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Summary 

Silicon (Si) based tandem solar cells are promising in achieving the next quantum 

leap in flat-plate PV efficiency in a cost-effective way. While much efforts have been 

spent on their efficiency improvement under standard testing conditions, little 

investigation has been carried out on their realistic outdoor energy yield potentials. 

Also, accurate energy yield calculation methods that take secondary effects (such as 

the actual solar spectrum) into account are not extensively developed in the literature, 

despite the fact that they are important in the design of tandem solar cells and modules. 

This PhD thesis evaluates the outdoor energy yield potential and loss characteristics in 

two locations (Singapore and Denver) representing very different climates, using an 

elaborate energy yield calculation method that employs physical device simulation and 

detailed data on operating conditions. Measured solar irradiance levels, solar spectra, 

and air temperature data are processed and analysed. Solar cell outputs under different 

illumination conditions and temperatures are modelled for several III-V-on-Si (III-V/Si) 

tandem configurations. Based on these results, the annual energy yields are calculated 

and the outdoor losses are quantified. It is found that the more accurate yield calculation 

method can predict outdoor efficiency losses better than crude estimations, which 

produce about relative 20% to 60% error. In addition, the irradiance level, spectral 

composition and operating cell temperature are observed to be significantly different 

for the two investigated locations. This results in different predicted tandem solar cell 

performances, with losses in outdoor efficiency in Singapore about twice as much as 

those in Denver. Overall, the investigated III-V/Si tandem solar cells show more 

spectrum sensitivity (which lead to performance ratio drop as much as 5% absolute in 
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Singapore) but better temperature tolerance. In both locations, the performance ratios 

of III-V/Si tandem solar cells are expected to be as good, or even better, than those of 

conventional single-junction Si solar cells.  
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Chapter 1. Introduction  

1.1. Motivation  

Solar energy is one of the most promising sources of clean energy that can 

mitigate the risks of global climate change. Over the past few decades, solar cell 

efficiencies have increased remarkably [1]. Together with rapidly dropping costs, the 

global PV installations grew by more than 30 GW per year in recent years [2].  Silicon 

(Si) is one of the most abundant elements on Earth. Solar cells made from Si wafers 

dominate today’s solar market, with a share of over 90% [3]. Efficient solar cells are 

also made from other materials such as gallium arsenide (GaAs), cadmium telluride 

(CdTe), and copper indium gallium diselenide (CIGS), in the form of thin-film solar 

cells. Most of these solar cells for terrestrial applications use non-concentrated light, 

and are also called 1-Sun or flat-plate solar cells. Another design that uses lenses or 

mirrors to concentrate sunlight onto small high-efficiency solar cells is called 

concentrator or concentration photovoltaics (CPV), and accounts for only a small 

fraction of total PV deployment. In most flat-plate applications, multiple solar cells are 

connected and encapsulated into a solar module, which is the basic unit for PV systems. 

The costs for solar cells or modules are commonly measured in dollar per watt peak 

($/Wp), which is the manufacturing costs divided by the cell (or module) power under 

1-Sun intensity (namely 1000 W/m2, the typical intensity of sunlight at mid-day). At 

present, flat-plate solar cells and modules are comparatively cheaper and more versatile 

than their CPV counterparts [4]. The module costs have been dropping as installation 

capacities increased. Figure 1.1.1 illustrates this trend of declining module costs, which 
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is often regarded as the learning curve of the PV industry [5]. As a result, the portion 

of the solar cell related costs in the total PV system cost decreased significantly. Area 

related costs and costs associated with all other components necessary to build a PV 

system, which are lumped into the ‘balance of system’ (BOS) costs, now account for 

over half of the total cost [6, 7]. Another important measure of costs is Levelised Cost 

of Electricity (LCOE) [8], which is the sum of costs over the entire PV system lifetime 

over the total electrical energy produced over the lifetime. Module efficiency increases 

can effectively lower the total system cost as well as the LCOE, by enabling more 

energy to be produced per unit area. Thus, further solar cell efficiency increases are 

needed to make PV more cost competitive.  

 

Figure 1.1.1: Learning curve of PV module sales price as a function of cumulative PV module 

shipments. Figure adopted from ITRPV 2016 [5].  
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However, the efficiencies of traditional flat-plate solar cells are plateauing [9]. 

These traditional flat-plate solar cells mostly make use of only one p-n junction (single-

junction solar cells). The most efficient single-junction solar cells, such as the world 

record 25.6% Si solar cell [10] and the record 28.8% GaAs solar cell [11], are already 

close to their theoretical efficiency limits of around 30% [12], with very limited room 

for further improvements. Advanced solar cell concepts are required to surpass the 

efficiency limits of single-junction solar cells. One approach is the use of multi-junction, 

or tandem, solar cells. Tandem solar cells make use of more than one p-n junction, and 

in this way utilize the solar spectrum more efficiently by reducing losses due to 

thermalisation and incomplete absorption. In fact, tandem solar cells with around 45% 

efficiency under concentration have already been demonstrated [9]. However, these 

cells use expensive substrates and expensive material growth methods, and thus their 

use is limited to CPV or space applications. One way to reduce the cost of tandem solar 

cells, while still achieving high efficiency, is to use Si as the substrate and an active 

sub-cell. Si is a cheap material, and Si PV is a mature technology. Combining Si with 

thin-film materials into a tandem configuration is, thus, a potentially cost-effective way 

to realize highly efficient solar cells and modules. Recently, interest in Si based tandem 

solar cells has been growing, and rapid progress has been made. However, the realistic 

outdoor performance of flat-plate Si based tandem solar cells has not been investigated. 

Previous studies on the outdoor performance of other single-junction solar cells, or 

CPV multi-junction cells, are not directly applicable, for two main reasons: firstly, flat-

plate tandem solar cell behaviour is different from that of other types of solar cells. For 

instance, monolithically integrated tandems tend to be much more sensitive to spectrum 
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variations than single-junction solar cells due to the current matching requirement of 

the sub-cells [13]. The likely difference in sub-cell combinations, cell architectures, 

integration schemes and module designs also distinguish them from traditional CPV 

multi-junction cells. Secondly, the outdoor operation of flat-plate tandem solar cells 

differs significantly from that of CPV multi-junction cells. While in CPV applications, 

solar cells only collect the direct sunlight, flat-plate solar cells also collect indirect and 

diffuse sunlight. This makes them more suitable for locations with cloudy climates, 

such as the tropics. Therefore, it is important to develop an energy yield calculation 

methodology that is more suitable for flat-plate tandem solar cells, and to study their 

outdoor performance by modelling their behaviour under different operating conditions. 

This study is also important for determining their economic viability in different areas 

of applications, as well as for choosing the appropriate tandem configuration that 

maximizes yield under actual operating conditions.  

In this thesis, the term tandem solar cell, by default, refers to flat-plate tandem 

solar cells unless otherwise stated.  

 

1.2. Objectives  

This work aims to study the realistic energy yield potential and outdoor 

performance of flat-plate Si based tandem solar cells in different climates. More 

specifically, the energy yield of several III-V-on-Si tandem solar cells (hereafter 

referred to as III-V/Si tandem) are calculated for the moderate climate of Denver (USA) 

and the tropical climate of Singapore. Only III-V top cells are considered because of 
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their well-known material properties and ease of device simulation. However, they may 

also shed insight on the behaviour of tandem solar cells with top cells made from other 

materials (such as perovskites).  

The main objectives of this thesis were:  

 Develop yield calculation methods that are suitable for flat-plate Si based 

tandem solar cells, in particular by taking into account spectral composition of 

incoming sunlight and rapid fluctuations of illumination conditions caused by 

cloud movements.  

 Model tandem solar cell behaviour under various conditions using physical 

device simulation and empirical models.  

 Calculate the potential energy yield of various III-V/Si tandems. Compare their 

outdoor performance, and analyse the losses under outdoor conditions by 

comparing to their efficiencies under standard testing conditions.  

To achieve these goals, outdoor measured solar irradiance and spectrum data with 

high temporal resolution were obtained and analysed. Detailed device behaviour was 

modelled by coupled optical-electrical device simulation. Special effort was taken to 

incorporate spectrum information into yield calculations in a fast and computationally 

efficient way. In addition, several variations of yield calculation methods were 

compared and evaluated to reveal the necessary refinements for yield analysis of flat-

plate tandem solar cells.  
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1.3. Thesis structure 

The main body of this thesis is organized as follows: 

Chapter 2 gives the background of the main subject matter that this thesis is 

concerned with. It starts by describing the basics of solar cell operation, and the multi-

junction concept as a promising strategy to surpass the efficiency limits of single-

junction solar cells. Recent developments in Si based tandem solar cells are reviewed 

to demonstrate the intense research interest and encouraging progress in this area. This 

will be followed by a detailed introduction to the topic of energy yield analysis, 

including the key questions of interest and a review of current prevailing practices.  

Chapter 3 to Chapter 6 aim to answer some key questions of energy yield studies, 

namely:  

1. What are the outdoor operating conditions experienced by flat-plate tandem 

solar cells? 

2. What is the device performance under these conditions?  

3. What are the energy yields and actual outdoor power conversion efficiencies? 

4. What are the losses, and how can they be mitigated?  

Chapter 3 addresses question 1, and describes the realistic operating conditions 

that flat-plate tandem solar cell modules may experience during outdoor operations in 

Singapore and Denver. This chapter also gives some background information on the 

experimental set-ups for solar irradiance measurement. The instrument specifications 

and the collected data used for this work are introduced. Basic statistical analysis will 

be performed on these data.  
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Chapter 4 focuses on device modelling to address question 2. This chapter 

outlines the simulation framework and the PC1D physical device models for III-V and 

Si sub-cells. Tandem solar cell efficiencies under standard testing condition, as well as 

under various operating conditions as identified in Chapter 3 are obtained.  

Chapter 5 looks specifically at the energy yield calculation methodology for flat-

plate tandem solar cells. This chapter outlines the fast yield calculation algorithm 

developed in this thesis, which can incorporate various spectra into yield analysis in an 

efficient way. Then, a methodology for outdoor loss analysis is proposed. Subsequently, 

comparisons are made between different yield calculation methods using illumination 

condition inputs with different levels of detail and accuracy. Through this exercise, it 

is shown how subtleties in the temporal resolution and accuracy of illumination spectra 

affect the calculated energy yield in the analysis of outdoor performance of flat-plate 

tandem solar cells. This sheds light on what the necessary refinements to yield analysis 

are in order to reliably calculate the yield of flat-plate tandem solar cells.  

Chapter 6 addresses questions 3 and 4. This chapter presents energy yield 

calculation results for several III-V/Si tandems. Both time resolved and annual energy 

yields are calculated. An analysis is performed to break down the outdoor losses due to 

different loss mechanisms. As a result, the implications on the potential performance 

ratios of III-V/Si tandems can be quantified. Then, attempts are made to utilize these 

results to inform tandem solar cell design and optimization.  

Finally, the conclusion chapter (Chapter 7) gives a summary of the main findings 

and contributions of this work. Some potential future work is also outlined.  
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Chapter 2. Backgrounds of Si based tandem solar 

cells and energy yield calculations 

This chapter reviews the basics of tandem solar cells and the practice of energy 

yield analysis. An understanding of solar cell operation characteristics is important in 

modelling solar cell behaviour under changing operating conditions.  

Multi-junction (tandem) solar cells for flat-plate terrestrial applications have 

additional design dimensions compared to single-junction solar cells. As a result, 

tandem solar cell response under changing operating condition is more complicated. 

This necessitates a sophisticated energy yield analysis in order to adequately predict 

the realistic energy generation by tandem solar cells. A brief introduction of solar cell 

operation principles and the multi-junction concept will be given in Section 2.1. Recent 

Si based tandem solar cell developments will be reviewed in Section 2.2. This will be 

followed in Section 2.3 by a definition of energy yield analysis and a review on its 

prevailing practices. Specific considerations will be given with regard to flat-plate 

tandem solar cells.  

 

2.1. Basics of solar cells and the multi-junction concept 

2.1.1. Principles of solar cell operation  

Solar cells are devices that directly convert energy from sunlight into electrical 

energy. In principle, photovoltaic energy conversion can be realized by a variety of 
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physical processes, with the use of a variety of materials. The essential photovoltaic 

requirement is the existence of selective contacts, one to the excited states to extract 

excited electrons, and the other to the ground state to replenish them [14]. In practice, 

nearly all solar cells nowadays are made of semiconductor devices with a p-n junction. 

The general p-n junction device structure is shown in Figure 2.1.1 [15]. In these devices, 

electron-hole pairs are generated by absorbed photons, where electrons are excited 

from the valence band of the semiconductor to the conduction band. These electron-

hole pairs are separated by the bandgap, and need to “survive” (stay separated) for a 

long enough time without recombining, so that they can move through the material and 

be collected at the respective contacts, to drive the external load. This is facilitated by 

the n- and p-type doped regions, which suppress the concentration of the minority 

carriers, thus allowing only one type of carrier to reach the contact. The built-in electric 

field across the p-n junction helps to sweep minority carriers across the p-n junction, 

into the thin emitter and the thicker base region, respectively.  
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Figure 2.1.1: General structure of a n-p solar cell as illustrated in PV Education [15]. Electron-

hole pairs are generated by sunlight. The generated electrons and holes are separately collected 

by the front contact and the rear contact to drive the external circuit.  

 

The current-voltage (I-V) characteristics of solar cells can be represented by an 

equivalent circuit model consisting of a current source, one or several diodes, a parasitic 

series resistance and a parasitic shunt resistance element (Figure 2.1.2) [3]. The 

equation describing the I-V characteristics for a two-diode representation is given as:  

𝐼(𝑉) = 𝐼𝑆𝐶 − 𝐼𝑜1 (𝑒
𝑞(𝑉+𝐼𝑅𝑆)

𝑘𝑇 − 1) − 𝐼𝑜2 (𝑒
𝑞(𝑉+𝐼𝑅𝑆)

2𝑘𝑇 − 1) −
𝑉+𝐼𝑅𝑆

𝑅𝑆ℎ
 (Eq. 1) 

where 𝐼 and 𝑉 are the output current and voltage respectively, 𝐼𝑆𝐶  is the short-

circuit current, 𝐼𝑜1 is the dark saturation current due to recombination in the quasi-
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neutral regions of the p-n semiconductor (diode 1), and 𝐼𝑜2 is the dark saturation current 

due to recombination in the space-charge region (diode 2). The currents through the 

two diodes can be regarded as leakages in the semiconductor due to recombination. 

The lower they are, the better the solar cell efficiency.  

 

Figure 2.1.2: Equivalent circuit model of a solar cell. After Ref. [3].  

 

The short-circuit current 𝐼𝑆𝐶  depends on the light absorption and charge carrier 

collection of the solar cell, as well as the incoming solar spectrum and its intensity. The 

solar cell efficiency for 1-Sun applications is commonly rated and compared under the 

standard testing condition (STC) [16] (see Section 2.3.1 for more details). The spectrum 

selected for STC is the ASTM1 G173-03 Reference Spectrum (International standard 

ISO 9845-1, 1992) [17], commonly referred to as the AM1.5G spectrum (shown in 

Figure 2.1.3). The absorption and collection characteristics can be described by the 

                                                 

1  An international standards organization, acronym stands for “American Society for Testing and 

Materials”. 
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quantum efficiency (QE) of the solar cell, which is the ratio of the number of collected 

carriers to the number of photons in a certain wavelength (or energy) interval [15]. 

Alternatively, it can be described by a similar concept called the spectral response (SR), 

which is the ratio of the generated current to the power incident on the solar cell [15]. 

As an illustration, the relative spectral responses (obtained by scaling of the measured 

SRs so that the maximum SR value is unity) of different PV technologies (multi-

crystalline Si, amorphous Si, CdTe and CIGS) [18, 19] are shown in Figure 2.1.3. 

Usually, the SR (or QE) is negligible for photon energies below the bandgap of the 

semiconductor. In addition, the QE is not unity for all photons having energies above 

the bandgap of the semiconductor. Therefore, the photogenerated current of the solar 

cell is influenced by the spectral composition of the incoming sunlight.  

 

Figure 2.1.3: Relative spectral responses of various PV technologies (multicrystalline Si, 

amorphous Si, CdTe and CIGS), measured under STC temperature (25°C). The AM1.5G 

spectrum (grey) is also shown for reference.  
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The open-circuit voltage of the solar cell depends on the amount of current 

generated (i.e., the injection level in the bulk of the solar cell), the shunt resistance, the 

amount of charge carrier recombination (represented by the diode currents), and the 

operating temperature. Neglecting the effects of the parasitic resistances and diode 2, 

the open-circuit voltage can be approximated as [3]:  

𝑉𝑂𝐶 ≈
𝑘𝑇

𝑞
ln (

𝐼𝑆𝐶

𝐼𝑜1
)    (Eq. 2) 

As can be seen, the open-circuit voltage depends roughly logarithmically on 𝐼𝑆𝐶 , 

and thus the incoming light intensity. It is also strongly influenced by the cell 

temperature. Besides the explicit dependence on 𝑇  as shown in Eq. 2, the dark 

saturation current 𝐼𝑜1  (as well as 𝐼𝑜2 ) also depends on temperature, due to the 

dependence of the intrinsic carrier concentration (𝑛𝑖 ) on temperature. Overall, 𝑉𝑂𝐶 

drops when the cell temperature increases. As a result, solar cell efficiencies generally 

drop with increasing temperature. More detailed treatment on the temperature 

behaviour of solar cells can be found in [20] and [21].  

 

2.1.2. Multi-junction solar cells: Going beyond the Shockley-Queisser limit 

2.1.2.1. Concept introduction 

Single-junction solar cells, which consist of only one p-n junction, have an 

efficiency limit that is commonly referred to as the Shockley-Queisser limit. Based on 

the detailed balance method proposed by Shockley and Queisser [22], the limiting 

efficiency for single-junction solar cells as a function of their bandgaps, under the 
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standard AM1.5G spectrum, can be calculated. The maximum efficiency is slightly 

above 30% [12] and is reached for a bandgap of about 1.3 eV. The peak is quite broad, 

ensuring that the efficiency limits of c-Si (1.1 eV) and GaAs (1.4 eV) are quite close to 

the maximum 1-Sun efficiency limit. State-of-the-art Si and GaAs solar cells come 

quite close to their Shockley-Queisser limits [10, 11], and thus there is very limited 

room for further efficiency improvements of these PV technologies.  

One way of overcoming the Shockley-Queisser limit is to employ the multi-

junction (also called tandem) configuration. In this configuration, multiple p-n 

junctions made from materials of different bandgaps are arranged so that different 

portions of the incoming spectrum fall on different sub-cells. This concept is called 

spectrum splitting. It can take a stacked or spatial configuration, see Figure 2.1.4. With 

spectrum splitting, each sub-cell absorbs the portion of the solar spectrum which 

corresponds best to its bandgap. In this way, higher energy photons are absorbed in 

higher-bandgap materials, thus reducing the thermalisation loss (which is the loss when 

excited charge carriers lose their excess energy to phonons when they relax back to the 

respective band edge). Hence, a higher overall voltage can be obtained. Therefore, a 

multi-junction solar cell is able to make better use of the solar spectrum and achieve a 

higher efficiency than a single-junction cell.  

The sub-cells can be connected in series or stay independent. For instance, a 

double-junction solar cell can form a 2-terminal (2T) or a 4-terminal (4T) configuration, 

as illustrated in Figure 2.1.5. More than 4T configurations are also possible for tandem 

solar cells with three or more junctions, but this case will not be considered in this 

thesis. For 2-terminal tandem solar cells, the same amount of current flows through all 
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series connected sub-cells. It is required that the sub-cells are of the same polarity, and 

that the photogenerated currents of all sub-cells are closely matched. Otherwise, the 

sub-cell that produces the lowest current will limit the current of the entire device, and 

the overall efficiency will suffer. This places stringent constraints on the choice of 

bandgaps and thicknesses of the sub-cells, and at the same time makes the 2T tandem 

solar cell very sensitive to spectrum changes. In contrast, there is no such constraint in 

4-terminal devices, as power is independently drawn from each sub-cell. However, this 

configuration is hard to realize monolithically. Also, more complicated tandem cell 

structures, device processing, and electronics are likely needed.  

 

Figure 2.1.4: Illustration of the spectrum splitting concept. Spectrum splitting can be done via 

(a) a spatial configuration or (b) a stacked configuration. The distribution of photons in the 

standard solar spectrum is shown at the top. Different portions of light are absorbed in sub-

cells with different bandgaps.  
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Figure 2.1.5: Illustration of 2-terminal (2T) or 4-terminal (4T) configuration for connecting the 

sub-cells in a tandem solar cell.  

 

2.1.2.2. Efficiency potentials 

Using the detailed balance method, the theoretical efficiency limit of a double-

junction tandem solar cell is calculated in this thesis using Mathematica. The 

calculation makes certain assumptions on the nature and operation of the solar cell. 

These are: 

 Radiative recombination is the only recombination mechanism present in the 

solar cell; 

 One photon generates one electron-hole pair; 

 Carrier mobility is assumed to be infinite, therefore no ohmic loss is present 

and quasi-Fermi level splitting is constant throughout the device.  

The method does not consider specific material properties other than the bandgap, 

and is, thus, very general. It should be noted that numerous studies of tandem solar cell 



17 

efficiency limits already exist in the literature [23-26]. What is presented here is a 

recalculation based on own models and assumptions of optical absorptions.  

Three cases were considered here: 

a) 4-terminal contact scheme:  

The two sub-cells are independently connected, and power is separately 

drawn from the two sub-cells. No current matching is required, and each sub-

cell completely absorbs photons with energy above its bandgap.  

b) 2-terminal contact scheme without top cell thinning:  

The two sub-cells are series connected, and it is assumed that the top cell 

has infinite thickness and absorbs all photons with energy above its bandgap. 

The bottom cell absorbs what is left.  

c) 2- terminal contact scheme with top cell thinning: 

The two sub-cells are series connected, and the thickness of the top cell is 

allowed to be reduced so that additional light can pass through to the bottom 

cell. In this way current matching is always ensured. The amount of optical 

absorption in each sub-cell is calculated using the transfer matrix method 

(TMM) [27]. However, it should be noted that sometimes this may result in an 

unrealistically thin top cell. Another option to achieve current matching is to 

reduce the top cell area, a concept termed “areal current matching” [28] or 

“step-cell” [29].  

Using the AM1.5G solar spectrum, the efficiency limits as a function of the 

bandgaps of the top and bottom cells are obtained for the three cases mentioned above. 
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Figure 2.1.6 shows the contour plot of efficiency limits for 4-terminal contact scheme 

(case a). Figure 2.1.7 and Figure 2.1.8 show the efficiency limits for 2-terminal contact 

scheme without and with top cell thinning (cases b and c). The global maximum and 

local maximum close to the global maximum are indicated by plus signs. For the Si 

bottom cell bandgap of 1.1 eV, the ideal top cell bandgap is around 1.7 eV, giving an 

efficiency limit of around 45% for both configurations (2T, 4T). For other bandgap 

combinations, the maximum efficiency attainable drops quickly when moving away 

from this optimum, if there is no top cell thinning (Figure 2.1.7). However, the bandgap 

requirements are greatly relaxed for 4T and 2T with top cell thinning. For example, one 

promising top cell candidate is GaAs (1.42 eV). Without top cell thinning, the highest 

efficiency attainable is 23%. However, its 4T efficiency limit hits 42%, which is not 

much lower than that of the ideal bandgap combination. With top cell thinning, its 2T 

efficiency limit is also very high (39%), close to that of the 4T configuration. In this 

case careful design is needed to ensure current matching.  
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Figure 2.1.6: Theoretical dual-junction efficiency limit for 4-terminal configuration (case a). 

The global maximum occurs at the bandgap combination of 1.73 eV and 0.95 eV. For the 

bandgap combination of GaAs (1.42 eV) and Si (1.1 eV), the efficiency limit is 42%. 
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Figure 2.1.7: Theoretical dual-junction efficiency limit for 2-terminal configuration without 

top cell thinning (case b). The global maximum occurs at the bandgap combination of 1.6 eV 

and 0.93 eV. Another local maximum with nearly as high efficiency occurs at the combination 

of 1.73 eV and 1.13 eV. Efficiency drops off rapidly as the top bandgap decreases towards the 

bottom bandgap. For the bandgap combination of GaAs (1.42 eV) and Si (1.1 eV), the 

efficiency limit is 23%. 
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Figure 2.1.8: Theoretical efficiency limit for 2-terminal configuration with top cell thinning to 

enable current matching (case c). The global maximum occurs at the bandgap combination of 

1.6 eV and 0.93 eV. Another local maximum with nearly as high efficiency occurs at the 

combination of 1.73 eV and 1.13 eV. For the bandgap combination of GaAs (1.42 eV) and Si 

(1.1 eV), the efficiency limit is 39%. 

 

2.1.2.3. Multi-junction solar cells for concentrated PV applications 

The best multi-junction solar cells available to date are made from monolithic 

stacks (i.e. 2T) of III-V materials, or III-V materials on Ge substrates, such as the one 

shown in Figure 2.1.9. Substantial research efforts have been put into developing the 

technology to grow and fabricate III-V multi-junction cells in the past few decades [30]. 

The highest efficiency is now around 45% for III-V material stacks under concentrated 

illumination [9]. Commercially available III-V multi-junction solar cells are made by 
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epitaxially growing latticed matched III-V materials on Ge substrates in the 

GaInP/Ga(In)As/Ge configuration, forming a monolithic tandem stack. The efficiency 

potential demonstrated by these III-V multi-junction cells is encouraging. The 

efficiency record is expected to reach 50% in the future [31].  

 

Figure 2.1.9: Schematic of a typical GaInP/Ga(In)As/Ge multi-junction solar cell. The sub-

cells are series connected by tunnel junctions. A/R represents antireflection coating. Figure is 

adopted from [32].  

However, one important drawback of III-V multi-junction solar cells is their high 

cost. This is due to both the employment of expensive Ge or GaAs substrates as well 

as the low throughput of growing III-V materials [33]. This limits their applications to 

high-end space or concentrated PV (CPV) systems. Moreover, CPV only uses the direct 

component of sunlight, and is therefore only suitable for places with mostly clear sky 

conditions. Tropical regions, such as Singapore, have frequent cloud coverage, fast 

cloud movements, and a high share of diffuse light, rendering CPV an inappropriate 

option. Therefore, flat-plate PV systems with cost-effective high-efficiency solar cells 

are required for such applications.  
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2.2. Overview of Si based tandem solar cells 

Monocrystalline or multicrystalline wafer-based Si solar cells are mature and 

commercially successful technologies that dominate the market today. As balance of 

system (BOS) and area related costs now take up a large portion of the total system 

cost, improving the solar cell efficiency has a great impact on reducing the final 

Levelised Cost of Electricity (LCOE). Therefore, integrating Si with higher-bandgap 

materials into a high-efficiency tandem solar cell is a topic of great interest to the PV 

community. Perovskites are presently hot candidates for top cell materials, with 

efficiencies improving at a breath-taking pace, but still have serious degradation issues 

[9, 34-36]. Perovskite-on-Si, therefore, represents a low-cost approach with moderate 

efficiency potential and uncertain reliability. III-V materials as top cells are also very 

promising. Compared to Ge or GaAs substrates, Si is much cheaper and more widely 

available. Furthermore, its lighter weight, higher thermal conductivity and stronger 

mechanical strength render it a better substrate [37]. Depending on the choice of III-V 

materials for the top cells, its bandgap (1.12 eV) may confer an additional efficiency 

gain compared to Ge [38]. In addition, common III-V solar cells, such as GaAs or 

InGaP solar cells, are highly efficient and reliable [11, 39]. Therefore, III-V-on-Si 

tandem solar cells (III-V/Si tandems) represent a high-efficiency but high-cost 

approach.  

There are several approaches for making III-V/Si tandems:  

 Direct epitaxial growth of III-V on Si;  

 Wafer bonding of epitaxial lift-off III-V top cell(s) to Si bottom cell; 
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 Mechanical stacking of top and bottom cells.  

Historically, considerable efforts have been made to directly (i.e., hetero-

epitaxially) grow III-V solar cells on Si substrates. Respectable III-V/Si efficiencies of 

around 20% have been demonstrated [40, 41]. However, the technological challenges 

associated with this approach are huge because of lattice mismatch, differences in 

thermal expansion coefficients, and difficulties associated with “polar-on-nonpolar” 

growth. Hence the material quality of epitaxially grown layers is generally not good 

enough for making high-efficiency tandem solar cells. More recently, growth on graded 

virtual substrates using the GexSi1-x or GaP alloy systems are being explored [42-46], 

but no very high efficiency tandem solar cell has been demonstrated yet for this 

approach.  

With the advent of epitaxial lift-off (ELO) and the wafer bonding technology, 

widely employed to make III-V on Si optoelectronic devices, more options are now 

available for sub-cell integration. Direct wafer bonding involves bonding of separately 

made III-V top cells (typically thin films obtained by ELO) on the Si bottom cell after 

surface activation or passivation. This technique can overcome various constraints 

encountered in heteroepitaxy. Wafer bonded materials show little degradation of 

material quality as defects are confined at the bonded interface. Therefore, III-V 

materials can be grown on GaAs of Ge substrates before transferring them to Si, 

ensuring high material quality. In 2003, Taguchi et al. reported a GaAs/Si tandem cell 

fabricated this way, with overall efficiency of 19.4% [47]. The transferred GaAs top 

cell had good quality, with no serious degradation during the transplantation process, 

and a bulk lifetime comparable to homoepitaxial GaAs. Derendorf et al. produced a 
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multi-junction cell by bonding a GaInP/GaAs dual-junction cell and a Si bottom cell, 

and achieved an efficiency of 23.6% under concentration [48]. The surface activated 

direct wafer bonding process they employed resulted in a 5 nm thin amorphous layer, 

which was found to introduce no significant series resistance across the interface. With 

optimization, the bonded multi-junction cell has achieved even higher efficiency more 

recently, reaching nearly 30% without concentration [49]. However, there are also 

significant challenges associated with this approach, as it imposes stringent 

requirements on the surface smoothness and as it is difficult to achieve large-area high-

throughput fabrication.  

Another approach, mechanical stacking, is conceptually much simpler. It 

involves attaching separately made III-V and Si sub-cells together by adhesives. It 

allows the use of the best single-junction solar cells as sub-cells without having to 

overcome the epitaxial growth challenges associated with monolithic tandem cells. In 

addition, it allows easy realization of the 4-terminal configuration and offers more 

freedom in circuit wiring at the module level [50]. However, an effective way is 

required to integrate sub-cells together that minimizes additional optical and electrical 

losses. If significant loss is introduced in device integration, there may be a danger of 

offsetting benefits gained from the additional junction. The need for a free-standing top 

cell with a transparent back contact and more fabrication steps can also be a drawback. 

Other approaches of tandem integration are also proposed in the literature, such as III-

V nanowires on Si [51-55]. These novel concepts will not be reviewed in this thesis.  

In recent years, there has been rapid progress in Si based tandem solar cell 

efficiency. The progression of tandem efficiencies made with different top cells, or 
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fabricated via different approaches, are summarized in Figure 2.2.1. The most notable 

progress comes from wafer bonding and mechanical stacking of III-V/Si tandem solar 

cells. Around 30% efficiencies were achieved by a wafer bonded InGaP/GaAs//Si [49], 

and a mechanically stacked InGaP/Si solar cell [56]. This highlights the intense 

research interest as well as the promising efficiency potential of Si based tandem solar 

cells. In this thesis, only III-V/Si tandems will be modelled. The configurations 

investigated include both dual-junction and triple-junction cells, with 2-terminal or 4-

terminal connection. 

 

Figure 2.2.1: Some published efficiency values of Si based tandem solar cells of different 

categories. Some values are reported under different test conditions (such as AM0 spectrum, 

or concentrated illumination), therefore should only be taken as a rough indication of efficiency 

levels. In 2016, tandem solar cells reaching 30% 1-Sun (AM1.5G) efficiency were fabricated 

in the laboratory (Fraunhofer ISE and NREL).  
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2.3. Energy yield analysis  

2.3.1. Standard testing condition (STC) and its limitations 

Solar cells and modules are commonly rated under the Standard Testing 

Condition (STC) [16]. This set of conditions is:  

 Irradiance level of 1000 W/m2 (often called 1 Sun); 

 AM1.5G spectrum (or AM1.5D for concentration cells), as defined in ASTM 

G173-03 [17]; 

 Cell temperature of 25 °C (room temperature).  

The use of a standardised testing condition facilitates comparisons among 

different solar cells and modules. It is an important standardisation for both laboratory 

research and industrial manufacturing. The efficiency values under this set of 

conditions, together with the open-circuit voltage, short-circuit current, and maximum 

power, are often stated in the manufacturer’s data sheets for the produced modules. 

However, the use of STC efficiency in predicting actual device energy yield under 

deployment has been frequently questioned, as the actual long term energy conversion 

efficiencies of solar cells were often found to be significantly lower than the STC 

efficiency [57, 58]. This is because realistic outdoor operating conditions deviate to a 

substantial degree from STC.   

One way to account for this change of efficiency under actual operation is the 

introduction of the harvesting efficiency (𝜂ℎ𝑎𝑟) and the performance ratio (PR). The 

harvesting efficiency is defined as the ratio between the total electric energy generated 

and the total solar energy received during the same period [59]. It indicates the true 
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power conversion efficiency of the PV generator. Performance ratio, as defined in the 

IEC standard 61724 (1998) [60], is the ratio between the actual energy yield and the 

expected energy yield of the PV generator based on its rated efficiency under STC. PR 

is usually used to describe the realistic performance of a PV system relative to its rated 

nameplate performance. PRs of commercial PV systems commonly range from 70% to 

90% [58]. In this thesis, the scope of PR is broadened to describe solar cells or modules 

as well. The mechanisms that cause outdoor operation losses are illustrated in Figure 

2.3.1. In particular, the losses due to spectrum, low irradiation, and temperature are 

mainly associated with responses of solar cells, and will be closely examined in this 

thesis. The losses from inverters, cabling and other system components are sometimes 

called system losses. This part of PR loss is not within the scope of this thesis.  

 

Figure 2.3.1: Illustration of the breakdown of performance ratio related losses for a typical 

commercial Si-based PV system in Singapore. The typical outdoor losses and their usual 

contributions are shown. Figure is adopted from the National Solar Repository of Singapore 

[61].  
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2.3.2. Key questions of energy yield analysis  

Energy yield analysis, as defined in this thesis, is the calculation of electric energy 

delivered by a PV device or system, and the determination of the relative performance 

when compared with the STC efficiency by quantifying various outdoor losses. The 

key questions to address include the following:  

 What is the expected solar irradiation?  

The amount of solar irradiation available is a key piece of information for any 

solar project. Its prediction based on historical data and site considerations form 

one major component of the energy yield calculation.  

 What are the outdoor operating conditions? 

The operating conditions for solar cells need to be adequately described in order 

to determine the solar cell output. There are several major aspects. One 

important aspect is the illumination conditions, which refers to the intensity and 

spectral composition of the incoming light. Another important one is the 

operating temperature. The impact of these conditions on the power output of 

tandem solar cells will be studied in this thesis. Other relevant conditions such 

as shading will not be covered.  

 What is the device / system performance under these conditions?  

The power output of solar cells or systems varies for different conditions. It is 

therefore necessary to measure or model their response under relevant operating 

conditions.  

 What are the time scales concerned (short term or long term)?  
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The energy yield of a solar cell can be calculated for a certain time period - for 

example a day, a month, or a year. Long-term yield, such as the annual yield, is 

usually considered when overall energy generation or Levelised Cost of 

Electricity (LCOE) calculations are concerned. However, short-term energy 

yield is also important, for example for estimating the required solar cell size 

and electricity storage capacity for certain applications, in forecasting and 

assessing the impact on power grids, as well as in monitoring system output and 

fault detection. Therefore, how to calculate the energy yield for different time 

periods with a firm accuracy is a relevant question. 

 What are the energy yields and harvesting efficiencies? 

With adequate data and modelling, the final harvesting efficiency, and the 

amount of energy yield for a certain time period can be obtained.  

 What are the losses, and how to mitigate them?  

The contribution of different outdoor loss mechanisms to the performance drop 

can be analysed and quantified. This is helpful in advising design and 

optimization in order to minimize overall losses.  

 What is the implication on the financing of projects and the economics?  

The results from energy yield calculations are important inputs to the cost 

calculation for a particular solar cell technology or a solar project.  

This thesis is organized in such a way to address these questions in the context of 

flat-plate Si based tandem solar cells targeted for non-concentration applications. 

However, the prediction of solar irradiation and the implications on the costs of 

electricity will not be covered.  
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Two purposes which energy yield analysis serves should be distinguished. They 

put different requirements on the way the yield analysis is carried out. One purpose is 

PV system design, the other one is cell/module development, optimization, as well as 

comparison. The amount of predicted energy yield and cost consideration is the key 

focus for the first area, whereas the latter is more concerned with minimizing losses 

and customization. In other words, the former looks more at the absolute value of 

electricity delivery of a system, while the latter looks more at the relative performance. 

As a consequence, the methodologies used for energy yield analysis for these two 

different purposes can be vastly different. Sophisticated modelling, be it on solar 

irradiation, operating conditions, or PV generator output, is generally not critical for 

the system designers, as statistical uncertainties in solar resource prediction are usually 

much larger than model inaccuracies. However, for optimizing solar cell designs and 

comparing different cell architectures, detailed device simulation is useful in 

distinguishing subtle performance differences. Second-order effects and non-linearity 

in device response need to be adequately captured. More details about practices within 

these two regimes will be reviewed in the following section (Section 2.3.3).  

 

2.3.3. Prevailing practices of energy yield analysis 

Energy yield analysis is, traditionally, only thought of as a broad collection of 

yield prediction exercises for PV system designers. The objectives for applying this 

calculation include for example sizing of stand-alone systems, prediction of long-term 

energy generation, optimisation of tilt angles, and assessing the impact of shadowing. 

For nearly all practical purposes in yield prediction, the amount of solar irradiation 
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(energy density in kWh/m2) is of primary concern. Secondary effects, such as effects 

from solar spectrum, low irradiance, wind speed, incidence angles, and sometimes even 

temperatures, are deemed of minor importance, and thus are often neglected in real 

engineering practices [57]. This is because the uncertainty in forecasting the amount of 

solar irradiation is much larger, and, thus, sets a limit to the accuracy attainable, 

irrespective of model sophistication.  

The first important task, which is intensely researched, is to find out how much 

solar irradiation is available. To determine the amount of expected solar irradiation on 

the horizontal surface of a particular site over a period of time, the average monthly 

mean values of daily irradiation, obtained from historical data, is usually used. 

Alternatively, the Typical Meteorological Year (TMY) [15], which is a hypothetical 

reference year with the collection of average months (picked from different years) 

throughout the whole measurement period for which data are available, can be taken as 

the representative year. Common TMY databases, such as that curated by the National 

Renewable Energy Laboratory (NREL) from the United States [62], contains hourly 

solar irradiance data (power density in W/m2) for various locations. In contrast, long-

time series of historical data are less available, and are seldom used for yield 

calculations. Furthermore, it is observed that calculations done with different solar 

irradiation data sources, be it historical time series, TMY, or just 12 average monthly 

mean values, produce very similar results [57].  

Given the average monthly mean values of daily global irradiation on the 

horizontal surface, which is the most widely available form of solar radiation data, the 

hourly irradiance throughout the course of a day can be estimated. It is then 
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decomposed into direct, diffuse, and albedo components using decomposition models, 

such as the Hay and Davies model [63] or Perez model [64, 65]. Subsequently, 

transposition models [66, 67] are used to transpose these irradiance components into 

corresponding components on inclined module surfaces. Available solar energy content 

over a certain period of interest can then be obtained by integration.  

A large number of correlation models to predict solar irradiation and its 

components have been proposed in the literature [68]. Some of them use sophisticated 

equations and more rigour in statistical fitting, while others are location specific. They 

were derived from different data sources, and may use different predictors. The results 

obtained with different models can sometimes be quite different from each other.  

Another important task of yield calculation is to determine the PV device 

response under diverse operating conditions. In most cases, the device behaviour under 

changing conditions needs to be modelled, instead of extensively measured due to 

operational and economic reasons. Modelling and analysis of system components other 

than solar cells, such as inverters and batteries, may be important as well. Usually, the 

modelling of PV module and system behaviour is kept simple, with judicious 

simplifications, assumptions, and empirically fitted parameters [57]. More detailed 

system simulation methodologies are available, with second-order corrections of 

device behaviour, more accurate treatment of non-prevalent outdoor conditions, and 

consideration of more factors [69]. However, there is contention over how useful the 

marginal improvements are, and whether that justifies the increase in complexity [57]. 

Detailed physical device simulation is never invoked in normal system designing 

processes. This is again because the uncertainties associated with the inherent random 
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nature of future solar irradiation are thought to render the small inaccuracies of crude 

models insignificant.  

Nonetheless, the importance of a more accurate energy yield analysis is being 

increasingly appreciated, both in academia and in the industry [70-72]. This is 

especially the case in designing solar cells and modules. There are several reasons 

behind this.  

Firstly, a large number of solar cell technologies and architectures have been 

developed. Solar cell behaviours can vary significantly. For instance, high-bandgap 

thin-film solar cells (such as amorphous Si solar cells) and tandem solar cells are 

sensitive to the solar spectrum [73, 74], while crystalline Si wafer based solar cells are 

generally not [75]. For another example, heterojunction (HIT) [10, 76] Si solar cells 

exhibit different spectral response from traditional diffused-junction Si solar cells, and 

thus tend to result in different performance ratios. A physical device simulation can 

help to capture these differences under realistic operating conditions. This is 

particularly useful for cells or modules under development, when no established simple 

empirical models exist to describe their properties. This is also important for designing 

solar cells and modules towards lower LCOE (instead of cost per watt peak, $/Wp), as 

well as to facilitate comparison across different technologies as deployment options. 

This objective, as opposed to yield analysis for solar projects, has received little 

attention in the past, and is relatively unestablished. No systematic way to perform 

yield analysis to assess the outdoor potential for different solar technologies has been 

proposed. 
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Secondly, the installed PV capacity is growing at a fast pace, and PV systems are 

deployed in more locations, with a wide span of climatic conditions. The scale and 

diversity of PV deployment makes accurate and location specific yield assessments 

more important than before, due to a larger impact on the economics and financial risk 

assessment [70]. The inclusion of second-order effects, such as from changing solar 

spectrum and from device non-linearity, can lead to a better description of solar cell 

outputs, and thus reduce systematic errors in energy yield predictions for PV systems. 

A better understanding of second-order effects is also important in monitoring real time 

PV system outputs. For instance, spectral effects on energy generation may be small 

for most Si solar cells on a yearly basis, but may be sometimes large on an hourly basis 

[57], and thus constitute a major reason behind short-term irregularities in PV outputs.  

Thirdly, the quest for more sophisticated yield calculation is also fuelled by a 

more powerful computation infrastructure and increased availability of measurement 

data. Therefore, more elaborate models can be used to better model solar irradiation, 

operating conditions, as well as device performance, with only a small marginal 

increase in costs.  

In particular, spectral effects have been extensively studied in the literature. 

Numerous studies have investigated the spectral effects on CPV multi-junction cells 

and systems [13, 59, 74, 77-80].  A few similar studies were also conducted for some 

non-concentrating PV cells and modules [70, 75, 81-83]. These studies usually used 

simulated spectra from the SMARTS clear sky radiative transfer model [84] or from 

similar programs. Depending on the level of sophistication, these energy yield models 

simply invoke historical average values for atmospheric parameters (with the exception 
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of air mass), or use time varying inputs with resolution of just one value per month. 

The use of measured atmospheric parameters as inputs for spectrum simulation 

programmes is largely constraint by their limited availability. In addition, as SMARTS 

is a clear sky model, the effect of clouds are not taken into account. Therefore, the 

simulated spectra are expected to have some degree of deviation from real spectra.  

 

2.3.4. Specific considerations for flat-plate tandem solar cells 

Si based tandem solar cells, due to cost reasons, may be used in flat-plate non-

concentrated applications. Their operation will differ significantly from traditional III-

V multi-junction solar cells used in CPV. Also, they will behave differently from 

single-junction solar cells. Therefore, specific considerations different from previous 

studies need to be taken for Si based tandem solar cells.  

Few previous studies for tandem solar cells looked at the effect of the global 

spectrum (most looked at the direct normal spectrum). In addition, few looked at the 

combined effect of changing spectrum, fluctuating irradiance levels, and fluctuating 

operating temperature. This is because multi-junction cells typically operate in 

locations with abundant solar irradiance and mostly clear, smooth weather conditions 

as CPV applications, and the conventional ways of estimating spectral effects are 

sufficient. However, this may not be the case for flat-plate tandem solar cells deployed 

in cloudy locations such as tropical Singapore. In these locations, both the spectrum 

and intensity are altered frequently by clouds. Spectrum changes impact tandem solar 

cells, especially 2-terminal devices due to current mismatch issues. Other than the 
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spectral effect, the low-irradiance loss for tandem solar cells might also be a concern, 

since sub-cells divide incoming irradiance and each thus operates at lower injection. 

Therefore, it is of interest to assess how a fluctuating global irradiance affects their 

power generation. The characteristics of operating temperatures of flat-plate tandem 

solar cells are also different from CPV cells. Their thermal features will likely be closer 

to flat-plate single-junction solar cells and modules, but they have different efficiencies 

and thermal coefficients. This will also make a difference in the energy yield. In this 

thesis, energy yield calculation taking these specific considerations into account will 

be developed and applied to flat-plate Si based tandem solar cells.  

 

2.4. Chapter summary 

In this chapter, the basic operation principles of solar cells were introduced. It 

was seen that solar cell outputs vary with changing operating condition, in particular 

light intensity, spectrum, and temperature. The concept of multi-junction (or tandem) 

solar cells, which can surpass the efficiency limit of single-junction solar cells, was 

explained. It was found that tandem solar cells using Si as the bottom cell have very 

high 1-Sun efficiency potential of 42% for 4-terminal configuration and 39% for 

2-terminal configuration. Therefore, Si based tandem solar cells have attracted intense 

research interest, and rapid progress has been made recently. The energy yield analysis 

of flat-plate Si based tandem solar cells is a relevant topic, but has not yet been 

adequately explored. In the latter half of this chapter, the motivation and objectives of 

energy yield analysis in general was established. It was deemed important in both PV 

system design and solar cell or module development, but detailed methodologies might 
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differ for different purposes. The prevailing practices of energy yield analysis were 

reviewed, and requirements specific to flat-plate tandem solar cells that were lacking 

in previous practices were identified. In later chapters, energy yield calculation 

methods suitable for flat-plate Si based tandem solar cells will be developed to assess 

their outdoor performance.   
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Chapter 3. Realistic outdoor operating conditions 

This chapter describes the realistic operating conditions that flat-plate tandem 

solar cell modules may experience in outdoor applications. The major variables to 

represent these conditions include irradiance level, spectrum, and ambient temperature. 

These variables are used as inputs for energy yield studies. The first section (3.1) 

describes the experimental setup for measurements of the irradiance and spectral data 

in Singapore and Denver, which are the two locations selected in this thesis for the 

energy yield studies. In Section 3.2, a detailed description and analysis of the measured 

outdoor conditions for the two locations is given. The analysis sheds insights on the 

relevant range of illumination conditions and possible solar cell operating temperatures. 

It is also useful in determining the most important conditions for which a solar cell, 

designed for a specific location, should be optimized. Finally, Section 3.3 briefly 

describes the year-to-year variability of these conditions.  

 

3.1. Measurements of outdoor conditions 

The data used to describe outdoor operating conditions of PV systems include 

solar irradiance level, spectrum, ambient temperature, relative humidity, wind speed, 

module temperature, and various other meteorological parameters. Among these 

variables, the irradiance level, spectrum, and ambient temperature are used as inputs 

for energy yield studies in this thesis. This section introduces how solar irradiance data 

are collected and monitored in the Solar Energy Research Institute of Singapore 

(SERIS) [85]. The data collected are used as input for energy yield calculations for flat-
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plate tandem solar cells in Singapore. In addition, a similar set of data from Denver are 

also used. These data were collected by the National Renewable Energy Laboratory 

(NREL) in the US. This data set is also introduced in this section.  

 

3.1.1. Solar irradiance level measurements 

The solar irradiance level, i.e. the sunlight intensity, is commonly measured by a 

(thermopile) pyranometer or a Si reference cell in PV applications [86]. Pyranometers 

use thermocouples to detect temperature differences caused by the incident solar 

irradiation [87]. The temperature differences result in a voltage signal, via the Seebeck 

effect, and the signal is detected by an electronic circuit. One advantage of this 

instrument is that it has virtually no spectral selectivity, as the black carbon coating of 

the thermocouple absorbs radiation over a very wide range of wavelengths. Also, the 

directional errors are usually low. The response time is usually in the range of a few 

seconds to tens of seconds [88]. A Si reference cell, on the other hand, makes use of 

the photocurrent output of the solar cell, and has a very fast response time. However, 

Si solar cells have a wavelength-dependent spectral response and an incomplete 

coverage of the entire solar wavelength range, only up to the bandgap of Si, which is 

around 1120 nm. Therefore, errors will result when the spectral composition of the 

incoming sunlight shifts from the standard spectrum used to calibrate the reference cell. 

In addition, the directional errors are considerably larger than for pyranometers, due to 

the absence of dome shaped entrance optics. However, due to convenience and much 

lower cost, Si reference cells are commonly installed along with the PV modules to 

measure the in-plane solar irradiance level.  
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In SERIS, the PV Monitoring Lab (Figure 3.1.1) routinely collects and monitors 

a plethora of meteorological parameters, such as instantaneous solar irradiance level, 

spectrum, wind speed, ambient temperature and many others, with very high temporal 

resolution (one data point per minute). The measurement stations are geographically 

spread across the island of Singapore. Performances of several PV systems are also 

measured with time stamps that are highly synchronized to meteorological measure-

ments. In this thesis, the more accurate measurement of solar irradiance level, using the 

pyranometer (model SPN1, Delta-T Devices [89]) installed in one of SERIS’ 

meteorological stations, is used. The specifications of the pyranometer are listed in 

Table 3.1.1. The spectral response range is from 400 to 2700 nm, which corresponds 

to an intensity of 946.5 W/m2 in the standard AM1.5G spectrum.  
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Figure 3.1.1: The PV Monitoring Lab in SERIS. A variety of meteorological parameters such 

as instantaneous solar irradiance level, spectrum, wind speed, ambient temperature, and real-

time performance of PV systems are measured and monitored.  

 

Table 3.1.1: Specifications of the model SPN1 pyranometer used to collect solar irradiance 

level data in Singapore. The pyranometer is mounted horizontally with zero tilt.  

Spectral response 400 - 2700 nm 

Cosine error 
±2% of incoming radiation over 0-90° 

zenith angle 

Zero offset < 3 W/m2 

Overall accuracy - Total (Global) and 

Diffuse radiation 

5% Daily integrals 

5% 10 W/m2 Hourly averages 

8% 10 W/m2 Individual readings 

Non-linearity < 1% 
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The solar irradiance data for Denver were obtained from NREL. Measurements 

are carried out by the Solar Radiation Research Laboratory, Baseline Measurement 

System [90], located at 39.74° North and 105.18° West, with an elevation of 1829 m 

above sea level. The pyranometer used is an Eppley Laboratory Inc. model PSP 

instrument, tilted 40° and facing south. The specifications of this pyranometer are listed 

in Table 3.1.2. The spectral response range is from 285 to 2800 nm, which corresponds 

to an intensity of 992.6 W/m2 in the standard AM1.5G spectrum. 

 

Figure 3.1.2: The Solar Radiation Research Laboratory, Baseline Measurement System is a 

facility supporting NREL's resource assessment and forecasting research. The Baseline 

Measurement System has a large collection of radiometers that record surface meteorological 

conditions.  
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Table 3.1.2: Specifications of the model PSP pyranometer used to collect solar irradiance level 

data in Denver. The pyranometer is mounted with a tilt of 40° and is facing south.  

Spectral response 285 - 2800 nm 

Cosine error ±1% (0-70°), ±3% (70-80°) 

Zero offset -5 to 2 W/m2 

Overall accuracy 
absolute accuracy of calibration is  

±3-4% 

Non-linearity ±0.5% from 0 to 2800 W/m2 

 

3.1.2. Solar spectrum measurements 

The spectral composition of the incoming sunlight is most accurately measured 

using a spectroradiometer [91]. A spectroradiometer consists of entrance optics, a 

monochromator that usually uses diffraction gratings to disperse incoming light, and a 

detector. It measures the wavelength resolved spectral irradiance over a certain wave-

length range. The spectral data used in this thesis were also obtained from SERIS and 

NREL. The spectroradiometer used to collect the spectral data for both Singapore and 

Denver is a model EKO MS-700 [92], installed at the same location as the pyranometer. 

The specifications are listed in Table 3.1.3. The wavelength range is from around 

350 nm to around 1060 nm, which corresponds to an intensity of 773.5 W/m2 in the 

standard AM1.5G spectrum. This wavelength range covers most of the relevant range 

usable by the tandem solar cells considered in this thesis.  
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Table 3.1.3: Specifications of the model EKO MS-700 spectroradiometer used to collect solar 

spectral data in Singapore and Denver. The spectroradiometer is mounted horizontally in 

Singapore and tilted 40° facing south in Denver. 

Wavelength range 345.4 - 1066.5 nm 

Cosine error < 7% 

Exposure time 10 ms - 5 s 

Temperature dependency (-20ºC to 

50°C) 
< ±1% 

Weight 4 kg 

 

3.1.2.1. Intensity issues with spectrum measurement 

It should be noted that spectroradiometers were found to give lower readings for 

the integrated intensity than what was measured by pyranometers for both datasets from 

Singapore and Denver. In the AM1.5G spectrum, the wavelength range of 350 nm to 

1060 nm provides around 80% of the total power in the spectrum (1000 W/m2). After 

accounting for this factor, the integrated spectral irradiance (ISI) from spectral data in 

both Singapore and Denver was still about 10% lower than the measured insolation. 

Similar problems have been reported by other groups [93-95], suggesting multiple 

possible sources of error and uncertainty in spectroradiometer measurements. In this 

thesis, the discrepancy is rectified by scaling the spectrum data to fit the measured 

irradiance level from the pyranometer. This preserves the spectral composition and 

only alters the intensity. This scaling only introduces marginal errors in the absolute 

intensity, and will not affect the analysis of tandem solar cell losses that are related to 

spectral variations.  
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3.2. Analysis of outdoor operation conditions 

Outdoor illumination conditions and operating temperatures may deviate signifi-

cantly from conditions defined under standard testing condition (STC). This section 

provides an overview of the measured datasets of solar irradiance (Section 3.2.1) and 

spectrum (Section 3.2.2). Their features and characteristics are described. This is useful 

for illustrating the deviations of outdoor illumination conditions from STC. A 

correlation is found from the datasets between the spectral composition and the 

irradiance level. This will be analysed and presented in Section 3.2.2. In Section 3.2.3, 

a useful way to sort the illumination conditions based on intensity levels and spectral 

compositions is proposed. The occurrence frequency and the energy content distri-

bution of different illumination conditions for Singapore and Denver are presented. 

This is followed by a discussion of outdoor operating temperatures based on the 

available data of measured ambient temperatures in Section 3.2.4.  

 

3.2.1. Irradiance levels  

Solar cells experience a wide range of irradiance levels during their outdoor 

operation. As solar cell efficiencies under different injection levels vary, the knowledge 

of aggregate insolation received is not sufficient for the accurate determination of 

energy yield. Information about the changing irradiance levels is needed.  

The irradiance levels throughout a representative day for Denver and Singapore 

are shown in Figure 3.2.1 (a) and (b), respectively. For a clear day, which is quite 
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common in Denver, the irradiance level profile follows a bell shaped curve. In contrast, 

clear sky occurrences for extended time periods are extremely rare in tropical 

Singapore, where clouds play an important role in shaping the illumination conditions. 

The irradiance level is attenuated by the passage of clouds, which block the direct 

sunlight (dips in Figure 3.2.1b). However, the effects of clouds are more complicated 

at times. Reflections off the cloud edges cause a change in the intensity as well as the 

spectrum. This can increase the irradiance level received on the ground, an effect 

known as cloud edge effect [96, 97]. Clouds may also act as lenses, and this can 

potentially increase the irradiance level as well (cloud enhancement effects). 

Sometimes, this can boost ground received irradiance to more than the theoretical clear 

sky maximum [98]. Another consequence of clouds is a much larger share of diffuse 

light. In Singapore, the average diffuse share of the global irradiance is found to be 

more than 50% [99].  

 

Figure 3.2.1: The daily irradiance level profile for (a) a clear and sunny day in Denver during 

February 2013, and (b) a partially sunny day with occasional cloud coverage in Singapore 

during February 2013.  
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With regard to overall PV power generation, it may be more relevant to look at 

the contribution to annual insolation by different irradiance levels. This distribution 

with respect to irradiance levels in units of Suns for Singapore and Denver for the year 

of 2013 is calculated and shown in Figure 3.2.2 (a) and (b), respectively. For Denver, 

most of the insolation is concentrated at higher irradiance levels around 0.8 Suns to 1 

Sun. In contrast, the spread of available insolation in Singapore is more even. This 

implies that low to middle irradiance levels are also important for the annual PV energy 

generation in Singapore.  

 

Figure 3.2.2: Distribution of solar insolation with respect to irradiance levels for (a) Singapore 

and (b) Denver.  

 

3.2.2. Spectral compositions 

Spectral composition is influenced by air mass, water vapour, aerosol optical 

depth, and several other atmospheric properties that determine the scattering and 

absorption of light during its passage through the atmosphere. Air mass is the relative 

pathlength of sunlight through the atmosphere [13]. It depends on the zenith angle 
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between the sun and the vertical. Low-latitude regions such as Singapore have, on 

average, lower air mass than high-latitude regions. Tropical Singapore also has a 

greater amount of precipitable water vapour. Therefore, the spectrum of Singapore 

differs considerably from both the AM1.5G spectrum and the spectrum of Denver. The 

average spectra for Singapore, Denver, as well as the AM1.5G spectrum are shown in 

Figure 3.2.3 for comparison. The spectra are all normalized to the same intensity in the 

shown wavelength ranges of 350 nm to 1060 nm. The spectrum of Denver is close to 

the AM1.5G spectrum, as Denver has very similar latitude and atmospheric conditions 

as those used to generate the AM1.5G spectrum. The spectrum for Singapore is 

considerably more blue-rich, and shows deeper troughs in the water absorption bands.  

 

Figure 3.2.3: The average spectrum of Singapore and Denver, derived from measured data in 

the year 2013, shown together with the AM1.5G spectrum. The spectra are all normalized to 

the same intensity in the wavelength range of 350 nm to 1060 nm. 
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One way to characterize a spectrum is to determine its average photon energy 

(APE) value, which is calculated by dividing the integrated irradiance in a certain 

wavelength range by the total photon number in the same wavelength range:  

    (Eq. 3.1) 

where  is the wavelength resolved intensity distribution of a spectrum, and is 

the wavelength resolved photon flux density. APE values reported in this thesis use a 

wavelength range from 350 nm to 1060 nm, which is the wavelength range of the used 

spectroradiometer (EKO MS-700). The APE value characterizes how blue or red-rich 

a spectrum is. In general, the spectra in Singapore tend to be significantly more blue-

rich than the AM1.5G spectrum, and have average APE values of over 1.9 eV. The 

APE of Denver’s average spectrum is closer to the AM1.5G value of 1.87 eV. However, 

there is a wide variation in spectral compositions at different moments, and the average 

APE value is not sufficient for comprehensively describing the available illumination 

conditions. For illustration, we sorted the collected spectra in the year 2013 into bins 

of different APE values, with an interval width of 0.05 eV. Then we took the average 

spectrum within each bin and generated the representative spectra for different spectral 

compositions. These representative spectra are shown in Figure 3.2.4. It can be seen 

that a solar cell experiences a wide range of spectra during its outdoor operation. It is 

important to note that these sets are unique representations for the possible spectral 

compositions in a given location, despite some small variations in spectra for a certain 

APE [100]. In other words, one APE corresponds to only one spectral shape in a given 

location, with little variation over time. We have confirmed this observation for 
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Singapore and Denver. The characteristic set of spectra is, thus, a very useful 

representation, and can be used to obtain the solar cell efficiency as a function of APE. 

 

Figure 3.2.4: Characteristic set of spectra in (a) Singapore and (b) Denver. All spectra are scaled 

to the same intensity as the standard AM1.5G spectrum. The APE values indicate the left bound 

of the interval.  

 

Different spectra do not occur with the same frequency and intensity. Figure 3.2.5 

shows the contribution of annual insolation by different spectra, characterized by their 

APE values. The distributions for the two locations are different. For Singapore, the 

spectral composition that contributes most to PV energy generation has an APE value 

in the 1.90 - 1.91 eV range, the available energy falls off exponentially from this value. 

In contrast, the APE of the AM1.5G spectrum is 1.87 eV, which is more red-rich. For 

Denver, more contribution comes from spectra with APE values between 1.85 eV and 

1.90 eV. This reflects the distinctly different climatic and atmospheric conditions 

prevalent in these two different locations. This has important implications for tandem 

solar cell designs as well as operations, as will be shown in Chapter 6.  



52 

 

Figure 3.2.5: Distribution of solar insolation with respect to APE for (a) Singapore and 

(b) Denver.  

 

3.2.2.1. Correlation between spectral composition and intensity 

Through examination of solar irradiance and spectra data, it was observed that 

spectral composition has some degree of correlation with the irradiance level. Figure 

3.2.6 shows the time series of irradiance levels and APE values for an average day in 

Singapore. It is the same partially sunny day as was used in Figure 3.2.1, which is 

typical for Singapore. It can be observed that the APE values tend to rise when there is 

a dip in the irradiance level. This is most likely due to an increase of the diffuse share 

of the irradiance (which is blue-rich as a result of more scattering in the short-

wavelength range) when clouds blocked direct sunlight. Also, cloud reflections of 

sunlight may cause the spectrum to be additionally blue-shifted. In Figure 3.2.7, the 

daily average APE values of the spectra versus daily insolation in the year of 2014 is 

obtained and plotted for Singapore as well as Denver. APE is correlated negatively to 

insolation in a roughly linear way for Singapore. The correlation is more complicated 
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in the case of Denver, where seasonal variations of climate and sun positions are more 

prominent.  

 

Figure 3.2.6: The time series of (a) irradiance level and (b) APE value for an average day in 

Singapore. The data points marked blue in (b) correspond to those marked blue in (a). In general, 

APE values rise when there is a dip in the irradiance level.  

 

 

Figure 3.2.7: The daily average APE value of the spectra versus daily insolation in the year of 

2014 for (a) Singapore, and (b) Denver. APE seems to be correlated negatively to insolation in 

a roughly linear way for Singapore. The correlation is more complicated in the case of Denver, 

where seasonal variations of climate and sun positions are more prominent.  

To examine the correlation more closely, statistical analysis is performed on the 

complete dataset of Singapore and Denver. The Singapore dataset consists of the 

following parameters, with one data per 5 minutes: global irradiance level, diffuse 



54 

irradiance level, temperature, APE values, and air mass. The Denver dataset contains 

the same parameters as Singapore, with the additional meteorological parameters of 

cloud coverage (in terms of percentage values, as analysed from sky images), albedo, 

and relative humidity. Using a univariate linear regression model and analysis of 

variance (ANOVA), the correlation between APE and irradiance level is quantified. In 

ANOVA, the effect size quantifies the magnitude of change of the observed variable 

given a unit change of predictor variable, and the p-value indicates the probability of 

obtaining a result equal to, or more extreme than the actually observed variation, given 

the assumed null-hypothesis of no correlation. In other words, a small p value indicates 

the likely existence of correlation. For both Singapore and Denver, a negative effect 

size and very small p value (< 0.0001) is obtained, which confirms a statistically 

significant negative correlation.  

To adjust for possible confounding effects from other variables such as air mass 

and albedo, a multivariate model is implemented as well. The analysis results for the 

multivariate regression model are shown in Table 3.2.1 for Singapore and Table 3.2.2 

for Denver. For Singapore, it is found that both irradiance level and diffuse fraction are 

strong predictors of APE, with p values smaller than the threshold value of 0.05. With 

the effect size of -4.33x10-5, per 200 W/m2 irradiance level increase leads to around 

0.01 eV decrease of APE, which corresponds to a significant spectral change that 

produces visible effects for the energy yield of tandem solar cells. Arguably the effect 

of the diffuse fraction is larger, as every 10% increase in diffuse fraction leads to 

0.025 eV increase in APE. In Singapore, air mass alone is not a good predictor of 

spectral composition, due to the stronger influence of clouds and other factors. 
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Therefore, it only appears as a confounding variable here. For Denver, it is found that 

APE is significantly correlated with all investigated variables, except the albedo.  

Table 3.2.1: The effect size and p value for a multivariate regression model APE = 

b1*irradiance level + b2*air mass + b3*diffuse fraction, applied to variables of Singapore.  

Variables Effect size p value 

Irradiance level -4.326×10-5 < 0.0001 

Air mass -3.865×10-6 0.0878 

Diffuse fraction 2.514×10-3 < 0.0001 

 

Table 3.2.2: The effect size and p value for a multivariate regression model APE = 

b1*irradiance level + b2*air mass + b3*cloud coverage + b4*albedo + b5*relative humidity, 

applied to variables of Denver. 

Variables Effect size p value 

Irradiance level -3.712×10-5 < 0.0001 

Air mass -2.127×10-4 0.0003 

Cloud coverage 3.215×10-7 < 0.0001 

Albedo -3.784×10-7 0.414 

Relative humidity 5.808×10-4 < 0.0001 

 

3.2.3. Distribution map of illumination conditions 

To concisely summarize the information about outdoor illumination conditions 

within a certain time period, a distribution map describing the occurrence duration of 

different conditions is calculated and used for yield calculation in this thesis. This is 

obtained by sorting the measured solar irradiance data according to different APE and 
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intensity levels (I), and by determining how often these conditions occur. This distri-

bution map describes the time duration t(APE, I) during which a condition with a 

certain APE and intensity occurs, and can be seen as a fingerprint of the illumination 

conditions at a given location. This is found to be a useful way of representation that 

includes both irradiance levels and spectral composition at the same time. The annual 

distributions for Singapore and Denver in 2013 are illustrated in Figure 3.2.8. It can be 

seen that the distributions are distinctly different for the two locations. The distribution 

map of illumination conditions obtained from these datasets will be used to compute 

the energy yield of tandem cells, as will be explained in Chapter 5. The distribution 

map in terms of insolation content is shown in Figure 3.2.9. It can be seen that very low 

intensity irradiation does not contribute much to total insolation, despite long duration 

of occurrence.  

  

Figure 3.2.8: Annual occurrence distribution of illumination conditions for (a) Singapore and 

(b) Denver in the year 2013. 
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Figure 3.2.9: The distribution of insolation content with respect to APE and intensity levels for 

Singapore (left) and Denver (right) in the year 2013.  

 

3.2.4. Operating temperatures and others 

The operating temperature of a solar cell can vary significantly, depending on the 

ambient air temperature, solar irradiance level, wind speed, the design and also the 

mounting environment of the corresponding PV module. Prediction of operating 

temperatures based on the physical modelling of thermal environment and heat transfer 

is generally challenging. Instead, numerous empirical models exist [101-106]. A basic 

model relates cell temperature to ambient air temperature and irradiance level by a 

linear model [103, 107]:  

𝑇𝑐 = 𝑇𝑎 + 𝑘𝐺𝑇     (Eq. 3.2) 

where 𝑘  is known as the Ross coefficient. The range of Ross coefficient normally 

encountered is in the range of 0.02 to 0.06 K m2/W [104]. This depends on the type of 

the PV array as well as the mounting scheme. A preliminary estimation of III-V/Si 

tandem solar cell operating temperatures will be done in Chapter 4, based on the air 

temperature and solar irradiance data available for Singapore and Denver. The 
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distribution of annual insolation with respect to the occurring air temperature in 2013 

is shown in Figure 3.2.10.  

 

Figure 3.2.10: The distribution of annual insolation content with respect to the ambient air 

temperature for (a) Singapore and (b) Denver in the year 2013.  

 

Other outdoor factors that influence PV operation include shading, soiling, and 

reflection. These factors are relevant for performance analysis at the module level, 

since they affect the whole module instead of individual solar cells. They are also more 

specific to project sites and installation types, thus are harder to generalize. These 

factors are out of the scope of this thesis and are thus not considered.  

 

3.3. Year to year variations 

Solar irradiance on the ground varies from year to year, and as a consequence the 

solar cell performance (both total energy generated and power conversion efficiency) 

varies as well. It is, thus, important to quantify the amount of variation that can be 
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expected. In terms of annual total, it was found that the ground horizontal insolation in 

Singapore shows less than 10% variation from the average [99]. For Denver, the 

variation in tilted global irradiance (40°, facing south) is less than 5% from the average, 

based on the irradiance datasets for the years 2011 to 2015.  

To estimate the year-to-year variations in the spectrum, the annual distribution of 

spectral composition is computed from 2013 to 2015. The distributions for Singapore 

and Denver are shown in Figure 3.3.1 and Figure 3.3.2, respectively. The peak, 

variance and skewness of the distributions are quite consistent throughout the years. 

With no prior assumption of what distribution it is, a nonparametric test - the paired 

Wilcoxon signed rank test [108] - is used to compare the year-to-year variation. It is 

found that the p value is 0.003 for Singapore and 0.43 for Denver. This implies that 

there is virtually no year-to-year variation for Denver, and a very small amount of year-

to-year variation for Singapore. Therefore, it is expected that the effect of spectral 

variations on the tandem solar cell are relatively consistent from year to year.  

 

Figure 3.3.1: Comparison of insolation distribution with different spectral compositions across 

three years, 2013 to 2015, in Singapore.  
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Figure 3.3.2: Comparison of insolation distribution with different spectral compositions across 

three years, 2013 to 2015, in Denver. 

 

3.4. Chapter summary 

In this chapter, realistic outdoor operating conditions were illustrated using 

measured datasets of solar irradiance and ambient air temperature in Singapore and 

Denver. The general background of irradiance level and spectrum measurement was 

introduced, and the experimental measurement set-ups for the datasets used in this 

thesis was described. From the measured data, it was observed that the illumination 

conditions in Singapore and Denver are significantly different. In comparison, 

Singapore has more fluctuations in the irradiance level, due to the abundance of clouds. 

Most insolation comes from high irradiance levels in Denver, but in Singapore a 

significant portion of the insolation is contributed by low to medium irradiance levels. 

The spectral compositions for Singapore and Denver are also very different. The 

average spectrum in Singapore is more blue-rich than that of Denver. In addition, it 

was found that the spectral composition and the irradiance level are negatively 

correlated, particularly for Singapore. Further, using the average photon energy (APE) 

to characterize the spectral composition, a characteristic set of spectra was calculated 

for each location. This characteristic set of spectra is unique and relatively time 
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invariant for a fixed location. The illumination conditions were obtained by sorting 

measured spectra based on intensities and APE values. This summary, which is called 

the distribution map of illumination conditions, will be used in subsequent chapters for 

computing the energy yield of tandem solar cells. The difference in the illumination 

conditions is expected to result in different tandem solar cell performances. This will 

be explored in the analysis of yield and outdoor losses in later chapters. Finally, an 

empirical model relating operating temperature, ambient air temperature and irradiance 

level was introduced. Year to year variations in illumination conditions were found to 

be relatively small.  

 



62 

Chapter 4. Modelling of tandem solar cells and their 

efficiencies under various conditions 

As seen in Chapter 3, a tandem solar cell in a flat-plate PV module deployed 

outdoors may experience a wide range of operating conditions. To determine the energy 

yield at a certain location, the tandem solar cell performance under varying operating 

conditions needs to be known. Tandem solar cell response to changing solar spectrum, 

light intensity, and cell temperature may be significantly different from that of single-

junction solar cells. This is particularly so for 2-terminal devices due to current 

matching issues. In this chapter, device modelling is used to estimate tandem solar cell 

outputs. Modelling tandem solar cells is generally more challenging than modelling 

single-junction solar cells, and there exists only a limited number of software packages 

that can do it. In this chapter, an alternative and time-saving way of modelling tandem 

solar cells using transfer matrix method (TMM) optical calculations coupled with 

PC1D device simulations is used to obtain the tandem solar cell performance under 

various illumination conditions. The simulation framework and device models used are 

introduced first, followed by simulated tandem cell efficiencies under standard testing 

conditions (STC). We also investigate the impact of different sub-cell combinations on 

the STC PV efficiency. Subsequently, the tandem solar cell efficiencies under varying 

illumination conditions relevant to yield calculation are determined. In addition, 

common temperature coefficients of sub-cell materials are used to predict the 

temperature dependence of tandem solar cells.  
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4.1. Simulation framework 

4.1.1. Overview 

Device simulation is used to predict tandem solar cell output under STC, as well 

as various other input illumination conditions. As a tandem solar cell contains more 

than one junction, its simulation is generally more complicated than that of single-

junction cells. Sub-cells can be connected via a tunnel junction or a mechanical 

integration scheme. Proper description of the optical and electrical properties of the 

tunnel junction or interconnection components, on top of proper physical models for 

the sub-cells, is needed to obtain accurate tandem device behaviour. Simulation 

packages such as Sentaurus TCAD or Silvaco Atlas can be used to achieve good 

simulation results. However, this requires setting up elaborate physical models for the 

device, and consumes much computation power during execution. This approach is 

most useful for studying particular physical phenomena in the device, fine tuning of 

processing, and for design optimization. Usually it also requires reference physical 

devices for calibration of input parameters. The objective at this early stage of 

theoretical investigation of tandem solar cells for flat-plate PV module applications is 

to estimate their qualitative behaviour; thus, PC1D device simulation is used instead.  

PC1D is a well-established 1D solver of semiconductor device properties that 

solves the diffusion and continuity equations self-consistently [109]. In PC1D device 

simulation, the properties and parameters for 1D semiconductor regions or surfaces are 

first defined. The solver then meshes the regions using finite elements to solve for 

Boltzmann transport equations, continuity equations, and Poisson equation. It requires 
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little computation power and can generate results in a short time. However, one 

difficulty with using PC1D is that it is unable to simulate a tandem solar cell. Therefore, 

in this work optical calculation is performed first for the whole tandem structure using 

the transfer matrix method (TMM) [27], which can analyze the propagation of 

electromagnetic waves through layered mediums. In TMM, the electromagnetic field 

at the end of a layer is calculated from the known field at the beginning of the layer 

based on continuity conditions across boundaries, using a matrix operation. A system 

of multiple layers can be represented as a system matrix, which is obtained by 

combining transfer matrix of individual layers. The electrical calculation for each sub-

cell is subsequently done separately by PC1D, using the photogeneration profiles 

obtained in the optical calculation. The overall electrical characteristics of the tandem 

device are then calculated by summing the I-V curves of the sub-cells. The simulation 

process flow is illustrated in Figure 4.1.1.  
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Figure 4.1.1: The process flow for simulating a tandem solar cell (left), and the 1D schematics 

of the tandem device structures to be simulated (right). Both 2-terminal (2T) and 4-terminal 

(4T) configurations are investigated. The insulator layer in 4T is only conceptual and has zero 

thickness in the simulated device structure.  

 

To assess realistic tandem solar cell efficiencies, published material parameters 

of fabricated and characterized solar cells are used to simulate each sub-cell. The Si 

cell and III-V cell models are presented in Sections 4.1.2 and 4.1.3, respectively. Sub-

cell parameters that represent mature or commercially available solar cells are chosen, 

in order to investigate tandem solar cells that have a realistic chance of being practically 

realised using existing technologies. As shown in Figure 4.1.1, the tandem device 

structures to be simulated include both 2-terminal (2T) and 4-terminal (4T) 

configurations. In this work only a simplified 1D structure is considered, and thus 2D 
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effects like contact patterns and surface textures are ignored. We also do not include 

losses related to adhesive interconnection layers or tunnel junctions. Only the 2T 

contact scheme is considered for triple-junction tandem cells; both contact schemes, 

2T and 4T, are considered for double-junction GaAs/Si and InGaP/Si solar cells. It 

should be noted that the interconnection schemes for 4T will affect the optics, but this 

effect is not considered in this thesis for simplicity and for a more direct comparison 

between 2T and 4T to quantify the extent of current mismatch losses. More details on 

the tandem model will be presented in Section 4.2.  

 

4.1.2. Device models for Si bottom cell 

There are many different types of crystalline Si solar cells, classified according 

to different processing technologies, device architectures, material types or material 

qualities. There are also some distinctions between laboratory solar cells and mass-

produced industrial solar cells. Common types of crystalline Si solar cells are [110]:  

 p-type Aluminium Back-Surface-Field (Al-BSF) crystalline Si solar cells with 

screen-printed metallization [111],  

 diffused-junction solar cells on Upgraded Metallurgical Grade (UMG) 

multicrystalline Si wafers [112],  

 p-type Passivated Emitter and Rear Cell (PERC) crystalline silicon solar cells 

[113],  

 Passivated Emitter Rear Locally diffused (PERL) solar cells [114],  

 n-PASHA bifacial n-type cells [115],  
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 n-type heterojunction (HJT) solar cells [10],  

and various others. Different types of solar cells have different efficiency levels; 

different external quantum efficiencies (EQE), different passivation qualities and 

voltages, and different costs.  

In this study, three different Si solar cell models are chosen: (a) p-type UMG 

multi-Si wafer with screen-printed contacts and full-area Al-BSF at the rear, abbre-

viated as UMG-Si, (b) Same cell structure as (a) but with a standard-quality (“solar-

grade”) p-type multi-Si wafer, abbreviated as multi-Si, and (c) p-type monocrystalline 

PERC solar cell, abbreviated as PERC-Si. These three models represent three different 

levels of absorber material quality and conversion efficiency. The UMG-Si model 

represents a low-cost approach using the cheapest feedstock material, as UMG Si is 

cheaper than standard grade (or “solar grade”) Si used in PV. However, this model has 

the lowest PV efficiency. The multi-Si model represents the industrial standard, and 

has a moderate PV efficiency. The PERC-Si model represents a high-efficiency 

concept, but is also more expensive (in terms of $/W). The device parameters used for 

the PC1D simulations are listed in Table 4.1.1. The parameter values can in fact differ 

significantly even for the same type of solar cell. The numbers listed in Table 4.1.1 are 

chosen to reflect typical values from the literature [110-113, 116]. Using the cell 

models, and assuming a planar cell structure with SiNx antireflection coating (ARC), 

the Voc, Jsc and efficiency for a stand-alone Si cell under AM1.5G illumination were 

simulated and are shown in Table 4.1.1. Since a planar structure (i.e., no surface texture) 

is assumed, the cell efficiencies are lower than what is usually achieved for their 

textured counterparts. Also, all the Si models presented here have lower efficiencies 
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than the record-level Si solar cells, which are 25-26 % efficient [117]. The Si cell 

models of the present work were chosen because they represent Si solar cells that can 

be mass produced readily with relatively low costs ($/W).  

 

Table 4.1.1: Device parameters for the three Si solar cell models used in this thesis. The 

simulated outputs for a planar cell with SiNx antireflection coating (ARC), using the three cell 

models, together with typical efficiencies realized by these technologies, are also shown.  

 

(a)  

UMG-Si  

[112, 116] 

(b) 

Multi-Si  

[110, 111] 

(c) 

PERC-Si  

[110, 113] 

Thickness (µm) 200 200 200 

Background doping (cm-3) 
8×1017 

(p-type) 

1.5×1016  

(p-type) 

7.2×1015  

(p-type) 

Emitter doping (cm-3) 
6×1020 

(n-type, Erfc) 

7.2×1020 

(n-type, Erfc) 

8.9×1019 

(n-type, Erfc) 

Bulk lifetime (µs) 10 200 360 

Surface recombination 

velocity (cm/s) 

Front 6×105 

Back 1×103 

Front 6×105 

Back 1×103 

Front 5×104 

Back 80 

Voc (mV)* 601 621 656 

Jsc (mA/cm2)* 30.8 33.8 36.1 

Simulated efficiency* 14.0% 16.7% 19.1% 

Typical efficiencies of 

industrial cells (textured) 
14 - 15 % 17.5 - 18.5 % 20 - 21 % 

* Values are for planar cells with ARC under AM1.5G illumination. 
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4.1.3. Device models for III-V top cells 

III-V solar cells can be made by epitaxial growth on a suitable substrate using 

Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) or Metal-Organic 

Chemical Vapour Deposition (MOCVD) [3]. The solar cell efficiency depends on the 

film quality, doping, window layer materials used and interface passivation. In general, 

the bulk carrier lifetime (i.e., the electronic quality of the film), is related to the 

threading dislocation density (TDD) in the film [118], which in turn is influenced by 

the substrate and the process control during epitaxial growth. Most high-quality III-V 

solar cells nowadays are made using MOCVD. The cost ($/W) is high due to expensive 

equipment, expensive substrates, and low throughput [33].  

In this thesis, two GaAs models and one InGaP model are used. The two GaAs 

models represent a baseline moderate-efficiency GaAs solar cell [119] and an advanced 

high-efficiency GaAs solar cell [11, 120, 121], respectively. The InGaP model 

represents a high-quality but not record-efficient InGaP solar cell [39, 122, 123]. The 

device parameters for the absorber layers (excluding the window layers, i.e. high 

bandgap passivating layers usually used in III-V solar cells) are listed in Table 4.1.2. 

The Voc, Jsc and simulated efficiency for a stand-alone cell with MgF/ZnS double-layer 

ARC and back reflector give an indication of cell quality. It should be noted that photon 

recycling may affect the efficiency of III-V solar cells [124, 125]. The extent of 

influence depends on the optical features, which determine the trapping of re-emitted 

photons within the III-V cell and the luminescent coupling with other sub-cells. The 

effect is strongest at open circuit, where the excess carrier density is largest, but is less 

significant at the maximum power point and least significant at short-circuit conditions. 
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Collaborators at SMART (Singapore-MIT Alliance for Research and Technology) 

have developed a code that can include photon recycling and luminescent coupling in 

PC1D simulations [126]. For simplicity, the simulation results presented here do not 

include this effect. The effect of photon recycling on yield results will be briefly 

discussed in Chapter 6.  

Table 4.1.2: The device parameters for two GaAs and one InGaP cell models used in this thesis. 

The simulated outputs for a planar cell with MgF/ZnS double layer antireflection coating 

(ARC), using the three cell models, together with typical efficiencies realized by these 

technologies, are also included.  

 Baseline GaAs Advanced GaAs InGaP 

Thickness (µm) 2 2 1 

Background 

doping (cm-3) 

1×1017 

(p-type) 

1×1017  

(p-type) 

1×1017  

(p-type) 

Emitter doping 

(cm-3) 

1×1018 

(n-type) 

6×1017 

(n-type) 

3×1018 

(n-type) 

Bulk lifetime (ns) 4 28 2 

Surface 

recombination 

velocity (cm/s) 

Front 7×104 

Back 7×104 

Front 2600 

Back 30 

Front 5800 

Back 5800 

Voc (mV)* 996 1066 1405 

Jsc (mA/cm2)* 29.9 30.3 16.0 

Simulated 

efficiency* 
24.7% 28.1% 19.2% 

Typical 

efficiencies 
24% 28% 19% 

* Values are for solar cells with ARC and back reflector under AM1.5G illumination. 
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4.2. Tandem models and efficiencies under STC 

There are many possible combinations of sub-cell technologies when making a 

tandem solar cell using wafer bonding or mechanical stacking. Different combinations 

of sub-cells result in different tandem cell efficiencies, which can be higher or lower 

than those of the individual sub-cells alone. They also have different cost ($/W). While 

is it straightforward to estimate what is required to reach high efficiencies, it is still 

unclear which particular technology is the most cost-effective in terms of $/W. As a 

first step, the efficiency gain by integrating the sub-cells needs to be estimated in order 

to determine the optimal combination. In this study, the STC efficiencies of double-

junction tandem solar cells with several sub-cell combinations are simulated using the 

sub-cell models described in Sections 4.1.2 and 4.1.3. The objective is to quantify the 

benefit of sub-cell integration in terms of efficiency improvements. The tandem models 

selected for the energy yield calculation are then listed.  

 

4.2.1. Double-junction efficiencies for various sub-cell combinations 

The simulated 2T and 4T double-junction tandem efficiencies are shown in 

Figure 4.2.1. The typical single-junction cell efficiencies using individual sub-cell 

technologies are also indicated. The top cell thicknesses are always adjusted to 

maximize the double-junction tandem efficiency. Note that for 2T GaAs/Si, the top cell 

thickness is thinned to give a matched current with the Si bottom cell. A thicker GaAs 

top cell is used for the 4T GaAs/Si configuration so that more high-energy photons are 

absorbed in the top cell, thereby giving higher PV efficiency. It can be seen that for 2T 
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GaAs-on-Si tandem solar cells, having a low-efficiency UMG-Si or multi-Si bottom 

cell results in a lower tandem efficiency than the GaAs top cell alone. Therefore, there 

is no benefit in such a sub-cell combination. An increase in the bottom cell efficiency 

brings about a proportional increase in the 2T tandem cell efficiency. Therefore, in 

order for the combination to be beneficial, it is important that the bottom cell has a 

sufficiently high efficiency, on a similar level as the top cell efficiency.  

The 4T configuration always gives a higher tandem cell efficiency than the top 

cell alone. However, it remains a question whether the efficiency boost can justify the 

additional cost. In the (likely) case where the cost of a baseline GaAs solar cell is not 

significantly lower than that of an advanced GaAs solar cell, it is more desirable to use 

the more efficient GaAs top cell. For InGaP-on-Si tandem solar cells, the benefit of 

integration is considerably higher. The efficiency difference between 2T and 4T is also 

lower. However, for the sub-cell models considered here, none of the combinations 

surpassed the efficiency of world-record single-junction GaAs solar cells. Better InGaP 

top cells and Si bottom cells need to be used in order for InGaP/Si tandem cells to be 

competitive.  

The conditions under which a tandem solar cell is more cost-effective in terms of 

Levelised Cost of Electricity (LCOE) than a single-junction solar cell are still to be 

identified. A cost modelling framework required to do this is recently developed at MIT 

[127]. In this thesis, only the tandem cell models presented in Section 4.2.2 are 

considered in the energy yield calculation, but not the other tandem configurations 

described in this section (4.2.1).  
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Figure 4.2.1: Simulated STC efficiencies for 2T and 4T double-junction tandem solar cells with 

different sub-cell combinations. The typical single-junction cell efficiencies using individual 

sub-cell technologies are indicated as green lines. The tandem configurations written in red text 

along the horizontal axis are selected for further energy yield studies.  

 

4.2.2. Tandem models for energy yield calculations 

The tandem solar cells investigated in the energy yield calculations include: 2T 

GaAs/Si, 4T GaAs/Si, 2T InGaP/Si, 4T InGaP/Si, 2T InGaP/GaAs/Si, and 2T 

GaAs/GaAs/Si. For each tandem solar cell configuration chosen for yield calculation, 

only the best sub-cell models are chosen, and the top cell thicknesses are adjusted to 

maximize the tandem efficiency. As seen in the previous section, this combination is 

most likely to be beneficial. Details about the tandem models are listed in Table 4.2.1. 

It should be noted that ultra-thin (i.e. with sub-micron thickness) GaAs sub-cells are 

used for the 2T GaAs/Si and GaAs/GaAs/Si tandems, but an ultra-thin GaAs solar cell 

with good efficiency is yet to be demonstrated. In practice, the efficiency of an ultra-

thin GaAs sub-cell may be lower than what is simulated by PC1D model used here. 
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This is due to additional quantum effects such as back diffusion and contact to contact 

diffusion, according to a theoretical investigation by Cavassilas et al. [128]. For 

InGaP/Si, a good Si bottom cell usually produces excess current in the InGaP/Si tandem, 

as the maximum short-circuit current of InGaP solar cells achieved so far is only about 

16 mA/cm2 [39, 129]. The 2T InGaP/Si is almost current matched here; however, this 

is only the case because a planar Si bottom cell (which produces less current) is 

considered.  

Table 4.2.1: Device architectures and parameters for the tandem models used in energy yield 

calculations. The simulated sub-cell output and STC tandem efficiency is also shown.  

 GaAs/Si InGaP/Si InGaP/GaAs/Si GaAs/GaAs/Si 

Sub-cell 

thicknesses 

(µm) 

0.2 / 200 (2T) 

1 / 200 (4T) 

2.5 / 200  

(both 2T and 4T) 

0.285 / 0.65 / 

200 

0.095 / 0.45 / 

200 

Background 

doping (cm-3) 

p - 1×1017 /  

p - 1.5×1016 

p - 1×1017 /  

p - 1.5×1016 

p - 1×1017 /  

p - 1×1017 /  

p - 1.5×1016 

p - 1×1017 /  

p - 1×1017 /  

p - 1.5×1016 

Emitter doping 

(cm-3) 

n - 6×1017 /  

n - 7.2×1020 

n - 3×1018 /  

n - 7.2×1020 

n - 6×1017 /  

n - 3×1018 /  

n - 7.2×1020 

n - 6×1017 /  

n - 6×1017 /  

n - 7.2×1020 

Bulk lifetime 

(µs) 
0.028 / 360 0.002 / 360 

0.002 / 0.028 / 

360 

0.028 / 0.028 / 

360 

Sub-cell Voc 

(mV)* 

1105 / 639 (2T) 

1082 / 622 (4T) 
1408 / 635 

1392 / 1065 / 

625 

1113 / 1077 / 

630 

Sub-cell Jsc 

(mA/cm2)* 

19.4 / 19.6 (2T) 

28.5 / 10.2 (4T) 
15.9/ 16.8 

11.4 / 11.5 / 

11.6 

13.0 / 13.0 / 

13.5 

STC 

efficiencies 

28.6% (2T) 

32.0% (4T) 

27.7% (2T) 

27.9% (4T) 
29.9% 31.4% 

* Values are for sub-cells inside the tandem structure under AM1.5G illumination.  
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4.3. Tandem efficiencies under non-standard conditions 

In the field, solar cell operating conditions can deviate significantly from STC. 

The knowledge of tandem solar cell behaviour under various operating conditions is 

thus very important for studying their energy yield. This section presents the simulated 

tandem solar cell efficiencies under a range of possible illumination conditions, with 

differing spectral composition and intensity levels. Their temperature dependent 

performance and potential outdoor operating temperatures are also discussed.  

 

4.3.1. Efficiencies under varying spectra and light intensity 

Tandem solar cells are sensitive to spectral variations. When the spectrum 

changes, the current generation in the sub-cells also changes. For 2-terminal devices, 

where the sub-cells are series connected, the cell that produces the lowest current will 

limit the overall current. Therefore, the overall efficiency is high only when all sub-

cells generate an approximately equal current. When the spectral composition deviates 

from this requirement, the tandem cell efficiency will suffer. In the 4T configuration, 

tandem devices are also influenced by the spectrum, albeit to a much smaller extent. 

For tandem solar cells intended for 1-Sun applications, the low-irradiance loss might 

also be a concern, since the sub-cells divide the incoming irradiance and each cell 

operates at lower injection. According to the diode equations describing the solar cell 

I-V characteristics, the voltage output of p-n junction solar cells decreases logarithmi-

cally with decreasing light intensity. However, the exact behaviour of solar cells under 

low-light conditions also depends on non-linear effects from additional charge carrier 
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recombination losses (i.e., lower carrier lifetime) under low injection levels, as well as 

the shunt resistance losses which become relatively more important with decreasing 

light intensity.  

In this study, 2T and 4T GaAs/Si tandem solar cell behaviour under various 

spectra and light intensities is studied via the device simulation method established in 

the previous sections. The relevant illumination conditions which tandem solar cells 

may experience under outdoor conditions were treated in Chapter 3. Tandem cell 

outputs under the characteristic set of spectra (sorted into different APE categories) 

scaled to different intensities were obtained. Their efficiencies as a function of APE 

value and intensity in Singapore are shown in Figure 4.3.1. For a given APE, the 

efficiency varies logarithmically with the intensity level, as expected from the diode 

equation. In comparison, the magnitude of variation of efficiency due to changing APE 

values can be more significant. For 2T tandems, extreme spectra with high APE result 

in a larger drop in efficiency than low light intensities. 4T tandems also suffer from 

spectral variations, but to a much smaller extent due to the absence of the current 

matching requirement. For the 4T configuration, a general rule is: the higher the APE, 

the lower the tandem cell efficiency. This is because the bottom cell receives a much 

smaller portion of the available irradiance under a blue-rich spectrum. It should also be 

noted that the more blue-rich the spectrum is, the smaller the total current will be for a 

given light intensity. As a result, Jsc of the bottom cell decreases significantly, while 

Voc and FF decrease as well. This is not compensated by the marginal increase of the 

efficiency of the top cell. Therefore, it can be said that the major effect of changing 

illumination conditions is in current generation in the two sub-cells, especially the Si 
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bottom cell, due to changes in spectral composition. This makes photon management 

for the bottom cell a very important topic in the design of high-efficiency GaAs/Si 

tandem cells. 

 

Figure 4.3.1: Simulated tandem solar cell efficiencies for (a) a 2T and (b) a 4T configuration 

under different spectral compositions (represented by the APE in eV) and light intensities (in 

suns). The calculated efficiencies range from 17% to 28% for 2T tandem cells and from 27% 

to 33% for 4T tandem cells. 

 

The behaviour of other tandem cell configurations, and under operating 

conditions of other locations, may vary slightly compared with the results of Figure 

4.3.1, whereby the exact behaviour will depend on the bandgaps of the sub-cells, the 

exact device configuration of the tandem solar cell, and the exact spectral composition. 

Efficiency maps similar to Figure 4.3.1 for other tandem configurations will be 

calculated in Chapter 6 in the context of energy yield calculations.  
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4.3.2. Temperature coefficients of tandem solar cells 

The current, voltage and fill factor of a solar cell change with changing cell 

temperature, and generally lead to a decrease of the PV efficiency with increasing cell 

temperature. This is mainly a result of increasing free carrier concentrations with 

increasing temperature [20, 21, 130]. For III-V solar cells and Si solar cells, at ambient 

temperatures, the relative change in PV efficiency scales approximately linearly with 

temperature.  

The tandem solar cell behaviour at elevated temperatures (relative to STC) can in 

principle be simulated by PC1D as well. However, the PC1D models used here are 

found to be inaccurate in predicting the temperature dependence of the III-V sub-cells, 

most probably due to an inadequacy in handling the interface property and band 

structures adequately across heterojunctions. Therefore, theoretical temperature 

coefficients (TC) of the sub-cell materials are used instead to estimate the sub-cell 

outputs under different temperatures. The temperature coefficients used in this study 

are listed in Table 4.3.1.  

Table 4.3.1: Temperature coefficients used in this study [20, 130]. The temperature coefficients 

for stand-alone InGaP solar cells are less well known, so the same value as for GaAs were 

assumed. The temperature dependence of the currents is small and thus was neglected.  

 Si GaAs InGaP 

dVoc/dT (mV/K) -2.20 -1.90 -1.90 

dFF/dT (K-1) -0.13 -0.08 -0.08 

dη/dT (rel%/K) -0.45 -0.20 -0.20 
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Using the temperature coefficients for the sub-cells, the outputs of the tandem 

solar cells are modified accordingly. The final 1-Sun tandem cell efficiencies under 

various cell temperatures are then obtained, from which the temperature coefficients of 

the efficiencies of the tandem solar cells are extracted. The results are listed in Table 

4.3.2. They show that tandem solar cells tend to have lower temperature coefficients 

than single-junction Si solar cells, which is consistent with the findings for III-V 

concentrator solar cells [131, 132]. In fact, the TCs of tandem cells are closer to that of 

single-junction GaAs solar cells. This is expected since a significant portion of the 

power conversion happens in higher bandgap III-V materials, which tend to have 

smaller temperature coefficients [20]. Therefore, the use of a III-V top cell improves 

the overall temperature performance of tandem solar cells having a c-Si bottom cell.  

Table 4.3.2: Calculated efficiency temperature coefficients of single-junction and tandem solar 

cells considered in the energy yield calculations. The TCs for SJ Si and SJ GaAs solar cells 

were obtained from PC1D simulations and are slightly different from the theoretical values 

shown in Table 2. 

 Si SJ GaAs 

SJ 

GaAs/Si  

2T 

GaAs/Si 

4T 

InGaP/Si 

2T 

InGaP/Si 

4T 

InGaP/ 

GaAs/Si 

2T 

GaAs/ 

GaAs/Si 

2T 

Efficiency TC 

(rel%/K) 
-0.478 -0.265 -0.376 -0.300 -0.339 -0.300 -0.336 -0.354 

 

4.3.3. Operating temperatures 

Under outdoor operation, the temperature of solar cells depends both on the 

irradiance level, the ambient temperature, wind speed, and the heat transfer charac-

teristics of the encapsulating modules as well as mounting environment. This can be 
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modelled by a simple energy balance, where absorbed energy from solar irradiation 

(𝐺𝑇) is either extracted as electrical energy, or dissipated as heat [104]:  

𝛼𝐺𝑇 = 𝜂𝐺𝑇 + 𝑈𝐿(𝑇𝑐 − 𝑇𝑎)     (Eq. 4.1) 

Here 𝛼 is the percentage of solar irradiation absorbed, 𝜂 is the PV efficiency of the 

solar cell, 𝑈𝐿 is the overall thermal loss coefficient, which lumps the effect of wind 

speed, encapsulation, and mounting environment, and 𝑇𝑐 and 𝑇𝑎 are the cell temper-

ature and ambient temperature, respectively. The outdoor operating temperature of the 

solar cell can thus be predicted from solving the energy balance. However, accurate 

determination of module temperature is not easy. It depends on the detailed module 

encapsulation design, as well as many site specific factors. Roughly, outdoor cell 

temperatures relate to incoming irradiance by a simple linear model [103]: 

𝑇𝑐 = 𝑇𝑎 + 𝑘𝐺𝑇     (Eq. 4.2) 

where 𝑘 is known as the Ross coefficient. However, the Ross coefficient is influenced 

by both thermal losses as well as the cell efficiency, which is itself a function of cell 

temperature. To take this implicit relationship into account, a variety of implicit 

equations that relate 𝑇𝑐, 𝑇𝑎, 𝐺𝑇 and 𝜂 can be used instead [104]. In the present study we 

used the following equation [133]:  

𝑇𝑐 = 𝑇𝑎 +
𝛼−𝜂

𝑈𝐿
𝐺𝑇     (Eq. 4.3) 

The ambient temperatures are measured at the same sites as the solar irradiances. 

The outdoor variations in ambient temperatures were discussed in Chapter 3. Together 
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with the intensity levels, it is then possible to predict the tandem solar cell temperature 

under outdoor conditions.  

One potential advantage of using high-efficiency tandem solar cells instead of 

conventional single-junction Si or thin-film solar cells is that a lower operating 

temperature is expected. This is mainly due to the higher PV efficiency and, thus, 

reduced waste heat, but the lower temperature coefficient resulting from the use of a 

III-V top cell also helps. As an illustration, the outdoor operating temperatures of a 

higher-efficiency tandem solar cell are calculated using the implicit equation (Eq. 4.3), 

and compared with those of a lower-efficiency Si single-junction solar cell. 19% 

efficiency and an efficiency TC of -0.48 %/K are assumed for the Si solar cell, whereas 

29% efficiency and an efficiency TC of -0.30 %/K are assumed for the tandem solar 

cell. The absorbed portion of the incoming irradiance is 0.76, which accounts for glass 

transmittance and the useful fraction of the solar spectrum. The ambient temperature is 

set as 28°C, to reflect the typical ambient air temperature in Singapore. The heat loss 

coefficient is assumed to be identical for both solar cells, and a value corresponding to 

a well-ventilated (i.e. air cooled) PV module [104] is chosen. The resulting operating 

temperatures for different irradiance levels are shown in Figure 4.3.2(a). The operating 

temperature is still linear with respect to the irradiance level, even after accounting for 

the temperature dependences of the cell efficiencies. An effective Ross coefficient 𝑘𝑒𝑓𝑓 

can thus be extracted from the slope of the temperature versus irradiance straight line 

in Figure 4.3.2(a) for each tandem and SJ solar cells, and is shown in Table 4.3.3. It 

can be seen that, with the same heat loss coefficient, tandem solar cells have lower 𝑘𝑒𝑓𝑓 

than SJ Si solar cells. The temperature difference between the two solar cell types, at 
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irradiance levels in the 800 to 1000 W/m2 range, is around 3 to 4 °C, which is not 

negligible. Since most of the harvested energy per year comes from this irradiance band, 

the difference in cell temperatures is going to have a noticeable impact on the energy 

yield. Generally, the larger the PV efficiency difference, the larger the operating 

temperature difference will be at 1 Sun (Figure 4.3.2(b)). 

 

Figure 4.3.2: (a) The calculated operating temperature for a 19% efficient single-junction Si 

solar cell and for a 29% efficient double-junction tandem solar cell. The temperature difference 

(right axis) between the two types of solar cells, at 800 - 1000 W/m2, can be as much as 3 to 

4 °C, which is significant. (b) The calculated operating temperature difference, at 1 Sun 

intensity, between a 19% Si solar cell and a tandem solar cell with varying efficiency.  

 

Table 4.3.3: Calculated effective Ross coefficients of the investigated tandem solar cells. 

 Si SJ 
GaAs 

SJ 

GaAs/Si 

2T 

GaAs/Si 

4T 

InGaP/Si  

2T 

InGaP/Si  

4T 

InGaP/ 

GaAs/Si 

2T 

GaAs/ 

GaAs/Si 

2T 

𝑘𝑒𝑓𝑓 

(Km2/W) 
0.0239 0.0200 0.0201 0.0185 0.0198 0.0197 0.0192 0.0189 

 

4.4. Chapter summary 

In this chapter, a methodology for simulating tandem solar cells using optical 

calculations and PC1D device simulations was introduced. This simulation framework 
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is comparatively simple and fast, and has the flexibility to simulate tandem solar cell 

performance under STC as well as non-standard operating conditions. The simulated 

tandem solar cell efficiencies under various conditions will be used as input for the 

energy yield calculations in Chapters 5 and 6 of this thesis.  

Several Si and III-V sub-cell models were considered. For the Si sub-cell, three 

models - representing a low-cost approach using UMG silicon feedstock material, an 

industrial standard, and a relatively high-efficiency concept - were used. For the GaAs 

sub-cell, two models - representing a baseline and an advanced cell - were used. For 

the InGaP sub-cell, only one model - representing a high-quality cell - was used. By 

simulating the STC efficiencies of double-junction tandem solar cells using different 

sub-cell combinations, it was found that some combinations are not beneficial, as the 

tandem efficiency was even lower than the efficiencies of the (stand-alone) sub-cells. 

Generally, this is the case when a lower-efficiency bottom cell is combined with a high-

efficiency top cell.  Therefore, for actual applications, it is important to combine sub-

cells that are of high quality. Correspondingly, for the energy yield calculations in 

Chapter 6, only tandem models using the best sub-cells will be selected. Their 

architecture and simulated STC efficiencies were presented in this Chapter. In addition, 

the influence of a changing spectrum, light intensity level, and operating temperature 

on the efficiency of tandem cells was studied. Tandem solar cell efficiencies under 

various outdoor illumination conditions were obtained, which will be used in Chapter 

6 for energy yield calculations. It was found that spectral variations indeed have a major 

impact on tandem solar cells, particularly for the 2-terminal configuration. An 

empirical model was used to estimate the outdoor operating temperatures of the 
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investigated single-junction solar cells and tandem solar cells. The calculations showed 

that III-V/Si tandem solar cells are expected to have a lower temperature coefficient 

than conventional single-junction Si solar cells, which is due to the use of III-V 

materials, and also lower operating temperatures in the field due to their higher PV 

efficiency. 
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Chapter 5. New methodology for energy yield calcu-

lation and outdoor loss analysis of tandem solar cells  

As discussed in Chapter 2, energy yield calculation for flat-plate tandem solar 

cell or modules is significantly different from that for single-junction or concentrated 

PV (CPV) multi-junction solar cells [134], and a systematic approach to assess their 

outdoor potential is not very established. In this chapter, a yield calculation 

methodology and an outdoor loss analysis method are presented that, in Chapter 6, will 

be used to analyse the outdoor performance of tandem solar cells. Also, some subtleties 

in the illumination conditions used for yield calculation are examined. In Section 5.1, 

the methodology for energy yield calculation is introduced. An efficient algorithm to 

compute energy yield is proposed. This algorithm makes use of device simulation and 

at the same time provides an easy way for including spectral data, thereby speeding up 

the calculations by limiting the number of device simulations needed. Subsequently, in 

Section 5.2, a framework to analyse and break down outdoor efficiency losses due to 

spectral changes, low irradiance and elevated solar cell temperatures is described. In 

Section 5.3, comparisons are made between different yield calculation methods using 

illumination condition inputs with different levels of detail and accuracy. Through this 

exercise, it is shown how subtleties in the temporal resolution and accuracy of 

illumination spectra affect the calculated energy yield in the analysis of outdoor 

performance of flat-plate tandem solar cells. Using simulated spectra, it is found that 

the conventional method of evaluating spectral effects, as used for concentrating PV 
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(CPV) devices, is not accurate enough for flat-plate tandem solar cells, as it can 

underestimate the performance ratio loss by as much as 60%.  

 

5.1. Fast yield calculation algorithm 

Normally, yield assessment of PV systems simply uses historical average solar 

irradiance levels, temperature data and name-plate values of the used PV modules as 

inputs [3, 135]. The conventional ways of yield estimation is discussed in Section 2.3.3. 

Since no device simulation is involved, such yield calculation requires little 

computational effort. However, device simulation may be important for solar cells and 

modules under development, so as to obtain accurate device responses under various 

conditions for different device designs. Neglecting device simulation confines the 

calculations to linear effects. All non-linearity in cell performance is lost. The 

algorithm used in this work directly couples yield calculation with device simulation. 

Hence, this is one of the first efforts to include yield calculation at the early stage of 

solar cell design to, ultimately, optimize the solar cell from the outset towards Levelised 

Cost of Electricity (LCOE).  

A straightforward and rigorous method would be to perform a computation for 

each time step for the whole time series, and then sum up the calculated energy outputs. 

In this study, the rigorous calculation was also performed using measured spectra and 

measured solar irradiance in high temporal resolution (one data point per 5 minutes). 

For example, the calculated energy yield as a function of time for a 2T GaAs/Si tandem 

cell is shown in Figure 5.1.1., for Singapore and Denver. This method is undoubtedly 
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the most accurate, and therefore will be taken as the benchmark for comparison in 

assessing the proposed fast algorithm. The calculated yield as a function of time also 

provides useful information on the real-time output of tandem solar cells, and how the 

output relates to the weather condition or illumination condition at that time. This 

information may be important for power grid management. However, carrying out 

device simulation for a long time series requires the processing of a huge number of 

data points and thus is time consuming and computationally intensive. This is 

especially true if an elaborate device model is employed. It is also limited in practice 

due to the extensive use of measured spectral data, which are not available for most 

locations.  

 

Figure 5.1.1: Time series of the calculated energy yield (blue line) of a 2-terminal GaAs/Si 

tandem solar cell during Feb 2013 in (a) Singapore and (b) Denver. The available solar 

irradiance is represented by the brown line. It can be seen that the cloudy nature of Singapore’s 

weather results in significantly more fluctuations in the energy yield compared to that of 

Denver. The integration time for the energy yield is 5 minutes.  
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One drawback of this method is that long computation time may be required if 

elaborate device simulation is involved. As an alternative, the proposed fast algorithm 

makes use of the characteristic set of spectrum and distribution map of illumination 

conditions as described in Chapter 3. This distribution map describes the time duration 

𝑡(𝐴𝑃𝐸, 𝐼) during which a condition with a certain APE and intensity I occurs, and can 

be seen as a fingerprint of the illumination conditions in a given location. Then, an 

efficiency map 𝜂(𝐴𝑃𝐸, 𝐼) as a function of APE and intensity is obtained by performing 

device simulations using the characteristic set of spectra (scaled to different intensities) 

as input. The device models used in this work were explained in Chapter 4. An IV curve, 

and thus a power output, is calculated using PC1D model with each input spectrum of 

each intensity level. In fact, the device models can be as elaborate as required (such as 

a Sentaurus TCAD model for the tandem device), as only a limited number of 

calculations will be required to generate the efficiency map. Then the efficiency map 

is corrected by the cell temperature that is prevalent under each illumination condition 

set to obtain the temperature corrected efficiency 𝜂𝑇(𝐴𝑃𝐸,𝐼) of the solar cell. In this 

thesis the correction of temperature effect are done using temperature coefficients, but 

in principle device output under various temperatures can be directly simulated. More 

details on the study of the temperature effect will be given in Chapter 6. By combining 

the distribution map and the efficiency map, the energy output of a unit-area solar cell 

(referred to as energy yield in this work) in a given time period can be calculated:  

𝑒𝑛𝑒𝑟𝑔𝑦 𝑦𝑖𝑒𝑙𝑑 = ∑ ∑ 𝜂𝑇(𝐴𝑃𝐸𝑗 , 𝐼𝑖) × 𝐼𝑖 × 𝑡(𝐴𝑃𝐸𝑗 , 𝐼𝑖)
𝑗=𝑀
𝑗=1

i=N
i=1  (Eq. 5.1) 
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The energy yield as defined here has a unit of kWh/m2/time. The harvesting 

efficiency, defined as the ratio between the total electric energy generated and the total 

solar energy received during the same time period, is then obtained:  

𝜂ℎ𝑎𝑟 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑦𝑖𝑒𝑙𝑑/ ∑ ∑ 𝐼𝑖 × 𝑡(𝐴𝑃𝐸𝑗 , 𝐼𝑖)
𝑗=𝑀
𝑗=1

i=N
i=1    (Eq. 5.2) 

This unit-less value is indicative of the true PV efficiency of a solar cell under 

specific operating conditions. The loss in harvesting efficiency from the STC efficiency 

can be translated to an effective performance ratio drop of a PV system (see Section 

5.2). The harvesting efficiency is a better measure of cell performance than the energy 

yield when it comes to rating, as the yield will vary with the amount of solar irradiance, 

which is the most important source of uncertainty in yield predictions (good and bad 

solar years). The overall flow of the algorithm, as explained above, is summarized and 

shown in Figure 5.1.2. 

  

 

Figure 5.1.2: Schematic flow of the algorithm used in calculating energy yield for tandem solar 

cells.  
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The results calculated with this fast algorithm deviate by less than 5% from the 

results obtained from the rigorous calculation. This is considered accurate enough for 

the purpose of investigating outdoor loss characteristics of tandem solar cells in this 

thesis. As the distribution map can be prepared for any time period, this algorithm can 

be used to calculate both short-term and long-term energy yields. However, similar to 

the rigorous simulation, this algorithm suffers from the potential lack of realistic 

spectral data. Nonetheless, the uniqueness and time invariance of the characteristic set 

of spectra in principle enables wide applications, once it has been obtained for the 

location of interest. It is well possible to generate the set from a more elaborate radiative 

transfer modelling that includes cloud coverage [136, 137]. As an alternative to using 

historically measured data sets, statistical time series forecasting can also be employed 

to predict movements or distribution of APE and irradiance level.  

 

5.2. Theories and framework for outdoor loss analysis 

5.2.1. Quantification of outdoor losses 

As discussed in Chapter 2, when solar cells are integrated into systems and are 

operated under outdoor conditions, they will experience several outdoor losses. The 

losses come from changing illumination conditions, module temperature, soiling, 

shading, as well as from various system components.  

One important parameter describing the reduced outdoor performance of PV 

systems relative to their rated capacity at STC is the ‘performance ratio’ (PR) [58, 60]. 

The performance ratio is commonly defined in relation to the specific energy yield. It 
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should be noted that the term energy yield (or yield) as used in this thesis is slightly 

different from the same terminology used in the context of PV systems. In PV systems, 

“energy yield” commonly refers to the specific final yield (𝑌𝑓) in 𝑘𝑊ℎ/𝑘𝑊𝑝. This is 

simply the annual DC energy produced per installed system capacity in kWp. Another 

useful term is the reference yield (𝑌𝑟), which is the available incoming solar irradiation 

(insolation), commonly denoted by the number of peak sunhours per year in the array 

plane, giving the reference yield the unit of hours. The performance ratio of a system 

is then given by the ratio of final yield and reference yield:  

𝑃𝑅 =
𝑌𝑓

𝑌𝑟
    (Eq. 5.3) 

This unitless quantity is a measure of actual system performance relative to the 

manufacturers’ nameplate ratings at STC. In fact, both final yield and performance ratio 

are closely related to, and convertible to, harvesting efficiency and energy yield as 

defined in this thesis. The final yield is related to yield, harvesting efficiency (𝜂ℎ𝑎𝑟), 

efficiency under standard testing condition (𝜂𝑆𝑇𝐶) and PR by:  

𝑌𝑓 =
𝑦𝑖𝑒𝑙𝑑 𝑖𝑛 𝑘𝑊ℎ

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑛𝑎𝑚𝑒𝑝𝑙𝑎𝑡𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 𝑖𝑛 𝑘𝑊𝑝
=

𝜂ℎ𝑎𝑟×𝑌𝑟×1𝑘𝑊ℎ

𝜂𝑆𝑇𝐶×1𝑘𝑊𝑝
= 𝑃𝑅 × 𝑌𝑟 (𝑘𝑊ℎ/𝑘𝑊𝑝) 

 (Eq. 5.4) 

Therefore, performance ratio is related to harvesting efficiency by:   

𝑃𝑅 =
𝜂ℎ𝑎𝑟

𝜂𝑆𝑇𝐶
     (Eq. 5.5) 

The yield and harvesting efficiency investigated in this thesis are mainly related 

to the performance of solar cells, but not yet PV systems. The losses at the cell level 
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constitute the first component of the PR drop. In PV systems, other losses (such as 

inverter losses and cabling losses) must be added to obtain the final PR. In this thesis 

we have also made the simplification by equating the solar cell’s STC efficiency to the 

PV system’s rated efficiency.  

In the analysis of outdoor losses, or sometimes gains, one can simply calculate 

the performance ratio drops, or equivalently harvesting efficiency drops, that are related 

to spectral effect, low irradiance effect, temperature effect, reflections, soiling, and 

other system related effects. In this work only the first three effects are considered for 

flat-plate tandem solar cells, since the other effects are expected to be similar to 

conventional single-junction solar cells.  

 

5.2.2. Methodology for breaking down outdoor losses 

A proposed procedure for breaking down harvesting efficiency losses due to 

individual effects is shown in Figure 5.2.1. Several yield calculations are performed in 

sequence using different inputs of conditions. The input conditions change from STC 

to real outdoor conditions by changing one condition at a time. The resulting harvesting 

efficiency then contains the loss or gain resulting from that single condition deviating 

from the previous condition. By comparing the differences between harvesting 

efficiencies of two adjacent steps, one can obtain spectral loss/gain, low irradiance loss, 

and temperature loss, respectively. This can be easily done with the fast algorithm. 

Usually, the sequence in which these losses are calculated is not important. However, 

for tandem solar cells, spectral loss/gain should always be calculated before the low-
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irradiance loss. This is because spectral shifts have a large impact on the injection level 

of all sub-cells. If the low-irradiance effect is calculated first, the subsequent 

calculation of the spectral effect would have included some additional intensity effects, 

since the intensity dependence of the solar cell efficiency is highly non-linear at lower 

injection levels.  

 

Figure 5.2.1: Procedure for performing the outdoor loss analysis.  

 

5.3. Impact of input illumination conditions 

5.3.1. Sources of input illumination conditions 

In energy yield calculations, the input illumination conditions, including 

irradiance levels and spectral composition, constitute a major part of the input outdoor 

conditions. Hence, they are expected to have a large impact on the final energy yield 
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result. The input illumination conditions need to represent the actual outdoor 

illumination conditions as accurately as possible. Depending on the availability and 

quality, the illumination data used as input can differ in both temporal resolution and 

accuracy. High-quality ground based measurements can produce irradiance and 

spectrum data with high degree of accuracy, and with high temporal resolution, often 

to the level of one data point per minute [85, 90]. Satellite derived data usually are less 

accurate, and have lower temporal resolution [99, 138]. In particular, spectrum data are 

hard to measure directly by means of remote sensing, and ground measurements are 

only available for very few locations globally. Therefore, location specific solar spectra 

are often derived from simulation, using radiative transfer models with various atmos-

pheric parameters as input. One common code to simulate solar spectra for PV 

applications and research is called ‘Simple Model of the Atmospheric Radiative 

Transfer of Sunshine’, or SMARTS [84], developed by the National Renewable Energy 

Laboratory (NREL) in the US. This code computes clear sky spectral irradiance given 

the position of the sun and a set of specified atmospheric conditions.  

Significant differences can exist between sets of illumination conditions obtained 

from different sources, whether measured or simulated. When used as input to energy 

yield assessment, they produce different results. Even with the same source of data, the 

use of different temporal resolution also results in different accuracy and uncertainty 

of the calculated energy yield. The objective of this study is to quantify the differences 

that arise from different input illumination conditions.  

In addition, energy yield can be calculated for a certain time period - for example 

a day, a month, or a year. Long-term yield, such as the annual yield, is usually 
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considered when overall energy generation or LCOE calculations are concerned. 

However, short-term energy yield is also important, for example for estimating the 

required PV system size and electricity storage capacity, in forecasting and assessing 

the impact on power grids, as well as in monitoring system output and fault detection 

[3]. Therefore, how to calculate the energy yield for different time periods with a firm 

accuracy is a relevant question.  

 

5.3.2. Calculation set up 

In this study, several ways of computing the energy yield for a 2-terminal GaAs/Si 

and a 2-terminal InGaP/Si tandem solar cell are compared, using different illumination 

inputs obtained in Denver and tropical Singapore. Different temporal resolutions of one 

data point per 30 minutes, 1 hour and 2 hours are used to generate distribution maps of 

a day, a week, and a month. In addition to measured data, SMARTS simulated spectra, 

and SMARTS simulated spectra scaled to measured intensity levels are also used as 

input. Therefore, energy yields, and thus the harvesting efficiency loss from STC 

efficiency, corresponding to inputs with different levels of detail are obtained. The 

harvesting efficiency loss, which is equivalent to the PR drop from spectral and 

irradiance effects, rather than absolute yield, is taken as the metric for evaluating 

outdoor performance. This is because the absolute amount of yield depends primarily 

on the input solar irradiance amount and absolute cell efficiency, which is less helpful 

in accurately revealing the subtle outdoor performance difference between different 

solar cell technologies.  
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The list of the different calculation methods used is as follows:  

 Method A using illumination inputs of one measured spectrum per 30 minutes 

(abbreviated as “mea. 30 min”); 

 Method B using illumination inputs of one measured spectrum per hour 

(abbreviated as “mea. 1 hr”);  

 Method C using illumination inputs of one measured spectrum per 2 hours 

(abbreviated as “mea. 2 hr”); 

 Method D using one SMARTS simulated spectrum per hour, but scaled to 

actual intensity (abbreviated as “sim. + mea.”);  

 Method E using one SMARTS simulated spectrum per hour (abbreviated as 

“sim. only”);  

The results from these calculation methods, all computed with the proposed fast 

algorithm, are compared against the reference value obtained using the more rigorous 

full time series calculation. Their accuracy and variation for different time periods are 

studied. These methods use the same tandem solar cell efficiency map. Once the 

efficiency map is pre-processed, generating the distribution maps takes very little 

additional time since no device simulations are involved.  

 

5.3.3. Effect of temporal resolution 

The distribution map can be prepared to represent the illumination condition 

within any time period. The more data points there are within this period, the closer the 

representation is to the actual distribution. To see the effect of temporal resolution on 
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energy yield calculation on a daily time scale, the yield for the first seven days of each 

month from Jan 2013 to Dec 2014 was calculated, forming a sample size of 168. The 

relative deviation of harvesting efficiency losses calculated using methods A to E from 

the reference values is obtained for each day. The distribution of daily deviations for 

methods A to E, calculated for 2-terminal GaAs/Si tandem cells in Singapore, is plotted 

as a box plot in Figure 5.3.1(a). The whiskers represent the 5 to 95 percentile. Generally, 

the coarser the time resolution, the greater is the spread in the amount of deviation. This 

implies higher uncertainty in the calculated yield. However, the accuracy in harvesting 

efficiency loss is less affected. For longer time scales of a week and a month, the 

distributions of deviations are calculated and plotted in Figure 5.3.1 (b) and (c). The 

sample sizes for the weekly and the monthly case are both 24. A similar trend as in the 

daily case is observed, but the amount of variation is significantly reduced. This means 

that the effect of rapid fluctuations in illumination condition is averaged out when a 

long time scale is considered. For monthly or annual yield calculations, the time 

resolution of 1 hour, as was often used in previous studies in the literature, is quite 

sufficient. High time resolution is needed mainly in calculating short-term energy 

production. As comparison, the same study is repeated for GaAs/Si tandem cells in 

Denver (Figure 5.3.2), and an InGaP/Si tandem cell in Singapore (Figure 5.3.3). Similar 

observations are obtained.  
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Figure 5.3.1: Box plot of the errors of (a) daily, (b) weekly and (c) monthly losses in harvesting 

efficiencies of a 2-terminal GaAs/Si tandem solar cell in Singapore. The losses in harvesting 

efficiencies are calculated from measured spectra with different time resolutions (30 min, 1 

hour, 2 hours), as well as from SMARTS generated spectra and their intensity modified version. 

The errors are represented by the relative deviation from the reference values calculated using 

the full simulation. 
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Figure 5.3.2: Box plot of the errors in the calculated (a) daily, (b) weekly and (c) monthly losses 

in harvesting efficiencies of a 2-terminal GaAs/Si tandem solar cell in Denver. 
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Figure 5.3.3: Box plot of the errors in the calculated (a) daily, (b) weekly and (c) monthly losses 

in harvesting efficiencies of a 2-terminal InGaP/Si tandem solar cell in Singapore. 
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5.3.4. Effect of input spectrum 

The relative deviations of methods D and E from the reference value for the case 

of GaAs/Si in Singapore, GaAs/Si in Denver, and InGaP/Si in Singapore are also shown 

in Figure 5.3.1, Figure 5.3.2 and Figure 5.3.3, respectively. The calculation using the 

SMARTS generated spectra consistently underestimates the harvesting efficiency 

losses by 30% to as much as 60%, and shows much higher variation in all cases. 

Although the yearly average of the generated SMARTS spectra is found to fit the 

average of the measured spectra well, SMARTS spectra are still inadequate in 

representing the real-time illumination condition, in terms of both intensity and spectral 

composition. Time variation in the spectral composition of the simulated spectra is in 

fact smaller than in the measured spectra. There are two reasons for this. First, average 

atmospheric parameters are used, as real time values are hard to obtain. As a result, the 

effects of fluctuating atmospheric properties are not adequately reflected. Second, the 

SMARTS model is unable to capture the irradiance attenuation and spectrum change 

due to cloud coverage, which is very frequent in tropical Singapore. Even with real 

intensities, the deviation is still larger, suggesting that significant spectral losses are not 

accounted for. In short, the above observations highlight the importance of considering 

both realistic intensity and spectral composition in order to accurately predict outdoor 

performance of flat-plate PV systems, in contrast to conventional yield studies for 

concentrating PV systems.  
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5.4. Chapter summary 

In this chapter, an energy yield calculation framework for flat-plate tandem solar 

cell PV modules was presented. A methodology to analyse outdoor losses was also 

introduced. The developed yield calculation and loss analysis methods will be used in 

Chapter 6 to study the outdoor performance of various III-V-on-Si tandem solar cells.  

In particular, a fast and efficient energy yield computation algorithm was 

developed that is based on the use of a characteristic set of spectra and distribution of 

operating conditions, which are unique and constant for a given location. Both short-

term as well as long-term energy yield calculations are possible with this method. The 

limited amount of calculations enables the use of elaborate device or PV system models. 

This is particularly relevant for solar cells or PV modules at the research and 

development stage, and is also important for capturing non-linear solar cell efficiency 

effects that are often neglected when evaluating energy yields. Both historical 

measured average and statistically forecasted time series or distributions can be used 

as inputs. Another feature of the developed method is the possibility to use the average 

photon energy (APE) concept directly in the energy yield calculations. Once the 

characteristic set of spectra is available for a certain location, the time series of APE 

values can potentially be measured economically by a simple sensor, thus enabling 

real-time energy yield calculations. Overall, this method provides a useful way to factor 

in spectrum, which has not been extensively considered in most energy yield 

assessments conducted so far. In addition, a framework for quantifying and breaking 

down the contributions from different outdoor loss mechanisms was outlined. This 

enables a coherent study of outdoor losses for tandem solar cells taking into account 
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several important and interlinked loss mechanisms at the same time, which was rarely 

done in the existing literature.  

The impact of input illumination conditions was investigated. Different temporal 

resolutions of data points and different ways of obtaining input spectra (simulated with 

SMARTS or measured) were found to influence the accuracy and uncertainty of the 

calculated outdoor losses and energy yield values. For long-term yield calculations, 

detailed input is not vital. However, for short-term yield calculations, high temporal 

resolution of at least one input data per 30 minutes is needed if a low uncertainty is 

desired.  

The conventional method of estimating energy yield, using SMARTS simulated 

spectra, was found to be inadequate for flat-plate tandem solar cells, because of the 

inability to account for the effects of cloud coverage and changing atmospheric 

conditions. Even after modifying the SMARTS generated spectra with measured 

intensity data, the predicted loss in harvesting efficiency was still underestimated by 

about 30% to 60%. Therefore, a better representation of the actual spectral composition 

is desired. Overall, there is still an advantage of using high time resolution measured 

data to accurately calculate the energy yield.  
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Chapter 6. Energy yield of 1-Sun tandem solar cells 

and implications on design rules 

Using the energy yield calculation framework established in Chapter 5, the energy 

yields for several Si based 1-Sun (flat-plate) tandem solar cells are evaluated in this 

chapter using solar irradiance data from Singapore and Denver. This chapter first 

presents the time resolved energy yield for a GaAs/Si tandem solar cell. Yield 

behaviour over the course of time is analysed and discussed. Then, the annual 

harvesting efficiencies and the breakdown of outdoor losses are studied for various III-

V/Si tandem solar cells. The performance ratios attainable by these solar cells after 

considering spectral loss, low-irradiance loss and temperature loss are calculated and 

compared for Singapore and Denver. Finally, attempts are made to utilize these results 

to inform tandem solar cell design and optimization.  

 

6.1. Time resolved energy yields for GaAs/Si tandem 

solar cells 

In this study full time series device simulation is carried out for a GaAs/Si tandem 

solar cell. The tandem configuration consists of the model of an advanced GaAs top 

cell and a PERC Si bottom cell, as introduced in Chapter 4. The solar irradiance and 

spectral data for illumination input were introduced in Chapter 3. The full time series 

of device output, namely time resolved energy yield, is obtained and analysed. This 

helps to show in detail how the yield and harvesting efficiency change with time, and 
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how rapidly changing illumination conditions at different moments influence the real-

time solar cell output. This can be useful information for many applications, such as 

power grid management, or the designing of power autonomous devices [139].  

 

6.1.1. Device structure and simulation setup 

The simulated device architectures are shown in Figure 6.1.1. Other than the 

standard 2-terminal (2T) and 4-terminal (4T) architecture, a 4T configuration with a 

top cell thinned to 215 nm (same as GaAs thickness in the standard 2T architecture) is 

also included, and is named 4T_thinned. This configuration helps to analyse the extent 

of current mismatch losses in the 2T configuration. The measured solar irradiance data, 

device models and simulation routines were discussed in Chapters 3 and 4. Spectral 

data of Singapore as well as Denver in the year 2013 is used as illumination input. One 

data set per five minutes is used. For each data point, an optical calculation is performed 

using the transfer matrix method (TMM), and a depth-resolved photogeneration profile 

is obtained for each layer. Subsequently, the electrical characteristics of the tandem 

device are calculated. Repeating this procedure for every data point, the time-resolved 

power is obtained. The overall energy yield is obtained by integrating the time-resolved 

energy output.  
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Figure 6.1.1: Schematics of the three simulated GaAs/Si tandem solar cells.  

 

6.1.2. Time series of yield and discussion 

As an illustration, the time series of energy yield for the two locations considered, 

together with the available solar irradiance, were shown in Chapter 5, also reproduced 

here in Figure 6.1.2 for convenience. As can be seen, fluctuations in solar power 

reaching the ground are very common in Singapore, both on sunny and overcast days, 

due to cloudiness in an equatorial climate. In comparison, clear days with a bell-shaped 

irradiance profile are more common in Denver. One typical sunny day with intermittent 

cloud coverage (day 2) and one very overcast day (day 10) in Singapore are highlighted 

in Figure 6.1.2. As will be shown later, tandem solar cell efficiencies during the two 

highlighted days differ significantly.  
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Figure 6.1.2: Integrated spectral irradiance and simulated 2T GaAs/Si power as a function of 

sunshine hours for Sep 2013, in (a) Singapore and (b) Denver. Fluctuations in solar radiation 

are captured in fine detail. Two days of particular interest are highlighted for further 

comparison.  

 

The daily amount of solar insolation available to the solar cell, i.e. the daily total 

of the integrated spectral irradiance (ISI), and the calculated daily energy yield of the 

three solar cell configurations for Singapore and Denver are shown in Figure 6.1.3 (a) 

and (b), respectively. In addition, the 4-terminal detailed balance limit output is also 

included. This output was calculated using detailed balance method (see Chapter 2), 

but assuming a realistic optical absorption for the given solar spectrum. This is taken 

as the highest yield potential for the given tandem architectures, and is used as a 

benchmark for comparison.  
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Figure 6.1.3: Simulated daily energy yield of the three investigated tandem solar cell 

configurations in (a) Singapore and (b) Denver, for September 2013. The integrated spectral 

irradiance (ISI) of the solar radiation and the theoretical output limit calculated using the 

detailed-balance method are also shown for comparison. The harvesting efficiency of the 

detailed-balance limit is shown in (c) for Singapore and (d) for Denver, together with the daily 

averaged average photon energy (APE) values. Taking the detailed-balance output as the 

benchmark, the performance of each configuration in (e) Singapore and (f) Denver is shown. 

The 2T configuration is significantly more sensitive to spectral variations, especially on days 

with low insolation. The two days of particular interest (days 2 and 10) for Singapore are circled 

in red in graph (e).  
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The average daily harvesting efficiency of a 4-terminal GaAs/Si tandem solar cell 

at its theoretical limit is shown in Figure 6.1.3 (c) for Singapore and (d) for Denver. As 

can be seen, the theoretical harvesting efficiency limit varies strongly over the course 

of the investigated month. The trend roughly follows the pattern of daily ISI. This is 

mainly due to the light intensity dependence of the cell voltage. The cell efficiency is 

lower at lower intensities, and thus a larger low-irradiance loss occurs. It can be 

observed that the trend of the harvesting efficiency also roughly agrees with the trend 

of the average daily photon energy (APE) values. The more blue-rich the spectrum (i.e., 

the higher the APE value), the lower the harvesting efficiency. However, this is 

inconsistent with the behaviour of 4T GaAs/Si tandem solar cells under varying spectra, 

as discussed in Chapter 4. Therefore, the trend match occurs entirely because the 

spectra of very overcast days tend to be blue-shifted, as discussed Chapter 3. It can thus 

be concluded that the impact of the light intensity is larger than that of the spectral 

composition for 4T GaAs/Si tandem cells. Note that no shunt resistance is included in 

the tandem models. The impact of light intensity may be even larger if the effects of 

shunt resistances are considered.  

To compare the performance of the realistic devices with different configurations, 

their energy yields as a fraction of the theoretical limit are shown in Figure 6.1.3 (e) 

and (f) for Singapore and Denver, respectively. In terms of fraction of theoretical limit 

realized, the realistic device output stays relatively constant, but drops for days with 

very low insolation. However, for realistic 4-terminal tandem devices this variation is 

much smaller than the amount of variation in harvesting efficiency at the theoretical 

limits. This implies injection dependence for the recombination losses present in 
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realistic devices play a minor role compared to the light intensity dependence of the 

voltage. In contrast to the 4-terminal case, the calculated output of 2-terminal tandem 

solar cells fluctuates more. This is mainly due to their increased sensitivity to the 

spectrum as a result of current mismatch, as can be seen from the difference of the 

output of the 2T and 4T_thinned configurations. The 2T output in Singapore is 

consistently lower than that in Denver, because of Singapore’s bluer spectrum, which 

induces losses in the GaAs top cell, which was designed for operation under the 

AM1.5g spectrum. The 2T efficiency suffers disproportionately more during very 

overcast days, a result of the mentioned correlation between average spectral 

composition and daily insolation. As an illustration, the average spectra of day 2 and 

day 10 in Singapore are shown in Figure 6.1.4. The spectrum of day 10, which has low 

insolation, is significantly more blue-rich than that of day 2, causing a much more 

severe current mismatch. In short, the power output of days with low light intensity is 

affected over-proportionally because of the additional effect of a changed spectrum.   
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Figure 6.1.4: Comparison of average solar spectra in Singapore on day 2 and day 10 of Feb 

2013, for the wavelength range 300 to 1050 nm. The spectrum of day 10 is significantly blue 

shifted, causing larger current mismatch for the 2T tandem cell configuration. The AM1.5G 

spectrum is also shown for comparison. All three spectra were normalized to the same 

integrated spectral irradiance (ISI) of 761 W/m2, which corresponds to an intensity of 

1000 W/m2 for the complete wavelength range (280 nm to 4000 nm).  

 

In Figure 6.1.5, the calculated average daily energy yield of 2T and 4T GaAs/Si 

tandem solar cells over 12 months - from Feb 2013 to Jan 2014 - in Singapore and 

Denver are plotted. As can be seen, an energy yield of over 1 kWh/m2 can be expected 

per day at both locations. The daily average values fluctuate throughout the year, with 

no clear pattern for Singapore and some seasonal trends for Denver. On average, for 

both locations, the 4T output is more than 15% higher than the 2T output. 
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Figure 6.1.5: Simulated average daily energy yield of 2T and 4T GaAs/Si tandem solar cells 

over 12 months (from Feb 2013 to Jan 2014) at two locations (Singapore and Denver). On 

average, the 4T output is more than 15% higher than the 2T output.  

 

6.1.3. The influence of photon recycling and luminescent coupling 

As mentioned in Chapter 4, photon recycling effects may cause a non-negligible 

improvement to the efficiency in high-quality III-V solar cells, where radiative 

recombination is the dominant recombination mechanism. The re-emitted photons can 

also be transmitted to - and absorbed in - the Si bottom cell (“luminescent coupling”). 

When the spectrum is blue shifted, more e-h pairs are generated in the top cell(s) and 

thus more photons are emitted by them due to radiative recombination. If the lumines-

cent coupling efficiency is high, the current in the Si bottom will consequently drop 

less compared to the case where no photon recycling is present. As a result, the current 

mismatch loss will be mitigated. The yield calculations presented in this thesis do not 

consider this effect, as otherwise the device simulations would become too time 

consuming. If this effect is included, the energy yield of the tandem cells would be 

slightly higher. To give an example of the relative importance of the photon recycling 
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effect on the calculated energy yield results, the yield for a 2T GaAs/Si was calculated 

by taking photon recycling into account. The simulations were performed for the month 

of August 2013, for two locations (Singapore and Denver). As the impact of photon 

recycling depends on the spectral composition, the ratio of the calculated energy output 

considering photon recycling (Ewith PR), and without photon recycling (Ew/o PR) is plotted 

against the APE value of the spectrum for all data points (Figure 6.1.6). As expected, 

the more blue-rich the spectrum, the greater the photon recycling effect is. After 

integrating the energy output, the total yield increases by around 1% after including 

photon recycling in the calculation.  

 

Figure 6.1.6: The ratio of the calculated energy output considering photon recycling (Ewith PR), 

and without photon recycling (Ew/o PR) versus the APE of the input spectrum, in August 2013. 

The higher the APE values are, the greater the photon recycling effect is. Overall, the total 

energy yield increases by around 1% after including photon recycling in the calculation.  

 



114 

6.2. Annual harvesting efficiency and outdoor loss 

analysis 

Detailed energy generation patterns are valuable information, but for overall 

energy generation and economics, the long-term energy yield is the most important 

parameter. In this section, the annual yield potentials of various III-V/Si tandems are 

determined, calculated using the proposed fast algorithm. Assessment of the long-term 

yield potential provides insights into the competitiveness and viability of these tandem 

cell technologies. In addition, it is useful to break down the contributions from different 

mechanisms to the overall outdoor efficiency losses. This section first summarizes the 

calculated outdoor harvesting efficiencies and losses for the investigated tandem cells, 

followed by a discussion of the implications on the performance ratios of PV systems 

that employ these solar cells. The yearly variation of the harvesting efficiency is also 

briefly discussed.  

 

6.2.1. Summary of annual harvesting efficiencies and outdoor losses 

The harvesting efficiencies for several III-V/Si tandem solar cells optimized for 

STC conditions, a single-junction (SJ) GaAs cell, and a SJ Si cell operating in Singa-

pore as well as Denver are calculated for several years. The outdoor losses are broken 

down into contributions from spectral variations, low irradiance, and elevated temper-

atures. The results for Singapore and Denver for the year 2014 are shown in Figure 

6.2.1 and Figure 6.2.2, respectively. The STC efficiency of each solar cell is indicated 

beside the starting point of each “loss waterfall” diagram. The final harvesting 

efficiency after inclusion of all three loss mechanisms is indicated at the bottom of the 
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waterfall by bold text. It can be seen that 2-terminal devices, especially triple-junction 

devices, suffer severely from spectral variations in Singapore, due to the blue-shifted 

spectrum. The temperature related loss in Singapore is also significant. As a result, 2T 

GaAs/Si and 2T InGaP/GaAs/Si have harvesting efficiencies that are lower than that of 

a SJ GaAs cell, despite having a higher STC efficiency. With the cell models used in 

this study, only the 4T GaAs/Si cell and the 2T GaAs/GaAs/Si cell surpass the final 

harvesting efficiency of the SJ GaAs cell in Singapore. This highlights the challenge of 

realizing improved flat-plate PV module efficiencies using tandem solar cells under 

Singapore’s operating conditions.  

In comparison, the losses due to spectral variations and the elevated cell temper-

ature are much smaller in Denver, where the 2T InGaP/GaAs/Si achieves a higher 

harvesting efficiency than a state-of-the-art single-junction GaAs solar cell. With better 

InGaP and Si sub-cells, a 4T InGaP/Si tandem cell can reach nearly 30% STC 

efficiency [56], and thus is also expected to beat the SJ GaAs cell.  

 

Figure 6.2.1: The breakdown of outdoor losses of Si based tandem solar cells with various III-

V top cells, for the year 2014 in Singapore. The loss breakdown for single-junction (SJ) GaAs 

and Si solar cells using the same device models is also included for comparison. The STC 
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efficiencies and the final harvesting efficiencies taking into account the three losses are 

indicated in the graph. 

 

 

Figure 6.2.2: The breakdown of outdoor losses of Si based tandem solar cells with various III-

V top cells, for year 2014 in Denver. The spectral loss and temperature loss are much lower 

than in the case of Singapore. Several of the investigated tandem cell structures achieve better 

harvesting efficiency than a high-quality single-junction GaAs solar cell. 

 

Given that the models for InGaP and GaAs used in these calculations already 

represent high-quality III-V cells, there is limited room for improvement of the top cells. 

Further improvement of the harvesting efficiency of the tandem cell thus needs to come 

from a better bottom Si cell. The Si cell model used in this thesis represents an industrial 

PERC-type cell with approximately 20% STC efficiency. In addition, due to the 

assumption of planar front and rear surfaces, the long-wavelength region (1000 - 1150 

nm) of the solar spectrum is not well utilized. Using a higher efficiency Si solar cell 

with good light trapping could thus be beneficial.  
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6.2.2. Implication on performance ratio 

As discussed in Chapter 5, the harvesting efficiency losses shown in Figure 6.2.1 

and Figure 6.2.2 can be translated into PR losses. This is done by calculating the relative 

percentage of the respective losses to the STC efficiency. The PR loss here refers to 

intrinsic losses due to the solar cell’s response to variations in the outdoor conditions, 

which would be part of the overall system PR loss. The PR losses, broken down into 

the three loss channels, and the resulting PR for the different solar cells in Singapore 

and Denver are shown in Figure 6.2.3 and Figure 6.2.4, respectively. It should be noted 

that the PR here only includes the effects from spectral variations, low irradiance, and 

cell temperature. The three loss mechanisms represent three important sources of 

performance ratio drops of PV systems due to the solar cells. Other factors such as 

soiling, reflection, shading, and losses within cabling or other system components are 

not considered in this thesis. These factors are expected to be similar for systems 

employing tandem solar cells and conventional Si solar cells. In Singapore, the spectral 

losses for 2-terminal tandem devices are generally severe, mostly due to systematic 

current mismatch losses, as the tandem device is optimized for the AM1.5G spectrum, 

which differs significantly from the actual conditions in Singapore. In contrast, spectral 

losses are generally insignificant in Denver, as the prevalent spectral composition in 

Denver is very close to AM1.5G. In general, 4T devices are not susceptible to spectral 

losses, even less so than a SJ Si solar cell. 4T InGaP/Si and SJ GaAs both experience 

some PV efficiency gain in Singapore, as higher-bandgap materials benefit from 

Singapore’s blue-shifted spectrum. 
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The low-irradiance loss in Singapore is more severe than in Denver, due to more 

frequent cloud coverage and intensity fluctuations. In both locations, the low-irradiance 

losses for the tandems are slightly higher than single-junction cells, as the sub-cells 

divide incoming irradiance. Losses for the GaAs/Si and GaAs/GaAs/Si configurations 

are the highest, most probably due to the extremely thin GaAs cell used in the 2T 

double-junction or triple-junction case and the low light intensity seen by the Si cell in 

the 4T case. It should be noted that our device models at this stage may not be very 

accurate in capturing all low-injection effects, and no shunt resistance was assumed. 

However, this will not severely affect the energy yield results because low-irradiance 

conditions contribute little to the total annual energy generation.  

Temperature related losses are the largest outdoor loss for all solar cells 

investigated, both in Singapore and in Denver. However, the temperature related losses 

are lower for III-V/Si tandems compared to conventional single-junction Si solar cells. 

Their temperature performance is in fact closer to that of a GaAs solar cell. In addition, 

4T configurations investigated here have lower temperature loss than 2T devices, partly 

because more power conversion takes place in the III-V top cell.  
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Figure 6.2.3: The predicted PR after taking into account the spectral effect, the low-irradiance 

effect, and the temperature effect for a single-junction Si and GaAs cell as well as several Si 

based tandem solar cells operating in Singapore. Single-junction GaAs and 4T InGaP/Si 

tandem solar cells experience a slight efficiency gain due to the blue-rich spectrum, which 

increases the PR to over 100%.  

 

 

Figure 6.2.4: The predicted PR after taking into account the spectral effect, the low-irradiance 

effect, and the temperature effect for a single-junction Si and GaAs cell as well as several Si 

based tandem solar cells operating in Denver. The PR loss due to spectral effect and 

temperature effect are greatly reduced from Singapore’s case. Low-irradiance loss is also 

slightly less. 
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Overall, the tandem solar cells can achieve PRs as good as those of a conventional 

single-junction Si solar cell, or even better for the 4T cases. 2T tandem solar cells 

indeed suffer more from spectral variations, but this loss is compensated by higher 

efficiencies and a better temperature tolerance. As will be seen in Section 6.3, it can 

also be partially mitigated by customization of the tandem design.  

 

6.2.3. Variation over the years 

Operating conditions for solar cells vary from year to year (“good” and “bad” 

solar years). The yearly variations of spectrum, insolation and ambient temperature 

were described in Chapter 3. Consequently, the harvesting efficiencies and the outdoor 

loss characteristics fluctuate slightly from year to year. To estimate the degree of 

fluctuation, the annual harvesting efficiency of a 2T GaAs/Si tandem cell in Denver 

was calculated for 5 years, 2011 to 2015, see Figure 6.2.5. The harvesting efficiency 

without the temperature effect includes only the losses resulting from fluctuating 

illumination conditions, i.e., spectrum and intensity. The amount of variation over the 

years is around 0.1% absolute (or 0.4% relative). The variation after inclusion of the 

year-to-year temperature differences is larger, around 0.2% absolute (or 0.8% relative).  
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Figure 6.2.5: The annual harvesting efficiency of a 2T GaAs/Si tandem cell in Denver, 

calculated for five years from 2011 to 2015. The harvesting efficiencies considering only loss 

from fluctuating illumination conditions show a variation of around 0.1%, where harvesting 

efficiencies considering both illumination conditions and temperatures show a variation of 

around 0.2%.  

 

6.3. Implications on design 

Operating conditions vary for different locations. Calculations show that 

designing a tandem solar cell towards STC results in considerable current mismatch 

losses in Singapore. Therefore, it could be economically favourable to move from a 

“one size fits all” design to customization for local conditions. To see the effect of 

customization on the spectral loss, the top cell thicknesses for the 2T tandem solar cells 

were adjusted to achieve current matching under Singapore’s average spectrum. The 

harvesting efficiencies in Singapore in 2014 were then calculated for the customized 

designs. The results are shown in Table 6.3.1 and Figure 6.3.1. As can be seen from 

Table 6.3.1, the PR loss due to spectral effect becomes insignificant after the 

customization. However, this is partly because the rated efficiency under STC is 



122 

reduced for the customized design (see Figure 6.3.1). Therefore, despite significant 

reduction in the systematic current mismatch loss, not all mismatch losses are 

eliminated. The losses due to variations in the spectral composition are still present. In 

terms of total yield, a 0.8% to 1.7% relative gain can be expected from the 

customization, depending on the weightage of spectral loss in the total losses. It should 

also be noted that in this case the top cell material usage is reduced for the customized 

design. This could provide additional benefits in terms of cost. Given that operating 

conditions vary in different locations, customization for enhanced low-irradiance 

performance or enhanced temperature tolerance to optimize the cost effectiveness may 

also be desirable. Even more customization possibilities are available at the PV module 

level [140].  

Table 6.3.1: The PR loss due to spectral effect and annual total yield in Singapore, 2014 before 

and after customization of top cell thickness to suit Singapore’s local spectrum. The relative 

gain in yield is shown in the last column. 

Configurations 

Sub-cell 

thicknesses 

(µm) 

PR loss due to  

spectral effect (%) 
Yield (kWh/m2) 

Gain in 

yield  

(rel%) 
Before After Before After 

GaAs/Si 2T 
0.2 / 200 (before) 

0.19 / 200 (after) 
3.9 0.056 426 433 1.6 

InGaP/Si 2T 
2.5 / 200 (before) 

2.0 / 200 (after) 
1.5 -0.87 425 429 0.8 

InGaP/GaAs/Si 2T 

0.285 / 0.65 / 200 

(before) 

0.23 / 0.55 / 200 

(after) 

4.8 -1.20 446 453 1.7 

GaAs/GaAs/Si 2T 

0.095 / 0.45 / 200 

(before) 

0.085 / 0.42 / 200 

(after) 

3.6 0.036 471 477 1.4 
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Figure 6.3.1: The loss breakdown for the various 2T III-V/Si tandem configurations before 

(striped) and after (solid) customizing for the local spectrum of Singapore. The improved 

harvesting efficiency is indicated in bold text. It should be noted that the STC efficiency would 

decrease due to these customizations. The improvement in the final harvesting efficiency is 

mainly due to a reduction in systematic current mismatch loss.  

 

6.4. Chapter summary 

In this chapter, both time resolved energy yield characteristics and annual energy 

yields for III-V/Si tandem solar cells were studied. A systematic method to calculate 

and perform outdoor loss analysis was used. The analysis took into account the effects 

of spectral deviations from the AM1.5G spectrum, low irradiance levels, and operating 

cell temperatures, which represent the most important factors affecting the outdoor 

performance of tandem solar cells for flat-plate PV module applications. These losses 

cause drops in the performance ratio of PV systems employing tandem solar cells.  

Tandem solar cell efficiency varies from day to day. Generally, the harvesting 

efficiencies for both 2T and 4T configurations tend to be reduced during times of low 

insolation. The 2T cell efficiency drops tend to be larger than those of 4T devices in 
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these days, because of larger spectral changes and thus current mismatch. This is 

because the spectrum tends to be more blue-shifted in days with lower insolation. 

However, the impact of this on the long-term energy generation is limited, as days with 

low insulation contribute little to the total insolation. When photon recycling is 

considered, the calculated yield for the 2T GaAs/Si tandem solar cell is increased by 

about 1%.  

In terms of long-term performance, all simulated tandem solar cells have annual 

harvesting efficiencies that are lower than their STC efficiencies. The difference was 

found to be2% - 4% in Singapore and 1% - 2% in Denver. This corresponds to 

performance ratios (PR) that are as good, or even better, than those of conventional 

single-junction Si solar cells.  

With the sub-cell models used in this study, only the 4T GaAs/Si tandem cell in 

Denver achieved a harvesting efficiency of over 30%. For the other investigated tandem 

configurations, a higher-efficiency Si bottom cell with good light trapping properties is 

needed to surpass 30% harvesting efficiency. Coupling losses between sub-cells and 

resistive losses due to integration must be kept as small as possible. A 4T GaAs/Si 

tandem achieves much higher harvesting efficiency than a world-record level single-

junction GaAs solar cell in both Singapore (26.6%) and Denver (27.3%). Generally, it 

seems that the 4-terminal configuration with best possible sub-cells is most promising 

for beating single-junction solar cells and for achieving a quantum leap in energy 

production by flat-plate PV modules.  
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The contributions from different loss mechanisms to total outdoor PR loss were 

determined. The analysis showed that the spectral loss can be severe for 2-terminal 

devices but is generally small for 4-terminal devices. This suggests that the spectral 

loss mainly comes from current mismatch between the sub-cells in locations where the 

incoming spectrum differs significantly from the AM1.5G spectrum. Calculations 

show that this loss can be greatly reduced by customizing the sub-cell thickness to 

achieve current matching under the average local spectrum. This brings about 0.8% to 

1.7% relative gain in the total energy yield in Singapore. The low-irradiance loss is 

similar for all single-junction and tandem solar cell models considered, but can become 

slightly larger when a sub-cell operates frequently under very low light intensity. The 

temperature performance of III-V/Si tandems was predicted to be better than that of a 

typical single-junction Si solar cell, due to the combined effects of having a smaller 

temperature coefficient and a lower operating cell temperature.  

The developed outdoor loss analysis methodology can also be extended to flat-

plate PV modules and PV systems employing tandem solar cells. The insights obtained 

in this study are also relevant for other Si based tandem solar cells, such as perovskite/Si, 

especially regarding the expected losses due to variations from the AM1.5G spectrum.  

 

 

 



126 

Chapter 7. Conclusion 

7.1. Summary 

In this work, an energy yield calculation methodology and outdoor loss analysis 

framework was developed for flat-plate tandem solar cells. Investigations on the energy 

yield potential and outdoor performance were done for III-V/Si tandems with GaAs, 

InGaP, dual-junction GaAs/InGaP, and dual junction GaAs/GaAs as top cells, in two 

different climates represented by Singapore and Denver. The major contributions of 

this work are as follows:  

The realistic outdoor operating conditions in Singapore and Denver, as 

represented by irradiance level, spectral composition, and ambient air temperature, was 

described and analysed in Chapter 3. These data were measured with high accuracy 

and temporal resolution. It was observed that the illumination conditions in Singapore 

and Denver are significantly different. Singapore has more fluctuations in the 

irradiance level, due to the abundance of clouds, whereas most insolation comes from 

high irradiance levels in Denver. The average spectrum in Singapore is more blue-rich 

than that of Denver. In addition, it was found that the spectral composition and the 

irradiance level are negatively correlated, particularly for Singapore. Further, using the 

average photon energy (APE) to characterize the spectral composition, a characteristic 

set of spectra, which is unique and relatively time invariant for a fixed location, was 

calculated for each location. An effective way of summarizing the illumination 

conditions were obtained by sorting measured spectra based on intensities and APE 
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values. The operating temperature was obtained from ambient air temperature and 

irradiance level using an empirical model.  

In Chapter 4, the tandem solar cells were modelled using optical simulation, 

physical device simulation (PC1D), as well as analytical temperature models with 

temperature coefficients. Tandem solar cell outputs under standard testing conditions 

(STC) as well as other operating conditions were obtained. In addition, several sub-cell 

models for Si bottom cell and III-V top cells were considered. By simulating the STC 

efficiencies of double-junction tandem solar cells using different sub-cell combinations, 

it was found that some combinations were not beneficial, as the tandem efficiency was 

even lower than the efficiencies of the (stand-alone) sub-cells. Therefore, combination 

of sub-cells that are of high quality is recommended. By simulating tandem solar cell 

outputs under a wide range of realistic operating conditions, it was confirmed that 

spectral variations indeed have a major impact on tandem solar cells, particularly for 

the 2-terminal configuration. Calculations showed that III-V/Si tandems are expected 

to have a lower temperature coefficient than conventional single-junction Si solar cells, 

which is due to the use of III-V materials, and also lower operating temperatures in the 

field due to their higher PV efficiency.  

A fast and efficient energy yield computation algorithm, which is based on the 

use of a characteristic set of spectra and distribution of operating condition, was 

developed. This algorithm, outlined in Chapter 5, makes practical the use of very 

detailed solar irradiance and spectrum data to compute energy yield accurately. 

Moreover, sophisticated physical device simulation can be employed without 

consuming too much computational power. This is particularly relevant for solar cells 
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or modules at the research stage, and is also important for capturing non-linear solar 

cell efficiency effects that are often neglected when evaluating energy yields. Overall, 

this method provides a useful way to factor in spectrum in energy yield calculation, by 

using the average photon energy (APE) concept directly. In addition, a framework for 

quantifying and breaking down the outdoor losses was proposed. This enables a 

coherent study of outdoor losses for tandem solar cells taking into account several 

important and interlinked loss mechanisms at the same time, which was rarely done in 

the existing literature.  

The energy yield methodology for flat-plate tandem solar cells was examined and 

evaluated in Chapter 5. In particular, the impact of input illumination conditions was 

investigated. Different temporal resolutions of data points and different ways of 

obtaining input spectra (simulated with SMARTS or measured) were found to influence 

the accuracy and uncertainty of the calculated outdoor losses and energy yield values. 

For long-term yield calculations, detailed input is not vital. However, for short-term 

yield calculations, high temporal resolution of at least one input data per 30 minutes is 

needed if a low uncertainty is desired. The conventional method of estimating energy 

yield, using SMARTS simulated spectra, was found to be inadequate for 1-Sun tandem 

solar cells, because of the inability to account for the effects of cloud coverage and 

changing atmospheric conditions. Even after modifying the SMARTS generated 

spectra with measured intensity data, the predicted loss in harvesting efficiency was 

still underestimated by about 30% to 60%. Therefore, a better representation of the 

actual spectral composition is desired.  
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The realistic outdoor energy yield of several III-V/Si tandem solar cells was 

calculated in Chapter 6. The tandem structures included double-junction (GaAs/Si and 

InGaP/Si, in both 2T and 4T configuration) as well as triple-junction (2T 

InGaP/GaAs/Si and 2T GaAs/GaAs/Si). Time-resolved energy yield revealed how the 

rapidly changing illumination conditions at different moments influence the real-time 

solar cell output. Generally, the harvesting efficiencies for both 2T and 4T tandems 

tend to be reduced during times of low insolation. In terms of long-term performance, 

all simulated tandem solar cells have annual harvesting efficiencies that are lower than 

their STC efficiencies, which is consistent across several years. The difference was 

found to be 2 - 4 % in Singapore and 1 - 2 % in Denver. This corresponds to 

performance ratios (PR) that are as good, or even better, than those of conventional 

single-junction Si solar cells. The contributions from different loss mechanisms to total 

outdoor PR drop were broken down. It was found that current mismatch losses for 2T 

tandems are significant in Singapore, where the incoming spectrum differs significantly 

from the AM1.5G spectrum. However, this could be reduced by customizing the sub-

cell thickness to achieve current matching under the average local spectrum, which 

brings about 0.8% to 1.7% relative gain in the total energy yield. The temperature 

related loss was found to be the largest outdoor loss for all tandems investigated, but 

the temperature performance of III-V/Si tandems was predicted to be better than that 

of a typical single-junction Si solar cell, due to the combined effects of having a smaller 

temperature coefficient and a lower operating cell temperature.  
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7.2. Proposed future work 

In this thesis, a new approach of energy yield calculation was developed that 

included spectral effects, which was a significant expansion from previous calculation 

methodologies. This proved to be particularly important for flat-plate tandem solar cells. 

Moreover, detailed description of operating conditions and detailed device modelling 

was used to make the yield analysis more accurate. Future work is recommended to 

further advance this yield calculation approach. There are several aspects for this.  

Firstly, it was identified that representation of operating conditions is important. 

Therefore, more work could be done to improve input data availability and quality. 

Currently, measured spectrum data are not widely available, and simple spectrum 

simulation is often inadequate in reproducing the global spectrum. The situation can be 

improved by performing ground based spectrum measurements in more locations, or 

by developing better ways to predict solar spectrum, such as via extensive incorporation 

of satellite measurements of clouds and atmospheric properties. Techniques for 

reconstructing the illumination conditions from limited data is potentially an important 

topic for yield analysis.  

Secondly, more data analytics could be performed on the measured illumination 

conditions. For instance, the effects of clouds on global spectrum could be further 

studied. More investigations can also be performed on the correlations between 

irradiance level, spectrum, cloud fraction, temperature, or other relevant meteoro-

logical parameters. This could be potentially helpful in predicting operating conditions, 

in understanding the energy output patterns, as well as in the designing of tandem solar 

cells.  
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Thirdly, the use of characteristic set of spectra for yield calculation opens up 

interesting new possibilities of measuring and using APE. Once the characteristic set 

of spectra is available for a certain location, the time series of APE values can 

potentially be measured economically by a simple sensor, thus enabling real-time 

energy yield calculations for PV monitoring. Also, both historical measured average, 

and statistically forecasted time series (or distributions) of APE values can be used as 

inputs to yield prediction.  

Also, in this thesis, the energy yield potential and outdoor loss characteristics of 

flat-plate tandem solar cells was studied in depth. This is instrumental in informing 

tandem solar cell design as well as its economic viability. More accurate and extensive 

energy yield studies for tandem solar cells could be performed in the future.  

For instance, experimental studies and better modelling on the operating tandem 

solar cell temperature could be beneficial. Also, better device simulation is desired. 

This can be achieved by using more sophisticated simulation software such as 

Sentaurus TCAD, and by including more features such as tunnel junctions and contacts. 

Ray tracing optical calculation can also be used to determine the optical absorption in 

textured Si bottom cell, adhesion layers or encapsulations. In addition, more connection 

and wiring configurations are possible for tandem modules, such as “areal” current 

matching [28, 29, 35] or voltage matching [50]. As a consequence, tandem solar 

module behaviour can be more complex than a single unit of tandem solar cell. Thus 

modelling at the module level or even the system level could become important. The 

energy yield study can also be extended to cover more locations, more module 

orientations, or more operation environments (such as mobile and indoor applications).  
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Last but not least, experimental validation of the yield calculation methodology 

is needed. Outdoor testing using prototype tandem solar cells is required to confirm the 

calculated energy yields and the predicted outdoor loss characteristics.  
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Appendix 2: MatLab code for yield calculation 

function intYieldCalc 

% integrated code for fast yield calculation based on spec matrix and 

% efficiency matrix methodology.  

% author: Liu Haohui, NUS 

% V3.8 

 

% V3.0: now able to set temperature; 

% V3.1: support batch studies with multiple illumination inputs;  

% included the capacity to perform data filter; 

% removed load spectrum as a task switch; 

% V3.2: made improvement to user input; 

% V3.3: small change to user input, fixed some bugs; 

% V3.4: included temperature sorting in distribution function generation 

% V3.5: included insolation distribution with temperature calculation 

% V3.6: change temperature to ambient temperature, modify effMatrix based 

% on a temperature model to predict outdoor cell temperature (analytic change); 

% V3.7: effective Ross coefficient k is set for each tandem configuration; 

% V3.8: some bug fix 

% V3.8a: for methodology study 

 

% program outline: load source spectrum --> sort spectrum and provide stats 

% on it --> generate spec matrix for efficiency matrix calculation & 

% generate distribution function of illumination conditions --> calculate  

% energy output of the specified cell configuration --> convert to 

% efficiency matrix --> from eff matrix and distribution function, 

% calculate yield.  

% switch on required steps based on need.  

 

% 

************************************************************************ 

% ------------------------ user input ------------------------------------ 

% 

************************************************************************ 

for month=1:12 

     

    if month<10 

        mth = ['0' num2str(month)]; 

    else 

        mth = num2str(month); 

    end 

% ~~~~~~~~~~~~~~~ general input ~~~~~~~~~~~~~~~~~~~ 

wRange = [350 1060]; %specifies start and end of wavelength range considered 

defaultTemp = 25+273.15; % default: room temperature of 25C is 298.15K 

str = ['Denver2013' mth]; 

studyName = [str '_GS_1st7days_smartsIrrMod']; 
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caseNum = 7; %total number of cases in this study 

version = cell(caseNum,1); 

others = cell(caseNum,1); 

spec_case = cell(caseNum,1); 

 

% ~~~~~~~~~~~~~~~ illumination (spec data) input ~~~~~~~~~~~~~ 

% spec_data is required for specMatrix and distribution function generation 

spec_data = cell(caseNum,1); 

prop_data = cell(caseNum,1); 

% path('Z:\05 Data\01 Sunspectra\SINGAPORE SPECTRUM DATA\processed 

spectrum data',path) 

% path('Z:\05 Data\01 Sunspectra\SINGAPORE SPECTRUM DATA',path) 

path('Z:\05 Data\01 Sunspectra\Denver spectrum data\processed spectrum data',path) 

% ======= perform data filtering here if required ============= 

% raw_data = xlsread([str 'g' '.xlsx']); %work with version g for data filtering & 

extraction 

% wavelength = xlsread('wavelength.xlsx'); 

raw_data = xlsread('SMARTS spec Dv_IrrMod2013.xlsx'); %work with smarts 

generated spectra 

wavelength = 280:1200; 

m=2; %column of month 

d=3; %column of day 

t=4; %column of time 

tem=7; %column of temperature 

ins=8; %column of inso 

s=5; %9; %start column of data 

dayLabel = cell(caseNum,1); 

% spec_file = cell(caseNum,1); 

for caseIndex=1:caseNum 

    spec_case{caseIndex} = str; 

    version{caseIndex} = 'g'; %version of density function (version of spectrum data) 

    others{caseIndex} = ['1st7' '0' num2str(caseIndex)]; %'_1stWeek';   %additional 

attributes;  

%     spec_file{caseIndex} = [spec_case{caseIndex} version{caseIndex} '.xlsx']; %if any 

 

    % filter out spec data needed 

    pickMonth = (raw_data(:,m)==month); %for SMARTS spec 

%     if month==8 %take care of data irregularity in Denver2014 

%         firstDay = 4; %skip 213 to 215, start from day 4 

%     else 

        firstDay = raw_data(1,d); 

%     end 

    pickDay = (raw_data(:,d)-firstDay+1==caseIndex); %pick day (first 7 days)  

%     pickDay = (raw_data(:,d)-firstDay+1<=7); %pick day (first week) 

%     pickDay = (raw_data(:,d)-firstDay+1<=31); %pick day (monthly, i.e. no day 

filtering) 

%     pick = pickDay==1; %no time filtering 

    pick = pickDay==1 & pickMonth==1; %no time filtering for SMARTS spec (always 

1 hr) 

%     pickTime = (mod(raw_data(:,t),100)==0 | mod(raw_data(:,t),100)==30); %pick 

time (30 min interval) 
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%     pickTime = (mod(raw_data(:,t),100)==0); %pick time (1 hr interval) 

%     pickTime = (mod(raw_data(:,t),100)==0 & mod(raw_data(:,t),200)~=0); %pick 

time (2 hr interval) 

%     pick = pickTime==1 & pickDay==1; %with time filtering 

%     pick = pickTime==1 & pickDay==1 & pickMonth==1; %with time filtering for 

SMARTS spec (not considered) 

    temp1 = 1:size(raw_data,1); 

    dayLabel{caseIndex} = temp1(pick); 

    assignin('base','dayLabel',dayLabel); 

    if isempty(dayLabel{caseIndex}) 

        warning('no data is selected in day %s',num2str(caseIndex)) 

    end 

    spec_select = raw_data(dayLabel{caseIndex},s:end); 

    inso_select = raw_data(dayLabel{caseIndex},ins); 

    Tamb_select = raw_data(dayLabel{caseIndex},tem); 

    spec_data{caseIndex} = [wavelength' spec_select']; 

    prop_data{caseIndex} = [Tamb_select inso_select]; 

end 

% ========= load spec_data directly if no filtering is needed ======== 

% for caseIndex=1:caseNum 

%     version{caseIndex} = 'g'; %version of density function (version of spectrum data) 

%     others{caseIndex} = ''; %additional attributes, add '_' in front;  

%     spec_case{caseIndex} = str; 

%      

%     spec_select = []; 

%     Tamb_select = []; 

%     inso_select =[]; 

%     wavelength = xlsread('wavelength.xlsx'); 

%     if iscolumn(wavelength') 

%         wavelength = wavelength'; 

%     end 

%     for m=1:12 

%         if m<10 

%             mth = ['0' num2str(m)]; 

%         else 

%             mth = num2str(m); 

%         end 

%         specRead = xlsread([str mth version{caseIndex} '.xlsx']); 

%         spec_select = [spec_select specRead(:,9:end)']; 

%         inso_select = [inso_select; specRead(:,8)]; %reads global irradiance 

%         Tamb_select = [Tamb_select; specRead(:,7)]; %reads ambient temperature 

%     end 

%      

%     spec_data{caseIndex} = [wavelength spec_select]; 

%     prop_data{caseIndex} = [Tamb_select inso_select]; 

%     clear spec_select; 

%  

% %     spec_data{caseIndex} = xlsread([str '.xlsx']); 

% end 
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% ~~~~~~~~~~~ input for DF yield calculation ~~~~~~~~~~~~~~~~~~~~ 

APErange = [1.7 1.75 1.8 1.85:0.01:1.95 2:0.05:2.15]; %the APE range in efficiency 

matrix, row vector 

insoRange = 0.1:0.1:1.3;  

%in no. of suns, matches the range in efficiency matrix, row vector, right end must be 

larger than 1; 

tempRange = -10:60; %in deg C 

duration = 60; %duration for each spectrum in min 

 

 

% ~~~~~~~~~~~~~ device input ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

tandem_model = 'GaAs/Si'; %further specify sub-cell models below 

config = '2T'; %either 2T or 4T or SJ 

 

 

% ~~~~~~~~~~~~~~ task switches ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

specMatrixGen = 0; %generate specMatrix (required for deviceSim) from spec_data 

% ========== load SpecMatrix manually here if required ==================== 

% SpecMatrix = xlsread(spec_file);  

% load('SpecMatrix_InS_Gen2Perc_2TDenver2014g.mat'); 

% SpecMatrix = SpecMatrix(:,[1 202:end]); 

% SpecMatrix = spec_data{1}; 

% tempList = (25:50)+273.15; 

% SpecMatrix = [SpecMatrix(:,1) repmat(SpecMatrix(:,2),1,length(tempList))]; 

 

DFuncGen = 1; %generate distribution function (required for yieldCalc) 

% no need to load here, make sure "DFunc_" file exist. 

 

tempEff_dsim = 0; %whether to include temperature effect in device simulation. 

 

deviceSim = 0; %perform device simulation (results containing device output required 

for effMatrixGen) 

 

modT = 0; 

 

effMatrixGen = 0; %generate efficiency matrix (required for yieldCalc) 

% ============= load effMatrix here if required 

=========================== 

load('effMatrix_GS_BhPerc_2TDenver2014g.mat'); 

 

yieldCalc = 1; %calculate final yield and harvesting efficiency 

 

saveCaseStudy = 0; %save workspace of current case as a .mat file 

 

deleteFiles = 1; %delete generated intermediate files 

 

saveStudy = 1; %save study_summary of this study 

 

% ~~~~~~~~~~~~~~~ tandem/SJ cell model library 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% further specify detailed structures inside respective functions 
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switch tandem_model 

    case 'GaAs/Si' 

        %GaAs/Si model 

        cell_model = {'GaAs_bauhuis.prm';'Si_perc.prm';'GS_BhPerc_'}; 

        if strcmp(config,'2T') 

            %in nm, scnprt current mathced = 200 (Am1.5G) / 215 (Am1.5D) / 170 (Sg 

spectrum), 4T = 1000 

            TopThickness = 215; %#ok<*NASGU>  

            k = 0.0200531; 

        else 

            TopThickness = 1000; 

            k = 0.0185371; 

        end 

    case 'InGaP/Si' 

        %InGaP/Si model 

        cell_model = {'InGaP_gen2.prm';'Si_perc.prm';'InS_Gen2Perc_'}; 

        TopThickness = 2500; %in nm, scnprt current mathced = 1500 (Am1.5G) / 2600 

(Am1.5D) /  (Sg spectrum) 

        if strcmp(config,'2T') 

            k = 0.0198218; 

        else 

            k = 0.0196741; 

        end 

    case 'InGaP/GaAs/Si' 

        cell_model = 

{'InGaP_gen2.prm';'GaAs_bauhuis.prm';'Si_perc.prm';'InGS_Gen2BhPerc_'}; 

        TopThickness = 285; %in nm, scnprt current mathced = 250 (Am1.5G) / 285 

(Am1.5D) /  (Sg spectrum) 

        MidThickness = 650; %in nm, scnprt current mathced = 530 (Am1.5G) / 570 

(Am1.5D) /  (Sg spectrum) 

        k = 0.0192015; 

    case 'GaAs/GaAs/Si' 

        cell_model = {'GaAs_bh3J.prm';'Si_perc.prm';'GGS_BhBhPerc_'}; 

        TopThickness = 95; %in nm 

        MidThickness = 450; %in nm 

        k = 0.0189295; 

    case 'GaAs' 

        cell_model = {'GaAs_bauhuis.prm';'GaAs_Bh_'}; 

        config = 'SJ'; 

        Thickness = 2000; 

        k = 0.0199089; 

    case 'InGaP' 

        cell_model = {'InGaP_danny.prm';'InGaP_Dan_'}; 

        config = 'SJ'; 

        Thickness = 1000; 

%         k = 0.0196741; 

    case 'Si' 

        cell_model = {'Si_perc.prm';'Si_perc_'}; 

        config = 'SJ'; 

        Thickness = 200000; 

        k = 0.0238768; 
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    otherwise 

        warning('choice of model not in the current library') 

end 

 

% 

************************************************************************* 

% --------------------- end of input -------------------------------------- 

% 

************************************************************************* 

 

study_summary = cell(caseNum,4); 

 

for caseIndex=1:caseNum 

     

    % case label 

    caseName = [cell_model{end} config spec_case{caseIndex} version{caseIndex} 

others{caseIndex}]; 

    study_summary{caseIndex,1} = caseName; 

%     assignin('base','caseName',caseName); 

 

    % generate spec matrix 

    if specMatrixGen 

        

spectrumSort(spec_data{caseIndex},APErange,wRange,prop_data{caseIndex}); %wavelengt

h and APE info are returned from this function 

        if max(APE)<APErange(end-1) || min(APE)>APErange(2) 

            warning('empty APE bins present, program will not execute correctly, please 

terminate and redefine APE range') 

        end 

        N = length(APErange)-1; %last APE value not included, interval represented by the 

left end 

 

        % obtain weighted avgerage spectra from sorted spectra, then create 

        % spec matrix 

        SpecMatrix = []; 

        for j=1:N 

            selectSpec = load(['SpecSort_' num2str(APErange(j)) 'eV-' 

num2str(APErange(j+1)) 'eV.dat']); 

            if size(selectSpec,2)==1 

                warning('the following bin is empty: %s eV to %s eV, please 

terminate',num2str(APErange(j)),num2str(APErange(j+1))) 

            end 

            avgSpectrum = WgtAvgSpec(selectSpec,'true'); 

            if j==1 

                WgtAvgSpectrum = avgSpectrum; 

            else 

                WgtAvgSpectrum = [WgtAvgSpectrum avgSpectrum(:,2)]; 

            end 

 

            specBlock = []; 

            for i=length(insoRange):-1:1  
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                specBlock = [specBlock WgtAvgSpectrum(:,j+1)*insoRange(i)]; 

            end 

            SpecMatrix = [SpecMatrix specBlock]; 

        end 

 

        SpecMatrix = [wavelength SpecMatrix]; 

        save(['SpecMatrix_' caseName '.mat'],'SpecMatrix') 

         

%         delete('SpecSort_*.dat'); 

%         delete('PropSort_*.dat'); 

        clear selectSpec avgSpectrum WgtAvgSpectrum specBlock N i j 

    end 

 

    % generate distribution function 

    if DFuncGen 

        APErange_DF = APErange(1):0.01:APErange(end);  

        insoRange_DF = 0:0.02:insoRange(end); %in no. of suns, any desired resolution 

        tempRange_DF = tempRange; %in deg C 

 

        

spectrumSort(spec_data{caseIndex},APErange_DF,wRange,prop_data{caseIndex});  

        [distributionCount,TempDistributionCount_DF] = 

DFcount(APErange_DF,insoRange_DF,tempRange_DF,k); %occurrance 

        durationFunc = distributionCount*duration; %in min per APE and inso spacing 

        densityFunc = distributionCount/sum(sum(distributionCount)); %density 

distribution 

        tempDistribution = 

createTempMatrix(TempDistributionCount_DF,tempRange_DF); 

         

        if ~specMatrixGen 

            spectrumSort(spec_data{caseIndex},APErange,wRange,prop_data{caseIndex}); 

        end 

         

        [~,TempDistributionCount] = 

DFcount(APErange,insoRange,tempRange,k); %occurrance, temp distribution for input into 

effMatrix generation 

        tempMatrix = createTempMatrix(TempDistributionCount,tempRange); 

 

        save(['DFunc_' caseName 

'.mat'],'APErange_DF','insoRange_DF','tempRange_DF','distributionCount','durationFunc','de

nsityFunc','TempDistributionCount_DF','tempDistribution','tempMatrix') 

 

        delete('SpecSort_*.dat'); 

        delete('PropSort_*.dat'); 

    end 

 

    % perform device simulation, input spec is always termed SpecMatrix 

    if deviceSim 

        if tempEff_dsim 

           tempMatrix2 = [tempMatrix tempMatrix(:,end)]; 

           tempList = []; 
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           for r=1:size(tempMatrix2,1) 

               tempList = [tempList fliplr(tempMatrix2(r,:))+273.15]; 

           end 

        else 

           tempList = repmat(defaultTemp,1,(length(APErange)-1)*length(insoRange)); 

           disp('reminder: no temperature effect is considered in device simulation.') 

        end 

        switch tandem_model %#ok<*UNRCH> 

            case 'GaAs/Si' 

                

tandemGS(SpecMatrix,cell_model,config,caseName,TopThickness,tempList,wRange); 

            case 'InGaP/Si' 

                

tandemInS(SpecMatrix,cell_model,config,caseName,TopThickness,tempList,wRange); 

            case 'InGaP/GaAs/Si' 

                

tandemInGS(SpecMatrix,cell_model,config,caseName,TopThickness,MidThickness,tempList

,wRange); 

            case 'GaAs/GaAs/Si' 

                

tandemGGS(SpecMatrix,cell_model,config,caseName,TopThickness,MidThickness,tempList

,wRange); 

            case 'GaAs' 

                SJ_GaAs(SpecMatrix,cell_model,caseName,Thickness,tempList,wRange); 

            case 'InGaP' 

                SJ_InGaP(SpecMatrix,cell_model,caseName,Thickness,tempList,wRange); 

            case 'Si' 

                SJ_Si(SpecMatrix,cell_model,caseName,Thickness,tempList,wRange); 

        end 

 

    end 

 

    % modify effciency by including temperature effect 

    if modT 

        % consider only effect on voltage and FF, assume constant Jsc 

        matList = ['InGaP' 'GaAs' 'Si']; 

        V_coeff = [-1.9 -1.9 -2.2]*0.001;  

        FF_coeff = [-0.08 -0.08 -0.13]; 

        load(['DFunc_' caseName '.mat']); %modified DFunc file from w/o T case already 

exist 

        tempMatrix2 = [tempMatrix tempMatrix(:,end)]; 

        tempDiffList = []; 

        for r=1:size(tempMatrix2,1) 

            tempDiffList = [tempDiffList fliplr(tempMatrix2(r,:))-25]; 

        end 

                 

        eff_data = load(['eff_' caseName(1:end-4) '.dat']); %assume w/o T case already exist 

 

        switch config 

            case '2T' 

                Jm = eff_data(:,end-1); 
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                Vm = eff_data(:,end); 

                if size(eff_data,2)==15 

                    Voc = sum(eff_data(:,[3 7 11]),2); 

                    Jsc = min(eff_data(:,[2 6 10]),[],2); 

                    dV = sum(V_coeff(1:3))*tempDiffList; 

                    dFF = min(FF_coeff(1:3))*tempDiffList*0.01; 

                else 

                    Voc = sum(eff_data(:,[3 7]),2); 

                    Jsc = min(eff_data(:,[2 6]),[],2); 

                    dV = sum(V_coeff(2:3))*tempDiffList; 

                    dFF = min(FF_coeff(2:3))*tempDiffList*0.01; 

                end 

                FF = Jm.*Vm./(Voc.*Jsc); 

                Vm_new = (FF+dFF').*(Voc+dV').*Jsc./Jm; 

                P_new = Vm_new.*Jm; 

                eff_data(:,1) = P_new; 

                eff_data(:,end) = Vm_new; 

                save(['eff_' caseName '.dat'],'eff_data','-ascii'); 

            case '4T' 

                % assume dual junction only 

                Vm1 = eff_data(:,5); 

                FF1 = eff_data(:,4).*Vm1./(eff_data(:,2).*eff_data(:,3)); 

                Vm2 = eff_data(:,9); 

                FF2 = eff_data(:,8).*Vm2./(eff_data(:,6).*eff_data(:,7)); 

                dV1 = V_coeff(2)*tempDiffList; 

                dV2 = V_coeff(3)*tempDiffList; 

                dFF1 = FF_coeff(2)*tempDiffList*0.01; 

                dFF2 = FF_coeff(3)*tempDiffList*0.01; 

                Vm1_new = (FF1+dFF1').*(eff_data(:,3)+dV1').*eff_data(:,2)./eff_data(:,4); 

                Vm2_new = (FF2+dFF2').*(eff_data(:,7)+dV2').*eff_data(:,6)./eff_data(:,8); 

                eff_data(:,1) = eff_data(:,4).*Vm1_new + eff_data(:,8).*Vm2_new; 

                eff_data(:,5) = Vm1_new; 

                eff_data(:,9) = Vm2_new; 

                save(['eff_' caseName '.dat'],'eff_data','-ascii'); 

            case 'SJ' 

                Vm = eff_data(:,5); 

                FF = eff_data(:,4).*Vm./(eff_data(:,2).*eff_data(:,3)); 

                dV = V_coeff(2)*tempDiffList; %***modify index here*** 

                dFF = FF_coeff(2)*tempDiffList*0.01; %***modify index here*** 

                Vm_new = (FF+dFF').*(eff_data(:,3)+dV').*eff_data(:,2)./eff_data(:,4); 

                eff_data(:,1) = eff_data(:,4).*Vm_new; 

                eff_data(:,5) = Vm_new; 

                save(['eff_' caseName '.dat'],'eff_data','-ascii'); 

%                 eff=load('effMatrix_Si_perc_SJSingapore2014g.mat','effMatrix'); 

%                 eff=eff.effMatrix; 

%                 effMatrix=eff-(tempMatrix2'-25)*0.00478.*eff; 

        end 

    end 

     

    % create efficiency matrix  

    if effMatrixGen 
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        effMatrix = createEffMat(caseName,APErange,insoRange); 

        save(['effMatrix_' caseName '.mat'],'effMatrix','APErange','insoRange') 

    end 

 

    % calculate harvesting efficiency 

    if yieldCalc 

        [har_eff,yield_total,inso_total] = 

DFyieldCalc(caseName,APErange,insoRange,effMatrix); 

         

        study_summary{caseIndex,2} = har_eff; 

        study_summary{caseIndex,3} = yield_total; 

        study_summary{caseIndex,4} = inso_total; 

        assignin('base','har_eff',har_eff); %contains: final eff, eff with varying APE at 1sun 

efficiency, eff with varying intensity at std APE (or under AM1.5G) 

        assignin('base','yield_total',yield_total); 

        assignin('base','inso_total',inso_total); 

    end 

 

    if saveCaseStudy 

        clear spec_data; 

        clear prop_data; 

        save([caseName '.mat']) 

    end 

 

    if deleteFiles 

%         delete(['SpecMatrix_' caseName '.mat']); 

%         delete(['effMatrix_' caseName '.mat']); 

        delete(['DFunc_' caseName '.mat']); 

%         delete(['eff_' caseName,'.dat']); 

    end 

     

end 

 

if saveStudy 

    save([studyName '.mat'],'studyName','study_summary') 

end 

 

end 

end 

 

% 

************************************************************************* 

% ------------------- auxiliary functions --------------------------------- 

% 

************************************************************************* 

 

function spectrumSort(spec,APErange,wRange,prop) 

% this function sorts spectra from standard processed spectral data files 

% into bins of different APE values and writes them to dat files.  

% provide a brief summary of spectrum property.  

 



155 

% select relevant wavelength range 

wavelength = spec(spec(:,1)<wRange(2) & spec(:,1)>wRange(1),1); 

wavelength = [wRange(1);wavelength;wRange(2)]; 

assignin('caller','wavelength',wavelength); 

spectrum = interp1(spec(:,1),spec(:,2:end),wavelength); 

 

% calculate APE for each time point and some simple descriptive stats 

APE = APEcalc([wavelength spectrum]); 

assignin('caller','APE',APE); 

APE_mean = mean(APE); 

assignin('caller','APE_mean',APE_mean); 

APE_std = [std(APE) std(APE,1)]; 

assignin('caller','APE_std',APE_std); 

disp(['average APE value for this spectrum data set is ' num2str(APE_mean) ' eV']) 

range = linspace(min(APE),max(APE)); 

count = zeros(1,length(range)-1); 

for j=1:length(range)-1 

    count(j) = length(APE(APE>=range(j) & APE<range(j+1))); 

end 

% figure 

% plot(range(1:end-1),count) 

assignin('caller','range_APE',range); 

assignin('caller','count_APE',count); 

 

% sort spectra and write into data files for respective APE bins 

for j=1:length(APErange)-1 

    index = APErange(j)<=APE & APE<=APErange(j+1); 

    selectSpec = spectrum(:,index); 

    selectSpec = [wavelength selectSpec]; % spectrum is outputed in std format 

     

    dlmwrite(['SpecSort_' num2str(APErange(j)) 'eV-' num2str(APErange(j+1)) 

'eV.dat'],selectSpec,'delimiter','\t'); 

    if ~isempty(prop) 

        selectProp = prop(index,:); 

        dlmwrite(['PropSort_' num2str(APErange(j)) 'eV-' num2str(APErange(j+1)) 

'eV.dat'],selectProp,'delimiter','\t'); 

    end 

end 

 

% collect out of APErange spectra 

index = APErange(end)<=APE | APE<=APErange(1); 

selectSpec = spectrum(:,index); 

selectSpec = [wavelength selectSpec]; % spectrum is outputed in std format 

% selectProp = prop(index,:); 

dlmwrite(['SpecSort_outside ' num2str(APErange(1)) 'eV-' num2str(APErange(end)) 

'eV.dat'],selectSpec,'delimiter','\t'); 

 

missing_ISI = sum(trapz(wavelength,selectSpec(:,2:end)))/3.6e6; 

warning('Total number of out of APErange spectra is %s, total ISI = %s 

kWh/m2',num2str(size(selectSpec,2)-1),missing_ISI) 
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end 

 

function avgSpectrum=WgtAvgSpec(spec,scale) 

% this function calculates the weighted average spectrum (scaled to AM1.5G)  

% given a set of spectra in std format. The output spectrum can be scaled with 

% AM1.5G spectrum in the given wavelength range (so final spectrum can be 

% seen as 1sun). 

 

wavelength = spec(:,1); 

spectrum = spec(:,2:end); 

inso = trapz(wavelength,spectrum); 

insoSum = sum(inso); 

avgSpectrum = zeros(length(wavelength),1); 

 

%obtain weighted avg spectrum 

for i=1:size(spectrum,2) 

    avgSpectrum = avgSpectrum + spectrum(:,i)/insoSum*inso(i); 

end 

 

if strcmp(scale,'true') 

%scale the avg spectrum to that of AM1.5G 

path('Z:\99 home\02 PhD students\05 Haohui\Source & materials\useful 

parameters',path) 

[AM15spec, ~] = xlsread('solar spectrum.xls','Spectra'); 

lambda = AM15spec(:,1); %in nm 

AM15G = AM15spec(:,3);  %select global tilt spectrum 

specStd = interp1(lambda,AM15G,wavelength); 

insoStd = trapz(wavelength,specStd); %AM1.5G intensity in the same wavelength range 

as given spectra 

 

ISI = trapz(wavelength,avgSpectrum); 

avgSpectrum = avgSpectrum/ISI*insoStd; 

end 

 

avgSpectrum = [wavelength avgSpectrum]; 

 

end 

 

function 

[distributionCount,TempDistributionCount]=DFcount(APErange_DF,insoRange_DF,tempRa

nge,k) 

% this function returns occurrance counts of spectra falling in a certain APE 

% and intensity range. Intensity is in no. of suns. Wavelength range of 

% spectroradiometer is taken care of by comparing with AM1.5G in the same 

% wavelength range.  

% distribution function has the dimension of APE(row) X Intensity(col) 

 

N = length(APErange_DF)-1; 

M = length(insoRange_DF)-1; 

distributionCount = []; 

propFile = dir('PropSort_*'); 
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TempDistributionCount = cell(N,M); 

 

path('Z:\99 home\02 PhD students\05 Haohui\Source & materials\useful 

parameters',path) 

[AM15spec, ~] = xlsread('solar spectrum.xls','Spectra'); 

lambda = AM15spec(:,1); %in nm 

AM15G = AM15spec(:,3);  %select global tilt spectrum 

         

for j=1:N 

    spec = load(['SpecSort_' num2str(APErange_DF(j)) 'eV-' 

num2str(APErange_DF(j+1)) 'eV.dat']); 

    if ~isempty(propFile) 

        prop = load(['PropSort_' num2str(APErange_DF(j)) 'eV-' 

num2str(APErange_DF(j+1)) 'eV.dat']); 

    end 

     

    count = zeros(1,length(insoRange_DF)-1); %frequency counts of certain intensity 

    if size(spec,2)>1 

        wavelength = spec(:,1); 

        spectrum = spec(:,2:end); 

        inso = trapz(wavelength,spectrum); 

        specStd = interp1(lambda,AM15G,wavelength); 

        insoStd = trapz(wavelength,specStd); %AM1.5G 1sun intensity in the same 

wavelength range as given spectra 

 

        for i=1:length(count) 

            index = (inso>=(insoStd*insoRange_DF(i)) & 

inso<(insoStd*insoRange_DF(i+1))); 

            count(i) = length(inso(index)); 

             

            if ~isempty(propFile) 

                tempSelect = prop(index,1)+prop(index,2)*k; %simple linear model using 

effective ross coefficient 

                tempCount = zeros(length(tempRange)-1,1); 

                for t=1:length(tempRange)-1 

                    if count(i)~=0 

                        tempCount(t) = length(tempSelect((tempSelect(:,1)>=tempRange(t) & 

tempSelect(:,1)<=tempRange(t+1)),1)); 

                    end 

                end 

                TempDistributionCount{j,i} = tempCount; 

            end 

        end 

    end 

    distributionCount = [distributionCount; count];    

end 

 

end 

 

function effMatrix=createEffMat(caseName,APErange,insoRange) 
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M = length(APErange)-1; 

N = length(insoRange); 

effMatrix = []; 

 

yield_data = load(['eff_' caseName '.dat']); 

yield = yield_data(:,1); 

 

for i=1:M 

    index1 = 1 + (i-1)*N; 

    index2 = i*N; 

    effMatrix = [effMatrix; 

fliplr(yield(index1:index2)')./insoRange(1:end)/10]; %#ok<*AGROW> 

end 

 

effMatrix = effMatrix'; % X-axis: APE, Y-axis: intensity 

 

end 

 

function 

[har_eff,yield_total,inso_total]=DFyieldCalc(caseName,APErange,insoRange,effMatrix) 

% Yield calculation using density (duration) function method 

 

X = APErange(1:end-1); 

Y = insoRange';  

[X,Y] = meshgrid(X,Y); 

Z = effMatrix; 

 

% load density function and interpolate efficiency 

load(['DFunc_' caseName '.mat']); 

XI = APErange_DF(1:end-1); %#ok<*COLND> 

YI = insoRange_DF(1:end-1)'; 

ZI = interp2(X,Y,Z,XI,YI,'spline'); 

 

% compute yearly total insolation implied in the distribution  

% compute yield and harvesting efficiency 

% eff * # of suns * 1000w/m2 * duration in min * 60s/min = energy yield for that 

condition 

durationVsAPE = [XI' sum(durationFunc,2)]; 

assignin('caller','durationVsAPE',durationVsAPE); 

durationVsIntensity = [YI sum(durationFunc,1)']; 

assignin('caller','durationVsIntensity',durationVsIntensity); 

inso = repmat(YI,1,length(XI)).*1000.*durationFunc'.*60./3.6e6; %insolation 

distribution in each small APE and intensity interval, in kWh/m2 

assignin('caller','inso_yr',inso); 

insoVsAPE = [XI' sum(inso,1)']; 

assignin('caller','insoVsAPE',insoVsAPE); 

insoVsIntensity = [YI sum(inso,2)]; 

assignin('caller','insoVsIntensity',insoVsIntensity); 

for h=1:length(tempRange_DF)-1 

    indexT = tempDistribution'>=tempRange_DF(h) & 

tempDistribution'<tempRange_DF(h+1); 
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    insoTemp(h) = sum(inso(indexT)); 

end 

insoVsTemp = [tempRange_DF(1:end-1)' insoTemp']; %describes how much insolation 

is associated with each temperature 

assignin('caller','insoVsTemp',insoVsTemp); 

tempVsInso = sum(tempDistribution'.*inso,2)./sum(inso,2); 

tempVsInso(isnan(tempVsInso))=25; 

assignin('caller','tempVsInso',tempVsInso); 

yield = ZI.*0.01.*inso; %in kWh/m2 

assignin('caller','yield',yield); 

yieldVsAPE = [XI' sum(yield,1)']; 

assignin('caller','yieldVsAPE',yieldVsAPE); 

yieldVsIntensity = [YI sum(yield,2)]; 

assignin('caller','yieldVsIntensity',yieldVsIntensity); 

yield_total = sum(sum(yield)); 

yield_1sun = repmat(ZI(abs(YI-1)<0.0001,:),length(YI),1).*0.01.*inso; 

yield_1sun = sum(sum(yield_1sun)); 

% yield_stdAPE = repmat(ZI(:,abs(XI-1.87)<0.0001),1,length(XI)).*0.01.*inso; 

% yield_stdAPE = sum(sum(yield_stdAPE)); 

 

inso_total = sum(sum(inso)); %in kWh/m2 

har_eff = zeros(1,2); 

har_eff(1) = yield_total/inso_total*100;  

har_eff(2) = yield_1sun/inso_total*100; 

% har_eff(3) = yield_stdAPE/inso_total*100; 

 

% ----- backup code for calculating har eff by varying intensity under AM1.5G --- 

% ----- only useful when eff_am15gSpecMatrix is available ------- 

 

% effMatrix_AM15G=createEffMat([cell_model{end} config 

'am15gSpecMatrix'],1.87:0.01:1.88,0.1:0.1:1.5); 

% ZIstd = interp1(0.1:0.1:1.5,effMatrix_AM15G,YI,'pchip','extrap'); 

% yield_am15g = repmat(ZIstd,1,length(XI)).*0.01.*inso; 

% yield_am15g = sum(sum(yield_am15g)); 

% har_eff(3) = yield_am15g/inso_total*100; 

 

end 

 

function APE=APEcalc(spec) 

% this function calculates APE values 

% spec format is in [wavelength spectrum1 spectrum2 ...] 

% returns APE values for each spectrum 

% need to ensure match of units, ISI need to be in w/m2 

 

h = 6.63e-34; 

c = 3e8; 

q = 1.6e-19; 

 

wavelength = spec(:,1); 

spectrum = spec(:,2:end); 

isi=trapz(wavelength,spectrum); 



160 

isi = isi'; %ISI for each time point in w/m2 

Nphoton = zeros(size(spectrum,2),1); 

APE = zeros(size(spectrum,2),1); 

for i=1:size(spectrum,2) 

    flux = spectrum(:,i).*wavelength./(h*c); %photon flux 

    Nphoton(i) = trapz(wavelength*1e-9,flux); 

    APE(i) = isi(i)/Nphoton(i)/q; %APE in the wavelength range specified in the spectrum 

end 

 

end 

 

function tempMatrix=createTempMatrix(PropDistributionCount,tempRange) 

% this function creates property matrix 

% V1: only tempMatrix is created 

 

tempMatrix = repmat(25,size(PropDistributionCount)); %default temperature is 25 deg 

C 

 

%obtain tempMatrix by picking the weighted average of each cell 

for r=1:size(PropDistributionCount,1) 

    for col=1:size(PropDistributionCount,2) 

        tempDistr = PropDistributionCount{r,col}; 

        if sum(tempDistr)~=0 

            wgtAvgTemp = sum(tempDistr'.*tempRange(1:end-1))/sum(tempDistr); 

            tempMatrix(r,col) = wgtAvgTemp; 

        end 

    end 

end 

 

end 

 

 


