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Rithwick Rajagopal,1 Gregory W. Bligard,1 Sheng Zhang,1 Li Yin,2 Peter Lukasiewicz,1

and Clay F. Semenkovich2

Functional Deficits Precede Structural
Lesions in Mice With High-Fat
Diet–Induced Diabetic Retinopathy
Diabetes 2016;65:1072–1084 | DOI: 10.2337/db15-1255

Obesity predisposes to human type 2 diabetes, the most
common cause of diabetic retinopathy. To determine if
high-fat diet–induced diabetes in mice can model retinal
disease, we weaned mice to chow or a high-fat diet and
tested the hypothesis that diet-induced metabolic dis-
ease promotes retinopathy. Compared with controls,
mice fed a diet providing 42% of energy as fat devel-
oped obesity-related glucose intolerance by 6 months.
There was no evidence of microvascular disease until
12 months, when trypsin digests and dye leakage as-
says showed high fat–fed mice had greater atrophic
capillaries, pericyte ghosts, and permeability than con-
trols. However, electroretinographic dysfunction be-
gan at 6 months in high fat–fed mice, manifested by
increased latencies and reduced amplitudes of oscilla-
tory potentials compared with controls. These electro-
retinographic abnormalities were correlated with glucose
intolerance. Unexpectedly, retinas from high fat–fed
mice manifested striking induction of stress kinase
and neural inflammasome activation at 3 months, before
the development of systemic glucose intolerance, elec-
troretinographic defects, or microvascular disease. These
results suggest that retinal disease in the diabetic milieu
may progress through inflammatory and neuroretinal
stages long before the development of vascular lesions
representing the classic hallmark of diabetic retinopathy,
establishing a model for assessing novel interventions to
treat eye disease.

Despite new approaches, diabetic retinopathy (DR) con-
tinues to ravage vision (1). Vascular endothelial growth
factor (VEGF) plays a definitive role in the disease, and its

antagonism with neutralizing molecules represents an au-
thentic advance in diabetes care (2,3). Yet, in practice and
in clinical trials, anti-VEGF agents are not always effica-
cious, require frequent administration, and may have ad-
verse effects (4). VEGF antagonism in mice may disrupt
long-term visual function (5). Other therapies are destruc-
tive or are associated with serious adverse effects (6). The
growing rate of diabetic visual complications represents
an unmet need. The development of novel treatments is
limited by a surprising lack of relevant models for reti-
nopathy in obesity-related type 2 diabetes and an incom-
plete understanding of the sequential evolution of the
disease.

Rodent models of DR can be simplified into those that
are spontaneous due to genetic background (including the
db/db and Ins2Akita mice and the ZDF and GK rats) (7,8)
and those that require induction, such as models using
the b-cell toxin streptozotocin (STZ) (9). STZ can be used
in disease-free animals and acts quickly. A disadvantage is
that this drug is a potent alkylating agent, with off-target
effects that include immunosuppression (10) and toxicity
to the kidney (11), liver (12), and brain (13–15). Some-
times considered to model human type 1 diabetes, mice
given STZ fail to reproduce key features of the disease.
Notably, humans with type 1 diabetes die without insulin;
STZ-treated mice do not require insulin for survival.

Compared with the STZ-administered mouse, the
Ins2Akita mouse is more reflective of the physiology of
type 1 diabetes. However, this model is the subject of
variable reports regarding eye phenotypes, ranging from
mild changes (16) to advanced abnormalities that include
neovascular features (7,17). The widely used rodent type 2
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diabetes model, db/db, is caused by a leptin-receptor muta-
tion. However, leptin signaling affects the retina (18), sug-
gesting that these animals are not an ideal model for
obesity-related DR.

A high-fat diet (HFD) promotes obesity, insulin re-
sistance, and diabetes in rodents (19). Curiously, although
some studies have used HFDs to study eye disease, we are
unaware of any linking HFD-induced diabetes to retinal
microvascular disease. We studied retinal structure and
function over time to determine if diabetes induced by
feeding without administration of a potential neurotoxin
could model retinal disease in mice. Our findings show
that HFD feeding produces retinopathy characterized
by sequential inflammation, neurologic dysfunction, and
then vascular dysfunction.

RESEARCH DESIGN AND METHODS

Animals
Protocols followed the Association for Research in Vision
and Ophthalmology Statement for the Use of Animals and
were approved by Washington University in St. Louis.
C57BL/6J mice were free of RD1 or RD8 mutations.
Animals were weaned onto Purina 4043 chow (13% kcal
from fat, 62% kcal from carbohydrate, 25% kcal from
protein) or Harlan Teklad TD 88137 HFD (42% kcal
from fat, 43% kcal from carbohydrate, and 15% kcal from
protein).

Antibodies and PCR Primers
For Western blotting, we used monoclonal rat IgG against
mouse NACHT, LRR, and PYD domain-containing protein
(NALP3, encoded by the Nlrp3 gene and also referred to
as pyrin domain-containing protein 3 [NLRP3]) (cat. no.
MAB7578, R&D Systems, Minneapolis, MN), polyclonal
goat IgG against mouse interleukin (IL)-1b (cat. no. AF-
401-NA, R&D Systems), polyclonal rabbit IgG against
mouse caspase-1 p10 (M20) subunit (cat. no. sc-514, Santa
Cruz Biotechnology, Dallas, TX), polyclonal rabbit IgG
against phosphorylated Thr183/Thr185 c-Jun N-terminal
kinase (JNK) (cat. no. 9251, Cell Signaling Technology,
Beverly, MA), and polyclonal rabbit IgG against JNK/stress
activated protein kinase (cat. no. 9252, Cell Signaling Tech-
nology). For immunostaining, anti-NALP3 was used at
1:100, anti-adaptor protein apoptosis–associated speck-
like protein containing CARD (ASC) (cat. no. AL177, Adip-
ogen Corporation, San Diego, CA) was used at 1:200, and
anti-Iba1 (cat. no. 019-19741, Wako, Richmond, VA) was
used at 1:400. PCR primers were as follows:

Vegf-a: sense 59-AATGCTTTCTCCGCTCTGAA-39, antisense
59-GCTTCCTACAGCACAGCAGA-39

Icam-1: sense 59-AACAGTTCACCTGCACGGAC-39, antisense
59-GTCACCGTTGTGATCCCTG-39

Gfap: sense 59-TTTCTCGGATCTGGAGGTTG-39, antisense
59-AGATCGCCACCTACAGGAAA-39

Gapdh: sense 59-TGCACCCCAACTGCTTAGC-39, antisense
59-GGCATGGACTGTGGTCATGAG-39

b-actin: sense 59-TCCATCATGAAGTGTGACGT-39, antisense
59-GAGCAATGATCTTGATCTTCAT-39

Rpl32: sense 59-GGCTTTTCGGTTCTTAGAGGA-39, antisense
59-TTCCTGGTCCACAATGTCAA-39

Gene expression data were normalized to the mean of
Gapdh, b-actin, and ribosomal protein L32.

Metabolic Parameters
Body composition was assessed by MRI (3-in-1 instru-
ment; EchoMRI, Houston, TX). Glucose and insulin
tolerance tests were performed after a 6-h fast in animals
housed with hardwood bedding and treated intraperito-
neally with 1 g/kg dextrose or 0.75 units/kg regular
human insulin. Glucose was measured 10, 30, 60, and
120 min later.

Retinal Morphologic Assay
Eyes from male and female mice were fixed in 4%
paraformaldehyde at 4°C for 48 h, embedded in paraffin,
sectioned into 4-mm slices, and stained with hematoxylin
and eosin. For trypsin digests, isolated retinas were
washed overnight with distilled water at 37°C and then
incubated with 1% porcine trypsin in 1 mol/L Tris-EDTA
buffer (pH 7.5) for 3 h. Neuroglial elements were washed
away by dripping tap water at 25°C. Remaining vascular
skeletons were air dried, incubated with 10% formalin at
25°C for 10 min, stained with periodic acid Schiff base and
hematoxylin, and then mounted.

Vascular Permeability Assays
Under anesthesia, Evans Blue (EB) dye (25 mg/kg of 1%
solution) was injected into the left iliac vein with a
32-gauge needle and allowed to circulate for 180 min.
Mice were killed, and whole blood was removed from the
left ventricle with a 29-gauge needle. Plasma was isolated
at 10,000g for 10 min with removal of 10 mL of the su-
pernatant, which was diluted 1:100 in formamide. From
enucleated globes, 3 mL of aqueous fluid was removed
from the anterior chamber with a 10-mL capacity Hamilton
syringe and diluted into 97 mL of formamide. Samples were
incubated in formamide at room temperature overnight.
EB absorbance was determined by subtracting absorbance
at 740 nm from that at 620 nm. The results were gen-
erated by comparison with a standard curve, normalized
to the plasma concentration, and expressed as ratios be-
tween aqueous solution and plasma. Retinas were then
isolated from remaining fixed globes, flat mounted, and
imaged with a Leica DMI4000B inverted fluorescence
microscope. Fluorescein angiography was performed by
administering sodium fluorescein (5 mg/kg of 10% w/v;
cat. no. 17478-253-10, Akorn, Lake Forest, IL) to anes-
thetized 6- or 12-month-old animals. Fundus photographs
were obtained 2 min later with a Micron III camera
(Phoenix, Pleasanton, CA).

Electroretinography
A UTAS BigShot System (LKC Technologies, Inc., Gaithersburg,
MD) was used. Mice ($5 for each group) were dark adapted
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overnight. Under red light illumination, animals were
anesthetized with ketamine (80 mg/kg total body mass)
and xylazine (15 mg/kg lean body mass). Pupils were
dilated with 1% atropine sulfate. Body temperature was
maintained at 37°C with a heating pad. Contact lens
electrodes were placed bilaterally with appropriate ref-
erence and ground electrodes.

The stimulus consisted of a full-field white light
flash (10 ms) in darkness or in the presence of dim
(30.0 candela [cd]/m2) background illumination after
10 min adaptation time. The response was recorded
over 231 ms plus 25 ms of pretrial baseline. Between
5 and 10 repeated trials were averaged for each lumi-
nance, with 10 repeats used for the dimmest flashes,
and 5 for the brightest. Raw data were processed using
MATLAB software (MathWorks, Natick, MA). The ampli-
tude of the a-wave was measured from the average pre-
trial baseline to the most negative point of the average
trace, and the b-wave amplitude was measured from
that point to the highest positive point, after subtracting
oscillatory potentials (OPs). The eye with the larger
recorded b-wave amplitude was used for each mouse.
OPs were isolated using a digital Butterworth 25 Hz
high-pass filter and quantified using root-mean-square
analysis of filtered waves, normalized to the maximal
b-wave amplitude. The log luminance of the stimulus
(log [cd $ s/m2]) was calculated based on the manufacturer’s
calibrations.

Statistical Analysis
Distributions of electroretinography (ERG) responses
across diet groups at different light intensities are described
by means 6 SEM. Differences were compared using two-
way ANOVA, followed by a Bonferroni post hoc test for
multiple comparisons.

RESULTS

HFD Feeding Produces a Type 2 Diabetes Phenotype
HFD feeding accelerates weight gain and adiposity (19).
Significant gains in total weight in mice fed the HFD
compared with controls were measured at 6 months.
This difference progressed through 12 months of age
(Fig. 1A). Nearly all of the weight difference between
mice on chow and the HFD was due to increased adi-
posity (Fig. 1B and C). Animals fed the HFD developed
abnormal glucose metabolism by 6 months of age that
persisted through 12 months of age, as assessed by glu-
cose tolerance tests (Fig. 1D–G) and insulin tolerance
tests (Fig. 1H).

Animals fed the HFD developed hyperinsulinemia
that peaked at 6 months of age and was less marked by
12 months (Fig. 1I). Consistent with other models of
HFD-induced obesity, this pattern likely reflects initial
b-cell hypersecretion, followed by b-cell dysfunction
and loss mirroring the progression of human type 2
diabetes.

Gross Retinal Morphology Is Preserved After
Prolonged HFD-Induced Diabetes
STZ induces thinning of the inner retina as soon as 2
months after diabetes induction (20). To determine if
HFD-induced diabetes promotes inner retinal cell loss,
we compared cross-sectional retinal thickness between
chow-fed and HFD-fed mice at 12 months of age. As
shown in Fig. 2A and B, there were no apparent changes
in total retinal thickness or in the thickness of any indi-
vidual retinal laminae. In the juxtapapillary retina, max-
imal total thickness was 235.6 6 66.3 mm (mean 6 SD)
in the chow group and 229.9 6 70.9 mm in the HFD
group (P . 0.99). Maximal juxtapapillary inner nuclear
layer thickness was 34.8 6 10.4 mm in the chow group
and 30.5 6 13.2 mm in the HFD group (P . 0.99). These
retinal layers were quantified at various distances from
the optic nerve in dorsal (negative distances) and
ventral (positive distances) directions, as shown in
Fig. 2C and D. There were no differences in any of the
major retinal laminae maximal thicknesses, including
the retinal ganglion cell layer (12.0 6 5.1 mm chow
vs. 11.5 6 3.7 mm HFD, P . 0.99), the inner plexiform
layer (54.6 6 21.2 mm chow vs. 48.2 6 9.6 mm HFD, P .
0.99), the outer plexiform layer (15.8 6 6.0 mm chow vs.
16.0 6 5.5 mm HFD, P . 0.99), or the outer nuclear layer
(59.3 6 17.2 mm chow vs. 55.4 6 21.2 mm HFD, P .
0.99). These results differ from those obtained with ani-
mals given STZ but are consistent with human data show-
ing no thinning of the inner nuclear retina in early
diabetes (21,22). Therefore, the HFD-fed mouse may
model human DR in its early stages, when interventions
are likely to provide benefit, with greater fidelity than in
the mouse given STZ.

Time-Dependent Retinal Vascular Damage Is
Associated With HFD-Induced Diabetes
Vascular stigmata of human nonproliferative DR that are
visible by ophthalmoscopy, such as microaneurysms,
dot-blot hemorrhages, venous beading, and intraretinal
microvascular anomalies, are absent in most rodent
retinopathy models. Histopathologic features, such as
capillary basement membrane thickening, loss of peri-
cytes, and atrophy of small capillaries, are present
in diabetic animals (23). To determine whether animals
fed an HFD develop vascular lesions typical of rodent
diabetes models, we analyzed trypsin-digested skeletons
of microvessels. Digested retinas from chow- or HFD-fed
animals were flat mounted and stained as shown in
Fig. 3A. A masked observer scored the number of atro-
phic capillaries or pericyte ghosts per high-power
field (Fig. 3B). There were no differences in the mean
number of atrophic capillaries or pericyte ghosts be-
tween HFD-fed animals and chow-fed controls at 6
months of age (Fig. 3C and D). At 12 months of age,
however, HFD animals showed more atrophic capillaries
(P , 0.001) and pericyte ghosts (P , 0.01) compared
with controls.
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Permeability of Retinal Vessels Is Increased by HFD
Feeding

The EB dye normally stays within the plasma compart-
ment for hours. In experimental diabetes, abnormal EB
leakage is readily detected in the neural retina and
vitreous (24). To determine whether HFD-fed animals
develop disruptions in the blood-retina barrier (BRB)
characteristic of DR, we used a modified EB dye leakage
assay. At 3 h after dye circulation, we determined BRB
disruption by the presence of blue color within the
anterior chamber of enucleated globes and in flat-
mounted retinas. As shown in Fig. 4A, the anterior
chambers of 12-month-old animals fed the HFD were
bluer than those of age-matched chow-fed controls
after an identical period of dye circulation. Retinal
flat mounts from HFD-fed or chow-fed animals demon-
strated distinctive dye patterns using fluorescence

microscopy. In chow-fed animals, EB was mostly de-
tected in the microvascular space with discrete pat-
terns of fluorescence (Fig. 4B and D). In older animals
fed the HFD, we detected a more diffuse, “ground-glass”
background fluorescence indicative of EB leakage
(Fig. 4C and E). HFD-fed animals had more EB leakage
into the aqueous compartment than controls at 12
months (P , 0.05) but not 6 months (Fig. 4F). An in-
dependent technique, fluorescein angiography, showed
patterns consistent with increased leakage in HFD-fed
mice compared with chow-fed controls in 12-month-old
animals (Supplementary Fig. 1), suggesting vascular
leakage in vivo with HFD feeding. Dye leakage at
12 months in HFD-fed animals coincided with eleva-
tions in typical markers of retinal endothelial dam-
age and gliosis, consistent with other models of DR
(Fig. 4G–I).

Figure 1—HFD-fed mice develop obesity and glucose intolerance. Male C57BL/6J mice were fed standard chow or an HFD providing 42%
of energy from fat. A: HFD-fed mice develop significant increases in body mass compared with chow-fed controls beginning at 6 months of
age. B: Whole-body adiposity was measured using MRI, showing that mice fed the HFD have significantly more fat mass compared with
controls beginning at 6 months. C: Measurements from MRI demonstrate mild increases in lean mass in HFD-fed animals at 6 months but
not at 12 months of age. Traces from intraperitoneal GTTs performed after 6 h of fasting at 3 (D), 6 (E ), and 12 (F ) months of age are shown.
G: Calculated AUC for GTTs at each indicated age. H: Mean 6 SEM were calculated for AUCs of intraperitoneal insulin tolerance tests
performed on animals fed each diet at the indicated ages. I: Insulin levels from fasting serum samples were measured using an ELISA-
based method at 3, 6, and 12 months of age. Values represent mean 6 SEM from at least five independent experiments in each group.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Mos, months.
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HFD Feeding Promotes Retinal Neural Dysfunction
Although the hallmark of DR is vascular disease, ante-
cedent or coincident neural deficits also occur in humans
(25–28). Whether neural effects are involved in the etiol-
ogy of DR in rodents is less clear. To determine whether
neurologic dysfunction occurs early in HFD-induced DR,
we performed full-field, stimulus-evoked scotopic and
photopic ERGs in HFD-fed mice and chow-fed controls.

After dark adaption overnight, scotopic ERG was
performed with full-field white stimulus given across
increasing intensities. Thereafter, a 10-min period of light
adaptation was performed against a dim white back-
ground of 30-cd/m2 luminance. Photopic ERG was
recorded at increasing stimulus intensities. Raw ERG
data were then analyzed for a-wave (scotopic reading
only) and b-wave (in both scotopic and photopic condi-
tions) amplitudes and implicit times. The raw waves were
processed through a digital high-pass filter to isolate early
OPs, as shown in Fig. 5A.

As expected, maximal ERG responses to white light
stimuli for both a-waves (Fig. 5B, D, and F) and b-waves

(Fig. 5C, E, and G) declined with age. At no age did we
observe a difference in amplitudes or implicit times in
scotopic a-waves or b-waves between HFD and control
groups. There were no differences in photopic b-wave
characteristics between different groups at any age (data
not shown). Amplitudes of summed OPs did not differ
between dietary groups at 3 or 6 months of age (Fig. 6A
and B). However, at 12 months of age, average OP ampli-
tudes were significantly reduced in HFD-fed animals com-
pared with chow-fed controls at all stimulus intensities
(P , 0.05) except for the dimmest (22.4 log [cd $ s/m2])
and brightest (0.89 log [cd $ s/m2]). Examples of the
preferential decline in OP amplitudes in HFD-fed animals
compared with controls, with relative preservation of
a-wave and b-wave amplitudes, are shown in Fig. 6G.

HFD feeding promotes insulin resistance (Fig. 1), but
individual mice show variable glucose tolerance responses.
To determine whether mice with greater glucose intoler-
ance (i.e., higher area under the curve [AUC] values during
a glucose tolerance test [GTT]) also have a greater reduc-
tion in OP amplitudes, we correlated OP amplitudes with

Figure 2—Animals fed the HFD or chow have no differences in gross retinal thickness. Total and laminar retinal thicknesses were measured
using hematoxylin and eosin–stained paraffin-embedded retinal sections obtained from 12-month-old animals. Representative examples of
stained retinas from whole-globe hemisections obtained at the optic nerve from aged chow-fed (A) or HFD-fed (B) animals. Measurements
of total retinal thickness (photoreceptor outer segments 2 the internal limiting membrane distance) (C) or of the inner nuclear layer (D) in
12-month-old animals fed the HFD or chow. All thicknesses were measured at the indicated distances from the optic nerve head. Distances
marked as negative (2) and positive (+) were taken toward the dorsal and ventral borders of the retina, respectively. Scale bars = 25 mm.
Values represent mean distances measurements in mm 6 SEM, from 5 animals (10 eyes) in each group. No significant differences were
observed between groups for any thickness comparison by ANOVA.
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AUC of the GTT for individual mice at different ages. At
3 months (Fig. 6D), no correlation was found between glu-
cose tolerance and OP amplitudes in either dietary group.
However, at 6 months (Fig. 6E), the AUC of the GTT was
correlated with lower OP amplitudes in the HFD-group
(Pearson R2 = 0.60, P = 0.04). In contrast, no such correla-
tion was found for chow-fed animals of the same age
(R2 = 0.02, P = 0.81). At 12 months (Fig. 6F), the correla-
tion between glucose tolerance and lower OP amplitudes
was also present in HFD animals (Pearson R2 = 0.51, P =
0.009) but not in chow-fed controls (R2 = 0.12, P = 0.5).

Prompted by this correlation, we determined whether
OP kinetics may be affected in the HFD-induced diabetes
model by measuring the latency time for each of the first
four OPs recorded on scotopic ERG at 3, 6, and 12
months (Fig. 7). Beginning at 6 months of age, a signifi-
cant delay in implicit time for the first two OPs (OP1 and
OP2) elicited by a 20.60 log (cd $ s/m2) white light flash
was observed in HFD-fed animals (27.1 6 2.2 ms) com-
pared with controls (24.3 6 1.8) at OP1 (P , 0.05). This

delay persisted through 12 months, with an average OP1
implicit time of 25.6 6 2.0 ms in HFD-fed animals com-
pared with 24.2 6 1.4 ms in chow-fed controls (P, 0.05)
and an average OP2 implicit time of 32.0 6 2.6 ms in
HFD-fed animals compared with 30.5 6 1.9 ms in chow-
fed controls (P , 0.05). These data are consistent with
the notion that diet-induced insulin resistance promotes
early neurologic deficits in the retina. By ERG analysis,
these deficits are manifested as reductions in amplitude
and delays in OP responses to white light stimuli under
scotopic conditions. Thus, electrophysiologic abnormali-
ties detected at 6 months precede the development of
vascular abnormalities at 12 months (Figs. 3 and 4) in a
diabetes model induced by a clinically relevant diet with-
out genetic manipulations or administration of toxins.

To investigate potential mechanisms responsible for
these ERG defects, we examined retinal expression of
factors known to be altered in metabolic disease. NLRP3
is an important regulator of cellular responses to obesity-
relates diabetes (29). NLRP3 inflammasomes, classically

Figure 3—At an advanced age, HFD-fed mice develop typical lesions of DR. Retinal vasculature networks were analyzed in 6- and 12-
month-old animals by trypsin digest of isolated and fixed retinas, followed by periodic acid Schiff/hematoxylin staining. A: Representative
example, under low-power magnification, of a trypsin-digested and stained retina. Grading of vascular lesions was performed under high-
power magnification in the midperipheral retina at standardized areas across all samples, as indicated by the black boxes. B: Shown are
examples of healthy-appearing pericytes (top three panels, arrowheads) or typical examples of vascular pathologies, including pericyte
ghosts (middle three panels, arrows) and atrophic capillaries (bottom panels). Scale bar = 25 mm. HFD-fed animals develop significantly
more atrophic capillaries (C) and pericyte ghosts (D) at 12 months, but not 6 months, of age, compared with chow-fed controls. Shown
are quantifications of vascular lesions, as assessed by a masked grader. Values represent mean 6 SEM from 10 independent experiments
in each group. **P < 0.01, ***P < 0.001 by ANOVA.
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thought to direct immune responses against infectious
agents, also respond to sterile damage-associated molec-
ular patterns. These include oxidative stressors derived
from excess fatty acids and glucose in diabetes (30,31).
The HFD, compared with chow, robustly increased NLRP3

protein in the retina at 3 months, before the development
of neural or vascular defects, an effect that persisted at 6
and 12 months (Fig. 8A and B). The cleaved, active forms
of the NLRP3-dependent effectors IL-1b (mature IL-1b,
17 kDa) and caspase-1 (10 kDa) were increased in retinas

Figure 4—HFD feeding promotes retinal vascular permeability. EB dye (25 mg/kg) was injected intravenously into anesthetized animals and
allowed to circulate for 180 min. A: Enucleated globes are shown from chow-fed (left) or HFD-fed (right) animals. Leakage of the EB dye into
the anterior chamber is visible in the eye from a 12-month-old animal fed the HFD compared with the relatively clear aqueous fluid in the
control animal. After dye circulation, retinal flat mounts were imaged by fluorescence microscopy. Dye leakage from capillaries into the
neural retina is represented by a less defined pattern of fluorescence within the vascular space and a more diffuse “ground-glass”
appearance to the background fluorescence. Shown are illustrative examples from chow-fed animals (B and D) and HFD-fed animals
(C and E ) at 12 months of age. F: Quantification of dye fluorescence from aqueous paracentesis samples demonstrates significantly greater
leakage in HFD-fed animals compared with controls at 12 months of age but not at 6 months of age. Dye leakage at 12 months coincides
with elevated expression of VEGF-A (G), intercellular adhesion molecule-1 (ICAM-1) (H), and glial fibrillary acidic protein (GFAP) (I), as
assessed by RT-PCR from retinal lysates. Values represent mean 6 SEM. *P < 0.05, **P < 0.01, ***P < 0.001 by ANOVA.
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Figure 5—HFD feeding does not alter major retinal responses to light stimuli. ERG responses were recorded from animals in scotopic
conditions after overnight dark adaptation. A: A high-pass filter was applied to the raw ERG to isolate the OPs for separate analysis from the
a-wave and b-wave measurements. ERG a-wave amplitudes recorded at 3, 6, and 12 months of age are plotted against stimulus luminance
(B, D, and F), with corresponding b-wave amplitudes (C, E, and G). Values represent the mean 6 SEM from at least five animals at each
age. Decline in amplitudes of responses are seen with increasing age. At all tested ages, no significant differences were observed between
animals on different diets with regard to either major ERG component (ANOVA).
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from HFD-fed but not chow-fed animals at all time points
(Fig. 8A, C, and D). Phosphorylated JNK, an important
stress signal in diabetes, was increased in HFD compared
with control retinas (Fig. 8E).

Inflammasome activity contributes to retinal disease
(30,32,33), with retinal induction of NLRP3 thought to
occur in endothelium or macrophages. Imaging of NLRP3
and its adaptor protein ASC unexpectedly demonstrated
colocalization of these inflammatory mediators in the

inner nuclear and ganglion cell layers (Fig. 8F). These
signals predominantly occur within cell bodies of ganglion
cells and inner nuclear cells (Fig. 8F) rather than in vascular
tissues. Stress signaling in this context likely reflects a
chronic inflammatory change affecting multiple cell types.
Consistent with this scenario, increased Iba1, reflecting
microglial activation, was detected in HFD-fed mice com-
pared with controls at 12 months (Supplementary Fig. 2).
This signal was found in the deeper portions of the inner

Figure 6—Aged HFD-fed mice have decreased OP amplitudes compared with controls. Visual function in HFD- or chow-fed animals was
assessed at 3, 6, and 12 months of age by ERG under scotopic, dark-adapted conditions. OPs were extracted from the raw ERG trace
using a high-pass filter. The root mean square (RMS) of all OP peaks and troughs were normalized to the amplitude of the maximal b wave.
RMS of OP amplitudes are plotted against stimulus luminance at 3 (A), 6 (B), and 12 (C ) months of age. At 12 months of age, mice fed the
HFD demonstrate significant declines in OP amplitudes relative to controls. Values represent the mean 6 SEM from at least five animals at
each age. *P < 0.05 by ANOVA. D–F: Reductions in OP amplitudes correlate with glucose intolerance beginning at 6 months of age.
Correlation plots of normalized OP amplitude with the AUC for the intraperitoneal GTT are shown for animals at 3 (D), 6 (E ), and 12 (F)
months of age. Each data point represents a unique animal. Pearson correlation analyses were performed for animals fed each diet at each
tested age, with R2 and P values shown in the lower right corner of each graph. G: Representative ERG tracings from mice fed each of the
two indicated diets, with the HFD-fed mice displaying reductions in OP amplitudes compared with chow-fed controls.
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plexiform layer, distinct from ganglion cell bodies. These
results suggest that HFD feeding induces a chronic inflam-
matory program that includes stress signaling in the inner
retina, at least in part due to NLRP3 activity and JNK
kinase activation, before the development of ERG and
vascular defects. The temporal sequence of inflammatory
activation, systemic glucose intolerance, ERG deficits,
and vascular abnormalities in our mouse model suggests
that HFD-initiated retinal stress signaling contributes to
diabetes-related eye disease.

DISCUSSION

DR affects blood vessels. In humans and mice, the earliest
visible signs of the disease are vascular. Yet, neurologic
activity in the retina is metabolically demanding (34),
raising the possibility that retinal neural function might
be deranged in the setting of diabetes. If so, early neural
insults could be related to vascular damage in the retina.

In the current work, we provide evidence that retinal
function is compromised in diet-induced diabetes in
mice before the development of detectable defects in
the retinal vasculature.

Using a clinically relevant diet, we show that the
development of obesity, glucose intolerance, and insulin
resistance in mice is associated with microvascular
atrophy and pericyte damage by 1 year of age. Using
ERG, we show that a functional neurologic deficit occurs
by 6 months, before vascular injury. This functional
abnormality persists to 12 months and is correlated
with glucose intolerance, consistent with a temporal
relationship linking metabolism, neural dysfunction, and
the eventual development of microvascular disease. We
also provide evidence that aberrant stress signaling
induced by the HFD precedes ERG and retinal microvas-
cular defects.

The relationship between early ERG dysfunction and
retinopathy development is less clear in other mouse
models. In the db/db mouse, which develops a disease
similar to type 2 diabetes due to leptin receptor de-
ficiency, massive reductions in b-wave amplitude have
been recorded at ;6 months of age (35). These findings
coincide with vascular defects, including morphological
abnormalities and abnormal leakage. However, leptin sig-
naling has important trophic and angiogenic effects in the
retina that may account for the ERG deficits seen in these
mice (18). In the STZ diabetes model, ERG and structural
vascular abnormalities have both been identified (36–38),
but STZ causes off-target neurologic effects (14,15).
Moreover, STZ causes rapid onset of severe disease that
would obscure a potential early neural contribution. Ret-
inal inflammation and degeneration were recently dem-
onstrated in diet-induced metabolic disease in rodents
(39,40). A new rat model of type 2 diabetes manifests
features of retinal inflammation and vascular disease co-
incident with severe metabolic derangements (41). These
newer studies did not report ERG responses.

The current HFD-fed model is characterized by slow-
onset disease, mirroring the pathophysiology of human
type 2 diabetes complications such as retinopathy. Even
after 1 year of age, HFD mice do not lose inner retinal
thickness, confirming that the disease in these animals
is mild and similar to what is seen in early human
retinopathy (21,22). Our findings that OP disruptions
precede the appearance of vascular disease are consistent
with data from humans, where electrophysiology is im-
paired before visible microvascular disease, with clinical
impairment frequently involving these same waveforms
(26,28,42).

Our ERG changes are small but exquisitely specific to
OPs. Unlike the catastrophic ERG effects caused by
mutations in visual cycle proteins, ERG deficits in diabetes
models are expected to be modest. Rodent full-field ERG
represents a summed response of the neural retina to
light. However, as in human DR, experimentally induced
DR is not expected to be uniform. In humans, multifocal

Figure 7—Delays in OP implicit times are seen in HFD animals
before the development of vascular lesions. Implicit times of the
first four OPs (OP1–4) were measured from ERGs generated by a
0.25 cd $ s/m2 white light stimulus. Recordings were performed at
each indicated age. At 6 months of age, HFD-fed mice show sig-
nificant delays in the implicit times of the first two OP peaks com-
pared with chow-fed mice. This difference persists through 12
months of age. Shown are mean values 6 SEM for each of the
four measured peaks, with individual values for each animal tested
superimposed (at least five animals were used in each diet group at
each age). *P < 0.05 by ANOVA.
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ERG identifies preferentially affected regions that sub-
sequently develop classic vascular lesions of retinopathy
(43,44). Analogous multifocal recording capability is not
available in rodents. Structural and functional assays of
blood vessel integrity offer greater spatial resolution com-
pared with visual function assays. Given the low resolu-
tion of full-field ERG in mice, it is striking that functional
deficits correlated with glucose intolerance precede the
detection of vascular defects. OP characteristics can lead
to artifacts in b-wave recordings (45,46), but no b-wave
changes between groups were detected.

Altered OPs likely reflect perturbations of the inner
retina, specifically dysfunctional amacrine, bipolar, and
retinal ganglion cells (47,48). Many studies during the

past half century have reported decreased OP amplitude
as the earliest sign of DR (26,28,42). Consistent with
these observations, our findings suggest that inner retinal
networks may be important early targets of disease. Al-
ternatively, early ERG dysfunction in humans and mice
could be caused by microvascular disease that cannot be
detected with current technologies. Another possibility is
that diet-induced diabetes perturbs neuroglial-vascular
coupling mediated by arachidonic acid metabolites, nitric
oxide, semaphorin 3a, and VEGF, all affected by diabetes
(49–52).

Inflammation (NLRP3, cleaved IL-1b, cleaved caspase-1,
phosphorylated JNK, and ASC recruitment) was induced
in the inner retina by the HFD before the development

Figure 8—HFD promotes early inflammasome activation in the inner retina. A–E: Retinal lysates from HFD-fed or chow-fed animals at each
indicated age were probed for NLRP3, IL-1b, immature caspase-1 (45 kD), active caspase-1 (10 kD), and phosphorylated (p)JNK and total JNK.
NLRP3, IL-1b, and pJNK levels were normalized against total JNK, whereas caspase-1 p10 was quantitated relative to the corresponding levels
of immature isoform (p45). Values represent mean 6 SEM from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001,****P <
0.0001. Mo, months. F: Representative retinal sections from 3-month-old animals coimmunostained for the adaptor protein ASC and NLRP3.
Staining for both molecules is strongest within the retinal ganglion cell and inner nuclear layers. ONL, outer nuclear layer; INL, inner nuclear layer;
IPL, inner plexiform layer; RGCL, retinal ganglion cell layer. G: A high-power image from a HFD-fed animal shows specks (arrows) in retinal
ganglion cell and inner nuclear layers. No costaining is observed at large-diameter retinal vessels (*). Scale bar = 20 mm.
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of OP abnormalities or detectable vascular disease.
Obesity-related diabetes promotes inflammation, and
our work demonstrated this effect in the retina. Possi-
ble priming mechanisms contributing to inflammasome
activation include delivery of fatty acids (29,53), altered
de novo lipogenesis (54), or disrupted redox chemistry
(31). Our current findings are only associative. Addi-
tional studies will be required to define HFD-induced
relationships between cellular effectors. But this work
links inflammatory activation in a temporal sequence
leading to ocular defects, providing rationale for manip-
ulating the inflammasome to treat retinopathy.

In short, the HFD-fed mouse model could be useful
for studying early neuronal, glial, or neurovascular
dysfunction underlying retinal disease in type 2 dia-
betes. Identifying novel targets or biomarkers in this
model could facilitate the development of disease-
modifying therapies for this devastating cause of
blindness.
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