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Abstract— This paper presents the design of a low power 3-
lead ECG-on-Chip with integrated real-time QRS detection 
and lossless data compression for wearable wireless ECG sen-
sors. Data compression and QRS detection can reduce the sen-
sor power by up to 2 to 5 times.  A joint QRS detection and 
lossless data compression circuit allows computational re-
sources to be shared among multiple functions, thus lowering 
the overall system power. The proposed technique achieves an 
average compression ratio (CR) of 2.15 times on standard test 
data. The QRS detector achieves a sensitivity (Se) of 99.58% 
and positive productivity (+P) of 99.57% @ 256Hz when tested 
with the MIT/BIH database.  Implemented in 0.35µm process, 
the circuit consumes 0.96µW @2.4V with a core area of 
1.56mm2 for 2-channel ECG compression and QRS detection. 
Small size and ultra-low power consumption makes the chip 
suitable for usage in wearable/ambulatory ECG sensors. 

I. INTRODUCTION1

Cardiovascular disease (CVD) causes 31% of all global 
deaths[1] and is one of the leading causes of death world-
wide. The management of CVDs requires significant 
healthcare resources, especially with a fast aging population 
and universally increasing life expectancies. An effective 
way to address this problem is to use low cost wireless 
wearable sensors for vital signs monitoring such that proac-
tive measures can be taken as needed, which leads to pre-
vention-oriented health and wellness management. Weara-
ble sensors, such as one shown in Fig.1, are essential to ac-
quire, process and wirelessly transmit vital signs to a per-
sonal gateway/cloud server for remote monitoring. The 
main challenges involved in the development of a wearable 
sensor is to make it low profile, unobtrusive, user friendly, 
and with long battery life for continuous usage. A high level 
of integration with signal acquisition and data conversion 
can minimize the size, cost and power consumption of these 
sensors [2], [3].  

The major source of power consumption in a wearable 
sensor is the wireless transceiver. An effective way of low-
ering the power consumption is to minimize the use of the 
transceiver, i.e. to transmit information rather than raw data. 
For an ECG (electrocardiogram) sensor, it is desirable to 
perform preliminary ECG signal analysis like QRS detec-
tion and R-R interval estimation locally. This allows the 
transmission to be triggered only when it is deemed neces-
sary based on cardiac analysis, and thus reduce the system 
power [4]. Furthermore, the large quantity of ECG data ob-
tained by round the clock monitoring may need to be either 
stored locally in a flash memory or transmitted wirelessly 
to a gateway for further analysis. The transmission of data 
and/or local storage incurs high power consumption, and in-
creases the device cost.  

Data compression is effective in reducing the data rate 
for either transmission or storage and thus reduce the sys-
tem power.  Lossy data compression techniques provide  
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higher CR, but they are not well suited for ECG signal due 
to potential loss of diagnostic value and thereby lacking reg-
ulatory approvals. Thus, lossless data compression is pre-
ferred for ECG. In the context of wearable sensors, ultra-
low power operation and low complexity in implementation 
are critical. There is a need to find a balance between CR 
and complexity. 
 In recent years, several QRS detection algorithms with 
low power features were reported [4], [5]. At the same time, 
discrete/integrated lossy, lossless data compression tech-
niques were developed for wearables/bio-devices [6]–[8]. 
Local data compression and QRS detection can reduce the 
sensor power by up to 2-5 times [4], [9].  It is worth noting 
that using two separate hardware blocks for QRS detection 
and compression will result in higher overall system com-
plexity and power. Thus a joint QRS detection and lossless 
data compression algorithm, which shares processing en-
gine between the two tasks is desirable [10].  
 In this paper, a novel ECG-on-Chip featuring a joint 
QRS detector and lossless data compressor (JQDC) is pre-
sented [11]. A low power architecture for JQDC along with 
its implementation is presented together with an ECG front-
end. This joint approach lowers system power compared to 
using independent QRS detection and compression hard-
ware.  To the best of our knowledge, this is the first reported 
device, which jointly performs lossless compression and 
QRS detection with shared hardware. Implemented in 
0.35µm process, the circuit consumes 0.96µW@2.4V with 
a core area of 1.56mm2 for 2-channel ECG compression and 
QRS detection. The chip achieves an average CR of 2.15x 
at 256Hz and a QRS detection sensitivity (Se) of 99.58% 
and positive productivity (+P) of 99.57%.   

The paper is organized as follows. In Section II, the sys-
tem architecture of the ECG-on-Chip is discussed. Section 
III and IV details the analog front-end and ADC. A short 
discussion of the Joint QRS detection compression scheme 
is given in Section V. Section VI presents the low power 
hardware architecture of the JQDC processor. Performance 
evaluation and measurement results are given in Sections 
VII and VIII, respectively. 

II. SYSTEM ARCHITECTURE OF ECG ON CHIP

The entire system is illustrated in Fig. 2. It includes an
AFE (analog front-end) for 3-lead ECG acquisition (2 
measured & 1 derived lead for standard 3-lead ECG), a 12- 
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Fig. 2 System architecture of the proposed ECG-on-Chip 

bit SAR ADC, a lossless data compressor, and a QRS de-
tector. The ECG signals are first amplified through an AC-
coupled low-noise instrumentation amplifier (IA) and band-
pass filtered. The programmable gain amplifier (PGA) pro-
vides variable gains from 49-67dB to maximize the dy-
namic range. An output buffer (BUF) is used to improve the 
analog output settling for the sample-and-hold in the multi-
plexer (MUX). After digitized by the ADC, the signal is fur-
ther processed by the backend processor that consists of the 
joint QRS detector and lossless compressor.  

Fig.3 Architecture of a single amplifier channel for ECG acquisition 

III. ANALOG FRONT-END

Fig. 3 shows the architecture of a single-channel ECG 
AFE. All three stages-the IA [12], the PGA, and the BUF-
are AC-coupled using capacitors to block the DC offsets. 
The high-pass cut-off frequency is determined by the first 
stage negative RC feedback through RA and C1. The output 
buffer is AC-coupled to support rail-to-rail output, without 
designing rail-to-rail input range at the cost of extra power. 

Two pseudo resistors are used to meet the needs at dif-
ferent stage [13]. As the input voltage is limited, the A-type 
pseudo resistor is used for the first stage, where three diode-
connected PMOS transistors are connected in series. To 
make the resistor symmetrical a mirrored copy is added in 
parallel. The resistance of the resistor is large enough to cre-
ate a sub-0.1 Hz high-pass cut-off. For the 2nd and 3rd stages, 
the inputs are higher than that of the first stage, the A-type 
resistor does not provide high enough resistance to meet 
sub-0.1 Hz high-pass cut-off.  Thus, a different pseudo re-
sistor (marked B in Fig. 3) is used for the PGA and the BUF. 
The B-type resistor has much larger resistance across the 
full voltage range.  

IV. ANALOG TO DIGITAL CONVERTER

The data from the AFE is multiplexed using an analog 
multiplexer and fed into and ADC for conversion. A dual-
capacitive-array structure is adopted to implement the rail-
to-rail ADC [14]. The structure uses 2 capacitive arrays for 
quantization. Here resetting the large DAC array after every 
conversion is not required and only relatively smaller ca-
pacitors are switched, resulting in lower power consump-
tion [10]. 

V. JOINT QRS DETECTION-COMPRESSION

The block diagram of the proposed joint QRS de-
tection and data compression scheme is illustrated in Fig. 4. 

In this scheme, an adaptive linear predictor is used to esti-
mate the current sample 𝑥(𝑛) from the past m ECG sam-
ples. The predictor can closely estimate the future samples, 
including the P, T wave segments and the baseline varia-
tions in the ECG signal using (1) [10]. Here 𝑥 𝑛 	is the es-
timate of 𝑥 𝑛  and hk are the predictor coefficients. 

𝑥 𝑛 = ℎ(𝑥 𝑛 − 𝑘+
(,-           (1) 

𝑒 𝑛 = 𝑥 𝑛 −	𝑥 𝑛 															(2)	

The instantaneous prediction error, e(n) in (2), will be 
minimal, except for the QRS period, as shown in Fig. 5. In 
QRS segment, the predictor statistics are considerably dif-
ferent compared to other regions and hence will result in a 
higher prediction error. Therefore the prediction error is 
used as a marker to locate the QRS complex in the ECG.  

Savitzky	Golay	
Filtering

Squaring	&	
Moving	Sum

QRS	
Pulse

4-Tap	Adaptive	
SSLMS	Predictor

ECG	
Signal

Adaptive	
Thresholding

False	Peak	
Elimination

e(n)

Prediction	
Error	coding

Dynamic	Fixed	
Length	Packaging	

Compressed
Data

Fig.4 Proposed joint QRS detection & data compression hardware 

Linear prediction is widely used in redundancy re-
duction in data compression [7]. Since the prediction error 
contains QRS information, it implies that QRS detection 
and data compression can be jointly performed to share the 
computational load. This leads to an efficient, joint QRS de-
tection and data compression implementation scheme. 

Fig.5 ECG signal (top) and instantaneous prediction error, e(n) (bottom) 

VI. HARDWARE ARCHITECTURE OF JQDC PROCESSOR 
      For the proposed ECG-on-Chip, data from both ECG 
channels are compressed and data from a single lead is used 
for QRS detection. The data from the ECG front-end is se-
rially multiplexed, as shown in Fig.6, and hence has to be 
demultiplexed before further processing. The ECG is sam-
pled at 256 Hz with 12-bit resolution. The chip uses a 
512Hz clock for the processing because there are 2 chan-
nels. After each block, data bit widths are limited to a man-
ageable number using truncation, saturation and round off 
techniques, so as to limit hardware complexity.  
 A detailed block diagram of the JQDC processor is 
shown in Fig 6. The data from each channel is identified 
with a channel select (CS) header appended to the ECG 
sample by the ADC. Based on this, the incoming data is de-
multiplexed to form two ECG data streams for channels 1 
and 2. Each of the data stream is fed into a separate adaptive 
predictor for computing the prediction error. The individual 
predictor is clock gated with the CS signal, which alternates 
the incoming 512Hz data into 2 separate streams running at 
an effective 256Hz clock.  
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A. SSLMS Adaptive Linear Predictor
The 4-tap adaptive predictor structure used to pre-

dict future samples based on past signal statistics is shown in 
Fig 7. Since the incoming data is serially multiplexed be-
tween 2 channels, the multiply-accumulate logic in the pre-
dictor is shared by multiplexing the inputs to save the hard-
ware costs as shown in Fig 6. 
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Predictor weights are updated using Sign-Sign Least Mean 
Square (SSLMS) adaptation (3).  

ℎ 𝑛 + 1 = ℎ 𝑛 + 	µ. 𝑠𝑖𝑔𝑛(𝑒 𝑛 ). 𝑠𝑖𝑔𝑛(x 𝑛 )        (3) 

Here µ is the step size and ℎ 𝑛 + 1 , ℎ 𝑛  are the up-
dated and current predictor coefficients, respectively. The 
predictor coefficients are updated based on the instantaneous 
prediction error for every sample. In order to speed up the 
adaptation, the SSLMS predictor is initialized with pre-com-
puted values ℎ-9, ℎ:9, ℎ;9, ℎ<9 obtained from a training process 
during the design. A variable step µeff is used to further speed 
up the adaptation process (4). Here N is the number of itera-
tions and NL is chosen as 1024.  

µ=>> = 	
µ?@?A	, 𝑁 < 𝑁D
µ>?@EF, 𝑁 ≥ 𝑁D

          (4) 
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 The SSLMS weight adaptation block is shown in Fig 8(a) 
and the architecture of each weight update finger and variable 
step selection is shown in Fig 8(b). Note that there are no ac-
tual multipliers required for weight update and a total of only 
5 adders are required (including the one for computing µeff) 

in SSLMS adaptation. After initialization, µinit is used as the 
effective step size for NL cycles for fast adaptation, after 
which it is changed to µfin which is a smaller value. The in-
ternal computation of the adaptation unit is done using 23-bit 
arithmetic and is truncated to 14 bits while send to the output. 

B. Savitzky Golay Filter

The instantaneous prediction error, e(n), from the
adaptive SSLMS predictor used for locating the QRS com-
plex has high frequency impulse noise (Fig 5). This noise is 
filtered out without smoothening or distorting the shape and 
the height of the error peaks corresponding to QRS complex 
using a Savitzky Golay (SG) filter. SG filter smoothens the 
incoming signal by approximating the signal within a 
specified window of size L, to a polynomial of order K, which 
best matches the given signal in a least-squares sense.  The 
filter is implemented using a discrete convolution (5), as 
shown in Fig.9, 

𝑒HI J = ℎ 𝑚 𝑒 𝑛 − 𝑚
L

+,ML

																								(5) 

where e(n) is the prediction error and esg(n) is the filtered out-
put. For ECG sampled at 256 Hz, an SG filter with K,L=3,11 
yielded the optimum results. The (3,11) SG filter coefficients 
were computed as described in [10].  
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C. Squaring & Moving integration

After SG filtering, the signal is smoothened by
squaring and moving integration operation before threshold-
ing (6).  

𝑒𝑛𝑜 𝑛 = 𝑒HI J
:

L
:

+,ML :

																										(6)	

The squaring provides a nonlinear amplification to the pre-
diction error, which helps to further magnify the QRS com-
ponent in the signal relative to the other segments.  
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After the squaring operation, the data is further trun-
cated and saturated to 16 bits, as shown in Fig 10, to reduce 
the overall hardware complexity, and compensate for the 
scaling introduced by SG filter. The moving integrator imple-
mented using a simple serial structure with a single adder, 
subtractor and shift register as shown in Fig.11. 

e_sg_sq(n)

16b 21b
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	4	LSBs
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Fig 11. Moving integrator block with simple serial architecture and trun-
cated /clipped outputs for bit limiting. 

D. Thresholding and Peak Detection.
The enhanced signal in (6) is continuously scanned for

QRS peaks. An adaptive threshold is used as a decision func-
tion for detection. The adaptive threshold is initialized with a 
default value and is updated based on the signal amplitude 
when a new detection is made. When the signal, exceeds the 
adaptive threshold, the peak detection algorithm starts opera-
tion. The detection starts with finding a continually rising 
edge and then a continually falling edge within a specific pe-
riod of time, as identified by increasing or decreasing signal 
amplitudes for several consecutive points (7)(8).  

			𝑒𝑛𝑜 𝑖 − 𝑗 − 𝑒𝑛𝑜 𝑖 − 𝑗 − 1 > 0:
T,U             (7) 

			𝑒𝑛𝑜 𝑖 + 𝑗 + 1 − 𝑒𝑛𝑜 𝑖 + 𝑗 < 0:
T,U 	            (8) 

The adaptive thresholding and peak detection from the 
smoothened signal is implemented as a two interacting FSM 
controllers as in Fig.12.  The thresholding block initializes 
with a default threshold and updates its thresholds, when new 
peaks are detected. The peak detection block continuously 
monitors the filtered signal and detects the presence of QRS 
peaks while the signal is above the adaptive threshold. 
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Adaptive	Threshold	
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Fig 12. Adaptive Thresholding and Peak Detection blocks interacting with 
each other simultaneously for QRS peak identification.  

E. Lossless Data Compressor
For compressing the prediction error, we previously

proposed a simple joint coding-packaging scheme which pro-
duces a fixed length 16-bit output with low implementation 
complexity [15]. The dynamic range of the prediction error is 
low and centers around zero. Therefore only the LSB’s which 
contain any signal value is extracted and packaged into a 16-
bit fixed length format [15]. The dynamic data packaging 
uses a simple priority encoding technique to frame fixed 
length data from samples of multiple bit widths.  As and when 

the error data is received, the algorithm packs the maximum 
number of error samples into a single 16b frame in the order 
of packaging density. The overall implementation complexity 
is lower than other comparable methods and compressed data 
will always have fixed data-width. This avoids the need for 
further data repackaging that is essential for interfacing with 
other devices or I/O devices. 

VII. PERFORMANCE EVALUATION

A. QRS Detection
The proposed algorithm is evaluated using the MIT/BIH 

Arrhythmia Database which is a benchmark database with 48 
thirty-minute ECG ambulatory recordings. 

The MIT/BIH recordings are originally sampled at 360Hz. 
However, since the hardware is running at 256Hz sampling 
rate, we have resampled the MIT/BIH data to 256Hz for tun-
ing the algorithm and testing the performance.  

QRS detection performance is evaluated using false posi-
tive (FP) and false negative (FN) detections. Using FP and 
FN, the sensitivity (Se), positive predictivity (+P) are com-
puted[10]. The proposed JQDC implementation achieved an 
average sensitivity and positive predictivity of 99.58% and 
99.57% for the fixed point hardware implementation. Table I 
shows the summary of average QRS detection performance 
for 48 records from the MIT database.   

TABLE I: AVERAGE PERFORMANCE FOR 48 RECORDS IN  
THE MIT/BIH DATABASE AT 256HZ 

FP FN Se (%) +P (%)
Total/Average 461 465 99.58 99.57 

B. Compression Performance.
The data compression performance is also tested using 

256Hz resampled MIT/BIH Database. Bit compression ratio 
(BCR) is computed as a ratio of number of uncompressed bits 
to compressed bits. An average BCR of 2.15 times and a max-
imum BCR of up to 2.49 times are achieved using 48 thirty-
minute ECG records from the MIT-BIH database. 

VIII. CHIP MEASUREMENT RESULTS AND COMPARISON

TABLE II CHIP SUMMARY 
Supply Voltage 2.4~ 3.0 V 

Technology 0.35 µm CMOS 
High-Pass Corner <0. 07 Hz 

Low-Pass Frequency 35 ~ 175 Hz 
Gain Settings 49 ~ 67 dB 

Input-Referred Noise (0. 5 ~ 250 Hz) 1.95 µVrms  
Common-Mode Rejection Ratio (CMRR) 82 dB 

Power Supply Rejection Ratio (PSRR) 70 dB 
Total Harmonic Distortion @Full Scale (THD) <0.71% 

Sampling Frequency 256/512 Hz 
Total Front-End Current 5.66 µA 
Total Back-End Current 0.4 µA 

TABLE-III:  PERFORMANCE COMPARISON.
TBCAS	[4],	2012	 TBCAS	[16],	2013	 TCAS	II[9],	2015	 TCE	[7],	2011	 This	design	

Functions	 QRS	Detection	 QRS	Detection	 QRS	Detection,	
Lossy	Compression	

Data		
Compression	

QRS	Detection,	2	Channel	Data	
Compression	

Method	 Quadratic	Spline	WT	 Wavelet	Transform	 Wavelet	Transform	 Delta	Coding,	Golomb	Coding	 SSLMS,	Joint	Coding	Packaging	
Sampling	Frequency	 300Hz	 1KHz	 360Hz	 256Hz	 256Hz	

CMOS	Process	 0.35µm	 0.35µm	 65	nm	 65nm	 0.35µm	
Supply	Voltage(V)	 1.8	 3V	 0.7V	 1.0V	 2.4V	

Se(%)	 99.31	 99.90	 99.7	 -	 99.58	
+P(%) 99.70	 99.91	 99.49	 -	 99.57	

Compression	Ratio	 -	 -	 13.6(Lossy)	 2.38	 2.15	
Power	 0.83µW	 13.6µW	 49/33µW	 170µW	 0.96	µW	

Area(mm2)	 1.11	 1.2	 0.41	 0.058	 1.56	



Fig.13 Chip micro photo and prototype device. 

The design is implemented in a 0.35µm process and the front-
end measurement results are shown in Table II. The input re-
ferred noise from 0.05 Hz to 250 Hz is 1.95 µVrms. The high-
pass corner is at 0.07 Hz, and the full-scale 3 V THD is 0.71 
%. The total front-end current, including two channels, ADC, 
DRL, bandgap, and crystal oscillator circuit, is only 5.66 µA. 
The JQDC processor consumes 0.4 µA and has a core area of 
0.78 × 2.0 mm2. Fig. 13 shows the die photo and the prototype 
evaluation board developed for testing the chip. The evalua-
tion board was programmed using an Arduino board to update 
the SPI registers and read the ECG data. The data from ADC 
output and the JQDC block output is recorded for several use 
cases. The ADC output from the chip is passed to a bit accu-
rate JQDC Matlab model and the outputs from the chip and 
model were compared for verification purposes. The total 
chip area is 3.04 × 2.2 mm2.  
Performance comparison of the proposed design with others 
is given in Table III. QRS detection performance is measured 
in terms of sensitivity (Se), positive predictivity (+P) and 
compression performance in terms of bit CR. Since data is 
sampled at 256Hz instead of the original MIT/BIH data sam-
pled at 360Hz, a slight degradation in performance is ob-
served. QRS detection outputs from the test chip when signif-
icant ST-Elevation and powerline noise is present, are shown 
in Fig 14(a),(b). It can be seen that the detector output is ac-
curate even in these noisy conditions. It is noted that detection 
performance and compression ratio varies according to the 
sampling frequency and only two reported designs make it 
explicit that the performance of the chip is related to sampling 
frequency. While all of the prior arts use 360 Hz MIT/BIH 
data for simulation, the hardware implementation is at a dif-
ferent sampling frequency. [16] has the best detection perfor-
mance, but consumes much higher power. [4] consumes only 
0.83µW, but is uni-functional. [7] has better compression ra-
tio, but a much higher gate count and power at a smaller node 
and supply voltage. [9] is the only reported chip which imple-
ments both QRS detection and data compression, but the chip 
can do only one of the function at a time. Also the power con-
sumed is much higher at a much smaller process node and 
lower power supply. Overall the proposed design has one of 
the lowest power for QRS detection and achieves a lossless 
data CR of 2.15. 

Fig. 14.  QRS detection o/p from the ECG-SoC when (a) ST Elevation pre-
sent (b) 50 Hz noise present 

IX. CONCLUSION

      This paper presents a low power ECG-on-Chip with a 
novel joint QRS detection and lossless data compression cir-
cuit for wearable devices. The proposed JQDC processor 
shares hardware resources between QRS detection and loss-
less data compression, which leads to the lower power con-
sumption compared to dedicated independent hardware. The 
QRS detection performance of the proposed chip is at the 
same level compared to the published QRS detectors, i.e. a 
detection sensitivity of 99.57% and a positive predictivity of 
99.58% and lossless CR of 2.15x @ 256 Hz. The proposed 
ECG-on-Chip can reduce the sensor power by 2-5 times and 
therefore is well suited for wearable wireless ECG sensors.  
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