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Long-term kidney outcomes among users of
proton pump inhibitors without intervening acute
kidney injury
Yan Xie1, Benjamin Bowe1, Tingting Li1,2, Hong Xian1,3, Yan Yan1,4 and Ziyad Al-Aly1,2,5,6

1Clinical Epidemiology Center, Research and Education Service, VA Saint Louis Health Care System, St. Louis, Missouri, USA; 2Department
of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; 3Department of Biostatistics, College for Public Health
and Social Justice, Saint Louis University, St. Louis, Missouri, USA; 4Division of Public Health Sciences, Department of Surgery, Washington
University School of Medicine, St. Louis, Missouri, USA; 5Nephrology Section, Medicine Service, VA Saint Louis Health Care System, St.
Louis, Missouri, USA; and 6Institute for Public Health, Washington University in St. Louis, St. Louis, Missouri, USA

Proton pump inhibitor (PPI) use is associated with an
increased risk of acute kidney injury (AKI), incident chronic
kidney disease (CKD), and progression to end-stage renal
disease (ESRD). PPI-associated CKD is presumed to be
mediated by intervening AKI. However, whether PPI use is
associated with an increased risk of chronic renal outcomes
in the absence of intervening AKI is unknown. To evaluate
this we used the Department of Veterans Affairs national
databases to build a cohort of 144,032 incident users of
acid suppression therapy that included 125,596 PPI and
18,436 Histamine H2 receptor antagonist (H2 blockers)
consumers. Over 5 years of follow-up in survival models,
cohort participants were censored at the time of AKI
occurrence. Compared with incident users of H2 blockers,
incident users of PPIs had an increased risk of an estimated
glomerular filtration rate (eGFR) under 60 ml/min/1.73m2

(hazard ratio 1.19; 95% confidence interval 1.15-1.24),
incident CKD (1.26; 1.20-1.33), eGFR decline over 30% (1.22;
1.16-1.28), and ESRD or eGFR decline over 50% (1.30;
1.15-1.48). Results were consistent in models that excluded
participants with AKI either before chronic renal outcomes,
during the time in the cohort, or before cohort entry. The
proportion of PPI effect mediated by AKI was 44.7%,
45.47%, 46.00%, and 46.72% for incident eGFR under
60 ml/min/1.73m2, incident CKD, eGFR decline over 30%,
and ESRD or over 50% decline in eGFR, respectively. Thus,
PPI use is associated with increased risk of chronic renal
outcomes in the absence of intervening AKI. Hence,
reliance on antecedent AKI as warning sign to guard
against the risk of CKD among PPI users is not sufficient as
a sole mitigation strategy.
Kidney International (2017) 91, 1482–1494; http://dx.doi.org/10.1016/
j.kint.2016.12.021
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P roton pump inhibitors (PPI) are widely used for acid
suppression therapy. Results of the National Health and
Nutrition Examination Survey estimate that 7.8% of US

adults had used prescription PPIs in the previous 30 days.1

These figures likely underestimate the real prevalence of PPI
use as several PPIs are also widely available for sale over the
counter without prescription in the United States.2,3 Several
observational studies suggest that PPI use is associated with
an increased risk of a number of adverse health outcomes.2

PPI use is also associated with an increased risk of acute
kidney injury (AKI), incident chronic kidney disease (CKD),
CKD progression, and end-stage renal disease (ESRD).3–7

AKI is a significant risk factor for the development of CKD,
CKD progression, and ESRD.8,9 CKD increases the propensity
for the development of AKI where a bidirectional nexus
exists between AKI and CKD and progression to ESRD.8–12

The association between PPI exposure and risk of AKI
and acute interstitial nephritis is well documented.4–6,13–16

Studies that established the relationship of PPI use and
CKD have postulated that the association is likely mediated by
the occurrence of intervening AKI, from which some patients
recover, but others do not or experience incomplete recovery
and CKD might develop and progress to ESRD.3,14,16,17

It has also been suggested that PPI use may lead to subclini-
cal AKI, AKI that is not clinically diagnosed, or chronic
indolent renal damage.3,7,18 Previous studies have not
addressed whether PPI-associated CKD is mediated by the
occurrence of intervening AKI or via other pathways.
Whether the use of PPI is associated with untoward long-term
kidney outcomes including the development of CKD and
progression to ESRD in the absence of intervening AKI is not
known.13,19

In this work, we aimed to examine the association of
PPI use and the risk of long-term renal outcomes in those
without intervening AKI. We therefore used the US Depart-
ment of Veterans Affairs (VA) databases to build a national
cohort of new users of acid suppression therapy (either PPI or
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histamine H2 receptor antagonists [H2 blockers]) without
kidney disease at baseline (baseline estimated glomerular
filtration rate [eGFR] >60 ml/min per 1.73 m2) and followed
them for 5 years to characterize the association of PPI use
with the risk of incident CKD, the risk of CKD progression,
and the risk of ESRD in the absence of intervening AKI.

RESULTS
There were 144,032 new users of acid suppression therapy;
18,436 and 125,596 were new users of H2 blockers and PPIs,
respectively. There were 118,793 cohort participants with no
AKI during the time in the cohort (from time 0 [T0] at cohort
entry until the end of follow-up or ESRD or death); 16,101
and 102,692 were incident users of H2 blockers and PPIs,
respectively. The demographic and health characteristics are
given in Table 1. Overall, new users of PPIs and H2 blockers
had comparable demographic characteristics, but PPI users
were more likely to have diabetes, chronic lung disease,
hyperlipidemia, and cardiovascular disease (Table 1). New
users of PPIs were more likely to have gastrointestinal con-
ditions (Table 1). Survival probability for chronic kidney
outcomes including an incident eGFR <60 ml/min per
1.73 m2, incident CKD, an eGFR decrease >30%, and ESRD
or eGFR decrease >50% by type of acid suppressant is shown
in Figure 1a–d.

PPI exposure and risk of chronic renal outcomes in the
absence of intervening AKI
We examined the association of PPI use and the risk of chronic
renal outcomes in the absence of intervening AKI using the
analytic strategies outlined in Figure 2. In order to evaluate the
association between PPI use and the risk of chronic renal
outcomes in the absence of intervening AKI, we built survival
models in which cohort participants were censored at the time
of AKI occurrence (Figure 2, analytic approach A). In a cohort
of 144,032 incident users of acid suppression therapy and over
a median follow-up period of 5 years (interquartile range,
5–5), compared with new users of H2 blockers, new users of
PPIs had a significantly increased risk of an eGFR<60 ml/min
per 1.73 m2 (hazard ratio [HR]1.19, 95% confidence interval
[CI] 1.15–1.24), incident CKD (HR 1.26, 95% CI 1.20–1.33),
an eGFR decrease>30% (HR 1.22, 95% CI 1.16–1.28), and an
ESRD or eGFR decrease >50% (HR 1.30, 95% CI 1.15–1.48)
(Table 2). To ascertain that associations observed in the pre-
vious models were not reversible and remained until end of
cohort follow-up, we built multivariate analyses in which we
used the last eGFR before censorship (time of first occurrence
of AKI, ESRD, death, or end of follow-up) to define chronic
renal outcomes; new users of PPIs had an increased odds of an
eGFR<60 ml/min per 1.73 m2 (odds ratio 1.26, 95% CI 1.19–
1.32); an eGFR decrease>30% (odds ratio 1.24, 95% CI 1.17–
1.31), and an eGFR decrease >50% (odds ratio 1.34, 95% CI
1.19–1.52) (ESRD is, by definition, a terminal event and was
not included as an outcome in this analysis) (Table 3).

To evaluate the relationship of PPI use and the risk of
chronic renal outcomes in participants who do not experience

AKI before the onset of chronic renal outcome, we excluded
cohort participants who experienced AKI before chronic
renal outcomes (any AKI between the time of cohort entry
(T0) and before chronic renal outcome) (Figure 2, analytic
approach B); compared with new users of H2 blockers, inci-
dent users of PPIs had an increased risk of an eGFR
<60 ml/min per 1.73 m2 (HR 1.22, 95% CI 1.17–1.27),
incident CKD (HR 1.29, 95% CI 1.22–1.36), an eGFR decrease
>30% (HR 1.26, 95% CI 1.19–1.32), and an ESRD or eGFR
decrease >50% (HR 1.35, 95% CI 1.19–1.53) (Table 4). In
order to evaluate the association of PPI use and the risk of
chronic renal outcomes in those who do not experience AKI
after exposure to acid suppression, we excluded cohort
participants in whom AKI developed during the time in the
cohort (from T0 until the end of follow-up, either before or
after the occurrence of chronic renal outcomes) (Figure 2,
analytic approach C). The analyses yielded consistent results in
that PPI users had an increased risk of an eGFR <60 ml/min
per 1.73 m2 (HR 1.17, 95% CI 1.12–1.22), incident CKD
(HR 1.23; 95% CI 1.16–1.30), an eGFR decrease >30% (HR
1.19; 95% CI 1.13–1.26), and an ESRD or eGFR decrease
>50% (HR 1.21, 95% CI 1.04–1.40) (Table 5).

Because a history of AKI increases the risk of both AKI
recurrence and CKD,10,20 we evaluated the research question
among cohort participants without a history of AKI within
5 years before cohort entry (N ¼ 132,699) (Figure 2, analytic
approach D), in which cohort participants were censored
at the time of AKI occurrence; compared with new users of
H2 blockers, new users of PPIs had an increased risk of
chronic renal outcomes including an eGFR <60 ml/min
per 1.73 m2 (HR 1.19, 95% CI 1.15–1.25), incident CKD (HR
1.27, 95% CI 1.20–1.34), an eGFR decrease >30% (HR 1.22,
95% CI 1.16–1.29), and an ESRD or eGFR decrease >50%
(HR 1.32, 95% CI 115–1.52) (Table 6).

Mediation analyses showed the proportion of PPI effect
mediated by AKI was 44.7% for an incident eGFR<60 ml/min
per 1.73 m2, 45.47% for incident CKD, 46.00% for an eGFR
decrease>30%, and 46.72% for an ESRD or>50% decrease in
eGFR (Figure 3 and Supplementary Table S1).

In analyses evaluating the cumulative duration of exposure
and risk of renal outcomes, there was a graded association be-
tween duration of use and risk in that a more prolonged dura-
tion of PPI exposurewas associatedwith a greater risk of chronic
renal outcomes (Figure 4 and Supplementary Table S2).

Sensitivity analyses
We evaluated the robustness of study results in a number of
sensitivity analyses. As a test of calibration, we examined the
relationship of PPI use and the risk of AKI and, separately, the
relationship of PPI use and risk of chronic renal outcomes
(without taking into account the possible occurrence of
intervening AKI). The intent of this analysis was to verify the
presence of an association where a priori knowledge suggests
that an association is expected.3–7 Results show that PPI users
have an increased risk of AKI (HR 1.47, 95% CI 1.41–1.54).
PPI use was associated with an increased risk of an eGFR
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Table 1 | Demographic and health characteristics of overall cohort of new users of acid suppression therapy and those without intervening AKI by type of
acid suppressant

Variables
Overall

(N [ 144,032)
H2 blockers
(N [ 18,436)

PPIs
(N [ 125,596)

No AKIa

(N [ 118,793)

H2 blockers
(N [ 16,101)

PPIs
(N [ 102,692)

Standardized
difference

Age (SD), yr 57.82 (13.57) 56.81 (14.06) 57.97 (13.49) 56.29 (14.34) 57.47 (13.89) 0.08
First eGFR in ml/min per 1.73 m2 (SD) 85.46 (15.63) 86.05 (15.81) 85.38 (15.60) 86.25 (15.82) 85.44 (15.49) �0.05
Last eGFR in ml/min per 1.73 m2 (SD)b 84.79 (18.13) 85.83 (17.96) 84.64 (18.14) 86.07 (17.59) 84.73 (17.56) �0.08
No. (SD) of outpatient serum creatinine measurements 4.64 (5.57) 4.83 (5.75) 4.61 (5.54) 4.40 (5.10) 4.06 (4.80) �0.06
No. (SD) of hospitalizations 0.38 (1.06) 0.43 (1.18) 0.38 (1.04) 0.35 (1.02) 0.28 (0.85) �0.07
Race, no. (%)
White 113,615 (78.88) 14,233 (77.20) 99,382 (79.13) 12,522 (77.77) 82,131 (79.98) 0.05
Black 24,508 (17.02) 3313 (17.97) 21,195 (16.88) 2783 (17.28) 16,350 (15.92) �0.04
Other 5909 (4.10) 890 (4.83) 5019 (4.00) 796 (4.94) 4211 (4.10) �0.04

Sex, no. (%)
Male 134,507 (93.39) 17,211 (93.36) 117,296 (93.39) 14,943 (92.81) 95,324 (92.83) 0.001
Female 9525 (6.61) 1225 (6.64) 8300 (6.61) 1158 (7.19) 7368 (7.17) �0.001

Smoking, no. (%)
Never smoker 62,495 (43.39) 8340 (45.24) 54,155 (43.12) 7429 (46.14) 45,641 (44.44) �0.03
Former smoker 30,605 (21.25) 3286 (17.82) 27,319 (21.75) 2867 (17.81) 22,546 (21.95) 0.10
Current smoker 50,932 (35.36) 6810 (36.94) 44,122 (35.13) 5805 (36.05) 34,505 (33.60) �0.05

Systolic blood pressure, mm Hg, no. (%)
<90 414 (0.29) 42 (0.23) 372 (0.30) 33 (0.20) 248 (0.24) 0.001
90–119.9 35,387 (24.57) 4438 (24.07) 30,949 (24.64) 3855 (23.94) 24,967 (24.31) 0.001
120–139.9 70,539 (48.97) 8945 (48.52) 61,594 (49.04) 7933 (49.27) 51,541 (50.19) 0.02
>139.9 37,692 (26.17) 5011 (27.18) 32,681 (26.02) 4280 (26.58) 25,936 (25.26) �0.03

Diastolic blood pressure, mm Hg, no. (%)
<60 7932 (5.51) 942 (5.11) 6990 (5.57) 790 (4.91) 5319 (5.18) 0.01
60–79.9 75,357 (52.32) 9521 (51.64) 65,836 (52.42) 8305 (51.58) 53,816 (52.41) 0.02
80–89.9 42,178 (29.28) 5431 (29.46) 36,747 (29.26) 4823 (29.95) 30,730 (29.92) 0.00
>89.9 18,565 (12.89) 2542 (13.79) 16,023 (12.76) 2183 (13.56) 12,827 (12.49) �0.03

Body mass index, no. (%)
Underweight 2335 (1.62) 334 (1.81) 2001 (1.59) 265 (1.65) 1386 (1.35) �0.02
Normal weight 30,825 (21.40) 4038 (21.90) 26,787 (21.33) 3486 (21.65) 21,145 (20.59) �0.03
Overweight 52,381 (36.37) 6688 (36.28) 45,693 (36.38) 5936 (36.87) 38,219 (37.22) 0.007
Obese 58,491 (40.61) 7376 (40.01) 51,115 (40.70) 6414 (39.84) 41,942 (40.84) 0.02

Diabetes mellitus, no. (%) 49,839 (34.60) 5856 (31.76) 43,983 (35.02) 4758 (29.55) 32,695 (31.84) 0.05
Chronic lung disease, no. (%) 45,315 (31.46) 5155 (27.96) 40,160 (31.98) 4183 (25.98) 29,527 (28.75) 0.06
Peripheral artery disease, no. (%) 8549 (5.94) 989 (5.36) 7560 (6.02) 690 (4.29) 4755 (4.63) 0.02
Cardiovascular disease, no. (%) 49,806 (34.58) 5588 (30.31) 44,218 (35.21) 4457 (27.68) 32,057 (31.22) 0.08
Cerebrovascular disease, no. (%) 1162 (0.81) 134 (0.73) 1028 (0.82) 88 (0.55) 624 (0.61) 0.008
Dementia, no. (%) 13,651 (9.48) 1622 (8.80) 12,029 (9.58) 1285 (7.98) 8474 (8.25) 0.01
Hyperlipidemia, no. (%) 107,060 (74.33) 13,251 (71.88) 93,809 (74.69) 11,518 (71.54) 76,493 (74.49) �0.001
Hepatitis C, no. (%) 8210 (5.70) 990 (5.37) 7220 (5.75) 813 (5.05) 5042 (4.91) �0.006
HIV, no. (%) 363 (0.25) 45 (0.24) 318 (0.25) 35 (0.22) 192 (0.19) �0.007
Cancer, no. (%) 16,465 (11.43) 2104 (11.41) 14,361 (11.43) 1602 (9.95) 9981 (9.72) �0.008
GERD, no. (%) 45,314 (31.46) 4808 (26.08) 40,506 (32.25) 4359 (27.07) 35,377 (34.45) �0.06
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Upper GI tract bleeding, no. (%) 3176 (2.21) 155 (0.84) 3021 (2.41) 119 (0.74) 2067 (2.01) 0.11
Ulcer disease, no. (%) 9894 (6.87) 785 (4.26) 9109 (7.25) 680 (4.22) 6901 (6.72) 0.11
Helicobacter pylori infection, no. (%) 1306 (0.91) 25 (0.14) 1281 (1.02) 22 (0.14) 1018 (0.99) 0.11
Barrett’s esophagus, no. (%) 1112 (0.77) 12 (0.07) 1100 (0.88) 7 (0.04) 909 (0.89) 0.13
Achalasia, no. (%) 65 (0.05) 0 (0.00) 65 (0.05) 0 (0.00) 51 (0.05) 0.03
Stricture, no. (%) 856 (0.59) 30 (0.16) 826 (0.66) 21 (0.13) 664 (0.65) 0.08
Esophageal adenocarcinoma, no. (%) 75 (0.05) 1 (0.01) 74 (0.06) 0 (0.00) 46 (0.04) 0.03
NSAID use, no. (%) 37,125 (25.78) 5154 (27.96) 31,971 (25.46) 4420 (27.45) 25,479 (24.81) �0.06
ACE/ARB use, no. (%) 43,497 (30.20) 5654 (30.67) 37,843 (30.13) 4609 (28.63) 28,242 (27.50) �0.03
Incident AKI in 1000 person-years, (95% CI) 37.75 (37.29–38.22) 27.23 (26.14–28.36) 39.30 (38.80–39.82) N/A N/A N/A
AKI, no. (%)
Overall 25,239 (17.52) 2335 (12.67) 22,904 (18.24) N/A N/A N/A
>50% increase in serum creatinine within 90 days 16,699 (11.59) 1501 (8.14) 15,198 (12.10) N/A N/A N/A
>0.3 mg/dl increase in serum creatinine within 90 days 24,475 (16.99) 2258 (12.25) 22,217 (17.69) N/A N/A N/A

Duration of wash-out period (IQR)c 5.02 (1.25–8.42) 5.49 (1.82–8.53) 4.94 (1.17–8.40) 5.36 (1.70–8.47) 4.73 (1.07–8.30) �0.11
Follow-up, yr (IQR)d 5.00 (5.00–5.00) 5.00 (5.00–5.00) 5.00 (5.00–5.00) 5.00 (5.00–5.00) 5.00 (5.00–5.00) 0.009
Death, no. (%) 19,465 (13.51) 2316 (12.56) 17,149 (13.65) 1606 (9.97) 10,467 (10.19) 0.007
Incident eGFR <60 ml/min per 1.73 m2, no. (%) 38,247 (26.55) 4021 (21.81) 34,226 (27.25) 2574 (15.99) 19,545 (19.03) 0.08
Incident chronic kidney disease, no. (%) 20,797 (14.44) 2042 (11.08) 18,755 (14.93) 1235 (7.67) 9977 (9.72) 0.07
>30% decrease in eGFR, no. (%) 27,259 (18.93) 2740 (14.86) 24,519 (19.52) 1431 (8.89) 10,973 (10.69) 0.06
ESRD or >50% decrease in eGFR, no. (%) 8899 (6.18) 809 (4.39) 8090 (6.44) 205 (1.27) 1616 (1.57) 0.03
Microalbumin/creatinine ratio, mg/g, no. (%), N ¼ 18,871
<30 15,235 (80.73) 1900 (81.06) 13,335 (80.69) 1602 (82.58) 10,446 (83.39) 0.02
30–300 3233 (17.13) 399 (17.02) 2834 (17.15) 305 (15.72) 1893 (15.11) �0.02
>300 403 (2.14) 45 (1.92) 358 (2.17) 33 (1.70) 187 (1.49) �0.02

Glycated hemoglobin, % (SD), N ¼ 74,802 6.45 (4.00) 6.38 (2.89) 6.47 (4.14) 6.31 (2.46) 6.38 (4.19) 0.02

ACE, angiotensin-converting enzyme inhibitors; AKI, acute kidney injury; ARB, angiotensin receptor blockers; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; GERD, gastroesophageal reflux disease; IQR,
interquartile range; NSAID, nonsteroidal anti-inflammatory drug; PPIs, proton pump inhibitors.
aDid not experience AKI from T0 until ESRD or end of follow-up.
beGFR value before and closest to AKI occurrence or ESRD or end of follow-up.
cYears between enrolled in Veterans Affairs and T0; 140,677 patients with data were available.
dFrom T0 until ESRD or end of follow-up.
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Figure 1 | Survival probability for chronic kidney outcomes by the type of acid suppressant. (a) Incident estimated glomerular filtration
rate (eGFR) <60 ml/min per 1.73 m2. (b) Incident chronic kidney disease. (c) eGFR decrease >30%. (d) End-stage renal disease or eGFR
decrease>50%.

T0 End of 
follow-up

Baseline

D A,B

C

Chronic 
Renal Event

Analy c Approach:
A – Censor at me of AKI (if AKI occurred between T0 and Chronic Renal Event*) 
B – Exclude par cipants with AKI between T0 and Chronic Renal Event*
C – Exclude par cipants with AKI between T0 and end of follow-up
D – Exclude par cipants with AKI before T0

*Chronic renal event: incident eGFR <60 ml/min per 1.73 m2, incident CKD, eGFR 
decrease >30%, or ESRD/eGFR decrease >50%.

t

Figure 2 | Analytic strategies to examine the association of proton pump inhibitor use and risk of chronic renal outcomes without
intervening acute kidney injury (AKI). CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease.
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<60 ml/min per 1.73 m2 (HR 1.25, 95% CI 1.21–1.29),
incident CKD (HR 1.33, 95% CI 1.27–1.40), an eGFR
decrease >30% (HR 1.31, 95% CI 1.26–1.37), and an ESRD
or eGFR decrease >50% (HR 1.43, 95% CI 1.33–1.1.54).

Additional sensitivity analyses were conducted in models
that censored participants at the time of AKI occurrence
(Figure 2, analytic approach A). In analyses using the
modified NHS England AKI algorithm, as reported by
Sawhney et al.,21 which has a very high sensitivity (>90%)
for the detection of biochemical AKI (AKI based on actual
laboratory values, not International Classification of Dis-
eases, Ninth Revision [ICD-9] codes),21 PPI use was asso-
ciated with an increased risk of chronic renal outcomes, and
the results were consistent with those shown in the primary
analysis (Supplementary Table S3A). Analyses in which AKI
was defined by KDIGO criteria and separately where AKI
was defined by ICD-9 codes occurring during a hospital
stay yielded consistent results (Supplementary Tables 3B
and 3C).

In models that included incident H2 blocker users who
switched to PPI use and where exposure was modeled as time
dependent, compared with H2 blocker use, PPI use was
associated with an increased risk of chronic renal outcomes
(Supplementary Table S4). Analyses in which covariates were
treated as time-dependent variables produced consistent

results (Supplementary Table S5). Examination of the asso-
ciation in Fine and Gray models in which death and AKI were
considered competing risks yielded consistent results
(Supplementary Table S6).

An instrumental variable approach was used to account
for the lack of random assignment of PPI and H2 blockers,
and results suggest that PPI users had an increased risk of
an incident eGFR <60 ml/min per 1.73 m2 (HR 1.36,
95% CI 1.25–1.48), incident CKD (HR 1.68, 95% CI 1.48–
1.91), an eGFR decrease >30% (HR 1.40, 95% CI 1.25–1.57),
and an ESRD or eGFR decrease >50% (HR 1.50, 95% CI
1.13–2.00) (Supplementary Table S7).

In order to optimize control of confounding, we addi-
tionally built high-dimensional propensity score–adjusted
survival models following the multistep algorithm described
by Schneeweiss et al.22 Among new users of acid suppression
therapy, in high-dimensional propensity score–adjusted
models (in which score was considered as continuous), new
PPI users had an increased risk of incident eGFR <60 ml/min
per 1.73 m2 (HR 1.15, 95% CI 1.10–1.19), incident CKD (HR
1.20, 95% CI 1.13–1.27), an eGFR decrease >30% (HR 1.19,
95% CI 1.14–1.25), and an ESRD or eGFR decrease >50%
(HR 1.30, 95% CI 1.15–1.48) (Supplementary Table S8).
Similar results were obtained where the high-dimensional
propensity score was considered in deciles (Supplementary

Table 2 | Survival models of the association between PPI use and risk of chronic renal outcomes among new users of acid
suppression therapy (H2 blockers [referent] and PPIs) in which cohort participants were censored at the time of AKI occurrence
(N [ 144,032)

Incident ratea

(95% CI) Univariate hazard ratiob

(95% CI)
Multivariate hazard ratiob,c

(95% CI)H2 blockers PPI

Incident eGFR <60 ml/min per 1.73 m2 42.88 (41.38–44.41) 53.66 (53.00–54.33) 1.24 (1.19–1.28) 1.19 (1.15–1.24)
Incident chronic kidney disease 18.82 (17.86–19.81) 24.75 (24.31–25.19) 1.32 (1.25–1.39) 1.26 (1.20–1.33)
>30% decrease in eGFR 22.75 (21.70–23.84) 28.42 (27.95–28.89) 1.25 (1.19–1.31) 1.22 (1.16–1.28)
ESRD or >50% decrease in eGFR 3.32 (2.94–3.75) 4.46 (4.28–4.64) 1.34 (1.18–1.53) 1.30 (1.15–1.48)

AKI, acute kidney disease; CI, confidence interval; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; PPIs, proton pump inhibitor.
aIncident rate as incident kidney outcome occurrence before AKI per 1000 person-years.
bParticipants were censored as nonevent when they experience AKI; H2 blockers serve as the reference group.
cMultivariate model controlling for first eGFR, age, race, sex, smoking, body mass index, diastolic blood pressure, systolic blood pressure, nonsteroidal anti-inflammatory drugs,
angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, number of outpatient serum creatinine measurements, number of hospitalizations, diabetes mellitus,
cardiovascular disease, peripheral artery disease, cerebrovascular disease, chronic lung disease, hepatitis C, HIV, dementia, cancer, gastroesophageal reflux disease, upper
gastrointestinal tract bleeding, ulcer disease, Helicobacter pylori infection, Barrett’s esophagus, achalasia, stricture, and esophageal adenocarcinoma.

Table 3 | Multivariate logistic regression models of the association between PPI use and the odds of chronic renal outcomes in
new users of acid suppression therapy (H2 blockers [referent] and PPIs) where the last eGFR before the first occurrence of AKI,
ESRD, death, or end of follow-up was used to define outcomes (N [ 144,032)

No. (%) of eventsa
Univariate ORb

(95% CI)
Multivariate ORb,c

(95% CI)H2 blockers PPIs

eGFR <60 ml/min per 1.73 m2 2041 (11.07) 17,463 (13.90) 1.30 (1.24–1.36) 1.26 (1.19–1.32)
>30% decrease in eGFR 1342 (7.28) 11,493 (9.15) 1.28 (1.21–1.36) 1.24 (1.17–1.31)
>50% decrease in eGFR 292 (1.58) 2272 (2.21) 1.40 (1.24–1.58) 1.34 (1.19–1.52)

AKI, acute kidney disease; CI, confidence interval; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; OR, odds ratio; PPIs, proton pump inhibitors.
aBased on a comparison of the first and last eGFRs, in which the last eGFR was the eGFR before and closest to first occurrence of AKI, ESRD, death, or end of follow-up.
bH2 blockers serve as the reference group.
cMultivariate model controlling for first eGFR, age, race, sex, smoking, body mass index, diastolic and systolic blood pressure, nonsteroidal anti-inflammatory drug;
angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, number of outpatient serum creatinine measurements, number of hospitalizations, diabetes mellitus,
cardiovascular disease, peripheral artery disease, cerebrovascular disease, chronic lung disease, hepatitis C, HIV, dementia, cancer, gastroesophageal reflux disease, upper
gastrointestinal tract bleeding, ulcer disease, Helicobacter pylori infection, Barrett’s esophagus, achalasia, stricture, and esophageal adenocarcinoma.
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Table S8). We evaluated the association in participants
without gastrointestinal conditions; the intent of this analysis
was to examine the association in a lower risk cohort. Results
suggest a significant relationship between PPI use and the risk
of chronic renal outcomes (Supplementary Table S9). In
separate analyses, we additionally controlled for glycated he-
moglobin (HbA1c) and microalbumin/creatinine ratio and
considered those with a microalbumin/creatinine ratio <30
mg/g; results remained consistent (Supplementary Tables S10,
S11, and S12).

DISCUSSION
In this work, we show that among new users of acid sup-
pression therapy, incident PPI users have an increased risk of
chronic renal outcomes including incident CKD, CKD pro-
gression, and ESRD in the absence of intervening AKI. We
built numerous models in which we censored cohort partic-
ipants at the time of AKI occurrence (an analytic approach
designed to ensure that events captured in the models precede
the occurrence of AKI), and in alternative analytic strategies,
we excluded participants in whom AKI developed before

chronic renal outcomes, excluded participants in whom AKI
developed during the time in the cohort, and excluded par-
ticipants with AKI before cohort entry. Mediation analyses
showed the proportion of PPI effect mediated by AKI was
w50% for each of the chronic renal outcomes examined in
this study, endorsing the possibility of a direct effect of PPI on
chronic renal outcomes. The results were consistent using
various definitions of AKI (NHS England AKI algorithm
definition, KDIGO definition, and a definition based on
inpatient ICD-9 codes). The findings were robust to changes
in other multiple sensitivity analyses including time-
dependent analyses (for exposure and covariates), analyses
that accounted for the competing risk of death and AKI, and
analyses using an instrumental variable approach and high-
dimensional propensity score–adjusted models. In all ana-
lyses, the results showed a significant association between PPI
use and chronic renal outcomes including incident CKD,
CKD progression, and ESRD in the absence of intervening
AKI.

The relationship between PPI exposure and the risk of AKI
and acute interstitial nephritis is well established,4–6,13–16 and

Table 4 | Survival models of the association of PPI use and risk of chronic renal outcomes in new users of acid suppression
therapy (H2 blockers [referent] and PPIs) in which cohort participants included those with no AKI before onset of chronic renal
outcome (excluded from cohort entry those participants with AKI between the time of cohort entry time 0 and before chronic
renal outcome)

Incident ratea

(95% CI) Univariate hazard
ratiob (95% CI)

Multivariate
hazard ratiob,c (95% CI)H2 blockers PPIs

Incident eGFR <60 ml/min per 1.73 m2, N ¼ 124,788 44.78 (43.22–46.39) 57.27 (56.57–57.99) 1.27 (1.22–1.32) 1.22 (1.17–1.27)
Incident chronic kidney disease, N ¼ 121,478 19.76 (18.76–20.80) 26.62(26.16–27.10) 1.35 (1.28–1.42) 1.29 (1.22–1.36)
>30% decrease in eGFR, N ¼ 122,337 23.82 (22.72–24.97) 30.46 (29.96–30.96) 1.28 (1.22–1.34) 1.26 (1.19–1.32)
ESRD or >50% decrease in eGFR, N ¼ 119,578 3.51 (3.10–3.95) 4.83 (4.64–5.03) 1.38 (1.21–1.56) 1.35 (1.19–1.53)

AKI, acute kidney injury; CI, confidence interval; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; OR, odds ratio; PPIs, proton pump inhibitors.
aIncident rate as incident kidney outcome occurrence per 1000 person-years.
bH2 blockers serve as the reference group.
cMultivariate model controlling for first eGFR, age, race, sex, smoking, body mass index, diastolic blood pressure, systolic blood pressure, nonsteroidal anti-inflammatory drug,
angiotensin-converting enzyme inhibitor/angiotensin receptor blockers, number of outpatient serum creatinine measurements, number of hospitalizations, diabetes mellitus,
cardiovascular disease, peripheral artery disease, cerebrovascular disease, chronic lung disease, hepatitis C, HIV, dementia, cancer, gastroesophageal reflux disease, upper
gastrointestinal tract bleeding, ulcer disease, Helicobacter pylori infection, Barrett’s esophagus, achalasia, stricture, and esophageal adenocarcinoma.

Table 5 | Survival models of the association between PPI use and risk of chronic renal outcomes in new users of acid
suppression therapy (H2 blockers [referent] and PPIs) in which cohort participants included those with no AKI between time of
cohort entry (T0) and end of follow-up (N [ 118,793)

Incident ratea

(95% CI) Univariate hazard
ratiob (95% CI)

Multivariate
hazard ratiob,c (95% CI)H2 blockers PPIs

Incident eGFR <60 ml/min per 1.73 m2 37.46 (36.03–38.94) 45.45 (44.81–46.09) 1.21 (1.16–1.26) 1.17 (1.12–1.22)
Incident chronic kidney disease 16.86 (15.94–17.83) 21.55 (21.13–21.98) 1.28 (1.21–1.36) 1.23 (1.16–1.30)
>30% decrease in eGFR 19.66 (18.66–20.71) 23.83 (23.39–24.28) 1.21 (1.15–1.28) 1.19 (1.13–1.26)
ESRD or >50% decrease in eGFR 2.71 (2.35–3.10) 3.35 (3.19–3.51) 1.24 (1.07–1.43) 1.21 (1.04–1.40)

AKI, acute kidney injury; CI, confidence interval; eGFR, estimated glomerular filtration rate; PPI, proton pump inhibitor.
aIncident rate as incident kidney outcome occurrence per 1000 person-years.
bH2 blockers serve as the reference group.
cMultivariate model controlling for first eGFR, age, race, sex, smoking, body mass index, diastolic and systolic blood pressure, nonsteroidal anti-inflammatory drug,
angiotensin-converting enzyme inhibitors/angiotensin receptor blocker, number of outpatient serum creatinine measurements, number of hospitalizations, diabetes mellitus,
cardiovascular disease, peripheral artery disease, cerebrovascular disease, chronic lung disease, hepatitis C, HIV, dementia, cancer, gastroesophageal reflux disease, upper
gastrointestinal tract bleeding, ulcer disease, Helicobacter pylori infection, Barrett’s esophagus, achalasia, stricture, and esophageal adenocarcinoma.
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AKI is associated with an increased risk of CKD.8,9 The newly
reported association of PPI and the risk of the development
and progression of CKD was postulated to be mediated by the
occurrence of intervening AKI.3,7,23 It was suggested that PPI-
induced AKI serves as an antecedent event that may (i) offer a
warning sign and induce avoidance of PPIs as acid suppres-
sants and (ii) identify those at risk and who are susceptible to
(or with a predilection for) chronic renal outcomes associated
with PPI use.18 However, whether PPI-related CKD and other
chronic renal outcomes are mediated solely by the occurrence
of AKI is clinically relevant but not known. Our study was

designed to address this knowledge gap and answer this
clinically relevant question; the results suggest that a signifi-
cant association exists between PPI use and CKD outcomes
without an intervening AKI. The finding that PPI use is
associated with adverse chronic renal outcomes independent
of the occurrence of AKI suggests that monitoring for AKI or
acute interstitial nephritis among PPI users is not sufficient to
guard against the development of CKD and ESRD. Although
we examined the research question using 4 definitions of AKI,
our design will not detect (or capture) subclinical AKI (AKI
that does not meet the definition threshold), and

Table 6 | Survival models of the association between PPI use and risk of chronic renal outcomes in new users of acid
suppression therapy (H2 blockers [referent] and PPIs) in a cohort participants with no history of AKI (no AKI before cohort
entry) and in which cohort participants were censored at the time of AKI occurrence (N[132,699)

Incident ratea

(95% CI) Univariate hazard ratiob

(95% CI)
Multivariate hazard ratiob,c

(95% CI)H2 blockers PPI

Incident eGFR <60 ml/min per 1.73 m2 39.89 (38.41–41.42) 50.40 (49.74–51.07) 1.25 (1.20–1.30) 1.19 (1.15–1.25)
Incident chronic kidney disease 17.48 (16.54–18.47) 23.16 (22.73–23.60) 1.33 (1.25–1.41) 1.27 (1.20–1.34)
>30% decrease in eGFR 21.34 (20.29–22.44) 26.88 (26.42–27.35) 1.26 (1.20–1.33) 1.22 (1.16–1.29)
ESRD or >50% decrease in eGFR 3.00 (2.62–3.41) 4.13 (3.95–4.31) 1.38 (1.20–1.59) 1.32 (1.15–1.52)

AKI, acute kidney injury; CI, confidence interval; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease.
aIncident rate as incident kidney outcome occurrence before AKI per 1000 person-years.
bParticipants were censored as nonevent when they experienced AKI; H2 blockers serve as the reference.
cMultivariate model controlling for first eGFR, age, race, sex, smoking, body mass index, diastolic and systolic blood pressure, nonsteroidal anti-inflammatory drug,
angiotensin-converting enzyme inhibitors/angiotensin receptor blocker, number of outpatient serum creatinine measurements, number of hospitalizations, diabetes mellitus,
cardiovascular disease, peripheral artery disease, cerebrovascular disease, chronic lung disease, hepatitis C, HIV, dementia, cancer, gastroesophageal reflux disease, upper GI
tract bleeding, ulcer disease, Helicobacter pylori infection, Barrett’s esophagus, achalasia, stricture, and esophageal adenocarcinoma.
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Figure 3 | Mediation analyses of the association between proton pump inhibitor (PPI) use and chronic renal outcomes where acute
kidney injury (AKI) was considered a mediator. Pathway a ¼ a1 þ a2 represents the pathway mediated by AKI. Pathway b represents the
pathway not mediated by AKI. (a) Incident estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2. (b) Incident chronic kidney
disease (CKD). (c) eGFR decrease >30%. (d) End-stage renal disease (ESRD) or eGFR decrease >50%.
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unrecognized AKI (i.e., AKI that occurs in the outpatient
setting between clinical encounters and that may have
resolved by the time the laboratory parameters are obtained).
In our studies, we used AKI as a surrogate measure of AKI
and acute interstitial nephritis, and our analyses do not
differentiate on the basis of AKI etiology. However, we
designed an analytic strategy in which we examined the
relationship using a number of approaches that all yielded
consistent results; the constellation of findings strongly sug-
gests a relationship between PPI use and the risk of CKD and
progression to ESRD in the absence of intervening AKI.

The biological mechanisms supporting the observed
association of PPI with chronic renal outcomes are unclear.
Poesen et al.24 proposed a hypothesis that in addition to AKI,
altered gut microbial composition and metabolism may be in
the causal pathway between PPIs and CKD. Experimental
evidence in rats suggests that PPI administration limits the
regenerative capacity of the liver after partial hepatectomy.25

It is unclear whether PPI exposure also limits the regenera-
tive capacity of renal tubular cells, for example. Such a
mechanism, if verified, may at least partially explain the
increased risk of renal outcomes in PPI users. It has also been
noted that administration of PPIs upregulates the expression
of mRNA and protein level and subsequent increased activity
of the heme oxygenase-1 enzyme in gastric and endothelial
cells.26 Heme oxygenase-1 is generally seen as salutatory in
the setting of AKI as it may decrease the sensitivity of the
kidney to AKI and may reduce the propensity of AKI to CKD

transition.27 However, the salutary properties of heme
oxygenase-1 are evident at lower doses and are vitiated at
higher doses or in cases of sustained duration of expression.27

It is unclear whether and to what extent PPIs upregulate heme
oxygenase-1 in renal tissue and whether prolonged duration
of PPI exposure leads to a high level of sustained heme
oxygenase-1 where its beneficial effect is abrogated or
reversed. PPIs are enriched in acidic organelles where they are
activated and inhibit vacuolar Hþ-ATPases and acid hydro-
lases. A significant body of evidence suggests that PPIs impair
lysosomal acidification and proteostasis, which may lead to
increased oxidative stress, dysfunction, telomere shortening,
and accelerated senescence in human endothelial cells.28,29

PPIs have also been reported to induce a transepithelial
leak.30 In a high-throughput in silico analysis of microarray
data, PPI upregulated genes in the cellular retinol metabolism
pathway and downregulated genes in the complement and
coagulation cascades pathway.29 How the changes in gene
expression contribute to renal manifestations is not clear as
there is a substantial lack of published experimental and
mechanistic evidence to facilitate a better understanding the
putative off-target effects of PPIs.

We conducted a systematic PubMed search using a
comprehensive list of search terms to identify animal studies
of PPI-induced acute or chronic renal injury. The search
results yielded no published animal studies. The conspicuous
absence of published literature evaluating possible mecha-
nisms of PPI-related renal injury suggests a significant
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knowledge gap and highlights the pressing need for experi-
mental work to further enhance our understanding of the
effect of PPIs on the kidney.

Our study has a number of limitations. The analytic
cohort included mostly older white male US veterans, which
may limit the generalizability of study results. Our datasets
did not include information on the volume of daily urine
output. We cannot account for AKI that is not clinically
detected, and although we used a sensitive definition to
capture the occurrence of AKI, subclinical AKI (i.e., an in-
crease in creatinine that does not meet the threshold of the
AKI definition) cannot be captured but may gradually over
time contribute the development of CKD and its progression
to ESRD. Although we considered known covariates in the
analyses, it remains possible that there may be residual
confounders, either unknown or unmeasured, that may
explain the observed associations. In our analyses, we
defined drug exposure as having a prescription for it; because
PPIs (and H2 blockers) are also available without prescrip-
tion in the United States, it is possible that some participants
in this cohort may have acquired PPIs without prescription.
However, due to financial considerations, this possibility is
not highly likely, and if it occurred in some cohort partici-
pants, it would have biased the results against the primary
hypothesis and resulted in an underestimation of risk.
Duration of wash out (time from VA enrollment until T0
without exposure to acid suppressants) varied among cohort
participants, and it is likely that a small number of partici-
pants had a brief wash-out period (where we could ascertain
the lack of exposure to acid suppressants); however, this bias
would have reduced risk estimates (and biased the results
toward the null hypothesis). The study has a number of
strengths including the use of national large-scale data from
a network of integrated health systems that were captured
during routine medical care, which minimizes selection bias.
We utilized a new user (incident user) design and evaluated
the association between PPI use and the risk of chronic renal
outcomes using a number of analytical approaches in
sensitivity analyses. In sum, our results show a significant
association of PPI use and the risk of CKD and progression
to ESRD in the absence of intervening AKI. Reliance on
antecedent AKI as warning sign to guard against the risk of
the development of CKD and progression to ESRD among
PPI users is not sufficient as a sole risk mitigation strategy.
Exercising vigilance in PPI use, even in the absence of AKI,
and careful attention to kidney function in PPI users may be
a reasonable approach.

MATERIALS AND METHODS
Cohort participants
Based on the US Department of Veterans Affairs administrative
database, we selected users of acid suppression therapy (PPIs or H2
blockers) between October 1, 2006 and September 30, 2008 who had
no acid suppression therapy prescription from October 1, 1999, or
subsequent date of VA enrollment until September 30, 2006. The
first acid suppression therapy prescription date was defined as T0.

We further excluded participants who were prescribed H2 blockers at
T0 and received a PPI prescription during follow-up. Participants in
the cohort were required to have a baseline eGFR >60 ml/min per
1.73 m2 within 90 days before T0. In addition, participants in the
cohort needed to have at least 1 eGFR between T0 and the first
occurrence of one of the following: AKI, ESRD, death, or 5 years
after T0 (N ¼ 152,157). Finally, participants with missing data on
covariates were excluded from the final cohort. In the final cohort of
144,032 participants, 125,596 were new PPI users, and 18,436 were
new H2 blocker users. The follow-up duration was 5 years. The study
was approved by the Institutional Review Board of the VA St. Louis
Health Care System, St. Louis, MO.

Data sources
Veterans Health Administration Medical SAS inpatient and outpa-
tient data sets that contain comprehensive data on national Veterans
Health Administration inpatient and outpatient health care
encounters were used to ascertain comorbidity information based on
Current Procedural Terminology codes, and ICD-9, Clinical Modi-
fication diagnostic and procedure codes. AVA Health Factors data set
provided information regarding smoking status. The VA’s Managerial
Cost Accounting System provided laboratory result information. The
VA Corporate Data Warehouse Production Outpatient Pharmacy
domain provided information on outpatient prescriptions. Vital Sign
domain provided information on blood pressure and height and
weight to compute body mass index. The VA Beneficiary Identifi-
cation Records Locator Subsystem files, Medical SAS, and Vital
Status data sets provided demographic characteristics and date of
death. Information about occurrence of ESRD and date of first ESRD
services were obtained from US Renal Database System.

Primary predictor variable
The primary predictor variable is acid suppression therapy. Cohort
participants with their first acid suppression therapy prescription
containing esomeprazole, lansoprazole, omeprazole, pantoprazole,
or rabeprazole were PPI users. Participants with first acid suppres-
sion therapy prescription containing ranitidine, cimetidine, and
famotidine and had no PPI prescription during follow-up were H2
blocker users.

Outcomes
Outcomes for the study included an incident eGFR <60 ml/min per
1.73 m2, incident CKD in which CKD was defined as 2 eGFRs
<60 ml/min per 1.73 m2 at least 90 days apart and the second eGFR
measurement date was considered the date of CKD occurrence, a
>30% decrease in eGFR, and >50% decrease in eGFR or ESRD.31–34

Outcomes except for ESRD were ascertained based on outpatient
serum creatinine. The date of the first ESRD services was ascertained
using the USRDS databases. eGFRs were computed based on age,
race, sex, and serum creatinine using the Chronic Kidney Disease
Epidemiology Collaboration equation.35

AKI
Acute kidney injury in the primary analysis was defined as an
increase in serum creatinine value >50% or 0.3 mg/dl within
90 days.20 AKI was a dichotomous variable, defined as the devel-
opment of AKI at least once after T0 and before ESRD or not.

Covariates
Baseline covariates were measured from 5 years before T0 until T0.
Comorbidities included diabetes mellitus, cardiovascular disease,
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peripheral artery disease, cerebrovascular disease, chronic lung dis-
ease, dementia, cancer, and diseases associated with use of acid
suppression therapy such as gastroesophageal reflux disease, upper
gastrointestinal tract bleeding, ulcer disease, Helicobacter pylori
infection, Barrett’s esophagus, achalasia, stricture, and esophageal
adenocarcinoma. These diseases were assigned based on relevant
International Classification of Diseases, Ninth Revision, Clinical
Modification diagnostic and procedure codes and Current Proce-
dural Terminology codes.33,36–42 Hepatitis C and HIV were assigned
based on laboratory results. Body mass index was categorized into
underweight, normal weight, overweight, and obese. Smoking status
was categorized into never smoker, former smoker, and current
smoker. Both nonsteroidal anti-inflammatory drug and angiotensin-
converting enzyme inhibitors/angiotensin receptor blockers use was
defined dichotomously as use-related medication for >90 days or
not. Blood pressure were represented by 4-level variables: systolic
blood pressure (<90, 90–119.9, 120–139.9, >139.9) and diastolic
blood pressure (<60, 60–79.9, 80–89.9, >89.9). The number of
outpatient serum creatinine measurements and number of hospi-
talizations were calculated from laboratory and inpatient records and
were used as markers of overall health. Age, race defined as white,
black, and other, sex, and T0 eGFR were also included in multi-
variate analyses as covariates.

Statistical analyses
Counts and percentages, means and SDs, and medians and inter-
quartile ranges were used to describe cohort participants. Because of
the large sample size, standardized difference was used to test dif-
ferences between PPI users and H2 blocker users in participants
without AKI during follow-up as appropriate.

Kaplan-Meier curves were used to show the survival distributions
for different outcomes and log-rank tests were applied to test the
differences in the survival distributions. In addition, H2 blockers was
selected as a reference group, and Cox survival models were built
where the competing risk of death was noninformative and partici-
pants were censored at the time that they experienced AKI. We used
participants’ last eGFR before the first occurrence of AKI, ESRD,
death, or end of follow-up to compare with baseline eGFR and define
whether they experienced long-term kidney outcomes where appro-
priate. Logistic regressions were then used to evaluate the relationship
between PPI use and these kidney outcomes. Three other subcohort
and Cox survival models were built in which we excluded (i) cohort
participants who experienced AKI before outcome; (ii) participants
who experienced AKI within 5 years after T0, and (iii) participants
who experienced AKI within 5 years before T0.

Mediation analyses were undertaken to evaluate the proportion of
the total effect that could be explained by AKI.43 We used accelerated
failure time models with Weibull distribution for time to chronic
renal outcomes and logistic regression for mediator (ever experi-
enced AKI before outcome or not).

To examine the relationship between duration of exposure and risk
of renal outcomes, we grouped PPI users based on their duration of
PPI use before outcome and AKI. Cox survival models were applied to
evaluate hazard differences between different duration groups where,
to avoid immortal time bias, T0 was set as the last date of PPI use
before outcome and AKI.3,44,45 Participants with duration of >720
days were excluded because of a high probability of lack of follow-up
time. In Cox survival models in sensitivity analyses, participants were
censored at time of AKI occurrence.

In regression analyses, a 95% CI of an HR or odds ratio that does
not include 1.00 was considered statistically significant. A

standardized difference >0.1 was considered significant, and P <
0.05 was considered statistically significant. All analyses were per-
formed using SAS Enterprise Guide version 7.1 (SAS Institute, Cary,
NC).

Sensitivity analyses
To further explore the relationship between PPI and long-term
kidney outcomes and consider possible hidden bias, several sensi-
tivity analyses were conducted. We tested several different definitions
of AKI. We used the modified NHS England AKI definition as an
alternative definition of AKI and repeated all the analyses.21 Cohort
participants were considered to have experienced AKI if they met any
of the following criteria: (i) serum creatinine was 50% higher than
the lowest creatinine value in the previous 1 to 365 days, (ii) serum
creatinine had a >0.29-mg/dl increase compared with lowest creat-
inine value in the previous 2 days, (iii) serum creatinine was 50%
higher than the lowest creatinine value in next 30 days, (iv) serum
creatinine was 50% higher than the most recent creatinine in the
previous 3 years.21 We applied the KDIGO definition of AKI where
cohort participants were considered to have experienced AKI if they
had an increase in serum creatinine >0.3 mg/dl within 2 days or
50% within 7 days.46 We used inpatient ICD-9 codes to define AKI as
described previously.47 Because of the widespread PPI use, cohort
participants who were initially started on H2 blocker prescription
were likely to use a PPI later. We included these participants and
built time-dependent models, which allowed cohort participants to
change from an H2 blocker to a PPI. We used a time-dependent
model in which all covariates except the first eGFR, age, race, and
sex were time updated. Diseases were defined as whether a related
disease was experienced before time t. Body mass index, diastolic and
systolic blood pressure, and smoking status were considered with
same value as the record closest to and before time t. The number of
outpatient serum creatinine measurements and number of hospi-
talizations were accumulated until time t. Nonsteroidal anti-
inflammatory drug and angiotensin-converting enzyme/angiotensin
receptor blocker use was classified into 4 levels: never used before
time t, ever used before time t but not at time t, using at time t, and
started within 90 days before t and using at time t and started
>90 days before time t. We applied Fine and Gray models where
both death and AKI were considered competing risks.48 In order to
account for the lack of random assignment of PPIs and H2 blockers
to cohort participants, we conducted a 2-stage residual inclusion
estimation based on an instrumental variable within participants.49

The instrumental variable was defined for cohort participants as
their prescribing physician’s proportion of PPI users to new acid
suppression therapy users during the 6 months before the partici-
pants at T0.50 Cohort participants whose prescribing physician did
not prescribe to any new users of acid suppression therapy in past
6 months were excluded. In the first stage, instrumental variables
and covariables were used in a logistic regression model to predict
the individual-level possibility of receiving PPI therapy. The differ-
ence between participants’ real probability (equal 1 if PPI, 0 if H2
blocker) and predicted probability was considered the residual term.
In the second stage, Cox survival models, which included the
residual term and covariables, were conducted. In order to optimize
control for confounding, we built high-dimensional propensity
score–adjusted survival models following the multistep algorithm
described by Schneeweiss et al.,22 in which covariate selection was
fully based on data and the degree of bias that they would likely cause
in the relationship between exposure and outcome rather than
basing covariate selection on previous knowledge.22 Candidate
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covariates were identified based on cohort participants’ outpatient
prescription, outpatient ICD-9 diagnosis code, outpatient Current
Procedural Terminology code, inpatient ICD-9 diagnosis code, and
inpatient ICD-9 procedure code within 6 months before T0. The top
500 covariates that would most likely bias the outcome were used in
addition to age, race, sex, and first eGFR to obtain propensity scores.
Cox survival models were built that controlled for propensity score
as continuous or as deciles. We evaluated the association within
cohort participants without any of the following gastrointestinal
diseases: gastroesophageal reflux disease, upper gastrointestinal tract
bleeding, ulcer disease, H pylori infection, Barrett’s esophagus,
achalasia, stricture, and esophageal adenocarcinoma. We controlled
for HbA1c level before and closest to T0, where data are available.
We controlled for the microalbumin/creatinine ratio before and
closest to T0 where data are available. The microalbumin/creatinine
ratio in mg/g was defined as 3 groups: <30, between 30 and 300, and
>300. We evaluated the association in a subcohort with micro-
albumin/creatinine <30 mg/g.
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