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Abstract

Increasingly, a significant portion of users connect to the Internet via wireless

connections, i.e., cellular or Wi-Fi. This phenomenon can be attributed to the

proliferation of hand-held devices. With the advent of these devices, network

service providers have to increase the performance of the last-mile connection so

that users have uninterrupted, high-bandwidth access to the Internet.

In this thesis, we first show the impact of the last-mile connection on the user-

perceived quality of end-to-end network connections by conducting large-scale

measurement studies. Specifically, we consider two last-mile technologies: cellular

(3G and LTE) and Wi-Fi, and quantify their effect on real-time data streams

such as VoIP calls. These measurement studies show that last-mile wireless links

can often be the bottleneck link in a given path, but the existence of WAN path

bottlenecks is substantial as well. Therefore, it is of great importance to identify

where network bottlenecks lie in order to take the appropriate remedial actions.

In this regard, first, we present QProbe, a lightweight tool that provides diagnostic

information about a user’s cellular link. QProbe identifies whether an end-to-

end network path is bottlenecked by the cellular link or the Internet path with

> 85% accuracy. Next, we present a suite of techniques named Kwikr that Wi-Fi

connected clients can use to detect various forms of pathology conditions that

might be present in their Wi-Fi connections, with > 90% accuracy.

Real-time streaming is an important class of applications that is used by millions

of people all over the world. Despite their importance, our measurement studies

show that quite often Wi-Fi last-mile connections cause quality degradations in

real-time streams. To address such issues, in the latter part of this thesis, we

present two systems that make real-time streaming reliable and robust on Wi-Fi
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last-mile links by alleviating bottleneck conditions that occur on them.

First, we show how we can alleviate Wi-Fi bottlenecks in real-time streaming

applications by allowing them to perform “Wi-Fi-aware” bandwidth adaptation

using a novel system named KwikrAdapt. Next, we present another Wi-Fi

bottleneck alleviation system, named DiversiFi, that improves the quality of

real-time streams by performing cross-link packet replication across multiple

Wi-Fi links, while ensuring the overhead of doing so is kept low. Both these

systems significantly improves the quality of real-time streams and makes them

robust.
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Chapter 1
Introduction

We are experiencing an unprecedented growth in wireless network-connected consumer

electronics in the current era. Global smartphone sales have risen from 122.3 million units

in 2007 to 1.2 billion units in 2014 [9]. That is an increase of 884% in just 7 years. In fact,

the latest statistics show that smartphones have now surpassed PC sales [7]. If we consider

other types of wireless devices such as tablet-PCs, smart TVs, etc., which have not been

included in the above figures, it is easy to see that they have taken the world by storm.

The rapid proliferation of these devices has introduced new classes of challenging problems

that network administrators and service providers have to deal with. The main commonality

of these devices is that they have to be connected to the Internet for them to do useful

things, and they use wireless communication mediums to meet those requirements. In simple

terms, almost all these devices connect to the Internet using either Wi-Fi or cellular data

connections. Therefore, unlike earlier times, wireless technologies have become the preferred

mode of Internet access as opposed to wired mediums. This has opened up avenues for new

standardizations and immense growth in both Wi-Fi and cellular data technologies all over

the world.

The focus of this dissertation is on presenting novel tools and techniques that can detect

bottlenecks and alleviate them on last-mile wireless links. A last-mile wireless link, as

Figure 1.1 depicts, is either the link from a cellular base station to the client, or the Wi-Fi

link from the Wi-Fi access point to the client, when the client is connected to the Internet

via a cellular (3G/LTE) connection or a Wi-Fi connection, respectively. At a high level, in

this dissertation, we attempt to answer the following three questions pertaining to last-mile

2



Chapter 1. Introduction 3

Internet

Cellular (3G/LTE) Network

Mobile Wi-Fi Network

Last-Mile Wireless Links

Internet/WAN Path

Internet/WAN Path

Figure 1.1: Last-mile wireless links: the link from either a cellular base station to a client,
or the link from a Wi-Fi access point to a client.

wireless links.

1.1 How Bad Can the Last-Mile Link Be?

Despite the state-of-the-art wireless communication technologies that are in operation today,

whenever users experience poor performance in a network application, they typically tend to

blame it on the last-mile connection. If they are connected to a Wi-Fi network and they

believe that the Wi-Fi link is working fine, then the blame typically falls on the Internet

Service Provider (ISP) link that connects the users’ homes/offices to the Internet. This

results in users requesting service visits from their ISPs, which can be quite costly. The same

phenomenon applies for cellular data users as well.

To study how poor last-mile links affect end-user experience, we conducted several large-scale

measurement studies on both cellular and Wi-Fi last-mile links. In addition, we analyzed a

dataset we obtained from a large Voice over Internet Protocol (VoIP) service provider.

The first experimental study involves cellular data users and we study how congestion at

the cellular base station affects the quality of real-time data streams such as Skype calls.
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We show that users experience poor quality calls when they are connected to a base station

that is under a high workload. In addition, we present data from a measurement study,

involving over 600 users across 33 countries over 2 months, that we conducted to study the

performance of cellular networks across the world. This study shows that the cellular link as

well as the WAN path can be bottlenecked in a given network path, and hence the cellular

link is not the culprit for poor performance all the time.

In a similar fashion, we conducted a second measurement study using 274 users we recruited

from 22 different countries to study how Wi-Fi links impact the quality of VoIP streams.

We built a distributed system called NetTest where users send and receive simulated VoIP

data streams over their Wi-Fi connections. We collected data for over 2 months from the

NetTest system. Analysis of this dataset helps us study the impact of the last-mile Wi-Fi

link on the quality of the VoIP calls end users experienced.

Finally, we present an analysis of a dataset we obtained from a large VoIP service provider,

which contains one year worth of calls that originated from hundreds of millions of users,

amounting to billions of talk-time minutes. In this analysis, we compare the number of

poor-quality calls that Ethernet-connected clients faced compared to Wi-Fi-connected clients

and show that Wi-Fi-connected users experience significantly a higher fraction of poor-quality

calls.

1.2 Can We Detect Last-Mile Wireless Link Bottlenecks?

A given network path that terminates at a wireless client comprises two distinct components:

the last-mile wireless link, and the Internet/WAN path1 (see Figure 1.1). Though users

typically blame the last-mile connection at times of distress, it is quite an anecdotal belief.

There are many settings where the Internet path can be the culprit for quality degradations

that users experience in their applications. For example, users might experience problems

because their traffic gets routed through an Autonomous System (AS) that regulates certain

types of traffic, or the Internet path might have a congested router, or the user’s application

1We use the terms “Internet path” and “WAN path” interchangeably.
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might be using a heavily loaded server, etc. Therefore, the Internet path cannot always be

ruled out as the bottleneck source when a problem surfaces.

When there is a quality degradation in an application, it is advantageous if the end user

can diagnose the issue and attribute the problem to a particular hop in the end-to-end

network path in question. For example, say that Alice is using a 3G data connection on her

smartphone and she is video conferencing with Bob over Skype. If Alice sees blurry video

for most part of the call, it can be due to several reasons: Alice might be connected to a

congested base station, or the data center that is used for the call can be heavily loaded, or

a router in the Internet might be having hardware issues that is slowing down the packet

processing rate, etc. If Alice’s application can run a diagnostic test and find out where the

problem is, it can take the most appropriate remedial action to alleviate the issue; if the 3G

connection is the problem, it can request Alice to switch to a Wi-Fi network to place the

call; if the problem lies in the Internet path, Skype can attempt to route around the problem

by choosing a different route or by changing the data center that is being used for the call.

Though a bottleneck detection tool would be quite useful as explained above, existing tech-

niques do not perform well in wireless networks. Cellular networks have unique characteristics

like per-device queue management, different queue service models from that of the core

Internet, etc. that introduce inaccuracies in existing techniques [103]. There exists many

tools in the literature that can detect Wi-Fi bottlenecks (e.g., [90, 57]). However, these are

not practically usable because these techniques either need the Wi-Fi adapter to operate

in monitor mode, hindering communication, or need access to special infrastructure that is

not always available. Therefore, bottleneck detectors designed for wireless networks should

address the above mentioned challenges. Moreover, their overhead should be minimal to

ensure that they do not disrupt the network when they perform their detections.

To this end, we introduce a network diagnostic tool named QProbe that attributes a network

bottleneck to either the cellular link or the Internet path when the user experiences a quality

degradation in an application. QProbe exploits the difference in queue service models in the

core Internet and cellular base stations to perform the diagnosis—the Internet routers use

FIFO queues, whereas cellular base stations use per-device queues and a fair queue servicing
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algorithm to service each of the queues [99, 103]. QProbe performs the diagnosis by studying

the dispersion of packets of a carefully designed packet train. It is lightweight (uses less than

4 KB of data) and requires only ∼ 700 ms to run. Through simulation studies, controlled

experiments and a measurement study done by recruiting over 600 users from 33 countries

and 51 ISPs, we show that QProbe is capable of attributing network bottlenecks to either

the cellular link or the Internet path with > 85% accuracy.

Having presented a technique for bottleneck detection on cellular clients, we next turn to

Wi-Fi clients. We present a suite of techniques, named Kwikr, that can detect bottlenecks

on Wi-Fi links. Kwikr can be used by any device (e.g., Smartphones, laptops, tablets, etc.),

on any platform (e.g., Windows, Linux, iOS, Android, etc.) and does not require special

privileges or infrastructure to run. Our suite of detectors entails a novel active measurement

technique that uses Internet Control Message Protocol (ICMP) ping messages of different

Differentiated Services Code Point (DSCP) values to detect congestion, and simple and

straightforward detectors to detect mobility, handoffs, and weak links by monitoring Received

Signal Strength Indicator (RSSI) and the Basic Service Set Identification (BSSID) of the

user’s Wi-Fi link. Our detector suite is capable of detecting the above mentioned Wi-Fi

pathology conditions with > 90% accuracy.

1.3 How Can Last-Mile Wi-Fi Bottlenecks Be Alleviated?

Real-time streaming is an important class of applications that is used by millions of people

to be in touch with their loved ones using VoIP applications like Skype, to have immersive

audio video conferences, to play online interactive games, amongst many others. These

applications have stringent demands (e.g., low round-trip times (RTTs) and packet loss rates)

on the network that are sometimes not met by wireless last-mile links (e.g, 3G/LTE, Wi-Fi).

This is underscored by our measurement studies, in which we show that last-mile Wi-Fi

links give rise to a significant number of poor quality VoIP calls. Therefore, we present two

complimentary approaches that alleviate Wi-Fi bottlenecks and improve the reliability and

robustness of real-time streams.
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One of the key factors behind the quality degradation of real-time streaming on Wi-Fi

networks is the way that bandwidth adaptation in real-time streaming applications functions.

Real-time streaming applications (e.g., Skype) send UDP traffic because this class of traffic

is delay sensitive and does not require the reliability that TCP offers. Therefore, these

applications need to perform bandwidth adaptation in the application layer so that data

streams do not exceed the available bandwidth of network paths. The state-of-the-art band-

width adaptation techniques used by real-time streaming applications adapt the bandwidth

of data streams based on end-to-end network path characteristics. We show that this is

suboptimal given the dynamic nature of last-mile Wi-Fi links, and argue that real-time

streaming applications can do improved bandwidth adaption by being aware of the status of

the underlying Wi-Fi link.

The key insight here is that the client connected to the Wi-Fi link can look deeply into Wi-Fi

link-level information to understand the condition of the Wi-Fi link. Then, this information

can be passed onto real-time streaming applications to take “Wi-Fi-aware” bandwidth

adaption decisions. To this end, we propose a user-level module named KwikrAdapt that

real-time streaming applications can use to perform improved bandwidth adaptation. This

module utilizes the information provided by Kwikr to be aware of the condition of the Wi-Fi

link. Using this information, it is capable of accurately attributing performance problems of

real-time streams to the Wi-Fi link, and then tweaking bandwidth adaptation techniques in

ways that will allow for improved adaptation. Through our experiments, we show that we

can improve the quality of real-time streams by allowing them to achieve higher data rates

in the presence of Wi-Fi congestion, adapt proactively in mobility and weak link conditions,

and ramp-up the data rate of the flows faster after a handoff completes.

Another factor that imposes quality degradations in real-time streams is the nature of how

Wi-Fi links function. Due to the over-the-air broadcast mode of operation of Wi-Fi, it is

prone to pathologies like interference from other Wi-Fi networks and devices like microwave

ovens that share the same spectrum as Wi-Fi, heavy congestion at access points, poor quality

channel conditions, etc. Therefore, researchers have proposed techniques wherein clients can

improve user experience by leveraging multipath diversity by connecting to heterogeneous

technologies such as Wi-Fi and cellular [27, 35], or by selecting the best link to use by
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switching between multiple links [69, 45].

To alleviate quality issues in real-time streams caused by bottlenecked Wi-Fi connections,

we propose a hedging technique that enables a device to maintain two simultaneous Wi-Fi

access point associations. Our experiments show that hedging can significantly improve

the quality of real-time data streams by replicating packets across the concurrent Wi-Fi

connections, while minimizing the overhead of replication. Our solution, named DiversiFi,

is applicable in enterprise settings such as offices, schools, malls, airports, etc., where a

single entity maintains a multitude of Wi-Fi access points. In such places, DiversiFi can

cut down bad quality data-streams by up to 2.24×.

1.4 Contribution Summary

In summary, this thesis makes the following contributions.

1. Through large-scale measurement studies, we show that, as one might expect, last-mile

wireless links can often be the bottleneck in given network paths, causing poor user

experiences. We also show that WAN paths can be bottlenecked in a non-negligible

fraction of the paths in the Internet.

2. We present tools and techniques that can detect whether a given last-mile wireless

link, either cellular or Wi-Fi, is bottlenecked or not.

In the cellular context, we present a lightweight probing technique, named QProbe,

to disambiguate between WAN and cellular (3G\LTE) bottlenecks. Our experiments

show that it can locate the bottleneck with high accuracy.

In the Wi-Fi context, we present a user-level module, named Kwikr, that detects

various types of Wi-Fi pathological conditions, e.g., congestion, mobility, handoffs, and

weak links, that cause a Wi-Fi link to get bottlenecked.

3. As our measurement studies show that last-mile wireless links, more often than not,

give rise to poor real-time streaming performance in Wi-Fi networks, we present two

complimentary systems to alleviate such issues and improve the reliability of real-time
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streams in Wi-Fi networks.

First, we present a system, named KwikrAdapt, that enables real-time streaming

applications provide better quality streams by performing “Wi-Fi-aware” bandwidth

adaptation.

Next, we present a system, named DiversiFi, that improves the reliability and

robustness of real-time streams by replicating packets across multiple Wi-Fi links,

while ensuring the replication overhead is kept low.

1.5 Overview of the Thesis

The rest of this thesis is structured as follows. We first discuss the related work in Chapter 2.

Next, we study the impact of the last-mile connection on real-time data streams in Chapter 3.

Then, we present network diagnostic tools that can detect bottlenecks in cellular and Wi-Fi

connections in Chapters 4 and 5, respectively. Next, in Chapter 6, we discuss how Wi-Fi

bottlenecks can be alleviated by performing improved bandwidth adaptation of real-time

streams on Wi-Fi-connected clients. In Chapter 7, we discuss the novel technique of hedging

in which devices can enjoy better quality data streaming by connecting to two different

Wi-Fi access points and replicating packets across them. Finally, we conclude and discuss

future work in Chapter 8.



Chapter 2
Related Work

In this chapter, we provide an overview of the literature that is related to our work. We

focus on work that is relevant to bottleneck detection, congestion control, and real-time

streaming, in wireless networks.

2.1 Detecting Network Bottlenecks

Bottleneck detection techniques attempt to find the bottlenecked hop of a given network

path, if such a hop exists. This is important for both network operators, application

service providers, and end-users. For example, assume that an application service provider

(e.g., YouTube) can detect that a hop between one of its servers and a client is bottlenecked.

Then, it can start serving the client using a replica located in another data center, thus

potentially routing around the bottleneck. Due to such advantages, there has been significant

interest in the literature in designing bottleneck detection techniques. We survey some of

the most important pieces of work in this section.

2.1.1 Detecting Bottlenecks in the Internet

Hu et al. present a technique in [50], named Pathneck, that is capable of locating bottlenecks

in the Internet. They use an active measurement technique, wherein they use packet trains

that comprise measurement packets and load packets to do the detection. Load packets

resemble the behavior of regular traffic in the Internet, while the measurement packets trigger

responses from routers they reach. Their measurement technique is based on the arrival

10
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times of such router responses. Therefore, the uniqueness of their solution is that they do not

require access to the destination to do the detection. Instead, they specify varying Time To

Live (TTL) values on the measurement packets in the train and base their inference on the

times the “ICMP TTL exceeded in transit” replies arrive at the source for the measurement

packets of which TTL expires while on transit to the destination.

Similar to Pathneck, Cartouche [47] and Packet Tailgating [80] also use packet trains to

detect bottlenecks in the Internet. Cartouche uses packet trains that comprise packets of

different payload sizes and the technique is built on how network paths handle packets of

different sizes. Using this approach, they can measure the bandwidth of any segment of the

network path, and hence the bottleneck location can be inferred from those measurements.

Packet Tailgating employs a similar approach to Pathneck, wherein they use packet trains

consisting of load packets and measurement packets to detect bottlenecks. However, they let

their load packets expire instead of the measurement packets as done in Pathneck.

2.1.2 Detecting Bottlenecks in Cellular Networks

To the best of our knowledge, the only work that has looked at detecting bottlenecks in

the cellular context is presented by Schiavone et al. in [82]. Their detection methodology

is based on the passive monitoring or DATA and ACK packets of TCP flows inside the

operator’s network [82], which is similar to the technique used by [90] in Wi-Fi networks.

Therefore, the downside to this scheme is the requirement of vantage points that end-users

typically do not have access to.

2.1.3 Detecting Bottlenecks in Wi-Fi Networks

A bottleneck link detection technique for Wi-Fi home networks was introduced by Sundaresan

et al. [90, 89]. Their solution is based on passively monitoring TCP flows at the Wi-Fi access

point and then determining whether the bottleneck is in the Internet path or confined to the

Wi-Fi network. Kanuparthy et al. showed that user-level probes can discover the pathologies

of low signal-to-noise ratio (SNR), hidden terminals, and congestion [57] in Wi-Fi networks.
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Their inferences are based on the one-way delays of packets that the client transmits to a

server, which is connected to the Wi-Fi access point via a LAN connection.

Apart from the bottleneck detection tools mentioned above, there are systems that provide

useful information in diagnosing and troubleshooting Wi-Fi network faults. NetPrints [20]

is a system that diagnoses problems in home networks due to misconfigurations of devices

including wireless routers. They use crowdsourcing techniques to collect device configurations

and compare snapshots of working and non-working configurations by using decision trees to

diagnose the root cause of issues that users face. Adya et al. presented an architecture and

techniques that can diagnose faults in enterprise networks such as connectivity problems,

performance problems, security issues, and authentication problems [19]. Rayanchu et

al. presented a system named Airshark that can detect interference from non-Wi-Fi devices

such as cordless phones, microwave ovens, etc. by using commodity Wi-Fi hardware [77].

WiSlow [62] uses low-level Wi-Fi network information (e.g., frame checksum errors and

MAC-layer data rate) and also additional information (e.g., MAC-level ACKs) to determine

the nature of impairments suffered by a wireless link (e.g., interference from a baby monitor

versus from a microwave oven).

2.1.4 Estimating Capacity and Available Bandwidth of Network Paths

Though capacity and available bandwidth estimation techniques do not locate bottlenecks,

they help us detect the existence of them. In the past decade, a myriad of techniques

(e.g., [52, 60, 53, 40]) have been proposed for estimating the capacity and the available

bandwidth of network paths. Note that these two properties are different from one another;

the capacity of a path refers to the maximum data rate that it can support, and the available

bandwidth is the bandwidth available for a new flow that wants to use that path. Moreover,

capacity is time invariant whereas available bandwidth is time variant.

Capacity Estimation via Packet-Pair Principle. A significant portion of capacity

estimation techniques use the packet-pair principle [52, 60], where a server sends two back-

to-back packets and the receiver estimates the capacity based on the time gap of the packet
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arrivals. As this technique is susceptible to cross-traffic interference, researchers have proposed

techniques like sending trains of packets of various sizes (e.g., Bprobe [30]), or filtering

to discard samples that do not relate to the bottleneck link capacity (e.g., Nettimer [63],

Pathrate [37]).

Capacity Estimation via Packet Size-Delay Relationship. Another prevalent tech-

nique is to use the relationship between the packet size and the delay to estimate the

capacity, e.g., pathchar [39], pchar [71], and clink [33]. A shortcoming of these tools is their

inapplicability in a variety of settings because they rely on ICMP time-exceeded messages

from routers for delay measurements—some subnets in the Internet completely block ICMP

messages.

Available Bandwidth Estimation via PRM. The literature on measuring available

bandwidth can be mainly divided in to two groups: packet rate method (PRM) and packet

gap method (PGM). The PRM method works by sending a train of probe packets at different

rates. The basic principle is that if the sending rate is lower than the available bandwidth

of the path, the receiver will receive the packet train at a rate similar to the sending rate.

However, if the sending rate is higher than the available bandwidth, the receiving rate will

be lower and the one way delay trend of the packets increases. PRM method estimates the

available bandwidth by finding the sending rate at which a transition occurs between the

two modes. Examples of tools that use PRM are Pathload [53], pathChirp [40], PTR [51],

and TOPP [67].

Available Bandwidth Estimation via PGM. In contrast, PGM tools use the change

in spacing between pairs of equal-sized probe packets at the receiver to estimate the volume

of cross-traffic that shares the network path between the sender and the receiver. Then, this

estimate is subtracted from the capacity of the path to estimate the available bandwidth

(e.g., Spruce [87], Delphi [79], and IGI [51]).
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Available Bandwidth Estimation in Broadband Access Networks. The above avail-

able bandwidth estimation techniques perform poorly in broadband access networks due

to rate regulations, non-FIFO packet scheduling, etc. Lakshminarayanan et al. devised

a tool named ProbeGap [64] that provides accurate estimates despite the aforementioned

challenges.

2.1.5 Differentiation

The tools we present in Chapters 4 and 5 are different from the work discussed above

in several ways. First and foremost, we are not interested in estimating the capacity or

the available bandwidth of a given network path, as done by tools that we surveyed in

Section 2.1.4. Rather, our focus is to detect whether the last-mile wireless link or the Internet

path is the bottleneck in a given network path in which user applications perform poorly.

Prior work has shown that existing bottleneck detection techniques do not provide accurate

results in cellular networks [103]. This is mainly because they were not designed to cope with

the unique properties of cellular networks; cellular base stations maintain per-device queues

and employ proportional fair scheduling. Therefore, our work in Chapter 4 is distinguished

from the above body of work in terms of its focus on (a) cellular-terminated paths, and

(b) a deployable tool that can run on off-the-shelf client devices (e.g., iPhone), which do

not provide access to any low-level network information. Furthermore, we do not require

measurement vantage points within the network infrastructure.

The work we present in Chapter 5 is different from the literature we surveyed in Section 2.1.3

in many ways. Our tools can be easily deployed on off-the-shelf client devices such as

laptops, smartphones, etc. Existing techniques, although they provide highly accurate

bottleneck condition detections, require modifications in the Wi-Fi access point, special-

purpose hardware, or running the Wi-Fi interface in monitor mode, that inhibits wide scale

deployability.
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2.2 Congestion Control in Wireless Networks

Congestion control is an important building block in network communications that is either

built into the protocol (e.g., TCP) or done in the application layer (e.g., real-time streaming

applications that use UDP). We can go as far as to say that one of the most important

pillars that keeps the Internet alive is the congestion control techniques used by all the data

flows that traverse the Internet.

When traditional congestion control techniques, which were mainly designed for wired

networks (e.g., LANs), were put into use in wireless networks, researchers found that they

underperform by a great margin due to the dynamic nature of wireless networks. So there

has been significant interest in designing congestion control techniques that cope well with

the unique challenges introduced by wireless networks. We survey some of the papers related

to this field in this section.

2.2.1 TCP Improvements

There is a long history of work on the impact of random wireless errors on TCP congestion

control [25]. A number of solutions have been proposed over the years, including splitting

the end-to-end TCP connection to isolate the wireless hop [24], snooping on TCP acks to

detect and recover from wireless packet loss locally [26], and enhancing end-to-end TCP

to differentiate between wireless errors and congestion loss [43]. Arguably, however, local

mechanisms such as link-layer retransmissions (ARQ) and MAC-layer rate adaptation have

obviated the need for any fixes at the transport layer.

Since TCP Reno, there have been a number of proposals and also widely used implementations

of TCP aimed at performing delay-based congestion control [29], improving high-speed

operation [46], and supporting background transfers [93, 78]. In the cellular context, a

rate-based congestion control framework for cellular networks was introduced by Leong et

al. [59]. There has also been work on TCP-friendly rate control intended for streaming

applications [92].

Performance-Oriented Congestion Control (PCC) [36] advocates replacing a fixed response
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to congestion signals with randomized controlled trials, wherein a sender conducts micro-

experiments to learn which actions lead to an improvement in performance. The congestion

control decisions that are then taken depend on the observed performance improvement.

2.2.2 Rate Anomaly

The rate anomaly problem in Wi-Fi occurs due to the differences in the MAC-layer data rates

used by clients [48]. For example, if one client has a lower MAC-layer data rate due to a weak

signal from the access point, the performance of all the clients will be considerably degraded

because the access point requires more time to serve a client that uses a low MAC-layer rate.

This problem has received much attention in the literature, with several proposals to address

the problem by equalizing the airtime usage of competing flows. These proposals require the

cooperation of the infrastructure (i.e., the Wi-Fi access points) to determine the number of

competing flows [58] and/or low-level modifications to Wi-Fi operation such as changing the

channel contention behavior [49] or adjusting the frame size [104].

2.2.3 Forecasting

Another segment of prior work has looked at congestion control strategies that forecast the

future performance of a network path and adapt a data flow’s data rate accordingly. One

such approach found in the literature is Sprout [99], which proposes a stochastic forecasting

based approach for congestion control in cellular networks. The receiver monitors the packet

arrival times to reason about the network conditions and this information is used by the

sender to regulate the data rate of the flow. Sprout leverages per-station queues maintained

at the cellular base stations, which isolates the self-interaction of a flow’s packets from the

impact of cross-traffic.

Similar to Sprout, PROTEUS [102] predicts network performance, like throughput, packet

loss, and one-way delay, based on past performance of those metrics. They show that

bandwidth adaptation decisions taken based on such predictions can help increase the

user-perceived quality of real-time streams such as in video conferencing applications.
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2.2.4 Utilizing Sensor Hints

Finally, [76] uses hints from sensors such as GPS and accelerometer to determine the

mobility mode of a device and perform actions such as MAC-layer rate adaptation and

access point selection accordingly. Though such a scheme increases the energy utilization

of smartphones, [76] shows that such techniques provide significant improvements in the

network performance.

2.2.5 Differentiation

Our work in Chapter 6 is different from the work we surveyed in Section 2.2 in many ways.

First, we do not consider the wireless corruption problem itself but instead focus on other

wireless-related issues such as detecting wireless congestion and alleviating the impact of

the MAC-layer data rate and handoff-induced packet loss. Furthermore, most of the above

techniques operate end-to-end, and hence do not have the benefit of direct visibility into

the situation at a Wi-Fi link (e.g., the cessation of congestion or the change in mobility

status). Next, we do not attempt to forecast network performance and we do not rely on

external sensors to infer the status of the Wi-Fi link. Our focus in Chapter 6 is to improve

bandwidth adaptation of real-time streams by using information about the Wi-Fi link rather

than being oblivious to such data and operating end-to-end. As we aim for deployability on

off-the-shelf devices, we do not require access point, device or network stack modifications,

as is the case for most of the prior work.

2.3 Real-Time Streaming in Wireless Networks

Real-time streaming applications are in abundance in the current era. Users rely on them

to play online games, to keep in touch with their friends and family through VoIP, and to

experience immersive audio/video conferences. As we will discuss in length later in Chapter 3,

real-time streams suffer numerous performance degradations in wireless networks. Therefore,

researchers have introduced new techniques, systems, and even standards to improve the

quality of real-time streams on wireless networks. We survey some of the most notable
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contributions in the literature in this section.

2.3.1 Network Support for Streams

Network support for real-time flows has received a lot of attention over the years, and has

even led to the creation of standards such as DiffServ [28] and 802.11e [6], which provide

prioritized service to packets based on the type of service (ToS) bits carried in the header.

Therefore, these standards allow real-time streams to experience lower latencies when the

Wi-Fi link is congested, for example. The ToS bits, however, are typically not preserved

across administrative boundaries on an end-to-end path, and hence not used extensively by

real-time streaming applications.

2.3.2 Multi-Link Association

Having clients connect to and maintain multiple links simultaneously has been explored in

several pieces of prior work with the motive of improving the performance of data flows.

Some of this work has considered links spanning heterogeneous technologies such as Wi-Fi

and cellular [27, 35] while other work has focused on links over a homogeneous technology

such as Wi-Fi (e.g., [32] enables multiple Wi-Fi associations by virtualizing a single Wi-Fi

NIC in software). One motivation for combining links is to enhance performance through

bandwidth aggregation, especially in the backhaul [21, 56]. A different motivation is to

enable seamless handoffs through a make-before-break strategy for managing connections to

multiple access points [34], with multi-path TCP [75] providing the glue.

[95] also exploits the diversity of multiple links, either using multiple Wi-Fi NICs or using a

single one but switching it between links, but without requiring any changes to the existing

Wi-Fi hardware. This work focuses on the uplink, and employs a static switching strategy

that cycles through the available links in a round-robin fashion and furthermore employs

coding to recover from (non-bursty) packet loss. Other work [94] has assumed knowledge of

the statistical models of the packet loss for each link and has accordingly derived the optimal

switching strategy.



Chapter 2. Related Work 19

2.3.3 Reliability via Link Diversity

Improving reliability of real-time streams through link diversity has also been considered in

prior work. Multi-radio diversity (MRD) [68] uses multiple radios to simultaneously receive

the same transmission and then combines the individual copies, which may each be errored,

to try and reconstruct the transmitted packet. Leveraging such receiver diversity would

require the radios to expose the raw decoded bits to the upper layers of the stack, which

is a departure from the currently-deployed Wi-Fi hardware and firmware. Complementary

work such as Source-Sync [74] on sender diversity involves synchronized transmissions from

multiple access points to a receiver to improve reliability and throughput. Again, this would

be hard to accomplish with the currently-deployed Wi-Fi hardware.

2.3.4 Other Strategies

There has also been work on multipath streaming over WAN paths [44, 23, 96], with a coded

or duplicated stream of packets being spread across multiple paths. Coding and duplication

imposes an overhead over the source stream and furthermore it is assumed that the receiver

would be able to receive the streams sent on the multiple paths concurrently.

Finally, fine-grained link selection, wherein a client switches rapidly from one link/channel to

another, has also been studied [69, 45]. Switching is different from diversity because diversity

means that, for example, if the client does not receive a packet over one link, it can still

receive the missed packet over another link (by taking advantage of network-side buffering),

thus achieving significantly better loss recovery. In contrast, switching links based on a link

selection strategy could only possibly help in the delivery of future packets.

2.3.5 Differentiation

In the context of our focus in Chapter 7, there are several key differentiating factors when

compared to the work surveyed above. Firstly, our goal is to leverage the diversity of multiple

Wi-Fi links to improve reliability, hence our focus is on real-time streaming rather than TCP

flows, which is the case of most of the above work. Furthermore, we take the advantage
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of the diversity provided by multiple paths, without incurring the overhead of switching

between links or duplicated transmission, unless there is actually a packet loss. Secondly, in

contrast to the above body of work, ours is a software-only solution that does not depend on

any new hardware capability, does not perform proactive switching, and also addresses the

downlink direction. Our solution actually observes packet loss on a link and then switches

to a different link reactively.

We do derive from the link switching techniques mentioned in Section 2.3.4 in that we also

advocate switching between links/channels rapidly. However, our focus is on diversity rather

than selection, in that the client derives the benefit of multiple links.
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Most often than not, network performance issues are typically blamed on the last-mile link.

In this chapter, we take a closer look at this anecdotal claim by studying the effect of the

last-mile wireless link performance on the user-perceived quality of real-time data streams

in end-to-end network paths. To be precise, we examine how cellular and Wi-Fi last-mile

technologies affect real-time data streams such as VoIP calls.

Section 3.1 studies the performance issues introduced by cellular links in Skype calls, and

presents results from a measurement study that we conducted to study how cellular networks

perform globally. Section 3.2 first presents an analysis of a dataset we obtained from a large

VoIP service provider that contains data from hundreds of millions of users throughout a

period of one year. Next, we present an analysis of a dataset that we gathered by deploying

a geographically distributed measurement testbed that simulated VoIP calls over Wi-Fi

between 274 real-world users throughout a period of two months.

The measurement studies we present in this chapter make the following contributions.

1. We show that, as one might expect, last-mile wireless links can often be the bottleneck

in given network paths, causing poor user experiences.

2. We also show that WAN paths can be bottlenecked in a non-negligible fraction of the

paths in the Internet.

3. Therefore, these studies highlight the importance of detecting bottleneck locations

carefully, because the last-mile wireless link is not always the bottleneck link. (This

forms the basis for our discussion in bottleneck detection strategies in Part II of this

thesis.)

21
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4. Finally, our studies show that last-mile wireless links, more often than not, give rise to

poor real-time streaming performance, especially in Wi-Fi networks. (We discuss in

Part III of this thesis how such issues can be alleviated.)

3.1 Impact of Cellular Bottlenecks

In this section, we present results from experimental studies and a measurement study that

we conducted to study the severity of performance issues introduced by cellular links in

real-time data streams such as VoIP calls, and the prevalence of such issues.

The experimental studies were conducted in India using cellular connections we obtained

from India’s most widely subscribed cellular service provider. The goal of these studies is to

understand how the load at the cellular base station would affect the quality of an ongoing

data stream, e.g., a Skype call.

Our measurement study was conducted globally with the participation of 642 users across

33 countries. The goal of this study is to evaluate the performance of cellular networks on a

global scale.

3.1.1 Impact of Base Station Load on TCP Throughput

We first conduct simple experiments to study how the load at the last-mile cellular link

affects the end-to-end TCP throughput of a data flow.

Experiment Setup and Results

We installed a TCP server on a desktop PC that sends full-throttle TCP traffic to clients

that connect to it. This PC was connected to the Internet using a high-bandwidth up-link

(10 Mbps) connection. We then installed a Windows Phone application on three Nokia

Lumia 920 smartphones that connects to our TCP server and receives TCP traffic for a

specified time period and finally displays the average TCP throughput. The smartphones

were connected to the Internet via 3G data connections from the same service provider. We
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Figure 3.1: The TCP throughput observed at a device when we increased parallel TCP bulk
downloaders from 0 to 2. With increasing load at the base station, the observed throughput
decreases.

ensured that all three of them were connected to the same base station by analyzing the

base station identifier we obtained from the Qualcomm QxDM tool [11]. We measured the

TCP throughput at one of the devices in three different settings: when 0, 1, and 2 other

phones were downloading TCP traffic alongside the first phone. Figure 3.1 summarizes the

results. It can be clearly seen that increasing load at the base station causes the observed

TCP throughput to drop. For example, the throughput dropped by 66.38% when we added

2 parallel downloaders as compared to the setting where no parallel downloaders were in

operation. (Similar results were observed in [31].)

3.1.2 Impact of Base Station Load on Real-Time Data Streams

Next, we analyze how the load at the base station can affect the quality of real-time data

streams. Specifically, we analyze the performance of Skype video calls with varying load at

the base station.

During a Skype audio/video call, the Skype client at either end estimates the bandwidth of

the network path between the two clients and monitors a host of other network parameters

such as the link throughput, RTT of the packets, and packet losses. These parameters are fed

into Skype’s call quality controlling mechanism that adapts the call’s quality by changing the

audio/video codecs and adjusting the number of Forward Error Correction (FEC) bits used.

Rapid fluctuations of the measured network parameters ultimately cause the user-perceived
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Figure 3.2: Network parameters of a Skype video call: (a) the fluctuation of the estimated
bandwidth and the observed throughput, (b) the fluctuation of RTT and packet losses, of
the call’s network path. Increasing load at the base station causes quality degradations in
real-time streams.

call quality to be poor. For example, users can perceive audio lags if the playback jitter

between two successive audio samples is more than 150 ms [12].

Experiment Setup and Results

We used a special Skype client for these experiments that outputs a log at the end of a call

containing network parameters it observed during the call. We ran this client on a laptop

that was connected to the Internet using a 3G connection. We made this client place a video

call to an ordinary Skype client running on a desktop PC that was connected to the Internet

using a well-provisioned LAN connection. While the call was going on, we added a new

TCP data downloader using the setup in Section 3.1.1 at every one minute mark of the call.

Figure 3.2 presents the results we observed.

Figure 3.2(a) shows the fluctuation of the estimated bandwidth and the observed throughput

of the network path between the two Skype clients. The bandwidth and the throughput

are less variable when there were 0 and 1 downloaders. However, When we increase the

number of downloaders beyond that, high variations in the bandwidth and throughput can

be observed, which ultimately result in poor call quality. Figure 3.2(b) paints a similar

picture where high RTT variations and spikes are observed when the load at the base station
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is high.

Note that when the number of TCP downloaders were 0 and 1, the Skype flow was not

impacted because of the way that the base station manages the flows. When there were only

one TCP flow and the Skype flow, the base station has to schedule packets across only two

queues. When the TCP flows increase, the base station has to maintain and schedule more

queues, and hence the Skype flow observes delays, which results in the behaviors shown in

Figure 3.2.

These results show that cellular last-mile technologies can indeed be bottlenecks in end-to-end

network paths. The load at a cellular base station can be highly variable with time as it has

to cater to both voice and data users who connect to it. Hence, these experiments show that

higher loads at the base station would cause the cellular link to be the bottleneck in the

end-to-end path.

3.1.3 Cellular Performance in the Wild

We conducted a large-scale measurement study to analyze cellular network performance in

the wild with the aid of an iPhone application (see Section 4.4.3 for details). In a nutshell,

in each run of an experiment on our app, it conducts two TCP throughput measurements

with the two “closest”1, well-provisioned Azure servers that we deployed in 15 geographically

distributed Microsoft data centers. We calculate the throughput by observing the amount of

TCP bytes received in a 5 s time period. We ran our measurement study for 2 months and

in this period, we received data from 642 users across 33 countries and 51 cellular service

providers.

Figures 3.3(a) and (b) show the CDF distributions of the TCP throughputs we observed on 3G

clients and LTE clients, respectively. The 90th percentiles are 5.42 Mbps and 15 Mbps on 3G

and LTE, respectively. Typically, a link should have an approximate bandwidth of 1.2 Mbps

for Skype to support High Definition (HD) video calls [86]. 36% of our measurements on 3G

and 11% on LTE do not meet this requirement, meaning that these clients will experience

1Determined by sampling the TCP RTT times between the client and all the servers we deployed.
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Figure 3.3: CDF distribution of all the TCP throughputs we observed in our measurement
study on: (a) 3G users; and (b) LTE users.

Table 3.1: Network Bottlenecks in the Wild.

Technology Network Paths Cellular Bottlenecked Paths WAN Bottlenecked Paths

3G 2573 215 (8.4%) 97 (3.8%)

LTE 5480 441 (8.1%) 837 (15.3%)

non-HD quality video streams if they were to place Skype calls using their cellular data

connections.

It is also interesting to study whether the cellular link is the bottleneck link or not in a

given network path. To achieve this objective in our measurement study, before we analyzed

a network path, we obtained two reference throughput measurements as discussed above.

Next, we obtained the TCP throughput of the path that we were analyzing by conducting a

TCP throughput measurement with the server the client was connected to. We classified

the network path to be bottlenecked by the cellular link only if all three throughputs were

low. If the two reference throughputs were high but the throughput of the path was low,

we determined that the network path was bottlenecked by the WAN. To determine what

constitutes a low throughput, we looked at all throughput measurements obtained for 3G

and LTE networks separately, and chose the 25th percentile as the threshold (732 kbps and

3149 kbps for 3G and LTE, respectively). Table 3.1 summarizes our results.

Based on this analysis, we find that 8.4% and 8.1% of the network paths we studied are
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bottlenecked by the cellular link on 3G and LTE, respectively. Similarly, we find that 3.8%

and 15.3% of the total network paths were bottlenecked by the Internet path on 3G and

LTE, respectively. Hence, out of the total bottlenecked runs observed in the wild (215 +

97 for 3G, and 441 + 837 for LTE), 68.9% and 25.7% were caused by the wireless link

in 3G and LTE, respectively. These results show that the cellular link can become the

bottleneck in a significant number of cases. However, it need not be blamed every time

a performance problem is perceived because it is also possible that the Internet path is

causing the problem. Therefore, whenever a path is bottlenecked, a more nuanced approach

is needed to identify the location of the bottleneck responsible for poor performance, which

is the focus of discussion in Chapter 4.

3.2 Wi-Fi Streaming Problems

We often hear anecdotes of users facing poor VoIP call quality when connected over a Wi-Fi

link. In this section, we seek to quantify the problem by studying whether in real-world

deployments Wi-Fi-connected clients encounter worse performance than wired clients.

3.2.1 Analysis of a Dataset from a Large VoIP Service Provider

We begin by analyzing a year’s worth of data from a large VoIP service provider, which

serves hundreds of millions of users and carries over a billion talktime minutes each day. Our

analysis focuses solely on the question of whether the Wi-Fi link is a significant contributor

to poor call quality. Hence, we do not disclose any other aspect of the service.

At the end of each call in this VoIP service, the user is invited at random to rate their call

experience on a 5-point scale. If the user actually chooses to respond, the provided rating is

recorded. We define the two lowest ratings on the 5-point scale as “poor” and accordingly

calculate the poor call rate (PCR) as the fraction of calls that are rated as poor. For the

reasons noted above and also because there may be a bias in when users choose to provide a

rating (e.g., they may be more likely to do so when they have a poor call experience), we

do not focus on the PCR itself but instead examine how factors such as Wi-Fi connectivity
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Table 3.2: Change in PCR relative to the baseline in the dataset we obtained from a large
VoIP service provider. ’+’ denotes a better (lower) PCR while ’-’ denotes a worse (higher)
PCR. Wi-Fi-connected clients experience more poor calls when compared to wired-connected
clients.

Subset EE EW WW

1 All Subnets and devices +27.7% +1.6% -18.4%

2 /24 Subnets with #E≥#W +31.9% +6.3% -11.9%

3 PC-class devices +34.2% +12.9% -5.4%

4 /24 Subnets with #E≥#W +36.6% +15.1% -3.1%

impact the PCR.

As the baseline, we first compute PCRall based on all user-rated calls during 2014. We

then compute the relative difference between PCRall and PCRX , for a subset, X, of

the calls, as PCR∆
all,X = P CRall−P CRX

P CRall
∗ 100%. For example, if PCRall = 10%, and

PCRX = 8% and PCRY = 15% for subsets X and Y , respectively, then we would compute

PCR∆
all,X = 10−8

10 ∗ 100 = +20% and PCR∆
all,Y = 10−15

10 ∗ 100 = −50%. In other words, the

PCR for subset X is 20% better than the baseline whereas that for Y is 50% worse.

The VoIP client determines the network interface used for Internet access and reports this with

the other data it sends back to the central server. Hence, we can determine the connectivity

type used by the endpoints of each call. Given our interest in analyzing the impact of the

Wi-Fi link on the PCR, we separate the calls based on the type of last-hop connectivity

of the communicating peers, and focus on the two dominant types: Wi-Fi and Ethernet.

We then compute the PCR when both peers are on Ethernet (labeled “EE”), both are on

Wi-Fi (“WW”), and one is on Ethernet and the other on Wi-Fi (“EW”). As shown in row

#1 of Table 3.2, relative to the baseline, PCR∆
all,EE = +27.7% and PCR∆

all,W W = −18.4%,

while PCR∆
all,EW = +1.6% lies in the middle. In other words, having Ethernet-connected

clients at both ends yields the best (lowest) PCR, Wi-Fi-connected clients at both ends

yields the worst (highest) PCR, and Ethernet on one end and Wi-Fi on the other end yields

an intermediate PCR.
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Although the significantly higher PCR for Wi-Fi-connected peers compared to Ethernet-

connected ones points to Wi-Fi being the contributing factor, there are a couple of concerns

with drawing this conclusion. The first concern is that since clients on Wi-Fi tend to be

mobile, they would likely connect from a much more diverse set of locations than those on

Ethernet. For instance, while the latter might be largely confined to well-connected locations

such as enterprises and homes, the former would include more challenging environments

such as airports and malls, where the backhaul connection itself might be constrained. To

mitigate any consequent bias, we only consider pairs of /24 subnets (corresponding to the

two communicating peers) for which there are at least as many data points (i.e., user-rated

calls) for EE as there are for WW. Thus, subnets that primarily or overwhelmingly host

only Wi-Fi clients are excluded, thereby avoiding the concern noted above. As shown in

row #2 of Table 3.2, when only such (presumably better-connected) subnets are considered,

the PCR improves across the board (i.e., for both Ethernet- and Wi-Fi-connected clients)

relative to the full set reported in row #1. However, there is still a significant difference

between the PCR for Ethernet-connected clients and Wi-Fi-connected ones.

A second concern is that many Wi-Fi-connected clients would be inexpensive, low-end

smartphones and tablets that might suffer from deficiencies in hardware (e.g., under-powered

CPUs, low-quality microphones and speakers) that could negatively impact user-perceived

call quality. Such poor calls would then be mistakenly attributed to Wi-Fi as the underlying

cause. To mitigate this concern, we consider the subset of PC-class devices, which includes

a mix of Ethernet- and Wi-Fi-connected desktop and laptop machines. As shown in rows

#3 and #4 of Table 3.2, the PCR for the PC-class devices is better (lower) across the

board than that for the overall population, more so when we consider just the (presumably

better-connected) subnets noted above. However, there is still a significant difference in PCR

between Ethernet-connected clients and Wi-Fi-connected clients.

In summary, the PCR for Wi-Fi-connected clients is significantly worse than that for

Ethernet-connected clients, with the difference between the two being about 40% relative to

the baseline in all cases reported in Table 3.2. We conclude, therefore, that the Wi-Fi link is

a significant contributor to poor call quality, and hence is it worthwhile exploring how Wi-Fi

can be made more reliable, which is our focus in the work we present in Chapter 7.
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Table 3.3: Poor Call Rates for different call categories in the dataset we obtained from
our NetTest-based measurement study. Calls from a (Wi-Fi-connected) NetTest node to
another Wi-Fi-connected NetTest node have a higher PCR than those to a well-connected
Azure node.

Call Type Total Calls Poor Call Rate (%) ∆ in PCR w.r.t EW type (%)

EW 6953 5.22 -

WW 1240 7.98 +52.87

EW-Relayed 798 42.11 -

WW-Relayed 233 62.66 +48.8

Total 9224 10.23 -

3.2.2 Measurements from a Distributed Testbed

Our analysis of data from a large VoIP service provider in the previous section did not allow

us to control the calling pattern or report the absolute PCR. To overcome these limitations,

we conducted a distributed measurement study, wherein we recruited 274 users2 across 22

countries to install on their Wi-Fi-connected Windows PC/laptop a simple measurement tool

called NetTest that we developed. In addition, we install NetTest on 10 well-connected

machines distributed across Microsoft Azure’s data centers worldwide. NetTest ran VoIP-

like streams (64 kbps, 20 ms inter-packet spacing, 2 min duration) between various pairs of

the participating clients. We orchestrated the pattern of these calls, for instance, to have a

particular Wi-Fi-connected client connect, in turn, to another Wi-Fi connected client or to a

well-connected node on Azure, with these connections happening either directly or through

a relay in the cloud. This pattern of connections is designed to mimic typical connectivity

patterns in a VoIP service. We conducted this measurement study for 2 months.

Based on our dataset of 9224 simulated calls, we analyze the voice quality of these calls by

running the packet traces through a G.711 codec, and using the degree of interpolation and

extrapolation of voice samples to estimate Poor Call Rate (PCR), in accordance with well

established models [17, 18]. We found the overall PCR, in absolute terms, to be 10.23%.

2We obtained IRB approval for our study.
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Figure 3.4: (a) CDF of differences of the average worst packet loss percentage for calls
placed by each user to Wi-Fi-connected or Azure clients. (b) CDF of percentage of poor
calls observed per user. Users experienced higher losses in the calls that were placed to
Wi-Fi-connected clients. Majority of the users experienced at least one poor call and 16.3%
of the users experienced a PCR of ∼ 20% or higher.

Table 3.3 shows a breakdown of PCR across different call categories. The call types follow

the naming convention used in the earlier section, i.e., “EW”: one peer is on Ethernet and

the other on Wi-Fi; “WW”: both peers on Wi-Fi. The “-Relayed” suffix indicates calls that

are relayed through a cloud server because a direct path between the two peers could not be

established.

Consistent with our above analysis on data from a large VoIP service, we find that calls

from a (Wi-Fi-connected) NetTest node to another Wi-Fi-connected NetTest node have a

higher PCR than those to a well-connected Azure node (7.98% vs. 5.22%, which corresponds

to a 50% relative difference).

This pattern of Wi-Fi performing worse than wired connection is also seen in the network-level

packet loss rate. We divide each 2-minute call trace into 5-second windows and compute

the loss rate for the worst window. (See Section 7.2 for the reasoning behind this analysis.)

For each client, we then compute the average of such loss rate for calls to Wi-Fi-connected

clients and to Azure nodes, and take the difference between the two. In Figure 3.4(a) we

plot a CDF of this difference in the loss rate for each user. More than 72% of the users faced

higher packet loss rates for calls to Wi-Fi-connected clients compared to wired clients.

To understand how the poor calls are distributed across the users in our dataset, we compute
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the percentage of poor calls each user experienced and plot the CDF in Figure 3.4(b). While

42.1% of the users did not experience any poor calls, 16.3% of the users had a poor call

percentage of ∼20% or higher. This implies that the problem of poor streaming quality is

widespread and, in fact, quite severe for a sizable fraction of users.

3.3 Chapter Summary

In this chapter, we presented empirical data to quantify the effect of last-mile links on

user-perceived quality of real-time data streams. Our results show that users experience

poor quality streams when utilizing wireless links (e.g., cellular and Wi-Fi) more so when

compared to their wired last-mile counterparts.

However, as noted in this chapter, the last-mile connection might not be the culprit for all

instances where users experience quality degradations. Hence, it is important to attribute

network issues to the actual bottlenecked link, i.e.,the last-mile link or the Internet path,

which is the focus of the next part of this dissertation.

Our measurement studies also showed that real-time streaming applications exhibit poor

performance on last-mile wireless networks, especially in the case of Wi-Fi. Part III of this

dissertation discusses how such performance issues can be alleviated.



Part II

Bottleneck Detection
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Part Overview

In this part of the dissertation, we present tools and techniques that can detect whether a

given last-mile wireless link, either cellular or Wi-Fi, is bottlenecked or not. Our tools and

techniques are designed and implemented giving priority to wide-scale deployability, and

hence they can be used on a host of off-the-shelf devices and operating systems.

In Chapter 4, we first introduce a bottleneck detection tool for cellular-connected clients.

This tool, named QProbe, is capable of detecting whether the cellular wireless link or the

WAN path is the cause of a user-perceived performance problem in an application (e.g., a

YouTube video that keeps buffering).

Next, in Chapter 5, we present a suite of detectors that is capable of detecting Wi-Fi

bottlenecks. This suite, named Kwikr, is capable of analyzing whether a Wi-Fi link is

bottlenecked by detecting the presence of several pathological conditions like congestion,

mobility, handoffs, and weak links.



Chapter 4
Detecting Bottlenecks in Cellular Communication

4.1 Introduction

Cellular connections at times are frustratingly slow. While it might be natural for users

to blame the cellular link for the poor performance, doing so is not always appropriate.

Indeed, modern cellular connections are often faster than Wi-Fi (e.g., [35] reports that LTE

outperforms Wi-Fi 40% of the time). Therefore, we need a more nuanced approach to

identifying the location of the bottleneck.

Broadly, we would like to know whether the bottleneck responsible for poor performance

lies in the “last-mile” cellular wireless link or elsewhere in the WAN path. Knowing this is

key to remediating the problem. For example, if the problem is not in the last-mile wireless

link, one might route around the WAN bottleneck, say by picking a different replica (e.g., a

different CDN server). On the other hand, if the cellular link is the bottleneck, the user may

have to look for an alternate connection (e.g., Wi-Fi) or have the application adapt (e.g., by

downsizing media content). Any such adaptation undertaken by the client would be over

and above any remediation (e.g., load balancing) performed by the cellular provider itself,

thus having the advantage of being provider-independent.

The problem of locating the bottleneck in the context of cellular-connected clients is chal-

lenging for several reasons. First, cellular base stations employ per-station queues with

proportional fair (PF) scheduling [61], unlike the FIFO queuing and servicing assumed in

past work on identifying and estimating bottleneck capacity on wired Internet paths (e.g.,

[50, 64, 38, 53, 87]). Therefore, as pointed out in [103], these techniques do not provide

35



Chapter 4. Detecting Bottlenecks in Cellular Communication 36

accurate results in cellular networks. Second, cellular data plans tend to have tight data

caps, so the bottleneck detection algorithm needs to be lightweight in terms of data usage,

avoiding expensive data-intensive probing. Third, cellular networks tend to be closed, under

the tight control of the operator, leaving clients with little visibility into the state of the

network (e.g., the network load) and no access to a vantage point within the cellular network.

In this chapter, we present QProbe, a lightweight, active probing technique to locate the

bottleneck link on an end-to-end path, specifically, to decide whether the bottleneck lies on

the wired WAN path or on the cellular last-mile. QProbe works by detecting whether there

is queuing on either segment, hence its name.

This detection is enabled by the very different behavior of FIFO queuing on the wired path

and PF scheduling at the cellular base station. Routers in the Internet serve packets using

the FIFO model, which is in stark contrast to PF schedulers at cellular base stations that

maintain per-device queues and serves them in a round-robin fashion to ensure fairness

across the clients that are connected to the base station.

When a train of small probe packets is sent by QProbe running on a remote host, these tend

to get clumped together into back-to-back bursts when there is queuing at the cellular base

station, much more so than when there is queuing on the wired path. On the other hand,

when TTL-limited (large) load packets are interspersed with the small probe packets, then

the inter-packet spacing between the latter tends to get stretched when there is queuing on the

wired path but is unaffected by queuing at the basestation. These 2 signals — back-to-back

bursts and stretching — are used in combination by QProbe to locate the bottleneck.

We make three main contributions in this section:

1. We have designed a novel, lightweight probing technique to disambiguate between

WAN and cellular (3G\LTE) bottlenecks in time on the order 700 ms.

2. Using simulations and controlled experiments, we validate the QProbe technique and

show that it can locate the bottleneck with high accuracy.

3. We analyze data from our deployment of QProbe as an iPhone app to over 600 users

spread across 33 countries and 51 operators and show that QProbe classifies the
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Figure 4.1: Operation of a PF scheduler at a cellular base station. Each device has its own
queue at the base station and the base station iterates through each queue and schedules
one or more packets from it. While one queue is being served, packets destined to other
devices will be queued in their respective queues. This behavior causes a client’s packets to
be sent back-to-back when the base station is congested.

bottleneck with greater than 85% accuracy.

4.2 Background

In this section, we highlight the unique characteristics of the downlink packet scheduler in

cellular base stations. We then provide insight on how these are leveraged in QProbe.

Unlike Wi-Fi and wireline routers, cellular base stations employ a centralized proportional

fair scheduler (or “PF-scheduler”) that determines which client(s) should be served in each

scheduling interval (also referred to as a time slot or TTI) [99, 103]. Each slot is typically a

few milliseconds long (2 ms in 3G). Multiple clients can be simultaneously served in a single

time slot by assigning different orthogonal codes (time-frequency resource blocks) for 3G

(LTE) clients. Figure 4.1 depicts the operation of a PF scheduler.

The objective of the PF-Scheduler is to improve the aggregate network throughput, while

also being fair to the clients. Instead of strict round-robin scheduling, the PF-Scheduler

picks a client that maximizes the ratio of instantaneous rate to the average allocated rate for

each client over a certain time window. This ensures that no client is starved, while also

keeping the aggregate network throughput healthy.
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Figure 4.2: (a) Slot gaps between assignments, and (b) Overall throughputs observed by
the measurement device with different number of background downloaders. When the load
at the base station increases, the frequency at which clients are served reduces.

As the number of clients in the network increases, the slot allocations for a client tend to get

spaced apart in time, as the base station is serving other clients. However, when a client is

scheduled, multiple packets buffered at the base station can be transmitted back-to-back,

depending on the bitrate associated with the instantaneous link quality and the average

allocated rate from the recent past.

We wanted to understand how cellular congestion impacts the slot assignments in real

networks. However, as described earlier, this is challenging since slot assignments are decided

by the base station, while by contrast clients have no knowledge of how many other users

are present in the network. In addition, the cellular stack on the client typically does not

expose link and physical layer information up the network stack.

To overcome this challenge and gather slot-level data, we used the QxDM diagnostics tool

from Qualcomm on a rooted Windows Phone device. We performed a bulk download over

3G on one device, adding 0, 1, or 2 other downloaders in the background. (We ran these

experiments in the middle of the night to avoid interference from other users.)

Figure 4.2(a) clearly shows that as the number of downloaders increased, the inter-slot gaps

also increased, from a median of 2 ms to 6 ms with the addition of just two downloaders; the

throughput also dropped correspondingly (Figure 4.2(b)). During peak hours in crowded

settings, we have seen inter-slot gaps even larger than 6 ms.
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Note that cross-traffic on a WAN link can also cause large gaps to be introduced between

packets destined to a client. The key difference, however, is that with cellular networks,

when the PF-Scheduler chooses a client for downlink transmission, multiple packets can

be scheduled back-to-back, especially if the packets are small and the inter-slot gap is

large. QProbe leverages this for its detection, especially since inter-packet gaps can easily

be measured by the client.

4.3 Design

In this section, we begin with a description of the design constraints for the bottleneck

detection algorithm. We focus on localizing the problem to one of two parts in an end-to-end

path, and describe our methodology for each part separately. Finally, we put it all together

and describe the QProbe technique that combines these design elements.

4.3.1 Design Requirements

Our focus in this work is on diagnosing pathological cases when the observed throughput from

an Internet server to a cellular-connected client is quite low. The measurement technique

should be able to pinpoint the location of the bottleneck to one of the two segments in an

end-to-end path: (a) wired WAN path; or (b) cellular wireless last hop. The wired path

includes the Radio Network Controller (RNC) optical backbone within the provider’s network

as well as the WAN beyond. Typically, the conventional wisdom is that in a well-engineered

network, the RNC network is unlikely to be the bottleneck relative to the air interface

(wireless hop) [101].

For the purpose of deployability, we do not assume that we have vantage points within the

cellular network or along the WAN path for additional measurements, nor do we assume

access to a cohort of cooperating clients. Hence, we focus on designing an end-to-end

measurement technique between a server on the Internet and an individual cellular-connected

mobile device. Moreover, since cellular connections are metered, a key constraint is to ensure

that the data usage incurred for our measurements is quite low and is unlikely to exacerbate
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congestion.

Our goal is to have a technique that works across different platforms and does not require

any new operating system (OS) or network capabilities, and can be easily deployed in

existing platforms as a user-level application. This is different from prior techniques such as

LoadSense [31], which relies on passive low-level measurements from the cellular stack.

4.3.2 Detection Methodology

At a high level, QProbe technique consists of actively sending probe traffic downstream from

an Internet server to a mobile device, and analyzing the probes received at the client-side to

diagnose the problem. We send a train of equally spaced tiny probe packets to the client

and observe the arrival times. The small-sized probes ensure that the probing traffic is light.

When these packets arrive at the basestation, if the wireless link is not congested, the

basestation would not be backlogged and so the packets are likely to be delivered immediately.

In this case, we expect to see the inter-packet spacing at the receiver to be very similar to

that at the transmitter. However, with an increase in wireless cross-traffic, the basestation

would have to service several other clients, and the probe packets are likely to get queued

up at the basestation. Two successive probes would get queued up at the basestation if the

inter-packet spacing at the sender is smaller than the times when the client gets scheduled by

the PF-scheduler. When the PF-scheduler chooses to service the client to which the probe

traffic is destined, multiple probe packets can be delivered depending on the quantum of

service allocated to the client.

Moreover, since the packets are small-sized, the chances of multiple probe packets being

delivered back-to-back are very high. Thus, to detect wireless congestion, we look for

occurrences of increase in inter-packet spacing followed by one or more back-to-back packets1.

As observed experimentally in the previous section, the higher the congestion, the larger

the spacing between two consecutive scheduling opportunities. Thus, we expect to see more

back-to-back packets delivered during each scheduling opportunity.

1When two consecutive probes arrive within a single transmission time interval (2 ms), we count them as
back-to-back.
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The idea of using a number of back-to-back probes as a measure of wireless congestions relies

on the fact that probes arrive spaced apart in time at the basestation. However, cross-traffic

on the WAN path can also cause probe packets to get queued up at a WAN link, and arrive

at the basestation without any gaps between them. In such a case, differentiating the WAN

effects from wireless congestion is difficult.

To isolate the effects of WAN cross-traffic, we introduce load packets, one or more large

MTU-sized packets in-between two successive probes. The objective of the load packets

is to ensure that the probe packets arrive spaced apart in time at the basestation. But,

load packets introduce two new problems. Since they are large, the data consumption

for measurement traffic increases. More importantly, at high wireless congestion, as the

per-client allocation during each scheduling opportunity reduces, multiple probe packets

may not get scheduled at the same time even if they are queued up at the basestation. To

address these problems, we employ a commonly used TTL-based approach to drop the load

packets at an IP hop close to the cellular network before they reach the basestation. We set

the TTL of the load packets to hop_count− 1, where hop_count is the number of hops in

the path between the server and the client. (We find the hop count by getting the server

to send a series of packets with differing TTL values that are also indicated in the packet

payloads. Appendix A outlines the specifics of our hop count finding algorithm.)

Load packets provide two benefits. Not only do they ensure that probe packets arrive spaced

apart in time at the receiver, they also help in detecting WAN link bottlenecks. In cases

where the WAN link is the bottleneck, the load packets can introduce additional delay due

to the packet transmission time of MTU-sized packets over a wired bottleneck link. As a

result, the packet spacing between successive probe packets can increase. We measure this

effect using a metric called stretch-factor, which is computed as the ratio of time duration of

the packet train at the receiver to that at the sender. The duration of the train refers to the

time between the last and the first probe packets.

Ideally, when there are no bottlenecks anywhere, the packet spacings are similar, and the

stretch-factor should be close to 1. When there are bottlenecks in the WAN path, additional

spacing is introduced due to the transmission of the load packets, and the total duration
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Figure 4.3: QProbe packet train with tiny probe packets and large load packets. TTL for
load packets expires 1 hop before the cellular network and get dropped en route.

of the train gets stretched at the receiver, resulting in a stretch-factor value greater than 1.

With wireless bottlenecks, we still expect low stretch-factor (close to 1) since the PF-scheduler

can deliver multiple probe packets back-to-back after each occurrence of a large gap due to

cross-traffic at the base station.

The overall construction of the QProbe packet train is shown in Figure 4.3. We send a

sequence of 25 probe packets spaced equally apart. Multiple load packets of MTU size with

TTL set to hop_count− 1 are sent in between two consecutive probe packets. The spacing

between two load packets as well as the spacing between a probe packet and a load packet is

set to 1 ms. The user-level QProbe client application records the timestamps of the received

packets and runs our detection algorithm to determine the bottleneck location. Since we do

not know the wireless conditions, we run QProbe train for different values of spacings (4 ms

to 8 ms) between the probe packets to get a better estimate of the condition. Therefore, the

total data usage for running 5 QProbe trains is only 3.5 KB, and completes in just 720 ms.

All the above parameters were chosen carefully by conducting experiments where they were

varied to find the most appropriate values that provided the best comprise in the cost and

the accuracy of the technique.

Our detection algorithm uses two features to determine whether it is a wireless problem or a
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Figure 4.4: QProbe Algorithm

WAN path problem. When the number of back-to-back packets observed is high and the

stretch-factor metric is low, we classify it as a wireless problem, and whenever the number of

back-to-back packets is low and the stretch-factor is high, we classify it as a WAN bottleneck.

Otherwise, we let the problem remain unclassified.

For each QProbe run for a certain probe packet spacing, we record the packet arrival

timestamps, and run the detection algorithm. The detection algorithm for QProbe is

described in a flow-chart shown in Figure 4.4. There are two thresholds – sf_threshold

and #bb_threshold that are used to determine the different bottleneck scenarios.

Computing QProbe Thresholds: Using controlled experiments (see Section 4.4.2), we

evaluated QProbe by varying packet spacings from 4 ms to 8 ms in increments of 1 ms for

489 problem cases, out of which 233 were bottlenecked by the wireless link and the remaining

256 cases experienced WAN bottlenecks. For each of these runs, the ground truth is known –

whether the problem is wired or wireless. We trained a 10-fold cross-validation decision tree

to predict the bottleneck using stretch-factor and the number of back-to-back packets as

the two features2. We use the thresholds obtained from the tree that is generated from this

training phase for classification of QProbe runs done on 3G.

2We used a decision tree for its simplicity in usage. We believe that other classification algorithms could
be used for this purpose as well but we do not study the benefits of doing so.
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Since LTE throughput ranges are different from 3G, the thresholds for LTE are trained

separately. However, we did not have a sufficient number of LTE connections to perform

controlled runs. Therefore, we used a subset of the LTE runs that we obtained from our

large-scale measurement study (Section 4.4.3) to build decision tree models for LTE, and

derived the thresholds for the two metrics.

Reasons for Unclassified: There can be instances of wireless bottleneck cases that have

high stretch-factor along with high back-to-back packets. These occur mostly due to transient

congestion occurring in both wired and wireless paths. In addition, some wired bottleneck

cases can have a low stretch-factor and low back-to-back packets. We believe this can occur

due to congestion in the wired backhaul portion of the cellular network. Since load packets

get dropped at the IP cellular gateway, any congestion in the wired path beyond this point

are unlikely to impact the probe packets and thus does not cause the two metrics to increase

significantly. Both the above two categories are hard to identify due to lack of ground truth

information. In our algorithm, we treat them as unclassified runs.

4.4 Evaluation

We validate the QProbe technique using LTE simulations in NS3, and controlled experiments

in two 3G networks in India. We then go on to deploy QProbe as an iPhone app and collect

data from the wild for a large number of cellular operators for both 3G and LTE networks.

Using NS3, we created a real-world topology consisting of a multi-hop wired WAN path

that connected to an LTE basestation having a PF-scheduler. The WAN path contained 17

hops, which is the mean number of hops in the data we gathered from the wild (more details

in Section 4.4.3). The link speeds of the WAN path were set to 1 Gbps. We connected

a server on the wired endpoint to generate probing traffic destined to a cellular client at

the other endpoint. We then created different wireless congestion levels by increasing the

number of background bulk TCP downloaders in the cell, varying the load level from low

(6 downloaders) to medium (9 downloaders) to high (13 downloaders). The number of

downloaders for each congestion level was decided such that the TCP throughput observed
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at the QProbe client resembled the 75th, 50th, and 25th percentiles of the TCP throughputs

we observed in the LTE measurements of our dataset (Section 4.4.3).

To create WAN bottlenecks, we first varied the capacity of one of the wired hops from 1 Mbps

to 5 Mbps. Next, we introduced a TCP cross-traffic flow sent and received by a pair of nodes

that shared a hop in the wired path between the QProbe server and the cellular-connected

client. We varied the throughput of the TCP flow such that it used 40% to 80% of the

shared hop’s capacity.

As part of QProbe, we sent a 100 ms probe train consisting of 25 packets with 4 ms inter-packet

spacing from the server to the cellular-connected QProbe client.

4.4.1 Simulations

Figure 4.5(a) shows the number of back-to-back packets received at the client side, and

Figure 4.5(b) shows the corresponding stretch-factor for the same conditions. At high loads,

almost 80% of the probe traffic arrive back-to-back, thus matching our hypothesis. In

addition, stretch-factor remains constant for the most part, with only a marginal increase of

10% at high load. Thus, both metrics behave as expected with wireless congestion.

We analyze the benefit of using load packets in between probe packets in distinguishing

WAN and wireless bottlenecks. An intermediate WAN link can become a bottleneck for

two reasons: (a) due to low capacity, and (b) due to low available bandwidth owing to

cross-traffic. Our objective is to detect WAN bottlenecks for both these cases.

As seen in Figure 4.5(c), the stretch-factor does not change when there are no load packets

in the probe train, but with the introduction of load packets, the stretch factor increased

by a factor of 9 when the bottleneck bandwidth is as low as 1 Mbps. Similarly, in the

cross-traffic scenario, with the increase of the volume of cross-traffic, Figure 4.5(d) shows

that the stretch-factor shows an increase of more than 25%.



Chapter 4. Detecting Bottlenecks in Cellular Communication 46

 0

 5

 10

 15

 20

 25

No Load Low Medium High#
 B

ac
k-

to
-b

ac
k 

Pa
ck

et
s

(a)

 0

 0.5

 1

 1.5

 2

No Load Low Medium High

St
re

tc
h-

fa
ct

or

(b)

 0

 2

 4

 6

 8

 10

1 2 3 4 5

St
re

tc
h-

fa
ct

or

Without Load Packets
With Load Packets

(c)

 0

 0.5

 1

 1.5

 2

40% 60% 80%

St
re

tc
h-

fa
ct

or
Without Load Packets

With Load Packets

(d)

Figure 4.5: (a) Number of back-to-backs, and (b) stretch-factor with varying wireless
congestion levels. stretch-factor for WAN link bottlenecks due to (c) varying link bandwidth
(in Mbps) and (d) varying cross-traffic volumes. As the load at the base station increases, the
number of back-to-backs observed by the client increases, however, the stretch-factor remains
low. Load packets help us detect WAN bottlenecks because they increase the stretch-factor
when the WAN path is bottlenecked by either links having low bandwidths or cross-traffic.

4.4.2 Controlled Experiments

To evaluate QProbe on real networks, we conducted controlled experiments on two 3G

operators – BSNL and Airtel in Bengaluru, India, with several runs corresponding to the

wireless and WAN bottleneck scenarios. Using five co-located smartphones, we generated

heavy background wireless traffic in the cell via simultaneous TCP bulk downloads. Next,

we connected a laptop running the QProbe client to the same basestation using a 3G USB

dongle, and conducted 233 QProbe runs from a well-provisioned server hosted on the Azure

data center in Singapore. Note that these runs are bottlenecked by the wireless link due

to the presence of background downloaders. The average throughput the QProbe client

observed under this bottleneck condition is 945 Kbps.
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Figure 4.6: # Back-to-back packets and stretch-factor for 489 QProbe runs. (Y-axis is in
log scale.) WAN bottlenecks result in low # back-to-back packets and high stretch-factor
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To gather runs for WAN bottlenecks, we also deployed the QProbe server on 34 PlanetLab

servers that had bottlenecked WAN paths3 and conducted 256 QProbe runs from them. The

average throughput the QProbe client received from the PlanetLab servers is 819 Kbps.

To minimize interference from other traffic in the same cell, we ran all our experiments late at

night. To ensure the load packets are not accounted for byte usage of the cellular-connected

client, we had to set the TTL to hop− count− 2.

Figure 4.6 depicts the stretch-factor and the number of back-to-back packets of all the runs

we conducted for a 4 ms inter-packet spacing for the probe packets. This plot verifies our

simulation results, in that we see more back-to-back packets and a small stretch-factor in the

presence of a wireless bottleneck, whereas a wired bottleneck result in fewer back-to-back

packets and a higher stretch-factor.

Using the thresholds obtained from the training phase (Section 4.3.2), QProbe algorithm

classified 94.7% of the 489 runs, while 5.3% of the runs did not satisfy the two threshold

conditions, and thus remained unclassified for reasons described in Section 4.3. For the runs

that were classified, the accuracy of detecting both wired and wireless bottlenecks is more

3We verified this by running TCP measurements with these servers using a high-bandwidth wired link
from the same service provider as the cellular ISP.
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Table 4.1: Summary of the dataset.

#Users 642

Data collection period 2 months

#QProbe runs 8116

#Countries 33

#Cellular providers 51

than 97.4%, thus showing that with a simple, easy to measure client-side algorithm, we can

accurately detect the bottleneck location.

Note that in our evaluations, we calculate QProbe’s accuracy with respect to the number of

classified runs and not the total runs. This is because QProbe is not capable of detecting

some conditions like bottlenecks inside the cellular operator’s network, as explained in

Section 4.3.2. This makes using the total runs as the baseline unsuitable.

For validation, we also ran QProbe without background traffic at night time and collected

833 runs for 3G and 989 runs for LTE. QProbe indeed classified only 8.2% and 1.9% as

wireless bottlenecks for 3G and LTE, respectively, since these periods are lightly loaded.

4.4.3 Large-scale Measurement Study

We developed QProbe as an iOS application on both iPads and iPhones, and deployed it

in the Apple App Store [73]. To detect bottlenecks in different end-to-end paths, we used

15 well-provisioned Microsoft Azure servers that were deployed in different data centers,

located in the US, South America, Europe, Singapore, China, Japan, and Australia. We also

deployed the QProbe server on 51 geographically spread PlanetLab servers.

We collected data from this deployment via users of the QProbe iOS application. We adver-

tised the app through social platforms as well as Amazon MTurk to get more participation 4.

Table 4.1 summarizes our dataset. We have made our dataset publicly available at [72].

4We obtained IRB approval for this study.
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Table 4.2: QProbe runs for different radio technologies and the number of runs that were
bottlenecked by either the wireless link or the WAN path as determined by the groundtruth.

Technology Runs Wireless Bottlenecks WAN Bottlenecks

3G 2573 215 (8.4%) 97 (3.8%)

LTE 5480 441 (8.1%) 837 (15.3%)

The 8116 runs were spread across different cellular radio access technologies as shown in

Table 4.2. We only analyzed data from the dominant radio technologies present in this study:

3G (WCDMA, HSDPA, and EVDO RevA) and LTE.

When users run the QProbe app, the app connects to the two closest Azure servers, referred

to as reference servers, based on TCP RTTs. Then, the app conducts bulk TCP download

measurements with these two reference servers sequentially. Next, the app runs QProbe

experiments from 6 randomly chosen servers sequentially. Thus, each run of the app provides 6

QProbe measurements. For each of these 6 servers, the application first does TCP throughput

measurements and then receives 5 QProbe packet trains, having probe packet spacings of 4

ms to 8 ms in increments of 1 ms. It logs the arrival timestamps of the probe packets and

uploads these timestamps, along with throughput measurements and carrier information like

the MNC, MCC codes, and the operator’s name to a central server. We analyze this data

offline to evaluate QProbe’s bottleneck detection accuracy.

Obtaining the Groundtruth: We use multiple throughput measurements conducted

during each run of the app to estimate ground truth. The basic idea is that whenever low

throughput is consistently observed with both reference servers and the server the QProbe

train is sent from, we blame it on the last-mile wireless link. Otherwise, we blame the specific

instance of low throughput on the WAN path from that specific server. To determine what

constitutes low throughput, we looked at all throughput measurements obtained for 3G

and LTE networks separately, and chose the 25th percentile as the threshold (732 kbps and

3149 kbps for 3G and LTE, respectively).

Note that this is not the most ideal way of obtaining the groundtruth due to several

reasons. First, all our throughput measurements can be low due to a common bottlenecked
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Table 4.3: Confusion matrix for 3G. The overall bottleneck detection accuracy is 85.2%.

QProbe Classification

Ground Truth Wireless WAN

Wireless 187 161 (86.1%) 26 (13.9%)

WAN 76 13 (17.1%) 63 (82.9%)

Table 4.4: Confusion matrix for LTE. The overall bottleneck detection accuracy is 86.6%.

QProbe Classification

Ground Truth Wireless WAN

Wireless 330 307 (93%) 23 (7%)

WAN 708 116 (16.4%) 592 (83.6%)

WAN path link and not only because of a bottlenecked cellular link as assumed above.

Second, using thresholds on throughputs to decide what constitutes a bottlenecked link

might not be accurate because the throughput available in cellular networks might vary

significantly. However, as we did not have access to the individual devices that took part

in our measurement study, this is the best strategy that we could use to reason about the

groundtruth. In fact, if we had a more accurate way of obtaining the groundtruth, we believe

that the accuracy of QProbe in this measurement study would be even higher, as shown in

our controlled experiments.

Bottleneck Detection Accuracy: Using the threshold parameters obtained from training,

we classified the bottlenecked runs in the measurement study. QProbe classified 84.3% and

81.2% of 3G and LTE runs, respectively. For those that were classified as either wireless or

WAN path, the overall accuracy of bottleneck detection is over 85% for both 3G and LTE.

Table 4.3 and Table 4.4 provide the confusion matrix for 3G and LTE, respectively.

The Need for Two Metrics: Note that if we were to use the number of back-to-back

packets or the stretch-factor in isolation to classify the runs, all of them can be classified.

However, in doing so, the classification accuracy drops significantly. For example, if QProbe

used only the number of back-to-backs or the stretch-factor for classification, the accuracy
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reduces by 14.4% and 15.5%, respectively. For 3G, the two corresponding accuracy reductions

are 14.6% and 21.7%. Therefore, though the two metric based classification does not classify

a fraction of the runs, it achieves a far higher classification accuracy than using a single

metric. Furthermore, using the two metrics allow QProbe to not classify runs that are

bottlenecked due to reasons that QProbe is incapable of detecting.

4.5 Chapter Summary

Cellular-connected users often blame poor end-to-end network path performances on the

last-mile wireless connection. However, as shown in our measurement studies in the previous

chapter, the WAN path can be the bottleneck in many cases. In this chapter, we presented

QProbe, a simple but effective tool that can be used by cellular clients to detect bottlenecks in

end-to-end network paths. QProbe locates the bottleneck location by leveraging the unique

characteristics of the PF-schedulers used in cellular basestations. While being a lightweight

probing technique requiring only ∼ 700 ms to run and less than 4 KB data usage by the

probe packets, QProbe locates the bottleneck in real-world 3G and LTE networks with more

than 85% accuracy.



Chapter 5
Detecting Bottlenecks in Wi-Fi Communication

5.1 Introduction

Wi-Fi networks are inherently dynamic in nature due to the over-the-air broadcast mode

of operation. This may potentially introduce many pathological conditions in the network

that will lead to performance problems in user applications. For example, if many clients

are connected to the same Wi-Fi access point (e.g., in a café that provides free Wi-Fi

for its patrons), the clients’ traffic will cause congestion to manifest at the router causing

buffer bloats. Alternatively, due to channel fading, clients might be a connected to a Wi-Fi

connection with poor RSSI. Such conditions cause poor performance in applications because

the capacity of the Wi-Fi link will be reduced under such conditions. The consequences are

more severe in delay-sensitive applications, such as real-time streaming, because the imposed

quality degradations on such applications are hard to mask from users (e.g., lagging audio

or video in Skype calls).

However, as we discussed in Chapter 3, though Wi-Fi connected clients experience poor

quality VoIP streams more than LAN-connected clients, the Wi-Fi link might not be the

bottleneck link all the time because in some cases, it is probable that the bottleneck link is

in the Internet path. It is important to know whether the Wi-Fi link is the bottleneck in

an end-to-end network path because this knowledge helps user applications perform better.

For example, real-time streaming applications can tune bandwidth adaptation based on

whether the Wi-Fi link is bottlenecked or not to increase call quality (as we discuss later in

Chapter 6).

52
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Therefore, prior work has looked at detecting the presence of pathological conditions in

the Wi-Fi link to determine whether the Wi-Fi link is bottlenecked (e.g., [57, 19, 77, 90]).

However, such techniques are hard to realize in practice for two major reasons: they require

the Wi-Fi adapter to operate in monitor mode to allow it to scan the whole Wi-Fi spectrum

(e.g., [77]); or they require special infrastructure to function, like a special server connected

to the Wi-Fi access point (e.g., [57]), or a Wi-Fi access point running a modified operating

system (e.g., [90]).

Note that the QProbe tool we presented in the previous chapter does not work in Wi-Fi

networks because it is designed specifically for cellular networks, wherein we exploited the

per-device queue management and PF scheduling properties of cellular base stations to

detect the bottleneck location. As Wi-Fi access points do not have those unique properties,

QProbe will not be able to detect bottlenecks on Wi-Fi-connected clients. Moreover, our

focus in this chapter is not only on detecting whether the Wi-Fi link is bottlenecked, but

also on identifying the root cause of the bottleneck conditions.

To this end, we present a user-level module, named Kwikr, that is capable of deducing

whether the Wi-Fi link is bottlenecked by detecting the presence of Wi-Fi pathological

conditions such as wireless congestion, mobility, handoffs, and weak signals. The key novelty

of Kwikr is that its detectors leverage simple active and passive measurements that can be

performed on all types of off-the-shelf devices (e.g., laptops, smartphones, tablet-PCs, etc.)

and operating systems (OSs) (e.g., Windows, Linux, Android, iOS, etc.), and does not

require modified or additional hardware. After Kwikr completes a run of its detectors, it

packages the detectors’ outputs in a form that we call “Wi-Fi hints” that are passed onto

applications that are interested in being aware of the status of the Wi-Fi link.

To detect the presence of wireless congestion, i.e., queue build-up, at the Wi-Fi access point,

Kwikr uses a novel, lightweight, active measurement technique that we call Ping-Pair. In

Ping-Pair, the client sends two ICMP ping messages with differing Differentiated Service

Code Point (DSCP) values to its default gateway, i.e., the Wi-Fi access point. We show

that the RTT difference of the pair of pings can be used as a reliable signal to detect

congestion with high accuracy. To detect mobility, handoffs, and weak links, we use standard,
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straightforward inferences based on passively observable signals like RSSI and the BSSID

the device is connected to.

We make three main contributions in this chapter:

1. We have designed a user-level module, named Kwikr, that first detects various types of

Wi-Fi pathological conditions, such as congestion, mobility, handoffs, and weak links

that cause a Wi-Fi link to get bottlenecked. It then informs applications about the

status of the Wi-Fi link using Wi-Fi hints.

2. We implement Kwikr as a user-level module that can be deployed on a wide variety of

devices and operating systems.

3. Through empirical studies, we show that Kwikr is capable of detecting the presence of

the above mentioned pathological conditions with over 90% accuracy.

5.2 Background

In this section, we give a brief introduction to the Differentiated Services Code Point (DSCP)

field of the IP header and how it enables differentiated services for packets in the Internet.

We also discuss how DSCP values are dealt with at Wi-Fi access points that are Wi-Fi

Multimedia (WMM) enabled. We base the design of our Ping-Pair technique (discussed

later in Section 5.3.1) on these principles.

5.2.1 DSCP and DiffServ

The IP header contains a 8 bit field that was originally called Type of Service (ToS).

Newer standards redefine the ToS filed as a combination of two fields: one that carries a

6 bit Differentiated Services Code Point (DSCP) field, and one containing a 2 bit Explicit

Congestion Notification (ECN) field. The DSCP field, defined in RFC 2474 [41], is used for

Differentiated Services (DiffServ) in networks, including the Internet, to provide different

types of services for different classes of network traffic. For example, real-time streaming

applications can mark the DSCP field of its packets to request high priority services with
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Table 5.1: Commonly used DSCP values.

DSCP Decimal Meaning Drop probability Equivalent IP precedence
value

101 110 46 Expedited forwarding (EF) N/A 101 Critical

000 000 0 Best effort N/A 000 - Routine

001 010 10 AF11 Low 001 - Priority

001 100 12 AF12 Medium 001 - Priority

001 110 14 AF13 High 001 - Priority

010 010 18 AF21 Low 010 - Immediate

010 100 20 AF22 Medium 010 - Immediate

010 110 22 AF23 High 010 - Immediate

011 010 26 AF31 Low 011 - Flash

011 100 28 AF32 Medium 011 - Flash

011 110 30 AF33 High 011 - Flash

100 010 34 AF41 Low 100 - Flash override

100 100 36 AF42 Medium 100 - Flash override

100 110 38 AF43 High 100 - Flash override

the goal of keeping latencies lower.

The design rationale of DiffServ is simple. It requires traffic to be distributed into multiple

classes, and the routers in the network that support DiffServ simply implement a forwarding

policy for each class of traffic. So in essence, if an application sets the DSCP field of its

packets to high priority, when they reach a DiffServ-enabled router they get higher precedence

in the scheduling process. RFC 2475 [42] outlines the commonly used DSCP values shown in

Table 5.1. The two ICMP ping messages in our Ping-Pair technique use the DSCP values

of 46 and 0.

It is worthwhile noting that DiffServ policies are typically honored only within certain

network boundaries. Therefore, though DSCP policies might be in effect within a home or

an office network, when the packets go out to the Internet, some ASs will either reset the

DSCP field to the default value (0) or else treat every traffic class as the same irrespective

of the set DSCP value.
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5.2.2 IEEE 802.11e Standard

The IEEE 802.11e standard proposes a set of QoS enhancements to the IEEE 802.11 standard

through the Enhanced Distributed Channel Access (EDCA) mechanism. EDCA supports

four traffic classes (also called as Access Categories). In increasing order of priority, the

four Access Categories are: Background, Best Effort, Voice, and Video. This categorization

allows Wi-Fi stations to wait for differing amounts of time before they try to access the

channel. For example, a station with high priority (e.g., Voice) traffic would wait less than

a station having low priority (e.g., Best Effort) traffic before they attempt to send frames.

The Wi-Fi alliance’s Wi-Fi Multimedia (WMM) specification contains a subset of enhance-

ments proposed by the 802.11e standard. Wi-Fi access points that are WMM-enabled,

support EDCA and maintain 4 queues in the downlink direction—one for each access cate-

gory. The downlink scheduling policy of the access point always serves frames in the high

priority queues first before serving frames in the low priority ones.

A key assumption of our congestion detector, Ping-Pair, which we discuss in the next

section, is that the Wi-Fi access point is WMM-enabled. This is increasingly the case

because, since the 802.11e standard came out in 2005, it has been widely adapted by most

Wi-Fi access point manufactures. Typically, on WMM-supported access points, WMM is

enabled by default. This is the case in OpenWRT as well. As users typically do not modify

their default access point settings, we believe that depending on WMM-enabled routers

does not inhibit the practicality of the Ping-Pair technique. We conducted a measurement

study to evaluate this hypothesis in which we analyzed 171 unique Wi-Fi access points of all

types of makes and models across 14 countries belonging to 166 users, and found that 77.2%

of them are WMM-enabled1.

5.2.3 DiffServ and WMM

When a WMM-enabled router receives a frame carrying an IP packet with the default

DSCP value, it will be queued in its Best Effort queue. Likewise, if the IP packet carries

1We obtained IRB approval for this study.
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Figure 5.1: A high-level architectural diagram of Kwikr. Kwikr first detects the presence
of various pathological conditions in the Wi-Fi link via its detector suite. Then, it generates
information about the status of the Wi-Fi link in the form of Wi-Fi hints. These hints are
then passed onto applications.

the Expedited Forwarding DSCP value, then it gets queued in the Video queue. As the

scheduling policy gives precedence to the Video queue over Best Effort, any frames sitting in

the Video queue get scheduled first to provide the lower latencies that DiffServ requires.

We exploit this behavior in our design of the Ping-Pair technique, which will be discussed

next in Section 5.3.

5.3 Design

We now discuss the design elements of Kwikr’s suite of detectors and how they are exposed to

end-user applications in the form of Wi-Fi hints. We design Kwikr as a network module that

runs as a user-level library. This mode of operation allows us to deploy it on a wide variety

of platforms and operating systems such as Windows, Linux, and even more restrictive ones

like Android and iOS. Once invoked, the Kwikr module runs the detectors and Wi-Fi hints

generators continuously at an interval specified by an application that requires Wi-Fi hints.

A high-level architectural diagram of Kwikr is shown in Figure 5.1. Kwikr first gets raw data
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from the Wi-Fi network interface that includes RTT measurements of ICMP ping messages,

RSSI, and BSSID data. Then, Kwikr’s detector suite consumes this data and detects the

presence of various pathological cases, such as wireless congestion, mobility, handoffs, and

weak links, that cause the Wi-Fi link to be bottlenecked. Next, it runs simple inferences on

the detectors’ results and generates useful information, which we call Wi-Fi hints, about the

status of the Wi-Fi link. Finally, these hints are passed onto applications that are interested

in changing their behavior depending on how good or bad the Wi-Fi link is. For example, in

the in the next chapter (Chapter 6), we discuss how real-time streaming applications can

leverage Wi-Fi hints to improve their bandwidth adaptation strategies of data streams.

In Section 5.3.1, we first discuss the design aspects of the Kwikr detectors. Next, we discuss

how Wi-Fi hints are inferred in Section 5.3.2.

5.3.1 Pathology Detectors

When many clients are connected to the same access point (e.g., in a café, airport), the

throughput that a data flow would observe in the Wi-Fi link reduces. Moreover, delay-

sensitive traffic (e.g., real-time streams) would observe increased jitter and losses. This is

because, the clients’ data flows will cause increased queuing delays as frames have to wait in

the access point’s queue to get served. This is what we call congestion. Our goal is to detect

this phenomenon by using a simple, lightweight active measurement technique that a user

can run on any device and operating system. We present a measurement technique, named

Ping-Pair, that achieves this goal by using a pair of carefully crafted ICMP ping messages.

In addition, we make use of passive measurements to detect mobility, handoffs and weak

link conditions in the Wi-Fi link. These pathologies reduce the throughput that a data

flow would observe in the Wi-Fi link as well due to changing channel conditions, temporary

disruptions, and channel fading. We detect these conditions by using standard inferences

on passively observable signals like RSSI and BSSID of the Wi-Fi connection. While these

detectors are straightforward applications of well-known techniques, the combining them

and our Ping-Pair detector to design one cohesive, user-level detector suite is something

that has not been addressed in prior work.
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Design Requirements

Our focus is to design a suite of detectors that is capable of detecting wireless congestion,

mobility, handoffs, and weak link pathological conditions. For the purpose of practicality, we

do not require the Wi-Fi adapter to operate in monitor mode or special-purpose hardware.

Therefore, our goal is to design techniques that an end user can run on any type of device or

operating system—a capability that is not present in the state-of-the-art.

For the techniques to potentially benefit user applications (e.g., real-time streaming appli-

cations), our detectors need to be able to run as a user-level library. Therefore, we do not

assume elevated OS privileges, and this allows us to deploy our techniques on stock devices,

such as non-rooted Android smartphones.

The Ping-Pair Technique

To detect the presence of wireless congestion, i.e., queue build-up at the Wi-Fi access point,

we present a simple, active measurement technique that we call Ping-Pair. It uses a carefully

crafted pair of ICMP ping messages to perform the detection, and hence the name.

The Ping-Pair technique works as follows. We send two ICMP ping requests to the client’s

default gateway, which is the Wi-Fi access point the client is connected to. One of the

requests carries a DSCP value set to high priority and the other’s DSCP value is set to

default priority. The access point will then send ICMP ping responses to both requests and

we use the arrival times of the responses to compute the round trip times (RTTs) for both.

Next, we take the difference of the two RTT values and compare it with a threshold. If the

difference is higher than the threshold, we conclude that the Wi-Fi link is bottlenecked. This

process is outlined in Algorithm 5.1.

Let us now discuss how this technique works. The Ping-Pair technique solely relies on

the DiffServ and WMM standards we discussed in Section 5.2. First of all, note that the

Ping-Pair ICMP messages are sent and received only on the last-mile Wi-Fi network.

Therefore, this technique helps us study the performance of the Wi-Fi link in isolation. This

would not be the case if we were to use any infrastructure in the Internet, like a cloud server.
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Algorithm 5.1: The Ping-Pair Algorithm

1 m1← createIcmpPingRequest()
2 m1.DSCP = 46 //Expedited Forwarding (high priority)

3 m2← createIcmpPingRequest()
4 m2.DSCP = 0 //Best Effort (default priority)

5 //Send the ping requests and record the sent timestamps
tsm1 ← sendIcmpPingRequest(m1)

6 tsm2 ← sendIcmpPingRequest(m2)

7 //Receive the ping responses and record the received timestamps
trm1 ← receiveIcmpPingResponse()

8 trm2 ← receiveIcmpPingResponse()

9 //Calculate the RTTs of the ping messages
10 RTTm1 ← trm1 − tsm1

11 RTTm2 ← trm2 − tsm2

12 RTT_difference← RTTm2 −RTTm1

13 if RTT_difference > RTT_difference_threshold then
14 return Wi-Fi link is congested
15 end
16 else
17 return Wi-Fi link is not congested
18 end

Next, as the ICMP messages are confined to the Wi-Fi network, the DiffServ policies are

honored as the DSCP values do not get overwritten, provided that the Wi-Fi access point is

WMM enabled.

When the access point receives the two ICMP ping requests, it creates the corresponding

responses by carrying over the headers of the requests. The responses are then scheduled

on two different queues based on the DSCP values that are set on the IP headers. Hence,

the high priority ICMP response gets scheduled in the Video access category queue and the

default priority ICMP response in the Best Effort queue. Note that the traffic coming through
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the WAN interface to the access point, destined to the clients in the Wi-Fi network, also gets

queued in the Best Effort queue. Why is this? As we discussed in Section 5.2.1, DiffServ

policies are typically not honored in the Internet, which essentially is a cross-boundary

DiffServ domain. Therefore, all incoming packets to the access point get queued in the Best

Effort queue as the DSCP field would have been overwritten to the default value by some

hop on the WAN path irrespective of the DSCP value the sender set at transmission time2.

This means that the ICMP response for the high priority request gets served immediately

as the Video queue is almost always empty and it is given precedence by the scheduling

algorithm. The ICMP response for the default priority request gets served only after the

frames that were queued before it in the Best Effort queue are transmitted.

Let us assume that the Wi-Fi link is not congested. In this case, both Video and Best

Effort queues will be empty or contain a few frames. Therefore, the RTTs of the Ping-Pair

messages will be almost identical, and hence their difference will be low. Now let us assume

that the Wi-Fi link is congested, implying that the Best Effort queue contains a significant

number of frames that are waiting to be transmitted. In this case, the high priority ping

request will get its response promptly but the default priority request’s response will be

delayed by the time the access point requires to serve all the frames that were queued before

it. Therefore, this would cause the difference of the RTTs of the Ping-Pair messages to be

high.

Note that there are two major factors that make the Ping-Pair technique effective. First,

WMM is widely supported worldwide, as we discussed earlier in Section 5.2.2. Next, DiffServ

is rarely used by applications as they do not gain anything from doing so because DSCP

values get set to default when packets cross AS boundaries.

To validate the Ping-Pair technique, we varied the number of TCP flows in a Wi-Fi network

from 0 to 6 to create differing amounts of congestion in the network, and then monitored the

number of frames that were in the access point’s downlink Best Effort queue. Simultaneously,

we conducted the Ping-Pair test on a laptop connected to the same Wi-Fi access point.

2For the same reason, applications typically do not bother setting the DSCP field of outgoing packets as
DiffServ does not come into effect when the packets traverse WAN paths.
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Figure 5.2: RTT difference of Ping-Pair for varying number of frames queued in the
access point’s downlink Best Effort queue. The RTT difference is high when the queue
contains a high number of packets, and vice versa.

Figure 5.2 clearly shows that the RTT difference is high when the access point’s queue gets

backlogged. So by using a threshold on the RTT difference, we can detect the presence of

wireless congestion by using the Ping-Pair technique.

Detecting Other Pathological Conditions

The three other pathological conditions that Kwikr detects are: mobility, handoffs, and

weak links. The detection of these are straightforward and can be done by using passively

observable and easy-to-obtain measurements.

Mobility. Mobility can arise especially on hand-held Wi-Fi devices such as smartphones.

When clients are mobile, the wireless link characteristics change over time and this may cause

poor user experiences in applications. For example, in Chapter 6, we show that mobility can

cause the quality of Skype calls to become poor. Therefore, we incorporated a RSSI-based

mobility detection technique in Kwikr. The idea behind it is simple. As shown in Figure 5.3,

the RSSI profiles of stationary and mobile clients are quite different. Hence, we can detect

mobility by computing the variance of the RSSI values observed in a small time window and
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Figure 5.3: RSSI profiles for mobile and stationary clients. RSSI profiles are quite different
on mobile and stationary clients, implying that frequent fluctuations of RSSI can detect
mobility.

repeating this while sliding the window forward. This forms a reliable mobility detection

technique, albeit a slow one since we have to observe the RSSI fluctuations for a few seconds

to detect mobility with high accuracy.

We can of course use other sensors like Accelerometers available on smartphones to detect

mobility, as is done in [76]. However, we do not investigate this approach in this work for

two reasons: (i) continuous use of sensors reduces the energy efficiency of the detector and

Kwikr is meant to be run continuously while an application that uses it is in operation;

(ii) additional sensors might not be available on all types of devices (e.g., laptops), and

hence relying on them would violate our design requirements. Prior work has also looked at

detecting mobility using PHY layer information: Channel State Information (CSI) vector

and Time-of-Flight (ToF) [88]. However, in their approach, the access point determines the

mobility status and uses that to improve client roaming, rate control, frame aggregation,

and MIMO beam-forming. This is not applicable in our setting, because we require end-user

applications to detect the mobility status and as they operate in the application layer, they

do not have access to PHY layer information.

The advantage of using RSSI for mobility detection is that it is possible to obtain it on all
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devices and OSs via simple API calls. Moreover, as it is a passive measurement, it does not

cost anything extra to retrieve it as modern OSs monitor RSSI continuously.

Handoffs. A handoff in Wi-Fi occurs when a client disassociates with one access point

and associates with another. This is quite common in enterprise networks where one entity

has deployed and maintains multiple access points under the same SSID, e.g., in universities,

offices, airports, etc. Handoffs is a useful feature in Wi-Fi that allows clients to move freely

without having to worry about manually connecting to a new Wi-Fi access point every time

they lose connectivity.

Albeit useful, Handoffs cause a temporary outage in packet reception at the client because it

takes some time for a handoff to complete, i.e., to disassociate from the previously connected

access point and connect to a new one. This outage causes poor user experiences, especially

in real-time streaming applications, as we show in Chapter 6. Therefore, it is useful to know

when a handoff occurs because applications can use this information to change the way they

recover from the transient network outage caused by a handoff such that they improve user

experience.

In Kwikr, we use a simple technique to detect handoffs. Every Wi-Fi access point has a

globally unique MAC address called the BSSID. When a client connects to an access point,

the client stores the BSSID of the access point it is connected to in its connection properties.

It is possible to retrieve this parameter on most OSs with simple API calls (e.g., Windows,

Linux, Android and iOS). Hence, our handoff detection technique is to simply monitor

whether the connected BSSID value changes over time.

Weak Links. A client’s Wi-Fi connection becomes weak when the client is at the edge

of connectivity of the access point. Due to channel fading, if a client is at the edge of

connectivity, user applications will experience poor effects because the Wi-Fi link might lose

frames due to bit errors that occur in frames during transmission.

Detecting that a client’s Wi-Fi connection is weak can be done by monitoring the RSSI of the

Wi-Fi signal. In Kwikr, similar to our mobility detection technique, we monitor the average
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RSSI value of a time window. When the average RSSI observed in a certain window is less

than a threshold, Kwikr outputs that the link is weak. To perform continuous detection, we

repeat this approach by sliding the window forward.

The threshold we use is the RSSI value at which the TCP throughput of a TCP flow drops

by more than 75% relative to the throughput at a strong-link location. In most networks

and settings we conducted this trial at, we noticed that this value is -80 dBm, and hence use

that in our evaluations.

5.3.2 Wi-Fi Hints Generation Process

After the detector suite completes a run, Kwikr uses the detectors’ results and generates

useful information about the status of the Wi-Fi link that in turn is passed onto applications

that are interested in obtaining this information. We call such information as Wi-Fi hints.

Kwikr provides the below mentioned hints to applications.

• The onset and conclusion timestamps of congestion in the Wi-Fi link. This hint enables

applications to be aware about time frames during which the Wi-Fi link is congested.

• In a congested time period, the fraction of queuing delay at the Wi-Fi access point

that is self-inflicted by the flow. Using this hint, an application can determine its

data flow’s contribution to the total queuing delay it observes. For example, a low

contribution factor implies that the network is congested due to cross-traffic flows.

• Client mobility status—mobile or stationary. This hint allows applications to change

their behavior depending on whether the client is mobile or not.

• Wi-Fi link strength—strong or weak. Applications can dynamically adapt their behavior

depending on the signal strength of the Wi-Fi connection.

• Timestamp at which the last handoff occurred. This hint enables applications to

disregard any transient connectivity drops they observe that coincide with handoff

events.

We discuss how each of the aforementioned Wi-Fi hints are generated and passed onto
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applications in this section. We defer the discussion of a concrete application of Wi-Fi hints,

which shows how Wi-Fi hints can be used to improve the quality of real-time streams, to

Chapter 6.

Onset and Conclusion of Wi-Fi Congestion

As explained earlier, Kwikr uses the Ping-Pair technique to infer the presence of congestion

(Section 5.3.1). At the first time instant it detects that the Wi-Fi link is congested, it

generates a binary hint that carries the congestion flag set to true and the timestamp at

which congestion was first detected. When the Ping-Pair technique observes that the Wi-Fi

link’s congestion has concluded, a new hint is generated with the binary congested flag set

to false and the timestamp at which it was detected. These two hints allow applications to

be aware of congestion episodes in the Wi-Fi link and adapt to such conditions accordingly.

Self-Inflicted Queuing Delay Fraction

When a Wi-Fi link is congested, it manifests in the form of increased delays and packet

losses at the clients. The Ping-Pair technique helps us find the total queuing delay at the

Wi-Fi access point when a Wi-Fi link is congested. This hint lets an application know how

much of its traffic contributed to the queuing delay. Such information is of great importance

in real-time streaming applications, where bandwidth adaptation strategies can be tweaked

to use more or less bandwidth depending on the real-time stream’s contribution to the total

queuing delay. We use the Queue Occupancy Metric (QOM) to reason about an application’s

contribution to the queuing delay and it is calculated based on the Ping-Pair technique’s

output. The QOM value is sent to the application as a hint during congested time periods

so that it can change its behavior accordingly.

Let’s discuss an example to see how the QOM metric is calculated. Assume that Skype

is using Kwikr and detects that there is congestion, and it wants to know how much it is

contributing to the congestion. Consider the access point queue depicted in Figure 5.4. It

contains two types of packets: blue-colored Skype packets destined to the client running a

Skype flow, and red-colored packets, labeled A-E, destined to other clients in the network.
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Figure 5.4: An example of a queue at a Wi-Fi access point. The blue packets are destined
to a client running a Skype flow and the red packets (labeled A to E) belong to flows
generated by other clients of the network.

In this case, our goal is to allow Skype to infer that it is responsible for a smaller fraction of

the overall queuing delay because the majority of the packets in the queue are cross-traffic.

We do this as follows.

Recall that the Ping-Pair technique returns the total time (say T ) that was required by

the access point to serve all the packets that were sandwiched between the ping responses in

the queue.

T = time to serve Skype packets (say TS) + time to serve other packets (say TO) (5.1)

TS can be estimated by taking the summation of the transmission time required for the

Skype packets in the queue and their channel access delays. For simplicity, we assume that

the per-packet channel access delay (α) is the same for each packet.

Let si be the size of the ith Skype packet. To calculate TS , Skype needs to keep track of the

packets it receives during the time period in which a Ping-Pair sample is collected. This
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can be easily achieved via timestamps. Assume that the first and the last packet that Skype

receives during the Ping-Pair period are j and k, respectively. Say the MAC-layer data

rate of the Wi-Fi link is D. Then,

TS =
∑k

i=j si

D
+ (k − j + 1)× α (5.2)

Next, we compute QOM as follows.

QOM = TS

T
(5.3)

To estimate α, we conducted experiments in which we varied the load on a Wi-Fi link and

computed the channel access delay using a Wi-Fi channel sniffer. In our evaluations, we use

a fixed value of 0.125 ms for α as a heuristic. D can be obtained on most operating systems

via a simple system call.

As it is practically challenging to estimate α on the fly, our simple strategy of using a

fixed value we obtained experimentally is good enough for several reasons: (i) usually α

is non-negligible when compared to the transmission delay of packets; (ii) in the case that

α is comparable to the transmission delay because D is large, then we do not expect the

Wi-Fi link to be bottlenecked in the first place. Therefore, our heuristic would suffice in

most settings.

Putting everything together, Kwikr, after obtaining a Ping-Pair sample, gathers the other

parameters required in Equation 5.2. Next, it computes QOM using Equation 5.3 and returns

it as a hint that can be used by applications, for example to do Wi-Fi-aware bandwidth

adaptation as we will discuss in detail in Chapter 6.

To validate the QOM metric, we congested a Wi-Fi network by using competing TCP

cross-traffic flows, and made a laptop receive CBR flows of varying data rates (200 kbps

to 1200 kbps, in increments of 200 kbps), one after the other. The laptop collected 25

Ping-Pair samples while each flow was being received and the QOM metric for each sample

was computed as discussed above. Figure 5.5 depicts the average QOM percentage for each
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Figure 5.5: QOM for CBR flows of varying data rates in a congested Wi-Fi network. At
higher data rates, the observed QOM percentages are higher because high data rate flows
send more packets that would increase the number of packets in the access point’s queue.

of the data rates we used. As expected, the QOM percentage increases with the data rate.

Note that QOM does not double when we double the data rate, because doubling the data

rate affects both TS and T in Equation 5.3.

Mobility, Link Strength, and Handoffs

To generate these hints, we use the outputs of the Kwikr detectors directly. As discussed

earlier, Kwikr uses its RSSI and BSSID based mobility, weak links, and handoffs detectors,

and the output of these detectors are passed as hints to the interested applications. In the

case of mobility and link strength, the hints are sent in a binary form—mobile/stationary for

mobility and strong/weak for link strength. In the case of a handoff, it sends the timestamp

at which the handoff occurred.

5.4 Implementation

We implemented the Kwikr module using C#.Net and tested it on Windows 10 and Windows

8.1 operating systems. Additionally, we implemented it in C and tested it on Ubuntu 12.04,
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and Android 4.4 and higher. In all these OSs, our implementation was done as a user-

level library that any application can use to get information about whether the Wi-Fi link

experiences any pathological conditions (such as congestion, mobility, handoffs, and weak

links) that would make the Wi-Fi link a bottleneck.

Kwikr’s congestion detection technique, Ping-Pair, operates by sending a pair of ICMP ping

packets with different DSCP values. In all the operating systems we considered, a user-level

application that needs to send ICMP messages has to do so by using raw sockets and creating

the complete packet, with the headers (ICMP and IP) and payload, manually. However, this

requires elevated security privileges because opening of raw sockets is a privileged operation.

This inhibits deployability of Kwikr because it is designed to run in user-space even on

platforms on which elevated privileges cannot be obtained, like Android and iOS.

To overcome this issue, we implemented the Ping-Pair technique using the inbuilt com-

mandline ping tool that comes pre-installed on all OSs as an OS utility. The Ping tool

executes with elevated privileges and can be invoked by applications that run in user-space.

On all OSs, several commandline arguments can be passed in to the utility, and one of them

is the DSCP value. For example, on Android and Linux, running ‘ping <IP address> -Q

184’, pings the specified IP address with the DSCP field set to Expedited Forwarding (high

priority). On Windows, the equivalent command is ‘ping <IP address> -v 184’. We defer

a comparison of the congestion detection accuracy of raw sockets and the ping tool to the

next section.

To detect mobility, handoffs, and weak links, the passive measurements we require are RSSI

and the BSSID the client is connected to. On Windows, we obtain these parameters via

the Native Wi-Fi API [70]. On Linux, these parameters are exposed through commandline

utilities such as iwlist and iwconfig. The WifiInfo API [22] provides the RSSI and the

BSSID of the connected Wi-Fi connection on Android.

In all our implementations, we provide APIs for applications to subscribe to Wi-Fi hints

they are interested in receiving. We also provided an API through which the applications

can pass in the payload size of each packet it receives. This data is required for the QOM

metric calculation, as outlined in Section 5.3.2.
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5.5 Evaluation

We evaluate the accuracy of the detector suite of Kwikr in this section. We do not evaluate

the Wi-Fi hints generation process because it is merely a way of packaging the detector

suite’s results in a way that applications can make the best use of the information. The

evaluations were carried out in different Wi-Fi environments in India and Singapore.

5.5.1 Wi-Fi Congestion Detection Accuracy

We start by studying the accuracy of the Ping-Pair technique in detecting congestion in

the Wi-Fi network.

To obtain the groundtruth as to whether the Wi-Fi link is congested, i.e., if there is a queue

build-up at the access point, we instrumented OpenWRT (Chaos Calmer 15.05) to log the

number of frames in the downlink queue at every time instant and installed it on a Netgear

WNDR3800 Wi-Fi access point. This model supports WMM and it is switched on by default

by OpenWRT. We deployed our C implementation of the Ping-Pair technique on a laptop

running Ubuntu 12.04 and collected 30 Ping-Pair measurements. We repeated this process

while increasing the number of TCP flows generated by other clients in the Wi-Fi network

from 0 to 7 to create varying amounts of congestion. We conducted these experiments on

both 2.4 GHz and 5 GHz bands as the Netgear WNDR3800 access point supported dual-band

operation.

Note that during the time period a Ping-Pair sample is taken, the number of frames in the

queue might change. Therefore, we look at all the OpenWRT log statements in this time

period and classify that there is persistent queueing if more than 90% of the log statements

show a non-empty queue. Otherwise, we classify the queue as an empty or a lightly-loaded

queue. This serves as the groundtruth for our detector.

We discarded Ping-Pair samples in which any of the two pings had timed out. In the

remaining samples, we calculated the RTT difference as discussed in Section 5.3.1. Next, we

trained a 10-fold cross-validation decision tree classifier on this data and the groundtruth.

The thresholds the classifier used are 3.4 ms for the 2.4 GHz band and 2.6 ms for the 5 GHz
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Table 5.2: Confusion matrix for congestion detection via the Ping-Pair technique on the
2.4 GHz band. The overall congestion detection accuracy is above 90%.

Kwikr Classification

Ground Truth Empty Queue Persistent Queue

Empty Queue 116 106 (91.4%) 10 (8.6%)

Persistent Queue 117 11 (9.4%) 106 (90.6%)

Table 5.3: Confusion matrix for congestion detection via the Ping-Pair technique on the
5 GHz band. The overall congestion detection accuracy is above 95%.

Kwikr Classification

Ground Truth Empty Queue Persistent Queue

Empty Queue 104 98 (94.2%) 6 (5.8%)

Persistent Queue 135 5 (3.7%) 130 (96.3%)

band. We believe that this difference in thresholds is due the 5 GHz band being typically

less “noisier” than the 2.4 GHz band.

Tables 5.2 and 5.3 show the confusion matrices of the Ping-Pair detector for the 2.4 GHz

and 5 GHz bands, respectively. In both bands, Kwikr’s congestion detection accuracy is

over 90%. The detector does make mistakes in scenarios where the transmission of ping

requests or responses fail and are retransmitted by either the access point or by the client.

In such cases, the Ping-Pair technique will output a high RTT difference while the access

point queue might be empty. Also, the Ping-Pair messages will have a low RTT difference

if the queue is lightly loaded i.e., containing a very few number of frames. However, as

we looked at whether the queue is empty or not as our groundtruth, such cases would be

classified as persistent queuing cases, and that causes mistakes in the classifier. As shown in

the confusion matrices, the occurrence of such mistakes is small. This shows that Kwikr’s

Ping-Pair technique is a reliable detector of Wi-Fi congestion, albeit the simplicity and

lightweight properties it entails.
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To increase accuracy of the detector, multiple Ping-Pair samples can be taken at a given

time instant. For example, in Chapter 6, when Ping-Pair is utilized, we take three samples

and take the majority decision as the final detection result. This simple technique helps the

detector be more robust and accurate.

5.5.2 Raw Sockets vs Ping Utility

We discussed in Section 5.4 that raw sockets cannot be used by Kwikr to send ICMP ping

messages on platforms like Android that do not allow user-level applications and libraries

to execute with elevated privileges. So in such platforms, we use the operating system’s

inbuilt commandline ping utility to implement the Ping-Pair technique. In this section, we

compare these two approaches of implementing Ping-Pair, i.e., raw sockets and ping utility.

To get raw sockets to function on Android, we flashed CyanogenMod, a customizable,

open-source Android ROM, on a Samsung Galaxy S3 smartphone. On CyanogenMod, user

applications can execute with elevated privileges because the installation of it ‘roots’ the

phone. On the same phone, we modified our C implementation of Ping-Pair to conduct

the Ping-Pair experiment using raw sockets and then by calling the inbuilt OS ping utility.

Next, it recorded the RTT difference that each method calculated. We collected 200 such

samples on Android both when the Wi-Fi link was not congested and congested by introducing

TCP flows to the network.

Figure 5.6 represents the average of the 200 samples collected by the two approaches of

implementing the Ping-Pair technique. As it clearly shows, both when the Wi-Fi network

is not congested and is congested, the RTT difference they calculate and their variances are

very similar. Therefore, we conclude that on platforms on which raw sockets cannot be used,

we can make use of the OS-inbuilt ping utility to implement our Ping-Pair technique, thus

making the detector widely deployable.
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Figure 5.6: RTT difference of the Ping-Pair messages when using raw sockets and the
OS-inbuilt ping utility for the implementation. The observed RTT differences are quite
similar in both approaches.

5.5.3 Mobility Detection Accuracy

To evaluate Kwikr’s simple RSSI-based mobility detector’s accuracy, we used our C#.Net

implementation of Kwikr on a Windows Surface Pro 2. We gathered 20 RSSI traces, each

1 minute long, containing samples taken every 100 ms while being mobile. The mobility

profiles were random and included ones in which we walked from a location where the signal

was strong to one where it was weak and vice versa; we paced around the access point

without going too far away, etc. We also gathered traces while keeping the client stationary

at different locations and signal strength levels.

For each trace, we used a sliding window approach to calculate the RSSI variance. We used

window sizes ranging from 1 s to 10 s in increments of 1 s and for each window size, the

window was slid forward by 100 ms. Using this approach, we obtained the RSSI variance for

all the windows in our traces and each window was labeled either stationary or mobile based

on the experiment setting. Then, we built a 10-fold cross-validation decision tree model on

this data to build a mobility classifier.

Table 5.4 shows the confusion matrix of the detector for a window size of 10 s. It shows
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Table 5.4: Confusion matrix for mobility detection. The overall detection accuracy is above
90%.

Kwikr Classification

Ground Truth Stationary Mobile

Stationary 15262 13939 (91.3%) 1323 (8.7%)

Mobile 19646 1978 (10.1%) 17668 (89.9%)
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Figure 5.7: Mobility/Stationary detection accuracy for varying time window sizes. The
detection accuracy increases with the size of the time window.

that Kwikr has an overall mobility detection accuracy of around 90%. The detector makes

mistakes when the RSSI variance is high in stationary settings and vice versa. When the

client is stationary, there can be transient RSSI fluctuations that are caused by external

causes, e.g., a person walking between the access point and the client. RSSI variance can be

low in settings when the client’s mobility profile is not that significant, e.g., walking a few

steps back and forth.

Figure 5.7 plots the overall accuracy of Kwikr’s mobility detector for time window sizes

ranging from 1 s to 10 s. This shows that to be at least 90% of the time correct in predicting

mobility, a client has to observe RSSI variance for at least 8 s. The accuracy increases with
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the time window size, meaning that the longer the client observes RSSI variances for, the

higher the accuracy. In fact, for a time window size of 20 s, the accuracy is over 96%.

This raises the question of whether a detector that has to wait for 8 s to give an answer is

good enough. The answer depends on the application in which Kwikr is meant to be used.

For example, a VoIP application that wants to be mobility-aware to do smart bandwidth

adaptation can cope with such a delay, as we will discuss in the next chapter (Chapter 6).

5.5.4 Detection of Other Pathologies

Handoffs. Whenever a client goes through a handoff scenario, the BSSID the client is

connected to changes as soon as the handoff is completed. This is because every Wi-Fi access

point has a unique physical address, which serves as its BSSID. Across all the locations in

which we conducted our experiments (NUS campus, Microsoft Research India office, and an

apartment complex), we monitored the BSSID during 50 handoff events and as expected, we

noted that the BSSID changed every single time a handoff event occurred.

Weak Links. We conducted 50 TCP throughput measurements, wherein we monitored

the TCP throughput at a client while moving away from the Wi-Fi access point and logged

the RSSI of the signal and the TCP throughput continuously. The average RSSI value at

which the TCP throughput dropped below 75% with respect to the throughput observed

when the client was in close proximity to the access point was ∼ 80 dBm.

5.6 Chapter Summary

Wi-Fi-connected clients experience poor performance in applications due to many pathological

conditions that can arise in Wi-Fi networks. In this section, we presented Kwikr, a user-level

module that comprises a suite of techniques that can detect wireless network congestion,

mobility, handoffs and weak links. It then generates useful Wi-Fi hints about the status of

the Wi-Fi link that are then passed onto applications that are interested in knowing the

condition of the Wi-Fi link. Kwikr’s detector suite is lightweight and can be deployed on any
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platform, even on those that are more restrictive like Android. Through our experimental

studies, we showed that Kwikr can detect the presence of these pathologies with more

than 90% accuracy. In the next chapter, we discuss an application of Kwikr where we use

the Wi-Fi hints that Kwikr produces to improve bandwidth adaptation strategies used by

real-time streaming applications.
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Bottleneck Alleviation
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Part Overview

Real-time streaming applications exhibit poor performance on Wi-Fi networks when compared

to wired networks, as we showed in our measurement studies in Chapter 3. This is because

these applications have stringent demands, e.g., low packet loss and delay requirements, that

are sometimes not met by Wi-Fi networks.

In this part of the dissertation, we present two complimentary and orthogonal solutions

to improve the reliability of real-time streams in Wi-Fi networks. First, in Chapter 6, we

present a user-level module, named KwikrAdapt, that enables real-time streaming applications

perform improved bandwidth adaptation by being aware about the condition of the Wi-Fi

link. Our module is capable of helping real-time streaming applications detect the root cause

of quality degradations in the streams, and then adapt accordingly to improve the quality of

the streams.

Next, in Chapter 7, we introduce a system that improves the reliability and robustness of

real-time streams by replicating packets across multiple Wi-Fi links. Our system, named

DiversiFi, allows clients maintain two parallel Wi-Fi connections and then replicate packets

of the stream across these connections in an on-demand fashion. We show that this strategy

significantly improves the quality of real-time streams.



Chapter 6
Bottleneck Alleviation via Bandwidth Adaptation

6.1 Introduction

Real-time interactive streaming has been growing in importance, spanning both traditional

applications such as audio-video (AV) conferencing (e.g., Microsoft Skype, Google Hangouts)

and newer ones such as cloud-based app streaming (e.g., Amazon AppStream) and gaming

(e.g., Sony PlayStation Now). The performance of such real-time streaming applications is

highly sensitive to network performance, being a function of not just the data rate supported

but also the delay, delay jitter, and packet loss rate.

Fluctuation in the available network bandwidth presents a particular challenge. Unlike

on-demand streaming, where a multi-second playout buffer can be employed to absorb and

smooth out much of this variation, the tight deadline for real-time interactive streaming

(e.g., an RTT of no more than 300 ms for VoIP and 60-100 ms for gaming) rules out a large

playout buffer. Therefore, it becomes critical to estimate network bandwidth and track its

variation effectively.

Typically, interactive streaming applications use UDP, instead of TCP, due to the real-time

constraints they entail, and they do congestion control in the application layer. While TCP

friendliness [92] helps real-time streaming ensure fair sharing of bandwidth with legacy

applications based on TCP, it does not guard against queue build-up and the consequent

spike in delay and latency, which could hurt real-time streaming. To address this problem,

there has also been work on conservative approaches that back off at the first sign of incipient

queuing [78], and ramp up slowly. However, in a situation where the congestion is due to

80
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other traffic, not self-congestion, such a conservative strategy would likely hurt the real-time

flow without any benefit in terms of reduced latency.

The crux of the problem is that real-time streaming applications’ bandwidth estimation,

like TCP’s congestion control, operates end-to-end, without direct knowledge of the internal

state of the network. Increasingly, however, the clients engaged in real-time communication

tend to be connected over a Wi-Fi network. Furthermore, the Wi-Fi link is often, though

not always, the bottleneck link that determines the fate of the end-to-end real-time flow.

The combination of these two factors means that the client is often in a position to directly

observe the state of the bottleneck link. By leveraging the Wi-Fi hints obtained, as discussed

earlier (Chapter 5), bandwidth estimation and adaptation can be made faster and more

effective.

To this end, we present KwikrAdapt, which leverages Wi-Fi hints produced by Kwikr

(see Chapter 5) for improved bandwidth estimation of real-time streams. The high-level

goal of KwikrAdapt is to complement currently used end-to-end bandwidth adaptation

strategies in real-time streaming applications and improve upon them using last-mile Wi-Fi

link information when and where it makes sense. Using Kwikr hints, KwikrAdapt first

determines whether an end-to-end flow is experiencing performance issues due to pathological

conditions in the Wi-Fi link, such as congestion, mobility, weak-links, and handoffs. If so,

KwikrAdapt proceeds to tweak the bandwidth adaptation technique of the flow using Kwikr

hints. If not, implying that the bottleneck is elsewhere on the end-to-end path, it falls back

on the default behavior for the bandwidth adapter.

KwikrAdapt improves bandwidth adaptation based on (a) local congestion on the Wi-Fi

link, which indicates the onset and conclusion of congestion or interference due to other

sources (as distinct from self-congestion), (b) contribution factor, which represents the flow’s

contribution in making the Wi-Fi link a bottleneck, (c) mobility and weak links, which can

indicate the likelihood of a drop in link performance, and (d) handoffs, which often cause

localized disruption in the form of packet loss.

We have evaluated KwikrAdapt in a range of Wi-Fi settings, including offices, coffee shops,

airports, conference venues, etc. We also conducted controlled experiments in a lab setting.
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Based on these experiments, we have found that KwikrAdapt helps improve streaming

performance safely, i.e., without causing negative side-effects, either to the flow itself or to

other traffic. Our results show that Wi-Fi-aware bandwidth adaptation of real-time streams

provide far higher quality than the conventional end-to-end based adaptation strategies. For

instance, KwikrAdapt allows real-time streams to operate at relatively higher data rates

while incurring similar delays as low data rate flows in congested Wi-Fi networks; reduces

the worst loss percentage by about ∼ 70% in mobile settings; and reduces the time required

to ramp-up to the original data rate of a flow by 3.1× when a handoff occurs.

In summary, our contributions in this work include:

• A system, named KwikrAdapt, and its implementation that improves the quality of real-

time streams by using Wi-Fi hints provided by Kwikr to make bandwidth adaptation

“Wi-Fi-aware”.

• An empirical analysis to show the significant benefits of KwikrAdapt.

• The implementation of KwikrAdapt in the popular Skype application.

6.2 Motivation

To illustrate the issues with bandwidth estimation for real-time streaming, we focus on three

examples of popular AV conferencing applications: Skype, FaceTime, and Hangouts. For

Skype, we have access to an instrumented version that provides a log containing detailed

metrics pertaining to a call at the end of each call. The metrics we extracted from these log

files are the call throughput and the per-packet round trip times. We obtain the throughputs

of FaceTime and Hangouts calls via packet captures on Wireshark [100].

6.2.1 Congestion

Consider Figure 6.1(a), which shows the data rate of both a Skype AV stream and of a

foreground TCP flow. Congestion, in the form of cross-traffic (generated by 6 devices, each

performing a TCP bulk transfer), is introduced and withdrawn on the Wi-Fi bottleneck link



Chapter 6. Bottleneck Alleviation via Bandwidth Adaptation 83

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100  120  140  160

Time (s)

 10000

 15000

 20000

 25000

D
at

a 
R
at

e 
(k

bp
s)

TCP
Skype

(a) Skype

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100  120  140  160

Time (s)

 10000

 15000

 20000

 25000

D
at

a 
R
at

e 
(k

bp
s)

TCP
Facetime

(b) FaceTime

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100  120  140  160  180

Time (s)

 10000

 15000

 20000

 25000

D
at

a 
R
at

e 
(k

bp
s)

TCP
Hangouts

(c) Hangouts

Figure 6.1: Congestion response of (a) Skype, (b) FaceTime, and (c) Hangouts vis-a-vis
that of TCP. The shaded region in each plot depicts the period in which congestion was
present in the Wi-Fi link in the form of cross-traffic TCP bulk transfers. In all cases, TCP
flows achieve a much higher data rate in the presence of congestion when compared to the
VoIP flows.

at the points in time marked by the shaded area. At the onset of congestion, the data rate

of both Skype and TCP plummets, but TCP soon recovers to a level of almost 1.5 Mbps

while Skype remains stuck at the much lower level of about 200 Kbps.

Skype adopts a conservative approach, apparently with a view to limiting queuing delay and

avoiding packet loss. However, in this instance, such a conservative approach does not really

help with the RTT for the Skype flow remaining high throughout the congestion episode

(Figure 6.2) despite the sharp cutback in Skype’s data rate, dropping from about 2.8 Mbps

soon after the onset of congestion to about 200 Kbps beyond t=30 s. The reason is that

the congestion is due to other traffic, not self-congestion due to the Skype flow itself. Thus,

Skype is being needlessly conservative, without deriving any benefit.
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Figure 6.2: The RTT of the Skype packets. The shaded region depicts the period in which
the Wi-Fi network was congested. Being conservative and operating at a much lower data
rate does not help Skype to bring its RTTs down.

Similarly, even when the congestion episode has concluded, Skype is slow to recover, as

shown in Figure 6.1(a), because it is unaware that there has been a step change in the

congestion state of the bottleneck link.

The other two real-time streaming applications—FaceTime and Hangouts—also show similar

conservative behavior, as depicted in Figures 6.1(b) and 6.1(c). Of these three VoIP

applications, FaceTime seems to employ a more aggressive approach in bandwidth adaptation

because it recovers faster than Skype or Hangouts at the conclusion of the congestion episode.

But even that takes about 25 s to ramp up to the data rate that was present before the

onset of congestion.

Since we do not have access to detailed metrics for these applications, we are not in a position

to plot other network metrics like RTT.

6.2.2 Mobility

Figure 6.3 depicts how VoIP streams react to mobility in Skype, FaceTime, and Hangouts.

The shaded area shows the period during which the client moved away from the Wi-Fi access
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Figure 6.3: Mobility response (a) Skype, (b) FaceTime, and (c) Hangouts. The shaded
region in each plot depicts the period in which the client was mobile. All VoIP applications
suffer performance issues when the client is mobile.

point and came back to the original position.

As clearly shown in Figure 6.3, all flows vary their rates quite significantly when the client is

mobile. These frequent fluctuations happen because the bandwidth adaptation techniques

used by these applications are not aware that the underlying channel conditions are changing

due to mobility. Hence, the decisions that they take are suboptimal and ultimately result in

poor user experience.

Another thing to note is that after the mobility period is over, all flows take a significantly

long period of time to ramp up to their original rates. This is akin to the behavior we

observed in Section 6.2.1.
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Figure 6.4: Handoffs response of (a) Skype, (b) FaceTime, and (c) Hangouts. The vertical
dashed line shows the point in time when the handoff occurred. Although Skype recovers
promptly from a handoff, the other VoIP applications take a longer time to recover.

6.2.3 Handoffs

Figure 6.4 shows how Skype, FaceTime, and Hangouts cope with handoffs. Skype’s bandwidth

adaptation technique does take into handoffs into account because it instantly resumes

transmitting at the original rate when the handoff completes. FaceTime is slower than Skype

in recovering from a handoff as it stops transmitting video and sends audio for a few seconds

when the connection drops, and then ramps up aggressively while enabling video. Hangouts,

on the other hand, is very slow in increasing the data rate after a handoff completes.



Chapter 6. Bottleneck Alleviation via Bandwidth Adaptation 87

6.2.4 Discussion

The above experiments highlight an important problem in the state-of-the-art bandwidth

adaptation techniques used by real-time streaming applications like Skype, FaceTime and

Hangouts. These techniques operate end-to-end, and hence are oblivious to various link

impairments that commonly occur in the last-mile Wi-Fi link.

In the case of congestion, applications see that the RTT of their packets are increasing and

decide to be conservative thinking that the problem is self-inflicted, which does not result in

improved performance. If they know that the increased RTTs are caused by congestion in

the network, they could adapt differently and also ramp up faster to the original data rate

at the end of the congestion period.

Client mobility imparts quality degradations in Wi-Fi networks because mobility causes

channel conditions to change over time. This causes inaccuracies in current bandwidth

adaptation strategies because they are oblivious to such changes due to their end-to-end mode

of operation. If applications are aware that the client is mobile, they can be more conservative,

specially when the signal strength of the Wi-Fi link becomes weaker. Moreover, when mobility

ceases and channel conditions improve, applications can increase their throughputs to deliver

better call quality experiences to users.

In the case of handoffs, applications lose packets during the period in which a handoff is in

progress. However, such losses are transient and more often than not, a handoff improves

channel quality. As current bandwidth estimation techniques operate using an end-to-end

approach, they cannot differentiate these losses from losses that occur due to a multitude of

reasons in the network. Hence, they unnecessarily drop their rate and ramp up slowly to the

original rate, with the exception of Skype. If they are aware of handoffs, they could avoid

the slow ramp-up phase to improve call quality.

These observations show that if bandwidth adaptation techniques can be made “Wi-Fi-

aware”, they can take better-informed decisions to improve user experience. The goal of

KwikrAdapt is to do this by utilizing Wi-Fi hints that can make applications, such as Skype,

FaceTime, and Hangouts, aware about the underlying status of the Wi-Fi connection. We
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discuss the design and implementation of KwikrAdapt in the following sections.

6.3 Design

The goal of KwikrAdapt is to help real-time streaming applications improve upon their

current bandwidth adaption techniques by taking into account the condition of the Wi-Fi

link. Specifically, it helps real-time streaming applications to use their existing algorithms

for bandwidth adaptation when the Wi-Fi link is not bottlenecked in any manner, and tweak

their behavior if the Wi-Fi link is causing performance issues. The actions that KwikrAdapt

take in tweaking the adaptation scheme can be both proactive and reactive. For example, if

the client becomes mobile or is using a weak Wi-Fi connection, KwikrAdapt takes proactive

measures to alleviate probable packet losses and delays that the client might experience. If

the client is not mobile and is not using a weak Wi-Fi connection but still is experiencing

packet losses and increased delays, KwikrAdapt first determines whether the Wi-Fi link is

introducing these issues. If so, it determines whether the issues are self-inflicted or caused

by cross-traffic in the Wi-Fi network, and then helps the bandwidth adaptation technique

tweak its behavior such that it can deal with the Wi-Fi issues as best as it can. Such actions

are reactive measures.

KwikrAdapt takes the above mentioned actions based on the Wi-Fi hints it receives from

Kwikr. Recall that Kwikr provides information about the status of the Wi-Fi connection

via hints (Chapter 5). KwikrAdapt periodically receives hints (e.g., every 500 ms in our

experiments) and depending on those, it decides whether the bandwidth adaptation algorithm

needs any tweaking via either reactive or proactive measures as we discussed above.

6.3.1 Problem Attribution

As discussed earlier, in the context of real-time streaming, our goal in KwikrAdapt is to

complement existing end-to-end bandwidth adaptation schemes used by real-time streaming

applications by allowing them to leverage Wi-Fi hints when it is relevant, and use their

default behavior otherwise. In other words, a bandwidth adaptation scheme should use its
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Figure 6.5: Skype RTT during a call. The first segment of increased RTTs are caused
by Wi-Fi congestion and the second is caused by inducing latencies into the Internet path.
Using Wi-Fi hints, KwikrAdapt can determine that the Wi-Fi link is the cause of only the
first segment of poor performance.

default behavior when the Wi-Fi link is not the bottleneck source, and use our Wi-Fi hints

to tweak the adaptation when it is. This is quite important in the case where KwikrAdapt

needs to take reactive measures in tweaking the adaptation technique. Therefore, we first

need to determine whether a performance issue in a real-time stream is caused by the Wi-Fi

link. To do this, KwikrAdapt correlates the congestion-related Wi-Fi hints of Kwikr with

network metrics of the call (e.g., RTT, packet losses) in real-time. If the correlation is high,

then KwikrAdapt determines that the Wi-Fi link is indeed the bottleneck link and instructs

the bandwidth adaptation technique to use the hints to adapt accordingly. Otherwise, the

adaptation technique falls back to the default behavior.

Consider Figure 6.5 for example. It shows the RTT values of a Skype call and the congestion-

related Wi-Fi hints that Kwikr produced in parallel with the call every 500 ms. The first

segment of elevated RTTs (32 s to 92 s) was caused by congestion in the Wi-Fi network by

adding competing cross-traffic flows. The second segment (152 s to 212 s) was caused by

inducing delays, using the Microsoft Network Emulator tool, into the outgoing link of the
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Skype client at the other end of the call. As can be seen clearly in the figure, the Wi-Fi

hints correctly show that the first performance issue is caused by the Wi-Fi link and the

second is not. Therefore, based on this information, the behavior of the real-time stream’s

adaptation technique can be changed accordingly—it can be tweaked to use the hints, as

explained above, during the first period of network issues and use the default behavior in

the second period.

6.3.2 Being Less or More Conservative in Choosing a Data Rate

If the Wi-Fi link is congested, and the real-time stream’s contribution to congestion is low,

we claimed in Section 6.2.1 that being conservative and dropping the transmission rate of

the flow does not help to reduce packet delays and losses. To study this, we made a client

receive Constant Bit Rate (CBR) flows at varying data rates (200 kbps to 1000 kbps in

increments of 200 kbps) while keeping the Wi-Fi network congested by introducing 6 TCP

flows to the network. Figure 6.6(a) depicts the One-Way Delay (OWD) jitter profiles of the

flows. It shows that though the 800 and 1000 kbps flows experience high delays, the other

flows experience quite similar delays. This validates our claim. In the presence of network

congestion, a flow should reduce its rate as operating at high data rates would incur high

delays. However, instead of being quite conservative, as is the case in the state-of-the-art

techniques employed by current VoIP applications, a flow could very well operate at a less-

conservative data rate while incurring similar delays as a low data rate flow. For example,

Figure 6.6(a) shows that the jitter profiles of the 200 kbps and 600 kbps flows are quite

similar. Essentially, a flow gains better stream quality by operating at a less-conservative

data rate while paying the same price (in delays) as a more conservative flow.

Our claim is further validated by Figure 6.6(b) that shows the average worst loss percentage

the flows experienced. We calculate the worst loss percentage by dividing each of our traces

into 5 s windows and taking the highest packet loss observed in them1. This plot clearly

shows that once again the worst loss percentages are low and quite similar in the 200 to 800

1There is evidence that worst degradation in a (short) call is a significant determinant of the overall
user-perceived call quality [98].
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Figure 6.6: (a) OWD jitter profiles, and (b) Worst loss percentages of CBR flows operating
at varying data rates in a congested Wi-Fi network. 200 kbps to 600 kbps flows observe
similar OWD jitter profiles and losses. This implies that a flow gains better stream quality
by operating at a less-conservative data rate (600 kbps) while paying the same price (in
delays and losses) as a more conservative flow (200 kbps).

kbps flows but is high in the 1000 kbps flows.

Therefore, in a congested setting, KwikrAdapt utilizes the QOM hint of Kwikr to determine

the contribution of a real-time flow to the observed congestion. If QOM is high i.e., congestion

is self-inflicted, then the bandwidth adaptation technique should drop the transmission more

conservatively as the flow is responsible for the observed delays. However, if QOM is

low i.e., delays are not self-inflicted and caused by other flows in the network, then the

real-time flow needs to reduce the data rate less conservatively, as being conservative does
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not help improve performance. Hence, KwikrAdapt helps a real-time flow adapt dynamically

by first being aware of Wi-Fi congestion and then being aware of whether the observed

delays and losses are self-inflicted or not.

6.4 TFRC Implementation

We implemented KwikrAdapt on Windows using C#.Net as a Wi-Fi hints subscriber to

our Windows-based Kwikr implementation. It subscribed to all the hints that are provided

by Kwikr and requested that hints be delivered every 500 ms in our implementation. We

should note that Kwikr hints can be generated at any interval but the overhead in doing

so should be taken into account by the application. For example, if the interval is set to

500 ms, the detectors would be invoked twice every second. This means that the Ping-Pair

technique would run twice a second, and hence the client receives 4 ICMP ping messages in

a second. If the real-time flow operates at 64 kbps (a typical voice-only call), the overhead

in running the detectors is 8%, as the flow receives 50 packets in a second (assuming the

standard 160 byte payload size). However, if the flow operates at about 1 Mbps (a video

and voice call), the overhead incurred by KwikrAdapt is much less.

As we do not have access to the code bases of popular VoIP applications like Skype,

FaceTime, Hangouts, etc., we could not modify their bandwidth adaptation techniques to use

KwikrAdapt and study the gains of doing so. Therefore, we use TCP Friendly Rate Control

protocol (TFRC) [92] for this purpose. TFRC is a well-understood bandwidth adaptation

mechanism for unicast flows. As in state-of-the-art bandwidth adaptation mechanisms, the

receiver monitors network parameters like the RTT, and packet loss of the incoming flow,

and then feeds them back to the sender by sending period reports via a control channel. The

sender then adapts the sending rate based on these reports. We implemented a real-time

streaming application that sends data at a given data rate using the TFRC protocol. Our

implementation was done on Windows using C#.Net following the TFRC specification

documented in RFC 5348 [92].

The TFRC protocol does not react to increasing packet delays if no packets are lost. Therefore,
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we modified the protocol followed by the receiver such that it considers any packet that has

a One-Way Delay (OWD) of more than 150 ms lost. This is justified by the fact that the

maximum tolerable OWD for VoIP is 150 ms [12].

6.4.1 TFRC with KwikrAdapt

TFRC’s rate selection mechanism is based on a single equation which takes in two input

parameters: RTT, and packet loss event rate. We make several changes to the default

TFRC behavior to study the benefits of KwikrAdapt. First, we changed the structure of the

report the receiver sends back to the sender to contain two new fields: Mobility Status, and

Link Status. Next, we changed the protocol to adapt to different pathological conditions in

theWi-Fi network as follows.

Congestion. If the receiver observes that the flow is exhibiting poor performance (high

RTTs and/or packet losses), and it is caused by the Wi-Fi link, it uses the QOM hint to find

its level of contribution to the problem. If QOM is quite small (under 10%), the receiver

reports a lower than actual loss event rate to make the sender transmit the flow at a relatively

higher data rate than what the default protocol would use. If the QOM is high or the delays

and losses are not caused by the Wi-Fi link, the receiver reports the actual loss event rate so

that the sender uses the default TFRC behavior.

Mobility and Weak Links. If KwikrAdapt gets a non-stationary mobility hint from

Kwikr, it sets the Mobility Status field of the receiver report to 1, and the sender immediately

lowers the sending rate to avoid any potential disruptions of the stream. Once the mobility

status becomes stationary, the receiver clears the flag upon which the sender will increase

the data rate to the rate at which it was operating at prior to the start of the mobile period.

While the user is mobile, if they walk away from the access point and the link becomes weak,

the TFRC receiver will receive the weak link hint from KwikrAdapt and then it will set the

Link Status field to 1 of the outgoing reports. The sender will be even more conservative in

this case and again return back to the original data rate if and when the receiver informs

that the link is strong.
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Handoffs. In the case of a handoff, the TFRC receiver will observe packet losses which

will cause the loss event rate value of the report to be set to a non-zero value. This in

turn makes the sender lower the data rate of the flow. When using KwikrAdapt, the TFRC

receiver knows when a handoff occurs and can conclude that any losses that coincide with

the handoff event is actually caused by the handoff event. In such cases, the receiver ignores

losses and does not update the loss event rate parameter of the report. This allows the

sender to keep transmitting at the initial rate, and thereby avoiding the slow ramp-up phase

that follows a data rate drop in the default behavior.

6.5 Evaluation using TFRC

We deployed our sender-side TFRC implementation on a Microsoft Azure server in Singapore

and the client-side implementation on a Windows Surface Pro 2 running Windows 8.1. We

capped the data rate at the sender to 1.2 Mbps, the typical bandwidth requirement for a

high definition quality Skype video call. In each run of our experiments, the sender sends

a TFRC flow to the receiver for 60 seconds using the default behavior as specified in RFC

5348 [92], and then followed by another 60 second flow using the TFRC version that uses

KwikrAdapt. We conducted our experiments in India and Singapore on different Wi-Fi

networks and settings such as office spaces, universities, and apartment complexes.

6.5.1 Adaptation in Congestion Scenarios

In our TFRC implementation that uses KwikrAdapt, when the receiver experiences increasing

delays and/or loss rates, it first detects whether the problem is due to the Wi-Fi link, and if

so, its contribution to the congestion using the QOM hint. If the Wi-Fi link is congested

and QOM is low, KwikrAdapt allows the receiver to report a loss rate that is lower than

the actual loss rate. This makes the sender transmit the flow at a less-conservative data

rate. Furthermore, after the conclusion of the congestion episode, the receiver reports a loss

rate of 0 so that the sender can immediately start transmitting at the original rate it was

using prior to the onset of congestion. This removes the need for the slow ramp-up phase,
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Figure 6.7: Data rate fluctuations of Default TFRC and TFRC with KwikrAdapt flows.
The shaded area depicts the period in which the Wi-Fi network was congested. Being aware
of Wi-Fi congestion, KwikrAdapt allows the TFRC flow to achieve a higher and an even
data rate throughout the congestion episode.

and hence provides better quality streams to the user. Using this setup, we collected 50

traces and introduced congestion for ∼ 30 seconds by adding 6 TCP cross-traffic flows to the

network while the flows were in operation.

Figure 6.7 depicts the data rate fluctuations of a Default TFRC flow and a TFRC with

KwikrAdapt flow. Both flows react to congestion by dropping their data rates, however as

KwikrAdapt detects that the congestion is caused by the Wi-Fi link and the problem is not

self-inflicted, it makes the flow operate at a higher and an even data rate throughout the

congestion period. After the congestion period ends, the default behavior requires about

∼ 28 s to ramp-up to the original rate. However, TFRC with KwikrAdapt, having a better

understanding of what caused the problem in the first place and knowing that Wi-Fi link is

congestion-free again, allows the flow to ramp-up within 2 s, reducing the ramp-up time by

14×. The average reduction of the ramp-up time across all our traces is 12.2×.

Figure 6.8 shows a CDF curve of the OWD jitter the two flows experienced during the

congestion period in all our 50 traces. (This plot shows similar behavior to Figure 6.6(a).)

As it clearly depicts, the jitter profiles of the two flows are quite similar. Furthermore, the
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Figure 6.8: OWD jitter profiles of Default TFRC and TFRC with KwikrAdapt flows.
Both protocols observe similar packet delays even though the TFRC with KwikrAdapt flow
operated at a much higher data rate than the default protocol.

average packet loss rates during the congestion period are 1.22% and 1.85% for Default TFRC

and TFRC with KwikrAdapt, respectively. This data shows that being less-conservative

when the Wi-Fi network is congested does not incur an additional cost, but in return the

quality of the stream can be improved as it is able to operate at a relatively higher data rate.

Impact on Cross-Traffic Flows. Next, to study what happens to cross-traffic flows

when KwikrAdapt makes a real-time flow less-conservative in backing off in the presence

of congestion, we studied the aggregate throughput the 6 TCP flows garnered during the

congestion period. The average aggregate throughputs were 18276.16 kbps and 17914.76 kbps

when the Default TFRC and TFRC with KwikrAdapt flows were in operation, respectively.

This shows that the less-conservative nature of KwikrAdapt does impact cross-traffic flows,

but the throughput drop, which is about 360 kbps, is not significant and is almost equal to

the average difference in the data rates the two TFRC variants use during congestion. In fact,

as this 360 kbps reduction gets distributed across all the cross-traffic flows, Figure 6.9 shows

that the 6 individual TCP flows experience minimal impact due to the less-conservative

nature of KwikrAdapt.
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Figure 6.9: Average TCP throughputs of the 6 TCP cross-traffic flows when the Default
TFRC and TFRC with KwikrAdapt flows were in operation. The less-conservative nature
of KwikrAdapt causes minimal impact on all of the individual cross-traffic flows.

Handling WAN Bottlenecks. Recall that our goal in KwikrAdapt is to allow a real-time

flow to use its default bandwidth adaptation scheme when the bottleneck is not in the Wi-Fi

network, and tweak the adaptation algorithm based on Wi-Fi hints only when the Wi-Fi

link is the bottleneck source. We conducted experiments where we first introduced Wi-Fi

bottlenecks (by introducing competing TCP cross-traffic flows into the Wi-Fi link), and

thereafter WAN bottlenecks (by inducing packet losses and delays into the outgoing link of

the sender via the Microsoft Network Emulator tool). Under such conditions, Figure 6.10

shows how Default TFRC and TFRC with KwikrAdapt flows performed.

The first shaded region (6 s to 21 s) depicts a 15 s time window in which the Wi-Fi link

was congested. As KwikrAdapt is capable of detecting this, it allows the flow to operate at

a less-conservative data rate and ramp-up to the original rate as soon as the cross-traffic

flows were removed. In contrast, the default protocol makes the flow cut its data rate quite

conservatively and takes ∼ 20 s to ramp-up to the original data rate. The second shaded

region (61 s to 76 s) shows a 15 s period wherein the WAN link was bottlenecked. In this

case, as KwikrAdapt finds that the observed performance issue of the flow is not caused

by the Wi-Fi link, it follows the default behavior of TFRC. This shows that KwikrAdapt
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Figure 6.10: The data rate fluctuations of Default TFRC and TFRC with KwikrAdapt
flows during two bottleneck situations. The first shaded region (6 s to 21 s) depicts a 15 s
time window in which the Wi-Fi link was congested by using competing TCP cross-traffic
flows. The second shaded region (61 s to 76 s) shows a 15 s period wherein the WAN
link was bottlenecked by inducing packet losses and delays. KwikrAdapt allows the flow to
be less-conservative in cutting its rate in the former period, and follow the default TFRC
behavior in the latter.

is capable of helping real-time flows to take the most appropriate bandwidth adaptation

decisions based on the root cause of the observed quality degradation.

6.5.2 Adaptation in Mobility Scenarios

In this section, we evaluate the performance of real-time streams when the client is mobile

while receiving the streams. We used a variety of mobility patterns in our experiments. For

example, we walked back and forth both being in close proximity and quite a distance away

from the access point, we walked slowly and quickly between locations where we had strong

and weak signal strengths, and we walked starting from close proximity to the access point

to the edge of connectivity, amongst others.

In our KwikrAdapt-enabled TFRC implementation, when the sender receives a receiver report

with the Mobility Status or Link Status flags set to 1, it halves the operating rate. This is

a proactive measure and is in stark contrast to the reactive measures that state-of-the-art
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Figure 6.11: Data rate fluctuations of (a) Default TFRC, and (b) TFRC with KwikrAdapt
flows in the presence of mobility. Being aware that the client is mobile, KwikrAdapt provides
a smooth and evened out streaming experience to the user.
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Figure 6.12: CDF of (a) the worst 5 s loss percentage, and (b) the worst OWD jitter
spike, of a default TFRC flow and KwikrAdapt-enabled TFRC flow in a mobile setting.
The proactive adaptation of KwikrAdapt helps to significantly reduce both metrics, thus
providing high quality streams.

bandwidth adaptation techniques follow, i.e., they drop the rate only when they experience

a performance problem like jitter spikes or packet losses. We evaluate the effectiveness of

our proactive adaptation technique in this section.

Figure 6.11 depicts how the data rate of a default TFRC flow and a KwikrAdapt-enabled

TFRC flow fluctuate in the presence of mobility. In Figure 6.11(b), notice that KwikrAdapt

allows the TFRC flow to make smooth step changes in the data rate to better suit channel

conditions. For example, at t=9 s, it detects that the user is mobile and halves the rate. At
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t=26 s, as the Wi-Fi link becomes weak, it halves the rate yet again. The rate is increased

at t=39 s when the link becomes stronger. This method of operation is very different from

the default TFRC protocol shown in Figure 6.11(a), which is akin to the state-of-the-art

bandwidth adaptation techniques we discussed in Section 6.2.2. As it is not aware that

underlying channel conditions are changing, it keeps trying to ramp up after a jitter spike

ends or losses decrease to find out that the Wi-Fi link cannot handle the new rate and has

to drop the rate, and this happens repeatedly. Ultimately, such behavior results in poor user

experiences.

To illustrate the problem further, consider Figure 6.12(a) that plots the worst 5 s packet

loss percentage of the traces that we gathered. That is, we divide each one minute trace

into 5 s periods, and calculate the packet loss percentage of each period and plot the highest

loss of each trace. This analysis is justified by the fact that users typically remember the

worst period of a stream they experience. The 90th worst loss percentiles of default TFRC

and KwikrAdapt-enabled TFRC flows are 10.82% and 3.11%, respectively, implying that the

proactive behavior of KwikrAdapt leads to much lower losses. Moreover, the plot shows that

the default TFRC protocol sometimes experiences worst loss percentages as high has 37%,

which would cause the streams to be of poor quality.

The worst one way delay jitter spike the flows experienced in Figure 6.12(b). As it clearly

shows, KwikrAdapt helps reduce one way delay jitter spikes significantly. The 90th worst

one way delay jitter percentiles of default TFRC and KwikrAdapt-enabled TFRC flows are

7.35 s and 2.46 s, respectively. Furthermore, note that the tail of the default TFRC curve in

Figure 6.12(b) is quite long, which shows that in some cases there have been delay spikes

of more than 8 s. Such occurrences cause sever outages in the flows that lead to poor user

experiences.

6.5.3 Adaptation in Handoff Scenarios

To evaluate how KwikrAdapt can help a flow regain its original data rate rapidly after a

handoff, we collected 50 traces in which we triggered a handoff at random points in time in

the flow for both default TFRC and the KwikrAdapt-enabled TFRC protocols. Figure 6.13
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Figure 6.13: A data rate plot of a default TFRC flow vis-a-vis that of a KwikrAdapt-
enabled TFRC flow. At 32 s, a handoff is triggered on both flows. Being aware of the handoff,
KwikrAdapt allows the flow to ramp-up to the original data rate faster, while the default
protocol takes a longer time to do so.
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Figure 6.14: Average time the ramp-up phase requires after a handoff for the default TFRC
and KwikrAdapt-enabled TFRC protocols. KwikrAdapt reduces the ramp-up duration by
3.1×.

shows how the two bandwidth adaptation mechanisms respond to a handoff. The default

TFRC protocol goes through a slow ramp-up of the data rate after the handoff because it is

unaware that the handoff is the root cause of the losses it observed in the flow. Therefore, the

ramp up takes 14.45 s to complete. However, with KwikrAdapt, the flow gains the original

rate in just 3.9 s. Thus, with KwikrAdapt, we can cut down the time required to ramp up
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to the original rate after a handoff by 3.7×.

Figure 6.14 plots the average time the flows take to ramp up after a handoff occurs in all the

50 traces we gathered. As can be clearly seen, as KwikrAdapt allows the TFRC protocol to

realize the observed losses were caused by a handoff event, the flow can ramp up faster. The

average reduction in the ramp up phase in KwikrAdapt-enabled TFRC is 3.1×.

As the user-perceived quality of a real-time stream is directly proportionate to the data rate,

the fast ramp up that KwikrAdapt provides allows applications to send high quality audio

and video faster, and thereby improving the overall quality of the stream.

6.6 Skype Implementation

In addition to using TFRC, we also evaluate the benefits of Wi-Fi-aware bandwidth adaptation

by integrating KwikrAdapt in Skype. This section outlines how we implemented KwikrAdapt

in Skype and the modification we did in Skype’s code base.

6.6.1 Handling Wi-Fi Congestion

Skype’s bandwidth estimation is based on a Kalman Filter. At a high level, a Kalman Filter

estimates the state of a system, combining a predictive model with ongoing noisy observations.

We integrate the Ping-Pair information by treating congestion as an indication that the

observations (i.e., the packet delay) is noisier than normal since the cross-traffic is corrupting

the data. Hence we report a higher variance to the Kalman Filter, which correspondingly

decreases its response to the congestion.

In more detail, Skype uses an Unscented Kalman filtering (UKF) [55, 97] of the leaky bucket

state-space model (see [81]). UKF is based on the Unscented Transform, a method for

computing the statistics of a random variable that undergoes non-linear transformation. It

operates by sampling the state distribution at selected sigma points to obtain a Gaussian

representation which is amenable for propagation through a Kalman Filter.

The model parameters are channel data backlog N(k) and serving bandwidth BW (k), making
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the approximated Kalman filter observation equation:

d(k) = N(k)
BW (k) + e(k) (6.1)

where k is a packet index and d(k) is the packet one-way delay, calculated from transmission

and reception timestamps and compensated for sender/receiver clock offset and channel

propagation delay through a minimum tracking mechanism. e(k) is the Kalman filter

observation noise, and this is our attack point: when the Kwikr hint derived from Ping-Pair

indicates that there is a queue build-up not caused by Skype, we increase its variance and

allow it to have non-zero positive mean.

By using a non-zero positive mean, we signal that not all delay is caused by Skype, making

it converge towards a higher bandwidth. And by increasing the noise we introduce greater

uncertainty, causing less weight to be given to the delay observation, thus slowing down

adaption speed. In the unscented Kalman filter, both effects are achieved by offsetting the

positive sigma-point corresponding to the observation noise, by adding a term to the base

observation noise variance σ2
e :

χ = N̂(k)
ˆBW (k)

+ λ
√
σ2

e + βc2 (6.2)

where χ is the sigma-point in question, N̂(k) and ˆBW (k) are the current Kalman Filter

estimates of the backlog and the bandwidth, respectively, λ is given by the degrees of freedom

in the unscented Kalman filter, β is an empirically tuned boost factor (we found β = 4 to be

adequate), and c is the delay due to other traffic (i.e., cross-traffic).

Therefore, while the measured d(k) increases in Equation 6.1, by offsetting the sigma-point

for the positive observation noise, we ensure that the bandwidth estimate BW (k) does not

needlessly collapse, or could even increase if BW (k) is low and c is high.
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6.6.2 Handling Wi-Fi Link Fluctuations

To handle link fluctuations, we use a basic two-state model for the Wi-Fi link with “good”

and “bad” states. When the link is good, the bandwidth estimation operates normally; when

the link is bad, the bandwidth estimate is adjusted accordingly.

We studied the relationship between RSSI and MAC-layer data rate by empirically obtaining

3200 data samples. We see a rapid transition from a high data rate of over 60 Mbps to a low

rate of under 10 Mbps as the RSSI transitions from about -77 dBm to about -87 dBm. This

rapid transition lends support to the two-state link model and suggests a simple detection

procedure: a threshold of -79 dBm separates the good link state from the bad. We add

hysteresis by computing a 3-second average of RSSI, with sampling done every 100 ms (i.e.,

30 samples), and compare this with the threshold.

When a link is bad, we adjust the estimated available bandwidth. Notice that this is different

from the case of congestion (see Section 6.6.1) where cross-traffic corrupted the bandwidth

observations and so we increased the variance of the data input to the Kalman Filter. Here

the bandwidth observations remain accurate (i.e., the link really is changing in quality), and

our goal is to damp the fluctuations in the data rate due to changing link quality. This

would provide users a lower but consistent quality as opposed to wild swings in quality.

Therefore, when a link is bad, we modify the bandwidth estimation produced by the Kalman

Filter. This modified estimate is then used by Skype to choose a data rate. Specifically, we

apply a multiplicative correction factor, multiplying the estimate by the ratio of the average

MAC layer data rate seen when the link is bad to that seen when the link is good. For

instance, if the average bad rate is 10 Mbps while the average good rate is 50 Mbps, the

bandwidth estimate obtained from the Kalman Filter is multiplied by a correction factor of

0.2. This limits the magnitude of the swings in bandwidth that would have otherwise been

present.

Finally, we impose a lower bound of 100 Kbps on the bandwidth estimate; this rate is, in our

experience, the minimum needed for a passable AV call. This does not mean that 100 Kbps

is the minimum stream rate; the application is free to send at a lower rate, say by switching
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to an audio-only call.

6.6.3 Handling Wi-Fi Handoffs

As noted previously (see Sections 6.2.3), in Skype, the receiver automatically suppresses any

reports of packet loss during handoffs, because no reports get through during the period of

disconnection. Thus we do not have to do anything special in this regard based on a Kwikr

handoff hint.

Next, we consider the case of a handoff from a poor cell to a good cell (poor→good). This

is the common case for handoffs, as handoff is typically triggered only when the current

connection has become too poor to sustain (whether because of load in the cell or because

the client has moved to the edge of the cell). Since the bandwidth available in the new

cell could be quite different from what the Skype bandwidth estimator had converged to in

the old cell, we reset the Kalman Filter to a seed bandwidth of 250 Kbps and then trigger

bandwidth rediscovery. (Note that we work with a higher seed bandwidth of 250 Kbps

here compared to the floor of 100 Kbps used in Section 6.6.2 because we expect bandwidth

to improve after a handoff whereas there we expect bandwidth to be low in a weak link

situation.) This procedure enables Skype to attain a higher bandwidth in the new cell much

more quickly than it would otherwise have.

We also consider the reverse, where the client hands off from a cell where it enjoyed high

bandwidth to one that is very congested and so offers low bandwidth (good→poor). In

such a case, there is the risk of overshooting the available bandwidth, resulting in delay

and packet loss. However, it turns out that Skype’s conservative approach to bandwidth

estimation, wherein it backs off sharply in the face of (congestion-induced) delay, ensures that

no such overshooting happens. (Indeed, this conservative behaviour, which is unnecessary in

some cases, is what motivated the adaptation presented in Section 6.6.1.)The bandwidth

estimated by Skype falls sharply, regardless of whether bandwidth rediscovery is triggered.

This obviates the need for anything special to be done in the case of a good→poor handoff.
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6.6.4 Implementing KwikrAdapt on Skype on Android

Our main implementation effort is centered on Skype on Android. This application is largely

written in C, with a UI shell in Java that loads a C library using JNI. Our implementation

spanned the following three components (the lines of code of our implementation are noted

within parentheses):

1. Platform Interface (PI) (50 LOC): this is a platform-specific module responsible for

interfacing with the OS to obtain the BSSID, RSSI, and MAC data rate information.

2. Probing Module (PM) (1400 LOC): this is also platform-specific and orchestrates

all Kwikr detections, including Ping-Pair , handoffs, etc.

3. Bandwidth Estimator (BE) (50 LOC): this module is platform-independent and

the only component that lies in the data path, i.e., actually receives the stream packets.

BE implements KwikrAdapt’s modifications to the Unscented Kalman Filter based

bandwidth estimator.

The operation starts with PM being invoked at the beginning of a call. PM then obtains

information about the default gateway (the Wi-Fi access point), which it probes at regular

intervals to get the queuing delay. Each probe records the start/stop time (to determine the

number of packets sandwiched between the Ping-Pair), queuing delay and the instantaneous

MAC data rate (to infer the transmission speed). This information is then passed on to

Kwikr, which counts the number of Skype packets sandwiched between the start and stop

times, and computes the contribution of Skype to the queuing delay. Finally, this information

is used to adjust the UKF, as discussed in Section 6.6.1.

As discussed in the chapter on Kwikr, raw sockets cannot be used with root privileges. So our

implementation uses the built-in ping utility on Android, which supports setting the TOS

bits. Finally, our implementations of the detections and adaptations for link fluctuations

and handoffs also center around the same 3 modules as noted above.
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6.7 Evaluation using Skype

We ran several controlled experiments of KwikrAdapt-enabled Skype to evaluate the effec-

tiveness of the improved bandwidth adaptation mechanism, looking at congestion, handoff,

and mobility scenarios. We also look at scenarios where KwikrAdapt-enabled clients co-exist

with non-KwikrAdapt-enabled clients, showing that the improvement is not coming at the

expense of other users.

6.7.1 Congestion

We first show that KwikrAdapt enables a better response to congestion. We ran 50 exper-

iments, half with unmodified Skype clients and half that were KwikrAdapt-enabled. We

initiated a three minute calls where we introduced congestion in the form of TCP flows

during the middle minute.

Figure 6.15(a) shows a representative execution, where the shaded region represents conges-

tion. We see that Skype with KwikrAdapt maintains a higher data rate during the congested

period, since it is determined that Skype is not a significant cause of congestion. It then

recovers quickly when the congestion ends.

Figure 6.15(b) shows a CDF of the average data rate for each call, and we see that overall

KwikrAdapt enables a higher data rate. On average, the calls with KwikrAdapt had a 20%

higher data rate. We also see in Figures 6.15(c) and 6.15(d) that the round-trip time and

loss are not hurt by KwikrAdapt. (Instead of a CDF, for clarity here we simply note a few

percentiles.)

Thus, we see that KwikrAdapt-enabled Skype avoids backing off sharply when congestion is

due to cross-traffic and recovers more quickly.

We also consider the scenario where the congestion is self-inflicted, i.e., where Skype really

needs to reduce its bandwidth usage. We ran experiments where the bandwidth was

artificially throttled mid-stream, and initiated three minute calls with both regular and

KwikrAdapt-enabled Skype. We see in Figure 6.16 that KwikrAdapt does not affect normal
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Figure 6.15: Adaptation in congested scenarios using KwikrAdapt. Figure (a) shows a
representative execution showing how KwikrAdapt responds more aggressively to congestion
(during the shaded interval). Figure (b) shows a CDF of data rate, showing the higher data
rate achieved by KwikrAdapt . Figures (c) and (d) shows that the round-trip time and
packet loss are not hurt by the more aggressive adaptation strategy.

bandwidth adaptation when congestion is self-inflicted.

Finally, we looked at the performance of KwikrAdapt when co-existing with other clients.

We ran 30 experiments in which two clients made simultaneous two-minute calls—for ten

of the calls, both clients were KwikrAdapt-enabled; for another ten calls, one client was

KwikrAdapt-enabled and the other was not; for the final ten calls, both were unmodified

Skype clients. We see in Table 6.1 that in general, co-existence does not have a significant

impact on data rate. The non-KwikrAdapt-enabled clients are essentially unaffected by

co-existing with KwikrAdapt clients. By contrast, two KwikrAdapt-enabled clients running

together do appear to be slightly affected.
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Figure 6.16: When congestion is self-inflicted, KwikrAdapt reduces the rate appropriately.

Table 6.1: KwikrAdapt flows co-existing with other flows. Table contains the data rate for
the measured flow when running simultaneously with the specified background flow.

Background Flow

Measured Flow Skype Skype with KwikrAdapt

Skype 512 kbps 507 kbps

Skype with KwikrAdapt 542 kbps 483 kbps

6.7.2 Link Fluctuations

Next, we look at mobility. We made two minute calls where we transitioned between a strong

link and a weak link and back. There are 20 such calls for both the regular Skype client

and the KwikrAdapt-enabled Skype client. Figure 6.17(a) gives a representative execution.

Regular Skype’s bandwidth estimate remains high (because it has built-in mechanisms to

reject delay spikes and not treat these as indications of congestion) but its data rate fluctuates

as the underlying link rate fluctuates. In contrast, KwikrAdapt detects the link fluctuations

and successfully smooths the data rate, reducing the significant fluctuations suffered by the

regular Skype client. While the total throughput may be reduced, in this case there are

significant advantages to reducing the data rate: the KwikrAdapt-enabled client sees a lower

round-trip time (see Figure 6.17(b)) and a lower packet loss rate (see Figure 6.17(c)).
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Figure 6.17: KwikrAdapt in the case of mobility leading to link fluctuations. Figure (a)
shows a representative execution demonstrating how KwikrAdapt responds more smoothly
to link fluctuations (during the shaded interval). Figures (b) and (c) show how the round-trip
time and packet loss rate are improved by the more stable bandwidth estimate.

6.7.3 Handoffs

Next, we look at the issue of handoff. We forced a handoff to take place in the middle

of the call, moving from a low bandwidth cell to a higher bandwidth cell. We compare a

regular Skype client with a KwikrAdapt-enabled Skype client, running each 24 times. In

Figure 6.18(a), we observe a representative execution. Notice that after the handoff, the

KwikrAdapt-enabled client reevaluates the available bandwidth, significantly increasing the

data rate; by contrast, the regular Skype client maintains a low data rate. In Figure 6.18(b),

we give the CDF for the data rate across all experiments.
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Figure 6.18: KwikrAdapt in the case of handoffs. Figure (a) shows a representative
execution demonstrating how KwikrAdapt responds to a handoff by updating the bandwidth
estimate. The vertical dashed line shows the point in time the handoff occurred. Figure (b)
show a CDF of the data rate, showing much improved performance.

6.8 Chapter Summary

In this chapter, we showed that when real-time streaming applications perform end-to-

end bandwidth adaptation in the presence of Wi-Fi bottleneck conditions, the quality of

the streams suffer. We presented a user-level module named KwikrAdapt that real-time

streaming applications can use to take Wi-Fi-aware bandwidth adaptation decisions. Through

empirical studies, we showed that KwikrAdapt helps real-time flows know when they can

be less conservative in backing off, which helps increase the quality of the streams while

incurring no additional cost. It knows when the client is mobile so that flows can proactively

adapt to changing Wi-Fi channel conditions rather than reacting when problems occur in

the streams. And finally, it ramps up faster after a handoff rather than going through the

slow bandwidth probing phase that makes ramp-ups quite slow. Through empirical studies

using TFRC and Skype, we showed how KwikrAdapt can allow real-time flows achieve much

higher data rates while keeping delays and losses at bay during congestion periods, reduce

the worst loss percentage and RTT spikes during link fluctuations, and handle handoffs much

gracefully to provide higher quality streams to the user.
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Bottleneck Alleviation via Link Diversity

7.1 Introduction

Wi-Fi networks have been patterned after Ethernet that preceded them. Just as a host plugs

into an Ethernet port, a Wi-Fi client “plugs into” a single access point in its vicinity through

the process of association, and remains associated with it until the link is broken, say due to

mobility.

We argue that this approach, inspired by the wired world, is suboptimal and needs to be

revisited. At any point, the client typically has a choice of multiple Wi-Fi links — not

merely Wi-Fi access points within range but in fact ones that the client has the credentials

to connect to. This is especially so in settings such as enterprises, schools, airports, hotels,

malls, etc. where there is often a single entity that has deployed a large number of access

points.

The quality of a wireless link varies frequently, causing sporadic bursts of packet loss, which

can severely impact real-time streaming due to its sensitivity to packet loss, delay, and jitter.

Therefore, rather than performing selection, i.e., picking one “best” link to connect over,

we argue that the client would be better off hedging, i.e., connecting over multiple links

simultaneously. If the client’s traffic were then replicated across these links, the client would

then enjoy the performance offered by the best link, even as which link is the best changes

frequently.

However, replicating traffic over multiple links would mean a substantial overhead. To address

this challenge, we present DiversiFi, which leverages network-side buffering, whether at

112
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existing Wi-Fi access points or at a separate “middlebox”, to provide much of the benefit

of diversity through replication but with little of its overhead. This combination of benefit

without the overhead is a key novel contribution.

Specifically, to make the case for DiversiFi, we focus on real-time, interactive streaming

(e.g., voice-over-IP (VoIP)) 1, which places stringent demands on the network in terms of

end-to-end latency, jitter, and packet loss rate, much more so than on-demand streaming

(e.g., YouTube), which has the luxury of a large playout delay. For instance, the round-trip

latency must be under 300 ms for VoIP [12] and under 100 ms for interactive games [65], for

otherwise the user would notice a lag. Also, the packet loss rate for VoIP should ideally be

under 1% [91], although burst losses can cause noticeable artifacts even at lower loss rates.

In Section 3.2, we presented experimental data to show that the Wi-Fi last hop is a significant

factor in poor streaming quality. Our analysis drew on both a year’s data from a large VoIP

provider that serves hundreds of millions of users, and also our own experiments with the

participation of 274 users across 22 countries and involving 9224 simulated VoIP calls over a

2-month period. From our experiments, we showed that the overall poor call rate (PCR)

is over 10%. Further, we showed that for both the VoIP provider’s dataset and ours, the

relative difference in PCR between Wi-Fi and wired clients is 40-50%.

Therefore, we focus specifically on the Wi-Fi last hop and make the case for leveraging link

diversity to improve real-time streaming performance. We argue that clients often have more

than one access point within range that they could connect to. Furthermore, the performance

of the links to these multiple access points is only weakly correlated, say in terms of the

pattern of packet loss. Thus, replicating real-time traffic over multiple links — we focus on

doing so over two links, a primary and a secondary — yields significant benefits. We term

this approach cross-link replication. We show that the diversity benefit of such cross-link

replication dominates both fine-grained link selection and also temporal replication (i.e.,

retransmission with an offset) over a single link. It also provides significant benefits over

and above PHY-layer spatial diversity in MIMO systems such as 802.11ac. Our experiments

with a client equipped with two Wi-Fi NICs show that cross-link diversity helps cut down

1As noted in Section 7.3, we focus here on the downlink.
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the poor call rate (PCR) for VoIP by 2.24x relative to single-link transmission.

Having established the benefits of cross-link replication, we turn to how this could be

realized in practice, without requiring two NICs, without incurring the overhead of duplicated

traffic or, importantly, without impacting other, non-realtime applications. Our general

approach involves confining cross-link replication to real-time flows, with non-real-time traffic

continuing to flow over a single, default link, as it would have in the absence of DiversiFi.

Further, the replicated packets are held in network-side buffers, close to the client but yet not

being transmitted over the air unless the need arises (i.e., a packet is lost on the primary link).

We show how a simple change to make the access point’s queuing policy head-drop instead

of the usual tail-drop, coupled with a shortening of the queue length, enables an efficient

realization of DiversiFi. We also present an alternate approach, which leaves the access

points unmodified and moves the buffering into a network middlebox. The introduction of

the middlebox also helps avoid the overhead of duplicating the stream over the WAN.

Our experimental results confirm that DiversiFi provides the benefit of replication for

real-time flows (e.g., a reduction in PCR from 4.9% down to 0% over 61 runs), with minimal

overhead (only 0.62% of the packets being duplicated wastefully compared to nearly 100%

with naive duplication). Importantly, a competing TCP flow, which is oblivious to DiversiFi

being used for the real-time flows, only suffers a throughput degradation of 2.5%.

Thus, DiversiFi imposes a minimal duplication overhead and ensures coexistence with

competing, non-real-time applications, which remain oblivious to the use of DiversiFi for

improving the performance of real-time flows.

In summary, our contributions in this work include:

• An empirical analysis to show the significant benefits of cross-link replication.

• An architecture and implementation to gain the benefits of cross-link diversity without

its overhead to improve the performance of real-time streams.
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each bar) the client could connect to at various locations. Across all locations, the client
could connect to at least 2 different BSSIDs.

7.2 Leveraging Link Diversity

In this section, we discuss the merits of cross-link packet replication across multiple Wi-Fi

links in improving the reliability of real-time streams.

7.2.1 Availability of Multiple Wi-Fi Links

As the key idea in DiversiFi is to leverage link diversity to improve the quality of real-time

streams, we look at availability of multiple Wi-Fi access points that a user could potentially

connect to. We went to various enterprise and public locations, such as offices, campuses,

serviced apartments, hotels, malls, etc., across 3 cities — Bengaluru, Seattle, and Singapore

— in different countries and determined how many BSSIDs were within range on the networks

that our client could connect to. Figure 7.1 presents the results. We see that the number of

BSSIDs available was 6 at the median, with at least 2 across all locations and up to 13 in

some locations. Even on an in-flight Wi-Fi network the client had a choice of 6 BSSIDs!
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Even if we only count the number of distinct channels corresponding to the BSSIDs seen

(marked by the bold dashes in Figure 7.1), to discount the possibility of virtual access points,

the median count is 4, with the range spanning 2 to 9. We conclude, therefore, that there is

ample scope for DiversiFi to operate in such locations.

The situation, however, is less rosy in residential locations. Indeed, in our NetTest dataset

discussed earlier (Section 3.2.2), which is skewed towards residential locations, we found

that in only 30% of the cases did the client device have more than one BSSID that it could

connect to. Nevertheless, we note that even in such locations, the incipient trend towards

multi-band access points would make multiple Wi-Fi links available to clients.

Although the availability of multiple Wi-Fi links does not by itself indicate the performance

of these links, the results presented in Section 7.2.2 show that even a weak secondary link

could be very beneficial.

7.2.2 Benefits of Cross-Link Replication

To make the case for leveraging link diversity through replication in DiversiFi, we consider

several questions:

1. How does replication for diversity compare with fine-grained link selection proposed

previously (e.g., [69])?

2. How does the diversity arising from cross-link replication (in particular, the duplication

of a stream concurrently over two links) compare with that from temporal replication

over a single link?

3. Does cross-link replication provide benefits over PHY-layer spatial diversity in MIMO?

Our analysis in this section focuses solely on the benefits of diversity through replication.

Later, in Section 7.3, we explain how this benefit can be had without the overhead of duplicating

traffic or requiring clients to have two NICs.

Unless stated otherwise, the data presented in the sub-sections that follow is based on

experiments conducted with G.711-like UDP data streams, with a data rate of 64 kbps,
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160-byte packets, and a 20 ms inter-packet spacing. We used a Lenovo W520 ThinkPad

laptop as the client, with an Intel Centrino Ultimate-N 6300 AGN internal Wi-Fi NIC and

a TP-Link TL-WDN3200 dual-band ABGN USB adapter. Each experiment comprised a

2-minute simulated call during which a copy of the G.711-like stream was sent to each NIC

of the client. With this setup, we gathered data for 458 such simulated calls, at a variety of

locations, including offices, serviced apartments, downtown areas, and a conference setting in

Bengaluru and Singapore. The dataset includes traces corresponding to various challenging

situation such as a weak link, client mobility, external interference from a microwave oven,

and network congestion. The experiments were conducted on both 2.4 GHz and 5 GHz

networks depending on what were available in the locations we conducted experiments at.

In terms of the metrics, we consider both network-level ones such as the packet loss rate

and the one-way delay jitter, and also a voice call metric, the poor call rate (PCR). For

the network-level metrics, we divide the simulated call into 5-second periods and focus on

the worst such period, for there is evidence that worst degradation in a (short) call is a

significant determinant of the overall user-perceived call quality [98]. For voice call metrics,

we run the network trace through the G.711 codec, and use the degree of interpolation

and extrapolation of voice samples to estimate PCR, in accordance with well-established

models [17, 18]. Note that the trace captures all network-related impairments that a stream

may suffer, including packet delay, jitter, and loss.

Cross-Link Replication vs. Link Selection

In the presence of multiple Wi-Fi access points in the vicinity, selection, i.e., picking the

one “best” link out of many choices, is what OSes typically do today. The question is how

replication compares with this simple strategy of selection. To evaluate this question, we

have the two client NICs connect to the two strongest access points, and then implement two

selection strategies: stronger, which picks the stronger of the two links based on the RSSI

(as is typically done in OSes), and better, which samples both links for the first 5 seconds

and settles on the one that performs better during this trial period for the rest of the call.

We compare these strategies to cross-link, which replicates the stream on both links.
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Figure 7.2: CDF of loss rate over worst 5-second period, comparing cross-link replication
to (a) link selection based on stronger and better, and (b) fine-grained link selection
(Divert). Compared to all link selection strategies, cross-link replication helps to reduce
the loss percentage significantly.

Figure 7.2(a) shows the CDF of the packet loss rate during the worst 5-second period for the

three strategies noted above. The figure shows that cross-link dominates both selection

strategies, especially in the tail. For example, while the 90th%tile packet loss rate is 37%

and 84%, respectively, for the stronger and better selection strategies, it is only 4.4% for

the cross-link replication strategies.

There has also been work on fine-grained link selection, wherein a fresh selection is made

and the link switched, frequently. Divert [69] is an example of such a strategy. We evaluate
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Figure 7.3: An example trace showing how cross-link replication over a weak link A (loss
rate: 4.3%) and an even weaker link B (loss rate: 15.4%) yields a much lower loss rate of
0.88% (losses are shown as black dots along the bottom of each plot) and also a lower delay
jitter (plotted on the y axis).

this strategy, Divert, where a link switch is triggered if the number of frames lost exceeds

a threshold T within a window H frames. We use a setting of H = 1 and T = 1, as in

[69]. Figure 7.2(b) shows the CDF of packet loss rate for the worst 5-second period. We

see that Divert performs worse than cross-link, with the 90th%tile packet loss rate being

10.5% for Divert compared to 4.4% for cross-link. The key observation is that while the

switching of links in Divert is triggered by one or more packet losses, the switching is only

in the hope of improved likelihood of reception for future packets. The packets that were

lost before the switch are themselves not recovered. On the other hand, in cross-link, the

receiver has the benefit of reception on both links, so packets that are lost on one link will

likely be received on the other.

As a final illustration of how cross-link replication is qualitatively different from link selection,

we show, in Figure 7.3, the one-way delay and packet loss characteristics of two of our
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G.711-like UDP streams in the case of two weak links: link A with an overall packet loss

rate (i.e., for the entire 2-minute simulated call, not just the worst 5-second period) of 4.3%

and link B with an overall packet loss rate of 15.4%. With traditional link selection, link A

would clearly dominate B, so the client would be better off just sticking to A. However, with

cross-link replication across A and B, the overall packet loss rate drops to 0.88%. In other

words, the better of the two links (link A) benefits from replication over a significantly worse

link (link B), showing the benefit of diversity.

Cross-Link vs. Temporal Replication

If replication is the key to improving performance, a natural question is why do cross-link

replication. Would temporal replication, i.e., sending multiple copies of each packet spaced

over time, on the same link offer the same benefits? Note that any such replication would

be over and above link-layer retransmissions that already happen in the 802.11 MAC layer.

However, unlike the latter, which would tend to happen on a very fine timescale (tens of

µs), the temporal replication (temporal) would happen over a much longer timescale. The

benefit of a larger temporal spacing is the greater diversity in the channel conditions across

the multiple transmissions. However, the temporal spacing would be constrained by the

deadline for the real-time stream.

We consider temporal with two copies of each packet being transmitted, with a spacing

∆ between them of up to 100 ms. (Given the 300 ms limit the end-to-end round-trip for

VoIP [12], 100 ms one-way on just the Wi-Fi hop would seem to be a reasonable limit.)

Figure 7.4 shows the CDF of the packet loss rate for the worst 5-second period for temporal,

with ∆ ranging from 0 ms (i.e., two copies of each packet being transmitted back-to-back)

to 100 ms (i.e., the copies being spaced apart by 100 ms). We find that temporal replication

does improve the packet loss rate compared to the baseline (i.e., no replication), with the

improvement being greater the larger the spacing ∆. For instance, at the 90th%tile, temporal

with ∆ = 100ms has a packet loss rate of 23.7% compared to 37.2% for the baseline. However,

temporal still underperforms cross-link, which has a 90th%tile packet loss rate of 4.4%.

Thus, it is clear that cross-link, with its spatial and channel diversity (i.e., links to
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Figure 7.4: CDF of loss rate over worst 5-second period, comparing cross-link replication
to temporal replication. Cross-link replication overperforms temporal replication for all
the considered ∆ values.

access points at different locations and on different channels, possibly even different bands),

dominates temporal. The latter suffers from the bursty nature of impairments on a link.

We illustrate this in two ways. First, we compute the auto-correlation of the packet loss

time series on a link and compare that with the cross-correlation of the corresponding series

across two links. Figure 7.5(a) plots the results. We see that even with a lag of 20 packets

(or 400 ms, given the 20 ms inter-packet spacing), the auto-correlation is greater than the

cross-correlation. Second, since packet loss bursts are particularly problematic for real-time

streams such as VoIP, we compare cross-link and temporal in this regard. Figure 7.5(b)

plots the distribution of packet loss burst lengths for the baseline (which is stronger, without

any replication), temporal, and cross-link. We see that not only does cross-link have a

lower packet loss rate than temporal, its losses also tend to be less bursty. For instance, out

of the 6000 packets in a 2-minute simulated call, 25.6 on average were lost in cross-link,

out of which only 15.9 were in bursts of 2 or more consecutive packets. In comparison, an

average of 61.9 packets were lost in temporal, with a much larger proportion, 51.0, occurring

in bursts.2

2These loss statistics are for the entire 2-min simulated calls while much of the preceding analysis was for
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Figure 7.5: (a) Auto-correlation vs. cross-correlation of the packet loss process within a link
and across two links, respectively. (b) Distribution of packet loss burst lengths for stronger
link selection, temporal replication, and cross-link replication. Cross-link replication
overperforms temporal replication because cross-correlation of packet losses across links is
quite low. This also alows cross-link replication to make packet losses less bursty.

Benefits over and above 802.11ac with MIMO

With the advent of MIMO, Wi-Fi provides spatial diversity at the PHY layer. For example,

802.11n supports up to 4 spatial streams whereas 802.11ac supports up to 8. The question

is whether cross-link replication (cross-link) provides any additional benefit when there

already is PHY-layer diversity through MIMO, the gains due to which have been studied

the worst 5-sec period.
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Figure 7.6: CDF of loss rate over worst 5-second period, comparing cross-link replication
to 802.11ac with MIMO. Cross-link replication provides benefits over and above MIMO by
reducing the loss percentage significantly.

previously [85]. Since we have no control over the access points in our experiments in the

wild, we conducted experiments in the lab with 6-antenna D-Link DIR-850L dual-band

802.11ac access points and 2-antenna Linksys WUSB6300 dual-band 802.11ac NICs on the

client. We gathered data for 44 simulated calls and, as before, plot the CDF of the packet

loss rate for the worst 5-second period in Figure 7.6. We see that cross-link has a lower

loss rate than MIMO alone.

Thus, cross-link provides benefits over and above MIMO. Why is this? The PHY-layer

diversity in MIMO arises because the separation, on the order of the carrier wavelength,

of multiple transmit (or receive) antennas, results in the multipath fading of the spatial

streams being largely independent [66]. However, there are other link impairments that

such PHY-layer diversity does not address. For example, with shadowing and external

interference, all co-channel spatial streams could be affected simultaneously.

Improvement in VoIP Quality

So far we have focused on packet-level metrics such as the loss rate. However, the question

remains as to how cross-link replication would impact VoIP quality. Figure 7.7 plots the
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Figure 7.7: The poor call rate (PCR) with stronger link selection and cross-link
replication, broken down by various impairments. Cross-link replication helps to reduce
the PCR by 2.24× with respect to the stronger link selection strategy.

estimated poor call rate (PCR) for the set of simulated calls. We see that cross-link

helps cut down the PCR by 2.24× relative to stronger, from 12.23% to 5.45%. While

the relative improvement is even greater (3.5×) in the cases of client mobility and wireless

congestion, it is much less (1.2×) in the case of microwave interference. This is an artifact

of our experimental setting wherein a majority of the links available in the vicinity of the

microwave were impacted by the interference (there were no 5 GHz links available). In

general, greater diversity could be had from cross-technology replication (e.g., across Wi-Fi

and 3G/4G), but keeping the duplication overhead manageable would be more challenging

and we defer investigation of this alternative to future work.

Benefit for High Bandwidth Streams

We also experimented with real-time streams of a much higher data rate than VoIP, as might

be typical of video or gaming. We performed 80 runs, each lasting 2 minutes, with a 5 Mbps

stream, comprising 1000-byte packets, with a 1.6 ms inter-packet spacing. Figure 7.8 plots

the CDF of the packet loss rate for the worst 5-second period. Again, we see a significant

benefit from cross-link replication, with the 90th%tile packet loss rate improving to 1.7%
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Figure 7.8: CDF of loss rate over worst 5-second period, comparing cross-link replication
to link selection based on stronger and better for high-rate 5 Mbps streams. Cross-link
replication is capable of reducing the loss percentage of higher data rate flows.

compared to 20.5% for link selection based on stronger. This finding, coupled with the

design we present in Section 7.3 to avoid the overhead of unnecessary duplication of packets

on the air, means that cross-link replication can be applied to high-rate streams as well

as to the low-rate ones.

7.2.3 Moving from Analysis to Design

The analysis presented above has made the case for cross-link replication. But how do we

realize this in practice? In our experiments thus far, we have used a client with two Wi-Fi

NICs to receive a copy of the stream on each. This is a challenge for deployment since few

clients would have two Wi-Fi NICs. Also, cross-link replication done naively would mean the

duplication of all packets, including the many that are received successfully on both links.

This is undesirable not only because of the overhead on the recipient but also because of

the negative impact it could have on other clients that share the medium, especially if the

duplicated stream is a high-bandwidth one (e.g., a video or game stream).

In the next section (Section 7.3), we present our design and implementation of DiversiFi to
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achieve virtually all of the benefits of full cross-link replication but with little of its overhead.

7.3 Design and Implementation

We now present our design of DiversiFi, which centers on cross-link stream replication

for diversity, but with network-side buffering and implicit or explicit packet selection, to

limit the actual duplication of packets in the air to just (or close to) what is necessary.

While we focus here only on streaming in the downlink direction, which is arguably the more

challenging direction because of the lack of control over the access points, we believe our

design would apply equally in the uplink direction and would likely be easier to implement

because the client would have direct control over what packets are sent over which link and

when.

7.3.1 Design Requirements

For reasons of deployability, in view of the large installed based of Wi-Fi, we seek a solution

that does not require any changes to Wi-Fi at the hardware layer.

For reasons of generality, we would like our solution to be transparent to the application, be

it audio/video conferencing [5, 13], cloud-based gaming [10, 14], or app streaming [8]. We

would not like to depend on any application support other than characterizing the real-time

stream in terms of the rate, deadlines, etc. (which the application would do anyway when

using protocols such as RTP [84, 83]).

For reasons of coexistence, any steps taken to improve the quality of real-time streaming for

a client should not be to the detriment of other traffic flows, including non-real-time ones, at

that client or other clients.
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7.3.2 Design Elements

Initialization

When an application initiates a real-time stream, we need to know the stream rate, packet

size, and the packet deadlines, so that the network stack, whether at the local host or

the remote peer, can take the appropriate actions with respect to replication, buffering,

and selection, as noted below. Since real-time streaming applications are typically based

on the Real-Time Protocol (RTP) [84], we can use the payload type field to look up the

corresponding profile [83], without the need for modifying applications.

Multi-Link Association

To enable a client with a single Wi-Fi NIC to associate with multiple access points, we use

past work on multi-link association (e.g., [32]). In a nutshell, the client creates multiple

virtual adapters, each with a different MAC address, and a separate access point association.

It then switches between the links, changing channels, if necessary, and using the 802.11

power save mode (PSM) to keep its association on a link alive even when it has switched

away to a different link.

In DiversiFi, the client creates separate virtual adapters and links for the real-time stream.

For instance, in the setups shown in Figures 7.9, 7.10, and 7.11, the client has two virtual

adapters, labeled as primary and secondary, for the real-time stream, each associated with

a different access point. The primary associates with an access point chosen based on the

standard OS policy (e.g., strongest signal) and the secondary with the next-best access point.

In addition, it has a default virtual adapter, DEF , used for all of the other (non-real-time)

traffic (not shown in the figure).

At any point in time, the primary real-time virtual adapter would be associated with the

same access point and on the same channel as DEF . So switching between the primary

adapter used for a real-time flow and DEF used for a non-real-time flow would not incur

any overhead.
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However, switching between links on different channels, such as the primary and secondary

links for a real-time flow, can take a non-negligible amount of time, e.g., 2.3 ms in our

measurements reported in Section 7.4. So minimizing the frequency of switching between

the primary and secondary links would be desirable, to minimize a negative impact on other

flows on DEF , in line with our goal of coexistence.

Stream Replication

Cross-link stream replication lies at the heart of DiversiFi and the benefits reported in

Section 7.2. The question is where and how the packet stream is replicated.

One option is to replicate at the source, i.e., the remote peer. However, this would not only

require modification of the source, it would also entail the overhead of duplicating traffic

over the entire end-to-end WAN path.

An alternative would be to replicate the stream close to the receiver, for instance, at an SDN-

capable switch on an enterprise LAN. While this would avoid the overhead of duplication on

the WAN, it would require the presence of an SDN-capable switch and also the ability for

the receiver to configure the switch by installing suitable match-action rules [16], say using

APIs such as [54].

Network-Side Buffering

While cross-link stream replication helps improve the quality of a real-time stream, it does

so at the cost of wastefully duplicating (on the secondary link) the overwhelming majority of

packets that are delivered successfully on the primary link itself. Packet buffering, along

with packet selection discussed next in Section 7.3.2, is key to mitigating this overhead. The

replicated packets are held in a buffer in the network, close to the receiving client (to help

minimize the additional latency, should these need to be delivered), yet not delivered over

the air (on the secondary link) unless needed.

Network-side buffering could be performed at the access points themselves, taking advantage

of the power save mode (PSM), whereby the access point would start buffering packets
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destined to the client when the client sends a sleep message (Null frame with the Power

Management bit set) and would deliver the buffered packets when the client sends a wakeup

message (Null frame with the Power Management bit cleared). However, this would require

slight modifications to the access point to ensure efficiency. We discuss this in detail later in

Section 7.3.3 (Access Point with Minimal Modification),

An alternative, which would leave the access point unmodified, is to perform buffering at

a separate middlebox. We defer a detailed discussion on this to Section 7.3.3 (Unmodified

Access Points with Middlebox).

Packet Selection

While buffering close to the client allows the possibility of packets being delivered with a low

(additional) latency, we need a way for the client to identify the packets of interest and have

these delivered selectively. The method used for selection would depend on where buffering

happens. If it is in the access point as part of the standard PSM processing, the selection is

done implicitly. If it is in the middlebox, selection could be done explicitly, using the RTP

sequence number and timestamp for identification. However, our current implementation

uses a simpler alternative, which we will discuss below in Section 7.3.3 (Unmodified Access

Points with Middlebox).

7.3.3 Design of DiversiFi

An “End-to-End” approach to realizing DiversiFi would be to work with an unmodified

network infrastructure, in particular, unmodified access points and no middleboxes. This is

illustrated in Figure 7.9. As noted in Section 7.3.2, the PSM mechanism could be used to

perform network-side buffering on the secondary link. However, this can be quite inefficient.

The per-client buffer at the access point is typically managed as a tail-drop queue and

moreover can grow to a large size (e.g., the default size is 64 packets in OpenWRT, and

50-500 packets in Aruba [1]). When the client, upon missing a packet on the primary link,

switches to the secondary link and sends a wakeup message, the access point would only
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Figure 7.9: “End-to-End” architectural alternative for DiversiFi.

deliver the missing packet after it has delivered the possibly many packets ahead of it in

the queue. This would result in a significant overhead due to unnecessary duplication of

packets over the air. Further, if the tail-drop queue at the secondary access point fills up,

new packets will be dropped, making these unavailable for recovery should these be lost on

the primary link.

Access Point with Minimal Modification

The key source of inefficiency above is that the secondary access point’s buffer is maintained

as a tail-drop queue that can grow to a large size. What we need instead is a buffer that

holds a small number of the most recent packets. Accordingly, we introduce two changes

in how the access point’s buffer is managed: head-drop behavior instead of tail-drop, and

a settable maximum queue size, as illustrated in Figure 7.10. Note that these changes only

apply to the real-time links; the default link, DEF , would remain unaffected.

The maximum queue size should be set based on the characteristics of the stream. For

example, for a VoIP stream, if we have a budget of 100 ms for the Wi-Fi hop (as noted in

Section 7.2.2) and the inter-packet spacing is 20 ms, the maximum queue size should be

set to 5 packets. In general, the client could signal the desired maximum queue size to the
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Figure 7.10: “Customized AP” architectural alternative for DiversiFi.

access point on a per virtual interface basis, using an unused information element in the

802.11 association request frame.

With this “Customized AP” approach (the client logic for which is shown in Algorithm 7.1),

head-drop queuing with a small queue size would ensure that the queue is purged of all

but a small number of the most recent packets. Therefore, when the client switches to the

secondary link to recover a packet it has missed on the primary link, it would at most receive

the small number of packets that are in the secondary’s queue. Thus, much of the inefficiency

of the “End-to-End” approach is avoided.

As a further optimization, the client could perform implicit packet selection (Section 7.3.2),

by switching to the secondary link just a little before the desired (i.e., missing) packet reaches

the head of the queue. Then, in principle, the client should be able to receive the desired

packet, and immediately switch back to the primary link, thereby avoiding any duplication.

However, in practice we find that the access point could also transmit additional queued

packets, when all of these are handed down to the hardware queue in one go. We quantify

the consequent overhead in our experiments presented in Section 7.4.

Note that although there would be additional delay incurred in retrieving a missing packet

over the secondary link, this would not impact the user-perceived quality so long as it is less
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Algorithm 7.1: Client logic with “Customized AP”. Upon missing a packet, the
client switches to secondary just in time for the missing packet to reach the head of
the queue. The client also switches to the secondary periodically, just to keep the
association alive.

1 Procedure LinkSwitch(IPS, MTD, LSL)

2 // InterPacketSpacing = 20 ms, MaxTolerableDelay = 100 ms,
LinkSwitchingLatency = 2.8 ms

44 SRT← 40 ms // SecondaryResidencyTime
66 PLT← 2 * IPS (= 40 ms) // PacketLossTimeout
88 AKT← 30 s // AssociationKeepaliveTimeout

1010 APQL← MT D
IP S (= 100/5 = 5) // APQueueLen

1212 ETTRH← IPS * APQL - LSL // ExpectedTimeToReachHead
13 while True that do
1515 ReceivePackets
16 if PacketNotReceived then
1818 SetPacketAsLostOnPrimary
2020 ScheduleSwitchToSecondaryAfter (ETTRH)
2222 ScheduleSwitchBackToPrimaryAfter (ETTRH+PLT)
23 end
24 if LostPacketReceivedOnSecondary then
2626 SwitchBackToPrimaryImmediately
27 end
28 if SecondaryInactiveFor(AKT) then
3030 SwitchToSecondary
3232 ScheduleSwitchBackToPrimaryAfter(SRT)
33 end
34 end

than the playout delay. The MaxTolerableDelay parameter in Algorithm 7.1 is set accordingly,

and any packet not retrieved within this period is deemed as lost. Hence, in our evaluation

we focus on the residual packet loss even after the secondary link has been tapped rather

than on the additional delay.

It is important to note that the above queue modifications we do apply to only the per-device



Chapter 7. Bottleneck Alleviation via Link Diversity 133

Figure 7.11: “Middlebox” architectural alternative for DiversiFi. Solid/dashed lines show
the data/control flow.

queues that the access point maintains for clients that have gone into Power Save Mode.

Therefore, the extra cross-link packets that the secondary access point has to buffer will not

impact other clients that are connected to it.

While the “Customized AP” approach calls for changes to the typical access point behavior

(albeit no hardware changes), we note that head-drop queuing is gaining broader support for

other reasons (e.g., the CoDel proposal [2] to address the bufferbloat problem) and is already

supported in certain access point implementations (e.g., OpenWRT). Ubuntu, which is used

as an embedded OS, supports both head-drop and a settable queue size [15]. Further, we

believe it would be easy for access point vendors to implement these.

Unmodified Access Points with Middlebox

An alternative that would leave the access point unmodified is to move the functionality of

network-side buffering into a separate middlebox. An SDN-capable switch would replicate

the stream, sending one copy directly to the client via its primary link and the second copy

to the middlebox (which would otherwise not be on the data path). The middlebox would

perform network-side buffering in lieu of buffering at the secondary access point. Figure 7.11
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illustrates this architecture.

When the client misses a packet on the primary link and wishes to retrieve it over the

secondary link (to benefit from link diversity, per Section 7.2), the client switches to the

secondary link and sends a request to the middlebox for the specific packet(s) that it desires.

After receiving the packets, it switches back to the primary link. Depending on the packet

deadlines, this process can be deferred a little to allow the client to retrieve more than one

missing packet in one go. In any case, the secondary access point merely acts as a conduit

for the packets forwarded to it by the middlebox and does not itself perform any buffer

management.

Since the middlebox is under our control and the client performs explicit packet selection,

this approach could, in principle, avoid duplicating any packets. However, our current

implementation is based on a simple start-stop protocol, wherein the middlebox starts

delivering packets upon receipt of start message and stops upon receiving a stop message.

So there could be some duplication of packets.

Further, replication at an SDN-capable switch on the local network would mean that the

remote peer remains uninvolved. Such a deployment, with a middlebox and an SDN-capable

switch that the client has the credentials to install rules on, would likely be feasible in

settings such as enterprises, campuses, etc., where the network is under the control of a

single entity. We evaluate middlebox performance in Section 7.4.4.

7.3.4 Selecting a Design Alternative

The three designs we proposed above have their own pros and cons. While the End-to-End

approach is the easiest in terms of realization, it has the cons of 100% packet duplication

in the WAN path and sub-optimal packet buffering at the secondary access point. The

Customized AP approach optimizes packet buffering at the secondary access point, but still

requires packets to be replicated in the WAN path. The Middlebox approach removes the

need for packet duplication in the WAN path and optimizes packet buffering, but requires

additional infrastructure to be installed. Therefore, selecting the right alternative depends

on where DiversiFi is being used. For example, organizations might find it advantageous
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to deploy the Middlebox to improve VoIP performance, whereas home users can use either

the End-to-End or Customized AP approaches.

7.3.5 Client-side Implementation

We have implemented the client-side piece of DiversiFi as an user-level library that delivers

real-time streams to applications. Multi-link association is implemented using the stock

Ath9k driver on the Linux 2.6.33 kernel, which already supports multiple instances of virtual

station mode needed to maintain multiple associations. The stock implementation had minor

bugs, which we fixed. For instance, one corner case related to the the power-save message

not being successfully received by the access point. To address this, we added 5 driver-level

retry attempts to increase reliability, and also ensured that the channel switch operation is

only invoked after the power-save message has been successfully delivered.

With regard to deployability on other platforms, both Windows and Android Wi-Fi drivers

also include support for multiple virtual NICs, for supporting Wi-Fi-Direct mode in conjunc-

tion with station mode. We believe that multi-station mode support can be enabled through

software-only changes, in the Wi-Fi driver, similar to the existing implementation in the

Ath9k Linux driver.

7.4 Evaluation

The goal of our evaluation is to see if our implementation of DiversiFi over a single NIC

and carefully managed network-side buffering, yields a diversity gain along the lines of what

the two NIC experiments showed. We are also interested in characterizing the overhead and

coexistence issues, if any.

7.4.1 Experimental Setup

Our experiment setup consisted of a Linux laptop equipped with a single NIC — an Ath9k

based DLink 802.11bgn PCMCIA card — which serves as the client. We implemented
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Figure 7.12: CDF of loss rates over the worst 5-second periods comparing DiversiFi
with primary and secondary links. DiversiFi outperforms the single-link case by providing
large gains in the form of reduced packet losses.

minimal access point customization (head-drop queues with a maximum size of 5 packets)

from Section 7.3.3 on two Netgear WNDR3800 802.11n access points with 2x2 MIMO running

OpenWrt. We setup the access points on two different 2.4 GHz channels (1 and 11) at the

diagonal ends of a rectangular office space (30 m X 15 m area) with cubicles and walls. At

most locations within the office, the client could maintain concurrent associations with both

access points. The stronger of the two links is set as the Primary, and the other one as the

Secondary.

At each location, we simulated VoIP calls from a wired client on the LAN to the Wi-Fi-client.

The Wi-Fi-client then requests the sender-side DiversiFi user library to replicate the stream

to the IP address of the secondary link in addition to the primary.

Separately, we also ran experiments with a middlebox, the details of which appear in

Section 7.4.4 below.

7.4.2 Loss Recovery

We conducted 61 sets of runs that interleaved single link experiments and DiversiFi at

different locations in the office building. We calculated the packet loss rate in the worst
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Figure 7.13: Distribution of packet loss burst lengths. DiversiFi helps cut down burst
losses significantly, when compared to the single-link case.

5-second window during each call. Figure 7.12 plots the CDF of these loss rates, both for

the single link case (where the client connects over the stronger, primary link), and for

DiversiFi (where the client connects over both primary and secondary links). We find that

DiversiFi significantly outperforms the single-link case. For instance, while the 90th%tile

loss rate (computed by considering the worst 5-second period for each of the 61 calls) for

the primary link was 11.6% and for the secondary link was 52%, that for DiversiFi was

only 1.2%. The large gain with DiversiFi arises because it is quite unlikely that the worst

5-second period experienced on the secondary would coincide with that on the primary.

DiversiFi also helps cut down the incidence of burst losses, as shown in Figure 7.13. When

just the primary link is used, each 2-minute call suffers a loss of 44.3 packets on average,

35.9 of those in bursts of two or more packets. In comparison, with DiversiFi only 0.9 out

of the 2.7 packets lost on average per call was in bursts (which implies that only a fraction

of the calls suffered any burst losses at all).

This performance improvement also translates into an improvement in the poor call rate

(PCR), which drops from 4.9% and 26.2%, respectively, when the primary link or the

secondary link alone is used, to 0% with DiversiFi.
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7.4.3 Duplication Costs, Overheads and Fairness

While DiversiFi yields significant gains, the question is how much overhead is imposed by

replication and what impact it has on fairness to other, non-real-time traffic. We focus here

on the duplication overhead over Wi-Fi; the overhead over the WAN would either be 100%

if the replication is done at the source or 0% if it is done at a local middlebox.

For the set of 61 calls, the average packet loss rate on the primary link alone is 1.97%.

(This is computed over the entire length of the calls, not just the worst 5-second period

considered above.) With DiversiFi, the average packet loss rate drops to 0.05% because an

overwhelming majority of the primary link losses are recovered on the secondary link. In

addition to these useful transmissions over the secondary link, 0.62% of the packets were

transmitted unnecessarily over the secondary link.

This (wasteful) duplication overhead of about 1 packet (0.62%) for every 3 lost on the primary

(1.97%), arises because of two reasons: first, the access point inserts multiple packets into its

hardware queue and transmits all of them even when the packet that the client is looking for

is at the head of the queue, and second, the client has to receive packets from the secondary

access point at some minimal periodicity, irrespective of whether there is packet loss, just to

keep its (secondary) association alive.

To evaluate the impact of such wasteful duplication on other traffic, we performed iperf-based

TCP measurements concurrently with a VoIP flow, with DiversiFi turned on or turned off

alternately. Note that even when DiversiFi is turned on, the TCP traffic is confined to

the DEF link (Section 7.3.2). However, when DiversiFi is turned on, the NIC would be

switched between channels, so we need to examine the possibility of a performance impact

on traffic flowing on DEF .

The results from 26 sets of runs is shown in Figure 7.14, which plots the CDF of the difference

in TCP throughput between staying continuously on the primary link (DiversiFi is turned

off) and switching back-and-forth between the primary and secondary links (DiversiFi is

turned on). As these runs were interleaved in time i.e., a primary-only run followed by

a DiversiFi run, in some cases the primary-only run had a lower throughput than the
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Figure 7.14: Difference in throughput of a TCP flow, with and without DiversiFi.
DiversiFi has minimal impact on non-real-time streams.

DiversiFi run because of varying channel conditions. We find the points are distributed

almost evenly about the zero difference line, indicating that DiversiFi has little impact on

the throughput of the TCP flow. Indeed, over the 26 runs, the average TCP throughput

with DiversiFi turned on is 3.9 Mbps compared to 4.0 with it turned off, a difference of

only 2.5%.

Another point of concern is whether DiversiFi can potentially harm a flow when the

primary link is very good because of the periodic switches to the secondary link to keep the

secondary association alive. While it is true that these switches will not provide any benefits,

the incurred overhead is minimal. The switching latency to switch to the secondary link and

back to the primary link is 4.6 ms (2.3 ms × 2). This is non-negligible when compared to

typical VoIP packet spacings, which are usually in 10s of ms.

Thus, we conclude that DiversiFi provides significant gains for real-time VoIP flows while

imposing little overhead in terms of channel switching or unnecessary duplication, thereby

ensuring coexistence with competing, non-real-time traffic.
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Table 7.1: Delay in milliseconds to collect a buffered packet on the Secondary link for
two schemes. The additional delay introduced by the middlebox is acceptable for real-time
streaming applications.

Total Switching Network Queuing

Middlebox 5.2 2.3 2 0.9

Access Point 2.8 2.3 0.5 -

7.4.4 Middlebox Performance

We also evaluate the performance of network-side buffering at a middlebox compared to

buffering at the access point. We implemented the middlebox using MIT Click router

software V2.1 running on a quad-core i7 16GB RAM machine, and also setup an SDN switch

using Open vSwitch V2.0.2, and Floodlight controller V1.0 software. The DiversiFi client

library requests the middlebox to start replicating a specific real-time flow destined to the

same client, which triggers the middlebox to have a match-action rule for replication installed

in the SDN switch. The replicated packets are buffered in a shallow head-drop queue and

retrieved by the client whenever packet loss is detected.

One question is how much additional latency is entailed in the client contacting the middlebox

for missing packets as compared to retrieving these from the secondary access point. We

measured the delay between the reception of last packet on the primary link and the first

packet received on the secondary link across 100 runs of primary-to-secondary switches

Table 7.1 reports the total delay as well as the break up. Channel switching operations,

which includes sending power-save and wakeup messages, takes up an average latency of

2.3 plus 0.5 = 2.8 ms. An additional 5.2 minus 2.8 = 2.4 ms delay is introduced by the

middlebox, which is likely to be acceptable for real-time streaming applications.

To evaluate the scalability of the middlebox, we initiated concurrent real-time streams

numbering between 0 to 1000, where each stream gets replicated and sent to the middlebox.

We then measured the delay experienced by a Wi-Fi-client to retrieve a lost packet from the

middlebox. We find that the delay increases very gradually with an increasing load of flows.

At 1000 streams, the total delay, including switching overhead, increased by only 1.1 ms
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(a) (b)

Figure 7.15: Screenshots of the ffplay instances that uses (a) DiversiFi, and (b) only
the Primary connection. DiversiFi significantly improves the user-perceived quality of the
video.

compared to zero load, suggesting that a single middlebox can easily serve a large Wi-Fi

deployment.

7.4.5 Video Streaming Performance

To study how DiversiFi helps improve real-time video streaming, we implemented a video

streaming server using FFmpeg [3]. The server reads a video file stored on the server, encodes

it using the H.264 codec, and then transmits it as a UDP packet stream. We used a Windows

Surface Pro 2 laptop having an inbuilt 802.11abgn Wi-Fi NIC and an external TP-Link

TL-WDN3200 dual-band ABGN USB adapter. It used ffplay [4] to play the video streams

sent by the server.

The server duplicates each packet and sends one copy of each packet to the two Wi-Fi

connections of the client. The client runs two ffplay instances. One of them uses the default

setup where it plays the stream using the packets received only on the primary interface. The

other uses the DiversiFi setup and plays packets received on either of the Wi-Fi interfaces

and discards any packets that have already been played.
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While the client was playing the video stream, we started walking around the office floor

and Figure 7.15(a) shows a screenshot of the primary-only player at a point in time when

the primary interface was getting a weak signal from the access point it was connected

to. Figure 7.15(b) shows a screenshot of the DiversiFi player at the same time instant.

Comparing the two, it is evident that DiversiFi allows users enjoy a significantly better

streaming experience as it helps the client “repair” the stream by using the packets received

on the secondary interface.

7.5 Chapter Summary

Wi-Fi links are often a significant cause of poor performance for real-time interactive streaming

such as VoIP. DiversiFi helps improve performance for such streaming significantly using

cross-link replication of the stream over the multiple Wi-Fi links that are often available to a

client. This helps cut down the poor call rate for VoIP by 2.24×. We show how network-side

buffering allows DiversiFi to provide the benefits of replication to real-time flows, with

little duplication overhead and while ensuring coexistence with non-real-time applications.
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Chapter 8
Conclusion

8.1 Summary and Contributions

Wireless networks are increasingly becoming the norm of the mode of Internet access of

the majority of users thanks to the exponential proliferation of hand-held devices such as

smartphones and tablet PCs. Therefore, network service providers have to improve the

quality of the last-mile link so that users enjoy greater performance in their applications.

When users experience performance issues, they typically think their wireless network,

either Wi-Fi or cellular, is the root cause. This belief is anecdotal, and to verify this we

conducted wide-scale measurement studies to analyze to what extent the last-mile wireless

link becomes the bottleneck in real-world networks. As these studies highlighted, though

wireless networks do impose quality problems on applications, they are not the culprits all

the time. Therefore, we designed, implemented, and evaluated novel tools that can detect

bottlenecks and pathological conditions in both Wi-Fi and cellular networks.

A challenging class of applications that places stringent demands on the network is real-time

streaming applications. Our measurement studies showed that they exhibit poor performance

more often on wireless networks than on wired networks. To this end, we presented two

systems to alleviate issues imposed on real-time streams by Wi-Fi networks. First, we

introduced a novel bandwidth adaptation mechanism that improves the quality of streams by

adapting with accordance to the underlying Wi-Fi link conditions. Next, we presented a novel

system that increases the reliability of streams by leveraging cross-link packet replication

across multiple Wi-Fi connections.
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We summarize the contributions made in this dissertation as follows.

Studying the Performance of Wireless Networks in the Wild

We first presented empirical data to show to what extent the last-mile wireless links can

affect real-time data streams, such as VoIP calls in the wild. The global measurement studies

we conducted showed that both cellular and Wi-Fi links can be the bottleneck source and

degrade the quality of data streams significantly. We presented an analysis of a large dataset

we obtained from one of the world’s largest VoIP service providers to reinforce this finding

further. For example, it showed the relative difference of poor quality calls placed on Wi-Fi

networks and LAN networks is about 46%.

However, the studies we conducted also showed that the last-mile wireless link is not the

source of quality degradations all the time. In fact, in our cellular measurement study, we

found that in all the bottlenecked network paths we studied, only 68.9% and 25.7% were

bottlenecked by 3G and LTE networks, respectively, thus highlighting the need for a nuanced

approach in determining the location of bottlenecks in networks.

Detecting Bottlenecks in Cellular Networks

As the last-mile link cannot always be blamed for quality degradations, we presented novel

tools that are capable of detecting bottlenecks and pathological conditions in wireless

networks. First, we designed, implemented and evaluated a technique named QProbe that

can detect bottlenecks in cellular networks. QProbe exploits the unique characteristics of

PF schedulers to perform its detection. Through simulations, controlled experiments and

a large measurement study comprising over 600 users across 33 countries, we showed that

QProbe can locate bottlenecks with > 85% accuracy.

Detecting Bottlenecks in Wi-Fi Networks

We designed, implemented and evaluated a suite of detectors named Kwikr that are can detect

various pathological conditions in Wi-Fi networks such as congestion, mobility, handoffs,
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and weak-links, which cause the Wi-Fi link to be bottlenecked. We introduced the novel

Ping-Pair technique that detects the onset and the conclusion of congestion periods in the

Wi-Fi network by pinging the access point using carefully crafted ICMP ping packets. We

used passively observable and simple to obtain signals like RSSI, BSSID to detect the other

pathological conditions. Our detectors can be deployed on off-the-shelf devices and requires

no modifications in either the device or the access point, and hence boasts practicality that

is non-existent in the state-of-the-art. Through experimental studies, we showed that Kwikr

can detect the aforementioned bottleneck conditions with > 90% accuracy.

Bandwidth Adaptation Using Wi-Fi Hints

Bandwidth adaptation is a critical component in real-time streaming applications that help

them deliver streams at the highest quality that the network can support. However, as these

techniques operate end-to-end, they are oblivious to bottleneck conditions that might be

present in Wi-Fi networks. This causes their adaptation decisions to be suboptimal.

We presented a novel user-level module named KwikrAdapt that continuously observes the

ongoing situation in a Wi-Fi link via the Wi-Fi hints provided by Kwikr and uses them to do

better bandwidth adaptation of streams. Through empirical studies conducted in different

Wi-Fi networks and settings, we showed that by using KwikrAdapt, real-time streaming

applications can operate at relatively higher data rates when the network is congested, reduce

the worst packet loss percentage by ∼ 70% during mobile periods, and reduce the time

required to ramp up after a handoff by 3.1×.

Robust Real-Time Streaming via Cross-Link Packet Replication

Finally, we presented a system named DiversiFi that provides a significant quality improve-

ment of real-time data streams by replicating packets across multiple Wi-Fi connections.

We showed that this approach provides better performance in real-time streams rather than

selecting the best link to connect to, which is the default process of establishing a Wi-Fi

connection. We presented several architectural alternatives that can reap the benefits of

cross-link packet replication across two simultaneous Wi-Fi connections with less overhead.
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Through experiments conducted on an end-to-end system implementation, we demonstrated

that DiversiFi is capable of reducing poor quality data streams by 2.24×, while limiting

the wasteful packet duplication to just 0.62%. We also showed that DiversiFi coexists well

with non-real-time data streams, such as TCP flows.

8.2 Future Work

The following are some of the possible extensions and future work of the work presented in

this dissertation.

On-Demand Duplication in DiversiFi. The DiversiFi implementation we presented

always duplicates packets in the WAN path. It switches to the secondary Wi-Fi link only if

a packet does not arrive on the primary Wi-Fi link (and to keep the association alive), which

helps cut down the over-the-air duplicate transmissions significantly. It would be beneficial

if the over-the-WAN duplication can be reduced by implementing a switching mechanism

through which the sender can either switch on or off duplication on-demand. It would be

challenging to design such switching policies because the receiver has to determine when it

needs duplicates and when it doesn’t. For example, if the process is reactive, the receiver

will not be able to recover any lost packets using the secondary Wi-Fi connection. Therefore,

the receiver should predict the occurrence of a loss event, and request duplicates in advance.

Developing such techniques will be an interesting research problem.

DiversiFi with Cellular Connections. Prior work has looked at using TCP multi-path

solutions over simultaneous cellular and Wi-Fi connections to increase the throughput of

a flow. It is interesting to study whether we can follow a similar technique to increase the

robustness of real-time streams. In DiversiFi, we used two Wi-Fi connections in parallel,

which imposes deployability constraints as such a scheme is hard to realize without the

modification of devices or networks. However, using a mix of cellular and Wi-Fi connections

is already prevalent in modern devices, and hence targeting such a scheme would be beneficial

in terms of practicality. It is interesting to study whether we can achieve the same robustness
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of streams by using cross-link packet replication across Wi-Fi and cellular connections and

what the overhead will be in doing so.

Kwikr Enhancements. The Kwikr detector suite we presented in this dissertation is

currently capable of detecting four pathological conditions: congestion, mobility, handoffs,

and weak-links. It can be enhanced by adding more detectors to detect other conditions

like hidden terminals, non-Wi-Fi interference (e.g., caused by microwave ovens, cordless

phones, etc.) and co-channel interference. This is not as straightforward as one might think

if the practicality of the proposed solutions are important. State-of-the-art detectors in the

literature either use special hardware or run the Wi-Fi interface in monitor mode to detect

these pathologies.

Skype Integrations. We are collaborating with the Microsoft Skype team to integrate

some of our work in the Skype application. In particular, we are interested in studying the

benefits of integrating KwikrAdapt in Skype’s bandwidth adaptation algorithm. We are

also conducting a trial of DiversiFi in the Microsoft Redmond and Bangalore campuses to

study its benefits, with the end-goal of integrating it in Skype such that it would come into

effect on devices that meet DiversiFi’s hardware requirements.

Combining KwikrAdapt and DiversiFi. As Kwikr and DiversiFi are two orthogonal

approaches that were designed to alleviate wireless bottlenecks to improve the reliability and

robustness of real-time streams, it is interesting to study the benefits that can be yielded

by combing the two systems. There are multiple advantages in doing so. For example, in

the presence of congestion, real-time streaming applications can use KwikrAdapt to achieve

a higher data rate on the primary Wi-Fi link while retrieving lost packets through the

secondary Wi-Fi link via DiversiFi. Similarly, DiversiFi can be used to obtain packets

that are lost during a handoff on the primary Wi-Fi link, while using KwikrAdapt to ramp

up the data rate faster on the primary when the handoff completes.
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Appendix A
Finding the Hop Count of a Network Path

The design of the QProbe algorithm involves finding the number of hops between the server

and the client, so that the TTL of the load packets can be set to expire before they enter

the cellular network (Section 4.3). To achieve this, the client cannot simply do a traceroute

to the server because of several reasons. First, the client’s traceroute will find the number of

hops in the uplink direction whereas we want to find the number of hops in the downlink

direction (the uplink and downlink paths can be asymmetric). To overcome this, the server

can do the traceroute, but as some subnets in the Internet completely block ICMP messages,

traceroute might not be usable. Therefore, instead of using traceroute, we design a simple

but elegant algorithm that the client can run to find the number of hops in the downlink

direction from the server to the client.

Algorithms A.1 and A.2 summarize the code we run at the server and the client, respectively.

The client first sends a “start” message to the server. The server then sends packets with

TTL values from 1 to 64, in powers of 2. As the IP header is stripped off by the time a

packet reaches the application layer, the server sets the TTL of the IP header in plain text

in the packet payload. The client then reads through the received packets’ TTL values and

sends the minimum TTL value it received to the server. The correct number of hops is then

between this minimum value, say min_ttl, and min_ttl ÷ 2. Therefore, the server sends

packets having TTL values starting from min_ttl ÷ 2 to min_ttl in increments of 1 to the

client. The client again reads through the received packets and finds the minimum value

that it received. This value is the number of hops between the server and the client in the

downlink direction, provided that packet losses did not occur.
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Algorithm A.1: Find_Hops: The Server-Side Algorithm.

1 Open UDP socket s on port p
2 while true do
3 message, client_addr ← s.receive()
4 if message = “start” then
5 ttl← 1
6 while ttl < 65 do
7 s.setTtl(ttl)
8 payload← ttl.toString()
9 s.sendTo(client_addr, payload)

10 ttl← ttl × 2
11 end
12 end
13 else
14 previous_ttl← message.toInt()
15 ttl← previous_ttl ÷ 2
16 while ttl < previous_ttl do
17 s.setTtl(ttl)
18 payload← ttl.toString()
19 s.sendTo(client_addr, payload)
20 ttl← ttl + 1
21 end
22 end
23 end
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Algorithm A.2: Find_Hops: Client-Side Algorithm.

Output : Number of hops between the server and the client

1 Open UDP socket s
2 s.setTimeout(5) // Times out after 5 seconds

3 server_addr ← (server_ip, p)
4 payload← “start”
5 s.sendTo(server_addr, payload)

6 minimum_ttl← 64
7 while s does not timeout do
8 message, addr ← s.receive()
9 ttl← message.toInt()

10 if ttl < minimum_ttl then
11 minimum_ttl = ttl

12 end
13 end

14 payload← minimum_ttl.toString()
15 s.sendTo(server_addr, payload)
16 while s does not timeout do
17 message, addr ← s.receive()
18 ttl← message.toInt()
19 if ttl < minimum_ttl then
20 minimum_ttl← ttl

21 end
22 end
23 return minimum_ttl
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