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Abstract: Given β ∈ R and ϱ, k > 0, we analyze an abstract version of the nonlinear stationary model
in dimensionless form u′′′′ −

(
β + ϱ

∫ 1

0
|u′(s)|2 ds

)
u′′ + k(u − v) = 0

v′′′′ −
(
β + ϱ

∫ 1

0
|v′(s)|2 ds

)
v′′ − k(u − v) = 0

describing the equilibria of an elastically-coupled extensible double-beam system subject to evenly
compressive axial loads. Necessary and sufficient conditions in order to have nontrivial solutions
are established, and their explicit closed-form expressions are found. In particular, the solutions are
shown to exhibit at most three nonvanishing Fourier modes. In spite of the symmetry of the system,
nonsymmetric solutions appear, as well as solutions for which the elastic energy fails to be evenly
distributed. Such a feature turns out to be of some relevance in the analysis of the longterm dynamics,
for it may lead up to nonsymmetric energy exchanges between the two beams, mimicking the transition
from vertical to torsional oscillations.

Keywords: Coupled-beams structures; steady states; bifurcations; buckling

1. Introduction

1.1. Physical motivations

For engineering purposes, the mathematical modeling process can be viewed as the first step towards
the analysis of both static and dynamic responses of actual mechanical structures. Nevertheless, it relies
on an idealization of the physical world, and has limits of validity that must be specified. For a given
system, different models can be constructed, the “best” being the simplest one able to capture all the
essential features needed in the investigation. Among others, models of elastic sandwich-structured
composites are experiencing an increasing interest in the literature, mainly due to their wide use in
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sandwich panels and their applications in many branches of modern civil, mechanical and aerospace
engineering [30]. Sandwich structures are in general symmetric, and their variety depends on the
configuration of the core. Such devices are designed to have high bending stiffness with overall low
density [9, 18]. In particular, sandwich beams, plates and shells are flexible elastic structures built up
by attaching two thin and stiff external layers (beams, plates or shells) to a homogeneously-distributed
lightweight and thick elastic core [23]. Their interest, which is relevant in structural mechanics, has
been recently extended even to nanostructures (see e.g. [6] and references therein).

Models of elastic sandwich structures can be obtained by applying either the Euler-Bernoulli theory
for beams or the Kirchhoff-Love theory for thin plates. In this context, several papers have been
devoted to the mechanical properties of elastically-connected double Euler-Bernoulli beams systems.
For instance, free and forced transverse vibrations of simply supported double-beam systems have
been studied in [17, 22, 26], while the articles [31, 32] are concerned with the effect of compressive
axial load on free and forced oscillations. Within the framework of nanostructures, axial instability and
buckling of double-nanobeam systems have been analyzed in [21, 27].

Once a model is established, the next step is to (possibly) solve the mathematical equations, in
order to discover the nature of the system response. In fact, the main goal is to predict and control the
actual dynamics. To this end, the analysis of the steady states, and in particular of their closed-form
expressions, becomes crucial. This is even more urgent when dealing with nonlinear systems, where
the longterm dynamics is strongly influenced by the occurrence of a rich set of stationary solutions.

1.2. The model

In this paper, we aim to classify the stationary solutions, finding their explicit closed-form expres-
sions, to symmetric elastically-coupled extensible double-beam systems. For instance, a sandwich
structure composed of two elastic beams bonded to an elastic core (Figure 1a), or the road bed of a
girder bridge composed of an elastic rug connecting two lateral elastic beams (Figure 1b). In both
cases, the mechanical structure can be described by means of two equal beams complying with the
nonlinear model of Woinowsky-Krieger [29], which takes into account extensibility, so that large de-
formations are allowed. The beams are supposed to have the same natural length ℓ > 0, constant mass
density, and common thickness 0 < h ≪ ℓ. At their ends, they are simply supported and subject
to evenly distributed axial loads. A system of linear springs models the elastic filler connecting the
beams: when the system lies in its natural configuration, the beams are straight and parallel. The dis-
tance between the beams is equal to the free lengths of the springs. Denoting by ν ∈ (−1, 1

2 ) the Poisson
ratio of the beams, the dynamics of the resulting undamped model is ruled by the following nonlinear
equations in dimensionless form (see the final Appendix for more details about the derivation of the
model) 

ℓ(1 − ν)
h

(
∂tt −

h2

12ℓ2∂ttxx

)
u + δ∂xxxxu −

(
χ + ∥∂xu∥2

)
∂xxu + κ(u − v) = 0,

ℓ(1 − ν)
h

(
∂tt −

h2

12ℓ2∂ttxx

)
v + δ∂xxxxv −

(
χ + ∥∂xv∥2

)
∂xxv − κ(u − v) = 0,

(1.1)

having set

∥ f ∥ =
( ∫ 1

0
| f (s)|2 ds

) 1
2

.
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In the vertical plane (x-z), system (1.1) describes the in-plane downward rescaled deflections of the
midline of the beams∗

u, v : [0, 1] × R+ → R

with respect to their natural configuration (see Figure 1a). It may be also used to describe out-of-plane
rescaled deflections of the same double-beam structure, accounting for both vertical and torsional os-
cillations (see Figure 1b). In the latter situation, each beam is assumed to swing in a vertical plane and
the lateral movements are neglected. The structural constants δ, κ > 0 are related to the common flex-
ural rigidity of the beams and the common stiffness of the inner elastic springs, respectively, whereas
the parameter χ ∈ R summarizes the effect of the axial force acting at the right ends of the beams:
positive when the beams are stretched, negative when compressed.

Figure 1. In-plane (a) and out-of-plane (b) deflections of a double-beam system under
compressive axial loads β = χ/δ.

In this work, we are interested in the stationary solutions to the evolutionary problem (1.1), subject
to the hinged boundary conditions. Namely, setting

β =
χ

δ
∈ R, ϱ =

1
δ
> 0, k =

κ

δ
> 0,

we consider the dimensionless system of ODEsu′′′′ − (
β + ϱ∥u′∥2)u′′ + k(u − v) = 0,

v′′′′ − (
β + ϱ∥v′∥2)v′′ − k(u − v) = 0,

(1.2)

supplemented with the boundary conditionsu(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0.
(1.3)

It is apparent that problem (1.2)-(1.3) always admits the trivial solution u = v = 0, while the occurrence
and the complexity of nontrivial solutions strongly depend on the values of the structural dimensionless
parameters β, ϱ, k, all of which are allowed to be large (see the final comment in the Appendix).

∗The functions u, v are appropriate rescaling of the original vertical deflections of the midline of the two beams

U,V : [0, ℓ] × R+ → R,

in comply with the dimensionless character of system (1.1). See the Appendix for more details.
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1.3. Earlier results on single-beam equations

When system (1.2) is uncoupled (i.e. in the limit situation when k = 0), the analysis reduces to the
one of the single Woinowsky-Krieger beam

u′′′′ − (
β + ϱ∥u′∥2)u′′ = 0.

In this case, it is well-known that an increasing compressive axial load leads to a series of fork bifurca-
tions. The critical values of β at which bifurcations occur depend on the eigenvalues of the differential
operator (see e.g. [2, 8]). After exceeding these values, the axial compression is sustained in one of
two states of equilibrium: a purely compressed state with no lateral deviation (the trivial solution) or
two symmetric laterally-deformed configurations (buckled solutions). This is why the phenomenon is
usually referred to as buckling. Another interesting model, formally obtained by neglecting the second
equation of system (1.2) and by taking v ≡ 0 in the first one, reads

u′′′′ − (
β + ϱ∥u′∥2)u′′ + ku = 0,

namely, a single Woinowsky-Krieger beam which relies on an elastic foundation. In this case, bifur-
cations of the trivial solution split into two series, whose critical values depend also on the ratio k
between the parameters κ and δ connected with the stiffness of the foundation and the flexural rigidity
of the beam [3].

1.4. The goal of the present work

Clearly, when the double-beam system (1.2) is considered, the picture becomes much more difficult.
To the best of our knowledge, in spite of the quite large number of papers about statics and dynamics
of single Woinowsky-Krieger beams (e.g. [2, 3, 7, 8, 10, 11, 12, 14, 15, 24]), no analytic results con-
cerning models with a coupling between two (or more) nonlinear beams of this type are available in
the literature. This may be due to the fact that classifying and finding closed-form expressions for the
solutions to equations of this kind is in general a very difficult, if not impossible, task. Indeed, it is
usually unavoidable to replace distributed characteristics with discrete ones, so producing approximate
solutions by resorting to some discretization procedures. Unfortunately, this strategy can be hardly
applied when multiple stable states occur (see e.g. [18] and references therein).

Here, our aim is to fill this gap. To this end, we first recast (1.2)-(1.3) into an abstract nonlinear sys-
tem involving an arbitrary strictly positive selfadjoint linear operator A with compact inverse. Then, we
classify all the nontrivial solutions, finding also their explicit expressions. In particular, every solution
is shown to exhibit at most three nonvanishing Fourier modes. According to our classification, the set
of stationary solutions to nonlinear double-beam systems is very rich. The nonlinear terms accounting
for extensibility substantially influence the instability (or buckling): the effects are higher with increas-
ing values of (minus) the axial-load parameter β, and give rise to both in-phase (synchronous) buckling
modes and out-of-phase (asynchronous) buckling modes. This feature becomes quite important in the
study of the longterm behavior, as it may lead up to nonsymmetric energy exchanges between the two
beams under small perturbations. In the asymptotic dynamics of a double-beam structure like the road
bed of a girder bridge (Figure 1b), a nonsymmetric energy exchange of this kind is apt to mimic the
transition from vertical to torsional oscillations, such as those occurred in the collapse of the Tacoma
Narrows suspension bridge (see e.g. [20] and references therein). Another remarkable fact is that the
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model (1.2) has been derived under the assumption that the ratio h/ℓ between the thickness and the
natural length of the beam is very small; the critical values at which bifurcations occur are consistent
with such an assumption, namely, they are of order h/ℓ as well. We also stress that system (1.2) is
dimensionless, and no physical parameters have been artificially set equal to one. Finally it is worth
noting that, as a consequence of the abstract formulation, all the results are valid also for multidimen-
sional structures. In particular, they are applicable to flexible double-plate sandwich structures with
hinged boundaries, provided that the plates are modeled according to the Berger’s approach [1, 16].

1.5. Plan of the paper

In the next §2 we introduce the aforementioned operator A, and we rewrite (1.2)-(1.3) in an ab-
stract form. In §3 we prove that every solution can be expressed as a linear combination of at most
three distinct eigenvectors of A. The subsequent §4 deals with the analysis of unimodal solutions (i.e.
solutions with only one eigenvector involved). In particular, we show that not only a double series
of fork bifurcations of the trivial solution occur, but also buckled solutions may suffer from a further
bifurcation when −β exceeds some greater critical value. In §5 we study the so-called equidistributed
energy solutions (i.e. solutions with evenly distributed elastic energy), and we prove that bimodal and
trimodal steady states pop up. In §6 we classify the general (not necessarily equidistributed) bimodal
solutions, while in §7 we show that every trimodal solution is necessarily an equidistributed energy
solution, The final §8 is devoted to a comparison with some single-beam equations previously studied
in the literature. The derivation of the evolutionary physical model (1.1) is carried out in full detail in
the concluding Appendix.

2. The Abstract Model

Let (H, ⟨·, ·⟩, ∥ · ∥) be a separable real Hilbert space, and let

A : D(A) b H→ H

be a strictly positive selfadjoint linear operator, where the (dense) embedding D(A) b H is compact.
In particular, the inverse A−1 of A turns out to be a compact operator on H. Accordingly, for r ≥ 0, we
introduce the compactly nested family of Hilbert spaces (the index r will be omitted whenever zero)

Hr = D(A
r
2 ), ⟨u, v⟩r = ⟨A

r
2 u, A

r
2 v⟩, ∥u∥r = ∥A

r
2 u∥.

Then, given β ∈ R and ϱ, k > 0, we consider the abstract nonlinear stationary problem in the unknown
variables (u, v) ∈ H2 × H2 A2u +CuAu + k(u − v) = 0,

A2v +CvAv − k(u − v) = 0,
(2.1)

where
Cu = β + ϱ∥u∥21 and Cv = β + ϱ∥v∥21. (2.2)

Definition 2.1. A couple (u, v) ∈ H2 × H2 is called a weak solution to (2.1) if⟨u, ϕ⟩2 +Cu⟨u, ϕ⟩1 + k⟨(u − v), ϕ⟩ = 0,

⟨v, ψ⟩2 +Cv⟨v, ψ⟩1 − k⟨(u − v), ψ⟩ = 0,
(2.3)
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for every test (ϕ, ψ) ∈ H2 × H2.

It is apparent that the trivial solution u = v = 0 always exists.

Example 2.2. The concrete physical system (1.2) is recovered by setting H = L2(0, 1) and A = L,
where

L = − d2

dx2 with D(L) = H2(0, 1) ∩ H1
0(0, 1).

Here L2(0, 1), as well as H1
0(0, 1) and H2(0, 1), denote the usual Lebesgue and Sobolev spaces on the

unit interval (0, 1). In particular

H2 = H2(0, 1) ∩ H1
0(0, 1) b H1 = H1

0(0, 1) b H = L2(0, 1).

Notation. For any n ∈ N = {1, 2, 3, . . .} we denote by

0 < λn → ∞
the increasing sequence of eigenvalues of A, and by en ∈ H the corresponding normalized eigenvectors,
which form a complete orthonormal basis of H. In this work, all the eigenvalues λn are assumed to
be simple, which is certainly true for the concrete realization A = L arising in the considered physical
models. Indeed, in such a case, the eigenvalues are equal to

λn = n2π2

with corresponding eigenvectors
en(x) =

√
2 sin (nπx).

3. General Structure of the Solutions

In this section we provide two general results on the solutions to system (2.1). To this end, we introduce
the set of effective modes

E = {n : λn < −β}.
Clearly,

E , ∅ ⇔ β < −λ1. (3.1)

Therefore, if E , ∅,
E = {1, 2, . . . , n⋆},

where†

n⋆ = max{n : λn < −β} = |E|.
Example 3.1. When A = L (the Laplace-Dirichlet operator introduced in the previous section), we
have

E =
{
n : n2π2 < −β}.

Accordingly, in the nontrivial case β < 0,

|E| =

√
− β
π2

 − 1,

the symbol ⌈a⌉ standing for the smallest integer greater than or equal to a.
†Here and in what follows |S| denotes the cardinality of a set S ⊂ N.
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We begin to prove that the picture is trivial whenever the set E is empty.

Proposition 3.2. If E = ∅ system (2.1) admits only the trivial solution.

Proof. Let (u, v) be a weak solution to (2.1). Choosing (ϕ, ψ) = (u, v) in the weak formulation (2.3),
and adding the resulting expressions, we obtain the identity

∥u∥22 + ∥v∥22 + (β + ϱ∥u∥21)∥u∥21 + (β + ϱ∥v∥21)∥v∥21 + k∥u − v∥2 = 0.

Then, exploiting the Poincaré inequality

λ1∥w∥21 ≤ ∥w∥22, ∀w ∈ H2,

we infer that
(λ1 + β)(∥u∥21 + ∥v∥21) + ϱ∥u∥41 + ϱ∥v∥41 + k∥u − v∥2 ≤ 0,

and, since λ1 + β ≥ 0, we conclude that u = v = 0. �

Accordingly, from now on we will assume (often without explicit mention) that (3.1) be satisfied.
As it will be clear from the subsequent analysis, this condition turns out to be sufficient as well in order
to have nontrivial solutions. Hence, a posteriori, we can reformulate Proposition 3.2 by saying that
system (2.1) admits nontrivial solutions if and only if the set E is nonempty.

The next result shows that every weak solution can be written as linear combination of at most three
distinct eigenvectors of A.

Lemma 3.3. Let (u, v) be a weak solution of system (2.1). Then

u =
∑

n

αnen and v =
∑

n

γnen

for some αn, γn ∈ R, where αn , 0 for at most three distinct values of n ∈ N. Moreover,

αn = 0 ⇔ γn = 0.

Proof. Let (u, v) be a weak solution to (2.1). Then, writing

u =
∑

n

αnen and v =
∑

n

γnen

for some αn, γn ∈ R, and choosing ϕ = ψ = en in the weak formulation (2.3), we obtain for every n ∈ N
the system λ2

nαn +Cuλnαn + k(αn − γn) = 0,
λ2

nγn +Cvλnγn − k(αn − γn) = 0.
(3.2)

It is apparent that
αn = 0 ⇔ γn = 0.

Substituting the first equation into the second one, we get

γn(λ2
n +Cvλn + k)(λ2

n +Cuλn + k) = k2γn.

Hence, if γn , 0 (and so αn , 0), we end up with

λ3
n + (Cu +Cv)λ2

n + (CuCv + 2k)λn + k(Cu +Cv) = 0.

Since the equation above admits at most three distinct solutions λni we are done. �
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Summarizing, every weak solution (u, v) can be written as

u =
3∑

i=1

αnieni and v =
3∑

i=1

γnieni , (3.3)

for three distinct ni ∈ N and some coefficients αni, γni ∈ R. In particular, from (2.2), we deduce the
explicit expressions

Cu = β + ϱ

3∑
i=1

λniα
2
ni

and Cv = β + ϱ

3∑
i=1

λniγ
2
ni
. (3.4)

In addition, when
αni , 0 ⇔ γni , 0,

the corresponding eigenvalue λni is a root of the cubic polynomial

P(λ) = λ3 + (Cu +Cv)λ2 + (CuCv + 2k)λ + k(Cu +Cv).

Notably, when the equality Cu = Cv holds, the polynomial P(λ) can be written in the simpler form

P(λ) = (λ +Cu)(λ2 +Cuλ + 2k).

Remark 3.4. Adding the two equations of system (3.2), we infer that

λn = −
Cuαn +Cvγn

αn + γn
(3.5)

whenever αn + γn , 0. This relation will be crucial for our purposes.

As an immediate consequence of Lemma 3.3, we also have

Corollary 3.5. Every weak solution (u, v) is actually a strong solution. Namely, (u, v) ∈ H4 × H4 and
(2.1) holds. Even more so, (u, v) ∈ Hr × Hr for every r.

Remark 3.6. In the concrete situation when A = L, every weak solution (u, v) is regular, that is,
(u, v) ∈ C∞([0, 1]) × C∞([0, 1]).

Finally, in the light of Lemma 3.3, we give the following definition.

Definition 3.7. We call a solution (u, v) unimodal, bimodal or trimodal if it involves one, two or three
distinct eigenvectors, that is, if αn , 0 (and so γn , 0) for one, two or three indexes n, respectively.

4. Unimodal Solutions

We now focus on unimodal solutions. More precisely, we look for solutions (u, v) of the formu = αnen,

v = γnen,
(4.1)
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for a fixed n ∈ N and some coefficients αn, γn , 0. In order to classify such solutions, we introduce the
positive sequences‡

µn =
2k
λn
+ λn and νn =

3k
λn
+ λn,

along with the (disjoint) subsets of E

E1 = {n : λn < −β ≤ µn},
E2 = {n : µn < −β ≤ νn},
E3 = {n : νn < −β}.

Clearly,
E1 ∪ E2 ∪ E3 = E.

Then, we consider the real numbers (whenever defined)

α±n,1 = ±
√
−β − λn

ϱλn
,

α±n,2 = ±
√
−β − µn

ϱλn
,

α±n,3 = ±

√
−β + µn − νn − λn +

√
(β + λn + µn − νn)(β + νn)

2ϱλn
,

α±n,4 = ±

√
−β + µn − νn − λn −

√
(β + λn + µn − νn)(β + νn)

2ϱλn
,

(4.2)

hereafter called unimodal amplitudes, or u-amplitudes for brevity. By elementary calculations, one can
easily verify that

α±n,1 ∈ R ⇔ λn ≤ −β,
α±n,2 ∈ R ⇔ µn ≤ −β,
α±n,3 ∈ R ⇔ νn ≤ −β,
α±n,4 ∈ R ⇔ νn ≤ −β.

Lemma 4.1. For every fixed n ∈ N, let us consider the set

Γn = {α±n,i : i = 1, 2, 3, 4}.

Then, Γn contains exactly

• 2 distinct nontrivial u-amplitudes {α±n,1} if n ∈ E1;

• 4 distinct nontrivial u-amplitudes {α±n,1, α±n,2} if n ∈ E2;

• 8 distinct nontrivial u-amplitudes {α±n,1, α±n,2, α±n,3, α±n,4} if n ∈ E3.

‡Observe that λn < µn < νn.
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If n < E, the set Γn is either empty or it contains exactly the (trivial) u-amplitudes α+n,1 = α
−
n,1 = 0.

Proof. We analyze separately all the possible cases.

• If n ∈ E1, there are only two distinct nontrivial u-amplitudes, that is, α±n,1. Indeed, when µn = −β,

α±n,2 = 0.

• If n ∈ E2, there are only four distinct nontrivial u-amplitudes, that is, α±n,1 and α±n,2. Indeed, when
νn = −β,

α+n,3 = α
+
n,4 = α

+
n,2 and α−n,3 = α

−
n,4 = α

−
n,2.

• If n ∈ E3, all the eight u-amplitudes α±n,i are distinct and nontrivial.

If n < E, all the u-amplitudes α±n,i, whenever defined, are trivial. In particular, the only two allowed
amplitudes are α+n,1 = α

−
n,1 = 0. �

Figure 2. The u-amplitudes α±n,i for a fixed n ∈ N.

We are now in a position to state our main result on unimodal solutions.

Theorem 4.2. System (2.1) admits nontrivial unimodal solutions if and only if the set E is nonempty.
More precisely, for every n ∈ N, one of the following disjoint situations occurs.

• If n ∈ E1, we have exactly 2 nontrivial unimodal solutions of the form

(u, v) =

(α+n,1 en, α
+
n,1 en)

(α−n,1 en, α
−
n,1 en).

• If n ∈ E2, we have exactly 4 nontrivial unimodal solutions of the form

(u, v) =


(α+n,1 en, α

+
n,1 en)

(α−n,1 en, α
−
n,1 en)

(α+n,2 en, α
−
n,2 en)

(α−n,2 en, α
+
n,2 en).
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• If n ∈ E3, we have exactly 8 nontrivial unimodal solutions of the form

(u, v) =



(α+n,1 en, α
+
n,1 en)

(α−n,1 en, α
−
n,1 en)

(α+n,2 en, α
−
n,2 en)

(α−n,2 en, α
+
n,2 en)

(α+n,3 en, α
−
n,4 en)

(α−n,3 en, α
+
n,4 en)

(α+n,4 en, α
−
n,3 en)

(α−n,4 en, α
+
n,3 en).

• If n < E, all the unimodal solutions involving the eigenvector en are trivial.

In summary, system (2.1) admits 2|E1| + 4|E2| + 8|E3| nontrivial unimodal solutions.

Proof. Let us look for nontrivial solutions (u, v) of the form (4.1). Choosing ϕ = ψ = en in the weak
formulation (2.3) and recalling (3.4), we obtain the systemλ2

nαn + (β + ϱλnα
2
n)λnαn + k(αn − γn) = 0,

λ2
nγn + (β + ϱλnγ

2
n)λnγn − k(αn − γn) = 0,

which, setting

ηn = 1 +
β

λn
+

k
λ2

n
and ωn =

λ2
n

k
,

can be rewritten as γn = ωnαn(ηn + ϱα
2
n),

αn = ωnγn(ηn + ϱγ
2
n).

(4.3)

Solving with respect to αn, we arrive at the nine-order equation

αn(ϱ4α8
nω

4
n + 3ϱ3α6

nω
4
nηn + 3ϱ2α4

nω
4
nη

2
n + ϱα

2
nω

4
nη

3
n + ϱα

2
nω

2
nηn + ω

2
nη

2
n − 1) = 0.

If αn = 0 the solution is trivial (since in this case also γn is zero). Otherwise, introducing the auxiliary
variable

xn = ωn(ηn + ϱα
2
n),

we end up with
(x2

n − 1)(x2
n − xnωnηn + 1) = 0.

Making use of the relations 
ωnηn = −

λn

k
( − β + µn − νn − λn

)
,

ω2
nη

2
n − 4 =

λ2
n

k2

(
β + λn + µn − νn

)
(β + νn),

(4.4)

one can easily realize that the solutions are the u-amplitudes α±n,i given by (4.2). Hence, according to
Lemma 4.1, we have exactly
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• 2 distinct nontrivial solutions {α±n,1} for every n ∈ E1;
• 4 distinct nontrivial solutions {α±n,1, α±n,2} for every n ∈ E2;
• 8 distinct nontrivial solutions {α±n,1, α±n,2, α±n,3, α±n,4} for every n ∈ E3.

By the same token, when n < E, we have only the trivial solution. We are left to find the explicit values
γ±n,i, which can be obtained from (4.3). To this end, it is apparent to see thatγ

±
n,1 = α

±
n,1,

γ±n,2 = α
∓
n,2.

Moreover, invoking (4.4) and observing that the product ωnηn is negative when n ∈ E3,

γ±n,3 = ±
√

k
(
ωnηn +

√
ω2

nη
2
n − 4

)
2

√
−ωnηn +

√
ω2

nη
2
n − 4

2ϱλ2
n

= ∓
√

k

√
−ωnηn −

√
ω2

nη
2
n − 4

2ϱλ2
n

= α∓n,4,

and

γ±n,4 = = ±
√

k
(
ωnηn −

√
ω2

nη
2
n − 4

)
2

√
−ωnηn −

√
ω2

nη
2
n − 4

2ϱλ2
n

= ∓
√

k

√
−ωnηn +

√
ω2

nη
2
n − 4

2ϱλ2
n

= α∓n,3.

The theorem is proved. �

5. Equidistributed Energy Solutions

In order to investigate the existence of solutions to system (2.1) which are not necessarily unimodal,
we begin to analyze a particular but still very interesting situation.

Definition 5.1. A nontrivial solution (u, v) is called an equidistributed energy solution (ee-solution for
brevity) if

∥u∥1 = ∥v∥1 ⇔ Cu = Cv. (5.1)

At first glance, this condition might look restrictive. Though, as we will see in the next two lemmas,
ee-solutions are in fact quite general. In particular, they pop up whenever a mode of u is equal or
opposite to the corresponding mode of v.

Lemma 5.2. With reference to (3.3), if

αniαn j = ±γniγn j , 0

for some (possibly coinciding) ni, n j, then (u, v) is an ee-solution. In particular, this is the case when§

|αni | = |γni | , 0

for some ni.
§In fact, we will implicitly show in our analysis that the latter condition is necessary as well in order to have ee-solutions.
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Proof. Let ni, n j be such that
αniαn j = ±γniγn j , 0.

Choosing ϕ = ψ = eni in the weak formulation (2.3), we obtainλ2
ni
αni +Cuλniαni + k(αni − γni) = 0,

λ2
ni
γni +Cvλniγni − k(αni − γni) = 0,

(5.2)

while, choosing ϕ = ψ = en j , we getλ2
n j
αn j +Cuλn jαn j + k(αn j − γn j) = 0,

λ2
n j
γn j +Cvλn jγn j − k(αn j − γn j) = 0.

(5.3)

Then, from (5.2), 
Cu = −λni −

k(αni − γni)
λniαni

,

Cv = −λni +
k(αni − γni)
λniγni

.

These expressions, substituted into (5.3), yieldλ2
n j
λniαniαn j − λ2

ni
λn jαniαn j − kλn jαn j(αni − γni) + kλniαni(αn j − γn j) = 0,

λ2
n j
λniγniγn j − λ2

ni
λn jγniγn j + kλn jγn j(αni − γni) − kλniγni(αn j − γn j) = 0.

If
αniαn j = γniγn j , 0,

subtracting the two equations of the system above we readily find

|αni | = |γni |.
On the other hand, if

αniαn j = −γniγn j , 0,

(implying ni , n j), adding the two equations of the system we still conclude that

|αni | = |γni |.
At this point, an exploitation of (5.2) gives Cu = Cv. �

Lemma 5.3. With reference to (3.3), if

αniγn j = αn jγni , 0

for some ni , n j, then (u, v) is an ee-solution.

Proof. By assumption, there exists ϖ , 0 such that

αni = ϖγni and αn j = ϖγn j .

Due to Lemma 5.2, to reach the conclusion it is sufficient to show that ϖ = −1. If not, exploiting (3.5),

λni = −
Cuαni +Cvγni

αni + γni

= −Cuϖ +Cv

ϖ + 1
= −

Cuαn j +Cvγn j

αn j + γn j

= λn j ,

yielding a contradiction. �

We now proceed with a detailed description of the class of ee-solutions.
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5.1. The unimodal case

The unimodal solutions have been already classified in the previous section. In particular, from
Theorem 4.2 we learn that all unimodal solutions, except the ones involving the u-amplitudes α±n,3 and
α±n,4 arising from the further bifurcation at νn = −β, are in fact ee-solutions. That is, system (2.1) admits

2|E1| + 4|E2| + 4|E3|

unimodal ee-solutions, explicitly computed.

5.2. The bimodal case

In order to classify the bimodal ee-solutions, we introduce the (disjoint and possibly empty) subsets
of E × E

B1 = {(n1, n2) : n1 < n2, λn1 + λn2 < −β and λn1λn2 = 2k}

and
B2 = {(n1, n2) : n1 < n2, λn2 < −β and λn1(λn2 − λn1) = 2k}.

Then, setting
B = B1 ∪ B2,

we have the following result.

Theorem 5.4. System (2.1) admits bimodal ee-solutions if and only if the set B is nonempty. More
precisely, for every couple (n1, n2) ∈ N×N with n1 < n2, one of the following disjoint situations occurs.

• If (n1, n2) ∈ B1, we have exactly the (infinitely many) solutions of the formu = xen1 + yen2 ,

v = −xen1 − yen2 ,

for all (x, y) ∈ R2 satisfying the equality

ϱx2λn1 + ϱy2λn2 + λn1 + λn2 + β = 0 with xy , 0.

• If (n1, n2) ∈ B2, we have exactly the (infinitely many) solutions of the formu = xen1 + yen2 ,

v = −xen1 + yen2 ,

for all (x, y) ∈ R2 satisfying the equality

ϱx2λn1 + ϱy2λn2 + λn2 + β = 0 with xy , 0.

• If (n1, n2) < B, there are no bimodal ee-solutions involving the eigenvectors en1 and en2 .
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Proof. Let us look for bimodal ee-solutions (u, v) of the formu = αn1en1 + αn2en2 ,

v = γn1en1 + γn2en2 ,

with n1 < n2 ∈ N and αni , γni ∈ R \ {0}. Choosing ϕ = ψ = en1 in the weak formulation (2.3), we obtainλ2
n1
αn1 +Cuλn1αn1 + k(αn1 − γn1) = 0,

λ2
n1
γn1 +Cvλn1γn1 − k(αn1 − γn1) = 0,

while, choosing ϕ = ψ = en2 , we getλ2
n2
αn2 +Cuλn2αn2 + k(αn2 − γn2) = 0,

λ2
n2
γn2 +Cvλn2γn2 − k(αn2 − γn2) = 0.

Since we require Cu = Cv, we infer that

Cu = −λn1 −
k(αn1 − γn1)
λn1αn1

, (5.4)

Cu = −λn1 +
k(αn1 − γn1)
λn1γn1

, (5.5)

Cu = −λn2 −
k(αn2 − γn2)
λn2αn2

, (5.6)

Cu = −λn2 +
k(αn2 − γn2)
λn2γn2

. (5.7)

At this point, we shall distinguish three cases.
⋄When γn1 + αn1 = 0,

γn2 + αn2 = 0,

equations (5.4)-(5.7) reduce to λn1Cu = −λ2
n1
− 2k,

λn2Cu = −λ2
n2
− 2k,

implying
λn1λn2 = 2k.

Moreover, the value Cu is determined by (3.4), which provides the equality

ϱα2
n1
λn1 + ϱα

2
n2
λn2 + λn1 + λn2 + β = 0.

Hence, there exist bimodal ee-solutions (explicitly computed) if and only if the pair (n1, n2) ∈ B1.
⋄When γn1 + αn1 = 0,

γn2 + αn2 , 0,
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we take the difference of (5.7) and (5.6), establishing the identity

γn2 = αn2 .

Thus, equations (5.4)-(5.7) reduce to λn1Cu = −λ2
n1
− 2k,

Cu = −λn2 ,

implying
λn1(λn2 − λn1) = 2k.

Again, the value Cu is determined by (3.4), which gives

ϱα2
n1
λn1 + ϱα

2
n2
λn2 + λn2 + β = 0.

Hence, there exist bimodal ee-solutions (explicitly computed) if and only if the pair (n1, n2) ∈ B2.

⋄We show that the remaining case
γn1 + αn1 , 0

is impossible. Indeed, taking the difference of (5.5) and (5.4), we find

γn1 = αn1 .

If γn2 + αn2 = 0, from (5.4) and (5.6) we conclude that

0 < 2k = λn2(λn1 − λn2) < 0,

yielding a contradiction. On the other hand, if γn2 + αn2 , 0, we learn once more that

γn2 = αn2 .

But in this situation, equations (5.4) and (5.6) lead to λn1 = λn2 , and the sought contradiction follows.
�

5.3. The trimodal case

Finally, we classify the trimodal ee-solutions. To this end, we consider the (possibly empty) subset
of E × E × E

T = {(n1, n2, n3) : n1 < n2 < n3, λn3 < −β and λn1(λn3 − λn1) = λn2(λn3 − λn2) = 2k}.

The result reads as follows.

Theorem 5.5. System (2.1) admits trimodal ee-solutions if and only if the set T is nonempty. More
precisely, for every triplet (n1, n2, n3) ∈ N × N × N with n1 < n2 < n3, one of the following disjoint
situations occurs.
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• If (n1, n2, n3) ∈ T, we have exactly the (infinitely many) solutions of the formu = xen1 + yen2 + zen3 ,

v = −xen1 − yen2 + zen3 ,

for all (x, y, z) ∈ R3 satisfying the equality

ϱx2λn1 + ϱy2λn2 + ϱz2λn3 + λn3 + β = 0 with xyz , 0.

• If (n1, n2, n3) < T, there are no trimodal ee-solutions involving the eigenvectors en1 , en2 , en3 .

Proof. The argument goes along the same lines of Theorem 5.4. For this reason, we limit ourselves to
give a short (albeit complete) proof, leaving the verification of some calculations to the reader.

As customary, let us look for trimodal ee-solutions (u, v) of the formu = αn1en1 + αn2en2 + αn3en3 ,

v = γn1en1 + γn2en2 + γn3en3 ,

with n1 < n2 < n3 ∈ N and αni , γni ∈ R \ {0}. Accordingly, from the weak formulation (2.3), choosing
first ϕ = ψ = en1 , then ϕ = ψ = en2 , and finally ϕ = ψ = en3 , we obtain the six equations

Cu = −λn1 −
k(αn1 − γn1)
λn1αn1

,

Cu = −λn1 +
k(αn1 − γn1)
λn1γn1

,

Cu = −λn2 −
k(αn2 − γn2)
λn2αn2

,

Cu = −λn2 +
k(αn2 − γn2)
λn2γn2

,

Cu = −λn3 −
k(αn3 − γn3)
λn3αn3

,

Cu = −λn3 +
k(αn3 − γn3)
λn3γn3

,

(5.8)

where the condition Cu = Cv has been used. The next step is to show that
γn1 + αn1 = 0,
γn2 + αn2 = 0,
γn3 + αn3 , 0,

(5.9)

being the remaining cases impossible. To prove the claim, the argument is similar to the one of Theo-
rem 5.4. For instance, assuming 

γn1 + αn1 = 0,
γn2 + αn2 = 0,
γn3 + αn3 = 0,
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system (5.8) reduces to 
λn1Cu = −λ2

n1
− 2k,

λn2Cu = −λ2
n2
− 2k,

λn3Cu = −λ2
n3
− 2k,

forcing
2k = λn1λn2 = λn2λn3

and yielding a contradiction. The other cases can be carried out analogously; the details are left to the
reader. Within (5.9), we take the difference of the last two equations of (5.8), and we obtain

γn3 = αn3 .

Thus, system (5.8) turns into 
λn1Cu = −λ2

n1
− 2k,

λn2Cu = −λ2
n2
− 2k,

Cu = −λn3 ,

implying
λn1(λn3 − λn1) = λn2(λn3 − λn2) = 2k.

Moreover, the value Cu is determined by (3.4), which provides the equality

ϱα2
n1
λn1 + ϱα

2
n2
λn2 + ϱα

2
n3
λn3 + λn3 + β = 0.

Hence, there exist trimodal ee-solutions (explicitly computed) if and only if the triplet (n1, n2, n3) ∈
T. �

Corollary 5.6. Let (u, v) be a trimodal ee-solution. Then, with reference to (3.3), if n1 < n2 < n3 the
eigenvalues λn1 , λn2 , λn3 fulfill the relation

λn1 + λn2 = λn3 .

Proof. In the light of Theorem 5.5, we know that (n1, n2, n3) ∈ T. In particular,

λn1(λn3 − λn1) = λn2(λn3 − λn2).

Since λn1 , λn2 , the conclusion follows. �

6. General Bimodal Solutions

In this section, we investigate the existence of general (not necessarily equidistributed) bimodal solu-
tions to system (2.1). First, specializing Lemmas 5.2 and 5.3, we obtain

Theorem 6.1. Let (u, v) be a bimodal solution. With reference to (3.3), if

• |αn1 | = |γn1 | , 0, or
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• |αn2 | = |γn2 | , 0, or
• αn1αn2 = ±γn1γn2 , 0, or
• αn1γn2 = αn2γn1 , 0,

then (u, v) is an ee-solution.

Even if Theorem 6.1 somehow tells that a bimodal solution is likely to be an ee-solution, it is
possible to have bimodal solutions of not equidistributed energy. Indeed, the complete picture will be
given in the next Theorem 6.8 of §6.4. Some preparatory work is needed.

6.1. Technical lemmas

In what follows, (n1, n2) ∈ N × N is an arbitrary, but fixed, pair of natural numbers, with n1 < n2.
We will introduce several quantities depending on (n1, n2). Setting

ζ = ζ(n1, n2) =
λn2

λn1

> 1, (6.1)

and
σ = σ(n1, n2) =

k − λn1λn2

k
∈ R, (6.2)

we consider the real numbers (defined whenever σ , 0)

Φ = Φ(n1, n2) =
(ζ + 1) + (ζ − 1)σ2

σζ
,

and

Ψ = Ψ(n1, n2) =
(ζ + 1) − (ζ − 1)σ2

σ
.

By direct computations, we have the identity

Φ2ζ2 − Ψ2 = 4(ζ2 − 1),

which, in turn, yields

(Φ2 − 4)ζ2 = Ψ2 − 4 =
(ζ − 1)2σ4 − 2(ζ2 + 1)σ2 + (ζ + 1)2

σ2 . (6.3)

This relation will be useful later. Then, we introduce the real numbers (whenever defined)

X = X(n1, n2) =
Φ +
√
Φ2 − 4
2

,

Y = Y(n1, n2) =
Φ −
√
Φ2 − 4
2

,

W = W(n1, n2) =
Ψ +
√
Ψ2 − 4
2

,

Z = Z(n1, n2) =
Ψ −
√
Ψ2 − 4
2

.
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Lemma 6.2. The following are equivalent.

• At least one of the numbers X,Y,W,Z belongs to R.
• All the numbers X,Y,W,Z belong to R.
• λn1λn2 ∈ (0, 2k] \ {k} or λn1(λn2 − λn1) ∈ [2k,∞).

Proof. It is apparent to see that

X ∈ R ⇔ Φ2 ≥ 4 ⇔ Y ∈ R,

and
W ∈ R ⇔ Ψ2 ≥ 4 ⇔ Z ∈ R.

Moreover, in the light of (6.3),
Φ2 ≥ 4 ⇔ Ψ2 ≥ 4.

Therefore, in order to reach the conclusion, it is sufficient to show that

Ψ2 ≥ 4 ⇔ λn1λn2 ∈ (0, 2k] \ {k} or λn1(λn2 − λn1) ∈ [2k,∞).

To this end, exploiting (6.3),

Ψ2 ≥ 4 ⇔
λn1λn2 , k,

(ζ − 1)2σ4 − 2(ζ2 + 1)σ2 + (ζ + 1)2 ≥ 0.

Making use of the trivial inequality σ < 1, one can verify by elementary calculations that

(ζ − 1)2σ4 − 2(ζ2 + 1)σ2 + (ζ + 1)2 ≥ 0

if and only if

σ ∈ ( −∞, ζ + 1
1 − ζ

]
∪ [−1, 1).

Since
σ ∈ ( −∞, ζ + 1

1 − ζ

]
⇔ λn1(λn2 − λn1) ∈ [2k,∞),

and
σ ∈ [−1, 1) ⇔ λn1λn2 ∈ (0, 2k] \ {k},

the proof is finished. �

Lemma 6.3. The following are equivalent.

• X = Y.
• W = Z.
• λn1λn2 = 2k or λn1(λn2 − λn1) = 2k.

The argument goes along the same lines of Lemma 6.2 (actually, it is even simpler). For this reason,
the proof is omitted and left to the reader.

At this point, we state a simple but crucial identity, which follows immediately from (6.3) and the
definitions of the numbers ζ,Φ,Ψ, X,Y,W, Z.
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Lemma 6.4. We have the equality

ζX −W = ζY − Z = (ζ − 1)σ, (6.4)

provided that the expressions above are well-defined.

6.2. The numbers m andM

A crucial role in our analysis will be played by the following two real numbers (again, defined
whenever σ , 0)

m = m(n1, n2) =
k2 + kλn2(λn2 − λn1) + λ

2
n1
λ2

n2

(λn1λn2 − k)λn2

, (6.5)

and

M = M(n1, n2) =
k2 − kλn1(λn2 − λn1) + λ

2
n1
λ2

n2

(λn1λn2 − k)λn1

. (6.6)

In particular, it is immediate to verify that

σ < 0 ⇒ M > m > 0.

Such numbers can be written in several different ways as functions of X,Y,W,Z. To see that, we will
exploit the relations 

XY = 1,
X + Y = Φ,

WZ = 1,
W + Z = Ψ,

(6.7)

valid whenever X,Y,W,Z ∈ R. Then, setting

f = f (n1, n2) =
kX − λ2

n1
− k

λn1

,

g = g(n1, n2) =
kY − λ2

n1
− k

λn1

,

and making use of (6.4), it is easy to prove that
f =

kW − λ2
n2
− k

λn2

,

g =
kZ − λ2

n2
− k

λn2

.

(6.8)

Lemma 6.5. We have the equalities

m = −g − kW2(X − Y)
λn1(W2 − 1)

= −g − k(X − Y)
λn1(1 − Z2)

,

and

M = −g − kX2(X − Y)
λn1(X2 − 1)

= −g − k(X − Y)
λn1(1 − Y2)

,

provided that the expressions above are well-defined.
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Proof. Exploiting (6.7), we obtain the identities

W2

W2 − 1
=

W
W − Z

=
1

1 − Z2 ,

X2

X2 − 1
=

X
X − Y

=
1

1 − Y2 .

Thus, in order to complete the proof, it is sufficient to show that

−m = g +
kW2(X − Y)
λn1(W2 − 1)

,

and

−M = g +
kX2(X − Y)
λn1(X2 − 1)

.

To this end, in the light of (6.4), (6.7), (6.8) and the definitions of ζ, σ,Ψ, g, we compute

g +
kW2(X − Y)
λn1(W2 − 1)

=
kY − λ2

n1
− k

λn1

+
kW2(X − Y)
λn1(W2 − 1)

=
kZ − λ2

n2
− k

λn2

+
kW2(W − Z)
λn2(W2 − 1)

=
kZ − λ2

n2
− k

λn2

+
kW
λn2

=
kΨ − λ2

n2
− k

λn2

=
kζ − kσ2ζ + kσ2 − σλ2

n2
+ λn1λn2

σλn2

=
(k − λn1λn2)

2 + kλ2
n2
+ kλn1λn2

σkλn2

= −m,

while, making use of (6.7), along with the definitions of ζ, σ,Φ, g, we have

g +
kX2(X − Y)
λn1(X2 − 1)

=
kY − λ2

n1
− k

λn1

+
kX
λn1

=
kΦ − λ2

n1
− k

λn1

=
k + kσ2ζ − kσ2 − σλn1λn2 + λ

2
n2

σλn1ζ

=
(k − λn1λn2)

2 + kλ2
n1
+ kλn2λn1

σkλn1

= −M.

The lemma is proved. �
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6.3. The circle-ellipse systems

We need to investigate the solvability of the circle-ellipse systemsϱr2λn1 + ϱt2λn2 + β = f ,

ϱr2λn1 X2 + ϱt2λn2W
2 + β = g,

(6.9)

and ϱr2λn1 + ϱt2λn2 + β = g,

ϱr2λn1Y
2 + ϱt2λn2Z

2 + β = f ,
(6.10)

in the unknowns r and t.

Lemma 6.6. The following hold.

• Let λn1λn2 ∈ (0, k). Then neither system (6.9) nor (6.10) admit real solutions.

• Let λn1λn2 ∈ (k, 2k). Then system (6.9) admits real solutions (r, t) with rt , 0 if and only if the
same does (6.10), if and only if

m < −β < M.

In which case, system (6.9) admits exactly four distinct real solutions, and the same does (6.10).
Besides, they do not share any solution.

• Let λn1(λn2 − λn1) ∈ (2k,∞). Then system (6.9) admits real solutions (r, t) with rt , 0 if and only
if the same does (6.10), if and only if

M < −β.

In which case, system (6.9) admits exactly four distinct real solutions, and the same does (6.10).
Besides, they do not share any solution.

Proof. We first observe that systems (6.9) and (6.10) do not share any solution. Indeed, if it were so,
we would have f = g (meaning that X = Y) and therefore, in the light of Lemma 6.3,

λn1λn2 = 2k or λn1(λn2 − λn1) = 2k.

Then, setting s =
√
ζt, we can rewrite (6.9) and (6.10) asr2 + s2 = F,

X2r2 +W2s2 = G,
(6.11)

and r2 + s2 = G,

Y2r2 + Z2s2 = F,
(6.12)

where

F =
f − β
ϱλn1

and G =
g − β
ϱλn1

.
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In particular, calling

ν =
k(X − Y)
ϱλ2

n1

≥ 0,

we have the equality
F = G + ν. (6.13)

Systems (6.11) and (6.12) represent the intersection between a circle and an ellipse, both centered at
the origin. Therefore, real solutions (r, s) with rs , 0 exist if and only if the radius of the circle is
strictly greater than the minor semi-axis of the ellipse and strictly smaller than the major semi-axis of
the ellipse. In such a case, there are exactly four distinct solutions. We shall distinguish three cases.

⋄ Case 1: λn1λn2 ∈ (0, k). By direct computations, one can easily see that

Ψ > Φ > 2,

implying
W > X > 1 > Y > Z > 0.

In particular, the number ν is strictly positive. As a consequence, in the light of the discussion above
and (6.13), system (6.11) admits real solutions (r, s) with rs , 0 if and only if

G
W2 < G + ν <

G
X2 .

Being X2 > 1, it is apparent to see that the relation above is impossible. Analogously, system (6.12)
admits real solutions (r, s) with rs , 0 if and only if

G + ν
Y2 < G <

G + ν
Z2 .

Again, being Y2 < 1, the relation is impossible. In conclusion, neither system (6.11) nor (6.12) admit
real solutions.

⋄ Case 2: λn1λn2 ∈ (k, 2k). By direct computations, one can easily see that

Ψ < Φ < −2,

implying
Z < Y < −1 < X < W < 0.

Analogously to the previous case, we infer that system (6.11) admits real solutions (r, s) with rs , 0 if
and only if

G
X2 < G + ν <

G
W2 .

Being W2 < 1 and X2 < 1, in the light of Lemma 6.5 we get

m = −g − kW2(X − Y)
λn1(W2 − 1)

< −β < −g − kX2(X − Y)
λn1(X2 − 1)

= M.
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Moreover, system (6.12) admits real solutions (r, s) with rs , 0 if and only if

G + ν
Z2 < G <

G + ν
Y2 .

Being Z2 > 1 and Y2 > 1, invoking Lemma 6.5 we conclude that

m = −g − k(X − Y)
λn1(1 − Z2)

< −β < −g − k(X − Y)
λn1(1 − Y2)

= M.

⋄ Case 3: λn1(λn2 − λn1) ∈ (2k,∞). By direct computations, one can easily see that

Φ < −2 and Ψ > 2,

implying
Y < −1 < X < 0 < Z < 1 < W.

Arguing as in the previous cases, system (6.11) admits real solutions (r, s) with rs , 0 if and only if

G
W2 < G + ν <

G
X2 .

Since W2 > 1, the relation above reduces to

G + ν <
G
X2 .

Being X2 < 1, making use of Lemma 6.5 we end up with

M = −g − kX2(X − Y)
λn1(X2 − 1)

< −β.

On the other hand, system (6.12) admits real solutions (r, s) with rs , 0 if and only if

G + ν
Y2 < G <

G + ν
Z2 .

Again, since 0 < Z2 < 1, the relation above reduces to

G + ν
Y2 < G.

Being Y2 > 1, an exploitation of Lemma 6.5 leads to

M = −g − k(X − Y)
λn1(1 − Y2)

< −β.

The proof is finished. �
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6.4. Classification of general bimodal solutions

In order to classify the general bimodal solutions, we introduce the (disjoint and possibly empty)
subsets of N × N, with m andM given by (6.5) and (6.6),

B⋆1 =
{
(n1, n2) : n1 < n2, m < −β < M and λn1λn2 ∈ (k, 2k)

}
,

and
B⋆2 =

{
(n1, n2) : n1 < n2, M < −β and λn1(λn2 − λn1) ∈ (2k,∞)

}
,

and we set
B⋆ = B⋆1 ∪ B⋆2 .

Lemma 6.7. We have the inclusion B⋆ ⊂ E × E. In particular, B⋆ has finite cardinality.

Proof. By means of elementary computations, one can easily verify that the following implications
hold:

λn1λn2 ∈ (k, 2k) ⇒ λn2 < m,

λn1(λn2 − λn1) ∈ (2k,∞) ⇒ λn2 < M.

Therefore, by the very definitions of B⋆ and E,

(n1, n2) ∈ B⋆ ⇒ (n1, n2) ∈ E × E,

as claimed. �

We have now all the ingredients to state our main theorem.

Theorem 6.8. System (2.1) admits bimodal solutions of not equidistributed energy if and only if the set
B⋆ is nonempty. More precisely, for every couple (n1, n2) ∈ N × N with n1 < n2, one of the following
disjoint situations occurs.

• If (n1, n2) ∈ B⋆, we have exactly 8 distinct bimodal solutions of not equidistributed energy: 4 of
the form u = ren1 + ten2 ,

v = rXen1 + tWen2 ,

where r, t solve system (6.9), and 4 of the formu = ren1 + ten2 ,

v = rYen1 + tZen2 ,

where r, t solve system (6.10).
• If (n1, n2) < B⋆, there are no bimodal solutions of not equidistributed energy involving the eigen-

vectors en1 and en2 .

In summary, system (2.1) admits 8|B⋆| bimodal solutions of not equidistributed energy.
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Proof. Let us look for bimodal solutions of not equidistributed energy (u, v) of the formu = αn1en1 + αn2en2 ,

v = γn1en1 + γn2en2 ,

with n1 < n2 ∈ N and αni , γni ∈ R \ {0}.
⋄ Step 1. We preliminarily show that

λn1λn2 ∈ (0, 2k) \ {k} or λn1(λn2 − λn1) ∈ (2k,∞). (6.14)

To this end, with reference to the weak formulation (2.3), choosing first ϕ = ψ = en1 and then ϕ = ψ =
en2 , we obtain the system 

αn1(λ
2
n1
+Cuλn1 + k) = kγn1 ,

γn1(λ
2
n1
+Cvλn1 + k) = kαn1 ,

αn2(λ
2
n2
+Cuλn2 + k) = kγn2 ,

γn2(λ
2
n2
+Cvλn2 + k) = kαn2 .

(6.15)

Next, setting 

xn1 =
λ2

n1
+Cuλn1 + k

k
,

yn1 =
λ2

n1
+Cvλn1 + k

k
,

xn2 =
λ2

n2
+Cuλn2 + k

k
,

yn2 =
λ2

n2
+Cvλn2 + k

k
,

(6.16)

we get 
xn1yn1 = 1,

xn2yn2 = 1,

ζxn1 − (ζ − 1)σ = xn2 ,

ζyn1 − (ζ − 1)σ = yn2 .

Observe that σ , 0, otherwise 
xn1yn1 = 1,

xn2yn2 = 1,

ζxn1 = xn2 ,

ζyn1 = yn2 ,

yielding ζ2 = 1 and contradicting the assumption n1 < n2. Therefore, we obtain

xn1yn1 = 1, (6.17)
xn1 + yn1 = Φ, (6.18)
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xn2yn2 = 1, (6.19)
xn2 + yn2 = Ψ. (6.20)

Clearly, the solutions are given by the four quadruplets

(X,Y,W,Z),
(X,Y,Z,W),
(Y, X,W,Z),
(Y, X,Z,W).

Since at least one (hence all) of the quadruplets has to have real components, making use of Lemma
6.2 we infer that

λn1λn2 ∈ (0, 2k] \ {k} or λn1(λn2 − λn1) ∈ [2k,∞).

In addition, due to the fact that (u, v) does not have equidistributed energy,

Cu , Cv ⇒ xn1 , yn1 .

Thus, an exploitation of Lemma 6.3 yieldsλn1λn2 , 2k,

λn1(λn2 − λn1) , 2k,

and (6.14) follows.

⋄ Step 2. We now prove that, within (6.14), the coefficients αn1 and αn2 are solutions of system (6.9) or
(6.10). Indeed, from (6.16) and recalling the definitions of f and g, four possibilities occur:

Cu = f =
kW − λ2

n2
− k

λn2

,

Cv = g =
kZ − λ2

n2
− k

λn2

,

(6.21)

or 
Cu = f =

kZ − λ2
n2
− k

λn2

,

Cv = g =
kW − λ2

n2
− k

λn2

,

(6.22)

or 
Cu = g =

kW − λ2
n2
− k

λn2

,

Cv = f =
kZ − λ2

n2
− k

λn2

,

(6.23)
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or 
Cu = g =

kZ − λ2
n2
− k

λn2

,

Cv = f =
kW − λ2

n2
− k

λn2

.

(6.24)

At this point, exploiting (6.14) and Lemma 6.3, we learn that W , Z. As a consequence, taking into
account (6.8), we conclude that only systems (6.21) and (6.24) survive. Recalling the explicit forms of
Cu and Cv given by (3.4), we remain withϱα2

n1
λn1 + ϱα

2
n2
λn2 + β = f ,

ϱγ2
n1
λn1 + ϱγ

2
n2
λn2 + β = g,

and ϱα2
n1
λn1 + ϱα

2
n2
λn2 + β = g,

ϱγ2
n1
λn1 + ϱγ

2
n2
λn2 + β = f .

Finally, due to (6.15), in the first case we infer thatγn1 = Xαn1 ,

γn2 = Wαn2 ,

while in the second one γn1 = Yαn1 ,

γn2 = Zαn2 .

⋄ Step 3. Collecting Steps 1-2 and Lemma 6.6, there exist bimodal solutions of not equidistributed
energy (explicitly computed) if and only if the couple (n1, n2) ∈ B⋆. �

6.5. Two explicit examples

We conclude by showing two explicit examples of bimodal solutions of not equidistributed energy.
In what follows, in order to avoid the presence of unnecessary constants, we take for simplicity ϱ = 1,
and we choose

A =
1
π2 L,

being L the Laplace-Dirichlet operator of the concrete Example 2.2. Accordingly, the eigenvalues of A
read

λn = n2,

with corresponding eigenvectors
en(x) =

√
2 sin(nπx).

Example 6.9. Let
k = 3 and (n1, n2) = (1, 2).

In this situation, an easy computation shows that

X = −2 +
√

3,
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Y = −2 −
√

3,

W = −7 + 4
√

3,

Z = −7 − 4
√

3,

and
m =

61
4
< 16 = M.

Accordingly, if β is such that
61
4
< −β < 16,

the couple (n1, n2) belongs to B⋆1 . Hence, there exist four solutions of the formu = α1e1 + α2e2,

v = (
√

3 − 2)α1e1 + (4
√

3 − 7)α2e2,

where α1, α2 ∈ R solve the systemα
2
1 + 4α2

2 = 3
√

3 − 10 − β,
α2

1(
√

3 − 2)2 + 4α2
2(4
√

3 − 7)2 = −3
√

3 − 10 − β,
(6.25)

and four solutions of the formu = α1e1 + α2e2,

v = −(
√

3 + 2)α1e1 − (4
√

3 + 7)α2e2,

where α1, α2 ∈ R solve the systemα
2
1 + 4α2

2 = −3
√

3 − 10 − β,
α2

1(
√

3 + 2)2 + 4α2
2(4
√

3 + 7)2 = 3
√

3 − 10 − β.
(6.26)

For instance, when β = −31/2, the solutions of system (6.25) are

(±α1,±α2) and (±α1,∓α2),

with

α1 = −

√
7
√

3 − 12

26
√

3 − 45
≈ −1.93185,

α2 = −
1
2

√
362
√

3 − 627

2(5042
√

3 − 8733)
≈ −1.31948,

while the solutions of system (6.26) are

(±α1,±α2) and (±α1,∓α2),
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with

α1 = −

√
7
√

3 + 12

26
√

3 + 45
≈ −0.51763,

α2 = −
1
2

√
362
√

3 + 627

2(5042
√

3 + 8733)
≈ −0.09473.

Example 6.10. Let
k = 1 and (n1, n2) = (1, 2).

In this situation, an easy computation shows that

X =
−4 +

√
7

3
,

Y =
−4 −

√
7

3
,

W =
11 + 4

√
7

3
,

Z =
11 − 4

√
7

3
,

and
M =

14
3
.

Accordingly, if β is such that
14
3
< −β,

the couple (n1, n2) belongs to B⋆2 . Hence, there exist four solutions of the form
u = α1e1 + α2e2,

v =

√
7 − 4
3

α1e1 +
4
√

7 + 11
3

α2e2,

where α1, α2 ∈ R solve the system
α2

1 + 4α2
2 =

√
7 − 4
3

− 2 − β,

α2
1

( √7 − 4
3

)2
+ 4α2

2

(4
√

7 + 11
3

)2
= −4 +

√
7

3
− 2 − β,

(6.27)

and four solutions of the form 
u = α1e1 + α2e2,

v = −4 +
√

7
3

α1e1 +
11 − 4

√
7

3
α2e2,
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where α1, α2 ∈ R solve the system
α2

1 + 4α2
2 = −

4 +
√

7
3

− 2 − β,

α2
1

(4 +
√

7
3

)2
+ 4α2

2

(11 − 4
√

7
3

)2
=

√
7 − 4
3

− 2 − β.
(6.28)

For instance, when β = −5, the solutions of system (6.27) are

(±α1,±α2) and (±α1,∓α2),

with

α1 = −
1
3

√
31(28 + 11

√
7)

35 + 16
√

7
≈ −1.59482,

α2 = −
1
6

√
883 + 316

√
7

18011 + 6808
√

7
≈ −0.03587,

while the solutions of system (6.28) are

(±α1,±α2) and (±α1,∓α2),

with

α1 = −
1
3

√
31(11

√
7 − 28)

16
√

7 − 35
≈ −0.71992,

α2 = −
1
6

√
316
√

7 − 883

6808
√

7 − 18011
≈ −0.25809.

7. General Trimodal Solutions

Finally, we consider general trimodal solutions to system (2.1). As previously shown, trimodal ee-
solutions exist. Then, one might ask if system (2.1) admits also trimodal solutions of not equidis-
tributed energy. The answer to this question is negative.

Theorem 7.1. Every trimodal solution is necessarily an ee-solution.

Proof. Let (u, v) be a (general) trimodal solution. In particular, with reference to (3.3), αni , 0 and
γni , 0 for every ni. Assume by contradiction that (u, v) is not an ee-solution. Then, in the light of
Lemma 5.3, the vectors [

αn1

γn1

]
,

[
αn2

γn2

]
,

[
αn3

γn3

]
are pairwise linearly independent. Accordingly, each of them can be written as a linear combination of
the other two. In particular, there exist a, b, c, d, e, f , 0 such thatαn3 = aαn1 + bαn2 ,

γn3 = aγn1 + bγn2 ,
(7.1)
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60αn1 = cαn2 + dαn3 ,

γn1 = cγn2 + dγn3 ,
(7.2)

and αn2 = eαn1 + fαn3 ,

γn2 = eγn1 + fγn3 .
(7.3)

Moreover, due to Lemma 5.2, 
αn1 + γn1 , 0,
αn2 + γn2 , 0,
αn3 + γn3 , 0.

(7.4)

Therefore, recalling (3.5),

λn1 = −
Cuαn1 +Cvγn1

αn1 + γn1

, (7.5)

λn2 = −
Cuαn2 +Cvγn2

αn2 + γn2

, (7.6)

λn3 = −
Cuαn3 +Cvγn3

αn3 + γn3

. (7.7)

Substituting the expressions of αn3 and γn3 given by (7.1) into (7.7), we obtain the identity

[a(αn1 + γn1) + b(αn2 + γn2)]λn3 = −Cu[aαn1 + bαn2] −Cv[aγn1 + bγn2]

which, making use of (7.5)-(7.6), yields

Aλn1 + Bλn2 = (A + B)λn3 (7.8)

where
A = a(αn1 + γn1) and B = b(αn2 + γn2).

An analogous reasoning, exploiting now (7.2) and (7.3), provides the further equalities

Cλn2 + Dλn3 = (C + D)λn1 , (7.9)
Eλn1 + Fλn3 = (E + F)λn2 , (7.10)

having set

C = c(αn2 + γn2),
D = d(αn3 + γn3),
E = e(αn1 + γn1),
F = f (αn3 + γn3).

Since a, b, c, d, e, f , 0, from (7.4) we learn that A,B,C,D,E,F , 0. Then, introducing the matrix

M =


A B −(A + B)

−(C + D) C D
E −(E + F) F


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and the vector

λ =


λn1

λn2

λn3

 ,
we rewrite (7.8)-(7.10) as

Mλ = 0.

Direct calculations show that Det(M) = 0, thus Rank(M) < 3.

⋄ If Rank(M) = 2, in the light of the Rank-Nullity Theorem the solution set is a one-dimensional linear
subspace of R3, explicitly given by

Ker(M) =

λ =

λ

λ

λ

 : λ ∈ R

 .
In particular, this forces λn1 = λn2 = λn3 , implying the desired contradiction.

⋄ If Rank(M) = 1, there exists ω , 0 such thatA = ωB,

(1 + ω)C = D.

Substituting the explicit expressions of A,B,C,D into the system above

a(αn1 + γn1) = ωb(αn2 + γn2), (7.11)
c(1 + ω)(αn2 + γn2) = d(αn3 + γn3). (7.12)

Then, plugging (7.1) into (7.12) and exploiting (7.11) and (7.4),

c(1 + ω) = db(1 + ω).

Since 1 + ω , 0 (due to the fact that D , 0), we end up with

c = db.

Appealing now to (7.1) and (7.2),

(1 + da)
[
αn1

γn1

]
= 2d

[
αn3

γn3

]
,

meaning that the two vectors [
αn1

γn1

]
and

[
αn3

γn3

]
are linearly dependent. �
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Example 7.2. As a particular case, let us consider

A = L
p+1

2 , p ∈ N,

with L as in Example 2.2. In this situation, the eigenvalues read

λn = np+1πp+1.

Accordingly, given a trimodal solution (which, as we know, is necessarily an ee-solution) and exploit-
ing Corollary 5.6, we deduce the relation

np+1
1 + np+1

2 = np+1
3 .

Therefore, when p = 1, they form a Pythagorean triplet. Otherwise the identity is impossible, due
to the celebrated Fermat’s Last Theorem proved by A. Wiles in recent years [25, 28]. Hence, for
p = 2, 3, 4, . . . , trimodal solutions do not exist.

8. Comparison with Single-Beam Equations

We conclude by comparing our results on the double-beam system (2.1) with some previous achieve-
ments on extensible single-beam equations. As customary, along the section, we will set

Cu = β + ϱ∥u∥21. (8.1)

The following theorem has been proved in [8].

Theorem 8.1. The nontrivial solutions of the single-beam equation

Au +Cuu = 0

are exactly 2|E|, where, in the usual notation,

E = {n : λn < −β}

denotes the (finite) set of effective modes. Such solutions are unimodal, explicitly given by

u±n = ±
√
−β − λn

ϱλn
en,

for every n ∈ E.

Concerning the case of single beams which rely on an elastic foundation, the result reads as follows.

Theorem 8.2. The nontrivial solutions of the single-beam equation

A2u +CuAu + ku = 0 (8.2)

can be either unimodal or bimodal (but not trimodal). In addition, the following hold.
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• Equation (8.2) admits nontrivial unimodal solutions if and only if the set

F =

{
n :

k
λn
+ λn < −β

}
is nonempty. More precisely, for every n ∈ N, one of the following disjoint situations occurs.

– If n ∈ F, we have exactly 2 nontrivial unimodal solutions of the form

u±n = ±

√
1
ϱλn

(
−β − k

λn
− λn

)
en.

– If n < F all the unimodal solutions involving the eigenvector en are trivial.

• Equation (8.2) admits nontrivial bimodal solutions if and only if the set

G = {(n1, n2) : n1 < n2, λn1 + λn2 < −β and λn1λn2 = k}

is nonempty. More precisely, for every couple (n1, n2) ∈ N with n1 < n2, one of the following
disjoint situations occurs.

– If (n1, n2) ∈ G, we have exactly the (infinitely many) solutions of the form

u = xen1 + yen2 ,

for all (x, y) ∈ R2 satisfying the equality

ϱx2λn1 + ϱy2λn2 + λn1 + λn2 + β = 0 with xy , 0.

– If (n1, n2) < G, there are no nontrivial bimodal solutions involving the eigenvectors en1 and
en2 .

Theorem 8.2 has been proved in [3], in the concrete situation when A = L (the Laplace-Dirichlet
operator). We present here a short proof, which is valid even in our abstract setting.

Proof of Theorem 8.2. Let u be a weak solution¶ to (8.2). Arguing as in the proof of Lemma 3.3, that
is, writing

u =
∑

n

αnen

for some αn ∈ R, we obtain, for every n ∈ N, the identity

λ2
nαn +Cuλnαn + kαn = 0.

Hence, if αn , 0, we infer that
λ2

n +Cuλn + k = 0.
¶Analogously to (2.3), u ∈ H2 is called a weak solution to (8.2) if, for every test ϕ ∈ H2,

⟨u, ϕ⟩2 +Cu⟨u, ϕ⟩1 + k⟨u, ϕ⟩ = 0.
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Since the equation above admits at most two distinct solutions λni , we conclude that the nontrivial
solutions to equation (8.2) can be either unimodal or bimodal (but not trimodal).

First, let us look for unimodal solutions u of the form

u = αnen

for a fixed n ∈ N and some coefficient αn , 0. Analogously to the proof of Theorem 4.2, from (8.2)
we obtain

λ2
n + (β + ϱλnα

2
n)λn + k = 0,

which implies

α2
n =

1
ϱλn

(
− β − k

λn
− λn

)
.

Therefore, there exist nontrivial unimodal solutions (explicitly computed) if and only if n ∈ F.
Next, let us look for bimodal solutions u of the form

u = αn1en1 + αn2en2

with n1 < n2 ∈ N and αni ∈ R \ {0}. Similarly to the previous situation, from (8.2) we obtain the systemλ2
n1
+Cuλn1 + k = 0,

λ2
n2
+Cuλn2 + k = 0.

Hence
λn1λn2 = k

and the value Cu is determined by (8.1), which yields the relation

ϱα2
n1
λn1 + ϱα

2
n2
λn2 + λn1 + λn2 + β = 0.

Therefore, there exist nontrivial bimodal solutions (explicitly computed) if and only if (n1, n2) ∈ G. �

A closer look to Theorems 8.1 and 8.2 reveals that the set of steady states of the double-beam system
(2.1) is very rich, and by no means represents a “double-copy” of the set of stationary solutions of a
single-beam equation:

• According to §4, nonsymmetric unimodal solutions pop up, as well as unimodal solutions for
which the elastic energy is not evenly distributed. This feature is illustrated in the forthcoming
pictures∥. Moreover, not only a double series of bifurcations of the trivial solution occurs, but
even buckled unimodal solutions suffer from a further bifurcation (see Lemma 4.1 and Figure 2
of §4).

• According to §5 and §6, system (2.1) admits infinitely many bimodal and trimodal ee-solutions,
and also finitely many nonsymmetric bimodal solutions of not equidistributed energy.

∥The notation in the captions is the same as in §4.
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Figure 3. Symmetric in-phase unimodal solutions (α±1,1, α
±
1,1).

Figure 4. Symmetric out-of-phase unimodal solutions (α±1,2, α
∓
1,2).

Figure 5. Nonsymmetric out-of-phase unimodal solutions (α±1,3, α
∓
1,4).

Figure 6. Nonsymmetric out-of-phase unimodal solutions (α±1,4, α
∓
1,3).

9. Appendix: Dimensionless Models of Double-Beam Systems

Let us consider a thin and elastic Woinowsky-Krieger beam of natural length ℓ > 0, uniform cross
section Ω, and thickness 0 < h ≪ ℓ. The beam is supposed to be homogeneous, of constant mass
density ρ > 0 per unit volume, and symmetric with respect to the vertical plane (ξ-z). Hence, we can
restrict our attention to its rectangular section lying in the plane y = 0. Identifying the beam with such
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a section, we assume that its middle line at rest occupies the interval [0, ℓ] of the ξ-axis. According to
the physical analysis carried out in [8, 13], in the isothermal case the motion equation for the vertical
deflection of the midline of the beam

U : (ξ, τ) ∈ [0, ℓ] × R+ 7→ R

reads

LU − Eh
2ℓ2(1 − ν2)

(
2D +

∫ ℓ

0
|∂ξU(s)|2 ds

)
∂ξξU =

G
ℓ|Ω| .

Here,

L = ρ∂ττ −
ρh2

12
∂ττξξ +

Eh3

12ℓ(1 − ν2)
∂ξξξξ

denotes the evolution operator, while

• |Ω| > 0 is the area of the cross section,
• E > 0 is the Young modulus (force per unit area),
• ν ∈ (−1, 1

2 ) is the Poisson ratio, which is negative for auxetic materials,
• D ∈ R is the axial displacement at the right end of the beam,
• G : [0, ℓ] × R+ → R is the vertical body force applied on the section Ω.

We point out that the model is obtained by supposing the beam slender (i.e. h ≪ ℓ), and the modulus
of the axial displacement D small when compared to the length of the beam (i.e. |D| ≪ ℓ as well). See
also [4, 5, 19] for more details.

Assuming that G is due to the distributed and mutual elastic action exerted between two equal
Woinowsky-Krieger beams with vertical deflections U = U(ξ, τ) and V = V(ξ, τ), respectively, we let

G(ξ, τ) = −κ[U(ξ, τ) − V(ξ, τ)
]
,

being κ > 0 the uniform stiffness (force per unit length) of the elastic core. In this situation, the model
describing the motion of the resulting elastically-coupled extensible double-beam nonlinear system
becomes 

LU − Eh
2ℓ2(1 − ν2)

(
2D +

∫ ℓ

0
|∂ξU(s)|2 ds

)
∂ξξU +

κ

ℓ|Ω|(U − V) = 0,

LV − Eh
2ℓ2(1 − ν2)

(
2D +

∫ ℓ

0
|∂ξV(s)|2 ds

)
∂ξξV −

κ

ℓ|Ω|(U − V) = 0.

In order to rewrite the system in dimensionless form, we exploit the fact that the two beams have
the same structural parameters. In particular, ℓ is viewed as the common characteristic length of the
beams, while the characteristic time τ0 is obtained by means of the well-known shear wave velocity c0

in bulk elasticity, given by

c0 =

√
E

2ρ(1 + ν)
.

Then, the characteristic time τ0 is equal to the ratio ℓ/c0. Explicitly,

τ0 =

√
2ℓ2ρ(1 + ν)

E
.
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Consequently, introducing the dimensionless space and time variables

x =
ξ

ℓ
∈ [0, 1] and t =

τ

τ0
∈ R+,

along with the rescaled unknowns u, v : [0, 1] × R+ → R defined as

u(x, t) =
U(ℓx, τ0t)

ℓ
and v(x, t) =

V(ℓx, τ0t)
ℓ

,

we end up with the dimensionless model
ℓ(1 − ν)

h

(
∂tt −

h2

12ℓ2∂ttxx

)
u + δ∂xxxxu −

(
χ + ∥∂xu∥2

)
∂xxu + κ(u − v) = 0,

ℓ(1 − ν)
h

(
∂tt −

h2

12ℓ2∂ttxx

)
v + δ∂xxxxv −

(
χ + ∥∂xv∥2

)
∂xxv − κ(u − v) = 0,

where ∥ · ∥ denotes the L2-norm on the unit interval [0, 1], and

δ =
h2

6ℓ2 > 0, χ =
2D
ℓ
∈ R, κ =

2κℓ2(1 − ν2)
E|Ω|h > 0.

Under reasonably physical assumptions on the stiffness κ of the elastic core, and since D and h are
comparable, we may conclude that |χ| and κ share the same order of magnitude h/ℓ, whereas δ is much
smaller. Accordingly, |χ/δ| and κ/δ may assume large values, for their order of magnitude is ℓ/h ≫ 1.
Hence, all the stationary solutions exhibited in this paper are physically consistent.
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Kármán equations. J. Comput. Appl. Math., 190 (2006), 470-486.

6. A. Ciekot and S. Kukla, Frequency analysis of a double-nanobeam-system. J. Appl. Math. Comput.
Mech., 13 (2014), 23-31.

7. M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam.
Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060.

AIMS Mathematics Volume 2, Issue 1, 28-69



68

8. M. Coti Zelati, C. Giorgi and V. Pata, Steady states of the hinged extensible beam with external
load. Math. Models Methods Appl. Sci., 20 (2010), 43-58.

9. J.M. Davies, Lightweight sandwich construction, Wiley-Blackwell, Oxford, 2001.

10. R.W. Dickey, Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl.,
29 (1970), 443-454.

11. R.W. Dickey, Dynamic stability of equilibrium states of the extensible beam. Proc. Amer. Math.
Soc., 41 (1973), 94-102.

12. A. Eden and A.J. Milani, Exponential attractors for extensible beam equations. Nonlinearity, 6
(1993), 457-479.

13. C. Giorgi and M.G. Naso, Modeling and steady state analysis of the extensible thermoelastic beam.
Math. Comp. Modelling, 53 (2011), 896-908.

14. C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam. Nonlinearity, 21 (2008), 713-
733.

15. P. Holmes and J. Marsden, A partial differential equation with infinitely many periodic orbits:
chaotic oscillations of a forced beam. Arch. Rational Mech. Anal., 76 (1981), 135-165.

16. N. Kamiya, Governing equations for large deflections of sandwich plates. AIAA Journal, 14
(1976), 250-253.

17. S.G. Kelly and S. Srinivas, Free vibrations of elastically connected stretched beams. J. Sound
Vibration, 326 (2009), 883-893.

18. W. Lacarbonara, Nonlinear structural mechanics. Theory, dynamical phenomena and modeling,
Springer, New York, 2013.

19. J.E. Lagnese and J.L. Lions, Modelling analysis and control of thin plates, Masson, Paris, 1988.

20. P.J. McKenna, Oscillations in suspension bridges, vertical and torsional. Discrete Contin. Dyn.
Syst. Ser. S, 7 (2014), 785-791.

21. T. Murmu and S. Adhikari, Axial instability of a double-nanobeam-systems. Phys. Lett. A, 375
(2011), 601-608.

22. Z. Oniszczuk, Forced transverse vibrations of an elastically connected complex simply supported
double-beam system. J. Sound Vibration, 264 (2003), 273-286.

23. F.J. Plantema, Sandwich construction: the bending and buckling of sandwich beams, plates, and
shells, John Wiley and Sons, New York, 1966.

24. E.L. Reiss and B.J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column.
Quart. Appl. Math., 29 (1971), 245-260.

25. R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math., 141
(1995), 553-572.
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