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AbstractAbstractAbstractAbstract    

The end states reached by an engineered system during an accident scenario depend not only on 

the sequences of the events composing the scenario, but also on their timing and magnitudes. 

Including these additional features within an overarching framework can render the analysis 

infeasible in practical cases, due to the high dimension of the system state space and the 

computational effort correspondingly needed to explore the possible system evolutions in search of 

the interesting (and very rare) ones of failure. To tackle this hurdle, in this paper we introduce a 

framework for efficiently probing the space of event sequences of a dynamic system by means of a 

guided Monte Carlo simulation. Such framework is semi-automatic and allows embedding the 

analyst prior knowledge about the system and his/her objectives of analysis. Specifically, the 

framework allows adaptively and intelligently allocating the simulation efforts preferably on those 

sequences leading to outcomes of interest for the objectives of the analysis, e.g., typically those 

that are more safety-critical (and/or rare). The emerging diversification in the filling of the state 

space by the preference-guided exploration allows also the retrieval of critical system features, 

which can be useful to analysts and designers, for taking appropriate means of prevention and 

mitigation of dangerous and/or unexpected consequences. A dynamic system for gas transmission 

is considered as case study to demonstrate the application of the method. 

    

Keywords: dynamic event tree; unexpected accident scenarios; random exploration; Markov Chain 

Monte Carlo (MCMC); Integrated Deterministic Probabilistic Safety Assessment (IDPSA). 
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1111 IntroductIntroductIntroductIntroductionionionion    

The dynamic response of an engineered system under different conditions can be studied, in 

general, by means of mathematical models implemented in corresponding computer codes for 

numerical simulations. In particular, in the analysis of safety-critical systems, such as nuclear power 

plants, oil and gas facilities, electrical grids, etc. model simulations are used to identify extreme 

configurations and avoid that they remain unexplored and unknown until their (possibly 

catastrophic) occurrence (Gao, Liu, & Dougal, 2002; Hansen, Jauch, Sarensen, Iov, & Blaabjerg, 

2004; Smidts & Devooght, 1992). The outputs of the simulations guide the analysis of the system 

evolutions and the identification of those event sequences (i.e., scenarios) that can lead the system 

into extreme conditions (Bier, Haimes, Lambert, Matalas, & Zimmerman, 1999; Pate-Cornell, 2002; 

Paté-Cornell, 2012). In this context, the combination of Event Trees (ETs) (representing the logic of 

the system) and mathematical models of the system dynamics (describing the dynamics of the 

physical phenomena involved) has been largely advocated as the way for determining the End 

States (ESs) that can be reached by the system and deriving the corresponding causality relations 

among the events (Aldemir, 2013; J. H. Li et al., 2011; Siu, 1994). 

In this line of thought, works on Dynamic Event Trees (DETs) (Čepin & Mavko, 2002; Cojazzi, 

1996; Hakobyan et al., 2008; Hsueh & Mosleh, 1996; Kloos & Peschke, 2006; Labeau et al., 2000), 

have highlighted that the end states reached by a system as a result of an accident scenario do not 

depend only on the order of occurrence of the events in the sequence, but also on the exact time at 

which these events occur and on their magnitude (Aldemir, 2013; Devooght & Smidts, 1992; F. Di 

Maio et al., 2015a; Garrett & Apostolakis, 1999; J. H. Li et al., 2011). However, the introduction of 

the time and magnitude dimensions into the analysis makes the size of the system state space 

theoretically infinite and, thus, impossible to be explored completely. Also (and in any case), the 

computational time needed for running a single simulation of the system evolution can be 

significant: consider, for example, the computer code RELAP used to simulate the thermo-hydraulic 

behavior of nuclear systems, which can take hours or days for a single run in specific conditions 

(Fong et al., 2009; Perez et al., 2011; RELAP5-3D, 2005). To address this issue, the majority of the 

methods available in the literature exploits the discretization of the time dimension and the pruning 

of ET branches that have low probability, for the purpose of reducing the number of possible event 

sequences to be explored; however, these techniques may miss “rare” sequences leading to 

extreme safety-critical outcomes, as pointed out in (Hakobyan et al., 2008; Rutt et al., 2006), where 

the authors consider the possibility of biasing the exploration toward critical events. 

In view of these challenges, efficient methods for Integrated Deterministic Probabilistic Safety 

Assessment (IDPSA) are currently being developed to take into account time-dependences in the 
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evolution of the dynamic system and to probe the corresponding event sequence space for 

identifying unknown unreliability, unexpected scenarios and critical configurations (Zio, 2014). 

Along this line of research, this paper contributes an efficient framework for exploring the state 

space of a dynamic system with the purpose of discovering event sequences leading to unexpected 

outcomes. In this context, (Hu et al., 2004; Turati et al., 2015) propose methods that focus the 

exploration efforts, i.e. the simulations, on those scenarios having more uncertain outcomes (i.e., a 

higher number of end states). For this purpose, they exploit a function based on negative entropy 

for assessing the uncertainty in the outcomes and a Bayesian scheme for updating the knowledge 

gathered by the simulations (T. M. Cover & Thomas, 2006; Hu, 2005; Mackay, 1992). As a result, 

scenarios that can reach a larger number of ESs are explored more frequently and thoroughly. 

In this paper, new driving functions are proposed to allow embedding the analyst knowledge 

and preferences into the exploration, e.g., the interest on specific scenarios or ESs. The new driving 

functions are implemented within a novel, adaptive, semi-automatic exploration framework for 

efficiently probing the system state space and retrieving the corresponding information of interest. 

Demonstration is given with regards to a simple, but representative, dynamic system made by a gas 

transmission pipe actively controlled by a valve and connected in series to two other pipes in 

parallel. All the system components are subject to stochastic failures, described by assigned 

probability distributions. The results of the method are compared to those of a crude Monte Carlo 

Sampling and an entropy-based search scheme of the system state space (Turati et al., 2015). 

The rest of the paper is organized as follows. In Section 2, a general description of the problem 

under analysis is given. In Section 3, the Semi-Automatic Adaptive Exploration Framework is 

presented. In Section 4, the case study and the associated results are reported. Finally, in Section 5, 

some conclusions are drawn and prospective research challenges are suggested. 

2222 Problem DefinitionProblem DefinitionProblem DefinitionProblem Definition    

Within the framework of interest of the present paper, a scenario defines a specific sequence (i.e., 

order) of events in the life evolution of the dynamic system, which may involve a particular group of 

components, safety functions or actions (e.g., mechanical failures, activation of safety systems and 

human decisions). In this context, Dynamic Event Tree (DET) is used as the logical modeling 

technique to derive, by means of simulation, the scenarios that can arise in the life evolution of a 

dynamic system as the result of a sequence of successes and failures of different components and 

functions (J. H. Li et al., 2011; Mercurio et al., 2009). Many software for DET analyses, such as 

DYLAM (Cojazzi, 1996), ADS (Hsueh & Mosleh, 1996) and MCDET (Kloos & Peschke, 2006), are 

available and, in principle, all the possible (accident) scenarios could be extracted, especially by 
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recurring to massive parallel computing (Catalyurek et al., 2010) or to backtracking techniques (J. H. 

Li et al., 2011). However, not all the possible different time sequences within a given scenario can 

be explored, by reason of the extremely high computational cost needed for simulating all of them. 

This is relevant since, as shown for example in (F. Di Maio et al., 2015a; Francesco Di Maio et al., 

2015), different time sequences (even within the same scenario) may lead to different outcomes, 

hereafter also called End States (ESs). This justifies the research interests and efforts in taking into 

account the time dimension of the problem. Typically, an end state is a categorical variable 

representing in a synthetic way the configuration of the system, e.g., the degradation level of the 

components (i.e., low, medium and high degradation) and the state of the system (safe, warning, 

failure). For the sake of clarity, let us consider a component, which starts deteriorating once an 

initiating event (damage) occurs. Then, the state of degradation of the component, i.e., its End 

State ��, at a given mission time ����� depends on the time ����� of the initiating damage. An 

illustrative example is reported in Fig. 1. 

Fig. Fig. Fig. Fig. 1111    Illustrative example of the Illustrative example of the Illustrative example of the Illustrative example of the effectseffectseffectseffects    that different damage initiating times that different damage initiating times that different damage initiating times that different damage initiating times 	
��    have on the final degradation have on the final degradation have on the final degradation have on the final degradation 
state of a fictitious component.state of a fictitious component.state of a fictitious component.state of a fictitious component.    

However, depending on the number and typology of the events involved in a scenario, the 

impact of the event times on the system model simulations can be different. In this light, some 

scenarios may always lead to similar simulations generating the same outcome; on the contrary, 

other sequences can lead to a larger variability in the outcomes. For this reason, during the 

exploration of the possible system evolutions, in some cases, it may be in the analyst interest to 

focus the simulation efforts on those scenarios that show higher variability in the ESs (i.e., that have 

more uncertain outcomes). To this aim, a novel approach, which takes its root in (Turati et al., 

2015), is here proposed. The general procedure consists of two steps: (i) selection of a scenario 

which is “worth” to be explored according to a predefined “driving criterion”; (ii) simulation of a 

possible system evolution, conditioned to the selected scenario. 

In other situations, instead, the analyst may be already aware of some possible evolutions and 

he/she may be interested in precisely identifying those time sequences belonging to a given 

scenario �
 that can lead to a particular ���, with the objective of retrieving information and 



Adaptive Simulation Framework 

features of the scenario useful to prevent them and prepare for protection and mitigation of their 

consequences (F. Di Maio et al., 2015a; Mercurio et al., 2009). 

Since the contribution of the paper mainly lies in the efficient and intelligent exploration of the 

system state space, with no interest in the estimation of the probabilities of the events of interest, 

in all the situations considered (see above) we propose to sample the components transition times 

from a joint distribution uniform on the support defined by the scenario selected (Turati et al., 

2015). For the sake of clarity, let us consider a scenario �
 that involves the change of states of two 

components, namely, A and B, in a specific order within the mission time (e.g., in this case �� < �� ≤ �����). Then, in order to simulate one possible system evolution, we sample the couple 

(��, ��) from the joint uniform distribution on the support defined by �
, which is shown in Fig. 2 as 

a shaded region. For this purpose, we resort to a MCMC Gibbs sampling (Robert & Casella, 2004). 

    

Fig. Fig. Fig. Fig. 2222    Support of the time of occurrence of events Support of the time of occurrence of events Support of the time of occurrence of events Support of the time of occurrence of events A A A A and and and and B B B B defining scenario defining scenario defining scenario defining scenario �� , where , where , where , where 	� < 	� ≤		�
��....    

By resorting to a uniform distribution, a more thorough exploration of the time window under 

analysis is obtained. Actually, the occurrences of component failures are frequently modeled by 

exponential distributions; this implies that the likelihood of the time of occurrence of an event 

decreases with the increment of its value. This makes some system evolutions and, hence, some ESs 

extremely unlikely to occur, thus reducing the exploration capability of a method based on plain 

random sampling from those (original) distributions. In this respect, Fig. 3 shows the probability 

density function of the time ���� of the initiating event introduced in the trivial example above, in 

the cases of an exponential conditional distribution with support defined on �0, ����� = 100� and 

of a uniform distribution defined on the same support. 
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Fig. Fig. Fig. Fig. 3333    Exponential pdf (darkExponential pdf (darkExponential pdf (darkExponential pdf (dark----line) and uniform pdf (lline) and uniform pdf (lline) and uniform pdf (lline) and uniform pdf (lightightightight----dashed line) defined on the support [dashed line) defined on the support [dashed line) defined on the support [dashed line) defined on the support [ , 	�
��=100]=100]=100]=100]    

3333 A Novel Framework For The SemiA Novel Framework For The SemiA Novel Framework For The SemiA Novel Framework For The Semi----Automatic Adaptive Exploration Of The Automatic Adaptive Exploration Of The Automatic Adaptive Exploration Of The Automatic Adaptive Exploration Of The 

State Space Of Dynamic SystemsState Space Of Dynamic SystemsState Space Of Dynamic SystemsState Space Of Dynamic Systems    

The Semi-Automatic Adaptive Exploration method consists of three main steps, as sketched in the 

flow diagram of Fig. 4: 

1) preliminary exploration (Section 3.1), i.e., a global exploration of the whole space of the 

dynamic system according to two possible driving criteria, namely, the guided (Section 3.1.1) 

and the forced (Section 3.1.2) exploration; this step aims at enhancing the general knowledge 

of the analyst regarding the role and impact of different time sequences in the evolution of the 

dynamic system; 

2) interactive decision making (Section 3.2), i.e., after the preliminary exploration, the analyst 

can decide to either improve his/her global view of the state space by increasing the number 

of simulations according to the criteria of the preliminary exploration (step 1), or focus his/her 

attention on a specific event of interest (step 3); 

3) deep exploration (Section 3.3), i.e., a thorough exploration of a particular event: for example, 

the objective can be that of retrieving the possible evolutions within the scenario �
 that can 

reach a given End State ���, indicated hereafter as the pair {�
 , ���}. 
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Fig. Fig. Fig. Fig. 4444    General flow diagram of the General flow diagram of the General flow diagram of the General flow diagram of the explorationexplorationexplorationexploration    framework proposedframework proposedframework proposedframework proposed    

3.13.13.13.1 Preliminary ExplorationPreliminary ExplorationPreliminary ExplorationPreliminary Exploration    

The preliminary exploration aims at efficiently retrieving information about the general dynamic 

behavior of the system (model) under the constraint of limited computational effort (i.e., of a fixed 

number of available simulations to run): in other words, for each scenario �
, it aims at identifying 

all the ESs that it can “generate”. For this purpose, the analyst can choose either a preliminary 

guided exploration (Section 3.1.1) or a preliminary forced exploration (Section 3.1.2) according to 

his/her interest and to the information already available. 

3.1.13.1.13.1.13.1.1 Guided ExplorationGuided ExplorationGuided ExplorationGuided Exploration    

If the analyst does not have any prior information about the outcomes of the system accident 

scenarios or if he/she has scarce information, but he/she is not interested in any specific outcome 

based on the current knowledge at his/her disposal, a “guided exploration” framework should be 

chosen. In particular, the choice of the scenario that will be explored through a new simulation run 

is automatically made by selecting the scenario �∗ which maximizes the driving function "#$∙&: 
�∗ = argmax
∈- "#.�
/, (1) 

where "#.�
/ is defined as: 

"#.�
/ = "#.0
 , 	1
2-/ = .1
2-/#0
 , (2) 

where 1
2- is the number of ESs that Scenario �
 can reach (if this information is not available, 

then it represents the number of ESs that have already been visited within the scenario and it is 

updated when a new ES is discovered by a new simulation run); 0
 is the number of simulations that 

have already been run within �
; 3 ∈ $−∞,+∞& is a parameter that should be chosen according to 
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the preference of the analyst: (i) if 3<0, the driving function chooses more frequently those 

scenarios that can reach a small number of ESs; (ii) if 3 = 0, no preference is given to any scenario; 

(iii) if 3 > 0, the driving function selects more likely those scenarios that can reach a large number 

of ESs. For the sake of clarity and by way of example, consider a simple dynamic system where only 

four scenarios can occur �8, … , �: and where each scenario can reach a different number of end 

states, 182- = 1,1;2- = 2,… ,1:2- = 4. Finally, let assume that all reachable ESs in the same 

scenario have the same probability of occurring. Table I reports the average of 1000 explorations, 

performed with 100 simulations each, that have been distributed among the different scenarios 

according to three different values of the parameter 3, i.e., 3 = −1 (left), 3 = 0 (middle) and 3 = 1 

(right).  

Table Table Table Table IIII    Average results of 1000 experiments. Each experiment runs 100 simulations of preliminary guided Average results of 1000 experiments. Each experiment runs 100 simulations of preliminary guided Average results of 1000 experiments. Each experiment runs 100 simulations of preliminary guided Average results of 1000 experiments. Each experiment runs 100 simulations of preliminary guided 
exploration with different values of the parameter exploration with different values of the parameter exploration with different values of the parameter exploration with different values of the parameter >::::    ----1 (left); 0 (middle); 1 (right). Column “Tot” represents the 1 (left); 0 (middle); 1 (right). Column “Tot” represents the 1 (left); 0 (middle); 1 (right). Column “Tot” represents the 1 (left); 0 (middle); 1 (right). Column “Tot” represents the 

total number of simulations run within the respective scenario.total number of simulations run within the respective scenario.total number of simulations run within the respective scenario.total number of simulations run within the respective scenario.    

    ?�@     ?�A     ?�B     ?�C     TOTTOTTOTTOT    ?�@     ?�A     ?�B     ?�C     TOTTOTTOTTOT    ?�@     ?�A     ?�B     ?�C     TOTTOTTOTTOT    �@     47.9 0.0 0.0 0.0 47.947.947.947.9    25.0 0.0 0.0 0.0 25.025.025.025.0    10.0 0.0 0.0 0.0 10.010.010.010.0    �A     12.0 11.9 0.0 0.0 23.923.923.923.9    12.4 12.6 0.0 0.0 25.025.025.025.0    10.0 9.9 0.0 0.0 20.020.020.020.0    �B     5.3 5.3 5.3 0.0 15.915.915.915.9    8.4 8.3 8.3 0.0 25.025.025.025.0    10.0 10.0 10.0 0.0 30.030.030.030.0    �C     3.0 3.1 3.0 3.1 12.212.212.212.2    6.2 6.2 6.3 6.3 25.025.025.025.0    10.0 10.0 9.9 10.1 40.040.040.040.0    

 

The choice of parameter 3 = 1 is particularly suitable because, in this case, the exploration 

algorithm distributes the simulations among all the scenarios in order to guarantee that each 

scenario �
 “gathers” a number of simulations proportional to the number 1
2- of end states that 

each scenario can “generate”. 

3.1.23.1.23.1.23.1.2 Forced ExplorationForced ExplorationForced ExplorationForced Exploration    

As in the preliminary guided exploration, the algorithm selects the scenario �∗ which maximizes a 

given driving function and, then, simulates a dynamic evolution conditioned to the selected 

scenario �∗. However, the driving function, namely "D$∙&, of the preliminary forced exploration is 

defined as: 

"D.�
 , ��∗/ = 	 "D.0
 , 	1
2-, "2-∗/ = 	
EFG
FH.1
2-/#0
 				 , "2-∗ = 0
.1
2-/#0
 ∙ I, "2-∗ = 1

J, (3) 

where ��∗ is a particular set of end states of interest for the analyst; "2-∗  is a Boolean variable, 

which equals 1 if the simulations of scenario �
 can reach at least one of the end states in ��∗, and 

0 otherwise; I ∈ $0,+∞& is the forcing parameter: the higher it is, the more frequently the 



Adaptive Simulation Framework 

algorithm selects those scenarios that can reach the end states in ��∗; finally, the remaining 

variables are defined as in Eq. (2). With respect to the case of the preliminary exploration, a 

different number of ESs can be included in the set ��∗, i.e., the cardinality of ��∗ can be larger 

than 1. 

For the sake of clarity, let us consider the same trivial example introduced above (Table I), 

assume parameter 3 = 1 and suppose that we are interested in gathering information about those 

scenarios that can reach end states ��∗ = K��L; ��:N (for example, because they represent 

extremely dangerous conditions). Table II reports the effects of different choices of parameter I = K0.25; 	1; 	4N on the final distribution of the simulation runs among the scenarios. If I ∈ $0,1&, 
those scenarios that can reach the set ��∗ are penalized in the selection step (left); if I = 1, the 

algorithm turns to the preliminary guided exploration described above (middle); finally, if I ∈ $1,+∞&, the scenarios that can reach the set ��∗ are favored in the selection step (right). 

Table Table Table Table IIIIIIII    Average results of 1000 Average results of 1000 Average results of 1000 Average results of 1000 experimentsexperimentsexperimentsexperiments. Each experiment run 100 simulations of preliminary forced . Each experiment run 100 simulations of preliminary forced . Each experiment run 100 simulations of preliminary forced . Each experiment run 100 simulations of preliminary forced 
exploration with exploration with exploration with exploration with > =	1111    and with different values of the parameter and with different values of the parameter and with different values of the parameter and with different values of the parameter Q: 0.25 (left); 1 (middle); 4 (right). Column : 0.25 (left); 1 (middle); 4 (right). Column : 0.25 (left); 1 (middle); 4 (right). Column : 0.25 (left); 1 (middle); 4 (right). Column 

“Tot” represents “Tot” represents “Tot” represents “Tot” represents the total number of simulations run within the respective scenario.the total number of simulations run within the respective scenario.the total number of simulations run within the respective scenario.the total number of simulations run within the respective scenario.    

    ?�@     ?�A     ?�B     ?�C     TOTTOTTOTTOT    ?�@     ?�A     ?�B     ?�C     TOTTOTTOTTOT    ?�@     ?�A     ?�B     ?�C     TOTTOTTOTTOT    �@     10.0 0.0 0.0 0.0 10.010.010.010.0    7.0 0.0 0.0 0.0 7.07.07.07.0    3.1 0.0 0.0 0.0 3.13.13.13.1    �A     10.0 9.9 0.0 0.0 20.020.020.020.0    7.0 6.0 0.0 0.0 12.912.912.912.9    3.0 2.9 0.0 0.0 5.95.95.95.9    �B     10.0 10.0 10.0 0.0 30.030.030.030.0    12.5 11.7 11.7 0.0 36.036.036.036.0    12.6 12.3 12.5 0.0 37.437.437.437.4    �C     10.0 10.0 9.9 10.1 40.040.040.040.0    12.7 11.8 11.8 11.7 48.148.148.148.1    13.4 13.4 13.4 13.3 53.553.553.553.5    

 

For the preliminary forced exploration, we have proposed only one function based on one single 

parameter beta, which reflects an interest about a set of known end states; however, a variety of 

functions could be used at this stage to force the selection of scenarios according to other desirable 

criteria. 

3.23.23.23.2 Interactive Decision MakingInteractive Decision MakingInteractive Decision MakingInteractive Decision Making    

Every time a preliminary exploration is performed, matrixes, such those reported in Table I and 

Table II, become available. Hence, based on the events visited (i.e., on the pairs Scenario-End State K�
, ���N) and on the number of simulations that have been run to visit them, the analyst can decide 

either to increase the number of simulations according to the criteria adopted in the preliminary 

exploration phase or to perform a deeper and more refined exploration of specific events of 

interest. According to his/her preference, the analyst has to iteratively choose the maximum 

allowable number of simulations that can be run according to the preliminary or deep exploration, 

respectively. In many cases, the dimension of the system (state space) and the variability of its 

behavior (in practice, the number of ESs a scenario can reach and the corresponding probabilities), 
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are not known a priori; on the contrary, the computational cost needed for a system simulation can 

be known (e.g., in terms of average time per simulation). Then, the computational effort can be 

considered as a constraint that the analyst needs to take into account in accordance with his/her 

preferences among the different exploration criteria. In this respect, it must be noticed that the 

proposed method does not guarantee that the whole event space is probed: inevitably, if the 

computational capacity available (in practice, the total number of simulations that can be run) is 

small compared to the size of the system state space, only a limited number of end states can be 

explored for each scenario. 

3.33.33.33.3 Deep ExplorationDeep ExplorationDeep ExplorationDeep Exploration    

The objective of the deep exploration is to identify as precisely as possible, which system evolutions 

(i.e., in practice which combinations of transition times) can lead to a given event of interest. For 

the sake of clarity, we assume that an event of interest is defined as the pair {Scenario-End-State} = 

{�
 , ��∗}; nonetheless, with no loss of generality ��∗ can represent also an ensemble of end states. 

Given the structure of the mathematical model, the guiding idea of the deep exploration is to 

generate time sequences “around” those that have already reached the event {�
 , ��∗}. In order to 

achieve this goal, we resort to a Markov Chain Monte Carlo (MCMC) method, which allows to 

generate a set of random samples from any desired (namely, target) probability distribution R$∙& 
(Robert & Casella, 2004). In detail, we utilize a Metropolis-Hasting (M-H) algorithm (Chib & 

Greenberg, 1995) to sample components transition times uniformly on the support SES* of the 

event of interest {�
 , ��∗}, in other words, to sample uniformly among the transition times that lead 

to the event of interest {�
, ��∗}. The Metropolis-Hasting algorithm consists of two steps: i) 

proposition of a new candidate 	∗ (in this case, a vector of transition times) in accordance to a 

proposal distribution S$∙&; ii) acceptance or rejection of the proposed time vector. For the first step, 

we utilize as proposal a Multivariate Gaussian distribution S$	∗	|		�	&~1$	�	, V&, having as mean 

value the last vector of transition times 	�    accepted in the region of interest and as covariance 

matrix V. In particular, V is estimated using the set of transition times generated during the 

preliminary exploration that have led the system to the event of interest. This choice of the 

covariance matrix provides a “favorable” Acceptance Ratio (AR) between the number of proposed 

and accepted values. Regarding the second step, the proposed value 	∗ is accepted (i.e., 	�W@ =	∗) or rejected (i.e., 	�W@ = 	�) with a probability X$	�, 	∗& = min$[$	�, 	∗&, 1&, where r is 

defined as follows: 

[$	�, 	∗& = \R$	∗& ∙ S$	�	|		∗	&R$	�& ∙ S$	∗	|		�	& , R$	�& ∙ S$	∗	|		�	& > 01							, ]^ℎ`[abc`																						,J (4) 
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R$∙& being the target distribution from which we want to sample. Thanks to the symmetry of the 

Gaussian proposal S$	�	|		∗	& = S$	∗	|		�	&, then, Eq. (4) can be rewritten as: 

[$	�, 	∗& = \R$	∗&R$	�& , R$	�& > 01							, ]^ℎ`[abc`.J (5) 

Finally, since the target distribution is uniform on the support ���∗ of the event of interest, 

then, the probability X$	�, 	∗& can be written as: 

X$	�, 	∗& = d1, 	∗ ∈ ���∗0, ]^ℎ`[abc`.J (6) 

However, in order to know whether the proposed occurrence time vector 	∗ belongs to ���∗, 
we need to verify that: a) 	∗ satisfies the time order characterizing scenario �
; b) 	∗ leads to the 

end state of interest ��∗. It is worth verifying the two conditions in the mentioned order, since the 

second condition implies a system simulation run and the corresponding computational cost. 

  It must be kept in mind that, whenever the M-H algorithm is used, the Acceptance Ratio (AR) 

between the proposed samples and the accepted ones plays a fundamental role. Too high 

acceptance ratios (AR > 0.9) are a symptom of a proposal S$∙& with too small variability, i.e. most of 

the proposed 	∗ are too close to the original ones and, thus, the algorithm results too slow in 

probing the support ���∗; on the contrary, too small acceptance ratios (AR < 0.2) are a symptom of 

a proposal S$∙& with too high variability, i.e., most of the proposed 	∗ are likely to fall out of the 

support of interest ���∗. In this respect, adaptive MCMC methods exploiting an adaptive proposal 

distribution have been presented in the literature and can be employed at this stage to “optimally” 

fill the support ���∗ of interest (Andrieu & Thoms, 2008; Roberts & Rosenthal, 2009). Nonetheless, 

if the majority of the proposed samples are rejected due to the constraint (a) of belonging to a 

given scenario (i.e., of presenting a given precise event timing), an MCMC Gibbs Sampler (G-S), such 

as the one introduced in Section 2, may be useful. Actually, the G-S allows sampling occurrence 

time vectors that implicitly satisfy the time order constraint (a), probing the entire scenario instead 

of the support ���∗ only. Thus, roughly speaking, on the basis of the “area” of the support of the 

scenario �
 that is covered by the end state ��∗of interest, the analyst can choose different MCMC 

methods: if the portion of transition time vectors that leads to ��∗ is small (Fig. 5, right), an M-H 

algorithm should be preferred to fill this “small portion” of scenario �
; on the contrary, if the 

portion of transition times vector leading to ��∗ is large (Fig. 5, left), G-S should be preferred, in 

order to put more effort on the “even coverage” of the entire scenario �
. 
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Fig. Fig. Fig. Fig. 5555    The dark area The dark area The dark area The dark area representsrepresentsrepresentsrepresents    the portion of scenario the portion of scenario the portion of scenario the portion of scenario ��     that leads to the end state of interest that leads to the end state of interest that leads to the end state of interest that leads to the end state of interest ?�∗....    

Regarding the approach used to choose the number of simulations to run for performing the 

deep exploration, two criteria are proposed: (i) fixed number of simulations (as in the preliminary 

exploration of Section 3.1); (ii) level of filling of the support of the event of interest. For what 

concerns the second criterion, the idea is to keep on generating new simulation outcomes until the 

support of the event of interest is filled by an amount of points (i.e., configurations) that 

“sufficiently” cover the entire outcome variability. In detail, after the preliminary exploration a set 

of occurrence time vectors �ef$���∗& = K	8, … , 	fN that lead to the event of interest g�
, ��∗h is 

available. As a measure of the (time) space filling, the maximum of the minimum distances among 

these time vectors is considered: then, a time filling index if.�ef$���∗&/ after the preliminary 

exploration is computed as: 

if.�ef$���∗&/ = max�∈2jk$-2-∗&min
l� m.	� , 	
/ (7) 

where m$∙,∙& represents a proper distance between two vectors. In this paper, for example, we 

consider the Euclidean one. Whenever a new time vector 	� is accepted during the exploration, it is 

added to the set of time vectors that lead to the event of interest, i.e., �e�$���∗& = K�e�n8$���∗&; 	�N, and the filling index i�	.�e�$���∗&/ is consequently updated. 

The deep exploration ends when the ratio between the current filling index and the preliminary one 

falls below a fixed threshold o ∈ �0, 1�, i.e., when the “density” of time vectors in the support SES* 

of interest is ~$1 o⁄ &q		 times higher than the preliminary one, being r the size of the time vector 	�. Nonetheless, a maximum allowable number 0�st of samples is also set, in order to limit in any 

case the maximum computational effort. Then, the stopping criterion becomes: 

i�.�e�$���∗&/if.�ef$���∗&/ < o	][	0 > 0�st 		. (8) 

The corresponding algorithm is summarized in Table III. 

Table Table Table Table IIIIIIIIIIII    Sketch of the algorithm describing the deep exploration stopping criterion.Sketch of the algorithm describing the deep exploration stopping criterion.Sketch of the algorithm describing the deep exploration stopping criterion.Sketch of the algorithm describing the deep exploration stopping criterion.    
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1. For b = 1, … , u evaluate the minimum distances from the vector 	�  and save them in the vector vf: mf$b& = min
l� m.	� , 	
/. 

According to this notation if.�ef$���∗&/ = maxvf. 

2. Given a new time vector 	�, update the v�n8vector for b = 1,…	, 0 − 1: m�$b& = min.m�n8$b&, m$	� , 	�&/, 

3. Add the n-th component to v�n8 resorting to the distance already available from the previous step: m�$0& = 	min
l� m.	�, 	
/. 

4. Evaluate the filling index: i�.�e�$���∗&/ = maxv�. 

5. Check if the stopping criteria are satisfied: 

wx.2jx$-2-∗&/wk.2jk$-2-∗&/ < o	][	0 > 0�st		  
If not, return to step 2. 

 

The space filling capability of the algorithm is strictly related to the dimension of the vectors 

involved: in practice, the higher the dimension, the larger the number of random vectors needed to 

reduce the filling index. 

4444 Case StudyCase StudyCase StudyCase Study    

The case study under analysis is a gas transmission subnetwork composed of two pipes in parallel 

and another one in series. The input of each pipe is controlled by a valve. The whole block diagram 

is shown in Fig. 6, where each pair valve-pipe is considered as a single block. 

Fig. Fig. Fig. Fig. 6666    Block Block Block Block diagramdiagramdiagramdiagram    of the system under analysis.of the system under analysis.of the system under analysis.of the system under analysis.    

Each pipe can transmit gas with a maximum flow rate of �ys , yz, y{� = �8,5,5� ∙ 10:	}L/m��, 

for pipes a, b, c, respectively. A control system adjusts the opening of the valves in order to 

guarantee the equilibrium between the input and output flows. Fig. 7 shows the event tree 

containing all the scenarios that can occur in the system. If one of the pipes in parallel breaks, the 

control system immediately closes the corresponding valve and increases the flow rate of the 

remaining pipe to the maximum, in order to compensate for the diminished flow. No reparation 

strategies are considered. The system presents 8 possible scenarios with different operating 
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conditions: i) safe, i.e., all pipes are functioning correctly; ii) overloaded, i.e., one of the pipes in 

parallel is closed; iii) broken, i.e., no gas is provided by the system. 

    
Fig. Fig. Fig. Fig. 7777    Event tree representation of Event tree representation of Event tree representation of Event tree representation of thethethethe    8 scenario8 scenario8 scenario8 scenariossss    that can occurthat can occurthat can occurthat can occur, where , where , where , where 	�, 	�, 	�    are thare thare thare the times of failures of e times of failures of e times of failures of e times of failures of 

components components components components aaaa, , , , b, c, b, c, b, c, b, c, respectively, and respectively, and respectively, and respectively, and 	�
��     is the mission time.is the mission time.is the mission time.is the mission time.    

The ESs for each scenario have been defined and classified on the basis of two output variables: 

i) the amount of Gas provided in Safe Conditions (���), i.e., when all the components are 

functioning correctly; ii) the amount of Gas provided in Overloaded Conditions (���), i.e., when 

one of the two pipes in parallel is down and the remaining one works at its maximum flow rate. 

With respect to that, ����st and ����st indicate the maximum quantities of gas that can be 

provided within the mission time ����� = 900m, in safe and overloaded conditions, respectively, 

i.e., ����st = ys ∙ ����� and ����st = max$yz , y{& ∙ �����. The ESs are, then, divided into six 

classes according to the criteria reported in Fig. 8. For example, ��: = �8L����st < ��� ≤
;L����st ∩ 0 ≤ ��� ≤ 8L����st�, which means that the system has operated for a medium 

period of time in safe conditions �8L����st < ��� ≤ ;L����st� and, then, once it goes in 

overloaded conditions, it breaks down �0 ≤ ��� ≤ 8L����st�. 



Adaptive Simulation Framework 

    
Fig. Fig. Fig. Fig. 8888    Classification of Classification of Classification of Classification of thethethethe    End States (ESs) according to the 2 output variables GSC and GOCEnd States (ESs) according to the 2 output variables GSC and GOCEnd States (ESs) according to the 2 output variables GSC and GOCEnd States (ESs) according to the 2 output variables GSC and GOC    

It must be noticed that not all the ESs can be reached by all scenarios: Table IV (left matrix) 

reports those ESs that can be reached by a given scenario (indicated by 1) and those that cannot 

(indicated by 0): each column in the Table represents an ES and each row represents a scenario. 

This information is usually not available a priori and in general its retrieval represents one of the 

objectives of the state space exploration. However, it is used here to analyze the performance of 

the proposed method. In Table IV (middle and right), two additional matrices show the ESs 

reachable for two sets of different gas flow rates, e.g., �ys , yz , y{� = �8, 3.7, 5� ∙ 10:	}L/m�� and �ys, yz, y{� = �8, 2.2, 6� ∙ 10:	}L/m��, respectively. These values have been chosen in order to 

analyze the performance of the method for different parameters values, which imply that the 

number of reachable ESs varies. 

Table Table Table Table IVIVIVIV    Matrices Matrices Matrices Matrices ofofofof    the the the the endendendend    states that the system can reach for each scenario states that the system can reach for each scenario states that the system can reach for each scenario states that the system can reach for each scenario forforforfor    differentdifferentdifferentdifferent    sets ofsets ofsets ofsets of    flow rate flow rate flow rate flow rate 

parametersparametersparametersparameters    valuesvaluesvaluesvalues::::	���, ��, ��� = ��, �, �� ∙ @ C	�B/v��    (left); (left); (left); (left); ���, ��, ��� = ��, B. �, �� ∙ @ C	�B/v��    

((((middle) and middle) and middle) and middle) and ���, ��, ��� = ��, A. A, �� ∙ @ C	�B/v��    (right).(right).(right).(right).    

    ?�@     ?�A     ?�B     ?�C     ?��     ?��     ?�@     ?�A     ?�B     ?�C     ?��     ?��     ?�@     ?�A     ?�B     ?�C     ?��     ?��     S8     0000    0000    0000    0000    0000    1111    0000    0000    0000    0000    0000    1111    0000    0000    0000    0000    0000    1111    S;     1111    0000    0000    1111    0000    1111    1111    0000    0000    1111    0000    1111    1111    0000    0000    1111    0000    1111    SL     0000    0000    1111    0000    1111    1111    0000    1111    1111    1111    1111    1111    0000    1111    0000    1111    1111    1111    S:     1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    0000    1111    0000    1111    S�     1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    0000    1111    0000    1111    S�     0000    0000    1111    0000    1111    1111    0000    0000    1111    0000    1111    1111    0000    0000    1111    0000    1111    1111    S�     1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    S�     1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    1111    
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4.14.14.14.1 Preliminary Guided ExplorationPreliminary Guided ExplorationPreliminary Guided ExplorationPreliminary Guided Exploration    

To evaluate the performance of the preliminary guided exploration, two indices are introduced: (i) 

the Number of simulations needed for the First complete Exploration (NFE), i.e., the number of 

simulations that should be run to visit at least once all the reachable ESs for all the scenarios; (ii) the 

Number of simulations needed for the Second complete Exploration (NSE), i.e., the number of 

simulations that should be run to visit all the reachable ESs for all the scenarios at least twice. NFE 

gives information about the number of simulations needed to explore all the events defined by the 

pairs {Scenario, End-State} = {S,ES}, when the matrices shown in Table IV (i.e., the ESs) are not 

known yet. On the contrary, NSE gives information about how the simulations are efficiently 

distributed among the different scenarios, once the matrices in Table IV (i.e., the ESs) begin to be 

known as a result of the preliminary exploration. The results of the preliminary guided exploration 

with 3 = 1 are compared to those of: 1) a crude Monte Carlo simulation method (MC), that 

randomly selects the scenario and, then, simulates the proper transition times according to the 

uniform sampling criterion proposed in Section 2; 2) an entropy-driven exploration(Turati et al., 

2015), which follows a procedure similar to the guided exploration, but with an entropy-driven 

function instead of "#$∙&. 
Fig. 9 - Fig. 11 show the empirical cumulative density functions (cdfs) of NFE (left) and NSE (right) 

built on 1000 samples for the three configurations of the parameters considered in Table IV. It can 

be seen that the preliminary guided exploration with 3 = 1 achieves better or at least comparable 

performance than the entropy–driven exploration in all configurations considered, for both indexes. 

This is shown by the fact that the cdfs obtained by the guided exploration (light dash line) are 

“shifted” to the left with respect to the cdfs obtained by the entropy-driven method (dark dotted 

line). Both these two steered methods (3-guided and entropy-driven) outperform the crude MC 

(light line) in the majority of the configurations of the parameters considered. However, the 

performance of the guided and of the entropy-driven explorations could be worse than those of the 

crude MC method for some configurations of the parameters (see, e.g., Fig. 11). Indeed, if the 

configuration is such that the rarest event to visit is inside a scenario (e.g., �:, �� in this case) that 

may reach a small number of ESs (i.e., only 4), then, using a method which increases the number of 

simulations in those scenarios that can reach a larger number of ESs is not effective. Nonetheless, 

while the entropy-driven method is stuck, the guided exploration allows changing parameter 3 in 

order to increase the exploration effectiveness. 
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Fig. Fig. Fig. Fig. 9999    Empirical cdfs of the NFE (leEmpirical cdfs of the NFE (leEmpirical cdfs of the NFE (leEmpirical cdfs of the NFE (left) and of the NSE (right) for crude MCft) and of the NSE (right) for crude MCft) and of the NSE (right) for crude MCft) and of the NSE (right) for crude MC    (light line)(light line)(light line)(light line),,,,    for for for for anananan    entropyentropyentropyentropy----drivdrivdrivdrivenenenen    

method (dark method (dark method (dark method (dark dotteddotteddotteddotted    line) line) line) line) and for the preliminary guided exploration with and for the preliminary guided exploration with and for the preliminary guided exploration with and for the preliminary guided exploration with > = @    (light dashed line) (light dashed line) (light dashed line) (light dashed line) with flow with flow with flow with flow 

rate parameters rate parameters rate parameters rate parameters ���, ��, ��� = ��, �, �� ∙ @ C	�B/v��....    

    
Fig. Fig. Fig. Fig. 10101010    Empirical cdfs of the NFE (lefEmpirical cdfs of the NFE (lefEmpirical cdfs of the NFE (lefEmpirical cdfs of the NFE (left) and of the t) and of the t) and of the t) and of the NSENSENSENSE    (right) for crude MC (light line), (right) for crude MC (light line), (right) for crude MC (light line), (right) for crude MC (light line), for for for for anananan    entropyentropyentropyentropy----drivdrivdrivdrivenenenen    

method (dark method (dark method (dark method (dark dotteddotteddotteddotted    line) line) line) line) and for the preliminary guided exploration with and for the preliminary guided exploration with and for the preliminary guided exploration with and for the preliminary guided exploration with > = @    (light dashed line) (light dashed line) (light dashed line) (light dashed line) with flow with flow with flow with flow 

rate parameters rate parameters rate parameters rate parameters ���, ��, ��� = ��, B. �, �� ∙ @ C	�B/v��....    

    
Fig. Fig. Fig. Fig. 11111111    Empirical cdfs of the NFE (leEmpirical cdfs of the NFE (leEmpirical cdfs of the NFE (leEmpirical cdfs of the NFE (left) and of the ft) and of the ft) and of the ft) and of the NSENSENSENSE    (right) for crude MC(right) for crude MC(right) for crude MC(right) for crude MC    (light line)(light line)(light line)(light line),,,,    for for for for anananan    entropyentropyentropyentropy----drivdrivdrivdrivenenenen    

method (dark method (dark method (dark method (dark dotteddotteddotteddotted    line) line) line) line) and for the preliminary guided exploration with and for the preliminary guided exploration with and for the preliminary guided exploration with and for the preliminary guided exploration with > = @    (light dashed line) (light dashed line) (light dashed line) (light dashed line) with flow with flow with flow with flow 

rate parameters rate parameters rate parameters rate parameters ���, ��, ��� = ��, A. A, �� ∙ @ C	�B/v��....    
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4.24.24.24.2 Preliminary Forced ExplorationPreliminary Forced ExplorationPreliminary Forced ExplorationPreliminary Forced Exploration    

For the analysis of the effects of the preliminary forced exploration, we have chosen the system 

configuration with flow rate parameter vector �ys , yz , y{� = �8, 2.2, 6� ∙ 10:	}L/m��. In this 

setting, we assume to be interested in thoroughly exploring those scenarios that can lead to ��L. 

The performance of the forced exploration is assessed by means of the average percent increment 

of simulations falling inside the scenarios of interest, i.e., those that can reach ��L, with respect to 

the preliminary guided exploration. Different values of the parameter I = K2; 	4; 	8N are considered 

to show the effects on the increment in the presence of different levels of computational resources 

available, i.e., with respect to different numbers of simulation runs �250; 500; 1000; 2000; 4000�. 
Fig. 12 reports the average percent increment and the respective 0.1 and 0.9 percentiles on 1000 

experiments for each combination of the values of parameter I and number of simulations, for a 

chosen scenario of interest (��). According to the definition of the function in Eq. (3), the larger the 

parameter I, the larger the average percentage increment of simulations in the scenario of 

interest, i.e., around (35, 60, 80)% for I = K2; 	4; 	8N, respectively. However, it must be considered 

that if parameter I is too large compared to the computational effort, then the performance can 

be more uncertain, as shown by the intervals corresponding to I = 8 and a number of simulations 

lower than 500. This is due to the fact that if the parameter I is too large, then the forced 

exploration will focus its attention (i.e., the simulations) on the scenario that firstly discovers (i.e., 

reaches) the end state of interest (e.g., ��L) before other scenarios can reach the end state of 

interest (��L) as well. The larger the number of scenarios that can reach the ES of interest, the 

larger the sensitivity to the number of simulations, given I. We do not report the Figures for the 

other two scenarios of interest (��	and	��), since they show similar results. 

    
Fig. Fig. Fig. Fig. 12121212    Average percentage increment of simulations in a given scenario of interest Average percentage increment of simulations in a given scenario of interest Average percentage increment of simulations in a given scenario of interest Average percentage increment of simulations in a given scenario of interest ��     and the respective and the respective and the respective and the respective 

percentile (10% and 90%), for parameterpercentile (10% and 90%), for parameterpercentile (10% and 90%), for parameterpercentile (10% and 90%), for parameter    Q = KA; 	C; 	�N    and for different numbers of simulations.and for different numbers of simulations.and for different numbers of simulations.and for different numbers of simulations.    

It must be pointed out that the average increment of simulations in the scenarios of interest is 

conditioned to the number of scenarios that can reach the end state of interest. Indeed, assuming 
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that we are interested in exploring end state ��� (which can be reached by all scenarios), then no 

preference is given to any scenario since the forcing function equally increments the preference for 

all of them. Furthermore, since the information about the number of end states that a given 

scenario can reach is typically not available, the previous observation suggests that the forced 

scheme guarantees an exploration at least as effective as the guided one, when all scenarios can 

reach the end state of interest. 

4.34.34.34.3 Deep ExplorationDeep ExplorationDeep ExplorationDeep Exploration    

After a preliminary guided exploration of the system defined by parameters �ys, yz , y{� =�8,3.6,5� ∙ 10:	}L/m�� a large variability in the outcomes is observed within scenario ��, as 

highlighted in Table V. Thus, it is interesting to retrieve the event time sequences that lead to two 

chosen ESs: ��8, which represents the worst final condition, and ��L, which has been visited only 

few times during the preliminary exploration (e.g. according to Table V, highlighted row). 

Table Table Table Table VVVV    Matrix reporting the ESs visited by a preliminary Matrix reporting the ESs visited by a preliminary Matrix reporting the ESs visited by a preliminary Matrix reporting the ESs visited by a preliminary guidedguidedguidedguided    exploration of the system with parameters exploration of the system with parameters exploration of the system with parameters exploration of the system with parameters ���, ��, ��� = ��, B. �, �� ∙ @ C	�B/v��, given a computational effort of 1000 simulations., given a computational effort of 1000 simulations., given a computational effort of 1000 simulations., given a computational effort of 1000 simulations.    

    ?�@    ?�A    ?�B    ?�C     ?��    ?��    �@      				  				  				  				  				 A�				�A     A@				  				  				 B�				  				 A�				�B      				 A�				 @ 				 AC				 B�				 C�				�C     C�				 A�				  				 C@				 �				 AB				��     B�				 � 				 A				 ��				 �				 @�				��      				  				 AB				  				 A�				 B�				��     B�				 B�				 AA				 B�				 @C				 A�				��     BC				 B�				 AC				 C@				 @A				 AA				
 

The space filling parameter is set to 0.2 with a maximum number of simulations to run set to 

5000. The covariance matrix has been estimated from the vectors of transient times obtained from 

the preliminary exploration with respect to ��8. On the contrary, since only two vectors are 

available for ��L, an independent Gaussian proposal with standard deviation equal to the Euclidean 

distance between the two vectors is considered. The chosen standard deviation provides an idea of 

the dimension of the support to explore. Fig. 13 reports the transition time vectors of the scenario 

of interest �� after the preliminary exploration (on the left) and after the deep exploration (on the 

right). Results confirm that the proposed deep exploration is capable of increasing the number of 

simulations around the time sequences that reach the ES of interest, increasing the information 

about those sequences that can lead the system to a particular event. For example, in order to 
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obtain ��L, pipe c should break within the initial 100 days whereas pipe b should work at least for 

800 days after the failure of the first one. 

    
Fig. Fig. Fig. Fig. 13131313    Preliminary guidePreliminary guidePreliminary guidePreliminary guided d d d explorationexplorationexplorationexploration    of of of of ��     (left) and deep exploration of (left) and deep exploration of (left) and deep exploration of (left) and deep exploration of ?�@     and and and and ?�B    in the same scenario in the same scenario in the same scenario in the same scenario 

(right).(right).(right).(right).    

5555 ConclusionsConclusionsConclusionsConclusions    

IDPSA is expected to lead to a more realistic evaluation of the risks associated to safety-critical 

systems (e.g., nuclear power plants). One opportunity that is sought is the discovery and 

understanding of the possible outcomes from the dynamics of accidents, leaving out as little as 

possible of unexpected. Thorough system state space exploration in IDPSA allows identifying 

extreme situations and critical system characteristics for preventing accidents and/or mitigating 

their effects. 

In this paper, a novel framework for the exploration of the system state space has been 

proposed. The framework allows including analyst prior knowledge about the system and focusing 

the exploration on particular configurations of interest, e.g., due to their criticality and/or rarity. 

Three methods, namely, guided, forced and deep exploration, are implemented to allow diversifying 

the exploration in accordance with the preferences and interests of the analyst. Application to a 

simple system has shown that the proposed framework outperforms an entropy-driven method of 

literature (Turati et al., 2015), as well as a crude Monte Carlo method, in exploring the system state 

space. In addition, the deep exploration phase has been shown capable of leading a large number 

of simulations to the events of interest. 
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Future research efforts will be devoted to extending the exploration framework to the 

assessment of the probability of the events of interest and to applications to more complex case 

studies.  
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