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Abstract
In this paper we are presenting a model of a racing bicycle,
developed in Modelica language within the Dymola envi-
ronment. The main purpose is to investigate the dynamic
response of the bicycle and its modes of vibration, refer-
ring in particular to shimmy. This phenomenon occurs at
high speeds and consists of sudden oscillations of the front
assembly around the steering axis. Lateral accelerations
on the horizontal tube of the frame can reach 5-10 g with
a frequency that varies between 5-10 Hz. Even if it is
quite uncommon, shimmy is a topic of great relevance, be-
cause it may be extremely dangerous for the rider. Thanks
to this model, we can show that the main elements which
contribute to the rise of the oscillations are the lateral com-
pliance of the frame and the tyres’ deformation.

Keywords: bicycle, shimmy, flexible multibody systems

1 Introduction
This paper will present a multibody model of a racing bi-
cycle developed in Modelica, within the Dymola environ-
ment. The main purpose of this work is to investigate in
depth the dynamic response of the bicycle and its modes,
referring in particular to shimmy.

Any two-wheeled vehicle is subject, during its move-
ment, to three modes of vibration: capsize, weave and
wobble. The first two are always present; the third one
occurs occasionally.

If the capsize mode is unstable, the bicycle follows a
spiral path with increasing values of the roll angle that
leads it to a lateral fall.

The weave mode consists, instead, in an oscillatory mo-
tion of the rear frame about the yaw axis together with os-
cillations about the roll axis. In this case, the frequency is
of 1-2 Hz.

Finally, the wobble mode (which is often referred to
as shimmy) is an oscillatory motion of the front assem-
bly with respect to the steering axis. When it occurs, lat-
eral accelerations on the horizontal tube of the frame can
reach 5-10 g with a frequency that varies between 5-10 Hz
(Magnani, Ceriani, and Papadopoulos 2013). This phe-
nomenon is therefore very violent, unexpected and can
lead to dramatic consequences, particularly if the rider
does not know it and is not able to handle it. Fortunately,
it does not occur so frequently and it is difficult that it can

lead to a fall, although this is the sensation perceived by
the cyclist. Usually, this happens at high speed, such as
the one that can be reached along a downhill road. The
phenomenon is well known among cyclists and bicycle
manufacturers. It is a topic of great relevance because it is
not still clear what are the main causes that lead to these
vibrations.

Thanks to experimental activities (Magnani, Ceriani,
and Papadopoulos 2013) and by using numerical mod-
els (Plöchl et al. 2012; Klinger et al. 2014; Limebeer and
Sharp 2006), the lateral compliance of the frame and the
tyres’ deformation have been found to be two essential
contributors to the wobble mode. One of the goals of this
article is to understand in detail what are the causes or fac-
tors that excite these vibrations, referring in particular to a
racing bicycle.

The paper is organised as follows. Section 2 gives an
overview of the overall bicycle model, describing all the
components in detail. Section 3 explains how the elements
are connected to each other and what assumptions have
been made before running the simulations. In Section 4
simulation results are presented. Two different versions of
the model will be analysed. At the end, in Section 5 the
conclusions and some possible practical advice that may
be helpful to the rider to damp out the shimmy oscillations
are discussed.

2 Bicycle Model
The multibody model presented in this work is
based (for some components) on the Modelica
MotorcycleDynamics package, which is described
in detail in (Donida, Ferretti, Savaresi, Schiavo, et al.
2006; Donida, Ferretti, Savaresi, and Tanelli 2008). This
library, in turn, was developed by VehicleDynamics,
which shares basically the same structure (Andreasson
2003).

The following step is to run simulations to study its dy-
namic behaviour. Our attention has been focused on a rac-
ing bicycle, which is described in more detail in (Klinger
et al. 2014). Whenever possible, therefore, data reported
in that article has been used in order to make the model as
compliant as possible to the real behaviour.

The main components of the model are:

• the rear frame;
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Figure 1. Rider block diagram in Dymola with the four interfaces to connect it to the other components. Four spring-damper
elements have been introduced to model the compliance of the constraints between rider’s hands-handlebar, feet-pedals and pelvis-
saddle.

• the front assembly, which includes handlebar, stem
and fork;

• the cyclist;

• the front and rear wheels;

• the road.

2.1 Rear Frame
The first component is modelled by a BodyShape element,
i.e. a single rigid body characterised by centre frame, mass
and inertia tensor. In order to associate to this body the
true shape of the frame, we have used a CAD model. Sec-
ondly, we have added the saddle, which is connected to
the rear frame with a Revolute joint. This type of connec-
tion allows the rotations around an axis passing through
the saddle tube. In this way, it is possible to consider the
compliance of the constraint between the saddle and the
frame.

The rear frame model presents four interfaces that allow
connecting this component with the rider (including the
saddle and pedals), with the front assembly (through the
steering axis) and with the rear wheel (at the hub).

2.2 Front Assembly
The front assembly has also been modelled as a rigid body
with its inertia tensor and whose mass is concentrated in a
single point. It consists of the fork, whose true shape has
been defined in a CAD model, the stem and the handlebar.
Four interfaces characterise this component; in fact, the
front assembly can be connected with the rear frame, with

the front wheel at the hub, and with the cyclist at the two
contact points on the handlebar.

2.3 Cyclist
The third component of the model is the rider. It has
been modelled as a multibody system obtained by the
connection of solid geometric elements having different
shapes. In particular, Cylindrical elements have been
used to model limbs (i.e. arms, forearms, thighs and
legs) while Rectangular parallelepipeds for the torso, the
pelvis, hands and feet. In regards to the head, a Body ele-
ment has been chosen, which is characterised by mass and
inertia tensor. It is visualised by a cylinder and by a sphere
that has its centre at the centre of mass.

To model the human articulations two types of joints
have been used, chosen depending on the possible relative
movements between the parts connected. Spherical joints
prevent all the translations but enable the rotations about
three mutually orthogonal axes. On the other hand, Rev-
olute joints prevent all the translations and the rotations
about two axes. Therefore, they leave only one degree of
freedom (a rotation about an axis). It is important to notice
that a Spherical joint can be obtained by connecting to one
another three Revolute joints, specifying for these objects
three orthogonally axes of rotation (as has been done with
the elbows).

To make the model more realistic, elements made up of
a spring and a damper in parallel have been added: in this
way it is also possible to take into account the contribu-
tion of stiffness and damping of human muscles. Figure 1
shows the rider block diagram in Dymola. Four interfaces



Figure 2. Tyre definitions: side-slip angle α is defined as the
angle between the wheel centre plane and the direction of the
forward velocity V . Camber angle γ is defined as the angle be-
tween the wheel centre plane and the vertical axis z of the road.
Fx is the longitudinal force, Fy is the lateral force and Fz is the
normal force. Mx is the overturning torque and Mz is the aligning
torque. Positive values are shown. The left figure is a top view
while the right one is a rear view.

have been included in the model. In so doing, the rider
can be connected to the front assembly and to the rear
frame. Two spring-damper elements have been added to
cyclist’s hands and the upper part of the front assembly to
model his grip on the handlebar. The same has been done
for the connection between rider’s feet and bicycle pedals.
Lastly, a spring-damper element has also been added be-
tween the cyclist’s pelvis and the saddle in order to model
the compliance of the sitting position (the rider, in fact, is
not rigidly attached to the saddle).

In order to verify that the behaviour of the model was
compatible with a rider’s real movements, different simu-
lations have been performed (for example, by simulating
a turning manoeuvre or the execution of a curved trajec-
tory).

2.4 Wheel Model
Wheels are modelled as rigid bodies with their mass con-
centrated in the hub. Afterwards, a torus model has been
used to associate the real tyre shape to the wheel. The
front and rear wheels have the same dimensions (i.e. the
same radius), but different mass and inertial properties.

2.5 Tyres and Wheel-Road Interaction
As already mentioned in the Introduction, to highlight the
wobble mode it is necessary to consider tyres’ deforma-
tion.

The tyre allows the contact between the rigid part of the
wheel (i.e. the hub) and the road surface. At the same
time, it ensures adherence to the asphalt and generates
distributed forces and torques within the contact region.
In the following, it will be assumed that these forces and
torques are instead concentrated and applied at the sin-
gle contact point that represents the interaction between
wheel and road surface. In order to compute these forces,
four reference frames are needed, as explained in (Donida,
Ferretti, Savaresi, Schiavo, et al. 2006). Figure 2 shows

Figure 3. Qualitative trend of the lateral force Fy and aligning
torque Mz as a function of the side-slip α and camber γ angles.

the sign convention adopted in this work.
As can be seen, α is the side-slip angle, which is defined

as the angle between the forward velocity V and the wheel
centre plane; γ is instead the camber angle, defined as the
angle between the vertical axis z of the road and the wheel
centre plane.

The following step is the determination of contact
forces and torques. As stated in (Pacejka 2006), there are
different relations between forces and angles. For our pur-
poses, a linear relation has been chosen to describe tyres
behaviour. Moreover, the model has taken into account the
tyres’ dynamic, i.e. the delay in the deformation due to the
elasticity properties of the material. The tyre, in fact, does
not respond immediately when it is rolled from the stand-
still under a slip angle. It is necessary some time before
the lateral force Fy approaches the stationary value. The
same is true for the aligning torque Mz.

The longitudinal force Fx, which can represent both
traction and braking forces, is defined as:

Fx =CFκ κ, (1)

where κ is the longitudinal wheel slip.
On the other hand, the lateral force Fy is the sum of two

terms:
Fy =CFα α ′+CFγ γ ′. (2)

The aligning torque Mz also depends on both the side-slip
angle α ′ and the camber angle γ ′, according to this equa-
tion:

Mz =−CMα α ′+CMγ γ ′. (3)

The side-slip angle α ′ in (2) and (3) differs from α be-
cause of the delay in the tyre response after the deforma-
tion. The same is true for the camber angle γ ′. These dy-
namics have been modelled by two first-order differential
equations, i.e.:

σα
Vx

α̇ ′+α ′ = α, (4)

σγ

Vx
γ̇ ′+ γ ′ = γ, (5)



where Vx is the longitudinal component of the forward
velocity. The characterising parameter, called relaxation
length σ , is similar to a time constant except that it has
units of length rather than time. The relaxation length is a
tyre characteristic that can be determined experimentally
(Limebeer and Sharp 2006).

Finally, the overturning torque Mx has been also con-
sidered, defined as:

Mx =CMxγ. (6)

To further improve the model, two saturation limits with
respect to the lateral force Fy and the aligning torque Mz
have been introduced. This means that, at high values of
side-slip and camber angles, this force and torque are con-
stant (see Figure 3). In this way, the trend of the curve is
very similar to the one that can be obtained by applying
the Pacejka’s magic formula described in (Pacejka 1993).
The linear approximation is valid only for small values of
the two angles.

The stiffness coefficients inside equations (1)-(6) de-
pend on the vertical force Fz transmitted on the ground at
the contact point between tyre and road surface. Dymola
computes its value at any given time (typically, in fact,
the vertical force Fz is not constant during the movement)
and this operation allows to compute all the stiffness co-
efficients. When contact forces and torques are known, a
balance is carried out at the hub, i.e. the point where the
wheel is connected to the other components of the bicycle.

2.6 Road
The road surface has been modelled through
the Environments package of the
MotorcycleDynamics library.

This package allows the user to select the road slope
(level, uphill or downhill road) and its characteristics (dry
asphalt, wet and so on). To run the simulations it has been
chosen to work with a dry road, having a slope such as
the bicycle forward speed increases linearly from 10 m/s
to 20 m/s in 40 seconds (see Figure 4). From the results of
the experimental activity described in (Magnani, Ceriani,
and Papadopoulos 2013), it is shown that shimmy appears
in this speed interval. The quote z = f (x,y) of the road
surface is defined by the equations:

z =
{

0 if x < 0
−0.035k(x)x if x≥ 0

, (7)

where x is the position along the longitudinal direction,
while:

k(x) =
arctan

(
10x+ π

2

)
π

. (8)

Equation (8) is necessary to avoid discontinuities on the
road surface, i.e. it guarantees an appropriate connection
when the road slope changes.

Figure 4. Road surface.

3 Model Assembly
Figure 5 shows the connections between the different
models.

In more detail, the rider is connected to the rear frame
and to the front assembly, including the saddle, the pedals
and the two contact points on the handlebar. The front
wheel is attached to the hub of the front assembly with a
Revolute joint. This element simulates the behaviour of
the ball-bearing. Similarly, the rear wheel is attached to
the bicycle main frame.

Lastly, it is necessary to connect to one another the front
assembly and the rear frame. Once again, a Revolute joint
has been used: it introduces the rotation δ of the steering
axis. As previously mentioned, there is another key ele-
ment that is essential to trigger the wobble mode. This is
the lateral compliance of the frame and it can be modelled
by a second Revolute joint that allows the rotations of the
front assembly around the β -axis (see Figure 6).

This axis is in the plane of symmetry of the vehicle
and it is perpendicular to the steering axis, as suggested in
(Klinger et al. 2014). The flexibility is lumped at the steer-
ing head. The user can set the values of stiffness kβ and
damping cβ coefficients that represent the structural prop-
erties of the frame. Figure 7 shows the three-dimensional
representation of the rider-bicycle model. As can be seen,
the cyclist assumes the typical position for riding a racing
bicycle, with his upper body in a bent-forward position
and his hands firmly attached to the handlebar.

Some other simplifying assumptions are also needed.
The gravity force acts on each component, and the aero-
dynamic drag force1 has been neglected, assuming that the
contribution related to this force is balanced by the compo-
nent of the weight that appears when the bicycle is mov-
ing on a downhill road. Moreover, it has been assumed
that the aerodynamic force does not change the vertical
forces Fz acting on the wheels’ contact points. Actually,
the lift force reduces the vertical load on both front and

1The aerodynamic force can be divided into two components: drag
force, which is directed along the longitudinal axis, and lift force, which
is directed along the vertical axis.



Figure 5. Model assembly that highlights the connections between components. A Revolute joint with a spring-damper element
has been added to model the frame lateral compliance (β -axis).

Figure 6. This figure shows the steering axis δ , the axis β that
is necessary to model the frame lateral compliance, roll (ϕ̇) and
yaw (ψ̇) angular velocities, the camber angle γ and the side-slip
angle α . Positive values are shown.

Figure 7. Three-dimensional representation of the racing bicy-
cle model.
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Figure 8. Roll and yaw angular velocities of the bicycle rear
frame when kβ → ∞ (rigid frame).

rear tyres, while the drag force increases the rear vertical
load and decreases the front one.

4 Simulation Results
The aim of the simulations is to study the model dynamic
response after the application of suitable perturbations,
trying to point out the wobble mode. For this reason, an
impulsive torque disturbance has been chosen. It is ap-
plied on the steering axis when the forward speed is equal
to vs = 13 m/s.

4.1 Rigid Frame Model
The first scenario considered is characterised by a rigid
version of the bicycle model. It can be obtained by setting
the frame stiffness coefficient kβ → ∞. After the torque
application, the steering axis is subject to oscillations that
initially increase in amplitude and then decrease up to be-
ing completely damped. However, their frequency is ap-
proximately equal to 1 Hz, a value much smaller than 5-
10 Hz that characterises the wobble mode. Although other
simulations have been carried out by changing the type of
the perturbation and some model parameters, we have not
been able to trigger the shimmy using the bicycle model
with a rigid frame. Figure 8 shows, instead, the rear frame
roll and yaw angular velocities.

The oscillation trend is the same that characterises the
steering axis response, i.e. with oscillations that initially
increase and then disappear after a few seconds. As can
be noticed, the two signals have a phase difference of 90◦:
when the roll angular velocity is zero, the yaw rate reaches
its maximum (or minimum). This trend perfectly de-
scribes the weave mode. More specifically, supposing the
rider to be sitting on the saddle, when a counter-clockwise
torque is applied to the steering axis δ , the bicycle initially
rotates counter-clockwise about the yaw axis z and then
clockwise about the longitudinal axis x (see Figure 6)2.

2This movement is consistent with the so-called countersteering: for
example, to perform a right curve at high speed, what is being done
is slightly push the handlebar as if you were to turn in the opposite
direction (i.e. to the left). The bicycle responds by leaning correctly in
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Figure 9. Zoom of the steering rotation response for the lumped
flexibility frame model.

The oscillations related to the weave mode are damped
because the weave eigenvalue computed on the linearized
model passes through the imaginary axis, i.e. from the in-
stability region of the complex plane (the right half-plane)
to the stability area (the left half-plane). If this does not
occur, the oscillations are different (not damped) and they
lead to a fall of the bicycle.

4.2 Lumped Flexibility Frame Model
Simulations have been repeated considering the lateral
compliance of the frame (hereinafter referred to as lumped
flexibility frame model). A zoom of the steering axis re-
sponse after the torque disturbance application is shown in
Figure 9.

As can be seen, the model response to the distur-
bance consists of low-frequency oscillations with small
amplitude (some tenths of a degree) together with high-
frequency oscillations. Steering rotation reaches in a few
seconds an amplitude of some degrees. Thanks to the sat-
uration imposed to the lateral force Fy and to the aligning
torque Mz, the oscillations do not diverge but their ampli-
tude is limited in time. The initial behaviour of the steer-
ing rotation of the lumped flexibility frame model is very
similar to the one that characterises the rigid version of the
bicycle. This means that the degree of freedom which rep-
resents the lateral compliance β is, therefore, essential for
the high-frequency contribution in the system response.
Figure 10 shows the spectrograms related to roll and yaw
angular velocities3.

As in the previous simulations, by applying the torque
disturbance the weave mode is excited. Its frequency
is now fweave = 0,98 Hz. This mode is also stable:
after a few seconds, in fact, the oscillations disappear
because they are damped. When it happens, only the
high-frequency oscillations remain in the system response.
They represent the wobble mode. As can be seen from
Figure 10, these oscillations are characterised by a fre-

the curve direction (Åström, Klein, and Lennartsson 2005).
3A spectrogram is a visual representation of the spectrum of frequen-

cies in a signal as it varies with time.
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Figure 10. Spectrograms of roll and yaw angular velocities for
the flexible bicycle. As can be noticed, the wobble frequency is
independent with respect to the forward speed.

quency equal to fwobble = 5,43 Hz. In the experimental
activity described in (Magnani, Ceriani, and Papadopou-
los 2013) it is reported that the frequency of shimmy
for this particular racing bicycle is 7,5 Hz. This value
is higher than the one obtained by the lumped flexibil-
ity frame model. By running other simulations, it was
noted that the wobble frequency fwobble changes varying
the value of the parameter related to the frame stiffness,
i.e. kβ . The same result can be achieved by changing the
parameters of the spring-damper combination that models
the rider’s hand grip on the handlebar.

In (Magnani, Ceriani, and Papadopoulos 2013) it is said
that the wobble frequency seems to be independent with
respect to the bicycle’s forward speed: this important re-
sult has been obtained also through the Dymola model (see
again Figure 10).

5 Concluding Remarks
This work presented the development of a racing bicycle
model in Modelica language. The model has been built
trying to make it as compliant as possible to the real be-
haviour. For this reason, attention has been focused on the
rider and on the wheel-road interaction.

By running simulations with the rigid model (without
the frame lateral compliance), the only vibrational mode
that has been excited is the weave mode. It has been nec-
essary to modify the model by introducing an additional
degree of freedom to highlight the wobble mode. This
shows that it is necessary to consider both the frame lat-
eral compliance and the tyres’ deformation (also by taking
into account their dynamic behaviour) to trigger the high-
frequency oscillations characterising the shimmy.

The wobble mode appears when the forces and torques
that arise at the contact point of the front wheel are larger
than the value needed to guarantee the longitudinal align-
ment. In this case, the wheel begins to oscillate about the
steering axis at a frequency that is too high to be counter-
acted by the cyclist. The use of a simple linear relation
between forces and angles, as stated in equations (1)-(6),

is not sufficient. In fact, if the relation is linear, the os-
cillations are still present in the system response, but they
are not limited in amplitude. As a consequence, both the
rider and the bicycle fall in a few seconds. By adding in-
stead a saturation at high angle values, the amplitude of
the oscillations will remain limited in time.

Finally, some practical tips to be applied if the shimmy
occurs are discussed. Overall, there is no way to stop a
violent shimmy. These tips, however, are strongly recom-
mended because they can contribute significantly to limit
the amplitude of the oscillations. The first tip is the rider
to assume an upright posture to increase the aerodynamic
drag, thus promoting a deceleration of the bicycle. It is
also suggested to tighten the horizontal tube of the rear
frame with the legs, increasing in this way the structural
stiffness. If necessary, gently use the rear brake. Usually,
the oscillations are not divergent so it is difficult that they
can lead to a fall, although this is the sensation perceived
by the rider during the occurrence of the phenomenon.
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