
Exploring Efficient Hardware Support for Applications with Irregular
Memory Patterns on Multinode Manycore Architectures

Marco Ceriani, Simone Secchi, Oreste Villa, Antonino Tumeo, Member, IEEE, and Gianluca Palermo

Abstract—With computing systems becoming ubiquitous, numerous data sets of extremely large size are becoming available for analysis.
Often the data collected have complex, graph based structures, which makes them difficult to process with traditional tools. Moreover, the
irregularities in the data sets, and in the analysis algorithms, hamper the scaling of performance in large distributed high-performance
systems, optimized for locality exploitation and regular data structures. In this paper we present an approach to system design that enable
efficient execution of applications with irregular memory patterns on a distributed, many-core architecture, based on off-the-shelf cores. We
introduce a set of hardware and software components, which provide a distributed global address space, fine-grained synchronization and
latency hiding of remote accesses with multithreading. An FPGA prototype has been implemented to explore the design with a set of typical
irregular kernels. We finally present an analytical model that highlights the benefits of the approach and helps identifying the bottlenecks in
the prototype. The experimental evaluation on graph based applications demonstrates the scalability of the architecture for different
configurations of the whole system.

Index Terms: Computer architecture, irregular applications, high-performance computing, distributed computing, multithreaded
architectures, parallel architectures, field programmable gate arrays, prototype

1 INTRODUCTION

The interest towards algorithms and applications for data
knowledge discovery on big, unstructured data, is rap-
idly increasing. The most visible use of such algorithms is the
analysis of social networks or customer habits for marketing
and recommendations. They are also used in various areas of
research and business, such as the study of interactions in bio-
logical systems [1], [2] or the analysis of logistic networks [3].
In these applications, the data are stored in very large pointer-
based structures, such as graphs and unbalanced trees, which
can be composed of many millions of nodes and billions of
edges, as in the case of social networks [4].

Because of the large size of the data, distributed high per-
formance computing (HPC) systems are required to run the
algorithms. However, the irregularity of the data structures
makes it very difficult to partition the data effectively across
the nodes. In addition, the accesses to these structures usu-
ally present poor spatial and temporal locality, causing

frequent fine-grained requests to the memory hierarchy and
network, with a very irregularmix of long and short latencies
[5]. Finally, the dynamic nature of the data structures makes
the task of optimizing their layout evenmore difficult.

Past and currentHPC systemsmainly target traditional sci-
entific applications, which process highly regular data struc-
tures. These applications feature high arithmetic intensity and
data locality, and are relatively easy to partition into loosely
dependent tasks. Therefore, modern HPC systems are
designed as clusters whose nodes include powerful multi-
core processors, large memories and complex cache hierar-
chies, and are interconnected by high bandwidth communica-
tion networks. However, deep cache hierarchies are beneficial
only to algorithms with high data locality. Instead, applica-
tions with highly irregular memory patterns and large data
sets, from now called irregular applications, perform poorly [6].
Furthermore, knowledge discovery applications have large
degrees of parallelism exploitable by HPC clusters. However,
because of the connectivity of the graphs, the performance on
large systems is dominated by the communication time [7].

The Cray XMT [8] is a supercomputer explicitly designed
for irregular applications. The three key features of this dis-
tributed machine are: massive multithreading, fine-grained
synchronization and global memory address space. Each node of
the XMT includes a custom hardware multi-threaded pro-
cessor, named ThreadStorm, that supports up to 128 hard-
ware contexts. The large number of thread contexts allows
keeping the processor pipeline busy during long latency
operations, such as remote memory accesses (RMA) across
the network. The system also includes a remote memory
access module, placed between the ThreadStorm processor

� M. Ceriani and G. Palermo are with the Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Milano, Italy.
E-mail: {marco.ceriani, gianluca.palermo}@polimi.it.

� S. Secchi is with ARM Ltd, Cambridge, U.K.
E-mail: simone.secchi@arm.com.

� O. Villa is with NVIDIA Research, Santa Clara, CA.
E-mail: ovilla@nvidia.com.

� A. Tumeo is with the High Performance Computing Group, Pacific North-
west National Laboratory, 902 Battelle Blvd, MSIN J4-30, Richland, WA.
E-mail: antonino.tumeo@pnnl.gov.

� 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. To access the final edited and published work see http://dx.doi.org/10.1109/TPDS.2014.2345073

Manuscript received 12 Dec. 2013;
revised 1 June 2014;
accepted 15 July 2014.
Date of publication 5 Aug. 2014;
date of current version 17 May 2017.
Recommended for acceptance by S. Ranka.

http://dx.doi.org/10.1109/TPDS.2014.2345073

and the Seastar network. This module provides a globally-
shared address space, which is transparently mapped and
uniformly scrambled across all the nodes of the system.
This simplifies the algorithms design, by eliminating the
need to manually partition the data. The XMT approach is
viable because massive multithreading enables latency tol-
erance in place of latency reduction, and the address scram-
bling makes the average data access latencies more
uniform. Finally, the XMT associates a full/empty bit with
every memory word, used by atomic operations and block-
ing memory accesses. The result is a mechanism for
dynamic conflict avoidance with very low overhead, helpful
in irregular and unpredictable algorithms. However, the
XMT does not run traditional regular workloads as effi-
ciently, and its evolution may not be economically sustain-
able, since it is a custom machine with a limited market.

Meanwhile, paradigms for novel processor designs are
shifting towards many-core architectures, which integrate
hundreds of small and low-power cores in a single die. The
unprecedented levels of parallelism exposed are ideal for
building new HPC systems, especially for running memory
bound and massively parallel applications. However, for
performance reasons, all these architectures favor distrib-
uted programming models, focused on locality exploitation,
independently from the actual memory model [9], [10], [11].
Therefore, it is of crucial interest to understand how to
evolve these novel architectures without neglecting the
characteristics of irregular algorithms.

One of the driving principles of the XMT design was
improving the performance of irregular applications with-
out requiring complex optimizations from the programmer.
Provided that enough parallelism is available, the XMT’s
hardware and software enable automatic and transparent
latency hiding and workload balancing. In this paper we
study the possibility to achieve the same result starting
from standard, therefore cheaper, off-the-shelf components,
including processors and memory controllers (MC).

The main contributions of this paper are:

� the design of custom hardware and software compo-
nents that provide a virtual global address space,
transparently to the application, and latency hiding
through software multithreading;

� the development of a prototyping platform based on
multiple field programmable gate arrays (FPGAs),
employed to validate the approach;

� an analytical model that correlates single-node and
system-wide architectural parameters with system
performance metrics.

The paper is organized as follows. Section 2 discusses
the related work. Section 3 describes the architecture build-
ing blocks and the custom components that we designed,
while Section 4 gives an overview of the programming
model and the software execution flow. Sections 5 and 6
describe the FPGA prototype that we developed for explo-
ration purposes and an analytical model that links the most
relevant system-level parameters to the overall perfor-
mance, giving useful insights on the architecture strengths
and bottlenecks. Section 7 presents and discusses the
results of the experimental evaluation and, finally,
Section 8 concludes the paper.

2 RELATED WORK

The Cray XMT [8], mentioned in Section 1, is a reference for
many research projects on irregular parallel applications,
because its peculiar features provide both good perfor-
mance and a simple programming model. Its main draw-
backs are the cost and the excessive specialization. These
motivate the search for ways to integrate its features into
more traditional architectures and systems.

Multithreading allows tolerating long latency memory
accesses, in combination or in opposition to latency reduction
techniques such as caches, prefetching and operation reorder-
ing. Interleavedmultithreaded processors switch from thread
to thread on a cycle-by-cycle basis, hiding the stalls due to
short distance dependencies. Examples of interleaved multi-
threaded processors are those in the TeraMTA and TeraMTA
2, the ThreadStorm in the Cray XMT [8], and the Oracle
SPARC processors based on the Niagara [12] architecture.
The Niagara-based processors have smaller caches than other
contemporary architectures, but, thanks to a higher number
of threads, can tolerate memory access latencies. In the Ultra-
SPARC T1 each of the eight cores can execute four threads,
while the SPARC T3 can run eight threads on each of its 16
cores. Nevertheless, they are not designed to tolerate the net-
work latency due to remote memory accesses, nor they pro-
vide a global address space. The ThreadStorm, with 128
hardware thread contexts in a single core, can effectively toler-
ate network latency, and supports a scrambled global address
space in hardware. However, it is not as effective when run-
ning regularworkloads.

An alternative to temporal multithreading is the simulta-
neous multithreading (SMT) implemented in superscalar
architectures such as the IBM POWER7 and the Intel Sandy
Bridge. SMT keeps multiple thread contexts active at the
same time, and identifies independent instructions to be
issued simultaneously on the available execution units.
However, the objective of SMT is to maintain high the utili-
zation of the processor functional units, rather than hiding
memory latency.

The use of software-based fast thread switching for latency
tolerance has been explored in several works. For example,
the Qthreads [13] library implements software fine-grained
multithreading, XMT-like full/empty bit semantics, and sup-
ports various architectures (POWER, x86, SPARC, Tilera).
The APRIL processor architecture [14] in the Alewife
machine, instead, exploits software block multithreading to
hide memory access latencies. However, these approaches
have not been thoroughly explored in multi-node machines,
with support for distributed or global address spaces.

CPU Scheduling is a topic of great importance, especially in
parallel and distributed systems. A widely used strategy to
enhance load balancing in parallel programs with fine-
grained parallelism is Work-Stealing. According to it, each
processing element has a dedicated queue, but can steal tasks
from other queues instead of stalling. To reduce the algorithm
overhead, different techniques are proposed [15], [16]. In this
paper we are addressing data-intensive algorithms that exe-
cute long latency requests very frequently. Hence, we neglect
the details of the scheduling algorithm, instead focusing on
identifying the requests and on automatically removing the
stalls from the pipeline with fast context switches. We

consider load balancing techniques, such as work-stealing,
orthogonal and synergic to our proposal.

Partitioned Global Address Space (PGAS) programming
models offer a virtual global address space space without
neglecting data or thread locality. These programming
models are progressively gaining traction in the HPC com-
munity, because they can reduce the effort for programming
large-scale machines without trading off too much perfor-
mance. They can be found in languages such as Chapel [17],
Unified Parallel C [18], Titanium [19], Co-Array Fortran
[20], X-10 [21] or libraries such as GASNet [22] and Global
Arrays [23]. However, these approaches still are mostly soft-
ware-based, and their runtimes can generate significant
overheads [24]. An example of hardware support for the
global address space is the Cray Gemini interconnect [25],
that allows pipelining of remote references. Nevertheless,
remote DMA operations in current high performance net-
works require to be set up through complex memory regis-
tration operations, usually involve limited portions of the
memory, and are optimized to transfer large chunks of data.
Therefore, PGAS models are still more amenable to regular
workloads that generate coarsegrained transactions.

Graph based data structures appear in many irregular par-
allel algorithms. Grappa [26] is a software system which inte-
grates a PGAS programming model and multithreading to
crunch large graphs on commodity clusters. The Gobal Mem-
ory and Threading (GMT) [27] runtime library adds message
aggregation to the PGASmemorymodel and lightweight soft-
ware multithreading to further enhance network utilization.
Other tools, such as GraphLab [28], Pregel [29] and Giraph,
exploit vertex programs that run on each vertex and interacts
along edges, exploiting a bulk synchronous parallel model.
Interactions either use messages (Pregel and Giraph) or
shared states (Graphlab).However, even ifwe use graph algo-
rithms as target benchmarks, our objective is not to implement
a software library exclusively for graphs. Instead, we look at
integrating small modules at all system levels (hardware
architecture, runtime) to enhance the execution of irregular
applicationswith limited impact on the programmingmodel.

Hardware support for global address space is provided by
the RMA modules in the Cray XMT system, which forwards
memory requests across the network and also provides fine-
grained synchronization by extending thememory semantics.
To the best of our knowledge, the XMT is the only commercial
system toprovide such features.We follow a similar approach
for the global address space, but we target commodity cores
and memory subsystem. A custom module is proposed also
in [30]. The module extends the HyperTransport protocol
from single to multiple nodes, forwarding Programmed I/O
(PIO) operations over a custom high performance network.
The approach is validated through FPGA prototyping. Our
approach has similar basis, but is focused on the on-chip
design rather than the external network. Furthermore, we
look at how to tolerate access latencies through multithread-
ing and include fine-grain synchronization support. Finally,
we also evaluate the system-level implications of the design
by presenting amodel for latency tolerance.

Analytical models for multithreaded processors have
been developed in the past. In [31], Agarwal presents an
analytical performance model for cache-coherent multi-
threaded distributed processors, which includes cache

interference, network contention, context-switching over-
head, and data-sharing effects. In [32] the authors present
an analytic framework to evaluate the performance of a
spectrum of machines, including interleaved and block
multithreaded processors. We follow an approach similar
to these works, introducing an analytic model that corre-
lates the degree of multithreading and switching delay to
memory/network bandwidth and latency. Unlike the
afore-mentioned works, we focus in particular on irregu-
lar applications, characterized by a high ratio of remote
memory operations with respect to local ones, and we
ignore the cache hierarchy, which is ineffective for this
kind of workloads [6].

3 ARCHITECTURE DESCRIPTION

This section presents in detail the proposed architecture. We
start by providing a high level overview of the system.
Then, we delve into the details of the required features, and
how the system provides them.

Fig. 1 shows an overview of the HPC system, with differ-
ent levels of details going from the whole cluster (on the
left) to the single core. The cluster is composed of many
nodes interconnected through a high performance network.
Our architecture is independent of the topology and proto-
col used for the network. The network design only affects
the system performance and its optimal configuration.
Every node of the cluster consists of a many-core system,
composed of many processing tiles (T) connected by an on-
chip network to the memory controller, peripherals and the
external network interface. Each tile, in turn, includes a
core, a private memory element, which can be a scratchpad
or an L1 cache, and a custom memory interface adapter.
The purpose of the private memory is to store near to the
core the portions of the address space that show locality of
references, such as the stack and the code segment.

We have enhanced the system with three on-chip custom
components, highlighted in Fig. 1: the global memory access
scheduler (GMAS), the global network interface (GNI) and
global synchronization (GSYNC). These components jointly
provides a set of features that enable efficient execution of
irregular applications:

� transparent global address space;
� reduction of hot-spots formation in the network;
� automatic hiding of network latency through

multithreading;
� fine-grained global synchronization primitives.

Fig. 1. Hierarchical overview of the architecture: whole system, single
node and single tile detail.

An instance of the GMAS is attached between the data
port of each core and the on-chip network, so that it can
intercept all data accesses and translate global addresses to
physical ones. The GMAS also connects to the interrupt port
of the core, in order to trigger the scheduler and interact
with the run-time. Each node includes a single GNI
instance, shared by all its tiles. The GNI provides access to
the remote sections of the global address space though
memory mapping. Lastly, the GSYNC provides synchroni-
zation support, by implementing a lock map that each core
can access by reading or writing dedicated memory
mapped registers inside the GMAS. All the blocks are
designed for minimal impact on the pre-existing compo-
nents, and can be disabled to run applications with high
data locality, or based on different concurrency models.

The rest of this section describes how the custom compo-
nents provide the desired features, and details their
implementation.

3.1 Global Address Space

The first feature offered by the designed architecture is
hardware support for a global address space across all
nodes and application instances. To create a global address
space, part of the memory range in each node is reserved
for global use. All these regions are then composed in a
global address range, logically contiguous but physically
distributed on the whole system. The hardware support
consists in exposing this address space to the cores, and in
automatically forwarding remote memory requests to the
corresponding nodes. Fig. 2 shows three different address
spaces. On the left, there is the address space visible to
each core, which includes the private memory, local to the
core, the peripherals, the node-local memory, and the
global space. The second address space is composed of
the physical addresses seen by the on-chip network. A
small part of the global address space is mapped into the
reserved portion of the node memory, while the remaining
is mapped on the GNI addresses. This first mapping is per-
formed by the GMAS inserted between the data port of a
core and the local network, and allows direct access to the
local portion. Finally, the GNI maps the remote memories
to portions of its own address range, exposing them to the
on-chip space.

The GNI (Fig. 3) acts as a transparent bridge between the
node-local network and the system network, converting the

transactions from one protocol to the other. In details, it
decodes memory transactions, encapsulates them inside
network packets, and performs translation of addresses and
identifiers. The GNI handles outgoing and ingoing transac-
tions concurrently, using separate queues and paths, and
serves both categories with a first come first served policy.
The GNI receives long latency requests as memory mapped
load/store transactions through the on-chip network. It
extracts from the memory address both the identifier of the
destination node and the physical memory address, used at
the destination. Then, it creates a network packet that
includes as payload the requested operation and its argu-
ments. The GNI also generates a unique transaction identi-
fier, which includes the identifiers of the originating core
and thread, as well as the node address. Hence, all the infor-
mation required to match the responses with the pending
threads are included in the packets themselves. The destina-
tion GNI decodes incoming requests and converts them into
memory accesses towards the local DRAM, then sends the
responses along an analogous path to the originating core.

To make programming easier, we require both load and
store transactions to be non-posted, i.e., they both require a
response from the receiver. Therefore, all types of transac-
tions require a full round-trip over the network. This
requirement ensures that all memory writes included in a
critical section are concluded and visible by every other
node before exiting the section itself, independently from
the distance of the destination.

In order to route the responses back to the originating
node, the network packet headers have to include both
the source node address and an identifier field large
enough to associate the transaction to the issuing thread.
These two fields together, therefore, should be capable to
represent the maximum number of threads supported on
the whole system. On the other hand, the on-chip net-
works and buses are usually designed with much smaller
transaction identifiers. Hence, the GNI includes a transla-
tion table that dynamically assigns unused local identi-
fiers to the incoming global transactions, for accessing the
DRAM and GSYNC.

As previously said, the GMAS is also involved in provid-
ing a global address space. Since it is inserted between the
cores and the on-chip network, it intercepts all memory
accesses and identifies those directed towards the global
address space. It can then modify the addresses, and even
transform the requested operations into different ones. In

Fig. 2. Address space layout, as seen by (a) the cores and (b) the on-
chip network.

Fig. 3. GNI internal structure.

particular, accesses to the local portion of the global space
are directly forwarded to the memory controller, while the
other global accesses are redirected to the GNI, with the
addresses rewritten in the format that it can understand.

3.2 Reducing Hot-Spot Formation

One of the problems with parallel and distributed systems
is the run-time formation of hotspots due to temporary high
contention on single resources, which generate work imbal-
ance and reduce performance. If a significant fraction of
global memory accesses are directed to a single node, then
the system performance is bound to the bandwidth of its
network interface. The desired optimal behavior, instead, is
to evenly distribute the accesses on all the nodes. One way
to achieve it is to use the complex mappings of memory
addresses to nodes to minimize the clashes caused by con-
current visits on the data structure. This approach has been
used for optimizing parallel access to memory banks, e.g. in
[33], and to distribute the workload in the Cray XMT.

We followed this approach, and added a scrambling
function inside the GMAS, which scrambles global memory
addresses before mapping them on the nodes. The function
is configurable, and preserves very few last-significant bits,
in order to distribute the addresses on the nodes with a very
fine granularity, e.g. 64 bytes as the Cray XMT [8].

The scrambling has the effect of breaking structures and
variables larger than the selected granularity and of scatter-
ing them across the nodes of the system. This is useful
when accessing data structures such as the adjacency lists
used in graphs and trees, because it increases the probabil-
ity of distributing subsequent requests on multiple nodes,
balancing the network traffic. In addition, it allows spread-
ing the data structures on all the nodes in the system, inde-
pendently on their size. This enables exploiting all the
system resources even on small problem instances, and to
evenly distribute multiple data structures.

The result of the address scrambling is an uniform distri-
bution (in average) of the traffic over the system [34].

3.3 Latency Tolerance

In addition to providing the global address space, the
GMAS includes various features to hide the long latency of
network transactions through multithreading. The goal is to
automatically exploit task-level parallelism to improve both
the processor and network bandwidth utilization, by exe-
cuting multiple threads while waiting for a response from
the network. To achieve this, the GMAS performs the fol-
lowing actions when it identifies a remote request. First of
all, it takes charge of waiting for the answer, internally
keeping track of the pending status of the current thread.
Then, it notifies the event to the core to start a context switch
and, finally, it selects the next thread to execute. These
actions involve a set of hardware components inside the
GMAS and of software routines for the context switch.

Fig. 4 shows the internal structure of the GMAS. It
includes a load/store buffer (LSB) that stores the informa-
tion required to handle the remote requests. Each slot corre-
sponds to a thread that can run on the processor, and
includes a status bit and a field to store the result of remote
requests when they are received. We are currently targeting

cores with an in-order pipeline, which can handle a single
pending memory access at a time. Therefore, it is necessary
to add a buffer external to the core to free the internal load/
store unit and exploit thread-level parallelism.

While the GMAS stores the request for a remote transac-
tion in the LSB, it also triggers an interrupt towards the
core, causing a context switch. The core execution is then
decoupled from the network transaction, hiding its latency.
The specific details on how the core pipeline handles an
external interrupt vary from core to core. However, in many
architectures, a memory instruction that reaches the mem-
ory access stage (or equivalent) is allowed to complete,
delaying the interrupt handler. This would prevent the core
from servicing the interrupt and perform the context switch.
To include in our architecture design also simple cores that
have this limitation, the GMAS also sends to the core a fake
memory response. When restoring the context of the thread,
the program counter is set to the last instruction executed,
instead of the next instruction, as it usually happens. This
enables the core to re-issue the memory request and to fetch
the result from the LSB.

Another key component of the GMAS is the hardware
scheduler. The scheduler selects the next thread to exe-
cute and exposes its ID to the software through one of the
memory mapped registers. The GMAS always triggers
the scheduler together with the interrupt signal, hence
scheduling is masked by the saving of the old thread con-
text, reducing the context switch latency. In addition, the
scheduler does not need to access the memory, because
the GMAS stores the statuses of the threads running on
its core in the LSB. We selected the Round Robin algo-
rithm for the prototype, because it is predictable and per-
mits fast hardware implementations.

In addition to preempting the threads on remote memory
accesses, the GMAS also allows the threads to yield the pro-
cessor by writing in a specific register. We use this feature
in the software synchronization primitives, to block the
thread while waiting on local resources.

3.4 Synchronization

Regular data structures, such as dense matrices, allow iden-
tifying most of the data dependencies at design or compile
time. Conversely, algorithms based on arbitrary graphs and
trees require run-time conflict avoidance, because the
interference depends on the data instance. Therefore, the
synchronization primitives offered by a system have a
huge impact on both the applications complexity and

Fig. 4. GMAS internal structure.

performance. Common APIs based on mutex variables
incur in excessive overhead, both in terms of memory size
and time, because every element in the shared data struc-
ture has to be protected. Consequently, there is a need for
hardware support for fine-grained synchronization, which
permits precise control of the threads with low overheads.

We included in the system a dedicated hardware compo-
nent to support synchronization, the GSYNC, and an inter-
face inside the GMAS that exposes its features to the
software. The GSYNC integrates a lock table, which is
exposed on the on-chip interconnection address space. The
reason for an interface inside the GMAS is that each GSYNC
manages the synchronization on the memory addresses
physically mapped on its own node. Hence, accesses from
the core to the GSYNCs have to pass through the scrambling
and mapping logic included in the GMAS, as described in
Sections 3.1 and 3.2.

We have implemented two synchronization operations,
the try-lock and unlock, which are exposed to the applica-
tion through two registers inside the GMAS. Since each
node includes many cores, the accesses to the GSYNC
have to be atomic. Therefore, we implemented the two
operations as memory requests in the GSYNC address
space, respectively as read and write accesses. This keeps
the implementation independent from the on-chip inter-
connection, and bypasses its limitations.

When the GSYNC receives a load request, it sets the lock
bit associated to the address to 1 and returns the previous
value. Conversely, a write request always sets the bit to 0.
We implemented in software a lock operation, using a spin
loop that yields the processor after every failed attempt.
Even if the yields increase the traffic generated, they are
required to prevent deadlocks. The reason is that only
remote accesses cause a preemption, so a thread spinning
on a lock owned by another thread of the same processor
would cause a deadlock.

In the prototype, the lock table internal to the GSYNC
is much smaller than the memory it protects. Conse-
quently, multiple addresses share the same entry. The
GMAS performs the mapping among addresses and
entries by considering a subset of the address bits and
encoding the entry number as part of the address used to
access the GSYNC. This direct mapping may cause false
failures of the lock primitive, increasing spinning times.
However, the simplicity of the logic limits the latency of
the transactions, providing a reasonable tradeoffs for the
purpose of prototype. A more robust implementation
could be obtained by replacing the direct mapped table
with a content addressable memory (CAM). From the
protocol side, this requires to actually send to the GSYNC
the whole address to lock. From the hardware side, the
on-chip interconnection has to provide adequate support
for atomic transactions. While in general this is a reason-
able approach, in the very first implementation of the pro-
totype we preferred the flexibility in architectural design
over the robustness of the system.

3.5 The Processing Core

The system architecture is completely independent from the
instruction set of the cores. It only weakly depends on their
internal micro-architecture. We are currently focused on

in-order single-issue cores. This prevents the threads from
overlapping the execution of multiple memory accesses and
simplifies the automatic context switch triggered by them.
The core also needs to support precise interrupt handling.

A second requirement for the implementation of the
prototype is the availability of a dedicated low-latency
memory directly connected to each core, to store the
thread contexts and allow fast context switches. If,
instead, a cache hierarchy is used, the pressure on the
first level caches can produce a high miss rate during the
context switch [26]. Hence, fast context switches would
be possible only if the memory hierarchy allows pinning
the contexts inside the lower levels.

4 PROGRAMMING AND EXECUTION MODEL

This section describes the programming model and exe-
cution flow of the designed architecture. Thanks to the
custom hardware modules specifically designed for this
architecture, the programming model can replicate the
shared-memory semantic on top of a distributed mem-
ory system, with POSIX-like multithreading and lock-
based synchronization. The applications are designed
following the single-program-multiple-data (SPMD) par-
adigm, where every core of the system runs the same
application with different inputs.

During the system boot, every core reads a unique
node identifier from dedicated hardware and a unique
core identifier (within the node) from its attached GMAS.
These identifiers are exposed to the application to distin-
guish the application instances and distribute the work-
load. Then, the predefined master core initializes the
global data structures used by the run-time, while the
remaining cores wait on a barrier allocated at a fixed
address inside the global space.

As discussed in Section 3.3, multithreading enables
each core to tolerate the latency of remote memory
accesses. The applications start with one master thread
per core, which can create child threads at anytime dur-
ing application execution. The switching among the
threads in a core occurs at every remote memory refer-
ence, or using an explicit yield command. In detail, when
a GMAS detects that its core has issued a remote memory
reference, it sends an interrupt. Within the interrupt ser-
vice routine, the core saves the context of the running
thread and switches to the next one, if available. The
threads are selected by the hardware scheduler inside the
GMAS, using a round robin policy among those that have
no pending operations in the LSB (see Fig. 4). A thread
can yield the processor by writing the command in a
GMAS register. The write makes the GMAS raise the
interrupt signal as if a remote request had been issued.

Communication among threads should take place only
through the global address space, whether they run on dif-
ferent cores or on the same one. However, the node memory
can still be used for optimization, e.g. for storing temporary
local work-lists. Inter-thread synchronization is performed
through explicit lock and unlock primitives, described in Sec-
tion 3.4. In addition, barrier primitives implemented in soft-
ware are provided for bulk synchronization. Since the
synchronization happens in the global address space, it can

generate remote requests and trigger context switches.
Moreover, a failure to acquire a lock also triggers a context
switch, preventing deadlocks in case the lock is held by
another thread on the same core.

5 PROTOTYPING PLATFORM

This section describes the FPGA prototyping platform
that we developed to evaluate the designed architecture.
Hardware prototypes and simulators allow joint research
on hardware architectures and software algorithms. How-
ever, software simulation is still too slow and impractical to
evaluate parallel algorithms with large data-sets. On the
contrary, FPGAs systems can integrate multiple cores and
I/O interfaces, hence they allow to emulate multi-core sys-
tems in full detail, while achieving better performance than
simulation [35].

We implemented the FPGA design using the Xilinx ISE
Embedded Design Suite, version 13.4. The multi-node pro-
totype is composed of four ML605 boards, each mounting a
LX240T Virtex-6 FPGA. The boards communicate through
the RocketIO GTX transceivers and are interconnected with
coaxial cables, providing full-duplex links. To increase the
number of transceivers available, every board mounts an
FMC XM104 daughter board. Communication between
nodes is done via the Aurora protocol, a lightweight link-
layer protocol developed by Xilinx for high-speed serial
links [36]. In particular, we use the 8B/10B flit encoding.

Since our prototype is based on FPGA, it is limited by the
reduced operating frequency for the processing cores, cus-
tom logic and the on- and off-chip interconnects. However,
the downscaling of processor operating frequency and
channel bandwidth does not invalidate the information on
performance scaling that we can extract from the prototype.
Moreover, we downscaled the network bandwidth to match
the reduced frequency of FPGA, maintaining the relative
performance of the components coherent with those of com-
mercial processors, on-chip interconnects and channels. The
prototype uses off-the-shelf IP cores for the on-chip inter-
connection, the processing cores and memory controller,
and only adds the three modules described in Section 3.

The many-core node architecture is composed of instan-
ces of the Xilinx MicroBlaze core. This is a simple but
configurable 32-bit RISC soft-core, which can be synthesized
on FPGAs. Nevertheless, the proposed approach is inde-
pendent from its specific ISA, as long as the selected core is
in-order and supports precise interrupt processing. The on-
chip interconnect sub-system is the ARM AXI4 bus, a com-
mon interconnect solution for the design of systems-on-chip
and embedded systems in general. Xilinx implementation
of the bus supports up to 16 masters in single-layer configu-
ration, along with split transactions, pipelined requests and
burst messages [37]. The platform also includes a DDR3
RAM controller to connect to the node memory, i.e. a
512 MB SODIMM module. Finally, each node includes an
UART controller and a hardware debug module (MDM)
that can connect to up to eight processors.

We synthesized the architecture with up to 32 cores per
node. The clock frequency of the cores and other compo-
nents in the FPGA is 100 MHz, and the GTX transceiver pro-
vides a bandwidth of 625 Mbit/s. Internally, the cores

communicate with the memory controller, GNI and GSYNC
through a tree-shaped hierarchy of AXI4 buses. The reason
for adopting a hierarchy is that the Xilinx implementation
of AXI supports only up to 16 masters on a single instance.
Therefore, the cores are grouped in small clusters that share
a first bus level, which, in turn, is connected to the main
one. In addition, the bus can only maintain up to 32 read
and 32 write operations concurrently towards each slave,
becoming a bottleneck when the number of threads per
node is higher than 32.

Table 1 shows the FPGA resource occupation and maxi-
mum operating frequencies of the three custom modules
presented in Section 3, the MicroBlaze core, and the AXI4
bus, as configured in the prototype. The percentages refer to
an LX240T Virtex-6 device. The MicroBlaze is configured
for area optimization to increase the number of cores, so it
lacks modules such as the floating point unit and optional
instructions, not very useful in memory bound applications.
The most critical occupation figures among the custom com-
ponents are those of the GMAS, because every processing
core has an attached GMAS module. Each node, instead,
needs only one GNI and one GSYNC module. For the
GSYNC, almost all the resources are used to implement the
lock table, configured to have 4,096 entries. Finally, the
interconnection is also quite significant, consuming one fifth
of the available LUTs. In terms of operating frequency, none
of the custom components is critical.

6 PERFORMANCE MODEL

This section presents a mathematical model that correlates
the main features of the proposed architecture, listed in
Table 2, with system performance metrics. This model pro-
vides insights on the impact and importance of each feature.
It allows estimating the components utilization and identify
the bottlenecks.

The execution time of data-irregular applications is
essentially dictated by the frequent occurrence of long
latency memory requests. Therefore, the model focuses on
the memory and network subsystems, and on the number
of accesses to the global address space.

The modeled system is a cluster composed of N nodes,
each hosting C computing cores running at frequency f .
Every memory access to the global address space may be
directed towards the local memory controller or forwarded
to a remote note. The delays for these accesses are labeled
respectively Dm for memory, and Dnet for network transac-
tions. In both cases, we consider the average delays. We
define the parameter Kr as the ratio of remote requests over
all global memory accesses, and Kl ¼ 1�Kr the ratio of

TABLE 1
FPGA Resources Occupation and Maximum Frequency

of the Custom Components

of slice registers # of slice LUTs fmax½MHz�
GMAS 1063 (0.4%) 1566 (1.0%) 230.3
GNI 450 (0.1%) 1915 (1.3%) 253.3
GSYNC 4711 (1.6%) 8054 (5.3%) 241.1
MicroBlaze 1510 (0.5%) 1457 (1.0%) 155.7
AXI4 (sum) 29694 (9.9%) 28868 (19.0%) 153.4

local requests. In a perfectly balanced system, the ratios are

Kr ¼ N�1
N andKl ¼ 1

N.

The software side of the system is composed of the run-
time and the application. For the run-time system, we are
mainly interested in the time Dcsw required to perform a
context switch, because it imposes a hard limit on the effec-
tiveness of multithreading. The application is characterized
by the average number of clock cycles between consecutive
global memory requests, Isw, and the number T of threads
spawned on each core.

The performance of the system depends on the rate of
generated global memory requests. To estimate this value,
we start by defining two asymptotic formulas for a single
core, distinguishing the case of low processor utilization
and processor saturation. Fig. 5 depicts two possible sched-
ules corresponding to these two scenarios.

When a thread (T1) issues a remote request, it remains
blocked for a whole round trip over the net (Dnet). Mean-
time, the core switches to a different thread, which uses
the CPU until it also issues a remote request, after Isw
cycles. In a situation with only two threads and low pro-
cessor utilization, the core becomes idle until the first
response arrives. After receiving the response, the core

restores the context of T1 in 1
2Dcsw clock cycles. We

assume that context save and restore have approximately
the same duration, and they constitute the whole context
switch delay. On the other hand, local memory accesses
simply stalls the core for a time Dm, without switching
the context. Accordingly, both threads T1 and T2 are exe-

cuted every Isw þKrðDnet þ Dcsw
2 Þ þKlDm cycles.

The resulting asymptotic equation for the global
access rate in low utilization regimen is given by Equa-
tion (1), dividing the number of threads per core by the
response time

Rategloblow ¼ T

Isw þKrðDnet þ Dcsw
2 Þ þKlDm

: (1)

In the case of a saturated processor, whenever a remote
request terminates, the core is busy running other
threads. When the core issues a global memory access, it
has a probability Kl of being stalled for a local memory
access, and a probability Kr of executing a context switch
caused by a remote request. However, it is never forced

to wait for network transactions. Hence, if the number of
threads is N , the time required to execute once each
thread is NðIsw þKrDcsw þKlDmÞ. This is also the
demand on the core for executing NðKr þKlÞ ¼ N global
accesses. The resulting global access rate is given by
Equation (2), and is the maximum rate for a single core

Rateglobsat ¼ 1

Isw þKr �Dcsw þKlDm
: (2)

The number of threads required to completely hide the
network latency, and reach this upper-bound, is given in
Equation (3). The equation is obtained by equating the
response time of a single global request to its demand on
the core, so that the core utilization is 100 percent

Tth ¼ Isw þKrðDnet þ Dcsw
2 Þ þKlDm

Isw þKr �Dcsw þKlDm
: (3)

In the proposed equations, the network latency is a
fixed value, not depending on the congestion of the net-
work. This is acceptable for under-loaded networks, but
it is no more true when approaching the saturation point.
Anyway, the equations are still useful, if used together
with a formula that relates the delay to the traffic injected
in a specific network instance. We can then solve the
resulting system of equations to estimate the global access
rate. As it can be seen from Equations (2) and (3), the
maximum rate of requests is independent from the net-
work delay Dnet, which only increases the number of
threads required to produce it. On the other hand, if the
network delay increases because of its saturation, it
would mean that the bottleneck of the system is the net-
work itself. In such a case, increasing the requests injected
by the nodes would be meaningless.

Several system performance metrics depend on the sin-
gle-core global memory access rate, starting from the net-
work bandwidth used by a system node. We assume that
contention on on-chip resources is much lower than con-
tention on the network interface, therefore the throughput
of a node is directly proportional to the number of cores
C, up to network saturation. A fraction Kr of the global
requests by each core is turned into a network request,
and each of them involves in average S bytes. Since all
the network packets transport similarly small payloads,
averaging their sizes is a good approximation. Eq. (4)
gives the asymptotic per-node network bandwidth, valid
up to saturation of the network interface. As with Eq. (2),
this equation can be reversed to compute the maximum
rate per-node

TABLE 2
Definitions of Terms Used in the Model

Hw parameters

N Number of nodes in the cluster
C Number cores on a node
f Clock frequency [Hz]
Dnet Latency of a network request (average) [seconds]
Dm Latency of a memory request (average) [cycles]
S Size of network request (average) [bytes]

Sw parameters

Kr Ratio between remote requests and global requests
Kl Ratio of global requests managed locally
T Number of threads per core
Isw Number of processor cycles between global requests
Dcsw Context switch delay [cycles]

Fig. 5. Latency hiding through multithreading.

Bandnode ¼ C � f � S �Kr �
Rategloblow ; T < Tth

Rateglobsat ; T � Tth:

(
(4)

Similarly, it is possible to model the memory band-
width utilization. The total memory bandwidth of the sys-
tem is given by the number of nodes multiplied by the
bandwidth of a single controller. In the best-case scenario,
the requests are evenly distributed among the nodes. In
this case, the demand on each memory controller is
exactly equal to the request rate generated by the cores in
one node. Conversely, on an unbalanced system, a single
memory controller can receive more requests than the
others, and can become the bottleneck. Anyway, in a large
system, the majority of global memory requests that
arrive to a memory controller pass through the incoming
network interface. Therefore, it is simple to determine
whether the memory controllers are capable of sustaining
the traffic that passes over the network, or whether they
are the system bottleneck.

The core utilization is another interesting metric that is
linked to the global access rate. The demand on a core by
the application for each global access is the sum of the three
components: the average computation time between global
requests, the context switch caused by remote requests, and
the stalls due to accesses to the local portion of the global
address space. This is also the sum that appears at the
denominator of Equation (2)

Ucpu ¼ Ucpu;user þ Ucpu;sys þ Ucpu;stall (5a)

¼ Rateglob � Isw þKrDcsw þKlDmð Þ: (5b)

7 EXPERIMENTAL VALIDATION

This section discusses the experiments that we run on the
architecture prototype described in Section 5. We character-
ize the system by providing the latencies of the main opera-
tions. Then we validate the analytic model with data from
the prototype. Using both the prototype and the model, we
evaluate the system performance running memory inten-
sive and synchronization intensive benchmarks. Finally we
explore the impact of the multithreading overhead on the
system throughput.

System characterization. The first step in evaluating the
system prototype is to measure the performance of its indi-
vidual components. The latencies of the main operations
performed in the system are reported in Table 3. We mea-
sured all the latencies with a single core active, thus without
contention on the on-chip bus hierarchy. The overhead for
traversing the GMAS is only one cycle for local accesses and
three cycles for remote accesses.

From these profiled data, and the equations presented in
Section 6, we can obtain an upper bound to the rate of global
memory accesses generated by the system. To maximize the
rate, we minimize the interval between global accesses, set-
ting Isw ¼ 0 in Equation (2), i.e., we assume that every
instruction in the application is a global memory access,
without interposed computation. In addition, the same
assumption applied to Equation (3) provides the number of
threads required to achieve the maximum rate and saturate
the cores. Using the latencies measured on the prototype,

we obtain that the maximum rate per core is 600 K accesses
per second, and that three threads are enough to saturate it.
Therefore, the whole system composed of four nodes with
32 cores each has a theoretical maximum of 76.8 million
references/second.

Model validation. To validate the model accuracy, we
compare the performance estimated by it with the per-
formance measured on the prototype. For the compari-
son, we use a pointer chasing benchmark, a basic
irregular kernel that stresses the global system memory
with random walks.

The benchmark initially creates a linked list in the
global memory space, with 1:048:576 nodes allocated con-
tiguously but linked in a random order. Then, it spawns
one or more threads per core, and each thread iterates
over the whole list. This iteration results in a highly
irregular access pattern to the memory, with continuous
jumps randomly distributed in both distance and direc-
tion. Between consecutive requests, our implementation
performs a small number of accesses to the stack, adding
a delay Isw equal to 67 clock cycles. This benchmark has
no synchronization and is completely homogeneous, both
in terms of processor utilization and memory accesses.
Hence, it is the most similar to the perfectly balanced sit-
uation hypothesized in the model.

Fig. 6 shows the remote request rate of a single node,
using different numbers of cores and threads. The darker
dots of the chart shows the prototype performance. They
overlap the lines that represent the performance as obtained
from the model. The comparison demonstrates that the
model is highly accurate, with an average error of 2.3 per-
cent and a maximum error of 6.1 percent.

Pointer chasing. The pointer chasing kernel is also ideal to
evaluate the maximum performance scaling, given the
absence of synchronization conflicts.

Fig. 6 shows that the throughput increases linearly with
the number of threads, until it saturates when using three
threads per core, as predicted by the model. Adding fur-
ther threads neither improves nor reduces the perfor-
mance. This happens because the thread stacks reside in
the scratchpad memories, instead of a cache hierarchy.
Therefore, the only contended resource is the processor
pipeline and, once it is saturated, additional threads do
not decrease the performance. This puts a hard constraint
to the number of threads executable on each core, but
does not affect the prototype evaluation, because the low
diameter of the network requires only three threads for
hiding the latency.

We measured a perfectly linear scaling also with respect
to the number of cores. In fact, the 16 cores configuration
has a speedup of 3.96 over the four core one. This confirms

TABLE 3
Latencies of the Main Operations

Action Latency [clock ticks]

crossing GMAS 1-3
access to GNI/GSYNC 20/18
local/remote mem. access 28/505
context switch latency 213

the assumption that the on-chip bus is not among the possi-
ble bottlenecks for the prototype.

The equations presented in Section 6 provide an
insight on the utilization of the individual components.
Their application to the pointer chasing benchmark iden-
tifies the bottlenecks when running a perfectly parallel
algorithm, with little computation and no synchroniza-
tion. Fig. 7 shows the utilization of four components: the
core, the outgoing interface of the GNI, the network links
and the DRAM. The limit of 32 pending operations,
enforced by the Xilinx implementation of the AXI4 bus,
sets the upper bound for the GNI interface. Because of
the duration of remote transactions, this limit is reached
before actually saturating the GNI internal logic.

To provide more details, we divide utilization of the
cores in three parts: the time used by the application,
the time required by the system to switch contexts, and the
stalls due to accesses to the local memory. The two rows in
the picture respectively represent systems with eight and 16
cores. The number of threads increases from one to three
from the left to the right. With eight cores per node, the per-
formance is limited by the saturation of the cores, while
memory utilization caps at 16 percent. The average number
of network transactions reaches 16.3. On the 16 cores config-
uration, instead, the number of pending operations
approaches the limit with just two threads per core. With
three threads both the cores and the GNI interface saturate,
resulting in a better overall system utilization. Regarding
cores utilization, when running three threads only 28.7 per-
cent of the time is spent on the kernel execution, while 68
percent goes in context switches. Anyway, even if multi-
threading has a high overhead, it allows exploiting part of
the time that would otherwise be wasted, increasing the
application quota from 12.6 to 28.7 percent.

Breadth First Search (BFS). The Breadth First Search is a
typical irregular algorithm used to evaluate HPC systems
[38]. This kernel is widely used because many problems in
graph theory can be solved by algorithms based on BFS,
such as finding the shortest path between two vertices, test-
ing the graph for bipartiteness or computing centrality
measures. We ported a version originally designed for the
Cray XMT[39], adapting it to the synchronization and
threading interfaces of the prototype. The graph explored
by our benchmark has 100.000 nodes, with an average of
39.9 edges per node, and diameter 6.

The BFS is not only memory intensive, but also syn-
chronization intensive. In fact, it has two critical sections
in a small loop body. The first one prevents different

threads to concurrently test and set the visited flag of the
same vertex. The second is required to insert the newly
visited vertices in the shared work-list. Therefore, this
benchmark significantly stresses the components provid-
ing synchronization support.

First of all, we try to estimate the throughput using a
model similar to the one described in Section 6. We modi-
fied the model to computes the rate in terms of edge visits,
instead of memory requests. Hence, in this version the
parameter Isw identifies the average number of instructions
executed per edge, and the number of memory requests
and context switches are scaled accordingly. The model
takes into account synchronization only partially: it counts
the lock and unlock operations as global requests, but
ignores the run-time contention on the locks. Fig. 8a shows
the result, which has a behavior very similar to pointer chas-
ing, with saturation at three threads per core, and a peak of
7 M edges/second with 24 cores.

Fig. 8b, instead, shows the performance obtained run-
ning the benchmark on the prototype. First of all, the execu-
tion speed on the prototype is greatly reduced with respect
to the model, in particular on configurations with 16 and 24
cores. The system with eight cores and one thread per core
is the most similar to the model, with a performance 1.4

Fig. 6. Injection rate per node vs. number of threads per core, for differ-
ent number of cores per node.

Fig. 7. Utilization of system components by the pointer chasing, on
different configurations of threads and cores. CPU utilization is split into
application time, context switch and stalls.

Fig. 8. Performance of the BFS benchmark from a synchronization-less
model, on the prototype, and synchronization aware model.

slower than estimated. On the other hand, the configuration
with 32 cores and five threads each is 15 times slower. Sec-
ond, adding threads to an already saturated system has a
huge negative effect on the prototype performance, while
the modeled performance remains constant. These differen-
ces are due to the overhead caused by the contention on the
shared data.

Fig. 8c shows in details the overhead caused by the
synchronization, presenting the average number of spins
required for obtaining a lock, as measured on the proto-
type. Even in the small configurations, each lock needs to
spin between three and seven times before taking owner-
ship, and the number increases with the degree of paral-
lelism. The main causes are the accesses to the shared
work-list that stores references to the nodes to be visited
by the algorithm. Each insertion in the list is a critical sec-
tion that takes approximately 2,000 clock cycles (20 ms)
because of the latency of remote data and synchronization
operations. The probability of contention during this
interval is significant, because there are many threads try-
ing to enter it, with high frequency. Also, this overhead
grows with the number of threads because of two trends.
When the system is underused, it behaves accordingly to
a modified Amdahl’s law [40] that accounts for serialized
critical sections. Because of the serialization, the waiting
time grows linearly with the number of threads, limiting
the speedup. In the prototype, this is demonstrated by
the increasing number of spins on the locks from one to
three threads. The saturation of the cores adds a second
effect. When all the core time is used, the ratio available
to each thread shrinks with the addition of others. Conse-
quently, the time required to complete a critical section
increases. This second effect is evident in Figs. 8b and 8c,
when more than three threads per core are used.

We extended the model to take into account the number
of lock attempts due to contention, obtaining a better
approximation shown in Fig. 8d. In this version, the number
of global transactions per edge is increased with the number
of cores and threads used. Hence, the model does not distin-
guish single critical sections, but captures the resulting aver-
age overhead. Even so, the accuracy is greatly improved,
and captures the same trends observed on the prototype.
This hints that the main limiting factor in the proposed
architecture is the increased resource utilization due to syn-
chronization conflicts. This is also demonstrated by the utili-
zation of the components, shown in Table 4. When running
the BFS, the core utilization is much higher with respect to
the other components than when running the pointer chas-
ing. However, only 4 percent of it is due to the application.
The remaining is used by the context switches that are
forced by every try_lock, even when the request fails. In col-
umn SyncBW we show the percentage of network utiliza-
tion due to synchronization requests. In the best case, it
equals the bandwidth used by memory accesses, but
increases with the number of threads. This suggests that the
most effective improvement to the architecture would be a
hardware implementation of the spin lock.

SSCA#2. Another benchmark representative of graph
theory computational kernels is SSCA#2 [40]. It generates
scale-free graphs, using a generator algorithm based on R-
MAT [42]. The benchmark is composed of four kernels, but

we will focus on the betweenness centrality computation,
which accounts for 99 percent of the execution time. The
kernel involves multiple breadth first visits of the graph,
and assigns a weight to each node according to the number
of shortest paths it belongs to. For our experiments, we
ported the reference OpenMP implementation to the proto-
type APIs, and configured it to approximate the between-
ness centrality by running 256 BFS from random nodes.
For the main BFS loop we used a dynamic scheduling of
loop iterations to threads, similar to the OpenMP guided
schedule, and a fixed round robin for the other loops.

Fig. 9 shows kernel throughput and core utilization,
averaged over the entire execution. The performance
scales very well in the unsaturated systems (1-2 threads),
and shows the same degradation observed in the BFS
when the cores are fully used. The saturation occurs at 88
percent average CPU utilization, because the algorithm
has a small serial section, and uses multiple barriers for
synchronization, with a higher frequency with respect to
the previous BFS benchmark. Even if the barriers pre-
vents full utilization of the processor, the dynamic sched-
uling distributes evenly the workload across the entire set
of cores, as shown by the min-max bars in the plot. On
the memory side, the number of remote memory requests
generated by the various cores presents a relative stan-
dard deviation lower than 7 percent.

Multithreading. By running the benchmarks on the proto-
type, we saw that the cores spend most of the time switch-
ing contexts. This limits the number of runnable threads
before saturation and the maximum throughput. Conse-
quently, we evaluated how the performance would change
with different multithreading approaches.

First of all, we considered how much the performance
would degrade when using a software version of the
same scheduler included in the GMAS. The scheduler
stores the ready/waiting flag of the threads in a single
word, with the most significant bit corresponding to the
thread with identifier zero. The MicroBlaze ABI includes
an instruction (clz) that counts the number of leading
zeros in a 32-bit word, which can be used to retrieve the
identifier of the first available thread, using a fixed prior-
ity. We added a second bit-mask to cancel the flags of the
most recently scheduled threads, and rotate the highest
priority position in a round-robin fashion. The whole
scheduling sequence reads the pending status word from

TABLE 4
BFS System Utilization

utilization [%]

Cores, CPU Network Memory

Threads Total App. Link GNI SyncBW DDR

8, 1 43.5 2.6 1.0 2.4 51.1 7.2
8, 2 93.2 3.9 1.5 3.5 62.0 13.6
8, 3 100.0 4.2 1.7 3.9 61.8 14.6
8, 4 100.0 3.6 1.4 3.3 66.3 13.9

16, 1 46.1 2.0 1.6 3.7 60.3 13.7
16, 2 99.3 2.6 2.0 4.8 73.7 25.6
16, 3 100.0 2.7 2.1 5.0 73.1 26.0
16, 4 100.0 2.2 1.8 4.1 77.0 24.9

the local scratchpad, searches for a valid thread, updates
the status, and eventually rotates the mask. This code
requires between 45 and 50 clock cycles for completion,
according to the thread statuses. Therefore, the software
scheduler (SW sched) would increase the context switch
time from 213 cycles to approximately 260 cycles.

However, the GMAS not only selects the next thread, it
also receives the responses from the network, and manages
the thread status flags without intervention from the core. A
pure software support for multithreading requires the
scheduler to interrogate the network interface, to identify
the completed requests and to map them to the respective
threads, thus increasing the overhead. Therefore, we consid-
ered an hypothetical software scheduler that requires 100
clock cycles to interact with the GNI, select the next thread
and switch context. Fig. 10 shows the estimated perfor-
mance, and compares it to the prototype performance when
running pointer chasing on 16 cores. The maximum request
rate of the cores drops by 24 percent, from 27.4 to 20.7
Mref/s. At this rate, the number of concurrent network
transactions is no more maximized, reducing network utili-
zation and system efficiency.

The plot in Fig. 10 also shows the estimated performance
of a system that executes the context switch in zero cycles.
This system would require to modify the cores to add multi-
ple register files, as in the Cray XMT. In this scenario,
pointer chasing would reach 80.6 Mref/s, three times more
than the rate obtained with the prototype. However, this
rate requires the ability to keep six thread contexts concur-
rently active in hardware, while the proposed architecture
only stores the thread statuses. Hence, the considerable
slow down of our prototype with respect to hardware mul-
tithreading comes with large savings in term of hardware
complexity and cost, and more flexibility in increasing the
number of threads, making it a valid trade-off.

8 CONCLUSIONS AND FUTURE WORK

This paper presented a distributed multi-core system archi-
tecture, specifically designed to execute applications with
irregular memory patterns. We presented the design of
the system, starting from highlighting the issues in the opti-
mization of irregular applications and proposing architec-
tural solutions for each one of them. The architecture is
based on off-the-shelf processing cores, and includes custom
components that provide support for a scrambled global
address space, fine-grained synchronization, and a hardware
scheduler for fast multithreading. To evaluate its feasibility

and effectiveness, we prototyped the architecture on a
FPGA. We also presented an analytic model specifically
focused on the features provided by the architecture, to help
evaluating its effectiveness in hiding network latency and
improving resource utilization. The experiments show that
the performance of irregular, memory bound applications
scales with the number of cores, and that fast multithreading
allows hiding memory and network latency. The proposed
model enables computing the optimal number of threads to
achieve full latency hiding. We also proved that support
for both efficient synchronization and multithreading are
basilar to make the proposed architecture effective. Further
improvements to these two aspects will be the key for future
research on hybrid hardware-software support for irregular
applications. We plan to extend the architecture to integrate
aggregation of network requests in order to increase the
payload vs header ratio, improve network efficiency and
therefore achieve higher throughput. We also plan to apply
work-stealing techniques at the node and system level, in
order to improve the load balancing on the cores and to
provide better latency hiding.

REFERENCES

[1] A. M. M. Gonz�alez, B. Dalsgaard, and J. M. Olesen, “Centrality
measures and the importance of generalist species in pollina-
tion networks,” Ecological Complexity, vol. 7, no. 1, pp. 36–43,
Mar. 2010.

[2] E. Estrada, “Characterization of topological keystone species:
Local, global and “meso-scale” centralities in food webs,” Ecologi-
cal Complexity, vol. 4, no. 1–2, pp. 48–57, Mar. 2007.

[3] J. Wang, H. Mo, F. Wang, and F. Jin, “Exploring the network
structure and nodal centrality of China’s air transport network:
A complex network approach,” J. Transport Geography, vol. 19,
no. 4, pp. 712–721, Jul. 2011.

[4] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information net-
work or social network?: The structure of the twitter follow
graph,” in Proc. Companion Publication 23rd Int. World Wide Web
Conf., 2014, pp. 493–498.

[5] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali, “Lonestar:
A suite of parallel irregular programs,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., 2009, pp. 65–76.

[6] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable
graph exploration on multicore processors,” in Proc. ACM/
IEEE Int. Conf. High Perform. Comput., Netw., Storage Anal.,
2010, pp. 1–11.

[7] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first
search algorithm on BlueGene/L,” in Proc. ACM/IEEE Conf. Super-
comput., 2005, p. 25.

[8] J. Feo, D. Harper, S. Kahan, and P. Konecny, “ELDORADO,” in
Proc. Int. Conf. Comput. Frontiers, 2005, pp. 28–34.

Fig. 9. Betweenness centrality performance: CPU utilization (a) and
throughput (b). Fig. 10. Global request rate generated by the system with different con-

text switch implementations: hw scheduler, sw routine, simultaneous
multithreading.

[9] J. Matienzo and N. Jerger, “Performance analysis of broadcasting
algorithms on the intel single-chip cloud computer,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw., 2013 pp.163–172.

[10] B. de Dinechin, D. van Amstel, M. Poulhies, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,”
in Proc. Conf. Des., Autom. Test Eur. Conf. Exhib., 2014, pp. 1–6.

[11] I. Choi, M. Zhao, X. Yang, and D. Yeung, “Experience with
improving distributed shared cache performance on tilera’s tile
processor,” Comput. Arch. Lett., vol. 10, no. 2, pp. 45–48, 2011.

[12] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way
multithreaded sparc processor,” IEEE Micro, vol. 25, no. 2, pp. 21–
29, Mar./Apr. 2005.

[13] K. Wheeler, R. Murphy, and D. Thain, “Qthreads: An API for pro-
gramming with millions of lightweight threads,” in Proc. IEEE
22nd Int. Symp. Parallel Distrib. Process., Apr. 2008, pp. 1–8.

[14] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz, “APRIL: A
processor architecture for multiprocessing,” in Proc. 17th Annu.
Int. Symp. Comput. Arch., May. 1990, pp. 104–114.

[15] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural
support for fine-grain scheduling,” in Proc. 15th Edition ASPLOS
Arch. Support Program. Lang. Oper. Syst., 2010, pp. 311–322.

[16] Y. Wang, W. Ji, Q. Zuo, and F. Shi, “A hierarchical work-stealing
framework for multi-core clusters,” in Proc. 13th Int. Conf. Parallel
Distrib. Comput., Appl. Technol., 2012, pp. 350–355.

[17] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programma-
bility and the chapel language,” Int. J. High Perform. Comput. Appl.,
vol. 21, no. 3, pp. 291–312, 2007.

[18] “UPC language specifications, v1.2,” UPC Consortium, Lawrence
Berkeley Nat. Lab, Berkeley, CA, USA, Tech. Rep. LBNL-59208,
2005.

[19] A. Krishnamurthy, A. Aiken, P. Colella, D. Gay, S. L. Graham,
P. N. Hilfinger, B. Liblit, C. Miyamoto, G. Pike, L. Semenzato,
and K. A. Yelick, “Titanium: A high performance Java dialect,”
Concurrency: Practice Experience, vol. 10, no. 11-13, pp. 825–836,
1998.

[20] Co-array Fortran [Online]. Available http://caf.rice.edu, Aug.
2015.

[21] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove,
“X10 language specification version 2.2,” Jul. 2012.

[22] D. Bonachea, “GASNet Specification, v1.1,” CS Division, EECS
Department, Univ. California, Berkeley, CA, USA, Tech. Rep.
UCB/CSD-02-1207, Oct. 2002.

[23] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Ap�a, “Advances, applications and performance of the global
arrays shared memory programming toolkit,” Int. J. High Perform.
Comput. Appl., vol. 20, no. 2, pp. 203–231, 2006.

[24] O. Villa, D. Scarpazza, F. Petrini, and J. Peinador, “Challenges in
mapping graph exploration algorithms on advanced multi-core
processors,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., Mar.
2007, pp. 1–10.

[25] A. Vishnu, M. ten Bruggencate, and R. Olson “Evaluating the
potential of cray gemini interconnect for PGAS communication
runtime systems,” IEEE 19th Annual Symp. High Performance Inter-
connects (HOTI), pp. 70–77, Aug. 2011.

[26] J. Nelson, B. Myers, A. H. Hunter, P. Briggs, L. Ceze, C. Ebeling,
D. Grossman, S. Kahan, and M. Oskin, “Crunching large graphs
with commodity processors,” in Proc. 3rd USENIX Conf. Hot Topic
Parallelism, 2011, p.10.

[27] A. Morari, A. Tumeo, D. Chavarr�ıa-Miranda, O. Villa, and M.
Valero, “Scaling Irregular Applications through Data Aggregation
and Software Multithreading,” IPDPS28: IEEE 28th International
Parallel and Distributed Processing Symposium, 2014, pp. 1126–1135.

[28] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, K. Aapo, and J. M.
Hellerstein, “Distributed graphLab: A framework for machine
learning and data mining in the cloud,” in Proc. VLDB Endow.,
vol. 5, no. 8, Apr. 2012, pp. 716–727.

[29] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proc. ACM Int. Conf. Manage. Data, 2010, pp. 135–
146.

[30] H. Froning, and H. Litz, “Efficient hardware support for the parti-
tioned global address space,” in Proc. 10th Workshop Commun.
Arch. Clusters, with 24th Int. Parallel Distrib. Process. Symp., 2010,
pp. 1–6.

[31] A. Agarwal, “Performance tradeoffs in multithreaded process-
ors,” IEEE Trans. Parallel Distrib. Syst., vol. 3, no. 5, pp. 525–539,
Sep. 1992.

[32] P. Dubey, A. Krishna, and M. Squillante, “Analytic performance
modeling for a spectrum of multithreaded processor
architectures,” in Proc. 3rd Int. Workshop Model. Anal., Simul. Com-
put. Telecommun. Syst., Jan. 1995, pp. 110–122.

[33] S. Weiss, “An aperiodic storage scheme to reduce memory
conflicts in vector processors,” in Proc. 16th Annu. Int. Symp.
Comput. Arch., 1989, pp. 380–386.

[34] O. Villa, A. Tumeo, S. Secchi, and J. Manzano, “Fast and accurate
simulation of the cray XMT multithreaded supercomputer,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2266–2279, Dec.
2012.

[35] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge, C. Kozyrakis, and
K. Olukotun, “A practical FPGA-based framework for novel CMP
research,” in Proc. ACM/SIGDA 15th Int. Symp. Field Programm.
Gate Arrays, 2007, pp. 116–125.

[36] Xilinx Aurora [Online]. Available: www.xilinx.com/products/
intellectual-property/aurora8b10b.htm, Aug. 2015.

[37] Xilinx AMBA AXI4 Interface Protocol [Online]. Available: www.
xilinx.com/ipcenter/axi4.htm, Aug. 2015.

[38] (2014). Graph 500 [Online]. Available: http://www.graph500.
org/specifications#sec-6

[39] D. A. Bader, and K. Madduri, “Designing multithreaded algo-
rithms for breadth-first search and st-connectivity on the cray
MTA-2,” in Proc. Int. Conf. Parallel Process., 2006, pp. 523–530.

[40] S. Eyerman and L. Eeckhout, “Modeling critical sections in
Amdahl’s law and its implications for multicore design,” ACM
SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 362–370, 2010.

[41] (2014). Ssca#2 v2.0 specification. [Online]. Available: http://
www.graphanalysis.org/benchmark/

[42] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive
model for graph mining,” in Proc. 4th SIAM Int. Conf. Data Mining,
2004, pp. 442–446.

Marco Ceriani received the MS degree in 2009
from Politecnico di Milano, Italy, where he is
working toward the PhD degree. During 2012,
he was a post master research associate at
Pacific Northwest National Laboratory. His
research interests include modeling and simu-
lation of multiprocessor computer architectures
and FPGA prototyping.

Simone Secchi received the PhD degree in
electronic and computer engineering from the
University of Cagliari in 2011. He is currently a
research associate at the University of
Cagliari, Italy. Previously, he was a postdoc-
toral research associate at Pacific Northwest
National Laboratory. His research interests
include modeling and simulation of high-perfor-
mance computing architectures, FPGA-based
emulation of multiprocessor systems, and
advanced network-on-chip architectures.

Oreste Villa received the PhD degree in com-
puter engineering from Politecnico di Milano. He
is currently a senior research scientist at NVIDIA
Research in the Architecture Research Group.
Previously, he was a research scientist at Pacific
Northwest National Laboratory. His research
interests include computer architectures and sim-
ulation, accelerators for scientific computing,
GPGPU, and irregular applications.

Antonino Tumeo received the MS degree in
informatic engineering, in 2005, and the PhD
degree in computer engineering, in 2009, from
Politecnico di Milano, Italy. Since February 2011,
he has been a research scientist at the PNNL’s
High Peformance Computing group. He joined
PNNL in 2009 as a post doctoral research
associate. Previously, he was a post doctoral
researcher at Politecnico di Milano. His research
interests include modeling and simulation of high
performance and embedded architectures, hard-

ware-software codesign, FPGA prototyping and GPGPU computing. He
is a member of the IEEE and ACM.

Gianluca Palermo received the MS and PhD
degrees from Politecnico di Milano, Milan, Italy,
in 2002 and 2006, respectively. He is currently an
assistant professor at the Department of Elec-
tronics, Information and Bioengeneering, Politec-
nico di Milano. Previously, he was a consultant
engineer with the Low Power Design Group of
AST-STMicroelectronics and a research assis-
tant with the Advanced Learning and Research
Institute (ALaRI), University of Lugano. His cur-
rent research interests include design methodolo-

gies and architectures for embedded computing systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

