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Perivascular Stem Cells Diminish Muscle Atrophy
Following Massive Rotator Cuff Tears in a Small

Animal Model
Claire D. Eliasberg, MD, Ayelet Dar, PhD, Andrew R. Jensen, MD, MBE, Iain R. Murray, MD, PhD, Winters R. Hardy, PhD,

Tomasz J. Kowalski, MD, PhD, Cameron A. Garagozlo, BA, Kyle M. Natsuhara, MD, Adam Z. Khan, MD, Owen J. McBride, BS,
Peter I. Cha, BA, Benjamin V. Kelley, BA, Denis Evseenko, MD, PhD, Brian T. Feeley, MD, David R. McAllister, MD,

Bruno Péault, PhD, and Frank A. Petrigliano, MD

Investigation performed at the University of California, Los Angeles, Los Angeles, California

Background: Rotator cuff tears are a common cause of shoulder pain and often necessitate operative repair. Muscle
atrophy, fibrosis, and fatty infiltration can develop after rotator cuff tears, which may compromise surgical outcomes. This
study investigated the regenerative potential of 2 human adipose-derived progenitor cell lineages in a murine model of
massive rotator cuff tears.

Methods: Ninety immunodeficient mice were used (15 groups of 6 mice). Mice were assigned to 1 of 3 surgical procedures:
sham, supraspinatus and infraspinatus tendon transection (TT), or TT and denervation via suprascapular nerve transection
(TT 1 DN). Perivascular stem cells (PSCs) were harvested from human lipoaspirate and sorted using fluorescence-activated
cell sorting into pericytes (CD1461 CD342 CD452 CD312) and adventitial cells (CD1462 CD341 CD452 CD312). Mice
received no injection, injection with saline solution, or injection with pericytes or adventitial cells either at the time of the index
procedure (“prophylactic”) or at 2 weeks following the index surgery (“therapeutic”). Muscles were harvested 6weeks following
the index procedure. Wet muscle weight, muscle fiber cross-sectional area, fibrosis, and fatty infiltration were analyzed.

Results: PSC treatment after TT (prophylactic or therapeutic injections) and after TT 1 DN (therapeutic injections)
resulted in less muscle weight loss and greater muscle fiber cross-sectional area than was demonstrated for controls (p <
0.05). The TT 1 DN groups treated with pericytes at either time point or with adventitial cells at 2 weeks postoperatively
had less fibrosis than the TT1DN controls. There was less fatty infiltration in the TT groups treated with pericytes at either
time point or with adventitial cells at the time of surgery compared with controls.

Conclusions: Our findings demonstrated significantly less muscle atrophy in the groups treated with PSCs compared
with controls. This suggests that the use of PSCs may have a role in the prevention of muscle atrophy without leading
to increased fibrosis or fatty infiltration.

Clinical Relevance: Improved muscle quality in the setting of rotator cuff tears may increase the success rates of
surgical repair and lead to superior clinical outcomes.

R
otator cuff tears are common shoulder injuries that often
result in pain, disability, and diminished quality of life.
Rotator cuff repair is the most common shoulder surgery

in theUnited States, with >75,000 procedures performed annually1.

Massive rotator cuff tears account for 10% to 40% of all
rotator cuff injuries2. These injuries are associated with poor
clinical outcomes, including decreased range of motion,
strength, and patient satisfaction3. Despite advances in surgical
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technique, reported repair failure rates range from 11% to
as high as 94%4-7. Degenerative muscle changes, including
atrophy, fibrosis, and fatty infiltration, can develop after mas-
sive rotator cuff tears and compromise surgical repair. Fi-
broadipogenic degeneration and atrophy decrease compliance
of the musculotendinous unit8, lead to increased tension at the
repair site9, and may contribute to repair failure and poor
clinical outcomes3,6,8,10-12.

Several animal models have been used to characterize
the etiology of muscle degeneration following rotator cuff
tears13-16. Liu et al. developed a mouse model demonstrating
consistent muscle atrophy, fibrosis, and fatty infiltration fol-
lowing transection of the supraspinatus and infraspinatus
tendons (TT), denervation via suprascapular nerve transec-
tion (DN), and a combined procedure (TT 1 DN)15. These
findings suggest that this small animal model demonstrates
pathological changes similar to those observed in human ro-
tator cuff tears.

Human perivascular stem cells (PSCs), a source of resi-
dent mesenchymal stem cells (MSCs), have demonstrated ro-
bust myogenic potential in other models of muscle injury17-19.
In the current study, we evaluated 2 adipose-derived PSC
populations—pericytes residing in small blood vessels and
adventitial cells residing in large blood vessels—as potential
regenerative therapies to reduce the fibroadipogenic changes
seen following massive rotator cuff tears17. PSCs are highly
myogenic, both in culture and in vivo18,20, and have also dem-
onstrated the ability to recover functional deficits following
muscle injury17,21,22. These multipotent cells have distinct
translational advantages. They can be obtained in high num-
bers from adipose tissue and isolated via cell surface markers,
potentially without the need for culture, providing expanded
availability for autologous regenerative therapies. In addition to
their inherent regenerative potential, PSCs may act in a trophic
fashion by secreting paracrine growth factors and cytokines,
which enhance native stem cell recruitment and myogenic
differentiation23. While the myogenic potential of pericytes is
well documented, the potential of adventitial cells to differen-
tiate into skeletal myofibers is still under investigation17-19,24.
However, the proliferative advantage of adventitial cells over
pericytes in long-term cultures makes them better therapeutic
candidates17, warranting further investigation into their myo-
genic potential17-19,24.

This study investigated the regenerative potential of 2
human adipose-derived progenitor cell lineages in a murine
model of massive rotator cuff tears. We specifically studied
these cells in the absence of rotator cuff repair to assess their
potential as a perioperative adjuvant. Regenerative potential
was assessed by measuring changes in muscle atrophy, fibrosis,
and fatty infiltration following the index surgery as well as cell
survival. We hypothesized that (1) the administration of PSCs
would diminish muscle atrophy and fatty infiltration, (2)
pericytes would have a more robust regenerative effect than
adventitial cells, and (3) this therapeutic effect would be greater
when cells were delivered in the presence of early fibroadipo-
genic muscle changes.

Materials and Methods
Mice

Immunodeficient mice (JAX 001303; Jackson Laboratories) were used. Mice
were 10 weeks old at the date of the procedure and were housed under

specific pathogen-free conditions in the Animal Barrier Facility of the Uni-
versity of California, Los Angeles. All experiments were approved by the In-
stitutional Animal Care and Use Committee of the University of California,
Los Angeles.

Rotator Cuff Injury Model
Rotator cuff injury was induced in sex-matchedmice. Animals were assigned to
1 of 3 surgical procedures: sham, TT, or TT1DN. Procedures were performed
utilizing methods previously described

15
.

The mice that underwent TT or TT 1 DN received no injection, in-
jectionwith saline solution, or injection with pericytes or adventitial cells either
at the time of the index procedure (as a “prophylactic” injection) or at 2 weeks
following the index surgery (as a “therapeutic” injection). The mice that un-
derwent the sham procedure received either an injection of pericytes or ad-
ventitial cells at the time of surgery or saline solution injection (Table I).
Surgeries were performed on the animals’ right shoulders, with the contralat-
eral shoulders left intact as controls. All mice received buprenorphine in-
jections for postoperative pain management.

Power analysis was performed using an estimated 15% difference in
muscle weight loss between control groups and cell-injection groups, on the
basis of our previous experience utilizing this model and these PSCs

15
, with b =

0.80 and a = 0.05. We determined that 6 mice per group would be sufficient to
demonstrate significant differences in muscle atrophy between the control and
treatment groups.

TABLE I Experimental Groups

Group Surgical Procedure Intervention

I TT 1 DN No injection

II TT 1 DN Saline solution injection

III TT 1 DN Adventitial cells at time
of surgery (prophylactic)

IV TT 1 DN Adventitial cells 2 wk postop.
(therapeutic)

V TT 1 DN Pericytes at time of surgery
(prophylactic)

VI TT 1 DN Pericytes 2 wk postop.
(therapeutic)

VII TT No injection

VIII TT Saline solution injection

IX TT Adventitial cells at time of
surgery (prophylactic)

X TT Adventitial cells 2 wk postop.
(therapeutic)

XI TT Pericytes at time of surgery
(prophylactic)

XII TT Pericytes 2 wk postop.
(therapeutic)

XIII Sham Adventitial cells at time of
surgery

XIV Sham Pericytes at time of surgery

XV Sham Saline solution injection
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Cell Culture
PSCs were isolated from human white adipose tissue (WAT)

18
. These tissues

were obtained from cosmetic procedures and de-identified of any patient-
specific information prior to their use, rendering them institutional review
board-exempt. Pericytes and adventitial cells were harvested from WAT using
methods previously described

18
. Briefly, bloody tumescent tissue was removed

from lipoaspirate samples via centrifugation. Adipose tissue was digested using
Dulbecco’s Modified Eagle Medium (Gibco), 1· penicillin-streptomycin-
amphotericin B (Anti-Anti [antibiotic-antimycotic]; Invitrogen), and colla-
genase type II (Sigma). Cell pellets were separated from mature adipocytes and
resuspended in an erythrocyte lysis buffer. Using fluorescence-activated cell
sorting (FACS), PSCs were divided into pericytes (CD1461 CD342 CD452

CD312) and adventitial cells (CD1462 CD341 CD452 CD312), as previously
described

19
. The following commercial antibodies were used for FACS: CD146-

FITC (AbD Serotec), CD31-PE (BD Pharmingen), CD45-APC-H7 (BD Bio-
sciences), and CD34-APC (BDBiosciences). These purified cells were expanded
in vitro and cultured in endothelial cell growth medium (Lonza). The medium
was exchanged every 3 to 4 days. All injections were performed using passage-5
cells.

PSC Injections
For PSC injections, 5 · 105 cells were suspended in 30 mL of phosphate-
buffered saline (PBS) solution and delivered in 2 equal aliquots into 2 locations
(distal and proximal) in the supraspinatus muscle using a 29-gauge insulin
syringe. The injections were administered either at the time of surgery (“pro-
phylactic” injection) or at 2 weeks following the index procedure (“therapeutic”
injection) (Fig. 1). For therapeutic injections, the mice were anesthetized, a skin
incision was made, and the trapezius muscle was separated to allow for visu-
alization of the supraspinatus muscle during cell injections.

Wet Muscle Weight
Both supraspinatus (SS) muscles were harvested from each animal 6 weeks
following the index procedure. Muscle atrophy was assessed by measuring the
percent difference in wet supraspinatus muscle weight—right (SSR) versus left
(SSL)—for each animal. The percent change in wet muscle weight was calcu-
lated using the following equation: ([SSR – SSL]/SSL) · 100. Mean wet muscle
weight was calculated for each experimental group.

Histology
Fresh tissue specimens were frozen by immersion in cooled isopentane and
embedded in Tissue-Plus OCT (optimal cutting temperature) freezing medium
(Fisher Scientific). Sections were cut at 10-mm thickness on a cryostat (Mi-
crom) and fixed with 50% acetone. Hematoxylin and eosin (H & E) (Fisher
Scientific), oil red O (ORO) (Sigma), and picrosirius red (PSR) (Polysciences)
staining was completed according to manufacturer instructions. Slides were
mounted using Cytoseal XYL (Fisher Scientific) or Aqua-Mount (Thermo
Scientific Shandon) mounting medium and observed on a bright field mi-
croscope (Axio Imager; Zeiss).

Histomorphometric analyses of H & E, PSR, and ORO-stained sections
were performed using ImageJ (National Institutes of Health). For all histo-

logical analyses, cross-sections from the mid-belly of the supraspinatus muscle
were used. To calculate muscle fiber cross-sectional area, random regions of
interest were selected using customized macros. All muscle fibers within each
region of interest were measured and averaged for each sample. The area
fraction of collagen was measured by dividing the area of PSR staining by the
entire sample area. Similarly, the area fraction of fat was measured by dividing
the area of ORO staining by the entire sample area.

In Vivo Imaging
Luciferase-expressing human PSCs were established using lentiviral infection
with MSCV-luciferase-RFP-TK virus (murine stem cell virus-luciferase-red
fluorescent protein-thymidine kinase virus) (System Biosciences) to enable
in vivo vital and longitudinal cell tracking. Prior to injection, luciferase-
expressing cells were removed from the culture dish and co-labeled with the cell
tracker CM-Dil (Molecular Probes) according to the manufacturer instruc-
tions. Cells were injected 2 weeks following the sham, TT, or TT 1 DN pro-
cedures. At various intervals post-implantation, mice were anesthetized and
received intraperitoneal injection of luciferin (30 mg/kg). Bioluminescence was
recorded using the IVIS Lumina II imaging system (PerkinElmer). Data were
analyzed with Living Image software (version 4.5.2; PerkinElmer). Rabbit
anti-human and mouse a-smooth muscle actin (a-SMA) (Abcam) and goat
anti-rabbit-Alexa-488 (Molecular Probes) antibodies were used for immuno-
histochemistry. Fluorescence imaging was performed using an Axio Imager 2
microscope (Zeiss).

Statistical Analysis
Student t tests were used to evaluate differences in the mean wet muscle
weight, area fraction of collagen, and area fraction of fat. Paired Kruskal-
Wallis tests were used to calculate differences in muscle fiber cross-sectional
area. All histological analyses were performed in a blinded fashion by 2 in-
dependent observers. Two-way, random-effects, interclass correlation coef-
ficients (ICCs) with absolute agreement were determined for each histological
quantification method. Differences between groups were evaluated using a
significance level of 0.05. All statistical analyses were performed using Stata
(version 13; StataCorp).

Results
Wet Muscle Weight

The mice in the TT groups that were treated with either
prophylactic or therapeutic PSCs had significantly less wet

weight loss at the final 6-week evaluation than did the TT
controls (groups VII and VIII in Table I) (p < 0.05) (Fig. 2). The
TT 1 DN groups treated with therapeutic injections (groups
IV and VI) also had significantly less weight loss than their
respective controls (groups I and II) (p < 0.05); however, the
TT 1 DN groups treated with prophylactic injections (groups
III and V) demonstrated no significant differences in weight
loss compared with controls (groups I and II).

Fig. 1

Schematics showing the timeline for “prophylactic” injections (Fig. 1-A) and treatment (“therapeutic”) injections (Fig. 1-B).
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Muscle Fiber Cross-Sectional Area
The TT1 DN groups treated with PSCs (groups III, IV, V, and
VI) had significantly greater mean muscle fiber cross-sectional
areas than their respective controls (groups I and II) (p < 0.05).

Similarly, TT groups treated with PSCs (groups IX, X, XI, and
XII) had significantly greater mean muscle fiber cross-sectional
areas than their respective controls (groups VII and VIII) (p <
0.05) (Table II). Two independent observers calculated the

TABLE II Mean Muscle Fiber Cross-Sectional Area by Intervention*

Intervention TT 1 DN (mm2) TT (mm2) Sham (mm2)

No injection 879 ± 531 1,762 ± 358

Saline solution 954 ± 445 1,838 ± 644 2,031 ± 434

Adventitial cells at time of surgery (prophylactic) 1,040 ± 569† 2,526 ± 919† 2,208 ± 432

Pericytes at time of surgery (prophylactic) 1,901 ± 814† 2,673 ± 421† 2,912 ± 388†

Adventitial cells 2 wk postop. (therapeutic) 1,305 ± 963† 2,231 ± 218†

Pericytes 2 wk postop. (therapeutic) 1,626 ± 439† 2,856 ± 674†

*N = 6 for each group. The values are given as the mean and the standard deviation. †A significant difference (adjusted p value of <0.001)
compared with respective controls on the basis of paired Kruskal-Wallis tests.

Fig. 2

Figs. 2-A, 2-B, and 2-C Percent wet muscle weight change. *P < 0.05. Error bars indicate the standard deviation. Fig. 2-A In the TT1DN groups, there was

significantly less weight loss in both therapeutic PSC groups compared with the saline solution control group. Fig. 2-B In the TT groups, there was

significantly less weight loss in all PSC groups compared with the saline solution control group. Fig. 2-C In the sham groups, there was significantly more

weight gain in the adventitial cell injection group compared with the saline solution control group.
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muscle fiber cross-sectional area measurements; the ICC was
0.886 (95% confidence interval [CI], 0.828 to 0.924). Repre-
sentative histological images from each group are displayed in
Figures 3, 4, and 5.

Fibrosis
As measured by the mean area fraction of collagen, there was
no significant difference in fibrosis among any of the TT
groups. However, the TT1DN group treated with therapeutic
adventitial cells (group IV) and the TT 1 DN groups treated
with either prophylactic or therapeutic pericytes (groups Vand
VI) had significantly less fibrosis than their respective controls
(groups I and II) (p < 0.05) (Fig. 6). Two independent observ-
ers performed the analysis; the ICC was 0.868 (95% CI, 0.706
to 0.930).

Fatty Infiltration
There was significantly less fatty infiltration in the TT groups
treated with pericytes at either time point (groups XI and XII) or
with prophylactic adventitial cells (group IX) when compared
with their respective controls (groups VII and VIII) (p < 0.05).
There were no significant differences in fatty infiltration between
the cell injection groups and controls for either TT 1 DN or

sham procedures (Fig. 7). Two independent observers performed
the analysis; the ICC was 0.859 (95% CI, 0.618 to 0.932).

In Vivo Imaging
Representative bioluminescence images can be found in Figure
8-A. Bioluminescent signal was observed up to 4 weeks fol-
lowing PSC injection for all surgical groups, indicating the
persistence of injected cells over this interval. Transplanted
CM-Dil prelabeled PSCs are shown aligning with myofibers in
Figure 8-B. The absence of a-SMA expression demonstrates
that CM-Dil PSCs did not adopt a fibrotic phenotype despite
the environmental adipofibrotic cues (Fig. 9).

Discussion

Modest progress has been made in utilizing regenerative
adjuvants to improve rotator cuff healing and repair. To

date, most investigative efforts have focused on improving
healing at the bone-tendon interface and have yielded mixed re-
sults25-30. Less attention has been focused on the roles of muscle
atrophy and fatty infiltration and their effect on the healing of
rotator cuff tears. Given the efficacy of MSCs in regenerating
injured tissue in other musculoskeletal applications, we hypoth-
esized that perivascular progenitor cells could be utilized in the

Fig. 3

Figs. 3-A through 3-ERepresentative images from the TT1DN groups in assessingmuscle fiber cross-sectional area (H& E, ·20; bright-fieldmicroscope).

Fig. 3-A The blue arrow indicates an area of adipocyte formation within the supraspinatus muscle. Figs. 3-B and 3-C The yellow arrow indicates

centrally located nuclei within skeletal myofibers, indicative of fiber regeneration. Figs. 3-D and 3-E The white arrow indicates peripheral nuclei,

suggestive of regenerated muscle.
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treatment of massive rotator cuff tears to diminish fibroadipo-
genic degeneration.

Utilizing amouse model of massive rotator cuff tears, our
study demonstrated that there was significantly less muscle
atrophy in the groups treated with PSCs compared with the

respective controls for both TT and TT 1 DN. These findings
were supported by both wet muscle weight and muscle fiber
cross-sectional area data.

The reduction in muscle atrophy observed with PSC
treatment could be explained by 2 phenomena. PSCs may have

Fig. 4

Figs 4-A through 4-E Representative images from the TT groups in assessing muscle fiber cross-sectional area (H & E, ·20 magnification; bright-field

microscope). Fig. 4-A The black arrow indicates an area of adipocyte formation within the supraspinatus muscle. Figs. 4-B through 4-E A larger

cross-sectional area of myofibers was observed compared with the saline solution control.

Fig. 5

Figs. 5-A, 5-B, and 5-C Representative images from the sham groups in assessing muscle fiber cross-sectional area (H & E, ·20; bright-field microscope).

A slight increase in myofiber cross-sectional area was seen in the pericyte injection group compared with the saline solution control and adventitial

injection groups.
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a regenerative effect in which they fuse to, or differentiate into,
native myofibers. This would be consistent with recent evi-
dence suggesting that progenitor cells can contribute to myo-
genesis either by differentiating and fusing to growing
myofibers or by entering the satellite cell pool22. At the 2-week
time point in the current study, injected PSCs were found to
align with native myofibers of the injured rotator cuff. Fur-
thermore, our co-localization immunohistochemistry studies
suggested that CM-Dil PSCs did not adopt a fibrotic pheno-
type, given the lack of expression of the myofibroblast marker
a-SMA. Lastly, RNA-sequencing analysis demonstrated that
pericytes and adventitial cells express myogenesis-related genes
such as FGF2 (fibroblast growth factor 2), FST (follistatin),
HGF (hepatocyte growth factor), IGF1 (insulin-like growth
factor 1), and IL6 (interleukin 6) (see Appendix).

PSCs may also have a prolonged trophic effect on the
native muscle via growth-factor expression. The ability of these
cell populations to produce growth factors known to enhance
tissue repair, such as heparin-binding epidermal growth factor

(HB-EGF), basic fibroblast growth factor (bFGF), platelet-
derived growth factor (PDGF)-BB, and vascular endothelial
growth factor (VEGF), has been previously described23. Addi-
tionally, we found that secretion of VEGF, a growth factor
known to promote angiogenesis and enhance MSC survival31,32,
was high in cultured PSCs (see Appendix). Therefore, one or
multiple processes may contribute to the clinical and histo-
logical differences in muscle atrophy observed in the current
study.

Additionally, we found that PSC injections did not
contribute to increased fibrosis in the setting of rotator cuff
tears. However, the TT 1 DN groups that received either
prophylactic or therapeutic pericyte injections or therapeutic
adventitial cells had less fibrosis than TT 1 DN controls. The
absence of increased fibrosis is promising, as a potential
complication with these injections is that the cells may follow a
profibrotic pathway, leading to adverse outcomes33-35. However,
the decreased fibrosis seen in the TT 1 DN groups suggests
that the cells may inhibit these profibrotic processes. This is

Fig. 6

Figs. 6-A, 6-B, and 6-CMean area fraction of collagen. *P < 0.05. The error bars indicate the standard deviation. Fig. 6-A In the TT1DN groups, there was

significantly less fibrosis for both the prophylactic and therapeutic pericyte groups and the therapeutic adventitial cell group compared with the saline

solution control group. Fig. 6-B In the TT groups, there were no significant differences in fibrosis between the PSC groups and the saline solution

control group. Fig. 6-C In the sham groups, there was significantly more fibrosis in the PSC groups compared with the saline solution control group.
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consistent with the results reported by Chen et al., utilizing
pericytes in a mouse model of myocardial infarction21.

Some of our histomorphometric results differed between
the prophylactic and therapeutic treatment groups. Specifically,
wet muscle weight change for the therapeutic groups following
TT1DNwas significantly less than for the respective controls,
while the prophylactic injection groups demonstrated no such
change. These findings may be attributable to an altered mi-
croenvironment and increases in myogenic transcription factor
expression following rotator cuff tears36. A previous study by
Frey et al. demonstrated increased expression of the myogenic
transcription factor Myf-5 in the weeks following rotator cuff
tenotomy in an ovine model37, which could explain the more
robust clinical response observed in our therapeutic treatment
groups, by which the cells were delivered into a biological
milieu primed to drive myogenic differentiation.

Finally, there was a modest though significant difference
in fatty infiltration in the TT groups treated with PSCs com-
pared with controls, but no differences in fatty infiltration

among the TT 1 DN groups. The similarities in fatty infil-
tration among the TT 1 DN groups may be secondary to
denervation, which has been shown to play an important role
in the development of fatty infiltration14,38,39. Furthermore,
while there was significantly less fatty infiltration in the TT
groups, given the small absolute difference (;1%), it is likely
not clinically relevant. Nonetheless, our results suggest that the
use of PSCs may contribute to the prevention of muscle atro-
phy by aiding in the maintenance of muscle bulk without
leading to increased fibroadipogenesis.

There were limitations to our study, many of which are
inherent to using animal models to replicate human pa-
thology. Suprascapular nerve transection was required to
produce massive fat infiltrate, consistent with the original
model developed by Liu et al.15. While there are data dem-
onstrating that suprascapular nerve palsy may contribute to
fatty infiltration following rotator cuff injury40,41, complete
transection of the suprascapular nerve rarely occurs in hu-
man disease. Thus, while several aspects of human rotator

Fig. 7

Figs. 7-A, 7-B, and 7-CMean area fraction of fat. *P < 0.05. The error bars indicate the standard deviation. Fig. 7-A In the TT1DN groups, there were no significant

differences in fatty infiltration between the PSC groups and the saline solution control group. Fig. 7-B In the TT groups, there was significantly less fatty

infiltration in the prophylactic and therapeutic pericyte groups and the prophylactic adventitial cell group compared with the saline solution control group.

Fig. 7-C In the sham groups, there were no significant differences in fatty infiltration between the PSC groups and the saline solution control group.
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cuff pathology are recreated in this small animal model, it
may not completely mirror the human disease process. While
mice of similar age, weight, and sex were used in this study,
normal variation in rotator cuff muscle weight may be pre-
sent in this strain. We attempted to control for this variation
by comparing the treatment effect in the experimental limb
with values noted for the untreated limb in the same animal.

Additionally, our study utilized a mature, but relatively
young, population of mice. While rotator cuff tears are more
commonly observed in an older human population, mice of
this age were chosen because young mice demonstrated de-
generative muscle changes similar to those seen in humans in
this previously validated model15. While the number of native
progenitor cells has been shown to decrease with age42,43, the

Fig. 8

Figs. 8-A and 8-B In vivo imaging and histology of prelabeled human PSCs after injection. Fig. 8-A The survival of transplanted human perivascular cells.

Mice were imaged after intraperitoneal injection of luciferin at the indicated time points following cell injection 2weeks post-operation. Fig. 8-B Fluorescent

image (·200) demonstrating CM-Dil-prelabeled PSCs, which appear red. The white arrow indicates PSCs aligning with myofibers post-injection.

Fig. 9

Figs. 9-A, 9-B, and 9-C CM-Dil-prelabeled PSCs (·100) with a-SMA co-staining. Fig. 9-A a-SMA positive control demonstrates staining of native

murine blood vessels. Fig. 9-B Sham sample 2 weeks post-injection. CM-Dil-prelabeled PSCs can be seen. There is no co-staining of a-SMA. Fig. 9-C

TT 1 DN sample 2 weeks post-injection. CM-Dil-prelabeled PSCs can be seen with no co-staining of a-SMA.
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myogenic potential and intrinsic functionality of satellite cells
appear to be age-independent44-46. However, additional studies
in aged animals are necessary to further characterize the role
of PSCs in reducing muscle atrophy.

Finally, to validate the use of human PSCs preclinically, we
utilized immunodeficient mice as PSC recipients. While the
complex interplay of immune responses following rotator cuff
injury has not been fully elucidated47-50, it is possible that this
model does not mirror themuscle changes that would be seen in
an immunocompetent model. However, a study by Brzóska et al.
suggested that skeletal muscle regeneration in severe combined
immunodeficient [SCID] mice is similar to that in immuno-
competent mice with respect to muscle fiber size, fibrosis, and
fatty infiltration51. Nonetheless, additional studies investigating
the role of inflammatory responses following rotator cuff tears
would augment our understanding of fibroadipogenesis.

In summary, we demonstrated that 2 PSC populations—
adventitial cells and pericytes—exhibit regenerative potential
in the setting of massive rotator cuff tears. Currently, there is
great heterogeneity among methods of stem cell procurement,
methods of application, and cell types utilized in rotator cuff
repair studies. Ultimately, the goal is to characterize and
standardize a cell populationwith the greatest ease and efficacy of
clinical translation. PSCs provide the distinct advantages of
having an abundant and readily available source in adipose tissue
and of being easily isolated via cell surface markers. Further in-
vestigation is necessary to fully elucidate the regenerative capacity
of these cells and to better characterize their mechanism of ac-
tion. Nonetheless, these results, which demonstrate the regen-
erative potential of these cells in a model of massive rotator cuff
tears with no significant increases in fatty infiltration or fibrosis,
suggest that they may serve as a viable perioperative therapy.

Appendix
Tables detailing the PSC transcript expression of growth
factors related to muscle cell growth and/or differentiation

and PSC secretion of VEGF as demonstrated in RNA-sequencing
analysis are available with the online version of this article as a
data supplement at jbjs.org (http://links.lww.com/JBJS/A10). n
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