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Abstract 15 

We propose a new and computationally efficient data-worth analysis and quantification 16 

framework keyed to the characterization of target state variables in groundwater 17 

systems. We focus on dynamically evolving plumes of dissolved chemicals migrating 18 

in randomly heterogeneous aquifers. An accurate prediction of the detailed features of 19 

solute plumes requires collecting a substantial amount of data. Otherwise, constraints 20 

dictated by the availability of financial resources and ease of access to the aquifer 21 

system suggest the importance of assessing the expected value of data before these are 22 

actually collected. Data-worth analysis is targeted to the quantification of the impact of 23 

new potential measurements on the expected reduction of predictive uncertainty based 24 

on a given process model. Integration of the Ensemble Kalman Filter method within a 25 

data-worth analysis framework enables us to assess data worth sequentially, which is a 26 

key desirable feature for monitoring scheme design in a contaminant transport scenario. 27 

However, it is remarkably challenging because of the (typically) high computational 28 

cost involved, considering that repeated solutions of the inverse problem are required. 29 

As a computationally efficient scheme, we embed in the data-worth analysis framework 30 

a modified version of the Probabilistic Collocation Method-based Ensemble Kalman 31 

Filter proposed by Zeng et al. (2011) so that we take advantage of the ability to 32 

assimilate data sequentially in time through a surrogate model constructed via the 33 

polynomial chaos expansion. We illustrate our approach on a set of synthetic scenarios 34 

involving solute migrating in a two-dimensional random permeability field. Our results 35 

demonstrate the computational efficiency of our approach and its ability to quantify the 36 
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impact of the design of the monitoring network on the reduction of uncertainty 37 

associated with the characterization of a migrating contaminant plume. 38 

Keywords: Data worth; Ensemble Kalman Filter; Probabilistic Collocation; 39 

Contaminant migration;  40 



4 
 

1. Introduction 41 

Groundwater resources constitute a remarkable reserve of multipurpose (including 42 

potable, agricultural, and industrial) water and are critical for ecosystem and society 43 

sustainability and development (Foster and Chiltion, 2003). The severe challenges 44 

posed by the need to obtain accurate predictions of contaminant dynamics in natural 45 

aquifers hinge on the diverse sources of uncertainty associated with a selected 46 

predictive model. These uncertainties may originate from the (typically) unknown 47 

spatial distribution of subsurface geomaterials and the intrinsic heterogeneity of their 48 

hydrogeological properties, as well as from the insufficient level of knowledge of the 49 

key processes governing contaminant transport at the scale of interest. Stochastic 50 

inverse-modeling methods and data assimilation approaches have been developed to 51 

characterize uncertainties through model calibration against available measurements 52 

(e.g., Zimmerman et al., 1998; Alcolea et al., 2006; Fu and Gomez-Hernandez, 2009; 53 

Hendricks-Franssen et al., 2009; Riva et al., 2009; Rubin et al., 2010; Zhang et al., 2013; 54 

Zhou et al., 2014). In this context, the ensemble Kalman filter (EnKF) has gained 55 

significant popularity for the purpose of sequential (in time) data assimilation due to its 56 

relatively straightforward operational implementation and capability of quantification 57 

of predictive uncertainty (Anonsen et al., 2009; Chen and Zhang, 2006; Oliver et al., 58 

2008; Xie and Zhang., 2010; Liu et al., 2012). Applications of the EnKF to contaminant 59 

transport settings can be found in (Liu et al., 2008; Li et al., 2012). 60 

All inverse-modeling and data assimilation methods require the collection of 61 

suitable types of data for system characterization. While some inverse approaches, such 62 
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as those analyzed by Zimmerman et al. (1998) and Hendricks-Franssen et al. (2009) 63 

and recently reviewed by Zhou et al. (2014), use all available data simultaneously, the 64 

fast growing ability of setting monitoring networks with the capability of delivering 65 

high-resolution real-time measurements has somehow increased the interest towards 66 

assimilation methods capable of sequentially updating models as soon as data become 67 

available. Even as sequential data assimilation tends to be computationally more 68 

efficient than traditional batch inverse approaches, in practice, the high cost associated 69 

with the extension of an existing monitoring setting suggests the need to develop robust 70 

methodologies conducive to the identification of optimal strategies for the collection of 71 

future data which are potentially valuable for a specific environmental goal considered. 72 

Following Back (2007), such goal oriented data sets can assist to improve one’s ability 73 

to understand the system behavior and minimize uncertainty while considering budget 74 

constraints. Applications of data-worth analysis in the context of groundwater-related 75 

problems include the works of James and Freeze (1993), Abbaspour et al. (1996), Rada 76 

and Schultz (1998), Russell and Rabideau (2006), and Dausman et al. (2010). Nowak 77 

et al. (2010) and Leube et al. (2012) introduced the preposterior data impact assessor 78 

(PreDIA) in the data-worth analysis framework and applied it to a (late time) steady-79 

state solute transport scenario taking place in a random hydraulic conductivity field. 80 

The use of PreDIA to assist the optimal design of a monitoring scheme by minimizing 81 

the probability of making incorrect decisions during Bayesian hypothesis testing is then 82 

introduced by Nowak et al. (2012) and illustrated with reference to the prediction of 83 

contaminant arrival times at a sensitive location in an aquifer, under a variety of 84 
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uncertain system parameters. 85 

The aforementioned rapid development of in-situ monitoring technologies 86 

motivates us to explore methodologies to quantify data-worth sequentially, to allow for 87 

an optimal and flexible dynamic (in space and time) adjustment of the monitoring 88 

scheme. To the best of our knowledge, data-worth analysis in the context of a 89 

dynamically evolving subsurface transport setting has not been studied in little 90 

literatures, Kollat et al. (2011) propose a framework for the design of a monitoring 91 

network upon combining the EnKF and multi-objective evolutionary optimization. In 92 

this context, Zhang et al. (2015) employ the relative entropy, or the Kullback-Leibler 93 

divergence, as a global metric according to which they study the issue of proposing a 94 

monitoring network for contaminant source identification. Here, we employ in our data-95 

worth analysis framework an approach which relies on the EnKF concept because: (a) 96 

it is a non-intrusive method, which can be integrated in a straightforward manner in 97 

available computational systems, (b) it allows the flexibility of providing the 98 

uncertainty associated with the estimated system states at each assimilation step, thus 99 

facilitating the data-worth analysis; and (c) it can be extended to enable us to handle 100 

the challenges posed by the typically large number of parameters that are required to 101 

characterize hydrogeological systems under uncertainty. 102 

A critical element that might hamper the efficiency of the approach is the large 103 

number of system replicates that are required to ensure the accuracy of the EnKF-based 104 

results and minimize filter inbreeding (see, e.g., Panzeri et al., 2014 and references 105 

therein). Therefore, considering that the planned additional measurements are not yet 106 
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collected and (at best) only estimates of these can be obtained from prior information, 107 

the EnKF can still be computational demanding when incorporated in a data-worth 108 

analysis. Panzeri et al. (2013, 2014) proposed to embed stochastic groundwater flow 109 

moment equations (MEs) in the EnKF in a way that obviates the need for Monte Carlo 110 

simulation. These authors demonstrated the computational feasibility and accuracy of 111 

the methodology on a moderate size problem and showed that the approach mitigates 112 

issues of filter inbreeding and spurious covariances often plaguing standard Monte 113 

Carlo based EnKF. While theoretically and operationally elegant and effective for small 114 

to medium size problems, the ME-based EnKF approach can be classified as an 115 

intrusive method at the current stage of development, because it requires solving 116 

equations satisfied by (conditional) statistical moments (ensemble means and 117 

covariances) of hydraulic heads and fluxes in randomly heterogeneous media, the 118 

structure of these equations being typically different from that of the equations 119 

governing the dynamics of the actual (random) state variables. Here, we rely on a non-120 

intrusive approach which aims at improving computational efficiency through the 121 

construction of a surrogate model (or proxy) to replace the original system model in the 122 

standard Monte Carlo based EnKF. The use of surrogate models within a Bayesian 123 

inference (data assimilation) framework has been explored in petroleum engineering by 124 

Amudo et al. (2006) and Schaaf (2006). Carrer et al. (2007) relied on a variety of 125 

algorithms, such as polynomial regression and Kriging, to construct proxies of the 126 

target system response. Li et al. (2011) considered model proxies constructed by 127 

polynomial regression for subsurface flow related problems and showed that Kriging 128 
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and neural network approaches may not yield accurate statistical moments of target 129 

state variables. As a consequence, results of an EnKF approach based on these types of 130 

proxies may be inaccurate. 131 

In recent years, there has been increasing interest in the use of techniques based on 132 

Polynomial Chaos Expansion (PCE) for the construction of surrogate models of 133 

subsurface flow and transport processes. The method was first introduced by Ghanem 134 

and Spanos (2003) and has then been employed in a variety of areas and for diverse 135 

purposes, including optimization and global sensitivity analysis in the context of 136 

uncertainty quantification of selected model outputs (e.g., Ghanem, 1998; Reagan et al., 137 

2005; Sudret, 2008; Fajraoui et al., 2011; Hays et al., 2011; Oladyshkin and Nowak, 138 

2012; Oladyshkin et al., 2012; Ciriello et al., 2013a, b; Formaggia et al., 2013; Dai et 139 

al., 2014; Wu et al., 2014, and references therein). PCE-based surrogate models have 140 

also been combined with a variety of Bayesian updating methods, including, e.g., 141 

Markov chain Monte Carlo method (MCMC) (Marzouk, 2007; Jin, 2008), the EnKF 142 

method (Saad and Ghanem, 2009; He et al., 2011) and Bootstrap filter (Oladyshkin et 143 

al. 2012a, b) to alleviate computational burden. In essence, the PCE method relies on: 144 

(a) constructing a representation of the system state of interest in terms of a polynomial 145 

expansion expressed as a function of a set of uncertain system parameters; and (b) 146 

deriving appropriate discretized equations for the (deterministic) coefficients of the 147 

expansion through a Galerkin technique. The solution of these (typically coupled) 148 

equations can be computationally demanding in the presence of a large number of 149 

uncertain parameters and/or high-order terms in the polynomial approximation. In this 150 
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context, the Probabilistic Collocation Method (PCM) is an efficient non-intrusive 151 

approach that can be employed to construct PCE-based proxies of groundwater flow 152 

models. Li and Zhang (2007, 2009) explored the ability and efficiency of the PCM to 153 

quantify uncertainty for single- and two-phase flow in randomly heterogeneous porous 154 

media by combining the approach based on the Karhunen-Loeve (KL) expansion with 155 

the PCE representation. Their results suggest that accurate estimates of key statistics of 156 

variables of interest, such as pressure heads or saturations, can be obtained with a 157 

limited number of runs of the original full system model. A PCM-based EnKF (PCKF) 158 

has been employed by Li and Xiu (2009), Zeng (2010), Zeng et al. (2011), and Li et al. 159 

(2014) for parameter estimation in flow settings typical of groundwater hydrology and 160 

petroleum engineering applications. 161 

In this work, we embed the PCKF into the data-worth analysis framework to assess 162 

the worth of dynamically monitored data in a contaminant transport setting taking place 163 

in a randomly heterogeneous aquifer. Doing so is consistent with the way we approach 164 

the data worth challenge from a theoretical standpoint, according to which only 165 

expected values (i.e., ensemble moments) of quantities of interest are required (see 166 

Section 2). Due to the need for repeated solutions of the inverse problem at the 167 

preposterior stage which can lead to high computational cost, we propose to increase 168 

computational efficiency in the data-worth analysis context by modifying the way 169 

PCKF is employed. In essence, unlike the PCKF introduced by Li and Xiu (2009), Zeng 170 

(2010), Zeng et al. (2011) and Li et al. (2014), in which the purpose of the PCKF was 171 

limited to improve the computational efficiency of the EnKF-based data assimilation in 172 
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the context of system parameter estimation and the statistics of uncertain geological 173 

system parameters are estimated on the basis of the updated PCE coefficients, our 174 

proposed modification to the PCKF method yields marked increase of computational 175 

efficiency in the repeated EnKF process required during the preposterior data worth 176 

analysis. To achieve this objective, we follow Zeng et al. (2012) and Marzouk and Xiu 177 

(2014) and update the system parameters by adjusting the random quantities in terms 178 

of which the PCE is constructed. As compared with the PCKF method originally 179 

illustrated by Zeng et al. (2011), our modified and adapted PCKF requires prior 180 

knowledge on the geostatistical descriptors characterizing the random parameter field, 181 

such as mean, covariance and integral scale, so that these do not need to be updated 182 

during the inverse modeling process. Through this modification, the entire simulation 183 

process relies directly on the model proxy which has been constructed prior to actual 184 

data collection, thus resulting in an alleviation of the computational burden associated 185 

with performing repeated inversing modeling, as required at the preposterior stage. 186 

Section 2 illustrates the theoretical bases and the workflow of our PCKF-based 187 

data-worth analysis. Section 3 is devoted to the presentation of the set of examples that 188 

we employ to demonstrate the ability of the proposed framework to quantify the impact 189 

of the design of the monitoring network for solute concentrations (in terms of spatial 190 

location, temporal sampling frequency, and prior data content) on the reduction of 191 

uncertainty associated with the characterization of a contaminant plume migrating in a 192 

randomly heterogeneous aquifer. Conclusions are presented in Section 4. 193 

2. Methodology 194 
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2.1 Data-worth analysis 195 

We rely on the data-worth analysis framework proposed by Neuman et al. (2012) 196 

and Xue et al. (2014). The analysis is performed according to three stages. The first (or 197 

prior) stage relies on the prior data, i.e, the data which are available at the outset of the 198 

analysis. The second (or preposterior) stage relies on statistics of potential additional 199 

data conditional on the prior data. In this stage, the worth of the potential additional 200 

data from a given monitoring scheme is estimated. The third (or posterior) stage utilizes 201 

joint statistics of prior data and new data made available following the preposterior 202 

stage. The posterior statistics enable us to assess the quality of their associated 203 

preposterior estimates. Although we do not explore it in this work, our analysis 204 

framework can be extended to consider conceptual model uncertainty with the aid of 205 

the newly developed multimodel EnKF method (Xue and Zhang, 2014) which embeds 206 

uncertainty quantification associated with the use of diverse conceptual models of the 207 

system behavior. 208 

Consider a set of discrete values of a target variable, representing, e.g., solute 209 

concentrations at a number of points distributed in space and time in an aquifer, and 210 

collected as the entries of a random vector,  . Here, we start by considering the mean, 211 

 E D  , and covariance,  Cov D  , of   conditioned on a discrete set of prior 212 

available data forming the entries of vector D and predicted through a model 213 

characterized by a set of random variables grouped in vector ξ . In the preposterior 214 

stage, we assume that the prior data set D is augmented by a set of data collected in 215 

vector C'. The entries of C' are yet to be observed and are planned to be collected in a 216 
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future monitoring campaign. At the preposterior stage, random estimates C of C' can 217 

be obtained on the basis of the results of the prior data-worth analysis, according, e.g., 218 

to the strategy illustrated in the following. Predictive statistics of  , i.e., mean, 219 

 ,E D C  , and covariance,  |Cov Δ D,C , are then calculated by joint conditioning 220 

on {D, C}. Note that the predictive statistics in the prior and preposterior data-worth 221 

analyses are theoretically related to each other by: 222 

   | | ,E E E  C|DD D C  (1) 223 

     | | , | ,Cov E Cov Cov E    C|D C|DD D C D C  (2) 224 

Here,  | ,E E C|D D C and  | ,E Cov C|D D C , respectively, are the expectation of 225 

 | ,E  D C  and  | ,Cov  D C  over all C vectors generated, conditional on D; and 226 

 | ,Cov E C|D D C  is the covariance of  | ,E  D C  calculated over all C vectors 227 

generated, conditional on D. Following Neuman et al. (2012) and Xue et al. (2014), a 228 

scalar measure quantifying the data-worth can be introduced through the trace operator: 229 

     C|D C|D| | , | ,Tr Cov Tr E Cov Tr Cov E          Δ D Δ D C Δ D C  (3) 230 

where Tr indicates the trace (sum of diagonal entries) of a matrix. Note that 231 

 |Tr E Cov  C|D D,C  is given by the difference between the scalar measure of prior 232 

predictive uncertainty,  |Tr Cov   D , and the scalar measure of the estimated 233 

posterior predictive uncertainty,  |Tr E Cov  C|D D,C . This quantity is to be 234 

compared against the reference data-worth, i.e.,  |Tr Cov  Δ D   |Tr Cov  Δ D,C' , 235 

which can be calculated at the posterior data-worth analysis stage, after C'  has been 236 

observed. 237 

The conditional moments introduced above need to be obtained through an 238 
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appropriate inverse-modeling method. For example, Xue et al. (2014) employed the 239 

geostatistical inversion method of Hernandez et al. (2003, 2006) based on equations 240 

satisfied by (ensemble) moments of the target state variable in a steady-state 241 

groundwater flow setting. The dynamic nature of the process of contaminant transport 242 

suggests evaluating the data-worth sequentially, in a data assimilation framework. To 243 

this end, our approach takes advantage of the flexibility of the Monte Carlo based EnKF 244 

method (Chen and Zhang, 2006; Liu et al., 2008) to allow for sequential (in time) and 245 

simultaneous updating of a collection of state vector realizations. 246 

For completeness, we recount here the key theoretical elements underlying the 247 

typical EnKF approach. We start by considering a collection of Ne realizations of the 248 

state vector S: 249 

 1 2, ,..., eN
S s s s  (4) 250 

Superscripts in (4) refer to the number identifying the realization associated with each 251 

vector s whose entries are given by the random quantities that characterize the model,252 

 , the dynamic state variables, u , and the observation data, 
obs

d . Observations at time 253 

t and their true values are related by: 254 

t d Hs ε
obs true

t t  (5) 255 

Here, the superscripts obs and true respectively stand for the observation data and the 256 

true (usually unknown) system state; measurement errors collected in vector tε  are 257 

assumed to be zero-mean Gaussian with covariance matrix tR ; matrix H is the 258 

observation operator, which relates the state and observation vectors. The EnKF entails 259 

two stages, i.e., the forecast and assimilation stage. In the forecast step, each state vector 260 



14 
 

in the collection (4) is projected from time step (t  1) to time t via: 261 

 , ,

1

f i a i

t tF s s ; 1,2,..., ei N  (6) 262 

The operator  F  in (6) represents the forward numerical/analytical model of choice; 263 

superscripts f and a indicate the forecast and assimilation stage, respectively. In the 264 

assimilation stage, the Kalman gain, tG , is calculated as: 265 

 
1

f T f T

t t t t t t



 G C H H C H R    (7) 266 

f

tC  being the covariance matrix of the system state. This matrix is approximated 267 

through the Ne model realizations as: 268 

 , ,

1

1 eN
T

f f n f f n f

t t t t t

neN 

     
   C s s s s     (8) 269 

Each state vector in the collection is then updated as 270 

 , , , ,a i f i obs i f i

t t t t t  s s G d Hs    (9) 271 

It is worth noting that the EnKF method is characterized by a linear updating step due 272 

to the first-order-second-moment approximation. As such, the results based on this 273 

approach are optimal in the presence of moderate non-linearity of the processes 274 

governing the system dynamics. 275 

The updated ensemble mean and covariance respectively are: 276 

 1:

1

1
|

eN
a obs a

t t t

ie

E
N 

 s d s     (10) 277 

      1: , ,

1

1
|

1

eN
T

a obs a a a a

t t i t t i t t

ie

Cov E E
N 

     
   

s d s s s s     (11) 278 

where 1:

obs

td are is the vector of observations collected up to time t, 279 

1: 1 ,...,
T

obs obs obs

t td d d    . 280 

Incorporating the EnKF into the data-worth analysis framework enables one to 281 



15 
 

quantify the worth of additional data in a sequential way, after assessing the uncertainty 282 

associated with data currently available. The workflow that we propose for assessing 283 

data-worth is depicted in Figure 1 and a synopsis of the various steps involved is 284 

detailed in the following. 285 

1. At the prior stage, the EnKF is implemented on the basis of the observations 286 

available; a set of Ne1 system realizations of state vectors is updated via (9) to obtain 287 

the ensemble mean  |E Δ D  and covariance  |Cov Δ D , conditioned on the 288 

prior data set D. 289 

2. A number Ne1 of random realizations of additional hypothetical data C are 290 

synthetically generated by assuming these are described through a multivariate 291 

Normal distribution, i.e.,    | , |N E Cov  C C D C D . Note that C is a subset of 292 

Δ  obtained in step 1. 293 

3. At the preposterior stage, EnKF is implemented through a set of Ne2 Monte Carlo 294 

realizations for each of the Ne1 hypothetical data vectors, C, obtained at step 2; this 295 

allows calculating updated ensemble mean  |E Δ D,C  and covariance 296 

 |Cov  D,C , jointly conditioned on D,C . Quantities  C|D | ,E Cov  D C  and 297 

 C|D | ,Cov E  D C  appearing in (3) are then calculated by averaging over the 298 

collection of 1 2e eN N  realizations. The corresponding scalar measure of the 299 

worth of additional data,  C|D | ,Tr Cov E  D C , can be calculated as the trace of 300 

the resulting covariance matrix. 301 

4. At the posterior stage, the actual measurement vector,C' , becomes available. The 302 

ensemble mean  | ,E Δ D C'  and covariance  | ,Cov Δ D C' , jointly conditioned 303 
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on D and C' , can be obtained via EnKF in a way similar to the procedure outlined 304 

in step 1. The scalar measure of the reference data-worth in light of the additional 305 

measurements is then calculated as    | |Tr Cov Tr Cov       
'

D D,C . This 306 

step (a) is employed to assess the quality of the preposterior estimates obtained at 307 

step 2, and (b) can be regarded as the prior analysis stage for a subsequent round of 308 

sequential data-worth assessment. 309 

The above procedure shows that, for a given monitoring strategy, a total number 310 

of N = 1 2e eN N  numerical solutions of the system model are required to assess the 311 

data-worth in the preposterior analysis step. Since Ne1 and Ne2 need to be sufficiently 312 

large to ensure the accuracy of the estimated covariance matrix (Li et al., 2014; Zeng et 313 

al., 2010), we introduce the PCKF to address the challenge posed by the computational 314 

efficiency of the analysis. 315 

2.2 Data-worth analysis via PCKF 316 

The PCKF has been recently developed as an alternative to the traditional Monte 317 

Carlo based EnKF. It combines the polynomial chaos expansion (PCE) introduced by 318 

Wiener (1938) with EnKF. 319 

According to Ghanem (1998), a target random variable can be expressed by a PCE 320 

with a set of deterministic coefficients. These coefficients are typically calculated 321 

through the Galerkin method (Ghanem, 1998; Mathelin et al., 2005). The latter entails 322 

computing the PCE coefficients upon solving a set of coupled equations. This somehow 323 

hampers a routine application of the method to groundwater flow and contaminant 324 

transport problems in which the relationship between the uncertain system parameters 325 
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and state variables is typically nonlinear. The probabilistic collocation method (PCM) 326 

enables one to compute the PCE coefficients by solving a set of uncoupled equations at 327 

the so-called collocation points in the parameter space (Tatang et al., 1997). A few key 328 

details of PCE and PCM are reported in Appendix A for completeness. In a previous 329 

study on the performance of PCKF (Zeng and Zhang 2010; Zeng et al., 2011), both the 330 

parameters and state variables collected in the state vector (3) are approximated by the 331 

PCE, and the coefficients of the PCE need to be subsequently updated for each system 332 

realization at the selected collocation points as new data become available and are 333 

assimilated in the model. When translated to preposterior data-worth analysis, this 334 

approach would imply multiple reconstructions/updates of the PCE, consistent with 335 

each realization of C, and would lead to unsustainable computational cost. 336 

Here, we introduce a modified version of the PCKF to improve the computational 337 

efficiency of the proposed data-worth analysis scheme. As we illustrate in the following, 338 

our approach to PCKF relies on constructing the PCE-based model proxy only once by 339 

(a) evaluating the PCE coefficients and (b) considering the (uncertain) random 340 

quantities upon which the PCE-based model proxy relies as the quantities to be updated 341 

during the data assimilation process (rather than the PCE coefficients). This approach 342 

to PCKF enables us to employ the proxy model directly in the context of the required 343 

repeated model inversions. Thus, it obviates the need for multiple evaluations of the 344 

original (full system) model, which is critical to improve computational efficiency in 345 

the preposterior data worth stage. The procedure requires having at our disposal as prior 346 

information the key geostatistical descriptors of the parameter field, such as mean, 347 
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covariance structure and integral scale. If the prior information content is insufficient 348 

to this end, one can in principle resort to an iterative PCE-based bootstrap filter, along 349 

the lines proposed by Oladyshkin et al. (2013) to enhance the reliability of the proxy 350 

model. Given the demonstration-oriented nature of our test cases described in Section 351 

3.2, we do not pursue an intensive study of the latter strategy. 352 

At each time step, the random vector Δ  is characterized by a set of Np 353 

(statistically independent) random variables (collected in vector). The following PCE 354 

approximation of  can be constructed: 355 

 1 2
ˆ , ,...,

pn n N

n d

a   


 Δ    (12) 356 

Here,  1 2, ,...,
pn N    is an n-th order multivariate orthogonal polynomial of 357 

the variables 1 2, ,...,
pN   ; an is a deterministic PCE coefficient; and d is the highest 358 

order of the expansion. At each time step, the coefficients in (12) can be obtained via 359 

the PCM. Before data are collected (that is, in the absence of conditioning on the future 360 

data), we compute the coefficients in (12) by running the system model for a simulation 361 

time encompassing all future time steps of interest and constructing a proxy for the 362 

whole simulation period. To do so, the PCM requires one to perform only a number: 363 

 !
! !

p

p

N d
M

N d


      (13)  364 

of runs of the full system model, which corresponds to the number of selected 365 

collocation points for ( 1 2, ,...,
pN   ). 366 

After the construction of the PCE surrogate model for the whole target simulation 367 

period, data assimilation is then applied to sequentially update on the constructed proxy 368 

the uncertain model parameters collected in vector  . For each updated  , the 369 
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corresponding entries of Δ  can be obtained by sampling (12) rather than running the 370 

full model simulation, which renders data assimilation performed on the PCE proxy 371 

much more efficient than relying on the full model. The statistics of Δ , i.e., mean and 372 

variance at various space and time points can then be evaluated by sampling a collection 373 

of realizations of  . 374 

The selection of the order of PCE is a core step in the application of PCM. Note 375 

that: (a) increasing the order of the PCE through the data assimilation process might 376 

improve the accuracy of the surrogate model but can also require a considerably larger 377 

number of collocation points, at the expense of computational efficiency; and (b) the 378 

accuracy of the statistics obtained at a given PCE order cannot be assessed until 379 

different orders are actually implemented. As suggested by Dai et al. (2014), we assess 380 

the quality of the constructed proxy through a blind test. The latter is based on the 381 

comparison between the results obtained through the proxy and the original (full) 382 

system model with the same parameter sets, the latter being randomly selected in the 383 

parameter space at locations which differ from those of the collocation points. 384 

The data-worth analysis based on the PCKF is essentially developed according to 385 

the workflow illustrated in Section 2.1. The only difference lies in the appearance of an 386 

additional step at the prior data-worth analysis stage, in which the coefficients of the 387 

PCE surrogate model are calculated through PCM, in addition to the evaluation of 388 

hypothetical additional data on the Ne1 system realizations. The preposterior stage can 389 

then be implemented efficiently with the constructed surrogate model. As a result, the 390 

total number of full model runs to be performed in the data-worth analysis via the PCKF 391 
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is: 392 

 
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e e

p

N d
N N M N

N d


       (14) 393 

3. Illustrative Examples 394 

3.1 Governing equations 395 

A two-dimensional contaminant transport scenario taking place in a synthetic 396 

heterogeneous two-dimensional aquifer is considered to: (a) illustrate the feasibility of 397 

the proposed PCKF-based data-worth analysis; and (b) analyze key elements of 398 

alternative sampling strategies and conditions. We assume that conservative solute 399 

transport can be described by: 400 

 
     0d s s

C
C C q C

t


  


     


D v x x     (15) 401 

with appropriate initial and boundary conditions. In (15),   is porosity; C is solute 402 

concentration (ML-3); t is time (T); x = (x1, x2) is vector location in two-dimensional 403 

space (L); v = (v1, v2) (LT-1) is seepage velocity vector; sq  (L3T-1) and Cs (ML-3) 404 

respectively are volumetric flux and solute concentration of a point source positioned 405 

at x0;  is the Dirac function; and Dd (L
2T-1) is the dispersion tensor, which is defined 406 

as: 407 
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    (16) 408 

where Dm (L2T-1) is the diffusion coefficient; v  (LT-1) is magnitude of velocity; and 409 

L  and T (L) are the longitudinal and transverse dispersivity, respectively. 410 

In our study, we consider that solute migrates within a steady-state saturated flow, 411 
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described as: 412 

0h




 
   
 
k  (17) 413 

h



  v k    (18) 414 

subject to boundary conditions: 415 

         ,       ;         ,    D Nh H Q     qx x x x n x x x  (19) 416 

Here, k (L2) is permeability tensor, which we assume to be isotropic;   and 417 

  are fluid density and viscosity, respectively;     /q vx x  is the Darcy flux 418 

vector at x;  H x  is prescribed head on Dirichlet boundary segment D ;  Q x  is 419 

prescribed flux across Neumann boundary segment N ; and  n x  is the outward 420 

unit normal to the boundary D N  . Numerical solution of (15)-(19) is performed 421 

through a finite difference method. 422 

3.2 Model setup 423 

The key parameters of the problem are listed in Table 1, where all quantities are 424 

given in consistent length and time units. We consider an aquifer with a constant 425 

porosity  = 0.15, which is discretized along the horizontal plane into 40  40 grid cells 426 

of uniform size. Flow conditions are designed upon setting prescribed head boundary 427 

values of 12 and 7, respectively, on the left and right sides of the domain, while keeping 428 

impervious upper and bottom boundaries. The (natural) logarithm of permeability is 429 

considered to be a (second-order stationary) Gaussian (correlated) random field. In this 430 

study, we assume that the key statistical attributes of the random log permeability field 431 

are known. We take the covariance function of log permeability (Zhang, 2002) as: 432 
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 
x y    (20) 433 

Here, x  = (x1, x2) and y = (y1, y2) are two spatial locations; 
2  is log permeability 434 

variance, which is set to unity in our demonstration study (see Table 1); and 1  and 435 

2  are the correlation lengths parallel to x1 and x2 directions, respectively, which we 436 

set as 1  = 2  = 80 (Table 1), thus resulting in a computational domain which spans 437 

5 correlation scales along the x1 and x2 directions. We parameterize the random 438 

permeability field through the Karhunen-Loeve (KL) expansion: 439 

      
1

ln ln n n n

n

k k f 




 x x     (21) 440 

where  ln k  is the mean of log permeability, which is set to 5 in this study (Table 441 

1); n and  nf x  respectively are deterministic eigenvalues and eigenfunctions of 442 

the covariance function; and  is the vector of (zero-mean and unit variance) Gaussian 443 

random variables, n, which constitutes the set of uncertain model parameters that we 444 

consider. In practice, expansion (21) is often truncated up to the first Np dominant terms. 445 

The true (or reference) log permeability field is an unconditional random realization 446 

obtained via the geostatistical software library (GSLIB) (Deutsch and Journel, 1992) 447 

and is depicted in Figure 2. A point-wise contaminant source with a uniform (and 448 

constant in time) concentration Cs = 250 and sq  = 100 is placed at x0 = (20, 200). 449 

Diverse arrays of monitoring wells are introduced in the system corresponding to the 450 

different scenarios that we investigate, as illustrated in the following. A uniform time 451 

step T = 30 is used for the transport simulations. Concentrations in the reference field 452 

are sampled at monitoring wells at equally spaced time intervals of duration T. We set 453 
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the final observation time at T60 = 60 T. The goal of the alternative 454 

monitoring/sampling strategies that we analyze in our tests is to accurately predict the 455 

spatial distribution of the contaminant plume at this final observation time. 456 

We illustrate our approach on a set of test cases, listed in Table 2. Test case TC1 is 457 

designed to validate the accuracy of the proposed PCKF through a comparison against 458 

the results obtained with the standard EnKF method. Concentration values are sampled 459 

at all sixteen monitoring wells depicted in Figure 2 and are used for sequential updates 460 

of the uncertain model parameters. The observation time T60 is subdivided into 60 461 

temporal intervals of uniform unit length T. 462 

Assimilation of concentration values sampled at the monitoring wells is performed 463 

at the end of each time interval T, starting at time T0 = 0 and up to T60 = 60 T. Prior 464 

concentration data in all of our test cases are assumed to be associated with errors as 465 

large as 10% of their observed values. 466 

Test cases TC1-TC8 are designed to investigate the effect of diverse factors on 467 

data-worth analysis. TC1 is set as the base case. It relies on prior data collected at all 468 

wells for the first 24 assimilation times (i.e., up to time T24 = 24 T). The worth of 469 

additional data which are collected at the same wells with uniform (unit) frequency for 470 

the remaining assimilation intervals (up to T48 = 48 T) is then quantified both at the 471 

preposterior and posterior steps. 472 

Test cases TC2 and TC3 differ from TC1 in the sampling frequencies employed 473 

for the data-worth analysis. In these cases, concentration samples are planned to be 474 

collected at all 16 wells up to time T60 = 60 T and every 3 T (TC3) or 6 T (TC4). 475 
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Test cases TC4, TC5, and TC6 consider augmenting the prior data set through 476 

observations taken at diverse sets of wells pertaining to the monitoring network of TC1 477 

(i.e., Wells in Column 1 and 2, Column 3 and 4, or Column 2 and 3, respectively for 478 

TC4, TC5 and TC6). Similar to TC1, the prior dataset is formed by the concentrations 479 

collected during the first 24 assimilation times. For each of these test cases, the worth 480 

of additional measurements observed at the corresponding selected well network with 481 

uniform (unit) frequency for the remaining assimilation intervals (up to T60 = 60 T) is 482 

then quantified both at the preposterior and posterior steps. Test cases TC7 and TC8 483 

differ from TC1 in that they are designed to investigate the influence of the size of the 484 

prior database on the worth of additional data collected at the same well locations up to 485 

the target final time. 486 

3.3 Results and Discussion 487 

3.3.1 Validation of the PCKF (Test case TC1) 488 

We start by considering test case TC1, which is devoted to the assessment of the 489 

performance of the proposed PCKF by comparison against the standard EnKF. The 490 

random log permeability is parameterized via the KL expansion (21). To obtain a 491 

balance between computational accuracy and cost, we only retain the leading terms in 492 

the KL expansion, i.e., these terms with the largest eigenvalues. Figure 3 depicts the 493 

magnitude of the eigenvalues associated with the covariance matrix as a function of the 494 

number of terms retained in (21). These results indicate a rapid decay of the magnitude 495 

of the eigenvalues with increasing number of expansions terms. In this study, the first 496 
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30 terms are retained to parameterize the random log permeability field. This modeling 497 

choice enables us to account approximately for 70% of the energy of the target spatial 498 

random field and to achieve an appropriate balance between computational efficiency 499 

and accuracy of the overall procedure in the settings we analyze. A discussion on how 500 

to select the number of the retained terms can be found in Chang and Zhang (2009). We 501 

then select a second-order PCKF, rendering a number of M = (30 + 2)! / (30! 2!) = 496 502 

collocation points at which the full system model is required to be evaluated for the 503 

construction of the PCE of the concentration, which is considered as the target system 504 

state. We select second-order PCKF for two reasons: (a) Li and Zhang (2007) conclude 505 

that PCEs of even order have a superior performance when compared against PCEs of 506 

the subsequent (odd) order when the unknown system parameters are Gaussian; and (b) 507 

employing a fourth-order PCKF would require a total of 46,376 full model evaluations 508 

to construct the PCE approximation, thus rendering this option unfeasible to pursue. 509 

Concentration measurements are generated upon solving the flow and transport 510 

problems on the reference permeability field and sampling at all the wells from time T0 511 

= 0 to T60 = 60 T with uniform sampling spacing equal to T. 512 

For the purpose of our comparison, both the PCKF and the EnKF are implemented 513 

with a number of realizations equal to 300. Figure 4 depicts the true concentration field, 514 

and the (ensemble) mean plume obtained via the PCKF and the EnKF at time T60. These 515 

results suggest that the PCKF and the EnKF render mutually consistent predictions of 516 

the spatial distribution of the reference concentrations at the target time in our setting, 517 

even as some small differences can be noted between estimated and true distributions, 518 
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which can also be related to the lack of information associated with the region within 519 

which the contaminant has not been observed. Figure 5 depicts the spatial distribution 520 

of the predictive variance of concentrations obtained via the PCKF and the EnKF at 521 

time T60. 522 

We note that the overall quality of the comparison might be influenced by issues 523 

related to filter inbreeding, which can be associated with the limited number of 524 

realizations that we employ. However, employing a considerably larger collection of 525 

realizations would render unfeasible the application of the standard EnKF from a 526 

computational standpoint. For example, the estimated CPU time of the implementation 527 

of EnKF with 3,000 realizations is 78,300 s, i.e., 21.75 h. With this in mind, and noting 528 

that repeated runs of the full system model are required at the preposterior stage, we 529 

consider that the result that we obtain can imbue us with a relatively high confidence in 530 

our selection of the reduced PCKF approach. 531 

3.3.2 Effect of the sampling frequency of planned future measurements (Test 532 

cases TC1, TC2, and TC3) 533 

Sampling frequency is a critical factor in a monitoring strategy design. While high 534 

sampling frequency can provide an increased flux of data that may help to reduce 535 

predictive uncertainty, it will also yield an increased workload and financial demands. 536 

The purpose of the comparison of TC1, TC2, and TC3 is to identify the relative worth 537 

of diverse sampling frequencies. In these cases, the prior data set D comprises the 538 

measurements taken at the monitoring wells in Column 1 to 4 during the first 24 539 
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assimilation times (i.e., from time T1 = T up to T24 = 24 T). Three hundred 540 

realizations of the additional data set are used at the prior stage of the analysis, while 541 

the preposterior analysis is performed through the PCKF due to its notable efficiency. 542 

As stated above, Figure 5a depicts the spatial distribution at time T60 of the 543 

predictive variance of the contaminant concentration, conditional only on D, i.e., 544 

 Var D  . We note that the predictive uncertainty is larger at the front of the plume 545 

than at locations in the vicinity of the source. This result is consistent with the high 546 

spatial concentration gradients in the proximity of the plume front (Rubin, 1991). 547 

Figure 6 depicts comparisons between concentration values observed at four wells 548 

located at (5, 5), (15, 15), (25, 15) and (35, 25) at times Ti = i T (i = 25, 26, 27, …, 48) 549 

and corresponding estimates of mean concentrations computed on the basis of the prior 550 

D values. Intervals of width corresponding to ± 1 standard deviations about the mean 551 

are depicted to complete the picture. 552 

These results show that, even as in some cases the true concentration values fall 553 

within the limits of the considered uncertainty bounds, predicted values tend to 554 

systematically deviate from their true counterparts (albeit with different degrees of 555 

discrepancy, depending on the monitoring well location) with increasing time, as 556 

expected. We recall that estimates of mean concentration together with the associated 557 

predictive variance constitute the bases for the construction of the additional data sets 558 

C to be employed in the preposterior analysis step for each of these test cases. A 559 

posterior analysis is then performed after 'C  becomes available. 560 
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Data-worth analysis via the PCKF is applied to each test case to assess the worth 561 

of the additional data sets C which are built as illustrated in Section 3.2. Figures 7a, c, 562 

and e depict the spatial distribution of the expected concentration variance reduction 563 

 | ,Var E C|D D C , respectively for TC1, TC2, and TC3, calculated at the preposterior 564 

stage. Figures 7b, d, and f depict the spatial distribution of concentration variance 565 

reductions,    | |Var Var   '
D D,C , calculated at the posterior stage. It can be 566 

noted that the spatial distributions of the expected variance reductions resemble closely 567 

their reference (posterior) counterparts. The scalar measures of the expected and 568 

reference data-worth are compared in Figure 8. For ease of reference, these values are 569 

also listed in Table 3 together with the corresponding results associated with all test 570 

cases examined. From these results, we conclude that the expected data-worth can 571 

estimate its reference counterpart with high accuracy. The preposterior data-worth 572 

metric  |Tr Cov E  C|D D,C  of TC1 is 215,742 and is larger than that associated 573 

with TC2 and TC3, these being equal to 125,292 and 200,672, respectively. These 574 

results support the idea that an increased sampling frequency should lead to uncertainty 575 

reduction. However, our results also reveal that the rate of increase of the preposterior 576 

data-worth somehow decreases with increasing sampling frequency. This observation, 577 

in turn, implies that the effect of an increased sampling frequency becomes less 578 

significant when the frequency has reached a certain threshold level. The latter should 579 

depend on the spatial location of the planned monitoring well, as well as on the 580 

underlying aquifer heterogeneity and transport setting. 581 

A remarkable advantage of our PCKF-based data-worth analysis is the 582 
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computational efficiency. Each of the test cases here analyzed requires only 796 583 

forward runs of the full system model. These include: (a) 300 simulations for the 584 

estimation of the statistics (mean and covariance) of the additional data set to be 585 

included in C; and (b) 496 simulations to construct the surrogate model. The CPU time 586 

for the data-worth analysis with PCKF for TC1, TC2, and TC3 respectively are 9,884 587 

s, 3,884 s, and 5,084 s. Otherwise, employing EnKF based on a collection of Ne1 = Ne2 588 

= 300 MC realizations for data-worth analysis requires a number of full model solutions 589 

equal to 90,000 for each assimilation step, with estimated CPU times of 1,879,200 s, 590 

1,096,200 s, and 1,252,800 s, respectively for TC1, TC2, and TC3. 591 

3.3.3 Effect of the monitoring network location (Test cases TC4, TC5, and TC6) 592 

Test cases TC4, TC5, and TC6 are identical to TC1 except that additional sampling 593 

after collection of the prior data set (i.e., the data set composed by observations 594 

collected for the first 24 time intervals) is performed at locations listed in Table 2 and 595 

identified in Figure 2. The additional data set C is then formed by the data observed at 596 

the wells in Column 1 and 2, Column 3 and 4, and Column 2 and 3 for TC4, TC5 and 597 

TC6, respectively, from assimilation times T25 = 25 T to T48 = 48 T with sampling 598 

frequency equal to T. Figure 9 depicts the spatial distributions of the expected 599 

preposterior concentration variance reductions (Figure 9a, c, and e) and the reference 600 

posterior concentration variance reduction (Figures 9b, d, and f) at the latest time T60. 601 

Only minute deviations are observed between the patterns of preposterior estimations 602 

and their posterior counterparts. Scalar measures of preposterior and posterior data-603 

worth are also depicted in Figure 10. As compared to TC1 (for which 604 
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 |Tr Cov E  C|D D,C = 215,742), reducing the monitoring well network brings in an 605 

overall decrease of the predictive concentration variance reduction, as expected, the 606 

scalar measures of preposterior data-worth for TC4, TC5, and TC6 respectively being 607 

126,698, 190,141, and 207,585. These results suggest that acquisition of additional data 608 

from monitoring wells in Column 2 and 3 has the largest potential for providing 609 

valuable information in the setting we analyze. This is consistent with the observation 610 

that wells in Columns 2 and 3, and particularly those in Column 3, are located in a 611 

region where the prior predictive uncertainty is considerably high, as opposed to wells 612 

in Column 1 and 4, which are placed at locations with smaller predictive uncertainties. 613 

Even as a generalization of these results is hard to propose and the specific choices 614 

associated with the selection of new monitoring wells can be associated with additional 615 

constraints of diverse nature (including, e.g., political and socio-economical elements), 616 

our results support the idea that an effective choice would be to acquire new data at 617 

wells located within a region where the prior predictive uncertainty is relatively large. 618 

3.3.4 Effect of prior data content (Test cases TC1, TC7, and TC8) 619 

Prior data content is a critical element that may impact the results of data-worth 620 

analysis. In this sense, TC7 and TC8 are identical to TC1 except that the prior data 621 

vector D is formed by diverse amounts of sampled data. In TC7 we collect prior data 622 

from time T1 to time T12 = 12 T, while TC8 considers prior observations sampled from 623 

time T1 to time T18 = 18 T. The spatial distributions of prior predictive concentration 624 

variance at time T60 are depicted in Figure 11a and b, respectively for TC7 and TC8. As 625 

expected, the prior predictive concentration variances of TC7 and TC8 are generally 626 
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larger than that of TC1 because of the diminished prior information content. Figures 627 

12a and b, and Figures 12c and d depict the comparison of spatial patterns of the 628 

preposterior and reference posterior predictive uncertainty reductions for TC7 and TC8, 629 

respectively. The preposterior patterns approximate their posterior counterparts with a 630 

sufficiently high quality in both cases. Figure 13 depicts the scalar measures of 631 

(preposterior and posterior/reference) data-worth for these test cases. The scalar 632 

measures of preposterior data-worth are 530,745 and 330,082, respectively for TC7 and 633 

TC8, to be compared against the value of 215,742 for TC1. 634 

As expected, a reduced number of prior data yields an increased benefit arising 635 

from collecting additional data. Due to the limited amount of prior information, 636 

additional data appear to be associated with a relatively high value. 637 

4. Conclusions 638 

Our work leads to the following major conclusions. 639 

1. Integrating a Probabilistic Collocation Method within EnKF allows assessing data-640 

worth through a surrogate of the full system model. This leads to a remarkable 641 

improvement of the computational efficiency of the data-worth procedure. This is 642 

particularly relevant considering that, even as incorporating the EnKF into data-643 

worth analysis frameworks enables one to quantify the worth of additional data in 644 

a sequential way, routine applications are still challenging due to large 645 

computational costs involved. 646 

2. We illustrate our approach on a suite of synthetic scenarios involving conservative 647 

solute migration in a two-dimensional random permeability field. Our test cases are 648 
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designed to: (a) test the accuracy of our approach when compared to an EnKF data-649 

worth analysis based on Monte Carlo solutions of the full system model (TC1); and 650 

(b) investigate the effect of diverse factors on data-worth analysis (TC1-TC8), 651 

including design components of an envisioned monitoring scheme, such as spatial 652 

location of monitoring wells, temporal sampling frequency, and prior data content 653 

for solute concentrations. When compared against results obtained via the full 654 

system model, our Probabilistic Collocation EnKF (PCKF) renders significantly 655 

accurate results at a considerably reduced computational time in the setting 656 

considered, in terms of predicted concentration values and associated uncertainty 657 

quantification. 658 

3. In our examples (TC1, TC2, and TC3), augmenting the temporal sampling 659 

frequency associated with planned acquisitions of additional concentration data 660 

leads to increased benefits in terms of uncertainty reduction. The effects of the 661 

increased sampling frequency tend to become less significant when the assimilation 662 

frequency has reached a certain threshold level. 663 

4. Foreseeing the design of the location of a monitoring well within a region where 664 

prior predictive uncertainty is highest is more likely to provide valuable data (TC4, 665 

TC5, and TC6). Our examples (TC1, TC7, and TC8) suggest that the value of 666 

additional data is highest when these are supplemented to the smallest sets of prior 667 

data. The scalar measure of data-worth shows a sharp decrease with the increase of 668 

the number of measurements forming the prior dataset. 669 

  670 
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Appendix A 671 

The PCE approximation Δ̂  of the random vector  that is characterized by a set 672 

of Np (statistically independent) random variables (collected in vector  ) relies on the 673 

spectral expansion: 674 

 1 2
ˆ , ,...,

pn n N

n d

a   


 Δ  (A. 1) 675 

Here, d is the highest order of the expansion; na  are deterministic coefficients; 676 

and  1 2, ,...,
pn N    are the n-th order multi-dimensional orthogonal polynomials in 677 

terms of random variables 1 2, ,...,
pN    (collected in vector ), which constitute the 678 

input to the system model. If these uncertain parameters are Gaussian, the Hermite 679 

polynomials form the appropriate orthogonal basis for Gaussian random variables (Xiu 680 

and Karniadakis, 2002). 681 

The number of unknown coefficients in (A.1) is Nc: 682 

 !
! !

p

c

p

N d
N

N d


  (A. 2) 683 

Hence, Nc linear independent equations are required to solve the coefficients. 684 

Calculation of the PCE coefficients can be accomplished through the Probabilistic 685 

collocation method (PCM). Let us define the residual R between the real output   686 

and its approximation Δ̂  as: 687 

    ˆ
iR a ,  ξ Δ   (A. 3) 688 

where  ia  is the set of the PCE coefficients. 689 

The residual (A. 3) should satisfy the following integral equation: 690 
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       i jR a , - P d = 0 ξ ξ ξ ξ ξ  (A. 4) 691 

where   is the Dirac delta function; and jξ  is a sub-set of ξ  whose entries are the 692 

collocation points. Equation (A.4) results in a set of independent equations whose 693 

solution yields the coefficients of the PCE. 694 

Selection of the collocation points is the key issue of PCM. Li and Zhang (2007) 695 

suggest that the collocation points can be selected from the roots of the next higher 696 

order orthogonal polynomial for each uncertain parameter. Once the coefficients of the 697 

polynomial chaos expansions are obtained, (A.1) can be employed as a proxy for the 698 

original full system model. The statistics of   can be evaluated by the PCE 699 

coefficients (Li and Zhang, 2007; Li et al., 2009) or by sampling on the surrogate model 700 

(A.1) (Li et al., 2011 and Dai et al., 2014) with a group realizations of random variables. 701 

  702 
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 935 

 936 

Figure 1. Workflow of data-worth analysis for a dynamic system. 937 
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 939 

Figure 2. The true (or reference) log permeability field. Solid black square indicates 940 

the contaminant source; solid circles denote monitoring wells employed in the test 941 

cases examined. 942 
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 944 

Figure 3. Decay of eigenvalues as function of the number of terms retained in the 945 

Karhunen-Loeve (KL) expansion (21). 946 

  947 



50 
 

  

 

 

Figure 4. (a) Spatial distributions of true (reference) concentration field and (b) mean 948 

concentration field obtained via (b) the PCKF, and (c) EnKF at time T60. 949 
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Figure 5. Spatial distribution of the predictive variance of solute concentrations 951 

obtained via (a) the PCKF and (b) the EnKF at time T60. 952 
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Figure 6. Solute concentration values observed at observation wells located at (a)（5, 954 

5）; (b)（15, 15）; (c)（25, 15）; and (d) （35, 25）at times Ti = i T (i = 24, 25, 955 

26,…, 48) with corresponding estimates of mean concentrations and envelopes of 956 

width of ± 1 standard deviations about the mean obtained based only on prior D 957 

values. 958 
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Figure 7. Spatial distribution of the expected concentration variance reduction, 960 

 | ,Cov E C|D D C , for (a) TC1; (c) TC2; and (e) TC3. Spatial distribution of 961 

concentration variance reduction,    | |Var Var   '
D D,C , obtained after C' has 962 

been observed for (b) TC1; (d) TC2; and (f) TC3. Results are depicted for T60. 963 

(a) (b) 

(c) (d) 

(e) (f) 
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 964 

Figure 8. Scalar measures of the expected and reference data-worth for TC1, TC2, and 965 

TC3 at T60. 966 
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Figure 9. Spatial distribution of the expected concentration variance reduction 968 

 | ,Cov E C|D D C for (a) TC4; (c) TC5; and (e) TC6. Spatial distribution of 969 

concentration variance reduction,    | |Var Var   '
D D,C  obtained after C' has 970 

been sampled for (b) TC4; (d) TC5; and (f) TC6. Results are depicted for T60. 971 

(f) (e) 

(d) (c) 

(a) (b) 
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 972 

Figure 10. Scalar measures of the expected and reference data-worth for TC1，TC4, 973 

TC5, and TC6 at T60. 974 
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 976 

  

Figure 11. Spatial distribution of the predictive variance of contaminant concentration 977 

at time T60 conditional on D,  Var D  , for (a) TC7; and (b) TC8. Results are 978 

depicted for T60. 979 
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Figure 12. Spatial distribution of the expected concentration variance reduction, 981 

 | ,Cov E C|D D C , for (a) TC7; and (c) TC8. Spatial distribution of concentration 982 

variance reduction,    | |Var Var   '
D D,C , obtained after C' has been observed 983 

for (b) TC7; and (d) TC8. Results are depicted for T60. 984 

(a) 
(b) 

(c) (d)

d) 
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 985 

Figure 13. Scalar measures of the expected and reference data-worth for TC1, TC7 986 

and TC8 at T60. 987 
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Table 1. Summary of the system setup parameters employed in the two-dimensional 989 

synthetic examples.  990 

Parameter  Value (in consistent units) 

Discretization and source characteristics 

No. of rows in the domain  40 

No. of columns in the domain  40 

Domain width  400 

Domain length  400 

Time step  30 

Solute source location x0 = (x01, x02)  (20, 200) 

Volumetric flux at source (qs)   100 

Concentration at source (Cs)  250 

Flow and Transport Parameters 

Head along upstream boundary  12 

Head along downstream boundary  7 

Diffusion coefficient Dm   0.5 

Local-scale dispersivities   (1.5, 0.3) 

Porosity  0.15 

 Log Permeability  

Mean value  5 

Variance   1 

Correlation Length (1 =2)  80 

 991 

  992 
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 993 

Table 2. Main characteristics of test cases examined. 994 

Test 

case 

No. of time 

steps in prior 

data D 

Monitoring well 

Sampling 

frequency of 

additional data 

Description 

TC1 24 COLUMN1-4 T Base case 

TC2 24 COLUMN 1-4 6 T Effect of sampling frequency 

TC3 24 COLUMN 1-4 3 T Effect of sampling frequency 

TC4 24 COLUMN 1,2 T Effect of monitoring network location 

TC5 24 COLUMN 3,4 T Effect of monitoring network location 

TC6 24 COLUMN 2,3 T Effect of monitoring network location 

TC7 18 COLUMN 1-4 T Effect of prior data content 

TC8 12 COLUMN 1-4 T Effect of prior data content 

 995 

 996 

 997 

 998 

 999 

Table 3. Summary of the scalar measures of preposterior and posterior uncertainty 1000 

reductions for all test cases (results are listed for T60). 1001 

Test case 
Preposterior predictive 

uncertainty reduction 

Posterior predictive 

uncertainty reduction 

TC1 215,742 210,452 

TC2 125,292 135,982 

TC3 200,672 197,962 

TC4 126,698 131,980 

TC5 190,141 195,533 

TC6 207,585 201,750 

TC7 530,745 518,494 

TC8 330,028 345,770 

 1002 
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