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a b s t r a c t 

Water reservoir systems may become more adaptive and reliable to external changes by enlarging the in- 

formation sets used in their operations. Models and forecasts of future hydro-climatic and socio-economic 

conditions are traditionally used for this purpose. Nevertheless, the identification of skillful forecasts and 

models might be highly critical when the system comprises several processes with inconsistent dynam- 

ics (fast and slow) and disparate levels of predictability. In these contexts, the direct use of observational 

data, describing the current conditions of the water system, may represent a practicable and zero-cost 

alternative. This paper contrasts the relative contribution of state observations and perfect forecasts of 

future water availability in improving multipurpose water reservoirs operation over short- and long-term 

temporal scales. The approach is demonstrated on the snow-dominated Lake Como system, operated for 

flood control and water supply. The Information Selection Assessment (ISA) framework is adopted to re- 

trieve the most relevant information to be used for conditioning the operations. By explicitly distinguish- 

ing between observational dataset and future forecasts, we quantify the relative contribution of current 

water system state estimates and perfect streamflow forecasts in improving the lake regulation with re- 

spect to both flood control and water supply. Results show that using the available observational data 

capturing slow dynamic processes, particularly the snow melting process, produces a 10% improvement 

in the system performance. This latter represents the lower bound of the potential improvement, which 

may increase to the upper limit of 40% in case skillful (perfect) long-term streamflow forecasts are used. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Most existing water reservoirs operating rules are conditioned

pon a simple information set, including the day of the year and

he storage, and, in few cases, also the previous day inflow ( Hejazi

t al., 2008 ). These operating rules are ordinarily designed to per-

orm well under some reference boundary conditions, such as nor-

al hydrological year, flood with a certain return period, given wa-

er demands, but can easily become ineffective when these condi-

ions are not met. This situation is becoming more and more fre-

uent due to the increasing variability and uncertainty of reservoir

nflows and/or other key variables to the operations, such as wa-

er demand or energy price, which are negatively impacting on the

xpected system performance (e.g., Fowler et al., 2003; Christensen

t al., 2004; Georgakakos et al., 2012 ). One option for increasing

he overall reliability of water resources systems is to better ex-
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loit the flexibility of operations by conditioning the existing oper-

ting rules upon additional information (e.g., Tejada-Guibert et al.,

995; Galelli and Soncini-Sessa, 2010; Gelati et al., 2011 ). 

Previous studies have investigated the role of hydrological in-

ormation in water management by considering previous period

nflow (e.g., Gal, 1979; Maidment and Chow, 1981; Giuliani et al.,

016; Chang and Chang, 2001 ) , current period inflow (e.g., Loucks

t al., 1981; Stedinger et al., 1984; Karamouz and Houck, 1987 ), fu-

ure inflow scenarios (e.g., Kelman et al., 1990; Kim and Palmer,

997; Faber and Stedinger, 2001; Kim et al., 2007; Castelletti et al.,

008a ), or more sophisticated indexes (e.g., the Palmer drought

everity index ( Hejazi and Cai, 2011 )). This exogenous information,

.e., variables that are observable but are not endogenous in the

riginal problem formulation and, hence, are not modeled, is gen-

rally assimilated by a decision model as forecasts about future

ydro-climatic and water use conditions. 

Skillful forecasts are an asset for improving decision making,

ut their operational value, i.e., the actual improvement achievable

n the system’s performance, depends also on other factors, such

s the primary purpose of the decisions and the physical charac-
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teristics of the controlled system (e.g., Anghileri et al., 2016 , and

references therein). For example, for a reservoir operated for flood

control, the key information to the operations is the time neces-

sary to create a buffer volume for the flood. This is relatively easy

to identify as it is related to the physical properties of the reservoir

(e.g., reservoir capacity, spillway capacity) and a few hours/days

ahead streamflow forecasts might prompt timely anticipatory op-

erations ( Valeriano et al., 2010; Raso et al., 2014 ). Instead, when

the reservoir is operated with long-term operating rules, such as

for water supply, it is not straightforward to understand which

forecasted variable may be useful to design effective hedging rules

(e.g., streamflow forecast at a certain point in the future, cumula-

tive inflows over a certain lead time), and to obtain a skillful esti-

mate of such variable (e.g., Zhao et al., 2012 ). In fact, forecasts are

usually skillful over short lead time (from hours to days), but pre-

dictability tends to decrease on longer lead times. Seasonal fore-

casts may be skillful over several months in some specific areas

where climate teleconnection, such as El Nino Southern Oscilla-

tion (ENSO) (e.g., Hamlet and Lettenmaier, 1999; Sharma et al.,

20 0 0; Block and Rajagopalan, 2007; Kalra et al., 2013; Zimmer-

man et al., 2016 ), or particular hydrological characteristics, such as

snow-dominance (e.g., Koster et al., 2010; Mahanama et al., 2012 ),

may enable predictability over longer lead times. 

When considering multi-purpose systems, the picture becomes

even more intricate as operations usually need to balance short-

and long-term operating targets, e.g., flood control and water sup-

ply, (e.g., Sreekanth et al., 2012; Xu et al., 2015 ). In this case,

valuable forecasts may comprise several processes with inconsis-

tent dynamics and disparate levels of predictability. For example,

flood control can benefit from hydro-meteorological forecasts over

a short lead time, which are generally sufficiently accurate to char-

acterize the fast dynamics of the peak flow and to predict its mag-

nitude and timing. Conversely, water supply, often associated with

slow dynamics evolving over longer time scales, would require

medium to long-term hydrological forecasts. However, when avail-

able, such medium- to long-term forecasts are generally less ac-

curate. Furthermore, the relative importance of different pieces of

information may evolve in time as the operator’s preference among

the operational targets can change with specific temporary condi-

tions, e.g., storms, dry spells ( Amigoni et al., 2016 ). In these cir-

cumstances, the use of forecasts to inform decision making may

be even more challenging (e.g., Zhao and Zhao, 2014 ). 

An alternative to the adoption of forecasts is represented by

the direct use of observational data about the current condition

(i.e., state) of the water system. Despite being seldom adopted in

water management applications (e.g., Guariso et al., 1984; Faber

and Stedinger, 2001; Castelletti et al., 2010; Giuliani et al., 2015 ),

this approach is largely used in several research domains (e.g., ar-

tificial intelligence, automotive control, robotics), where decision

models are directly conditioned upon observational data to capture

the variability of stochastic processes that cannot be accurately

modeled/forecasted and would therefore produce detrimental ef-

fects on the performance of model-based decisions (e.g., Formentin

et al., 2012; Hou and Wang, 2013 ). In fact, observations about the

state of the system have been demonstrated to be sufficient for

conditioning optimal operational decisions ( Bertsekas, 1976 ). 

However, when dealing with a water system, the state of the

real system (not to be confused with the state of the modeled sys-

tem) is a complex and heterogeneous entity. It includes the wa-

ter available in the whole basin under multiple forms, including

reservoir and lake storages, snow water equivalent, soil water con-

tent, and groundwater levels. Beyond the hydrological state, also

the climate system has a role (e.g., Turner and Galelli, 2016 ). Air

moisture, temperature, wind speed, and atmospheric pressure con-

tribute to the formation of precipitation events and, as such, they

should be also included in the water system state. Moreover, the
tate of the real system is spatially distributed and can be poten-

ially inaccessible to observations or measurements. As a conse-

uence, it is unfeasible to have the full knowledge of it. In these

ases, feature extraction techniques may be used to identify some

bservable variables, which represent a surrogate of the unknown

eal state (or part of it) and maintain some state characteristics

hat are important to properly control the water system ( Bertsekas

nd Tsitsiklis, 1995 ). Feature extraction methods can be defined as

 set of machine learning tools, which allow the extraction of the

ore relevant determinants of an observed process out of a large

et of candidate variables (e.g., Guyon and Elisseeff, 2003 ) 

In this paper, we quantify the potential improvement in the

perations of multi-purpose water reservoirs with short-term and

ong-term targets by conditioning their operating policy upon ex-

genous information. In the analysis, we explicitly distinguish be-

ween observational data, representing the state of the system or

ts surrogate, and perfect streamflow forecasts. We use the Infor-

ation Selection and Assessment (ISA) framework proposed by

iuliani et al. (2015) to compute the relative contribution of exoge-

ous information to the system performance by automatically se-

ecting the most valuable information for informing the operating

olicies. This automatic selection, performed via feature extraction

echniques, allows solving complex problems with multiple objec-

ives over different time dynamics that would challenge similar ex-

sting approaches (e.g., Liu et al., 2006 ). 

First, we estimate the performance achievable by a basic infor-

ation set, including the day of the year and the reservoir level.

hen, we use the ISA framework to select the most informative

tate surrogates, which are incrementally included as additional ar-

uments of the operating policy. The contribution of these differ-

nt pieces of information represents a substantiation of the poten-

ial improvement associated to the use of observational data col-

ected from the existing monitoring system. Such improvement is

nally compared with the upper bound of the system performance

btained by conditioning the reservoir operation with inflow fore-

asts on different lead times. We use a retrospective streamflow

ataset as perfect forecast, which is expected to approximate the

se of a sophisticated forecasting system ( Zhao et al., 2011 ) while

lso removing possible modeling biases in the construction of the

orecasts. 

We demonstrate our approach on Lake Como (Italy). The lake

s regulated balancing multiple and conflicting needs, primarily

ood control on the lake shores and water supply to down-

tream irrigated agriculture and several run-of-the-river power

lants ( Guariso et al., 1986 ). The lake catchment is located in

he Italian Alps and is characterized by a mixed snow- and rain-

ominated hydrology (e.g., Castelletti et al., 2010; Anghileri et al.,

011 ). The rain-dominated component has fast dynamics and af-

ects mainly flood control. Autumn is the flood season, but some

ooding events may occur in late spring, due to intense snow-melt

eaks. The snow-dominated component, instead, has slow dynam-

cs and sustains the lake inflow mainly in spring, while fading out

uring summer. The amount and timing of the snow-melt is rel-

vant for hedging the water supply during the irrigation season,

hich goes from spring to autumn. The two operating objectives

re conflicting because the lake operator needs to build up the

eserve for water supply purposes while keeping the appropriate

ood pool to buffer flood peaks. In such a context, both forecasts

n short and seasonal lead times may be valuable. The predictabil-

ty in this catchment is partially provided by snow accumulation

nd melting processes and spans from spring to early summer.

orecasts on longer lead times are instead less reliable. The exist-

ng monitoring system collects observations of precipitation, snow

ater equivalent, and storage of the several hydropower reservoirs

ocated in the lake catchment, which represent candidate state sur-

ogates to inform the lake operations. The multi-purpose nature
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Fig. 1. Map of the study area: Lake Como, the watershed area (violet), and down- 

stream agricultural districts (green). The triangles denote hydropower reservoirs 

(the red ones are the four reservoirs considered in this study). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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f the reservoir, the complex catchment structure, and different

rocesses’ dynamics, comprising both fast and slow process, make

ake Como an interesting case study to test the proposed method-

logy. 

Summarizing, the main novel contributions of the paper are:

) we identify the most informative exogenous dataset contain-

ng complementary information for designing an optimal reser-

oir operating policy able to balance short- and long-term oper-

ting objectives; ii) we design a multi-purpose reservoir operating

olicy directly conditioned upon the selected exogenous informa-

ion, thus providing a demonstration of direct use of raw hydro-

eteorological data to inform decision making in water manage-

ent applications; iii) we quantify the relative contribution of ob-

ervations of the state of the system, or its surrogate, and perfect

orecasts of future water availability in improving reservoir opera-

ions. 

The paper is organized as follows: the next section introduces

he Lake Como study site, followed by the description of the

ethodologies adopted for quantifying the operational value of the

onsidered exogenous information. Numerical results are then re-

orted first on the analysis of observations of state surrogates and,

hen, on inflow forecasts. Final remarks and directions for further

esearch are discussed in the last section. 

. Study site 

.1. System description 

Lake Como ( Fig. 1 ) is the third largest lake in Italy with a total

olume of 23.4 km 

3 , of which 254 Mm 

3 are regulated through a

am on the effluent Adda river. The lake is fed by a 4,552 km 

2 

atershed characterized by the mixed snow-rain dominated

egime typical of the southern Alps. The annual average hydro-

raph ( Fig. 2 ) shows relatively dry winters and summers, and

igher flows in spring and autumn due to snow-melt and precipi-

ation, respectively. 
The lake releases are controlled since 1946 with the primary,

wofold purpose of flood protection along the lake shores and wa-

er supply to the downstream users. The lake serves eight run-

f-the-river hydropower plants and a dense network of irrigation

anals, which distribute the water to four agricultural districts with

 total surface of 1,400 km 

2 mostly cultivated with maize. Histor-

cally, water availability has not been a major limiting factor to

he economic development of this area. Rather, water governance

as mostly concerned with flood risk management. Yet, in recent

ecades, climate change has been showing its potential negative

mpact in a number of situations (e.g., García-Herrera et al., 2010 ).

or example, two severe droughts in 20 03 and in 20 05 generated

cute crop failures and exacerbated the conflicts between agricul-

ure and the other sectors ( Anghileri et al., 2012 ). 

The predicted increase in the frequency and intensity of water

rises over the next years ( Lehner et al., 2006 ) represents a ma-

or challenge to the operations of the Lake Como system. As the

ake regulation capacity is relatively small, being the annual av-

rage inflow-to-capacity ratio approximately equal to 6% ( Anghileri

t al., 2011 ), the operator is able to shift only small volumes of wa-

er in time. To satisfy the summer water demand peak, the histori-

al regulation operated the lake to be, approximately, at full capac-

ty between June and July (see Fig. 2 ). The projected anticipation

f the snow melt caused by increasing temperature, coupled with

he predicted decrease of water availability in the summer period

 Forzieri et al., 2014 ), would require storing additional water and

or longer periods. Yet, this strategy would induce an increase of

he flood risk associated to high water levels and, consequently,

ould exacerbate the conflict between the short-term flood pro-

ection target and the long-term water supply objective. 

Although describing the fast dynamics of rainfall is generally

 challenge in the highly spatially heterogeneous Alpine systems

 Cherubini et al., 2002 ), collecting and using information on the

low dynamics of snow can potentially contribute to improving

he lake regulation in terms of water supply. In fact, a large vol-

me of water is accumulated as snow during the winter, as shown

n Fig. 2 by the average annual pattern of Snow Water Equivalent

SWE). The associated snow-melt represents the main contribution

o the lake’s seasonal storage supporting the downstream water

emand. The accurate characterization of snow dynamics, espe-

ially during the melting season, might be a valuable information

o partially anticipate the summer water availability and, hence,

id the implementation of effective hedging rules. 

To complement local observations from existing ground sta-

ions, which provide a very coarse and uneven coverage of the

now cover patterns and the associated water content, since 2006

he Regional Agency for Environmental Protection (ARPA - Agenzia

egionale per la Protezione dell’Ambiente) produces weekly esti-

ates of SWE at the basin scale. These are obtained through a hy-

rid procedure combining snow height and temperature data from

round stations, manual measures of snow density in few spe-

ific locations, satellite retrieved data of snow cover from MODIS,

nd model outputs for spatially interpolating these data ( Bellingeri

t al., 2006 ). 

Several artificial hydropower reservoirs are located in the up-

tream part of the catchment (green and red triangles in Fig. 1 ).

heir total storage capacity sums up to 545 Mm 

3 , more than twice

he active capacity of the lake. The reservoirs’ operation affects the

easonal inflow pattern to the lake, as they retain a fraction of the

now-melt in spring and summer, which will be released in the

ollowing winter when the energy prices are higher. The size of the

eservoirs instead does not allow for inter-annual water transfer.

he regulation of the lake, which is currently uncoordinated with

espect to the operations of the hydropower reservoirs ( Anghileri

t al., 2012 ), could therefore benefit from using information that

escribes the conditions of these reservoirs. In this study, we con-
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Fig. 2. Main components of the hydrological cycle in the study area. The patterns represent moving averages computed from observed data over the period 2006–2013. 
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sider the two major reservoir systems in the basin (red triangles in

Fig. 1 ) operated by ENEL and a2a, which together represent more

than half the total hydropower storage in the watershed. 

2.2. The lake dam operation 

The operations of Lake Como can be modeled as a daily operat-

ing policy, which provides the volume of water to be released over

the next 24 hours within the zone of operation discretion delim-

ited by physical and normative constraints. 

As discussed in the above section, the lake regulation aims at

satisfying the two main objectives of flood control and water sup-

ply. On the basis of previous works ( Anghileri et al., 2011; Culley

et al., 2016 ), we use the following objective formulations computed

over the evaluation horizon H : 

• Flood control: the annual average number of days [day/year]

when a flood occurs, computed as 

J f lo = 

1 

H 

H−1 ∑ 

t=0 

g f lo 
t+1 

where 

g f lo 
t+1 

= 

{
1 if h t+1 > h̄ 

0 otherwise 
(1)

where h t is the lake level and h̄ is the flood level threshold

equal to 1.24 m, which delimits the occurrence of a flood in

Como city. 
• Water supply: the average squared daily water deficit

[(m 

3 /s) 2 /day], computed as 

J irr = 

1 

H 

H−1 ∑ 

t=0 

g irr 
t+1 where 

g irr 
t+1 = 

(
max 

(
w t −

(
r t+1 − q e f ) , 0 

))2 

(2)

where w t is the daily water demand (yellow area in Fig. 2 ), r t+1 

is the release from the lake, and q ef is the environmental flow

equal to 5 m 

3 /s. The squared power minimizes crop vulnerabil-

ity by penalizing higher shortages, which can compromise the

crop growth, with respect to more frequent but smaller short-

ages, which are less dangerous to the crops ( Hashimoto et al.,
1982 ). i  
Designing the Lake Como optimal operation consists in finding

he best operating policy p ∗ such that 

p ∗ = arg min 

p 
J = | J f lo , J irr | (3)

here the policy p is defined as a closed loop control policy

 Castelletti et al., 2008b ) that determines the release decision u t =
p(d t , h t , I t ) at each time step t as dependent on the day of the

ear d t , the current level of the lake h t (i.e., the modeled state),

nd, possibly, a vector of exogenous information I t (i.e., state sur-

ogates or/and inflow forecast). The release decision u t may differ

rom the actual release r t+1 in specific situations, where norma-

ive and physical constraints may restrict the ability to subjectively

egulate the lake ( Piccardi and Soncini-Sessa, 1991 ). 

. Methods and tools 

We use the Information Selection and Assessment framework

 Giuliani et al., 2015 ) to quantify the value of exogenous informa-

ion for improving the operations of Lake Como. The framework is

omposed of three main building blocks as illustrated in Fig. 3 and

etailed in the next sections. 

.1. Expected Value of Perfect Information 

We define the Expected Value of Perfect Information (EVPI) as

he performance improvement that could be achieved assuming to

ave full and perfect information on the future at the moment

hen operational decisions must be made. Under this assumption,

roblem 3 can be solved with the entire trajectory of the distur-

ances (i.e., the inflow) deterministically known over the entire

valuation horizon H , producing a sequence of optimal reservoir

elease decisions u POP 
[0 ,H−1] 

. The problem is solved via Deterministic

ynamic Programming as further detailed in Section 3.4 . Concep-

ually, this solution can be seen as a closed loop operating policy,

alled Perfect Operating Policy (POP), conditioned upon the current

ystem state along with perfect information on the future distur-

ances. 

Since the Perfect Operating Policy performance J POP is an abso-

ute measure of the system performance, which, intrinsically, de-

ends on the characteristics of the system under study, the EVPI

as to be estimated by comparing J POP with the value of the objec-

ive functions that could be obtained by an operating policy rely-

ng on a basic set of information. In this work, we consider a Basic
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Fig. 3. Flowchart of the Information Selection and Assessment (ISA) framework 

( Giuliani et al., 2015 ). 
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perating Policy (BOP) that approximates the historical lake regu-

ation and is defined as an operating policy dependent on the day

f the year and the lake level, i.e., u t = p(d t , h t ) (see Section 4.1 ). 

Given these two reference solutions, the EVPI can be estimated

s the difference between their performance. In case of single-

bjective problems, the EVPI is simply given by the scalar differ-

nce J POP − J BOP . For multi-objective problems, the solution of Prob-

em 3 is not unique but rather a Pareto optimal set, where the per-

ormance J POP and J BOP are objective function vectors. Here, the es-

imation of the EVPI requires to evaluate multiple metrics ( Zitzler

t al., 20 0 0 ) accounting for ( i ) the convergence of the final solution

o the true Pareto front that would result from an optimal-method,

 ii ) the coverage of the non-dominated space (diversity), ( iii ) the

xtent of the non-dominated front, i.e., the degree over which the

olution space is evenly covered by the final solution. Among the

ommonly used metrics adopted in the literature (see Maier et al.

2014) , and references therein), we use the hypervolume indicator

HV) which captures both the proximity of the Pareto front J BOP 

o the ideal one J POP as well as the distribution of the BOP solu-

ions in the objective space ( Zitzler et al., 2003 ). Moreover, to ac-
ount for the specific advance toward a pre-specified target solu-

ion of interest, we also compute two additional metrics measuring

he proximity between the target solution and the closest point of

he Pareto front under exam ( D min ) and the average Euclidean dis-

ance of the entire Pareto front under exam from the target solu-

ion ( D avg ) (see Giuliani et al., 2015 , for details). 

.2. Information selection 

When the EVPI is large, it might be worth exploring whether

he addition of further information to the decision process allows

losing the gap between Basic and Perfect Operating Policies. To

his purpose, we identify a set of information I t ∈ �t , known at

ime t when operational decisions are made, which can be effec-

ive in replacing the perfect information about the future realiza-

ion of the disturbances. As anticipated in the Introduction, this

ight be inflow forecasts on different lead times, when available,

r any other observed variable which might act as state surrogate,

r both. 

In general, the set �t comprises any exogenous variable that

an be valuable when making decisions. Since the set of candidate

ariables �t can be rather vast, including redundant and collinear

ariables, we adopt a feature selection technique to select which

ariables are more informative. The choice of the appropriate tech-

ique, among the many available, should pursue three desirable

eatures: ( i ) modeling flexibility for capturing non-linear functions,

ecause the functional relationship between the candidate inputs

t and the output u POP 
[0 ,H−1] 

is usually unknown a priori; ( ii ) compu-

ational efficiency for dealing with potentially large data-sets, com-

rising long time series and many candidate variables; ( iii ) scala-

ility with respect to the number of candidate input variables for

andling numerous input variables with different ranges of vari-

bility. According to the guidelines provided in Galelli et al. (2014) ,

e used the Iterative Input Selection (IIS) algorithm ( Galelli and

astelletti, 2013b ) combined with Extremely Randomized Trees

 Galelli and Castelletti, 2013a; Geurts et al., 2006 ), which holds all

he three properties mentioned above. The IIS algorithm is used

o select the subset I t ∈ �t of most informative exogenous vari-

bles, which better characterizes the optimal sequence of release

ecisions u POP 
[0 ,H−1] 

. 

.3. Expected Value of Sample Information 

We define the Expected Value of Sample Information (EVSI) as

he performance improvement that could be achieved when the

elected information I t is used to inform operational decisions, i.e.,

o design the Improved Operating Policies (IOPs) determining the

elease decision as u t = p(d t , h t , I t ) . In general, we expect the Im-

roved Operating Policies to fill the performance gap between the

asic and Perfect Operating Policies and, possibly, to produce a per-

ormance J IOP as close as possible to J POP . 

Note that the ISA procedure is an iterative process (see Fig. 3 ).

t first, we consider only the first variable selected by the IIS al-

orithm, assuming that it also has the highest potential to improve

he operating performance. We design a set of Improved Operating

olicies conditioned on this variable only, and estimate the corre-

ponding EVSI by comparison with the BOP performance. We then

terate the procedure by incrementally adding variables to the in-

ormation vector I t , designing the associated IOPs, and evaluating

he corresponding EVSI. The iterative procedure stops when ei-

her the attained performance is satisfactory (i.e., we obtain per-

ormance close enough to J POP ) or the marginal improvement in

he EVSI between two consecutive iterations is negligible. 
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Table 1 

Set of candidate variables as system state surrogates. 

name description period 

SWE t snow water equivalent ARPA estimates [ m 

3 ] 2006–2013 

P t precipitation measured in the catchment [mm] 2006–2013 

SM t snow melting derived by SWE t [ m 

3 ] 2006–2013 

z iso0 
t freezing level from temperature regression [masl] 2006–2013 

s t, HP total storage of upstream reservoirs [ m 

3 ] 2006–2013 

r t, HP total release from upstream reservoirs [ m 

3 / s ] 2006–2013 

Table 2 

Set of inflow forecasts over different lead times. 

name description period 

lead 7 t cumulative future inflow over 1 week 2006–2013 

lead 14 t cumulative future inflow over 2 weeks 2006–2013 

lead 21 t cumulative future inflow over 3 weeks 2006–2013 

lead 30 t cumulative future inflow over 1 month 2006–2013 

lead 37 t cumulative future inflow over 1 month and 1 week 2006–2013 

lead 44 t cumulative future inflow over 1 month and 2 weeks 2006–2013 

lead 51 t cumulative future inflow over 1 month and 3 weeks 2006–2013 

lead 60 t cumulative future inflow over 2 months 2006–2013 
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3.4. Experiment strategy and setting 

Following the ISA framework, we first identify the set of Ba-

sic Operating Policies and Perfect Operating Policies, which allows

quantifying the Expected Value of Perfect Information. Then, we

search for the most valuable exogenous information among a set

of candidate observational data, collected from the existing moni-

toring system, which potentially surrogate the current system state

over slow and fast dynamics. Finally, we repeat the procedure re-

placing these observational data with a set of streamflow forecasts

over different lead times to estimate the upper limit of the poten-

tial performance improvement. The resulting Expected Values of

Sample Information in the two cases are compared one to another

by contrasting the associated Improved Operating Policies perfor-

mance and by computing the corresponding metrics HV, D min , and

D avg (see Section 3.1 ). In addition, we analyze the dynamics of the

system produced by the simulation of different operating policies

to gain further insights on how the selected information is used for

triggering specific operational strategies that allow improving the

system performance, especially differentiating between the short-

term objective (i.e., flood control) and the long-term one (i.e., wa-

ter supply). 

The experimental setting is characterized as follows: 

• Observations of state surrogates : this set of candidate exogenous

information ( Table 1 ) collected over the period 2006–2013, in-

cludes meteorological variables (i.e., daily average precipitation

over the entire watershed interpolated from punctual precipita-

tion measures using the Thiessen method, and estimates of the

zero degree isotherm, obtained interpolating levels and temper-

ature values from ground stations), snow data (i.e., SWE esti-

mates provided by ARPA as well as values of the weekly snow

melting derived from the SWE estimates), and information on

the hydropower reservoirs (i.e., total storage and total release

from the upstream reservoirs of the two main companies oper-

ating in the basin, i.e., Enel and a2a). 
• Inflow forecasts : this set of candidate exogenous information

( Table 2 ) includes forecasts of the lake inflows for the period

2006–2013, computed over different lead times, ranging from

one week to two months. In the absence of a reliable long-term

streamflow forecasting system for this catchment, we assume a

retrospective streamflow dataset as perfect forecast generated

from a hypothetical forecasting system, which also removes
possible modeling biases in the construction of the forecasts

( Zhao et al., 2011 ). 
• Evaluation horizon : we use the time horizon 2006–2013 to run

our analysis as the SWE monitoring data are available only

since 2006. This time horizon is used for both the optimiza-

tion and evaluation of the policy performance, thus ensuring

that the Perfect Operating Policies represent the upper bound

in terms of system performance. 
• Perfect Operating Policies : the set of POPs was designed via

Deterministic Dynamic Programming ( Bellman, 1957 ) over the

evaluation horizon 2006–2013. The weighting method ( Gass

and Saaty, 1955 ) is used to convert the 2-objective problem into

a single-objective one via convex combinations. The exploration

of the trade-off is performed by varying the weights used in the

objectives’ aggregation. 
• Basic and Improved Operating Policies : we designed both the BOP

and IOP sets by solving Problem 3 with the Evolutionary Multi-

Objective Direct Policy Search (EMODPS) method ( Giuliani et al.,

2016 ), an approximate dynamic programming approach that

combines direct policy search, nonlinear approximating net-

works, and multi-objective evolutionary algorithms. In particu-

lar, we parameterized the operating policy as Gaussian radial

basis functions, because they have been demonstrated to be

effective in solving this type of multi-objective policy design

problems ( Giuliani et al., 2014a; 2014b ), particularly when ex-

ogenous information is directly used for conditioning the oper-

ations ( Giuliani et al., 2015 ). To perform the optimization, we

use the self-adaptive Borg Multi-Objective Evolutionary Algo-

rithm (MOEA) ( Hadka and Reed, 2013 ), which has been shown

to be highly robust in solving multi-objective optimal control

problems, where it met or exceeded the performance of other

state-of-the-art MOEAs ( Zatarain-Salazar et al., 2016 ). Each op-

timization was run for 2 millions function evaluations over the

evaluation horizon 2006–2013. To improve solution diversity

and filter out the randomness of both the initial population set

and the optimization operators, the solution set for each op-

timization is the result of 40 random optimization trials. The

final set of Pareto optimal policies for each experiment is de-

fined as the set of non-dominated solutions from the results of

these optimization trials. 

. Numerical results 

.1. Quantifying the Expected Value of Perfect Information 

The Expected Value of Perfect Information (EVPI) represents the

otential space for improvement generated by the knowledge of

erfect information of the future inflows trajectories. The computa-

ion of the EVPI requires contrasting the performance of the Perfect

perating Policies (POPs) and the Basic Operating Policies (BOPs).

he former are defined as ideal operating policies dependent on

he current system conditions along with perfect information on

uture disturbances (i.e., inflows). The latter are defined as oper-

ting policies conditioned upon the day of the year ( d t ) and lake

evel ( h t ), assuming that these two variables are the ones the real

perator mostly considers in his daily operations of the lake. 

We validated this assumption by modeling the historical release

ime series on the evaluation horizon 2006–2013 by means of Ex-

remely Randomized Trees ( Galelli and Castelletti, 2013a ): numer-

cal results reveal that nearly 65% of the variance of the histori-

al releases can be explained by a tree-based model using as in-

ut the day of the year d t , which informs about the seasonality of

he downstream water demand, and lake inflow patterns. An addi-

ional 20% of the variance in the historical releases is explained by

 model that, in addition to the day of the year, also considers as

nput the reservoir level h t . This latter has the twofold role of in-
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Fig. 4. Performance obtained by the Perfect Operating Policies, Basic Operating Policies, and two Improved Operating Policies relying on SWE ( SWE t ) and alpine hydropower 

storage ( s t, HP ) as surrogates of the actual system state. Panel (a) shows the policies’ performance in the objective space; panel (b) shows the value of information quantified 

by the metrics described in Section 3.1 ; panel (c) shows the IIS results as average cumulative performance of the model describing the optimal release trajectory u POP 
[0 ,H−1] 

. 

The red circled square in panel (a) corresponds to the target POP, while the black circled points are the BOP and IOP analyzed in Fig. 5 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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orming about the flood buffer potential and the water availability

seful for water supply. The resulting model explain around 85% of

he historical lake release time series, with the remaining 15% that

an be arguably attributed to the sporadic use of flood forecasts

nd other contingencies ( Todini, 2014 ). 

Fig. 4 (a) compares the performance of the POPs (black squares)

nd the one of the BOPs (blue circles), where the arrows indicate

he direction of increasing preference, with the best solution lo-

ated in the bottom-left corner of the figure. In the same figure,

he purple and red circles represent the performance of the Im-

roved Operating Policies, which will be discussed in the next sec-

ion. Visual comparison of the black and blue Pareto fronts shows

hat the potential space for improvement generated by the knowl-

dge of perfect information of the future inflows is relevant, espe-

ially for reducing the water supply deficit reported on the y-axis

f the figure. 

It is worth noting that the shape of the POP Pareto front is

harp-cornered. This means that under the assumption of perfect

nflow foresight over the entire evaluation horizon, the existing

onflict between the two operating objectives would disappear. In

act, under this assumption, the operator can successfully store in

he lake any excess of water to satisfy the downstream demand

uring dry periods, always guaranteeing an adequate flood pool to

uffer the inflow peaks. In the absence of such perfect knowledge

f the future, the use of additional information in the system op-

ration might have the potential to both reduce the uncertainty

bout the future system’s conditions and mitigate the existing con-

ict. Given this sharp-cornered Pareto front, we select the almost

o-conflict solution (red circled square in Fig. 4 (a)) as a target so-

ution representing a fair balance between the objectives. 

The values of the three metrics introduced in Section 3.1 con-

rm the visual comparison of the POP and BOP solutions and pro-

ide a quantitative assessment of the EVPI ( Fig. 4 (b)). The differ-
 s  
nce in the hypervolume indicator, which measures the gap be-

ween the POPs and the BOPs sets, is equal to 0.42, indicating a

otential improvement of 70% produced by the ideal perfect infor-

ation on future inflows. Also the large values of D min and D avg 

oint out a limited exploration of the objective space around the

elected target solution. 

.2. Assessing the Expected Value of Sample Information of state 

urrogates 

The values of EVPI discussed in the previous section show a

reat potential for improving the system operations by enlarging

he basic information system of the BOPs. In this section, we focus

n searching the most valuable information among the set of state

urrogates listed in Table 1 . 

Fig. 4 (c) illustrates the results of 100 runs of the IIS algorithm

n terms of the average performance attained by the underlying

egression model in describing the optimal release decisions se-

uence u POP 
[0 ,H−1] 

, measured in terms of cumulative coefficient of

ariation (R2). The repetition of the experiments aims at filtering

he randomness associated to the construction of the extra-trees

odels used by the IIS algorithm ( Galelli and Castelletti, 2013b ).

e tentatively stopped the input selection at the first four most

nformative variables, which allows explaining cumulatively nearly

5% of the target releases. Not surprisingly, the day of the year and

he lake level are selected as the most relevant drivers, explain-

ng up to the 65% of the optimal release sequence. The third se-

ected variable is the SWE estimate, accounting for a R 2 contribu-

ion of about 12%. The fourth selected variable is the total storage

f the upstream hydropower reservoirs ( s t, HP ), which further adds

nother 7%. 

As expected, two low frequency variables are selected to de-

cribe the slow-dynamics in the basin: snow information is a key
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Fig. 5. Analysis of the Lake Como storage trajectory in dry years under different Improved Operating Policies (see Fig. 4 ) conditioned on observations of state surrogates (i.e., 

SWE estimate and hydropower storage). As a reference, the trajectory of the target POP and the selected BOP are also illustrated. 
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element for the lake operations as it approximates the amount of

water stored in the upper watershed that will be made available in

the next melting season, when the yearly inflow peak is reached. It

is therefore a good proxy for discriminating a wet from a dry sum-

mer, triggering effective hedging strategy. The information on the

total storage of upstream reservoirs is also relevant and impacts on

both the operating goals: if the upstream reservoirs happen to be

full in summer, the operation is informed that this retained water

is potentially available in the basin and expected to reach the lake

in the coming season. On the other hand, if the upstream reser-

voirs happen to be empty in spring or in autumn, the lake opera-

tor can rely on a bigger buffer capacity when a flood event kicks

in. 

Following the ISA procedure, the two selected exogenous vari-

ables (i.e., SWE t and s t, HP ) are incrementally included as arguments

of the lake operating policies for designing two different sets of

Improved Operating Policies. The IOPs conditioned upon SWE in-

formation are represented by the purple Pareto front in Fig. 4 (a),

where the corresponding EVSI (i.e., the purple area between this

BOP and IOP solutions) shows a performance improvement that is
ore emphasized in terms of water supply rather than flood con-

rol. This can be explained by the seasonal slow dynamics of snow

elated processes, which are more informative for hedging rules

ut do not contribute in describing the fast dynamics associated

ith flood events. The EVSI of SWE is quantitatively verified by

he improvement registered in all the metrics reported in Fig. 4 (b):

hen moving from BOP ( d t , h t ) to IOP ( d t , h t , SWE t ), HV increases by

.4%, while D min and D avg decrease by 13.3% and 4.2%, respectively.

The introduction of the storage of the upstream hydropower

eservoirs ( s t, HP ) produces a further improvement in the perfor-

ance of the associated set of IOPs (red circles in Fig. 4 (a)). This

mprovement may reflect the effect of integrating s t, HP with SWE

nformation thus allowing the lake operation to distinguish that

art of snow melt streamflow that does not naturally flow through

he river network, but is diverted and stored into the reservoirs to

e released in later periods, and, dually, the amount that can freely

each the lake inlet. Again, the improvement is registered mainly in

erms of water supply, as quantified by the 9.6% increase in the hy-

ervolume indicator and by the 10.7% and 19.9% decrease of D min 

nd D avg , respectively. 
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Fig. 6. Performance obtained by the Perfect Operating Policies, Basic Operating Policies, and two Improved Operating Policies relying on streamflow forecasts on different 

lead times ( Lead 51 t and Lead 7 t ). Panel (a) shows the policies’ performance in the objective space; panel (b) shows the value of information quantified by the metrics 

described in Section 3.1 ; panel (c) shows the IIS results as average cumulative performance of the model describing the optimal release trajectory u POP 
[0 ,H−1] 

. The red circled 

square in panel (a) corresponds to the target POP, while the black circled points are the BOP and IOP analyzed in Fig. 7 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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To investigate the individual operational contribution by each

xogenous information, we analyze the trajectory of lake storage

btained via simulation of the different Improved Operating Poli-

ies contrasted with the ones produced by the Basic and the Per-

ect Operating Policies ( Fig. 5 ). In each Pareto optimal set, we select

he solution having the smallest Euclidean distance from the target

OP, which are identified by the large black circles in Fig. 4 (a). This

nalysis of the system dynamics aims to better understand which

anagement strategy is triggered by the use of a specific informa-

ion and at what time of the hydrological year (which goes from

ctober to September) the selected information is mostly useful

o approximate the ideal optimal operations of the target POP. Be-

ause most of the operational improvement concerns the water

upply objective, we focus on the drier years in the considered

orizon, namely 2006, 2007 and 2012. 

The Improved Operating Policy informed by the SWE estimate

 Fig. 5 (a)) produces a trajectory of lake storage that, especially from

anuary to August, is closer to the target trajectory than the one

btained with the BOP. This difference is highlighted by the pur-

le area in Fig. 5 (b), and corresponds to the period where the

WE information is available and snow melt takes place ( Fig. 5 (a)).

he informative contribution of SWE actually lasts a bit longer be-

ause of the storing capacity of the lake, which allows to store the

now melting contribution for few months and to cover most of

he summer water demand peak (see dashed red line in Fig. 5 (b)).

hen also the information of hydropower storage is considered

 Fig. 5 (c)), the operational contribution of the enlarged information

ystem spans from May to December, with an early small contri-

ution in March, as shown by the red area in Fig. 5 (d). The two

ieces of information can be seen as complementing each other

ntil the end of the melting season, when they provide knowledge

n the snow melting that is not detained in the upstream reser-

oirs and is, therefore, free to immediately reach the lake. In late
ummer and autumn, in the absence of SWE, the information on

ydropower storage is still valuable as it informs the lake opera-

ions about the potential capacity of the watershed to buffer the

oming abundant rains. This allows for risking higher water levels

n the lake to support the water supply in winter to satisfy the

emand of winter crops and run-of-the-river power plants. Similar

onclusions can be drawn from the analysis of the wet years (not

hown), yet the observed behavior is less pronounced. 

.3. Assessing the Expected Value of Sample Information of inflow 

orecasts 

The results discussed in the previous section shows that there

s still a large gap between the best Improved Operating Policies

nd the Perfect Operating Policies (residual EVPI in Fig. 4 (a)). This

s possibly due to the lack of information on the timing of the in-

ow to the lake, as well as on the amount of water that will be

vailable on lead times longer than the anticipation capacity pro-

ided by SWE and hydropower storage. To validate this hypothesis,

e repeated the ISA procedure a second time, replacing the set of

andidate state surrogates with a set of perfect inflow forecasts on

ifferent lead times (see Table 2 ). 

As in the previous case, we perform 100 runs of the IIS algo-

ithm for selecting the most valuable lead times in informing the

perating policy as the ones that contribute most in explaining the

ptimal trajectory u POP 
[0 ,H−1] 

. The results illustrated in Fig. 6 (c) show

hat, after the day of the year and the lake level, the IIS algorithm

onsistently selects a combination of long (i.e., Lead 51 t ) and short

i.e., Lead 7 t ) lead time information. These variables contribute an

verage explained variance of 21% and 4%, with the final set of

nformation explaining more than 90% of the optimal trajectory

 

POP 
[0 ,H−1] 

. These results reflect the double temporal dynamics of the
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Fig. 7. Analysis of the Lake Como storage trajectory in dry years under different Improved Operating Policies (see Fig. 6 ) conditioned on inflow forecasts on different lead 

times (i.e., cumulative inflow in the next 51 and 7 days). As a reference, the trajectory of the target POP and the selected BOP are also illustrated. 
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lake regulation objectives: insights on the total volume entering

the system over some weeks are highly beneficial for water sup-

ply, but do not inform on the timing of the flood peak. This latter

is better captured by the short lead time information as the time

of concentration of the catchment is less than 24 hours, while the

time needed to drawdown the lake level and to buffer the flood

peak is around 3 days. 

To quantify the Expected Value of Sample Information of the

two selected forecasts, we incrementally include them as argu-

ments of the Improved Operating Policies. The comparison of the

Basic Operating Policy performance with these new IOPs is re-

ported in Fig. 6 (a). The set of IOPs informed with the long lead

time forecast Lead 51 t (green circles in the figure) is largely bet-

ter than the BOP set (blue circles) and dominates also the Im-

proved Operating Policies informed by the selected observations of

the current system conditions (i.e., SWE estimate and hydropower

storage, represented by the dashed purple and red Pareto fronts

in Fig. 6 (a)). This improvement is confirmed by the values of the

three metrics ( Fig. 6 (b)), which improve from 40% to 58%. When

the short lead time information Lead 7 is also considered, the cor-
t 
esponding IOPs (cyan circles in Fig. 6 (a)) further improve, even

hough the marginal improvement in this case is lower than the

ne provided by the long lead time forecasts. This difference in

erms of EVSI is verified by the values of the metrics reported in

ig. 6 (b), which show a marginal improvement of 10% to 15% when

oving from IOP( d t , h t , Lead 51 t ) to IOP( d t , h t , Lead 51 t , Lead 7 t ). 

Finally, it is interesting to analyze the trajectories of the lake

torage under these Improved Operating Policies ( Fig. 7 ), because

his provides a better understanding of the role of the selected in-

ow forecasts in informing the system operations. Again, we focus

n the drier years in the considered horizon (i.e., 20 06, 20 07, and

012), and, for each Pareto front, we consider the closest solution

o the target POP (black circled solutions in Fig. 6 (a)). As expected,

he long lead time forecast ( Fig. 7 (a)) gives valuable information for

edging: under this Improved Operating Policy, the lake storage is

enerally higher than under the Basic Operating Policy throughout

he entire year (see the green area in Fig. 7 (b)), thus saving water

owards a dry forecasted period, and is almost reproducing the tar-

et Perfect Operating Policy during the peak irrigation season (see

he dashed red line in the figure). On the other hand, the contri-
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ution of the short lead time forecast ( Fig. 7 (c)) is mainly benefi-

ial to buffering flooding events and, in particular, the associated

OP( d t , h t , Lead 51 t , Lead 7 t ) reproduces the target POP during win-

er and early spring (see the cyan area in Fig. 7 (d)), when, histor-

cally, floods are more likely to occur. Actually, the contribution of

hort lead time to flood protection over the entire horizon is more

elevant than what is directly visible from this figure because the

eported trajectory is averaged over dry years only. 

. Conclusions 

In the present paper, we explored to which extent different

ydrological exogenous variables are valuable in complementing

asic information systems for improving the operations of multi-

urpose water reservoirs and regulated lakes with short- and long-

erm targets. We considered the regulated Lake Como (Italy) as

 study site. We used the Information Selection and Assessment

ISA) framework ( Giuliani et al., 2015 ) to select the most valuable

nformation to improve the lake operations with respect to both

hort-term (i.e., flood control) and long-term (i.e., water supply)

bjectives. 

Results show that the available observations from the exist-

ng monitoring system in the forms of accumulated snow and hy-

ropower reservoir storage successfully surrogate part of the true

ater system state and contribute to improving the system perfor-

ance and to mitigating the conflict between the two considered

perational objectives. Among the variables considered, Snow Wa-

er Equivalent is the most informative one, allowing for almost 10%

mprovement with respect to a basic information set, composed of

ay of the year and lake level only. The improvements are most

otable when considering the water supply objective. In fact, SWE

nforms the operating policies about the amount of water stored at

igh altitudes, which will be available during spring and summer,

nd allows for hedging. Numerical results demonstrate that using

his information, which is available from December to June, allows

toring more water in the lake (higher lake levels) to be used few

onths later in early summer, but not enough to fully cover the

emand in late summer and fall period. 

Hedging can be further extended when including also the water

tored in hydropower reservoirs in the information set. In this case,

he lake tends to store more water also in the remaining months

from August to December), because the information is available

n the whole year and not only on a seasonal basis, as for SWE.

he higher lake levels in autumn increase the risk of flood events,

hough. The improvements in the system performance are in fact

kewed in favor of water supply at the cost of flood control. Over-

ll, the contribution of this information is smaller because the hy-

ropower reservoirs are controlled and the timing of the releases

s uncertain, because highly dependent on the electricity market

onditions. 

Even when considering both SWE and hydropower reservoir

torage, there is still a large distance to the performance achiev-

ble with a perfectly informed operating policy. This is proba-

ly due to the inability of the considered state variables to pre-

isely anticipate the amount and timing of incoming water. In fact,

hen considering perfect forecasts from one to two months in ad-

ance, the performance is largely improved with respect to both

he objectives. This information allows increasing the lake stor-

ge in late spring and summer (from May to September, approx-

mately), when the water demand is the highest and the largest

art of the snow pack is already melted, and thus SWE cannot act

s a skillful streamflow forecasts. 

Overall, our results suggest that Lake Como operations would

enefit from the use of hydro-meteorological data. Although lim-

ted, the demonstrated improvement is already attainable with lit-

le or no effort from the operator as opposed to reliable long-term
treamflow forecasts. At the time of writing, ARPA is able to pro-

uce accurate streamflow forecasts up to only 10 days. Extending

his lead-time to the identified monthly/seasonal scale would re-

uire considerable research effort. As a future strategy, the water

uthority operating Lake Como may consider improving the exist-

ng monitoring system to collect observational data better captur-

ng the snow dynamics. For example via SAR images (e.g., Denaro

t al., 2015 ) or new satellite products (e.g., Malenovsk ̀y et al.,

012 ). Yet, to attain significantly larger improvements, the water

uthority should invest in obtaining and using long-term forecasts

e.g., Kim et al., 2012; Baehr et al., 2015 ), which allow extend-

ng the lead-time of SWE information and implementing effective

edging policies. 

A further analysis could involve the use of stochastic ensembles

f hydro-meteorological variables to assess the robustness of re-

ults out of the observed realizations domain. However, such appli-

ation would entail the synthetic generation of coherent spatially

istributed (SWE) and anthropogenic variables (the Alpine storages

ynamics) which would require additional investigation and rele-

ant modeling effort. 
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