𝑙 ∈ 𝐶𝑛, it can be proved that 𝑉𝑟𝑛̅̅ ̅̅ = 𝑉𝑙𝑛
𝑟 , 

and therefore: 

𝑈𝑟𝑛 = 𝑉𝑟𝑛̅̅ ̅̅ +
1

𝑢
𝑙𝑛 ∑ 𝛿𝑟𝑙𝑙∈𝐶𝑛 +휀𝑟𝑛 Eq. (4-4) 

That is, overlapping of elementary alternatives has introduced a positive 

correction to the size of an aggregated alternative. Accordingly, overlapping of 

aggregated alternative should result a negative correction of the utility to an 

elementary alternative (Frejinger, 2008). Therefore, the size correction for an 

elemental alternative - path 𝑙 due to overlapping of aggregated alternative – link 

𝑟 can then be defined as: 

1

𝑢
𝑙𝑛

1

∑ 𝛿𝑟𝑙𝑙∈𝐶𝑛
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For road networks, the size of a path is assumed to be proportional to the length 

of the overlapped links among path alternatives in the choice set, whereas for 

public transport networks, as passengers value travel time much more than 

travel distance and given the same travel distance, the travel time varies on 

different public transport services, definition based on travel time on the 

overlapped links might be more appropriate. Therefore, in this case, the 

contribution to the path-size of a path from each link is assumed to be 

proportional to the travel time on that link. If 𝑡𝑟 denotes the travel time along 

link r and 𝑇𝑖 is the total travel time over all links along path i, then the path-size 

formulation on public transport network can be derived as: 

𝑃𝑆𝑖𝑛 = ∑ (
𝑡𝑟
𝑇𝑖
) 𝑙𝑛 (

1

∑ 𝛿𝑟𝑗𝑗∈𝐶𝑛

)

𝑟∈𝛤𝑖

 Eq. (4-5) 

Denote this formulation as the direct adoption of path-size formulation to public 

transport networks. This formulation is similar to the path-size correction factor 

in Eq.(2-5). Note that this formulation can be applied to both frequency-based 

networks and schedule-based networks.  

4.2.2 Additional Path-Size Formulation 

In public transport network, path overlapping does not only apply to 

overlapping of links, but also overlapping of boarding stations. At each boarding 

station, passengers have the freedom to keep current path or select another path. 

Unlike road network, the selection of another path is not only depending on 

remaining path, but also affected by the waiting time at each boarding station.  

Let’s follow the same derivation in previous section according to the theory of 

aggregate alternatives by treating boarding station 𝑠 as aggregated alternative 
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as well. It can be easily prove that the utility 𝑈𝑠𝑛 for aggregated alternative 𝑠 of 

elementary alternative 𝑙 is: 

𝑈𝑠𝑛 = 𝑉𝑠𝑛̅̅ ̅̅ +
1

𝑢
𝑙𝑛 ∑ 𝛿𝑠𝑙𝑙∈𝐶𝑛 +휀𝑠𝑛 Eq. (4-6) 

Under the assumption that all elementary alternatives are IID Gumbel 

distributed with the same deterministic utility for all 𝑠 ∈ 𝐶𝑛, it can be proved 

that 𝑉𝑠𝑛̅̅ ̅̅ = 𝑉𝑙𝑛
𝑠 , and therefore, Therefore, the size correction to an elemental 

alternative - path 𝑙 due to overlapping at boarding stops with other elementary 

alternatives can then be defined as: 

1

𝑢
𝑙𝑛

1

∑ 𝛿s𝑙𝑙∈𝐶𝑛

 

In a frequency-based network, the overlapping of boarding station can therefore 

be assumed to be proportional to the frequency on the subsequent transit leg. 

Under this assumption, a new path-size formulation is proposed as an additional 

factor particularly to address the correlation due to overlapped boarding 

stops/stations for frequency-based public transport network: 

𝑃𝑆𝑖𝑛
𝑛𝑜𝑑𝑒 = ∑ 𝑙𝑛 (

𝑓𝑠𝑖
∑ 𝛿𝑠𝑗𝑓𝑠𝑗𝑗∈𝐶𝑛

)

𝑠∈𝑆𝑖,𝑠≠𝑜𝑟𝑖𝑔𝑖𝑛

 Eq. (4-7) 

Where 𝑆𝑖 denotes the collection of all boarding stops along path 𝑖; 𝑓𝑠𝑖 denotes 

the boarding frequency over all common service lines at boarding stop 𝑠 along 

path 𝑖 , and 𝛿𝑠𝑗  equals one if stop 𝑠  is also a boarding stop along path 𝑗 , 

otherwise it is zero. Note that the overlapping of origin should not be included 

into this path-size formulation as it is compulsory to start from origin and 



Chapter 4 - Addressing Path Overlapping for Public Transport Network 

 

Page 86  

 

therefore the aggregated utility function in Eq. (4-1) for origin does not hold. In 

the context of this work, the origin means the initial boarding stop.  

It implies that path containing overlapped boarding stations with less frequent 

services lines should have a smaller path-size and therefore more negative 

deduction in the total path utility. While a path containing overlapped boarding 

stations with more frequent services will have a larger path-size and less 

deduction in the total path utility. 

Transit legs between stops without transfer in between 

1 Boarding stop (Bus stop or MRT/LRT station) 1

(x, y) x is the frequency over all common lines on the transit leg, 

in unit of number of vehicles per 10 minutes

y is the travel time over the transit leg

(4,10)

(2,10)
2

Path 1

Path 2

1
(2,5)

3

(8,10)

(4,10)
2

Path 1

Path 2

1
(2,5)

3

(a) (b)

 

Figure 4-1 Example of path correlation due to common boarding stop  

Two examples of path overlapping in public transport network are illustrated in 

Figure 4-1. In both (a) and (b), the initial boarding stop is at node 1, and the 

destination is at node 3. Path 1 and path 2 overlapped with each other on the 

transit leg from node 1 to 2 with common boarding stop at node 2. Travel time 

from node 1 to node 2 is assumed to be 5 minutes, while travel time from node 

2 to node 3 on both path 1 and path 2 is 10 minutes. In (a), the boarding 

frequency is 4 vehicle per 10 minutes along path 1 and 2 vehicles per 10 minutes 

along path 2, while in (b) the boarding frequency is 8 vehicle per 10 minutes 

along path 1 and 4 vehicles per 10 minutes along path 2. Assuming all other 
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deterministic utilities are the same for both paths, it is more likely that passenger 

will select to board public transport services along path 1 at node 2 because it 

has higher frequency but the relative selection ratio between path 1 and path 2 

should be the same for both scenarios. The expected waiting time, base PS value 

(from Eq. (4-5)) and proposed additional path-size value (from Eq. (4-7)) are 

computed for the hypothesized choice scenario shown in Figure 4-1 and the 

results are tabulated in Table 4-1.  

Table 4-1 Comparison of path size values in different formulations 

    
Expected waiting 

time 
Base path-size value 

Additional path-size 

value 

Figure 

(a) 

path 1 1.25 minutes -0.231 -0.405 

path 2 2.5 minutes -0.231 -1.099 

Figure 

(b) 

path 1 2.5 minutes -0.231 -0.405 

path 2 5 minutes -0.231 -1.099 

 

In both scenarios, the base path-size value captures the similarity of path 1 and 

path 2 due to path overlapping while the additional path-size value captures the 

correlation between path 1 and path 2 due to overlapping at node 2, and it 

indicates that the additional new path-size formulation is able to capture 

passengers' preference on selecting the transit leg along path 1 from node 2 to 

node 3 because it has higher frequency. In both scenarios, the relative selection 

ratio between path 1 and path 2 should be the same for both scenarios. However, 

the difference in expected waiting time are not the same for both scenarios as 

there is 1.25 minutes waiting time difference in scenario (a) and there is 2.5 

minutes time difference in scenario (b). In this case, introducing the additional 
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path-size value helps to correct the non-linearity of waiting time among paths 

sharing the same boarding stops.  

4.2.3 Path Size Logit Model 

In this section, the PSL model with the proposed path-size formulation as in Eq. 

(4-7) is specified. The utility of path 𝑖 in choice situation 𝑛 - 𝑈𝑖𝑛 is: 

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝛽𝑃𝑆𝑃𝑆𝑖𝑛 + 𝛽𝑃𝑆
𝑛𝑜𝑑𝑒𝑃𝑆𝑖𝑛

𝑛𝑜𝑑𝑒 + 휀𝑖𝑛

= 𝜷𝑻𝑿𝒊𝒏 + 𝛽𝑃𝑆𝑃𝑆𝑖𝑛 + 𝛽𝑃𝑆_𝑛𝑜𝑑𝑒𝑃𝑆𝑖𝑛
𝑛𝑜𝑑𝑒 + 휀𝑖𝑛 

Eq. (4-8) 

Where 𝑉𝑖𝑛 is the observed utility for path 𝑖 in choice situation n that is assumed 

to have a linear relationship with path attributes 𝑿𝒊𝒏 ; 𝜷  is a vector of 

coefficients that represents passenger preference on path attributes; 𝑃𝑆𝑖𝑛 is the 

base path-size value as defined in Eq. (4-5) with coefficient 𝛽𝑃𝑆 to be estimated, 

𝑃𝑆𝑖𝑛
𝑛𝑜𝑑𝑒 is the proposed additional path-size value as defined in Eq. (4-7) with 

coefficient 𝛽𝑃𝑆
𝑛𝑜𝑑𝑒  to be estimated, and 휀𝑖𝑛  denotes the unobserved error 

components which follow i.i.d. Gumbel distribution.  

The probability that path 𝑖 will be chosen in choice situation n given the PSL 

model is then: 

𝑃(𝑖|𝐶𝑛) =
𝑒𝜷

𝑻𝑿𝒊𝒏+𝛽𝑃𝑆𝑃𝑆𝑖𝑛+𝛽𝑃𝑆
𝑛𝑜𝑑𝑒𝑃𝑆𝑖𝑛

𝑛𝑜𝑑𝑒

∑ 𝑒𝜷
𝑻𝑿𝒋𝒏+𝛽𝑃𝑆𝑃𝑆𝑗𝑛+𝛽𝑃𝑆

𝑛𝑜𝑑𝑒𝑃𝑆𝑗𝑛
𝑛𝑜𝑑𝑒

𝑗∈𝐶𝑛

 Eq. (4-9) 

4.3 Results and Analysis 

Based on the data collected on actual route choices in the Singapore’s Public 

Transport network by smart card, a MNL model, a base PSL model with direct 
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application of classic path-size formulation as defined in Eq. (4-5) and a PSL 

model with new path-size formulation proposed in this chapter are estimated.  

The utility for path 𝑖 in the MNL model is: 

𝑈𝑖𝑛 = 𝜷𝑻𝑿𝒊𝒏 + 휀𝑖𝑛 Eq. (4-10) 

The utility for path 𝑖 in the base PSL model is: 

𝑈𝑖𝑛 = 𝜷𝑻𝑿𝒊𝒏 + 𝛽𝑃𝑆𝑃𝑆𝑖𝑛 + 휀𝑖𝑛 Eq. (4-11) 

While the utility for path 𝑖 in the new PSL model is: 

𝑈𝑖𝑛 = 𝜷𝑻𝑿𝒊𝒏 + 𝛽𝑃𝑆𝑃𝑆𝑖𝑛 + 𝛽𝑃𝑆_𝑛𝑜𝑑𝑒𝑃𝑆𝑖𝑛
𝑛𝑜𝑑𝑒 + 휀𝑖𝑛 Eq. (4-12) 

The same datasets as in Chapter 4 are used for model estimation and analysis. 

The description of data sets sampled from smart card data can be found in 

section 3.3. Dataset 1 is used for model estimation, and dataset 2 and 3 are used 

for prediction. The estimation results are presented in Table 4-2.  

As all models are performed over data set 1 for the same 1000 sampled stop-to-

stop pairs and cover the same passenger journeys, both the final log-likelihood 

and the adjusted rho-squared serve as useful and direct measurements on model 

estimation accuracy. The likelihood ratio test statistics for the null hypothesis 

of generic attributes for MNL model and both PSL models are much larger than 

the critical value of 7.879 at 99.5% confidence interval. It proves that both PSL 

models are superior to the base MNL model in terms of estimation accuracy. 

The new PSL model with additional proposed frequency-based path-size 

formulation further delivers good improvement over the base PSL model, by 
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achieving 30 more points in final log-likelihood and 0.003 increase in the 

adjusted rho-squared. 

Table 4-2 Estimation results of MNL, base PSL and PSL with new PS formulation 

Variables MNL base-PSL new-PSL 

Coefficient t-stats Coefficient t-stats Coefficient t-stats 

total in-vehicle time 

(min) 

-0.202 -37.6 -0.233 -37.18 -0.228 -36.14 

total waiting time 

(min) 

-0.382 -37.9 -0.382 -38.62 -0.378 -37.75 

total walking time 

(min) 

-0.836 -67.1 -0.822 -66.8 -0.820 -66.25 

number of transfers -5.76 -145 -5.79 -143.9 -6.04 -113.1 

total cost (S$) -5.62 -12.1 -4.20 -8.91 -4.16 -8.76 

Dummy constant if 

rapid transit is used 

6.6 10.8 6.08 9.96 5.85 9.56 

Base path-size NA NA 0.444 11.17 0.437 11.27 

New path-size NA NA NA NA -0.268 -7.75 

       

Summary of 

Statistics: 

       

Number of 

observations 

61996 61996 61996 

LL(0) -238149.9 -238149.9 -238149.9 

LL(β) -9101.5 -9049.4 -9019.358 

Likelihood Ratio Test 458096.9 458201.1 458261.1 

rho-squared 0.9618 0.9620 0.9621 

adjusted rho-squared 0.9618 0.9619 0.9621 

 

The estimates for path attributes other than path-size are similar in all models. 

Note that the estimated coefficient for the new path-size is negative, indicating 

a preference over paths with shared boarding stops. One possible reason could 

be path with more shared boarding stops with other paths might be more reliable 

in case of congestion or accident, as passengers have options to switch to other 

paths. The new path-size is related with frequency and therefore may correlate 
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with total waiting time. Empirically, the path-size and the total waiting time 

have a low correlation in the data set, and these two attributes are totally 

different transformations of frequency. 

Coincidence ratios (CR) for each model are also computed to measure how well 

the modeled path selection distribution overlaps with the observed path 

selection distribution. The formula to compute CR is analogue to the 

conventional CR formulation used for validating trip distribution methods as in 

(Beagan et al., 2007): 

𝐶𝑅 =
1

𝑁
∑(

∑ 𝑚𝑖𝑛(𝑜𝑏𝑠𝑖, 𝑒𝑠𝑡𝑖)𝑖∈𝐶𝑛

∑ 𝑚𝑎𝑥(𝑜𝑏𝑠𝑖, 𝑒𝑠𝑡𝑖)𝑖∈𝐶𝑛

)

𝑁

𝑛=1

 Eq. (4-13) 

where 𝑛 is the index for a stop-to-stop pair with N denotes the total number of 

stop-to-stop pairs used for model estimation; 𝑜𝑏𝑠𝑖  stands for the observed 

probability of selecting path 𝑖, and 𝑒𝑠𝑡𝑖  denotes the estimated probability of 

selecting path 𝑖 in choice set 𝐶𝑛. The CR values calculated are 0.943, 0.948, and 

0.951 for the MNL model, the base-PSL model and the new-PSL model 

respectively. It indicates the path selection distribution produced by the PSL 

with new PS model is more close to the observed path selection distribution. 

To examine the prediction performance of the proposed PS formulation, these 

three models estimated based on data set 1, were used to predict the passenger 

path selection in data set 2 and data set 3. The prediction results obtained from 

each route choice model are listed in Table 4-3. As shown from the table, the 

PSL model with new PS formulation outperforms the rest in predication 

accuracy by achieving the highest final log-likelihood LL(β) and adjusted rho-

squared in both data sets. 
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Table 4-3 Prediction results of MNL model, base PSL model and new PSL model 

    MNL base-PSL new-PSL 

Data Set 

2 

Number of observations 61445 61445 61445 

Number of estimates 6 7 8 

LL(0) -228331.3 -228331.3 -228331.3 

LL(β) -8787.6 -8631.4 -8576.8 

Likelihood Ratio Test 439087.2 439399.7 439509.0 

rho-squared 0.9615 0.9622 0.9624 

adjusted rho-squared 0.9615 0.9622 0.9624 

Data Set 

3 

Number of observations 58565 58565 58565 

Number of estimates 6 7 8 

LL(0) -216342.2 -216342.2 -216342.2 

LL(β) -9226.5 -8929.7 -8824.4 

Likelihood Ratio Test 414231.5 414825.0 415035.7 

rho-squared 0.9574 0.9587 0.9592 

adjusted rho-squared 0.9573 0.9587 0.9592 

 

4.4 Summary 

This chapter proposes a frequency-based path-size formulation as an additional 

factor to the base path-size value for modeling path overlapping using PSL 

model in public transport network. The classic path-size formulation and the 

new frequency-based path-size formulation have been derived with explicit 

definition of assumptions and properties in the context of public transport 

network. The main contributions of this chapter is the proposal of new path-size 

formulation with special treatment to address the unique nature of public 

transport network. This is the first attempt to capture the effect of overlapped 

boarding stations on passenger route choice behavior. The formulation were 

analyzed by model estimation and prediction using smart card data against MNL 

model and base PSL model with direct application of path-size formulation. 
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Results indicate that the proposed path-size formulation achieves better 

estimation and prediction accuracy. 
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Chapter 5 - Modeling Route Choice Behaviours in 

Public Transport Network with Multimodal Access 

and Egress 

 

Travelling in multimodal public transport involves transfers between different 

public transport modes and services, as well as multimodal access and egress 

to/from the public transport network. This study expands existing literature by 

considering the multimodality of public transport trips, not only among different 

public transport services, but also among different access/egress modes (e.g. 

walk, bicycle, taxi, car as driver, car as passenger, and motorcycle). While 

walking and taxi can be assumed to be available to all travellers, this might not 

be the case with other access/egress modes, particularly car as passenger. A 

latent choice availability framework is proposed to address the availability issue 

of access/egress modes. Data from household travel surveys is used to unveil 

passengers' route choice preferences in the public transport network.  

 

5.1 Introduction 

Among the limited literature exploring the preferences of passengers in public 

transport networks, several studies focus only on the development of 

multimodal trip assignment without utilizing external preference data for route 

choice model estimation (Benjamins et al., 2001; Brands et al., 2014; Nuzzolo 

et al., 2012; Sumalee et al., 2011). The major drawback of this approach is that 

the model does not specifically reflect the actual route choice behaviour for 

passengers in the public transport networks.  
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Other studies use Stated Preference (SP) data (Bradley and Gunn, 1990; 

Chowdhury et al., 2015; Hess et al., 2008; Vrtic and Axhausen, 2003). The 

disadvantage of using SP data is the potential bias as the respondents do not 

experience the actual trip (Louviere et al., 2000).  

Few studies use Revealed Preference (RP) data which could provide greater 

insight into passengers' actual choices in public transport networks. However, 

when RP data is used, limitations arise to the extension of the network, the 

modes considered or the alternative paths generated in complex networks. Some 

studies examine the multimodal route choice behaviour on limited inter-city rail 

networks (Debrezion et al., 2009; Tsukai and Okumura, 2003; Uges et al., 2002). 

A few authors study the public transport route choice behaviour between 

stops/stations in public transport network using smart card data and travel 

surveys without considering access or egress (Raveau et al., 2011; Schmöcker 

et al., 2013; Tan et al., 2015).  

Literature on multimodal route choice model of public transport passengers in 

large-scale urban public transport network using RP data has only become 

available recently (Anderson et al., 2014; Eluru et al., 2012). Eluru et al. (2012) 

applied a Mixed Logit model in the public transport network in Montreal, 

Canada while Anderson et al. (2014) estimated a mixed Path Size Logit model 

in the greater Copenhagen area. However, none of these works explicitly 

specified the access and egress modes in their public transport trips, and the 

choice set considered in their works is either a limited number of alternatives 

from geographic information platforms (such as Google Maps) without 

checking coverage or directly generated by choice set generation method 
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without checking the possible biases in the choice set. The effort to reach 100% 

coverage for all reasonable paths by investigating the fail-to-generated paths 

helps to correct data error and reduce potential bias in the model estimation as 

if the choice set generation fails to generate certain type of observed paths, the 

subsequent route choice model estimation from the generated choice set will not 

be able to capture the selection preference to such paths. 

This chapter goes beyond previous literature in two aspects. Firstly, it considers 

the multimodality of public transport trips not only among different public 

transport services, but also among different access/egress modes. These modes 

can include walking, bicycle, taxi, car as driver, car as passenger and motorcycle. 

Considering multiple access/egress modes into public transport trips not only 

enlarges the scale of path choice set, but also imposes additional challenges on 

modelling due to the complicated availability issue of access/egress modes. 

Unlike walking and taxi, other access/egress modes are not always available to 

every passenger, while the availability of access/egress modes directly affects 

the choice set of paths which passengers are facing when making route choice 

decisions.  

To address the availability issue of access/egress modes, a latent class choice 

model framework is proposed to capture the influential factors on access/egress 

mode availability in a latent class model and subsequently model the 

multimodal public transport route choices using route choice model 

conditionally on the choice set specified by each latent class. A set of 

deterministic criteria are firstly used at the choice set generation procedure to 

exclude paths with behaviourally unreasonable access/egress modes. Then the 
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latent class model specifically addresses the choice set heterogeneity due to 

availability of access/egress modes at finer resolution. Consequently, the choice 

set varies in each latent class by excluding the paths with non-feasible 

access/egress modes. RP data from household travel surveys is used for model 

estimation to unveil passengers' route choice preferences in the public transport 

network in Singapore. 

The second aspect in which this study goes beyond previous literature is in terms 

of choice set generation methods. Efforts have been made to generate choice 

sets on complete path from origin building to destination building with multi-

modal access and egress, with 100% coverage on all reasonable paths in a large 

and complex multimodal public transport network. As with the multimodality 

of the paths, requiring 100% coverage results on extremely large choice sets. 

Additionally, to examine the heterogeneous preferences across passengers in 

their route choice behaviour, passengers' socio-economic characteristics are 

taken into consideration in the model framework as well. 

This chapter is structured as follows. The multimodal public transport trip is 

firstly defined in Section 5.2, together with the description of the trip data and 

network data. Section 5.3 presents the adopted modelling approach for route 

choice analysis including choice set generation procedure and the latent class 

route choice model. The estimation results are presented and discussed in 

section 5.4. In the end, Section 5.6 concludes this chapter.  
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5.2 Data Set 

A complete public transport trip is a multimodal trip, beginning with an access 

leg from the origin to a stop or station in public transport network, followed by 

one or several transit legs on public transport system, and ended with an egress 

leg from public transport system to the destination. The access/egress legs could 

be travelled not only on foot, but also by bicycle or car, while the transit legs 

could be traversed among different public transport services such as bus and 

metro.  

Walk

Bus Stop

MRT Station

Bicycle

Motorcycle

Car

Taxi

 

Figure 5-1 An example of multimodal public transport trip in Singapore 

In Singapore, walk is the major mode to and from the public transport system, 

however, other access and egress modes are also observed, including: bicycle, 

car, taxi, and motorcycle. The public transport system in Singapore contains bus 

and rapid transit including MRT and LRT. In this study, all these available 

modes in Singapore are considered. Figure 5-1 shows an example of multimodal 

trip in Singapore from home to work location. 
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5.2.1 Travel Data 

The travel data used in this study comes from the Household Interview Travel 

Survey (HITS) conducted by The Land Transport Authority of Singapore (LTA) 

from June 2012 to May 2013. About one percent of all households in Singapore 

were surveyed, and all household members above the age of four were asked 

for their travel details including trip frequency, trip origin, trip destination, trip 

departure time, travel mode, travel bus line, travel MRT stations, and 

others(Cheong and Toh, 2010). The trip origin and destination is specified in 

postcode level where each postcode commonly stands for one building in 

Singapore. The HITS data includes around 20,307 observations of multimodal 

public transport trips across 11,575 different surveyed residents, in which the 

public transportation modes (i.e. Buses, MRTs, LRTs) are the main travel mode. 

From HITS data, walk is observed to be the predominant access/egress mode 

(98.71%) for the multimodal public transport trips. Bicycle (0.33%), taxi 

(0.23%), car as driver (0.10%), car as passenger (0.60%) and motorcycle (0.02%) 

are also observed as access/egress alternatives for the trips. 

A dataset was sampled from all the multimodal trips in HITS for model 

estimation based on stratified choice-based sampling. As the multimodal trip 

with non-walk access and egress are extreme minority for trips in the dense 

public transport network in Singapore, random sampling of all observations 

would result few observations or even no observation of certain trips with non-

walk access or egress. To get a more balanced dataset for model estimation, 

stratified choice-based sampling is used to retain all the observations on trips 

with non-walk access/egress, while random sampling is only performed over all 



Chapter 5 - Modeling Route Choice Behaviours in Public Transport 

Network with Multimodal Access and Egress 

 

Page 100  

 

trips with walk access and walk egress. Particularly in this study, all path 

alternatives in each objective choice set were partitioned into two collectively 

exhaustive stratums, namely: (i) trips with walk access and walk egress, and (ii) 

trips with at least one non-walk access/egress leg. Define the population share 

of each stratum 𝑔 as 𝑊𝑔, and the sampling fraction of stratum 𝑔 as 𝐻𝑔. Table 

5-1 shows the sampling statistics for the stratified choice-based samples for 

subsequent model estimation. Note that, the population fraction of each stratum 

in the complete HITS data is obtained by computing the population fraction of 

that stratum with respect to the sampling strategy of HITS data from the 

population. 

Table 5-1 Fractions and adjustments in stratified choice-based samples 

Stratum 
Sample 

fraction (Hg) 

Population 

Fraction (Wg) 
ln(Hg/Wg) 

Walk access and Walk egress 80% 98.7% -0.0912 

Trips with at least non-walk 

access/egress 
20% 1.3% 1.1868 

 

This dataset contains 1265 multimodal trips with 1012 trips with walk access 

and walk egress and another 253 trips with non-walk access or non-walk egress. 

The origin and destinations of these trips in the data set are distributed over the 

whole Singapore as shown in Figure 5-2. 
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Figure 5-2 Origin and destination distribution for the multimodal trips in the dataset 

 

5.2.2 Network Data 

Google Transit data with stop, service line, travel time information for bus, 

MRT and LRT, service line frequencies, and timetables was used to build up 

the public transport network and compute link attributes such as in-vehicle 

travel time, walking time and waiting time. Detailed construction of the public 

transport network including walk transfer links can be found in Section 3.2. This 

study extends the public transport network created in Section 3.2 by adding 

multi-mode access and egress links, with each access link connecting an origin 

building to a stop/station on public transport network by a specific mode, while 

each egress link linking up a stop/station to a destination building by a specific 

mode. For example, a building could be linked by one walk access link and 

another bicycle link to a nearby MRT/LRT station.  

In the interesting work conducted by Uges et al. (2002) on modeling regional 

train route choice, distance constraints were imposed on access/egress legs such 
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that the access/egress distance lies between the 10th and 90th percentile of for 

train trips observed in Dutch National travel survey. In another work 

considering multiple access modes (walk, car, bicycle, and public transport 

services) to rail stations, they choose to simplify the network by allowing any 

three possible rail stations per origin with all four access modes available at one 

mode per link (Debrezion et al., 2009). In a recent study by Brands et al. (2014) 

proposed three types of criteria to generate access/egress links to public 

transport network including maximum distance radius, type of reachable 

system/station for each zone, and 3) minimal number of stations. They 

considered walk, bicycle and car as access/egress modes. However, the exact 

configurations of these criteria related to the examined network were not 

specified nor justified using empirical data. 

The access/egress generation criteria for this work were developed based on the 

work of Brands et al. (2014) in reference to the real network in Singapore and 

the empirical observations in HITS data such that the network covers all 

possible access and egress links. Distance radius by access/egress type, and 

minimal number of stops/stations by access/egress type were used as criteria to 

create access and egress links between buildings and stops/stations based on 

empirical observations and network facilities. The distance radius criterion 

specifies the maximum access/egress distance radius by each mode between 

buildings and stops/stations. The specification of all these criteria, shown in 

Table 5-2, are based on the empirical observations in HITS data and are adjusted 

according to the investigations of fail-to-generate paths in choice set generation 

stage. Note that there is no bicycle link from buildings to/from bus stops created 
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in this study, as in Singapore, bicycles are commonly not able to park at bus 

stops. 

Table 5-2 Generation criteria for access and egress legs from buildings to 

stops/stations 

Mode 

Access  Egress 

to/from 

MRT/LRT   to/from Bus  

to/from 

MRT/LRT   to/from Bus 

Radius 
(km) 

Min 

number of 
Stations   

Radius 
(km) 

Min 

number 
of stops   

Radius 
(km) 

Min 

number 

of 
Stations   

Radius 
(km) 

Min 

number 
of stops 

Walk 1.2 3  0.75 5  1.2 3  0.75 5 

Bicycle 3.0 3  0 0  3.0 3  0 0 

Taxi 4.0 5  2 10  7.0 5  3.0 10 

Car driver 5.0 7  2 10  5.0 7  2.0 10 

Car 

passenger 
7.0 7  4 10  8.0 7  4.0 10 

Motorcycle 4.0 5   4 10   4.0 5   4.0 10 

 

5.3 Methodology 

In developing a model framework that captures the influence of access/egress 

mode availability on passenger route choice decisions, this work adopts both 

deterministic and probabilistic criteria to construct a behaviourally reasonable 

choice set that passengers are facing when making route choice decisions. A set 

of deterministic criteria are firstly used at the choice set generation procedure 

to include paths with all behaviourally reasonable access/egress modes. Then a 

probabilistic criteria on modal availability is imposed through a latent class 

model, in which each latent class corresponds to a different availability of 
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access/egress modes depending on the passenger social-economic 

characteristics and trip characteristics. The selection of an optimal single path 

from the choice set is therefore modelled using a multinomial Logit 

conditionally on the choice set with specified modal availability in the latent 

class.  

Household car availability, type of 

trip, etc.,

Availability of Car 

Access/Egress as passenger

Passenger attributes, 

path attributes

Choice Set

access

Available

egress

Route choice decision

access

Available

egress

access

Available

egress

access

Available

egress

 

Figure 5-3 Modelling framework of the complete route choice model 

The latent class choice model framework proposed in this work is depicted in 

Figure 5-3. As it is computationally difficult to support fully expansion of 

availability all access/egress modes, particularly as the number of path 

alternatives is large, this work only illustrates the most complicated availability 

of car as passenger using the latent class choice model. However, the model 

framework developed can be readily extended along other access/egress modes. 
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Besides, this framework does not require use of latent variables from external 

sources, although it could be easily extended to incorporate such information. 

When availability of car access/egress as passengers is considered in the latent 

class model, four latent classes should be considered as shown in Figure 5-3. 

These are: (i) class with both car access and egress as passenger available, (ii) 

class without car access but with car egress as passenger available, (iii) class 

with car access but without car egress as passenger available, and (iv) class 

without car access or egress as passenger available. However, the first class 

(with both car access and egress as passenger available) cannot be modelled in 

this application to Singapore, as no such case is observed in HITS data (and 

therefore the latent class model would not assign travellers to that class). 

Therefore, in practical application, only the latter three classes are considered 

in this work.  

5.3.1 Choice Set Generation Procedure 

Generating the set of alternative paths is very critical to the model estimation 

results, and it is especially a challenging problem in route choice model (Prato, 

2009). In the route choice problem, there is a large number of possible path 

alternatives for a traveller. This is especially the case in this study as not only 

different public transport services but also multiple access/egress modes are 

considered.  

In this study, an observation is declared to be matched in the generated choice 

set if there is a generated path having (i) the same transport modes in the same 

order for all access leg, egress leg, and transit legs and transfer legs, (ii) exact 

bus line number for transit legs on bus, and (iii) exact boarding station and 
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alighting station for transit legs on MRT/LRT. As only bus line number instead 

of boarding stop and alighting stop is recorded in HITS data for travelling on 

buses, the coverage is defined at bus line level instead of stop level for bus 

transit leg on bus.  

The following procedure is used to generate the final choice sets of trip 

alternatives for the origin-destination (OD) pairs of each passenger for model 

estimation. 

 Step 1 -Mode Availability: For each OD pair, with respect to the 

geometry locations of OD and passenger socioeconomic characteristics, 

check for the access and egress mode availability with deterministic 

constraints. 

 Step 2 - Boarding Stop and Alighting Stop Feasibility: For each 

possible access/egress mode combination, search for all feasible 

boarding stop and alighting stop pairs on public transport network. 

 Step 3–Choice Set Generation Method: Given each boarding stop and 

alighting stop, search for possible paths between boarding stop and 

alighting stop, and concatenate these paths with their access leg and 

egress leg respectively to form complete paths from origin to destination. 

 Step 4 – Path Feasibility Check: Impose path feasibility check for each 

generated paths to discard any infeasible paths from the choice set. 

 Step 5 - Investigate on Fail-to-generate Paths: Check whether there is 

any observed path in the dataset that is not generated. If there is any fail-

to-generate path, investigate the failed reason, correct any data error, 

adjust availability and feasibility configurations in Steps 1 and 2, and 

fine-tune choice set generation parameters in Step 3. Repeat Step 1 to 

Step 5 until 100% coverage is reached. 

 Step 6 – Final Result: Output the final choice set with 100% coverage 

for subsequent model estimation.  
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5.3.1.1 Mode Availability 

In this study, walk and taxi are assumed to be available to all passengers as both 

access and egress. When the household possess a bicycle, it is available to a 

passenger as access mode if the trip begins at home, and as egress mode if the 

trip ends at home. As bicycle rental is not available in Singapore as a 

transportation services on public roads, it is reasonable to impose such 

constraint on bicycle availability as access and egress. For access/egress by car 

as driver, the household must have a car or van, and the traveller himself should 

possess a driving licence. As parking is needed for cars, by assuming cars 

always have to be parked at home at night, this mode is limited to access only 

if the trip begins at home, and to egress only if the trip ends at home. Similar 

rules are assumed to apply to motorcycle access/egress.  

For car access/egress as passenger, the deterministic constraint is only that the 

direct distance between origin and destination should be more than 5 kilometres. 

This constraint is imposed as there is no such observations from the survey data 

for public transport trips. When the distance between origin and destination is 

within 5 kilometres and car is utilized as transport mode, car mode is used for 

the whole trip. The mode availability for car access/egress as passenger will be 

further addressed at finer details in the latent class choice model. 

5.3.1.2 Boarding Stop and Alighting Stop Feasibility 

Given the OD geometry location and access/egress mode combination, all 

boarding stops that could be reached from origin by the specified access mode 

and all alighting stops that could reach destination by the given egress mode are 

taken into consideration. All possible boarding stop and alighting stop pairs to 
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the given OD are enumerated. Two additional constraints are imposed to filter 

out any infeasible stop pairs: (i) the boarding stop should be different from the 

alighting stop, and (ii) the total distance of access leg and egress leg should be 

smaller than the distance between origin and destination.  

5.3.1.3 Choice Set Generation Method 

Given the boarding stop and alighting stop pair, the Nested Labelling and Link 

Elimination approach is used to search for possible paths between boarding stop 

and alighting stop on the public transport network. The Nested Labelling and 

Link Elimination approach combines the searching heuristics of the Labelling 

approach as defined in (Ben-Akiva et al., 1984) and Link Elimination approach 

as used in (Ramming, 2001). It performs the link elimination on the least cost 

path generated by each label in the Labelling approach. There are four labels 

used in the Labelling approach where the cost is defined to linear combination 

of in-vehicle travel time on bus, in-vehicle travel time on MRT/LRT, waiting 

time, walking time, and transfer penalty, and monetary cost based on the 

estimation result for a route choice model from boarding stop to alighting stop 

in Singapore in (Tan et al., 2015).  

The parameters on in-vehicle travel time on bus, in-vehicle travel time on 

MRT/LRT, waiting time, and walking time are adjusted such that Label 1 

prefers bus than MRT/LRT and walking than waiting; Label 2 prefers bus than 

MRT/LRT and waiting than walking; Label 3 prefers MRT/LRT than bus and 

walking than waiting; and Label 4 prefers MRT/LRT than bus and waiting than 

walking.  
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All the stop-to-stop paths generated by this choice set generation method will 

be concatenated with their respective access leg and egress leg to form complete 

multimodal public transport paths from origin to destination. 

5.3.1.4 Path Feasibility 

A path feasibility check is imposed on all generated paths to ensure that all the 

path alternatives in the choice set for model estimation is feasible and 

reasonable paths. A feasible path should always start with an access leg from 

origin to a stop/station on public transport system and ends an egress leg from 

a stop/station to destination. There should not be any consecutive walk legs 

along a path and there should be at least one transit leg on bus or MRT/LRT. 

The maximum number of transit legs on bus, MRT and LRT is constrained to 

be five. These constraints are empirically consistent to all the observations in 

HITS data used in this study, as well as all the observations from smartcard data 

as in (Tan et al., 2015). 

5.3.1.5 Investigations on Fail-to-generate Paths 

The observation coverage of the initial choice sets for the dataset is 83%. 

Detailed investigations have been carried out to identify possible reasons for 

failure of generating observed paths. Five major categories of failed cases were 

identified and they are: 

 Fail Reason 0: Reasonable path. These paths are reasonable but failed 

to be generated due to either the observed access/egress mode is not 

available or the boarding stop is not included or the Nested Labelling 

and Link Elimination method failed to generate the paths. 
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 Fail Reason 1:Network input error, including postcode error, bus line 

stops error, bus line travel time error, travel time error and bus stop 

latitude-longitude error 

 Fail Reason 2: Amendable erroneous observations, including paths 

with reversed access and Egress records, paths with duplicated transfers 

on MRTs, and paths with additional loop after reaching destination.  

 Fail Reason 3: Non-amendable erroneous observations: including paths 

with extremely long walk (>5km) within a short time, paths with non-

existing bus line, paths with bus line not running in the reported day of 

week. 

 Fail Reason 4: Extremely long detoured trip. These paths are with total 

travel time 3 times more than the least travel time path in the choice set.  

Efforts are made to generate the reasonable paths in Fail Reason 0 by adjusting 

the mode availability assumptions and stop pair feasibility assumption, as well 

as fine-tuning cost function for each label in the choice set generation method. 

Network input errors (Fail Reason 1) and error observations (Fail Reason 2) are 

corrected. Observations in Fail Reasons 3 and 4 are discarded from the dataset 

and new observations are re-sampled from the HITS data.  

5.3.1.6 Final Result 

The final choice sets used for model estimation achieve 100% coverage of 

observations. Due to the multimodality in both access/egress legs and the transit 

legs, each OD is having a large number of path alternatives in the choice set. 

The minimum number of path alternative in the choice set for an OD pair is 30, 

and the maximum is 11,290. OD pairs with short distances are generally having 

fewer path alternatives in the choice set while OD pairs with long distances are 

having more path alternatives in the choice set. Comparing to the size of choice 
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set for stop-to-stop pairs in Chapter 3 , the size of choice set per OD pair has 

increased significantly due to the inclusion of multi-mode access and egress legs. 

5.3.2 Latent Class Route Choice Model 

During the choice set generation process, paths with access/egress by car as 

passenger are generated for all the OD pairs as long as the direct distance 

between origin and destination is more than 5 Km. However, when the 

passenger is about to make a route choice decision, paths alternatives by car as 

passenger might not be available at that situation. The availability of car 

access/egress as passenger has been affected a lot by passengers’ socio-

economic characteristics and trip type. For example, on a home-to-work trip in 

the morning, passengers without a car in the household will be less likely 

offered a car access as passenger than passengers with cars in the household. 

But it is not a strict cut because it is still possible that such a ride could be offered 

by his/her colleagues or friends. Moreover, it might be relatively easier to take 

an access ride with family members in the morning than a ride back home with 

family members in the evening. 

In the proposed latent class choice model framework, each latent class 

corresponds a different availability of car access/egress as passenger. Specially, 

three latent classes are considered in this work, and they are: (i) class without 

car access but with car egress as passenger available, (ii) class with car access 

but without car egress as passenger available, and (iii) class without car access 

or egress as passenger available. In all three classes, availability of other 

access/egress modes are assumed to follow the deterministic constraints defined 

in Section 5.3.1.1. Ideally, another class with both car access and egress as 
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passenger, referred as full choice set, should be considered. But it is not 

computationally practical as no observations support such latent class as there 

is no observation of path with both car access and egress as passenger. Therefore, 

the conditional probability of an observed path given the full choice set is 

always smaller than the conditional probability of selecting an observed path 

given constraint path choice set. Therefore, in this work, such latent class is 

ignored and only three latent classes are considered.  

5.3.2.1 Model Structure 

The latent class model is specified as a Logit and the utility of latent class 𝑠𝑛for 

passenger 𝑛 may be expressed as follows: 

𝑈𝑆𝑛 = 𝜸𝒔
𝑻𝒀𝒏𝒕 + 𝜂𝑆𝑛 Eq. (5-1) 

where 𝜸𝒔  is a vector of coefficients for latent class 𝑠 ; 𝒀𝒏𝒕  is a vector of 

parameters associated with passenger 𝑛 ’s characteristics and the trip 𝒕 

characteristics; and 𝜂𝑆𝑛  is assumed to be an i.i.d. gumbel distributed random 

variable across passengers and classes with zero mean and variance 𝜋2/6. With 

the utility maximization assumption in Logit, the probability of passenger 𝑛 

facing choice set with latent class s is then denoted as: 

𝑃(𝑠𝑛) =
𝑒𝑥𝑝(𝜸𝒔

𝑻𝒀𝒏𝒕)

∑ 𝑒𝑥𝑝(𝜸𝒔′
𝑻 𝒀𝒏𝒕)𝑠′∈𝑺

 Eq. (5-2) 

The utility of a route alternative is defined as: 

𝑈𝑖𝑛 = 𝑿𝒊𝒏
𝑻 (𝜷 + 𝜶𝒁𝒏) Eq. (5-3) 
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where 𝑿𝒊𝒏 is a vector of path attribute for path 𝑖 faced by passenger 𝑛, and 𝜷 is 

a vector of coefficients on path attributes to be estimated. 𝜶 is a vector of 

coefficients on passenger socio-economic characteristics 𝒁𝒏. It is a PSL model 

with path-size included in 𝑿𝒊𝒏. To make this model more generic, the commonly 

adopted path size value as specified in Eq.(2-3) is used.  

Given passenger 𝑛 facing choice set 𝐶𝑠𝑛with latent class s, the conditional route 

choice probability is then defined as: 

𝑃(𝑖|𝐶𝑠𝑛) =
𝑒𝑥𝑝(𝑿𝒊𝒏

𝑻 (𝜷 + 𝜶𝒁𝒏))

∑ 𝑒𝑥𝑝(𝑿𝒋𝒏
𝑻 (𝜷 + 𝜶𝒁𝒏))𝑗∈𝐶𝑠𝑛

 Eq. (5-4) 

The probability of observing passenger 𝑛 selecting path 𝑖 is then: 

𝑃(𝑖) = ∑ 𝑃(𝑖|𝐶𝑠𝑛)

𝑠𝑛∈𝑺

𝑃(𝑠𝑛) Eq. (5-5) 

The log-likelihood function to optimize is then: 

𝑙𝑙(𝜷, 𝜶, 𝜸) =∑𝑙𝑛(∑ 𝑃(𝑖|𝐶𝑠𝑛)

𝑠𝑛∈𝑺

𝑃(𝑠𝑛))

𝑛

 Eq. (5-6) 

Note that as the coverage of observation is defined at bus line level instead of 

stop level for bus transit leg on bus, it is possible that an observation could be 

matched to multiple path alternatives with different boarding/alighting stop on 

the same bus lines. In this case, the probabilities of all matched path alternative 

to this observation is summed up to compute the likelihood of this observation 

for model estimation.  
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5.3.2.2 Model Estimation 

The dataset used in this work is choice-based sampled. Conventional exogenous 

maximum likelihood (ESML) estimation leads to biased estimation result over 

choice-based samples. A detailed review on consistent estimation over different 

sampling method is provided by Ben-Akiva and Lerman (1985). However, 

when the choice-based sampling is performed over each alternative in the choice 

set and the choice model is a Logit with full set of alternative specific constants, 

conditional maximum likelihood (CML) estimation is a consistent estimator 

(Bierlaire et al., 2008; Manski and Lerman, 1977). In this case, the CML 

estimation could be performed by adjusting the utility function for choice-based 

samples and performing ESML over the adjusted utility. Based on the prove, it 

could be easily extended to show that for stratified choice-based sampling, if 

the choice model is Logit with full set of stratum specified constants for each 

choice-based stratum, CML estimation is also consistent. In this work, the route 

choice model is specified in a Logit model with full set of stratum-specified 

constants and the CML estimation is performed by subtracting ln(Hg/Wg) in 

Table 5-1 from the utility of a path. 

5.4 Model Specification 

Numerous models were estimated with varied utility specifications. Here the 

key results of three best models with different model specifications are 

presented in Table 5-3. The first model is the base PSL model, denote as Base 

PSL. In the Base PSL, the path attributes used to construct the utility function 

include ten time components, total travel cost, three transfer components, five 

mode specific constants, and the path size factor to address the correlation due 
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to path overlapping. Note that for normalization purpose, the mode specific 

constant for path with both walk access and walk egress is fixed to have zero 

coefficients and therefore not entering the utility function. Three types of socio-

economic attributes are assumed to interact with three different path attributes 

to address the heterogeneous preference due to different socio-economic 

background. Binary variable indicating whether the trip is a mandatory trip for 

education or work is interacted with the total waiting time. Passenger income in 

1000 Singapore dollar (S$) is believed to have an impact on passenger’s 

preference over total path cost. Another socio-economic parameter considered 

in this work is the number of years older than age 55. Here if a passenger is aged 

65, he/she is 10 years older than age 55, while if a passenger is younger than 

age 55, this parameter is set as 0. The selection of age 55 is because while doing 

a full interactive specifications of all ages with the binary variable for path with 

at least one leg on MRT/LRT, the data only suggests an influence of age linearly 

on preference of paths with MRT/LRT for senior passengers over 55 years of 

old. In the second model – the Improved PSL model, additional parameters are 

used to interact with the binary variables indicating a path has an egress/egress 

leg on car as passenger. These interactions are used to introduce penalty to paths 

with access/egress leg on car as passenger depending on the availability of car 

in the household and whether the trip is a home-based trip. The third model is 

the proposed latent class choice model (LCCM). Given a latent class with 

access/egress availability, the model specification is the same as in the Base 

PSL model. The latent class membership model is specified to be affected by 

the availability of car in the household and whether the trip is a home-based trip. 
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Subsequently, the route choice model is performed conditionally on the 

heterogeneous choice set which is affected by the availability of access/egress 

modes specified in each latent class. 
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5.5 Perception and Valuation of Route Choice Behaviours 

5.5.1 Estimation Results 

As shown in Table 5-3, the estimates of coefficients for all three models have 

the expected sign, and all the estimates are statistically significant at the 95% 

significance level.  

Comparing the estimates of the three models, parameters related to total travel 

cost, access/egress motorized time, and binary variables related to car 

access/egress as passenger have the largest deviation among models. Out of the 

three models, only the Base PSL model obtains a more negative coefficient on 

egress motorized time than the coefficient on access motorized time. Consider 

choice situations where car egress as passenger is not available to passengers 

but the observed selections are paths with walk access and egress. By putting 

paths with car egress as passenger into choice set, more paths in the choice set 

are having positive egress motorized time. However, observations support paths 

with zero egress motorized time. As more paths with car access as passenger 

are observed than paths with car egress as passenger, in this case, the estimation 

process will lead to a more negative estimate on egress motorized time. 

Therefore, it could be potential estimation bias in the Base PSL model on these 

two variables when availability of car access/egress passenger is not considered. 

Similar but shallower effect applies to car access as passenger, since almost 

three times more selected path with car access as passenger are observed in 

HITS data than that with car egress as passenger.  
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Another potential bias could be observed on the estimates on binary variables 

for path with car access/egress as passenger. In the Base PSL model, binary 

variable for path has an access/egress leg on car as passenger carries not only 

the inherent preference on car access/egress as passenger but also largely serves 

as calibration parameter for mode share of car access/egress as passenger. 

Coefficient on this binary variable in the Base PSL model is estimated to be -

7.354, while in the LCCM model, the coefficient on this binary variable 

increases to -5.415 and in the Improved PSL model it increases to -5.257 in 

choice situations where trip starts from home and car is available in the 

household for passenger. Both the Improved PSL model and LCCM model 

capture the fact that when a trip starts from home and car is available in the 

household for passenger, it is more likely for passenger to choose path with car 

access as passenger.  

The positive estimate on the binary variable for household has vehicle and the 

trip is from home in the Improved PSL model and LCCM demonstrate such 

effect. Coefficients on total travel cost among three models also vary a lot due 

to relatively high correlation between access/egress motorized time and total 

travel cost. This is particularly the case in Singapore as the total cost for most 

of the trips on public transport network has slight variation at low cost between 

70 cents to 2.5 dollars while the adoption of motorized vehicle such as cars or 

taxi is likely to boost up the total cost significantly. 

Table 5-4 summarizes for each model the number of observations in the dataset, 

the number of parameters estimated, the final log-likelihood, the log-likelihood 
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ratio test, the rho squared and the adjusted rho squared, the Bayesian 

information criterion (BIC) (Greene and Hensher, 2003) and the correct 

prediction. The BIC formulation is adopted the same as in Greene and Hensher 

(2003) while the correct prediction is computed as the percentage of observed 

trips that are predicted with the highest probability in the choice set using 

estimated coefficients. As is apparent from Table 5-4, the LCCM model 

outperforms the base PSL model and the improved PSL model in terms of all 

test statistics. Besides, the LCCM model is behaviourally more appealing than 

other two models. If certain access/egress modes are not available in the choice 

situation, it is behaviourally more reasonable to exclude these paths from the 

choice set than to penalize them as in the improved PSL model or to totally 

ignore such availability issue as in the base PSL model.  

Table 5-4 Summary of statistics for different model specifications 

 Base PSL Improved PSL LCCM 

Number of observations 1265 1265 1265 

Number of parameters 23 26 27 

Final LL -3246.10 -3140.01 -3089.17 

Likelihood_Ratio 10534.47 10746.65 10848.33 

rho_squared 0.619 0.631 0.637 

Adjusted rho_squared 0.616 0.628 0.634 

BIC -3264.42 -3157.74 -3106.61 

Correct Prediction 0.500 0.504 0.532 
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5.5.2 Interpretation on Mode Availability 

Of particular interest is the result for latent class membership. The estimates for 

the class membership model are listed in the last four rows in Table 5-3 under 

the LCCM model. As the class constant for choice set without car access or 

egress as passenger is normalized to zero, the negative coefficients of class 

constants for choice set without car access as passenger and choice set without 

car egress as passenger indicate when there is no car in the household and the 

trip is not a home-based trip, car access or egress as passenger are generally less 

likely to be available. When the household has car and the trip is from home, 

the chance of having car access as passenger increases significantly while when 

the household has car but the trip is to home, the change of having car egress as 

passenger increases. Here, to which degree the availability of car access/egress 

as passenger is not as clear-cut, by just looking at the estimates. The class 

membership probability under different scenarios are then computed in Table 

5-5 to provide clear insights on the availability of car access/egress as passenger.  

Table 5-5 Class membership probability for the LCCM under different scenarios 

Scenario 

Class without car 

access but with car 

egress as passenger 

available 

Class with car 

access but without 

car egress as 

passenger available 

Class without car 

access or egress 

as passenger 

available 

Household has car and 

the trip is from home 
0.87% 90.45% 8.68% 

Household has car and 

the trip is to home 
33.93% 12.98% 53.09% 

Household has no car 

and the trip is not 

home-based 

7.47% 18.17% 74.36% 
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When there is no car available in the household and the trip is neither from home 

nor to home, the probability that there is no car access or egress as passenger 

available to that passenger is around three quarters. However, when there is car 

in the household and the trip is originated from home, the probability that car 

access as passenger is available increases significantly to more than 90%, while 

when the trip is destined at home, the probability of car egress as passenger 

increases to around 50%. Such difference is behaviourally reasonable as it is by 

and large easier for household members to departure from home together in a 

household car in the morning than to get back home together in the evening. 

They might not finish the work at the same time or there are some other errands 

to do after work in the evening.  

5.5.3 Route Choice Behavioural Interpretation 

The estimation results of the LCCM also demonstrate the effects of various path 

attributes and passenger socio-economic characteristics on the route choice 

decision-making process. In general, passengers are more sensitive to waiting 

time than walking time and in-vehicle travel time. Especially when passengers 

are on mandatory trips for work or education, they value total waiting time the 

most negatively. The in-vehicle travel time in MRT/LRTs is much more 

positively perceived than that in buses. This is because MRT/LRTs in Singapore 

run much faster than buses at much higher frequencies. This is also consistent 

with findings in the literature (Anderson et al., 2014; Eluru et al., 2012; Tsukai 

and Okumura, 2003; Van der Waard, 1988).  
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The binary variable for path with at least one leg on MRT/LRT has positive sign 

indicating passengers prefer to travel on MRT/LRT than pure buses. However, 

as indicated by the negative estimated coefficient of number of years older than 

55 against the binary variable that a path has at least one leg on MRT/LRT, 

when senior passengers get older and older, they tend to favor MRT/LRT less 

and less. Table 5-6 lists the estimated coefficients of the LCCM model for senior 

passengers at different ages against the binary variable for path with at least one 

leg on MRT/LRT. For passenger younger than age 55, they have the strongest 

favor on path with MRT/LRT. However, this preference over MRT/LRT 

decreases with the increase of age among senior passengers. When people gets 

more than 80 years, they favor path with MRT/LRT less than path purely on 

buses. 

Table 5-6 Preferences on path with at least one leg on MRT/LRT 

Passenger Age <=55 57 60 65 70 75 80 

Binary variable for path with 

at least one leg on MRT/LRT 
1.881 1.728 1.498 1.115 0.733 0.350 -0.033 

 

Mode specific constants for non-walk access/egress modes are all negative and 

statistically significantly different from zero. As the mode specific constants for 

path with walk access and walk egress is normalized to zero, a negative 

coefficient of other mode specific constant suggests that passengers in general 

less likely to choose this mode than walking when it is available. The estimation 

results indicate passengers prefer to reach public transport system by foot than 
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by other modes. It is behaviourally reasonable in Singapore given its intense 

public transportation network with good accessibility by walk. Moreover, 

bicycle is not convenient to ride on public road nor to park at bus stops and 

MRT stations in Singapore, while taxi always requires additional monetary cost 

and car/motorcycles are always subject to complicate availability.  

5.6 Summary 

In summary, this chapter developed a latent class choice model framework to 

tackle the challenges and complexity in modelling complete public transport 

route choice decisions with multi-mode access and egress in the large-scale 

urban public transport network in Singapore.  The contributions of the work 

presented in this chapter are four-fold.  

First, to the authors’ knowledge, this is the first attempt to analyse complete 

public transport trips with multimodal access from the origin at building level 

and multimodal egress from to destination in large-scale urban public transport 

networks. Six possible access/egress modes are considered including walk, 

bicycle, taxi, car as driver, car as passenger and motorcycle, while all public 

transport services in Singapore, namely bus, MRT and LRT, are included.  

Second, it proposes a latent class choice model framework to address the 

availability issues of different access/egress modes in modeling route choice 

behaviour of complete public transport trips. The latent class model utilize a 

Logit model structure to examine the availability of access/egress modes 

depending on the passenger social-economic characteristics and trip 

characteristics. Conditionally on the choice set with specified modal availability 
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in the latent class, the route choice decision is modelled using Logit model 

considering both path attributes and passengers socio-economic characteristics.  

Third, efforts were also made to generate choice sets with 100% coverage on all 

reasonable paths in the large and complex multimodal public transport network 

in Singapore. It helped to correct data errors and avoid potential bias in the 

model estimation due to the deficiency of choice set in covering certain type of 

observed paths. To tackle the computational difficulty due to the extreme 

dominancy of walking as access/egress to public transportation network in 

Singapore, a stratified choice-based sampling and conditional maximum 

likelihood estimation was then adopted.  

Finally, the estimation results based on passengers' real route choice selections 

collected in HITS data in Singapore illustrated the effect of household car 

ownership and trip type on availability of car access/egress as passengers, and 

unveiled passengers' heterogeneous route choice preferences with respect to 

different socio-economic characteristics over different path attributes such as 

different types of transfers, mode of access/egress, and different travel time 

components including in-vehicle travel time, waiting time for different public 

transport service modes as well as access and egress time via multiple travel 

modes. 
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Chapter 6 - Evaluating Rapid Transit Network 

Performance: an Application of Route Choice Model 

Combining Survey and Smart Card Data 

 

This chapter presents an application using route choice model to assess the 

network performance of the rapid transit network in Singapore. Despite smart 

card in Singapore captures almost all route choice selections from initial 

boarding stop to final alighting stop, it does not record transfer information on 

rapid transit network. This chapter compliments smart card data with the 

completeness of HITS data by modeling passengers’ route choice behaviour on 

rapid transit network using HITS data. Based on the complete travel demand 

recorded on rapid transit network in smart card data, it estimates the passenger 

flows on the rapid transit network, identifies the transfer demand and predicts 

the probability of fail-to-board and fail-to-seat at each transfer station. It 

demonstrates how to apply passenger route choice model and get realistic 

estimation of passenger flows in rapid transit network in Singapore. 

 

6.1 Introduction 

To better assess the performance of rapid transit network in Singapore, realistic 

estimation of passenger flows on rapid transit network is essential. Despite the 

smart card system in Singapore captures every boarding and alighting 

information on rapid transit network both spatially and temporally, they are 

fragmentary in terms of exact path selection. Passengers are only required to tap 

in at initial boarding station and tap out at the final alighting station on 

MRT/LRT network. There is no record of transfer stations in rapid transit 
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network. This drawback of smart card data prevents practitioners from using 

smart card data to accurately analyze the network performance of rapid transit 

in Singapore directly as there is no information on which route passengers 

choose. This drawback is also the reason we dropped all the observations of 

pure MRT/LRT trips when estimating a stop-to-stop route choice model using 

smart card data in Chapter 3 .  

 

Figure 6-1 The map of rapid transit network in Singapore in early 2013 (source: 

Land Transport Authority, Singapore) 

This chapter presents an application to evaluate the network performance of 

rapid transit systems by modeling passengers’ route choice decisions using 

HITS data and subsequently estimating passenger flows on the rapid transit 

network given complete travel demand recorded in smart card data. As is 

evident from the map of the rapid transit network in Singapore in Figure 6-1, 

there are more than 16 possible transfer stations with quite a number of station-
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to-station pairs that can be travelled by more than one feasible path. The analysis 

in this chapter is based on more than 2 million trips made in a typical weekday, 

more than 75% of which must include transfers.  

This chapter is structured as follows. The datasets used for route choice 

estimation and assessment of network performance are firstly introduced in 

Section 6.2, together with the description of choice set generation method to 

generate feasible paths set for each station-to-station pair. Section 6.3 presents 

the estimation of passengers’ route choice selections particularly on rapid transit 

network. In section 0, the assessment of network performance based on the 

estimated route choice model is presented given complete travel demand 

recorded in smart card data. In the end, Section 6.5 summarizes this chapter  

6.2 Data 

6.2.1 Datasets 

The data set for route choice model estimation is extracted from HITS 2012 data. 

It includes all pure MRT/LRT trips and MRT/LRT segments from trips using 

both rapid transit and buses recorded in HITS. The total number of valid trips 

are 11,154. To cater for data records in smart card data, all origin and 

destinations are discarded. Instead, the first boarding MRT/LRT station is 

treated as origin while the last alighting MRT/LRT station is treated as 

destination.  

The demand dataset is retrieved from smart card data from Aug 2013. Despite 

that the data is collected few months after HITS 2012 data has been completed, 

there is no new rapid transit line or station put in operation during these months. 
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The dataset is retrieved from 05 Aug 2013, which is a Monday. All MRT/LRT 

trips and trip segments on MRT/LRT is retrieved. The whole dataset contains 

12,951 unique station-to-station pairs in the rapid transit network covering 

2,219,637 observations.  

6.2.2 Choice Set Generation 

The branch & bound approach is adapted in this section to search for all possible 

paths in the rapid transit network of Singapore. It applies to both estimation 

dataset and demand dataset. Although the branch & bound approach is found 

not suitable for generating path choice set on the whole public transport network, 

as discussed in Chapter 3 , it is quite feasible for the rapid transit network as the 

number of possible transfer station is limited.  

Table 6-1 Description of implemented constraints for the branch & bound approach 

for the rapid transit network in Singapore 

Constraints Type Constraint Description 

1 Logical Path is loopless 

2 Logical Transfer must be at interchange station 

3 Feasible Maximum allowable number of transfer (<=4) 

4 Behavioural No search of path with three more transfers than least transfer 

path 

 

Table 6-1 depicts the constraints implemented for branch & bound approach 

particularly for the rapid transit network. In this work, the least transfer path is 

firstly identified using shortest path algorithm and it serves as a key reference 

for the constraint implemented for the branch & bound approach in this work. 
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The constraint that transfer must be at interchange station is a feasible yet 

extremely useful constraint for this network. It helps to effectively limit the 

number of possible search branches during path searching and therefore speeds 

up the whole choice set generation process. The maximum computational time 

to search for paths with five transfers is below 10 seconds.  

The maximum allowable number of transfer for branch & bound approach is set 

to be four. This is a valid constraint as in Singapore, passengers could reach any 

station in the network within four transfers no matter which station they board. 

All observation in HITS data also supports such constraint empirically as there 

is no observations of MRT/LRT trips with more than four transfers. 

The last constraint is to stop searching path with three more transfers than the 

least transfer path. This is a reasonable behavioural assumption as number of 

transfer is always weighted as a significant disutility for route choice models. 

In our previous work on both stop-to-stop route choice model and complete 

route choice model, the rate of substitution between number of transfer and total 

in-vehicle travel time in Singapore is always larger than 10 minutes per transfer. 

Therefore, it is reasonable to assume passengers will not select paths with three 

more transfers than least transfer path in rapid transit network. This assumption 

is also supported by the observations in HITS data empirically. 

6.3 Route Choice Model on Rapid Transit Network 

The path size logit model specified in Chapter 3 , is adopted for modeling 

passengers’ route choice behaviour in rapid transit network.  
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Total in-vehicle travel time, total walking time at transfers, and total waiting 

time, number of stations passing-by are time related components considered in 

this route choice model. For total walking time, we further differentiate it by 

total walking time at transfer station within city center and outside of city center. 

Here if a path transfers at any station inside the core central business district in 

Singapore, the walking transfer time at this station is counted as walking time 

within city. As there is no information on dwell time at each station, the total 

number of stations passing by is used to capture the effect of dwelling time on 

passenger’s route choice decisions.  

Two types of transfers are considered in this work, namely, transfer without 

level change and transfer with level change. If a transfer is conducted at the 

same platform without going ups and downs, this transfer is considered as a 

transfer without level change, while if passengers need to go up/down to another 

platform, it is considered as a transfer with level change.  

One alternative specific constant is used in this model, indicating whether the 

path utilizes the new MRT line - Circle Line (at year 2012) for transfer is also 

included. It is necessary as when HITS 2012 data was collected, the circle line 

just put into operation few months ago. This constant is therefore included to 

capture the behaviour assumptions that passengers are not that familiar with 

Circle Line comparing to other existing lines. Last but not least, path-size is 

included to capture the correlation among paths due to path overlapping. Note 

that the total monetary cost is discarded from this model as fare is fixed for each 

MRT/LRT station pair regardless which route passengers choose. 
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The estimation results is tabulated in Table 6-2 below. All the parameters are 

statistically significant with desired sign.  

Table 6-2 Estimation results of route choice model in rapid transit network 

Variables PSL 

 Coefficient Std.Err. t-stats 

Total walk time during transfer at city center (min) -0.769 0.040 19.313 

Total walk time during transfer outside of city center 

(min) 

-0.415 0.053 7.892 

Total in-vehicle travel time (min) -0.145 0.014 -10.470 

Total waiting time (min) -0.226 0.030 7.579 

Total Number of transfer without level change -3.519 0.161 -21.852 

Total Number of transfer with level change -4.522 0.179 -25.265 

Constant indicate path transferring at station along 

Circle Line 

-0.546 0.186 -2.928 

Total number of stations passing by -0.215 0.029 -7.475 

Path-size 0.591 0.068 8.657 

    
Summary of Statistics:   

Number of observations 11154 

LL(0) -24320.5 

LL(β) -1792.9 

Likelihood Ratio Test 45055.2 

rho-squared 0.926 

adjusted rho-squared 0.926 

 

6.4 Assessing Network Performance 

In this section, a simulation procedure is firstly developed to estimate the 

passenger flow in rapid transit network based on the estimated route choice 

model with total travel demand recorded in smart card data as described in 

section 6.2.1. The key idea of this Monte-Carlo simulation procedure lies in 

simulating passengers’ 1) path selection, 2) vehicle boarding and 3) vehicle 
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alighting in an agent-based approach and distributing the load into each vehicle 

runs, service line, and station.  

6.4.1 Simulation Procedure 

The simulation procedure is elaborated as follows: 

 Step 0: Initialization. Set passenger index 𝑛 = 1, set boarding demand 

𝑁𝑟,𝑠
𝑏𝑜𝑎𝑟𝑑 = 0 ; alighting demand 𝑁𝑟,𝑠

𝑎𝑙𝑖𝑔ℎ𝑡
= 0 ; and passing through 

demand 𝑁𝑟,𝑠
𝑝𝑎𝑠𝑠 = 0 for 𝑟 ∈ all service line run at each traversing stop 𝑠. 

 Step 1: For passenger 𝑛 = 1 in the demand dataset, retrieve its path 

choice set and update path attributes with respect to departure time per 

time interval.  

 Step 2: Compute path utility for all paths and path selection probabilities 

based on estimated PSL model. 

 Step 3: For passenger n, simulate his/her path selection following the 

path selection probability computed from the route choice model. 

Denote the departure time for passenger 𝑛 as 𝑇𝑛
𝑑𝑒𝑝

 and the selected path 

𝑘𝑛  in the form as sequence of transfer stations {𝑆1
𝑘, 𝑆2

𝑘, … , 𝑆𝐾+1
𝑘 } and 

service line to board in sequence{𝑙1
𝑘, 𝑙2

𝑘, … , 𝑙𝐾
𝑘} where K is the index for 

the last transit leg along path 𝑘 and 𝑆𝐾+1 is therefore the final alighting 

station.  

 Step 4: Set index 𝑞 = 1, and set current time 𝑇𝑛 = 𝑇𝑛
𝑑𝑒𝑝

 

 Step 5: Update 𝑇𝑛  = 𝑇𝑛 + 𝑇𝑘,𝑞
𝑡𝑥𝑓

 where 𝑇𝑘,𝑞
𝑡𝑥𝑓

 denotes the transfer walk 

time from previous alighting stop 𝑆𝑞−1
𝑘  to current boarding stop 𝑆𝑞

𝑘 

along path 𝑘𝑛. Note that for the first leg, the transfer walk time is always 

set to be the time from station gantry to boarding platform. Check for 
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the first arriving train service-run, at stop 𝑆𝑞
𝑘 for service line 𝑙𝑞

𝑘, denote 

it as 𝑟𝑛,𝑠𝑞𝑘   

 Step 6: Check boarding and seating feasibility. Denote the train capacity 

for this train service-run as 𝑧𝑟
𝑛,𝑠𝑞

𝑘
 for service line run 𝑟𝑛,𝑠𝑞𝑘 , and its seat 

capacity as 𝑧𝑟
𝑛,𝑠𝑞

𝑘
𝑠𝑒𝑎𝑡 .  

 Step 7: Simulate boarding at train service-run 𝑟𝑛,𝑠𝑞𝑘  and alighting at 

station 𝑆𝑞+1
𝑘 . Update 𝑇𝑛 to the arrival time of train service-run 𝑙𝑖𝑛𝑒𝑞,𝑟 at 

station 𝑆𝑞+1. Update boarding demand to service-run  𝑟𝑛,𝑠𝑞𝑘  at stop 𝑆𝑞
𝑘 : 

𝑁
𝑟,𝑠𝑞

𝑘
𝑏𝑜𝑎𝑟𝑑 = 𝑁

𝑟,𝑠𝑞
𝑘

𝑏𝑜𝑎𝑟𝑑 + 1; Update alighting demand to service-run  𝑟𝑛,𝑠𝑞𝑘  at 

stop 𝑆𝑞+1
𝑘  : 𝑁

𝑟,𝑠𝑞+1
𝑘

𝑏𝑜𝑎𝑟𝑑 = 𝑁
𝑟,𝑠𝑞+1

𝑘
𝑏𝑜𝑎𝑟𝑑 + 1; update passing through demand to 

service-run 𝑟𝑛,𝑠𝑞𝑘  for all stations s between 𝑆𝑞
𝑘  and 𝑆𝑞+1

𝑘  along 𝑙𝑞
𝑘 : 

𝑁𝑟,𝑠
𝑝𝑎𝑠𝑠 = 𝑁𝑟,𝑠

𝑝𝑎𝑠𝑠 + 1 

 Step 8: Go to Step 9 if 𝑞 = 𝑘𝑆  (the last boarding stop), otherwise, 

increment 𝑞 and move back to Step 5 

 Step 9: Stop if 𝑛 = 𝑁  (total number of passengers), otherwise, 

increment n and move back to Step 1 

The inputs to the simulation procedures are the total travel demand with 

departure time in demand dataset and the estimated route choice model, while 

the output of the simulation procedure is the time-dependent traffic load to each 

service run at each station in rapid transit network. It outputs the flow rate for 

each service line in hour and for each station, as well as the boarding rate, 

alighting rate and transfer rate at each station in each hour.  
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6.4.2 Network Performance Analysis 

Figure 6-2 depicts the flow rate to each service line and the boarding rate to 

each MRT/LRT station at different time of day. Denote travel leg from one 

station to its subsequent station along the same service line as a link, the width 

of the link is set in proportional to the passenger flow on that link, while the 

radius of the circle is in proportional to the total number of passengers boarding 

at that station. There are four maps in this figure, each at different time of day.  

The first map shows the flow rate at 7AM in the morning. High boarding rate at 

stations outside of central business district (south center) and the flow rate for 

every MRT line is very high. The second map shows the network performance 

at 10AM. Comparing to the map for 7AM, both boarding rate and flow rate has 

decreased significantly. The third map is for 6PM in the evening. Heavy load is 

observed at central business district, and similar to the first map, high flow rate 

is observed at every MRT line. The last map indicates the decreased travel 

demand at 9PM. Tail-effect is observed for afternoon peak as the decrease of 

travel demand from 6PM to 9PM is much slower than that from 7AM to 10 AM.  

In all four maps, the flow rate from station Haw Par Villa (CC25) to station 

Harbour Front (CC29/NE1) along circle line, is not very high. It is partially 

because the total demand to these station is not high due to the low residential 

density and low commercial density. It also indicates this part of MRT line is 

not much utilized for transferring purpose, as the circle line is not a full circle 

yet. Currently it does support short travel from CC29/NE1 to stations such as 

CC1 and CC2 in the center business region. 
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Figure 6-2 Flow rate along transit link and boarding rate to station at different time 

of day 
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Another important output from the simulation is the transfer rate at each station 

per hour. Figure 6-3 presents the bar plots of transfer rate to three stations at 

different time of day. These three stations have the highest transfer rate among 

all transfer stations.  

 

Figure 6-3 Transfer rate to stations at different time of day 

The transfer demand to Jurong East (EW24/NS1) is no doubt the highest, much 

higher than the second and third highest transfer demand at Dhoby Ghuat 

(NS24/NE6/CC1) and City Hall (EW13/NS25). The transfer demand follows 

the travel pattern of total travel demand with AM peak in the morning and PM 

peak in the afternoon. In particular, the transfer demand to all transfer stations 

are shown in Figure 6-4 where the radius of the circle is proportional to the total 

transfer demand to that station at 7:00AM to 7:59AM. 
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Figure 6-4 Transfer demand to all transfer stations at 7AM 

Based on the recent work by Schmöcker et al. (2011), the fail-to-board 

probability 𝑞𝑠
𝐹𝐵 and fail-to-seat 𝑞𝑠

𝐹𝑆 probability has been computed for transfer 

station 𝑠  with respect to train capacity 𝑧𝑟  for service line run 𝑟 , train seat 

capacity 𝑧𝑟
𝑠𝑒𝑎𝑡  for service line run 𝑟 , boarding demand 𝑁𝑟,𝑠

𝑏𝑜𝑎𝑟𝑑 , alighting 

demand 𝑁𝑟,𝑠
𝑎𝑙𝑖𝑔ℎ𝑡

, and passing-through demand 𝑁𝑟,𝑠
𝑝𝑎𝑠𝑠

 as follows: 

𝑞𝑠
𝐹𝐵 =

{
 

 
0

1 −𝑚𝑎𝑥 (0,𝑚𝑖𝑛 (
𝑧𝑟 − 𝑁𝑟,𝑠

𝑝𝑎𝑠𝑠

𝑁𝑟,𝑠
𝑏𝑜𝑎𝑟𝑑 )) Eq. (6-1) 

and 
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𝑞𝑠
𝐹𝑆 =

{
 

 
0

1 −𝑚𝑎𝑥(0,𝑚𝑖𝑛 (
𝑧𝑟
𝑠𝑒𝑎𝑡 − 𝑁𝑟,𝑠

𝑝𝑎𝑠𝑠

𝑁𝑟,𝑠
𝑏𝑜𝑎𝑟𝑑 )) 

Eq. (6-2) 

Figure 6-5 shows the estimated time-dependent fail-to-board probability and 

fail-to-seat probability for the busiest transfer station Jurong East (EW24/NS1), 

which is the interchange station between North-South line and East-West line. 

The train loading capacity is set to be 1500 passengers per train and seat capacity 

is 270 for both North-South line and East-West line. Note that although the 

safety limit capacity for trains on North-South line and East-West line is 1920, 

the maximum loading capacity at full operation is around 1500 (Ministry of 

Transport, 2010; sgwiki, 2013). It shows, during morning peak, fail-to-board 

probability on East-West line towards Changi is high, while during afternoon 

peak, the fail-to-board probability on North-South line towards Woodlands is 

high. This is due to the heavy travel demand for home-work trips starting from 

west side to city center in the morning and similarly heavy travel demand for 

work-home trips from city center to west side in the evening. There are large 

residential areas around stations along East-West line towards Joo Koon after 

Juron East, such as Boon Lay and Lakeside, and along North-South line towards 

Woodlands, such as Bukit Batok and Chao Chu Kang. Due to the high travel 

demand and limited seat availability, the fail-to-seat probability is very high at 

Jurong East in both AM peak and PM peak, especially on East-West line 

towards Changi and on North-South line towards Woodlands.  
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Figure 6-5 Fail-to-board and fail-to-seat probabilities for station Jurong East 

(EW24/NS1) 

 

6.5 Summary 

In summary, this chapter demonstrates an application of route choice model in 

evaluating the rapid transit network performance in Singapore using both smart 

card and survey data. Smart card and survey data complements each other in 

terms of trip coverage and trip completeness respectively. This work firstly 

adopts survey data to estimate passengers’ path selection by modelling realistic 

passengers’ route choice behaviour in rapid transit network. Path attributes such 
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as number of transfers with and without level change are included with special 

consideration to rapid transit network. Based on estimated passengers’ path 

selection behaviour, it then utilizes the full travel demand records in smart card 

data to estimate the passenger flow rate in rapid transit network, identify the 

transfer demand, and predict the probability of fail-to-board and fail-to-seat at 

each transfer station.  

The contribution of this chapter is its practical importance and translational 

impact on the real application. The application addressed the data 

supplementary issue existed in current travel data collected in Singapore as it 

complements the missing transfer station in smart card data by modeling 

passengers’ route choice behaviour in rapid transit network using survey data in 

HITS. The simulation procedure could be easily implemented by system 

operator and practitioners to identify realistic passenger flows at each service 

line and MRT/LRT station.  
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Chapter 7 – Conclusions 

 

7.1 Concluding Remarks 

It is essential to identify relevant factors that affect passengers’ travel behaviour 

in a realistic manner as passengers’ travel behaviour is highly correlated with 

the performance of public transport systems. With this core objective, this thesis 

has modeled and analyzed passengers’ route choice behaviour in multimodal 

public transport network in Singapore from different perspectives using 

different data sources. 

Chapter 3 and Chapter 4 presents route choice modeling using smart card data. 

Chapter 3 investigates passengers’ stop-to-stop route choice behaviour on 

public transport network in Singapore using smart card data. To examine the 

effectiveness of different choice set generation methods, a comprehensive 

evaluation framework is proposed including computational performance, three 

types of coverage test, detailed analysis of fail-to-generate paths, and 

composition evaluation based on four criteria. A stop-to-stop route choice 

model is estimated based on final choice set with 100% coverage against one 

data set and the model is validated by examining the prediction performance 

against another two datasets using the estimated parameters. Based on the same 

dataset, Chapter 4 is devoted to formulate a path-size definition in consideration 

of the special characteristics of public transport network. When passengers 

make route choice decisions, path alternatives in the choice set are often highly 

correlated due to various reasons such as path overlapping. This part of the 
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thesis proposes and examines a new definition of path size in consideration of 

the nature of public transport using smart card data.  

Chapter 5 utilizes travel survey data and is devoted to model passenger route 

choice behaviour from origin to destination. Travelling in multimodal public 

transport network involves transfers between different public transport modes 

and services, as well as multimodal access and egress. While walking and taxi 

can be assumed to be available to all travellers, this might not be the case with 

other access/egress modes, particularly for access/egress in car as passenger. A 

latent choice availability framework is therefore proposed to address this 

availability issue of access/egress in car as passenger.  

Chapter 6 combines smart card data and survey data and presents an application 

using route choice model to assess the network performance of Singapore’s 

rapid transit network. Despite smart card system in Singapore collects almost 

all the public transport trips, but it does not contain transfer information on rapid 

transit network. The comprehensive coverage of smart card data is 

complemented with the completeness of travel survey data by modeling 

passengers’ route choice behaviour in rapid transit network using HITS data. 

Based on the complete travel demand recorded in smart card data, it estimates 

the passenger flows on each train service line, identifies the transfer demand 

and predicts the probability of fail-to-board and fail-to-seat at each train station.  

7.2 Contributions 

The original contribution of the thesis is three-fold.  

Empirically, it evaluates different choice set generation methods under a 

comprehensive evaluation framework (Chapter 3 ), and it identifies relevant 
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factors that affects passenger route choice behaviour on public transport 

network using revealed preference data from smart card and surveys (Chapter 3 

& Chapter 5 ). To the authors’ knowledge, this is the first attempt to analyse 

complete public transport trips with multimodal access from the origin at 

building level and multimodal egress from to destination in large-scale urban 

public transport networks. Efforts have been made to generate choice sets on 

complete path from origin building to destination building with multi-modal 

access and egress, with 100% coverage on all reasonable paths in a large and 

complex multimodal public transport network. Heterogeneous preferences 

across passengers in their route choice behaviour has been carefully analysed 

by taking passengers' socio-economic characteristics and various path attributes 

into consideration. 

Methodologically, it formulates a new path-size definition to address the 

correlation during path-overlapping on public transport network (Chapter 4 ), 

and it proposes a latent class choice model framework to address the availability 

issues of different access/egress modes in modeling route choice behaviour of 

complete public transport trips (Chapter 5 ). The proposed new path-size 

formulation addresses correlation due to path overlapping by considering the 

unique characteristics of public transport network. This is the first attempt to 

capture the effect of overlapped boarding stations on passenger route choice 

behavior. In Chapter 5, the proposed latent class model framework examines 

the availability of access/egress modes depending on the passenger social-

economic characteristics and trip characteristics. The route choice decision is 

therefore modelled using Logit model considering both path attributes and 

passengers socio-economic characteristics, conditionally on the choice set with 
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specified modal availability in the latent class. The proposed approach has 

proved to be more accurate and behaviourally appealing in capture passenger’s 

route choice preferences.   

Last but not least, the application on the rapid transit network in Singapore 

(Chapter 6 ) has translational impact on the current travel data as it complements 

the missing transfer station in smart card data. It demonstrates how to apply 

route choice model and get realistic estimation of passenger flows on train 

stations and service lines. The application has addressed the incompleteness of 

current travel data collected in Singapore as it complements the missing transfer 

station in smart card data by modeling passengers’ route choice behaviour in 

rapid transit network using survey data in HITS. The simulation procedure 

could be easily implemented by system operator and practitioners to identify 

realistic passenger flows at each service line and MRT/LRT station. 

7.3 Future Directions 

The following discussion focuses on some promising future research directions 

related to extensions and improvements of the discrete choice models in the 

context of passenger pre-trip route choice modeling.  

A major source of estimation and predication errors in route choice models is 

due to passenger failure to consider all feasible alternatives. To identify relevant 

paths for a consideration set out of complete choice set is helpful in both model 

estimation and prediction. The work on evaluation of choice set generation 

methods in this thesis provides empirical evidence on it. Instead of taking all 

feasible choices into consideration, passengers are observed to have a small 

consideration route choice set when making route choice decisions. However, 
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not much research has been done on identifying the consideration set for route 

choice models, either on road network or public transport network. Current 

available approaches are extremely computational complex and have never been 

applied on real network. 

Another extension of the current work is to expand route choice modeling from 

selection of paths to selection of route choice strategies. In this thesis, although 

the treatment to common line problems introduces selection strategy of service 

lines to certain extent, the path definition in the implemented route choice 

models is still path based, which does not fully involve path selection strategy. 

Hyper-path concept is widely considered for path selection strategy on public 

transport network in traffic assignment models. It is of interest to collect data 

particularly on passengers’ path selection strategies, for example, hyper-paths, 

and investigate how passengers evaluate these path strategies. Route choice 

models based on path strategies can be estimated with comparison to path-based 

route choice model. 
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