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ABSTRACT   
Several neurosurgical procedures, such as Artero Venous Malformations (AVMs), aneurysm embolizations and 
StereoElectroEncephaloGraphy (SEEG) require accurate reconstruction of the cerebral vascular tree, as well as the 
classification of arteries and veins, in order to increase the safety of the intervention. Segmentation of arteries and veins 
from 4D CT perfusion scans has already been proposed in different studies. Nonetheless, such procedures require long 
acquisition protocols and the radiation dose given to the patient is not negligible. Hence, space is open to approaches 
attempting to recover the dynamic information from standard Contrast Enhanced Cone Beam Computed Tomography 
(CE-CBCT) scans. The algorithm proposed by our team is called ART 3.5 D. It is a novel algorithm based on the post-
processing of both the angiogram and the raw data of a standard Digital Subtraction Angiography from a CBCT (DSA-
CBCT) allowing arteries and veins segmentation and labeling without requiring any additional radiation exposure for the 
patient and neither lowering the resolution. In addition, while in previous versions of the algorithm just the distinction of 
arteries and veins was considered, here the capillary phase simulation and identification is introduced, in order to 
increase further information useful for more precise vasculature segmentation.   
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1. INTRODUCTION  
Segmentation and visualization of brain vessels are important in many neurological diagnostic and therapeutic 
applications. Embolization of cerebral arteriovenous malformations (AVMs), or their radio-surgical treatment, make the 
three-dimensional (3D) reconstruction of brain vasculature of utmost importance [1,2] and several studies indicate that 
3D visualization of brain vasculature within multimodal imaging proved to be useful in epilepsy surgery, nonetheless 
still not being used to its full potential in clinical practice [3–7]. Besides the vascular tree reconstruction, the detached 
visualization of arteries and veins could be advantageous to surgical treatment planning, making procedures easier and 
safer.  
Several techniques are used for the separation of arterial from venous structures, such as Magnetic Resonance 
Angiography based (MRA) and 4D CT-based techniques [8, 9]. Though being successful, those methods are often 
difficult to apply in a clinical context, since the acquisition and processing of several images is expensive and time 
consuming for the surgeons. 
We developed a novel algorithm for post-processing the angiogram and the raw data of a standard Digital Subtraction 
Angiography from a Cone Beam CT (DSA-CBCT) allowing arteries and veins segmentation and labelling based on basis 
functions. The algorithm takes into account the contrast dynamics, which had been overlooked in the standard 
arteriography computation. The algebraic problem solved by ART 3.5D is well posed as to the proportion of unknowns 
of voxel-wise description of contrast dynamics and of projection data. This is made possible modeling the TICs with a 
basis function model and reconstructing them only for the voxels included in the prior angiographic segmentation. 
Voxel’s TICs reproduce the implicit and usually overlooked dynamic information contained in the CBCT acquired data 
due to the transit of the contrast bolus. Thought being limited to simulations, ART 3.5D proved to be suitable for arteries 
and veins distinct segmentation classification and preliminary results proving the suitability of ART 3.5D for arteries and 
veins classification have already been obtained on simulated datasets comprising just arteries and veins structures  
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to accuracies up to 96% [10]. In addition, the ART 3.5 algorithm was also applied to a clinical dataset with a resolution 
of the dataset reduced of a factor 6, leading to a reconstruction and segmentation of the vascular tree similar to the one 
obtained from the arteriography images. This result can be considered as a proof of concept for the functioning of ART 
3.5D on real CTA data. Nonetheless, the strong limitations in resolution introduced in order to be able to process the real 
dataset do not allow the reconstruction of the capillaries. 
This work aims at the introduction of the capillary structures in computational simulations of a vascular tree. The 
objective is to prove that also vascular structure with possibly different dynamic behavior can be reconstructed and 
classified. The presence of a wide temporal gap in the contrast transit dynamic due to the capillary phase can represent a 
facilitation for arteries and veins distinction. The modeling of this gap was not included in the previous study [10]. From 
the observation of clinical DSA-CBCT datasets it is easy to infer that the injected contrast medium invades the arteries 
very quickly, it is rapidly washed in through the arteries, it fades expanding in the huge network of unresolved 
capillaries, and next it reappears in veins for the final rapid wash-out. The identification of capillary structures then, can 
help, together with spatial continuity based regularization methods, to obtain a sharper arteries and veins separation. 
Moreover, while introducing the capillary network, a more complex contrast transit dynamics was considered.  

2. METHODS  
The ART 3.5D method has already been explained in our previous publication [10], and will be here summarized. In 
ART 3.5D the Algebraic Reconstruction Technique (ART) was extended dynamically, in order to account for dynamic 
changes of voxel intensity values in time, according to the progression of contrast medium. Voxel-wise dynamic 
variations were described by a Time Intensity Curve (TIC). TICs were modeled by the linear combination of a set of 
temporal basis functions in order to capture, by a minimal parameter set, regular wash-in wash-out features and 
approximate the timing sufficient to separate arteries and veins. Specifically, the general Linear Time Invariant (LTI) 
system for static image reconstruction, 
 p =Wµ  (1) 

where W is the system matrix, µ is the unknowns vector and p is the measures vector, is transformed in a Linear Time 
Varian (LTV) system such as 
  pd =Wdµd  (2) 

where the new Dynamic System Matrix Wd includes time variant terms that depend on the basis functions chosen for the 
TIC modelling. The unknowns vector µd contains the new set of unknowns, which are the basis functions coefficients. 
Such coefficients allow to reconstruct a TIC for each voxel through their multiplication to the basis functions. The 
projection vector pd contains the projections replicated for all the time instants considered in the dynamic system. Once 
the coefficients were computed by solving this LTV system the TIC were reconstructed and a classification strategy 
based on the Area Under the Curve (AUC) of the TICs was applied. In particular, since arterial TICs have an AUC in the 
first half of the curve much greater that in the second half on the curve, while the venous TICs show a smaller AUC in 
the first half of the curve, the arterial Area Under the Curve (AUCA) was computed as the integral of the voxel’s TIC up 
to the believed end of arterial phase and compared to an arterial threshold (ThA), to be exceeded for arterial 
classification. Within this work, since capillary structures were introduced in the vessel tree phantom, the AUC criterion 
was accordingly modified, meaning that the arterial and the venous Area Under the Curve (AUCA and AUCV) were 
computed respectively as the integrals of the voxel’s TIC up to and from the believed end of arterial phase. If the ratio 
between the AUCA and the AUCv was greater than 1.5, the voxel was classified as artery, if smaller than 1.5, as a vein, 
otherwise as a capillary. A control of the value of the TIC peak was implemented as a regularization on the classification 
strategy, in order to avoid misclassification between capillaries and arterioles and venules. 
In order to test the algorithm in presence of capillaries a phantom of the vascular tree including arteries, capillaries and 
veins was simulated. The vessel tree, represented in Figure 1, is composed of an artery that branches in three arterioles 
each on them branching in two capillaries, rejoining in three venules and finally in a vein. The whole image dimension in 
voxel is 50×50×50 and the dimension of the isotropic voxels is 1cm3. The diameters of the vessels are listed in Table 1: 
they were set in order to have a vessel tree fitting in the image space, but and with relative dimensions reflecting real 
proportions. The experimental observations we rely on for the dynamic simulation are inferred from a CBCT dataset 
acquired with an acquisition protocol used at the Niguarda Hospital of Milan from the neurosurgeon Francesco 
Cardinale. In such clinical protocol, 12 cc of iodate contrast medium are inserted in 1 second. Data on vessels diameters 
were taken from the same angiography images. The patient had written informed consent and the dataset was 
anonymized.  



 
 

 
 

 
 

 

Figure 1. Simulated vascular tree comprising arteries (red), capillaries (purple) and veins (blue). For each type of vessel a 
qualitative representation of the simulated contrast curve is reported aside. On the x and y axis of each curve are reported, 
respectively, the number of samples  and the normalized intensity value. 

 

Table 1.  Diameters set in simulations for different type of vessels. 

	 ARTERIES/VEINS ARTERIOLES/VENULES CAPILLARIES 
DIAMETER 3 cm 1.8 cm 0.5 cm 

 
The fluid dynamics in the whole vessel tree was mathematically computed using a 0D modeling approach. This model is 
well-known as lumped-parameter model and it exploits the analogy between electrical circuits and fluid flow. In fact this 
approach associates the flow and the driving pressure drop in the vessel segment to the current and the voltage 
respectively [11]. 
Following the electrical analogy for fluid dynamic, according to Ohm’s law of hydrodynamics the pressure drop ΔP 
[mmHg] across the branch can be defined as follows [12-13]: 
 

           
ΔPi = RiQi

       
 (3) 

 
where Ri is the fluid resistance and Q [cc/s] the flow rate in the branch. 

Following Poiseuille’s law [13], the fluid resistance was computed as:  

 
Ri =

8πµl
S 2

 (4) 

Where µ [cP] is the viscosity of the fluid, l [cm] is the length of the vessel and S [cm^2] is the cross-section.  

After the model is defined, specific boundary conditions have been imposed. In particular, the pressure at the inlet and 
outlet of the circuit has been defined as 35 and 10 mmHg respectively, i.e.  as the hydrostatic pressure encountered at the 
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end of the arterioles and at the entrance of the venules. Once the flow rate was obtained in each branch, the concentration 
curve (CC) was computed as a modulation of a basis function over the specific flow value in the branch. The basis 
function exploited for the contrast concentration modeling (Eq. 5) is a Gaussian curve and therefore includes a rise phase 
and a drop phase, simulating then a bolus injection.  

 CC(t) = 1
σ 2π

e−(t−µ )
2

2σ 2
 (5) 

In Equation 5, the term µ represents the temporal position of the peak of the curve, therefore in our simulation, it 
corresponds to the value of the delay of the contrast transit in the voxel; the term σ is the standard deviation of the 
gaussian distribution, and sets the width of the curve, being correlated, in our simulations, to the inverse of the velocity 
of the contrast medium flow in the voxel. 

Based on this curve, the time intensity curve (TIC) for the ith voxel is computed as: 

 TICi =
Qi
Q0
CC  (6) 

where Qi is the flow rate in the ith voxel, and Q0 is the flow rate at the vessel tree entrance, in the injection point. The 
obtained TICs for each type of vessel are shown in Figure 2.  

 
 

Figure 2. TICs simulated for the vascular tree. A TIC for each type of vessel is represented: arteries (red), arterioles (dark 
red) capillaries (purple), venules (dark blue) and veins (blue). 

For the evaluation of the classification, the simulated vascular tree was used as a ground truth. divided in three masks for 
the arteries (SA), for the veins (SV) and for the capillaries (SC). The contingency tables for both arteries and veins 
classification were computed, together with sensitivity, specificity and accuracy values. In addition, indexes for the 
evaluation of cross-misclassification of arteries and veins were computed, and are defined as:  

• The arteries to veins misclassification index AV  

AV =
(CA − SA)∩ SV

SA
 

• The veins to arteries misclassification index VA  
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VA=
(CV − SV )∩ SA

SV  
where CA are the classified arteries, SA are the simulated arteries, CV are the classified veins and SV are the simulated 
veins. 
The simulated data were used to obtain simulated projection data, which were successively exploited to test the 
reconstruction algorithm and the following classification strategy.  

3. RESULTS 
The classification results for arteries, veins and capillaries are reported in Table 2, 3 and 4. In addition, the 
misclassification indexed between arteries and veins (see Section 2) are reported in Table 5 and the accuracy, sensitivity 
and specificity values for both arteries and veins classifications are reported in Table 6.  The classification showed good 
results, with values between 60% and 90% of correctly classified arteries, capillaries and veins. Nevertheless, the 
classification performance for arteries lowered with respect to previous results. In fact, thought that there was not 
misclassification between arteries and veins, the classification of arteries suffered from misclassification with capillaries. 
Nonetheless, the cross-misclassification with capillaries can be addressed in the case on real dataset processing, pursuing 
an a-priori analysis of the dynamic characteristics of the contrast medium dynamics for the design of a spatial/temporal 
regularization technique. 
 

 Table 2. Contingency table for arteries classification.  

ARTERIES POSITIVE NEGATIVE 
POSITIVE 60.59	%	 0%	

NEGATIVE 39.41	%	 100%	
Table 3.  Contingency table for veins classification 

VEINS POSITIVE NEGATIVE 
POSITIVE 94.93%	 0.02%	

NEGATIVE 5.07%	 99.98%	
Table 4.  Contingency table for capillaries classification 

CAPILLARIES POSITIVE NEGATIVE 
POSITIVE 94.43	%	 0.15%	

NEGATIVE 5.57	%	 99.85%	
Table 5.  Misclassification values of arteries and veins among themselves. 

MISCLASSIFICATION 
A/V AV VA 

 5.15%	 0%	
 

Table 6. Accuracy, sensitivity and specificity values for arteries and veins classification. 

	 ACCURACY SENSITIVITY SPECIFICITY 
ARTERIES 80.30%	 100%	 71.73%	

VEINS 97.45%	 99.98%	 95.17%	
CAPILLARIES 97.14% 	 99.84%	 94.71%	

4. CONCLUSIONS 
This work follows the study on the ART 3.5D suitability for arteries and veins separate classification from CE-CBCT 
datasets [10]. In particular, here the simulation of the capillary structures and temporal dynamics is introduced as an 
additional feature to the simulated vascular tree. In fact, as already pointed out in the previous article [10], the presence 
of a capillary temporal phase on real datasets can result in a remarkable facilitation since it causes a wide temporal gap 
between the arterial wash-in phase and the venous wash-out phase. Here the obtained results show a comparable 
performance with respect to the previously published results [10], confirming the hypothesis that a different dynamic in 



 
 

 
 

 
 

different types of vessels would not be a problematic feature in real dataset processing. In addition, the cross-
misclassification among arteries and veins lowered, confirming that the capillary phase can serve as a facilitation for 
arteries and veins distinction. Differently, the misclassification of arteries and veins with capillaries is higher, leading to 
lower rates of correct classification for both the types of vessels. Nonetheless, in order to correct this classification error, 
several spatial and temporal regularization techniques can be introduced in case of real dataset. We therefore believe that 
the presence of capillary structures can however be addressed and exploited for better classification results in case of 
clinical CBCT datasets. Future work will mainly be focused on the introduction of spatial and temporal regularization 
techniques and the introduction of an appropriate computational framework relying on a more powerful hardware and 
exploiting parallel computation techniques in order to make the algorithm suitable for real images processing of CE-
CBCT datasets. 
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