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ABSTRACT 

 

In this work, we present a transient identification approach that utilizes clustering for retrieving 

scenarios information from an Integrated Deterministic and Probabilistic Safety Analysis (IDPSA). 

The approach requires: i) creation of a database of scenarios by IDPSA; ii) scenario post-processing 

for clustering Prime Implicants (PIs), i.e., minimum combinations of failure events that are capable 

of leading the system into a fault state, and Near Misses, i.e., combinations of failure events that lead 

the system to a quasi-fault state; iii) on-line cluster assignment of an unknown developing scenario. 

In the step ii), we adopt a visual interactive method and risk-based clustering to identify PIs and Near 

Misses, respectively; in the on-line step iii), to assign a scenario to a cluster we consider the sequence 

of events in the scenario and evaluate the Hamming similarity to the sequences of the previously 

clustered scenarios. The feasibility of the analysis is shown with respect to the accidental scenarios 

of a dynamic Steam Generator (SG) of a NPP.  

 

Keywords: Integrated Deterministic and Probabilistic Safety Analysis (IDPSA); Prime Implicants; 

Near Misses; on-line Clustering; Steam Generator. 
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1. INTRODUCTION 

 

The safe operation of hazardous installations, such as Nuclear Power Plants (NPPs), depends on the 

capability of timely detecting possible accidental transients and promptly taking adequate actions to 

avoid catastrophic failures [Schirru et al., 2008]. Upon occurrence of an initiating failure event, it is 

important to predict whether the scenario that follows would lead to safe conditions or become an 

accidental scenario. In practice, this is done relying on the awareness of skilled operators who monitor 

and analyze recorded operational data of process variables, for early detection and diagnosis and, 

then, based on their own expert judgment follow the Emergency Operating Procedures (EOPs) and, 

if necessary, the Severe Accident Management Guidelines (SAMGs) to mitigate the scenario 

consequences. However, even for less dangerous accidental scenarios that do not lead to core damage 

but only to unplanned outage of production, it is sometimes difficult, if not impossible, for operators 

to promptly and accurately assess the plant and distinguish the occurring accidental scenario status 

simply by observing the large volume of operational data [Alaei et al., 2013]. For this reason, the 

decision process by the emergency management staff must be supported.  

For such support, it is possible to devise automatic pattern recognition methods to predict the future 

evolution of a scenario initiated by a failure event. With this aim, we propose a novel method that 

combines post-processing of the outcomes of an Integrated Deterministic and Probabilistic Safety 

Analysis (IDPSA) and on-line clustering of data from the developing scenario. 

We use Multiple-Valued Logic (MVL) theory for modeling the behavior of the system, accounting 

for the timing and order of occurrence of component failure events [Di Maio et al., 2015a].  

Post-processing of the IDPSA results is performed for the: i) identification of the Prime Implicants 

(PI), i.e., those minimal sequences of failure events that are capable of leading the system into a fault 

state and cannot be covered by more general implicants [Quine, 1952], ii) identification of the Near 

Misses, i.e., those safe sequences of events that reach values of the safety parameters close to, but not 

exceeding, the corresponding acceptable thresholds [Zio et al., 2009].  

In this work, we use a visual interactive method and a risk-based clustering method that have been 

shown effective for PI and Near Misses identification, respectively [Di Maio, 2014b; Di Maio et al., 

2015].  

For on-line identification of accidental transients, several methods have been presented in literature. 

Some of these are based on statistical techniques [Di Maio et al., 2013; Fink et al., 2015], which may 

have limitations with regards to the choice of parameters and difficulty in coping with noise in data 



[Markou et al., 2003]; others, like neural networks and support vector machines [Basu et al., 1994; 

Palade et al., 2002; Widodo et al., 2007], require prior knowledge of the fault data set [Alaei et al., 

2013]; and others are based on clustering by means of Euclidean metrics for measuring the similarity 

between transients [Schirru et al., 1999; Beringer et al., 2006; Collaghan et al., 2002] and fuzzy means 

[Zio et al., 2012; Baraldi et al., 2013]. 

In this paper, we develop an on-line clustering algorithm based on the Hamming distance [Hamming, 

1950] to measure the similarity between developing transients and those obtained by IDPSA. At any 

instant of time, we compute the Hamming distance between the vector containing the event data of 

the developing accidental sequence with the vectors of the IDPSA post-processing scenarios, and 

identify the characteristics of the developing scenario as soon as any change in the trend of a process 

variable is detected. Finally, the developing transient is assigned to a cluster of safe scenarios, PIs, 

or, Near Misses, depending on its characteristics. In this way, we overcome the limitations of the 

methods already proposed in literature because i) the MVL approximation can be easily 

accommodated within a Hamming-based similarity definition (rather than using an Euclidean metric), 

ii) there is no need of additional efforts in tuning any parameter of the algorithm (as for the statistical 

techniques). 

A case study is considered, regarding dynamic accidental scenarios occurring in the Steam Generator 

(SG) of a NPP [Aubry et al., 2012]. The paper is organized as follows. In Section 2, the SG model 

used to generate the scenarios for the dynamic reliability analysis is presented. In Section 3, a visual 

interactive method [Di Maio et al., 2015b] is applied for PIs identification, and, a risk-based Near 

Misses identification is performed. In Section 4, the on-line clustering method is introduced with 

reference to the case study considered. In Section 5, conclusions and remarks are given.  

 

2. CASE STUDY  

2.1  The U-Tube Steam Generator (UTSG) model 

 

We consider a U-Tube Steam Generator (UTSG) (Fig. 1), part of the secondary circuit of a 900 MW 

Pressurized Water Reactor (PWR) [Aubry et al., 2012]. The improper control of the water level can 

be a major cause of this NPP unavailability [Kothare et al., 2000; Habibiyan et al., 2004]. The 

difficulties arises from non-minimum phase plant characteristics, i.e., plant strong inverse response 

behavior, particularly at low operating power, due to the so-called “swell and shrink” effects [Kothare 

et al., 2000].  



The model and the parameters used serve the scope of mimicking the actual data of the real UTSG 

[Aubry et al., 2012]. A detailed model is, indeed, necessary for IDPSA because real data, necessary 

incomplete, would only partially cover the whole set of possible sequences of failure events and, 

therefore, endanger the identification of the set of PIs and Near Misses. Once the capability of the 

online identification clustering hereafter proposed is shown to be reliable with respect to the whole 

(simulated) set of accidental scenarios, we can be confident that its performance can be guaranteed 

on real (sparse) accidental scenarios, that, incidentally have already been classified by resorting to 

simulated scenarios. 

The reactor coolant enters the UTSG at the bottom, moves upward and then downward in the inverted 

U-tubes, transferring heat to the secondary fluid before exiting at the bottom. The secondary fluid, 

the feedwater (𝑄𝑒), enters the UTSG at the top of the downcomer, through the space between the tube 

bundle wrapper and the SG shell. The value of 𝑄𝑒 is regulated by a system of valves: a low flow rate 

valve, used when the operating power (𝑃𝑜) is smaller than 15% of nominal power (𝑃𝑛), and a high 

flow rate valve when 𝑃𝑜 > 0.15 𝑃𝑛 [Aubry et al., 2012]. In the secondary side of the tube bundle, water 

heats up, reaches saturation, starts boiling and turns into a two-phase mixture. The two-phase fluid 

moves up through the separator/riser section, where steam is separated from liquid water, and through 

the dryers, which ensure that the exiting steam (𝑄𝑣) is essentially dry. The separated water is 

recirculated back to the downcomer. The balance between the exiting 𝑄𝑣 and the incoming 𝑄𝑒 

governs the change in the water level in the SG. Because of the two-phase nature, two types of water 

level measurements are considered, as shown in Fig. 1, each reflecting a different level concept: the 

Narrow Range Level (𝑁𝑟𝑙) is calculated by pressure difference between two points close to the water 

level and indicates the mixture level, whereas, the Wide Range Level (𝑊𝑟𝑙) is calculated by pressure 

difference between the two extremities of the SG (steam dome and bottom of the downcomer) and 

indicates the collapsed liquid level that is related with the mass of water in the SG. 

 



       

Fig. 1. Schematic of the UTSG [IAEA-TECDOC-981, 1997] 

 

“Swell and shrink” phenomena are also modeled to reproduce the dynamic behavior of the SG: when 

𝑄𝑣 increases, the steam pressure in the steam dome decreases and the two-phase fluid in the tube 

bundle expands causing 𝑁𝑟𝑙 to initially swell (i.e., rise), instead of decreasing as would have been 

expected by the mass balance; contrarily, if 𝑄𝑣 decreases or 𝑄𝑒 increases, a shrink effect occurs. A 

similar model has been presented in [Aubry et al., 2012].  

The 𝑁𝑟𝑙 is governed by 𝑄𝑒 and 𝑄𝑣 across the tube bundle region of the SG as shown by the following 

transfer function: 

 

𝑁𝑟𝑙(s)=
1

𝑇𝑛 𝑠
(𝑄

𝑒𝑓
(𝑠) − 𝑄

𝐺𝑉
(𝑠))                                                                  (1) 

 

where 𝑄𝑒𝑓 is the flow-rate of the incoming water in the tube bundle, (Eq. (2)), 𝑄𝐺𝑉 is the equivalent 

steam-water mixture flow-rate exiting the tube bundle region, (Eq. (3)), 𝑇𝑛  is a time constant that 

accounts for the 𝑁𝑟𝑙 dynamics. 

The incoming water flow-rate 𝑄𝑒𝑓 is proportional to 𝑄𝑒: 

 

𝑄𝑒𝑓(s)=
1

(1+𝑇ℎ𝑠)(1+𝜏 𝑠)
 𝑄𝑒(𝑠)                                       (2) 

 



where the lag 1 (1 + 𝜏 𝑠)⁄  accounts for the feed-water valve dynamics and 1 (1 + 𝑇ℎ𝑠)⁄  accounts for 

the water mass transportation dynamics: their values are reported in Table 1.  

The exiting steam-water mass 𝑄𝐺𝑉 is proportional to 𝑄𝑣: 

  

𝑄𝐺𝑉(s)=
(1− 𝐹𝑔 𝑇𝑔 𝑠)

(1+𝑇𝑔 𝑠)
 𝑄𝑣(𝑠)                         (3) 

 

where the first order lag 1 (1 + 𝑇𝑔 𝑠)⁄  accounts for the elapsed time from the turbine steam demand 

and the increase of 𝑄𝐺𝑉, and the non-minimum phase term (1 − 𝐹𝑔 𝑇𝑔 𝑠) accounts for the two-phase 

swell and shrink effects. 

Combining Eqs. (1), (2), and (3), 𝑁𝑟𝑙 is equal to: 

 

𝑁𝑟𝑙(s)=
1

𝑇𝑛 𝑠
(

𝑄
𝑒
(𝑠)

(1 + 𝑇ℎ𝑠)(1 + 𝜏 𝑠)
 −
(1 −  𝐹𝑔 𝑇𝑔 𝑠)

(1 + 𝑇𝑔 𝑠)
 𝑄
𝑣
(𝑠)) 

(4) 

 

and 𝑊𝑟𝑙, i.e., the overall water mass in the steam generator, is: 

 

𝑊𝑟𝑙(s)=
1

𝑇𝑖𝑛𝑡 𝑠
(𝑄𝑒(𝑠) − 𝑄𝑣(𝑠))         (5) 

 

where 𝑇𝑖𝑛𝑡  is a time constant that accounts for the 𝑊𝑟𝑙 dynamics. 

We assume 𝑦1 = 𝑁𝑟𝑙 and 𝑦2 = 𝑊𝑟𝑙, and 𝑢 = 𝑄𝑒 and 𝑑 = 𝑄𝑣; the state space representation of the SG 

model is, thus:   
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(6) 

 

 

𝑦(t) = (
1 1 1 0
𝑇𝑛

𝑇𝑖𝑛𝑡
0 0

𝜏

𝑇𝑖𝑛𝑡

)  x(t)                                                 
  (7) 

 

The values of the parameters 𝑇ℎ, 𝑇𝑛, 𝐹𝑔, 𝜏, 𝑇𝑔, 𝑇𝑖𝑛𝑡 change depending on the power 𝑃𝑜, as shown in 

Table 1. 

 



Table 1. Parameters of the UTSG model at different power levels [Aubry et al., 2012] 

𝑃𝑜 0.03 × 𝑃𝑛 0.04 × 𝑃𝑛 0.09 × 𝑃𝑛 0.24 × 𝑃𝑛 0.30 × 𝑃𝑛 0.50 × 𝑃𝑛 𝑃𝑛 

𝑇𝑛 36 56 63 44 40 40 40 

𝐹𝑔 13 18 10 4 4 4 4 

𝑇ℎ 170 56 30 10 8 5 5 

𝜏 10 10 10 30 30 30 30 

𝑇𝑔 10 10 10 10 10 10 10 

𝑇𝑖𝑛𝑡  140 140 140 140 140 140 140 

 

The goal of the system is to maintain the SG water level at a reference position (𝑁𝑟𝑒𝑓): the SG fails 

if the 𝑁𝑟𝑙 rises (falls) above (below) the threshold 𝑁ℎ𝑖𝑔ℎ (𝑁𝑙𝑜𝑤), in which case automatic reactor or 

turbine trips are triggered. Indeed, if the 𝑁𝑟𝑙 exceeds 𝑁ℎ𝑖𝑔ℎ, the steam separator and dryer lose their 

functionality and excessive moisture is carried in 𝑄𝑣, degrading the turbine blades profile and the 

turbine efficiency; if 𝑁𝑟𝑙 decreases below 𝑁𝑙𝑜𝑤, insufficient cooling capability of the primary fluid 

occurs. Similarly, the 𝑊𝑟𝑙, is relevant for the cooling capability of the primary circuit [Kothare et al., 

2000]. Pre-alarms are triggered when 𝑁𝑟𝑙 exceeds 𝑁ℎ𝑙 (𝑁𝑙𝑙) if a small deviation from 𝑁𝑟𝑒𝑓 occurs or 

when 𝑁𝑟𝑙 exceeds 𝑁𝑣ℎ (𝑁𝑣𝑙), when the deviation is large. Set points of 𝑁𝑟𝑒𝑓 and of 𝑁𝑟𝑙 depend on 𝑃𝑜, 

as shown in Fig. 2, and, thus, also the alarms thresholds depend on 𝑃𝑜. The 𝑁𝑟𝑙 set point is low at low 

𝑃𝑜, to partially account for the strong inverse response of 𝑁𝑟𝑙 [Kothare et al., 2000]; thus, the low 

level thresholds are more restrictive than the high level thresholds at low 𝑃𝑜. 
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Fig. 2. Set point for 𝑁𝑟𝑙 at different power rate 𝑃𝑜 values.  

 

A dedicated model has been implemented in SIMULINK to simulate the dynamic response of the 

UTSG at different 𝑃𝑜 values. Both feedforward and feedback digital control schemes have been 

adopted. The feedback controller is a PID that provides a flow rate 𝑄𝑝𝑖𝑑 resulting from the residuals 

between 𝑁𝑟𝑙 and 𝑁𝑟𝑒𝑓, whereas the feedforward controller operates a safety relief valve that is opened 

if and only if 𝑁𝑟𝑙 exceeds the 𝑁ℎ𝑙, and removes a constant flow safety flow rate (𝑄𝑠𝑓). The block 

diagram representing the SIMULINK model of the SG is shown in Fig. 3: the controlled variable is 

𝑁𝑟𝑙, whereas the control variable is 𝑄𝑒. 

 

0 1000 2000 3000 4000
40

60

80

100

120

140

160

180

200

220

time [s]

le
v
e
l 
[c

m
]

P
0
 = 0.5 X P

n

N
hl

N
vh

N
ref

N
llN
vlN

low

N
high

0 1000 2000 3000 4000
40

60

80

100

120

140

160

180

200

220

time [s]

le
v
e
l 
[c

m
]

N
low

N
vl

N
ll

N
hl

N
vh

P
0
 =  P

n

N
ref

N
high



 

Fig. 3. Block diagram representing the SIMULINK model of the SG. 

 

2.2  The set of possible failures 

The set of multiple component failures that can occur during the system life are shown in Fig. 4: 

1. The outlet steam valve can fail stuck at a random time in [0, 4000] (s), for example, due to 

corrosion, cracking and stress [IAEA-TECDOC-981, 1997], in three different positions: i) 

closed; ii) stuck open at 50% of the nominal 𝑄𝑣 that should be provided at 𝑃𝑜; iii) stuck open 

at 150% of the nominal 𝑄𝑣 that should be provided at 𝑃𝑜. 

2. The communication between the sensor that monitors 𝑁𝑟𝑙 and the PID controller can fail at 

random times in [0, 4000] (s), in which case the PID is provided with the same input value of 

the previous time step, that would affect the actuation of the safety functions [Kang et al., 

2007]. 

3. The safety relief valve can fail stuck at a random time in [0, 4000] (s), at a uniform random 

value 𝑄𝑠𝑓  in the range [0.5, 50.5] (kg/s), for example, due to corrosion, cracking and stress 

[IAEA-TECDOC-981, 1997]. 

4. The PID controller can fail stuck at random times in [0, 4000] (s), providing a uniform random 

flow rate 𝑄𝑝𝑖𝑑 belonging to [-18, 18] % of the nominal 𝑄𝑒 that should be provided at 𝑃𝑜, that 

would affect the actuation of the safety functions [Kang et al., 2007]. 

It is worth noticing that in the UTSG there are two PID controllers and, thus, two communications 

between the sensors measuring 𝑁𝑟𝑙 and the PIDs (one for high power feedback control and the other 

for low power feedback control). The selective action of the PIDs depending on 𝑃𝑜 hides some of the 



failures. For example, if the power profile of the scenario under investigation is a ramp, both PIDs 

are called in operation: if anyone (or both) is (are) failed, their fault state is detectable. On the 

contrary, if we consider scenarios with constant power profile, e.g., low power rate (𝑃𝑜< 15% 𝑃𝑛), the 

occurrence of a high power feedback control failure cannot be detected, and, thus, the fault remains 

hidden. 

The choice of a mission time (𝑇𝑚𝑖𝑠𝑠) equal to 4000 (s) has been made, because it is a long enough 

interval of time to allow the complete development also of slow dynamic accident scenarios [Di Maio 

et al., 2015]. 

 

Fig. 4. Sketch of the failures (X) that can be injected into the system 

 

 

3. Post-processing analysis for PIs and Near Misses identification  

We adopt a computational framework based on Multiple Value Logic (MVL) [Garibba et al., 1985; 

Di Maio et al., 2014], for describing the components failure events in terms of their (discrete) times 

of occurrence and (discrete) magnitudes. The discretization of the time and magnitudes values is as 

follows:  



 time discretization: we use the label 𝑡=1, 𝑡=2, 𝑡=3 and 𝑡=4, for failures occurring in the 

intervals [0, 1000] (s), [1001, 2000] (s), [2001, 3000] (s), [3001, 4000] (s), respectively; if 

the label 𝑡=0, the component does not fail within the time of the whole scenario, 𝑇𝑚𝑖𝑠𝑠.  

 Magnitude discretization: 

 the steam valve failure magnitude is indicated as 1, 2 or 3 for failure states 

corresponding to stuck at 0%, stuck at 50% and stuck at 150% of the 𝑄𝑒 value that 

should be provided at 𝑃𝑜, respectively; if the steam valve magnitude is indicated as 0, 

the component does not fail in 𝑇𝑚𝑖𝑠𝑠;  

 the safety relief valve fails with magnitude indicated as 1, 2, 3 and 4, if it is stuck 

between [0.5, 12.6] (kg/s), (12.6, 25.27] (kg/s), (25.27, 37.91] (kg/s) and (37.91, 50.5] 

(kg/s), respectively; if the safety relief valve magnitude is indicated as 0, the 

component does not fail in 𝑇𝑚𝑖𝑠𝑠;   

 the communication between the sensor measuring 𝑁𝑟𝑙 and the PID controller is 

labelled 0 if the communication works, 1 otherwise; 

 the PID controller failure magnitude range is discretized into 8 equally spaced 

magnitude intervals, labelled from 1 to 8, representative of failure states 

corresponding to discrete intervals of output value belonging to [-18,18]% of the 𝑄𝑒 

value that should be provided at 𝑃𝑜; if the PID controller magnitude is labelled as 0, 

the component does not fail in 𝑇𝑚𝑖𝑠𝑠. 

The values of time, magnitude and order of failure occurrence for each component are included into 

a sequence vector that represents a scenario. It is worth mentioning that a finer MVL discretization 

(for example, by using a larger number of time intervals) would improve the adherence of the model 

to reality at the expenses of i) a larger computational burden for the MVL discretization, ii) a further 

increased number of scenarios to be post-processed, and iii) a larger complexity of the on-line 

clustering algorithm based on the Hamming distance to be built, without any actual benefit in 

improving the knowledge of the system behavior, as we shall see in what follows. The MVL 

approximation here undertaken can, thus, be considered a trade-off framework between 

computational costs and capability of timely characterization of the developing scenario. 

A Monte Carlo-driven fault injection engine is used to sample combinations of discrete times and 

discrete magnitudes of components failure occurrences. The post-processing analysis of the sampled 

sequence vectors amounts to: i) the identification of Prime Implicants (PI) (Section 3.1) and ii) the 

identification of Near Misses (Section 3.2). 



For the identification of the Near Misses, i.e., sequences of events that are similar to those accidental 

sequences leading the system into fault conditions, with the exception of a characteristic which is 

missing or is slightly different (e.g., sequence time lag, different failure magnitude, involved 

components) [Saleh et al., 2013], we adopt a risk-based clustering method [Di Maio et al., 2015c] 

that accounts for the order and timing of the events occurring along an accident sequence, and the 

magnitude of the process variables at the time of event occurrence [Aldemir et al., 2008; Di Maio et 

al., 2015c].  

 

3.1 Prime implicants identification   

A PI is a minimal set of variables that represents a minimal combination of accident component 

failures necessary for system failure and cannot be covered by a more reduced implicant [Quine, 

1952; Di Maio et al., 2015a].  

The PIs identification among the whole set of 100509 possible scenarios obtained by MVL 

approximation of the SG real behavior, is here performed with visual interactive method presented in 

[Di Maio et al., 2015b]. Since PIs are those scenarios with as few as possible events that are capable 

of leading the system into a failure state [Rocco et al., 2004], we select as most important feature for 

the PIs identification the literal cost of the sequence vector (i.e., the number of components whose 

behavior is specified in the accident sequence). The accident sequences associated with the lowest 

literal cost are selected and stored as PIs. In fact, these are the most reduced sequences (i.e., with least 

number of events) that cannot be covered by any other implicant, and thus, these are PIs by definition. 

The selected PIs, and implicants covered by selected PIs, are deleted from the set of implicants and, 

then, we repeat the procedure for the remaining implicants until all implicants are covered. By so 

doing, we identify 1255 PIs for the high level failure mode, which cover 36128 minterms. 

 

3.2  Near Misses identification 

Once the (1255) PIs for the SG high level failure mode have been identified as explained in Section 

3.1, these are removed from the whole set of possible scenarios: the set of safe scenarios consists of 

64381 sequence vectors. The Near Misses search is performed with the clustering method presented 

in [Di Maio et al., 2015c], where a risk-based characterization of the safe scenarios is done in terms 

of: i) the probability 𝑝(𝑡), that at time 𝑡 the developing scenario can lead the system into an accidental 

scenario, ii) the consequence 𝑐(𝑡), that at time 𝑡 the developing scenario is predicted to cause to the 

system, and iii) the overall risk 𝑟(t), that we synthetically compute as 𝑟(𝑡) = 𝑝(𝑡)×𝑐(𝑡). This is a 



consolidated of risk definition that entails, for a given accidental scenario, determining 𝑟(𝑡) on the 

basis of how likely the scenario is (𝑝(𝑡)), and what are its consequences (𝑐(𝑡)) [NUREG-75/014, 

1975]. In such definition, one is neglecting other aspects like the ease of accident detection [Zhang et 

al., 2009; Garaniya et al., 2015], or the maintenance costs and the time to repair the failed components 

[Haddara et al., 2004; Krishnasamy et al., 2005]. 

The identification of the Near Misses is treated as an unsupervised classification problem and 

addressed by clustering, where i) the number of clusters is unknown and ii) the features that enable 

the best clustering according to the risk-based characteristic profiles of 𝑝(𝑡), 𝑐(𝑡) and 𝑟(𝑡) of the 

accidental scenarios are unknown. Thus, we resort to a wrapper framework [Kohavi et al., 1997; 

Baraldi et al., 2012], whereby a Modified Binary Differential Evolution (MBDE) search engine 

[Wang et al., 2010; Di Maio et al., 2013] searches candidate groups of features sets that are fed to a 

K-means clustering algorithm [MacQueen, 1967]; eventually, the wrapper evolves so that among 

these candidate groups, the group retained is that which makes the K-means clustering algorithm 

perform best (most compact and separate clusters). The search proceeds iteratively until the Calinski-

Harabasz (CH) index [Calinski et al., 1974], which accounts for the ratio of the overall between-

cluster variance (separation) and the overall within-cluster variance (compactness), is maximised and 

the number of clusters 𝐾 is fixed. 

The optimal features selection provides as best features: the standard deviation of 𝑐(𝑡), the standard 

deviation of 𝑟(𝑡) and the root mean square of 𝑟(𝑡); the best performance is obtained with 

CH=9.35e+04 and 𝐾= 5. 

The 𝐾= 5 obtained clusters of the safe scenarios are shown in Fig. 5, with reference to the features of 

mean risk (µ𝑟𝑖𝑠𝑘) and time elapsed from the instant 𝑡𝑟𝑖𝑠𝑘 at which 𝑟(𝑡) starts to deviate from zero, i.e., 

the time interval during which the system is exposed to risk. The rationale behind this choice is that 

the larger µ𝑟𝑖𝑠𝑘 and the longer 𝑡𝑟𝑖𝑠𝑘, the more dangerous the scenarios. In Fig. 5, clusters 3, 4, 5 

(triangles, crosses and squares, respectively) are well separated: it is possible to distinguish the 

scenarios having the lowest risk level from the scenarios having low risk level, and, thus, the highest 

risk scenarios are well separated from the lower risk scenarios. The 332 circles in Fig. 5 can, thus, be 

considered the Near Misses scenarios, i.e., scenarios that incidentally keep the system into safe state, 

although in endangered and insecure, operational conditions. Looking for the minimum conditions, 

i.e., minimum µ𝑟𝑖𝑠𝑘 and minimum 𝑡𝑟𝑖𝑠𝑘, that lead the system into a quasi-fault state, we can find the 

most similar characteristics among Near Misses in terms of their Multiple Value sequences, i.e., order 

and timing of event occurrences and deterministic process variables values: 



 the failure of the communication between the sensor monitoring the 𝑁𝑟𝑙 and the PID 

controller; 

 the failure of the PID controller with magnitude belonging to [-5, -1] % of the 𝑄𝑒 value that 

should be provided at 𝑃𝑜, i.e., magnitude equal to 4 in MVL framework, and it is the first 

accident occurring along the sequence of events in over 85% of the Near Misses scenarios. 

 

 

Fig.5. Near Misses identification clustering results  

 

4. On-line scenario clustering 

 

4.1  The method 

As a result of the previous steps of the analysis, we have unambiguously assigned each one of the 

sampled scenarios into three classes: Safe scenarios, PI scenarios, Near Misses scenarios. This 
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database of labelled scenarios is exploited for on-line identification of an unknown developing 

scenario on the basis of its developing event sequence vector and on the information carried by the 

monitored process variables. In our case, the process variable considered is the water level 𝑁𝑟𝑙: if the 

residual between 𝑁𝑟𝑙 and 𝑁𝑟𝑒𝑓, 𝑟 =  𝑁𝑟𝑙 − 𝑁𝑟𝑒𝑓 differs from 0 and the Hamming distance [Hamming, 

1950] between the developing sequence vector and each of the sequence vectors belonging either to 

the PIs cluster or to the Near Misses cluster is low, an alarm is triggered. The Hamming distance 

[Hamming, 1950] is equal to the number of digits that must be changed in a vector in order to obtain 

a different vector [Popa et al., 2010]. An example of Hamming distance computation is shown in Fig. 

6: the developing sequence vector is compared with a vector belonging to the Near Misses cluster 

(Fig. 6, left) and with a vector belonging to the PI cluster (Fig. 6, right). In this case, the Hamming 

distance between the developing sequence vector and the PI sequence vector is equal to zero, whereas 

the Hamming distance from the vector belonging to the Near Misses cluster is equal to 12. Thus, the 

developing scenario, which is caused by the failure of the safety relief valve in the first time interval 

with magnitude equal to 2 followed by the failure of the communication between the sensor 

measuring 𝑁𝑟𝑙 and the PID controller, is identified as a developing PI scenario and the failure alarm 

is triggered. 

 

Fig.6. Hamming distance between a developing sequence vector and a PI- classified sequence 

vector. 

Practically, at the generic time 𝑡 at which 𝑟 > 0, the developing scenario is assigned to a specific 

cluster according to the following criteria: 

1. It belongs to the PIs cluster if the Hamming distance between the developing sequence vector 

at 𝑡 and a sequence vector of PI cluster is the smallest among all the 1255 of PI and 332 of 

Near Misses calculated distances.  



2. It belongs to the Near Misses cluster if the Hamming distance between the developing 

sequence vector at 𝑡 and a sequence vector of Near Misses cluster is the smallest among all 

the 1255 of PI and 332 of Near Misses calculated distances.  

3. It belongs to the safe cluster, otherwise. 

To verify the method, we generate a set of 1000 new developing scenarios by injecting component 

faults at random times and of random magnitudes via Monte Carlo sampling. The performance of the 

proposed method of scenario clustering is compared with the simplest process-variable, threshold-

based classification method frequently used in industrial practice [Tompkins et al., 1985; Friston et 

al., 1996; Thomas et al., 2010]. That assigns the developing scenario to a cluster depending on the 

following criteria looking exclusively at the process variable value (while not considering any 

information of the scenario sequence vector): 

 PI, if 𝑁𝑟𝑙 exceeds 𝑁ℎ𝑖𝑔ℎ (faulty state); 

 Near Misses, if 𝑁𝑣ℎ < 𝑁𝑟𝑙 < 𝑁ℎ𝑖𝑔ℎ (quasi-fault state). 

It is worth noticing that the exceedance of 𝑁𝑣ℎ is neither a sufficient nor a necessary condition to 

define a scenario as Near Miss [Di Maio et al., 2015c], because timing and speed of the water level 

changes have been shown to play a key role for the Near Misses characterization of dynamic systems. 

The performance of the on-line classification will be measured by:  

 The number of false positives, i.e., those scenarios classified as PIs or Near Misses, when they 

actually are not; 

 The number of false negatives, i.e., those scenarios classified as Safe, when they are actually 

either PIs or Near Misses scenarios; 

 The value of Grace Time (GT), i.e., the time between the alarm triggering and the threshold 

exceedance of 𝑁ℎ𝑖𝑔ℎ and 𝑁𝑣ℎ for PIs and Near Misses, respectively. 

 Percentage of Accident Progression (PAP), i.e., the percentage of time between the IE (at 

which PAP=0%) and the time at which 𝑁𝑟𝑙 is equal to 𝑁𝑣ℎ or 𝑁ℎ𝑖𝑔ℎ (at which PAP=100%) 

for PIs and Near Misses, respectively. 

 

4.2 Results 

 

4.2.1 PI on-line identification results 



Fig. 7 shows two examples of PI scenario identification. In Fig. 7 (a), IE is caused by the failure of 

the safety relief valve with magnitude equal to 1 at 250 (s) and, then, the failure of the communication 

between the sensor measuring 𝑁𝑟𝑙 and the PID controller occurs at 750 (s). The risk-based clustering 

method identifies the developing scenario as PI at 751 (s) (Fig. 7 (a), circles line), whereas the 

threshold-based clustering method identifies the developing scenario at 3215 (s) (Fig. 7 (a), squares 

line). This shows that the proposed method is able to early identify the developing PI scenario, when 

the GT is still 2464 (s), differently from the threshold-based method which identifies the scenario 

with a GT equal to 0 (s). Similarly, Fig. 7 (b) shows the scenario developing from the IE of a PID 

controller failure with magnitude equal to 2 at 500 (s): this failure leads very quickly to 𝑁ℎ𝑖𝑔ℎ 

exceedance, as promptly captured by the risk-based clustering method that identifies the developing 

scenario as soon as 𝑁𝑟𝑙 departs from 𝑁𝑟𝑒𝑓, at 501 (s) (Fig. 7 (b), circles line) with a GT equal to 48 

(s), whereas the threshold-based classification algorithm (Fig. 7 (b), squares line) can only identify 

the developing scenario as PI when 𝑁𝑟𝑙 exceeds 𝑁ℎ𝑖𝑔ℎ. 

 

                               (a)                                                                                     (b) 

Fig.7. Example of PI transient identification by risk-based clustering and thresholds-based 

classification. 

For 517 randomly extracted PIs scenarios (see Section 3), false positive/negative ratios, and GT mean 

values are given in Table 2. 

 



Table 2. Results of on-line PIs identification 

 
Risk-based on-line clustering 

algorithm 

Threshold-based classification 

algorithm 

False Positive 10 (1%) 0  

False Negative 0  0 

GT mean values [s] 92 0 

PAP mean value [%] 49 100 

 

The risk-based on-line clustering method is superior in the anticipation of the alarm, with respect to 

the threshold classification method that triggers it only when the process variable already exceeds the 

threshold of faulty condition (GT=0).  

However, the risk based-clustering records 1% of misclassified transients, triggering them as PI 

scenarios even though they are not. An example of false positive scenario is shown in Fig. 8. The 

misleading classification of the developing scenario as PI is due to the values of the developing 

sequence vector at time 502 (s), as shown in Table 3. At 502 (s) the developing scenario (Fig. 8, solid 

line) has a sequence vector equal to that of a PI sequence vector (Table 3, second and first rows, 

respectively) and the Hamming distance is, thus, equal to 0 (Table 3, third row): the developing 

scenario is classified as PI and an alarm is triggered (Fig. 8, circles line). If no other component failure 

occurred, the developing 𝑁𝑟𝑙 would have followed the trend of the PI previously matched scenario 

(Fig. 8, dashed-dotted line). Actually, another component failure occurs at 833 (s) that modifies the 

developing sequence vector into a non-PI vector (Table 3, fourth row), bringing 𝑁𝑟𝑙 to a different end 

state (Table 3, fifth row). When a false positive PI is recorded, the failure alarm is triggered, and thus, 

this can lead operators to take the wrong corrective decision; the risk-based clustering method is more 

conservative than threshold-based classification. However, the coupling of risk-based clustering 

algorithm and the threshold-based classification with threshold smaller than the failure ones, can give 

the optimal solution for monitoring and predicting the system evolution.  

 

Table 3. Comparison between developing sequence vector and PI sequence vector 

PI sequence vector 0 0 0 1 1 1 1 1 2 0 0 0 

Developing sequence vector at 502 (s) 0 0 0 1 1 1 1 1 2 0 0 0 

Hamming distance vector 0 0 0 0 0 0 0 0 0 0 0 0 

Developing sequence vector at 833 (s) 1 2 3 1 1 1 1 1 2 0 0 0 

Hamming distance vector 1 1 1 0 0 0 0 0 0 0 0 0 



 

Fig.8. Example of false positive PI scenario. 

 

Fig. 9 shows the distribution of GTs for the 517 transients: most of the GTs are within 200 [s], i.e., 

in the 88% of the developing PI scenarios tested, the operators have at least 200 (s) to counteract the 

occurring accidental scenario. In 11% of the tested PI transients, the operators have at least 600 (s) to 

take corrective actions, whereas in 1% of the tested developing PI scenarios they have more than 

1000 (s), i.e., the NPPs operators know more than 16 minutes in advance that the developing 𝑁𝑟𝑙 will 

exceed 𝑁ℎ𝑖𝑔ℎ. 

With respect to the percentage of PAP indicator (equal to 0% at the instant when IE occurs and to 

100% when 𝑁𝑟𝑙 = 𝑁ℎ𝑖𝑔ℎ), on average, PIs are correctly classified with PAP=49% (Fig. 10) and 29% 

of them are identified with PAP<4%. Instead, obviously, the threshold-based classification method 

classifies the developing scenario as PI or Near Misses only when it is fully developed, i.e., at 100% 

of accident progression. 

 



 

Fig.9. Histogram of GT values for PI identification. 

 

Fig.10. Distribution of the percentage of accident progression. 

Percentage of Accident Progression [%] 



 

4.2.2 Near Misses on-line identification results 

Fig. 11 shows two examples of Near Misses identification. In Fig. 11 (a), IE is the failure of the PID 

controller with magnitude equal to 4 at 250 (s). This IE failure is common in the Near Misses 

identified sequence vectors (see Section 3) and so the proposed risk-based clustering algorithm is able 

to recognize the developing scenario as Near Miss immediately at 251 (s) (Fig. 11 (a), triangles line) 

with GT equal to 1277 (s). On the other hand, the threshold-based classification method is only able 

to classify the developing scenario at 1528 (s), when the safety relief valve fails, leading 𝑁𝑟𝑙 to exceed 

𝑁𝑣ℎ (Fig. 11 (a), squares line). 

Instead, Fig. 11 (b) shows a PID controller failure with magnitude equal to 3 at 1500 (s), which brings 

𝑁𝑟𝑙 to quickly exceed 𝑁𝑣ℎ: in this case, the risk-based clustering method classifies the developing 

scenario as Near Miss as soon as 𝑁𝑟𝑙 departs from 𝑁𝑟𝑒𝑓, at 1501 (s) (Fig. 11 (b), triangles line) with 

a GT equal to 70 (s), whereas the threshold-based classification algorithm has to wait until 𝑁𝑟𝑙 

exceeds 𝑁𝑣ℎ (Fig. 11 (b), squares line). 

 

 

(a)                                                                           (b) 

Fig.11. Example of Near Miss scenario classification by risk-based clustering and threshold-based 

classification. 



For the 179 randomly sampled Near Miss scenarios, the false positive and negative ratios, together 

with the mean value of the GT are given in Table 4. 

Table 4. Results of on-line Near Misses identification 

 
Risk-based on-line clustering 

algorithm 

Threshold-based classification 

algorithm 

False Positive 100 (10%) 12 (1.2%) 

False Negative 0 99 (9.9%) 

GT mean value [s] 129 0 

PAP mean value [%] 13 100 

 

As for PIs identification, the risk-based clustering method allows triggering the alarm as soon as the 

developing sequence vector becomes similar to anyone Near Miss in the labelled scenario database 

constructed in the previous post-processing analysis allowing mean values of GT equal to 129 (s) 

(Table 4). False positive scenarios by the proposed risk-based clustering method are caused by the 

similarity between the values of the developing sequence vector and those belonging to the Near 

Misses cluster; on the contrary, in the threshold-based classification method they are due to the fact 

that the exceedance of 𝑁𝑣ℎ is neither a sufficient nor a necessary condition to label a scenario as Near 

Miss [Di Maio et al., 2015c]. Also, the threshold-based classification method counts 99 scenarios 

mistakenly classified as safe scenarios. Fig. 12 shows an example of such false negative scenario: the 

PID controller fails at 750 (s) with magnitude equal to 3, so, 𝑁𝑟𝑙 departs from 𝑁𝑟𝑒𝑓; however, 𝑁𝑟𝑙 

does not exceed 𝑁𝑣ℎ (Fig. 12, solid line) and, thus, the threshold-based classification method is not 

able to classify the developing scenario (Fig. 12, squares line). On the contrary, the proposed risk-

based clustering method comparing the developing sequence vector with those belonging to the Near 

Misses cluster by Hamming Distance, is able to identify the developing scenario as a Near Miss at 

501 (s) (Fig. 12, triangles line). 

Fig. 13 shows the distribution of GTs for the 179 Near Misses: 92% of these scenarios are identified 

by the risk-based clustering algorithm with GT within [1, 277] (s), leaving operators with up to 277 

(s) to take corrective actions for the safety of the system. In 6%, GT belongs to (277, 913] (s), i.e., 

the developing Near Miss scenario is identified 913 (s) earlier than 𝑁𝑟𝑙 exceeds 𝑁𝑣ℎ. Finally, 2% of 

the Near Miss scenarios are identified 1000 (s) earlier than the threshold-based classification 

method identification by threshold exceedance. 



 

Fig.12. Threshold-based classification false negative scenario. 

 

 

Fig.13. Distribution of GT for Near Misses identification. 

 



The capability of the proposed method to effectively trigger the Near Misses alarm at an early stage 

of the dangerous progression is shown in Fig. 14. Note that for the on-line classification of Near 

Misses, PAP=100% with 𝑁𝑟𝑙 = 𝑁𝑣ℎ. Fig. 14 shows that, on average, Near Misses are correctly 

classified with PAP=13%. Furthermore, it is worth noticing that 80% of the Near Misses scenarios 

are identified with PAP<2%. 

 

Fig.14. Distribution of the percentage of accident progression. 

 

5. CONCLUSIONS 

 

In this paper, a novel approach has been proposed for on-line identification of transients. An IDPSA 

of a steam generator of a NPP has been developed and, thus, the post-processing of its outcomes has 

been carried out for creating a database of PI and Near Misses scenarios. Indeed, it is worth pointing 

out that, due to the intrinsic incompleteness of real data (that only record historically occurred 

scenarios), the efforts to develop a simulation model of the system to be analyzed is indispensable to 

cover the whole set of possible sequences of failure events that would occur in a real system. 

Percentage of Accident Progression [%] 



The off line characterization of the class of PI transients has been solved with a visual interactive 

method and the Near Misses identification with a risk-based clustering method. The IDPSA has led 

to an exhaustive and complete exploration of the scenario space and coverage of undesired events, 

with the consistent treatment of the different sources of uncertainty involved in the analysis, both 

aleatory and epistemic. A novel on-line clustering analysis has, then, been presented for the 

identification and prediction of accident progression when an initiating failure event occurs. The on-

line transient identification is based on the sequence of events that compose the scenario as it 

develops, which is compared by Hamming distance with the sequence vectors of the IDPSA scenarios 

database, monitoring the whole set of the process variables together with the controlled variable and, 

thus, the proposed algorithm is robust to cope with noise in data. 

The results obtained for a UTSG of a NPP have shown that for both PIs and Near Misses identification 

the proposed risk-based on-line clustering method is superior in the anticipation of the alarm, with 

respect to traditional threshold-based classification algorithms. Despite that the risk based-clustering 

has recorded 1% of misclassified transients as false positive scenarios (for PIs) and 10% (for Near 

Misses), this performance is comparable to that of the threshold-based classification algorithm, that 

rates to 9.9% the ratio of false negative scenarios wrongly classified.  

As a final remark it is worth pointing out that, even if a detailed USTG model as adherent as possible 

to reality has been here used to simulate the whole set of accidental scenarios, in future the benchmark 

of these results with those obtained with finer MVL discretization will be the focus of the research, 

to verify the performance of the proposed method on more realistic case studies and improve it to 

achieve lower misclassification rates. Nevertheless, we can henceforth be confident that the 

performance of the proposed method can be guaranteed on real accidental scenarios thanks to the 

confidence we have that the considered simulated UTSG adheres to the real component of a NPP and 

that the proposed method properly balances false positives/negatives with correct classifications. In 

conclusion, we can claim the reliability of the proposed approach for practical use. 
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