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W. Todd Cade,1,2 Rachel A. Tinius,1 Dominic N. Reeds,2 Bruce W. Patterson,2 and
Alison G. Cahill3

Maternal Glucose and Fatty Acid
Kinetics and Infant Birth Weight in
Obese Women With Type 2 Diabetes
Diabetes 2016;65:893–901 | DOI: 10.2337/db15-1061

The objectives of this study were 1) to describe maternal
glucose and lipid kinetics and 2) to examine the relation-
ships with infant birth weight in obese women with pre-
gestational type 2 diabetes during late pregnancy. Using
stable isotope tracer methodology and mass spectrom-
etry, maternal glucose and lipid kinetic rates during the
basal condition were compared in three groups: lean
women without diabetes (Lean, n = 25), obese women
without diabetes (OB, n = 26), and obese women with
pregestational type 2 diabetes (OB+DM, n = 28; total n =
79). Glucose and lipid kinetics during hyperinsulinemia
were also measured in a subset of participants (n = 56).
Relationships betweenmaternal glucose and lipid kinetics
during both conditions and infant birth weight were exam-
ined. Maternal endogenous glucose production (EGP) rate
was higher in OB+DM than OB and Lean during hyper-
insulinemia. Maternal insulin value at 50% palmitate Ra

suppression (IC50) for palmitate suppression with insuli-
nemia was higher in OB+DM than OB and Lean. Maternal
EGP per unit insulin and plasma free fatty acid concentra-
tion during hyperinsulinemia most strongly predicted in-
fant birth weight. Our findings suggest maternal fatty acid
and glucose kinetics are altered during late pregnancy
and might suggest a mechanism for higher birth weight
in obese women with pregestational diabetes.

Pregnancy complicated by pregestational diabetes is asso-
ciated with a host of adverse neonatal outcomes, including
preterm birth, congenital malformations, increased birth
weight, and neonatal hypoglycemia (1,2). Higher birth
weight in infants born to women with diabetes contributes
to elevated rates of birth injury and cesarean delivery, as

well as higher risk for future obesity, diabetes, and cardio-
vascular disease (3–6). Maternal substrate metabolism dur-
ing pregnancy plays a key role in fetal growth (7) and thus
may be an important target for interventions aimed to
modulate the deleterious effect of diabetes on infant birth
weight.

Traditionally, higher birth weight in infants born to
women with diabetes has been thought to be caused
primarily by maternal hyperglycemia. Thus, current treat-
ment in diabetic pregnancy focuses on achieving as close to
maternal normoglycemia as possible (8). However, some
past and more recent data suggest that maternal glycemia
is a poor predictor of infant birth weight (9,10) and that
markers of maternal lipid metabolism during pregnancy
might contribute to and possibly be a better predictor of
infant birth weight and adiposity (11–19). Previous studies
demonstrating associations between indices of maternal
glucose and lipid metabolism and infant birth weight
have focused only on clinical measures of maternal metab-
olism, including fasting plasma glucose (9,16,17,20), HbA1c
(15), oral glucose tolerance testing (9,11,16,18,19), and
plasma concentrations of free fatty acid (FFA) (15), triglyc-
eride (11–15,20), and cholesterol (20). Although clinical
measures are easily collected and some are part of routine
clinical care, these measures have not elucidated the path-
ologic abnormalities that lead to pregnancy-associated risks.
Therefore, identification of the pathophysiologic mecha-
nisms during both the fasting and hyperinsulinemic states
that drive alterations in glucose and lipid metabolism in
women with type 2 diabetes during pregnancy is needed.

Thus, the primary objective of the study was to com-
pare maternal glucose and fatty acid kinetics during
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late pregnancy in obese women with diabetes to obese
women without diabetes and lean, healthy control subjects.
The secondary objective of the study was to examine the
relationships between maternal glucose and fatty acid
kinetics and infant birth weight. We hypothesized that
glucose and fatty acid kinetics during basal and hyper-
insulinemic conditions are abnormal in obese women with di-
abetes and would be better predictors of infant birth weight
than clinical markers of glucose and lipid metabolism.

RESEARCH DESIGN AND METHODS

Participants
Six hundred and twenty six women were screened at
24–26 weeks’ gestation and 79 women were enrolled and
studied at 32–36 weeks’ gestation. Women were stratified
into three separate groups: 1) obese women with pre-
gestational type 2 diabetes (OB+DM, n = 28), 2) obese
women without diabetes (pregestational or gestational)
(OB, n = 26), and 3) lean control subjects without diabetes
(Lean, n = 25). Participants were all receiving prenatal
care at the Women’s Health Center at Barnes-Jewish
Hospital/Washington University School of Medicine in
St. Louis between May 2011 and December 2013. Inclusion
criteria included women 18–44 years of age, confirmed
singleton viable pregnancy with no identified fetal abnor-
malities (as determined by routine anatomy ultrasound at
18–22 weeks), and prepregnancy BMI between 18.0 and
24.9 kg/m2 for Lean or prepregnancy BMI between 30
and 45 kg/m2 for OB and OB+DM. Women with pregesta-
tional diabetes were diagnosed as White class B (preexist-
ing diabetes with onset at 20 years or later with duration
of #10 years, n = 20) or C (preexisting diabetes with onset
between 10 and 19 years and with duration of 10–19 years,
n = 8), were on insulin therapy, and had HbA1c #8% (183
mg/dL, 64 mmol/mol) for.3 months prior to pregnancy. All
participants with diabetes were taking intermediate-acting
insulin (100%, NPH, b.i.d.: morning/evening) and either
rapid- (73%, aspart/Humalog, t.i.d.) or short-acting insulin
(13%, regular, t.i.d.) at meals. Exclusion criteria for all
women included 1) multiple gestation pregnancy, 2) inability
to provide voluntary informed consent, 3) current self-
reported use of illegal drugs (cocaine, methamphetamine,
or opiates), 4) current smoker who did not consent to ces-
sation, and 5) current usage of daily medications by class:
corticosteroids, b-blockers (known to affect lipid metabo-
lism), and antipsychotics (known to alter insulin resistance
and metabolic profiles). For women without diabetes, exclu-
sion criteria included 1) diagnosis or history of gestational
diabetes mellitus, 2) prepregnancy diabetes, or 3) prior macro-
somic (.4,500 g) infant. This study was approved by the
Human Research Protection Office at Washington Univer-
sity in St. Louis (institutional review board no. 201012828,
NCT01346527).

Glucose and Fatty Acid Kinetics
The evening prior to the study, participants were provided a
standardized meal containing 12 kcal/kg body weight and

55% carbohydrate, 30% fat, and 15% protein at 1800 h pro-
vided by the Washington University in St. Louis Institute of
Clinical and Translational Sciences Bionutrition Service.
Participants then fasted overnight and until completion of
the study the next day. OB+DM women were instructed
to take their insulin the day prior as normal; however,
they did not take insulin therapy the morning of the
study until study completion. The following morning, at
0700 h, a catheter was inserted into an antecubital vein
and used to administer stable isotope-labeled tracers
where constant intravenous infusions of [6,6-2H2]glucose
(0.25 mmol $ kg21 $ min21 with a 22.5 mmol/kg priming
dose) and [U-13C]palmitate (12 nmol $ kg-1 $ min21,
unprimed) were initiated and maintained for 300 min.
A second catheter was inserted into a hand vein on the
contralateral arm; the hand was heated (55°C) using a
thermostatically controlled box to obtain arterialized ve-
nous blood samples (21). We used palmitate as the choice
for our tracer study as palmitate is one of the most abun-
dant FFAs in the plasma, is thought to be representative
of long-chain fatty acid metabolism, is relatively cheap,
and is easily examined by gas chromatography–mass spec-
trometry (GC-MS) (22), and this tracer has been successfully
used in our and other investigators’ studies examining fatty
acid metabolism in a variety of disorders (23–25). All tracers
came from Cambridge Isotope Laboratories (Andover, MA).
All participants completed a basal period (0–120 min, n =
79). A subset of participants (n = 56) completed a one-stage
hyperinsulinemic-euglycemic clamp (120–300 min) in order
to evaluate glucose and fatty acid metabolism under hyper-
insulinemic conditions. TheWashington University in St. Louis
Human Studies Committee determined partway through the
study that the hypersinsulinemic clamp was more than min-
imal risk (i.e., necessary when a fetus is involved); therefore
not all participants completed the clamp part of the study.
During the hyperinsulinemic stage of the clamp, a primed
(160 mU $ m2 $ min21 3 5 min; 80 mU $ m2 $ min21 3
5 min), constant (40 mU $ m2 $ min21) infusion of regular
human insulin was administered intravenously and con-
tinued for 180 min (total study time 300 min). This in-
sulin dose range has been shown to increase glucose
disposal in pregnant women (26) and moderately suppress
hepatic glucose production and lipolysis in nongravid
insulin-resistant adults in our previous study (27). Plasma
glucose concentration was maintained at 5 mmol/L (90 mg/dL)
by a variable-rate infusion of 20% dextrose containing 1.5%
[6,6-2H2]glucose. Blood samples were obtained every 10 min
during the clamp to quantify plasma glucose concentrations
and used to adjust the 20% dextrose infusion rate. Blood
and breath samples were collected in vacutainers before
starting the tracer infusions to quantify background 2H,
13C, and 13CO2 enrichments, and every 10 min during the
last 30 min of the basal and hyperinsulinemic periods to
quantify hormone levels, substrate levels, and glucose and
fatty acid kinetics. Whole-body oxygen consumption (VO2)
and carbon dioxide production (VCO2) were measured
continuously for 15 min using indirect calorimetry (Parvo

894 Maternal Metabolism in Diabetic Pregnancy Diabetes Volume 65, April 2016



Medics, Sandy, UT) at 75 and 255 min of the study, as
previously described (24).

Palmitate oxidation rate was corrected for incomplete
labeled CO2 recovery by an acetate correction factor via an
infusion of [1,2-13C]acetate for 120 or 300 min (depending
on clamp participation) 1 week prior to or after the glucose
and fatty acid metabolism study, as previously described (24).

Sample Analyses
Plasma glucose concentration was measured using an
automated glucose analyzer (Yellow Springs Instruments,
Yellow Springs, OH). Plasma insulin levels were quantified
using a chemiluminescent immunometric method (Immulite;
Siemens, Los Angeles, CA). The plasma insulin assay range
is 2–300 mU/mL and the interassay coefficient of variation
is 4% in the low (10.5 mU/mL) and high insulin concen-
tration range (55.1 mU/mL).

The tracer-to-tracee ratios (TTRs) for plasma [2H2]glucose
and [U-13C]palmitate were quantified using capillary GC-MS
(Agilent 6890N gas chromatograph and Agilent 5973N mass
selective detector; Agilent, Palo Alto, CA), as previously
described (24). For [2H2]glucose enrichment quantifica-
tion, plasma proteins were precipitated with cold acetone,
lipids were extracted into hexane, and the aqueous phase
was dried (Labconco, Kansas City, MO). The heptafluorobu-
tyric derivative of glucose was formed, and [2H2]glucose
enrichment was quantified using GC-electron ionization-
MS and selective ion monitoring (mass/charge ratio [m/z]
519 and 521). Plasma [U-13C]palmitate enrichment was
quantified after plasma proteins were precipitated with
cold acetone, lipids were extracted into hexane, and the fatty
acid methyl esters were produced via iodomethane and
dichloromethane. Plasma [U-13C]palmitate enrichment was
quantified using GC-electron ionization-MS with selective
ion monitoring (m/z 270 and 286). The GC-MS instrument
response was calibrated using isotopic enrichment standards
of known TTR for [2H2]glucose and [U-

13C]palmitate. Breath
13CO2 enrichment was measured by isotope ratio mass spec-
trometry (Finnigan DELTAplus XL, Bremen, Germany).

Calculations
Plasma glucose and palmitate rates of appearance (Ra)
were calculated by dividing each tracer infusion rate by
the average TTR obtained during the last 30 min of each
stage (i.e., basal, hyperinsulinemia) of the clamp, as pre-
viously described (24). Glucose rate of disappearance (Rd)
was calculated as the sum of endogenous glucose Ra plus
infused dextrose. Palmitate oxidation rate was determined
by dividing breath 13CO2 production (13CO2 TTR 3 VCO2

production rate) by the plasma palmitate TTR and cor-
rected for 13CO2 recovery as determined during the acetate
infusion study. The insulin value at 50% palmitate Ra sup-
pression (IC50) was calculated by log transforming insulin
and palmitate Ra values and calculating the slope and in-
tercept of 50% suppression of palmitate Ra by insulin, as
previously described (28). Kinetic rates were expressed per
kilogram body weight where appropriate.

Infant Birth Weight and Cord Blood Collection
Infant birth weight and length was measured per in-
stitutional protocol in the delivery room after initial infant
assessment and drying by either the pediatric or labor and
delivery nurse in attendance. Measurements were per-
formed on infant naked, and weight was obtained by a
digital scale. Cord blood was collected immediately after
the delivery of the infants and before delivery of the
placenta. A 60-mL syringe was used to extract the blood
from the clamped umbilical cord by the obstetric resident
or attending obstetrician overseeing the delivery. Cord blood
was centrifuged, aliquoted, and frozen at280°C by formally
trained obstetric research nurses who provide 24/7 coverage
of labor and delivery to obtain research specimens.

Statistics
Normally distributed demographic, plasma metabolite,
and hormone variables and glucose and fatty acid kinetics
between groups were examined by one-way ANOVA and
group differences were compared through post hoc testing
using Tukey honestly significant difference testing. Non-
normally distributed variables determined by the Shapiro-
Wilk test were examined by x2 and independent samples
Kruskal-Wallis one-way ANOVA. Due to the relationship
between fatty acid kinetics and resting energy expenditure,
fatty acid kinetic variables were analyzed by ANCOVA con-
trolling for resting energy expenditure at baseline or during
hyperinsulinemia. Relationships between maternal and in-
fant demographic and metabolic outcomes were examined
using univariate (Pearson product moment correlation).
Stepwise linear regression analysis was used to refine the
ability to predict birth weight combining multiple meta-
bolic measures. Univariate analysis was used to determine
the best predictors to enter in the model and then back-
ward stepwise regression was performed. Statistical signif-
icance was considered at P , 0.05. Due to the lack of data
regarding fatty acid kinetics during pregnancy in women
with diabetes and the exploratory nature of the study, we
used data from our previous work in nongravid insulin-
resistant and control participants to estimate sample size
(29), assuming an a of 0.05, where 25 subjects per group
would provide 99% power to detect differences in baseline
fatty acid oxidation rate between groups. All statistical
analyses were performed using SPSS (IBM, Armonk, NY).

RESULTS

Maternal Demographics
OB+DM was significantly older and heavier than OB and
Lean groups and OB was significantly heavier than Lean.
Rate of cesarean section tended to be higher in OB and
OB+DM. Plasma interleukin-6 was significantly higher
and total plasma cholesterol and LDL cholesterol concen-
trations were significantly lower in OB+DM than other
groups. Plasma leptin concentration was significantly higher
in both OB+DM and OB compared with Lean. Means 6 SD
for maternal demographics and plasma hormone and me-
tabolite concentrations are reported in Table 1.
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Maternal Glucose Kinetics
Basal plasma glucose and insulin concentrations were signif-
icantly higher in OB+DM compared with OB and Lean
groups. Endogenous glucose production (EGP; glucose Ra)
per kilogram body weight and per unit of plasma insulin
during the basal condition was higher in OB+DM and OB
versus Lean. Plasma glucose and insulin concentrations
during hyperinsulinemia were similar between groups. EGP
expressed absolutely and per kilogram of body weight during
hyperinsulinemia was higher in OB+DM compared with
other groups and significantly higher when expressed per
unit plasma insulin in OB+DM compared with OB. EGP
was suppressed less by hyperinsulinemia in OB+DM and
OB compared with Lean and less in OB+DM versus OB
(Fig. 1C). Glucose Rd expressed per kilogram of body
weight was significantly lower in OB+DM compared with
OB and Lean and was significantly lower in OB compared

with Lean (Fig. 1A). Change in glucose Rd per change in
plasma insulin from baseline to hyperinsulinemia was sig-
nificantly lower in OB+DM versus OB (P = 0.08) and Lean
and significantly lower in OB versus Lean (Fig. 1B). Means6
SD are reported in Table 2.

Maternal Fatty Acid Kinetics
Basal and hyperinsulinemic plasma FFA concentrations
were significantly higher in OB+DM compared with other
groups. Absolute palmitate Ra, palmitate oxidation rate,
and nonoxidative disposal rate during the basal period
were significantly higher in OB+DM and OB compared
with Lean but not different between groups when expressed
per kilogram body weight. Palmitate Ra expressed absolutely
during hyperinsulinemia was significantly higher in OB+DM
than other groups. Palmitate Ra suppression by hyperinsu-
linemia tended to be blunted in OB+DM compared with OB
and Lean (P = 0.099). The predicted IC50 was significantly

Table 1—Maternal and infant demographics and plasma metabolites

Lean (n = 25) OB (n = 26) OB+DM (n = 28) F ratio P value

Maternal variables
Age (years) 23 6 3 25 6 5 31 6 6† ,0.001
Height (cm) 161.8 6 5.3 168.0 6 8.9 164.8 6 5.5 ,0.001
Weight (kg) 70.8 6 8.2 113.6 6 21.8 127.6 6 22.1*† ,0.001
Gravida (n) 2.3 6 1.3 3.0 6 1.7 3.6 6 2.8 0.08
Prenatal visits (n, %)
1–5 visits 2, 8 2, 8 1, 4
6–10 visits 14, 56 14, 54 9, 32
.10 visits 9, 36 10, 38 18, 64

Triglycerides (mg/dL) 144.8 6 44.1 159.8 6 55.1 177.4 6 91.2 0.47
Total cholesterol (mg/dL) 205.0 6 33.3 197.7 6 34.7 177.3 6 37.9† ,0.001
HDL cholesterol (mg/dL) 71.2 6 17.4 58.0 6 13.1 56.8 6 15.0 0.91
LDL cholesterol (mg/dL) 104.8 6 29.3 107.8 6 29.9 85.8 6 32.4 ,0.001
Leptin (mg/L) 21.0 6 6.4 49.3 6 20.1† 52.8 6 37.1† ,0.001
IL-6 (pg/mL) 2.8 6 1.1 3.5 6 1.8 4.1 6 2.0† ,0.02
IGF-1 (ng/mL) 313.2 6 89.0 277.7 6 100.0 382.0 6 184.1 0.05

Infant variables
Gestational age (weeks) 38.3 6 1.3 38.8 6 1.5 37.0 6 1.9*† ,0.001
Delivery mode
Vaginal/cesarean 68/32 42/58† 32/68† 0.05

Sex
Male/female (%) 52/48 50/50 46/48 0.89

Nursery admission
Newborn/special care/NICU (%) 80/20/0 81/15/4 50/42/8† 0.01

Resuscitative breathing
Yes/no (%) 12/88 23/77† 43/57*† 0.01

Birth weight (g) 3,070 6 459 3,214 6 756 3,604 6 654*† 0.01
Birth length (cm) 50.3 6 2.6 50.8 6 2.2 50.6 6 2.9 0.91
Ponderal index 24.1 6 2.3 25.7 6 2.2 27.5 6 3.5*† 0.001
Apgar, 1 min 7.8 6 1.4 7.1 6 2.3 6.0 6 2.9 0.01
Apgar, 5 min 8.8 6 0.6 8.7 6 0.9 7.8 6 2.0 0.003

Cord blood
Glucose (mg/dL) 93.1 6 27.0 78.9 6 14.4 86.9 6 28.3 0.14
Insulin (mU/mL) 11.8 6 7.4 10.9 6 6.9 27.8 6 24.1*† ,0.001
C-peptide (ng/mL) 0.87 6 0.54 1.18 6 0.81 1.83 6 1.13*† 0.001
HOMA-insulin resistance 2.8 6 2.0 2.2 6 1.7 6.0 6 6.2*† 0.001
IGF-1 (ng/mL) 61.2 6 30.2 52.4 6 19.7 70.5 6 43.5 0.44
FFA (mEq/L) 0.14 6 0.10 0.15 6 0.10 0.16 6 0.06 0.35
Leptin (mg/L) 11.2 6 6.9 13.3 6 9.1† 30.9 6 25.1*† ,0.001
IL-6 (pg/mL) 9.1 6 10.4 10.0 6 12.1 10.5 6 13.2 0.93

Values are means6 SD. IL-6, interleukin 6; NICU, neonatal intensive care unit. Post hoc analysis: *P, 0.05 vs. OB, †P , 0.05 vs. Lean.
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higher in OB+DM versus other groups and higher in OB
versus Lean (Fig. 1D). Ninety-one percent of participants
completed the acetate infusion study; the average recovery
for each group was used for those participants who did not
complete the study. Acetate recovery factors were not dif-
ferent between groups during the basal or hyperinsulinemic
conditions. Means 6 SD are reported in Table 2.

Infant Demographics and Metabolism
Infants of OB+DM were born significantly earlier than
other groups. Infants born to OB+DM tended to need
more advanced care after delivery, including resuscitative
breathing and admission to the special care nursery or the
neonatal intensive care unit. One-minute Apgar was
significantly lower in OB+DM than other groups. Infant
birth weight was significantly greater in OB+DM than
Lean and tended (P = 0.07) to be greater than OB. Cord
plasma insulin, HOMA-insulin resistance, C-peptide, and
leptin were significantly higher in OB+DM than OB and
Lean. There were no differences in labor duration (i.e., fast-
ing before cord blood collection) between the groups, no
relationships between labor duration and cord HOMA or
FFA, and no differences in cord blood variables between

those with natural delivery versus cesarean section (data
not shown). Means 6 SD are reported in Table 1.

Correlations Between Maternal Substrate Kinetics and
Infant Birth Weight
Maternal fasting plasma glucose, baseline EGP per unit
plasma insulin, change in glucose Rd per change in plasma
insulin from baseline to hyperinsulinemia, IC50, and plasma
FFA concentration during hyperinsulinemia were the great-
est univariate predictors of infant birth weight (all partic-
ipants included) (Table 3). These variables remained the
strongest predictors when only OB+DM and OB were
analyzed (maternal fasting glucose: r = 0.40; EGP/plasma
insulin [INS]: r = 20.38; Dglucose Rd/INS: r = 20.39;
IC50: r = 0.28; FFA concentration: r = 0.46 [all P ,
0.01]). Using these variables in a backward stepwise re-
gression analysis (multicollinearity: tolerance = 0.82, var-
iance inflation factor = 1.2), a model including plasma
FFA concentration during hyperinsulinemia and baseline
EGP per unit plasma insulin most strongly predicted of
birth weight (adjusted R2 = 0.33) (Table 3). Regression
coefficients out of the model were b = 20.382 (EGP/INS)
and b = 0.455 (FFA).

Figure 1—A: Glucose Rd at baseline and hyperinsulinemia. B: Change in glucose disposal rate per change in plasma insulin. C: Endog-
enous glucose production suppression with insulin. D: Predicted IC50. *P < 0.05, different than OB and Lean; **P < 0.05, different than
Lean. BW, body weight.
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DISCUSSION

To our knowledge, this is the first study to report maternal
glucose and fatty acid kinetics during basal and hyper-
insulinemic conditions in obese women with pregestational
diabetes during late pregnancy. The principal findings of
the study were that obese women with pregestational type
2 diabetes had 1) hepatic, adipose tissue, and skeletal mus-
cle insulin resistance; 2) elevated adipose tissue lipolysis
and plasma FFA concentration; and 3) higher infant birth
weight compared with obese and lean women without di-
abetes during late pregnancy. Further, we found that a
statistical model consisting of maternal baseline EGP rate
per unit of plasma insulin and plasma FFA concentration
during hyperinsulinemia best predicted infant birth weight
in a cohort of obese and lean women with and without
diabetes.

Glucose and Fatty Acid Kinetics
Glucose and lipid abnormalities are well described in
nongravid adults with diabetes (30). Previous studies have
also demonstrated hepatic insulin resistance (31) and im-
paired FFA response to insulin (32) in women with gesta-
tional diabetes mellitus during pregnancy. This study extends
those observations into obese women with pregestational
type 2 diabetes and further reports lower insulin-stimulated
glucose disposal rate, elevated adipose tissue lipolytic rate
during hyperinsulinemia, and higher IC50 for palmitate
suppression compared with obese and lean women with-
out diabetes. Higher maternal adipose tissue lipolytic rate
during hyperinsulinemia and higher IC50 for palmitate
suppression likely resulted in higher maternal FFA con-
centrations as seen in the current study. Indeed, we
found strong relationships between maternal adipose

Table 2—Maternal and infant metabolism

Maternal variables Lean (n = 25) OB (n = 26) OB+DM (n = 28) F ratio P value

Basal
Glucose (mg/dL) 70.2 6 11.1 81.2 6 10.5† 109.9 6 30.3*† ,0.001
Insulin (mU/mL) 7.3 6 5.0 17.5 6 10.3† 32.3 6 30.5*† ,0.001
REE (kcal/day) 1,498 6 270 2,125 6 416† 2,304 6 484† ,0.001
EGP (mmol/min) 1,322 6 157 1,660 6 285† 2,238 6 443*† ,0.001
EGP (mmol/kg BW/min) 18.8 6 1.9 14.8 6 1.9† 17.7 6 3.0† ,0.001
EGP (mmol/kg BW/min/mU/mL) 4.0 6 2.9 1.3 6 1.2† 0.9 6 0.7† ,0.001
FFA (mEq/L) 0.45 6 0.12 0.46 6 0.13 0.57 6 0.15*† 0.001
Palmitate Ra (mmol/min) 105.0 6 24.5 172.8 6 47.7† 195.7 6 52.7† ,0.01
Palmitate Ra (mmol/kg BW/min) 1.5 6 0.3 1.5 6 0.3 1.5 6 0.3 0.99
Palmitate Ox (mmol/min) 9.7 6 4.5 42.7 6 15.7† 45.1 6 15.4† ,0.001
Palmitate Ox (mmol/kg BW/min) 0.34 6 0.11 0.38 6 0.13 0.35 6 0.10 0.46
% Uptake oxidized (%) 23 6 6 23 6 5 25 6 5 0.23
Non-Ox Palm Disp (mmol/min) 80.6 6 20.8 129.7 6 37.2† 150.6 6 40.4† 0.004
Non-Ox Palm Disp (mmol/kg BW/min) 1.1 6 0.3 1.2 6 0.3 1.2 6 0.3 0.88
Acetate recovery (%) 38 6 7 37 6 6 39 6 5 0.27

Hyperinsulinemia#
Glucose (mg/dL) 89.3 6 2.3 90.0 6 2.0 90.2 6 3.8 0.63
Insulin (mU/mL) 58.3 6 13.5 66.3 6 18.5 61.4 6 26.3 0.53
REE (kcal/day) 1,559 6 217 2,017 6 355† 2,124 6 484† 0.003
EGP (mmol/min) 229 6 104 321 6 145 791 6 536*† ,0.001
EGP (mmol/kg BW/min) 3.1 6 1.4 2.9 6 1.2 6.2 6 4.1*† ,0.001
EGP (mmol/kg BW/min/mU/mL) 0.06 6 0.03 0.05 6 0.02 0.09 6 0.05* ,0.001
EGP suppression (%) 83 6 7 81 6 7 67 6 18*† 0.001
Glucose Rd (mmol/kg BW/min) 31.1 6 3.0 22.7 6 4.5† 17.1 6 4.5*† ,0.001
Glucose Rd (mmol/kg BW/min/mU/mL) 0.56 6 0.14 0.40 6 0.20† 0.28 6 0.13† ,0.001
DRd/INS (mmol/kg BW/min/mU/mL) 0.056 6 0.039 0.023 6 0.032 0.018 6 0.016*† ,0.01
FFA (mEq/L) 0.06 6 0.02 0.08 6 0.06 0.22 6 0.12*† ,0.001
Palmitate Ra (mmol/min) 42.0 6 13.2 60.7 6 38.5 97.4 6 41.1*† 0.004
Palmitate Ra (mmol/kg BW/min) 0.56 6 0.41 0.54 6 0.32 0.75 6 0.24* 0.04
Palmitate Ra suppression (%) 62 6 14 66 6 15 51 6 13 0.002
IC50 (mU/mL) 35.9 6 18.3 52.1 6 50.6† 71.1 6 41.7*† 0.01
Palmitate Ox (mmol/min) 17.1 6 5.9 27.6 6 20.6 38.8 6 15.3 0.09
Palmitate Ox (mmol/kg BW/min) 0.23 6 0.08 0.24 6 0.17 0.30 6 0.10 0.39
% Uptake oxidized (%) 41 6 10 44 6 11 41 6 11 0.33
Non-Ox Palm Disp (mmol/min) 24.9 6 10.6 33.1 6 21.6 58.7 6 31.6*† 0.003
Non-Ox Palm Disp (mmol/kg BW/min) 0.17 6 0.06 0.18 6 0.12 0.23 6 0.08 0.31
Acetate recovery (%) 76 6 12 74 6 11 75 6 9 0.76

Values are means 6 SD. Lipid variables analyzed via ANCOVA (REE). BW, body weight; Non-Ox Palm Disp, nonoxidative palmitate
disposal; Ox, oxidation. #n under hyperinsulinemic conditions: Lean (n = 9), OB (n = 24), and OB+DM (n = 23). Between-group post hoc
analysis: *P , 0.05 vs. OB, †P , 0.05 vs. Lean.
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tissue lipolytic rates, IC50, and maternal FFA concentration
during both conditions (data not shown). In addition, pal-
mitate oxidation rate during baseline and hyperinsulinemia
expressed absolutely tended to be higher in obese women
with and without diabetes compared with lean women with-
out diabetes. However, these differences were not present
when normalized per body mass, suggesting skeletal muscle
fatty acid oxidation is not impaired. This tendency toward
higher absolute palmitate oxidation rate in obese women
with diabetes might be important as higher lipid oxidation
is associated with greater reactive oxygen species generation
and systemic inflammation (33). Indeed, we found higher
maternal systemic inflammation (interleukin-6) in obese
women with diabetes. Lastly, obese women with pregesta-
tional type 2 diabetes demonstrated hepatic and skeletal
muscle insulin resistance during late pregnancy. This resis-
tance was significantly greater than the physiologic insulin
resistance of pregnancy (34) and appeared to contribute
equally (through univariate analysis) to elevated maternal
plasma glucose concentration. On the basis of our findings,
interventions targeting hepatic, skeletal muscle, and adipose
tissue insulin resistance during pregnancy might improve ma-
ternal metabolic health and modulate infant birth weight.

Infant Birth Weight
Higher infant birth weight is well documented in preg-
nancies independently complicated by diabetes (35) and
obesity (36,37). However, we found higher infant birth
weight only in women with both obesity and pregesta-
tional diabetes. Traditionally, maternal fasting plasma
glucose was thought to be the most important predictor
of infant birth weight in women with diabetes (8). How-
ever, more recent data suggest that maternal glucose only
explains some of the variance in infant birth weight (10)
and that markers of maternal lipid metabolism might
better predict birth weight in pregnancies complicated
by obesity and diabetes (11–20). Previous studies demon-
strating these relationships only used clinically obtained
measures (e.g., maternal plasma concentrations of triglyc-
eride, FFA, and cholesterol) where the current study also

examined the physiologic mechanisms (i.e., kinetics) that
might contribute to increased infant birth weight. Al-
though correlation analysis revealed that maternal glucose
was strongly related to infant birth weight, a multiple
regression model found that maternal glucose kinetics
(baseline EGP per unit plasma insulin) and a clinical
marker of fatty acid metabolism (plasma FFA concentra-
tion) during the hyperinsulinemic condition best pre-
dicted infant birth weight. This model predicted ;16%
more variance in infant birth weight than a model includ-
ing clinically obtainable measures (fasting plasma glucose,
insulin, FFA, and HDL and total cholesterol concentra-
tions; data not shown). Taken together, these data indi-
cate that performing hyperinsulinemic clamps during
pregnancy in all obese women with pregestational dia-
betes is neither clinically nor scientifically warranted but
might suggest that measurement of postprandial plasma
FFA (and possibly glucose) concentration (i.e., hyperinsu-
linemic condition) might be the best, clinically obtainable
predictor of infant birth weight in this population, but
this needs further study. Surprisingly, we did not find a
significant correlation between maternal plasma triglycer-
ide concentration and infant birth weight as seen in other
studies in gestational diabetes mellitus (12,38). These studies
examined Caucasian and Asian women and our study had a
large proportion of African American women who have been
previously shown to have reduced VLDL-triglyceride secre-
tion rates compared with Caucasians (39); these differences
might have modulated this effect in our study. We also found
lower total plasma cholesterol in women with diabetes. It is
likely that total cholesterol was lower in the diabetes group
because HDL levels were ;15 mg/dL lower in the diabetes
group. The most common lipid abnormalities in type 2
diabetes are low HDL cholesterol and hypertriglyceridemia,
which is exacerbated by uncontrolled hyperglycemia; eleva-
tions in total LDL are not typically seen in type 2 diabetes
alone (40). We selected patients with relatively well-
controlled diabetes and therefore would anticipate that the
patients would have near-normal triglyceride levels but
would continue to have a low HDL cholesterol.

Table 3—Correlation and regression coefficients

Variable Birth weight Fasting glucose FFA clamp
Standardized
coefficient (b)

Basal
Glucose (mg/dL) 0.47 (0.001) 0.71 (0.001)
EGP (mmol/min/kg BW/mU/mL) 20.43 (0.001) 20.44 (0.001) 20.42 (0.001) 20.355

Hyperinsulinemia*
IC50 (mU/mL) 0.33 (0.02) 0.28 (0.04) 0.56 (0.001)
DGluRd/INS (mmol/min/kg BW/mU/mL) 20.47 (0.001) 20.26 (0.06) 20.35 (0.001)
FFA (mEq/L) 0.50 (0.001) 0.71 (0.001) 0.353

Model** R R2 Adjusted R2 Standard error
Baseline EGP/INS, FFA clamp 0.597 0.357 0.332 457.9

Data are r (P value), unless otherwise stated. BW, body weight; glucose, maternal fasting plasma glucose concentration; DGluRd/INS,
change in glucose rate of disappearance per unit change in plasma insulin. *n under hyperinsulinemic conditions: Lean (n = 9), OB
(n = 24), and OB+DM (n = 23). **Backward regression model including variables identified as best predictors from univariate analyses.
Initial variable included above, final variables shown with regression coefficients.
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Umbilical Cord Blood Metabolites and Hormones
Cord plasma insulin, C-peptide, and leptin were higher in
infants born to obese women with pregestational diabetes
compared with obese and lean women without diabetes.
However, based on the foreseen maternal fatty acid
metabolic abnormalities in obese women with pregesta-
tional diabetes and the strong predictive value of maternal
plasma FFA concentration of infant birth weight, we were
surprised that umbilical cord plasma FFA concentration
was not different among groups and that we did not find
a correlation between maternal and umbilical cord FFA
concentrations as has been previously reported (38). Our
data are however consistent with a previous report finding
no difference in umbilical cord plasma FFA concentration
in women with gestational diabetes mellitus (41). Similar
cord blood FFA concentrations in the current study might
be due to the possibility that fetal delivery of FFAs is likely
not static and fluctuates with changes in maternal FFA
concentration (42). During fasting, maternal oxidation of
fatty acids for maternal energy needs is at its highest (43).
Umbilical cord blood collection for scientific and clinical
purposes is typically obtained after an extended maternal
fast (both natural labor and cesarean delivery) and likely
does not reflect quantitative fetal FFA delivery. Although
difficult to measure, it is reasonable to speculate that fetal
delivery of fatty acids (via placental uptake of FFAs and
triglycerides) is highest after a meal and that postprandial
insulin resistance might further facilitate fatty acid delivery
(and glucose) to the fetus and thus contribute to fetal
growth and adiposity. This notion is supported by data
that demonstrate placental triglyceride accumulation (44)
and fatty acid transporter content (45) is higher in preg-
nancy complicated by diabetes and obesity. Thus, further
research examining the role of postprandial plasma FFA
and/or triglyceride metabolism on fetal growth is warranted.

Limitations and Strengths
Although infant birth weight among those born to women
with diabetes is a reasonable surrogate for some adverse
outcomes, it might be mediated by increases in fat mass
and/or lean mass (46). However, our study did not mea-
sure infant adiposity and therefore is a limitation of the
study. Another limitation is that not all women partici-
pated in the hyperinsulinemic-euglycemic clamp portion
of the study; therefore, this might have reduced our
power to detect differences in lean women from the obese
groups during hyperinsulinemia. We also did not assess
postprandial lipid and glucose metabolism, where in a
previous study, it has been shown to correlate with infant
adiposity (47). We also did not measure maternal body
composition to which glucose and lipid kinetics could have
been normalized. We did not collect maternal body com-
position due to the inherent inaccuracies (bioelectrical im-
pedance, air displacement plethymosgraphy, and skin fold
calipers) during pregnancy (48). Also, another limitation is
that these data can only be applied to late pregnancy and
not early or midgestation as we only measured glucose and

lipid metabolism during late pregnancy. However, we be-
lieve our study also has some strengths to consider. Our
relatively large sample size contained a mix of lean and
obese women with and without diabetes. Also, we exam-
ined physiologic mechanisms (i.e., kinetics) of maternal
glycemia and lipemia under both the fasting and hyper-
insulinemic conditions using state-of-the-art techniques
(i.e., metabolic tracers and mass spectrometry).

Conclusions
Maternal glucose and fatty acid kinetics during late preg-
nancy are abnormal in women with pregestational diabetes
and reflect adipose tissue, hepatic, and skeletal muscle
insulin resistance. Glucose kinetics and fatty acid concentra-
tion during hyperinsulinemia are the strongest predictors of
infant birth weight in a mixed population of lean and obese
women with and without diabetes. These findings suggest
that in attempting to modulate infant birth weight (and
likely other complications), maternal adipose tissue, hepatic,
and skeletal muscle insulin resistance, rather than just
maternal hyperglycemia, should also be considered during
pregnancy in women with pregestational diabetes as clinical
targets that deserve further investigation.
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